

Table of Contents

1.1 Introduction 1-1 28000 Processor
1.2 General Organizationt P | Overview
1.3 Architectural Features e e 1-1
General-Purpose Register Fileo i 1-2 l
Instruction Set i 1-2
Data Types ..ot 1-2
Addressing Modes 1-2
Multiple Memory Address Spacesuuu i 1-3
System/Normal Mode of Operationuuuiieeaanaaeeaan.. 1-3
Separate I/O Address Spacest 1-3
Interrupt Structure 1-3
Multi-Processing 1-4
Large Address Space of the Z8001 1-4
Segmented Addressingof theZ8001 e 1-4
Memory Management 1-4
1.4 Benefits of the Architecture 1-5
Code Density 1-5
Compiler Efficiency oo i 1-5
Operating System SUpPOTt oottt e 1-5
Support for Many Types of Data Structurescovovuiiuninnnno .. 1-6
Two CPU Versions: Z8001 and Z8002t et 1-6
1.5 Extended Instruction Facility ..., 1-6
L6 SUMMATY . .ot 1-6
2.1 Introduchionii i 2-1 Architecture
2.2 General Organizationouuuiii i 2-1
2.3 Hardware Interface i, .. . 2-3 2
Address/Data Lines i 2-3
Segment Number (Z8001 only)oooui 2-3
Bus Timing 2-3
SHALUS oo 2-3
CPU Control 2-4
BusControl e e 2-4
Interrupts ... o 2-4
Segment Trap Request (Z8001 only) e 2-4
Multi-Micro Control 2-4
System Inputs 2-4
2.4 TIMING ..o 2-4
2.5 AdAress SpPacest 2-4
Memory Address Space 2-4
/O AdAress Space . ..o .ot 2-5
2.6 General-Purpose Registers i ... [P 2-5
2.7 Special-Purpose Registers i, 2-7
Program Status Registers i, 2-7
Program Status Area Pointer 2-7
Refresh Counter 2-7
2.8 Instruction Execution 2-7
2.9 Instructions 2-7
Instruction Formats 2-8
2.10Data Types ..o e 2-8
1T Addressing Modes 2-8
<.12Extended Processing Architecture0 e 2-8

Table of Contents (c.ui.q)

{

213Exceptions 2-9 Architecture
Reset ... 2-9 (Continued)
Traps o 2-9
Interrupts 2-9 2
Trap and Interrupt Service Proceduresoou 2-9
3.1 Introduction 3-1 Address Spaces
3.2 Typesof Address Spacesouuuuee 3-1
3.3 VO AAress Spaceo.uuuuie i 3-1 3
3.4 Memory Address Spaces 3-2
Addressable Data Elements 3-2
Segmented and Nonsegmented Addressesoouooonoo . 3-2
Segmentation and Memory Management i 3-3
4.1 Introduction 4-] CPU Operation
4.2 Operating Stateso.uuiu e 4-1
Running State 4-1 4
Stop/Refresh State 4-1
Bus-Disconnect State i 4-1
Effectof Reseto 4-1
4.3 Instruction Execution 4-2
Running-State Modes 4-2
Segmented and Nonsegmented Modes 4-2
Normal and System Modes 4-3
4.4 Extended Instructions 4-4
3.1 Introduction 5-1 Addressing Modes
5.2 Use of CPUReQISErsttt 5-2
5.3 Addressing Mode Descriptionsouiiii 5-2 5
5.4 Descriptions and Examples (Z8002 and Z8001 Nonsegmented Mode) 5-3
Register (R) ... oo 5-3
Immediate (IM) 5-3
Indirect Register (IR) 5-3
Direct Address (DAY 5-4
Index (R) . oo 5-4
Relative Address (RA) 5-4
Base Address (BA) 5-5
Base Index (BX)o 5-6
5.5 Descriptions and Examples (Segmented Z8001) 5-6
Register (R) ... oo 5-6
Immediate (IM) 5-6
Indirect Register (IR) 5-7
Direct Address (DA) 5-7
Index (X) .. oo 5-8
Relative Address (RA)o 5-8
Base Address (BA)o 5-9
Base Index (BX) 5-10

.

6.1 Introduction e 6-1 Instruction Set
6.2 Functional Summary 6-1
Load and Exchange Instructions 6-2 6
Arithmetic Instructions O 6-2
Logical Instructions o 6-3
Program Control Instructionsoouooeo 6-3
Bit Manipulation Instructionsoo oo 6-4
Rotate and Shift Instructions 6-4
Block Transfer and String Manipulation Instructions e 6-5
Input/Output Instructionscooo i 6-6
CPU Control Instructionsooiuron 6-6
Extended Instructions 6-7
6.3 Processor Trapsc.uuuinue 6-7
6.4 Condition Codesoooiiiie 6-8
6.5 Instruction Interrupts and Trapsooueomrrone 6-8
6.6 Notation and Binary Encodingooooi 6-9
6.7 Z8000 Instruction Descriptions and Formatscoooooroo .. 6-11
6.8 EPA Instruction Templatescooioe e 6-167
7.1 Introduction 7-1 Exceptions
7.2 Interruptso.ou 7-1
Non-Maskable Interrupt (NMI) o 7-1 7
Vectored Interrupt (VI) ... 7-1
Nonvectored Interrupt (NVI) 7-1
7.3 Traps ..o 7-1
Extended Instruction Trapo, 7-1
Privileged Instruction Trap 7-1
System Call Trapt 7-1
Segment Trapo 7-1
7.4 Reset .. o 7-2
7.5 Interrupt Disabling 7-2
7.6 Interrupt and Trap Handling oo, 7-2
Acknowledge Cycle 7-2
Status Saving 7-2
Loading New Program Status0 o 7-3
Executing the Service Routine 7-4
Returning from an Interrupt or Trapooueerei 7-4
7.7 Priorityo 7-4
8.1 Introduction 8-1 Refresh
8.2 Refresh Cycles 8-1
8.3 PeriodicRefresh 8-1 8
8.4 Stop-State Refresh 8-1

_ Y
Table of Contents (continuca) /

—

9.1 Introduction -9-1 External Interface
9.2 BusOperationso 9-1
9.3 CPUPINs . ..o 9-2 9
Transaction Pins 9-2 '
BusControl Pins 9-2
Interrupt/Trap Pins 9-2
Multi-Micro Pins 9-3
CPUCONIrol ... 9-3
9.4 Transactions 9-3
WA 9-4
Memory Transactions e 9-4
/O Transactions oo 9-6
EPU Transfer Transactionsoo.o oo 9-7
Interrupt/Trap Acknowledge Transactionsc.oourooo. ... 9-8
Internal Operations and Refresh Transactions 9-8
9.5 CPU and Extended Processing Unit Interaction 9-10
9.6 Requests 9-10
Interrupt/Trap Request 9-11
Bus Request 9-11
Resource Request 9-12
Stop Request ... 9-12
9.7 Reset ... o . 9-13
Hardware Information A-l Appendix
Z8000 Family Specifications o B-1 Appendix
Programmers Quick Reference C-1 Appendix
Glossary of Terms D-1 Appendix

1.1 Intro-
duction

This chapter provides a summary description
of the advanced architecture of the Z8000
Microprocessor, with special attention given to
those architectural features that set the Z8000
CPU apart from its predecessors. A complete

Chapie:j 1
Z8000 Processor Overview

overview of the architecture is provided in
Chapter 2, with detailed descriptions of the
various aspects of the processor provided in
succeeding chapters.

1.2 General
Organization

Zilog's Z8000 microprocessor has been
designed to accommodate a wide range of
applications, from the relatively simple to the
large and complex. The Z8000 CPU is offered
in two versions: the Z8001 and the Z8002. Each
CPU comes with an entire family of support
components: a memory management unit, a
DMA controller, serial and parallel I/O
controllers, and extended processing units—all
compatible with Zilog’s Z-Bus. Together with
other Z8000 Family components, the advanced
CPU architecture provides in an LSI micro-
processor design the flexibility and sophisti-
cated features usually associated with mini- or
mainframe computers.

The major architectural features of the Z8000
CPU that enhance throughput and processing
power are a general purpose register file,
system and normal modes of operation, multi-
ple addressing spaces, a powerful instruction
set, numerous addressing modes, multiple
stacks, sophisticated interrupt structure, a rich
set of data types, separate I/O address spaces
and, for the Z8001, a large address space and
segmented memory addressing. Each of these
features is treated in detail in the next section.

These architectural features combine to pro-
duce a powerful, versatile microprocessor. The

benefits that result from these features are
code density, compiler éfficiency, support for
typical operating system operations, and com-
plex data structures. These topics are treated
in Section 1.3. _

The CPU has been designed so that a power-
ful memory management system can be used to
improve the utilization of the main memory
and provide protection capabilities for the
system. This is discussed in Section 1.3.12.
Although memory management is an optional
capability—the Z8000 CPU is an extremely
sophisticated processor without memory
management—the CPU has explicit features to
facilitate integrating an external memory
management device into a Z8000 system con-
figuration.

Finally, care has been taken to provide a
very general mechanism for extending the
basic instruction set through the use of extern
al devices (called Extended Processing
Units—EPUs). In general, an EPU is dedicated
to performing complex and time-consuming
tasks so as to unburden the CPU. Typical tasks
for specialized EPUs include floating-point
arithmetic, data base search and maintenance
operations, network interfaces, and many
others. This topic is treated in Section 1.5.

1.3 Architec-
tural Features

The architectural resources of the Z8000
CPU include sixteen 16-bit general-purpose
registers, seven data types ranging from bits to
32-bit long words and byte strings, eight user-
selectable addressing modes, and an instruc-
tion set more powerful than that of most mini-
computers. The 110 distinct instruction types
combine with the various data types and
addressing modes to form a rich set of 414
instructions. Moreover, the set exhibits a high
degree of regularity: more than 90% of the
instructions can use any of five main address-
ing modes, with 8-bit byte, 16-bit word, and
32-bit long-word data types.

The CPU generates status signals indicating
the nature of the bus transaction that is being
attempted; these can be used to implement
sophisticated systems with multiple address
spaces-—memory areas dedicated to specific

uses. The CPU also has two operating modes,
system and normal, which can be used to
separate operating system functions from nor-
mal applications processes. 1/O operations
have been separated from memory accesses,
further enchancing the capability and integrity
of Z8000-based systems, and a sophisticated
interrupt structure facilitates the efficient
operation of peripheral I/O devices. Moreover,
the Extended Processing Unit (EPU) capability
of the Z8000 allows the CPU to unload many
time-consuming tasks onto external devices.

Special features of the Z8000 have been
introduced to facilitate the implementation of
multiple processor systems. In addition, the
Z8001 CPU has a large, segmented addressing
capability that greatly extends the applica-
bility of microprocessors to large system
applications.

1-1

1.3.1 General-Purpose Register File. The
heart of the Z8000 CPU architecture is a file of
sixteen 16-bit general-purpose registers. These
general-purpose registers give the Z8000 its
power and flex1b1hty and add to its regular
instruction structure.

General-purpose registers can be used as
accumulators, memory pointers or index reg-
isters. Their major advantage is that the partic-
ular use to which they are put can vary during
the course of a program as the needs of the
program change. Thus, the general-purpose
register file avoids the critical bottlenecks of
an implied or dedicated register architecture,
which must save and restore the contents of
dedicated registers when more registers of a
particular type are needed than are supplied
by the processor.

The Z8000 CPU register file can be
addressed in several ways: as 16 byte registers
(occupying fhe-u-ppep half of the file) or as 16
word registers or, by using the reqgister pairing
mechanism, as eight long-word (32-bit) reg-
isters or as four quadruple-word (64-bit) reg-
isters. Because of this register flexibility, it is
not necessary (for example) for a Z8000 user to
dedicate a 32-bit register to hold a byte of
data. Registers can be used efficiently in
the Z8000.

1.3.2 Instruction Set. A powerful instruction
set is one of the distinguishing characteristics
of the Z8000. The instruction set is one
measure of the flexibility and versatility of a
computer. Having a given operation imple-
mented in hardware saves memory and
improves speed. In addition, completeness of
the operations available on a particular data
type is frequently more important than addi-
tional, esoteric instructions, which are unlikely
to affect performance significantly. The Z8000
CPU provides a full complement of arithmetic,
logical, branch, I/O, shift, rotate, and string
instructions. In addition, special instructions
have been included to facilitate multiprocess-
ing, multiple processor configurations, and
typical high level language and operating
system functions. The general philosophy of
the instruction set is two-operand register-
memory operations, which include as a special
subset register-register operations. However,
to improve code density, a few memory-
memory operations are used for string manipu-
lation. The two-address format reflects the most
frequently occurring operations (such as

A — A + B). Also, having one of the
operands in a rapidly accessible general-
purpose register facilitates the use of inter-
mediate results generated during a
calculation.

The majority of operatons deal with byte,
word, or long-word operands, thereby pro-
viding a high degree of reqularity. Also
included in the instruction set are compact,
one-word instructions for the most frequently
used operations, such as branching short R

- distances in a program.

_The instruction set contains some notable
additions to the standard repertoire of earlier
microprocessors. The Load and Exchange
group of instructions has been expanded to
support operating system functions and con-
version of existing microprocessor programs.
The usual arithmetic instructions can now deal
with higher-precision operands, while hard-
ware multiply and divide instructions have also
been added. The Bit Manipulation instructions
can use calculated values to specify the bit
position within a byte or word as well as to
specify the position statically in the instruc-
tion. The Rotate and Shift instructions are con-
siderably more flexible than those in previous
microprocessors. The String instructions are
useful in translating between different char-
acter codes. Multiple-processor configurations
are supported by special instructions.

1.3.3 Data Types. Many data types are sup-
ported by the Z8000 architecture. A data type
is supported when it has a hardware represen-
tation and instructions which directly apply to
it. New data types can always be simulated in
terms of basic data types, but hardware sup-
port provides faster and more convenient
operations. The basic data type is the byte,
which is also the basic addressable element.
The architecture also supports the following
data types: words (16 bits), long words (32
bits), byte strings, and word strings. In
addition, bits are fully supported and
addressed by number within a byte or word.
BCD digits are supported and represented as
two 4-bit digits in a byte. Arrays are supported
by the Indexed addressing mode (see 1.3.4
and Chapter 5). Stacks are supported by the
instruction set and by an external device (the
Memory Management Unit, MMU) available
with the Z8001.

1.3.4 Addressing Modes. The addressing
mode, which is the way an operand is speci-
fied in an instruction, determines how an
address is generated. The Z8000 CPU offers
eight addressing modes. Together with the
large number of instructions and data types,
they improve the processing power of the
CPU. The addressing modes are Register,
Immediate, Indirect Register, Direct Address,
Index, Relative Address, Base Address, and
Base Index. Several other addressing modes
are implied by specific instructions, including
autoincrement. The first five modes listed

1-2

above are basic addressing modes that are
used most frequently and apply to most
instructions having more than one addressing
mode. (In the Z8002, Base Address and Index

modes are 1dentxc§l., and Ln tl&e 'QE)OI, $8 wrett
Addressing capg}axggg oy
all instructions, usxnga}le emory Manage-

ment UnitAND THE DiRecT or INDEXED ADPRE%G

MoDE
1.3.5 Multiple Memory Kddress Spaces. The

Z8000 CPU facilitates the use of multiple
address spaces. When the Z8000 CPU
generates an address, it also outputs signals
indicating the particular internal activity which”
led to the memory request: instruction fetch,
operand reference, or stack reference. This
information can be used in two ways: to
increase the memory space available to the
processor (for example, by putting programs in
one space and data in another); or to protect
portions of the memory and allow only certain
types of accesses (for example, by allowing
only instruction fetches from an area desig-
nated to contain proprietary software). The
Memory Management Unit (MMU) has been
designed to provide precisely these kinds of
protection features by using the CPU-
generated status information.

1.3.6 System/Normal Mode of Operation.
The Z8000 CPU can run in either system mode
or normal mode. In system mode, all of the
instructions can be executed and all of the
CPU registers can be accessed. This mode is
intended for use by programs performing
operating system functions. In normal mode,
some instructions may not be executed (e.q.,
I/O operations), and the control registers of
the CPU are inaccessible. In general, this
mode of operation is intended for use by appli-
cation programs. This separation of CPU
resources promotes the integrity of the system,
since programs operating in normal mode can-
not access those aspects of the CPU which deal
with time dependent or system-interface
events.

Programs executing in normal mode which
have errors can always reproduce those errors
for debugging purposes simply by re-exe-
cuting the program with its original data. Pro-
grams using facilities available only in system
mode may have errors due to timing consider-
ations (e.g. based upon the frequency of disk
requests and disk arm-position) that are harder
to debug because these errors are not easily
reproduced. Thus, the preferred method of
program development is to partition the task
into a portion which can be performed without
those resources accessible only in system mode
(which will usually be the bulk of the task) and
a portion requiring system mode resources.
The classic example of this partitioning comes
from current minicomputer and mainframe
systems: the operating system runs in system

mode and the individual users write their pro-
grams to run in normal mode.

To turther support the system/normal mode
dichotomy, there are two copies of the stack
pointer—one for a system mode stack and
another for a normal mode stack. These two
stacks facilitate the task switching involved
when interrupts or traps occur. To insure that
the normal stack is free of system information,
the information saved on the occurrence of
interrupts or traps is always pushed on the

system stack before the new program status is
loaded.

1.3.7 Separate I/0 Address Spaces. The
Z8000 Architecture distinguishes between
memory and I/O spaces and thus requires
specific I/O instructions. This architectural
separation allows better protection and has
more potential for extension. The use of
separate I/O spaces also conserves the limited
Z8002 data memory space. There are in fact
two separate I/O address spaces: standard I/O
and special I/O. The main advantage of these
two spaces is to provide for two types of
peripheral support chips—standard /O per-
ipherals and special I/O peripherals—devices
such as the Z8010 Memory Management Unit
that do not respond to standard I/O com-
mands, but do respond to special I/O com-
mands. A second advantage of these two
spaces is that they allow 8-bit peripherals to
attach to the low-order eight bits (standard
I/O) or to the high-order eight bits (special
I/O) of the processor Address/Data bus.

The increased speed requirements of future
microprocessors are likely to be achieved by
tailoring memory and I/O references to their
respective, characteristic reference patterns
and by using simultaneous I/Q and memory
referencing. These future possibilities require
an architectural separation today. Memory-
mapped l/O is still possible, but loss of protec-
tion and lack of expandability are severe
problems.

1.3.8 Interrupt Structure. The sophisticated
interrupt structure of the Z8000 allows the pro-
cessor to continue performing useful work
while waiting for peripheral events to occur.
The elimination of periodic polling and idling
loops (typically used to determine when a
device is ready to transmit data) increases the
throughput of the system. The CPU supports
three types of interrupts. A non-maskable
interrupt represents a catastrophic event which
requires immediate handling to preserve
system integrity. In addition, there are two
types of maskable interrupts: non-vectored
interrupts and vectored int lépts. The latter

- . RATE.
proyides an q__gto atic cal tmterrupt process-
ing%%%fi?x%gn cfg‘pgel?fa‘lgn(; gr'f ! }?ee\?eaétor pre-

sented by the peripheral to the Z8000.

1-3

The Z8000 has implemented a priority system
for handling interrupts. Vectored interrupts
have higher priority than non-vectored inter-
rupts. This priority scheme allows the efficient

control of many peripheral devices in a 28000

system.

An interrupt causes information relating to
the currently executing program (program -
status) to be saved on a special system stack
with a code describing the reason for the
switch. This allows recursive task switches to
occur while leaving the normal stack undis-
tulgge%i sl?y system information. The state pro-
grarr?'\to handle the interrupt (new program
status) is loaded from a special area in
memory, the program status area, designated
by a pointer resident in the CPU.

The use of the stack and of a pointer to the
program status area is a specific choice made
to allow architectural compatibility if new
interrupts or traps are added to the
architecture.

1.3.9 Multi-Processing. The increase in micro-
processor computing power that the Z8000
represents makes simple the design of
distributed processing systems having many
low-cost microprocessors running dedicated
processes.

The Z8000 provides some basic mechanisms
that allow the sharing of address spaces among
different microprocessors. Large segmented
address spaces and the support for external
memory management make this possible. Also,
a resource request bus is provided which, in
conjunction with software, provides the exclu-
sive use of shared critical resources. These
mechanisms, and new peripherals such as the
Z-FIO, have been designed to allow easy asyn-
chronous communication between different

CPUs.

1.3.10 Large Address Space for the Z8001.
For many applications, a basic address space
of 64K bytes is insufficient. A large address
space increases the range of applications of a
system by permitting large, complex programs
and data sets to reside in memory rather than
be partitioned and swapped into a small
memory as needed. A large address space
greatly simplifies program and data manage-
ment. In addition, large address spaces and
memories reduce the need for minimizing pro-
gram size and permit the use of higher level
languages. The segmented version of the
Z8000 generates 23-bit addresses, for a basic
address space of 8 megabytes (8M or 8,388,
608 bytes).

1.3.11 Segmented Addressing of the Z8001.
The segmented version of the 28000 CPU
divides its 23-bit addresses into a 7-bit seg-
ment number and a 16-bit segment offset. The
segment number serves as a logical name of a
segment; it is not altered by the effective

-space, 'the instructions could reside in one seg-

address calculation (by indexing, for exam-

ple). This corresponds to the way memory is
typically used by a program—one portion of
the memory is set aside to hold instructions,
another for data. In a segmented address

" ment (or several different modules in different

segments), and each data set could reside in a
separate segment. One advantage of segmenta-
tion is that it speeds up address calculation
and relocation. Thus, segmentation allows the
use of slower memories than linear addressing
schemes allow. In addition, segments provide
a convenient way of partitioning memory so
that each partition is given particular access
attributes (for example, read-only). The Z8000
approach to segmentation (simultaneous access
to a large number of segments) is necessary if
all the advantages of segmentation are to be
realized. A system capable of directly access-
ing only, say, four segments would lack the
needed flexibility and would be constrained by
address space limitations.

1.3.12 Memory Management. Memory
management consists primarily of dynamic
relocation, protection, and sharing of memory.
It offers the following advantages: providing a
logical structure to the memory space that is
independent of the actual physical location of
data, protecting the user from inadvertent
mistakes such as attempting to execute data,
preventing unauthorized access to memory
resources or data, and protecting the operation
system from disruption by the users.

The address manipulated by the program-
mer, used by instructions, and output by the
segmented Z8000 CPU are called logical
addresses. The external memory management
system takes the logical addresses and trans-
forms them into physical addresses required
for accessing the memory. This address trans-
formation process is called relocation, which
makes user software independent of the physi-
cal memory. Thus, the user is freed from
specifying where information is actually
located in the physical memory.

The segmented Z8000 CPU supports memory
management both with segmented addressing
and with program-status information. A seg-
mented addressing space allows individual
segments to be treated differently.

Program status information generated by the
CPU permits an external memory management
device to monitor the intended use of each
memory access. Thus, illegal types of access
can be suppressed and memory segments pro-
tected from unintended or unwanted modes of
use. For example, system tables could be pro-
tected from direct user access. This added pro-
tection capability becomes more important as
microprocessors are applied to large, complex
tasks.

1-4

1.4 Benefits of
the Architec-
ture

EiCErT RE »

The features of the Z8000 Architecture com-
bine to provide several significant benefits:
improvements in code density, compiler effi-
ciency, operating system sﬁpport, and support
for high level data structures.

1.4.1 Code Density. Code density affects both
processor speed and memory utilization. Code
compaction saves memory space—an especial-
ly important factor in smaller systems—and
improves processor speed by reducing the
number of instruction words that must be
fetched and decoded. The Z8000 offers several
advantages with respect to code density. The
most frequently used instructions are encoded
in single-word formats. Fewer instructions are
needed to accomplish a given task and a con-
sistent and regular architecture further
reduces the number of instructions required.

Code density is achieved in part by the use
of special “short” formats for certain instruc-
tions which are shown by statistical analysis to
be most frequently used by assemblers. A
"short offset” mechanism has also been provid-
ed to allow a 2-word segmented address to be
reduced to a single word; this format may be
used by assemblers and compilers.

The largest reduction in program size and
increase in speed results from the consistent
and regular structure of the architecture and
from the more powerful instruction set— factors
that substantially reduce the number of
instructions required for a task. The architec-
ture is more reqgular relative to preceding
microprocessers because its registers, address
modes, and data types can be used in a more
orderly fashion. Any general-purpose register
can be specified as an acculumator, index reg-
ister, or base register. With a few exceptions,
all basic addressing modes can be used with
all instructions, as can the various data types.

General-purpose registers do not have to be
changed as often as registers dedicated to a
specific purpose. This reduces program size,
since frequent load and store operations are
not required.

1.4.2 Compiler Efficiency. For microprocessor
users, the transition from assembly language to
high-level languages allows greater freedom
from architectural dependency and improves
ease of programming. However, rather than
adapt the architecture to a particular high-
level language, the Z8000 was designed as a
general-purpose microprocessor. (Tailoring a
processor for efficiency in one language often
leads to inefficiency in unrelated languages.)
For the Z8000, language support has been pro-
vided through the inclusion of features
designed to minimize typical compilation and
code-generation problems. Among these
features is the regularity of the Z8000 address-

ing modes and data types. Access to
parameters and local variables on the pro-
cedure stack is supported by the “Index With
Short Offset” addressing mode, as well as the
Base Address and Base Index addressing
modes. In addition, address arithmetic is aided
by the Increment and Decrement instructions.

Testing of data, logical evaluation, initializa-
tion, and comparison of data are made possi-
ble by the instructions Test, Test Condition
Codes, Load Immediate Into Memory, and
Compare Immediate With Memory. Since com-
pilers and assemblers frequently manipulate
character strings, the instructions Translate,
Translate And Test, Block Compare, and Com-
pare String all result in dramatic speed
improvements over software simulations of
these important tasks. In addition, any register
except zero can be used as a stack pointer by
the Push and Pop instructions.

1.4.3 Operating System Support. Interrupt
and task-switching features are included to
improve operating system implementations.
The memory-management and compiler-
support features are also quite important.

The interrupt structure has three levels: non-
maskable, non-vectored, and vectored. When
an interrupt occurs, the program status is
saved on the stack with an indication of the
reason for this state-switching before a new
program status is loaded from a special area of
memory. The program status consists of the
flag register, the control bits, and the program

counter. The reason for the occurrence is
encoded in a vector that is read from the sys-
tem bus and saved on the stack. In the case of
a vectored interrupt, the vector also deter-
mines a jump table address that points to the
interrupt processing routine.

The inclusion of system and normal modes
improves operating system organization. In the
system mode, all operations are allowed; in the
normal mode, certain system instructions are
prohibited. The System Call instruction allows
a controlled switch of mode, and the imple-
mentation of traps enforces these restrictions.

Traps result in the same type of program
status-saving as interrupts: in both cases, the
information saved is pushed on to a system
stack that keeps the normal stack undisturbed.
The Load Multiple instruction allows the con-
tents of registers to be saved efficiently in
memory or on the stack. Running programs
can cause program status changes under
direct software control with the Load Program
Status instruction.

Finally, exclusion and serialization can be
achieved with the “atomic” Test And Set
instruction that synchronizes asynchronous
cooperating processes.

1-5

THE INDEK poD

1.4.4 Support for Many Types of Data Struc-
tures. A data structure is a logical organiza-
tion of primitive elements (byte, word, etc.)
whose format and access conventions are well-
defined. Common data structures include
arrays, lists, stacks, and strings. Since data
structures are high-level constructs frequently
used in programming, processor performance
is significantly enchanced if the CPU provides
mechanisms for efficiently manipulating them.
The Z8000 offers such mechanisms.

In many applications, one of the most fre-
quently encountered data structures is the
array. Arrays are supported in the Z8000 by
the Base Index addressing modesand by seg-
mented addressing. The Base Index addressing
mode allows the use of pointers into an array
(i.e., offsets from the array’s starting address).
Segmented addressing allows an array to be
assigned to one segment, which can be refer-
enced simply by segment number.

Lists occur more frequently than arrays in
business applications and in general data pro-
cessing. Lists are supported by Indirect Reg-
ister and Base Address addressing modes. The
Base Index addressing mode is also useful for
more complex lists.

Stacks are used in all applications for nest-
ing oF routines, block structured languages,
and interrupt handling. Stacks are supported
by the Push and Pop instructions, and multiple
stacks may be implemented based on the
general-purpose registers of the Z8000. In

addition, two hardware stack pointers are used
to assign separate stacks to system and normal
operating modes, thereby further supporting
the separation of system and normal operating
environments discussed earlier.

Byte and word strings are supported by the
Translate and Translate And Test instructions.
Decimal strings use the Decimal Adjust
instruction to do decimal arithmetic on strings
of BCD data, packed two characters per byte.
The Rotate Digit instructions also manipulate
4-bit data.

1.4.5 Two CPU Versions: Z8001 and Z8002.
The Z8000 CPU is offered in two versions: the
Z8001 48-pin segmented CPU and the Z8002
40-pin nonsegmented CPU. The main differ-
ence between the two is addressing range. The
Z8001 can directly address 8M bytes of
memory; the Z8002 directly addresses 64K
bytes. The Z8001 has a non-segmented mode of
operation which permits it to execute programs
written for the Z8002.

Not all applications require the large
address space of the Z8001; for these appli-
cations the Z8002 is recommended. Moreover,
many multiple-processor systems can be imple-
mented with one Z8001 and several Z8002s,
instead of exclusively using Z8001s. Since the
same assembler generates code for both CPUs,
users can buy only the power they require
without having to worry about software incom-
patibility between processors.

-
e

1.5 Extended
Instruction
Facility

The Z8000 architecture has a mechanism for
extending the basic instruction set through the
use of external devices. Special opcodes have
been set aside to implement this feature. When
the CPU encounters an instruction with these
opcodes in its instruction stream, it will per-
form any indicated address calculation and
data transfer; otherwise, it will treat the
“extended instruction” as being executed by
the external device. Fields have been set aside
in these extended instructions which can be
interpreted by external devices (Extended Pro-

cessing Units—EPUs) as opcodes. Thus, by
using appropriate EPUs, the instruction set of
the Z8000 can be extended to include special-
ized instructions.

In general, an EPU is dedicated to perform-
ing complex and time-consuming tasks in
order to unburden the CPU. Typical tasks suit-
able for specialized EPUs include floating-
point arithmetic, data base search and main-
tenance operations, network interfaces,
graphics support operations—a complete list
would include most areas of computing.

1.6 Summary

The architectural sophistication of the Z8000
microprocessor is on a level comparable with
that of the minicomputer. Features such as
large address spaces, multiple memory spaces,
segmented addresses, and support for multiple
processors are beyond the capabilities of the
traditional mimieemputer. The benefits of this

MACRbee €900

architecture—code density, compiler support,
and operating system support—greatly
enhance the power and versatility of the CPU.
The CPU features that support an external
memory management system also enhance the
CPU'’s applicability to large system
environments.

1-6

2.1 Intro-
duction

This chapter provides an overview of the
Z8000 CPU architecture. The basic hardware,
operating modes and instruction set are all
described. Differences between the two ver-
sions of the Z8000 (the nonsegmented Z8002

‘Brehitecture

Chapter 2

and the segmented Z8001) are noted where
appropriate. Most of the subjects covered here
are also treated with greater detail in later
chapters of the manual.

2.2 General

Figure 2.1 contains a block diagram that

m An exceptioh-handling control, which pro-

Organization shows the major elements of the Z8000 CPU, cesses interrupts and traps.
namely: B A refresh control, which generates memory
B A 16-bit internal data bus, which is used to refresh cycles.
move address and data within the CPU. Each of these elements is explained in the
® A Z-Bus interface, which controls the inter- following sections. All of the elements are
action of the CPU with the outside world. common to both the Z8001 CPU and the Z8002
W A set of 16 general-purpose registers, which Cfpt g gggocélffereélce_s bstfweent}tlhe two};/er s1fons
is used to contain addresses and data. ot the are cerived trom the number o
)]] bits in the addresses they generate. The 78002
® Four spec1al-purpos.e registers, which con- always generates a 16-bit linear address, while
trol the CPU operation. the Z8001 always generates a 23-bit segmented
m An Arithmetic and Logic Unit, which is address (that is, an address composed of a
used for manipulating data and generating 7-bit segment number and a 16-bit offset).
addresses.
B An instruction execution control, which
fetches and executes Z8000 instructions.
{— - - — -
I REFRESH l
CONTROL l
GENERAL ARITHMETIC
I PURPOSE LOGIC
REGISTERS <E> UNIT t I
|
I COUNTER l
I <L INTERNAL DATA BUS ‘> NS e
I I iNsTRUCTION “ |
| L Jeirren” Prosna
REGISTERS t I
INSTRUCTION
I EXECUTION F———— EXCEPTION |
CONTROL F— _pc 9 HANDLING
l Fow CONTROL |
Z8Qo0cCP© —
Figure 2-1. Z8000 CPU Functional Block Diagram
26-0001-5900 2-1

2.2 General Figure 2.2 gives a system-level view of the Management Units (MMUs) that offer sophis-
Organization Z8000. It is important to realize that the Z8000 ticated memory allocation and protection
(Continued) CPU comes with a whole family of support features.
components. The Z8000 Family has been
designed to allow the easy implementation of
powerful systems. The major elements of such _
a system might include: B A large number of possible peripheral

devices interfaced to the Z-Bus th
B The Z-Bus, a multiplexed address/data ovices mieriaced to 1he us through

! Universal Peripheral Controllers (UPCs),
shared bus that links the components of the Serial Communication Controllers (SCCs),

B One or more Direct Memory Access (DMA)
controllers for high-speed data transfers.

system. Counter-Timer and Parallel I/O Controllers
m A 78001 or Z8002 CPU. (CIOs) or other Z-Bus peripheral
® One or more Extended Processing Units - controllers.
(EPUs), which are dedicated to performing B One or more FIFO I/O Interface Units
specialized, time-consuming tasks. (FIOs) for elastic buffering between the
B A memory sub-system, which in Z8001 CPU and another device, such as another
systems can include one or more Memory CPU in a distributed processing system.

PERIPHERALS

upC
EPU DMA - cio

EPU DMA scC

28000 <lL o j’>
P
FI10

MMU
Z8001 ONLY
MMU

o

MEMORY

Figure 2-2. Z8000 System Configuration

2-2 26-0001-0901

2.3 Hardware

Figure 2.3 shows the Z8000 pins grouped

Interface according to function. The Z8001 is packaged
in a 48-pin DIP and the Z8002 is packaged in a
. . cys . - S ADis [w—>
40-pin DIP. The eight additional pins on the sus) . | P DG
28001 are the seven segment-number lines and “mm{ e L ADqy |
the segment trap. Except for those eight, all AD;; f—s-
. . . . ~«——1 READ/WRITE ADqy fu—m
pins on the two CPU versions are identical. <~ NormaLETETER N bl
The Z8000 is a Z-Bus CPU; thus, activity on ~«—] evrEAWoRD ADg |
the pins is governed by the Z-Bus protocols STATUS Apy [«—> | ADDRESS!
(see The Z-Bus Summary). These protocols Dl ::’ : ::’ bl DATA RUS
specify two types of activities: transactions, —] s,: A,,: .
which cover all data movement (such as -«—isT, AD, |
memory references or I/O operations), and ey ze001 :g“ :
requests, which cover interrupts and requests coumo._{ —|sor 28092 v D
for bus or resource control. The following is a AD, |-
briet overview of the Z8000 pin functions; com- { —>| BUSRa — 1 =N~ zéo07
plete descriptions are found in Chapter 9. contnol| < s Ir ::: e "8'?'-"1
2.3.1 Address/Data Lines. These 16 lines —| : SNy [—> SE“E"T:
alternately carry addresses and data. The INTERRUPTS g el (numeer |
addresses may be those of memory locations or : snj _ :
I/O ports. The bus timing signal lines MULTI-MICRO { "y Y |
described below indicate what kind of informa- CONTROL} =—{¥o | seament |
tion the Address/Data lines are carrying. LT
2.3.2 Segment Number (Z8001 only). These T 1 t T
seven lines encode the address of up to 128 +5V GND LK RESET
relocatable memory segments. The segment
signals become valid before the address offset
signals, thus supporting address relocation by Figure 2-3. Z8000 Pin Functions
the memory managment system.
2.3.3 Bus Timing. These three lines include to determine when the multiplexed Address/
Address Strobe (AS), Data Strobe (DS) and Data Bus holds addresses or data. The Memory
Memory Request (MREQ). They are used to Request signal can be used to time control
signal the beginning of a bus transaction and signals to a memory system.
ST,-STp Definition 2.3.4 Status. These lines function to indicate
the kind of transaction on the bus (STy-STy),
0000 Internal operation whether it is a read or write (R/W, where High
0001 Memory refresh
0010 /O reference is Read and Low is Write), whether it is on
0011 Special IO reference byte or word data (B/W, High = byte,
0100 Segment trap acknowledge Low = word), and whether the CPU is
0101 Non-maskable interrupt acknowledge operating in normal mode or system mode
0110 Non—vecto-red interrupt acknowledge (N/S High = normal, Low = system). The
0111 Vectored interrupt acknowledge ! . ! ol
1000 Data memory request ST,-STj; lines also encode additional
1001 Stack memory request characteristics of the bus transactions, as Table
1010 Data memory request (EPU) 2.1 shows. The availability of status information
1011 Stack memory request (EPU) defining the type of bus transaction in advance
b1oo Instruction space access of data transmission allows bidirectional
1101 Instruction fetch, first word
1110 EPA Transfer drivers and other external hardware elements
1111 Reserved to be enabled before data is transferred.
Table 2.1 Status Line Codes
C8071-0089 2-3

2.3 Hardware 2.3.5 CPU Control. These inputs allow exter-

Interface
(Continued)

nal devices to delay the operation of the CPU.
The WAIT line, when active (Low), causes the
CPU to idle in the middle of a bus transaction,
taking extra clock cycles until the WAIT line
goes inactive; it is typically input by memory
or I/O peripherals which operate more slowly
than the CPU. The Stop (STOP) line halts

internal CPU operation when the first word of

an instructior¥has been fetched. This signal is
useful for single-step instruction execution dur-
ing debugging operations and for enabling
Extended Processing Units to halt the CPU
temporarily.

2.3.6 Bus Control. These lines provide the
means for other devices, such as direct
memory access (DMA) controllers, to gain
exclusive use of the system bus, i.e., the signal
lines that are common to several devices in a
system. The external device requesting control
of the bus inputs a bus request (BUSREQ); the
CPU responds with a bus acknowledge
(BUSACK) after three-starting, or electrically
neutralizing, the Address/Data Bus, Bus Tim-
ing lines, Status lines, and Control lines. The
Z-Bus allows a daisy chain to be used to

enforce a priority among several external
devices.

2.3.7 Interrupts. Three interrupt inputs are
provided: non-maskable interrupts (NMI), vec-
tored interrupts (VI) and non-vectored inter-
rupts (NVI). These permit external devices to
suspend the CPU’s execution of its current
program and begin executing an interrupt ser-
vice routine.

2.3.8 Segment Trap Request (Z8001

only). This input to the CPU is used by an
external memory-management system to indi-
cate that an illegal memory access has been
attempted.

2.3.9 Multi-Micro Control. The Multi-Micro In
(MI) and Multi-Micro Qut (MO) lines are used
in conjunction with instructions such as MSET
and MREQ to coordinate multiple-CPU sys-
tems. They allow exclusive use by one CPU of
a shared resource in a multiple-CPU system.

2.3.10 System Inputs. The four inputs shown
at the bottom of Figure 3 include +5 V power,
ground, a single-phase clock signal and a CPU
reset. The reset function is described in
Chapter 7.

2.4 Timing

Figure 2.4 shows the three basic timing
periods of the Z8000: a clock cycle, a bus
transaction, and a machine cycle. A clock
cycle (sometimes called a T-state) is one cycle
of the CPU clock, starting with a rising edge.
A bus transaction covers a single data move-
ment on the CPU bus and will last for three or
more clock cycles, starting with a falling edge

MACHINE

of AS and ending with a rising edge of DS. A
machine cycle covers one basic CPU operation
and always starts with a bus transaction. A
machine cycle can extend beyond the end of a
transaction by an unlimited number of clock
cycles. Appendix A contains a complete
description of Z8000 timing.

CYCLE

BUS
TRANSACTION

<——+ CLOCK CYCLE

le——

CPU CLOCK I l | | I I l | I | | I I I | | |

/

A4

\/

N/

Figure 2-4. Basic Timing Periods

2.5 Address
Spaces

The Z8000 supports two main address
spaces corresponding to the two different kinds
of locations that can be addressed:

W Memory Address Space. This consists of the
addresses of all locations in the main
memory of the computer system.

B [/O Address Space. This consists of the
addresses of all /O ports through which
peripheral devices are accessed.

For more information on address spaces, con-
sult Chapter 3.

2.5.1 Memory Address Space. Memory
address space can be further subdivided into
Program Memory address space, Data Memory
address space, and Stack Memory address
space, each for both normal and system
modes.

The particular space addressed is deter-
mined by the external circuitry from the code
appearing at the CPU’s output status pins
(STy-ST3) and the state of the Normal/System
signal (N/S pin). Data memory reference, stack
memory reference, and program memory

/

2-4

26-0001-06902

—

{

2.5 Address
Spaces
(Continued)

reference each correspond to a different status
code at the STy-ST; outputs, allowing three
address spaces to be distinguished for each of
two operating modes, giving six address
spaces in all. Each of the six address spaces
has a range as great as the addressing ability
of the processor. For the nonsegmented 28002,
each address space can have up to 64K bytes,
giving a potential total system capacity of 384K
bytes of directly addressable memory. The
segmented Z8001, on the other hand, provides
up to 48M bytes of directly addressable mem-
ory due to the 23-bit segmented addresses.
Segmentation is a means of partitioning
memory into variable-size segments so that a
variety of useful functions may be

permitted:,
including: IMPLEMENTED,

W Protection mechanisms that prevent a user
from referencing data belonging to others,
attempting to modify read-only data or over-
flowing a stack.

® Virtual memory, which permits a user to
write functioning programs under the
assumption that the system contains more
memory than is actually available.

£{ oCATING
® Dynamic %efeoea-t-ren which allows the place-
ment blocks of data in physical memory

independently of user addresses, allowing
better management of the memory resources
and sharing of data and programs.

The signals provided on the segmented
Z8001 CPU assist in implementing these
features, although additional software and
external circuitry (such as the 28010 MMU) is
generally required to take full advantage of
them. Chapter 3 contains an extensive discus-
sion of segmentation and the Z8001.

2.5.2 I/O Address Space. [/O addresses are
represented as 16-bit words for both the Z8001
and Z8002.

‘There are two I/O address spaces, Standard
I/O and Special I/O, which are both separate
from the memory address space. Each I/O
space is accessed through a separate set of /O
instructions, which can be executed only when
the CPU is operating in system mode.

Standard I/O instructions transfer data
between the CPU and peripherals and Special
I/O instructions transfer data to or from exter-
nal CPU support circuits such as the Z8010
MMU. Access to Standard or Special I/O
space is distinguished by the status lines
(STp-STj3).

2.6 General-

The Z8000 CPU contains 16 general-purpose

RHO-RL7, which may be used as accumulators,

Purpose registers, each 16 bits wide. Any general- overlap the first eight word registers. Register
Registers purpose register can.be used for any instruc- grouping for larger operands include eight
tion operand (except for minor exceptions double-word (32-bit) registers, RRO-RR14, A“-:R &5‘2;?;"2:
described at the beginning of Chapter 5). which are used by a few instructions such as Rao~Rq .
Figure 2.5 shows these general-purpose reg- Multiply, Divide, and Extend Sign. ?
isters. They allow data formats ranging from As Figure 2.5 illustrates, the CPU has two
bytes to quadruple words. The word registers hardware stack pointers, one dedicated to each
are specified in assembly-language statements of the two basic operating modes, system and
as RO through R15. Sixteen byte registers,
Z8001 Z8002
aro (Ro [7 RHO ol7 RLO 0] "0[rof7_ RHO 7 AL |
R [15 RH1 T RLI 0] m[is AH1 j ALY o]
[w2 1 RL2] oo R2[RHZ RL2] e
e ’ as[RH3 j RL3] . { raf RK3 RLS]
Raf RHA : RLA] Re[RHa ALA]
h { s AHS I RLS] RR‘{ as| RHS RLS]
e { L AHE j RLG | Ras e ' Re[AHE] fas
A T ; RLT 1 Rz [AHT RLE RLT7]
R“[rs [15 o] “‘[s[5 o]
aof] RQ8 !] Ra8
RR10 [mol 1 RR10 [mol___ J
an [1 R | 1
"m[rz[] Rmzl mz[]
LE] maf 1
R'TW Rat2 A] Ron
R14 NORMAL STACK POINTER (SEG. NO.) R14 .
AR R1s* [SYSTEM STACK POINTER (OFFSET) " { m:ii s;i‘::ss:::':(:(:::s:]j
R1S L NORMAL STACK POINTER (OFFSET}
Figure 2-5a. Z8001 General-Purpose Registers Figure 2-5b. Z8002 General-Purpose Registers
(Register Address Space) (Registers Address Space)
C8064-0207 C8064-0208 2-5

2.6 General- normal. The segrﬁented Z8001 uses a two-word mode. The normal stack pointer is used for

Purpose stack pointer for each mode (R14'/R15' or subroutine calls in user programs. In normal-
Registers R14/R15), whereas the nonsegmented Z8002 mode operation only the normal stack pointer
(Continued) uses only one word for each mode (R15’ is accessible. In system-mode operation, the

or R15).

system stack pointer is directly accessible as ' j
The system stack pointer is used for savin

ne of the general-purpose registers. Theuser \

status information when an interrupt or tra
occurs and for supporting calls in system

stack pointer can be accessed as a special con-
trol register.

