
Z8000™ CPU

Technical Manual

January 1983

Z8000 CPU
Technical Manual

CopyrIght 1983 by ZJ!og, Inc. All rights reserved. No part of
this pubhcation may be reproduced wIthout the written
permiSSIOn of Zilog, Inc.
The mformation m thIs pubhcahon is subject to change
without notice.

Table Of Contents

Chapter 1. Z8000 Processor Overview

1.1 Introduction •
1.2 General Organization.
1.3 Architectural Features

1.3.1 General-Purpose Register file
1.3.2 Instruction Set
1.3.3 Data Types
1.3.4 Addressing Modes
1.3.5 Multiple Memory Address Spaces
1.3.6 System and Normal and Modes of Operation
1.3.7 Separate I/O Address Spaces
1.3.8 Interrupt Structure
1.3.9 Multi-Processing
1.3.10 Large Address Space for the l8001 and l8003
1.3.11 Segmented Addressing
1.3.12 Memory Management •
1.3.13 Virtual Memory Capability

1.4 Benefits of the Architecture

1.4.1 Code Density
1.4.2 Compiler Efficiency
1.4.3 Operating System Support
1.4.4 Support for Many Types of Data Structures
1.4.5 Four CPU Versions: Differences

1.5 Extended Instruction Facility
1.6 Summary

Chapter 2. Architecture

2.1 Introduction. •
2.2 General Organization
2.3 Hardware Interface.

2.3.1 Address/Data Lines
2.3.2 Segment Number (l8001 and 18003 only)
2.3.3 Bus Timing
2.3.4 Status Lines
2.3.5 CPU Control
2.3.6 Bus Control
2.3.7 Interrupts
2.3.8 Segment Trap Request (18001 and Z8003 only)
2.3.9 Multi-Micro Control
2.3.10 System Inputs

2.4 Timing
2.5 Address Spaces

1-1
1-1
1-1

1-2
1-2
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-5

1-5

1-6
1-6
1-6
1-7
1-7

1-8
1-8

2-1
2-1
2-3

2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5

2-5
2-6

I

2

iii

Table of Conlenls (Continued)

2.5.1
2.5.2
2.5.3

Memory Address Space
Address Space in Segmented or
I/O Address Space • • • • • •

2.6 General-Purpose Registers
2.7 Special-Purpose Registers

2.7.1
2.7.2
2.7.3

Program Status Registers
Program Status Area Pointer
Refresh Register

2.B Instruction Execution
2.9 Instructions •••

2.9.1 Instruction Formats

2.10 Data Types •
2.11 AddreSSing Modes •
2.12 Extended Processing Architecture
2.13 Exceptions •

2.13.1 Reset
2.13.2 Traps
2.13.3 Aborts
2.13.3 Interrupts

Segmented/Paged Virtual Memory Systems

2.13.4 Trap and Interrupt Service Procedures

Chapter 3. Address Spaces

3.1 Introduction •
3.2 Address Spaces, Subcategories
3.3 I/O Address Space
3.4 Memory Address Spaces

3.4.1 Addressable Data Elements
3.4.2 Segmented and Nonsegmented Addresses
3.4.3 Segmentation and Paging Memory Management

Chapter 4. CPU ~vration

4.1 Introduction
4.2 Operating States

4.2.1 Running St ate
4.2.2 Stop/Refresh State
4.2.3 Bus-Disconnect State
4.2.4 Effect of Reset

4.3 Instruction Execution

4.3.1 Running-State Mode

iv

2-6
2-6
2-6

2-7
2-7

2-7
2-10
2-10

2-10
2-10

2-11

2-12
2-12
2-12
2-13

2-13
2-n
2-13
2-n
2-13

3-1
3-1
3-2
3-2

3-2
3-3
3-3

4-1
4-1

4-1
4-2
4-2
4-2

4-2

4-4

2

3

4

4.3.2 Segmented and Nonsegmented Modes
4.3.3 Normal and System Modes

4.4 Extended Instructions

Chapter 5. Addressing ~des

5.1 Introduction.
5.2 Use of CPU Registers •
5.3 Short Encoding of Segmented Addresses in Instructions
5.4 Addressing Mode Descriptions •
5.5 Descriptions and Examples (Nonsegmented lS002 and lS004)

5.5.1
5.5.2

Register (R)
Immediate (1M)

5.5.3 Indirect Register (IR)
5.5.4 Direct Address (DA)
5.5.5 Index (X)
5.5.6 Relative Address (RA)
5.5.7 Sase Address (BA)
5.5.S Base Index (BX)

5.6 Descriptions and Examples (Segmented lS001 and ZS003)

5.6.1 Register (R)
5.6.2 Immediate (1M)
5.6.3 Indirect Register (IR)
5.6.4 Direct Address (DA)
5.6.5 Index (X)
5.6.6 Relative Address (RA)
5.6.7 Base Address (BA)
5.6.S Base Index (BX)

Chapter 6. Instruction Set

6.1 Introduction.
6.2 Functional Summary

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.S

Load and Exchange Instructions
Arithmetic Instructions •
Logical Instructions
Program Control Instructions
Bit Manipulation Instructions
Rotate and Shift Instructions
Block Transfer and String Manipulation Instructions
Input/Output Instructions

6.2.9 CPU Control Instructions
6.2.10 Extended Instructions.
6.2.11 Privileged Instructions.

4-4
4-4

4-6

5-1
5-1
5-3
5-3
5-3

5-3
5-4
5-4
5-4
5-5
5-5
5-6
5-7

5-S

5-S
5-S
5-S
5-9
5-10
5-11
5-11
5-12

6-1
6-1

6-1
6-2
6-3
6-4
6-5
6-5
6-6
6-7
6-S
6-S
6-9

4

5

6

v

Table Of Contents (Continued)

6.3 Processor Flags
6.4 Condition Codes
6.5 Instruction Interrupts and Traps
6.6 Notation and Binary Encoding •
6.7 lSOOO Instruction Descriptions and Formats
6.S EPA Instruction Templates

Chapter 7. Exceptions

7.1 Introduction
7.2 Interrupts.

7.2.1 Non-Maskable Interrupt (NMI)
7.2.2 Vectored Interrupt (VI) •••

7.2.3 Nonvectored Interrupts (NVl)

7.3 Traps

7.4
7.5

7.3.1 Extended Instruction Trap
7.3.2 Privileged Instruction Trap
7.3.3 System Call Trap ., •••
7.3.4 Segment/Address Violation Trap (ZS001 and lB003 only)
7.3.5 Abort Trap (ZB003 and lB004 only)

Abort Instruction Function •
Reset

7.6 Interrupt Disabling ••••
7.7 Interrupt and Trap Handling

7.7.1
7.7.2
7.7.3
7.7.4
7.7.5

Acknowledge Cycle
Status Saving
Loading New Program Status
Executing the Service Routine
Returning from an Interrupt or Trap

7.B Priority

Chapter 8. Refresh

B.1 Introduction
S.2 Refresh Cycles
B.3 Periodic Refresh
B.4 Stop-State Refresh

Chapter 9. External Interface

9.1 Introduction
9.2 Bus Operations
9.3 CPU Pins

vi

6-9 6 6-10
6-10
6-11
6-13
6-170

7
7-1
7-1

7-1
7-1
7-1

7-1

7-2
7-2
7-2
7-2
7-2

7-2
7-2
7-3
7-3

7-3
7-3
7-4
7-6
7-6

7-6

8
B-1
B-1
B-1
B-2

9
9-1
9-1
9-1

9.3.1 Transaction Pins ••
9.3.2 Bus Control Pins ••
9.3.3 Interrupt/Trap Pins
9.3.4 Multi-Micro Pins
9.3.5 CPU Control

9.4 Transactions

9.4.1 WAIT •••••••
9.4.2 Memory Transactions
9.4.3 I/O Transactions
9.4.4 EPU Transfer Transactions
9.4.5 Interrupt/Trap Acknowledge Transactions
9.4.6 Interrupt/Trap Request and Acknowledge Operations
9.4.7 Internal Operations and Refresh Transactions

9.5 CPU and Extended Processing Unit Interaction
9.6 Requests ••••

9.6.1 Interrupt/Trap Request
9.6.2 Bus Request •••
9.6.3 Resource Request
9.6.4 Stop Request

9.7 Abort Request
9.B Reset

Chapter 10. Progr~ng Techniques

10.1 Introduction
10.2 Data Types
10.3 Addressing Modes
10.4 Stacks
10.5 Condition Codes •
10.6 Position-Independent Programs
10.7 Subroutines ••••
10.B Re-Entrant Programs
10.9 Context Switching
10.10 Interrupts
10.11 Initialization
10.12 Programming for both Segmentation Modes
10.13 Programming Examples •••••••

10.13.1 Adding an Array of Numbers
10.13.2 Determining the Parity of a Byte String
10.13.3 Accessing an Array Larger than 65,536 Bytes
10.13.4 Removing Trailing Blanks •••••
10.13.5 Determining Whether a 16-Bit Word Is a Palindrome
10.13.6 Sorting •••••••
10.13.7 Polynomial Evaluation ••••••••••••••

9-2 9 9-3
9-3
9-3
9-3

9-3

9-5
9-6
9-6
9-B
9-B
9-10
9-10

9-12
9-14

9-14
9-15
9-15
9-15

9-1B
9-1B

10
10-1
10-1
10-2
10-5
10-9
10-12
10-14
10-16
10-19
10-20
10-20
10-21
10-22

10-22
10-24
10-25
10-29
10-30
10-31
10-36

vii

Table of Contents (Continued)

10.14 Pseudo-Random Number Generation. •• 10-38

Appendix A. 18000 CPU Pin FlD:tion muI AssigMent Illustrations A-1

Appendix B. Applicable Briefs .

Z8003/4 VMPU Virtual Memory Processing Unit
Z8010 MMU Memory Management Unit •••••
Z8015 PMMU Paged Memory Management Unit ••
Z8030 Z-SCC Serial Communications Controller
Z8036 Z-CIO Counter Timer and Parallel I/O Unit
Z8038 Z-FIO FIFO Input/Output Interface Unit
Z8060 FIFO Buffer Unit and Z-FIO Expander •
Z8090 Z-UPC Universal Peripheral Controller
Z-BUS Component Interconnect

Appendix C. Reference Material

8-1

B-1
B-3
B-5
B-7
B-9
B-10
B-13
B-15
B-17

C-1

Appendix D. Software Requirnents for Restarting A 1B003/4 Aborted Instruction D-1

Glossary G-1

Index 1-1

List of Illustrations

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Figure 5-1
Figure 5-2

Figure 7-1
Figure 7-2

viii

Z8000 CPU Functional Block Diagram
18000 System Configuration
18000 Pin Functions
Basic Timing Periods •
18000 General Purpose Registers
CPU Special Purpose Registers
Instruction Formats

Address Spaces on the 18000 CPUs
Addressable Data Elements •
Segmented and Non-Segmented Address Formats
Segmented Address Translation

Operating States and Transitions
Program Status Registers
Instruction Look-Ahead
General Purpose Registers

Addressing Modes
Segmented Memory Address Within Instruction

Format of Saved Program Status in the System Stack
Program Status Area

2-1
2-2
2-3
2-5
2-8
2-9
2-11

3-1
3-2
3-3
3-4

4-1
4-3
4-4
4-5

5-2
5-3

7-4
7-5

Figure 8-1

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 9-11
Figure 9-12

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6

Refresh Control Register

Pin Functions
Transaction Timing
Memory Read and Write Transaction
Memory Organization •
Input/Output Transaction
Segment/ Address Translation Trap Interrupt Request and Acknowledge
Internal Operation Timing
Memory Refresh Timing
Bus Request/Acknowledge Timing
Stop Timing
Abort Request Timing
Reset Timing

Indirect Register Addressing
Index Addressing
Base Addressing
Base Index Addressing
Accumulation of Words within a Fixed Buffer and on a Stack
Examination of Words in the Order Received

Figure 10-7 Test Instructions •
Figure 10-8 Example with LO@RR4, RO Instruction
Figure 10-9 Testing an ASCII Character •
Figure 10-10 Using SC-Dispatch Routine to Change to a Saved FCW
Figure 10-11 Assembled Version of Subroutine TSTHEX
Figure 10-12 Stack for Passing Arguments
Figure 10-13 Subroutine SQRT
Figure 10-14 Re-entrant MULTEN Routine, a Calling Program, and an Interrupt-

Processing Program • •
Figure 10-15 Initial Values for Registers
Figure 10-16 Values After Call to MULTEN from 102
Figure 10-17 Status Before the Interrupt
Figure 10-18 Status Immediately Following the Interrupt
Figure 10-19 Current and Saved Contents for MULTEN
Figure 10-20 Final Values for MULTEN Routine
Figure 10-21 Saving Contents of Fixed Locations Onto Stack
Figure 10-22 Segmented vs. Nonsegmented Code •
Figure 10-23 Assembled Code for Segmented and Nonsegmented Examples
Figure 10-24 Addition Subroutine
Figure 10-25 Determination of Parity of a Byte String
Figure 10-26 Accessing Arrays Larger Than 64K Bytes
Figure 10-27 Memory Mapping
Figure 10-28 Memory Mapping Subroutine
Figure 10-29 Flexible Memory Mapping Subroutine
Figure 10-30 Removing Trailing Blanks •
Figure 10-31 Test for Bit Palindromes Subroutine
Figure 10-32 A Poor Alternative to the Use of TCC
Figure 10-33 Sort Subroutine Quicksort Initialization
Figure 10-34 Quicksort Subroutine to Position Shorter Range First
Figure 10-35 Quicksort Partitioning Subroutine

8-1

9-2
9-4
9-7
9-8
9-9
9-11
9-12
9-13
9-16
9-17
9-19
9-20

10-2
10-3
10-4
10-5
10-6
10-7
10-10
10-10
10-11
10-12
10-13
10-15
10-15

10-16
10-17

10-17
10-17
10-17
10-18
10-18
10-19
10-21
10-21
10-22
10-24
10-26
10-26
10-27
10-27
10-29
10-30
10-31
10-32
10-32
10-33

ix

Table Of Coaleals (Continued)

Figure 10-36 Quicksort Subroutine for Moving I and J ••• • • • •
Figure 10-37 Quicksort Subroutines for Pivot Setting and Comparison
Figure 10-38 Quicksort Exchange Subroutines • • • • • • • •
Figure 10-39 Subroutine To Perform Polynominal Evaluations
Figure 10-40 Multiply and Check Subroutine
Figure 10-41 Random filumber Generator •••••••••••

List of Tables

Table 2-1
Table 4-1
Table 7-1
Table 9-1

St atus Line Codes
Registers Accessed by References to R14 and R15
PC Value Pushed for Each Interrupt or Trap
Status Codes • • • • • • • • • • • • • • • • • •

10-33
10-34
10-34
10-36
10-37
10-38

2-4
4-5
7-4
9-5

1.1 INTRODUCTION

n,is chapter provides a summary description of the
advanced architecture of the ZBOOO microprocessors
with special attention given to those archi­
tectural features that set the ZBOOO CPUs apart
from their predecessors. A complete overview of
the architecture is provided in Chapter 2, with
detailed descriptions of the various aspects of
the processor provided in succeeding chapters.

1.2 GENERAl ORGANIZATION

lilog 's lBOOO microprocessors have been designed
to accommodate a wide range of applications, from
the relatively simple to the large and complex.
The ZBOOO CPUs are offered in four versions: the
ZB001, the lB002, the lB003, and the lB004. The
CPUs come with an entire family of support
components: two memory management units, a DMA
controller, serial and parallel I/O controllers,
and extended processing units--all compatible with
lHog's Z-BUS. Together with other ZBOOO Family
components, the advanced CPU architecture in an
LSI microprocessor design provides the flexibility
and the features usually asaociated with a mini­
or mainframe computer.

The major architectural features of the l8000 CPU
that enhance throughput and processing power are a
general purpose register file, System and Normal
modes of operation, multiple addressing spaces, a
powerful instruction set, numerous addressing
modes, multiple stacks, flexible interrupt
structure, a rich set of data types, and separate
I/O address spaces. In addition the ZB001 and
lB003 offer a large address space and segmented
memory addressing. Both the lB003 and lB004 CPUs
include provisions for the implementation of
virtual memory systems, and enhanced test and set
operations.

These architectural features combine to produce a
powerful, versatile microprocessor. The benefits
that result from these features are code density,
compiler efficiency and support for typical
operating system operations and complex data

Chapter 1
18000 Processor Overview

structures. These topics are treated in Section
1.3.

The ZBOOO CPUs have been designed so that a
powerful memory management system (discussed in
Section 1.3.12) can be used to improve the
utilization of the main memory, to implement a
virtual memory system, and to provide protection
capabilities for the system. Although memory
management is an optional capability-the Z8000 CPU
is a powerful processor without it-the CPU has
explicit features to facilitate integrating an
external memory management device into a Z8000
system configuration.

Finally, care has been taken to provide a general
mechanism for extending the basic instruction set
through the use of external devices (called
Extended Processing Units--EPUs). In general, an
EPU is dedicated to performing comp lex and
time-consuming tasks so as to unburden the
system's CPU. Typical tasks for specialized EPUs
include floating-point arithmetic, data base
search and maintenance operations, and network
interfaces. nlis topic is treated in Section 1.5.

The overall design of the 1BOOO CPUs provides the
user with a powerful, low-cost, highly adaptable,
CPU in a 40 or 4B-pin package.

1.' ARCHITECTURAl FEATURES

The architectural resources of a 18000 CPU include
sixteen 16-bit general-purpose registers, seven
data types ranging from bits to 32-bit long words,
to word and byte strings, eight user-selectable
addressing modes, and an instruction set more
powerful than that of most minicomputers. The 110
distinct instruction types combine with the
various data types and addressing modes to form a
set of 414 instructions. Moreover, the
instruction set exhibits a high degree of
regularity: more than 901"0 of the instructions can
use any of five main addressing modes with B-bit
byte, 16-bit word, and 32-bit long-word data
types.

1-1

ZBOOO Processor Overview

The CPUs generate output status signals that
indicate the nature of the bus transaction that is
being attempted. These signals can be used to
implement systems with multiple address spaces-­
memory areas dedicated to specific uses. The CPUs
also have two operating modes, System and Normal,
which can be used to separate operating system
functions from normal applications processes. I/O
operations have been separated from memory
accesses, further enhancing the capability and
integrity of lBOOO-based systems, and a flexible
interrupt structure facilitates the efficient
operation of peripheral I/O devices. Moreover,
the Extended Processing Unit (EPU) capability of
the ZBOOO allows CPUs to unload time-consuming
tasks onto external devices.

Special features have been introduced to
facilitate the implementation of multiple
processor systems. In addit ion, the ZB001 and
lB003 CPUs have a large addressing capability that
greatly extends the applicability of micro­
processors to large system applications.

1.3.1 General-Purpose Register file

The heart of the lBOOO CPU architecture is a file
of sixteen 16-bit general-purpose registers.
These general-purpose registers give the lBOOO its
power and flexibility and add to its regular
structure.

General-purpose registers can be used as
accumUlators, memory pointers, or index
registers. Their major advantage is that, as the
needs of the program change, the particular use to
which they are put can vary during the course of a
program. Thus the general-purpose register file
avoids the critical bottlenecks of an implied or
dedicated register architecture, in which the
contents of dedicated registers must be saved and
restored when more registers of a particular type
are needed than are supplied by the processor.

The lBOOO CPU register file can be addressed in
several ways! as 16 byte registers (occupying the
upper half of the file) or as 16 word registers,
or, by using the register-pairing mechanism, as
eight long-word (32-bit) registers or as four
quadruple-word (64-bit) registers. Because of
this register flexibility, registers can be used
efficiently in the lBOOO. For example, it is not
necessary for a 1BOOO user to dedicate a 32-bit
register to hold a byte of data.

1-2

1.3.2 Instruction Set

A powerful instruction set is one of the
distinguishing characteristics of the lBOOO. The
instruction set is one measure of the flexibility
and versatility of a computer. Having a qiven
operation implemented in hardware saves memory and
improves speed. In addition, completeness of the
available operations on a particular data type is
frequently more important than additional
instructions that are unlikely to affect per­
formance significantly. The ZBOOO CPU provides a
full complement of arithmetic, logical, branch,
I/O, shift, rotate, and string instructions. In
addition, special instructions have been included
to facilitate multiprocessing, multiple processor
configurations, and typical high-level language
and operating-system functions. The general
philosophy of the instruction set is two-operand
register-memory operations, which include, as a
special subset, register-register operations.
However, to improve code densit y, a few memory­
memory operations are used for string manipu­
lation. The two-address format reflects the most
frequently occurring operations (such as A <-- A +

B). Also, having one of the operands in a rapidly
accessible general-purpose register facilitates
the use of intermediate results generated during a
calculation.

The majority of operations deal with byte, word,
or long-word operands, thereby providing a high
degree of regularity. Compact, one-word instruc­
tions for the most frequently used operations,
such as branching short distances in a program,
are also included in the instruction set.

The instruction set contains notab le additions to
the standard repertoire of earlier micro­
processors. The Load and Exchange group of
instructions has been expanded to support oper­
ating system functions and conversion of existing
microprocessor programs. The usual arithmetic
instructons can now deal with higher-precision
operands, while hardware multiply and divide
instructions have also been added. The Bit
ManipUlation instructions can use calculated
values of assembled constants to specify the bit
position within a byte or word. The Rotate and
Shift instructions are considerably more flexible
than those of previous microprocessors. The
String instructions include one designed
specifically for translating between different
character codes. Multiple-processor configura­
tions are supported by special instructions.

1.3.3 Data Types

Many data types are supported by the IBOOO archi­
tecture. A data type is supported when it has a
hardware representation and instructions that
directly apply to it. New data types can always
be simulated in terms of basic data types, but
hardware support providas faster and more con­
venient operations. The basic data type is the
byte, which is also the basic addressable
element. The architecture also supports the
following data types: words (16 bits), long words
02 bits), byte strings, and word strings. In
addition, bits are fully supported and addressed
by number within a byte or word. BCD digits are
supported and represented as two 4-bit digits in a
byte. Arrays are supported by the Indexed
addressing mode (see 1.3.4 and Chapter 5). Stacks
are supported by the instruction set and by
external devices (Memory Management Units)
available to be used with the segmented IBOOO
CPUs.

1.3.4 Addressing Modes

The addressing mode, which is the wayan operand
is specified in an instruction, determines how an
address is generated. The IBOOO CPU offers eight
addressing modes. Together with the large number
of instructions and data types, they improve the
processing power of the CPU. The addressing modes
are Register, Immediate, Indirect Register, Direct
Addrass, Index, Relative Address, Base Address,
and Base Index. Several other addressing modes
including autoincrement and autodecrement are
implied by specific instructions, The first five
modes listed above are the basic addressing modes
that are used most frequently and apply to most
instructions having more than one addressing
mode. In the IB002 and IB004, Base Address and
Index modes are identical.

1.3.5 Multiple Mnory Address Spees

The IBOOO CPU facilitates the use of multiple
address spaces. When the ZBOOO CPU generates a
memory address, it also outputs signals indicating
the particular internal activity that led to the
memory request: instruction fetch, operand
reference, or stack reference. This information
can be used in two ways: to increase the memory
space available to the processor (for example, by
putting programs in one space and data in
another), or to protect portions of the memory and
allow only certain types of access (for example,

IBOOO Processor Overview

by allowing only instruction fetches from an area
designated to contain proprietary software). The
Memory Management Units (MMUs) have been designed
to provide precisely these kinds of protection
features by using the CPU-generated status
information.

1.3.6 Syst_ and Nor.al !tides of ~rstioo

All ZBOOO CPUs can run in either System mode or
Normal mode. In System mode, all instructions can
be executed and all CPU registers can be
accessed. This mode is intended for use by pro­
grams performing operating system functions. In
Normal mode, some instructions cannot be exacuted
(e.g., I/O operations), and the control registers
of the CPU are inaccessible. In general, this
mode of operation is intended for use by appli­
cation programs. This separation of CPU resources
promotes the integrity of the system, since pro­
grams operating in Normal mode cannot access those
aspects of the CPU that deal with time-dependent
or system-interface events.

Programs that produce erroneous results when
executing in Normal mode can usually reproduce
those errors for debugging purposes simply by re­
executing the program with its original data.
Programs using facilities available only in System
mode are more likely to encounter errors that are
due to timing considerations (e.g., based upon the
frequency of disk requests and disk arm­
position). Such problems are difficult to debug
because these errors are not easily reproduced.
Thus, a preferred method of program development is
to partition the task into a portion which can be
performed without those resources accessible only
in System mode (which will usually be the bulk of
the task) and a portion requiring system mode
resources. The classic example of this par-
titioning comes from current minicomputer and
mainframe systems: the operating system runs in
System mode and the individual users write their
programs to run in Normal mode.

To support the System/Normal mode dichotomy, there
are two copies of the stack pointer--one for a
System mode stack and another for a Normal mode
stack. These two stacks facilitate the task
switching involved when interrupts or traps
occur. To ensure that the Normal stack is free of
system information, the information savad on the
occurrence of interrupts or traps is always pushed
onto the System stack before the new program
status is loaded.

1-3

ZBOOO Processor Overview

1.J.7 Separate I/O Address Spaces

The ZBOOO architecture distinguishes between
memory and I/O spaces by providing specific I/O
instructions. This architectural separation
allows better protection and has more potential
for extension than "memory-mapped" I/O in which
I/O and memory references share the same address
space. There are two separate I/O address spaces:
Standard I/O and Special I/O. The main purpose of
these two spaces is to provide the lB010 MMU,
which is connected only to the high-order byte of
the AD bus, with its own I/O address space.

Memory-mapped I/O is still possib le at the
implementor's option. It can be implemented
simply by ignoring the I/O instructions.

1.J.a Interrupt Structure

The flexible interrupt structure of the ZBOOO
allows the processor to continue performing useful
work while waiting for peripheral events to
occur. The elimination of periodic polling and
idling loops (typically used to determine when a
device is ready to transmit data) increases
throughput.

The CPU supports three types of interrupt. A
nonmaskable interrupt represents an event that
requires immediate handling to preserve system
integrity. In addition, there are two types of
maskable interrupt: nonvectored interrupts and
vectored interrupts. The latter prov ide an
automatic call to interrupt processing routines,
depending on the vector presented by the
peripheral to the ZBOOO.

The ZBOOO has a priority system for handling
interrupts. Vectored interrupts have higher
priority than non-vectored interrupts among
devices attached to one of these interrupt lines;
priority is determined by a daisy chain built into
all Z-Bus peripherals. This priority scheme
allows the efficient control of many peripheral
devices in a ZBOOO system.

An interrupt causes information relating to the
currently executing program (program status) to be
saved on a special system stack with a code
describing the reason for tha interrupt. This
allows recursive task switches to occur while
leaving the Normal mode stack undisturbed by
system information. The address of the interrupt

1-4

processing routine and the associated contents of
the FCW Register (new program status) are loaded
from a special area in memory, the program status
area, designated by a pointer resident in the CPU.

The use of tha stack and of a pointer to the pro­
gram status area is a specific choice made to
allow flexibility in system design and to allow
architectural compatibility if new interrupts or
traps are added to the architecture.

1.J.9 Multi-Processing

The ZBOOO provides basic mechanisms that allow the
sharing of address spaces among di fferent micro­
processors. Large segmented address spaces and
the support for external memory management make
this possible. Also, a resource request bus is
provided which, in conjunction with software,
provides the exclusive use of shared critical
resources. A Test and Set instruction is also
provided for the management of access to shared
resources. This instruction and its associated
output status code are used to prevent more than
one processor from accessing a resource at the
same time. These mechanisms, and peripherals such
as tha Z-FIO (FIFO Input/Output Interface Unit),
have been designed to allow easy asynchronous
communication between different CPUs.

1.J.10 large Address Space for the
ZaOO1 and ZaOOJ

For many applications, a basic address space of
64K bytes is insufficient. A larger address space
increases the range of applications of a system by
permitting large, complex programs and data sets.
A large address space simplifies program and data
management. In addition, large address spaces and
memories reduce the need for minimizing program
size and permit the use of higher-level lan­
guages. The segmented versions of the ZBOOO
(ZBOOl and lB003) generate 23-bit addresses, for a
basic address space of B megabytes (BM or
B,JBB,60B bytes).

Both the ZB003 and IB004 CPUs also offer features
that aid the implementation of v irtual memory.
The ZB003, in particular, when used with the ZB01S
MMU which is designed for management of paged
virtual memories, can implement an apparently
unlimited amount of address space organized in
fixed-sized (2K byte) pages. This paged virtual
memory capability combines the benefits of a

large virtual address space (ease of programming)
with the benefits of a small physical memory (low
cost) •

1.}.11 Se~nted Addressing

The segmented versions of the lBOOO CPU (i.e.,
ZB001 and ZB003) divide each 25-bit addresses into
a 7-bit segment number and a 16-bit segment off­
set. The segment number serves as the logical
name of a segment; it is not altered by the
effective address calculation (by indexing, for
example). This corresponds to the way memory is
typically used by a program--one portion of the
memory is set aside to hold instructions, another
for data. In a segmented address space, the
instructions could reside in one segment (or
several different modules in different segments),
and each data set could reside in a separate
segment. One advantage of segmentation is that in
systems that use external memory management, it
speeds up address calculation and relocation.
Thus, segmentation allows the use of slower
memories than linear addressing schemes allow. In
addition, segments provide a convenient way of
partitioning memory so that each partition is
given particular access attributes (for example,
read-only). The l8000 approach to segmentation
(simultaneous direct access to the entire BM byte
address space) does not require the use of segment
registers or other forms of addressing overhead.

1.}.12 Moory ManageEnt

Memory management is used primarily for the
dynamic relocation, protection, and sharing of
memory. It offers the following advantages:
allowing a logical structure to the memory space
that is independent of the actual physical
location of data, protecting the user from mis­
takes, preventing unauthorized access to memory
resources or data, and protecting the operating
system from disruption by the users.

The addresses manipulated by the programmer, used
by instructions, and output by the segmented Z8000
CPU are called logical addresses. The external
memory management system takes the logical
addresses and transforms them into the physical
addresses required for accessing the memory. This
address transformation process is called
relocation. This process makes user software
independent 0 f the physical memory. Thus, the
user is freed from specifying where information is
actually located in the physical memory.

ZBOOO Processor Overview

The segmented ZBOOO CPUs support memory management
both with segmented addressing and with program­
status information. A segmented addressing space
allows individual segments to be treated differ­
ently.

Program status information generated by the CPU
permits an external memory management device to
monitor the intended use of each memory access.
Thus, illegal types of access can be suppressed
and memory segments can be protected from un-
intended or unwanted modes of use. ror example,
system tables could be protected from direct user
access. This added protection capability becomes
more important as microprocessors are applied to
large, complex tasks.

1.}.1} Virtual Memory Capability

Both the l800} and lB004 CPUs are prov ided with
features that support the use of a virtual memory
system. A virtual memory system permits programs
to reference an address space that exceeds the
size of main (physical) memory.

In virtual memory systems, high-speed main memory
is supported by medium and low-speed secondary
storage devices such as hard disks or floppy
disks. When the CPU in a virtual system issues an
address that references a location that
currently stored in main memory, the
operation must be aborted, a secondary

is not
current
storage

access must be performed to retrieve and load into
main memory block of memory containing the refer­
enced location. The mainstream program must then
be restarted at the point of interruption. The
secondary storage access and restart operations
are invisible to both the user and the executing
program. The system, therefore, appears to have a
memory that is not constrained by the physical
size of main memory.

The maximum size of virtual memory is determined
by the address structure used and by the
capabilities of the memory management system
used. Z110g provides a memory management chip
(Z8015) designed specifically to implement a paged
virtual memory system and a segmented MMU for
segmented virtual memory (see Appendix B).

1.4 BENEfITS Of THE ARCHITECTURE

The features a f the lBOOO Architecture combine to
provide several significant benefits:

1-5

zaooo Processor Overview

• high-density code
• efficient compilation
• operating system support
• structural data manipulations

1.4.1 Code Density

Code density affects both processor speed and
memory utilization. Compaction of code saves
memory space--an especially important factor in
smaller systems--and improves processor speed by
reducing the number of instruction words that must
be fetched and decoded. The zaooo offers several
advantages with respect to code density. Code
density is achieved in part by the use of special
"short" formats for certain instructions that
statistical analysis shows to be the most
frequently used. Short formats decrease the
amount of memory required to store instructions.

A "short offset" mechanism has been provided to
allow a 2-word segmented address to be reduced to
a single word; this format may be used by both
assemblers and compilers.

The largest reduction in program size (and con­
sequent increase in speed) results from the
consistent and regular structure of the archi­
tecture end from the powerful zaooo instruction
set--factors that substantially reduce the number
of instructions required for a task. The archi­
tecture is more regular than preceding
microprocessors, because its registers, addressing
modes, and data types can be used in an orderly
fashion. Any general-purpose register can be
specified as an accumulator, index register, or
base register. With a few exceptions, all basic
addressing modes can be used with all
instructions, as can the various data types.

General-purpose registers do not have to be
changed as often as special-purpose registers.
This too reduces program size, since frequent load
and store operations are not required.

1.4.2 Co.piler Efficiency

For microprocessor users, the transition from
assembly language to high-level languages allows
greater freedom from architectural dependency and
improves ease of programming. However, rather
than adapting the architecture to a particular
high-level language, the zaooo was designed as a
general-purpose microprocessor. (Tailoring a

1-6

processor for efficiency in one language often
leads to inefficiency in other languages.) For
the zaooo, language support has been provided
through the inclusion of features designed to
minimize typical compilation and code-generation
problems. Among these features is the regularity
of the zaooo addressing modes and data types.
Access to arguments and local variables on a
procedure stack is supported by the "Indexed With
Short Offset" addressing mode, as well as the
Based and Base Indexed addressing modes. In
addition, address arithmetic is aided by the
Increment and Decrement instructions.

Testing of data, logical evaluation, initia liz a­
tion, and comparision of data are made possible by
the instructions Test, Test Condition Codes, Load
Immediate Into Memory, and Compare Immediate With
Memory. Since compilers and assemblers frequently
manipUlate character strings, the instructions
Translate, Translate and Test, Block Compare, and
Compare String all result in speed improvements
over software simulations of these tasks. In
addition, any register except register RO can be
used as a stack pointer by the Push and Pop
instruct ions.

1.4.3 ~rating Syst_ Support

Interrupt, task-switching, and memory-management
and compiler-support features improve operating
system implementation.