2.7 Special-
Purpose
Registers

In addition to the general-purpose registers,
there are special-purpose registers. These
include the Program Status registers, the Pro-
gram Status Area Pointer, and the Refresh
Counter; they are illustrated for both CPU ver-
sions in Figure 2.6. Each register can be
manipulated in software executing in system
mode, and some are modified automatically by
certain operations.

2.7.1 Program Status Registers. These
registers include the Flag and Control Word
(FCW) and the Program Counter (PC). They
are used to keep track of the state of an exe-
cuting program.

In the nonsegmented Z8002, the Program
Status registers consist of two words: one each
for the FCW and the PC. In the segmented
28001, there are four words: one reserved
word, one word for the FCW and two words for
the segmented PC.

The low-order byte of the Flag and Control
Word (FCW) contains the six status flags, from
which the condition codes used for control of
program looping and branching are derived.
The six flags are:

Carry (C), which generally indicates a carry
out of the high-order bit position of a register
being used as an accumulator.

Zero (Z), which is generally used to indicate
that the result of an operation is zero.

Sign (S), which is generally used to indicate
that the result of an operation is a negative
number.

15 0

ooaoonnooonouonoIREssnvzn
I||1|1|||1|||111l""”“J

FLAG AND
Issalsmlzmlws[uwsl o 0 o] c I z l s]PNlnAI H I] u] CONTROL
L1 i WORD

L°l]) I°1°1°|°1°|°|°|T]

L SEGMENT OFFSET
1 1 1 | 1 1 1 1 1 E
28001 Program Status Registers

SEGMENT NUMBER
1] | 1

PROGAAM
COUNTER

| ! i l__1]

15 0
SEGMENT NUMBER

m I °) °]
UPPER OFFSET

I [T i S I]°|°|°1°|“|°|°1°]

Program Status Area Pointer
1 8 o

l L4 1 1

I°|°|°|°1°|°|

78001
4

15
l:sl 1.1 “IYE 11

28001 Refresh Counter

Parity/Overflow (P/V), which is generally used
to indicate either parity (after logical opera-
tions on byte operands) or overflow (after
arithmetic operation).

Decimal-Adjust (D), which is used in BCD
arithmetic to indicate the type of instruction
that was executed (addition or subtraction).

Half Carry (H), which is used to convert the
binary result of a previous decimal addition or
subtraction into the correct decimal (BCD)
result.

Section 6.3 provides more detail on these
flags.

The control bits, which occupy the high-
order byte of the FCW, are used to enable
various interrupts or to control CPU operating
modes. The control bits are:

Non-Vectored Interrupt Enable (NVIE), Vec-
tored Interrupt Enable (VIE). These bits deter-
mine whether or not the CPU will accept non-
vectored or vectored interrupts (see Section

2.13).

System/Normal Mode (S/N). When this bit is
set to one, the CPU is operating in system
mode; when cleared to zero, the CPU is in
normal mode (see Section 2.8). The CPU out-

put status line (N/S pin) is the complement of
this bit.

Extended Processor Architecture (EPA)
Mode. When this bit is set to one, it indicates

that the system contains Extended Processing
Units, and hence extended instructions

15
lolsmlznlvnsluwslo 0 n]clzls[wvlnalul [o] CONTROL
1 | 1 WORD

[ADDRESS
]] | i 1 | L 1

PROGRAM
i 1 | i { { 1 COUNTER

Z8002 Program Status Registers

UPPER POINTER
Ll | | °1°|°|°1°|°:"|“—I

Z8002 Program Status Area Pointer

15 14 9 8 0
[us l RATE ROW
L1 L1 {1]

28002 Refresh Counter

Figure 2-6. CPU Special Registers

2-6

C8002-0283 26-0001-0903

2.7 Special
Purpose
Registers
(Continued)

encountered in the CPU instruction stream are
executed (see Section 2.12). When this bit is
cleared to zero, extended instructions are
trapped for software emulation.

Segmentation Mode (SEG). This bit is imple-

mented only in the Z8001; it is always cleared
in the nonsegmented Z8002. When set to one,
the CPU is operating in segmented mode, and
when cleared to zero, the CPU is operating in
nonsegmented mode (see Section 2.8).

2.7.2 Program Status Area Pointer

(PSAP). The Program Status Area Pointer
points to an array of progam status values
(FCW and PC) in main memory called the Pro-
gram Status Area. & New Program Status reg-

ister value?)%afetched from this area when an
interrupt or trap occurs. As shown in Figure
2.6, the PSAP comprises either one word (non-
segmented Z8002) or two words (segmented
Z8001); for either configuration, the lower byte
of the pointer must be zero. Refer to Chapter 7
for more details about the Program Status Area
and its layout.

2.7.3 Refresh Counter. The CPU contains a
programmable counter that can be used to
refresh dynamic memory automatically. The
refresh counter register consists of a 9-bit row
counter, a 6-bit rate counter and an enable bit
(Figure 2.6). Refer to Chapter 8 for details of
the refresh mechanism.

2.8 Instruction
Execution

In the normal course of events, the Z8000
CPU will spend most of its time fetching
instructions from memory and executing them.
This process is called the running state of the
CPU. The CPU also has two other states that it
occasionally enters.

Stop/Refresh State. This is really one state,
although it may be entered in two different
ways: either automatically for a periodic
memory refresh; or when the STOP line is acti-
vated. In this state, program execution is
temporarily suspended and the CPU makes use
of the Refresh Counter to generate refreshes.
For more information, consult Chapter 8.

Bus-Disconnect State. This is the state the
CPU enters when the DMA, or some other bus
requester, takes over the bus. Program execu-
tion is suspended and the CPU disconnects
itself from the bus. See Chapter 7 for more
information.

While the CPU is in the running state, it can
either be handling interrupts or executing

instructions. If it is executing instructions, the
78000 can be in the system or normal execu-
tion mode. In system mode, privileged instruc-
tions (such as those which perform I/O) can be
executed; in normal mode they cannot. This
dichotomy allows the creation of operatifig
system software, which controls CPU resources
and is protected from application program
action.

In addition, the CPU will be in either seg-
mented or nonsegmented mode. In segmented
mode, which is available only on the Z8001,
the program uses 23-bit segmented addresses
for memory accesses; in nonsegmented mode,
which is available on both CPUs, the program
uses 16-bit nonsegmented addresses for mem-
ory accesses.

While executing instructions, the mode of
the CPU is controlled by bits in the FCW (Sec-
tion 2.8). While handling interrupts, the CPU
is always in system mode and, for the Z8001, in
segmented mode.

2.9 Instructions The Z8000 instruction set contains over 400

different instructions which are formed by
combining the 110 distinct instruction types
(opcodes) with the various data types and
addressing modes. The complete set is divided
into the following groups:

Load and Exchange for register-to-register
and register-to-memory operations, including
stack management.

Arithmetic for arithmetic operations, including
multiply and divide, on data in either registers
or memory. Compare, increment, and decre-
ment functions are included.

Logical for Boolean operations on data in
registers or memory.

Program Control for program branching (con-
ditional or unconditional), calls, and returns.

Bit Manipulation for setting, resetting and
testing individual bits of bytes or words in
registers or memory.

Rotate and Shift for bytes, words, or for shifts
only, long words, within registers.

Block Transfer and String Manipulation for
automatic memory-to-memory transfers of data
blocks or strings, including compare and
translate functions.

Input/Qutput for transfers of data between I/O
ports and memory or registers.

Extended for operations involving Extended
Processing Units.

CPU Control for accessing special registers,
controlling the CPU operating state, synchro-
nizing multiple-processor operation, enabling/
disabling interrupts, mode selection, and
memory refresh. ’

Chapter 6 contains details on the full instruc-
tion set.

2-7

2.9.1 Instruction Ft;}iﬁats. Formats of the

A COMPACT INSTRUCTION FORMAT

2.9
Instructions instructions are shown in Figure 2.7. The two Lon i'r1'f‘r.52'”£.“:'s.]
(Continued) most significant bits in the instruction word .
N . . CALL RELATIVE
determine whether the compact instruction for- o] T e T
mat (A) or the general instruction format (B) is J—
used. Compact formats encode the four most w o] & [e]
frequently used instructions into single words, DECREMENT AND JUMP ON NON-ZERO
thereby saving on instruction-memory usage ooz 1] T T Tw] T olsel]
and increasing execution speed. As long as
the two most significant bits are not logic ones,
3 B. GENERAL INSTRUCTION FORMAT (FIRST WORD)
the general format applies. In the general for- addressing
mat, the two most significant bits in conjunc- moc
tion with the source-register field are sufficient worn " [_Z] " obcods " W] 'source | destination]
for specitying any of the five main addressing addressing
modes. Source and destination fields are four WORD OR . r/l T IR Py
bits wide for addressing the 16 general- LONG WORD spco e | S
pUI‘pOSG registers . Note: W indicates Word (1) or Byte {0)
Figure 2-7. Instruction Formats
2.10 Data The Z8000 supports manipulation of eight B Unsigned byte decimal integer
Types data types. Five of these have fixed lengths; 8 Dynamic-length string of byte data
the other three have lengths that can vary
dynamically. Each data type is supported by a ® Dynamic-length string of word data
number of instructions which operate upon it B Dynamic-length stack of word data
directly. These data types are: Bits can be manipulated in registers or
m Bit memory. Binary and decimal integers and
W Signed and unsigned byte, word, long logical values can be manipulated in registers
word, or quadruple word binary integer only, although operands can be fetched direct-
) ly from memory. Addresses are manipulated
B Byte- or word-length logical value and-used-only in registers, and strings and
® Word (nonsegmented) or long word stacks A&Ewe manipulated only in memory.
(segmented) address
2.11 The information included in Z8000 instruc- in the location whose address is the sum of the
Addressing tions consists of the function to be performed, contents of an index value in a register and an
Modes the type and size of data elements to be address in the instruction.

manipulated; and the location of the data
elements. Locations are designated using one
of the following eight addressing modes:

Register Mode. The data element is located in
one of the 16 general-purpose registers.

Immediate Mode. The data element is located
in the instruction.

Indirect Register Mode. The data element can
be found in the location whose address is in a
register.

Direct Address Mode. The data element can
be found in the location whose address is in
the instruction.

Index Mode. The data element can be found

Relative Address Mode. The data element can
be found in the location whose address is the
sum of the contents of the program counter
and a displacement in the instruction.

Base Address Mode. The data element can be
found in the location whose address is the sum
of a base address in a register and a displace-
ment in the instruction.

Base Index Mode. The data element can be
found in the location whose address is the sum
of a base address in one register and an index
value in another register.

Chapter 5 defines and illustrates the eight
addressing modes.

2.12 Extended
Processing
Architecture

An important feature of the Z8000 CPU
architecture is the Extended Processing
Architecture (EPA) facility. This facility pro-
vides a mechanism by which the basic instruc-
tion set of the CPU can be extended via exter-
nal devices, called Extended Processing Units
(EPUs). A special set of instructions, called
extended instructions, is used to control this
feature. When the CPU encounters one of

these extended instructions in its instruction
stream, it will either trap to a software trap
handler to process the instruction or it will
perform the data transfer portion of the
instruction (leaving the data manipulation part
of the instruction to the EPU). Whether the
CPU traps or transfers data depends on the
setting of the EPA bit in the FCW.

26-0001-0904

-

2.12 Extended
Processing
Architecture
(Continued)

The underlying philosophy behind the EPA
feature is a view of the CPU as an instruction
processor—the CPU fetches instructions,
fetches data associated with the instruction,
performs the operations and stores the result.
Extending the number of operations performed
does not affect the instruction fetch and
address calculation portion of the CPU activi-
ty. The extended instructions exploit this

feature—the CPU fetches the instruction and
performs any address calculation that may be
needed. It also generates the timing signals for
the memory access if data must be transferred
between memory and the processor.
But the actual data manipulation is handled by
the EPU. The Extended Processing Architec-
ture is explained more fully in Chapter 4.

2.13
Exceptions

Three events can alter the normal execu-
tion of a ZB00O program: hardware interrupts
that occur when a peripheral device needs ser-
vice, synchronous software traps that occur
when an error condition arises, and system
reset. Chapter 7 contains a detailed descrip-
tion of exceptions and how they are handled.

2.13.1 Reset. a system reset overrides all other
operating conditions. It puts the CPU in a
known state and then causes a new program
status to be fetched from a reserved area of
memory to reinitialize the Flag and Control

Word (FCW) and the Program Counter (PC).

2.13.2 Traps. Traps are synchronous events
that are usually triggered by specific instruc-
tions and recur each time the instruction is
executed with the same set of data and the
same process or state. The four kinds of traps
are:

Extended instruction attempted in non-EPA
mode. The current instruction is an EPU
instruction, but the system is not in EPA mode.
This trap allows system software to either
simulate instruction or abort the program.

Privileged instruction attempted in normal
mode. The current instruction is privileged
(I/O for example), but the CPU is in normal
mode.

System Call (SC) instruction. This instruction
provides a controlled access from normal-mode
to system-mode operation.

Segmentation violation (supplied by external
circuit). A segmentation violation, such as
using an olfset larger than the defined length
of the segment, can be made to cause an
external memory management system to signal
a segmentation trap. This can occur only with
the segmented Z8001.

2.13.3 Interrupts. Interrupts are asynchronous
events typically triggered by peripheral
devices needing attention. The three kinds of
interrupts associated with the three interrupt

lines of the CPU are:

Non-maskable interrupts (NMI). These inter-
rupts cannot be disabled and are usually
reserved for critical external events that
require immediate attention.

Vectored interrupts (VI). These interrupts
cause eight bits of the vector output by the
interrupting device to be used to select a par-
ticular interrupt service procedure to which
the program automatically branches.

Non-vectored interrupts (NVI). These inter-
rupts are maskable interrupts which are all
handled by the same interrupt procedure.

2.13.4 Trap and Interrupt Service Pro-
cedures. Interrupts and traps are handled
similarly by the Z8000 CPU. The Z8000 CPU
automatically acknowledges interrupt and pro-
cesses traps in system mode. In the case of the
segmented Z8001, the CPU uses the segmented
mode regardless of its mode at the time of
interrupt or trap. The program status informa-
tion in effect just prior to the interrupt or trap
is pushed onto the system stack. An additional
word, which serves as an identifier for the
interrupt or trap, also is pushed onto the
system stack, where it can be accessed by the
interrupt or trap handler. The Program Status
registers are loaded with new status informa-
tion obtained from the Program Status Area of
memory. Then control is transferred to the ser-
vice procedure, whose address is now located
in the Program Counter. For details of inter-
rupt and trap handling, refer to Chapter 7.

INTERRUWPT RERNESTS AND SECAENTATION

TRap REQUESTS ARE ACCEPTED AFTER THE
ComPLET o0 oF THE, INSTRUCT lops EYE€cuTon
DuRing, wHicH Ty WELE mApe.
THE INSTRUCTIo0 Ex€cuTtion
FETCH TRASS ACTIom 15 us

AT THE Eub of

) A 5Puious INSTRWeTIO N
UALLY PERForn €D BEFoRE

THE IBTERRUPT 0 ACKmowtE€GE SEQuence BE c1r'3)
BUT THE PRoGRAM CoquTER (S NoT AFFECTED BY
THE <PuRlous FETCH,

2-9

3.1 Intro-
duction

Programs and data may be located in the
main memory of the computer system or in
peripheral devices. In either case, the location
of the information must be specified by an
address of some sort before that information
can be accessed. A set of these addresses is
called an address space.

The Z8000 supports two different types of
addresses and thus two categories of address
spaces:

B Memory addresses, which specify locations
in main memory.

W /O addresses, which specify the ports
through which peripheral devices are
accessed.

Chapter 3
Address Spaces

The CPU genei;ates addresses during four
types of operations:

W Instruction fetches, described in Chapter 4.

®m Operand fetches and stores, described in
Chapter 5.

B FException processing, described in
Chapter 7.

B Refreshes, described in Chapter 8.

Timing information concerning addresses is
described in Chapter 9.

3.2 Types of

Within the two general types of address

B Data Spaces (status = 1000 or 1010), nor-

Address spaces (memory and I/O), it is possible to dis- mal mode (N/S = 1) or system mode
Spaces tinguish several subcategories. Figure 3.1 (N/S = 0). These spaces may be used to
shows the address spaces that are available on address the data that user or system pro-
both the Z8001 and the Z8002. grams operate on.
The c'lifferen_ce between the 28001 and the m Stack Spaces (status = 1001 or 1011), nor-
Z8002 lies not in the numbgr and type gf . mal mode (N/S = 1) or system mode
address §paces,.but rather in the organization (N/S = 0). These spaces can be used to
and maximum size qf each space. For the address the system and normal program
Z8001, each of the six memory address spaces stacks.
contains 8M byte addresses grouped into 128 _
segments, for a total memory addressing capa- W Standard I/O Space (status = 0010). This
bility of 48M bytes. For the Z8002, each mem- space addresses all the I/O ports that are
ory space is a homogeneous collection of 64K used for Z8000 peripherals.
byte addresses. In both the Z8001 and the 8 Special I/0 Space (status = 0011). This
28002, the /O address spaces contain 64K port space addresses ports in CPU support chips
addresses. When an address is used to access (such as the Z8010 Memory Management
data, the address spaces may be distinguished Unit).
by the state of the status lines (STg-ST3) (which
is determined by the way the address was
generated) and by the value of the Normal/ MEMORY ADDRESS SPACES 11O ADDRESS SPACES
System line (N/S) (which is determined by the SYSTEM MODE | NORMAL MODE SYSTER o0&
state of the S/N bit in the FCW). STANDARD 1O
INSTRUCTIONS { INSTRUCTIONS
B [nstruction Space (status = 1100 or 1101), DATA DATA SPECIAL IO
normal mode (N/S = 1) or system mode STACK STACK
(N/S = 0). These spaces typically address
memory that contains user programs
" (normal).or system programs (system). Figure 3-1. Address Spaces on the Z8001 and Z8002
- 3.3I/0 All I/O addresses are represented by 16-bit The address of a 16-bit port may be even or
. Address words. Each of the ports addressed is either odd for both address spaces. In standard I/O
Spaces eight or 16 bits wide. Transfer to or from 16-bit space, byte ports must have an odd address; in
ports always involves word data and, for 8-bit special I/O space, byte ports must have an
ports, byte data. even address.
26-0001-0905 3-1

3.4 Memory

Each memory address space in the Z8002, or
each segment in each memory address space
on the Z8001, can be viewed as addressing a
string of 64K bytes numbered consecutively in
ascending order. The 8-bit byte is the basic
addressable element in Z8000 memory address
spaces. However, there are three other
addressable data elements

g | Bn‘s, in elther bytes or words
W 16-bit words.
W 32-bit long words.

3.4.1 Addressable Data Elements. The nature
of the data element being addressed depends
on the instruction being executed. As Chapter
6 explains in detail, different assembler
mnemonics are used for addressing bytes,
words, and long words. Moreover, only certain
instructions can address bits.

A bit can be addressed by specifying a byte
or word address and the number of the bit
within the byte (0-7) or word (0-15). Bits are
numbered right-to-left, from the least to the

most significant. This is consistent with the
convention that bit n corresponds to position
2n in the conventional representation of -
positive binary numbers (see Figure 3.2).
The address of a data type longer than one
byte (word or long word) is the same as the ('
address of the byte with the lowest memory)

_.address within the word or long word (Figure
7.2). This'is the leftmost highest-order, or

most significant byte of the word or long word.

Word or long word addresses are always
even-numbered. Low bytes of words are stored
at odd-numbered memory locations and high
bytes at even-numbered locations. Byte
addresses can be either even- or odd-
numbered.

Certain memory locations are reserved for
system-reset handling. These are described
fully in Chapter 7. Except for these reserved
locations, there are no memory addresses
specifically designated for a particular
purpose.

BITS IN A BYTE

[I[!ll[lll[llI!llsnsmAwonn

Address n

L. ...]

Address n (even)

BYTE

Address n + 1

UPPER BYTE I
i) T i

LOWER BYTE I WORD
I S T |

Address n

Address n + 1

Address n + 2

Address n + 3

| UPPER WORD/UPPER BYTE I 1
e 1 L 1 1 1 1 L 1 F 1 Il L 1
LONG WORD

[L L I 1 i i

l LOWER WORD/LOWER BYTE |
N TS W N N S |

Figure 3-2. Addressable Data Elements

3.4.2 Segmented and Non-Segmented
Addresses. The two versions of the Z8000 CPU
generate two kinds of addresses with different
lengths. The Z8002 generates a 16-bit address
specilying one of 64K bytes. The Z8001 gener-
ates a 23-bit segmented address. A segmented
address consists of a 7-bit segment number,
which specifies one of 128 segments, and a
16-bit offset, which specifies one of up to 64K
bytes in the segment . Each segment is an

¢ independent collection of bytes; thus, instruc-

(L'V Eﬁp tions and multiple byte data elements cannot

cross segment boundaries. Some of the advan-
tages of address segmentation are outlined in

% Section 3.4.3.

Figure 3.3 shows the format of segmented
and nonsegmented addresses. Nonsegmented
addresses are 16 bits long and thus can be
stored in word registers (Rn) or in memory as

word-length addressable elements. The 23-bit
segmented addresses are embedded in a 32-bit
long word and thus can be stored in a long
word register (RRn) or a long word memory
element.

It is important to realize that even though
the Z8001 can operate in nonsegmented mode
(Chapter 4), it always generates segmented
addressesy

WMW £ NT HUMBE E
Non-Segménted Mcmory Address

£ING '?uppuED BY

. {28002 Only) . PQ;M“P\
CounNTER
L. . ., AoRess .155(,,,5»\'&
Segmented Memory Address NV’M h ’
(28001 Only)
15 14 8 7 0
|o.o.ololololo.o

0} SEGMENT #
R T
OFFSET
Y VRS W TR W S il et T S VO SR S WY

15 0

Figure 3-3. Segmented and Non-Segmented
Address Formats

26-0001-0906 26-0001-0907

3.4 Memory 3.4.3 Segmentation and Memory Manage- B Support for multiple, independently execut-
Address ment. Addresses manipulated by the pro- ing programs that can share access to com-
Spaces grammer, used by instructions, and output by mon code and data.
(Continued) the Z8001 are called “logical adfires.ses. An m Protection from unauthorized or uninten-
external memory-management circuit can tional access to data or programs.
translate logical addresses into physical .])
(actual) memory addresses and perform certain W Detection of ObVIOUSIY incorrect use of
checks to insure data and programs are prop- memory by an executing program.
erly accessed. B Separation of users from system functions.
Tfhe ZB(R}Q I\f/Iem(t)'ry I\f/Iantahgement Urtntd(MMU) Segmentation in the Z8001 helps support
beriorms this tunction ior the segmente memory management in two ways:
addresses produced by the Z8001 CPU. A Y . g Y
single MMU keeps a descriptor for each of 64 ® By allowing part of an address (the segment
segments. This descriptor tells where in number) to be OUtPUt by the CPU early in a
physical memory the segment lies, how long memory cyf:le. T.hls keeps access to th? seg-
the segment is, and what kind of accesses can ment d§scr iptor n the MMU from adding to
be made to the segment. The MMU uses these the basic access time of the memory.
descriptors to translate logical segment ® By providing a standard, variable-sized unit
numbers and offsets into 24-bit physical of memory for the protection, sharing, and
addresses (as shown in Figure 3.4). At the movement of data.
same tlrpe, the MIC\;IU (l:hecks for such errors as In addition, segmentation is the natural
writing 1r113to'a read-on zs};egment or a system model for the support of modular programs
segmerﬁzM?}ng acges§e dy a EOHSYStgfn pdro- and data in a multi-programming environment.
gl:am. hs ar;4 esigned to ebcom ne tsg It efficiently supports re-entrant programs by
that more than 64 segments can be supporte providing data relocation for different tasks
at once.) using common code.
Some of the benefits of the memory manage- More information about the MMU and
ment features provided by the MMU are: memory management can be found in An
® Provision for flexible and efficient allocation Introduction to the Z8010 MMU Memory
of physical memory resources during the Management Unit and in the Z8010 MMU
execution of programs. Technical Manual.
LOGICAL
{virtual)
ADDRESSING PHYSICAL
sez:::‘r] r— MEMORY
RE
| | Z°
| |]
SEGMENT 1 }]
s i £
e s
l | o
ms g / | :/f/ 0 "E'
SEGMENT 2 /I,E ! D
18 0 OFFSET }] : u
L4 TS T S N ?FFISE'E Lod i |ﬂ FROP]leG { g/f/
i
/rg 1
Iz | =
I 7/ EE
| w av
P ES @
SEGMENT N { |
| T %
] I 5=
| 1 @
!
—d
SEGMENT 127 / T
Segments of physical
memory can be loaded
from peripheral devices
through the CPU or DMA.
Figure 3-4. Segmented Address Translation
26-0001-0908 3-3

4.1 Intro-
duction

This chapter gives a fundamental description

of the operating states of the Z8000 CPU and
the process of instruction execution. The
details of instruction execution are described
in Chapters 5 and 6. Other detailed aspects of

Chapter 4
CPU Operation

Z8000 operation are given in Chapter 7
(Exceptions) and Chapter 8 (Refresh). Chapter
9 describes CPU operations as they are mani-
fest on the external pins of the CPU.

4.2 Operating

States

The Z8000 CPU has three operating states:
Running state, Stop/Refresh state, and Bus-
Disconnect state. Running state is the usual
state of the processor: the CPU is executing
instructions or handling exceptions. Stop/
Refresh state is entered when the STOP line is
asserted or the refresh counter indicates that a
periodic refresh should be done. In this state,
memory refresh transactions are generated
continually (see Chapter 8). Bus-Disconnect
state is entered when the CPU acknowledges a
bus request and gives up control of the system
bus. Figure 4.1 shows the three states and the
conditions that cause state transitions.

4.2.1 Running State. While the CPU is in
Running state, it is either executing instruc-
tions (as described in Section 4.3) or handling
exceptions (as described in Chapter 7). The
CPU is normally in Running state, but will
leave this state in response to one of three con-
ditions:

B The refresh mechanism indicates that a
periodic refresh needs to be done, in which
case the CPU temporarily enters Stop/
Refresh state.

STOP RELEASED, OR
PERIODIC REFRESH
COMPLETED

BUSREQ RELEASED, —
STOP ASSERTED, OR
STOP INACTIVE PERIODIC REFRESH

REQUESTED

STOP/REFRESH
STATE

BUS-
DISCONNECT
STATE

BUSREQ RELEASED,
STOP ACTIVE

BUSREQ ASSERTED,
AND ACKNOWLEDGED ON
BUSACK

Figure 4-1. Operating States and Transistions

B An external stop request pushes the CPU
into Stopped state.

B An external bus request pushes the CPU
into Bus-Disconnect state.

4.2.2 Stop/Refresh State. While the CPU is in
Stop/Refresh state, it generates a continuous
stream of refresh cycles (as discussed in Chap-
ter 8) and does not perform any other func-
tions. This state provides for the generation of
memory refreshes by the CPU and allows
external devices to suspend CPU operation.
This feature can be used to force single-step
operation of the processor or to synchronize
the CPU with an Extended Processing Unit (as
described in Section 4.4).

The CPU enters Stop/Refresh state when the
refresh mechanism needs to do a refresh or
when the stop line is activated. It leaves Stop/
Refresh state when neither of these conditions
hold or when a bus request causes the CPU to
enter Bus-Disconnect state.

4.2.3 Bus-Disconnect State. While the CPU is
in Bus-Disconnect state, it does nothing. It
enters Bus-Disconnect state from either Run-
ning state or Stop/Refresh state when a bus
request has been received on BUSREQ and
acknowledged on BUSACK as (described in
Chapter 9). While in this state, it disconnects
itself from the bus by 3-stating its output. It
will leave Bus-Disconnect state when the exter-
nal bus request has been received. Note that
Bus-Disconnect state is highest in priority in
that the presence of a bus request will force
the CPU into this state, regardless of any con-
ditions indicating that a different state should
be entered.

4.2.4 Effect of Reset. Activation of the CPU's
RESET line puts the CPU in a nonoperational
state within five clock cycles, regardless of its
previous state or the states of its other inputs.
The CPU will remain in this state until REGET
is deactivated. When this occurs, the
processor enters one of the three operating
states described above, depending on the state
of BUSREQ and STOP inputs. Reset is more
fully described in Chapters 7 and 9.

26-0001-0909

41

4.3 Instruction
Execution

While the CPU is in Running state and exe-
cuting instructions, it is controlled by the Pro-
gram Status registers (Figure 4.2). The Pro-
gram Counter gives the address from which
instructions are fetched, the flags control
branching (as described in Chapter 6), and
the control bits determine the mode in which
the CPU updates (see Section 4.3) and the
interrupts that are masked (see Chapter 7).

Instruction execution consists of the repeated
application of two steps:

H Fetch one or more words comprising a
single instruction from the program memory
address space at the address specified by
the Program Counter (PC).

m Perform the operation specified by the
instruction and update the Program Counter
and flags in the Program Status registers.

The operation performed by an instruction
and the way the flags are updated depends on
the particular instruction being executed and
is described in Chapter 6. For most instruc-
tions, the PC value is updated to point to the
word immediately following the last word of the
instruction. The effect of this is that instruc-
tions are fetched sequentially from memory.
Exceptions to this are Branch, Call, and
Return instructions, which cause the PC to be
set to a value generated by the instruction.
This causes a transfer of control with execution
continuing at the new address in PC. The
exact operation of these instructions is
described in Chapter 6.

The Z8000 CPU is able to overlap the fetch-
ing of one instruction with the operation of the
previous instruction. This facility, called
Instruction Look-Ahead, is illustrated in Figure
4.3. This shows the execution of a series of

Ro[7

o
£
»
=
o
o

=4

Rt [1s

RQO

A2 |

R3[|

Ra |

Rs |

Re |

LI LIl ite]

GENERAL
PURPOSE
REGISTERS

El
4
@

L=

RQ8

=

RQ12

Figure 4-2. General-Purpose Registers

memory-to-register instructions, such as a
value in memory being added to the value in a
general-purpose register. Part of each instruc-
tion is fetched while the previous instruction

execution is being completed. This mechanism N

provides faster execution speed than the
typical alternative of fetching each instruction
only after the prior instruction has completed
execution.

After executing an instruction and in some
cases (explained in Chapters 6 and 7) during
an instruction’s execution, the CPU checks to
see if there are any traps or interrupts pending
and not masked. If so, it temporarily suspends
instruction execution and begins a standard
exception-handling sequence. This sequence,
which is described fully in Chapter 7, causes
the value of the Program Status registers to be
saved and a new value loaded. Instruction exe-
cution then continues with a new PC value and
Flag and Control Word value. The effect is to
switch the execution of the CPU from one pro-
gram to another.

4.3.1 Running-State Modes. While the CPU is
executing instructions, its mode will be con-
trolled by two control bits in the FCW: the
systém/normal mode bit (S/N) and the segmen-
tation mode bit (SEG).

4.3.2 Segmented and Nonsegmented

Modes. The segmentation mode of the CPU
(segmented or nonsegmented) determines the
size and format of addresses that are directly
manipulated by programs. In segmented mode
(SEG = 1), programs manipulate 23-bit seg-
mented addresses; in nonsegmented mode
(SEG = 0), programs generate 16-bit nonseg-
mented addresses. There are also the following
differences in the address portion of instruc-
tions, which are executed due to the difference
in address size:

® Indirect and Base Registers are 32-bit
registers in segmented mode and 16-bit
registers in nonsegmented mode.

m Address-embedded instructions are always
16-bits in nonsegmented mode. They consist
of a 7-bit segment number and either an
8-bit or 16-bit offset in segmented mode.

Segmented mode is available only on the
Z8001 CPU; on the Z8002, the segment bit is
always forced to zero, indicating nonseg-
mented mode. Because the Z8001 supports
segmented and nonsegmented modes, it is
possible to run programs written for the Z8002
on the 28001 without alteration. The reverse is
not possible. The Z8001 CPU always generates
segmented addresses, even when operating in
nonsegmented mode. When a memory access

4-2

26-0001-0910

)

4.3 Instruction is made in nonsegmented mode, the offset of

Execution
(Continued)

the segmented address is the 16-bit address
generated by the program, and the segment
number is the value of the segment number
tield of the Program Counter.

4.3.3 Normal and System Modes. The opera-
tion mode of the CPU (system mode or normal
mode) determines which instructions can be
executed and which Stack Pointer register

is used.

In system mode (S/N = 1), all instructions
can be executed. While in normal mode, cer-
tain privileged instructions that alter sensitive
parts of the machine state (such as I/O opera-
tions or changes to control registers) cannot be
executed.

The second distinction between system and
normal mode is access to the system or normal
Stack Pointer. As shown in Figure 4.2, there
are two copies of the Stack Pointer registers
(Register 15 in the Z8002 and Registers 14 and
15 in the Z8001): one for normal mode and one
for system mode. When in normal mode, a
reference to the Stack Pointer register by an
instruction will access the normal Stack
Pointer. When in system mode, an access to
the Stack Pointer register will reference the

system Stack Pointer, unless the Z8001 is run-
ning in nonsegmented system mode, in which
case a reference to R14 will access the normal
mode R14. This is summarized in Table 4.1.

In normal mode, the system Stack Pointer is
not accessible; in system mode the normal
Stack Pointer is accessed by using a special
Load Control instruction (described in
Chapter 6).

The CPU switches modes whenever the Pro-
gram Status Control bits change. This can
happen when a privileged load control instruc-
tion is executed or when an exception (inter-
rupt, trap, or reset) occurs. There is a special
instruction (system call) whose sole purpose is
to generate a trap and thus provide a con-
trolled transition for normal to system mode.

The distinction between normal/system mode
allows the construction of a protected operat-
ing system. This is a program that runs in
system mode and controls the system's
resources, managing the execution of one or
more application programs which run in nor-
mal mode. Normal and system modes, along
with Memory Protection, provide the basis for
protecting the operating system from malfunc-
tions of application programs.

Register System Mode Normal Mode
Referenced by
Instruction Segmented Nonsegmented Segmented Nonsegmented
Rl4 System R14 Normal R14 Normal R14 Normal R14
RIS System R15 System R15 Normal R15 Normal R15
RR14 System R14 Normal R14 Normal R14 Normal R14
System R15 System R15 Normal R15 Normal R15

Note: Z8002 always runs in nonsegmented mode.

Table 4.1 Registers Accessed by References to R14 and R15.

L INSTRUCTION AND DATA FETCH EXECUTION]

INSTRUCTION AND DATA FETCH

EXECUTION l

INSTRUCTION AND DATA FETCH I EXECUTION I

Figure 4-3. Instruction Look Ahead

26-0001-0911

4-3

4.4 Extended
Instructions

The Z8000 CPU supports six extended
instructions, which can be executed
cooperatively by the CPU and an external
Extended Processing Unit. The execution of
these instructions is controlled by the EPA
control bit in the FCW,

When the EPA bit is zero, it indicates that
there is no Extended Processing Unit con-
nected to the CPU and causes the CPU to trap
(as explained in Chapter 7) when it encounters
an extended instruction. This allows the opera-
tion of the extended instruction to be simulated
by software running on the CPU.

If the EPA bit is set, it indicates that an
Extended Processing Unit is connected to the
CPU in order to process the operation encoded
in the extended instruction. The CPU will fetch
the extended instruction and perform any
address calculation required by that instruc-

tion. If the instruction specifies the transfer of
data, the CPU will generate the timing signals
for this transfer. The CPU will fetch and begin
executing the next instruction in its instruction
stream. The Extended Processing Unit is /
expected to monitor the CPU's activity, partici-
pate in extended instruction data transfers
initiated by the CPU, and execute the

extended instruction. While the Extended Pro-
cessing Unit is executing the instruction, the
CPU can be fetching and executing further
instructions. If the CPU fetches another
extended instruction before the Extended Pro-
cessing Unit is finished executing a previous
instruction, the STOP line may be used to
delay the CPU until the previous instruction is
complete. This process is described more fully
in Chapters 6 and 9.

)

4-4

Chapter 5
Addressing Modes

(opcode). These operands may reside in CPU
registers or memory locations. The modes by
which references are made to operands are
called “addressing modes.” Figure 5.1 illus-
trates these modes. Not all instructions can use
all addressing modes; some instructions can
use only a few, and some instructions use none
at all. In Figure 5.1, the term “operand’ refers
to the data to be operated upon.

This chapter describes the eight addressing
modes used by instructions to access data in
memory or CPU registers. Separate sets of
examples for the nonsegmented and segmented
modes of operation are given at the end of the
chapter.

An instruction is a consecutive list of one or
more words aligned at even-numbered byte
addresses in memory. Most instructions have
operands in addition to an operation code

5.1 Intro-
duction

Addressing Mode Operand Addressing Operand Value
In the Instruction In a Register In Memory
R
. The content of the
Register | recisten aooress | el | opsnmﬂ register
IM
Immediate In the instruction
“IR
Indirect 1 r _l The of the location
REGISTER ADDRESS]-—-»l A OPERAND whose address is in the
Register [| L regist
DA ,
The content of the location
Direct I A F = OPERAND I whose address is in the
Address . instruction
X
The content of the loca-
Ind REGISTER ADDRESS ——{ INDEX tion whose address is the
ndex address in the instruction
A + OPERAND
e - plus the content of the
working register.
RA The content of the location
e YALLE whose address is the
Relative °r of the program
Addr I DISPLACEMENT]I + l OPERAND] counter, offset by the
ess displacement in the
instruction
*
BA The content of the location
Base REGISTER ADDRESS BASE ADDRESS whose address is the
DISPLACEMENT + OPERAND address in the register,
Address - offset by the displacement
in the instruction
*
BX The content of the loca-
Base REGISTER ADDRESS BASE ADDRESS tion whose address is
Index REGISTER ADORESS }—»| INDEX the address in a register

plus the index value in
another register.

*Do not use RO or RRO for these operands.

Figure 5-1. Addressing Modes

26-0001-0912 5-1

5.2 Use of

The 16 general-purpose CPU registers can,

CPU Registers with the exceptions noted below, be used in

any of the following ways:

m As accumulators, where the data to be
manipulated resides within the register.

® As pointers, where the value in the register
is the memory address of the operand,
rather than the operand itself. In string and
stack instructions, the pointers may be auto-
matically stepped either forward or back-
ward through memory locations.

m As index or base registers, where the con-
tents of the register and the word(s) follow-
ing the instruction are combined to produce
the address of the operand. This allows effi-
cient access to a variety of data structures.

There are two exceptions to the above uses
of general-purpose registers:

m Register RO (or the double register RRO in
segmented mode) cannot be used as an
indirect register, base register, index
register, or software stack pointer.

m Register R15' (or the double register RR14’
in the Z8001) is used in acknowledging
interrupts and therefore can never be used
as an accumulator in system-mode
operation. The system-mode registers, R14'
and R15’, are automatically accessed when
R14, R1S, or RR14 are referenced by
instructions executed in system mode.

In addition to the general-purpose use of
Z8000 registers, the following registers are
used for special purposes:

m Register R15 (or the double register RR14 in
the Z8001) is used as a stack pointer for
subroutine calls and returns.

m The byte register RH1 is used in the
translate instructions (TRDB, TRDRB, TRIB,
TRIRB) and the translate and test instruc-
tions (TRTDB, TRTDRB, TRTIB, TRTIRB).

m Register RO is used in extended instructions.

In Relative Address (RA) mode, the Program
Counter (PC) is used instead of a general-
purpose CPU register to supply the base
address for an effective address calculation.

The Program Counter normally is used only to
keep track of the next instruction to be exe-
cuted; whenever an instruction is fetched from
memory, the PC is incremented to point to the
next instruction. For addressing purposes,
however, the updated PC serves as a base for
referencing an operand relative to the location
of an instruction. Operands specified by rela-
tive addressing reside in the program address
space if the memory system distinguishes
between program and data or stack address
spaces.

Two of the addressing modes, Direct
Address and Index, involve an I/O or memory
address as part of the instruction. I/O
addresses are always 16 bits long, as are non-
segmented memory addresses (Z8002), so these
addresses occupy one word in the instruction.
Segmented addresses generated by the Z800!
are 23 bits long. Within an instruction, a seg-
mented address may occupy either two words
(16-bit long offset) or one word (8-bit short
offset).

As Figure 5.2 illustrates, bit 7 of the seg-
ment number byte distinguishes the two for-
mats. When this bit is set, the long-offset
representation is implied. When the bit is
cleared, the short-offset address representation
is implied. For a short-offset address, the
23-bit segmented address is reduced to 16 bits
by omitting the eight most significant bits of
the offset, which are assumed to be zero.

8 7 0

15
I 1 | segment number
i 1 L 1 L

I long offset]
1 Il 1 1 1 1 1 1 i 1 1 1 L

i L

15 8 7 0

I 0 I segment number short oftset l
1 ' 1 1 J 1 1 I\ 1 1 1 L 1

NOTE: Shaded area is reserved.

Figure 5-2. Segmented Memory Address
Within Instruction.

5.3 Addressing The following pages contain descriptions of

Mode
Descriptions

the addressing modes of the Z8000. Each

description:

® Explains how the operand address is
calculated,

m Indicates which address space (Register,
I/O, Special I/O, Data Memory, Stack
Memory, or Program Memory) the operand
is located in,

m Shows the assembly language format used to
specify the addressing mode, and

m Works through an example.

The descriptions are grouped into two sec-
tions—one for nonsegmented CPUs, the other
for segmented CPUs. Users of the Z8002 need
refer to the first section only; users of the
Z8001 in nonsegmented mode should also refer
to the first section, while users of Z8001 in
segmented mode should refer to the second
section.

5-2 26-0001-0913

5.4 Descrip-
tions and
Examples

(Z8002 and

In this section, the addressing modes of both
the Z8002 and the nonsegmented mode Z8001
are described.

'5.4.1 Register (R). In the Register addressing

Z8001 Nonseg- mode the instruction processes data taken
mented Mode) from a specified general-purpose register.

Storing data in a register allows shorter
instructions and faster execution than occurs
with instructions that access memory.

INSTRUCTION REGISTER

IiPERATIONl REGISTERHOPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register
address space. The register length (byte,
word, register pair, or register quadruple) is
specified by the instruction opcode.

Assembler language format:

RHn, RLn Byte register
Rn Word register

RBn Double-word register
RQn Quadruple-word register

Example of R mode:

LD R2, R3 load the contents of!

IR3 into R2!

Before Execution

R2 | A6BS8
R3 |9A20

After

Execution

R2 J9A20
R3 |9A20

5.4.2 Immediate (IM). The Immediate address-
ing mode is the only mode that does not indi-
cate a register or memory address as the
source operand. The data processed by the
instruction is in the instruction.

INSTRUCTION
OPERATION

WORD(S) | OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is
often used to initialize registers. The Z8000 is
optimized for this function, providing several
short immediate instructions to reduce the
length of programs.

Assembler language format (see also
Chapter 6):

#data »
Example of IM mode:
LDB RH2 #%55 !load hex 55 into RH2!

Before Execution

2 [e7z)

After Execution

R2 [5589)]

5.4.3 Indirect Register (IR). In the Indirect
Register addressing mode, the data processed
is not the value in the specified register.
Instead, the register holds the address of

the data.

INSTRUCTION
OPERATION | REGISTER

REGISTER MEMORY

ADDRESMERAND—I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE REGISTER.

A single word register is used to hold the
address. Any general-purpose word register
can be used except RO.

Depending on the instruction, the operand
specified by IR mode will be located in either
[/O address space (I/O instructions), Special
/O address space (Special 1/O instructions),
or data or stack memory address spaces. For
non-I/O references, the operand will be in
stack memory space if the stack pointer (R15)
is used as the indirect register; otherwise, the
operand will be in data memory space.

The Indirect Register mode may save space
and reduce execution time when consecutive
locations are referenced. This mode can also
be used to simulate more complex addressing
modes, since addresses can be computed
before the data is accessed.

Assembler language format (see also
Chapter 6):

@Rn
Example of IR mode:

LD R2,@R5 load R2 with thel
!data addressed by the!
!contents of R5!

Before Execution Memory
R2 | 030F :
R3 | 0005 170A | A023
R4 | 2000 170C |0BOE
R5 | 170C 170E .|10DQ
After Execution)
R2 | OBOE
R3] 0005
R4 1} 2000
R5 | 170C

26-0001-0914 26-0001-08915 26-0001-0916

5-3

5.4 Descrip-
tions and
Examples
(Z8002 and
Z8001 Nonseg-
mented Mode)
(Continued)

5.4.4 Direct Address (DA). In the Direct
Addressing mode, the data processed is found
at the address specified in the instruction.

INSTRUCTION
OPERATION

MEMORY

—1 OPERAND—I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE INSTRUCTION.

WORD(S)] ADDRESS

Depending upon the instruction, the oper-
and specified by DA mode will be either in I/O
space (I/O instructions), in Special I/O space
(Special I/O instructions), or in data
memory space. ,

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

Assembler language format (see also
Chapter 6):

address either memory, 1/O, or

Special 1/0O
Example of DA mode:

LDB RH2,%65E23 load RH2 with the!
ldata in address!

15E23!
Before Execution Memory
R2 [6789 :
5E22 10106
5E24 | 0304

After Execution

R [563]

5.4.5 Index (X). In the Index Addressing
mode, the instruction processes data located at
an indexed address in memory. The indexed
address is computed by adding the address
specified in the instruction to an “index’’ con-
tained in a word register, also specified by the
instruction. Indexed addressing allows random
access to tables or other complex data struc-
tures where the address of the base of the table
is known, but the particular element index
must be computed by the program.

REGISTER

ﬂ INDEX I—v

ADDRESS +

INSTRUCTION
OPERATION I REGISTER

MEMORY

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

Any word register can be used as the index
reqgister except RO.

Operands specified by X mode are always in
the data memory address space, except when
Index Addressing is used with the Jump and
Call instructions. In these cases, the
destination, computed by adding the index

register contents to the base address, is in
program memory space.

Assembler language format (see also
Chapter 6):

(Rn)
Example of X mode:
LD R4,%231A(R3)

address

lload into R4 the con-!
ltents of the memory!
!location whosel
laddress is 231A +1
Ithe value in R3!

Before Fxecution Memory
R3 [01FE :
R4 |203A 2516 | F3C2
2518 3DOE
251A |7ADA
Address Calculation
231A
+0l1FE
2518

After Execution

R3 |OIFE
R4 |3DOE

5.4.6 Relative Address (RA). In the Relative
Addressing mode, the data processed is found
at an address relative to the current instruc-
tion. The instruction specifies a two's comple-
ment displacement which is added to the Pro-
gram Counter to form the target address. The
Program Counter setting used is the address of
the first instruction following the currently exe-
cuting instruction. (The assembler will take
this into account in calculating the constant
that is assembled into the instruction.)

INSTRUCTION PC
OPERATION l ADDRESS

MEMORY

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

DISPLACEMENT +

An operand specified by RA mode is always
in the program memory address space.

As with the Direct Addressing mode, the
Relative Addressing mode is used by certain
program control instructions to specify the
address of the next instruction to be executed
(specifically, the result of the addition of the
Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows short references forward or
backward from the current Program Counter
value and is used only for such instructions as
Jumps or Calls and special loads (LDR) that
can cross the normally strict boundary between
program and data memory.

5-4

26-0001-0917 26-0001-0918 26-0001-0919

VR LITDULIP™ aAssempier lJanguage ormdart (see aiso

tions and Chapter 6):
Examples dd
(28002 and o oo

28001 Nonseg- Example of RA mode: (Note that the symbol
mented Mode) "$" is used for the value of the current pro-

(Continued) gram counter.)
LDR R2,$+ %6 lload into R2 the con-!
ltents of the memory!
llocation whose!
laddress is the current!
!program counter!

I+ hex 6!

Because the program counter will be advanced
to point to the next instruction when the
address calculation is performed, the constant

that occurs in the instruction will actually
be +2.

Betore Execution Memory

R2 [AQFO :
PC | 0202 0202 {3102
Instructior.
0204 10002
0206 |E801
0208 |FFFE
Address Calculation)
0206
+ 2
0208
After Execution
R2. [FFFE
PC | 0206

5.4.7 Base Address (BA). The Base Address-
ing mode is similar to Index mode in that a
base and offset are combined to produce the
effective address. In Base Addressing, how-
ever, a register contains the base address, and
the displacement is expressed as a 16-bit value
in the instruction. The two are added and the
resulting address points to the data to be pro-
cessed. This addressing mode may be used
only with the Load instructions. Base
Addressing mode, as a complement to Index

INSTRUCTION

mode, allows random access to tables or other
data structures where the displacement of an
element within the structure is known, but the
base of the particular structure must be com-
puted by the program.

Any word register can be used for the base
address except RO.

An operand specified by BA mode will be in
stack memory space if the base register is the
stack pointer (R15) and in data memory space
otherwise.

REGISTER

OPERATION I REGISTER

MEMORY

DISPLACEMENT

ADDRESS I‘ﬁ
\HJ I OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

Assembler language format (see also
Chapter 6):

Rn (#disp)
Example of BA mode:

LDL R5(#%18),RR2 lload the long word!
lin RR2 into the!
!memory location!
!whose address is thel

Ivalue in R5 + hex!

118!
Before Fxecution Memory
RR2 R2 [0Z00 :
R3 1500 20C0 |OABE
R4 | 3100 20C2 | F50D
R5 [20AA 20C4 |BADE
20C6 |BOD1

Address Calculation

20AA

+ 18

20C2

After Execution Memory

RR2 R2 [0A00 :
R3 |1500 20C0 |OABE
R4 [3100 20C2 |0A00
R5 [20AA 20C4 11500

20C6 |BODI

5.4 Descrip-
tions and
Examples
(28002 and

5.4.8 Base Index (BX). The Base Index

addressing mode is an extension of the Base
Addressing mode and may be used only with
the Load instructions. In this case, both the

28001 Nonseg- base address and index (displacement) are
mented Mode) held in registers. This mode allows access to

(Continued)

memory locations whose physical addresses
are computed at runtime and are not fully
known at assembly time.

Any word register can be used for either the
base address or the index except RO.

An operand specified by BX mode will be in
stack memory space if the base register is the
stack pointer (R15) and in data memory
otherwise.

Assembler language format (see also
Chapter 6):

Rn (Rm)
Example of BX mode:

LD R2,R5(R3) !load into R2 the!
lvalue whose address!
lis the value in!

IR5 + the value in R3!

INSTRUCTION

Before Execution

Memory
R2 [1F3A :
R3 |FFFE 14FE | 0101
R4 [0300 1500 |BODE
R5 } 1502 1502 {F732
Address Calculation ’
1502
+ FFFE
1500
After Execution
R2 {BODE
R3 | FFFE
R4 10300
R5 |1502

REGISTER

l OPERATION I REGISTER 1]REGISTESI——DI ADODRESS

REGISTER

MEMORY
OPERAND

DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF THE ONE REGISTER OFFSET BY THE
DISPLACEMENT IN THE SECOND REGISTER,

5.5 Descrip-
tions and
Examples
(Segmented
Z8001)

In this section, <<nn>> will often be used
to refer to segment number nn.
5.5.1 Register (R). In the Register addressing
mode, the instruction processes data taken
from a specified general-purpose register.Stor-
ing data in a register allows shorter instruc-
tions and faster execution than occurs with
instructions that access memory.

INSTRUCTION REGISTER

IOPERATION I REGISTERHOPERAND—I

THE OPERAND VALUE {S THE CONTENTS OF THE REGISTER.

The operand is always in the register
address space. The register length (byte,
word, register pair, or register quadruple) is
specified by the instruction opcode.

Assembler language formats (see
also Chapter 6):

RHn, RLn Byte register
Rn Word register
RRn Double-word register
ROn Quadruple-word

register
Example of R mode:
LDL RR2,RR4

lload the contents!
lof RR4 into RR2!

Before Execution

RR2 R2 {A6B8
) R3 |9A20
RR4 R4 |38A6
R5 |745E
After Fxecution
RR2 R2 |38A6
R3 | 745E
RR4 R4 |38A6
R5 | 745E

5.5.2 Immediate (IM): The Immediate address-
ing mode is the only mode that does not indi-
cate a register or memory address as the loca-
tion of the source operand. The data processed
by the instruction is in the instruction.

INSTRUCTION
OPERATION

WORD(S) | OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

5-6

26-0001-0921 26-0001-0922 26-0001-0923

5.5 Descrip-
tions and
Examples
(Segmented
.. Z8001)
! (Continued)

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is
often used to initialize registers. The Z8000 is
optimized for this function, providing several
short immediate instructions to reduce the
length of programs.

Assembler language format (see also
Chapter 6):

#data
Example of IM mode:
LDB RH2,#%55 lload he_x 55 into RH2!

Before Execution

R (&7

After Execution

R []

5.5.8 Indirect Register (IR). In the Indirect
Register addressing mode, the data processed
is not the value in the specified register.
Instead, the register holds the address of

the data.

INSTRUCTION REGISTER MEMORY

hpsnmonl REGISTERHADDRESS_I—bleERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE REGISTER.

Depending upon the instruction, the oper-
and specified by IR mode will be located in
either I/O address space (I/O instructions),
Special I/O address space (Special I/0
instructions), or data or stack memory address
spaces. For non-I/O references, the operand
will be in stack memory space if the stack
pointer (RR14) is used as the indirect reqgister,
otherwise the operand will be in data memory
space.

A 16-bit register is used to hold an I/O or
Special I/O address; a register pair is used to
hold a memory address. Any general-purpose
register or register pair may be used except RO
or RRO.

The Indirect Register mode may save space
and reduce execution time when consecutive
locations are referenced. This mode can also
be used to simulate more complex addressing
modes, since addresses can be computed
before the data is accessed.

Assembler language formats (see also
Chapter 6):

@Rn Contains 1/O or
Special I/O address.
@RRn Contains memory

address.

Example of memory access using IR mode:

LD R2,@RR4 load into R2 thel
Ivalue in the memory!
llocation addressed!
Iby the contents of!

!RR4!
Before Execution Memory
RR2 R2 [030F :
R3 10005 170A*{ A023
RR4 R4 {2000 170C {OBOE
R5 [170C 170E {10D3
After Execution * Segment Num.ber 20
RR2 R2 |OBOE
R3] 0005
RR4 R4 |2000
R5 | 170C

Example of 1/0 using IR mode:
OUTB RLO,@R1
Before Execution

RO [0A23
RO] 0011

Execution sends the
data "23" to the I/O
device addressed by
“0011.”

$.5.4 Direct Address (DA). In the Direct
Addressing mode, the data processed is found

at the address specified as an operand in the
instruction.

INSTRUCTION
OPERATION MEMORY

WORD(S}| ADDRESS _ﬂERAND—I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE INSTRUCTION.

Depending upon the instruction, the oper-
and specified by DA mode will be either in /O
space (I/O instructions), Special I/O space
(Special I/0O instructions), or data memory
space. 1/O and Special I/O addresses are one
word long; memory addresses can be either
one or two words long, depending on whether
the long or short format is used.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

26-0001-0924 26-0001-0925

5.5 Descrip-
tions and
Examples
{Segmented
Z8001)
(Continued)

Asséfnﬁler lahguage format (see also
Chapter 6): A

address either memory, I/O, or
Special /O where dou-
ble angle brackets

L <<"and “>>"
enclose the segment
number, and vertical
lines " and "
enclose short-form
memory addresses.

Example of DA mode:

LDB RH2, <<15>> %23 lload RH2 with the!
lvalue in memory!
lsegment 15, dis-!
!placement 23 (hex)!

Before Execution Memory

R2 [6789 :
<< 15>> 0022 0206
0024 [0304

After Execution

2 [0

5.5.5 Index (X). In the Index addressing
mode, the instruction process data is located at
an indexed address in memory. The indexed
address is computed by adding the address
specified in the instruction to an “index” con-
tained in a word register, also specified by the
instruction.

The offset of the operand address is com-
puted by adding the 16-bit index value to the
8 or 16-bit offset portion of the address in the
instruction. The segment number of the oper-

INSTRUCTION

and address comes directly from the instruc-
tion. (Any overflow is ignored—it neither sets
the Overflow flag nor increments the segment
number. The segment number of the operand
address comes directly from the instruction.)
Indexed addressing allows random access to
table or other complex data structures where
the address of the base of the table is known,
but the particular element index must be com-
puted by the program.

REGISTER

OPERATION I REGISTER

WORD(S) ADDRESS

INDEX I—? MEMORY
n = I
) OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

Any word register can be used as the index
register except RO. The address in the instruc-
tion can be one or two words, depending on
whether a long or short offset is used in the
address.

Operands specitfied by X mode are always in
the data memory address space.

Assembler language format:
(Rn)

Example of X mode:
LD R4, <<5>>%231A(R3)

address

lload into R4 the!
lcontents of the!

!memory location!
lwhose address is!

Address Calculation

<<5>> | %231A
+ OlFE
<<5>> | %2518

After Execution

R3 |OlFE
R4 | 3DOE

5.5.6 Relative Address (RA). In the Relative
Addressing mode, the data processed is found
at an address relative to the current instruc-
tion. The instruction specifies a two's comple-

Isegment 5,! ment displacement which is added to the offset
ldisplacement! of the Program Counter to form the target
1231A + thel address. The Program Counter setting used is
lvalue in R3! the address of the instruction following the
Before Execution Memory curren'tly execu’Fin.g instruction.' (The assem-
. bler will take this into account in calculating
R3 | OIFE . the constant that is assembled into the
R4 |203A <<5>> 2516 | F3C2 instruction.)
25]. 8 3D03 INSTRUCTION PC
2514 7ADA operatioN || aoomess MEMORY
. DISPLACEMENT + OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

5-8 26-0001-0926 26-0001-0927

5.5 Descrip-
tions and
Examples
(Segmented
Z8001)
(Continued)

An operand specified by RA mode is always
in the program memory address space. Either
long or short format addresses may be used.

As with the Direct Addressing mode, the
Relative Addressing mode is also used by cer-
tain program control instructions to specify the
address of the next instruction to be executed
(specifically, the result of the addition of the
Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows short references forward or
backward from the current Program Counter
value and is used only for such instructions as
Jumps and Calls and special loads (LDR). Note
that because the segment number is
unchanged relative addresses are located in
the same segment as the instruction.

Assembler language format (see also
Chapter 6):

address
Example of RA mode:

LDRR2,$+6 lload into R2 the con-!
ltents of the memory!
!location whose!
laddress is the!
lcurrent program!
lcounter + 6!

Because the program counter will be advanced
to point to the next instruction when the
address calculation is performed, the constant

that occurs in the instruction will actually
be +2.

Before Execution Memory

2 f
<<13>> 0202 [3102 }Instmcﬁon
0204 {0002
PC | 0D00 0206 |E801
0202 0208 |FFFE

Address Calculation

<< 13>>0206
£+ 2
<< 13>>0208

After Execution

re [FFrg)

PC | 0D00
0206

§.5.7 Base Address (BA). The Base
Addressing mode is similar to Index mode in
that a base and displacement are combined to
produce the effective address. In Base
Addressing, a register pair contains the 23-bit
segmented base address and the displacement
is expressed as a 16-bit value in the instruc-
tion. The displacement is added to the offset of
the base address, and the resulting address
points to the data to be processed. (The seg-
ment number is not changed.) This addressing
mode may be used only with the Load instruc-
tions. Base Addressing mode, as a complement
to Index mode, allows random access to
records or other data structures where the
displacement of an element within the struc-
ture is known, but the base of the particular
structure must be computed by the program.

INSTRUCTION
OPERATION

REGISTER(S)

'—>| ADDRESS

DISPLACEMENT +

MEMORY

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS THE ADDRESS IN THE REGISTER, OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

Any double-word register can be used for
the base address except RRO. The Base
Address mode allows access to locations
whose segment numbers are not known at
assembly time.

An operand specified by BA mode will be in
stack memory space if the base register is the
stack pointer (RR14) and in data memory space
otherwise.

If the segment number is known when the
program is assembled (or loaded, for example,
if the loader can resolve symbolic segment
numbers), the Indexed addressing mode may
be used to simulate the based addressing
mode. For example, if R2 is known to hold seg-
ment number 18, then the operand specified
using the based address RR2 (#93) can also be
referenced by the indexed address << 18>>
93 (R3). The advantage of this simulation is
that indexing mode is supported for most
operations, whereas based is restricted to
LOAD and LOAD Address. Thus, using
Indexed addressing is faster and leads to com-
pact code.

Assembler language format (see also
Chapter 6):

REn(#disp) Add the immediate
value to the contents of
RRn; the result is the

address of the operand.

26-0001-0928

5-9

5.5 Descrip-
tions and
Examples
(Segmented
Z8001)
(Continued)

Example of BA mode:
LDL BR4(#%18),RR2 lload the long word!
lin RR2 into the!
!memory location!
lwhose address is!

Ithe value of RR4!

I+ hex 18!
Before Execution Memory
RR2 R2 [0A00 :
R3 | 1500 <<31>> 20C0 |OABE
RR4 R4 | 2500 20C2 |[F50D
RS | 20AA 20C4 | BADE
20C6 {BOD!

Address Calculation

<< 31 >>20AA
+ 18
<<31>>20C2
After Execution Memory
RR2 R2 [0A00 :
. R3 | 1500 <<31>> 20C0 {0ABE
RR4 R4 {2500 20C2 {0A00
R5 | 20AA 20C4 {1500
20C6 { BOD1

5.5.8 Base Index (BX). The Base Index
addressing mode is an extension of the Base
Addressing mode and may be used only with
the Load instructions. In this case, both the
base address and index are held in registers.
The index value is added to the offset of the
base address to produce the offset of the

INSTRUCTION

operand address. The segment number of the
operand address is the same as the base
address. This mode allows access to memory
locations whose physical addresses are com-
puted at runtime and are not fully known at
assembly time.

REGISTER

I OPERATION IREGISTER 1 FEGISTER 2 I—PL ADDRESS

MEMORY

OPERAND

REGISTER

DISPLACEMENT

THE OPERAND VALUE 1S THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF THE ONE REGISTER OFFSET BY THE
DISPLACEMENT IN THE SECOND REGISTER.

Any register pair can be used for the base Before Execution Memory
address except RRO. Any word register except :
RO can be used for the index. Note that the RR2 R2 13535 .
Short Offset format for base addresses is ille- R3 | FFFE <<13>> 14FE| 0101
gal in registers. RR4 R4 | 0D0O 1500 | BODE
An operand specified by BX mode will be in R5 | 1502 1502 | F732
stack memory space if the base register is the :
tack pointer (RR14) and in dat .
Zt?l(;m}r)iz: er {) and in data memory Address Calculation
Assembler language format (see also f< 13>> II:SE(;)L%
Chapter 6): <T35S 1500
RRn (Rn) After Execution Memory
Excxmple of BX mode: RR2 R2 |BRODE :
LD R2,RR4 (R3) lload into R2 the value! R3 |FFFE << 13>> 14FE | 0101
:th’tseen f‘sdﬁ”f;; 415:},‘@! RR4 R4 |0D0O 1500 | BODE
lcon o !
Ithe contents of R3! RS [1502 1502 | F732
5-10 26-0001-0929

6.1 Intro-
duction

This chapter describes the instruction set of
the Z8000. An overview of the instruction set is
presented first, in which the instructions are
divided into ten functional groups. The
instructions in each group are listed, followed
by a summary description of the instructions.
Significant characteristics shared by the
instructions in the group, such as the available
addressing modes, flags affected, or inter-
ruptibility, are described. Unusual instructions
or features that are not typical of predecessor
microprocessors are pointed out.

Following the functional summary of the
instruction set, flags and condition codes are

Chapter 6
Instruction Set

discussed in relation to the instruction set. This
is followed by a section discussing interrupt-
ibility of instructions and a description of
traps. The last part of this chapter consists of a
detailed description of each Z8000 instruction,
listed in alphabetical order. This section is
intended to be used as a reference by 78000
programmers. The entry for each instruction
includes a description of the instruction,
addressing modes, assembly language mne-
monics, instruction formats, execution times
and simple examples illustrating the use of the
instruction.

6.2 Functional

Summary

This section presents an overview of the
Z8000 instructions. For this purpose, the
instructions may be divided into ten functional
groups:

Load and Exchange

Arithmetic

Logical

Program Control

Bit Manipulation

Rotate and Shift

Block Transfer and String Manipulation
Input/Output

CPU Control

m Extended Instructions

6.2.1 Load and Exchange Instructions.

Instruction Operand(s) Name of Instruction
CLR dst Clear

CLRB

EX dst, src Exchange

EXB

LD dst, src Load

LDB

LDL

LDA dst, src Load Address

LDAR dst, src Load Address Relative
LDK dst, src Load Constant

LDM dst, src, num Load Multiple

LDR dst, src Load Relative

LDRB

LDRL

POP dst, src Pop

POPL

PUSH dst, src Push

PUSHL

The Load and Exchange group includes a
variety of instructions that provide for move-
ment of data between registers, memory, and
the program itself (i.e., immediate data). These
instructions are supported with the widest
range of addressing modes, including the Base
(BA) and the Base Index (BX) mode which are
available here only. None of these instructions
affect any of the CPU flags.

The Load and Load Relative instructions
transfer a byte, word, or long word of data
from the source operand to the destination
operand. A special one-word instruction, LDK,
is also included to handle the frequent require-
ment for loading a small constant (0 to 15) into
a reqister.

These instructions basically provide one of
the following three functions:

m Load a register with data from a register or

a memory location.

m Load a memory location with data from a
reqgister.

m Load a register or a memory location with
immediate data.

The memory location is specified using any
of the addressing modes (IR, DA, X, BA,
BX, RA).

The Clear and Clear Byte instructions can
be used to clear a register or memory location
to zero. While this is functionally equivalent to
a Load Immediate where the immediate data is
zero, this operation occurs frequently enough
to justify a special instruction that is more
compact and faster.

6-1

6.2 Functional

Summary
(Continued)

The Exchange instructions swap the contents
of the source and destination operands.

The Load Multiple instruction provides for
efficient saving and restoring of registers. This
can significantly lower the overhead of pro-
cedure calls and context switches such as
those that occur at interrupts. The instruction
allows any contiguous group of 1 to 16 regis-
ters to be transferred to or from a memory
area, which can be designated using the DA,
IR or X addressing modes. (RO is considered to
follow R15, e.g., one may save R9-R15 and
RO-R3 with a single instruction.)

Stack operations are supported by the
PUSH, PUSHL, POP, and POPL instructions.
Any general-purpose register (or register pair
in segmented mode) may be used as the stack
pointer (except RO and RRO). The source
operand for the Push instructions and the
destination operand for the Pop instructions
may be a register or a memory location,
specified by the DA, IR, or X addressing
modes. Immediate data can also be pushed
onto a stack one word at a time. Note that byte
operations are not supported, and the stack
pointer register must contain an even value
when a stack instruction is executed. This is
consistent with the general restriction of using
even addresses for word and long word
accesses.

The Load Address and Load Address Rela-
tive instructions compute the effective address
for the DA, X, BA, BX and RA modes and
return the value in a register. They are use-
ful for management of complex data structures.

6.2.2 Arithmetic Instructions

Instruction Operand(s) Name of Instruction
ADC dst, src Add with Carry
ADCB

ADD dst, src Add

ADDB

ADDL

CP dst, src Compare

CPB

CPL

DAB dst Decimal Adjust
DEC dst, src Decrement
DECB

DIV dst, src Divide

DIVL

EXTS dst Extend Sign
EXTSB

EXTSL

INC dst, src Increment
INCB

MULT dst, src Multiply
MULTL

NEG dst Negate

NEGB

SBC dst, src Subtract with Carry
SBCB

SUB dst, src Subtract

SUBB

SUBL

The Arithmetic group consists of instructions
for performing integer arithmetic. The basic
instructions use standard two’s complement
binary format and operations. Support is also
provided for implementation of BCD
arithmetic. !

Most of the instructions in this group per- ‘
form an operation between a register operand
and a second operand designated by any of
the five basic addressing modes, and load the
result into the register.

The arithmetic instructions in general alter
the C, Z, S and P/V flags, which can then be
tested by subsequent conditional jump instruc-
tions. The P/V flag is used to indicate arith-
metic overflow for these instructions and it is
referred to as the V (overflow) flag. The byte
version of these instructions generally alters
the D and H flags as well.

The basic integer (binary) operations are
performed on byte, word or long word oper-
ands, although not all operand sizes are sup-
ported by all instructions. Multiple precision
operations can be implemented in software
using the Add with Carry, (ADDC, ADDCB),
Subtract with Carry (SBC, SBCB) and Extend
Sign (EXTS, EXTSB, EXTSL) instructions.

BCD operations are not provided directly,
but can be implemented using a binary addi-
tion (ADDB, ADCB) or subtraction (SUBB,
SBCB) followed by a decimal adjust instruc-
tion (DAB).

The Multiply and Divide instructions perform
signed two’s complement arithmetic on word or
long word operands. The Multiply instruction
(MULT) mutliplies two 16-bit operands and
produces a 32-bit result, which is loaded into
the destination register pair. Similarly, Mult-
iply Long (MULTL) multiplies two 32-bit oper-
ands and produces a 64-bit result, which is
loaded into the destination register quadruple.
An overflow condition is never generated by a
multiply, nor can a true carry be generated.
The carry flag is used instead to indicate
where the product has too many significant bits
to be contained entirely in the low-order half
of the destination.

The Divide instruction (DIV) divides a 32-bit
number in the destination register pair by a
16-bit source operand and loads a 16-bit quo-
tient into the low-order half of the destination
register. A 16-bit remainder is loaded into the
high-order half. Divide Long (DIVL) operates
similarly with a 64-bit destination register
quadruple and a 32-bit source. The overflow
flag is set if the quotient is bigger than the
low-order half of the destination, or if the
source is zero.

N

6-2

N

6.2 Functional 6.2.3 Logical Instructions.

Summary
(Continued)

Instruction Operand(s) Name of Instruction
AND dst, src And

ANDB

COM dst Complement
COMB

OR dst, src Or

ORB

TEST dst Test

TESTB

TESTL

XOR dst, src Exclusive Or
XORB

The instructions in this group perform logi-
cal operations on each of the bits of the oper-
ands. The operands may be bytes or words;
logical operations on long word are not sup-
ported (except for TESTL) but are easily imple-
mented with pairs of instructions.

The two-operand instructions, And (AND,
ANDB), Or (OR, ORB) and Exclusive-Or
(XOR, XORB) perform the appropriate logical
operations on corresponding bits of the desti-
nation register and the source operand, which
can be designated by any of the five basic
addressing modes (R, IR, DA, IM, X). The
result is loaded into the destination register.

Complement (COM, COMB) complements
the bits of the destination operand. Finally,
Test (TEST, TESTB, TESTL) performs the OR
operation between the destination operand and
zero and sets the flags accordingly. The Com-
plement and Test instructions can use the five
basic addressing modes to specify the
destination. _

The Logical instructions set the Z and S flags
based on the result of the operation. The byte
variants of these instructions also set the Parity
Flag (P/V) if the parity of the result is even,
while the word instructions leave this flag
unchanged. The H and D flags are not affected
by these instructions.

6.2.4 Program Control Instructions.

Instruction Operand(s) Name of Instruction
CALL dst Call Procedure

CALR dst Call Procedure Relative
DINZ r, dst Decrement and Jump if
DBINZ Not Zero

IRET Interrupt Return

JP cc, dst Jump

JR cc, dst Jump Relative

RET cc Return from Procedure
sC src System Call

This group consists of the instructions that
attect the Program Counter (PC) and thereby
control program flow. General-purpose

registers and memory are not altered except
for the processor stack pointer and the pro-
cessor stack, which play a significant role in
procedures and interrupts. (An exception is
Decrement and Jump if Not Zero (DJNZ), which
uses a register as a loop counter.} The flags
are also preserved except for IRET which
reloads the program status, including the
flags, from the processor stack.

The Jump (JP) and Jump Relative (JR)
instructions provide a conditional transfer of
control to a new location if the processor flags
statisty the condition specified in the condition
code field of the instruction. (See Section 6.4
for a description of condition codes.) Jump
Relative is a one-word instruction that will
jump to any instruction within the range -254
to + 256 bytes from the current location. Most
conditional jumps in programs are made to
locations only a tew bytes away; the Jump
Relative instruction exploits this fact to
improve code compactness and efficiency.

Call and Call Relative are used for calling
procedures; the current contents of the PC are
pushed onto the processor stack, and the effec-
tive address indicated by the instruction is
loaded into the PC. The use of a procedure
address stack in this manner allows straight-
forward implementation of nested and recur-
sive procedures. Like Jump Relative, Call
Relative provides a one-word instruction for
calling nearby subroutines. However, a much
larger range, -4092 to +4098 bytes for CALR
instruction, is provided since subroutine calls
exhibit less locality than normal control
transfers.

Both Jump and Call instructions are
available with the indirect register, indexed
and relative address modes in addition to the
direct address mode. These can be useful for
implementing complex control structures such
as dispatch tables.

The Conditional Return instruction is a com-
panion to the Call instruction; if the condition
specified in the instruction is satisfied, it loads
the PC from the stack and pops the stack.

A special instruction, Decrement and Jump
if Not Zero (DINZ, DBINZ), implements the
control part of the basic FOR loop in a one-
word instruction.

System Call (SC) is used for controlled
access to facilities provided by the operating
system. It is implemented identically to a trap
or interrupt: the current program status is
pushed onto the system processor stack fol-
lowed by the instruction itself, and a new pro-
gram status is loaded from a dedicated part of

6-3

6.2 Functional the Program Status Area. An 8-bit immediate

Summary
(Continued)

source field in the instruction is ignored by the
CPU hardware. It can be retrieved from the
stack by the software which handles system
calls and interpreted as desired, for example
as an index into a dispatch table to implement
a call to one of the services provided by the
operating system.

Interrupt Return (IRET) is used for returning
from interrupts and traps, including system
calls, to the interrupted routines. This is a
privileged instruction.

.6.2.5 Bit Manipulation Instructions

Instruction Operand(s) Name of Instruction
BIT dst, src Bit Test

BITB

RES dst, src Reset Bit

RESB

SET dst, src Set Bit

SETB

TSET dst Test and Set
TSETB

TCC cc, dst Test condition code
TCCB

The instructions in this group are useful for
manipulating individual bits in registers or
memory. In most computers, this has to be
done using the logical instructions with suit-
able masks, which is neither natural nor
efficient.

The Bit Set (SET, SETB) and Bit Reset (RES,
RESB) instructions set or clear a single bit in
the destination byte or word, which can be in
a register or in a memory location specified by
any of the five basic addressing modes. The
particular bit to be manipulated may be speci-
fied statically by a value (0 to 7 for byte, 0 to
15 for word) in the instruction itself or it may
be specified dynamically by the contents of a
register, which could have been computed by
previous instructions. In the latter case, the
destination is restricted to a register. These
instructions leave the flags unaffected. The
companion Bit Test instruction (BIT, BITB)
similarly tests a specified bit and sets the Z flag
according to the state of the bit.

The Test and Set instruction (TSET, TSETB)
is useful in multiprogramming and multipro-
cessing environments. It can be used for
implementing synchronization mechanisms
between processes on the same or differ-
ent CPUs.

Another instruction in this group, Test Con-
dition Code (TCC, TCCB) sets a bit in the des-
tination register based on the state of the flags
as specified by the condition code in the

instruction. (See Section 5.6.1 for a list of con-
dition codes.) This may be used to control sub-
sequent operation of the program after the
flags have been changed by intervening
Instructions. It may also be used by language
compilers for generating boolean values.

6.2.6 Rotate and Shift Instructions.

Instruction Operand(s) Name of Instruction
RL dst, src Rotate Left

RLB

RLC dst, src Rotate Left through
RLCB Carry

RLDB dst, src Rotate Left Digit

RR dst, src Rotate Right

RRB

RRC dst, src Rotate Right through
RRCB Carry

RRDB dst, src Rotate Right Digit
SDA dst, src Shift Dynamic Arithmetic
SDAB '

SDAL

SDL dst, src . Shift Dynamic Logical
SDLB

SDLL

SLA dst, src Shift Left Arithmetic
SLAB

SLAL

SLL dst, src Shift Left Logical
SLLB

SLLL

SRA dst, src Shift Right Arithmetic
SRAB

SRAL

SRL dst, src Shift Right Logical
SRLB

SRLL

This group contains a rich repertoire of
instructions for shifting and rotating data
registers.

Instructions for shifting arithmetically or
logically in either direction are available.
Three operand lengths are supported: 8, 16
and 32 bits. The amount of the shift, which
may be any value up to the operand length,
can be specified statically by a field in the
instruction or dynamically by the contents of a
register. The ability to determine the shift
amount dynamically is a useful feature, which
is not available in most minicomputers.

The rotate instructions will rotate the con-
tents of a byte or word register in either direc-
tion by one or two bits; the carry bit can be
included in the rotation. A pair of digit rota-
tion instructions (RLDB, RRDB) are especially
useful in manipulating BCD data.

6-4

N

6.2 Functional 6.2.7 Block Transfer And String Manipula-

Summary
(Continued)

tion Instructions.

Instruction Operand(s) Name of Instruction

CPD dst, src, r, cc Compare and Decrement

CPDB

CPDR dst, src, r, cc Compare, Decrement and

CPDRB Repeat

CPI dst, src, r, cc Compare and Increment

CPIB

CPIR dst, src, r, cc Compare, Increment and

CPIRB Repeat

CPSD dst, src, r, cc Compare String and

CPSDB Decrement

CPSDR dst, src, 1, cc Compare String,

CPSDRB Decrement and Repeat

CPSI dst, src, r, cc Compare String and

CPSIB Increment

CPSIR dst, sre, r, cc Compare String,

CPSIRB Increment and Repeat

LDD dst, src, r Load and Decrement

LDDB

LDDR dst, src, r Load, Decrement and

LDRB Repeat

LDI dst, src, r Load and Increment

LDIB

LDIR dst, src, r Load, Increment and

LDIRB Repeat

TRDB dst, src, r Translate and Decrement

TRDRB dst, sre, r Translate, Decrement and
Repeat

TRIB dst, src, r Translate and Increment

TRIRB dst, src, Translate, Increment and
Repeat

TRTDB srcl, src2, r Translate, Test and
Decrement

TRTDRB srcl, src2, r Translate, Test,
Decrement and Repeat

TRTIB srcl, src2, r Translate, Test and
Increment

TRTIRB srcl, src2, r Translate, Test, Increment

and Repeat

This is an exceptionally powertul group of
instructions that provides a full complement of
string comparison, string translation and block
transfer functions. Using these instructions, a
byte or word block of any length up to 64K
bytes can be moved in memory; a byte or word
string can be searched until a given value is
found; two byte or word strings can be com-
pared; and a byte string can be translated by

using the value of each byte as the address of
its own replacement in a translation table. The
more complex Translate and Test instructions
skip over a class of bytes specified by a
translation table, detecting bytes with values
of special interest.

All the operations can proceed through the
data in either direction. Furthermore, the
operations may be repeated automatically
while decrementing a length counter until it is
zero, or they may operate on one storage unit
per execution with the length counter decre-
mented by one and the source and destination
pointer registers properly adjusted. The latter
form is usetul for implementing more complex
operations in software by adding other instruc-
tions within a loop containing the block
instructions.

Any word register can be used as a length
counter in most cases. [f the execution of the
instruction causes this register to be decre-
mented to zero, the P/V flag is set. The auto-
repeat forms of these instructions always leave
this flag set.

The D and H flags are not affected by any of
these instructions. The C and S flags are
preserved by all but the compare instructions.

These instructions use the Indirect Register
(IR) addressing mode: the source and destina-
tion operands are addressed by the contents of
general-purpose registers (word registers in
nonsegmented mode and register pairs in seg-
mented mode). Note that in the segmented
mode, only the low-order half of the register
pair gets incremented or decremented as with
all address arithmetic in the Z8000.

The repetitive forms of these instructions are
interruptible. This is essential since the repeti-
tion count can be as high as 65,536 and the
instructions can take 9 to 14 cycles for each
iteration after the first one. The instruction can
be interrupted after any iteration. The address
of the instruction itself, rather than the next
one, is saved on the stack, and the contents of
the operand pointer registers, as well as the
repetition counter, are such that the instruc-
tion can simply be reissued after returning
from the interrrupt without any visible dif-
ference in its effect.

6-5

6.2 Functional 6.2.8 Input/Output Instructions.

Summary
(Continued)

Instruction Operand(s) Name of Instruction
IN dst, src Input

INB

IND dst, src, r Input and Decrement
INDB

INDR dst, src, r Input, Decrement and
INDRB Repeat

INI dst, src, r Input and Increment
INIB

INIR dst, src, r Input, Increment and
INIRB Repeat

OTDR dst, src, r Output, Decrement and
OTDRB Repeat

OTIR dst, sre, r Output, Increment and
OTIRB Repeat

OouT dst, src Output

OUTB

OUTD dst, src, r Output and Decrement
OUTDB

OUTI dst, src, r Output and Increment
OUTIB

SIN dst, src Special Input

SINB :

SIND dst, src, r Special Input and
SINDB Decrement

SINDR dst, src, r Special Input, Decrement
SINDRB and Repeat

SINI dst, src, r Special Input and
SINIB Increment

SINIR dst, src, r Special Input, Increment
SINIRB and Repeat

SOTDR dst, src, r Special QOutput,
SOTDRB Decrement and Repeat
SOTIR dst, src, r Special Output,
SOTIRB Increment and Repeat
SOUT dst, src Special Output
SOUTB

SOUTD dst, src, r Special Output and
SOUTDB Decrement

SOUTI dst, src, r Special Output and
SOUTIB Increment

This group consists of instructions for trans-
ferring a byte, word or block of data between
peripheral devices and the CPU registers or
memory. Two separate I/O address spaces with
16-bit addresses are recognized, a Standard
I/O address space and a Special I/O address
space. The latter is intended for use with
special Z8000 Family devices, typically the
Z-MMU. Instructions that operate on the
Special I/O address space are prefixed with
the word “'special.” Standard I/O and Special
I/O instructions generate different codes on
the CPU status lines. Normal 8-bit peripherals
are connected to bus lines ADy-AD;. Standard
I/O byte instructions use odd addresses only.
Special 8-bit peripherals such as the MMU,
which are used with special I/O instructions,

are connected to bus lines ADg-AD;s. Special
I/O byte instructions use even addresses only.

The instructions for transferring a single
byte or word (IN, INB, OUT, OUTB, SIN,
SINB, SOUT, SOUTB) can transfer data
between any general-purpose register and any
port in either address space. For the Standard
I/O instructions, the port number may be
specified statically in the instruction or dynam-
ically by the contents of the CPU register. For
the Special I/O instructions the port number is
specified statically.

The remaining instructions in this group
form a powerful and complete complement of
instructions for transferring blocks of data
between I/O ports and memory. The operation
of these instructions is very similar to that of
the block move instructions described earlier,
with the exception that one operand is always
an I/O port which remains unchanged as the
address of the other operand (a memory loca-
tion) is incremented or decremented. These
instructions are also interruptible.

All I/O instructions are privileged, i.e. they
can only be executed in system mode. The
single byte/word I/O instructions don't alter
any flags. The block I/O instructions, includ-
ing the single iteration variants, alter the Z and
P/V flags. The latter is set when the repetition
counter is decremented to zero.

6.2.9 CPU Control Instructions.

Instruction Operand(s) Name of Instruction
COMFLG flag Complement Flag

DI int Disable Interrupt

EI int Enable Interrupt
HALT Halt

LDCTL dst, src Load Control Register
LDCTLB

LDPS src Load Program Status
MBIT Multi-Micro Bit Test
MREQ dst Multi-Micro Request
MRES Multi-Micro Reset
MSET Multi-Micro Set
NOP No Operation
RESFLG flag Reset Flag

SETFLG flag Set Flag

The instructions in this group relate to the
CPU control and status registers (F CW, PSAP,
REFRESH, etc.), or perform other unusual
functions that do not fit into any of the other
groups, such as instructions that support multi-
microprocessor operation. Most of these
instructions are privileged, with the exception
of NOP and the instructions operating on the
flags (SETFLG, RESFLG, COMFLG,
LDCTLB).

6-6

6.2 Functional 6.2._10 Extended Instructions. The 28000

Summary
(Continued)

architecture includes a powerful mechanism
for extending the basic instruction set through
the use of external devices known as Extended
Processing Units (EPUs). (See Section 2.12 for
a more comprehensive presentation of the
Extended Processor Architecture.) A group of
six opcodes, OE, OF, 4E, 4F, 8E and 8F (in
hexadecimal), is dedicated for the implemen-
tation of extended instructions using this facil-
ity. The five basic addressing modes (R, IR,
DA, IM and X) can be used by extended
instructions for accessing data for the EPUs.
There are four types of extended instructions
in the Z8000 CPU instruction repertoire: EPU
internal operations; data transfers between

memory and EPU; data transfers between EPU
and CPU; and data transfers between EPU flag
registers and CPU flag and control word. The
last type is useful when the program must
branch based on conditions determined by the
EPU. The action taken by the CPU upon
encountering extended instructions is depen-
dent upon the EPA control bit in the CPU'’s
FCW. When this bit is set, it indicates that the
system configuration includes EPUs; therefore,
the instruction is executed. If this bit is clear,
the CPU traps (extended instruction trap) so
that a trap handler in software can emulate the
desired operation.

6.3 Processor
Traps

The processor flags are a part of the pro-
gram status (Section 2.7.1). They provide a
link between sequentially executed instructions
in the sense that the result of executing one
instruction may alter the flags, and the
resulting value of the flags may be used to
determine the operation of a subsequent
instruction, typically a conditional jump
instruction. An example is a Test followed by a
Conditional Jump:

TEST R1 Isets Z FLAG if Rl = 0!
JR Z, DONE lgo to done if Z flag is set!
DONE:

The program branches to DONE if the TEST
sets the Z flag, i.e., if Rl contains zero. '

The program status has six flags for the use
of the programmer and the Z8000 processor:

m Carry (C)

W Zero (Z)

A Sign (S)

m Parity/Overflow (P/V)
m Decimal Adjust (D)

m Half Carry (H)

The flags are modified by many instructions,
including the arithmetic and logical
instructions.

Appendix C lists the instructions and the
flags they affect. In addition, there are Z8000
CPU control instructions which allow the pro-
grammer to set, reset (clear), or complement
any or all of the first four flags. The Half-Carry
and Decimal-Adjust flags are used by the
28000 processor for BCD arithmetic correc-
tions. They are not used explicitly by the pro-
grammer.

The FLAGS register can be separately
loaded by the Load Control Register (LDCTLB)
instruction without disturbing the control bits
in the other byte of the FCW. The contents of
the flag register may also be saved in a reg-
ister or memory.

The Carry (C) flag, when set, generally indi-
cates a carry out of or a borrow into the high-
order bit position of a register being used as
an accumulator. For example, adding the 8-bit
numbers 225 and 64 causes a carry out of bit 7
and sets the Carry flag:

Bit
7 6 $ 4 3 2 1 0
225 1 1 1 0 0 0 0 1
+ 64 0 1 0 0 0 0 0
0 0 0 I

289 0 0 1 0
|-':l = Carry flag

The Carry flag plays an important role in the
implementation of multiple-precision arithmetic
(see the ADC, SBC instructions). It is also
involved in the Rotate Left Through Carry
(RLC) and Rotate Right Through Carry (RRC)
instructions. One of these instructions is used
to implement rotation or shifting of long strings
of bits.

The Zero (Z) flag is set when the result reg-
ister’s contents are zero following certain
operations. This is often useful for deter-
mining when a counter reaches zero. In addi-
tion, the block compare instructions use the Z
flag to indicate when the specified comparison
condition is satisfied.

The Sign (S) flag is set to one when the most
significant bit of a result register contains a
one (a negative number in two's complement
notation) following certain operations.

6-7

6.3 Processor
Traps
(Continued)

The Overflow (V) flag, when set, indicates
that a two's complement number in a result
register has exceeded the largest number or is
less than the smallest number that can be
represented in a two's complement notation.
This flag is set as the result of an arithmetic
operation. Consider the following example:

Bit
7 6 5 4 3 2 1 0

120 0 1 1 0 1 0 0 1
+105 0 1 I 0 1 0 0 1

225 El 1 1 0 0 0 0 1
1

Overflow flag

The result in this case (-95 in two's comple-
ment notation) is incorrect, thus the overflow
flag would be set.

The same bit acts as a Parity (P) flag follow-
ing logical instructions on byte operands. The
number of one bits in the register is counted
and the flag is set if the total is even (that is,
P = 1). If the total is odd (P = 0), the flag is
reset. This flag is often referred to as the
P/V flag.

The Block Move and String instructions and
the Block I/O instructions use the P/V flag to
indicate the repetition counter has decre-
mented to 0.