The interrupt structure has three levels: non­
maskable, nonvectored, and vectored. When an
interrupt occurs, the program status is saved on
the stack with an indication of the reason for
this state-switching; then a new program status is
loaded from a special area of memory. The program
status consists of a flag register, the control
bits, and the program counter. The reason for the
occurrence is encoded in a 16-bit "vector" that is
supplied by the interrupting device and read from
the system bus and saved on the stack by the CPU.
In the case of a vectored interrupt, one byte of
the vector also indexes a table of interrupt
processing routine addresses.

The inclusion of System and Normal modes improves
operating system organization. In the System
mode, all operations are allowed; in the Normal
mode, certain instructions are prohibited. The
System Call instruction allows a controlled switch
of mode, and the Privileged instruction trap
enforces these restrictions.

Traps result in the same type of program status­
saving as interrupts: in both cases, the informa­
tion saved is pushed onto the system stack leaving
the normal stack undisturbed. The Load Multiple
instruction allows the contents of registers to be
saved efficient ly in memory or on the stack when
performing a task switch. Programs, during
execution in System mode, can cause program status
changes under direct software control by using the
Load Program Status instruction.

Finally, process exc lusion and serialization can
be achieved with the Test And Set instruction
which synchronizes asynchronous cooperating
processes.

A new feature has been added to the l8003 and
l8004 CPUs; when TSET is executed by these CPUs a
special status code is generated. This code
allows external circuitry to prevent access to the
memory location (semaphore) addressed by TSET
between TSET's read and write operation with that
semaphore. This access protect function aids in
the synchronization of CPU operations in
multiprocessor systems.

1.4.4 Support for Many Types of Data
Structures

A data structure is a logical organization of
primitive elements (byte, word, etc.) whose format
and access conventions are defined. Common data
structures include arrays, lists, stacks, and
strings. Since data structures are high-level
constructs frequently used in programming,
processor performance is enhanced if the CPU
provides mechanisms for their efficient
manipulations; such mechanisms are offered by
l8000 CPUs.

In many applications, one of the most frequently
encountered data structures is the array. Arrays
are supported in the Z8000 by the Index and the
Base Index Addressing modes and by segmented
addressing. The Base Index Addressing mode allows
the use of pointers into an array (Le., offsets
from the array's starting address). Segmented
addressing allows an array to be assigned to one
segment, so that it can be referenced simply by
segment number.

Lists occur more frequently than arrays in
business applications and in general data
processing. Lists are supported by the Indirect
Register and Base Address Addressing modes. The
Base Index Addressing mode is also useful for more
complex lists.

ZBOOO Processor Overview

Stacks are used in all applipations for nesting of
routines, block-structured languages, and inter­
rupt handling. Stacks are supported by the Push
and Pop instructions, and multiple stacks may be
implemented based on the general-purpose registers
of the lBOOO. In addition, two hardware stack
pointers are used to assign separate stacks to
System and Normal operating modes, thereby further
supporting the separation of the system and normal
operating environments discussed earlier. The
ZB010 and lB015 MMUs provide special provisions to
provide stack overflow and to allow dynamic
expansion of stacks.

Byte strings are supported by the Translate and
Translate And Test instructions. Decimal arith-
metic on strings of BCD data, packed two char­
acters per byte is supported by the Add/Subract
Byte with Carry and Decimal Adjust instructions.
The Rotate Digit instructions also manipUlate
4-bit data.

1.4.5 Four CPU Versions: Differences

There are four versions of the lBOOO CPU: l8001,
l8002, l8003, and l8004. The primary differences
among these CPUs are summarized in Table 1-1;
details of these differences are given throughout
this manual.

A major consideration in selecting a l8000 CPU is
the amount of physical memory that can be
addressed directly. For users who do not require
a large address space, the nonsegmented versions
(l8002 and l8004) of this CPU provide the
capability of addressing up to 64K bytes of
physical memory in each address space, or up to
256K of program/data and system/normal separations
are used (plus two 64k byte I/O address spaces
separate from memory).

For users who require larger amounts of memory,
the segmented versions (l8001 and l8003) of this
CPU provide the basic capability of addressing up
to 8M bytes of physical memory in each address
space.

For users who want a small amount of physical
memory relative to the size of their data/program
address space, the Z8003 and Z8004 CPUs can be
used to implement virtual memory systems.

Features provided by the l8000 CPUs enable them to
be directly incorporated into multiprocessor
configurations. The ability of segmented CPUs to

1-7

Z8000 Processor Overview

Table 1.1. Z8OO0 CPUS, Su.ary of Differences

Addressing Spaces
a. Segmented
b. Nonsegmented

Number of Output
Address Bits

Virtual Memory
Input Pin (ABOR T)

Separate External
Interrupt Input Pin
for Access Violation
Signal from MMU

TSET Instruction
Enhancement

Package Size (Pins)

execute, without modification, code written for
the nonsegmented CPUs enable several of the
nonsegmented CPUs to be used with one segmented
CPU to form a multiprocessor system.

1.5 EXTENDED INSTRUCTION FACILITY

The l8000 architecture has a mechanism for extend­
ing the basic instruction set through the use of
external devices. Special opcodes are used with
this feature. When the CPU encounters an
instruction with one of these opcodes in its
instruction stream, it will perform any indicated
address calculation and data transfer; otherwise,
it will treat the "extended instruction" as being
executed by the external device. Fields have been
set aside in these extended instructions to be
interpreted by external devices (Extended
Processing Units--EPUs) as opcodes. Thus, by
using appropriate EPUs, the instruction set of the
Z8000 can be extended to include specialized
instructions.

In general, an EPU is dedicated to performing

1-8

l8oo1 Z8002 l8003 l8004

Yes No Yes No
Yes Yes Yes Yes

23 16 23 16

No No Yes Yes

Yes No Yes No

No No Yes Yes

48 40 48 40

complex and time-consuming tasks in order to
unburden the CPU. Typical tasks suitable for
specialized EPUs include floating-point
arithmetic, data base search
operations, network interfaces,
support operations.

1.6 StMIARY

and maintenance
and graphics

The architectural sophistication of the Z8000
microprocessor is on a level comparable with that
of the minicomputer. Features of the Z8000 such
as large address spaces, multiple memory spaces,
segmented addresses, and support for virtual
memory systems and multiple processors are beyond
the c~pabilities of the traditional minicomputer.
The benefits of this sophisticated
architecture--code density, compiler support, and
operating system support--greatly enhance the
power and versatility of the l8000 CPU. The CPU
features that support external memory management
systems also enhance the CPU's applicability to
large system environments.

2.1 INTRODUCTION

This chapter provides an overview of the zeooo CPU
architecture. The basic hardware requirements,
operating modes, and instruction set are all
described. Oifferences among the versions of the
zeooo are noted where appropriate. Most of the
subjects covered here are also treated in greater
detail in later chapters of this manual.

2.2 GENERAL ORGANIZATION

figure 2-1 contains a block diagram that shows the
following major elements of the zeooo CPU:

Chapter 2
Architectare

• A 16-bit internal data bus, which is used to
move addresses and data within the CPU

• A z-eus interface, which controls the
interaction of the CPU with the outside world

• Sixteen, 16-bit general-purpose registers,
which are used to contain addresses and data

• four special-purpose Program Status Registers,
which control the CPU operation

• An Arithmetic and Logic Unit, which is used for
manipulating data and generating addresses

I--------------------~

I
I
I
I
I

GENERAL
PURPOSE

REGISTERS

INSTRUCTION
EXECUTION
CONTROL -

ARITHMETIC
LOGIC
UNIT

INTERNAL DATA BUS

PROGRAM
STATUS

REGISTERS

- EXCEPTION
HANDLING
CONTROL

Z.BUS) \
INTERFACE ~_.=Z • .=B..:.US=--...,(

I
I
I
I
I
I

L~~ I _______________________________________ --.J

Figure 2-1. Z8000 CPU FWlCtional Block Diagr_

2010-001 2-1

Architecture

• An instruction execution controller,
fetches and executes zaooo instructions

• An exception-handling controller,
processes interrupts and traps

which

which

• A refresh controller, which generates memory
refresh cycles

Each of these elements is explained in the
following sections. All of the elements are
common to all of the zaooo CPUs. The differences
between the segmented and nonsegmented versions of
the CPUs are derived from the number of bits in
the addresses they generate. The Za002 and Za004
always generate 16-bit linear addresses, while the
la001 and laOO} always generate 23-bit segmented
addresses (that is, an address composed of a 7-bit
segment number and a 16-bit offset).

Z8000
CPU

. . .
~
~

. . .

Figure
zaooo.

2-2 gives a system-level view of the
It is important to realize that the laOOO

CPU is part of a family of components that have
been designed to allow the easy implementation of
powerful systems. The major elements of such a
system might include:

• The Z-BUS, a multiplexed, address/data bus that
links the components of the system

• A zaooo CPU

• One or more Extended Processing Units (EPUs) ,
which are dedicated to performing specialized,
tasks

• A memory sub-system, which in la001 or la003
systems can include one or more Memory
Management Units (MMUs) which offer memory

~
~

Z-BUS

PERIPHERALS

U

Z8001 {
Z8003

ONLY

~
~ OTHER CPU

OR
PERIPHERAL u

MEMORY

figure 2-2. Typical lBOOO Syst_ Configuration

2-2 2010-002

address translation and access protection
features

• One or more Data Transfer Controllers (DTCs)
for high-speed direct memory access (DMA) data
transfers

• A large number of possible peripheral devices
interfaced to the l-BUS through Universal
Peripheral Controllers (l-UPCs), Serial
Communication Controllers (l-SCCs),
Counter-Timer and Parallel I/O Controllers
(l-CIOs) or other l-BUS peripheral controllers

• One or more FIFO I/O Interface Units (FIOs) for
elastic buffering between the CPU and another
device, such as another CPU (not necessarily
from the lBOOO family) in a distributed
processing system

AS --{ 9 TIMING
MJm:I

READIWIiITE

NORMAUm'i'EJI

BYTElWORD

STATUS

Architecture

2.' HARDWARE INTERFACE

Figure 2-3 shows the lBOOO pins grouped according
to function. The lB001 and lB003 are packaged in
4B-pin DIPs and the lB002 and lB004 are packaged
in 40-pin DIPs. The eight additional pins on the
lB001 and lB003 are the seven segment-number
output lines and the address translation trap
input. The address trap is designated as SEGT
(Segment Trap) for the ZB001 and as SAT
(Segment/Page Address Translation Trap) for the
lBOO.5. Except for those eight pins and the lB003
and ZBOD4 ABORT input (which corresponds to an
unused pin of the ZB001 and lB002 CPUs), all pins
on the four CPU versions are identical.

The lBOOO is a l-BUS CPU; thus, activity on its
pins is governed by the l-BUS protocol (see the
"Z-BUS Component Interconnect Summary" document

ADDRESS'
DATA BUS

CPU{ CONTROL

za001
Za002
Za003
Za004

AD15

AD14

AD1a

AD12

AD11

AD10

ADt
ADa

AD7

ADs

ADs

AD.

ADa

ADa
AD1

ADo

BUS{ CONTROL

{
NMI

INTERRUPTS W
_NV1

MULTI.MICRO{
CONTROL

CPU

+5V GND eLK
• SAT lor zaOO3 CPU, SEGT lor zaOOI CPU .

•• ABORT used In Z8003 and zaOO4 CPU. only.

,--
I SNe

I SNs

I
I
I
I SN1

I

I 'SAT L __

- - ZSOO1&l
Za003 I
ONLY I

SEGMENT I
NUMBER I

I
I
I

figure 2.'. Z8000 Pin flftltions

2010·003 2-3

Architecture

No. 00-2031-02). This protocol specifies two
types of activities: transactions, which cover

a 11 data movement (such as memory references or
I/O operations), and requests, which cover
interrupts and requests f or bus or resource

control. The following is a brief overview of the

18000 pin funct ions; comp lete descriptions are
found in Chapter 9.

2.'.1 Address/Data Lines

These 16 lines alternately carry addresses or
data. The addresses may be those of memory

locations or I/O ports. The bus timing signal
lines described below indicate what kind of
information the Address/Data lines are carrying.

2.'.2 Segment Nunber (Z8001 and 1800' only)

These seven lines encode the address of up to 128
relocatable memory segments. The segment signals

become valid one CPU clock period before the
address offset signals, thus permitting parallel
processing of add.resses to be performed by the

memory management system and the CPU.

2.'.' Bus Timing

The Address Strobe (AS), Data Strobe (OS) and

Memory Request (MREQ) lines are used to signal the
beginning of a bus transaction and to determine
when the multiplexed Address/Data Bus holds
addresses or data. The Memory Request signal can

be used to time the transmission of control
signals to a memory system.

2.'.4 Status Lines

These output lines indicate the kind of
transaction on the bus (see Table 2-1.), whether

it is a read or a write (R/W, High = Read, Low =
Write), whether it is on byte or word data (B/W,
High = byte, Low = word), and whether the CPU is

operating in Normal mode or System mode (N/S, High

= normal, Low = system). Status information
defining the type of bus transaction is

transmitted in advance of data transmission to
allow required external hardware elements to be
enabled before data is transferred. The status

lines are enabled by the address strobe (AS) a
minimum of two CPU clock periods before the data

2-4

ouput lines are sampled (strobed by data strobe
OS).

o 0 0 0
o 0 0 1
o 0 1 0

o 0 1 '1

o 1 0 0
o 1 0 1
o 1 1 0
o 1 '1 1
1 0 0 0

100 1
010
011

o 0
o 1

1 0
1 1

Table 2-1. Status Line Codes

Definition

Internal Operation
Memory Re fresh
I/O Reference

Special I/O Reference
Segment Trap Acknowledge
Nonmaskable Interrupt Acknowledge
Nonvectored Interrupt Acknowledge
Vectored Interrupt Acknowledge
Data Memory Request

Stack Memory Request
Data Memory Request (EPU)
Stack Memory Request (EPU)

Instruction Space Access
Instruction Fetch, First Word
Transfer between EPU and CPU

Test and Set Data Access
(Z8003 and ZB004 only)

2.3.5 CPU Control

These inputs allow external devices to de lay the
operation of the CPU. The WAIT line, when active

(Low), causes the CPU to idle in the middle of a
bus transaction, taking extra clock cycles until
the WAIT line goes inactive; WAIT is typically

input by memory or I/O peripherals that operate
more slowly than the CPU. The Stop (STOP) line
halts internal CPU operation when the first word
of an instruction has been fetched. This signal
is used for single-step instruction execution
during debugging operations and for enabling
Extended Processing Units to halt the CPU

temporarily. The ABORT line, when active (Low),
indicates that external memory management

circuitry has detected an address that does not
correspond to a location in main memory; this
condition causes the CPU to abort the cunently

executing instruction. When ABORT is enabled, the
WAIf input must also be asserted for five CPU
clock periods to permit the CPU internal control

mechanism to perform the required abort
instruction operations. This ABORT input is used
in the IB003 and lB004 CPUs in the implementation

of virtual memory systems.

2.3.6 Bus Control

These lines provide the means for other devices,
such as direct memory access (DMA) controllers, to
gain exc lusive use of the signal lines that the
CPU woul:J IlOt normally be using to conduct data
trdllsfers. The external device requesting control
of the bus inputs a bus request (SUSREQ); the CPU
responds with a bus acknowledge (BUSACK) after
three-stating, or electrically neutralizing, the
Address/Data Bus, Bus Timing lines, Status lines,
and Control lines.

2.3.7 Interrupts

Three interrupt inputs are provided: nonmaskable
interrupts (NMI), vectored interrupts (VI) and
nonvectored interrupts (NVI). These inputs permit
external dev ices to cause the CPU to suspend
execution of its current program and begin
execution of an interrupt service routine.

2.3.8 Address Trap Request (Z8001 and Z8003
only)

This input, when used with the ZB001 CPU, is
identified as SEGT (Segment Trap). It is used by
external memory management circuitry to indicate,
when active (Low), that an illegal memory access
operation has been detected.

This input,
identified

when used with the ZBOOJ CPU, is
as SAT (Segment/Page Address

CPU CLOCK

AS\.)

v

Architecture

Translation Trap). It is used by external memory
management circuitry to indicate, when active
(Low), that either a referl;!nced segment or page
does not reside in memory or that an illegal
method of access has been detected.

2.3.9 Multi-Micro Control

The Multi-Micro In (lIT) and Multi-Micro Out (MO)
lines are used in conjuction with a four-line
resource bus and a set of four CPU instructions to
coordinate multiple-CPU systems. They allow
exclusive use by one CPU of a shared resource in a
multiple-CPU system.

2.3.10 Systa. Inputs

The four inputs shown at the bottom of figure
2-3 are: +5 V power, ground, a single-phase clock
signal and a CPU reset.
described in Chapter 7.

2.4 lIMIt«;

The reset function is

Figure 2-4 shows the three basic timing periods of
a lBOOO CPU: a clock cycle, a bus transaction,
and a machine cycle. A clock cycle (sometimes
called aT-state) is one cycle of the CPU clock,
starting with a rising edge. A bus transaction
covers a single data movement on the CPU bus and
will last for three or more clock cycles, starting
with a faHing edge of AS and ending with a rising
edge of OS. A machine cyc le covers one basic CPU

v

Figure 2-4. Basic Tiaing Periods

2010-004 2-5

Architecture

operation and always etarts with a bus
transaction. A machine cycle can extend beyond
the end of a transaction by an unlimited number of
clock cyclea. for more information see Chapter 9.

2.5 IIDDRESS SPACES

The 18000 supports two main address spaces that
correspond to the two kinds of location that can
be addressed:

• ~y Address Space. This consists of the
addresses of all locations in the main memory of
the computer system.

• I/O Address Space. This consists of the
addresses of all I/O ports through which
peripheral devices are accessed.

See Chapter J for more information on address
spaces.

2.5.1 ~y Address Space

Memory address space can be further subdivided,
for both Normal and System modes, into Program
Memory address space, Data Memory address space,
and Stack Memory address space.

The particular space addressed is determined by
the external circuitry from the code appearing at
the CPU's output status pins (STO-ST ,) and the
state of the Normal/System signal (N/!5 pin). Data
memory reference and program memory reference each
correspond to a different status code at the
STO-5T, outputs, allowing two address spaces to be
distinguished for each operating mode. Each of
the address spaces has a range as great as the
addressing ability of the processor. for the
nonsegmented Z8000 CPUs, each address space can
have up to 64K bytes of directly addressable
memory. The segmented Z8000 CPUS provide up to 8M
bytes of directly addressable memory in each
address space.

Segmentation is a memory management technique in
which memory is partitioned into variably-sized
individually addressed segments. A v~riety of
useful functions can be implemented in segmented
memory; the following are examples of such
functions:

• Protection mechanisms that prevent a user from
referencing data belonging to others, from
attempting to modify read-only data, or from

2-6

• Virtual memory, which permits a user to write
functioning programs as if the system contained
more physical memory than is actually available

• Dynamic relocation, which allows the placement
blocks of data in physical memory independently
of user addresses, allowing better management
of the memory resources and sharing of data and
programs

The control and status signals provided by
segmented 18000 CPUS assist in implementing these
features. However, additional software and
external circuitry (such as the Z8010 MMU or
18015 PMMU) is generally required to take full
advantage of them. See Chapter J for an extensive
discussion of segmentation.

2.5.2 Address Space in SegEnted or SeglllllOted/
Paged Virtual ~y Syst_

The size of the address space in a virtual memory
system is determined by the CPU's address
structure and by the capabilities of the system's
memory managment hardware and software. Memory
Management circuitry external to the CPU can
implement either a segmented or paged virtual
memory system.

In a segmented system, information is transferred
between main and secondary memory on a segment­
by-segment basis. Variable length segments of up
to 64K bytes in length can be used. Segmented
virtual memory systems are supported by the 18001
and 1800J CPUS.

In a paged system, each segment is divided into
fixed-size pages (standard size is 2048 bytes).
Main memory is divided into page-sized "frames",
and information is then transferred on a
page-by-page basis between main and secondary
memory. Peged virtual. memory systems are
supported by both the Z800' and Z8004 CPUs.

2.5.' I/O Address Space

I/O addresses are represented as 16-bit words for
both the segmented and nonsegmented CPUS.

There are two I/O address spaces, Standard I/O and
Special I/O, which are both separate from the
memory address space. Each I/O space is accessed
through a separate set of I/O instructions, which
can be executed only when the CPU is operating in
System mode. While these spaces are essentially

identical, convention and future compatibility
require that Standard I/O instructions transfer
data between the CPU and peripherals and Special
I/O instructions transfer data to or from external
CPU support circuits such as the ZB010 and lB015

MMUs. Access to Standard or Special I/O space is
distinguished by the status lines (STO-ST3).

2.6 GENERAl-PURPOSE REGISTERS

The ZBOOO CPU contains 16 general-purpose
registers, each 16 bits wide. Any general-purpose
register can be used for any instruction operand
(except for minor exceptions described at the
beginning of Chapter 5).

Figure 2-5 shows these general-purpose registers.
They allow data formats ranging from byte to
quadruple words. The word registers are specified
in assembly-language statements as RO-R15.
Sixteen byte registers, RHO-RH7 and RLO-RL7, which
can be used as accumulators, over lap the first
eight word registers. Register grouping for
larger operands produces eight double-word
(32-bit) registers, RRO-RR14, which are used for
segmented addresses and 32-bit arithmetic
instructions, and eight 64-bit registers
RQ4,RQ4,RQB,RQ12, which are used by the Multiply,
Divide and Extend Sign instructions.

As Figure 2-5 illustrates, the CPU has two
hardware stack pointers, one dedicated to each of
the two basic operating modes, System and Normal
Segmented ZBOOO CPUs (Figure 2-5A) used a two-word
stack pointer for each mode (R14'/R15' or
R14/R15), whereas the nonsegmented ZBOOO CPUs
(Figure 2-5B) used only one word for each mode
(R15' or R15).

The system stack pointer is used for saving status
information when an interrupt or trap occurs and
for supporting subroutine calls in System mode.
The normal stack pointer is used for subroutine
calls in user programs. In Normal-mode operation
only the normal stack pointer is accessible. In
System-mode operation, the system stack pointer is
directly accessed as a general-purpose register.
The normal stack pointer can be accessed as a
special control register.

2.7 SPECIAL-PURPOSE REGISTERS

In addition to the general-purpose registers,
there are special-purpose registers. These
include the Program Status registers, the Program

Architecture

Status Area Pointer, and the Refresh Counter; they
are illustrated for both CPU types in Figure 2-6.
Each register can be manipulated in software
executing in System mode, and some are modified
automatically by certain operations.

2.7.1 Progra. Status Registers

These registers include the Flag and Control Word
(FCW) and the Program Counter (PC). They are used
to keep track of the state of an executing
program.

In the nonsegmented CPUs, Program Status consist
of two words: one each for the FCW and the PC.
In the segmented CPUs, Program Status consists of
four words: one reserved word, one word for the
FCW and two words for the segmented PC.

The low-order byte of the Flag and Control Word
(FCW) contains the six status flags, from which
the condition codes used for control of program
looping and branching are derived. The six flags
are:

Carry (C), which generally indicates a carry out
of the high-order bit position of a register being
used as an accumulator.

Zero (Z), which is generally used to indicate
that the result of an operation is zero.

Sign (S), which is generally used to indicate
that the result of an operation is a negative
number.

Parity/Overflow (P/Y), which is generally used to
indicate either parity (after logical operations
on byte operands) or overflow (after arithmetic
operations).

Dect.al-Adjust (D), which is used in BCD
arithmetic to indicate the type of instruction
that was executed (addition or subtraction).

Half Carry (H), which is used to
result of a
subtraction of
decimal result.

previous binary
BCD numbers into

convert the
addition or
the correct

Section 6.3 provides more detail on these flags.

The control bits, which occupy the high-order byte
of the FCW, are used to enab Ie interrupts or to
control CPU operating modes. The control bits
are:

2-7

Architecture

Z8001 AND Z8003

RRO {

RO 17 RHO oi 7 RLO 01

Rl 15 RHl I RLl

RQO

RR2 {

R2 RH2 RL2

R3 RH3 RL3

RR4 {

R4 RH4 RL4

Rs RHs RLs
RQ4

RR6 {

R6 RH6 RL6

R7 RH7 RL7

RR8 {
R8 15

R9
RQ8

RR10 {
Rl0

Rll

RR12 {

R12

R13

""I
R14' SYSTEM STACK POINTER (SEG. NO.) RQ12

R14 NORMAL STACK POINTER (SEG. NO.)

Rls' SYSTEM STACK POINTER (OFFSET)

Rls NORMAL STACK POINTER (OFFSET)

Z8002 AND Z8004

RRO {
Rol7 RHO o i7 RLO 01

Rl11S RHl RLl 01
RQO

RR2 {
R21 RH2 RL2 I
R31 RH3 RL3

RR4 {
R41 RH4 RL4

Rsl RHs RLs
RQ4

RR6 {
R61 RH6 RL6

R71 RH7 RL7

RR8 {
R811s 01

R91
RQ8

RR10 {
Rl0 I
Rlll

RR12 {
R121

R131

·,,·1
RQ12

SYSTEM STACK POINTER

Rls NORMAL STACK POINTER

figure 2-5. General Purpose Registers

2-8 2045-002, 003

2045-004

Architecture

15 0

1L-0~ __ o~_o~ __ o~_o~ __ o~_o~ __ o~_o~ __ o~_o~ __ o~_o~ __ o~_o~ __ o~1 }~~:~VED

ILS_E_G~I_~_N~IE_~_A~I_V_IE~IN_V_'E~I __ o~_o~ __ O~I_C~ __ Z~I_S~I_p_/V~I_DA~I __ H~I_O~ __ O~1 }~~~~:~~

15

15

SEGMENT NUMBER
I I I I o I 0

SEGMENT OFFSET

I I I

o o

28001 and 28003 Program Status Registers

o o

SEGMENT NUMBER
I I I 100 0 0 0 0

UPPER OFFSET

I I I

28001 and 28003 Program Status Area Pointer

RATE

I
ROW

I I

28001 and 28003 Refresh Counter

o

o

o

o 0 I

o

PROGRAM
COUNTER

15 0

l~o~I_~_N~IE_P_A~I_V_IE~IN_V_'E~I __ o~_o~ __ o~I_C~I __ Z~I_S~I_p_'V~I_D_A~I __ H~I_O~ __ O~1 }~~~\:~~

ADDRESS } PROGRAM
L-~ __ ~ __ ~ ____ ~ __ ~ __ ~I __ ~I __ ~I __ ~ __ ~ ____ ~ __ ~ __ ~~ COUNTER

15

15 14

28002 and 28004 Program Status Registers

UPPER POINTER

I I I

28002 and 28004 Program Status Area Pomter

RATE

I

9 8

ROW

I I

28002 and 28004 Refresh Counter

Figure 2-6. CPU Special Purpose Registers

o

o

o

2-9

Architecture

Nonvectored Interrupt Enable (HYIE). Vectored
Interrupt Enable (VIE). These bits indicates
whether or not the CPU will accept nonvectored or
vectored interrupts (see Section 2.13.3).

Systn/Norlll8l Mode (S/N). When this bit is set to
one, the CPU is operating in System mode; when
cleared to zero, the CPU is in Normal mode (see
Section 2.8). The CPU output status line (NjS
pin) is the complement of this bit.

Extended Processing Architecture (EPA) Enable.
When this bit is set to one, it indicates that the
system contains Extended Processing Units, and
hence extended instructions encountered in the CPU
instruction stream are executed (see Section
2.12). When this bit is cleared to zero, extended
instructions are trapped for software emulation.

Segmentation Mode (SEC). This bit is implemented
only in the l8001 and l8003 CPUs; it is always
cleared in the nonsegmented l8002 and l8004 CPUs.
When this bit is set to one, the CPU is operating
in segmented mode. When this bit is cleared to
zero, the CPU is operating in non segmented mode
(see Section 2.8).

2.7.2 Progr_ Status Area Pointer (PSAP)

The Program Status Area Pointer points to an array
of program status values (FCW and PC) in main
memory called the Program Status Area. New FCW
and PC values are fetched from this area when an
interrupt or trap occurs. As shown in Figure 2-6,
the PSAP consists of either one word (non segmented
CPUs) or two words (segmented CPUs). For either
configuration, the lower byte of the pointer must
be zero. See Chapter 7 for details about the
Program Status Area and its layout.

2.7.' Refresh Register

The CPU contains a programmable counter that can
be used to refresh dynamic memory automatically.
The refresh register consists of a 9-bit row
counter, a 6-bit rate counter and an enable bit
(Figure 2-6). See Chapter 8 for details.

2.8 INSTRUCTION EXECUTION

Running state. In the usual course of events, the
l8000 CPU spends most of its time fetching

2=10

instructions from memory and executing them. This
process is called the running state of the CPU.
The CPU also has two other states that it can
enter.

Stop/Refresh state. This is really one state,
although it can be entered either automatically
for a periodic memory refresh, or when the STOP
line is activated. In this state, program
execution is temporarily suspended and the CPU
makes use of the Refresh Register to generate
refreshes. See Chapters 4 and 8 for more details.

Bus-Disconnect state. This is the state the CPU
enters when a bus requester (such as DMA), takes
over the bus. Program execution is suspended and
the CPU disconnects itself from the bus. See
Chapter 7 for more details.

While the CPU is in the running state, it can
either be handling interrupts or executing
instructions. If it is executing instructions,
the l8000 can be in the System or Normal execution
mode. In System mode, privileged instructions
(such as those that perform I/O) can be executed;
in Normal mode they cannot. This dichotomy allows
the creation of operating system software that
controls CPU resources and is protected from
application program access.

A CPU operates in either segmented or nonsegmented
mode. In segmented mode, which is available only
on the l8001 and l8003, the program uses 23-bit
segmented addresses for memory accesses; in
nonsegmented mode, which is available on all CPUS,
the program uses 16-bit nonsegmented addreses for
memory accesses.

While executing instructions, the mode of the CPU
is controlled by bits in the FCW (Section 2.7).
During the interrupt/trap response cycle, the CPU
is always in System mode.

2.9 INSTRUCTIONS

The lBOOO instrution set contains over 400 differ­
ent instructions which are formed by combining the
110 distind instruction types (opcodes) with the
various data types and addressing modes. The
complete set is divided into the following groups:

Load and Exchange for register-to-register and
register-to-memory operations, including stack
management.

Arithaetic for arithmetic operations, including
multipy and divide, on data in either registers or
memory. Compare, increment, and decrement
functions are included.

logical for Boolean operations on data in
registers or memory.

Progra. Control for program branching (conditional
or unconditional), calls, and returns.

Bit Manipulation for setting, resetting and
testing individual bits of bytes or words in
registers or memory.

Rotate and Shift for bytes, words, or for shifts
only long words within registers.

Block Transfer and String Manipulation for
automatic memory-to-memory transfers of data
blocks or strings, including compare and translate
functions.

Input/Output for transfers of data between I/O
ports and memory or registers.

A. COMPACT INSTRUCTION FORMAT
LOAD IMMEDIATE BYTE

LOB 11 I 1 I 0 I 0 I
CALL RELATIVE

CALR 11 I 1 I 0 I 1 I
JUMP RELATIVE

JR I I I i I 1 1 1 0 cc

Architecture

Extended for operations involving Extended
Processing Units.

CPU Control for accessing
controlling the CPU operating
multiple-processor operation,

special registers,
state, synchronizing

enabling/disabling
interrupts, mode selection, and memory refresh.

Chapter 6 contains details on the full instruction
set.

2.9.1 Instruction Forllats

Formats of the instructions are shown in Figure
2-7. The two most significant bits (MSBs) in the
instruction word determine whether the compact
instruction format (Figure 2-7,A) or the general
instruction format (Figure 2-7,B) is to be used.

When the two MSBs are both logic ones, the compact
format is to be used. Compact formats enable the
four most frequently used instructions to be
encoded as single words, thereby saving on
instruction-memory usage and increasing execution
speed.

i i
offset

I
n

olt'set

DECREMENT AND JUMP ON NON·ZERO

DJNZ L-________ ~~ ________ ~I_vv~I _______ o_i_ls_p.~i ______ ~

B. GENERAL INSTRUCTION FORMAT (FIRST VVORD)

BYTE OR
VVORD

addressing
mode

(

addressing
mode

i i
opcode source I VV I iii

destination

(
WORD OR Il, iii iii iii
LONG VVOR 0 _r __ ______ o;..pc_o_d_e ______ _s_o_u_r_c_e __ _d_e_s_ti_n_a_ti_o_n

Note: VV indicates VVord (1) or Byte (0)

Figure 2-7. Instruction F orlllBts

2010-005 2-11

Architecture

As when the two most significant bits are not both
logic ones, the general format applies. In the
general format, the two most significant bits in
conjunction with the source-register field are
sufficient for specifying any of the five main
addressing modes. Source and destination fields
are four bits wide for addressing the 16
general-purpose registers.

2.10 DATA TYPES

The zaooo supports manipulation of eight data
types. Five of these have fixed lengths; the
other three have lengths that can vary
dynamically. Each data type is supported by
instructions that operate directly upon it. These
dat a types are:

• Bit
• Signed byte-length, word-length, long word-

length, or quadruple word-length binary integer
• Byte- or word-length logical value
• Word (nonsegmented or short segmented) or long

word (segmented) address
• Unsigned byte-length decimal integer
• Dynamic-length string of byte data
• DynamiC-length string of word data
• Dynamic-length stack of word or long-word data

Bits can be manipulated in registers or memory.
Binary and decimal integers and logical values can
be manipulated in registers, although operands can
be fetched direct ly from memory. Addresses are
manipUlated only in registers, but can be fetched
from instruction or data memory. Strings and
stacks can be manipUlated only in memory.

2.11 ADDRESSING MODES

The information included in zaooo instructions
consists of the function to be performed, the type
and size of data elements to be manipulated, and
the locations of the data elements. For most
two-operand instructions,
fixed, (usually Register
fo llowing eight addressing
other:

one address mode is
Mode) and one of the
modes designated as the

Register Mode (R). The data element is located in
one of the 16 general-purpose registers.

I..ediate Mode (1M). The data element is located
in the instruction.

2-12

Indirect Register Mode (IR). The data element can
be found in the location whose address is in one
of the general purpose registers.

Direct Address Mode (DA). The data element can be
found in the location whose address is in the
instruction.

Index Made (X). The data element can be found in
the location whose address is the sum of the
contents of an index value in one of the general
purpose registers and an address in the
instruction.

Relative Address Made (HA). The data element can
be found in the location whose address is the
contents of the program counter offset by a
displacement in the instruction.

Base Address Made (BA). The data element can be
found in the location whose address is the sum of
a base address in one of the general purpose
registers and a displacement in the instruction.

Base Index Mode (BX). The data element can be
found in the location whose address is the sum of
a base address and an index value each in separate
general purpose registers.