The Decimal-Adjust (D) flag is used for BCD
arithmetic. Since the algorithm for correcting
BCD operations is different for addition and
subtraction, this flag is used to record whether
an add or subtract instruction was executed so
that the subsequent Decimal Adjust (DAB)
instruction can perform its function correctly
(See the DAB instruction for further discussion
on the use of this flag).

The Half-Carry (H) flag indicates a carry out
of bit 3 or a borrow into bit 3 as the result of
adding or subtracting bytes containing two
BCD digits each. This flag is used by the DAB
instruction to convert the binary result of a
previous decimal addition or subtraction into
the correct decimal (BCD) result.

Neither the Decimal-Adjust nor the Half-
Carry flag is normally accessed by the pro-
grammer. The specific operations affecting the
flags are detailed in Section 5.6.

6.4 Condition
Codes

The first four flags, C, Z, S, and P/V, are
used to control the operation of certain “condi-
tional” instructions such as the Conditional
Jump. The operation of these instructions is a
function of whether a specified boolean condi-
tion on the four flags is satisfied or not. It
would take 16 bits to specify any of the 65,536
(216) boolean functions of the four flags. Since
only a very small fraction of these are general-
ly of interest, this procedure would be very
wastetul. Sixteen functions of the flag settings
found to be frequently useful are encoded in a
4-bit field called the condition code, which

forms a part of all conditional instructions.

The condition codes and the flag settings
they represent are listed in Section 6.6.

Although there are sixteen unique condition
codes, the assembler recognizes more than six-
teen mnemonics for the conditional codes.
Some of the flag settings have more than one
meaning for the programmer, depending on
the context (PE & OV, Z & EQ, C & ULT,
etc.). Program clarity is enhanced by having
separate mnemonics for the same binary value
of the condition codes in these cases.

6.5 Instruction
Interrupts
and Traps

Interrupts are discussed in detail in
Section 7. This section looks at the relation-
ship between instructions and interrupts.

When the CPU receives an interrupt
request, and it is enabled for interrupts of that
class, the interrupt is normally processed at
the end of the current instruction. However,
certain instructions which might take a long
time to complete are designed to be interrupt-
ible so as to minimize the length of time it
takes the CPU to respond to an interrupt.
These are the iterative versions of the String
and Block instructions and the Block I/0
instruction. If an interrupt request is received
during one of these interruptible instructions,
the instruction is suspended after the current
iteration. The address of the instruction itself,
rather than the address of the following
instruction, is saved on the stack, so that the
same instruction is executed again when the
interrupt handler executes an IRET. The con-

tents of the repetition counter and the registers
which index into the block operands are such
that after each iteration when the instruction is
reissued upon returning from an interrupt, the
effect is the same as if the instruction were not
interrupted. This assumes, of course, the inter-
rupt handler preserved the registers, which is
a general requirement on interrupt handlers.

The longest noninterruptible instruction that
can be used in normal mode is Divide Long
(728 cycles in the worst case). Multi-Micro-
Request, a privileged instruction, can take
longer depending on the contents of the des-
tination register.

Traps are synchronous events that result
from the execution of an instruction. The
action of the CPU in response to a trap condi-
tion is similar to the case of an interrupt (see
Section 7). Traps are non-maskable.

6-8

6.5 Instruction The 28000 CPUs implement four kinds of

Interrupts
and Traps
(Continued)

traps:

m Extended Instruction

m Privileged Instruction in normal mode
® segmentation violation

m System Call

The Extended Instruction trap occurs when
an Extended Instruction is encountered, but
the Extended Processor Architecture Facility is
disabled, i.e., the EPA bit in the FCW is a
zero. This allows the same software to be run
on Z8000 system configurations with or without
EPUs. On systems without EPUs, the desired
extended instructions can be emulated by soft-
ware which is invoked by the Extended
Instruction trap.

The privileged instruction trap serves to pro-
tect the integrity of a system from erroneous or
unauthorized actions of arbitrary processes.
Certain instructions, called privileged instruc-
tions, can only be executed in system mode.
An attempt to execute one of these instructions
in normal mode causes a privileged instruction
trap. All the I/O instructions and most of the
instructions that operate on the FCW are
privileged, as are instructions like HALT
and IRET.

The System Call instruction always causes a
trap. It is used to transfer control to system
mode software in a controlled way, typically to
request supervisor services.

6.6 Notation
and Binary
Encoding

The rest of this chapter consists of detailed
descriptions of each instruction, listed in
alphabetical order. This section describes the
notational conventions used in the instruction
descriptions and the binary encoding for some
of the common instruction fields (e.q., register
designation fields).

The description of an instruction begins with
the instruction mnemonic and instruction name
in the top part of the page. Privileged instruc-
tions are also identified at the top.

The assembler language syntax is then given
in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes.

Example:
AND dst, src dst: R
ANDB src: R, IM, IR, DA, X

The operation of the instruction is presented
next, followed by a detailed discussion of the
instruction.

The next part specifies the effect of the
instruction on the processor flags. This is
followed by a table that presents all the
variants of the instruction for each applicable
addressing mode and operand size. For each
of these variants, the following information is
provided:

A. Assembler Language Syntax. The syntax
is shown for each applicable operand width
(byte, word or long). The invariant part of the
syntax is given in UPPER CASE and must
appear as shown. Lower case characters repre-
sent the variable part of the syntax, for which
suitable values are to be substituted. The syn-
tax shown is for the most basic torm of the

instruction recognized by the assembler. For
example, '

AND Rd, #data

represents a statement of the form
ADD RS3,#35. The assembler will also accept
variations like ADD TOTAL, #NEW-DELTA
where TOTAL, NEW and DELTA have been
suitably defined.

The following notation is used for register
operands:

Rd, Rs, etc.: a word register in the
range RO-R15

Rbd Rbs: a byte register RHn or
RLn wheren = 0 — 7

RRd RRs: a register pair RRO, RR2,
... RR14

RQd: a register guadruple RRO,
RR4, RR8 or RR12

The “'s"” or "d" represents a source or destina-

tion operand. Address registers used in
Indirect, Base and Base Index addressing
medes represent word registers in nonseg-
mented mode and register pairs in segmented
mode. A one-word register uséd in segmented
mode is flagged and a footnote explains the
situation.

B. Instruction Format. The binary encoding of
the instruction is given in each case for both
the nonsegmented and segmented modes.
Where applicable, both the short and long
forms of the segmented version are given (SS
and SL).

The instruction formats for byte and word
versions of an instruction are usually com-
bined. A single bit, labeled "w,” distinguishes

6-9

6.6 Notation

and Binary
_Encoding

(Continued)

them: a one indicates a word instruction, while

a zero indicates a byte instruction.

Fields specifying register operands are
identified with the same symbols (Rs, RRd,
etc.) as in Assembler Language Syntax. In

some cases, only nonzero values are permitted
for certain registers, such as index reqgisters.

This is indicated by a notation of the form

"RS # 0.”

The binary encoding for register fields is as

Register
Rll
RQI2 RR12 R12
R13
RR14 R14
R15

For easy cross-references, the same symbols
are used in the Assembler Language Syntax
and the instruction format. In the case of ad-
dresses, the instruction format in segmented

RL3
RL4
RLS
RL6
RL7

Binary
1011
1100
1101
1110
1111

follows: mode uses “segment” and “offset” to corres-
Register Binary pond to “address,” while the instruction format
RQO RRO RO RHO 0000 contains “displacement,” indigating that the
Rl RHI 0001 assembler has computed the displacement and
RR2 R2 RH2 0010 inserted it as indicated.
R3 RH3 0011 A condition code is indicated by “cc” in
RQ4 RR4 R4 RH4 0100 b
RS RHS 0101 oth the Assembler Language Syntax and the
RR6 R6 RH6 0110 instruction formats. The condition codes, the
R7 RH7 0111 flag settings they represent, and the binary
RO8 RR8 gg gﬁ? igg(l) encoding in the instruction are as follows:
RR10 RI10 RL2 1010
Code Meaning Flag Setting Binary
F Always false 0000
Always true - 1000
YA Zero Z=1 0110
NZ Not zero Z=0 1110
C Carry C=1 0111
NC No carry C=0 1111
PL Plus S=0 1101
MI Minus S=1 0101
NE Not equal Z=20 1110
EQ Equal Z=1 0110
ov Overflow V=1 0100
NOV No overflow V=0 1100
PE Parity even P =1 0100
PO Parity odd P=0 1100.
GE Greater than (SXORV) =0 1001
or equal
LT Less than (SXORV) =1 0001
GT Greater than (ZOR(SXOR V) =0 1010
LE Less than or (ZOR(SXORV)) =1 0010
equal
UGE Unsigned C=0 1111
greater than
or equal
ULT Unsigned C=1 0l11
less than
UGT Unsigned ((C=0)AND(Z = 0)) = 1 1011
greater than
ULE Unsigned less (CORZ) =1 0011

than or equal

C. Cycles. This line gives the execution time

Note that some of the condition codes corres

NC-UGE, PE-OV, PO-NOV.

of the instructions in CPU cycles.

pond to identical flag settings: i.e., Z-EQ, NZ-NE,

D. Example. A short assembly language
example is given showing the use of the

instruction.

6-10

v

a
!

’

—

6.7 Z8000 =
Instruction ADC
Descriptions .]
o poons S Add With Carry
ADC dst, src dst: R
ADCB src: R
Operation: dst « dst + src + ¢
The source operand, along with the setting of the carry flag, is added to the destina-
tion operand and the sum is stored in the destination. The contents of the source are
not affected. Two's complement addition is performed. In multiple precision arith-
metic, this instruction permits the carry from the addition of low-order operands to
be carried into the addition of high-order operands.
Flags: C: Set if there is a carry from the most significant bit of the result; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: ADC—unaffected; ADCB—cleared
H: ADC—unaffected; ADCB-—set if there is a carry from the most significant bit of
the low-order four bits of the result; cleared otherwise
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R ADC Rd, Rs 10[11010/w| Rs | Rd 5 10[11010|/w| Rs | Rd 5
ADCB Rbd, Rbs
Example: Long addition can be done with the following instruction sequence, assuming RO, R1

contain one operand and R2, R3 contain the other operand:

ADD RI,R3 ladd low-order words!
ADC RO,R2 ladd carry and high-order words!

If RO contains %0000, R1 contains % FFFF, R2 contains %4320 and R3 contains
%0001, then the above two instructions leave the value %4321 in RO and %0000
in'R1.

26-0001-0930

ADD

ADD dst, sTC

dst: R
ADDB src: R, IM, IR, DA, X
ADDL ‘
Operation: dst - dst + src
The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.
Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL—unaffected; ADDB—cleared
H: ADD, ADDL—unaffected; ADDB—set if there is a carry from the most significant
bit of the low-order four bits of the result; cleared otherwise
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ADD Rd, Rs
ADB b s | [OFeono] w [we] | 4 | [ehwwod[m]| 4
ADDL RRd, RRs {10[010110] &Rs | RRd | 8 {10[010110] nns | RRd | 8
IM: ADD Rd, #data 00[000001 0000] Rrd , 00[000001 [0000] Rd ,
data data
ADDB Rbd, #data 00/ 000000 oooo[Rd ; 00{ 0060000 oooo] Rd 7
data data data data
ADDL RRd, #data 00{010110]0000] RRa 00[010110[0000] RRd
31 data (high) 16 14 31 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: ADD Rd, @Rsl
ADDB b, éRsl foojooooo[w] rs+0] Rd | 7 [00[00000]w] Rs+0| Rd | 7
ADDL RRd, @Rs! [oo|o1o11o|ns¢ol RRd | 14 [oo|o1o11o[ns¢o| RRd | 14

6-12

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: ADD Rd, address o1|ooooo|w|oooo| Rd o1|ooooo|w 0000| Rd
ADDB Rbd, address 9 SS 10
address Ol segment offset
o1looooolw 0000| Rd
SL[1] segment | 00000000 12
offset
ADDL RRd, address 01 o1o11o]oooo| RRAd 01[010110 oooo| RRd
15 SS 16
address ol segment offset
01| 010110 oooo] RRd
SL|1| segment | 00000cCOO 18
offset
X: ADD Rd, addr(Rs)
: : 01{00000/w| Rs=0| Rd ot1/ooooo|w| R Rd
ADDB Rbd, addr(Rs) I W] Rsvo] 10 |ss | W] Reso] 10
address OI segment offset
o1|ooooo|w Re#0 | Rd
SL 1] segment | 00000000 13
offset
ADDL RRd, addr(Rs)
01010110 | Rs=0 | RRd 6 lss 01010110 Rs#0 | RRd 16
address OI segment offset
01{010110 | Rs=0 | RRd
SL|1| segment | 00000000 19
offset
Example: ADD R2, AUGEND laugend A located at %1254!
Belore instruction execution:
Memory R2 Flags
1252 CZSPNDH
1254 {06 4 4 czspdh
1256
After instruction execution:
Memory R2 Flags
1252 CZSPINDH
1254 |0 6 4 4 0010dh
1256
Note 1: Word register in nonsegmented mode, register pair in segmented mode.
26-0001T0931 6-13

>
AND dst, src dst: R { }
ANDB src: R, IM, IR, DA, X
Operation: dst «- dst AND src
A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A one bit is
stored wherever the corresponding bits in the two operands are both ones; otherwise
a zero bit is stored. The source contents are not affected.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: AND — unaffected; ANDB — set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: AND Rd, Rs 10[00011|/w| Rs | Rd 4 10l00011|w| Rs | Rd 4
ADRS Be [efoeri] = 7] [epoeri] = o]
IM: AND Rd, #data 00/000111 [0000] Rd ; oo[ooo111]oooo| Rd ;
data data
ANDB Rbd, #data 00/ 000110 [0000]| Rd 7 00/ 000110 0000| Rd
data data data data
IR: AND Rd, @Rs!
ANDB Bbd, (Z>Rsl [00]00011|w] Rs20| Rd | 7 [o0]ooo11]w] Rs=0| Rd | 7
DA: AND Rd, address o1]ooo11]w|oooo| Rd o1[ooo11]w ooool Rd
ANDB Rbd, address 9 SS 10
address ol segment offset
o1[ooo1 1|w oooo] Rd
SL|1| segment (0000 0000 12
offset
X: AND Rd, addr(Rs) 01/00011|w] Rs#0| Rd o1,ooo11|w Rs:tol Rd
ANDB Rbd, addr(Rs) 10 Ss 10
address ol segment offset
01/0o0011|w[Rsz0] Rd
SL|1]| segment {0000 0000 13
offset

6-14

N

Example:

ANDB RL3, # %CE

Before instruction execution:

RL3 Flags
| 11100111 | CZSPVDH
czs p dh

After instruction execution:
RL3 Flags

[11000110] CZSPVDH
c01 1 dh

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

26-0001-0932

6-15

BIT

Bit Test
BIT dst, src dst: R, IR, DA, X
BITB src: IM
or
dst: R
src: R
Operation: Z <« NOT dst (src)
The specified bit within the destination operand is tested, and the Z flag is set to one
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the
destination are not affected. The bit number (the source) can be specified statically
as an immediate value, or dynamically as a word register whose contents are the bit
number. In the dynamic case, the destination operand must be a register, and the
source operand must be RO through R7 for BITB, or RO through R15 for BIT. The bit
number is a value from 0 to 7 for BITB, or 0 to 15 for BIT, with O indicating the least
significant bit. Note that only the lower four bits of the source operand are used to
specify the bit number for BIT, while only the lower three bits of the source operand
are used for BITB.
Flags: C: Unatlected
Z: Set if specified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: BIT Rd, b
BITB Rba, b [10[10011]w] Ad | b | 4 [10[10011w] Ra [b | 4
IR: BIT @Rd!, b
BITB @Rd). b [ooj10011[w[Raz0] b] 8 foo[10011/w|Raxo] b] 8
DA: BIT address, b T
BITS adtars. b o1l1oo11[w[ooool b w0 |ss 01/10011/w[o000] b »
address Ol segment offset
o1l1oo1 1w ooool b
SL 1] segment (0000 0000 13
offset
X: BIT addr(Rd), b
EITD addriRe). b 01[10011|W[Rd=0| b 1 ss 01/10011|w|Rdzo| b »
address Ol segment offset
01]10011|w|[Rd=0]| b
SL[1| segment [0000 0000 14
offset

6-16

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: BIT Rd, Rs
BITB Rbd, Rs 00[10011/w|[o0000] Rs " oo[10011]w[oo00] ke o
0000| Rd [0000|0000 0000] Rd [0000|0000
Example: If register RH2 contains %B2 (lOl 10010), the instruction
BITB RH2, #0

will leave the Z flag set to 1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-17

CALL dst dst: IR, DA, X
Operation: Nonsegmented Segmented
SP <« SP - 2 SP - SP - 4
@SP « PC @SP <« PC
PC < dst PC < dst
The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 in nonsegmented mode, or RR14 in
segmented mode. (The program counter value used is the address of the first instruc-
tion byte following the CALL instruction.) The specified destination address is then
loaded into the PC and points to the first instruction of the called procedure.
At the end of the procedure a RET instruction can be used to return to original pro-
gram. RET pops the top of the processor stack back into the PC.
Flags: No flags affected -
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CALL @Rd! fooJo11111 [Rda [o000] 10 [oo[o11111] ra [0000]| 15
DA: CALL address 01/011111 [0000{0000 01/ 011111 00000000
12 SS 18
address OI segment offset
o1| 011111 ooooloooo
SL|1] segment [0000 0000 20
offset
X: CALL addr(Rd) 01/011111 [Rd=0 [0000 01{011111 | Rs=0 [0000
13 SS - 18
address OI segment offset
01/011111 | Rs#0 0000
SL|1] segment [0000 0000 21
offset
Example: In nonsegmented mode, if the contents of the program counter are %1000 and the

contents of the stack pointer (R15) are %3002, the instruction

CALL %2520

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALL instruction with direct address mode specified) to be loaded into
the word at location %3000, and the program counter to be loaded with the value
%2520. The program counter now points to the address of the first instruction in the
procedure to be executed.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-18

Call Relative

Operation:

CALR dst dst: RA

Nonsegmented Segmented

SP <« SP - 2 SP « SP - 4

@SP <« PC @SP « PC

PC « PC - (2 x displacement) PC « PC—(2 x displacement)

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 if nonsegmented, or RR14 if
segmented. (The program counter value used is the address of the first instruction
byte following the CALR instruction.) The destination address is calculated and then
loaded into the PC and points to the first instruction of a procedure.

At the end of the procedure a RET instruction can be used to return to the original
program flow. RET pops the top of the processor stack back into the PC.

The destination address is calculated by doubling the displacement in the
instruction, then subtracting this value from the current value of the PC to derive the
destination address. The displacement is a 12-bit signed value in the range —2048 to
+2047. Thus, the destination address must be in the range —4092 to +4098 bytes
from the start of the CALR instruction. In segmented mode, the PC segment number
is not affected. The assembler automatically calculates the displacement by
subtracting the PC value of the following instruction from the address given by the
programmer.

Flags:

No flags affected

Destination
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles| Instruction Format Cycles

RA:

CALR address L1 101 I

displacement] 10 l1 101 | displacement] 15

Example:

In nonsegmented mode, if the contents of the program counter are %1000 and the
contents of the stack pointer (R15) are %3002, the instruction

CALR PROC

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALR instruction) to be loaded into the word location %3000, and the
program counter to be loaded with the address of the first instruction in procedure

PROC.

6-19

CLR dst dst: R, IR, DA, X
CLRB
Operation: dst - 0
The destination is cleared to zero.
Flags: No flags affected.
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: g]ﬂggﬁd Rbd {10Joo110]w] ra [1000] 7 [1ojoo110[w] ra T1000]| 7
IR: gII:gB@g%l [o0]o0110[w| Ra [1000] 8 [00jo0110|w| Ra [1000] 8
DA: CLR address
CLRD o1Joo11o|w]oooo|1ooo 1 lss o1|oo11o]w 0000[1000 12
address 0| segment offset
o1joo110|w/o000 [1000
sL 1| segment | 0000 0000 14
offset
X: CLR addr(Rd)
CLRB addr(Rd) o1|oo11o]w,nd¢o|1ooo 2 |ss o1loo11olw nd¢o|1ooo 12
address 0| segment oftset
01[00110{W| Rd+0 [1000
SL 1] segment (0000 0000 15
offset
Example: I the word at location %ABBA contains 13, the statement

CLR %ABBA

will leave the value 0 in the word at location % ABBA.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-20

- Complement

COM dst dst: R, IR, DA, X
COMB
Operation: (dst -« NOT dst)
The contents of the destination are complemented (one's complement): all one bits
are changed to zero, and vice-versa.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: COM—unaffected; COMB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: COM Rd
10/00110{w| Rd 0000 7 10j00110(w| Rd |oooo 7
cOMRd [(5losvvo[w] na eour] [i5esrvow] e Toveo]
IR: COM @Rd!
00/00110{W| Rd {0000 12 00/00110(W| Rd [0000 12
oo erat [o[w] wa Tovoo] [seForvo[w] e Jovoo]
DA: COM address 01/00110/w[0000 0000 o1loo11olw 00000000
COMB address 15 SS 16
address 0] segment offset
0100110|w 0000{0000
SL 1| segment | 0000 0060 18
offset
X: COM addr(Rd) o1]oo11o|w[nd¢o|oooo 01]00110[w Rd+0 0000
COMB addr(Rd) 16 SS 16
address Ol segment offset
01/0o0110[w| Rd=0 [0000
SL 1l segment (0000 0000 19
offset
Example: It register Rl contains %2552 (0010010101010010), the statement

COM Rl

will leave the value %DAAD (1101101010101101) in R1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-21

COMFLG

Complement Flag

COMFLG flag Flag: C, Z,S,P, V
FLAGS (4:7) -- FLAGS (4:7) XOR instruction (4:7)

Operation: Any combination of the C, Z, S, P or V flags is complemented (each one bit is
changed to zero, and vice-versa). The flags to be complemented are encoded in a
tield in the instruction. If the bit in the field is one, the corresponding flag is com-
plemented; if the bit is zero, the flag is left unchanged. Note that the P and V flags
are represented by the same bit. There may be one, two, three or four operands in
the assembly language statement, in any order.

Flags: C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if specified; unaffected otherwise
P/V: Complemented if specified; unaffected otherwise
D: Unaffected
H: Undefined

o

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
COMFLG flags { 10001101 [czsenfo101] 7 [10001101 Jczspvo101] 7
Example: If the C, Z, and S flags are all clear (=0), and the P flag is set (= 1), the statement

COMFLG P,S,Z, C
will leave the C, Z, and S flags set (=1), and the P flag cleared (=0).

6-22

o

e Register

Goat ey

* Compar

Operation:

CP dst, src dst: R o
CPB src: R, IM, IR, DA, X
CPL or

dst: IR, DA, X

src: IM

dst — src

The source operand is compared to (subtracted from) the destination operand, and
the appropriate flags set accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffected, with the only action being
the setting of the flags. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. There are two variants of this instruc-
tion: Compare Register compares the contents of a register against an operand
specified by any of the five basic addressing modes; Compare Immediate performs a

comparison between an operand in memory and an immediate value.

Flags:

C: Cleared if there is a carry from the most significant bit of the result; set other-
wise, indicating a “borrow”

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared otherwise

D: Unaffected
H: Unaffected

Compare Register

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: g}I;BRgioS?Rbs [10]oo101lw| Rs | Ra | 4 [10/o0101{w| Rs | Ra | 4
CPL RRd, RRs [10] 010000 Rs | Rra | 8 [10] 010000 &s | Ra | 8
IM: CP Rd, #data oo{oo1o11]oooo| Rd , ooloo1o11[oooo! Rd ,
data data
CPB Rbd, #data 00[001010 0000 Rd , 00001010 |0000] Rd ;
data data data data
CPL RRd, #data oo|o1oooo]oooo| Rd oo|o1oooo|oooo| Rd
Y] data (high) 16 14 31 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: ggBRgiaf,R;Rsl [ooloo101|w| Rs+0| Rd | 7 [oojoo101{w|Rsz0| Ra | 7
CPL RRd, @Rs! [00{ 010000 | Rsx0| Ra | 14 [oo[010000 Rs0| na | 14

6-23

. Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: CP Rd, address
CPB Rbd. adideess 01 oo1o1lw]oooo| Rd o [ss|” 0101w 0000| Rd 10
address 0| segment offset
01|oo1o1]w 0000| Rd
SL|1| segment | 0000 0000 12
offset
CPL RRd, address 01 o1oooo]oooo] Rd 01{ 010000 oooo[Rd
15 SS 16
address 0] segment offset
01/ 010000]0000| Rd
SL}1| segment |0000 0000 18
offset
X: CP Rd, addr(Rs) o1]oo1o1]w|ns¢o] Rd o1joo101|w Rs#0| Rd
CPB Rbd, addr(Rbs) 10 SS 10
address 0 segment offset
01loo1o1]w Rs#0| Rd
SL{1] segment | 0000 0000 13
offset
CPL RRd, addr(Rs) 01 010000|Rs¢0l Rd o1lo1oooo Rs;tO] Rd
16 SS 16
address 0| segment offset
01/010000 | Rs=0 [Rd
SL[1| segment {0000 0000 19
offset
Compare Immediate
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CP @Rdl, #data ooloo11olw| Rd |ooo1 y ooloonolwl Rd looo1 y
data data
CPB @Rdl, #data 00 oo11o’w Rd [0001 » oo]oo11o[w Rd looo1 »
data data data data

6-24

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: CP address, fdata o1]oo11o|w|oooo|ooo1 01{00110/w 00000001
address 14 S$S|o I segment offset 15
data data
01001 10/w 0000/0001
1| segment 0000 0000
SL 17
offset
data
CPB address, #data o1]oo110/w[oooo o001 otjoot1o[w[ooo0]o00s
address 14 SS|o l segment offset 15
data ‘ data data data
o1|oo11o|w 00000001
1 segment 0000 0000
sL | ses 17
offset
data I data
X: CP addr(Rd), #data 01/0o0110/w|Rd = 0[00o01 o1loo11o]w Rd¢0|0001
address 15 Ss|o l segment offset 15
data data
o1]oo11o]w Rd= 00001
SL 1| segment |0000 0000 18
offset
data
CPB addr(Rd), #data 01]oo110|w|Rd+0]0001 o1|oo11o|w Rd;eo‘oom
address 15 SS 0] segment oftset 15
data | data data data
01]oo11o|w Rd#0 |ooo1
sL 1] segment | 0000 0000 18
offset
data l data
Example: If register RS contains %0400, the byte at location %0400 contains 2, and the source

operand is the immediate value 3, the statement

CPB @RS5,#3

will leave the C flag set, indicating a borrow, the S flag set, and the Z and V flags

cleared.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-25

B RN NN PRRIN XN o ER - . R Rt g

Compare and Decremgnt

WM

cp dst‘ src, T, cc dst: R

CPDB.. . sre: IR

Operation: dst — src
AUTODECREMENT src (by 1 if byte, by 2 if word)
R« R -1
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See section 6.6.1 for a list of condition codes. Both operands are
unaffected. A
The source register is then decremented by one if CPDB, or by two if CPD, thus
moving the pointer to the previous element in the string. The word register specified
by “'r” (used as a counter) is then decremented by one.

Flags: C: Undefined
Z: Setvif the condition code generated by the comparison matches cc; cleared

otherwise
S: Undetined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPD Rd, @Rs!, r, cc 1011101|w| Rs [1000 1011101 |w| Rs [1000
CPDB Rbd, @Rsl, r, cc 20 20
0000| Rd | cc o000/ Rd | cc
fxample: If register RHO contains %FF, register R1 contains %4001, the byte at location

%4001 contains %00, and register R3 contains 5, the instruction
CPDB RHO, @Rl, R3, EQ

will leave the Z flag cleared since the condition code would not have been “equal.”
Register R1 will contain the value %4000 and R3 will contain 4. For segmented
mode, Rl must be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-26

CPDR

Compare Decrement and Repeat

CPDR dst, src, 1, cc dst: R

CPDRB src: IR

Operation: dst — src
AUTODECREMENT src (by 1 if byte; by 2 it word)
R« R -1
repeat until ccistrueor R = 0
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “'cc” would be set by the comparison; otherwise the Z
flag is cleared. See section 6.6.1 for a list of condition codes. Both operands are
unaffected.
The source register is then decremented by one if CPDRB, or by two it CPDR, thus
moving the pointer to the previous element in the string. The word register specified
“r" (used as a counter) is decremented by one. The entire operation is repeated until
either the condition is met or the result of decrementing r is zero. This instruction
can search a string from 1 to 65536 bytes or 32768 words long (the value of r must
not be greater than 32768 for CPDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: CPDR Rd, @Rsl, r, cc 1011101|w| Rs [1100 1011101|w| Rs [1100
CPDRB Rbd, @Rs!, r, cc 0000] r | Rd | cc 1+9n o000 r | Rd | cc H+9n
Example: If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8,

register R2 contains %2008, R3 contains 3, and R8 contains 8, the instruction
CPDR R3, @R2, R8, GT

will leave the Z flag set indicating the condition was met. Register R2 will contain the
value 962002, R3 will still contain 3, and R8 will contain 5. For segmented mode, a
register pair would be used instead of R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements compared.

6-27

Compare and Increment.

CPI dst, src, r, cc dst: R o g"j
CPIB src: IR ’ . -

Operation: dst — src
AUTOINCREMENT src (by 1 if byte; by 2 if word)
r «—r -1
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand and the Z flag is set if the
condition code is specified by “"cc” would be set by the comparison; otherwise the Z
flag is cleared. See section 6.6.1 for a list of condition codes. Both operands are
unatfected.
The source register is then incremented by one if CPIB, or by two if CPI, thus
moving the pointer to the next element in the string. The word register specified by
“r" (used as a counter) is then decremented by one.

Flags C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undetined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unattected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: 83;3133%3;1"?00 1011101|w| Rs [0000 20 1011101|W| Rs [0000 20
0000| Rd | cc o000 r Rd | cc

6-28

Example: This instruction can be used in a “loop” of instruction that searches a string of da
for an element meeting the specified condition, but an intermediate operation on
each data element is required. The following sequence of instructions (to be
executed in non-segmented mode) “scans while numeric,” that is, a string is

J searched until either an ASCII character not in the range “0” to 9" (see Appendix
C) is found, or the end of the string is reached. This involves a range check on each
character (byte) in the string. For segmented mode, R1 must be changed to a
reqgister pair.

LD R3, #STRLEN linitialize counter!

LDA R1, STRSTART lload start address!

LD RLO,#9 llargest numeric char!
LOQOP:

CPB @R1,#0 ltest char < '0’!

IR ULT,NONNUMERIC

CPIB RLO, @Rl, R3, ULT ltest char > ‘0!

IR Z, NONNUMERIC

IR NOV, LOOP Irepeat until counter = 0!
DONE:
NONNUMERIC: lhandle non-numeric char!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-29

CPIR

Compare, Increment and Repeat

CPIR dst, src, , cc dst: R 7))
CPIRB src: IR

Operation: dst — src
AUTOINCREMENT src (by 1 if byte; by 2 if word)
R<«R -1
repeat until ccistrueor B = 0
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addresses by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6.1 for a list of condition codes. Both operands are
unaffected.
The source register is then incremented by one if CPIRB, or by two if CPIR, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc-
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
R: @Rs!
I gg%gBRgi)ngR;f":ccc 1011101|w| Rs (0100 H1+9n 1011101|w| Rs [o100 11+9n
o000 r Rd | cc 0000 « Rd | cc

6-30

Example:

i e S
The following sequence of instructions (to be executed in nonsegmented inodé) gan
be used to search a string for an ASCII return character. The pointer to the start of
the string is set, the string length is set, the character (byte) o be searched for is
set, and then the search is accomplished. Testing the Z flag determmes whether the
character was found. For segmented mode, R1 must be changed to a register pair.

LDA R1, STRSTART

LD R3, #STRLEN

LDB RLO, #% D lhex code for return is D!
CPIRB RLO, @RI, R3, EQ

IR Z, FOUND

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n=number of data elements compared.

6-31

CPSD

Compare String and Decrement

CPSDdst, src, 1, cc dst: IR

CPSDB src: IR
Operation: dst — src , ‘
AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r-—r — 1]
This instruction can be used to compare two strings of data until the specified condi-
tion is true. The contents of the location addressed by the source register are com-
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by “cc” would be set by the
comparison; otherwise the Z flag is cleared. See section 6.6.1 for a list of condition
codes. Both operands are unaffected.
The source and destination registers are then decremented by one if CPSDB, or by
two if CPSD, thus moving the pointers to the previous elements in the strings. The
word register specified by "r"’ (used as a counter) is then decremented by one.
Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaifected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPSD @Rdl, @Rsl, 1, cc 1011101|w| Rs 1010 1011101|w| Rs [1010
CPSDB @Rd!,@Rsl,r,cc 25 25
0000 r | Rd | cc 0000 r | Rd | cc
Example: If register R2 contains %2000, the byte at location %2000 contains %FF, register R3

contains %3000, the byte at location %3000 contains %00, and register R4 contains
1, the instruction (executed in nonsegmented mode)

CPSDB @R2, @R3, R4, UGE
will leave the Z flag set to 1 since the condition code would have been “unsigned
greater than or equal”, and the V flag will be set to 1 to indicate that the counter R4

now contains 0. R2 will contain %1FFF, and R3 will contain %2FFF. For segmented
mode, B3 must be changed to a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-32

 CPSDR

Compare Strmg Decrémeht ctnd Repeat

R N

CPSDR dst, src,r, cc o dst IR

CPSDRB src: IR

Operation: dst — src
AUTODECREMENT dst and src (by 1 if byte by 2 if word)
r<«r — |
repeat until ccistrueorr = 0
This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by “'cc” would be set by the compar-
ison; otherwise the Z flag is cleared. See section 6.6.1 for a list of condition codes.
Both operands are unaffected.
The source and destination registers are then decremented by one if CPSDRB, or by
two is CPSDR, thus moving the pointers to the previous elements in the strings. The
word register specified by "r"’ (used as a counter) is then decremented by one. The
entire operation is repeated untll either the condition is met or the result of decre-
menting r is zero. This instruction can compare strings from 1 to 65536 bytes or from
1 to 32768 words long (the value of r must not be greater than 32768 for CPSDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven more cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags: C: Undefined
Z: Set if the conditon code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: PSDR@Rd!,@Rs!
gPéDRBgﬁdl,gls%s:ir:rc,ccc 10111o1iw Rs 1110} |0 4an 10111o1|w Re [1110) | an
oo000| r Rd | cc 0ooo| Rd | cc

6-33

‘Example:

If the words from location %1000 to %1006 contain the values 0, 2, 4, and 6, the
words from location %2000 to %2006 contain the values 0,1, 1, 0, register R13 con-
tains %1006, register R14 contains %2006, and register RO contains 4, the instruc-
tion (executed in nonsegmented mode)

CPSDR @R13, @R14, RO, EQ)
leaves the Z flag set to 1 since the condition code would have been “equal” (loca-
tions %1000 and %2000 both contain the value 0). The V flag will be set to 1 indi-
cating r was decremented to 0. R13 will contain %0FFE, R14 will contain %1FF E,

and RO will contain 0. For segmented mode, R13 and R14 must be changed to
reqgister pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n=number of data elements compared.

A-34

2

N

- Compare String and Increment

CPSI dst, s‘fc,;r,,cc ‘ | o dst:"IR o

CPSIB , . st IR

Operation: dst — src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
rer — |

This instruction can be used to compare two strings of data until the specified condi-
tion is true. The contents of the location addressed by the source register are com-
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by “cc” would be set by the
comparison; otherwise the Z flag is cleared. See Section 6.6.1 for a list of condition
codes. Both operands are unaffected.

The source and destination registers are then incremented by one if CPSIB, or by
two if CPSI, thus moving the pointers to the next elements in the strings. The word
reqgister specified by “r"’ (used as a counter) is then decremented by one.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise
S: Undetined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPSI @Rdl, @Rs! r,cc 1011101]w| Rs [0010 1011101|w| Rs 0010
CPSIB @Rd!,@Rs!,r,cc 25 25
0000 r | Rd | cc 0000 r | Rd | cc

6-35

E‘:Eu:h";:lé? This instruction can be used in a “loop” of instructions which compares two strings
until the specified condition is true, but where an intermediate operation on each
data element is required. The following sequence of instructions, to be executed in
nonsegmented mode, attempts to match a given source string to the destination
string which is known to contain all upper-case characters. The match should suc-
ceed even if the source string contains some lower-case characters. This involves a
forced conversion of the source string to upper-case (only ASCII alphabetic letters
are assumed, see Appendix C) by resetting bit 5 of each character (byte) to 0 before

comparison.

LDA R1, SRCSTART lload start addresses!

LDA R2, DSTSTART

LD R3, #STRLEN linitialize counter!
LOOP: ,

RESB @R],#5 lforce upper-casel

CPSIB @R1,@R2, R3, NE lcompare until not equal!

JR Z, NOTEQUAL lexit loop if match fails!

IR NOV, LOOP Irepeat until counter = 0!
DONE: . Imatch succeeds!
NOTEQUAL: . Imatch fails!

For segmented mode, R1 must be changed to register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-36

CPSIR

’ ""'Cdtﬁﬁ‘d?éStr‘iﬁg. Incréfhent and Repeat

Operation:

CPSIR dst,src,r,cc - dst IR
CPSI‘RB‘ src: IR

dst — src

AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
rer —1

repeat until ccis trueorr = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by “cc” would be set by the com-
parison; otherwise the Z flag is cleared. See section 6.6.1 for a list of condition
codes. Both operands are unaffected. The source and destination registers are then
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pointers to the
next elements in the strings. The word register specified by "'r"’ (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is met or the result of decrementing r is zero. This instruction can compare strings
from 1 to 65536 bytes or from 1 to 32768 words long (the value of r must not be
greater than 32768 for CPSIR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags:

C: Undefined

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

CPSIR @Rd!,@Rsl,r,cc
CPSIRB @Rd!,@Rs!,r,cc

1011101|w| Rs |o0110 1011101|w| Rs |0110
l 11+ 14n l
oooo[r Rd | cc ooool r Rd | cc

11+14n

Example:

The following sequence of instructions can be used in nonsegmented mode to com-
pare two strings of possibly different lengths, but at least one character (byte) long.
It determines if the destination string is lexicographically greater than or equal to
the source string as determined by the ordering of the ASCII character set (see
Appendix). Notice that the string "ABC" is greater than “"AB", and “AC" is greater
than "ABC". The destination string is initially pointed to by Rl, with its length in

bytes in R3. The source string is initially pointed to by R2, with its length in bytes in
R4. To execute in segmented mode, R1 and R2 must be changed to register pairs.

- cr R3, R4 lfind shortest length! i

IR ULE, COMPARE o f’]
LD R3, R4 lif source is shorter, !
EX R1, R2 Ithen swap pointers!

COMPARE:
CPSIRB @R]1, @R2, R3, ULT lcompare while > =/
R 7, FAIL

SUCCEED: . ldestination > = source!

FAIL: !destination < source!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

a 20

 Decimal Adjust
DAB dst dst: R
Operation: dst « DA dst
The destination byte is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADDB, ADCB) or subtraction (SUBB, SBCB),
the following table indicates the operation performed:
Carry Bits 4-7 H Flag Bits 0-3 Number Carry
Before Value Before Value Added After
Instruction DAB (Hex) DAB (Hex) To Byte DAB
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
ADDB 0 0-9 1 0-3 06 0
ADCB 0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
SUBB 0 0-9 0 0-9 00 0
SBCB 0 0-8 1 6-F FA 0
1 7-F 0 0-9 AQ 1
1 6-F 1 6-F 9A 1
The operation is undefined if the destination byte was not the result of a valid addi-
tion or subtraction of BCD digits.
Flags: C: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode

Syntax

Instruction Format

Cycles

Instruction Format

Cycles

R:

DAB Rbd

f10[110000 | Rd]oooo]

[10[110000 | Rd]oooo]

Example \

If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
' 'aestination location using standard binary arithmetic.

+0010 0111
0011 1100 = %3C

The DAB instruction adjusts this result so that the correct BCD representation is
obtained.

0011 1100
+0000 0110

0100 0010 = 42

B

Decrement

DEC dst, src dst: R, IR, DA, X
DECB src: IM
Operation: dst -« dst — src (where src = 1 to 16)
The source operand (a value from 1 to 16) is subtracted from the destination operand
and the result is stored in the destination. Subtraction is performed by adding the
two's complement of the source operand to the destination operand. The source
operand may be omitted from the assembly language statement and defaults to the
value 1. .
The source field in this instruction format contains the source operand n. The coding
for n ranges from 0 to 15, which corresponds to the source values
1 to 16.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs,
and the sign of the result is the same as the sign of the source; cleared otherwise.
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: DEC Rd, #n
' 10{10101(w| Rd 4 10/10161|w| Rd 4
DECHA 4n [eforo] 7 T =] [efero o] ma [=]
IR: DEC @Rd!, #n |
: ~|ooj10101|W|Rd%0| n 1 00{10101|W|Rd=0! n 11
DECurd ¢ | [oofrarorw]mere] =] ool reze] =]
DA: DEC address, #n 01]10101]w[oooo| n 01/10101|w[o000] n
DECB address, #n 13 SS 14
address 0| segment offset
o1|1o1o1|w oooo] n
SL[1] segment [0000 0000 16
offset
X: DEC addr(Rd), #n 01/10101|w] Rd#0| n 01/10101|w|Ra=0] n
DECB addr(Rd), #n 14 SS 14
address OJ segment offset
o1|1o1o1’w ndaeo] n
SL|1| segment [0000 0000 17
offset
Example: It register R10 contains %0024, the statement

DEC RIO

will leave the value %0029 in R10.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-41

DI Privileged Instruction

Disable Interrupt
DI Int Int: VI, NVI _
Operation: If instruction (0) = 0 then NVI - 0

Othen VI« 0

It instruction (1)

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI)
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor-
responding bit in the instruction is zero, thus disabling the appropriate type of inter-
rupt. If the corresponding bit in the instruction is one, the control bit will not be
affected. All other bits in the FCW are not affected. There may be one or two
operands in the assembly language statement, in either order.

Flags: No tlags affected.
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
Dlint [o1111100 Toooooo[t]}] 7 [o1111100 [oo0000][V[}] 7
Example: If the NVI and VI control bits are set (1) in the FCW, the instruction:

DI VI

will leave the NVI control bit in the FCW set (1) and will leave the VI control bit in
the FCW cleared (0).

6-42

S~

Lt e i

Operation:

DIV dst, src dst: R .
DIVL src: B, IM, IR, DA, X

Word: (dst is register pair, src is word reqgister):
dst (0:31) is divided by src (0:15)
(dst (0:31) = quotient x src (0:15) + remainder)
dst (16:31) < quotient
dst (0:15) <« remainder

Long: (dst register quadruple, sr is register pair):
dst (0:63) is divided by src (0:31)
(dst (0:63) = quotient X src (0:31) + remainder)
dst (32:63) <« quotient
dst (0:31) <« remainder

The destination operand (dividend) is divided by the source operand (divisor), the
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, two’s complement integers and division is per-
formed so that the remainder is of the same sign as the dividend. For DIV, the
destination is a register pair and the source is a word value; for DIVL, the destina-
tion is a register quadruple and the source is a long word value.

There a four possible outcomes of the Divide instruction, depending on the division,
and the resulting quotient:

CASE 1. If the quotient is within the range -215 to 215 — 1 inclusive for DIV or
-231 to 231 — 1 inclusive for DIVL, then the quotient and remainder are left in the
destination register as defined above, the overflow and carry flags are cleared to
zero, and the sign and zero flags are set according to the value of the quotient.

CASE 2. If the divisor is zero, the destination register remains unchanged, the
overflow and zero flags are set to one and the carry and sign flags are cleared to
zero.

CASE 3. If the quotient is outside the range -216 to 216 — 1 inclusive for DIV or -232
to 232 —1 inclusive for DIVL, the destination register contains an undefined value,
the overtlow flag is set to one, the carry and zero flags are cleared to zero, and the
sign flag is undefined.

CASE 4. 1If the quotient is inside the range of case 3 but outside the range of case
1, then all but the sign bit of the quotient and all of the remainder are left in the
destination register, the overflow and carry flags are set to one, and the sign and
zero flags are set according to the value of the quotient. In this case, the sign flag
can be replicated by subsequent instruction into the high-order half of the destina-
tion to produce the two’s complement representation of the quotient in the same
precision as the original dividend.

6-43

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles2
R: DIV RRd, Rs [1o[o11011] rs | Rra | [10]011011] s | Rd |
DIVL RQd, RRs [10]011010] rs | Rd | ho|o11o1o| Rs | Rd |
IM: DIV RRd, #data oo|o11o11]oooo] Rd 00/011011[0000| Ra
data data
DIVL RQd, #data 00/ 0110100000 Rd oo]o11o1o|oooo| Rd
31 data (high) 16 31 data (high) 16
15 data (low) 0 15 data (low) 0
: 1
IR DIV RRd, @Rs Iio|o110nlas¢o] Rd | |oo|o11o11|ns¢o] RdJ
!
DIVL RQd. @Rs [00/ 011010 | Rs20| Rrd | |00|011010|Rs¢0| Rd |
DA: DIV RRd, address o1]o11o11|oooo| Rd ss 01011011]0000] Rd
address 0| segment offset
o1l 011011 oooo[Rd
SL 1| segment (0000 0000
offset
DIVL RQD, address 01 o11o1o|oooo| Rd ss o1Jo11o1o oooo| Rd
address Ol segment offset
01/ 011010 0000 Rd
SL 1J segment | 0000 0000
offset
X: DIV RRd, addr(Rs) 01/ 011011 | Rs=0| Rd ss 011011011 | Rs#0| Rd
address OJ segment offset
01J 011011 Rs;eol Rd
SL{1| segment 0000 0000
offset
DIVL RQd, addr(Rs) 01 o11o1o]ns¢o[Rd ss 01011010 Rs#0| Rd
address Ol segment oftset
01/011010 | Rs#0| Rd
SL 1l segment {0000 0000
offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Execution times for each instruction are given in the table under Example.

6-44

C: Set if V is set and the quotient lies in the range from -216 o 216 — 1 inclusive for

Flags:
DIV or in the range from -232 to 232 — 1 inclusive for DIVL: cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise . .
S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is
negative, cleared if the quotient is non-negative.
V: Set if the divisor is zero or if the computed quotient lies outside the range from
-215 to 215 — 1 inclusive for DIV or outside range from -23! to 231 _ | inclusive
for DIVL; cleared otherwise :
D: Unaffected
H: Unaffected
Example: The following table gives the DIV instruction execution times for word and long

word operands in all possible addressing modes.

src Word Long Word
NS SS SL NS SS SL

R 107 744
M 107 744
IR 107 107 107 744 744 744

DA 108 109 111 745 746 748

X 109 109 112 746 746 749

(Divisor is zero)

R 13 13 13 30 30 30
M 13 13 13 30 30 30
IR 13 13 13 30 30 30

DA 14 15 17 31 32 34

X 15 15 18 32 32 35

(Absolute value of the high-order half of the dividend is larger than the
_ absolute value of the divisor)

R 25 25 25 51 51 51
M 25 25 25 51 51 51
IR 25 25 25 51 51 51
DA 26 27 29 52 53 55
X 27 27 30 53 53 56

Note that for proper execution, the “'dst field” in the instruction format encoding
must be even for DIV, and must be a multiple of 4 (0, 4, 8, 12) for DIVL. If the
source operand in DIVL is a register, the “src field” must be even.

If register RRO (composed of word register RO and R1) contains %00000022 and
register R3 contains 6, the statement

DIV RRO,R3

will leave the value %00040005 in RRO (R1 contains the quotient 5 and RO contains
the remainder 4).

6-45

DINZ

Decrement ‘dLnAdlIu’mp if Not Zero

Operation:

DJNZ R, dst

DBJNZ dst: RA

R« R -1
If R # Othen PC - PC - (2 x displacement)

The register being used as a counter is decremented. If the contents of the register
are not zero after decrementing, the destination address is calculated and then
loaded into the program counter (PC). Control will then pass to the instruction
whose address is pointed to by the PC. When the register counter reaches zero, con-
trol falls through to the instruction following DINZ or DBINZ. This instruction pro-
vides a simple method of loop control.

The relative addressing mode is calculated by doubling the displacement in the
instruction, then subtracting this value from the updated value of the PC to derive
the destination address. The updated PC value is taken to be the address of the
instruction byte following the DINZ or DBINZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the destination address must be in
the range -252 to 2 bytes from the start of the DINZ or DBINZ instruction. In the
segmented mode, the PC segment number is not affected. The assembler automatic-
ally calculates the displacement by subtracting the PC value of the following instruc-
tion from the address given by the programmer. Note that DINZ or DBJNZ cannot be
used to transfer control in the forward direction, nor to another segment in
segmented mode operation.

Flags:

No flags affected

Destination
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

RA:

DINZ R, displacement [1114] « Jw] a@isp] 1 [1111] ¢ w] aisp | 11
DBINZ Rb, displacement

Example:

DINZ and DBINZ are typically used to control a “loop” of instructions. In this exam-
ple for nonsegmented mode, 100 bytes are moved from one buffer area to another,
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter.

LDB RHO,#100 linitalize counter!
LDA R1, SRCBUF lload start address!
LDA R2, DSTBUF
LOOP:
LDB RLO,@R1 lload source byte!
RESB RLO,#7 Imask off sign bit!
LDB @R2, RLO Istore into destination!
INC Rl ladvance pointers!
INC R2
DBJNZ RHO, LOOP repeat until counter = 0!
NEXT:

For segmented mode, Rl and R2 must be changed for register pairs.

6-46

Privileged Instruction El
Enable Interrupts

) - Elint Int VI NVI

0 then NVI < 1
0 then V] <« 1

Operation: If instruction (0)
It instruction (1)

Any combination of the Vectored Interrupt (VI) or Non-Vetored Interrupt (NVI) con-
trol bits in the Flags and Control Word (FCW) are set to one if the corresponding bit
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor-
responding bit in the instruction is one, the control bit will not be affected. All other
bits in the FCW are not affected. There may be one or two operands in the assembly
language statement, in either order.

Flags: No flags affected
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
El int 01111100 [000001]V]Y| 7 [01111100 [o00001[V]}] 7
Example: If the NVI contol bit is set (1) in the FCW, and the VI contrdl bit is clear (0), the
instruction '
EI VI

will leave both the NVI and VI control bits in the FCW set (l)

6-47

EX dst, sTC
EXB

dst: R

src: R,

IR, DA, X

Operation: tmp < src (tmp is a temporary internal register)
src -« dst
dst <« tmp
The contents of the source operand are exchanged with the contents of the destina-
tion operand.
Flags: No tlags affected
Source ' Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: EX Rd, Rs
EXB Rbd Rbe [1o]10110{w] Rs | Rra | 6 {10]10110{w] rs | rd || 6
IR: EX Rd, @Rs! -
EXB Rbd. GRs! fool10110{w|Rsx0| Ra | 12 [ool10110/w[Rs0 | ra || 12
DA: EX Rd, address
EXB Rbd. ackiness 01[10110/w/0000| Rd 15 |ss 01{10110/w|0000| Rd 16
address OI segment offset
01]10110/w/0000| Rd
SL|1| segment [0000 0000f| 18
' offset
X: EX Rd, addr(Rs)
' 01{10110/W| Rs=0 | Rd 01[10110|W| Rs%0 | Rd
EXB Rbd, addr(Rs) | [w] Re+o | 16 |ss [W Rsvo | 16
address OI segment offset
01[10110{W|Rs#0 | Rd
SL{1| segment [0000 0000 19
offset
Example: If register RO contains 8 and register R5 contains 9, the statement

EX RO,R5

will leave the values 9 in RO, and 8 in R5. The flags will be left unchanged.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-48

Extend

Signs

EXTSB dst ; - dst: R
 EXTS .
EXTSL
Operation: Byte
if dst (7) = O then dst (8:15) - 000...000
else dst (8:15) <« 111...111
Word
if dst (15) = O then dst (16:31) <« 000...000
else dst (16:31) <« 111...111
Long
if dst (31) = O then dst (32:63) < 000...000
else dst (32:63) - 111...111
The sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTSB, the destination is a
word register; for EXTS, the destination is a register guadruple.
This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (as, for example, before a divide).
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: EXTSB Rd {10/ 110001 [nd [o000] 11 [10] 110001 Rd loooo] 11
EXTS RRD [10[110001] ra [1010] 11 {1o[110001] ra [1010] 11
EXTSL RQd [1o] 110001 | Ra [0111] 1 [1o] 110001 ra Jo111] 11
Example: If register pair RR2 (composed of word registers R2 and R3) contains 0012345678,

the statement
EXTS RR2
will leave the value %00005678 in RR2 (because the sign bit of R3 was 0).

FIALT Privileged Instruction

Operation: The CPU operation is suspended until an interrupt or reset request is received. This q
instruction is used to synchronize the Z8000 with external events, preserving its state
until an interrupt or reset request is honored. After an interrupt is serviced, the
instruction following HALT is executed. While halted, memory refresh cycles will
still occur, and BUSREQ will be honored.

Flags: No flags affected
Nonsegmented Mode - Segmented Mode
Assembler Language
Syntax Instruction Format Cycles! Instruction Format Cycles!

HALT 01111010 | 00000000 | | 8+3n |o1111o1o[oooooooo_] 8+3n

Note 1: Interrixpts are recognized at the end of each 3-cycle period; thus n = number of periods without
interruption.

A-R0

Privileged Insfruction IN
(SIN)

(Special) Input

IN dst, src , dst: R
INB src: IR, DA
SIN dst, src dst: R
SINB src: DA
Operation dst - src
The contents of the source operand, an Input or Special Input port, are loaded into
the destination register. IN and INB are used for normal /O operation; SIN and
SINB are used for Special I/O operation.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: IN Rd!, @R
INBRbdl,CZRs fool11110[w] ms | ra | 10 foof11110[w] Rs [Ra | 10
DA: IN Rd, port
INB Rbd mort 0ot1101|w| Rd [o10s 12 0011101|w| Ra [ot10s 12
port port
SIN Rd, port
SINB Rbd, port
Example: If register R6 contains the I/O port address %0123 and the port %0123 contains

%FF, the statement
INB RH2, @R6
will leave the value %FF in register RH2.

Note 1. Word register in nonsegmented mode; register pair in segmented mode.

6-51

Increment

INC dst, src dst: R, IR, DA, X v
INCB src: IM
Operation: dst < dst + src (src = 1 to 16)
The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Two's complement addition is performed. The
source operand may be omitted from the assembly language statement and defaults
to the value 1.
The source field in the instruction format contains the source operand n. The coding
for n ranges from 0 to 15, which corresponds to the source values 1 to 16.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same
sign, and the result is the opposite sign; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: INC Rd, #n
INCB Rbd, #n L10|1o1oo|w, Rd | nj 4 [1o|1owo|w| Rd | nj 4
IR: INC @Rd!,
INCB@Rdl,#I;;n [o0[10100[w][Rax0] n] 11 [o0]10100{w|Raxo] n il 1
DA: INC address, #n
INCB adduers. #n o1[10100/w[o000] n s |ss o1/10100/w/0000] n 14
address Ol segment offset
01 1o1oo]w ooool n
SL|1| segment {0000 0000 16
offset
X: INC addr(Rd), #n
INCB addr(Rd). #n o1[10100/w[Rdz0] n 1w |ss 01]10100/w Rd#0| n 1
address 0| segment offset
01/10100/w[Rdz0] =
SL{1]| segment [0000 0000|[17
offset
Example: It register RH2 contains %321, the statement

INCB RH2,#6
will leave the value %27 in RH2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-52

Privileged Instruction
|)

(Special) Input and Decrement

IND dst, src, r , dst: IR
INDB src: IR
SIND
SINDB o
Operation: dst <« src
AUTODECREMENT dst (by 1 byte, by 2 if word)
rer —1
This instruction is used for block input of strings of data. IND and INDB are used for
normal I/O operation; SIND and SINDB are used for special I/O operation. The con-
tents of the I/O port addressed by the source word reqgister are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by “r"” (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged.
Flags: C: Unaffected
Z: Unaffected
S: Unaffected _
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language :
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: IND @Rd!, @Rs, r 0011101|w| Rs [100s o1 0011101|w| rs [100s o1
INDB @Rd!, @Rs, r 0000/ r | Ra [1000 0000 r | Rd |1000
SIND @Rd!, @Rs, r
SINDB @Rd!, @Rs, r
Example: In segmented mode, if register RR4 contains %02004000 (segment 2, offset %4000),

register R6 contains the I/O port address %0228, the port %0228 contains %05B9,
and register RO contains %0016, the instruction
IND @RR4, @R6, RO

will leave the value %05B9 in location %02004000, the value %02003FFE in RR4,
and the value %0015 in RO. The V flag will be cleared. Register R6 still contains the
value %60228. In nonsegmented mode, a word register would be used instead of

RR4.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

A-53

INDR
(SINDR)

Privileged Instruction

(Special) Input, Decrement and Repeat

INDR dst, src, r dst: IR
INDRB A src: IR
SINDR
SINDRB
Operation: dst <« src
AUTODECREMENT dst (by 1 if byte, by 2 if word)
rer — 1
repeat untilr = 0
This instruction is used for block input of strings of data. INDR and INDRB are used
for normal I/O operation; SINDR and SINDRB are used for special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "r” (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 tor INDR or SINDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: INDR @Rd!, @Rs, r oo111o1|w Rs [100S oo111o1]w Rs [100S
INDRB @Rd!, @Rs, r 11 +10n 11+10n
SINDR @Rd!, @Rs, r ooool r Rd [0000 ooool r Rd |0000
SINDRB @Rdl, @Rs, r '

6-54

Example:

. L ST e R R R S S : . e i

If register R1 contains %2024, register R2 contains the Special /O address %0AF C,

and register R3 contains 8, the instruction o
SINDRB @Rl, @R2, R3 B

will input 8 bytes from the special I/O port OAFC and leave them in descending

order from %202A to %2023. Register R1 will contain %2022, and R3 will contain 0.

R2 will not be affected. The V flag will be set. This example assumes nonsegmented
mode; in segmented mode, R1 would be replaced by a reqgister pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

A.RR

INI

(SINI)

Privileged Instruction

(Special) Input and Increment

INI dst, src, r - dst: IR

 INIB : src: IR
SINI
SINIB
Operation: dst <« src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r-r — 1
This instruction is used for block input of strings of data. INI, INIB are used for nor-
mal I/O operation; SINI, SINIB are used for special I/O operation. The contents of
the I/O port addressed by the source word register are loaded into the memory loca-
tion addressed by the destination register. I/O port addresses are 16 bits. The
destination register is then incremented by one if a byte instruction, or by two if a
word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r"’ (used as a counter) is then decremented
by one. The address of the I/O port in the source register is unchanged.
Flags C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unalfected
"H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: %giB@gggl,@g;;r oo111o1]w Rs [000S o1 oo111o1|w Rs |ooos 21
SINI @Rd!, @R, r 0000] Rd [1000 0o0oo| Rd {1000
SINIB @Rd!, @Rs, r
Example: In nonsegmented mode, if register R4 contains %4000, register R6 contains the I/O

port address %0229, the port %0228 contains %B9, and register RO contains %0016,

the instruction

INIB @R4, @R6, RO

will leave the value %B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented mode, R4 would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

A-56

Privileged Instruction INIR

(SINIR)

~ (Special) Input, Increment and Repeat

INIR dst, src, r ‘ dst: IR
'INIRB o src: IR
SINIR
SINIRB
Operation: dst <« src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
rer — 1
repeat untilr = 0
This instruction is used for block input of strings of data. INIR and INIRB are used
for normal I/O operation; SINIR and SINIRB are used for special 1/O operation. The
contents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element in the string.
The word register specified by “r' (used as a counter) is then decremented by one.
The address of the I/O port in the source register is unchanged. The entire operation
is repeated until the result of decrementing r is zero. This instruction can input from
1 to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for
INIR or SINIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.
Flags: C: Unaffected . *
Z: Unaflected
S: Unaffected
V: Set
D: Unattected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
: i
IR %E%EB@gﬁdl’@g;;r 0011101|w| Rs [000S 11+ 10n 0011101|w| Rs [000S 11+10n
SINIR @Rd!, @Rs, r oooo| r Rd [0000 ooool r Rd {0000
SINIRB @Rd!, @Rs, r

6-57

B

Example:

In nonsegmented mode 1t reg1ster Rl contalns %2023 register R2 contains the I/O
port address %0551, and reglster R3 contains 8, the statement
INIRB @Rl ‘@R2, R3 N

will input 8 bytes from port %0051 and leave them in ascendlng order from %2023
to %202A. Register R1 will contain %202B, and R3 will contain Q. R2 will not be
affected. The V flag will be set. In segmented mode, a register pair must be used
instead of RI.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements transferred.

6-58

£

Privileged Instruction

IRET

- Interrupt Return
IRET o
Operation: Nonsegmented Segmented
SP <« SP + 2 (Pop “identifier”) SP < SP + 2 (Pop “identifier”)
PS « @SP PS < @SP
SP <« SP + 4 SP <« SP + 6
This instruction is used to return to a previously executed procedure at the end of a
procedure entered by an interrupt or trap (including a System Call instruction).
First, the “identifier” word associated with the interrupt or trap is popped from the
system processor stack and discarded. Then contents of the location addressed by
the system processor stack pointer are popped into the program status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW is not effective until the next instruction, so that the status pins will not
be atfected by the new control bits until after the IRET instruction execution is com-
pleted. The next instruction executed is that addressed by the new contents of the
PC. The system stack pointer (R15 if nonsegmented, or RR14 if segmented) is used to
access memory.
Flags: C: Loaded from processor stack
Z: Loaded from processor stack
S: Loaded from processor stack
P/V: Loaded from processor stack
D: Loaded from processor stack
H: Loaded from processor stack
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IRET {o1111011 [00000000 | 13 01111011 | 00000000 | 16
Example: In the nonségmented 28002 version, if the program counter contains %2550, the

system stack pointer (R15) contains %3000, and locations 963000, %3002 and %3004
contain %7F03, a saved FCW value, and %1004, respectively, the instruction

IRET

will leave the value %3006 in the system stack pointer and the program counter will
contain %1004, the address of the next instruction to be executed. The program
status will be determined by the saved FCW value.

Jump

Operation: If cc is satistied, then PC «- dst
A conditional julmp transfers program control to the destination address if the condi-
tion specified by “cc” is satisfied by the flags in the FCW. See section 6.6.1 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JP instruction is
executed.
Flags: No flags affected
Destination . Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: JP cc, @Rd! fool 011110 Raz0| e | | 1007 [oo[011110 [Raxo| cc || 157
DA: JP cc, address 01/ 011110 |0000] cc o1{ 0111100000 cc
77 SS 8/8
address o] segment offset
o1[011110]0000] cc
SL{1| segment {0000 o0000|| 10110
offset
X: JP cc, addr(Rd)
01/011110 | Rd#0| cc g8 | ss 01/011110 | Rd#0| cc 1111
address 0| segment offset
01011110 [Rd=0 | cc
SL 1| segment |0000 oooo|| 11/11
offset
Example: If the carry flag is set, the statement

JP C, %1520

replaces the contents of the program counter with %1520, thus transferring control
to that location,

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: The two values correspond to jump taken and jump not taken.

6-60

A

Jump Relative

o G e i 5
e ———

Operation:

IR cc, dst \ dst: RA

it cc is satistied then PC <« PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi-
tion specified by “cc” is satisfied by the flags in the FCW. See section 6.6.1 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JR instruction is
executed. The destination address is calculated by doubling the displacement in the
instruction, then adding this value to the updated value of the PC to derive the
destination address. The updated PC value is taken to be the address of the
instruction byte following the JR instruction, while the displacement is a 8-bit signed
value in the range -128 to +127. Thus, the destination address must be in the range
-254 to + 256 bytes from the start of the IR instruction. In the segmented mode, the
PC segment number is not affected.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

Flags:

No flags affected

Destination
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

RA:

JR cc, address IL1 0 I cc] displacement] 6 |1 110 I cc I displacement] 6

Example:

If the result of the last arithmetic operation executed is negative, the following four
instructions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR ML, $ +14
If the S flag is not set, execution continues with the instruction following the JR.

A byte-saving form of a jump to the label LAB is

JR LAB

where LAB must be within the allowed range. The condition code is “blank’” in this
case, and indicates that the jump is always taken.

6-61

Operation:

LD dst, src
LDB
LDL

dst <« src

~dst: R

src: R, IR, DA, X, BA, BX

or

dst: IR, DA, X, BA, BX

R

Src.
or

dst: R,

IR, DA, X

src: IM

The contents of the source are loaded into the destination. The contents of the source

are not affected.

There are three versions of the Load instruction: Load into a register, load into

memory and load an immediate value.

Flags:

No flags affected

Load Register

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: igBRgiag,sts M1oooo|w] Rs | Rd | 3 |1o|1oooo|w| Rs | Rd Il 3
LDL RRd, RRs [10[010100] RRs | Ara] 5 Eo|o1o1‘oo| RRs | RRd |[5
IR: IﬂBBR?iiac?,Rg@lel ool 0000/ W | Rs#0 | ra | 7 oo]s 0000/ W | Rs=0 [Rﬂ 7
LDL RRd, @Rs! |i()|o1o1oolns¢o| RRd | 11 [oo|o1o1oo|ns¢o| RRd | 11
DA: IigBRgijgiiird?:ess o1|1oooo|w|oooo] Rd o |ss o1|10000|w 0000 Rd 10
address OI segment offset
o1|1oooo|w oooo] Rd
SL 1| segment | 0000 0000 12
offset
LDL RRd, address 01 010100{00001 RRd 01 010100 0000| RRd
12 SS 13
address 0 segment offset
01/ 010100 0000| RAd
SL 1| segment | 0000 0000 15
offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-62

"

~

)

LOCId Register (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: LD Rd, addr(Rs)
: 01/10000|W| Rs20 | Rd
LDB Rbd, addr(Rs) l W] Rsxo | 10 |ss 01]1 °°°°]‘” Rs=0 | Rd 10
address OI segment offset
o1|1oooo|w Rs#0 | Rd
SL{1]| segment |0000 0000 13
offset
LDL RRd, addr(Rs) 01 o1o1oo]Rs¢o[RRd 01/ 010100 Rs#0 | RRd
13 SS 13
address OI segment offset
01/ 010100 Rs#0 | RRd
SL|1| segment | 0000 0000 16
offset
BA: LD Rd, Rsl(#disp)
‘ R Rd w R
DB Rbd, Rel (fdisp) oo|11ooo|w| s#0 | 1 oo|11ooo| IRs;tOI d 1a
displacement displacement
LDL RRd, Rs!(#disp) 00[110101 | Rs#0 | Rd 17 0o{ 110101 | Rs+0| Rd 17
displacement displacement
BX: LD Rd, Rs!(Rx)
LDB R, Re! (fo) 01 11ooo[w Rs;tol Rd 1 o1|11ooo|w Rs;eOJ Rd 14
0000/ R« [0000 0000 0000| R« [0000 0000
LDL RRd, Rs!(Rx) 01[11010]1[Rs»0 [Rra . o1f11010]1]Rrsz0] Rd i
0000 Rx [0000 0000 0000| Rx [0000 0000
Load Memory
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LD @Rd!, Rs
IDB @Rdl. Rbs lﬂ)lunnlwl Rd | Rs | 8 |oo|1o111[w] Rd | Rs || 8
LDL @Rd!, RRs foo[011101] Ra | RRs | 1 {oo]o11101] Ra | mes || 11
DA: LD address, Rs
‘ 01/10111|w{0000| R
LDB address, Rbs orfro111w]oooo] ms n st | |_rs 12
address 0| segment offset
01J1o111[w oooo] Rs
SL 1] segment | 0000 0000 14

offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-63

Load Memory (Continued)

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
Y
DA: LDL address, RRs o1|o111o1]oooo| RRs 01{011101 [0000] RRs
14 SS 15
address 0| segment offset
01]011101 0000| RRs
SL|1]| segment 00000000 17
offset
X: LD addr(Rd), Rs
‘ 01[t0111{w| Rd=0| R o1l10111|w|Rd2z0| R
LDB addr(Rd), Rbs 1 [w[Raso] re 2 |ss|2 W[raso| rs 12
address 0, segment offset
o1l1o111|w Rd;tol Rs
SL]1| segment | 00000000 15
offset
01/ 611101 | Rd#0{ RR 01/ 011101 | Rd#0 | RR
[ravo] mes 15 |ssfol wo] mes I
address Ol segment offset
01/ 011101 [Rd=0] RRs
SL 1| segment | 0000 0000 18
offset
BA: LD Rdl(#disp), Rs 00{11001|w|Rdz0| Rs oo111oo1lw]nd¢ol Rs
LDB Rd!(#disp), Rbs - 14 - 14
displacement displacement
LDL Rdl(#disp), RRs 00/110111 | Rd=0| RRs 17 00[110111 | Ra#0| RRs 17
displacement displacement
BX: LD Rd!(Rx), Rs
‘ o1/11001|w| Rd20| R 01{11001/W{ Rd#0| R
LDB Rd!(Rx), Rbs I | “0] ms 14 l] 0] Rs 14
0000| Rx |00000000 0000| Rx | 00000000
LDL Rd!(Rx), RRs 01110111 Rd#0 | RRs i 01] 110111 Rd+0 | RRs 17
oooo| Rx | 00000000 oooo] Rx | 00000000

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-64

)

AGH

L9,¢d.flwm9di9!§‘i’

alue

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: LD Rd, #data 00[100001 |0000| Rd , ool1oooo1|oooo[Rd
data data 7
2
LDB Rbd, #data 00[100000 0000| Rd . oo|1ooooo oooo! Rd ,
data data data data
[1100{ Rd | data | 5 (1100 Ra | data [5
LDL RRd, #data oo|o1o1oo[oooo| RRd oo|o1o1oo[oooo’ RRd
31 data (high) 16 11 - 31 data (high) 16 11
15 data (low) 0 15 data (low) 0
IR: LD @Rd, #data
oo]oo11o1| Rd]0101 » oo|0011o1—[Rd lo1o1 »
data data
LD @Rbd, fdata 00{ 001100 | Rd]o1o1 » oo|ooi1oo Rd 10101 11
data data data data
DA: LD address, #data o1]oo11o1]oooo|o1o1 o1]oo11o1 oooo|o1o1
address 14 SS|o l segment offset 15
data data
o1|oo11o1 oooo|o1o1
1] segment (0000 0000
SL 17
offset
data
LDB address, #data 01 oo11oo[oooo|o1o1 o1loo11oo oooo|o1o1
address 14 sslo l segment offset 15
data l data data data
o1| 001100 oooo] 0101
1l segment [0000 0000
SL 17
offset
data I data

Note 2: Although two formats exist for "LDB R, IM"”, the assembler always uses the short format. In this case, the
“src field” in the instruction format encoding contains the source operand.

6-65

Load Immediate Value (continued)

s

Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles ﬂ
X: LD addr(Rd), #data 01 oo11o1]ad¢o[o1o1 o1|oo11o1 Rd¢o]o1o1
address 15 SS 0| segment offset 15
data data
o1|oo11o1 Rd¢0J0101
1 segment 0000 0000
sL am 18
offset
data
LDB addr(Rd), #data 01 oo11oo]nd¢o]o1o1 01001100 Rd¢0[0101
address 15 SS|0| segment offset 15
data I data data data
01/0011 00 Rd¢olo1o1
SL 1{ segment | 0000 0000 18
offset
data] data
Example: Several examples of the use of the Load instruction are treated in detail in Chapter 4

under addressing modes.

6-66

Load Address

dst: R

LDA dst, s;é_
‘ src: DA, X, BA, BX

Operation: dst - address (src)
The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address computation follows the rules for
address arithmetic. The destination is a word register in nonsegmented mode, and a
register pair in segmented mode.
In segmented mode, the address loaded into the destination has an undefined value
in all reserved bits (bits 16-23 and bit 31). However, this address may be used by
subsequent instructions in the indirect based or base-index addressing modes
without any modification to the reserved bits.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: LDA Rdl, address 01/110110[0000| Rd 01110110 0000] RRd
12 |SS 13
address Ol segment offset
01[110110 [0000] RRd
SL 1[segment (0000 0000 15
offset
X: LDA Rd!, addr(Rs)
, 01{110110 [Rs#0 | RRd
01110110 |Rs#0 | Rd a3 |ss l 50 | 1
address OI segment offset
01/110110 | Rs#0 | RRd
SL 1| segment | 0000 0000 16
offset
BA: LDA Rdl, Rs! (#disp) 00110100 | Rs+0 | Rd 15 00110100 | Rs+0 | Rd 5
displacement displacement
BX: LDA Rdl, Bs! (Rx) 01110100 Rs#ol Rd 15 01110100 Rs¢0| Rd 15
0000| Rx {0000 0000 0000| Rx [0000 0000

6-67

Examples: LDA R4,STRUCT lin nonsegmented mode, register R4 is loaded!

Iwith the nonsegmented address of the location!
Inamed STRUCT!

LDA RR2, <<3>> 8(R4) lin segmented mode, if index register R4! /\
Icontains %20, then register RR2 is loaded!)
lwith the segmented address (<<3>>, offset %28)!
LDA RR2,RR4(#8) lin segmented mode, if base register RR4!

Icontains %01000020, then register RR2 is loaded!
lwith the segment address << 1 >> 9,28
I(segment 1, offset %28)!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-68

_Load Address Relative

e
&

LDAR dst, src 1 ‘ dst: R
src: RA

Operation: dst «— ADDRESS (src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The destination is a word register in
nonsegmented mode, and a register pair in segmented mode. In segmented mode,
the address loaded into the destination has all “'reserved’ bits (bits 16-23 and bit 31)
cleared to zero.

The relative addressing mode is calculated by adding the displacement in the
instruction to the updated value of the program counter (PC) to derive the address.
The updated PC value is taken to be the address of the instruction byte following the
LDAR instruction, while the displacement is a 16-bit signed value in the range
-32768 to +32767. The addition is performed following the rules of address
arithmetic, with no modifications to the segment number in segmented mode. Thus
in segmented mode, the source operand must be in the same segment as the LDAR
instruction.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

Flags: No flags affected

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: LDAR Rd!, address 00110100 [0000]| Rd .5 00110100 [0000| Rd .5
displacement displacement
Example: LDAR R2, TABLE lin nonsegmented mode, register R2 is loaded!
lwith the address of TABLE!
LDAR RR4, TABLE lin segmented mode, register pair RR4 is!

lloaded with the segmented address of TABLE,!
lwhich must be in the same segment as the program!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-69

LDCTL Privileged Instruction

Load Control
| LDCTL dst, src | dst: CTLR
' src: R
or
dst: R
src: CTLR
Operation: dst <« src

This instruction loads the contents of a general purpose register into a control
register, or loads the contents of a control register into a general-purpose register.
The control register may be one of the following CPU registers:

FCW Flag and Control Word

REFRESH Refresh Control

PSAPSEG Program Status Area Pointer - segment number
PSAPOFF Program Status Area Pointer - offset

NSPSEG Normal Stack Pointer - segment number
NSPOFF Normal Stack Pointer - offset

The operation of each of the variants of the instruction is detailed below. The ones
which load data into a control register are described first, followed by the variants
which load data from a control register into a general purpose register.

Load Into Control Register
LDCTL FCW, Rs

Operation: FCW (2:7) -« Rs (2:7)
FCW (11:15) - Rs (11:15)

15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs:

| i 1 | ! 1 1 ! L Il 1 | ! ! ! I

YYYVYY YYYYYY
FCW: ISiGlSIN|EPAI Vi]Nv c | z] s [P/v| D 1 H

LDCTL REFRESH, Rs

Operation: REFRESH (1:15) - Rs (1:15)

15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0

Rs: l I N N SO S S TN R E NV N S T S]

Y Y Y Y YYYYYYYYYVYY
REFRESH: | re| rate [counter

reserved

6-70 26-0001-0933

Y

Operation:

LDCTL NSPSEG, Rs

NSPSEG (0:15) - Rs (0:15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y Y Y Y Y Y YYYYYYYYYY
NSPSEGI_A L VRN IR T N NN TR TR ROV GUNNU SRR TR § I

Rs: I

In segmented mode, the NSPSEG register is R14 and contains the segment number
of the normal mode processor stack pointer which is otherwise inaccessible for
system mode.

In nonsegmented mode, R14 is not used as part of the normal processor stack
pointer. This instruction may not be used in nonsegmented mode.

LDCTL NSPOFF, Rs

NSP, Rs
Operation: NSPOFF (0:15) - Rs (0:15)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RS: [1 | u] L L 1 L L L L L 1 1 —l l
Y Y Y Y Y Y Y YYYYYYYYY
*NSPOFF: I_I L L H L i l 1 1 1 ! 1 ! Il 1 l
*NSP in nonsegmented mode
In segmented mode, the NSPOFF register is R15 in normal mode and contains the
offset part of the normal processor stack pointer. In nonsegmented mode, R15 is the
entire normal processor stack pointer.
In nonsegmented 28002, the mnemonic “"NSP” should be used in the assembly
language statement, and indicates the same control register as the mnemonic
“NSPOFF”.
LDCTL PSAPSEG, Rs
Operation: PSAPSEG (8:14) - Rs (8:14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RS: Ll i i i i ! ! 1 L L I 1 {] |

YYYVYVYYY

segment number

;————reserved——’

PSAPSEG:

The PSAPSEG register may not be used in the nonsegmented Z8002. In the
segmented 78001, care must be exercised when changing the two PSAP register
values so that an interrupt occurring between the changing of PSAPSEG and
PSAPOFF is handled correctly. This is typically accomplished by first disabling
interrupts before changing PSAPSEG and PSAPOFF.

6-71

LDCTL PSAPOFF, Rs
PSAP, Rs

Operation: PSAPOFF (8:15) - Rs (8:15) ’ 7

15141312111098765432i0

Rs:Lll.l..[].......

YYYVYYYYY
*PSAPOFF: | offset (upper byte)

*PSAP in nonsegmented mode

In the nonsegmented Z8002, the mnemonic “"PSAP" should be used in the assembly
language statement and indicates the same control register as the mnemonic
"PSAPOFF". In the segmented Z8001, care must be exercised when changing the
two PSAP register values so that an interrupt occurring between the changing of
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first
disabling interrupts before changing PSAPSEG and PSAPOFF.

Load From Control Register
LDCTL Rd, FCW

Operation: Rd (2:7) - FCW (2:7)
Rd (11:15) «— FCW (11:15)
(Z8001 only)
Rd (11:14) < FCW (11:14)
(Z8002 only)

Rd (0:1) - O
Rd (8:10) == 0
Rd (15) - 0O

(28002 only)

15 14 1312 11 10 9 8 7 6 5 4 3 2

FCW: [SEG|SIN|EPAIVI IN c I F4 | s lplvl D I H

YYYYY YYYVYVYY
Rar| Jooof Joo]

LDCTL Rd, REFRESH

Operation: Rd (1:8) «- REFRESH (1:8)
Rd (0) < O
Rd (9:15) «- UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2
REFRESH: | re | rate counter

6-72

L S e e A s et
i ki

LDCTL Rd, PSAPSEG

Operation: Rd (8:14) «- PSAPSEG (8:14)

; Rd (0:7) < 0
’ Rd (15) « 0

PSAPSEG:

14 1312 11 10 9 8 7

segment number

YyYyyvy

\

| v

A

Rd:lol I I |

1

This instruction may not be used in the nonsegmented version.

LDCTL Rd, PSAPOFF
Rd, PSAP

Operation: Rd (8:15) < PSAPOFF (8:15)

Rd (0:7) < 0

15 14 13 12 11 10 9

8

*PSAPOFF: offset (upper byte)

Yy

YV VY

M

y

Rd: I

i 1] Il

1

I

(ooooooool

*PSAP in nonsegmented mode

In nonsegmented mode, the mnemonic PSAP should be used in the assembly
language statement, and it indicates the same control register as the mnemonic

PSAPOFF.

LDCTL Rd, NSPSEG

Operation: Rd (0:15) - NSPSEG (0:15)

i5 14 13 12 11 10 9

NSPSEG:| . ., . |,

YyyYyyvy

\i

\

|y

Rd: L

1 | 1 i

1

This instruction is not available in nonsegmented mode.

6-73

LDCTL Rd, NSPOFF

Rd, NSP
Operation: Rd (0:15) «- NSPOFF (0:15)
15141312 11 10 9 8 7 6 5 4 3 2 1 0
*NSPOFF: I ! I\ 1 1 | 1 1 It 1 1 L i 1] L —|
Y Y Y Y YYYYYYYYYYYY
Rd: l 1 1 I L | I Y 1 1 Il L | . L I
*NSP in nonsegmented mode
In nonsegmented mode, the mnemonic NSP should be used in the assembly
language statement, and it indicates the same control register as the mnemonic
NSPOFF. ‘
Flags: No flags affected, except when the destination is the Flag and Control Word (LDCTL
FCW, Rs), in which case all the flags are loaded from the source register.
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
LDCTL FCW, Rs [o1111101] rs J1010] 7 {o1111101] Rs [1010] 7
LDCTL REFRESH, Rs [01111101] R [1011] 7 fo1111101] rs [1011] 7
LDCTL PSAPSEG, Rs 01111101] rs [1100] 7
PR | e e T | 7| e] |
LDCTL NSPSEG, Rs [01111101] ms [1110] 7
LDCTLIIIIIgg’OIE:",Rs [oriirior] s [1717] 7 for111101] ms J1111] 7
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
LDCTL Rd, FCW [ori11101] rd Joo10] 7 [o1111101] Ra Joo10] 7
LDCTL Rd, REFRESH [0,1,110,‘ Rd |0011] 7 101,11101} Rd |[0011] 7
LDCTL Rd, PSAPSEG 01111101] ra Jo100] 7
LDCTL Rd, PSAPOFF [o1111101] ma Joto1] 7 [o01111101] Ra [o101] 7
LDCTL Rd, NSPSEG [o1111101] ra Jo110] 7
LDCTL Rd, NSPOFF [ov111101] ra Jor11] 7 [o1111101] ra Jo111] 7

Rd, NSP

6-74

_ LDCTLB

Operation:

| Load Control Byte
LDCTLB dst, src dst: FLAGS
src: R
or
dst: R
src: FLAGS
dst - src

This instruction is used to load the FLAGS register or to transfer its contents into a
general-purpose register. Note that this is not a privileged instruction.

Load Into FLAGS Register

LDCTLB FLAGS, Rbs)

FLAGS (2:7) - src (2:7)

The contents of the source (a byte register) are loaded into the FLAGS register. The
lower two bits of the FLAGS register and the entire source register are unaffected.

RbS: I Il it 1 1 1 | 1 —J

YYYYVYY
FLAGS: |c|z[slv[o[nl

reserved

Load From FLAGS Register

(LDCTLB Rbd, FLAGS)

dst (2:7) «- FLAGS (2:7)
dst (0:1) - O

The contents of the upper six bits of the FLAGS register are loaded into the destina-
tion (a byte register). The lower two bits of the destination register are cleared to
zero. The FLAGS register is unaffected.

7 6 5 4 3 2 1 0

FLAGS: ClZlSIPIV| D| HE

YYYYVYYY
Rbd: L, o o]

Flags:

When the FLAGS register is the destination, all the flags are loaded from the
source. When the FLAGS register is the source, none of the flags are affected.

6-75

Assembler Language

Nonsegmented Mode

Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles
LDCTLB FLAGS, Rbs [10001100 [Rs [1001] 7 [10001100 | Rrs [1001] 7
LDCTLB Rbd, FLAGS | 79001100] Rd |o001] 7 [10001100 | Rd Jooo1] 7

6-76

-/

.;:D

... Load and Decrement

IDD dst, sro, ¢ -~ 4t IR -
LDDB ~src: IR .
Operation: dst - src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
rer — 1
This instruction is used for block transfers of strings of data. The contents of the
location addressed by the source register are loaded into the location addressed by
the destination register. The source and destination registers are then decremented
by one if LDDB, or by two if LDD, thus moving the pointers to the previous elements
in the strings. The word register specified by “r"’ (used as a counter) is then
decremented by one.
Flags C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDD @Rs!, @Rd!, r 1o111o1|w Rs [1001 1o111o1]w Rs ({1001
LDDB @Rs!, @Rd!, r 20 20
0000| r Rd (1000 0000] r | Ra [1000
Example: In nonsegmented mode, if register R1 contains %202A, register R2 contains %4044,

the word at location %404A contains % FFFF, and register R3 contains 5,
the instruction
LDD @R1, @R2, R3

will leave the value %FFFF at location %2024, the value %2028 in R1, the value
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode,
register pairs would be used instead of R1 and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-77

LDDR

Load, Decrement and Repeat

LDDR dst, src, r dst: IR -
LDDRB src: IR

Operation: dst - src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
re«r —1
repeat untilr = 0
This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDRB, or by two if LDDR, thus moving the pointers to the previous elements
in the strings. The word register specified by "’ (used as a counter) is then
decremented by one. The entire operation is repeated until the result of decremen-
ting r is zero. This instruction can transfer from 1 to 65536 bytes or from 1 to 32768
words (the value for r must not be greater than 32768 for LDDR).
The effect of decrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
H 1 @Rsl
IR igggB@l@%gdll@R;;I’rr 1011101|w| Rs [1001 1140 1011101|w| Rs [1001 11+9n
oooo] ' Rd |0000 oooo[r Rd |0000

6-78

Example:

In nonsegmented mode, if register R1 contains %2024, register R2 contains %404A
the words at locations %4040 through %404A all contain %FF FF, and register R3
contains 6, the instruction =~~~ :

LDDR @RI, @R2, R3

will leave the value %FFFF in the words at locations %2020 through %202A, the
value %201E in Rl, the value %403E in R2, and 0 in R3. The V flag will be set. In

segmented mode, register pairs would be used instead of R1 and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements transferred.

a 70

Load cuid Increment

LDI dst, src, r dst: IR “/N}
LDIB 7 src: IR : ‘
Operation: dst < src

AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)

rer — 1

This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIB, or by two if LDI, thus moving the pointers to the next elements in the

strings. The word register specified by “'r” (used as a counter) is then decremented
by one.

Flags C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero, cleared otherwise
D: Unaffected
H: Unalfected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDI @Rdl, @Rsl, r 1011101Iw Rs [0001 1011101]w Rs {0001
LDIB @Rd!, @Rsl, r 20 20
oooo[r Rd [1000 oooo| r Rd |1000
Example: This instruction can be used in a “loop” of instructions which transfers a string of

data from one location to another, but an intermediate operation on each data ele-
ment is required. The following sequence transfers a string of 80 bytes, but tests for
a special value (%0D, an ASCII return character) which terminates the loop if
found. This example assumes nonsegmented mode. In segmented mode, register
pairs would be used instead of R1 and R2.

LD R3, #80 linitialize counter!

LDA Rl1, DSTBUF load start addresses!

LDA R2, SRCBUF
LOOP:

CPB @R2, #%0D Icheck for return character!

IR EQ, DONE lexit loop if found!

LDIB @R1, @R2, R3 ltransfer next byte!

JR NOV, LOOP Irepeat until counter = 0!
DONE:

Note I: Word register in nonsegmented mode, register pair in segmented mode.

6-80

" Load, Increment and Repeat

LDIR dst, src, r dst: IR

LDIRB src: IR

Operation: dst <« src
AUTOINCREMENT dst and src (by 1 if byte; by two if word)
r-r — 1

repeat until R = 0

This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIRB, or by two if LDIR, thus moving the pointers to the next elements in the
strings. The word register specified by “'r”’ (used as a counter) is then decremented
by one. The entire operation is repeated until the result of decrementing r is zero.
This instruction can transfer from 1 to 65536 bytes or from 1 to 32768 words (the

value for r must not be greater than 32768 for LDIR).

The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
reqguest is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags: C: Unaffected
2: Undefined
S: Unaffected

V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: LDIR @Rdl, @Rs!, r 1011101]w Rs [0001 1011101]w Rs (0001
LDIRB @Rd!, @Rs!, r 11+9n 1149n
0000| r Rd |0000 oooo[r Rd 0000

6-81

Example:

The following sequence of instructions can be used in nonsegmented mode to copy-a
buffer of 512 words (1024 bytes) from one area to another. The pointers to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LDA RI, DSTBUF
LDA R2, SRCBUF
LD R3, #512
LDIR @Rl, @R2, R3

In segmented mode, R1 and R2 must be replaced by register pairs.

Note 1: Word register in nonsegmented mode, reqgister pair in segmented mode.
Note 2: n = number of data elements transferred.

6-82

LDK

Load Constant
LDK dst, src dst: R
src: IM
Operation: dst - src (src = 0 to 15)
The source operand (a constant value specified in the src field) is loaded into the
destination register. The source operand is a value from 0 to 15 interpreted as a
value 1 to 16. It is loaded into the four low-order bits of the destination register,
while the high-order 12 bits are cleared to zero.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: LDK Rd, #data [10]111101] Rd | data | 5 [10] 111101] Ra | data | 5
Example: To load register R3 with the constant 9:

LDK R3,#9

6-83

LDM

Lad Multiple

Operation:

LDM dst, src, n dst: R
src: IR, DA, X
or '
dst: IR, DA, X
src: R

dst <« s:c(n words)

The contents of n source words are loaded into the destination. The contents of the
source are not affected. The value of n lies between 1 and 16, inclusive. This instruc-
tion moves information between memory and registers; registers are accessed in
increasing order starting with the specified register; RO follows R15. The instruction
can be used either to load multiple registers into memory (e.q. to save the contents
of registers upon subroutine entry) or to load multiple registers from memory {e.qg. to
restore the contents of registers upon subroutine exit).

The instruction encoding contains values from 0 to 15 in the “num” field correspond-
ing to values of 1 to 16 for n, the number of registers to be loaded or saved.