Chapter 5 defines and illustrates the eight
addressing modes.

2.12 EXTENDED PROCESSING ARCHITECTURE

An important feature of zaooo CPU architecture is
the Extended Processing Architecture (EPA). EPA
permits the basic instruction set of the CPU to be
extended via the use of external devices, called
Extended Processing Unit (EPUs). ~ special set of
instructions, called extended instructions, is
used with each EPU. When the CPU encounters an
extended instruction in its instruction stream, it
either traps to a software trap handler to process
the instruction or it performs the data transfer
portion of the instruction (leaving the data
manipUlation part of the instruction to the EPU).
Whether the CPU traps or transfers data depends on
the setting of the EPA bit in the FCW.

The underlying philosophy of th~ EPA feature views
the CPU as an instruction processor--the CPU
fetches an instruction, fetches data associated
with the instruction, performs the specified
operations and stores the result. Extending the

number of operations performed does not affect the
instruction fetch and address calculation portion
of the CPU acitvity. The extended instructions
exploit this feature--the CPU fetches the
instruction and performs any address calculation
that may be needed. The CPU also generates the
timing signals for the memory access if data must
be transferred between memory and the EPU. But
the actual data manipulation is handled by the
EPU. The Extended Processing Architecture is
explained more fully in Chapter 4.

2.1' EXCEPTIONS

F our events can alter the normal execution of a
Z8000 program: a hardware interrupt which occurs
when a peripheral device needs service, a
synchronous software trap which occurs when an
error condition arises, an instruction abort which
occurs during virtual memory operations, and a
system reset. Chapter 7 contains a detailed
description of exceptions and how they are
handled.

Interrupt requests and address translation trap
requests are accepted on comp letion of the
instruction execution cycle during which they were
made. At the end of the instruction execution, a
spurious instruction fetch
performed before the
sequence but this fetch
Program Counter.

transaction is usually
interrupt acknowledge
does not affect the

In virtual memory systems, the activation of the
ABORT CPU input initiates a five-cycle abort
interrupt operation. During this period, the CPU
automatically saves information needed to restart
the interrupted instruction execution operation.
On completion of the abort interrupt operation, an
interrupt service routine is initiated. This
routine should locate and load the referenced
information into main memory and then restart the
mainstream program at its point of interruption.

2.U.1 Reset

A system reset overrides all other operating
conditions. It puts the CPU in a known state and
then causes a new program status to be fetched
from a reserved area of memory to reinitialize the
FCW and the PC.

Architecture

2.U.2 Traps

Traps are synchronous events that are usually
triggered by specific instructions and recur each
time the instruction is executed with the same set
of data and the same processor st.ate. The four
kinds of trap are:

Extended instruction att8lllpted in non-EPA .,de.

The current instruction is an EPU instruction, but
the system is not in EPA mode.

Privileged instruction att8lllpted in nor_l IIOde.

The current instruction is privileged (I/D for
example), but the CPU is in Normal mode.

SystBII Call (SC) instruction. This instruction
provides a controlled access from Normal-mode to
System-mode operation.

Se~ntation or addressing violation (supplied by
external circuit). This trap is intended for use
by external memory managment circuitry. Only the
segmented CPUs (Z8001 or 18003) can initiate this
type of trap.

2.U.' Aborts

Both the Z8003 and Z8004 CPUs are provided with an
ABORT input which is controlled by external memory
management circuitry or devices. The detection of
an asserted ABORT input by a CPU causes it to
abort the currently executing instruction and to
start saving status information which will be
required to restart the interrupted instruction
execution operation at the point. of interruption.
The external circuitry or device must supply five
WAIT inputs to the CPU to provide time for the
save operation. Status information is also
presented to the external circuitry where it must
also be saved for restart purposes.

2.1'.. Interrupts

Interrupts are asynchronous events typically
triggered by peripheral devices needing
attention. Three kinds of interrupt are provided,
each with a separate input to the CPU. The
interrupts are:

2-13

Architecture

Nonmaskable interrupts (NHI). These interrupts
cannot be disabled and are usually reserved for
external events that require immediate attention.

Vectored interrupts (VI). These interrupts are
maskable interrupts; eight bits of the vector
output by the interrupting device are used to
select the address to which the CPU will transfer
to after status has been saved.

Nonvectored interrupts (NVI). These interrupts
are maskable interrupts; the vector output by the
interrupting device does not affect the address to
which the CPU transfers after status has been
saved.

2.1J.5 Trap and Interrupt Service Procedures

Interrupts and traps are handled similar ly by the

2-14

l8000 CPUs. When the CPU begins to process an
interrupt or trap, it immediately enters its
system mode (segmented for l8001 and l8003)
regardless of its mode at the time of the
interrupt or trap. The CPU remains in its System
mode until the new program status specified in the
PSA has been established. The program status
information in effect just prior to the interrupt
or trap acknowledgment is pushed onto the system
stack. An additional word, which serves as an
identifier for the interrupt or trap, is
also pushed onto the system stack, where it can be
accessed by the interrupt or trap handler. The
Program Status registers are loaded with new
status information obtained from the Program
Status Area of memory. Then control is
transferred to the service procedure, whose
address is now located in the Program Counter.
For details of interrupt and trap handling, refer
to Chapter 7.

3.1 INTRODUCTION

Programs and data may be located in the main
memory of the computer system or in peripheral
devices (that is, secondary memory). In either
case, the location of the information must. be
specified by an address before that information
can be accessed. A set of these addresses is
called an address space.

The ZBOOO support.s two different types of
address and thus two categories of address space:

• Me.ory addresses, which specify locations in
main memory.

• I/O addresses, which specify the ports through
which peripheral devices are accessed.

The CPU generates addresses during four types of
operation:

• Instruction fetches, described in Chapter 4.
• Operand fetches and stores, described in

Chapter 5.
• Exception processing, described in Chapter 7.
• Refreshes, described in Chapter B.

Timing information concerning addresses is
described in Chapter 9.

3.2 AOOR£SS SPACES, SWCATEGORIES

Within the two general types of address space
(memory and I/O), it is possib Ie to distinguish

MEMORY ADDRESS SPACES

SYSTEM MODE NORMAL MODE

INSTRUCTIONS INSTRUCTIONS

DATA DATA

STACK STACK

Chapter 3
Address Spaces

several subcategories. Figure 3-1 shows the
address spaces that are available on the ZBOOO
CPUs.

The differences among the ZBOOO CPUs lies not in
the number and type of address spaces, but rather
in the organization and maximum size of each
space. For the ZB001 and lB003, the addressable
memory address space can be divided into BM byte
spaces. Each BM byte address space is, in turn,
divided into 12B 64K byte segments. For the lB002
and lB004, each memory space is a homogeneous
collection of 64K byte addresses. In both types
of CPUs, the word I/O address spaces contain 64K
port addresses and the byte I/O address space
cont ains 64K port addresses. When an address is
used to access data, the address spaces can be
distingushed by the state of the status lines
STO-ST3 (which is determined by the way the
address was generated) and by the value of the
Normal/System line (N/S) (which is determined by
the state of the S/f:i bit in the FCW). The most
frequently used options for specifying address
spaces are:

• Instruction Space (status 1100 or 1101),
Normal mode (N/S = 1) or System mode (N/S =
0). These spaces typically address memory that
contains user programs (Normal) or Syst.em
programs (System).

• Data Spaces (status = 1000 or 1010), Normal
mode (N/S = 1) or Syst.em mode (N!S = 0). These
spaces may be used to address the data on which
user or system programs operate.

110 ADDRESS SPACES

SYSTEM MODE

STANDARD 110

SPECIAL 110

Figure 3-1. Address Spaces on the Z8000 CPUS

2010-006 3-1

Address Spaces

• Standard I/O Space (status = 0010). This space
addresses all the I/O ports that are used for
zaooo peripherals.

• Special I/O space (status = 0011). This space
addresses ports in CPU support chips (such as
the za010 Memory Managment Unit).

,., I/O ADDRESS SPACE

All I/O addresses are represented by 16-bit
words. Each of the ports addressed is either
eight or 16 bits wide. Transfer to or from 16-bit
ports always involves word data and, for 8-bit
ports, byte data.

The address of a 16-bit port may be even or odd
for both address spaces.

,.. tEIIIRY ADDRESS SPACES

Each memory address space in the nonsegmented
zaooo CPUs, or each segment in each memory address
space of the segmented zaooo CPUs, can be viewed
as addressing a string of 64K bytes numbered
consecutively in ascending order. The a-bit byte
is the basic addressable element in zaooo memory
address spaces. However, there are three other
addressable data elements:

• Bits, in either bytes or words
• 16-bit words
• 32-bit long words

785432 0

' ••• 1 Addressable Data El..m:s.

The nature of the data element being addressed
depends on the instruction being executed.
Different opcodes are used for addressing bytes,
words, and long words; only certain instructions
can address bits.

A bit can be addressed by specifying a byte or
word address and the number of the bit within the
byte (0-7) or word (0-15). Bits are numbered
right-to-left, from the least to the most
significant. This is consistent with the
convention that bit n corresponds to 2n in the
conventional representation of positive binary
numbers (see Figure 3-2).

The address of a data type longer than one byte
(word or long word) is the same as the address of
the byte with the lowest memory address within the
word or long word (Figure 7-2). This is the
leftmost, highest-order, or most significant byte
of the word or long word.

Word or long word addresses ere always
even-numbered. low bytes of words are stored at
odd-numbered memory locations and high bytes at
even-numbered locations. Byte addresses can be
either even- or odd-numbered.

Only three words in memory are reserved; they are
used for systems reset handling purposes (see
Chapter 7).

BITS IN A BYTE

15 14 13 12 11 10 9 8 7 8 5 4 3 2 0

BITS IN A WORD

Address n

BYTE

Address n (even) Address n + 1

LOWER BYTE WORD
, I

Address n Address n + 1

I UPPER WORD/UPPER BYTE I I }
r:A::;dd::re.::;s::s;,.:n::..,:+..;2=-______ -;;;A:::d;::dr:,:e;::ss::..:.;.n..;+:...;,3 ______, LONG WORD

I . I I LOWER WORD/LOWER BYTE I
fi!J,lre)-2. Addressable Data El..m:s

3-2 2010·007

3.4.2 Se~nted.cl NonaegIIIented Addr_

The l8002 and l8004 generate 16-bit addresses
which specify any location within a 64K byte
address space. The l8001 and Z8003 generate
23-bit segmented addresses. A segmented address
consists of a 7-bit segment number, which
specifies one of 128 segments, and a 16-bit
offset, which specifies anyone of up to 64K bytes
in the specified segment. Each segment is an
independent collection of bytes; thus,
instructions and multiple byte data elements
cannot cross segment boundaries unless explicit
instructions for that purpose are included in the
program. Examples of programs and data that cross
segment boundaries are presented in Chapter 10.
Some of the advantages of address segmentation are
outlined in Section 3.4.3.

Figure 3-3' shows the formats of segmented and
nonsegmented addresses. Nonsegmented addresses
are 16 bits long and thus can be stored in word
registers (Rn), or in memory as word-length
addressable elements. The 23-bit segmented
addresses are embedded in 32-bit long words and
thus can be stored in register pairs (RRn) or long
word memory elements.

When a segmented CPU (l8001 or l8003) is operating
in the nonsegmented mode (Chapter 4), it still
generates segmented addresses. The segment number
portion of these addresses is supplied by the
Segment Number portion of the Program Counter
which remains unchanged during the nonsegmented
mode of operation.

Non-Segmented Memory Address

15 o
ADDRESS , ,

Segmented Memory Address

15 14 8 7 0

15

SEGMENT #

: : : : :
figure 3-3. Se~nted.cl NonsllglRBnted

Address f ol'llBts

3.4.3 Se~ntation and Paging MHDry

Mal.-nt

o

Addresses manipu lated by the programmer, used by
instructions, and output by a segmented Z8000 CPU

2010,008

Address Spaces

are called "logical addresses." An external
memory-management circuit can translate logical
addresses into physical (actual) memory addresses
and perform certain checks to ensure that data and
programs are properly accessed.

The l8010 MMU performs a logical-to-physical
address translation function for the segmented
addresses produced by the Z8001 and l8003 CPUs. A
single MMU holds 64 segment descriptors. Each
descriptor te 11s where the segment lies in
physical memory, how long the segment is, and what
kind of accesses can be made to the segment. The
MMU uses these descriptors to translate logical
segment numbers and offsets into 24-bit physica 1
addresses (as shown in Figure 3-4). During
translation, the MMU checks for errors such as an
attempt to write into a read-only segment or a
system segment being accessed by a nonsystem
program. Z8010 MMUs are designed to be combined
so that more than 64 descriptors can be supported
in a system at any time.

The l8015 Paged Memory Management Unit (PMMU) is
designed to support a segmented paged virtual
memory for the l8003 CPU. The PMMU, however, can
also be used to support the other l8000 CPUs.
Each PMMU can manage a memory area of 64
fixed-sized pages, with each page 2048 bytes in
length. other page sizes can be implemented and
PMMUs can be combined to support more pages. The
PMMUs translate the logical addresses output by
the CPU into physical addresses. Each PMMU can
manage a physical memory address area of 64 pages
(128K bytes); PMMUs can be combined in groups of 8
to address'any size of virtual memory. Each PMMU
contains a table of 64 page descriptors. The
information contained by a page descriptor enables
the PMMU to determine the following:

1) whether or not the page containing the
referenced, location is in main memory

2) the types of accesses permitted
3) whether or not the page had been previously

addressed by the executing program
4) whether or not the original contents of the

page had been changed
5) whether or not, the referenced area is to be

used for stack operations; if it is, the PMMU
should issue a write warning if fewer then 256
bytes remain in the page

If the referenced location (Le. page) is not in
main memory, the PMMU translating the logical
address sends an instruction abort to the CPU.
The CPU then aborts the current instruction and

3-3

Address Spaces

LOGICAL
(virtual)

ADDRESSING

SES::~;T 0 r - --, D II
I I
I I
I I

PHYSICAL
MEMORY

I·l
,....6_-S~E~G:-#~-_O...,/~O i u-- I-"+--lj:--r--t
I " ~ SEGMENT2 ~ i : ~N

I ,

r1~5 ______________ ~~=-_____________ O~\ ~ OFFSET ~ , W

LI.....I.--L....I--I __ L-.'--.... p_FF ... ,S_E 1--L--I--I"--'--"--....... ! BE~~~~NG : = --r- t-----'----t - -----r-Z ,
---- i=,

I ~ I
, 0 ,

I ~
I :I

SEGMENT N I D lj:
w
::liZ

fa
--+--t-T---.--I----'-----tW

SEGMENT 127

D
t

Segments of physical
memory can be loaded
from peripheral devices
through the CPU or DMA.

figure 3-4. 5eglllented Address Translation

saves program restart information. The PMMU also
sends a trap request to the CPU to initiate the
execution of a service routine which locates and
loads the desired page into main memory, and then
restarts the mainstream program at the point of
its abort interruption.

The lBOOO CPU does not require the use of lB010 or
lB015 MMUs; the segment number can be used
directly as part of a physical address. In this
type of application, memory is regarded as being
composed of 12B, 64K byte banks with no need for
explicit bank switching.

Some of the benefits of the memory management
features provided by an MMU are:

3-4

• Provision for flexible and efficient allocation
of physical memory resources during the
execution of programs

• Support for multiple, independently executing
programs that can share access to common code
and data

• Protection from unauthorized or unintentional
access to data or programs

• Detection of obviously incorrect use of memory
by an executing program

• Separation of user code from system code

2010-009

Segmentation in the Z8001 and Z8003 helps support
memory management in two ways:

• By allowing part of an address (the segment
number) to be output by the CPU early in a
memory transaction. This allows access to the
address descriptor in the MMU without adding to
the basic access time of the memory

• By providing a standard. variable-sized unit of
memory for the protection. shsring. and
movement of data

In addition. segmentetion is e nstural model for

Address Spaces

the support of modular programs and data in a
multi-programming environment. It efficiently
supports re-entrant progrems by providing dste
relocation for different tasks using common code.

More information about ths Z8010 MMU and memory
management can be found in An Introduction to the
Z8010 MMU Memory Management Unit (contained in
Zilog's Data Book, document 100-2034-02), and
the Z8010 MMU Technical Manual (document
100-2015-01). Information about the Z8015 PMMU
can be found in the Z8015 PMMU Technical Manual
(document 103-8223-01).

3-5

4.1 INTIIIlUCT 1111

This chapter gives a fundamental description of
the operating states of the zaooo CPU and the
process of instruction execution. The details of
instruction execution are described in Chapters 5
and 6. Other detailed espects of laOOO operation
are given in Chapter 7 (Exceptions) and Chapter a
(Refresh). Chapter 9 describes CPU operations as
they are manifested by the external pins of the
CPU.

4.2 OPERATING'STATES

The zaooo CPU has three operating states: Running
state, Stop/Refresh state, and Bus-Disconnect
state. Running state is the usual state of the
processor: the CPU is executing instructions or
handling exceptions. Stop/Refresh state is
entered when the STOP line is asserted or the
refresh counter indicates that a periodic refresh

BUSREO RELEASED,

S'ffiP INACTIVE

BUSREO ASSERTED,

Chapter 4
CPU Operatioa

should be performed. In this state, memory
refresh transactions, if enabled, are generated
continually (see Chapter a). Bus-Disconnect state
is entered when the CPU ecknowledges a bus request
and gives up control of the system bus. Figure
4-1 shows the three states and the conditions that
cause state transitions.

4.2.1 Running state

While the CPU is in Running state, 'it is either
executing instructions (as described in Section
4.3) or handling exceptions (as described in
Chapter 7). The CPU is normally in Running state,
but will leave this state in response to one of
three conditions:

• The refresh mechanism indicates that a periodic
refesh needs to be performed, in which case the
CPU temporarily enters Stop/Refresh state.

S'ffiP RELEASED, OR
PERIODIC REFRESH
COMPLETED

BUSREO RELEASED,
STOP ACTIVE

AND ACKNOWLEDGED ON
iiiiACK

2010-010 4-1

CPU Operation

• An external bus request pushes the CPU into
Bus-Disconnect state.

• An external stop request pushes the CPU into
Stopped state.

4.2.2 Stop/Refresh State

While the CPU is in Stop/Refresh state, it
generates a continuous stream of refresh cycles
(as discussed in Chapter a~ and does not perform
any other functions. This state provides for the
generation of memory refreshes by the CPU and
allows external devices to suspend CPU operation.
This feature can be used to force single-step
operation of the processor or to synchronize the
-CPU with an Extended Processing Unit (as described
in Section 4.4).

The CPU enters Stop/Refresh state when the refresh
mechanism needs to do a refresh or when the STOP
line is activated. It leaves Stop/Refresh state
when neither of these conditions holds or when a
bus request causes the CPU to enter Bus-Oisconnect
state.

4.2.3 Bus-Disconnect State

A CPU enters a Bus-Disconnect state from either a
Running state or a Stop/Refresh state when a bus
request has been received on BUSREQ and is
acknowledged on BUSACK (as described in Chapter
9). While in this state, it disconnect.s itself
from the bus by 3-stating its output. It will
leave Bus-Disconnect state when the external bus
request has been received. The Bus-Oisconnect
state is highest in priority in that the presence
of a bus request will force the CPU into this
state, regardless of any other conditions
indicating that a different state should be
entered.

4.2.4 Effect of Reset

Activation of the CPU's RESET line puts the CPU
into a nonoperational st.ate within five clock
cycles, regardless of its previous state or the
states of its other inputs. The CPU will remain
in this state until RESET is deactivated. When
RESET is deactivated, the processor enters the
running state for at least one machine cycle.
Reset is more fully described in Chapters 7 and 9.

4-2

4.3 INSTRUCTION EXECUTION

While the CPU is
instructions, it
Status registers

in Running state and executing
is controlled by the Program
(Figure 4-2). The Program

Counter gives the address from which instructions
are fetched, and the flags control branching (as
described in Chapter 6). The control bits
determine the CPU operating states (see section
4-2) and interrupt masking.

Instruction execution consists of the repeated
application of two steps:

• Fetch one or more words comprising a single
instruction from the program memory address
space at the address sped fied by the Program
Counter (PC).

• Perform the operation specified by the
instruction and update the Program Counter and
flags in the Program Status registers.

The operation performed by an instruction and the
way the flags are updated depends on the
particular instruction being executed. The
instruction set is described in Chapter 6. For
most instructions, the PC value is updated to
point to the word immediately following the last
word of the instruction. The effect of this is
that instructions are fetched sequentially from
memory. Exceptions to this are the Branch, Call,
Interrupt Return, Load Program Status, System
Call, Halt, Decrement And Jump If Non-Zero, and
Return instructions, which cause the PC to be set
to a value generated by the instruction. This
causes a transfer of control with execution
continuing at the new address in PC. The exact
operation of these instructions is described in
Chapter 6.

The zaooo CPU is able to overlap the fetching of
one instruction with the operations of the
previous instruction. This facility, called
Instruction Look-Ahead, is illustrated in Figure
4-3. This shows the execution of a series of
memory-to-register instructions, such as a value
in memory being added to the value in a
general-purpose register. Part of each
instruction is fetched while the previous
instruction execution is being comp leted. This
mechanism provides faster execution speed than
fetching each instruction only after the prior
instruction has completed execution.

CPU Operation

15 0

I 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 o I } RESERVED

WORD

I SEG I SIN I EPA I VIE INVIEI 0 o I C I z I S IPNIDAIH I o I } FLAG AND
0 0 CONTROL

WORD

o I SEGMENT NUMBER o I 0 0 0 0 0 0 o I I I I I
PROGRAM
COUNTER

SEGMENT OFFSET

I I I

Z8001 and Z8003 Program Status Registers

15 0

I o I SEGMENT NUMBER I 0 ° ° 0 ° ° 0 ° I 1 1 1

UPPER OFFSET
o 1 0 ° 1 o 1 ° 0 0 ° I 1 1 1

Z8001 and Z8003 Program Status Area Pointer

15 0

I 0 I SIN I EPA I VIE INVIEI ° o I C I z I S IPNIDAIH I o I } FLAG AND
0 0 CONTROL

WORD

ADDRESS } PROGRAM

1 1 1 COUNTER

Z8002 and Z8004 Program Status Registers

15 ° UPPER POINTER
0 1 °1°1 0 1 0 0 0 o I 1 1 1

Z8002 and Z8004 Program Status Area Pointer

figure 4-2. Progr_ status Registers

2045·004 4-3

CPU Operation

CLOCK

INSTRUCTION AND DATA FETCH

n~ra 4-3. Instruction Look-Ahead

After executing an instruction and in some cases
(explained in Chapters 6 and 7) during an
instruction's execution, the CPU checks' to see if
there are any traps or interrupts pending and not
masked. If so, it temporarily suspends
instruction execution and begins a standard
exception-handling sequence. This sequence, which
is described fully in Chapter 7, causes the value
of the Program Status registers to be saved and a
new value loaded. Instruction execution then
continues with a new PC value and rlag and Control
Word value. The effect is to switch the execution
of tha CPU from one program to another.

•• 3.1 Ru1nifIg-state Mode

While the CPU is executing instructions, its mode
is controlled by two control bits in the rcw: the
System/Normal bit (sIN) and the Segmentation Mode
bit (SEC).

•• 3.2 Seg.ented and Nonll8gllllll1ted

Modes

The segmentation mode of the CPU (segmented or
nonsegmented) determines the size and format of
addresses that are manipulated by programs. In
segmented mode (SEC = 1), programs use 23-bit
segmented addresses; in nonsegmented mode (SEC =
0), programs usa 16-bit non segmented addresses.
There are also the following differences in the
address portions of instructions, which are due to
the difference in address size:

• Indirect
registers
registers

and Base Registers
in segmented mode

in nonsegmented mode.

are
and

J2-bit
16-bit

• Addresses embedded in instructions are always
16-bit in nonsegmented mode. In segmented mode
addresses consist of either one 16-bit word

(7-bit segment number and an 8-bit offset) or
two 16-bit words (7-bit segment number and a
16-bit offset).

Both the segmented and the non segmented modes are
available on the l8001 and Z800J. Only the
nonsegmented mode is available on the l8002 and
l8004. Since both addressing modes are supported
on the 18001 and 18003, these CPUS can execute,
without alteration, programs prepared for the
18002 and 18004. The reverse is not possible.

The 18001 and 1800J CPUs always generate segmented
addresses, even when operating in nonsegmented
mode. When a memory access is made in
nonsegmented mode, the offset of the segmented
address is the 16-bit address generated by the
program, and the segment number is the value of
the segment number field of the Program Counter.

..3.3 Nona! and 5yat. Modes

The operating mode of the CPU (System mode or
Normal mode) determines which instructions can be
executed and which Steck Pointer register is used.

In System mode (SIN = 1), all instructions can be
executed. While in Normal mode, privileged
instructions (such as I/O operations or changes to
control registers) cannot be executed.

The second distinction between System and Normal
mode is access to the system or nor~al Stack
Pointer. As shown in Figure 4.4, there are two
Steck Pointer registers (R14 and R15 in the 18002
and l8004, and RR14 in the Z80(}1 and l8003): one
for Normal mode and one for System mode. When in
Norm~l mode, a reference by an instruction to the
Steck Pointer register will access the Normal mode
Stack Pointer. When in System mode, an access to
the Steck Pointer register will normally reference
the System mode Stack Pointer. If, however, the

2010·011

CPU Operation

RRO {

RO 17 RHO 01 7 RLO 0

R1 15 RH1 RL1 0

ROO

{
R2 RH2 RL2

RR2

R3 RH3 RL3

{
R4 RH4 RL4

RR4
R5 RH5 RL5

R04

RR6 {

R6 RH6 RL6

R7 RH7 RL7

RRe {
Re 15 0 GENERAL

PURPOSE
REGISTERS

R9
ROe

RR10 {
R10

R11

RR12 {

R12

R13

" .. 1
R14' SYSTEM STACK POINTER (SEG. NO.) R012

R14 NORMAL STACK POINTER (SEG. NO.)

SYSTEM STACK POINTER (OFFSET)

R15 NORMAL STACK POINTER (OFFSET)

figure 4-4. General Purpose Registers

CPU is either a ZB001 or ZB003 which is operating
in a nonsegmented system mode, a reference to R14
will access the Normal mode Stack Pointer register
R14 (see Table 4.1).

Pointer is accessed by using a special Load
Control Register instruction (described in Chapter
6) •

In Normal mode, the system Stack Pointer is not
accessible; in System mode, the normal Stack

The CPU switches modes whenever the Program Status
Control bits change. This can happen when a
privileged Load Control Register instruction is

Table 4-1. Registers Accessed by Reference to R14 and R15

Register Systea Mode Nor.al Mode

Referenced by
Instructioo Segllllflted Nonsegllllflted Seglllnted Nonseglllnted

R14 System R14 Normal R14 Normal R14 Normal R14
R15 System R15 System R15 Normal R15 Normal R15

RR14 System R14 Normal R14 Normal R14 Normal R14
System R15 System R15 Normal R15 Normal R15

NOTE: lB002 and ZB004 always run in nonsegmented mode.

CPU Operation

executed, or when an exception (interrupt, trap,
or reset) occurs. The System Call instruction is
used to generate a special trap that provides a
controlled transition from Normal mode to System
mode.

The distinction between Normal and System modes
permits the operating system to run in System mode
and control the system's resources, including the
management of one or more application programs
which run in Normal mode. Separate Normal and
System modes, and memory protection, provide the
basis for protecting an operating system from the
malfunctions of application programs.

4.4 EXTEtI)[O INSTROCTIONS

The lBOOO CPU support.s seven types of extended
instructions, which can be executed cooperetively
by the CPU and an external Extended Processing
Unit (EPU). The execution of these instructions
is controlled by the EPA control bit in the FCW.

The EPA bit specifies whether or not an [PU is in
the system. When the EPA bit is zero, no EPU is

4-6

in the system. The CPU will then trap when it
encounters an extended instruction (as explained
in Chapter 7). This allows the operation of the
extended instruction to be simulated by software
running on the CPU.

If the EPA bit is set, an EPU is in the syst.em.
The CPU will fetch the extended instruction and
perform any address calculation required by that
instruction. If the instruction specifies the
transfer of data, the CPU will generate the timing
signals for this transfer and will carry out its
portion of the transfer. The CPU will then fetch
and begin executing the next instruction in its
instruction stream. The EPU is expected to
monitor the CPU's activity, participate in
extended instruction data transfers init.iated by
the CPU, and execute extended instructions. While
the EPIJ is executing an instruction, the CPU can
be fetching and executing further instructions.
If the CPU fetches another extended instruction
before the EPU is finished executing an
instruction, the STOP line is used by the EPU to
delay the CPU until the previous instruction is
complete. This process is described more fully in
Chapters 6 and 9.

5.1 INTRmUCTION

This chapter describes the eight addressing modes
used by instructions to access data in memory or
CPU registers. Examples for the nonsegmented and
segmented modes of operation are given at the end
of the chapter.

An instruction is a consecutive list of one or
more words aligned at even-numbered byte addresses
in memory. Most instructions have operands in
addition to an operation code (opcode). These
operands can reside in CPU registers or memory
locations. The modes by which references are made
to operands are called "addressing modes." Figure
5-1 illustrates these modes. Not all instructions
can use all addressing modes; some instructions
can use only a few, and some instructions use none
at all. In Figure 5.1, the term "operand" refers
to the data to be operated upon.

5.2 USE Of CPU REGISTERS

The 16 general-purpose CPU registers can, with the
exceptions noted below, be used in any of the
following ways:

• As accumulators, where the data to be
manipulated resides in the registers.

• As pointers, where the value in the register is
the memory address of the operand, rather than
the operand itsel f. In string and stack
instructions, the pointers can be automatically
stepped either forward or backward through
memory locations.

• As index or base register, where the contents
of the register and the word(s) following the
instruction are combined to produce the address
of the operand.

There are two exceptions to the above uses of
general-purpose registers:

Chapter 5
Addressing Modes

• Register RO (or the double register RRD in
segmented mode) cannot be used as an indirect
register, base register, index register, or
software stack pointer.

• The System Mode stack register (R15 in the
l8002 or Z8004 or the doub Ie register RR14 in
the Z8001 or Z8003) is used in acknowledging
interrupts and therefore it cannot, in general,
be used as an accumulator in System-mode
operation.

In addition to the general-purpose use of l8000
registers, the following registers are used for
special purposes:

• Register R15 in nonsegmented operation or the
double register RR14 in segmented operation is
used as a stack pointer for subroutine calls
and ret urns.

• The byte register RH1 is used in the translate
instructions (TROB, TRORB, TRIB, TRIRB) and the
translate and test instructions (TRTOB, TRTORB,
TRTIB, TRTIRB).

• Register RO is used in extended instructions.

In the Relative Address (RA) mode, the program
counter (PC) is used instead of a general-purpose
CPU register to supply the base address for an
effective address calculation.

The PC is normally used to keep track of the next
instruction to be executed; whenever an
instruction is fetched from memory, the PC is
immediately incremented to point to the .next
instruction. This updated PC value is used in
relative addressing as the base address for the
effective address calculation. Operands specified
by relative addressing reside in the program
address space. That is, memory access bus
transactions resulting from relative addressing
operations are accompanied by status output

5-1

Addressing Modes

Addressing Mode Operand Addressing

B

Register

1M

Immediate

*IB
Indirect
Register

DA

Direct
Address

·X

Index

BA

Relative
Address

·BA
Base

Address

*BX
Base

Index

In the Instruc:tion In a Register In Memory

1 REGISTER ADDRESS H OPERAND 1

I OPERAND

1 REGISTER ADDRESS H[!A~D~D~RE~S~S}-------'~II~o:PE~R~A~N~D]

ADDRESS .. I OPERAND

REGISTER ADDRESS

BASE ADDRESS

PC VALUE ~
L!D:!IS~P~LA~C:!E~M~EN~T~.r-~::::::::'::=---0--1 OPERAND

REGISTER ADDRESS

DISPLACEMENT

REGISTER ADDRESS

REGISTER ADDRESS

BASE ADDRESS

'Do not use RO or RRO as indirect. index. or base registers.

Figure 5-1. Addressing Modes

Operand Value

The c:ontent of the
register

In the instruc:tion

The c:ontent of the loc:ation
whose address is in the
register

The c:ontent of the loc:ation
whose address is in the
instruc:tion

The c:ontent of the loc:a­
tion whose address is the
address in the instruc:tion
plus the c:ontent of the
working register.

The c:ontent of the loc:ation
whose address is the
c:ontent of the program
c:ounter. offset by the
displac:ement in the
instruc:tion

The c:ontent of the loc:ation
whose address is the
address in the register.
offset by the displac:ement
in the instruc:tion

The c:ontent of the loc:a­
tion whose address is
the address in a register
plus the index value in
another register.

5-2 2010-012

(STrSTo) 1100 which encodes "instruction space
access".

5.' SHORT ENCOOItI; or SEGMENTED AIlORESSES IN
INSTROCTIONS

Two of the addressing modes, Direct and Index,
require a memory address as part of the
instruction. Segmented addresses generated by the
Z8001 and Z8003 are 2J bits long. Within an
instruction, a segmented address is represented in
either two words (16-bit long offset) or one word
(8-bit short offset).

As Figure 5-2 illustrates, bit 7 of the segment
number byte distinguishes between the two
formats. When this bit is set, the long-offset
representation is implied. When the bit is
cleared, the short-offset address representation
is implied. For a short-offset address, the
23-bit segmented address is reduced to 16 bits by
omitting the eight most significant bits of the
offs~t, which are assumed to be zero.

15

15

long offset
! ! !

8

segment number short offset
I , ! ,

figure 5-2. SeQEnted Me.ory Address
Within Instruction

NOTE: Shaded area is reserved.

5.4 AIlORESSItI; MDDE DESCRIPTIONS

o

o

The following pages contain descriptions of the
addressing modes of the ZBOOO CPUs. Each descrip­
tion:

• Explains how the operand address is calculated
• Indicates in which address space (Register, I/O

Special I/O, Data memory, or Program memory)
the operand is located

• Shows the assembly language format used to
specify the addressing mode

2010·013, 0)4

Addressing Modes

• Works through an example

The descriptions are grouped into two sections-­
one for nonsegmented programs, the other for
segmented programs.

5.5 DESCRIPTIONS AND EXAMPLES

The nonsegmented mode is described in this
section. The information presented applies to the
Z8002, ZB004, and to the Z8001 and Z8003 when
operated in a nonsegmented mode.

5.5.1 Register (R)

In the Register Addressing mode the instruction
operand is located in a specified general-purpose
CPU register. Storing data in a register allows
shorter instructions and faster execution than
accessing memory.

INSTRUCTION REGISTER

I OPERATION I REGISTER H OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in
register. The register
register pair, or register
by the instruction opcode.

a general-purpose CPU
length (byte, word,
quadruple) is implied

Assenibler language forll8t:

RHn,RLn 8yte register
Rn Word register
R~l Double-word register
RQn Quadruple-word register

Ex8llple of R .ode:

LO R2,R3 !Load the contents of
R3 into R2!

Before Execution

R21A6BSI
R3 9A20

After ExecutlOn

R219A20 I
R3 9A20

5-3

Addressing Modes

5.5.2 Ianediate (1M)

The Immediate addressing mode does not indicate a
register or memory address as the source operand.
The data processed by the instruction is in the
instruction. 1M addressing can only be used to
address source operands,
operands.

never destination

WORD(S) _
THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers. The laooo is
optimized for this function, providing several
short immediate instructions to reduce the length
of programs.

AsSllllbler l~age fonat (see also Chapter 6):

#data

Exa.ple of 1M .ode:

LDB RH2,#%55 !Load hex 55 into RH2!

Before Execution After Execution

R2 167891 R2 155891

5.5.3 Indirect Register (IR)

In the Indirect Register Addressing mode, the
register holds the address of the operand.

INSTRUCTION REGISTER
110 OR

MEMORY

I OPERATION I REGISTER H ADDRESS H OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

A single
address.

word register is used to hold the
Any general-purpose word register,

except RO, can be used.

Depending on the instruction, the operand
specified by IR mode will be located in Standard

5-4

I/O address space (Standard I/O instructions),
Special I/O address space (Special I/O instruc­
tions), or data memory address space, or stack
memory address space. For non-I/O references, the
status lines will indicate stack reference if the
stack pointer (R15) is used as the indirect
register; otherwise, the status lines will
indicate data memory reference.

The Indirect Register mode may save space and
reduce execution time when consecutive locations
are referenced. This mode can also be used to
simulate more complex addressing modes, since
addresses can be computed before the data is
accessed.

AsStlllbler language fonat (see also Chapter 6):
®Rn

EX8IIIPle of IR .. de:

LD R2,®R5 ! Load R2 with the
data addressed by the
contents of R5!

Before Execution Memory

R2 030F
R3 0005 170A A023
R4 2000 170C OBOE
R5 170C 170E lODO

After Execution

R2 OBOE
R3 0005
R4 2000
R5 170C

5.5.4 Direct (DA)

In the Direct addressing mode, the address of the
operand is in the instruction.

WORD t-----I
1/0 OR

MEMORY

OPERAND

THE OPERAND VALUE IS IN THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

2010.015. 016. 017

Depending upon the instruction, the operand
specified by DA mode will be in Standard I/O space
(Standard I/O instructions), in Special I/O space
(Special I/O instructions), or in data memory
space.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed in program memory.
(Actually, the address serves as an immediate
value that is loaded into the Program Counter.)

AsseIibler language forll8l: (see also Illapter 6):

address either memory, I/O, or
Special I/O

5.5.5 Index (X)

In the Index addressing mode, the operand address
is computed by adding the address specified in the
instruction to the contents of a word register,
(called "the index register") which is also
specified by the instruction. Indexed addressing
allows random access to tables or other data
structures when the address 0 f the base of the
table is known, but the index for a particular
element must be computed by the program.

Addressing Modes

Exaaple of' DA DIOde:

LDB RH2,%5[23 ! load RH2 with the
data in location
5[23!

Before Execution Memory

R2 167891

SED 101001 5E24 0304

After Execution

R2 106891

Any word register except RO can be used as the
index register.

Operands specified by X mode are always in data
memory address space, except when Index Addressing
is used with the Jump and Call instructions. In
these cases, the destination, computed by adding
the index register contents to the base address,
is in program memory space.

REGISTER

INDEX h MEMORY

~t----------------~~ OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

AsseIibler language forll8l: (see also
Chapter 6):

address(Rn)

Exaaple of X IIOde:

LD R4,%231A(R3) !load into R4 the con­
tents of the memory
location whose
address is 231A +
the value in R3!

Before Execution

R3101FE I
R4 203A

Memory

2516 F3C2
2518 3DOE

251A 7ADA

Address Calculation

231A
+OlFE

2518

After Execution

R3101FE I
R4 3DOE

5.5.6 Relative Address (RA)

In the Relative Address mode the operand is found
at an address relative to the address of the
current instruction. The instruction specifies a

2010·018 5-5

Addressing Modes

two's complement displacement which is added to
the 16-bit address in the Program Counter to form
the target address. The Program Counter setting
used is the address of the first instruction
following the currently executing instruction.

INSTRUCTION PC

OPERATION ADDRESS

An operand specified by RA mode is always in the
program memory address space.

Relative addressing is used with the Jr, OJNZ,
CALR, LOR and LOAR instructions.

DISPLACEMENT f----------~+J_-...
MEMORY

OPERAND
~--------~ ~----~

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

AsseIibler language forut
(see also Dlapter 6):

address

Ex-.ple of RA .ode:

(Note that the symbol "$" is used for the value of
the current program counter.)

LOR R2,$+%6 !Load into R2 the con­
tents of the memory
location whose
address is the address
of the given instruction
+ hex 6!

Because the program counter is advanced to point
to the next instruction before the address

5.5.7 Base Address (SA)

The Base Address mode is similar to the Index mode
in that a base and an offset are combined to
produce the effective address. In Base
Addressing, however, a register contains the base
address, and the displacement is expressed as a
16-bit value in the instruction. The two are
added and the result is the address of the
operand. This addressing mode can only be
used with the Load and Load Address instructions.
The Base Address mode allows random access to

~alculation is performed, the constant that occurs
in the instruction is +2.

Before Execution

R:f IAOFOI
PC 0202

Address Calculation
0206

+ 2
0208

After Execution

R21FFFEI
PC 0206

Program Memory

0202
0204
0206

3102 } 0002 Instruchon

E80I
0208 FFFE

tab les or other data structures for which the
displacement of an element within the structure is
known, but the base address of the particular
structure must be computed by the program.

Any word register except RD can be used for the
base address

The status lines will indicate a stack reference
if the base register is the stack pointer (R15)
and will indicate data reference otherwise.

REGISTER

5-6

ADDRESS

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION. OFFSET BY THE CONTiNTS OF THE REGISTER.

2010·021. 019

AssetIbler language fonud; (see also
Chapter 6).

Rn(lIdisp)

EX8llP1e of OA IIOde:

lDl R5(H%18),RR2 !load the long word
in RR2 into the
memory location
whose address is
the value in R5 +
hex 18!

Before Execution Memory

RR2 R2 OAOO
R3 1500 20CO OABE
R4 3100 20C2 F50D
R5 20AA 20C4 BADE

20C6 BODl

Address CalculatlOn
20AA

+ 18
20C2

After Execution Memory

RR2 R2 OAOO

R3 1500 20CO OABE

R4 3100 20C2 OAOO

R5 20AA 20C4 1500

20C6 BODl

5.5.8 Base Index (OX)

The Base Index addressing mode is an extension of
the Base Addressing mode and can be used only with
the load and load Address instructions. In this
case, both the base address and the index
(displacement) are held in registers. This mode

Addressing Modes

allows access to memory locations whose addresses
are computed at runtime and are not fully known at
assembly time.

Any word register except RO can be used for either
the base address or the index.

The status lines will indicate a stack access if
the base register is the stack pointer (R15),
otherwise, they will indicate data access.

AssetIbler language fonat
(see also Ooapter 6)

Rn(Rm)

ExllllPle of OX _de:

lD R2,R5(R3) !load into R2 the
value whose address
is the value in base
register R5 + the
value in index
register R3!

REGISTER

Before Execution

R2 IF3A

R3 FFFE
R4 0300

R5 1502

Address CalculatlOn
1502

+FFFE
----r505

After Execution

R2 B015
R3 FFFE

R4 0300
R5 1502

Data Memory

14FE 0101

1500 BODE

1502 F732

L~A~D~DR~E:S:S~.t--0--) DATA MEMORY

+ I OPERAND I
REGISTER ••

2010·022

'---------1 DISPLACEMENT 1--_--'

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF REGISTER 2 OFFSET BY THE
DISPLACEMENT IN REGISTER 1.

5-7

Addressing Modes

5.6 DESCRIPTIONS AND EXAlf>lES (SEGMENTED l8001 AND
l80m)

In this section, the notation «nn» is used to
refer to segment number nn.

5.6.1 Register (R)

In the Register Addressing mode, the operand is
taken from a specified general-purpose CPU
register. Storing data in a register allows
shorter instructions and faster execution than
accessing memory.

INSTRUCTION REGISTER

I OPERATION 1 REGISTER f--I OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in a general-purpose CPU
register. The register length (byte, word,
register pair, or register quadruple) is specified
by the instruction opcode.

AsseIIIbler language ForJlats (see also Chapter 6):

RHn, RLn
Rn
RRn
RQn

Byte register
Word register
Double-word register
Quadruple-word register

Ex8lllple of R IIOde:

LDL RR2,RR4 !Load the contents
of RR4 into RR2!

Before ExecutlOn

RR2 R2 A6B8

R3 9A20

RR4 R4 38A6

R5 745E

After ExecutlOn

RR2 R2 38A6

R3 745E

RR4 R4 38A6

R5 745E

5-8

5.6.2 I..ediate (1M):

The Immediate Addressing mode does not indicate a
register or memory address as the location of the
source operand. The data processed by the
instruction is in the instruction.

WORD(S)

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers. The lBOOO is
optimized for this function, providing several
short immediate instructions to reduce the length
of programs.

AsseIIbler language forJlat (see also Chapter 6):

//data

EX8llple of 1M IIOde:

LOB RH2, //%55 !load hex 55 into RH2!

Before ExecutlOn

R2 167891

After Execution

R2 155891

5.6.3 Indirect Register (IR)

In the Indirect Register Addressing mode, the
addressed register holds the address of the data.

I/O OR
INSTRUCTION REGISTER MEMORY

I OPERATION 1 REGISTER f--I ADDRESS f--I OPERAND

THE OPERAND VALUE IS IN THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending upon the instruction, the operand
specified by IR mode will be located in either I/O

2010·014, 015, 016

address space (I/O instructions), Special I/O
address space (Special I/O instructions), or data
or stack memory address spaces. For non-I/O
references, the status lines will indicate a stack
access if the stack pointer (RR14) is used as the
indirect register, otherwise they will indicate
data reference.

A 16-bit register is used to hold an I/O or
Special I/O address; a register pair is used to
hold a memory address. Any general-purpose
register, or register pair, except RO or RRO can
be used.

The Indirect Register mode may save space and
reduce execution time when consective locations
are referenced. This mode can also be used to
simulate more complex addressing modes, since
addresses can be computed before the data is
accessed.

Assellibler language fonats (see also Dlapter 6):

I!lIRn

I!lIRRn

Contains I/O or
Special I/O address
Contains memory
address

ExlllllPle of _ry access using IR !lOde:

LD RZ, I!lIRR4 !load into RZ the
value in the memory
location addressed
by the contents of
RR4!

Before ExecutIOn Memory

RR2 R2 030F

R3 0005 170A*

RR4 R4 2000 170C

R5 170C 170E

A023

OBOE

IOD3

After Execution • Segment Number 20

RR2 R2 OBOE
R3 0005

RR4 R4 2000

R5 170C

ExlllllP1e of I/O using IR .. de:

OUTB I!lIR1,RLO

Addressing Modes

Before Execution

RO I OA23 I
RI 0011

5.6.4 Direct Address (OA)

Execution sends the
data "23" to the I/O
device addressed by
"0011."

In the Direct Address mode, the operand address is
specified in the instruction.

WORD t----;
110 OR

MEMORY

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending upon the instruction, the operand
specified by DA mode will be either in Standard
I/O address space (Standard I/O instructions),
Special I/O address space (Special I/O
instructions), or in data memory space. I/O and
Special I/O addresses are one word long; memory
addresses can be either one or two words long,
depending on whether the long or short format is
used.

This mode is also used by Jump and Ca II
instructions to specify the address of the next
instruction to be executed. (Actually, the
addresss serves as an immediate value that is
loaded into the Program Counter.)

Asseabler language forll8t (see also Dlapter 6):

address Either memory, I/O, or Special I/O,
where double angle brackets
n«n and n»n enclose the segment
number, and vertical line
delimiters n I nand n In enc lose
short-form memory addresses.

ExlllllPle of DA .. de:

LDB RH2'1«15»r.23\ !load RH2 with the
value in memory
segment 15, dis­
placement 23 (hex)!

5-9

Addressing Modes

Before ExecutlOn Memory

R2 167891

« 15» 00221 02~61
0024 0304

After Execution

R2 106891

5.6.5 Index (X).

In the Index Addressing mode, the address of the
operand is computed by adding the contents of a
word register (called the "index register")
speci fied in the instruction to the address
specified in the instruction.

The offset of the operand address is computed by
adding the 16-bit index value to the offset
portion of the segmented address specified in the
instruction. The segment number of the operand
address comes directly from the instruction. The
segment number is unaffected by the offset
computation; any overflow in the computation is
ignored resulting in "wraparound". Indexed
addressing allows random access to tables or other
complex data structures where the address of the
base of the table is known, but the particular
element index must be computed by the program.

Any word register can be used as the index re­
gister except RO. The address in the instruction
can be one or two words, depending on whether a
long or short offset is used in the address.

Operands specified by X mode are elways in the
data memory address space.

AlIS8IIbler language fonat::

Address(Rn)

Exlllllple of X ..xIe:

lD R4, «5»%231A(RJ) !load into R4 the
contents of the
memory location
whose address is
segment 5,
displacement
231A + the

Before Execution

R31 01FE I
R4 203A

Address Calculation

«5» %231A
+ 01FE

«5» %2518

After Execution

R31 01FE I
R4 3DOE

REGISTER

INDEX

value in R3!

Memory

«5» 2516 F3C2
2518 3DOE
251A 7ADA

...l I MEMORY

WORD(S) ________ I----------I~ OPERAND I

5-10

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

2010·018

5.6.6 Relative Address (HA)

In the Relative Address mode, the data processed
is found at an address relative to the current
instruction. The instruction specifies a two's
complement displacement which is combined with the
offset field of the Program Counter to form the
target address. The Program Counter setting used
is the address of the instruction following the
currently executing instruction. (The assembler
will take this into account in calculating the
constant that is assembled into the instruction.)

An operand specified by RA mode is always in the
program memory address space.

AssetIbler language forll8t (see also o.apter 6):

Address

ExlllllPle of RA IIIOde:

LOR R2, $+6 !load into R2 the con­
tents of the memory
location whose
address is the
current program
counter + 6!

INSTRUCTION

OPERATION

PC

ADDRESS

Addressing Modes

Because the program counter will be advanced to
point to the next instruction before the address
calculation is performed, the constant that occurs
in the instruction is + 2.

Before Execution

R2 I AOFO I

PC I ODOOI
0202

« 13»

Address Calculation

« 13»0206
+ 2
« 13»0208

After Execution

R2 I FFFEI

PC 10DOO I
0206

Memory

0202 3102
} Instrucllon

0204 0002
0206 E801
0208 FFFE

DISPLACEMENT ~------------------~+.----.~

MEMORY

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

5.6.7 Base Address (SA)

The Base address mode is similar to the Index
mode in that a base and displacement are combined
to produce the effective address. In Base
addressing, a register pair contains the 23-bit
segmented base address and the displacement is
expressed as a 16-bit value in the instruction.
The displacement is added to the offset of the

INSTRUCTION REGISTER

base address, to obtain the operand address. (The
segment number is not changed.) This addressing
mode can only be used with the Load instructions.
Base Addressing allows random access to records or
other data structures where the displacement of an
element within the structure is known, but the
base of the structure must be computed by the
program.

OPERATION ~ __ A_DD_R_E_S_S __ Jr-----', MEMORY

L~D~I~SP~L~A~C~E~M~E~N~T __ .t----------------'0--1 OPERAND

2010·021. 020

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS THE ADDRESS IN THE REGISTER, OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

5-11

Addressing Modes

Any double-word register except RRO can be used
for the base address. The Base Address mode
allows access to locations whose segment numbers
are not known at assembly time.

The status lines will indicate a steck eccess if
the base register is the stack pointer (RR14) and
will indicate a memory access otherwise.

If the segment number is known when the program is
assembled (or loaded if the loader can resolve
symbolic segment numbers), the Index Address mode
may be used to simulate the Base Address mode.
For example, if R2 is known to hold segment number
18, then the opsrand specified using the base
address RR2 ('93) can also be referenced by the
indexed address «18»lII9}(R}). The advantage of
this simulation is that the Index mode is
supported for most operations, whereas the Base
mode is restricted to LOAD and LOAD AOORESS.

AsaeIIbler IM!JU8!JII fonal; (see aleo Dlapter 6) I

RRn(ldisp)

5.6.8 Base Index (BX)

Add the immediate value to
the contents of RRn; the
result is the address of
the operand.

The Base Index addressing mode is an extension of
the Base Addressing mode and can be used only with
the Load and Load Address instructions. In this
case, both the base address and index are held in
registers. The index value is added to the offset
of the base address to produce the offset of the
operand address. The segment number of the
operand address is the same as that of the base
address. This mode allows eccess to memory
locations whose addresses are computed at runtime
and are not fully known at assembly time.

ExlllllPle of BA .uda:

LDL RR4(llII1B}, RR2 !load the long word
in RR2 into the
memory location
whose address is
the value of RR4
+ hex 1B!

Before Execution Data Memory

RR2 R2 OAOO
R3 1500

RR4 R4 2500
R5 20AA

«31» 20CO OABE
20C2 F50D
20C4 BADE
20C6 BOD1

Address Calculation

«13» 1502
+ FFJ;;E
«13» 1500

After Execution Data Memory

RR2 R2 OAOO
R3 1500 «31» 20CO OABE

RR4 R4 2500 20C2 OAOO
R5 20AA 20C4 1500

20C6 BOD!

Any register peir can be used for the base address
except Rill. Any word register except III can be
used for the index. Note that the Short Offset
format for base addresses is not available in
registers.

The status lines will indicate a steck access if
the base register is the steck pointer (RR14) and
will indicate a data access otherwise.

AsaeIIbler 1-... fonal; (see aleo Dlapter 6):

RRn(Rn)

REGISTER

ADDRESS

REGISTER
OPERAND

DISPLACEMENT 1-----'

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF REGISTER 20FFSET BY THE
DISPLACEMENT IN REGISTER 1.

5-12 2010-022

Ex8llP1e of ax :

LD R2, RR4(R3) !load into R2 the value
whose address is the
contents of RR4 +
the contents of R3!

Before Execution Data Memory

RR2 R2 3535
R3 FFFE « 13» 14FE

RR4 R4 ODOO 1500
R5 1502 1502

0101
BODE
F732

Address Calculation
«13» 1502
+ FFEE
«13»1500
After Execution

RR2 R2 BODE
R3 FFFE

RR4 R4 ODOO
R5 1502

Addressing Modes

Data Memory

«13» 14FE 0101
1500 BODE
1502 F732

5-13

6.1 INTROOUCTION

This chapter describes the instruction set of the
ZBOOO CPUs. An overview of the instruction set is
presented first, in which the instructions are
divided into ten functional groups. The instruc­
tions in each group are listed, followed by a
summary description of the instructions. Signifi­
cant characteristics shared by the instructions in
the group, such as the available addressing modes,
flags affected, or interruptibility, are des­
cribed. Noteworthy instructions or features are
mentioned.

Following the functional summary of the instruc­
tion set, flags and condition codes are discussed
in relation to the instruction set. This is
followed by a section discussing interruptibility
of instructions and a description of traps. The
last part of this chapter consists of a detailed
description of each ZBOOO instruction, listed in
alphabetical order by mnemonic. This section is
intended to be used as a reference by ZBOOO
programmers. The entry for each instruction
includes a description of the instruction,
addressing modes, assembly language mnemonics,
instruction formats, execution times and simple
examples illustrating the use of the instruction.

6.2 FUNCTIONAL SUMMARY

This section presents an overview of the ZBOOO
instructions. For this purpose, the instructions
can be divided into ten functional groups:

• Load and Exchange
• Arithmetic
• Logical
• Program Control
• Bit Manipulation
• Rotate and Shift
• Block Transfer and String Manipulation
• Input/Output
• CPU Control

Chapter 6
Instruc:tioa Set

• Extended Instructions

6.2.1 load and [xchSlglt Instructions

~of

Instruction ~erand(8) Instruction

CLR dst Clear
CLRB

EX dst,src Exchange
EXB

LD dst,src Load
LOB
LDL

LOA dst,src Load Address

LOAR dst,src Load Address Relative

LOK dst,src Load Constant

LOM dst,src,num Load Multiple

LOR dst,src Load Relative
LORB
LORL

POP dst,src Pop
POPL

PUSH dst,src Push
PUSHL

The Load and Exchange group includes a variety of
instructions that provide for movement of data
between registers, memory, and the program itself
(e.g., immediate data). These instructions are
supported with the widest range of addressing
modes, including the Base (SA) and the Base

6-1

Instruction Set

Index (BX) modes which are available only with the
LD and LDA instructio~s. None of these instruc­
tions affect the CPU flags.

The Load and Load Relative instructions transfer a
byte, word, or long word of data from the source
operand to the destination operand. Special one­
word instructions are also included to handle
loading a small constant (0 to 15) into a register
or an arbitrary constant into a byte register.

These instructions provide one of the following
three functions:

• Load a register with data from a register or a
memory location

• Load a memory location with data from a
register

• Load a register or a memory location with
immediate data

The memory location is specified using any of the
addressing modes IR, DA, X, BA, BX, RA. The modes
BA and BX are available with the LD and LDA
instructions. The Relative addressing mode is
used with the LDR and LDAR instructions.

a stack. Byte Push and Pop operations are not
supported, and the stack pointer register must
contain an even value when a stack instruction is
executed. This is consistent with the general
restriction of using even addresses for word and
long word accesses.

The Load Address and Load Address Relative
instructions compute the effective address for the
DA, X, BA, BX, and RA modes and return the value
in a register.

6.2.2 Arit~tic Instructions

Instruction Qperand(s)

ADC
ADCB

ADD
ADDB
ADDL

CP
CPB

dst,src

dst,src

dst,src

~of

Instruction

Add with
Carry

Add

Compare

The Clear and Clear byte instructions can be used CPL
to clear a register or memory location to zero.
While this is functionally equivalent to a Load
Immediate where the immediate data is zero, this
operation occurs frequently enough to justify a
special instruction that is more compact.

The Exchange instructions swap the source and
destination operands.

The Load Multiple instruction provides for effi­
cient saving and restoring of registers. This can
lower the overhead of procedure calls and context
switches such as those that occur at interrupts.
The instruction allows any contiguous group of 1
to 16 registers to be transferred to or from a
memory area, which can be designated using the DA,
IR, or X addressing modes. (RO is considered to
follow R15, e.g. R9-R15 and RO-R3 can be saved
with a single instruction.)

Stack operations are supported by the PUSH, PUSHL,
POP, and POPL instructions. Any general-purpose
register (or register pair in segmented mode) can
be used as the stack pointer (except RO and RRO).
The source operand for the Push instructions and
the destination operand for the Pop instructions
can be a register or a memory location, specified
by the DA, IR, or X addressing modes. Immediate
data can also be pushed, one word at a time, onto

6-2

DAB

DEC
DECB

DIV
DIVL

EXTS
EXTSB
EXTSL

INC
INCB

MUll
MULTL

NEG
NEGB

SBC
SBCB

SUB
SUBB
SUBL

dst

dst,src

dst,src

dst

dst,src

dst,src

dst

dst,src

dst,src

Decimal
Adjust

Decrement

Divide

Extend Sign

Increment

Multiply

Negate

Subtract with
Carry

Subtract

The Arithmetic group consists of instructions for
performing integer arithmetic. The basic
instructions use standard two's complement binary
format and operations. Support is also provided
for implementation of BCD arithmetic.

Most of the instructions in this group perform an
operation between a register operand and a second
operand designated by any of the five basic
addressing modes (R, IR, DA, 1M, X), and load the
result into the register.

The arithmetic instructions, in general, alter the
C, Z, Sand P/V flags, which can then be tested by
subsequent conditional jump instructions. The P/V
flag is used to indicate arithmetic overflow for
these instructions and it is referred to as the V
(overflow) flag. The byte versions of these
instructions generally alter the 0 and H flags as
well.

The basic integer (binary) operations are
performed on byte, word, or long word operands,
although not all operand sizes are supported by
all instructions. Multiple precision operations
can be implemented in software using the Add with
Carry, (ADC, ADCB), Subtract with Carry (SBC,
SBCB) and Extend Sign (EXTS, EXTSB, EXTSL)
instructions.

BCD operations are not provided directly, but can
be implemented using a binary addition (ADDB,
ADCB) or subtraction (SUBB, SBCB) followed by a
decimal adjust instruction (DAB).

The Multiply and Divide instructions perform
signed two's complement arithmetic on word or long
word operands. The Multiply instruction (MUL T)
multiplies two 16-bit operands and produces a
32-bit result, which is loaded into the destin­
ation register pair. Multiply Long (MUL TL)
multiplies two 32-bit operands and produces a
64-bit resul t, which is loaded into the
destination register quadruple. An overflow
condition is never generated by a multiply, nor
can a true carry be generated. The carry flag is
used instead to indicate that the product has too
many significant bits to be entirely contained in
the low-order half of the destination.

The Divide instruction (DIV) divides a 32-bit
number in the destination register pair by a
16-bit source operand snd loads a 16-bU quotient
into the low-order half of the destination
register. A 16-bit remainder is loaded into the
high-order half. Divide Long (DIVL) operates

Instruction Set

similarly with a 64-bit destination register
quadruple and a 32-bit source. The overflow flag
is set if the quotient is bigger than the low­
order half of the destination, or if the aource is
zero.

6.2.' Logical Instructioos

~of

Instruction ~erand(s) Instruction

AND dst,src And
ANDB

COM dst Complement
COMB

OR dst,src Or
ORB

TEST dst Test
TESTB
TESTL

XOR dst,src Exclusive Or
XORB

The instructions in this group perform logical
operations on each of the bits of the operands.
The operands may be bytes or words; logical
operations on long words are not supported (except
for TESTL) but are easily implemented with pairs
of instructions.

The two-operand instructions, And (AND, ANDB) , Or
(OR, ORB) and Exclusive-Or (XOR, XORB) perform the
appropriate logical operations on corresponding
bits of the destination register and the source
operands, which can be designated by any of the
five basic addressing modes (R, lR, OA, 1M, X).
The resu I t is loaded into the destination
register.

Complement (COM, COMB) complements the bits of the
destination operand. Finally, Test (TEST, TESTB,
TESTL) performs the OR operation betlleen the
destination operand and zero and sets the flags
accordingly. Test long (TESTL) allows 32-bit
logical operations to be performed by two 16-bit
logical operators followed by TESTL to set the
flags. The Complement and Test instructions can
use four basic addressing modes to specify the
destination (1M mode is excluded).

6-3

Instruction Set

The Logical instructions set the Z and S flags
based on the result of the operation. The byte
variants of these instructions alao set the Parity
flag (P/V) if the parity of the result is even,
while the word instructions leave this flag
unchanged. The H and 0 flags are not affected by
these instructions.

6.2 •• Progr_ Control Instructions

Instruction

CALL

CALR

DJNZ
DBJNZ

IRET

JP

JR

RET

SC

Oper (s)

dst

dst

r,dat

cc,dst

cc,dst

cc

src

~of

Instruction

Call Procedure

Call Procedure
Relative

Decrement and
Jump if Not Zero

Interrupt Return

Jump

Jump Relative

Return from
Procedure

System Call

This group consists of the instructions that
affect the Program counter (PC) and thereby
control program flow. General-purpose registers
and memory are not altered except for the
processor stack pointer and the processor stack,
which play a significant role in procedures and
interrupts. An exception is Decrement And Jump If
Not Zero (DJNZ), which uses a register as a loop
counter. The flags are also preserved except for
IRET which reloads the program status, including
the flags, from the processor stack.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new
location if the processor flags satisfy the condi­
tion specified in the condition code field of the
instruction. (See Section 6.4 for a description
of condition codes.) Jump Relative is a one-word
instruction that will jump to a specified address
within an address range -2~4 to +2~6 bytes from

6-4

the address of the JR instruction. Most condi­
tional jumps in programs are made to locations
only a few bytes away; the Jump Relative
inetruction exploits this fact to improve code
compactness and efficiency.

Call (CAll) and Call Relative (CALR) instructions
are used for calling procedures; the current
contents of the PC are pushed onto the processor
stack, and the effective address indicated by the
instruction is loaded into the PC. The use of a
procedure address stack in this manner allows
straight forward implementation of nested and
recursive procedures. like Jump Relative, Call
Relative provides a one-word instruction for
calling nearby subroutines. However, a much
larger range of address, -4092 to +4098 bytes for
CALR instruction, is provided since subroutine
calls exhibit less locality than normal control
transfers.

Both Jump and Call instructions are available with
the indirect register, indexed and relative
address modes in addition to the direct address
mode.

The Conditional Return instruction (RET) is a
companion to the Call instruction; if the
condition specified in the instruction is
satisfied, it loads the PC from the stack and pops
the stack.

A special instruction, Decrement And Jump if Not
Zero (DJNZ, DBJNZ), implements the control part of
the baaic Pascal fOR loop in a one-word
instruction.

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt:
the current program status is pushed onto the
system mode stack and a new program status is
loaded from a dedicated part of the Program Status
Area. An 8-bit immediate source field in the
instruction can be retrieved from the stack by the
software that handles system calls and interpreted
as desired. for example the contents of this
field can be used as an index into a dispatch
table to implement a call to one of the services
provided by the operating system.

Interrupt Return (IRET) is used for returning from
interrupts and traps, including system calls, to
the interrupted routines. This is a privileged
instruction.

6.2.5 Bit ipulation Instructions

N.e of
Instruction Operanl(s) Instruction

BIT dst,src Bit Test
BITB

RES dst,src Reset Bit
RESB

SET dst,src Set Bit
SETB

TSET dst Test and Set
TSETB

TCC cc,dst Test
TCCB Condition

Code

The instructions in this group are useful for man­
ipulating individual bits in registers or memory.

Instruction Set

destination register if the state of the flags
specified by the condition code in the instruction
is true (See Section 6.6.B for a list of condition
codes.) This may be used to control subsequent
operation of the program after the flags have been
changed by intervening instructions. It may also
be used by language compilers for generating
boolean values.

6.2.6 Rotate and Shift Instructions

Instruction Operanl(s)

RL dst,src
RLB

RLC
RlCB

RLDB

RR

dst,src

dst,src

dst ,src

~of

Instruction

Rotate Left

Rotate Left
through Carry

Rotate Left
Digit

Rotate Right
The Bit Set (SET, SETB) and Bit Reset (RES, RESB) RRB
instructions set, or clear, a single bit in the
destination byte or word, which can be in a
register or in a memory location specified by any
of the five basic addressing modes. The parti­
cular bit to be manipulated may be specified by a
value (0 to 7 for byte, 0 to 15 for word) in the
instruction itself or it may be specified
by the contents of a register. In the latter
case, the destination is restricted to a
register. These instructions leave the flags
unaffected.

The Bit Test instruction (BIT, BITB) tests a
specified bit and sets the Z flag according to the
state of the bit.

The Test and Set instruction (TSET, TSETB) can be

RRC
RRCB

RRDB

SDA
SDAB
SDAL

SOL
SDLB
SOLL

SlA
SLAB

used for implementing synchronization mechanisms SlAL
such as semaphores between processes on the same
or on different CPUs. When executed, by either a
Za003 or Za004 CPU, the Test and Set instruction
causes status code 1111 to be output during the
instruction execut ion when a memory location is
the operand. This code is used in a
multiprocessor environment to ensure that only one
processor at a time can access the access control
semaphore of a shared resource.

Another instruction in this group, Test Condition
Code (rCC, TCCB) sets the low order bit of the

SLL
SLLB
SLLL

SRA
SRAB
SRAL

SRL
SRLB
SRLB

dst,src

dst ,src

dst,src

dst,src

dst,src

dst,src

dst,src

dst,src

Rotate Right
through Carry

Rotate Right
Digit

Shift Dynamic
Arithmetic

Shift Dynamic
Logical

Shift Left
Arithmetic

Shift Left
Logical

Shift Right
Arithmetic

Shift Right
Logical

6-5

Instruction Set

This group contains instructions for shifting and
rotating the contents of data registers.

Shift Instructions are used to shift the contents
of an operand arithmetically or logically in
either direction. Three operand lengths are
supported: 8, 16 and 32 bits. The amount of the
shift, which may be any value up to the operand
length, can be specified either by the contents of
a field in the instruction or by the contents of a
specified register.

Rotate instructions are used to rotate the
contents of a specified byte or word register in
either direction by either one or two bit
positions; the carry bit can be included in the
rotation. A pair of digit rotation instructions
(RLDB, RRD8) are useful in manipulating BCD data.

This group includes instructions that provide a
full complement of string comparision, string
translation, and block transfer functions. Using
these instructions, byte or word blocks of any
length up to 64K bytes can be moved in memory, a
byte or word string can be searched until a given
value is found, two byte or word strings can be
compared, and a byte string can be translated by
using the value of eech byte as the address of its
own replacement in a translation table. Translate
and Test instructions skip over a class of bytes
specified by a translation table, detecting bytes
with values of special interest.

All the operations can proceed through the data in
either direction. furthermore, the operations can
be repeated automatically while decrementing a
length counter until it is zero, or they can

6.2.7 Block Tr_fer and string Manipulation Instructions

Instruction Operand(s) N..e of Instruction Operand(s) N..e of
Instruction Instruction

CPD dst,src,r,cc Compare and Decrement LDI dst,src,r Load and Increment
CPDB LDIB

CPDR dst,src,r,cc Compare, Decrement, LDIR dst,src,r Load, Increment,
CPDRB and Repeat LDIRB and Repeat

CPI dst,src,r,cc Compare and Increment TRDB dst,src,r Translate and Decrement
CPIB
CPIR dst,src,r,cc Compare, Increment, TRDRB dst,src,r Translate, Decrement
CPIRB and Repeat and Repeat

CPSD dst,src,r,cc Compare String, TRIB dst,src,r Translate and Increment
CPSDB and Decrement

TRIRB dst,src,r Translate, Increment
CPSDR dst,src,r,cc Compare String, and Repeat
CPSDR8 Decrement and Repeat

TRTDB src1,src2,r Translate, Test,
CPSI dst,src,r,cc Compare String, and Decrement
CPSIB and Increment

TRTDRB src1,src2,r Translate, Test,
CPSIR dst,src,r,cc Compare String, Decrement, and Repeat
CPSIRB Increment and Repeat

TRTlB src1,src2,r Translate, Test,
LDD dst,src,r Load and Decrement and Increment
LDDB

TRTlRB src1,src2,r Translate, Test,
LDDR dst,src,r Load, Decrement, Increment, and Repeat
LDDRB and Repeat

6-6

operate on one storage unit per execution with the
length counter decremented by one, and the source
and destination pointer registers properly
adjusted. The latter form is useful for adding
other instructions within a loop containing the
block instructions.