The starting address is computed once at the start of execution, and incremented by
two for each register loaded. If the original address computation involved a register,
the register’s value will not be affected by the address incrementation during
execution. Similarly, modifying that register during a load from memory will not
affect the address used by this instruction.

Flags:

No flags affected

Load Multiple - Registers From Memory

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: LDM Rd, @Rs!, #n oo]o111oo Rs#0]0001 oo|o111oo Rs%0 (0001
114 3n 11+3n

0000| Rd [0000]| num 0000] Rd [0000| num

DA: LDM Rd, address, #n 01/ 011100 [0000{0001 o1| 011100|0000{0001
oooo] Rd |0000| num 14+3n| SS oooo| Rd [0000(| num || 15+ 3n

address OI segment offset

o1]o111oo 00000001

0000| Rd [0000| num
SL I 17+ 3n

1] segment | 0000 0000

offset

6-84

Load Multiple - Registers Fro

P T

m Mémory (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: LDM Rd, addr(Rs), #n 01011100 | Rs=0 [0001 01/011100 | Rs0 | 0001
0000/ Rd [0000| num | |15+3n]|SS 0000 Rd [0000] num || 15+3n
address OI segment offset
01/011100 | Rs+0] 0001
0000{ Rd [0000
sL | M 1l 18+ 3n
1| segment [0000 0000
offset
Load Multiple - Memory From Registers
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDM@Rd!, Rs, #n oo]o111oo Rd#0 (1001 oo]o111oo Rd#0 {1001
11+3n 114+ 3n
0000] Rs 0000 num OOODI Rs 0000 num
DA: LDM address, Rs, #n 01011100 {0000({1001 o1lo111oo 0000]/1001
0000 Rs [0000| num 14+3n|8S[0000| Rs [0000| num || 15+3n
address 0 I segment offset
01/011100 0000|1001
OOOOI Rs 0000| num
SL 17+ 3n
1| segment 0000 0000
offset
X: LDM addr(Rd), Rs, #n o1|o111oo Rd+0 (1001 o1|o111oo Rd#0 |[1001
ooool Rs [0000] num 15+3n|SS ooool Rs (0000 num 15+3n
address 0] segment offset
01011100 [Rd=0[1001
0000 Rs [0000] num
SL 18 +3n
1| segment 0000 0000
offset
Example: In nonsegmented mode, if register RS contains 5, R6 contains 260100, and R7 con-

tains 7, the statement
LDM @Re, R5, #3
will leave the values 5, %0100, and 7 at word locations %0100, %0102, and %0104,

respectively, and none of the registers will be affected. In segmented mode, a

register pair would be used instead of R6.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of registers.

6-85

Privileged Instruction
LDPS e At

Load Program Status

LDPS src src: IR, DA, X

Operation: PS <« "src

The contents of the source operand are loaded into the Program Status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW does not become effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the LDPS instruction
execution is completed. The next instruction executed is that addressed by the new
contents of the PC. The contents of the source are not affected.

This instruction is used to set the Program Status of a program and is particularly
usetul for setting the System/Normal mode of a program to Normal mode, or for run-
ning a nonsegmented program in the segmented Z8001 version. The PC segment
number is not affected by the LDPS instruction in nonsegmented mode.

The format of the source operand (Program Status block) depends on the current
Segmentation mode (not on the version of the Z8000) and is illustrated in the
following figure:

NONSEGMENTED LOW ADDRESS SEGMENTED
FCw
PC FCw
PC SEG. NO.
HIGH ADDRESS PC OFFSET
(SHADED AREA IS RESERVED—MUST BE ZERO)
Flags: All flags are loaded from source registers.
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDPS @Rs! foo] 111001 [Rsx00000] 12 [oo|111oo1lns¢o[oooo] 16
DA: LDPS address 01{111001 00000000 01[1110010000 0000
16 SS 20
address 0| segment offset
01{111001 ooooloooo
SL 1, segment [0000 0000 22
offset
X:
LDPS addr(Rs) 01[111001 | Rs#0 0000 01/ 111001 Rs+0 [0000
17 SS 20
address OJ segment offset
01111001 | Rs#0 [0000
SL 1| segment (0000 0000 23
offset

6-86 03-8003-0934

)

Example:

Rt T L

In nonsegmented 8002 version, if the program counter contains %2550, recjisféi‘ R3
contains %3000, location %5000 contains %1800, and location %5002 contains
%A000, the instruction ;

. LDPS o *@_R&é’“‘ Fe Vi il e

will leave the value %A000 in the program counter, and the F cw value will be
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.)

6-87

I‘.‘o\a’kd Relative

LDR dst, src dst: R
LDRB ~ src: RA
LDRL or
dst: RA
src: R
Operation: dst - src

The contents of the source operand are loaded into the destination. The contents of
the source are not affected. The relative addressing mode is calculated by adding
the displacement in the instruction to the updated value of the program counter (PC)
to derive the operand’s address. In segmented mode, the segment number of the
computer address is the same as the segment number of the PC. The updated PC
value is taken to be the address of the instruction byte following the LDR, LDRB, or
LDRL instruction, while the displacement is a 16-bit signed value in the range
-32768 to +32767.

Status pin information during the access to memory for the data operand will be Pro-
gram Reference, (1100) instead of Data Memory request (1000).

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

This instruction must be used to modify memory locations containing program infor-
mation, such as the Program Status Area, if program and data space are allocated to
different segments.

Flags:

No flags affected

Load Relative Register

Source Nonsegmented Mode Segmented Mode
Addressing| Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
RA: LDR Rd, address 0011000]|W]0000] Ra 0011000|w|0000| Rd

LDRB Rbd, address 14 14
displacement displacement

LDRL RRd, address 00110101 [0000] Rd . 00110101 0000 Rd 17
displacement displacement

6-88

Load Relative Memory

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language '
Mode Syntax Instruction Format Cycles Instruction Format Cycles
RA: LDR address, Rs
: 0011001|W{0000| R 0011001|W|0000
L.LDRB address, Rbs I l l s 14 l I | Rs 14
dispiacement displacement
LDRL address, RRs 00110111 [0000| Rs . 00110111 [0000] Rs 17
displacement displacement
Example: LDR R2, DATA Iregister R2 is loaded with the value in the!

!location named DATA!

6-89

Bit Test

P

* Privileged Instruction

Multi-Micro

Operation: S < 1 if MI high (inactive); O otherwise
This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. The multi-micro input pin (MI) is tested, and the S flag
is cleared if the pin is low (active); otherwise, the S flag is set, indicating that the
pin is high (inactive). »
After the MBIT instruction is executed, the S flag can be used to determine whether
a requested resource is available or not. If the S flag is clear, then the resource is
not available; if the S flag is set, then the resource is available for use by this CPU.
Flags C: Unaffected
Z: Undefined
S: Set if MI is high; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
MBIT { o111101100001010 | 7 | 0111101100001010 | 7

Example:

The following sequence of instructions can be used to wait for the availability of a
resource,
LOOP:

MBIT Itest multi-micro input!
JR PL,LOOP Irepeat until resource is available!

AVAILABLE:

A-0N

Privileged Instruction .
MREQ

~_ Multi-Micro Request

Operation:

f MI low (active) then S - 0
MO forced high (inactive)
else MO forced low (active)

repeat dst « dst — 1
until dst = 0
if MI low (active) then S < 1

else S« 0

MO forced high (inactive)

—-

YA

This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. A request for a resource is signalled through the multi-
micro input and output pins (MI and MO), with the S and Z flags indicating the
availability of the resource after the MREQ instruction has been executed.

First, the Z flag is cleared. Then the Mi pin is tested. If the MI pin is low (active),
the S flag is cleared and the MO pin is forced high (inactive),thus indicating that the
resource is not available and removing any previous request by the CPU from the
MO line.

If the MI pin is high (inactive), indicating that the resource may be available, a
sequence of machine operations occurs. First, the MO pin is forced low (active),
signalling a request by the CPU for the resource. Next, a finite delay to allow for
propagation of the signal to other processors is accomplished by repeatedly
decrementing the contents of the destination (a word register) until its value is zero.
Then the MI pin is tested to determine whether the request for the resource was
acknowledged. If the MI pin is low (active), the S flag is set to one, indicating that
the resource is available and access is granted. If the MI pin is still high (inactive),
the S flag is cleared to zero, and the MO pin is forced high (inactive), indicating
that the request was not granted and removing the request signal for the MO.
Finally, in either case, the Z flag is set to one, indicating that the original test of the
MI pin caused a request to be made.

S flag Zflag MO Indicates

0 0 high Request not signalled
(resource not available)

0 1 high Request not granted
(resource not available)

1 1 low Reguest granted
(resource available)

Flags:

C: Unaffected

Z: Set if request was signalled; cleared otherwise

S: Set if request was signalled and granted; cleared otherwise
V: Unatlected

D: Unatfected

H: Unaffected

6-91

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cyclesl
R: MREQ Rd fo1] 111011 | ma [1101] [1247n |o'1|1-11o11| Rd .|11oﬂ 12+7n(w
Example: TRY:
LD RO, #50 lallow for propagation delay!
MREQ RO !multi-micro request with delay!
lin register RO!
JR MI,AVAILABLE
JR Z,NOT_GRANTED
NOT_AVAILABLE: . Iresource not availablel!
NOT_GRANTED: . Irequest not granted!
JR TRY ltry again after awhile!
AVAILABLE: luse resource!

MRES Irelease resource!

Note 1: If the request is made, n = number of times the destination is decremented. If the request is not made,

n=0..

6-92

Privileged Instruction MRES
Multi-Micro Reset

)

MRES

MO is forced high (inactive)

Operation:
This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. The multi-micro output pin MO is forced high (inactive).
Forcing MO high (inactive) indicates that a resource controlled by the CPU is
available for use by other processors.
Flags: No flags affected.
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
MRES fo1111011 | 00001001] 5 [o01111011 | 00001001] 5
Example: MRES Isignal that resource controlled by this CPU!

lis available to other processors!

6-93

‘MSET Privileged Instruction

‘Multi-Micro Set | | -
oPeration: MO is forced low (active)

~

This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. The multi-micro output pin MO is forced low (active).
Forcing MO low (active) is used either to indicate that a resource controlled by the
CPU is not available to other processors, or to signal a request for a resource con-
trolled by some other processor.

Flags: No flags affected.
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
MSET {o1111011 [00001000 | 5 01111011 [00001000 | 5
Example: MSET ICPU controlled resource not availablel!

6-94

RV - HrE RN SRR B

e e i e
R T e s T fé;’;“,'i!«walw:;‘ C

R

Multiply

Operation:

MULTL stc: R, IM, IR, DA, X

Word
dst (0:31) <~ dst (0:15) x src (0:15)
Long
dst (0:63) <« dst (0:31) x src (0:15)

The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con-
tents of the source are not affected. Both operands are treated as signed, two's com-
plement integers. For MULT, the destination is a register pair and the source is a
word value; for MULTL, the destination is a register quadruple and the source is a
long word value.

For proper instruction execution, the “dst field” in the instruction format encoding
must be even for MULT and must be a multiple of 4 (0, 4, 8, 12) for MULTL. If the
source operand in MULTL is a register, the “src field” must be even.

The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The carry flag is set to
indicate that the upper half of the destination register is required to represent the
result; if the carry flag is clear, the product can be correctly represented in the same
precision as the multiplicand and the upper half of the destination merely holds a
sign extension.

The following table gives execution times for word and long word operands in each
possible addressing mode.

src Word Long Word
NS SS SL NS SS SL

R 70 70 70 282+7"n 282+7*n 282+7*n
M 70 70 70 282+7*n 282+7'n 282+7*n
IR 70 0 70 282+7"n 282+47'n 282+7'n
DA 71 72 74 283+7*n 284+7"n 286+7*n
X 72 72 75 284+7'n 284+7'n 287+7*n

(n =number of bits equal to one in the absolute value of the low-order 16 bits of the destination
operand)

When the multiplier is zero, the execution time of Multiply is reduced to the following times:

sTc Word Long Word
NS SS SL NS SS SL

R 18 18 18 30 30 30
M 18 18 18 30 30 30
IR 18 18 18 30 30 30
DA 19 20 22 31 32 34
X 20 20 23 32 32 35

Flags:

C: MULT—set if product is less than -215 or greater than or equal to 215; cleared
otherwise; MULTL—set if product is less than 23! or greater than or equal to 231;
cleared otherwise

Set if the result is zero; cleared otherwise

Set if the result is negative; cleared otherwise

: Cleared

: Unaffected

+ Unaffected

moU<N

6-95

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language -
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
R: MULT RRd, Rs {10{011001] s | ra | [10[0i1001] rs [rd |
MULTL RQd, RRs [1o]o11000 Rs | ra | [10]o11000] rs [ra |
IM: MULT RRd, #data oo[o11oo1|oooo| Rd 00 o11oo1|oooo| Rd
data data
MULTL RQd, #data 00011000 |0000| Rd 00/011000 |0000| Rd
31 data (high) 16 31 data (high) 16
15 data (low) 0 15 data (low) 0
IR: MULT RRd, @Rs! [0o] 011001 [Rsro] ra | [0o]011001 [Revo | ma |
MULTL RQd, @Rs! foolo11000 | Rs+0]| Ra | Iﬂ]onooolas;ﬁo] Rd |
DA: MULT Rd, address 01 o11oo1[oooo| Rd ss o1|011oo1 oooo] Rd
address Ol segment offset
o1]o11oo1 oooo| Rd
SL|1]| segment [0000 0000
offset
MULTL RQd, address 01/011000 [0000| Rd 01011000 [0000| Rd
SS
address OJ segment offset
011011000 ooool Rd
SL|1! segment [0000 0000
offset
X: MULT RRd, addr(Rs) 01/011001 | Rs20| Rd ss 01011001 | Rs=0| Rd
address 0‘ segment offset
01[011001 Rs¢0l Rd
SL{1| segment [0000 0000
offset
MULTL RQd, addr(Rs) 01/ 011000 | Rs+0| Rd ss o1|o11ooo Rs;tol Rd
address OJ segment oftset
01/011000 | Rs#0| Rd
SL 1] segment | 0000 0000
offset

6-96

Example:

1f register RQO (condposed of register pairs RRO and RR2) contains
%22222222Q0000031 (RR2 contains decimal 49), the statement

MULTL RQO,#10

will leave the value %00000000000001EA (decimal 490) in RQO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Execution times for each instruction are given in the preceding tables.

6-97

NEG

Negate

dst: R, IR, DA, X

NEG dst
NEGB
Operdtion: dst <« dst
The contents of the destination are negated, that is, replaced by its two's comple-
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by
themselves since in two's complement representation the negative number with
greatest magnitude has no positive counterpart; for these two cases, the V flag is set.
Flags: C: Cleared if the result is zero; set otherwise, which indicates a “"borrow”
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if the result is %8000 for NEG, or %80 for NEGB: cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: NEG Rd
NEGB Rbd [10joot110/w| Ra [0010] 7 [1ojoo110[w| Ra Joo10]| 7
IR: NEG @Rd!
NEGE @Rdl [ooloo110{w| Razo[0010] 12 [ooloo110{w|Raxoo010f| 12
DA: NEG address
NEGB e o1/oo110{w|o0o00|0010 s |ss 01joo110/w|oooo]o010 1
address OJ segment offset
o1]oo11o]w oooo] 0010
SL{1] segment 0000 0000 18
offset
X: NEG addr(Rd)
NEGB addr(Rd) 01/o0110]/w|Rd+0 0010 i |ss 01]o0110/w|Ra=0 0010 .6
address OI segment offset
01loo110|w|Rd=0[0010
SL|1] segment |0000 0000 19
offset
Exampleﬁ If register R8 contains %051F, the statement

NEG RS

will leave the value % FAE!] in R8.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-98

No Operation

NOP

Operation: No operation is performed.
Flags: No flags affected
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
NOP [10001101 [00000111 | 7 [10001101 [00000111 | 7

6-99

OR dst, src dst: R

ORB src: R, IM, IR, DA, X
Operation: dst < dst or src
The source operand is logically ORed with the destination operand and the result is
stored in the destination. The contents of the source are not affected. The OR opera-
tion results in a one bit being stored whenever either of the corresponding bits in the
two operands is one; otherwise a zero bit is stored.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: OR—unaffected; ORB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: OR Rd, Rs
ORB Rbd, Rbs [1ofocorolw] ms | ra | 4 [toJoootojw| Rrs | Ad]| 4
IM: OR Rd, #data 000001010000 Rd , 00/0001010000] Rd ,
data data
ORB Rbd, #data 00{000100 0000 Rd 00000100 [0000| Rd ,
data data 7 data data
IR: OR Rd, @Rs!
OREB Rbd. @Fs! [oo[ooo1o/w|Rsz0] Ra | 7 foolooo1o{w/ms=0| ra || 7
DA: OR Rd, address
ORB Rbd. adiess 01lo0010/w|0000| Rd o |ss 01jooo10/w[cooo| Rd 10
address 0| segment offset
01jooo10/w|oo00| Ra
SL 1| segment |0000 0000 12
offset
X: OR Rd, addr(Rs)
ORB Rbd. add:(Rs) 01/00010{W|Rs#0| Rd 0 |ss 01/00010{w[Rs=0 | Rd 10
address Ol segment oftset
o1|0001o|w Rs+0 | Rd
SL|1] segment [0000 0000 13
address

6-100

N

Example:

value %7B (01111011), the statement

If register RL3 centams %CB (11000011) and the source operar{di 1§ t

ORB RL3 #%"ZB

seigninis b it g

v. w1ll leave the value %FB (11111011) in RL3

immediate

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-101

OTDR
(SOTDR)

(Special) Output, Decrement and R'eped:tf

Privileged Instruction

OTDR dst, src, r dst: IR
OTDRB src: IR
SOTDR
SOTDRB
Operation: dst <« src
AUTODECREMENT src (by 1 if byte, by 2 if word)
r<r-1
repeat untilr = 0
This instruction is used for block output of strings of data. OTDR and OTDRB are
used for normal I/O operation; SOTDR and SOTDRB are used for special /O opera-
tion. The contents of the memory location addressed by the source register are
loaded into the I/O port addresses by the destination word register. I/O port
addresses are 16 bits. The source register is then decremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the previous
element of the string in memory. The word register specified by “r” (used as a
counter) is then decremented by one. The address of I/O port in the destination
register is unchanged. The entire operation is repeated until the result of decrement-
ing r is zero. This instruction can output from 1 to 65536 bytes or 32768 word (the
value for r must not be greater than 32768 for OTDR or SOTDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.
Flags C: Unatfected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: OTDR @Rd,@Rs!, r oo111o1|w Rs [101S oo111o1|w Rs {1018
OTDRB @Rd,@Rs!, r 11+10n 114+10n
SOTDR @Rd.@Rs!. ¢ 0000/ Rd (0000 0o000] « Rd (0000
SOTDRB @Rd,@Rsl, r

6-102

Example:

| will output ‘the string of words from locat1ons %B006 to ‘V F'

In nonsegmér;fedfmdae, 1f ‘Iv*egis‘te'rilel mco\n‘txaji“ns %OFF F, recjiSter R12 contalns
%B006, and R13 contains 6, the 1nstruct1on
OTDR eRll, @Rl12, RI13 .

1n descendlng order
to port %0FFF. R12 will contain %AFFA, and R13 will contam 0. R11 will not be

affected. The V flag will be set. In segmented mode, R12 would be replaced by a
register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

6-103

OTIR

(SOTIR)

(Special) Output, Increment Clr}l'd}R'epédt:

Privileged Instruction

OTIR dst, src, r _ dst: IR
OTIRB src: IR
SOTIR
SOTIRB

Operation: dst <« src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
rer —1
repeat untilr = 0
This instruction is used for block output of strings of data. OTIR and OTIRB are used
for normal I/O operation; SOTIR and SOTIRB are used for special I/O operation.
The contents of the memory location addressed by the source register are loaded
into the I/O port addressed by the destination word register. I/O port addresses are
16 bits. The source register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by “r'* (used as a counter) is then decremented
by one. The address of I/O port in the destination register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
output from 1 to 65536 bytes or 32768 words (the value for r must not be greater than
32768 for OTIR or SOTIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: OTIR @Rd, @Rsl, r
OTIRB @R4, GRe 0011101|w| Rs |001S 1+ 10n 0011101|W| Rs [001s 114+ 10n

SOTIR @Rd, @Rs!, r

oooo] r Rd |0000

SOTIRB @Rd, @Rs!, r

oooo| r Rd (0000

6-104

S

Example:

”,.f:v '4. e P
gl A Y e T

In nonsegmented mode the followmg sequence of 1nstruct10ns can be used to output
a string of bytes to the specified I/O port. The pointers to the /O port and the start
of the source string are set, the number of bytes to output is set, and then the output
is accomplished. :

LD " RIl, #PORT
- LDA R2, SRCBUF
LD R3, #LENGTH

OTIRB @R1, @R2, R3

In segmented mode, a register pair would be used instead of R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

6-105

OuUT | - Privileged Instruction o
(SOUT)

(Special) Output
' OUT dst, src dst: IR, DA ()!
OUTB src: R
SOUT dst, src dst: DA
SOUTB src: R
Operation: dst <« src

The contents of the source register are loaded into the destination, an OQutput or
Special Output port. OUT and OUTB are used for normal /O operation; SOUT and
SOUTB are used for special I/O operation.

Flags: No flags affected.
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: OUT @Rd, Rs
OUTB Ry, Rbe [o011111]|w] Re | s | 10 h)o11111|w] Rd | Rs | 10

DA: OUT port, Rs
OUTB port, Rbs oo111o1|w| Rs |o11s 12 oo111o1lw| Rs |o11s 12
SOUT port, Rs port port
SOUTB port, Rbs
Example: If register R6 contains %5252, the instruction

OUT %1120, R6
will output the value %5252 to the port %1120.

6-106

Privileged Instruction = - OUTD
(SOUTD)

_____ T

(Special) Output and Décreméhf

OUTD dst, src, r dst: IR
OUTDB src: IR
SOUTD
SOUTDB
Operation: dst - src
AUTODECREMENT src (by 1 if byte, by 2 if word)
rer — 1
This instruction is used for block output of strings of data. OUTD and OUTDB are
used for normal I/O operation; SOUTD and SOUTB are used for special I/O opera-
tion. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/O port
addresgses are 16 bits. The source register is then decremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the previous
element of the string in memory. The word register specified by “r” (used as a
counter) is then decremented by one. The address of the I/O port in the source
register is unchanged.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unalfected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: OUTD @Rd, @Rs!, r oot11101|w| Rs [101s 0011101|w| Rs [101s
OUTDB @Rd, @Rs!, r 21 21
SOUTD @Rd, @Rs!, r oooo] r Rd [1000 oooo[r Rd |1000
SOUTDB @Rd, @Rs!, r
Example: In segmented mode, if register R2 contains the I/O port address %0030, register RR6

contains % 12005552 (segment %12, offset %5552), the word at memory location
9012005552 contains %1234, and register R8 contains %1001, the instruction

OUTD @R2, @RR6, R8

will output the value %1234 to port %0030 and leave the value %12005550 in RR6,
and %1000 in R8. Register R2 will not be affected. The V flag will be cleared. In
nonsegmented mode, a word register would be used instead of RR6.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-107

| (I) Privileged Instruction

(Special) Output and Increment

OUTI dst, src, r dst: IR
OUTIB src: IR
SOUTI

SOUTIB

Operation: ‘dst < src
AUTOINCREMENT src (by 1 if byte, by 2 if word)

rer — 1]

This instruction is used for block output of strings of data. OUTI and OUTIB are
used for normal I/O operation; SOUTI and SOUTIB are used for special I/O opera-
tion. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/O port
addresses are 16-bit. The source register is then incremented by one if a byte
Instruction, or by two if a word instruction, thus moving the pointer to the next ele-
ment of the string in memory. The word register specified by “r”’ (used as a counter)
is then decremented by one. The address of the I/O port in the source register is
unchanged.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: 83%13@5551,(@5%!1; oo111o1[w Rs [001s 21 oo11101|w Rs [001S 01
SOUTI @Rd, @Rsl, r 0000/ « | mRd [1000 0000/ r | Ra [1000
SOUTIB @Rd, @Rsl, r

6-108

Example: This 1nstruct1on can be used in a “loop” of 1nstructlons which outputs a string of
data, but an intermediate operation on each element is required. The following
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit

. of each byte set or reset to provide even parity for the entire byte. Bit 7 of each

) character is initially zero. This example assumes nonsegmented mode. In segmented

" mode, R2 would be replaced with a register pair.

LD R1, #PORT lload 1/0O address!

LDA R2, SRCSTART lload start of string!

LD R3, #80 _ linitialize counter!
LOOP:

TESTB @R2 ltest byte parity!

JR - PE, EVEN

SETB @R2, #7 lforce even parity!
EVEN:

OUTIB @R]1, @R2, R3 loutput next byte!

JR NOV, LOOP Irepeat until counter = 0!
DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-109

Pop

N e e e e N ot e g e R g

O

"POP dst, src dst: R, IR, DA, X Y
POPL src: IR :
Operation: dst < src
AUTOINCREMENT src (by 2 if word, by 4 if long)
The contents of the location addressed by the source register (a stack pointer) are
loaded into the destination. The source register is then incremented by a value
which equals the size in bytes of the destination operand, thus removing the top ele-
ment of the stack by changing the stack pointer. Any register except RO (or RRO in
segmented mode) can be used as a stack pointer.
With the POPL instruction, the same register cannot be used in both the source and
destination addressing fields.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: POP Rd, @Rsl [1o]010111[Rs 2 0] Rra | 8 [1o[010111|Rs=0] ma || 8
POPL RRd, @Rs! [10/ 010101][Rs 0] Ra | 12 {1o]o10101[Rs 0] ra || 12
IR: POP @Rd!, @Rs! [o0] 010111 | Rs+0 |Rd « o] 12 foo[010111] Rs=0 [Rd+0] | 12
POPL @Rd!, @Rs! fool 010101 | Rs=0 [Rd #0] 19 foo] 010101 [Rs<0[Ra=0f| 19
DA: POP add , @Rs!
address, ®hs 01/ 010111 [Rs#0]0000 % |ss 01010111 Rs=0 0000 16
address 0| segment offset
01] 010111 Rs;tO]OOOO
SL|1] segment | 00000000 18
offset
POPL address, @Rs! 01]010101 | Rs=0[0000 01]010101 ‘Rs¢0|0000
23 SS 23
address 0] segment offset
01010101 | Rs=0 [0000
SL 1| segment | 0000 0000 25
offset

6-110

Destination Nonsegmented Mode Segmented Mode |
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X POP addr(Rd), @Rs! 01{010111 [Rs0 | Rd=0 01]010111 | Rs#0 | Rd=0
16 SS 16
address 0| segment offset
01010111 | Rs0 | Rd#0
SL|1| segment | 0000 0000 19
offset
POPL addr(Rd), @Rs! 01[010101]Rs¢0]ﬂd¢0 01{ 010101 Rs#0 | Rdx0
23 SS 23
address ol segment offset
01[o1o1o1 Rs#:Ole:eO
SL|1| segment { 00000000 26
offset
Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1000, the word at

location %1000 contains %0055, and reqgister R3 contains %0022, the instruction

POP R3, @R12

will leave the value %0055 in R3 and the value %1002 in R12. In segmented mode,
a register pair must be used as the stack pointer instead of R12.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-111

PUSH dst, src dst IR

PUSHL sre: R, IM, IR, DA, X
Operation: AUTODECREMENT dst (by 2 if word, by 4 if long)
dst < src
The contents of the destination register (a stack pointer) are decremented by a value
which equals the size in bytes of the source operand. Then the source operand is
loaded into the location addressed by the updated destination register, thus adding a
new element to the top of the stack by changing the stack pointer. Any register
except RO (or RRO in segmented mode) can be used as a stack pointer.
With PUSHL, the same register cannot be used for both the source and destination
addressing fields.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: PUSH @Rd!, Rs [10[010011] Razo| rs | 9 [10/ 010011 | Rax0| Bs || 9
PUSHL @Rd!, RRs {10{ 010001 |Rdz0| Rs | 12 [10/ 010001 Rd+0| ms || 12
IM: PUSH @Rd!, #data 00/ 001101 | Rd=0[1001 00/ 001101 Rd=0[1001
12 12
data data
IR: PUSH @Rd!, @Rs! {00 010011 | Rd#0 [Rs = o] 13 [oo] 010011 | Ra+o[rs < 0]| 13
PUSHL @Rd!, @Rs! {oo] 010001 | Rax0[Rs = o] 20 loo] 010001 | Ra+0[Rs = 0]| 20
DA: PUSH @Rd!, address 01(010011 | Rd+0[0000 01/ 010011 [Rd+0]0000
14 SS 14
address 0] segment oftset
o1| 010011 Rd¢0|0000
SL 1| segment | 00000000 16
offset
PUSH @Rd!, address 0000
01]010001 | Rd=0 [0000 o1 |ss 01/ 010001 | Rd=0 | 21
address 0| segment oftset
o1| 010001 Rd;eo]oooo
SL 1| segment | 0000 0000 23
offset

6-112

Source Nonsegmented Mode . Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format ‘Cycles
X: PUSH @Rd!, addr(Rs) 01/ 010011 Rd=0 | Rs=0 01]010011 [Rd+0 [Rs»0
14 SS 14
address Ol segment offset
01/ 010011 Rd=#0 | Rs#0
SL{1]| segment | 00000000 17
offset
PUSHL @Rdl, addr(Rs) 01{ 010001 | Rd=0 [Rs=0 01| 010001 Rd#0 | Rs#0
21 SS 21
address 0| segment offset
01/ 010001 [Rd#0 [Rs#0
SL[1] segment | 00000000 24
offset
Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1002, the word at

location %1000 contains %0055, and register R3 contains %0022, the instruction
PUSH @R12, R3

will leave the value %0022 in location %1000 and the value %1000 in R12. In

segmented mode, a register pair must be used as the stack pointer instead of R12.

6-113

tBit -

Operation:

RES dst, src - dst: R, IR, DA, X

RESB 7 src: IM
. . R or
dst: R
src: R

dst(src) < 0

This instruction clears the specified bit within the destination operand without
affecting any other bits in the destination. The source (the bit number) can be
specified as either an immediate value (Static), or as a word register which contains
the value (Dynamic). In the second case, the destination operand must be a register,
and the source operand must be RO through R7 for RESB, or RO through R15 for
RES. The bit number is a value from 0 to 7 for RESB, or 0 to 15 for RES, with 0
indicating the least significant bit.

Only the lower four bits of the source operand are used to specify the bit number for
RES, while only the lower three bits of the source operand are used with RESB.
When the source operand is an immediate value, the “src field” in the instruction

format encoding contains the bit number in the lowest four bits for RES, or the
lowest three bits for RESB.

Flags:

No flags affected

Reset Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
Y
R: RES R4, #b
RESB Rbot, #b [10[10001|w| Rrd [v | 4 |Lo]1ooo1[w| Rd | b | 4
IR: RES @Rdl, #b
RESB @R b [oo]1o001{w[Rdxo| &] 11 {oo]10001[w/Raz0][b || 11
DA: RES address, #b
' b b
RESB addrecs, #b 01]10001|w[0000] 3 |ss 01/10001/w|0000] i
address 0] segment offset
01]10001|w|0000] b
sL 1| segment | 0000 0000 16
offset
X: RES addr(Rd), #b
RESB addr(R4), #b o1l1ooo1[wle¢oI b 1 ss 01 1ooo1lw qutol b 14
i address 0(segment offset
01[10001|w/Rdx0] b
SL|1]| segment | 00000000 17
offset

6-114

Reset Bit Dynamic

RESB RL3, #1

will leave the value %B0 (10110000) in RL3.

) Source Nonsegmented Mode Segmented Mode
\ Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: gggBRgi)gSRS 00/10001/w[o000| Rs 1 00[10001|w|o000] Rs 10
' oooo| Rd |[0000]|0000 oooo] Rd |0000|0000
Example: If register RL3 contains %B2 (10110010), the instruction

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

AR-118

RESFLG

- RESFLG flag) flag: C, Z,S, P, V L
Operation: FLAGS (4:7) <« FLAGS (4:7) AND NOT instruction (4:7)

V‘ Any Vcom-birvlation of the C, Z, S, P or V flags are cleared to zero if the corresponding
bits in the instruction are one. If the bit in the instruction corresponding to a flag is
zero, the flag will not be affected. All other bits in the FLAGS register are
unaffected. Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,

in any order.

Flags C: Cleared if specified, unaffected otherwise

Z: Cleared if specified, unaffected otherwise

S: Cleared if specified, unaffected otherwise

P/V: Cleared if specified, unaffected otherwise

D: Unaffected ,

H: Unaffected

Nonsegmented Mode Segmented Mode

Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles
RESFLG flags [10{001101[czsPiv|o011] 7 J1oloo1101czspivjoo11] 7

Excuhple:

If the C, S, and V flags are set (1) and the Z flag is clear (0), the statement
RESFLG C, V
will leave the S flag set (1), and the C, Z, and V flags cleared (0).

6-116

B

Operation:

RET cc

Nonsegmented ’ Segmented

if cc is true then if cc is true then
PC « @Sp PC « @Sp

SP <« SP + 2 SP <« SP + 4

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by a CALL or CALR instruction. If the condition specitied by
“cc”’ is satisfied by the flags in the FCW, then the contents of the location addressed
by the processor stack pointer are popped into the program counter (PC). The next
instruction executed is that addressed by the new contents of the PC. See section
6.6.1 for a list of condition codes. The stack pointer used is R15 in nonsegmented
mode, or RR14 in segmented mode. If the condition is not satisfied, then the instruc-
tion following the RET instruction is executed. If no condition is specified, the return
is taken regardless of the flag settings.

Flags:

No flags affected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles! Instruction Format Cycles!

RET cc

f10] 011110 0000] cc | 1017 [10/ 011110 [0000] cc] 1317

Example:

In nonsegmented mode,r in the program counter contains %2550, the stack pointer
(R15) contains %3000, location %3000 contains %1004, and the Z flag is clear, then
the instruction

RET NZ

will leave the value %3002 in the stack pointer and the program counter will contain
%1004 (the address of the next instruction to be executed).

Note 1: The two values correspond to return taken and return not taken.

6-117

Rotate Left
RL dst, src dst: R
RLB src: IM
Operation: Do src times: (src = 1 or 2)
tmp <« dst
¢ < tmp (msb)
dst(0) < tmp (msb)
dst (n + 1) < tmp (n) (forn = Otomsb — 1)
15 0
Word: —L T«
7 0
Byte: <—_L]‘—
The contents of the destination operand are rotated left one bit position if the source
operand is 1, or two bit positions if the source operand is 2. The most significant bit
(msb) of the destination operand is moved to the bit O position and also replaces the
C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise '
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax! Instruction Format2 Cycles3 Instruction Format? Cycles3
R: RL Rd, # :
RLBRbd?#n [1o[11001/w| Ra Joo[s]o] 617 [1o[11001]w] Ra [oo[s]o] 6/7
Example: I register RH5 contains %88 (10001000), the sfétement

RLB RH5
will leave the value %11 (00010001) in RHS and the Carry flag will be set to one.

Note 1: n = source operand.
Note 2: s = O for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 3: The given execution times are for rotation by 1 and 2 bits respectively.

6-118 N3-8003-0935

Rotate Left through Carry

RLC ‘ dst: R

RLCB src: IM
Operation: Do src times: (src = 1 or 2)
tmp -« ¢

C < dst (msb)
dst (n + 1) < dst (n) (forn = msb-1 to 0)
dst (0) - tmp

Word: <_L R

7 0
Byte:]__

The contents of the destination operand with the C flag are rotated left one bit posi-
tion if the source operand is 1, or two bit positions if the source operand is 2. The
most significant bit (msb) of the destination operand replaces the C flag and the
previous value of the C flag is moved to the bit 0 position of the destination during
each rotation.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

Flags: C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set: cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntaxl Instruction Format2 Cycless Instruction Format?2 Cycles3
R: RLC Rd,
RLGB Rbflfl#n [10[11001{w] Rra [10[s]o] 6/7 f10/11001[w] Rd l10[s]o] 617
Example: I the Carry flag is clear (= 0) and register RO contains %800F (1000000000001111),
the statement
RLC RO,#2

will leave the value %003D (0000000000111101) in RO and clear the Carry flag.

Note 1: n = source operand.
Note 2: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 3: The given execution times are for rotation by 1 and 2 bits respectively.

6-119

~REDB
Rotate Left Digit
| link: R

Operation: tmp (0:3) < link (0:3)
link (0:3) <« src (4:7)
src (4:7) < src (0:3)
src (0:3) <« tmp (0:3)

7 4 3 l 0 7 4 3 * 0

link [I I [. [] src
The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit
(four bits). The lower digit of the source is moved to the upper digit of the source;
the upper digit of the link and the lower digit of the link are moved to the lower digit
of the source. The upper digit of the link is unaffected. In multiple-digit BCD
arithmetic, this instruction can be used to shift to the left a string of BCD digits, thus
multiplying it by a power of ten. The link serves to transfer digits between successive
bytes of the string. This is analogous to the use of the Carry flag in multiple
precision shifting using the RLC instruction.
The same byte register must not be used as both the source and the link.

Flags: C: Unaftected
Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode

Addressing | Assembler Language .

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RLDB Rbl, Rbs {1o{111110] ros | ro | 9 [10]111110] ros | por | 9

6-120 03-8003-0936

1 101 contains 2,3___

Example: If location 100 contains the BCD digits 0,1 (OOOOOOCI), loc tic
(00100011), and location 102 contains 4,5 (01000101)

~ | 100 101'EE_| 102 - |

the sequence of statements ‘

LD ’ " R3,#3 Iset loop counter for 3 bytes!

1(6 digits)!

LDA R2,#102 Iset pointer to low-order digits!

CLRB RH1 Izero-fill low-order digit!
LOOP:

LDB RL1,@R2 lget next two digits!

RLDB RHI1,RLI Ishift digits left one position!

LDB @R2,RL1 Ireplace shifted digits!

DEC R2 ~ladvance pointer!

DINZ R3, LOOP Irepeat until counter is zero!

will leave the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in loca-
tion 101, and the digits 5,0 (01010000) in location 102.

100 [+]z] 101 [=]¢] 102

In segmented mode, R2 would be replaced by a register pair.

6-121

Rotate Right

BRR dst, scc dst: R ——— ._

RRB src: IM
Operation: Do src times: (src = lor2)
tmp < dst
c - tmp (0)
dst (msb) < tmp (0)
dst (n—1) <« tmp (n) (for n=1 to msb)
15 0
Word: _,L j,__,
7 0
Byte: —>L ¢*
The contents of the destination operand are rotated right one bit position if the
source operand is 1, or two bit positions if the source operand is 2. The least signifi-
cant bit of the destination operand is moved to the most significant bit (msb) and
also replaces the C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit rotated from the least significant position was 1: cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles? Instruction Format! Cycles?
R: RR Rd,
RRBRbﬁI,]#n [1o[11001]w] Ra Jo1]s]o] 617 [10]11001{w] Ra Jo1s]o] 6/7
Example: It register RL6 contains %31 (00110001), the statement

RRB RL6
will leave the value %98 (10011000) in RL6 and the Carry flag will be set to one.

Note 1: s = O for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 2: The given execution times are for rotation by 1 and 2 bits respectively.

6-122 03-8003-0937

Rotate Right througl; Carry

RRC dst, src dst: R
RRCB src: IM
Operation: Do src times: (src = 1 or 2)
tmp - ¢
c < dst (0)

dst (n) < dst(n + 1) (forn = Otomsb - 1)
dst (msb) <« tmp

15 0

Word: -

7 0

Byte: =l

The contents of the destination operand with the C flag are rotated one bit position if
the source operand is 1, or two bit positions if the source operand is 2. The least
significant bit of the destination operand replaces the C flag and the previous value
of the C flag is moved to the most significant bit (msb) position of the destination
during each rotation.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1. '

Flags: C: Set if the last bit rotated from the least significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language -
Mode : Syntax Instruction Format! Cycles? Instruction Format! Cycles?
RRC Rd,
RRGB Rbﬁfl#n [10[11001/w] Rra [11]s]o] 617 [10[11001]w| ra Ti1[s]o] 6/7
Example: It the Carry flag is clear (=0) and the register RO contains %00DD
(000000011011101), the statement
RRC RO,#2

will leave the value %8037 (10000000110111) in RO and clear the Carry flag.

Note 1: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits
Note 2: The given execution times are for rotation by 1 and 2 bits respectively.

03-8003-0938 6-123

RRDB link, src src: R
link: R
Operation: tmp (0:3) < link (0:3)
link (0:3) <+ src (0:3)
src (0:3) < src (4:7)
src (4:7) < tmp (0:3)
7 4 3 | 0 7 ¢ l 4 3 ¢ 0
link L |] [| 1 src
The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the right by one BCD digit
(four bits).
The lower digit of the source is moved to the lower digit of the link; the upper digit
of the source is moved to the lower digit of the source and the lower digit of the link
is moved to the upper digit of the source.
The upper digit of the link is unaffected. In multiple-digit BCD arithmetic, this
instruction can be used to shift to the right a string of BCD digits, thus dividing it by
a power of ten. The link serves to transfer digits between successive bytes of the
string. This is analogous to the use of the carry flag in multiple precision shifting
using the RRC instruction.
The same byte register must not be used as both the source and the link.
Flags C: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RRDB Rbl, Rbs [10[111100] Rbs | Ror | 9 [1o[111100] Rbs | rol | 9

>6-124) 03-8003-0939

Example: If location lOO contams the BCD dlglts 1,2 (00010010), locatlon 101 contalns 3 4
(00110100), and location 102 contains 5,6 (01010110) - ,

100 101 102
[I2] |
the sequence of statements
LD R3,#3 Iset loop counter for 3 bytes 6
digits)!
LDA R2,100 Iset pointer to high-order dlgl’ts|
CLRB RH1 Izero-1ill high-order digit!
LOOP:
LDB RL1,@R2 lget next two digits!
RRDB RH1,RL1 Ishift digits right one position!
LDB @R2,RL1 Ireplace shifted digits!
INC R2 ladvance pointer!
DINZ R3,LOCP Irepeat until counter is zero!

will leave the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in loca-
tion 101, and the digits 4,5 (01000101) in location 102. RH1 will contain 6, the
remainder from dividing the string by 10.

100 101 102

an

In segmented mode, R2 would be replaced by a register pair.

6-125

SBC

Subtract with Carry

SBC dst, src o dst: R P
SBCB src: R R
Operation: dst < dst — src - C

The source operand, along with the setting of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. In multiple precision arithmetic, this
instruction permits the carry (“borrow") from the subtraction of low-order operands
to be subtracted from the subtraction of high-order operands.

Flags:

C: Cleared if there is a carry from the most significant bit of the result: set

otherwise, indicating a “‘borrow"

Set if the result is zero; cleared otherwise

Set if the result is negative; cleared otherwise

: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise

: SBC—unaffected; SBCB—set

: SBC—unaffected; SBCB—cleared if there is a carry from the most significant bit
of the low-order four bits of the result; set otherwise, indicating a “borrow”’

P <o

Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles

R:

EESBRgES’SRbS f1ol11011{w] rs | Ra | 5 m]non]w[Rs | Rd | 5

Example:

Long subtraction may be done with the following instruction sequence, assuming RO,
Rl contain one operand and R2, R3 contain the other operand:

SUB R1,R3 Isubtract low-order words!

SBC RO,R2 Isubtract carry and high-order words!
If RO contains %0038, R1 contains %4000, R2 contains %000A and R3 contains
%F000, then the above two instructions leave the value %002D in RO and %5000
in R1.

6-126

Privileged Instruction

 System Call

Operation:

SC src o src: IM

Nonsegmented Segmented

SP <« SP - 4 SP <« SP -6
@SP <« PS @SP <+ PS

SP <« SP - 2 SP « SP - 2
@SP « instruction @SP «- instruction

PS « System Call PS PS « System Call PS

This instruction is used for controlled access to operating system software in a man-
ner similar to a trap or interrupt. The current program status (PS) is pushed on the
system processor stack, and then the instruction itself, which includes the source
operand (an 8-bit value) is pushed. The PS includes the Flag and Control Word
(FCW), and the updated program counter (PC). (The updated program counter
value used is the address of the first instruction byte following the SC instruction.)

The system stack pointer is always used (R15 in nonsegmented mode, or RR14 in
segmented mode), regardless of whether system or normal mode is in effect. The
new PS is then loaded from the Program Status block associated with the System
Call trap (see section 6.2.4), and control is passed to the procedure whose address is
the program counter value contained in the new PS. This procedure may inspect the
source operand on the top of the stack to determine the particular software service
desired.