Any word register can be used as a length counter
in most cases. If the execution of the instruc­
tion causes this register to be decremented to
zero, the P/V flag is set. In most cases the
auto-repeat forms of these instructions always
leave this flag set.

The D and H flags are not affected by these
instructions. The C anc S flags are preserved by
all but the compare instructions.

These instructions use the Indirect Register (IR)
addressing mode: the source and destination oper-

6.2.8 Input/output Instructions

Instruction I!perand(s) ~ of
Instruction

IN dst,src Input
INB

IND dst,src,r Input and Decrement
INDB

INDR dst,src,r Input, Decrement, and
INDRB Repeat

INI dst,src,r Input and Increment
INIB

INIR dst,src,r Input, Increment, and
INIRB Repeat

OTOR dst,src,r Output, Decrement, and
OTDRB Repeat

OTIR dst,src,r Output, Increment, and
OTIRB Repeat

OUT dst,src Output
OUTB

OUTO dst,src,r Output and Decrement
OUTOB

OUTI dst,src,r Output and Increment
OUTIB

Instruction Set

ands are addressed by the contents of general­
purpose registers (word registers in nonsegmented
mode and register pairs in segmented mode). In
the segmented mode, only the low-order half of the
register pair (the offset) is incremented or
decremented. The segment number is never changed
in ZBOOO address arithmetic.

The repetitive forms of these instructions are
interruptible. This is essential since the
repetition count can be as high as 65,536 and the
instructions can take 9 to 14 cycles for each
iteration after the first one. The instruction
can be interrupted after any iteration. If the
instruction is not finished, the address of the
instruction itself is saved on the stack together
with the contents of the operand pointer registers
and the repetition counter. The instruction can
then be simply reissued after returning from the
interrupt.

Instruction ~erand(s) N.e of
instruction

SIN dst,src Spec i al Input
SINB

SIND dst,src,r Special Input and
SINDB Decrement

SINDR dst,src,r Special Input, Decrement,
SINDRB and Repeat

SINI dst,src,r Special Input and
SINIB Increment

SINIR dst,src,r Special Input, Increment,
SINIRB and Repeat

SO TOR dst,src,r Special Output,
SOTORB Decrement, and Repeat

SOTIR dst,src,r Special Output,
SOTIRB Increment, and Repeat

SOUT dst ,src Special Output
SOUTB

SOUTO dst,src,r Special Output and
SOUTOB Decrement

SOUTI dst,src,r Special Output and
SOUTIB Increment

6-7

Instruction Set

This group consists of instructions for
transferring a byte, word, or block of data
between peripheral devices and the CPU registers
or memory. Two separate I/O address spaces with
16-bit addresses are recognized: a Standard I/O
address space and a Special I/O address space.
The latter is intended for use with special ZBOOO
Family devices, typically a Memory Management Unit
(MMU) • Instructions that operate on the Special
I/O address space are prefixed with the word
"speCial". Standard I/O and Special I/O
instructions generate different codes on the CPU
status lines but are otherwise identical. Normal
B-bit peripherals are connected to bus lines
AOO-A07. Standard I/O byte instructions use odd
addresses only. Special B-bit peripherals such as
the MMU or the Paged Memory Management Unit
(PMMU), which are used with Special I/O
instructions, are connected to bus lines
AOB-A015' Special I/O byte instructions use even
addresses only.

The instructions for transferring a single byte or
word (IN, INB, OUT, OUTB, SIN, SINB, SOUT, SOUTB)
can transfer data between any general-purpose
register and any port in either the indicated I/O
address space. For the Standard I/O instructions,
the port number can be specified in the
instruction or by the contents of the CPU
register. For the Special I/O instructions the
port number is specified statically.

The remaining instructions in this group
transfer blocks of data between I/O ports and
memory. The operation of these instructions is
similar to that of the block move instructions
described earlier, but one operand is always an
I/O port which remains unchanged while the address
of the other operand (a memory location) is
incremented or decremented.
are also interruptible.

These instructions

All I/O instructions are privileged, i.e., they
can be executed only in system mode. The single
byte/word I/O instructions do not alter any
flags. The block I/O instructions, including the
single iteration variants, alter the Z and P/V
flags. The latter is set when the repetition
counter is decremented to zero.

The instructions in this group relate to the CPU
control and status registers (FCW, PSAP, REFRESH,
etc.), or perform functions that do not fit into
any of the other groups, such as instructions that
support multimicroprocessor operation. All of
these instructions are privileged, with the

6-B

exception of NOP and the instructions operating on
the flags (SETFLG, RESFLG, COMFLG, LOeTLB).

6.2.9 CPU Control Instructions

Instruction

COMFLG

01

EI

HALT

LOCTL
LOCTLB

LOPS

MBIT

MREQ

MRES

MSET

NOP

RESFLG

SETFLG

Operand(s)

flag

int

int

dst,src

src

dst

flag

flag

N.e of
Instruction

Complement Flag

Disable Interrupt

Enable Interrupt

Halt

Load Control
Register

Load Program
Status

Multi-Micro
Bit Test

Multi-Micro
Request

Multi-Micro
Reset

Multi-Micro
Set

No Operation

Reset Flag

Set Flag

6.2.10 Extended Instructions

The lBOOO architecture includes a mechanism for
extending the basic instruction set through the
use of external dev ices known as Extended
Processing Units (EPUs). (See Section 2.12 for a
more comprehensive presentation of the Extended
Processing Architecture.) Six opcodes, DE, OF,
4E, 4F, BE and BF (in hexadecimal), are dedicated
to the implementation of extended instructions
using this Facility. four addressing modes (R,
IR, OA, and X) can be used by extended
instructions for accessing data for the [PUS.

There are four types of extended instruction in
the Z8000 CPU instruction repertoire: EPU inter­
nal operations, data transfers between memory and
EPU, data transfers between EPU and CPU, and data
transfers between EPU flag registers and the CPU
flag and control word. The last type is useful
when the program must branch based on conditions
determined by the EPU.

Upon encountering extended instructions, the CPU's
action is dependent upon the EPA control bit in
the CPU's FCW. When this bit is set, the
instruction is executed by the EPU. If this bit
is clear, the CPU traps (an extended instruction
trap) so that a trap handler can emulate the
desired operation in software.

6.2.11 Privileged Instructions

The following list presents the names and
mnemonics of the ZBOOO Privileged Instructions:

Disable Interrupt (DI)
Enable Interrupt (EI)
Halt (HALT)
Input (IN)
Special Input (SIN)
Input and Decrement (IND)
Special Input and Decrement (SIND)
Input, Decrement and Repeat (INDR)
Special Input, Decrement and Repeat (SINOR)
Input and Increment (I NI)
Special Input and Increment (SINI)
Input, Increment and Repeat (INIR)
Special Input, Increment and Repeat (SINIR)
Interrupt Return (IRET)
Load Control (LDCTL)
Load Program Status (LDPS)
Multi Micro Bit Test (MBIT)
Multi Micro Request (MREQ)
Multi Micro Reset (MRES)
Multi Micro Set (MSET)
Output, Decrement and Repeat (OTOR)
Special Output, Decrement and Repeat (SOTDR)
Output, Increment and Repeat (OTIR)
Special Output, Increment and Repeat (SO fIR)
Output (OUT)
Special Output (SOUT)
Output and Decrement (OUTD)
Special Output and Decrement (SOUTO)
Output and Increment (OUTI)
Special Output and Increment (SOUTI)

6.' PROCESSOR FLAGS

The processor flags are part of the program status
(Section 2.7.1). They provide a link between

Instruction Set

sequentially executed instructions in the sense
that the result of executing one instruction may
alter the flags, and the resulting value of the
flags can be used to determine the operation of a
subsequent instruction, typically a conditional
jump instruction. For example, the use of a flag
when a Test is followed by a Conditional Jump:

TEST R1 Isets Z FLAG if R1 = 01
JR Z, DONE !go to done if Z flag is set!

DONE:

The program branches to DONE if the TEST sets the
Z flag, i.e., if R1 contains zero.

The program status has six flags:

• Carry (C)
• Zero (Z)
• Sign (S)
• Parity/Overflow (P/V)
• Decimal Adjust (D)
• Half Carry (H)

Appendix C lists the instructions and the flags
they affect. In addition, there are Z8DOO CPU
control instructions that allow the programmer to
set, reset (clear), or complement any or all of
the first four flags. The Half-Carry and
Decimal-Adjust flags are used by the ZBOOO
processor for BCD arithmetic corrections.

The Flags register can be separately loaded by the
Load Control Register (LDCTLB) instruction without
disturbing the control bits in the other byte of
the FCW. In fact, access to the Flags register is
not a privileged operation, while access to the
control bits is privileged. The contents of the
Flag registers can also be saved in a register or
memory.

The Carry (C) flag, when set, generally indicates
a carry out of or a borrow into the high-order bit
position of a register being used as an accumu­
lator. For example, adding the B-bit numbers 225
and 64 causes a carry out of bit 7 and sets the
Carry flag:

Bit
7 6 54' 2 1 0

225
+ 64 0

o 0 0 0 1
000 0 0 0

28900 0000
= Carry flag

6-9

Instruction Set

The Carry flag plays an important role in the
implementation of multiple-precision arithmetic
(see the ADC, SBC instructions). It is also
involved in the Rotate Left Through Carry (RLC)
and Rotate Right Through Carry (RRC) instruc­
tions. These instructions are used to implement
rotation, or shifting, of long strings of bits.

The Zero (Z) flag is set when the result reg­
ister's contents are zero following certain oper­
ations. This is often useful for determining when
a counter reaches zero. In addition, the block
compare instructions use the Z flag to indicate
that the specified comparison condition is satis­
fied.

The Sign (S) flag is set to one when the most
significant bit of a result register contains a
one (a negative number in two's complement nota­
tion) following certain operations.

The Overflow (V) flag, when set, indicates that a
two's complement number in a result register has
exceeded the lergest number, or is less than the
smallest number, that can be represented in a
two's complement notation. This flag is set as
the result of an arithmetic operation. Consider
the following example:

Bit
7 6 5 • J 2 0

120 0 0 0 0
+ 105 0 0 0 0 1

225 0 0 0 0

= Overflow flag set

The result in this case (-31 in two's complement
notation) is incorrect, thus the overflow flag is
set.

The same bit acts as a Parity (P) flag following
logical instructions on byte operands. The number
of one bits in the register is counted; if the
total is even, parity is said to be even and the
flag P is set (Le. P=1). If the total is odd;
parity is odd and the flag P is reset (i.e. P=O).
This flag is referred to as the P/V flag.

The Block Move and String instructions and the
Block I/O instructions use the P/V flag to
indicate that the repetition counter has
decremented to O.

6-10

The Decimal-Adjust (D) flag is used for BCD
arithmetic. Since the algorithm for correcting
BCD operations is different for addition and
subtraction, this flag is used to record whether
an add or subtract instruction was executed so
that the subsequent Decimal Adjust (DAB)
instruction can perform its function correctly.
See the OAB instruction for further discussion on
the use of this flag.

The Half-Carry (H) flag indicates a carry out of
bit 3 or a borrow into bit 3 as the result of
adding or subtracting bytes containing two BCD
digits each. This flag is used by the OAB
instruction to convert the binary result of a
previous decimal addition or subtraction into the
correct decimal (BCD) result.

Neither the Decimal-Adjust nor the Half-Carry flag
is used in condition codes and neither is affected
by the SETFLG, RESFLG, or COMFLG instructions.
The only access to these flags is through the
LDCTL instruction.

6.. CONDITION CODES

The first four flags, C, Z, S, and PlY, are used
to control the operation of certain "conditional"
instructions such as the Conditional Jump. The
operation of these instructions is a function of
whether a specified boolean condition on the four
flags is satisfied or not. Sixteen of the flag
settings are encoded in a 4-bit field called the
condition code, which forms a part of all
conditional instructions.

The condition codes and the flag settings they
represent are listed in Section 6.6.

Although there are sixteen unique condition codes,
more than sixteen mnemonics are used for the
conditional codes. Some of the flag settings have
more than one meaning for the programmer,
depending on the context (P[& OV, Z & EQ, C &
ULT, etc.).

6.5 INSTRUCTION INTERRUPTS AND TRAPS

Interrupts are discussed in detail in Chapter 7.
This section looks at the relationship between
instructions and interrupts.

When the CPU receives an interrupt request, and it
is enabled for interrupts of that class, the

interrupt is normally processed at the end of the
current instruction. There are two exceptions:
when an abort instruction interrupt occurs, the
executing instruction is aborted immediately, and
instructions which are designed to be
interruptible so as to minimize the length of time
it takes the CPU to respond to an interrupt. The
latter type instructions are the iterative
versions of the String and Block instructions and
the Block I/O instructions. When an interrupt
request is received during the execution of the
iterative version of the string/block
instructions, the instruction is suspended after
the current iteration. The address of the
instruction itself is saved on the stack, so that
the same instruction is executed again when the
interrupt handler executes an IRET. The contents
of the repetition counter and the registers that
index into the block operands are such that when
the instruction is reissued upon returning from an
interrupt, the effect is the same as if the
instruction were not interrupted. The interrupt
handler preserved the contents of the registers.

The longest non interruptible instruction that can
be used in normal mode is Divide Long (72B cycles
in the worst case). Multi-Micro-Request, a
privileged instruction, can take longer depending
on the programmable propagation delay constant.

Traps are synchronous events that result from the
execution of the previous instruction. The action
of the CPU in response to a trap is similar to the
response of an interrupt (see Chapter 7). Traps
are nonmaskable.

The ZBOOO CPUs implement four kinds of trap:

• Extended Instruction
• Privileged Instruction in Normal mode
• Addressing violation (segmentation trap in

lB001, and Segment/Address Translation Trap
in ZB003)

• System Call

The Extended Instruction trap occurs when an
Extended Instruction is encountered, but the
EPA bit in the FCW is zero. This allows the same
software to be run on ZBOOO system configurations
with or without EPUs. On systems without EPUs,
the desired extended instructions can be emulated

Instruction Set

by software which is invoked by the Extended
Instruction trap handler.

The System Call instruction always causes a trap.
It is used to transfer control to system mode
software in a controlled way, typically to request
supervisor services.

The Privileged Instruction trap serves to protect
the integrity of a system from erroneous or
unauthorized actions of normal mode processes.
Certain instructions, called privileged
instructions, can only be executed in system
mode. An attempt to execute one of these
instructions in normal mode causes a Privileged
Instruction trap. All the I/O instructions and
the instructions that operate on the control
portion of the FCW, such as instructions HALT and
IRET, are privileged.

Address Violation traps are initiated by events
external to the CPU such as the detection of an
address violation by an MMU. This type of trap
selects and initiates the routines needed to
service or correct the detected violation. This
type of trap is useful in enforcing access
protection rules. Traps of this type are used on
the lB003 and lB004 CPU for the implementation of
virtual memory.

6.6 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the instruction set, with the
instructions listed in alphabetical order by
mnemonic. This section describes the notational
conventions used in the instruction descriptions
and the binary encoding for some of the common
instruction fields (e.g., register designation
fields).

The description of each instruction begins on a
new page. The instruction mnemonic(s) and name is
printed in large bold letters at the top of each
page to enable the reader to easily locate a
desired description. The term "Privileged
Instruction" is also printed at the top of each
page which contains a description of this type of
instruction.

6-11

Instruction Set

The assembler language syntax is then given in a
single generic form that covers all the variants
of the instruction. along with a list of
applicable addressing modes.

Example:

AND dst.src dst:R
ANOB src:R. 1M. IR. OA.X

The description normally contains the following
items in the given sequence:

1. The operations performed by the instruction.

2. A discussion of the overall operational aspects
of the functions performed by the instruction.

3. The effect the instruction has on each of the
processor flags is given.

4. A table that illustrates all of the variants of
the instruction for each applicable addressing
mode and operand size. The following
information is presented for each of the
variants.

A. Instruction ItI-W:s. An instruction
specification is shown for each applicable operand
size (byte. word. or long). The instruction
mnemonic code is given in upper case characters;
lower case characters represent the variable part
of the instruction specification for which
suitable values are to be substituted. For
example.

ADD Rd.'data

represents a statement of the form

ADD R3.'35.

The following notation is used for register
operands:

Rd. Rs: a word register in the range RO-R15
Rbd. Rbs: a byte register RHn or RLn where

n is within the range of 0 - 7
RRd. RRs: a register pair RRO. RR2 ••••• RR14
RQd: a register quadruple RRO. RR4. RR8.

or RR12

The "s" or "d" represents a source or destination
operand. To simplify presentation. the terms

6-12

source and destination are used when the instruc­
tion arguments referred to are not strictly source
or destination operands. For example:

EX dst.src or MREQ dst

Address registers used in the Indirect. Base. and
Base Index addressing modes represent word
registers in nonsegmented mode and register pairs
in segmented mode; this situation is flaggsd and
an explanation is given in a footnote.

B. Instruction For..t. The binary encoding of
the instruction is given in each case for both the
nonsegmented and segmented modes. Where
applicable. both the short and long forms of the
segmented version are given (55 and 5L).

The instruction formats for byte and word versions
of an instruction are usually combined. A single
bit. labeled. "w". distinguishes them: a one
indicates a word instruction. while a zero
indicates a byte instruction.

Fields specifying register operands are identified
with the same symbols (Rs. RRd. etc.) as described
in item A. In some cases. only nonzero values are
permitted for certain registers. such as index
registers. This is indicated by a notation of the
form "Rs # 0."

The binary encoding for register fields is as
follows:

Register Binary Hex

RQO RRO RO RHO 0000 0
R1 RH1 0001 1

RR2 R2 RH2 0010 2
R3 RH3 0011 3

RQ4 RR4 R4 RH4 0100 4
R5 RH5 0101 5

RR6 R6 RH6 0110 6
R7 RH7 0111 7

RQB RRB R8 RLO 1000 8
R9 RL1 1001 9

RR10 R10 RL2 1010 A
R11 RL3 1011 B

RQ12 RR12 R12 RL4 1100 C
R13 RL5 1101 0

RR14 R14 RL6 1110 E
R15 RL7 1111 F

In the case of relative addresses, the instruction
format contains a "displacement". The actual value
of this argument is dependent on the value of the
PC at the time the instruction is executed.

Code Meaning

F Always false
Always true

Z Zero
NZ Not zero
C Carry
NC No carry
PL Plus
MI Minus
NE Not equal
EQ Equal
OV Overflow
NOV No overflow
PE Parity even
PO Parity odd
GE Greater than

or equal
LT Less than
GT Greater than
LE Less than or

equal
UCE UnSigned

greater than
or equal

ULT Unsigned
less than

UGT Unsigned
greater than

ULE Unsigned
less than
or equal

Instruction Set

A condition code is indicated by "cc" in the
instruction formats. The condition codes, the
flag settings they represent, and the binary
encoding in the instructions are as follows:

Flag Setting Binary

0000
1000

Z = 1 0110
Z = 0 1110
C = 1 0111
C = 0 1111
5 = 0 1101
5 = 1 0101
Z = 0 1110
Z = 1 0110
V = 1 0100
V = 0 1100
P = 1 0100
P = 0 1100
(5 XOR V) = 0 1001

(5 XOR V) = 1 0001
(Z OR (5 XOR V» = 0 1010
(Z OR (5 XOR V» = 1 0010

C = 0 1111

C = 1 0111

«C = 0) AND (Z = 0» 1011

(C OR Z) = 1 0011

Notes: 1. Some of the condition codes correspond to identical flag
settings: i.e., Z-EQ, NZ-NE, NC-UCE, PE-OV, PO-NOV.

C. Cycles. This line gives the execution time of
the instructions in CPU cycles.

D. Exa.ple. An instruction specification example
is given.

6.7 Z8000 INSTRUCTION DESCRIPTIONS AtI) FORMTS

The remainder of this chapter consists of
individual descriptions of each zaooo
instruction. These descriptions are arranged in
alphabetical order for ease in reference. Bold
running heads are provided to enable the reader to
easily locate a specific description.

6-13

6-14

6.7 Z8000
Instruc:tion
Descriptions
and Formats

Operation:

Flags:

Addressing
Mode

H:

Example:

ADC
Add With Carry

ADC dst, src
ADCB

dst dst + src + c

ds!: R
src: R

The source operand, along with the setting of the carry flag, is added to the destina­
tion operand and the sum is stored in the destination. The contents of the source are
not affected. Two's complement addition is performed. In multiple precision arith­
metic, this instruction permits the carry from the addition of low-order operands to
be carried into the addition of high-order operands.

c: Set if there is a carry from the most significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
5: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADC-unaffected; ADCB-cleared
H: ADC-unaffected; ADCB-set if there is a carry from the most significant bit of

the low-order four bits of the result; cleared otherwise

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

ADC Rd, Rs 110111010Iwi I I 110111010lwl Rs I Rd I 5 Ra Rd 5 ADCB Rbd, Rbs

Long addition can be done with the following instruction sequence, assuming RO, Rl
contain one operand and R2, R3 contain the other operand:

ADD Rl,R3 !add low-order words!
ADC RO,R2 !add carry and high-order words!

If RO contains %0000, Rl contains %FFFF, R2 contains %4320 and R3 contains
%0001, then the above two instructions leave the value %4321 in RO and %0000
in Rl.

6-15

ADD
Add

Operation:

Flags:

Source
Addressing

Mode

R:

1M:

IR:

ADD dst, src
ADDB
ADDl

dst +- dst + src

dst: R
src: R, IM, IR, DA, X

The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.

c: Set if there is a carry from the most significant bit of the result; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL-unaffected; ADDB-cleared
H: ADD, ADDL-unaffected; AD DB-set if there IS a carry from the most significant

bit of the low-order four bits of the result; cleared otherwise

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

ADD Rd, Rs
I I 11OIooooolwi I I ADDB Rbd, Rbs 11OIooooolwi As lid 4 A. Ad 4

ADDL RRd, RRs
11010101101 AAs

I
AAd I 8 11010101101 AAs

I
AAd I 8

ADD Rd, #data 001000001 10000 I Ad Lool 000001 100001 Ad
7 7

data I data J
ADDB Rbd, #data

001000000100001 Abd 001000000100001 Abd
7 7

dati I data data I data

ADDL RRd, #data 001010110100001 AAd o o.l 01011 0100001 AAd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) a 15 data (low) 0

loolooooolwi A8*0 I I ADD Rd, @Rsl Ad
ADDB Rbd, @Rsl

7 loolooooolwi AA80'0 I Ad I 7

ADDL RRd, @Rsl
1001010110 I A8*0 I AAd I 14 1001 010110 IAA80'01 AAd I 14

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: ADD Rd, address
101100000lwi 0000 1 Rd I SS 01100000lWl00001 Rd ADDB Rbd, address
l I

9 10
address o I segment I oll.et

011000001w10000[Rd

SL 11 .egment 1 00000000 12
ollset

ADDL RRd, address
L01 010110J ooool RRdJ 011010110 100001 RRd

l I
15 SS 16

addre •• o I .egment I oll .. t

01101011010000[RRd

SL 11 segment 1 00000000 18
oll.et

X: ADD Rd, addr(Rs)
101100000lwi R.",O I Rd I 01100000lwi R.",O I Rd

ADDB Rbd, addr(Rs)
I I

10 SS 10
address o 1 .egment 1 oll.et

01[00000[wl R.",O I Rd

SL 11 .egment I 00000000 13
oll.et

ADDL RRd, addr(Rs)
1011 010110 I RuO I RRd J 16 SS

01Lol0ll0IR.",01 RRd
16

I addreS8 I 01 segment I oll.et

01jOl0ll0[R.",01 RRd

SL 11 .egment I 00000000 19
oll.et

Example: ADD R2, AUGEND !augend A located at %1254!

Before instruction execution:

Memory R2

1252 A
1254 0 6 4 4

1256

After instruction execution:

Memory R2

1252~
1254 0 8 4 4

1258

Ie 3 8 51

Note 1: Word regIster In nonsegmented mode, regIster pair In segmented mode

6-17

AND
And

Operation:

Flags:

Source
Addressing

Mode

R:

1M:

IR:

DA:

X:

6-18

AND dst, src
ANDB

dst __ dst AND src

dst: R
src: R, 1M, 1R, DA, X

A logical AND operation is performed between the corresponding bIts of the source
and destination operands, and the result is stored in the destination. A one bit is
stored wherever the corresponding bits in the two operands are both ones; otherwise
a zero bit is stored. The source contents are not affected.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: AND - unaffected; ANDB - set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

11010001+1 1 I AND Rd, Rs Rs Rd 4 1101000111w1 Rs 1 Rd I 4
AN DB Rbd, Rs

AND Rd, #data 1001000111100001 Rd 1 001000111 10000 I Rd

1 1
7 7

data data

ANDB Rbd, #data 100 I 000110 I 0000 I Rbd 1 00 I 00 0 1 1 0 I 0 000 I Rbd

I I I
7

I 7
data da.a da.a data

AND Rd. @Rsl
10010001 +1 R.",O 1 Rd I 7 100100011H RRB"" 1 Rd I 7 ANDB Rbd, @Rsl

AND Rd, address 1011000111wl 0000 I Rd 1 55 011000111wl 00001 Rd
AN DB Rbd, address

I I
9 10

address o I segment I offset

011000111wl00001 Rd

5L 11 sogmont 10000 0000 12
offset

AND Rd, addr(Rs) 1011000111wl RHO I Rd I 011000111wl R.",O I Rd
ANDB Rbd, addr(Rs)

1 1
10 55 10

address o I segment I offset

011000111Wl R.",O I Rd

5L 11 segmont 10000 0000 13
off.e.

Example: ANDB RL3, # %CE

Before instruction execution:
RL3 Flags

11100111 CZSPNDH

czspdh

After instruction execution:

RL3 Flags

11000110 CZSPNDH

c011dh

Note 1: Word register In nonsegmented mode. register pair m segmented mode.

6-19

BIT
Bit Test

Operation:

Flags:

BIT dst, src
BITB

Z _ NOT dst (src)

dst: R, IR, DA, X
src: 1M
or

dst: R
src: R

The specified bit within the destination operand is tested, and the Z flag is set to one
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the
destination are not affected. The bit number (the source) can be specified statically
as an immediate value, or dynamically as a word register whose contents are the bit
number. In the dynamic case, the destination operand must be a register, and the
source operand must be RO through R7 for BITB, or RO through Rl5 for BIT. The bit
number is a value from 0 to 7 for BITB, or 0 to 15 for BIT, with 0 indicating the least
significant bit. Note that only the lower four bits of the source operand are used to
specify the bit number for BIT, while only the lower three bits of the source operand
are used for BITB.

c: Unaffected
Z: Set if specified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Bit Test Static

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: BIT Rd, fib
110 1100ll1w1 BITB Rbd, fib

Rd I b I 4 1101100111w1 Rd I b I 4

IR: BIT @Rd', fib 100!100111w1 Rd¢O I b I 8 1001100 lllw1 RRMI b I 8
BITB @ Rd',#b

DA: BIT address, fib 1011100111wl 0000 1 b I 011100111Wl00001 b I
BITB address, fib 10 SS J

11
I addre •• I 01 .egment I ollset

011100111WI00001 b

SL 11 segment 10000 0000 13
oll •• t

X: BIT addr(Rd). fib
1011 10011 lwl Rd¢O 1 b I 011100111wI Rd¢OI b I BITB addr(Rd). fib 11 SS 11
I addre •• I o I segment I oll •• t I

0111 00111 WI Rd¢O 1 b

SL 11 segment 10000 0000 14
oll.et

6-20

Bit Test Dynamic
Source

Addressing
Mode

R:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

BIT Rd, Rs 1001100111wl00001 R. I 10 10011 00111 w l OOQO I R. I
BITB Rbd, Rs' 1 0 000 I Rd 10000 I 0000 I 1 0000 I Rd 10000 I 0000 I

If register RH2 contains O/OB2 (0110010), the instruction

BITB RH2, HO
will leave the Z flag set to l.

Note 1: Word register m nonsegmented. mode, register pair in segmented mode.
Note 2: Word regIsters 0-7 only.

Cycles

10

6-21

CALL
Call

Operation:

Flags:

Destination

CALL dst

Nonsegmented
SP - SP - 2
@SP -PC
PC - dst

dst: IR, DA, X

Segmented
SP +- SP - 4
@SP+- PC
PC - dst

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is RI5 in nonsegmented mode, or RRI4 in
segmented mode. (The program counter value used is the address of the first instruc­
tion following the CALL instruction.) The specified destination address is then
loaded into the PC and points to the first instruction of the called procedure.
At the end of the procedure a RET instruction can be used to return to original pro­
gram. RET pops the top of the processor stack back into the PC.

No flags affected

Nonsegmented Mode Segmented Mode
Addressing As.embler Language

Mode

IR:

DA:

X:

Example:

6-22

Syntax Instruction Format Cycles Instruction Format Cycles

CALL q,RdJ
1001011111 I Rd~ 10000 1 10 1001 011111 IRRD~looool 15

CALL address 101JOlllll 1000010000J 01 10111111000 0 10000

1 J
12 SS 18

address o I segment I ollset

0110111111000010000

SL 11 segment 10000 0000 20
olls.t

CALL addr(Rd)
10110111111Rd",0100001 SSloll 0.11111 I Rd~ 10000

I I
13 18

address "I 0 I segment I ollaet

011 0111111 Rd~ 10000

SL 11 segment 10000 0000 21
olls.t

In nonsegmented mode, if the contents of the program counter are %1000 and the
contents of the stack pointer (RI5) are %3002, the instruction

CALL %2520

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALL instruction with direct address mode specified) to be loaded into
the word at location %3000, and the program counter to be loaded with the value
%2520. The program counter now points to the address of the first instruction in the
procedure to be executed.

Note 1: Word register in nonsegmented mode, register paIr In segmented moO-e.

Operation:

Flags:

Destination
Addressing

Mode

RA:

Example:

CALR
Call Relative

CALR dst

Nonsegmented
SP-SP-2
@SP- PC

dst: RA

PC - PC + (2 x displacement)

Segmented
SP - SP - 4
@SP- PC
PC - PC + (2 x displacement)

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is Rl5 in nonsegmented mode, or RRl4 in
segmented mode. (The program counter value used is the address of the first instruc­
tion following the CALR instruction.) The destination address is calculated and then
loaded into the PC and points to the first instruction of a procedure.

At the end of the procedure a RET instruction can be used to return to the original
program flow. RET pops the top of the processor stack back into the PC.

The destination address is the sum of twice the displacement in the instruction and
the current value of the PC. The displacement is a l2-bit signed value in the range
-2048 to +2047. Thus, the destination address must be in the range -4094 to +4096
bytes from the start of the CALR instruction. In segmented mode, the PC segment
number is not affected. The assembler automatically calculates the displacement by
subtracting the PC value of the following instruction from the address given by the
programmer and dividing the result by 2.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

CALR address 111 011 dlsplacemenl I 10 11101 I displacement I 15

In nonsegmented mode, if the contents of the program counter are %1000 and ille
contents of the stack pointer (RI5) are %3002, the instruction

CALR PROC

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALR instruction) to be loaded into the word location %3000, and the
program counter to be loaded with the address of the first instruction in procedure
PROC.

6-23

eLR
Clear

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

X:

Example:

6-24

CLR dst
CLRS

dst: R, IR, DA, X

dst +- 0

The destination is cleared to zero.

No flags affected.

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

CLR Rd
110100110iwl Rd

11000 I 7
CLRB Rbd

CLR @Rdl
100100 1101 w 1Rd'" + 000 I 8 CLRB @Rdl

CLR address
CLRB address

10110011 0 I w I 0000 11 000 I
11

I address I

CLR addr(Rd)
CLRB addr(Rd) 101100110lwi Rd.,.O 110001

12 I addre •• J

Segmented Mode

Instruction Format

110100ll0iwl Rd
11000 I

100100110I w i RRd,oo 11 000 I

55
0110011 olwl 00001 1000

o I segment I ollset

0110011 olwl 0000 11000

5L 11 segment 10000 0000

oll.et

55
01100110lwl Rd.,.°11000

01 .egment I oll.et

01100110lwl Rd.,.O 11000

5L 11 segment 10000 0000

oll.et

If the word at location %ABBA contains 13, the statement

CLR %ABBA

will leave the value 0 in the word at location %ABBA.

Note 1: Word regIster In nonsegmented mode, regIster pair In segmented mode.

Cycles

7

8

12

14

12

15

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

X:

Example:

COM dst
COMB

(dst .- NOT ds!)

dst; R, IR, DA, X

COM
Complement

The contents of the destination are complemented (one's complement); all one bits
are changed to zero, and vice-versa.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most sigmficant bit of the result IS set; cleared otherwise
P: COM-unaffected; COMB-set If panty of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

COMRd 110100ll01w1 Rd 10000 1 COMB Rbd
7 110100ll01w1 Rd 10000 1

COM q'Rdl 10010011 olwl Rd" 01 0000 I 12 10 ° 10 ° 11 01 w 1 RRdo'O 1 0000 I
COMB (r'Rdl

COM address 101100110lwlooool00ooi 0110011 olwl 0000 10000
COMB address

1 1
15 55

address ° I segment I offset

01100110lwlooool0000
5L 11 segment 10000 0000

offset

COM addr(Rd) 101100110lwi Rd"olooool 01100110lwl Rd"oloooo
COMB addr(Rd) 16 55

I address I o I segment I offset

0110011 o[w L Rd"O 10 0 ° °
5L 11 segment 10000 0000

offset

If register Rl contains %2552 (0010010101010010), the statement

COM RI
will leave the value %DAAD (1101101010101101) In Rl.

Note I Word regu,ter In nonsegmented mode, regIster paIr In segmented mode

7

12

16

18

16

19

6-25

COMFLG
Complement Flag

Operation:

Flags:

Example:

6=26

COMFLG flag Flag: C, Z, S, P, V
FLAGS (4:7) ... - FLAGS (4:7) XOR instruchon (4:7)

Any combination of the C, Z, S, P or V flags is complemented (each one bit is
changed to zero, and vice-versa). The flags to be complemented are encoded in a
field in the instruchon. If the bit in the field is one, the corresponding flag is com­
plemented; if the bIt is zero, the flag is left unchanged. Note that the P and V flags
are represented by the same bit. There may be one, two, three or four operands in
the assembly language statement, in any order.

C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if specIfied; unaffected otherwise
P/V: Complemented If speclhed; unaffected otherwise
0: Unaffected
H: Undefined

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles;

Segmented Mode

Instruction Format

COMFLG flags
110001101 ICZSP/~ 0 101 I 7 110001101 ICZSP!301011

Cycles

7

If the C, Z, and S flags are all clear (= 0)' and the P flag is set (= 1), the statement

COMFLG P, S, Z, C

will leave the C, Z, and S flags set (= 1), and the P flag cleared (= 0).

Operation:

Flags:

CP dst, src
CPB
CPL

dst - src

dst: R
src: R, 1M, IR, DA, X
or
dst: IR, DA, X
src: 1M

CP
Compare

The source operand is compared to (subtracted from) the destination operand, and
the appropriate flags set accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffected, with the only action being
the setting of the flags. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. There are two variants of this instruc­
tion: Compare Register compares the contents of a register against an operand
specified by any of the five basic addressing modes; Compare Immediate performs a
comparison between an operand in memory and an immedIate value.

C: Cleared if there is a carry from the most sIgnificant bit of the result; set other-
wise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Compare Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: CP Rd, Rs
110 1001 01iw1 CPB Rbd, Rbs Rs

1
Rd I 4 110100101iw1 Rs

1
Rd I 4

CPL RRd, RRs
11010100001 RRs

1
RRd I 8 11010100001 RRs

1
RRd I 8

1M: CP Rd, #data
001001011100001 Rd 001001011100001 Rd

I
7 7

data data

CPB Rbd, #data o oj 0 0 1 0 1 0 I 0 0 0 0 I Rbd 001001010 I 0000 I Rbd
7 7

data 1 data data I data

CPL RRd, #data 001010000100001 RRd 001 0 1 000 0 1 0 0 0 0 1 RRd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) 0 15 data (low) 0

IR: CP Rd, @Rsl
1001001011wi Rs¢O 1 Rd I 7 1001001011 wl Rs¢O 1 Rd I 7 CPB Rbd, @Rsl

CPL RRd, @Rsl 10010100001 Rs¢O 1 RRd I 14 10010100001 Rs¢O 1 RRd I 14

6-27

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: CP Rd, address
L011001 01w.l 00001 Rd J 011001011wl0000l Rd J CPB Rbd, address 9 SS 10
L addr ••• J o I .egment I off •• t J

Oti001011wl00001 Rd

SL '1 .egment 10000 0000 12
off.et

CPL RRd, address
L0101000010000j RRdJ o '1 0 1 00 0 0 I 0000 I RRd I

15 SS 16
I addre.s J o I .egment I offset J

011010000100001 Rd

SL 11 segment 10000 0000 18
oll.et

X: CP Rd, addr(Rs)
CPB Rbd, addr(Rbs)

1011001011wl Rs"O I Rd I 10 SS 011001011wl Rs"ol RRd I 10
I addre •• J o I .egment I ollset J

011001011wl RuO I Rd

SL '1 segment 10000 0000 13

offset

CPL RRd, addr(Rs)
1011 01 000 OJ Rs of. 0 I RRd J 011 010000 I R.of.O I RRdl

I J
16 SS 16

address "I 0 I .egment I ollset I

011010000 I Rsof.O I RRd

SL '1 segment 10000 0000 19
OllS8t

Compare Immediate

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: CP @RdJ, #data
10 Dioo 11 OJwl Rd of. oj 000 lJ 10010011 olWIRRdo#OI 00011

11 11
I data J I data I

CPB @RdJ, #data
10010011 0lwl Rdof.O loootj 10010011 olwlRRdjlol 000 lJ

11 11
I dlt. I dltl J I data I data I

6-28

Destination
Addressing

Mode

DA:

X:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

CP address, #data
0110011 01 w I 0000 I 0001 01100110lw 000010001

address 14 55 01 segment off.et 15

data data

01j00110jW 000010001

11 segment 0000 0000
5L 17

off.et

data

CPB address, #data 0110011 olwl 0000 I 0001 01J00110JW 000 oj 0 0 0 1

address 14 55 oj segment offset 15
data I data data data

01j00110jW ooooj 0001

11 segment 0000 0000
5L 17

offset

data data

CP addr(Rd), #data
0110011 olwlRd" 01 0001 01100110lw Rd"ojOO01

address 15 55 01 segment off.et 15

data data

010011~W Rd"OjOO01

11 segment 0000 0000
18 5L

off.et

data

CPB addr(Rd), #data
0110011 olwl Rd"O 1 0001 01100110lw Rd,,010001

address 15 55 01 segment offset 15
data I data data data

01100110lw Rd"O 10001

5L 11 segment 0000 0000
18

offset

data data

If register R5 contains %0400, the byte at location %0400 contains 2, and the source
operand is the immediate value 3, the statement

CPB @R5,#3

will leave the C flag set, indicating a borrow, the S flag set, and the Z and V flags
cleared.

Note I. Word register m nonsegmented mode, register pair In segmented mode

6-29

CPD
Compare and Decrement

Operation:

Flags:

Source
Addressing

Mode

IR:

Example:

6-30

CPD dst, src, r, cc
CPDB

dst - src

ds!: R
src: IR

AUTODECREMENT src (by 1 if byte, by 2 if word)
r"" r - 1

This instruction is used to search a string of data for an element meeting the
speCified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are un­
affected.

The source register is then decremented by one if CPDB, or by two if CPD, thus
moving the pointer to the previous element in the string. The word register speCified
by "r" (used as a counter) is then decremented by one. The source, destination,
and count registers must be separate and non-overlapping registers.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: U naffecled
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler LClinguage

Syntax Instruction Format Cycles Instruction Format

CPD Rd, @Rsl, r, cc II 0111 011 w 1 A. ¢ 011 0001 110111011w1RRs¢0110001 CPDB Rbd, @Rsl, r, cc 20
10000 1 r 1 Ad I cc I 100001 r 1 Rd 1 cc 1

If register RHO contains %FF, register Rl contains %4001, the byte at location
%4001 contains %00, and register R3 contains 5, the instruction

CPDB RHO, @Rl, R3, EO

Cycles

20

will leave the Z flag cleared since the condition code would not have been "equal."
Register Rl will contain the value %4000 and R3 will contain 4. For segmented
mode, Rl must be replaced by a register pair.

Note 1: Word register m nonsegmented mode, register palr 10 segmented mode.

Operation:

Flags:

Source
Addressing

Mode

1ft:

Example:

CPDR
Compare. Decrement and Repeat

CPDltdst, src, r, cc
CPDRB

dst - src

dst: R
src: IR

AUTO DECREMENT src (by 1 if byte; by 2 if word)
r - r - 1
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
cohdition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are unaf­
fected.
The source register is then decremented by one if CPDRB, or by two if CPDR, thus
moving the pointer to the previous element in the string. The word register specified
by "r" (used as a counter) is decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc­
tion can search a string from I to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPDR). The source, destination, and count
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Nonngmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

CPDR Rd, @Rsl, r, cc 110111011w1R'" 0111001 1101110 1IwIRR ... oT11 001
CPDRB Rbd, @Rsl, r, cc 100001 r 1 Rd loci

11 +9"
100001 rlRdToc1

Cycler

11 +9"

If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8,
register R2 contains %2008, R3 contains 5, and R8 contains 8, the instruction

CPDR R3, OR2, R8, GT

will leave the Z flag set indicating the condition was met. Register H2 will contain the
value %2002, R3 will still contain 5, and R8 will con,tain 2. For segmented mode, a
register pair would be used instead of H2.

Note 1: Word register m nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements campdred.

6-31

CPI
Compare and Increment

Operation:

Flags:

Source
Addressing

Mode

IR:

6-32

CPI dst, src, r, cc
CPIB

dst - src

dst: lR
src: lR

AUTOlNCREMENT src (by 1 if byte; by 2 if word)
r +- r - 1

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are
unaffected.

The source register is then incremented by one if CPlB, or by two if CPl, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The source, destination, and
counter registers must be separate and non-overlapping registers.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

cpr Rd, @Rsi, r, cc l10111011 wlRuolooooi 110111011wjRRs*0100001 CPIB Rbd, @Rsi, r, cc
10000 1 rlRdlccl

20
10000 1 rlRdlccl

Cycles

20

Example: This instruction can be used in a "loop" of instructions that searches a string of data
for an element meeting the specified condition, but an intermediate operation on
each data element is required. The following sequence of instructions (to be
executed in non-segmented mode) "scans while numeriC," that is, a string is
searched until either an ASCII character not in the range "0" to "9" (see Appendix
C) is found, or the end of the string is reached. This involves a range check on each
character (byte) in the string. For segmented mode, RI must be changed to a
register pair.

LD R3, #STRLEN linitialize counter!
LDA RI, STRSTART ! load start address!
LDB RLO,#'9' !largest numeric char!

LOOP:
CPB @RI,#'O' !test char < 'O'!
JR ULT ,NONNUMERIC
CPIB RLO, @RI, R3, ULE !test char ~ 9!
JR NZ, NONNUMERIC
JR NOV, LOOP !repeat until counter O!

DONE:

NONNUMERIC: !handle non-numeric char!

Note 1. Word reglster m nonsegmented mode, regIster pair In segmented mode

6-33

CPIR
Compare, Increment and Repeat

Operation:

Flags:

Source
Addressing

Mode

IR:

6-34

CPIR dst, src, r, cc
CPIRB

dst - src

dst: R
src: IR

AUTOINCREMENT src (by I if byte; by 2 if word)
r -r - I
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are
unaffected.

The source register is then incremented by one if CPIRB, or by two if CPIR, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc­
tion can search a string from I to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPIR). The source, destination, and counter
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basiC operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

CPIR Rd, @Rsl, r, cc
11011101 Iwl Ru o! 0 1001 11 0 1 1 1 0 1 I w I RRs I 0 10 0 J CPIRB Rbd,@Rsl, r, cc 11 +9n
100001 r I Rd I cc I 1 0000 1 r I Rd I cc 1

Cycles2

11 +9n

Example: The following sequence of instructions (to be executed in nonsegmented mode) can
be used to search a string for an ASCII return character. The pointer to the start of
the string is set, the string length is set, the character (byte) to be searched for is
set, and then the search is accomplished. Testing the Z flag determines whether the
character was found. For segmented mode, RI must be changed to a register pair.

LDA RI, STRSTART
LD R3, #STRLEN
LDB RLO, #% D !hex code for return is D!
CPIRB RLO, @RI, R3, EO
JR Z, FOUND

Note 1: Word register In nonsegmented mode, register pair In segmented mode.

Note 2: n = number of data elements compared.

CPSD
Compare String and Decrement

Operation:

Flags:

Addressing
Mode

1ft:

Example:,

6-36

CPSD dst, src, r, cc
CPSDB

dst - src

dst: IR
src: IR

AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r ... -r-l

This instruction can be used to compare two strings of data until the specified condi­
tion is true. The contents of the location addressed by the source register are com­
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code speCified by "cc" would be set by the
comparison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition
codes. Both operands are unaffected.
The source and destination registers are then decremented by one if CPSDB, or by
two if CPSD, thus moving the pOinters to the previous elements in the strings. The
word register speCified by "r" (used as a counter) is then decremented by one.
The source, destination, and count registers must be separate and non-overlapping
registers.

C: Cleared if there is a carry from the most Significant bit of the result of the com­
parison; set otherWise, indicating a "borrow". Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherWise

S: Set is the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

CPSD v' RdJ, q, RsI, r, cc 11 0 111 01 I w I R ... 011 01 oj 1101110 1IwIRR.,,011O lOJ
CPSDB cU Rdi ,q, Rs' ,r,cc 25

10000 1 r IRd¢ol cc 1 100001 r IRRd"ol cc 1

Cycles

25

If register R2 contains %2000, the byte at location %2000 contains %FF, register R3
contains %3000, the byte at location %3000 contains %00, and register R4 contains
1, the instruction (executed in nonsegmented mode)

CPSDB @R2, @R3, R4, UGE

will leave the Z flag set to I since the condition code would have been "unsigned
greater than or equal", and the V flag will be set to 1 to indicate that the counter R4
now contains O. R2 will contain %lFFF, and R3 will contain %2FFF. For segmented
mode, R2 and R3 must be changed to register pairs.

Note 1 Word register In nonsegmented mode, register palr In segmented mode.

OperattOD:

nags:

Addressing
Mode

18:

CPSDR
Compare String, Decrement and Repeat

CPSDB dst, src,r, cc
CPSDBB

dst - src

dst: IR
src: IR

AUTODECREMENT dst and src (by I if byte; by 2 if word)
r ... r - I
repeat until cc is true or r = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by "cc" would be set by the compar­
ison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition codes.
Both operands are unaffected.
The source and destination registers are then decremented by one if CPSDRB, or by
two if CPSDR, thus moving the pointers to the previous elements in the strings. The
word register speCified by "r" (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is met or the result of decre­
menting r is zero. This instruction can compare strings from I to 65536 bytes or from
I to 32768 words long (the value of r must not be greater than 32768 for CPSDR).
The source, destination, and count registers must be separate and non-overlapping
registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven more cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

c: Cleared if there is a carry' from the most significant bit of the result of the com­
parison; set otherwise, indicating a "borrow". Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers

Z: Set if the conditon code generated by the comparison matches cc; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

CPSDR@Rdl.@Rsl,r,cc
110111011wl Ra,oo 111101 L 1011101 I w I RRa,001111 oj CPSDRB@Rdl,@Rsl,r,cc
10000 1 r I Rd,ool cc 1 11 +14n

10000 1 r I RRd,oo I cc 1

Cycles

11 + 14n

6-37

Example:

6-38

If the words from location %1000 to %1006 contain the values 0, 2, 4, and 6, the
words from location %2000 to %2006 contam the values 0, I, I, 0, register R13 con­
tains %1006, register RI4 contains %2006, and register RO contains 4, the instruc­
tion (executed in nonsegmented mode)

CPSDR @R13, @R14, RO, EO

leaves the Z flag set to I smce the condition code would have been "equal" (loca­
tions %1000 and %2000 both contain the value 0). The V flag will be set to 1 indi­
cating RO was decremented to O. R13 will contain %OFFE, R14 will contain %IFFE,
and RO will contain O. For segmented mode, R13 and RI4 must be changed to
register pairs.

Note 1: Word regIster In nonsegmented mode, regIster pair In segmented. mode.

Note 2: n = number of data elements compared.

Operation:

Flags:

." ~.,

,

Addressing
Mode

1ft:

CPSI
Compare String and Increment

CPSI dst, src, r, cc
CPSIB

dst - src

ds!: IR
src: IR

AUTOINCREMENT dst and src (by 1 If byte, by 2 If word)
r _ r - 1

This instruction can be used to compare two strings of data until the specified condl­
hon IS true. The contents of the locahon addressed by the source register are com­
pared to (subtracted from) the contents of the locahon addressed by the destinahon
register. The Z flag IS set If the condition code speCIfied by "ce" would be set by the
comparison; otherWise the Z flag is cleared. See Section 6.6 for a hst of condition codes.
Both operands are unaffected.

The source and destinalion registers are then Incremented by one if CPSIB, or by
two if CPSI, thus moving the pOinters to the next elements In the strings. The word
register speCified by "r" (used as a counter) IS then decremented by one.
The source, destinallon, and count registers must be separate and non-overlappmg registers.

C: Cleared If there is a carry from the most slgnihcant bit of the result of the comparison;
set otherWise, mdlcahng a "borrow". Thus this flag wIll be set If the destination IS less
than the source when viewed as unSigned mtegers

Z: Set If the condihon code generated by the comparison matches cc; cleared otherwise
S: Set IS the result of the comparison is negative; cleared otherwise
V: Set If the result of decrementmg r IS zero; cleared otherWise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

CPS!@RdJ,a'RsJ,r,cc 110111011wlRs ,,01001°1 11 ° 1 1 1 ° 1 I w I RRs" ° I 00 1 ° I CPS!B@Rd1,a'RsJ,r,cc
10000 1 r IRd"ol cc J 25

10000 1 j RRd ,,01 cc I 25 r

6-39

Example:

6-40

This instrucllon can be used In a "loop" of instructions whICh compares two strings
until the specified condition IS true, but where an intermediate operation on each
data element is required. The following sequence of instructions, to be executed in
nonsegmented mode, attempts to match a given source string to the destination
string which is known to contain all upper-case characters. The match should suc­
ceed even if the source string contains some lower-case characters. This involves a
forced conversion of the source string to upper-case (only ASCII alphabetic letters
are assumed, see Appendix C) by resetting blt 5 of each character (byte) to 0 before
comparison.

LOOP:

DONE:

LDA
LDA
LD

RESB
CPSIB
JR
JR

NOTEQUAL:

Rl, SRCSTART
R2, DSTSTART
R3, #STRLEN

@R1,#5
@RI,@R2, R3, NE
Z, NOTEQUAL
NOV, LOOP

!load start addresses!

!lnitialize counter!

!force upper-case!
!compare until not equal!
!exit loop if match fails!
!repeat until counter = O!
!match succeeds!

!match fails!

In segmented mode, Rl and R2 must both be register pairs.

Note I Word register In nonsegmented mode, register pair In segmented mode

Operation:

Flags:

Addressing
Mode

IR:

CPSIR
Compare String I Increment and Repeat

CPSIR dst,src,r,cc
CPSIRB

dst - src

dst: IR
src: IR

AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r+-r-l
repeat until cc is true or r = 0

This instruction is used to compare two strings of data until the speCified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by "cc" would be set by the com­
parison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition
codes. Both operands are unaffected. The source and destination registers are then
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pOinters to the
next elements in the strings. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is met or the result of decrementing r is zero. This instruction can compare strings
from I to 65536 bytes or from 1 to 32768 words long (the value of r must not be
greater than 32768 for CPSIR). The source, destination, and counter registers must
be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

C: Cleared if there is a carry from the most significant bit of the result of the last
comparison made; set otherwise, indicating a "borrow". Thus this flag will be set
if the last destination element is less than the last source element when viewed as
unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set if the result of the last comparison made is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

CPSIR e'Rdl ,e'Rsl ,r,ee
CPSIRB <i"Rdl ,q'Rsl ,r,ee

11011101 I wlRU 0 I 0 11 0 1
11 + 14n

11011101IwIRR.,,0101101

10000 1 r IRd" 0 I cc 1 10000 1 r IRRd"ol cc I

Cycles2

11 + 14 n

6-41

Example:

6 ... 42

The CPSIR instruction can be used to compare text strings for lexicographic order.
(For most common character encodings-for example, ASCII and EBCDIC-lexico­
graphic order is the same as alphabetic order for alphabetic text strings that do not
contain blanks.)
Let Sl and S2 be text strings of lengths 11 and L2. According to lexicographic
ordering, Sl is said to be "less than" or "before" S2 if either of the following is true:

• At the first character position at which SI and
S2 contain different characters, the character
code for the SI character is less than the
character code for the S2 character .

• SI is shorter than S2 and is equal, character for
character, to an initial substring of S2.

For example, using the ASCII character code, the following strings are in ascending
lexicographic order:

A
AA
ABC
ABCD
ABD

Let us assume that the address of SI is in RR2, the address of S2 is in RR4, the
lengths 11 and L2 of S 1 and S2 are in RO and R 1, and the shorter of 11 and L2 is in
R6. The the following sequence of instructions will determine whether SI is less than
S2 in lexicographic order:

CPSIRB @RR2, @RR4, R6, NE !Scan to first unequal character!

JR 2,CHAR_COMPARE

CP RO,Rl

JR LT, SI-ISJESS
JR SI~OT_LESS

CHALCOMPARE:
JR ULT, SI_IS_LESS

SI~OT LESS:

!The follOWing flags settings are possible:
2 = 0, V = 1: Strings are equal through 11
character (2 = 0, V = 0 cannot occur).
2 = L V = 0 or 1: A character position was
found at which the strings are unequal.
C = 1 (S = 0 or 1): The character in the RR2
string was less (viewed as numbers from 0 to
255, not as numbers from -128 to + 127).
C = 0 (S = 0 or 1): The character in the RR2
string was not lessl

! If 2 = 1, compare the characters!

!Otherwise, compare string lengths!

lUL T is another name for C = l!

Operation:

Flags:

Addressing
Mode

R:

DAB
Decimal Adjust

DAB dst dst: R

dst __ DA dst

The destination byte is adjusted to form two 4-bit BCD digits following a binary addi-
tion or subtraction operation on two BCD encoded bytes. For addition
(ADDB, ADCB) or subtraction (SUBB, SBCB)' the following table indicates the
operation performed:

Carry Bits 4-7 HFlag Bits 0-9 Number Carry
Before Value Before Value Added After

Instruction DAB (Hex) DAB (Hex) To Byte DAB

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

ADDB 0 0-9 1 0-3 06 0

ADCB 0 A-F 0 0-9 60

0 9-F 0 A-F 66

0 A-F 0-3 66
0-2 0 0-9 60

0-2 0 A-F 66
0-3 0-3 66

SUBB 0 0-9 0 0-9 00 0

SBCB 0 0-8 6-F FA 0

7-F 0 0-9 AO

6-F 6-F 9A

The operation is undefined if the destination byte was not the result of a binary addi­
tion or subtraction of BCD digits.

c: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

DAB Rbd 11011100001 Rbd 10000 1 5 11011100001 Rbd 10000 1

Cycles

5

6-43

Example:

6-44

If addition is performed usmg the BCD values 15 and 27, the result should be 42.
The sum is mcorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic.

0001 0101
+0010 0111

0011 1100 = %3C
The DAB instruction adjusts this result so that the correct BCD representation is
obtained.

0011 1100
+ 0000 0110

0100 0010 42

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

X:

Example:

DEC dst, src
DECB

dst: R, lR, DA, X
src: 1M

dst .- dst - src (where src = I to 16)

DEC
Decrement

The source operand (a value from I to 16) is subtracted from the destination operand
and the result IS stored in the destination. Subtraction is performed by adding the
two's complement of the source operand to the destination operand. The source
operand may be omitted from the assembly language statement and defaults to the
value I.

The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from 0 to
15, which corresponds to the source values I to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs,

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

DEC Rd. #n
1101101011wi In - 11 Rd 4

DECB Rbd, #n

DEC ~'Rdl, #n
DECB e, Rd1, #n

10+ 01 011wi Rd¢O I" - 11 11

DEC address, #n 1011101011wl00001 "-11
DECB address, #n 13

1 .dd 1

DEC addr{RdL #n 1011101011wl Rd¢O I" -11
DECB addr{Rd), #n 14

I add, ... I

If register RIO contains %002A, the statement

DEC RIO

will leave the value %0029 in RIO.

Segmented Mode

Instruction Format

110110l0l1wi Rd In -11

1001101 011wi RRd¢01 "- 11

011101011wlooool "-1
SS 0 I HOment I oll •• t

011101011wl 00001 n-l

SL 11 .egment 10000 0000

0"'"
011101011wl Rd¢ol "-1

SS
01 segment 1 oll .. t

ol110101[wl Rd¢O 1"-1
SL 11 .egment 10000 0000

off .. t

Note l' Word register In nonsegmented mode, register pair In segmented mode.

Cycles

4

11

14

16

14

17

6-45

DI Privileged Instruction
Disable Interrupt

Operation:

Flags:

Example:

6-46

DI Int

If instruction (0)
If instruction (1)

Int: VI, NVI

o then NVI +- 0
o then VI .. - 0

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI)
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor­
respondmg bit in the instruction IS zero, thus disabling the appropriate type of inter­
rupt. If the correspondmg bit in the instructIon is one, the control bit will not be
affected. All other bits in the FCW are not affected. There may be one or two
operands in the assembly language statement, in either order.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

DI m!

Syntax Instruction Format Cycles Instruction Format Cycles

I 01111100 I 000000 IYI~I 7 [01111100 I 000000 IYI~I 7

If the NVI and VI control bits are set (1) m the FCW, the instruction:

DI VI

will leave the NVI control bit in the FCW set (I) and will leave the VI control bit in
the FCW cleared (0).

Operation:

Flags:

DlV dst, src
DlVL

dst: R
src: R, 1M, IR, DA, X

Word: (dst is register pair, src is word):
dst (0:31) is divided by src (0: 15)
(dst (0:31) = quotient x src (0:15) + remainder)
dst (0: 15) +- quotient
dst (l6:3l)+-remainder

Long: (dst register quadruple, src is long word or register pair):
dst (0:63) is divided by src (0:31)
(dst (0:63) = quotient x src (0:31) + remainder)
dst (0:31) +- quotient
dst (32:63) +-remainder

DIV
Divide

The destmation operand (dividend) is divided by the source operand (diVISor), the
quollent is stored in the low-order half of the destmation and the remamder IS stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, two's complement integers and division is per­
formed so that the remamder is of the same sign as the diVidend. For DIV, the
destinallon is a register pair and the source IS a word value; for DIVL, the destina­
tion is a register quadruple and the source is a long word value.

There a four possible outcomes of the Divide instruction, dependmg on the diVISion,
and the resulting quollent:

CASE 1. If the quollent is Within the range -215 to 215 - I inclusive for DIV or
_231 to 231 - 1 mcluslve for DIVL, then the quotient and remamder are left m the
destmation register as defined above, the overflow and carry flags are cleared to
zero, and the sign and zero flags are set according to the value of the quollent.

CASE 2. If the divisor IS zero, the destination register remams unchanged, the
overflow and zero flags are set to one and the carry and sign flags are cleared to
zero.

CASE 3. If the quotient is outside the range _216 to 216 - 1 mclusive for DIV or _232
to 232 - 1 mclusive for DIVL, the destmation register contams an undefined value,
the overflow flag is set to one, the carry and zero flags are cleared to zero, and the
sign flag IS undefmed.

CASE 4. If the quollent IS mside the range of case 3 but outside the range of case
1, then all but the sign bit of the quollent and all of the remainder are left m the
destinallon register, the overflow and carry flags are set to one, and the sign and
zero flags are set accordmg to the value of the quotient. In this case, the sign flag
can be replicated by subsequent mstruction into the high-order half of the destina­
tion to produce the two's complement representation of the quotient in the same
preCision as the origmal diVidend.

c: Set if V is set and the quotient lies in the range from _216 to 216 - 1 inclusive for
DIV or in the range from _232 to 232 -1 inclusive for DIVL; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise
S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is

negative, cleared if the quotient is non-negative.
V: Set if the divisor is zero or if the computed quotient lies outside the range from

_215 to 215 - 1 inclusive for DIV or outside range from _231 to 231 -1 inclusive
for DIVL; cleared otherwise

D: Unaffected
H: Unaffected

6-47

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

I RRd I 1101011011 I I RRd I R: DIV RRd, Rs
11010110111 Rs 107 Rs 107

DIVL ROd, RRs
110 1 011 010 I RRe I ROd I 744 1101011010 I RRs I ROd I 744

1M: DIV RRd, #data
001 011 011 I 0000 I RRd I 001011011100001 RRd

107 107
data data

DIVL ROd, #data
001 011 010 I 00001 ROd 001011010100001 ROd

31 data (high) 16 744 31 da'. (high) 16 744

15 da'a (low) 0 15 da'a (low) 0

IR: DIV RRd, @Rsl
10010110111 Rs"O I RRd I 1001011011 IRRso'O I RRd I

107 107
DIVL ROd, @Rsl

1001 011 010 I R."O I ROd I 10010110101RRs,,01 ROd I
DA: DIV RRd, address

101[01101110000 I RRd I 011011011100001 RRd
108 SS 108

I address I o I segmen' I o".e,

011 011011100001 RRd
111

SL 11 .egmen' 10000 0000

oll.e'

DIVL ROD, address
011011010100001 ROd I 011011010100001 ROd

445 SS 748
addre •• I o I .egmen' I ollse'

011011010100001 ROd

SL 11 segmen' 10000 0000 748

ollse'

X: DIV RRd, addr(Rsl
10110110111 R."ol RRd I 011 011 011 I Rs"O I RRd

108 SS 108
I address I 01 segmen' J oil •• ,

0110110111Rs,,01 RRd

SL 11 segmen' 10000 0000 112

ollse'

DIVL ROd, adddRs)
L01] 011010J R4,,0 I ROd I .1011 011010j RS"OJ ROd

748 SS I 0 I segmen' I oll.e'
748

L address I
011 01101 ° I Rs"O I ROd

SL 11 segmen' 10000 0000
748

oil .. ,

6-48

Example: If register RRO (composed of word register RO and Rl) contains %00000022 and
register R3 contains 6, the statement

DIV RRO,R3

will leave the value %00040005 in RRO (Rl contains the quotient 5 and RO contains
the remainder 4).

Note 1· Word register In nonsegmented mode, register pair In segmented mode.

Note 2' The executIon hme for the Instruchon will be lower by 94 cycles for word, 714 for long word than in­

dIcated for divide by zero and by 82 for word, 693 for long word for overflow condihons.

6-49

DJNZ
Decrement and Jump if Not Zero

Operation:

Flags:

Destination
Addressing

Mode

RA:

Example:

6 ... 50

DJNZ R, dst
DBJNZ

R +- R - 1

ds!: RA

If R "* 0 then PC 04- PC - (2 x displacement)

The register being used as a counter is decremented. If the contents of the register
are not zero after decrementing, the destination address is calculated and then
loaded into the program counter (PC). Control will then pass to the instruction
whose address is pointed to by the PC. When the register counter reaches zero, con­
trol falls through to the instruction following DJNZ or DBJNZ. This instruction pro­
vides a simple method of loop control.

The relative addressing mode is calculated by doubling the displacement in the
instruction, then subtracting this value from the updated value of the PC to derive
the destination address. The updated PC value is taken to be the address of the
instruction following the DJNZ or DBJNZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the destination address must be in
the range -252 to 2 bytes from the start of the DJNZ or DBJNZ instruction. In the
segmented mode, the PC segment number is not affected. The assembler automatic­
ally calculates the displacement by subtracting the PC value of the following instruc­
tion from the address given by the programmer and dividing the result by 2. Note
that DJNZ or DBJNZ cannot be used to transfer control in the forward direction, nor
to another segment in segmented mode operation.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

111111 111111 DJNZ R, address r !wi disp I 11 r !wi disp I 11
DBJNZ Rb, address

DJNZ and DBJNZ are typically used to control a "loop" of instructions. In this exam­
ple for nonsegmented mode, 100 bytes are moved from one buffer area to another,
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter.

LDB RHO,#IOO !initalize counter!
LDA Rl, SRCBUF !load start address!
LDA R2,DSTBUF

LOOP:
LDB RLO,@RI !load source byte!
RESB RLO,#7 !mask off sign bit!
LDB @R2, RLO !store into destination!
INC RI !advance pointers!
INC R2
DBJNZ RHO, LOOP !repeat until counter O!

NEXT:

For segmented mode, RI and R2 must be changed to register pairs.

Operation:

Flags:

Example:

EI int

If instruction (0)
If Instruction (1)

Privileged Instruction

In!: VI, NVI

o then NVI.- I
o then VI.- I

EI
Enable Interrupts

Any combination of the Vectored Interrupt (VI) or Non-Vetored Interrupt (NV!) con­
trol bits in the Flags and Control Word (FCW) are set to one if the corresponding bit
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor­
responding bit in the instruction is one, the control bit will not be affected. All other
bits in the FCW are not affected. There may be one or two operands in the assembly
language statement, in either order.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Elmt

Syntax Instruction Format Cycles Instruction Format Cycles

I 01111100 10000011rlri 7 101111100 10000011rlri

If the NVI contol bIt is set (1) in the FCW, and the VI control bit is clear (0), the
instruction

EI VI

will leave both the NVI and VI control bits in the FeW set (1)

7

6-51

EX
Exchange

Operation:

Flags:

Source
Addressing

Mode

R:

IR:

DA:

X:

Example:

6-52

EX dst, src
EXB

dst: R
src: R, IR, DA, X

tmp.- src (tmp is a temporary internal register)
src.- dst
dst.- tmp

The contents of the source operand are exchanged with the contents of the destina­
tion operand.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

EX Rd, Rs
1101101101wi I I 1101101101wi I R. Rd 6 Rs Rd

EXB Rbd, Rbs

EX Rd, @Rsl
1001 10110lwi RUO I lid I 12 1001101101wi R."O I Rd

EXB Rbd, @Rsl

EX Rd, address
101110110lwl00001 Rd I 01110110lwl0000J Rd

EXB Rbd, address
I I

15 SS
addr ••• o I •• gment I off.et

01110110lwl00001 Rd

SL 11 segment 10000 0000

oll.et

EX Rd, addr(Rs)
l01110110lwi R."O I Rd I SS 01110110lWI R.,.O I Rd

EXB Rbd, addr(Rs) 16
I addre •• J o I .egment I off.et

01110110IwIR.,,01 Rd

SL 11 .egment 10000 0000

off.et

If register RO contains 8 and register R5 contains 9, the statement

EX RO,R5

will leave the values 9 in RO and 8 in R5. The flags will be left unchanged.

Note 1: Word register In nonsegmented mode, regIster paIr In segmented mode.

Cycles

I 6

I 12

16

18

16

19

Operation:

Flags:

Destination
Addressing

Mode

R:

Example:

EXTSB dst
EXTS
EXTSL

Byte
If dst (7)

Word
if dst (15)

Long
if dst (31)

dst: R

a then dst (8: 15) +- 000 ... 000
else dst (8:15) ... - 11l. .. lll

a then dst (16:31) ... - 000 ... 000
else dst (16:31) +- 111...111

a then dst (32:63) +- 000 ... 000
else dst (32:63) 111...111

EXTS
Extend Sign

The sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTSB, the destination is a
word; for EXTS, the destination is a register pair; for EXTSL, the destination is a
register quadruple.

This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (as, for example, before a divide).

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

EXTSB Rd
1101110001 I Rd

10000 1
11 1101110001 I Rd

10000 1

EXTS RRD
1101110001 I RRd 11010 I 11 1101110001 I RRd

11010 1
EXTSL RQd

11011100011 ROdlOllll 11 110 1 11 0001 I ROd I 0111 1

If register pair RR2 (composed of word registers R2 and R3) contams % 12345678,
the statement

EXIS RR2

Will leave the value %00005678 m RR2 (because the sign bit of R3 was 0).