The following figure illustrates the format of the saved program status in the system
stack:

NONSEGMENTED SEGMENTED

Low Low

ADDRESS ADDRESS
SP AFTER —{ IDENTIFIER

STACK POINTER

AFTER TRAP ——=| IDENTIFIER FCw

OR INTERRUPT Fow PC SEGMENT

PC OFFSE

STACK POINTER il il
BEFORE TRAP ——»| SP BEFORE ——»|
OR INTERRUPT

~—1 WORD —»| «— 1 WORD —|
HIGH HIGH
ADDRESS ADDRESS

The Z8001 version always executes the segmented mode of the System Call instruc-
tion, regardless of the current mode, and sets the Segmentation Mode bit (SEG) to
segmented mode (= 1) at the start of the SC instruction execution. Both the Z8001
and Z8002 versions set the System/Normal Mode bit (S/N) to system mode (= 1) at
the start of the SC instruction execution. The status pins reflect the setting of these
control bits during the execution of the SC instruction. However, the setting of SEG
and S/N does not affect the value of these bits in the old FCW pushed onto the stack.
The new value of the FCW is not effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the SC instruction execu-
tion is completed.

The “src field” in the instruction format encoding contains the source operand. The
“src field” values range from 0 to 255 corresponding to the source values 0 to 255.

Flags:

No flags affected

03-8003-0940

6-127

SR ol SEREY B w . E

" ‘Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language ’

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IM: SC fero [ot111111] src | 33 [otr1111a [e | 39 C
Example: In the nonsegrn.en'tedVZJSOOZ if the contents of the'program counter are %1000, the

contents of the system stack pointer (R15) are %3006, and the program counter
value associated with the System Call trap in the Program Status Area is 902000, the
instruction

SC #3 Isystem call, request code = 3!

causes the system stack pointer to be decremented to %3000. Location %3000 con-
tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca-
tion %3004 contains %1002 (the address of the instruction following the SC instruc-
tion). System mode is in effect, and the program counter contains the value %2000,
which is the start of a System Call trap handler.

6-128

(,

_Shift Dynamic Arithmetic

/ _SDAB v src; R
SDAL
Operation: Bight
Do src times:
C < dst (0)
dst (n) < dst(n + 1) (forn = Otomsb — 1)
dst (msb) <« dst (msb)
Do src times:
C < dst (msb)
dst (n + 1) = dst (n) (forn = msb - 1 to Q)
dst (0) - 0
Right Left .
7 0 7 Q
Byte: DI, [}—» J<-o
15 0 15 0
Word: —»l_l }—» f=—o
L
15 0 15 0
Long: | | Rn <—L Rn I
|
15 0 15 0
—»L Rn +1 Rn +1 '4—0
n=0,2,4,...,14 n=0,24,...,14
The destination operand is shifted arithmetically left or right by the number of bit
positions specified by the contents of the source operand, a word register.
The shift count ranges from -8 to +8 for SDAB, from -16 to + 16 for SDA and from
-32 to +32 for SDAL. If the value is outside the specified range, the operation is
undetined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The sign bit is replicated in shifts to the right, and the C
flag is loaded from bit 0 of the destination. The least significant bit is filled with O in
shifts to the left, and the C flag is loaded from the most significant bit (msb) of the
destination.
Flags: : Set if the last bit shifted from the destination was 1, cleared otherwise

Set if the result is zero; cleared otherwise

Set if the result is negative; cleared otherwise

: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise

¢ Unaffected

: Unaffected

Z0 <wuNQ

03-8003-0941

6-129

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SDA Rd, Rs 10[110011] Rd [1011 10/110011] Rd [1011 »
15+ 3n 15+3n °
0000| Rs | 00000000 0000| Rs | 00000000
SDAB Rbd, Rs 10/110010| Rd [1011 10/ 110010| Rd [1011
15+3n 15+ 3n
0000| Rs | 00000000 0000| Rs | 0000 0000
SDAL RRd, Rs 10/ 110011 | Rd [1111 10/ 110011 Rd [1111
15+ 3n 15+ 3n
0000| Rs |00000000 0000| Rrs [00000000
Example: It register R5 contains %C705 (1100011100000101) and register Rl contains —2

(%FFFE or 1111111111111110), the statement

SDA R5,R1

performs an arithmetic right shift of two bit positions, leaves the value %F1C1
(1111000111000001) in R5, and clears the Carry flag.

Note 1: n = number of bit positions; the execution time for n =0 is the sarhe asforn = 1.

6-130

 Shift Dynamic Logical

SDL dst, src . dst: R
"SDLB src: R
SDLL ‘

Operation: Right
Do src times
C < dst (0)
dst (n) < dst(n + 1) (forn = O to msb — 1)
dst (msb) <« 0

Left

Do src times
C = dst (msb)
dst (n + 1) < dst(n) (forn = msb — 1 to 0)

dst (0) <

Right Left

Byte: 0 —>L ‘0'—> <-—L ﬁl<—— 0

15 0 15
WOI‘dZ 0—>L j—-» ﬂ . _l<—o

15

[+] 15
Long: o —»L Rn j-—] A j<_

15 0 15 0
Rn+1 ‘]—> Rn+1 ‘14—0

n=0,2/4,...,14 n=0,24,...,14

The destination operand is shifted logically left or right by the number of bit posi-
tions specified by the contents of the source operand, a word register. The shift
count ranges from -8 to +8 for SDLB, from -16 to + 16 for SDLB and from -32 to
+32 for SDLL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two’s complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The most significant bit (msb) is filled with 0 in shifts to the
right, and the C flag is loaded from bit 0 of the destination. The least significant bit
is filled with 0 in shifts to the left, and the C flag is loaded from the most significant
bit of the destination.

: Set if the last bit shifted from the destination was 1; cleared otherwise
Set if the result is zero; cleared otherwise

Set if the most significant bit of the result is set; cleared otherwise

: Undefined

: Unaffected

: Unaffected

Flags:

LO<swmNQ

03-8003-0942 6-131

Déstindtion Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SDL Rd, Rs 10{110011| Rd [0011 10/ 110011] Ra [oo11
154 3n 15+3n
oooo| Rs | 00000000 oooo] Rs | 00000000
SDLB Rbd, Rs 10{ 110010] Ra o011 10/ 110010 Rd [o011
15+3n 15+ 3n
oooo’ Rs | 00000000 oooo] Rs |{ 00000000
SDLL RRd, Rs 10[110011 Rd |o111 10]110011 Rd 1011_1
15+3n 15+ 3n
ooool Rs | 00000000 ooool Rs | 00000000
Example: If register RL5 contains %B3 (10110011) and reqgister Rl contains 4

(0000000000000100), the statement

SDLB RL5,R1

performs a logical left shift of fouf bit positions, leaves the value %30 (00110000) in
RL5, and sets the Carry flag.

Note 1: n = number of bit positions; the execution time for n = 0 is the same as forn = 1.

6-132

)

Operation:

"SET dst, src

SETB

dst(src) < 1

" dst: R, IR, DA, X
sre: IM

dst: R
src: R

Sets the specified bit within the destination operand without affecting any other bits
in the destination. The source (the bit number) can be specified as either an immedi-
ate value (Static), or as a word register which contains the value (Dynamic). In the
second case, the destination operand must be a register, and the source operand
must be RO through R7 for SETB, or RO through R15 for SET. The bit number is a
value from O to 7 for SETB or O to 15 for SET, with 0 indicating the least significant

bit.

Only the lower four bits of the source operand are used to specily the bit number for

SET, while only the lower three bits of the source operand are used with SETB.

When the source operand is an immediate value, the “src field” in the instruction

format encoding contains the bit number in the lowest four bits for SET, or the

lowest three bits for SETB.

Flags:

No flags affected

Set Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: SET Rd, #b

SETB Rbat, 4b {10[10010{w[Rd [o | 4 [Lolmow[wl Rd [b || 4
IR: SET @Rd!, #b

SETB @Rdl b Loo[1oo1o|w]nd¢o| b | 11 |£0|10010|W!Rd¢0l b || 11

DA: SET address, #b
‘ b
SETB addross. #b 01/10010{w|o000] 3 lss o1f1oo1o|w ooool b 1
address 0 l segment offset
01/10010|w 0000] b
SL|1] segment | 0000 0000 16
oftset

X: SET addr(Rd), #b

SETB addr(Rd). #b o1|1oo1o]w| Rd=0| b i |ss o1|1oo1o|w Rs#0| b 1

address 0| segment offset
o1]1oo1o|w Rs#0| b
SL|{1| segment 00000000 17
offset

6-133

Set Bit Dynamic

Nonsegmented Mode

Segmented Mode

Cycles m

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format
R: SET Rd, Rs oo|1oo1o|w ooool Rs oo]1oo1o|w 0000| Rs
SETB Rbd, Rs 10 10
oooo| Rd [00000000 oooo| Rd | 006000000
Example: If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the

instruction

SETB RL3, R2

~ will leave the value %F2 (11110010) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-134

)

SEIFLG

?1 8

Operation:

SETFLG flag Flag: C, Z,S,P, V

FLAGS (4:7) < FLAGS (4:7) OR instruction (4:7)

Any combination of the C, Z, S, Por V flags are set to one if the corresponding bits
in the instruction are one. If the bit in the instruction corresponding to a flag is zero,
the flag will not be affected. All other bits in the FLAGS register are unaffected.
Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,
in any order.

Flags:

C: Set if specified; unaffected otherwise
Z: Set if specified; unaffected otherwise
S: Set if specified; unaffected otherwise
P/V: Set if specified; unaffected otherwise
D: Unaffected

H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
SETFLG flags [10001101 [czspv[oo01] 7 [10001101 fczspvooo1] 7

Example:

If the C, Z, and S flags are all clear (0), and the P flag is set (1), the statement
SETFLG C
will leave the C and P flags set (1), and the Z and S flags cleared (0).

6-135

S.h.i_it Left Arithmetic
| | SLA dsf, STC dét: R

SLAB src: IM
SLAL ;
Operation: Do src times:

Cc < dst (msb) ; :
dst (n + 1) - dst(n) (forn = msb - 1 to 0)
dst (0) -« O

7 0

Byte: " o

15 0

Word: <—[j<-— 0

15
Long: *“I Rn 1‘—

15 0
Rn+1]«—0

n=2024,..14

The destination operand is shifted arithmetically left the number of bit positions
specified by the source operand. For SLAB, the source is in the range 0 to 8; for
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32.
A shift of zero positions does not affect the destination; however, the flags are set
according to the destination value. The least significant bit of the destination is filled
with 0, and the C flag is loaded from the sign bit of the destination. This operation is
the equivalent of a multiplication of the destination by a power of two with overflow
indication.

The src field is encoded in the instruction format as the 8- or 16-bit two's
complement positive value of the source operand. For each operand size, the
operation is undefined if the source operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

Flags: C: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise
D: Unaffected
H: Unaffected

6-136 03-8003-0943

Destination

Nonsegmented Mode

Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles!? Instruction Format Cycles!
R: SLARd, #b 1o]11oo11, Rd |1001 1o|11oo11l Rd [1001
13+3b - 13+3b
b b
SLAB Rbd, #b
10110010 Rd (1001 10{ 11001
| | raeap| [ol110010] ma rood] |
b b b b
SLAL RRd, #b
10[110011] Rd [1101 134+3b 10[110011[Rd [1101 13+3b
b b

Example:

If register pair RR2 contains %1234ABCD, the statement

SLAL RR2,#8

will leave the value %34ABCDO0 in RR2 and clear the Carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as forb = 1.

6-137

Shift Left Logical

_SLL dst, src . .dst R
SLB , ‘ src: IM
SLLL
Operation: Do src times: ,
‘ C = dst (msb) 7
dst (n + 1) < dst (n) (forn = msb - 1to0)
dst (0) < O
7 0
Byte: EI<—L |<—o
15 ‘ 0
Word: o
15 0
Long: 4—-[Rn l<—
15 0
Rn+1 |<—0
n=2~024,..14
The destination operand is shifted logically left by the number of bit positions
specitied by the source operand. For SLLB, the source is in the range 0 to 8; for
SLL, the source is in the range 0 to 16; for SLLL, the source is in the range 0 to 32.
A shitt of zero positions does not affect the destination; however, the flags are set
according to the destination value. The least significant bit of the destination is filled
with 0, and the C flag is loaded from the most significant bit (msb) of the destina-
tion. This instruction performs an unsigned multiplication of the destination by a
power of two.
The src tield is encoded in the instruction format as the 8- or 16-bit positive value of
the source operand. For each operand size, the operation is undefined if the source
operand is not in the specified range.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags C: Set if the last bit shifted from the destination was 1; cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined

D: Unalfected

H: Unaffected

6-138 03-8003-0944

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SLL Rd, #b 10 11oo11| Rd]ooo1 10[110011| Rd |ooo1
13+3b 13+3b
b b
SLLB Rbd, #b 10/110010| Rd [0001 10[110010 | Rd [0001
13+3b 13+3b
b b b b
SLLL RRd, #b
10{110011| Rd [o101 134+3b 10[110011 | Rd [o101 1343b
b b
Example:' If register R3 contains %4321 (0100001100100001), the statement

SLL R3,#1

will leave the value %8642 (1000011001000010) in R3 and clear the carry flag.

Note 1: b = number of bit positions; the execution time for b =0 is the same as for b = 1.

6-139

SEUEQ?mQQWL

Shift Right Arithmetic

- SRAB
SRAL

Operation: Do src times:
c < dst (0)
dst (n) < dst(n + 1){forn = Otomsb - 1)
dst (msb) <« dst (msb)

0

Byte: | E!J’ | |—>lz|

15 0

Word: —{ | ’ |—>

15) 0

Long: —>| | Rn
L]

e — 0

n=2024,..14

The destination operand is shifted arithmetically right by the number of bit positions
specified by the source operands. For SRAB, the source is in the range 0 to 8; for
SRA, the source is in the range 0 to 16; for SRAL, the source is in the range 0 to 32.
A shift of zero positions does not affect the destination, however, the flags are set
according to the destination value. The most significant bit (msb) of the destination is
replicated, and the C flag is loaded from bit O of the destination, this instruction per-
foms a signed division of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or 16-bit two's
complement negative of the source operand. For each operand size, the

operation is undefined if the source operand is not in the specitied range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

: Set if the last bit shifted from the destination was 1; cleared otherwise
Set if the result is zero; cleared otherwise

Set if the result is negative; cleared otherwise

: Cleared

¢+ Unaffected

: Unaffected

Flags:

RY<SLNQ

6-140 03-8003-0945

Nonsegmented Mode

Seg’mented Mode :

Destination
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format | Cycles!
R: SRA Rd, #b 10/ 110011 Rd [1001 f10f 110011 a [1001
13+3b 13+3b
-b -b
SRAB Rbd, #b 1o|11oo1o Rd l1oo1 1o|11oo1o Rd |1oo1
13+3b 13+3b
-b ~b -b -b
SRAL RRd, #b
1o|11oo11] Rd l11o1 13+3b 1ol11oo11l Rd |1101 1343
-b -b
Example: If register RH6 contains %3B (00111011), the statement

SRAB RHS6,#2
will leave the value %0E (00001110) in RH6 and set the carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same asforb = 1.

6-141

Shift RightLogical

SRLB ' src: IM
SRLL
Operation: Do src times:
c < dst (0)

dst (n) - dst (n + 1)(forn = 0tomsb — 1)
dst (msb) <« 0

A 7
Byte: 0 -—»L

-
Word: o—[. oj_{g
-

15
| Rn+1 1_,

n=2024,..14

The destination operand is shifted logically right by the number of bit positions
specified by the source operand. For SRLB, the source operand is in the range 0 to
8; for SRL, the source is in the range O to 16; for SRLL, the source is in the range 0
to 32. A shift of zero positions does not affect the destination, however, the flags are
set according to the destination value. The most significant bit (msb) of the destina-
tion is filled with 0, and the C flag is loaded from bit O of the destination. This
instruction performs an unsigned division of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or 16-bit negative value
of the source operand in two's complement rotation. For each operand size, the
operation is undefined if the source operand is not in the range specified above.

The source operand may be omitted from the assembly language statement and thus
defaults to the value of 1.

: Set if the last bit shifted from the destination was 1: cleared otherwise
Set if the result is zero; cleared otherwise

Set if the most significant bit of the result is one; cleared otherwise

+ Undefined

: Unaffected

: Unaffected

Flags:

nU<uNQ

6-142 03-8003-0946

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SRL Rd, #b
' 0{110011| Rd |0001 10|/ 110011 | Rd 0
0] | R] saeap| [| he Jooor] | g
-b -b
SRLB Rbd, #b 010| Rd [0001 10/ 110010 | Rd |00
o 1roor | ey i (O] [0001] [134 am
-b -b -b -b
SRLL RRd, #b
10[110011] Rd [0101 13+3b 10/110011[Rd [o0101 13+3b
-b -b
Example: If register RO conféins %1111 (0001000100010001), the statement

SRL RO, #6

will leave the value %0044 (0000000001000100) in RO and ciear the carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same asfor b = 1.

6-143

it e

i—

SUB dst, src © dst:R

'SUBB src: R, IM, IR, DA, X <
SUBL
Operation: dst -« dst — src
The source operand is subtracted from the destination operand. and the result is
stored in the destination. The contents of the source are not affected. Subtraction is
performed by adding the two's complement of the source operand to the destination
operand.
Flags: C: Cleared if there is a carry from the most significant bit; set otherwise, indicating
a "borrow” '
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared otherwise
D: SUB, SUBL—unaffected; SUBB—set
H: SUB, SUBL—unaffected; SUBB—cleared if there is a carry from the most
significant bit of the low-order four bits of the result; set otherwise, indicating a
“borrow”
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SUB Rd, R
SUBBRbd,SRbs [1o]oooo1|w| Rs | Ra] 4 [10]o00ot|w| Rs | Ra | 4
SUBL RRd, RRs [10]010010 | RRs | RRd | 8 [1olo10010] RRs | RRa | 8
IM: SUB Rd, #data 000000100000 Rd ; 00/ 000010]0000| Rd ,
data data
SUBB Rbd, #data 00[000011 [0000| Rd 7 00[000011|0000| Rd ;
data data data data
SUBL RRd, #data 00{010010|0000[Rd 00[010010 |0000] Rd
31 data (high) 16 14 31 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: SUB Rd, @Rs!
SUBB Rbd. ;Rsl {ooloooo1w|Rrs»0| Ra | 7 [oo]oooo1|w|Rs=0| Rra | 7
SUBL RRd, @Rs! [oo/ 010010 Rs20]| Rd | 14 foo[010010 [Rsz0] Ra | 14

6-144

Source 'Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: SUB Rd, address
‘ 01/00001|w|0000| Rd 01/00001|W|0000] Rd
SUBB Rbd, address | l l [9 SS , l l 10
address 0| segment offset
o1|oooo1|w 0000| Rd
SL[1| segment | 0000 0000 12
offset
SUBL RRd, address 01 o1oo1o,oooo| Rd 01010010 0000| Rd
15 SS 16
address ol segment offset
01/010010 0000| Rd
SL 1] segment | 0000 0000 18
offset
X: SUB Rd, addr(Rs) o1loooo1lw[Rs;tol Rd o1|oooo1,w Rs¢ol Rd
SUBB Rbd, addr(Rs) 10 SS | 10
address 0] segment offset
o1|oooo1]w Rs=0 l Rd
SL|1| segment { 0000 0000 13
oftset
SUBL RRD, addr(Rs)
LK o1oo1o|ns¢o[Rd 16 ss o1|o1oo1o Rs¢0l Rd 16
address 0| segment offset
01] 010010 Rs#0| Rd
SL 1] segment 00000000 19
offset
Example: It register RO contains %0344, the statement

SUB RO,#%AA
will leave the value %029A in RO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-145

’

Test Condition Code

b

TCCecdst . dstR MY
TCCB . L)
Operation: if cc is satisfied then

dst (0) - 1

This instruction is used to create a Boolean data value based on the flags set by a
previous operation. The flags in the FCW are tested to see if the condition specified
by “cc¢” is satisfied. If the condition is satisfied, then the least significant bit of the
destination is set. If the condition is not satisfied, bit zero of the destination is not

- cleared but retains its previous value. All other bits in the destination are unaffected
by this instruction.

Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: TCC cc, Rd
‘ 10/10111(wW| Rd cc 5 10{10111|W| Rd cc 5
T0Cw 1 [efor o] e [=] [efroro o [=]
Example: If register R1 contains 0, and the Z flag is set, the statement

TCC EQ,RI

will leave the value 1 in R1.

6-146

TEST dst .~ dst:R, IR, DA, X

@

Operation: dst OR0Q

The destination operand is tested (logically ORed with zero), and the Z, S and P
flags are set to reflect the attributes of the result. The flags may then be used for
logical conditional jumps. The contents of the destination are not affected.

Flags: C: Unatfected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: TEST—unaffected; TESTL—undefined; TESTB—set if parity of the result is even;

cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles| = Instruction Format | Cycles
R: %gBRgbd L10|oo11o]w] Rd [0100] 7 {1o{oo110[w| Rd lo100]| 7
TESTL RRd {1o]o11100] Rra [1000] 13 | |1o0[011100] ra [1000]] 13
IR: %ggB@gg;l [00Joo110[w|Rs=0[0100] 8 {ooJoo110/w|Rs+0[0100]| 8
TESTL @Rd! foojo11100 | Rsx0 [1000] 13 holonmo[ns*o[wotﬂ 13
DA: %gg%;d‘;‘é‘ess o1]oo11o|w|oooo[o1oo o1|oo11o|w oooo|o1oo 12
acaress address n Ss OI segment offset
01/o0110/w oooo|o1oo
SL 1] segment | 0000 0000 14
address
TESTL address 01/011100 [0000]1000 01/011100|0000[1000
16 SS 17
address OI segment offset
01{ 011100 0000]1000
SL|1| segment | 00000000 19
offset

6-147

Destination

Nonsegmented Mode

Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: TEST addr(Rd) " :
TESTB addr(Rd) 01{00110|/w| Rd+0 0100 2 |ss 01{00110[w|Rax0]0100 12
address 0 l segment offset
o1|oo11o|w Rd=0 (0100
SL[1| segment | 00000000 15
offset
TESTL addr(Rd) 01[011100[Rd+0[1000 01]011100|Rd=0[1000
17 SS 17
address 0 I segment offset
01/ 011100 | Rd=0|1000
SL 1| segment | 0000 0000 20
offset
Example: I register RS contains %FFFF (1111111111111111), the statement

TEST RS .

will set the S flag, clear the Z flag, and leave the other flags unaffected.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-148

. . ' 4
~ Translate and Decrement

TRDB dst, src, r . dst:IR

src: IR
Operation: dst <« src[dst] ,
AUTODECREMENT dst by 1
rer — 1]
This ihstruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte”)
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rule for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register.
The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by “r” (used as a
counter) is then decremented by one. The original contents of register RH1 are lost
and are replaced by an undefined value.
Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur. The
source register is unchanged.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language ‘
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: TRDB @Rdl, @Rs, r 10[111000| Ra [1000 - 10[111000] R4 1000 05
0000/ r [Rs |0000 0000/ r | Rs [o0000
Example: In nonsegmented mode, if register R6 contains %4001, the byte at location %4001

contains 3, register R9 contains %1000, the byte at location %1003 contains %AA,
and register R12 contains 2, the instruction

TRDB @R6, @R9, R12

will leave the value %AA in location %4001, the value %4000 in R6, and the value
1 in R12. R9Y will not be affected. The V flag will be cleared. RH1 will be set to an
undefined value. In segmented mode, R6 and R9 would be replaced with

register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-149

‘Translate, Decrement and Repeat

" THDRD det o ’v dstIR —
~src: IR
Opération: “dst - src [dst]
AUTODECREMENT dst by 1
rer T — 1

repeat untilr = 0

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte")
‘are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table that replaces the original contents of the location
addressed by the destination register.

The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by “'r”’ (used as a
counter) is then decremented by one. The entire operation is repeated until the
result of decrementing r is zero. This instruction can translate from 1 to 65536 bytes.
‘The original contents of register RH1 are lost and are replaced by an undefined
value. The source register is unchanged.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

Flags: :C: Unaffected
Z: Undefined
S: Unaffected

V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: TRDRB @Rbd!, @Rbs!, r 10/ 111000| Ra [1100 10{ 111000| Rd [1100
11+14n 114+ 14n
0000 Rs |0000 0000| r Rs |0000

6-150

In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9 con-
tains %1000, the translation table from location %1000 through %10FF contains 0,
1,2,..., %7F, 0, 1, 2, ..., %7F (the second zero is located at %1080), and register
R12 contains 3, the instruction

TRDRB @R6, @R9, R12

will leave the values %00, %40, %00 in byte locations %4000 through %4002,
respectively. Register R6 will contain %3FFF, and R12 will contain 0. R9 will not be
affected. The V flag will be set, and the contents of RH] will be replaced by an
undefined value. In segmented mode, R6 and R9 would be replaced by register
pairs. In segmented mode, register pairs must be used instead of R6 and R9.

BEFORE
%1000 | 00000000
%4000 00000000 %1001 10000000 1
%4001 {010006000 %1002 00000010
%4002 |10000000 . .
.. *
L] L
AFTER %O7TF JO 1111111
%1080 100000000
%4000 00000000 %1081 100000001
%4001 101000000 %1082 |00000010
%4002 00000000 . .
. .
. .
%10FF 101111111

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

03-8003-0948

6-151

'Translate and Increment

TRIB dst, src, R dst: IR
src: IR
Operation: dst < src[dst]
AUTOINCREMENT dst by 1
rer—1
This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte")
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r" (used as a counter) is then decremented by one. The original con-
tents of register RH1 are lost and are replaced by an undefined value. The source
register is unchanged.
Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaftected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
TRIB @Rd!, @Rs!, r 10[111000| Rd |0000 10{111000| Rd |0000
ooool r Rs [0000 25 0000| r Rs [0000 25

6-152

Example:

This instruction can be used in a “loop” of instructions which translate a string of
data from one code to any other desired code, but an intermediate operation on
each data element is required. The following sequence translates a string of 1000
bytes to the same string of bytes, with all ASCII “control characters” (values less
than 32, see Appendix C) translated to the “blank” character (value = 32). A test,
however, is made for the special character “return’ (value = 13) which terminates
the loop. The translation table contains 256 bytes. The first 33 (0-32) entries all con-
tain the value 32, and all other entries contain their own index in the table, counting
from zero. This example assumes nonsegmented mode. In segmented mode, R4 and
R5 would be replaced by register pairs.

LD R3, #1000 linitialize counter!

LDA R4, STRING lload start addresses!

LDA RS, TABLE '
LOQOP:

CPB @R4, #13 Icheck for return character!

IR EQ, DONE lexit loop if found!

TRIB @R4, @R5, R3 ltranslate next byte!

JR NOV, LOOP Irepeat until counter = 0!
DONE:

TABLE+0 00100000
TABLE+1 §00100000
TABLE+2 00100000

- L]

L] L]
TABLE +32 00100000
TABLE +33 0010000 1%
TABLE + 34 00100010

TABLE+255] 11111111

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

03-8003-0947

6-153

R e T
B XD

% = %
E & :

s B

Translate, m&emé;ifdp&gji;ggea{, |

Opéfdtion: '

TRIRB dst, src, R~ dst: IR | - (':
src: IR '

dst < src[aét] ‘
AUTOINCREMENT dst by 1
rer — 1

repeat untilr = 0

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte”)
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location ad-
dressed by the destination register. The destination register is then incremented by
one, thus moving the pointer to the next element in the string. The word register
specified by "r” (used as a counter) is then decremented by one. The entire opera-
tion is repeated until the result of decrementing r is zero. This instruction can
translate from 1 to 65536 bytes. The original contents of register RH1 are lost and are
replaced by an undefined value. The source register is unaffected.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed.- Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

Flags:

+ Unaffected
Undefined
Unaffected
Set

¢+ Unaffected
Unaffected

BYSUNQ

Addressing
Mode

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

TRIRB @Rd!, @Rs!, r 10[111000 Rd |0100 1o[111ooo Rd 0100

11+ 14n
oooo[r Rs 0000 oooo] r Rs [0000

11+14n

6-154

Example: |

The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pointers to the string and the translation table are set,
the number of bytes to translate is set, and then the translation is accomplished.
After executing the last instruction, the V flag is set and the contents of RH1 are lost.
The example assumes nonsegmented mode. In segmented mode, R4 and R5 would
be replaced by register pairs.

LDA R4, STRING
LDA RS, TABLE
LD R3, #80
TRIRB @R4, @R5, R3

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

6-155

TRTDB

Translate, Test and Decrement

SRR)T

o TRTDB srcl scm R : , src 1 iR
src 2: IR

Operation: RHI1 < src2[srcl]
AUTODECREMENT srcl by 1

rer -1

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pointer to the previous
element in the string. The word register specified by “r (used as a counter) is then
decremented by one. The second source register is unaffected.

Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values will
occur.

Flags: C: Unaffected
Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: TRIDB @Rsl!, @Rs2!, r 1o|111ooo src1 [1010 25 10[111000 src1 [1010 25
0000| r [src2 0000 0000 ¢ [se2 {0000
Example: In nonsegmented mode,rif register R6 contains %4001, the byte at location %4001

contains 3, register R9 contains %1000, the byte at location %1003 contains % AA,
and register R12 contains 2, the instruction
TRTDB @R6, @R9, R12

Will leave the value %AA in RHI, the value %4000 in R6, and the value 1 in R12.
Location %4001 and register R9 will not be affected. The Z and V flags will be
cleared. In segmented mode, register pairs must be used instead of R6 and R9.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

i 6-156

~ Translate, Test, Decrement and Repeat

Operation:

TRTDRB src 1,’,, src 2, R src 1: IR
src 2: IR

RHI < src 2[srcl]
AUTODECREMENT srcl by 1
rer—1

repeat until RHl <> Oorr = 0

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pointer to the previous
element in the string. The word register specified by " (used as a counter) is then
decremented by one. The entire operation is repeated until either the Z flag is clear,
indicating that a non-zero translation value was loaded into RH1, or until the result
of decrementing r is zero. This instruction can translate and test from 1 to

65536 bytes.

Target byte values which have corresponding zero translation-table entry values are
to be scanned over, while target byte values which have corresponding non-zero
translation-table entry values are to be detected. Because the 8-bit target byte is
added to the second source register to obtain the address of a translation value, the
table may contain 256 bytes. A smaller table size may be used where it is known that
not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

Flags:

C: Unaffected

Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Addressing
Mode

Assembler Language

N onsegxhented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

TRTDRB@Rs1!,@Rs2! ¢

10111000 | src1 [1110 10111000 | src1 [1110
11 +14n
0000 ¢ |sc2|1110 0000 r [erc2 [1110

11+ 14n

6-157

Example: " In nonsegmented mode, if register R6 contains %5002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9
contains %1000, the translation table from location %1000 through % 10FF contains
0,1, 2 ..., %7F, 0, 1, 2, ..., %7F (the second zero is located at %1080), and
register R12 contains 3, the instruction ;

TRTDRB @R6, @R9, R12

will leave the value %40 in RH1 (which was loaded from location, %1040). Register
R6 will contain %4000, and R12 will contain 1. R9 will not be affected. The Z and V
flags will be cleared. In segmented mode, register pairs must be used instead of R6

and R9.
BEFORE

%1000 |00OO0000O0O
%4000 |0 0000000 %1001 00000001
%4001 01000000 %1002 00000010

%4002 10000000 . L4

*® L]

[] L]

%107F |01 111111
%1080 |00 O00O000O0
%1081 |00000001
%1082 |00000010

%IWFF 01111111

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

- 6-158 03-8003-0949

T R AR R e S s e e 8 e e e vt R S

o i‘ifat;s)lqlt

- :

Test and Increment

Operation:

TRTIB src 1, src 2,R o

RHI < src?[srcl]
AUTOINCREMENT srcl by 1

rer—1

’ src >1: IR a

 src 2 IR

N R

T N A

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then incremented by one, thus moving the pointer to the next ele-
ment in the string. The word register specified by
decremented by one. The second source register is unaffected.

AR

r

(used as a counter) is then

Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values

will occur.

Flags:

C: Unaffected
Z
S: Unaffected
\'4

D: Unaffected
H: Unaffected

: Set if the translation value loaded into RH1 is zero; cleared otherwise

: Set if the result of decrementing r is zero; cleared otherwise

Addressing
Mode

Nonsegmented Mode

Segmented Mode

Assembler Language
Syntax

Instruction Format

Cycles

Instruction Format

Cycles

IR:

TRTIB @Rsl!, @Rs2!, r 1o|111ooo

src1 |0010

25

0000/ r

src2 (0000

10111000 | src1 (0010

0000| r src2 {0000

25

6-159

This 1nstruct10n can be used in a “loop” of instructions which translate and test a
string of data, but an intermediate operation on each data element is required. The
following sequence outputs a string of 72 bytes, with each byte of the original string
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case
characters are translated to upper case, and any embedded control characters are
skipped over. The translation table contains 128 bytes, which assumes that the most
significant bit of each byte in the string to be translated is always zero. The first 32
entries and the 128th entry are zero, so that ASCII control characters and the
“delete” character (%7F) are suppressed. The given instruction sequence is for
nonsegmented mode. In segmented mode, register pairs would be used instead of R3

and R4.

LD RS, #72 linitialize counter!
LDA R3, STRING lload start address!
LDA R4, TABLE
LOOP: |
TRTIB @R3, @R4, R5 ltranslate and test next bytel!
JR Z, LOOP Iskip control character!
OUTB PORTn, RHI1 loutput characters!
IR NOV, LOOP Irepeat until counter = 0!
DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-160

e e R

_TRTIRB

Operation:

Test, Incrementand Repeat

TRTIRBsrc 1, src2, R src 1: IR
o src 2: IR

RHI < src2[srcl]
AUTOINCREMENT srcl by 1
rer — 1]

repeat until RHl <> Oorr = 0

This instruction is used to scan a string of bytes, testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected.

The first source register is then incremented by one, thus moving the pointer to the
next element in the string. The word register specified by “'r” (used as a counter) is
then decremented by one. The entire operation is repeated until either the Z flag is
clear, indicating that a non-zero translation value was loaded into RH1, or until the
result of decrementing r is zero. This instruction can translate and test from 1 to

65536 bytes.

Target byte values which have corresponding zero translation table entry values are
scanned over, while target byte values which have corresponding non-zero transla-
tion table entry values are detected and terminate the scan. Because the 8-bit target
byte is added to the second source register to obtain the address of a translation
value, the table may contain 256 bytes. A smaller table size may be used where it is
known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

Flags:

: Unaffected

: Set if the translation value loaded into RH1 is zero; cleared otherwise
+ Unaffected

: Set if the result of decrementing r is zero; cleared otherwise

: Unaffected

: Unaffected

NQ

o<W

Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language
Syntax

Instruction Format

Cycles?

Instruction Format

Cycles?

IR:

TRTIRB @Rsl!, @Rs2!, r

10[011100

src 1

0110

oooo[r

src 2

1110

11 +14n

10{ 011100

src 1

0110

oooo['

src 2

1110

11 +14n

6-161

Example: The following sequence of instructions can be used in nonsegmented mode to scan a

R ~ string of 80 bytes, testing for special characters as defined by corresponding non-
zero translation table entry values. The pointers to the string and translation table
are set, the number of bytes to scan is set, and then the translation and testing is ~
done. The Z and V flags can be tested after the operation to determine if a special (\)
character was found and whether the end of the string has been reached. The
translation value loaded into RHI might then be used to index another table, or to
select one of a set of sequences of instructions to execute next. In segmented mode,
R4 and RS must be replaced with register pairs.

LDA R4, STRING
LDA R5, TABLE
LD R6, #80
TRTIRB @R4, @RS, R6

JR NZ, SPECIAL
END__OF__STRING: :

SPECIAL:
R OV, LAST_CHAR__SPECIAL

LAST CHAR__SPECIAL:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

6-162

d Set

. Testan
TSET dst dst: R, IR, DA, X o
TSETB
Operation: S <« dst(msb)
dst(O:msb) <« 111...111
Tests the most significant bit of the destination operand, copying its value into the S
flag, then sets the entire destination to all 1 bits. This instruction provides a locking
mechanism which can be used to synchronize software processes which require
exclusive access to certain data or instructions at one time. v
During the execution of this instruction, BUSRQ is not honored in the time between
loading the destination from memory and storing the destination to memory. For
systems with one processor, this ensures that the testing and setting of the destination
will be completed without any intervening accesses. This instruction should not be
used to synchronize software processes residing on separate processors where the
destination is a shared memory location, unless this locking mechanism can be
guaranteed to function correctly with multi-processor accesses.
Flags: C: Unafiected
Z: Unaffected ,
S: Set if the most significant bit of the destination was 1; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: TSET Rd
TESTB Rbd [toJootro[w] Rra o1t 7 [10[oo110[w] Ra Jo110]| 7
IR: TSET @Rd!
TSETB @Rl [00j00110|w]|Rd+0]0110] 11 [0o]oot 10w Razo]orro]| 11
DA: TSET address
0
TSETB oddross o1]oo11o|w|oooo|o11o 1a ss o1|oo11o[w oooo[on 15
address Ol segment offset
o1{o0110{wfoo00fo110
SL 1| segment | 00000000 17
offset
X: TSET addr(Rd) 0|W| Rd#0 {0110 o1loo110(w|Rd+0]0110
TSETB addr(Rd) 01joot1olw] maso] s | ss|o [w] Ra=o 15
address Ol segment offset :
01/0o0110/w| Rdz0 0110
SL|t| segment { 00000000 18
offset

i B

Example:

A simple mutually-exclusiveAcritical region may be implefnented by the fdllowing

sequence of statements:

ENTER: ,
TSET SEMAPHORE ; ; . e
JR MI,ENTER lloop until resource con-!

ltrolled by SEMAPHORE!
lis available!

ICritical Region—only one software process!
lexecutes this code at a time!

CLR SEMAPHORE Irelease resource ‘controlled!
by SEMAPHORE!

6-164

R e AN SRR SRR e Pt

N P e

Ext:lusive O

XOR dst, src

_dst: R

XORB src: R, IM, IR, DA, X
Operation: dst - dst XOR src
The source operand is logically EXCLUSIVE ORed with the destination operand and
the result is stored in the destination. The contents of the source are not affected.
The EXCLUSIVE OR operation results in a one bit being stored whenever the cor-
responding bits in the two operands are different; otherwise, a zero bit is stored.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: XOR—unaffected; XORB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: XOR Rd, Rs
YORB Rbd. Rbs [10[o0100{w| ms | mrd | 4 {1oloo10o/w| rs | Ra || 4
IM: XOR Rd, #data 00/001001]|0000| Rd ; 00[001001]0000| Ra ;
data data
XORB Rbd, #data 00/ 001000 |0000| Rd ; 00{ 001000 |0000| Rd ,
data data . data data
IR: XOR Rd, @Rs!
XORB Rbd, (Z)Rsl [ooloo100[w]| Rsx0| ra | 7 [ooloo100|w|Rsz0| Ra || 7
DA: XOR Rd, address
XORB Rbdl, address o1j00100|w|o000| Rd s |ss 01joo100{w|0000| Rd 10
address OI segment offset
o1|oo1oolw oooo[Rd
SL[1] segment [00000000 12
offset
X: XOR Rd, addr(Rs)
XORB Rbd. add(Rs) 01joo100|w| Rs+0| Rd w0 lss o1|oo1oo]w ns;eol Rd 10
address ol segment oftset
o1loo100{w| Rs#0| Rd
SL 1[segment |{ 0000 0000 13
offset

6-165

S e B s

Example

If register RL3 contains %C3 (1100001 l"v)kand the source operand is the immediate

_, value %7B (01111011), the statement

XORB RL3,#%7B | . |
will leave the value %B8 (10111000) in RL3. . C

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

RAR

Instruction
Templates

There are seven “templates’” for EPA instruc-
tions. These templates correspond to EPA
instructions, which combine EPU operations
with possible transters between memory and an
EPU, between CPU registers and EPU regis-
ters, and between the Flag byte of the CPU'’s
FCW and the EPU. Each of these templates is
described on the following pages. The descrip-
tion assumes that the EPA control bit in the
CPU’s FCW has been set to 1. In addition, the
description is from the point of view of
the CPU—that is, only CPU activities are
described; the operation of the EPU is implied,

but the full specification of the instruction

~ depends upon the 1mplementat10n of the EPU
and is beyond the scope of this manual.

Fields ignored by the CPU are shaded in the
diagrams of the templates. The 2-bit field in bit
positions 0 and 1 of the first word of each
template would normally be used as an identi-
fication field for selecting one of up to four
EPUs in a multiple EPU system configuration.
Other shaded fields would typically contain
opcodes for instructing an EPU as to the oper-
ation it is to perform in addition to the data
transfer specified by the template.

Extended Instruction

Load Memory from EPU

Operation: Memory <« EPU
The CPU performs the indicated address calculation and generates n EPU memory
write transactions. The n words are supplied by an EPU and are stored in n con-
secutive memory locations starting with the etfective address.

Flags/Registers: No flags or CPU registers are affected by this instruction.

Execution Time: 10 + 3n cycles.

mode |00 11 11} dst |1

Clock Cycles

mode . dst NS SS SL
00 IR (dst #0) 11+3n

0 1 X (dst # 0) 15+3n 15+ 3n 18+3n
0 1 DA (dst=0) 14+3n 15+3n 17 +3n

ATR7

Load EPU from Memory |

Operation: EPU « Memory

The CPU performs the indicated address calculation and generates n EPU memory
read transactions. The n consecutive words are fetched from the memory locations
starting with the effective address. The data is read by an EPU and operated upon
according to the EPA instruction encoded into the shaded fields.

Flags/Registers: No flags or CPU registers are affected by this instruction.

Execution Time: 10 + 3n cycles

mode |00 11 11| src |01
.. Clock Cycles
mode src NS SS SL

0 0 IR (src #0) 11+4+3n
0 1 X (src # 0) 15+ 3n 15+ 3n 18+ 3n
01 DA (src=0) 14 +3n 15+ 3n 17+ 3n

Extended Instruction
Load CPU from EPU

Operation: CPU < EPU registers

The contents of n words are transferred from an EPU to consecutive CPU registers
starting with register dst. CPU registers are transferred consecutively, with register 0
following register 15.

Flags/Registers: No flags are affected by this instruction.

Execution Time: 11 + 3n cycles.

6-168 26-0001-0952 26-0001-0953

Extended Instruction
Load EPU from CPU

Operation: EPU < CPU registers
The contents of n words are transterred to an EPU from consecutive CPU registers
starting with register src. CPU registers are transferred consecutively, with register 0
tollowing register 15.

Flags/Registers: No flags are affected by this instruction.

Execution Time:

11 + 3n cycles.

Extended Instruction
Load FCW from EPU

Operation:

Flags < EPU

The Flags in the CPU’s Flag and Control Word are loaded with information from an
EPU on AD lines ADg~AD5.

F lags/Registers:

The contents of CPU register 0 are undefined after the execution of this instruction.

Execution Time:

-

14 cycles.

1000111

26-0001-0954

6-169

Extended Instruction
Load EPU from FCW

Operation: EPU < Flags

The Flags in the CPU’s Flag and Control Word are transferred to an EPU on AD
lines ADg-AD5.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Execution Time: 14 cycles.

10001110

Extended Instructmn
Internal EPU' Operation

Operation: Internal EPU Operation

The CPU treats this template as a No Op. It is typically used to initiate an internal
EPU operation.

Execution Time: 14 cycles.

10001110

-

26-0001-0956 26-0001-0955 6-170

7.1 Intro-
duction

" The 28000 CPIj’supportsthree types of

exceptions (conditions that can alter the nor-
mal flow of program execution):

@ interrupts
=& traps
m reset

Interrupts are asynchronous events typically
triggered by peripheral devices needing atten-
tion. They cause the processor to temporarily
suspend its present program execution in
order to service the requesting device. Traps
are synchronous events that are responses by
the CPU to certain events detected during the

Chapter 7
_Exceptions

attempted execution of an instruction. Thus,
the major distinction between traps and inter-
rupts is their origin: a trap condition is always
reproducible by re-executing the program that
created the traps, whereas an interrupt is
generally independent of the currently exe-
cuting task. A reset overrides all other condi-
tions, including all interrupts and traps. It
occurs when the RESET line is activated, and it
causes certain control registers to be initial-
ized. The action that the Z8000 CPU takes in
response to an interrupt, trap, or reset is
similar; hence, they are treated together in this
chapter.

7.2 Interrupts

Three kinds of interrupts are activated by
three ditferent pins on the Z8000 CPU. (Inter-
rupt handling for all interrupts is discussed in
Section 7.6.)

7.2.1 Non-Maskable Interrupt (NMI).

This type of interrupt cannot be disabled
(masked) by software. It is typically reserved
for highest-priority external events that require
immediate attention.

7.2.2 Vectored Interrupt (VI). One result of
any interrupt or trap is that a 16-bit identifier
word is pushed onto the system stack (see Sec-
tion 7.6.2). This word may be used to identify
the source of the interrupt or trap. In vectored
interrupts, this identifier is also used by the

CPU hardware as a pointer to select a particu-
lar interrupt service routine. The processing of
vectored interrupts is thus considerably faster
than would be the case if a general trap hand-
ler had to first examine the identifier, then
branch off to the appropriate service routine.
These interrupts can be disabled by software.