11

11

11

6-53

HALT
Halt

Operation:

Flags:

Privileged Instruction

HALT

The CPU operation is suspended until an interrupt or reset request is receIved. This
instruction is used to synchronize the Z8000 with external events, preserving its state
until an interrupt or reset request is honored. After an interrupt is serviced, the
instruction following HALT is executed. WhIle halted, memory refresh cycles will
still occur, and BUSREQ will be honored.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

HALT

6-54

Syntax Instruction Format Cycles! Instruction Format

I 01111010 I 00000000 I 8+3" I 01111010 I 00000000 I
Note 1 Interrupts are recogmzed at the end of each 3·cyc1e period, thus n = number of peTlods WIthout

mterruptIon

Cycles!

8+3"

Operation

Flags:

Source
Addressing

Mode

IR:

DA:

Example:

IN dst, src
INB
SIN dst, src
SINB

dst +- src

Privileged Instruction

dst: R
src: IR, DA

ds!: R
src: DA

IN
(SIN)

(Special) Input

The contents of the source operand, an Input or Special Input port, are loaded mto
the destination register. IN and INB are used for Standard I/O operation; SIN and
SINB are used for Special 1/0 operation.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format l Cycles Instruction Format l

IN Rd, @Rs 10011111 Olwl Rs;'() 1 1 Rd 10 10011111 Olwl Rs;'() 1 Rd 1 INB Rbd, @Rs

IN Rd, port 1001111011 wl Rd 10105 1 1001111011wl Rd 101051
INB Rbd, port 12

I port I I port I SIN Rd, port
SINB Rbd, port

If register R6 contains the I/O port address %0123 and the port %0123 contams
%FF, the statement

INB RH2, @R6

will leave the value %FF m register RH2.

Note 1. For SIN, S = 1; otherwIse S = 0

Cycles

10

12

6-55

INC
Increment

Operation:

Flags:

Addressing
Mode

R:

IR:

DA:

X:

Example:

6-56

INC dst, src
INCB

dst +- dst + src (src = I to 16)

dst: R, 1R, DA, X
src: 1M

The source operand (a value from I to 16) is added to the destination operand and
the sum is stored in the destination. Two's complement addition is performed. The
source operand may be omitted from the assembly language statement and defaults
to the value I.

The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from
o to 15, which corresponds to the source values I to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

INC Rd, #n
INCB Rbd, #n 110110100lwi Rd In - 1 I
INC @Rd1, #n

100110100lwl Rd*O I n - 1 I INCB @Rd1, #n

INC address, #n
INCB address, #n 101110100!W!0000!n- 1 1

I address I

INC addr(Rd)' #n
INCB addr(Rd), #n 10111010 0lwi Rd*O In-II

I aelllres. I

If register RH2 contains %21, the statement

!NCB RH2,#6

will leave the value %27 in RH2.

4

11

13

14

Segmented Mode

Instruction Format

1101 10100 iwl Rd In - 1 I
1001101 oolwlRRd,001 n -1 I

55 o ljlO 10 olwl 00001 n-l

01 segmant I ollast

01110100lwl00001 n-l

5L 11 segment 10000 0000

ollast

01110100lwi Rd*O I n-l
55

o I segment I oll.et

01110100lwl Rd*O In-l

5L 11 segment 10000 0000

oIIset

Note 1: Word register In nonsegmented mode, register pair In segmented mode.

Cycles

4

11

14

16

14

17

Operation:

Flags:

Addressing
Mode

IR:

Example:

Pri vileged Instruction IND
(SIND)

(Special) Input and Decrement

IND dst, src, r
INDB
SIND
SINDB

dst +- src

dst: IR
src: IR

AUTODECREMENT dst (by 1 byte, by 2 if word)
r+-r-l

This instruction is used for block input of strings of data. IND and INDB are used for
normal I/O operation; SIND and SINDB are used for special I/O operation. The con­
tents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

IND @Rd1, @Rs, r
10011101 1 W 1 Rs ., 0 11 00 S 1 10011101 I W 1 Rs ., 01 100 S 1

INDB @Rdl, @Rs, r
10000 1 IRd.,01 1000 1

21
100001 IRd.,01 1000 1 r r

SIND @Rd1, @Rs, r
SINDB @Rdl, @Rs, r

Cycles

21

In segmented mode, if register RR4 contains %02004000 (segment 2, offset %4000),
register R6 contains the I/O port address %0228, the port %0228 contains %05B9,
and register RO contains %0016, the instruction

IND @RR4, @R6, RO

will leave the value %05B9 in location %02004000, the value %02003FFE in RR4,
and the value %0015 in RO. The V flag will be cleared. Register R6 still contains the
value %0228. In nonsegmented mode, a word register would be used instead of
RR4.

Note 1: Word reglster In nonsegmented mode, reglster paIr in segmented mode.

6-57

INDR
(SINDR)

Privileged Instruction

(Special) Input. Decrement and Repeat

Operation:

Flags:

Addressing
Mode

IR:

6-58

INDR dst, src, r
INDRB
SINDR
SINDRB

dst +- src

dst: IR
src: IR

AUTODECREMENT dst (by 1 if byte, by 2 if word)
r +- r - I
repeat until r = 0

This instruction is used for block input of strings of data. INDR and INDRB are used
for normal 1/0 operation; SINDR and SINDRB are used for special 1/0 operation.
The contents of the 1/0 port addressed by the source word register are loaded into
the memory location addressed by the destination register. 1/0 port addresses are 16
bits. The destmation register is then decremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register speCified by "r" (used as a counter) is then
decremented by one. The address of the 1/0 port in the source register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for INDR or SINDR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this mstruction's execution time for each interrupt request
that is accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

INDR @Rd1, @Rs, r
INDRB @Rd1, @Rs, r
SINDR @Rd1, @Rs, r
SINDRB @Rd1, @Rs, r

Nonsegmented Mode

Instruction Format

100111011w1R",01100sJ

10000 1 r IRd*olooooJ

Segmented Mode

Cycles2 Instruction Format Cycles2

11 +10n I 0011101I wIR ... ollOosl 11+10n
10000 1 r IRd*olooool

Example: If register Rl contains %202A, register R2 contains the Special 1/0 address %OAFC,
and register R3 contains 8, the instruction

SINDRB @Rl, @R2, R3

will input 8 bytes from the Special 110 port OAFC and leave them in descending
order from %202A to %2023. Register RI will contain %2022, and R3 will contain O.
R2 will not be affected. The V flag will be set. This example assumes nonsegmented
mode; in segmented mode, RI would be replaced by a register pair.

Note I: Word register In nonsegmented mode, register pdlr In segmented mode

Note 2: n = number of data elements transferred
Note 3' For SINDR, S = 1, otherwise S = O.

6-59

INI
(SINI)

Pri vileged Instruction

(Special) Input and Increment

Operation:

Flags:

Addressing
Mode

IR:

Example:

6-60

INI dst, src, r
INIB
SINI
SINIB

dst -+- src

dst: IR
src: IR

AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r -+- r - 1

This instruction is used for block input of strings of data. INI, INIB are used for nor­
mal I/O operation; SINI, SINIB are used for special I/O operation. The contents of
the I/O port addressed by the source word register are loaded into the memory loca­
tion addressed by the destination register. I/O port addresses are 16 bits. The
destination register is then incremented by one if a byte instruction, or by two if a
word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r" (used as a counter) is then decremented
by one. The address of the I/O port in the source register is unchanged.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

INI @Rd1, @Rs, r
INIB @Rd1, @Rs, r 100111011w1Rs¢01000sl 21 100111 011wl Rs ¢ olooosl
SINI @Rd1, @Rs, r 10000 1 r IRd¢0110001 loooo! r !Rd¢0! 1000 1
SINIB @Rd1, @Rs, r

Cycles

21

In nonsegmented mode, if register R4 contains %4000, register R6 contains the I/O
port address %0229, the port %0229 contains %B9, and register RO contains %0016,
the instruction

INIB @R4, @R6, RO

will leave the value %B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented mode, R4 would be replaced by a register pair.

Note I: Word regIster In nonsegmented mode, regIster paIr In segmented mode.

Operation:

Flags:

Addressing
Mode

IR:

Privileged Instruction INIR
(SINIR)

(Special) Input, Increment and Repeat

INIR dst, src, r
INIRB
SINIR
SINIRB

dst ... - src

dst: IR
src: IR

AUTOINCREMENT dst (by I if byte, by 2 if word)
r+-r-l
repeat until r = 0

ThIS instruction IS used for block Input of strings of data. INIR and INIRB are used
for Standard I/O operation; SINIR and SINIRB are used for Special 1/0 operation.
The contents of the 1/0 port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destinallon regIster IS then Incremented by one If a byte Instrucllon, or by
two If a word Instrucllon, thus moving the pOinter to the next element in the strmg.
The word register specIfied by "r" (used as a counter) IS then decremented by one.
The address of the 1/0 port In the source register IS unchanged. The entire operallon
IS repeated unlll the result of decrementing r is zero. This Instruction can input from
I to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for
INIR or SINIR).

ThIS mstructlOn can be Interrupted after each execullon of the basic operation. The
program counter value of the start of thIS instructIOn IS saved before the Interrupt
request is accepted, so that the Instruction can be properly resumed. Seven more
cycles should be added to thIS instruction's execullon lime for each Interrupt request
that is accepted. The source, destination, and count registers must be separate and
non-overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

INIR@Rd l , @Rs, r
INIRB@Rd1, @Rs, r
SINIR @Rd1, @Rs, r
SINIRB @Rd1, @Rs, r

Nonsegmented Mode

Instruction Format 3

1001110 11w 1 Rs '" 0 1 0 0 0 5 1

10000 1 r IRd",olooooJ

Segmented Mode

Cycles 2 Instruction Format 3 Cycles 2

11 + 10n 100111011w1Ra.. 0100051 11 + 10n
10000 1 r IRRd",olooooJ

6-61

Example:

6-62

In non segmented mode, if register Rl contams %2023, regIster R2 contains the I/O
port address %0551, and regIster R3 contains 8, the statement

INIRB @RI, @R2, R3

will input 8 bytes from port %0551 and leave them in ascending order from %2023
to %202A. Register RI will contam %202B, and R3 will contain O. R2 WIll not be
affected. The V flag will be set. In segmented mode, a regIster pair must be used
instead of R I .

Note 1 Word regIster in nonsegmented mode, register pdlf In segmented mode

Note 2 n = number of data elements transferred

Note 3' For SINIR, S = 1, otherwIse S = 0

Operation:

Flags:

Addressing
Mode

Example:

Privileged Instruction

IRET

Nonsegmented
SP +- SP + 2 (Pop "identifier")
PS +- @SP
SP +- SP + 4

IRET
Interrupt Return

Segmented
SP +- SP + 2 (Pop "Identifier")
PS +- @SP
SP +- SP + 6

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by an interrupt or trap (including a System Call instruction).
First, the "identifier" word associated with the interrupt or trap is popped from the
system stack and discarded. Then the contents of the location addressed by the
system stack pointer are popped into the program status (PS). loading the Flags and
Control Word (FCW) and the program counter (PC). The new value of the FCW is
not effective until the next instruction, so that the status pins will not be affected by
the new control bils until after the IRET instruction execution is completed. The next
instruction executed IS that addressed by the new contents of the PC. The system
stack pointer (R15 If nonsegmented, or RRl4 if segmented) is used to access
memory. When using a Z8001 or 28003, the operation of IRET m nonsegmented
mode is undefmed. A 2800113 must be in segmented mode when an IRET instruction
IS performed.

c: Loaded from system stack
Z: Loaded from system stack
S: Loaded from system stack
P IV: Loaded from system stack
D: Loaded from system stack
H: Loaded from system stack

Nonsegmented Mode Segmented Mode
Assembler Language

IRET

Syntax Instruction Format Cycles Instruction Format Cycles

I 01111011 100000000 I 13 I 01111011 I 00000000 I 16

In the nonsegmented Z8002 version, if the program counter contains %2550, the
system stack pointer (RI5) contains %3000, and locations %3000, %3002 and %3004
contain %7F03, a saved FCW value, and %1004, respectively, the instruction

IRET

will leave the value %3006 in the system stack pointer and the program counter will
contain %1004, the address of the next instruction to be executed. The program
status will be determined by the saved FCW value.

6-63

JP
Jump

Operation:

Flags:

Destination
Addressing

Mode

IR:

DA:

X:

Example:

6-64

IP cc, dst dst: IR, DA, X

If cc is sahsfied, then PC ... - dst

A conditional jump transfers program control to the destinahon address if the condi­
tion specified by "cc" IS satisfied by the flags In the FCW. See section 6.6 for a list
of condition codes. If the condItion is sahshed, the program counter (PC) is loaded
wIth the designated address; otherwIse, the instructIOn following the IP instruchon is
executed.

No flags affected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format

IP ceo @Rdl
10010111101Rd;<01

IP ceo address
LOll 011110 100001

L address

IP ceo addr(Rd)
10110111101Rd*01

I address

If the carry flag is set, the statement

IP C, %1520

cc

cc

cc

I
I
J

I
I

Cycles2

10/7

717

8/8

Segmented Mode

Instruction Format Cycles2

10010111101RRd*01 cc I 15/7

011011110100001 cc I 55 8/8
o I segment I offset I
011011110100001 cc

5L 11 .egment 10000 0000 10/10

oll.et

55 01 1 011110 1 Rd;<O 1 cc I 818
o I segment I offset I
01 1 011110 1 Rd*O 1 cc

5L 11 .egment 10000 0000 11/11

oll.et

replaces the contents of the program counter with %1520, thus transferring control
to that locahon.

Note 1 Word reglster In nonsegmented mode, register pair In segmented mode

Note 2. The two values correspond to Jump taken and Jump not taken

Operation:

Flags:

Destination
Addressing

Mode

RA:

Example:

JR
Jump Relative

JR cc, dst dst: RA

if cc is satisfied then PC +- PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi­
tion specified by "cc" is satisfied by the flags in the FCW. See Section 6.6 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JR instruction is
executed. The destination address is calculated by doubling the displacement in the
instruction, then adding this value to the updated value of the PC. The updated PC
value is taken to be the address of the instruction following the JR instruction, while
the displacement is an 8-bit signed value in the range -128 to + 127. Thus, the
destination address must be in the range - 254 to + 256 bytes from the start of the JR
instruction. In the segmented mode, the PC segment number is not affected.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

JR cc, address
11110 I cc j displacement I 6 11110 I cc I displacement I

If the result of the last arithmetic operation executed is negative, the next four
instructions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished wIth the instruction

JR MI, $ + 14

If the S flag is not set, execution continues with the instruchon following the JR.
A byte-saving form of a Jump to the label LAB IS

JR LAB

6

where LAB must be wIthin the allowed range. The condition code is "blank" in thIS
case, and Indicates that the jump is always taken.

6-65

LD
Load

Operation:

Flags:

LO dst, src
LOB
LOL

dst __ src

dst: R
src: R, IR, DA, X, BA, BX

or
dst: IR, DA, X, BA, BX
src: R
or
ds!: R, IR, DA, X
src: 1M

The contents of the source are loaded into the destination. The contents of the source
are not affected.

There are three versions of the Load instruction: Load into a register, load into
memory and load an immedIate value.

No flags affected

Load Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: LD Rd, Rs
1101100001w1 I R. I Rd 3 110110000lwl R. I Rd I 3 LDB Rbd, Rbs

LDL RRd, RRs 11010101001 RR. I RRd I 5 11010101001 RR. 1 RRd I 5

IR: LD Rd, @Rsl
1001100001 w I R."O I Rd I 7 1001100001 w IRRs"ol Rd I 7 LDB Rbd, @Rsl

LDL RRd, @Rsl 1001010100IR,,,01 RRd I 11 1001 010100 ~Rs"ol RRd I 11

OA: LD Rd, address
LDB Rbd, address 10111 oooolwi 0000 I Rd J

9
SS 01110000lwloooo I Rd 1 10

1 address 1 o I segment I offset 1

0111 oooolwi 0000 I Rd

SL 11 segment I 000 0 00 0 0 12

offset

LDL RRd, address 1011 01 01 0 a I 0000 I RRd 1 o 11 0 1 a 1 00 I 000 0 I RRd I
1 1

12 SS 13
address 01 segment.J Offset)

011010100100001 RRd

SL 11 segment 100000000 15
offset

Note 1: Word regIster In nbnsegmented mode, regIster palf In segmented mode.

6-66

Load Register (Contmued)

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

X: LD Rd, addr(Rs) 101110000lwi Rs;OO I Rd I 01110000lwi Rs;Ool Rd LDB Rbd, addr(Rs)
I J

10 55 10
address o I segment I offset

01110000lwl R.;OO I Rd

5L 11 segment 100000000 13
offset

LDL RRd, addr(Rs)
[011 01010 oj RuO I RRd J 0110101001Rs;o01 RRd 13 55 13
I address J o I segment I offset

0110101001 RUOJ RRd

5L 11 segment 100000000 16

offset

BA: LD Rd, Rsl(#dlSp)
Loolll0001wj Rs;OOj Rd J 100111000 IwIRR.>,O I RRd

LDB Rbd, Rsl(#dlSp) 14 14
I displacement 1 displacement

LDL RRd, Rsl(#dlSp)
10 0 11 1 0 1 0 1 I Rs;O 0 I RRd I 001110101 IRRs;ool RRd

17 17
I displacement J displacement

BX: LD Rd, Rsl (Rx)
l0tillooojwl R.;Ool Rd J 011110001w1RRS;001 Rd LDB Rbd, RSI (Rx)
[00001 Rx 10000 ooooJ

14
0000 I Rx 10000 0000

14

LDL RRd, Rsl (Rx)
10111101011 I Rs;OO 1 RRd J 0111 1 01 0 11 IRRHOI RRd

10000 I Rx 10000 00001
17

0000 I Rx 10000 0000
17

Load Memory

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

1ft: LD @Rdl , Rs
100 110 llllwi Rd ;O 01 Rs I 8 100110 llll w lRRd>,ol Rs I 8

LDB @Rdl , Rbs

LDL @Rdl , RRs 10010111011 Rd ;0 0 1 RRs I 11 10010111011 RRd >'01 RRs I 11

DA: LD address, Rs
1011101111wlooooi Rs I 011101111wlooool Rs I

LDB address, Rbs 11 55 12
I address I o I segment I offs8t J

011101111wlooool R.

5L 11 segment I 00000000 14

offset

Note 1 Word regIster In nonsegmented mode, register pair In segmented mode

6-67

Load Memory (Continued)

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: LD L address, RRs
1011 0111 01 I 0000 I RRs I o 11 0 111 0 1100001 RR.

14 SS 15
I address J 01 segment 1 ollset

011011101100001 RRs

SL 11 segment I 00000000 17
ollset

X: LD addr(Rd)' Rs
1011101111wl Rd",ol Rs I SS 011101111wI Rd",ol R.

LDB addr(Rd)' Rbs 12 12
I address J ° I segment 1 ollset

0111 01111 Wl Rd",O I Rs

SL lJ segmentj 00000000 15
ollset

LDL addr(Rd), RRs 10 11 ° 1 1 1 ° 1 I Rd '" ° I RRs J 011011101 I Rd",01 RRs
15 SS 15

I address J ° I segment. I ollset

01j 0111011 Rd",ol RRs

SL 11 segment I 00000000 18

o'fset

BA: LD Rdl(#dlSp), Rs 1001110011 w l Rd",O I Rs I 001110011 w 1RRd",01 Rs
LDB Rdl(#dlSp), Rbs 14 14

I displacement J displacement

LDL Rdl(#dlSp), RRs
10 ° 11 1 ° 1 1 1 I Rd '" ° I RRs I 0'!l110111jRRd",01 RRs

17 17
I displacement I displacement

BX: LD Rdl (Rx), Rs
1011110011w1Rd",01 Rs I 0~1100~w1RRd"'oJ R. LDB Rd1(Rx), Rbs
1 0000 I Rx 1 000 00000 I

14
ooooJ Rx 100000000

14

LDL Rdl(Rx)' RRs
1011110 111 I Rd",O I RRs J 0111101111RRd",01 RRs

17 11
Looool Rx 100000000 I 00001 Rx 100000000

Note 1· Word register In nonsegmented mode, register pair In segmented mode

6-68

Load Immediate Value

Destination
Addressing

Mode

R:

IR:

DA:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

LD Rd, #data
00110000110000 I Rd 001100001 00001 Rd

7
data data

LDB Rbd, #data2
001100000 10000 I Rbd 001100000 00001 Rbd

I
7

data data data data

11100 I Rd I data I 5 11100 I Rd I data I
LDL RRd, #data

00 l 01 01 00 I 0000 I RRd 001010100 0000 I RRd

31 data (high) 16 11 31 data (high) 16

15 data (low) 0 15 data (low) 0

LD @Rdl , #data o oj 0 0 1101 JRd '" 01 0101 001001101 RRd",010101
11

data data

LDB @Rdl , #data
00 L 00 1 1 00 1 Rd '" 01 0 1 0 1 001001100 RRd",OI 0 1 0 1

11
data I data data data

LD address, #data
0110011011000010101 011001101 00001 0101

address 14 55 01 segment offset

data data

011001101 0000 I 01 01

11 segment 0000 0000
5L

offset

data

LDB address, #data 0110011001000010101 011001100 00001 0101

address 14 55 01 segment offset

data I data data data

011001100 00001 0101

11 segment 0000 0000
5L

offset

data data

Note 1: Word regIster In nonsegmented mode, regIster paIr In segmented mode.

Note 2: Although two formats eXIst for "LDB R, 1M" I the assembler always uses the short format. In thiS case, the
"src held" In the Instruction format encoding contains the source operand.

Cycles

7

7

5

11

11

11

15

17

15

17

6-69

Load Immediate Value (Continued)

Destination
Addressing

Mode

X:

Example:

6-70

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LD addr(Rd), #data a 11 a a 110 1 I RMO I a 10 1 011001101 Rd;toO 1 0101

address 15 SS 01 segment ollset 15
data data

011001101 Rd;toO 10101

SL
1 1 segment 0000 0000

18
ollset

data

LDB addr(Rd). #data
011001100 I Rd;toO 1 0101 011001100 Rd;toO I a 10 1

address 15 SS 01 segment ollset 15
data I data data data

011001100 Rd;toO 10101

SL
1 1 segment 0000 0000

18
offset

data data

Several examples of the use of the Load instruction are treated in detail in Chapter 5
under addressing modes.

Operation:

Flags:

Source
Addressing

Mode

DA:

X:

BA:

BX:

LDA
Load Address

LDA dst, src ds!: R
src: DA, X, EA, EX

dst ... - address (src)

The address of the source operand IS computed and loaded mto the destmahon. The
contents of the source are not affected. The address computahon follows the rules for
address arithmetJc. The destmation is a word register m non segmented mode, and a
register pair in segmented mode.

In segmented mode, the address loaded mto the destmahon has an undefmed value
in all reserved bits (bits 16-23 and bit 31). However, this address may be used by
subsequent instructions in the indirect, base, or base-index addressing modes
without any modification to the reserved bits.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDA Rdl , address
1011110110100001 Rd J

12 55
o 1 11 1 0 1 1 0 1 0 000 1 RRd

13
I address I o I segment I offset

o 1 11 1 0 1 1 0 1 0 0 0 0 1 RRd

5L 1 1 segment 1 0 000 0000 15
offset

LDA Rd l , addr(Rs)
1011110110 I RHO 1 Rd J 011110110 1 Rs",O 1 RRd

13 55 13
I address I o I segment I offset I

0111101101 Rs",O 1 RRd

5L 1 1 segment 1 0 0 0 0 0000 16
offset

LDA Rdl, Rsl (#dlSp)
1001101001RS",01 Rd I 001 1 01 00 I RRB", 0 I RRd

15 15
I displacement I displacement

LDA Rdl , Rsl (Rx)
1011101001 Rs",O 1 Rd I o 1 1 1 0 1 00 1 RRs", 0 1 RRd I 15 15
100001 Rx 10000 00001 00001 Rx 10000 0000 I

Note 1: Word reglster m nonsegmented mode, regIster paIr In segmented mode.

6-71

Examples:

6-72

LDA R4.STRUCT

LDA RR2, «3» 8(R4)

LDA RR2,RR4(#8)

!m nonsegmented mode, register R4 is loaded!
!wlth the nonsegmented address of the location!
!named STRUCT!

lin segmented mode, If index register R4!
!contains %20, then register RR2 is loaded!
!with the segmented address (segment 3, offset %28)!
!m segmented mode, if base register RR4!
!contams %01000020, then register RR2 is loaded!
!with the segment address« 1 » %28!
!(segment 1, offset %28)!

Note 1 Word register In nonsegmented mode, register pair In segmented mode.

Operation:

Flags:

Source
Addressing

Mode

RA:

Example:

LDAR dst, src

dst ... - address (src)

dst: R
src: RA

LDAR
Load Address Relative

The address of the source operand IS computed and loaded into the destination. The
contents of the source are not affected. The destmation is a word register in
nonsegmented mode, and a register pair in segmented mode. In segmented mode,
the address loaded into the destinahon has all "reserved" bIts (bits 16-23 and bit 31)
cleared to zero.

The relahve addressing mode IS calculated by addmg the dIsplacement in the
instruction to the updated value of the program counter (PC) to derive the address.
The updated PC value is taken to be the address of the instruction following the
LDAR instruchon, whIle the displacement is a 16-blt sIgned value in the range
-32768 to + 32767. The addlhon is performed following the rules of address
anthmehc, wIth no modlhcahons to the segment number m segmented mode. Thus
m segmented mode, the source operand must be m the same segment as the LDAR
mstruchon.

The assembler automahcally calculates the dIsplacement by subtracting the PC value
of the followmg mstruction from the address given by the programmer.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDAR Rd 1, address
100110100 [00001 Rd I I 00110100 10000J~

15
I

LDAR R2, TABLE

LDAR RR4, TABLE

displacement I I displacement

!m non segmented mode, register R2 is loaded!
!with the address of TABLE!

!m segmented mode, regIster pair RR4 IS!
!loaded with the segmented address of TABLE,!
!which must be in the same segment as the program!

Note 1. Word register In nons8gmented mode, register pair In segmented mode

15

6-73

LDeTL Pri vileged Instruction
Load Control

Operation:

LDCTL dst, src

dst +- src

dst: CTLR
src: R
or
dst: R
src: CTLR

This instruction loads the contents of a general purpose register into a control
register, or loads the contents of a control register into a general-purpose register.
The control register may be one of the following CPU registers:

FCW
REFRESH
PSAPSEG
PSAPOFF
NSPSEG
NSPOFF

Flag and Control Word
Refresh Control
Program Status Area Pointer - segment number
Program Status Area Pointer - offset
Normal Stack Pointer - segment number
Normal Stack Pointer - offset

The operation of each of the variants of the instruction is detailed below, The ones
which load data into a control register are described first, followed by the variants
which load data from a control register into a general purpose register. Whenever
bits are marked reserved, the corresponding bit in the source register must be either
o or the value returned by a previous load from the same control register. For com­
patibility with future CPUs, programs should not assume that memory copies of con­
trol registers contain Os, nor should they store data in reserved fields of memory
copies of control registers.

Load Into Control Register
LDCTL FCW, Rs

Operation:

Operation:

6-74

FCW (2:7) +- Rs (2:7)
FCW (11:15) +- Rs (11:15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I ! ! ! !! !!!! I ! ! I I
t t t t t t t t t t t

FCW: ISEGISINIEPAI VI INVII::5~ts~~l c I z I s IpIYI 0 I H iW~1I
+ reserved +

LDCTL REFRESH, Rs

REFRESH (1:15) +- Rs (1:15)

Rs:

REFRESH:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I ! _! ! ! ! ! ! ! ! ! ! ! ! ! ! I
t t t t t t t t + + + t + + +

I re I rate I counter til ... reserved

Operation:

Operation:

Operation:

LDCTL NSPSEG, Rs

NSPSEG (0:15) .. - Rs (0:15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I
+ + + + + + + + + + + + + + + +

NSPSEG: I I
In segmented mode, the NSPSEG register is the normal mode R14 and contains the
segment number of the normal mode processor stack pointer which is otherwise
inaccessible for system mode.

In nonsegmented mode, R14 is not used as part of the normal processor stack
pointer. This instruction may not be used in nonsegmented mode.

LDCTL NSPOFF, Rs
NSP, Rs

NSPOFF (0: 15) .. - Rs (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I , , , , , , , . , , , , , , , I
+ + + + + + + + + + + + + + + +

*NSPOFF: I I

*NSP in nonsegmented mode

In segmented mode, the NSPOFF regIster is R15 in normal mode and contains the
offset part of the normal processor stack pomter. In nonsegmented mode, Rl5 IS the
enhre normal processor stack pomter.

In non segmented mode, the mnemonic "NSP" should be used in the assembly
language statement, and indicates the same control register as the mnemonic
"NSPOFF".

LDCTL PSAPSEG, Rs

PSAPSEG (8: 14) .. - Rs (8: 14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I I 'rrrrrr+'
PSAPSEG: ti>] segment number ,., ' ' .;~,i;r;t;lz,d

+ reserved----'-·--r)+

The PSAPSEG register may not be used in non segmented operation. In
segmented 28000s, care must be exercised when changing the two PSAP register
values so that an interrupt occurrihg between the changing of PSAPSEG and
PSAPOFF IS handled correctly. This is typically accomphshed by first disabling
interrupts before changing PSAPSEG and PSAPOFF.

6-75

Operation:

Operation:

Operation:

6-76

LDCTL PSAPOFF, Rs
PSAP, Rs

PSAPOFF (8: 15) -4- Rs (8: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I ! I I I I I I I I I
+ + + + + + + +

·PSAPOFF: I offsel (upper byle) I ",:"",", I
L_ ---reserved:=:::::1

*PSAP in nonsegmented mode

In the non segmented Z8000s, the mnemonic "PSAP" should be used in the assembly
language statement and indicates the same control register as the mnemonic
"PSAPOFF". In the segmented Z8000s, care must be exercised when changing the
two PSAP register values so that an interrupt occurring between the changing of
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first
disabling interrupts before changing PSAPSEG and PSAPOFF. The low order byte
of PSAPOFF should be O.

Load From Control Register
LDCTL Rd, FCW

Rd (2:7) -4- FCW (2:7)
Rd (11:15) .. - FCW (11:15) (Z800l only)
Rd (11: 14) -- FCW (11: 14) (Z8002 only)
Rd (0: 1) -- UNDEFINED
Rd (8: 10) -- UNDEFINED
Rd (15) .. - 0 (Z8002 only)

LDCTL Rd, REFRESH

Rd (1:8) -- REFRESH (1:8)
Rd (0) -- UNDEFINED
Rd (9: 15) -- UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REFRESH: I re I rale 1 counter [" I

Rd:l,., :y~
+ + + + + + + +

1 I I I I 0 I

Operation:

Operation:

Operation:

LDCTL Rd, PSAPSEG

Rd (8:14) +- PSAPSEG (8:14)
Rd (0:7) +- UNDEFINED
Rd (15) +- UNDEFINED

'-------undellned ----'

This instruction may not be used in non segmented mode.

LDCTL Rd, PSAPOFF
Rd, PSAP

Rd (8: 15) +- PSAPOFF (8: 15)
Rd (0:7) +- UNDEFINED

'PSAPOFF:
L...r--.---r-"""r"~-r-"--T""

*PSAP in nonsegmented mode

In nonsegmented mode, the mnemonic PSAP should be used in the assembly
language statement, and It mdIcates the same control regIster as the mnemonic
PSAPOFF.

LDCTL Rd, NSPSEG

Rd (0: 15) ... - NSPSEG (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NSPSEG: I ! ! ! ! ! ! ! ! I I I I I ! I I
+ + + + + + + + + + + + + + + +

Rd: I I
This mstruchon IS not available in nonsegmented mode.

6-77

Operation:

Flags:

Source
Addressing

Mode

Destination
Addressing

Mode

LDCTL Rd, NSPOFF
Rd, NSP

Rd (0: 15) .. - NSPOFF (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

*NSPOFF: I ! ! ! ! ! ! ! ' ! ! ! ! ! ! ! I
~ ~ ~ ~ + + + + + + + ~ + + ~ +

Rd: I I
*NSP in nonsegmented mode

In non segmented mode, the mnemOnic NSP should be used m the assembly
language statement, and It mdlcates the same control regIster as the mnemonic
NSPOFF.

No flags affected, except when the destmation IS the Flag and Control Word (LDCTL
FCW, Rs), m whIch case all the flags are loaded from the source register.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDCTL FCW, Rs I 01111101 i Rs
1 1010 1

7 01111101 i Rs 11010 1 7

LDCTL REFRESH, Rs I 0111 1 101 I Rs 1 1011 I 7 01111101 I Rs
1 1011 1 7

LDCTL PSAPSEG, Rs 01111101 I Rs
11100 I 7

LDCTL PSAPOFF, Rs
PSAP, Rs I 01111101 I Rs 11 101 I 7 01111101 I Rs

1 1101 I 7

LDCTL NSPSEG, Rs 01111101 I Rs
11110 1 7

LDCTL NSPOFF, Rs I 01 1 111 0 1 I Rs 111111 7 01111101 I Rs 1111 1 I 7 NSP, Rs

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDCTL Rd, FCW I 01111101 I Rd I 0010 I 7 I 01111101 I Rd
1 0010 1 7

LDCTL Rd, REFRESH I 01 111101 I Rd
1 0011 1 7 I 01111101 I Rd I 0011 I 7

LDCTL Rd, PSAPSEG 01111101 I Rd
10100 7

LDCTL Rd, PSAPOFF I 01111101 I Rd 10101 I 7 01111101 I Rd I 0101 7
LDCTL Rd, PSAP

LDCTL Rd, NSPSEG 01111101 I Rd I 0110 7

LDCTL Rd, NSPOFF I 01111101 I Rd I 0111 I 7 01111101 I Rd I 0111 7
Rd, NSP

Operation:

LDCTLB dst, src

dst ... - src

ds!: FLAGS
src: R
or
dst: R
src: FLAGS

LDCTLB
Load Control Byte

ThIS mstruchon IS used to load the FLAGS regIster or to transfer ItS contents mto a
general-purpose regIster. Note that thIS IS not a pnvIleged mstructlOn.

Load Into FLAGS Register
LDCTLB FLAGS, Rbs

FLAGS (2:7) ... - src (2:7)

The contents of the source (a byte regIster) are loaded mto the FLAGS regIster. The
lower two bIts of the FLAGS regIster and the enhre source regISter are unaffected.