7.2.3 Nonvectored Interrupts (NVI). These
interrupts also result in an identifier word
being pushed onto the system stack. However,
the CPU does not use the identifier as a vector
to select a service routine: all non-vectored
interrupts are serviced by the same routine.
They can be disabled by software.

7.3 Traps

The Z8001 and Z8002 CPUs support three
traps generated internally. The Z8001 supports
a fourth trap, which is generated externally
(but synchronously) by the Memory Manage-
ment Unit. Since a trap always occurs when all
its defining conditions are present, traps can-
not be disabled. (Trap handling operations are
discussed in Section 7.6.)

7.3.1 Extended Instruction Trap. This trap
occurs when the CPU encounters an extended
instruction (see Section 6.2.10) while the EPA
bit in the FCW is cleared. This trap allows the
program to simulate the operations of the EPU
when none is present in the system or to abort
the program.

7.3.2 Privileged Instruction Trap. This trap
occurs whenever an attempt is made to execute
a privileged instruction while the CPU is in
system mode (S/N bit in the FCW is cleared).

This trap allows the operating system to detect
and prevent operation (such as I/O) that could
crash the system.

7.3.3 System Call Trap. This trap occurs
whenever a System Call (SC) instruction is
executed. It allows an orderly transition to be
made between normal mode and system mode.

7.3.4 Segment Trap. This trap occurs when-
ever the SEGT line is asserted on a Z8001,
regardless of the state of the SEG bit in the
FCW. This trap is generated by external
memory management hardware, such as the
28010 Memory Management Unit (MMU), and
is the result of detecting a memory access
violation (such as an offset larger than the
assigned segment length) or a write warning
(a write into the lowest 256 bytes of a stack).
See the MMU Technical Manual for more
information on memory management hardware.

7.4 Reset

A reset lizes selected control registers
of the CPU to system specifiable values. A
reset can occur at the end of any clock cycle,
provided the RESET line is Low.

A system reset overrides all other consider-
ations, including interrupts, traps, bus
requests, and stop requests. A reset should be
used to 1n1tlahzefa system as part of the power-
up sequence.

Within five clock cycles of the RESET
becoming Low, ADy-AD;5 are 3-stated;
AS,DS, MREQ , BUSACK, and MO are forced
high; STp-ST3 and SNy-SNg are forced Low.
The R/W, B/W and N/S lines are undefined.
RESET must be held Low five clock cycles to

properly reset the CPU.

Three clock cycles after RESET has returned
to High, consecutive memory read cycles are
executed in system mode to initialize the Pro-
gram Status registers. In the 28001, the first
cycle reads the Flag and Control Word from
location 0002 of segment number 0, the next
reads the 7-bit Program Counter segment num-
ber from location 0004, the next reads the
16-bit PC offset from location 0006, and the
following initial instruction fetch cycle starts
the program. In the Z8002, the first cycle reads
the PC from location 0004 and the following
initial instruction fetch cycle starts the pro-
gram. Each of these fetches is made from the
program address space.

7.5 Interrupt

Disabling

Vectored and nonvectored interrupts can be
enabled or disabled independently via software
by setting or clearing appropriate control bits
in the Flag and Control Word (FCW). Two
control bits in the FCW control the maskable
interrupt: VIE and NVIE. When VIE is 1, vec-
tored interrupts are enabled; when NVIE is 1,
non-vectored interrupts are enabled. These
two flags may be set or cleared together or
separately. In addition, these control bits are
set when the FCW is loaded. Any control bit

may be changed by the occurrence of an inter-
rupt or trap and then be restored to its
previous setting by an Interrupt Return (IRET)
instruction.

When a type of interrupt has been disabled,
the CPU ignores any interrupt request on the
corresponding input pin. Because maskable
interrupt requests are not retained by the
CPU, the request signal must be asserted until
the CPU acknowledges the request.

7.6 Interrupt

and Trap
Handling

SYSTEM STACK
POINTER AFTER
TRAP OR -
INTERRUPT

SYSTEM STACK
POINTER BEFORE _ |
TRAP OR
INTERRUPT

The CPU response to a trap or interrupt
request consists of five steps: acknowledging
the external request (for interrupts and seg-
ment traps), saving the old program status
information, loading a new program status,
executing the service routine, and returning to
the interrupted task.

7.6.1 Acknowledge Cycle. An external
acknowledge cycle is required only for exter-
nally generated requests. As described in
Chapter 9, the main effect of such a cycle is to
receive from the external device a 16-bit iden-
tifier word, which will be saved with the old
program status. Before the acknowledge cycle,
the CPU enters segmented (Z8001 only) system
mode. (The N/S line indicates that a transition
has been made to system mode.) The CPU
remains in this mode until it begins to execute
the exception service routine, at which time its

mode is dictated by the FCW.

28002 28001

Low
ADDRESS

Low
ADDRESS

SYSTEM SP
AFTER TRAP
OR INTERRUPT

IDENTIFIER -1 IDENTIFIER

FCw FCcw

PC PC SEGMENT

PC OFFSET

SYSTEM SP |
BEFORE TRAP

OR INTERRUPT

[-— 1 WORD —| t— 1 WORD —=

HIGH
ADDRESS

HIGH
ADDRESS

Figure 7-1. Format of Saved Program Status in the
System Stack

7.8.2 Status Saving. The old program status
information is saved by being pushed on the
system stack in the following order: the Pro-
gram Counter (PC: 16 bits for Z8002; 16-bit
offset followed by 7-bit segment number for
Z8001); the Flag and Control Word (FCW);
and finally, the interrupt/trap identifier word.
The identifier word contains the reason or
source of the trap or interrupt. For internal
traps, the identifier is the first word of the
trapped instruction. For segment trap or inter-
rupts, the identifier is the value on the data
bus read by the CPU during the interrupt-
acknowledge or trap-acknowledge cycle. The
format of the saved program status in the
system stack is illustrated in Figure 7.1.

The following table shows the PC value that
is pushed on the stack for each type of inter-
rupt and trap.

PC Value Is Address of:

Second Word of Instruction

Next Instruction
(Single Word Privileged
Instruction)

Second Word of Instruction
(Multiple Word Privileged
Instruction)

Next Instruction

Next Instruction* t

Next Instructiont

Exception:

Extended Instruction Trap
Privileged Instruction Trap

System Call Trap
Segment Trap
All Interrupts

* Assumes successful completion of instruction fetch

1 If executing an interruptable instruction (e.g. LDIR),
then the next instruction is the current instruction.

7-2

26-0001-0958

7.6 Interrupt
and Trap
Handling
(Continued)

7.6.3 Loading New Program Status. After
saving the current program status, the new
program status (PC and FCW) is automatically
loaded from the Program Status Area in system
program memory. The particular status words
fetched from the Program Status Area are a
function of the type of trap or interrupt and
(for vectored interrupt) of the interrupt vector.
Figure 7.2 shows the format of the Program
Status Area.

For each kind of interrupt or trap other than
a vectored interrupt, there is a single program
status block that is automatically loaded into
the Program Status registers (which includes
the Flag and Control Word and the Program
Counter).

Note that the size of each program status
block depends on the version of the Z8000 (two
words for the nonsegmented Z8002 and four
words for the segmented Z8001).

For all vectored interrupts, the same Flag
and Control Word (FCW) is loaded from the
corresponding program status block. However,
the appropriate Program Counter (PC) value is
selected from up to 256 (Z8002) or 128 (Z8001)
different values in the Program Status Area.

" The 'i;;vl;)rrrdér 'ei;;ht bits of the identifier

placed on the data bus by the interrupting
device is multiplied by two and used as an off-
set into the Program Status Area following the
FCW for vectored interrupts. On the 28002,
the identifier value 0 selects the first PC value,
the value 1 selects the second PC, and so on
up to the identifier value 255. On the 78001,
the identifier value 0 selects the first PC value,
the value 2 selects the second PC, and so on
up to the identifier value 254, which selects
the 128th PC value.

The Program Status Area is addressed by a
special control register, the Program Status
Area Pointer, or PSAP. This pointer is one
word for the nonsegmented 78002 and two
words for the segmented Z8001. As shown in
Figure 7.2, the pointer contains a segment
number (if applicable) and the high-order byte
of a 16-bit offset address. The low-order byte is
assumed to contain zeros; thus the Program
Status Area must start on a 256-byte address
boundary. The programmer accesses the PSAP
using the Load Control Register instruction

(LDCTL).

PROGRAM STATUS AREA

POINTER (PSAP)

[seano | [weeen] "0]

BYTE OFFSET Z8001

OFFSET IMPLIED

Z8002 BYTE OFFSET

HEX DECIMAL
0 4

8 8 RESERVED

| I'sea]

PC OFFSET
RESERVED

BET

PC OFFSET

RESERVED
FCW

REZ

PC OFFSET

RESERVED
FCW

SEG

PC OFFSET

RESERVED

.18 24

28 40

BEN
PC OFFSET
RESERVED

BE

PC OFFSET

RESERVED
FCW

SEG

3¢ 60 PC OFFSET

© o | _Jsec

PCp OFFSET

4“4 68 PC3 OFFSET

SEG
PCn OFFSET

23A 70

PRIVILEGED
Few INSTRUCTION
TRAP

SYSTEM FCw 12 [
CALL
TRAP PC

SEGMENT
TRAP

FCw NON-MASKABLE
INTERRUPT

FCwW NON-VECTORED
INTERRUPT

VECTORED
SEG INTERRUPTS

DECIMAL HEX

RESERVED 0]

EXTENDED Few 4 4
Fow INSTRUCTION
TRAP

PC

FCw 8 8

PC

NOT USED 16 10

FCwW 20 14

PC

FCW 24 18

PC

FCw 28 1Cc

PCy 30 iE

PC2 32 20

PCy 34 22

PCn

540 21C

Figure 7-2 Program Status Area

€8003-0580

Figure 7-2. Program Status Area

26-0001-0959

7-3

7.6 Interrupt
and Trap
Handling
(Continued)

7.6.4 Executmgthe Sennce Routine. I;badiimj'

the new program status automatically initializes
the Program Counter to the starting address of
the service routine to process the interrupt or

trap. This program is now executed. Because a
new FCW was loaded, the maskable interrupts

'cause execution to continue at the point where

the interrupt or trap occurred. IRET causes
information to be popped from the system stack
in the following order: the identifier is dis-

~carded, the saved FCW and PC are restored.

can be disabled for the initial processing of the

service routine by a suitable choice of FCW.
This allows critical information to be stored
before subsequent interrupts are handled. Ser-
vice routines that enable interrupts before exit-
ing permit interrupts to be handled in a nested
fashion.

7.6.5 Returning from an Interrupt or Trap.
Upon completion, the service routine can exe-
cute an Interrupt Return instruction, IRET, to

The newly loaded FCW takes effect with the
next fetched instruction, which is determined
by the restored Program Counter.

On Z8001 CPUs, IRET executed in nonseg-
mented mode mimics the execution of IRET on
28002 CPUs. Thus, care must be taken on
Z8001 CPUs to remove the PC segment num-
ber from the system stack before executing
IRET in nonsegmented mode.

7.7 Priority

Because it is possible for several exceptions
to occur simultaneously, the CPU enforces a
priority scheme for deciding which event will
be honored first. The following gives the
descending priority order:

m Reset

m Internal Trap (i.e., privileged instruction,
system call, extended instruction)

m Non-Maskable Interrupt

m Segment Trap (Z8001 only)

® Vectored Interrupt

m Nonveciored Interrupt

This is how the priority system works:

m Whenever a reset-is requested, it is immedi-
ately performed.

m If several non-reset exceptions occur simul-
taneously, the one that has the highest
priority and is also enabled (traps and non-
maskable interrupts are always enabled) is
acknowledged, old status is saved, and new
status is loaded. The new status consists of
the starting address of the service routine
(PC) and a new FCW that may disable vec-
tored and nonvectored interrupts.

m If any enabled exceptions remain, the
highest-priority one is acknowledged, the
old status is saved, and the new status is
loaded. Note that in this case, the old status
is the PC and FCW of the first exception's
service routine.

m This process is repeated until no enabled
exceptions remain. At that point, the cur-
rent PC and FCW will contain the status
values for the lowest priority exception that
was acknowledged.

m The execution of the service routines now
proceeds in reverse priority order. That
is, the lowest priority exception is
serviced first.

m After all the exceptions have been serviced,
the original status is restored and execution
resumes.

Within each of the classes above, there can
be multiple-interrupt sources. The internal
traps are mutually exclusive and therefore
need no priority resolution within that class.
The other types arise from external sources;
thus when multiple devices share the same
request line, the possibility arises that more
than one device may request service from the
CPU simultaneously. Either all the interrupt
sources must be serviced simultaneously (as
with the MMU) or competing requests must be
resolved external to the CPU, for example, by
means of a daisy-chain or priority interrupt
controller. This resolution is done during the
interrupt acknowledge cycle.

7-4

Chapter 8
Refresh

8.1 Intro-
duction

The Z8000 CPU has an internal mechanism
for refreshing dynamic memory. This
mechanism can be activated in two ways:

m When the Refresh Enable (RE) bit in the
CPU Refresh Counter is set to one (F igure
8.1), memory refresh is performed period-
ically at a rate specified by the RATE field
in the counter. (See Section 8.3.)

m When the STOAPT liﬁé is activated, the CPU
generates memory refreshes continuously.
(See Section 8.4.)

T
RATE

.. ' R(:)WIiDDiiESS: : ‘iﬂ
EEERERER]

AD3 AD; ADg AD5 AD, AD; AD, AD; ADy

Figure 8-1. Refresh Control Register

8.2 Refresh
Cycles

The refresh mechanism is a way of gener-
ating a special kind of bus transaction called a
refresh cycle, which is described in Chapter 9.
A refresh cycle is three clock cycles long and
may be inserted immediately after the last
clock cycle of any transaction.

During a refresh cycle, the status lines are
set to 0001 and the address lines ADy-ADg are

undefined. The ROW value determines the
memory row that is being refreshed on this
cycle. Since memory is word-organized, ADg
is always zero. After the refresh cycle is com-
plete, the ROW field is incremented by two,
thus stepping through 256 rows.

8.3 Periodic
Refresh

The Refresh Enable (RE) bit controls only
Periodic Refresh; refresh cycles may be
generated using the STOP line, regardless of
the state of RE. When RE is set to one, the
value of the 6-bit RATE field determines the
time between successive refreshes (the refresh
period). When RATE = 0, the refresh period
is 256 clock cycles; when RATE = n, the
refresh period is 4n clock cycles. (Thus, if
there is a 4 MHz clock, the refresh period can
be from 1 ps to 64 ps.)

The LDCTL instruction is used to set the
refresh rate, to set or clear RE, or to initialize
or read the ROW field. (See Section 6.7 for a
detailed discussion of this instruction.)

The refresh cycle is generated as soon as
possible after the refresh period has elapsed.
This usually means after the last clock cycle of
the next transaction. If the CPU receives a trap

or an interrupt simultaneously with a Periodic
Refresh request, the refresh operation is per-
formed first.

When the CPU does not have control of the
bus (that is, when BUSACK is asserted and the
CPU enters Bus-Disconnect state) or when the
WAIT line is activated, the CPU cannot issue
refresh cycles. To deal with this situation, both
Z8000 CPUs have internal circuitry that
records when the refresh period has elapsed
and refresh cycles cannot be generated. When
the CPU regains control of the bus, or when
the WAIT line is reactivated, it immediately
issues the skipped refresh cycles. The internal
circuitry can record up to two such skipped
refresh operations.

After a reset operation, Periodic Refresh is
disabled (RE is cleared) and the internal cir-
cuitry that counts skipped refreshes is cleared.

8.4 Stop-State
Refresh

The CPU has three internal operating states:
Running, Stop, and Bus-Disconnect states (see
Section 2.8). Stop state is entered when the
STOP line is activated, and while the CPU is
in this state, it generates three clock cycle

refresh transactions continuously. When STOP
is found High again, one more refresh cycle is
performed, then the remaining clock cycles of
the instruction fetch are executed. (See
Appendix A for more timing information.)

26-0001-0960

8-1

9.3 CPU Pins

The CPU pins can be grbuped into five
categories according to their functions
(Figure 9.1).

9.3.1 Transaction Pins.;_lhgsfz signals provide
timing, control, and data transfer for Z-Bus
transactions.

ADy-AD;s. Address/Data (Output, active High,
3-state). These multiplexed data and address
lines carry I/O addresses, memory addresses,
and data during Z-Bus transactions. For the
Z8001, only the offset portion of memory
addresses is carried on these lines.

SNo-8Ny. Segment Number (Z8001 only, Qut-
put, active High, 3-state). These lines contain
the segment number portion of a memory
address.

STo-ST3. (Output, active, High, 3-state).
These lines indicate the kind of transaction
occurring on the bus and give additional
information about the transaction (such as the
address space for memory transactions).

AS. Address Strobe (Output, active Low,
3-state). The rising edge of AS indicates the
beginning of a transaction and shows that the
Address, STy-ST3, N/S, R/W, and B/W signals

are valid.

DS. Data Strobe (Output, active Low, 3-
state). DS provides timing for data movement
to or from the CPU.

R/W. Read/Write (Quiput, Low = Write, 3-
state). This signal determines the direction of
data transfer for memory, 1/O, or EPU transfer
transactions.

B/W. Byte/Word (Qutput, Low = Word,
3-state). This signal indicates whether a byte
or word of data is to be transmitted during a
transaction.

WAIT. (Input, active Low). A Low on this line
indicates that the responding device needs
more time to complete a transaction.

MREQ. Memory Request (Output, active Low,
3-state). A falling edge on this line indicates
that the address/data bus is holding a memory
address.

9.3.2 Bus Control Pins. These pins carry

signals for requesting and obtaining control of
the bus from the CPU.

BUSREQ. Bus Requst (Input, active Low). A
Low indicates that a bus requester has

obtained or is trying to obtain control of
the bus.

BUSACK. Bus Acknowledge (Output, active
Low). A Low on this line indicates that the
CPU has relinquished control of the bus in
response to a bus request.

9.3.3 Interrupt/Trap Pins. These pins convey
interrupt and external trap requests to

the CPU.

NMI. Non-Maskable Interrupt (Input, active
Low). A High-to-Low transition on NMI
requests a non-maskable interrupt.

NVI. Non-Vectored Interrupt (Input, active
Low). A Low on this line requests a non-
vectored interrupt.

VI. Vectored Interrupt (Input, active Low). A
Low on this line requests a vectored interrupt.

SEGT. Segment Trap (Z8001 only, Input,
active Low). A Low on this line requests a seg-
ment trap.

«—] AS ADys [

b3 ADyy f—n

-«—— MREQ ADq3 [

ADy, f—>

~a——-§ READ/WRITE ADyy [t

~—— NORMAL/SYSTEM ADyq f—>

~—— BYTE'WORD ADp ft—m-
I::::)su-s AD; [—> | ADDRESS/
st AD; |«—> (DATA Bus

~-—ST; ADg [t

~«—]sT, AD; |—-

-4 STy AD; ja—

AD; j—

AT Zecoz A% [—>

cpu< —1 §TOP cPU AD; fa—n

CONTROL\ . MaEser ADg >

BUS USRI — <= 5o

CONTROLY . lsusak 'r. SNg |—» z::f\:l
| SNsf—> !
—| hmi [SN seamenT |
INTERRUPTS(——»-|VT } o SN) numBER |
— NI | SN; |—> |
| SNy —» |
MuLTi-MicRo /] —{ ¥ | S !
CONTROL) <« [|
il mt

(N

+5V GND CLK

Figure 9-1. Pin Functions

9-2 26-0001-0961

9-3. CPU Pins

9.3.4 Multi-Micgo_ Pins. These pins are the
Z8000's interface to the Z-B'us resourCe request

MI. Multi- .Mzcro [n (Input actzve Low) '_I'hls
input is used to sample the state of the

MO. Multi-Micro Out (Output active
Low). This line is used by the CPU to make

;9 3.5 CPU Control. These pins carry signals

which control the overall operation of

the CPU

STOP. (Input actzve Low) Thls line is used to
suspend CPU operation during the fetch of the

_ first word of an instruction.

RESET. (Input actzve Low) A Low on this line
resets the CPU.

(Continued)
lines.
resource request 1 ine
resource requests
9.4 Trans-
actions

Data transfers to and from the CPU are
accomplished through the use of transactions.

Figure 9.2 shows the general timing for a
transaction.

CLOCK

is

(ADDRESS STROBE)

SNo-SNg
(SEGMENT NO.)

ADg-ADys

Dy
(ADDRESS OFFSET)

STo-STy,

RIW, BIW, SIN

{STATUS

INFORMATION)

READ

WRITE

DS
(DATA
STROBE)

ADg-AD1s
(DATA)

DS
(DATA
STROBE)

ADg-ADys
(DATA)

N/

Four clock cycles added
here on interruptitrap
acknowledge transaction.

_/

BASIC

WAIT sampled
for memory and
EPU transfer

_All transactions start with Address Strobe
(AS) being driven Low and then raised High
by the CPU. On the rising edge of AS, the
status lines ST-ST3 are valid; these lines indi-

WAIT sampled for
/0 and Interrupt/trap Data on AD lines
acknowledge is sampled for

NN

BASIC

to CPU.
BASIC
FaY

--——CYCLE
1

—

CYCLE
2

- CYCLE —
3

Cycle present only for VO

interrupttrap

acknowledge transactions.

WAIT clock cycies added

here In response to WAIT line.

AS falli
clock ¢

ng indicates first

ycie of a transaction.

XA

[AS rising indicates
and address lines are valid.

that status

SEGMENT NUMBER

X

Segment No. becomes
available one clock cycle
befors rest of address.

OFFSET

) S

For see Read and

Write below.

STATUS INFORMATION

as the address and

action.

Status information becomes
avallable at the same time

remains

active throughout the trans-

/ll(
Momory, EPU transfers and/

For transfers to the CPU

{(Memory reads, /O reads,

transters from EPU, and

interrupt/trap acknowiedge)

the AD lines are first
3-stated by the CPU.

The memory, O device or
EPU places data on the AD
fines.

-G

~
DATA

For transters from the CP

{Memory writes, /O writes,

the CPU places the data on \<

and transters to the EPU)

the AD lines.

u

\

DATA

Figure 9-2. Transaction Timing

26-0001-0962

9-3

94, Trams-

actions
(Continued)

R B R e B o e

Sokeme

‘cate the type of transactlon bémg initiated (see

Table 9.1; the six types of transactions are dis-
cussed in the sections that follow.) Associated
with the status lines are three other lines that
become valid at this time. These are Normal/
System (N/S), Read/Write (R/W), and
Byte/Word (B/W). Except where indicated
below, N/S designates the operating mode of
the CPU, R/W designates the direction of data
transfer (read to the CPU, write from the
CPU), and B/W designates the length of the
data item being transferred.

If the transaction requires an address, it too
is valid on the rising edge of AS. No address is
required for interrupt acknowledge, EPU
transfer, or internal operation transactions. (In
the Z8001, the segment number lines SNy-SNg
are valid one clock cycle earlier to allow for
external memory management hardware. See
Chapter 2 for more information.)

The CPU uses Data Strobe (DS) to time the
actual data transfer. (Note that refresh and
internal operation transaction do not transfer
any data and thus do not activate DS.) For
write operations (R/W = Low), a Low on DS
indicates that valid data from the bus master is
on the ADp-AD5 lines. For read operations
(R/W = High), the bus master makes
ADg-AD,5 3-state before driving DS Low so
that the addressed device can put its data on
the bus. The bus master samples this data on
the falling clock edge just before raising
DS High.

R i R A e 1

9.4.1 WAIT As shown in Flgure 9.2, WAIT is

sampled on a falling clock edge one cycle
before data is sampled by the CPU (Read) or
DS rises (Read or Write). If WAIT is Low,
another cycle is added to the transaction
before data is sampled or DS rises. In this
added cycle and all subsequent cycles added
due to WAIT being Low, WAIT is again sam-
pled on the falling edge and, if it is Low,
another cycle is added to the transaction. In
this way, the transaction can be extended to an
arbitrary length to accommodate (for example)
slow memories or I/O devices that are not yet
ready for data transfer.

It must be emphasized that the WAIT input
is synchronous. Thus, it must meet the setup
and hold times given in Appendix A in order
for the CPU to function correctly. This
requires asynchronously generated WAIT
signals to be synchronized before they are
input into the CPU.

9.4.2 Memory Transactions. Memory Trans-
actions move data to or from memory when the
CPU makes a memory access. Thus, they are
generated during program execution to fetch
instructions from memory (Chapter 4) and to
fetch and store memory data (Chapter 5). They
are also generated to store old program status
and fetch new program status during interrupt
and trap handling and after reset (Chapter 7).

As shown in Figure 9.3, a memory trans-
action is three clock cycles long unless

Kind of Transaction ST,-STp Additional Information
Internal Operation 0000
Refresh 0001
) 0010 Standard /O
/O Transactlon. {0011 Special /O
0100 Segment Trap
Interrupt 0101 Non-Maskable Interrupt
Acknowlec%ge 0110 Non-Vectored Interrupt
Transaction 0111 Vectored Interrupt
1000 Data Address Space
1001 Stack Address Space,
Memory 1010 Data Address Space, EPU Transfer
Transaction 1011 Stack Address Space, EPU Transfer
1100 Program Address Space,
1101 Program Address Space, First Word of Instruction
EPU Transfer - 1110

Reserved 1111

Table 9-1. Status Codes

9-4

ﬁ

9-4. Trans-
actions
(Continued)

extended as explamed ‘a'hdve in WAIT. The
status pins, besides indicating a memory trans-
action, give the followmg 1nformat10n

[Whether the ry ' access is to the data ‘,
(1000, 1010), stack (1001, 1011), or program
(1100, 1101)_7 address space (Chapter 3).

B Whether the first word of an instruction is
being fetched (1101).

B Whether the data for the access is to be
supplied (write) or captured (read) by an
Extended Processing Unit (1010, 1011).

~ Status codee iOOOand leOV‘l may4 also 1nd1-

cate that the EPU is to capture or supply the

_ data.

For the 28002 the full memory address w1ll
be on ADg-AD;5 when AS rises. For the
28001, the offset portion of the segmented
address will be on ADy-AD)5 and the segment
number portion will be on SNy-SNg when AS
rises. The segment portion will also be on
SNg-SNg approximately one cycle before
ADg-ADy5 is valid.

Tz T3

CLOCK

pt———
) q | DATA SAMPLED
K FOR READ

WAIT

SAMPLED WAIT CYCLES ADDED

WAIT

XX

STATUSES
(B, NIS,
STo-ST)

X

X

SNo-SNe SEGMENT NUMBER

~

_/
\

Ve

AD
READ

Xnﬁmonv ADDRESS

J

READ

Ve

RIW
READ

/

AD
WRITE

XMﬂORY ADDRESS

DATA OUT

N /]

N N |

Figure 9-3. Memory Read and Write Transaction

26-0001-0963

9-5

9-4. Trans-
actions
(Continued)

B:};tmérsg;"ti%ffsferred to or from odd memory

(address bit 0 is 1) locations are always trans-
mitted on lines ADy~AD; (bit 0 on ADg). Bytes
transferred to or from even memory locations
(address bit 0 is 0) are always transmitted on
lines ADg-AD;5 (bits 0 on ADg). Thus, the
memory attached to a Z8000 will look like that
shown in Figure 9.4. For byte reads (B/W
High, R/W High) the CPU uses only the byte
whose address it output. For byte writes (B/W
High, R/W Low), the memory should store only
the byte whose address was output by the
CPU. For word transfers, (B/W = Low), all
16 bits are captured by the CPU (Read:

R/W = High) or stored by the memory (Write:
R/W = Low).

As explained more fully in Section 9.5, a
Z8001 CPU and an Extended Processing Unit
act like a single CPU with the CPU providing
addresses, status and timing information and
the EPU providing or capturing data.

9.4.3 I/0 Transactions. I/O transactions move
data to or from peripherals or CPU support
devices (e.g., MMUs). They are generated
during the execution of I/O instructions.

As shown in Figure 9.5, I/O transactions are
four clock cycles long at minimum, and they

' may lyi)‘e"klgr‘;gthened by thé ;‘d:c'iitionnc;f‘ WAIT ,

cycles. The extra clock cycles allow for slower
peripheral operation. .

The status lines indicate whether the access
is to the Standard I/O (0010) or Special I/O
(0011) Address Spaces. The N/S line is always .
Low, indicating system mode. The I/O address
is found on ADy-AD)5 when AS rises. Since
the I/O address is always 16 bits long, the seg-
ment number lines are undefined on Z8001
CPUs. For byte transfers (B/W = High) in
Standard I/O space, addresses must be odd;
for byte transfers in Special 1/O space,
addresses must be even.

Word data (B/W = Low) to or from the CPU
is transmitted on ADy-AD,5. Byte data
(B/W = High) is transmitted on ADy-AD; for
Standard I/O and on ADg-AD5 for Special
I/O. This allows peripheral devices or CPU
support devices to attach to only eight of the
16 ADp-AD5 lines. The Read/Write line (R/W)
indicates the direction of the data transfer:
peripheral-to-CPU (Read: R/W = High) or
CPU-to-peripheral (Write: R/W = Low).

16-BIT Z-BUS DATA PATH

ADs AD; ADg

BUS DRIVER RECEIVERS 1

ADg—-ADqs

SNo-SN7

Do

UPPER
BYTE
BANK

{EVEN ADDRESS)

D7

B/iW

LOWER
BYTE
BANK
(ODD ADDRESS)

ENABLE

ﬁ

Figure 9-4. Memory Organization

9-6

26-0001-0964

9-4. Trans-
actions
(Continued)

9.4.4 EPU Transfer Transactions. These trans-

actions move data between the CPU and an
Extended Processing Unit (EPU), thus allowing
the CPU to transfer data to or from an EPU or
to read or write an EPU's Status Registers.
They are generated during the execution of
the EPA instruction.

EPU transfer transactions have the same
form as memory transactions (Figure 9.3) and
thus are three clock cycles long, unless
extended by WAIT. No address is generated,
and there is only one status code that can be
used on the STy-ST; lines (1110). In a multiple

——

J EPU s};stéfh, the EPU which ié to parﬁéip&te in

a transaction is selected implicitly, as
described in Section 9.5, rather than by an
address. S :

The data transferred is 16-bit words
(B/W = Low), except for transfers between the
Flags byte of the FCW and an EPU. In this
case, a byte of data is transferred on ADy-AD;
(B/W = High). The Read/Write line (R/W)
indicates the direction of the data transfer. The
N/S line indicates either system mode (Low) or
normal mode (High).

Twa Ts

cLock q q DATA SAMPLED
— FOR READ
S MPLED WAIT CYCLES ADDED
STATUSES
(BIW, ST¢-ST3)

NS

Low

TN

MREQ

HIGH

)
AD
INPUT X:onunnness _ ’). ______
DS
INPUT

RIW
INPUT

KPORT ADDRESS X

AD
OUTPUT

DATA OUT

DS
OUTPUT

M

RIW
OUTPUT

Figure 9-5. Input/Output Transaction

C8002-0283

9-4. Trans-

actions
(Continued)

E
INTERNAL \’\
[T])

9.4.5 Interrupt/Trap Acknowledge Trans-

actions. These transactions acknowledge an
interrupt or tap and read a 16-bit identifier
word from the device that generated the inter-
rupt or trap. The transactions are generated
automatically by the hardware when an inter-
rupt or segment trap is detected.

These transactions are eight clock cycles
long at @ minimum (as shown in Figure 9-6),
having five automatic WAIT cycles. The
WAIT cycles are used to give the interrupt pri-
ority daisy chain (or other priority resolution
device) time to settle before the identifier word
is read. (Consult the Z-Bus Summary for more
information on the operation of the priority
daisy-chain).

The status lines identify the type of excep-
tion that is being acknowledged. The possibil-
ities are Segment Trap (0100), Non-Maskable
Interrupt (0101), Non-Vectored Interrupt
(0110), and Vectored Interrupt (0111). No
address is generated. The N/S line indicates

System mode (Low), the R/W line indicated

Read (High), and the B/W line indicates
Word (Low).

 The only item of data transferred is the
indentifier word, which is always 16 bits long
and is captured from the ADO-AD&lines on
the falling clock edge just before DS is
raised High.

As shown in Figure 9-6, there are two places
where WAIT is sampled, and thus a WAIT
cycle may be inserted. The first serves to delay
the falling edge of DS to allow the daisy chain
a longer time to settle, and the second serves
to delay the point at which data is read.

9.4.6 Internal Operations and Refresh Trans-
actions. There are two kinds of bus trans-
actions made by the CPU that do not transfer
data: internal operations and memory refresh.
Both transactions look like a memory trans-
action, except that Data Strobe remains High
and no data is transferred.

STATUS

LAST MACHINE INSTRUCTION
CYCLE OF ANY FETCH IF,
INSTRUCTION (ABORTED)
T T T T eesssnssns T M T

ACKNOWLEDGE
CVCLE SAVING
AUTOMATIC WAIT STATES

Tus Ywa Twa Twa Twa Ty T Ts

WAIT SAMPLE IDENTIFIER SAMPLED

/ \\/ \\

WAIT CYCLES ADDED

ACKNOWLEOGE

N____ /T
o

Figure 9-6. Interrupt and Segment Trap Request and Acknowledge Transition.

9-8

C8002-0290

2

P

9-4. Trans- For internal operation transaction (shown in refresh mechanism as described in Chapter 8
actions Figure 9.7), the Address and Segment Number and can come immediately after the final clock
(Continued) lines contain arbitrary data when the Address cycle of any other transaction. The memory
Strobe goes High. The R/W line indicates refresh counter’s 9-bit ROW field is output on
Read (High); the B/W line is undefined, and ADy-ADg during the normal time for
N/S is the same as for the immediately addresses. This transaction can be used to
preceding transaction. This transaction is initi- generate refreshes for dynamic RAMs. The
ated to maintain a minimum transaction rate value of N/S, R/W, and B/W is the same as for
while the CPU is doing a long internal the immediately preceeding transaction.
operation. WAIT is not sampled during internal opera-
A memory refresh transaction (shown in tion or refresh cycles.
Figure 9.8) is generated by the Z8000 CPU'’s
Ty T2 T)
CLOCK | I I
WAT
STo-STy L INTERNAL OPERATION
i ___/
AD UNDEFINED “)——
WREQ, 53, RIW HiGH
BIW UNDEFINED
Nl; SAME AS PREVIOUS CYCLE
Figure 9-7. Internal Operation Timing
CLoCK l L I
WAIT
$To-8T3 X REFRESH x
AS \ /
WREG \ /
AD AEFRESH ADDRESS Yo wm mm e — — oo it s o e e e o o] _.<
oS
/W, BIW, NI§} SAME AS PREVIOUS CYCLE
Figure 9-8. Memory Refresh Timing
C8002-0293 C8002-0294 9-9

9.5 CPU and

A 78000 CPU and one or more Extended

Extended Pro- Processing Units (EPUs) work together like a

cessing Unit
Interaction

single CPU component, with the CPU pro-
viding address, status and timing signals and
the EPU supplying and capturing data. The
EPU monitors the status and timing signals out-
put by the CPU so that it will know when to
participate in a memory or EPU transfer trans-
action. When the EPU is to participate in a
memory transaction, the CPU puts its AD lines
in 3-state while DS is Low, so that the EPU may
use them.

In order to know which transaction it is to
participate in, the EPU must track the follow-
ing sequence of events:

B When the CPU fetches the first word of an
instruction (ST3-STg = 1101), the EPU must
also capture the instruction returned by
memory. If the instruction is an extended
instruction, it will have an ID field which
indicates (along with the second instruction)
whether or not the EPU is to execute the
instruction.

m If the instruction is tc be executed by the
EPU, the next non-refresh transaction by the
CPU will fetch the second word on the
instruction (ST3-STy = 1100). The EPU

must also capture this word.

B f the first word of the instruction indicates
the immediate addressing mode, the next
one to 16 non-refresh transactions by the
CPU will fetch the immediate data
(ST3-STp = 1100, R/W = High,

B/W = Low) one word at a time.

B If the instruction involves a read or write to
memory, there will be zero or more program
fetches by the CPU (ST3-STy = 1100) to
obtain the address portion of the extended
instruction. The next one to 16 non-refresh
transactions by the CPU will transfer data
between memory and the EPU
(ST3-STg = 1000, 1001, 1010, or 1011). The

EPU must supply the data (erte RW Low)
or capture the data (Read R/W High) for
each transaction, just as if it were part of

“the CPU. In both cases, the CPU will 3-state
its AD lines while data is being transferred
(DS Low). EPU memory transfers are always
word-oriented (B/W Low).

® If the instruction involves a transfer between
the CPU and EPU, the next one to 16 non-
refresh transactions by the CPU will transfer
data between the EPU and CPU
(ST3-STp=1110).

Note that in order to follow this sequence, an
EPU will have to monitor the BUSACK line to
veritythat the transaction it is monitoring on
the bus was generated by the CPU. It should
also be noted that in a multiple EPU system,
there is no indication on the bus as to which
EPU is cooperating with the CPU at any given
time. This must be determined by the EPUs
from the extended instructions they capture.

A final aspect of CPU-EPU interaction is the
use of the CPU’s STOP pin. When an EPU
begins to execute an extended instruction, the
CPU can continue fetching and executing
instructions. If the CPU fetches another
extended instruction before the first one has
completed execution, the EPU must activate
the CPU’s STOP pin to stop the CPU (as
described in Section 9.7) until the instruction
completes execution.

Besides determining whether or not to par-
ticipate in the execution of an EPA instruction,
the EPU must determine frdm the first two
instruction words '

s Whether or not a memory access will be
made and how many words of instruction
will be fetched before the data is
transferred.

a The number of words of data to be trans-
ferred for memory or EPU-CPU transfers.

9.6 Requests

There are three kinds of request signals that
the Z-Bus supports and the Z8000 CPU par-
ticipates in. These are

m [nterrupt/Trap requests, which another
device initiates and the CPU accepts and
acknowledges.

m Bus requests, which another potential bus
master initiates and the CPU accepts and
acknowledges.

m Resource requests, which any device
capable of implementing the request pro-
tocol (usually the CPU) can request. No
component has control of the resource by
default.

The CPU supports an additional request
beyond those of the Z-Bus:

m Stop request, which another device initiates
and the CPU accepts.

When a request is made, it is answered
according to its type: for interrupt/trap
requests, an interrupt/trap acknowledge trans-
action is initiated (Section 9.4.4); for bus
requests, an acknowledge signal is sent (Sec-
tions 9.6.2 and 9.6.3); for Stop request, the
CPU enters the Stop/Refresh state. In all cases
except Stop, the Z-Bus provides for a daisy-
chain priority mechanism to arbitrate between
simultaneous requests.

9-10

9-6. Requests

9.6.1 Inferrupt/ Trap Request. The Z8000 CPU

B The next machine cycle is the interrupt

(Continued) supports three interrupts and one external trap acknowledge transaction (see Section 9.4.4)
(segment trap) as shown in Figure 9.6. The that results in an identifier word from the
Interrupt Request line (INT) of a device that is highest-priority interrupting device being

\ capable of generating an interrupt may be tied read off the AD lines.
fo any of the three ZBQOO interrupt pins (NMI, m This word, along with the program status
NVI, VD' Severall devices can l?e conr.lec?ted to information, is stored on the system stack,
one pin, the devices arranged in a priority and new status information is loaded (see
daisy chain (see the Z-Bus Summary). The seg- Chapter 7).
ment trap pin (SEGT) is activated by the))
memory management hardware. The CPU uses For more information about the system-level
the same protocol for handling requests on any aspects of the interrupt structure, consult the
of these pins. Here is the sequence of events Z’BUS Sunv'zmazv' Y-
that is followed: _ 9.6.2 Bus Request. To generate transactions
® Any High-to-Low transition on the NMI on the bus, a potential bus master (such as the

input is asynchronously edge-detected, and DMA Controller) must gain control of the bus
the internal NMI latch is set. At the begin- by making a bus request (shown in Figure
ning of the last clock cycle in the last 9.9). A bus request is initiated by pulling
machine cycle of any instruction, the VI, BUSREQ Low. Several bus requesters may be
NVI, and SEGT inputs are sampled along wired to the BUSREQ pin; priorities are
with the state of the internal NMI latch. resolved externally to the CPU, usually by a
m [f an interrupt or trap is detected, the sub- priority daisy chain (W'B,”S Summoary).
N) . The asynchronous BUSREQ signal generates
sequent initial instruction fetch cycle is . bt o
exercised, but aborted. (Thus, AS falls and an internal B-L&EQ’ which is synchronous. If
rises. but lDS does not.) ! the external BUSREQ is Low at the beginning
- ANY M CYCLE - BUS AVAILABLE ——————m—
T T2 T3 Tx Tx Tx Tx Tx Tx
CLOCK q -————
. BUSRE@ \ /
INTERNAL
BUSREQ
BUSACK \
xS \ / [I AN —————t
SN ‘).__. _______________ .<
AD b e e ———— _<
¥ 4
MREQ, DS,
-ST3, — e o = | FpE— _<
B'w,sn':ow’s:lag ')- SAME AS PREVIOUS CYCLEX
Figure 9-9. Bus Request/Acknowledge Timing
C8002-0291 9-11

1

9-6. Requests of any machine cydle, the internal

{Continued) = BUSREQ will cause the bus acknowledge line
(BUSACK) to be asserted after the current
machine cycle is completed. The CPU then
enters Bus-Disconnect state and gives up con-
trol of the bus. All CPU Output pins, except
BUSREQ and MO, are 3-stated.

The CPU regains control of the bus two
clock cycles after BUSREQ rises. Any device
desiring control of the bus must wait at least
two cycles after BUSREQ has risen before
pulling it down again.

9.6.3 Resource Request. The CPU generates
resource requests by executing the Multi-Micro
Request (MREQ) instruction. The CPU tests the
availability of the shared resource by examin-
ing MI. If MI is High, the resource is
available, otherwise the CPU must try again
later. The MO pin is used to make the resource
request. MO is pulled Low, then, after a delay

for arbitration of priority, MI is tested again. If
it is Low, the CPU has control of the resource;
it it is still High, the request was not granted.
In the case of failure, MO must be deactivated.
But if successful, MO must be kept active until .~
the CPU is ready to release the resource d
whereupon MO is deactivated by an MRES
instruction.

The Z-Bus Summary describes an arbitration
scheme that is implemented with a resource
request daisy chain.

9.6.4 Stop Request. As shown in Figure 9-10,
the STOP pin is normally sampled on the fall-
ing clock edge immediately preceding an ini-
tial instruction fetch cycle. If STOP is found
Low, the CPU enters Stop/Refresh state and a
stream of memory refresh cycles is inserted
after the third clock cycle in the instruction
fetch. The ROW field in the Refresh Counter is

incremented by two after every refresh cycle.

1 |
T) s ' Tn Ton T

cLock % | l | | | | | l | | I l | .
STOP SAMPLED

XX

= _/ \/
w e - Q)— e

INSTRUCTION

REFRESH -
ADDRESS

N/

MEMORY REFRESH X

HIGH

Figure 9-10. Stop Timing

C8002-0292

-

9-6. Requests
(Continued)

When STOP is found High again, 'the next
refresh cycle is completed, then the original
instruction fetch continues.

If the EPA bit in the FCW is set (indicating
an EPU is in the system), the STOP line is also
sampled on the on the falling clock edge
immediately preceding the second word of an

instruction fetch—if the first word indicates an
extended instruction. Thus, the STOP line may
be used by an EPU to deactivate the CPU
whenever the CPU fetches an extended
instruction before the EPU has finished pro-
cessing an earlier one. The STOP line may
also be used to externally single-step the CPU.

9.7 Reset

AD

MREQ

$To-5T

BUSACK

Mo

A hardware reset puts the Z8000 in a known
state and initializes selected control registers
of the CPU to system specifiable values (as
described in Chapter 7). A reset will begin at
the end of any clock cycle, if the RESET line
is low.

A system reset overrides all other operations
of the chip, including interrupts, traps, bus
requests and stop requests. A reset should be
used to initialize a system as part of the power-
up sequence.

Within five clock cycles of the RESET line
becoming low (Figure 9-11) ADy-AD;5 are

3-stated; AS, DS, MREQ, BUSACK, and
MO are forced High; and STp-STy and
SNg-SNg are forced low. The R/W, B/W and
N/S lines are undefined. Reset must be held
low at least five clock cycles.

After RESET has returned High for three
clock cycles, consecutive memory-read trans-
actions are executed in the system mode to ini-
tialize the Program Status Registers. These cor-

respond to the memory accesses described in
Chapter 7.

EX, [2°]

\ ALL LOW

gigl
G-
\/
N U o
—\

L NN PN

Figure 9-11. Reset Timing

C8002-0295

9-13