76543210

Rbs: I I I I I I I 0 I 0 I
+ + + + + +

FLAGS:

Load From FLAGS Register
LDCTLB Rbd, FLAGS

Flags:

dst (2:7) ... - FLAGS (2:7)
dst (0: l) ... - 0

The contents of the upper SIX bIts of the FLAGS regIster are loaded mto the destina­
hon (a byte regISter). The lower two bIts of the destmahon regIster are cleared to
zero. The FLAGS regIster IS unaffected.

FLAGS:

Rbd:

When the FLAGS regIster IS the destmahon, all the flags are loaded from the
source. When the FLAGS regIster IS the source, none of the flags are affected.

6-79

Nonsegmented Mode Segmented Mode
Assembier Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDCTLB FLAGS, Rbs I 10001100 I Rbs 11001 I 7 I 10001100 I Rbs
11001 1 7

LDCTLB Rbd, FLAGS
[10001100 I Rbd 100011 7 I 100011001 Rbd

10001 1 7

6-80

Operation:

Flags:

Addressing
Mode

IR:

Example:

LDD
Load and Decrement

LOO dst, src, r
LOOB

dst +- src

dst: IR
src: IR

AUTO DECREMENT dst and src (by I if byte, by 2 if word)
r+-r-I

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDB, or by two if LDD, thus moving the pOinters to the previous elements in
the strings. The word register specified by "r" (used as a counter) is then decrement­
ed by one. The source, destination, and counter registers must be separate and non­
overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

LDD "' Rsl, "' Rdl , r
LDDB "' Rsl, "' Rdl , r

11 0111 01 I w I Ro of- 011 001 I
20

II 0111011 w I RRHoll 001 1
10 00 0 I r IRd of- 011 0001 1 0000 I r IRRdof-01 1000 1

Cycles

20

In nonsegmented mode, if register Rl contains %202A, register R2 contains %404A,
the word at location %404A contains %FFFF, and register R3 contains 5,
the instruction

LDD @Rl, @R2, R3

will leave the value %FFFF at location %202A, the value %2028 in RI, the value
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode,
register pairs would be used instead of Rl and R2.

Note 1: Word register in nonsegmented mode, reglster pair in segmented mode

6-B1

LDDR
Load. Decrement and Repeat

Operation:

Flags:

Addressing
Mode

IB:

6-82

LDDB dst, src, r
LDDBB

dst +- src

dst: IR
src: IR

AUTODECREMENT dst and src (by I if byte, by 2 if word)
r +- r - I
repeat until r = 0

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDRB, or by two if LDDR, thus moving the pointers to the previous elements
in the strings. The word register specified by "r" (used as a counter) is then
decremented by one. The entire operation is repeated until the result of decremen­
ting r is zero. The source, destination, and counter registers must be separate and
non-overlapping registers. This instruction can transfer from I to 65536 bytes or from
I to 32768 words (the value for r must not be greater than 32768 for LDDR).

The effect of decrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing
the pOinters ensures that the source string will be copied without destroying the
overlapping area.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

LDDR @RdJ, @RsJ, r
LDDRB @RdJ, @RsJ, r

Nonsegmented Mode

Instruction Format

110111 011wlRS "01 1001 1

10000 1 r IRd"olooool

Segmented Mode

Cycles2 Instruction Format CycIes2

11 0 1 1 1 0 1 I w I RRs .. 0 11 00 1 I
11 +9"

100001 r I RRd"O I 0 0 0 0 I 11 +9"

Example: In nonsegmented mode, if regIster RI contains %202A, register R2 contains %404A,
the words at locations %4040 through %404A all contain %FFFF, and register R3
contains 6, the instruction

LDDR @RI, @R2, R3

will leave the value %FFFF in the words at locations %2020 through %202A, the
value %201E in RI, the value %403E in R2, and 0 in R3. The V flag will be set. In
segmented mode, register pairs would be used instead of HI and H2.

Note 1 Word register In nonsegmented mode, register pair In segmented mode.

Note 2- n = number of data elements transferred.

6-83

LDI
Load and Increment

Operation:

Flags:

Addressing
Mode

1ft:

Example:

LDI dst, src, r
LDIB

dst +- src

ds!: IR
src: IR

AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r+-r-l

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIB, or by two if LDI, thus moving the pOinters to the next elements in the
strings. The word register specified by "r" (used as a counter) is then decremented
by one. The source, destination, and counter registers must be separate and non­
overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero, cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDI @Rd1, @Rsl, r 11011101 Iw I Ru 0 100 01 1 11 011101IwIRR ... ol 0001 1
LDIB @Rd1, @Rsl, r

Looool r IRd ..0110001
20 Loooo j r jRRd"ollOool 20

This instruction can be used in a "loop" of instructions which transfers a string of
data from one location to another, but an intermediate operation on each data ele­
ment is required. The following sequence transfers a string of 80 bytes, but tests for
a special value (%OD, an ASCII return character) which terminates the loop if
found. This example assumes nonsegmented mode. In segmented mode, register
pairs would be used instead of Rl and R2.

LOOP:

DONE:

LD R3, #80
LDA Rl, DSTBUF
LDA R2, SRCBUF

CPB
JR
LDIB
JR

@R2, #%OD
EQ,DONE
@Rl, @R2, R3
NOV, LOOP

!initialize counter!
!load start addresses!

!check for return character!
!exit loop if found!
!transfer next byte!
Irepeat until counter = O!

Note I: Word reglster m nonsegmented mode, register paIr In segmented mode.

Operation:

Flags:

Addressing
Mode

IR:

LDIR
Load. Increment and Repeat

LDIR dst, src, r
LDIRB

dst -- src

dst: IR
src: IR

AUTOINCREMENT dst and src (by I if byte; by two if word)
r--r-l
repeat until R = 0

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LOIRB, or by two if LOIR, thus moving the pointers to the next elements in the
strings. The word register specified by "r" (used as a counter) is then decremented
by one. The entire operation is repeated until the result of decrementing r is zero.
The source, destination, and counter registers must be separate and non-overlapping
registers. This instruction can transfer from I to 65536 bytes or from I to 32768
words (the value for r must not be greater than 32768 for LOIR).

The effect of incrementing the pOinters during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

LDIR @Rdl , @Rsl, r
LDIRB @Rdl , @Rsl, r

Nonsegmented Mode

Instruction Format

11011101IwIR ... oI00011
100001 r IRd .. 01 ooooJ

Segmented Mode

Cycles2 Instruction Format Cycles2

11 011101IwIRR ... 01 00011
11 +9"

10000 1 r IRRd .. olooool
11 +9"

6-B5

Example:

6-86

The following sequence of instructions can be used III nonsegmented mode to copy a
buffer of 512 words (1024 bytes) from one area to another. The painters to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LDA Rl. DSTBUF
LDA R2, SRCBUF
LD R3, #512
LDIR @Rl, @R2, R3

In segmented mode, Rl and R2 must be replaced by register pairs.

Note 1 Word register In nonsegmented mode, regIster paIr 10 segmented mode

Note 2 n:::: number of data elements transferred

Operation:

Flags:

Destination
Addressing

Mode

R:

Example:

LDK dst, src

dst __ src (src = 0 to 15)

dst: R
src: 1M

LDK
Load Constant

The source operand (a constant value specified in the src field) is loaded into the
destination register. The source operand is a value from 0 to 15. It is loaded into the
four low-order bits of the destination register, while the high-order 12 bits are
cleared to zero.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDK Rd, #data 11011111011 Rd 1 data 1 5 11 01 1111 01 1 Rd ! data 1 5

To load register R3 with the constant 9:

LDK R3,#9

6-87

LDM
Load Multiple

Operation:

Flags:

LDM dst, src, n

dst ... - src(n words)

dst: R
src: JR, DA, X
or
ds!: IR, DA, X
src: R

The contents of n source words are loaded mto the destinahon. The contents of the
source are not affected. The value of n hes between I and 16, mclusive. ThIs mstruc­
tion moves mformahon between memory and regIsters; regIsters are accessed m
mcreasmg order starting WIth the specIhed regIster; RO follows R15. The mstruchon
can be used either to load mulhple registers mto memory (e.g. to save the contents
of regIsters upon subroutme entry) or to load mulhple regIsters from memory (e.g. to
restore the contents of regIsters upon subroutine eXIt).

The mstruction encodmg contains values from 0 to 15 m the "num" held correspond­
mg to values of I to 16 for n, the number of registers to be loaded or saved.

The starting address is computed once at the start of execution, and incremented by
two for each register loaded. If the original address computation involved a register,
the register's value will not be affected by the address incrementation during
execution. Similarly, modifying that register during a load from memory will not
affect the address used by this instruction.

No flags affected

Load Multiple - Registers From Memory

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: LDM Rd, "' Rsl, #n oo[011100 I RS"O[OOOI 00[011100 RRs" 0 I 0 0 0 1 [

0000 I Rd 10000 I "-1
11 + 3n

0000 I Rd 0000 I "-1 I 11 + 3n

DA: LDM Rd, address, #n
0110111001000010001 011 011100 0000100 01

0000[Rd 10000J"-1 14+ 3n 55 0000 I Rd 00001 "-1 15+3n

address o I segment offset

011 011100 00001 0001

5L
0000 I Rd 0000 I "-1

17+3n
1[segment 0000 0000

offset

6-88

Load Multiple - Registers From Memory (Contmued)

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles 2

X: LDM Rd, addr(Rs), #n
011 0 1 1 1 00 I Rs '" 0 I 000 1 011 01 11 00 Rs;rOIOOOl

0000 I Rd 10000 I "-1 15+3n 55 0000 I Rd 0000 I "-1 15 +3n

address o I segment offset

011 011100 Rs",O 10001

5L
0000 I Rd 0000 1"-1

18+ 3n
1\ segment 0000 0000

offset

Load Multiple - Memory From Registers

Destination
Addressing

Mode

IR:

DA:

X:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

LDMe, Rd J , Rs, #n
001011100 I Rd*011001 001011100 RRd*011001

00001 Rs 10000 I "-1
11 +3n

00001 0000 I "-1
11 +3n

Rs

LDM address, Rs, #n
0110111001000011001 a 11 a 1110 0 00001 1001

0000 I Rs 10000 I "-1 14+3n 55 a a a a I Rs 00001 "-1 15 +3n

address o I segment offset

a 11 011100 00001 1001

5L
a a a 0 I Rs 00001 "-1

17+3n
11 segment 0000 0000

offset

LDM addr(Rd), Rs, #n a 1 I a 111 a a I Rd* a 11 001 a 11 011100 Rd*011001

0000 I Rs 1 0000 I "-1 15+ 3n 55 00001 Rs 0000 I "-1 15+3n

address o I segment offset

011 011100 Rd*O 11001

00001 Rs 0000 1"-1
5L 18+3n

11 segment 0000 0000

offset

In nonsegmented mode, If regIster R5 contains 5, R6 contams %0100, and R7 con­
tains 7, the statement

10M @R6, R5, #3

will leave the values 5, %0100, and 7 at word locahons %0100, %0102, and %0104,
respectively, and none of the regIsters will be affected. In segmented mode, a
register paIr would be used Instead of R6.

Note 1 Word regIster m nonsegmented mode, register pair In segmented mode

Note 2. n == number of registers

6-89

LDPS Privileged Instruction
Load Program Status

Operation:

Flags:

Source
Addressing

Mode

IR:

DA:

X:

6-90

LDPS src src: IR, DA, X

PS.- src

The contents of the source operand are loaded into the Program Status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW does not become effecllve until the next instruction, so that the status
pms will not be affected by the new control bits unlll after the LDPS instruction
execution is completed. The next instruction executed is that addressed by the new
contents of the PC. The contents of the source are not affected.

This instrucllon IS used to set the Program Status of a program and IS particularly
useful for setting the System/Normal mode of a program to Normal mode, or for run­
nmg a nonsegmented program in segmented Z8000s. The PC segment number is not
affected by the LDPS instruction in nonsegmented mode.

The format of the source operand (Program Status block) depends on the current
Segmentallon mode (not on the version of the Z8000) and is illustrated in the
following fIgure:

NONSEGMENTED lOW ADDRESS SEGMENTED

FCW

PC FCW

PC SEG NO

HIGH ADDRESS PC OFFSET

(shaded area is reserved-must be zero)

All flags are loaded from the source operand.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDPS @Rsl
10011110011 Rs"O 1 00001 12 1001111001 IRR."ol 00001 16

LDPS address
101111100110000100001

16
SS 011 1 1 1 00 1 1000010000 20

1 address 1 o / segment / ollset

01/111001/0000/0000

SL 1/ segment /0000 0000 22

ollset

LOPS addr(Rs)
101/111001/ Rs"%oool 01/111001/ RS"O/oooo

1 1
17 SS 20

address o / segment / ollset

01/111001/ RS"O/OOOO

SL 1/ segment j 0000 0000 23

offset

Note 1. Word regIster IS used In nonsegmented mode, regIster paIr In segmented mode.

Example: In non segmented 28000s, if the program counter contains %2550, register
R3 contains %5000, location %5000 contains %1800, and location %5002 contains
% AOOO , the instruction

LDPS @R3

will leave the value %AOOO in the program counter, and the FeW value will be
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.) In the
segmented mode, a register pair is used instead of R3.

6-91

LDR
Load Relative

Operation:

Flags:

LOR dst, src
LORB
LORL

dst +- src

dst: R
src: RA
or
ds!: RA
src: R

The contents of the source operand are loaded mto the destmation. The contents of
the source are not affected. The relative address IS calculated by adding the
dIsplacement m the instruction to the updated value of the program counter (PC)
to derive the operand's address. In segmented mode, the segmented number of the
computed address IS the same as the segment number of the PC. The updated PC
value is taken to be the address of the instruction following the LDR, LDRB, or
LDRL mstruchon, while the dIsplacement IS a 16-blt sIgned value m the range
-32768 to + 32767.

Status pin information durmg the access to memory for the data operand will be Pro­
gram Reference, (lIDO) mstead of Data Memory request (1000).

The assembler automahcally calculates the displacement by subtracting the PC value
of the followmg instruchon from the address gIven by the programmer.

ThIS mstruchon must be used to modIfy memory locahons contammg program infor­
mation, such as the Program Status Area, if program and data space are separated
by the memory system.

No flags affected

Load Relative Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: LDR Rd, address IOO11000lwlooooI Rd I IOO11000lwlooooi Rd I LDRB Rbd, address 14 14
I displacement I l displacement I

LDRL RRd, address I 00 1 1 0 1 0 1 I 0000 I RRd J
17

I 00110101 I 0000 I RRd I
17

I displacement I I displacement I

6-92

Load Relative Memory

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format

RA: LDR address, Rs IOO110011wlooooi Rs I IOO110011wlooooi Rs I LDRB address, Rbs 14
I displacement I I displacement J

LDRL address, RRs I 0011 0111 I 0000 I RRs I I 00 1 1 0 1 1 1 I 0 000 I RRs J
17

I displacement I I displacement I

Example: LDR R2, DATA !reglster R2 is loaded with the value in the!
!locahon named DATA!

Cycles

14

17

6-93

MBIT
Privileged Instruction

Multi-Micro Bit Test

Operation:

Flags:

Example:

6-94

MBIT

S +- 1 If MI high (inachve); 0 otherwIse

ThIS instruchon IS used to synchronize mulhple processors' exclusive access to
shared hardware resources. The mulh-mlcro input pin (MI) IS tested, and the S flag
IS cleared if the pin is low (achve); otherwIse, the S flag IS set, indicating that the
pin IS high (inactive).

After the MBIT instruchon IS executed, the S flag can be used to determine whether
a requested resource IS available or not. If the S flag IS clear, then the resource IS
not available; if the S flag IS set, then the resource IS avaIlable for use by thIS CPU.

c: Unaffected
Z: Undefined
S: Set if MI IS hIgh; cleared otherwIse
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

MBIT

Syntax Instruction Format Cycles Instruction Format Cycles

I 0111101100001010 I 7 I 0111101100001010 I
The following sequence of Instruchons can be used to walt for the avaIlabilIty of a
resource.

LOOP:
MBIT !test mulh-mlCro Input!
JR PL,LOOP !repeat unhl resource IS avaIlable!

AVAILABLE:

7

Operation:

Flags:

Privileged Instruction
MREQ

Multi-Micro Request

MREQ dst

Z +- 0
if MI low (active)

dst: R

then S+-O
MO forced high (inactive)

else MO forced low (active)
repeat dst +- dst - I until dst 0
if MI low (active) then S +- I

else S+-O
MO forced high (inactive)

Z +- I

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. A request for a resource is Signalled through the multi­
micro input and output pins (MI and MO), with the Sand Z flags indicating the
availability of the resource after the MREQ instruction has been executed.

First, the Z flag IS cleared. Then the MI pm IS tested. If the MI pin is low (active),
the S flag IS cleared and the MO pm IS forced high (inactive), thus indicating that the
resource is not available and removing any previous request by the CPU from the
MOlme.

If the MI pin is high (inactive), indicating that the resource may be available, a
sequence of machine operations occurs. First, the MO pin is forced low (active),
signalling a request by the CPU for the resource. Next, a finite delay to allow for
propagation of the Signal to other processors is accomplished by repeatedly
decrementing the contents of the destination (a word register) until its value is zero.
The origmal value of the counter must be greater than 2. Then the MI pm is tested to
determine whether the request for the resource was acknowledged. If the MI pm is
low (active), the S flag is set to one, indicatmg that the resource is available and
access IS granted. If the m pin is still high (inactive), the S flag is cleared to zero,
and the MO pin is forced high (inactive), indicating that the request was not granted
and removing the request signal for the MO. Finally, in either case, the Z flag is set
to one, indicating that the original test of the MI pin caused a request to be made.
External hardware should inhibit bus request while MO is active to ensure and upper
bound on request timing.

S flag Z flag MO Indicates

0 0 high Request not Signalled
(resource not available)

0 high Request not granted
(resource not available)

low Request granted
(resource available)

c: Unaffected
Z: Set if request was Signalled; cleared otherwise
S: Set if request was signalled and granted; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

6-95

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles l Instruction Format Cycles l

R: MREQ Rd
1011111011 I Rd

11101 1 12 + 7n 1011111011 I Rd
11101 1 12+7n

Example: TRY:

6-96

LD
MREQ

JR

RO,#5
RO

MI,A V AILABLE

!aJlow for propagation delay!
!multi-micro request with delay!
!m register RO!

JR Z,NOT_GRANTED

NOT_AVAILABLE:

JR TRY
AVAILABLE:

MRES

!resource not avadable!

!request not granted!

!try again after awhile!
!use resource!

!release resource!

Note 1 If the request IS made. n ;;:; number of tJmes the destmatlOn IS decremented If the request IS not made,
n ::: 0

Operation:

Flags:

Example:

Pri vileged Instruction MRES
Multi-Micro Reset

MRES

MO IS forced high (mactive)

This instruction IS used to synchronlze multiple processors' exclusive access to
shared hardware resources. The mulh-mlcro output pm MO IS forced hIgh (inachve).
Forcing MO hIgh (machve) mdlcates that a resource controlled by the CPU is
available for use by other processors.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax

MRES

MRES

Instruction Format Cycles Instruction Format

I 01111011 I 00001001 I 5 I 01111011 I

!signal that resource controlled by thIs CPU!
!IS avadable to other processors!

00001001

Cycles

I 5

6-97

MSET Pri vileged Instruction
Multi-Micro Set

Operation:

Flags:

Example:

MSET

MO is forced low (active)

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. The multi-micro output pin MO is forced low (active).
Forcmg MO low (active) is used either to indicate that a resource controlled by the
CPU is not available to other processors, or to sIgnal a request for a resource con­
trolled by some other processor.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

MSET I 01111011 I 00001000 I 5 I 01111011 I 00001000 I 5

MSET !CPU controlled resource not available!

Operation:

Flags:

MULT
Multiply

MULT dst, src dst: R
MULTL src: R, 1M, IR, DA, X

Word
dst (0:31) +- dst (0: 15) x src (0: 15)
Long
dst (0:63) +- dst (0:31) x src (0:31)

The low-order half of the destmahon operand (mulhphcand) IS mulhphed by the
source operand (mulhpher) and the product IS stored m the deshnahon. The con­
tents of the source are not affected. Both operands are treated as signed, two's com­
plement mtegers. For MULT, the destmahon IS a register pair and the source IS a
word value; for MULTL, the deshnahon IS a register quadruple and the source IS a
long word value.

For proper mstruchon execuhon, the "dst held" m the mstructlOn format encodmg
must be even for MULT and must be a mulhple of 4 (0,4,8, 12) for MULTL. If the
source operand m MULTL IS a register, the "src held" must be even.

The Imhal contents of the hlgh·order half of the destmahon register do not affect the
operahon of thiS mstruchon and are overwntlen by the result. The carry flag IS set to
mdlcate that the upper half of the destmahon regISter IS reqUired to represent the
result; If the carry flag IS clear, the product can be correctly represented m the same
preCiSion as the mulhphcand and the upper half of the destmatlOn merely holds a
sign extenSlOn.

The followmg table gives executlOn hmes for word and long word operands m each
possible addressmg mode.

sre Word Long Word

NS SS SL NS SS SL
R 70 70 70 282 + 7'n 282 + 7'n 282 + 7'n

1M 70 70 70 282 + 7'n 282 + 7'n 282 + 7'n
IR 70 70 70 282 + 7'n 282 + 7'n 282 + 7'n

DA 7] 72 74 283 + 7'n 284 + 7'n 286 + 7'n
X 72 72 75 284 + 7'n 284 + 7'n 287 + 7'n

(n = number of bits equal to one m the absolute value of the low-order 16 bIts of the destmahon operand)

When the multiplier IS zero, the execuhon time of Multiply IS reduced to the followmg times:

sre Word Long Word

NS SS SL NS SS SL
R]8]8]8 30 30 30

1M]8]8]8 30 30 30
IR]8]8]8 30 30 30

DA]9 20 22 3] 32 34
X 20 20 23 32 32 35

c: MUL T -set if product IS less than - 2 15 or greater than or equal to 2 15 ; cleared
otherwise; MUL TL-set if product IS less than - 231 or greater than or equal to 231 ;

cleared otherwise
Z: Set if the result is zero; cleared otherwise
5: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

6-99

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format CycIes2

R: MULT RRd, Rs
11010110011 Rs

I
RRd I 11010110011 Rs

I
RRd I

MULTL ROd, RRs
11010110001 Rs

I
RRd I 11010110001 Rs

I
RRd I

1M: MULT RRd, #data
o 0 I 0 1 1 0 0 1 I 0 0 0 0 I RRd 001 011 001 I 0000 I RRd

data data

MULTL ROd, #data
001 011000J 0000 I ROd 001 011000Jooo01 ROd

31 data (high) 16 31 data (high) 16

15 data (low) 0 15 data (low) 0

IR: MULT RRd, @Rsl
10 0 I 0 1 1 00 1 I Rs * 0 I RRd I 1001011001 IRRS,*ol RRd 1

MULTL ROd, @Rsl
10 0 I 0 1 1 00 0 I Rs * 0 I ROd I 1001 0 1 1 0 0 0 I RRs * 0 I ROd I

DA: MULT RRd, address
o 1 I 0 1 1 00 1 I 0 0 0 0 I RRd 011011001100001 RRd

55 I I address I 'I 0 I segment I offset

011 011 00 1 I 00001 RRd

5L 11 segment 10000 0000

offset

MULTL ROd, address
o 1 I 0 1 1 00 0 I 000 0 I ROd 011011000100001 ROd

55
address o I segment I offset

011011000! 00001 ROd

5L 11 segment 10000 0000

offset

X: MULT RRd, addr(Rs)
o 1 I 0 1 1 00 11 Rs * 0 I RRd 01 1011001 I Rs,,01 RRd

55
01 segment I address offset

011 011001 I RS*Oj RRd

5L 1 I segment I 0 0 0 0 0000

offset

MULTL ROd, addr(Rs)
1011011000 I Rs*O I ROd I o 1 I 0 1 1 0 0 0 I Rs * 0 i ROd

55 I address I o I segment I offset

o 11 0 1 1 000 I Rs" 01 ROd

5L 1 I segment I 0 000 0000

offset

6-100

Example: If register ROO (composed of register palrs RRO and RR2) contains
%2222222200000031 (RR2 contams decimal 49), the statement

MULTL ROO,#l0

will leave the value %OOOOOOOOOOOOOIEA (declmal 490) in ROO.

Note 1 Word register In nonsegmenled mode, register pair In segmented mode

Note 2 ExecutIon hmes for each InstructIOn are given In the precedmg tables

6-101

NEG
Negate

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

X:

Example:

6-102

NEG dst
NEGB

dst -- -dst

ds!: R, IR, DA, X

The contents of the deshnahon are negated, that IS, replaced by ItS two's comple­
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by
themselves since In two's complement representahon the negative number with
greatest magmtude has no poslhve counterpart; for these two cases, the V flag IS set.

c: Cleared if the result IS zero; set otherwIse, which indICates a "borrow"
Z: Set If the result IS zero; cleared otherwIse
S: Set If the result IS negahve; cleared otherwIse
V: Set if the result IS %8000 for NEG, or %80 for NEGB: cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

NEG Rd
1101001101w1 Rd

10010 1 NEGB Rbd

NEG@Rdi
10010011 01 w I Rd",O 10010 I NEGB@Rdi

NEG address
IOl100110lwi 0000 100101 NEGB address
I address I

NEG addr(Rd)
NEGB addr(Rd) IOl100110lwi Rd",O 100101

l address J

If regIster R8 contains %051F, the statement

NEG R8

WIll leave the value %FAEI In R8.

7

12

15

16

Segmented Mode

Instruction Format

1101001101wi Rd
10010 1

100 100 1 1 0 I w I RRd*O I 00 1 0 I

5501100110lwl0000100l0

o 1 segment 1 offset

01100110lwl 00001 0010

5L 11 segment 10000 0000

offset

55 01100110lwl Rd",O 10010

o I segment I offset

01100110Iwi Rd",O 10010

5L 11 segment 10000 0000

offset

Note 1 Word regIster In nonsegmented mode, register pair In segmented mode

Cycles

7

12

16

18

16

19

NOP
No Operation

NOP

Operation: No operation IS performed.

Flags: No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

NOP 110001101 I 00000111
1 7 110001101 I 00000111

1
7

6-103

OR
Or

Operation:

Flags:

Source
Addressing

Mode

R:

1M:

IR:

DA:

X:

6-104

OR dst, src
ORB

dst +- dst OR src

ds!: R
src: R, IM, IR, DA, X

The source operand is logically ORed with the destination operand and the result is
stored in the destination. The contents of the source are not affected. The OR opera­
tion results in a one bit being stored whenever either of the corresponding bits in the
two operands is one; otherwise a zero bit is stored.

c: Unaffected
Z: Set If the result is zero; cleared otherwise
S: Set if the most signIfIcant bIt of the result IS set; cleared otherwIse
P: OR-unaffected; ORB-set If panty of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Formal Cycles Instruction Format

110100010lwi
OR Rd, Rs

1101000101w1 Rs I Rd I 4 Rs
I

Rd I ORB Rbd, Rbs

OR Rd, #data
1001000101100001 Rd I 00100010110000 I Rd I

7
I data I data I

ORB Rbd, #data
1001000100/0000/ Rd I 1001000100 1 0000 I Rd I ! ! I 7

data data I data I dz1z I

OR Rd, (['Rsi
IOOIOOOlOlwi Rs",O I 1001000101w1RRs",01 ORB Rbd, @Rsi

Rd I 7 Rd I
OR Rd, address

101100010lWl00001 Rd I .101100 0 10 1wl 0000 / Rd I ORB Rbd, address
I I 9 55

address ~J segment I offset J
01/00010/w/000ol Rd

5L 11 segment 10000 0000

offset

OR Rd, addr(Rsl
101100010lwi Rs",O / Rd I 01100010lwi Rs",O I Rd I ORB Rbd, addr(Rsl
I I

10 55 I address o I segment I offset

01JOOOlOIWI RHO I Rd

5L 1/ segment /0000 0000

address

Cycles

4

7

7

7

10

12

10

13

Example: If register RL3 contains O/OC3 (l1000011) and the source operand is the immediate
value 0/07B (01111011), the statement

ORB RL3,#%7B

WIll leave the value O/OFB (l1111011) in RL3.

Note 1 Word register In nonsegmented mode, register pair In segmented mode

6-105

OTDR
(SOTDR)

Privileged Instruction

(Special) Output, Decrement and Repeat

Operation:

Flags:

Addressing
Mode

IR:

6-106

OTOR dst, src, r
OTORB
SOTOR
SOTORB

dst ... - src

dst: IR
src: IR

AUTODECREMENT src (by 1 If byte, by 2 If word)
r ... -r-l
repeat until r = 0

This instruction is used for block output of strmgs of data. OTDR and OTDRB are
used for Standard I/O operation; SOTDR and SOTDRB are used for Special I/O
operation. The contents of the memory location addressed by the source register are
loaded into the I/O port addresses by the destination word register. I/O port ad­
dresses are 16 bits. The source register is then decremented by one If a byte instruc­
tion, or by two if a word instruction, thus moving the pointer to the previous element
of the string m memory. The word register specified by "r" (used as a counter) is
then decremented by one. The address of I/O port in the destination register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can output from 1 to 65536 bytes or 32768 word (the value for r
must not be greater than 32768 for OTDR or SOTDR).
This mstructlon can be interrupted after each execution of the baSIC operation. The
program counter value of the start of thIS mstruction is saved before the interrupt
request IS accepted, so that the mstruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that IS accepted.

c: Unaffected
Z: Undefined
S; Unaffected
V: Set
0: Unaffected
H: Unaffected

Assembler Language
Syntax

OTDR @Rd,@Rsl, r
OTDRB @Rd,@Rsl, r

SOT DR @Rd,@Rsl, r
SOTDRB @Rd,e'Rsl, r

Nonsegmented Mode

Instruction Format3

L 00111 01 1 w 1 R. " 01 1 01 5 I
10000 1 r IRd" 010000J

Segmented Mode

Cycles2 Instruction Format 3 Cyc1es2

L 0 0 1 1 1 0 11 wj RRs,,~ 1 0 1 ~
11 + 10n 11 + 10n

10000 1 r jRd" oj 00001

Example: In nonsegmented mode, if register Rll contains %OFFF, register Rl2 contains
0/0 B006, and R13 contains 6, the instruction

OTDR @Rll, @RI2, Rl3

will output the strmg of words from locations O/OB006 to O/OAFFC (in descending
order of address) to port %OFFF. Rl2 will contain O/OAFFA, and Rl3 will contain O.
Rll will not be affected. The V flag will be set. In segmented mode, Rl2 would be
replaced by a register pair.

Note 1 Word register In nonsegmented mode, register pair m segmented mode
Note 2 n = number of data elements transferred.

Note 3. For SOTDR, S = 1, otherWIse S = 0

6-107

OTIR
(SOTIR)

Pri vileged Instruction

(Special) Output. Increment and Repeat

Operatien:

Flags:

Addressing
Mode

IR:

6-108

OTIR dst, src, r
OTIRB
SOTIR
SOTIRB

dst .. - src

ds!: IR
src: IR

AUTOINCREMENT src (by 1 if byte, by 2 if word)
r .. -r-l
repeat until r = 0

This Instruction is used for block output of strings of data. OTIR and OTIRB are used
for Standard I/O operation; SOTIR and SOTIRB are used for Special I/O operation.
The contents of the memory localion addressed by the source register are loaded
Into the I/O port addressed by the destination word register. I/O port addresses are
16 bits. The source register IS then incremented by one If a byte Instruclion, or by
two If a word mstruclion, thus moving the pOinter to the next element of the string in
memory. The word register specIfied by "r" (used as a counter) IS then decremented
by one. The address of I/O port in the destination register is unchanged. The entire
operalion IS repeated until the result of decrementmg r is zero. This instruction can
output from I to 65536 bytes or 32768 words (the value for r must not be greater than
32768 for OTIR or SOTIR).

This mstruclion can be interrupted after each execulion of the baSIC operation. The
program counter value of the start of thiS Instruclion is saved before the interrupt
request is accepted, so that the Instruction can be properly resumed. Seven more
cycles should be added to thiS Instruction's execution time for each interrupt request
that IS accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: U naffeded
H: Unaffected

Assembler Language
Syntax

OTIR <1kRd, <1kRsl, r
OTIRB ~'Rd, <1kRsl, r
SOTIR q, Rd, q, RSi, r
SOTIRB <1kRd, <1kRsl, r

Nonsegmented Mode

Instruction Format3

loo 111 0 1 1 w 1 Rs '" 0 1 0 0 1 5)

10000 1 r IRd",olooool

Segmented Mode

Cycles Instruction Format3 Cycles

11 + 10n 1 00 1 1 1 0 1 1 w 1 RRB'" 0 1 0 0 1 5 1 11 + 10n
10 0 00 1 r IRd '" 01 0000 1

node, the following sequence of instructions can be used to output
, the specihed 1/0 port. The pointers to the 1/0 port and the start
J are set, the number of bytes to output IS set, and then the output

#PORT
SRCBUF
#LENGTH

., @R2, R3

Ie, a register pair would be used Instead of R2.

nonsegmented mode, register pair m segmented mode

:lata elements transferred

I, otherwIse S = O.

6-109

OUT
(SOUT)

Privileged Instruction

(Special) Output

Operation:

Flags:

Destination
Addressing

Mode

IR:

DA:

Example:

6-110

OUT dst, src
OUTB
SOUT dst, src
SOUTB

dst ... - src

dst: IR, DA
src: R
ds!: DA
src: R

The contents of the source register are loaded mto
Special Output port. OUT and OUTB are used fOl
and SOUTB are used for Special 1/0 operation.

No flags affected.

Nonsegmented Mode
Assembler Language

Syntax Instruction Format 1 Cycles

OUT "Rd, Rs I 00111111 w1Rd " 01 Rs I OUTB @Rd, Rbs

OUT port, Rs
100111011 wl Rs 1011 sl OUTB port, Rbs

SOUT port, Rs I port I
SOUTB port, Rbs

If register R6 contains %5252, the mstructlOn

OUT %1120,R6

10

12

wJll output the value %5252 to the port %1120.

Note I For SOUT, S = I, otherwise S = 0

Example: In nonsegmented mode, the followmg sequence of mstructions can be used to output
a strmg of bytes to the specified I/O port. The pointers to the I/O port and the start
of the source strmg are set, the number of bytes to output IS set, and then the output
IS accomplished.

LD RI, #PORT
LDA R2,SRCBUF
LD R3, #LENGTH
OTIRB @RI, @R2, R3

In segmented mode, a register pair would be used mstead of R2.

Note 1 Word regIster In nonsegmented mode, register pair In segmented mode

Note 2 n = number of data elements transferred

Note 3 For SOTIR. S = I; otherwIse S = o.

6-109

OUT
(SOUT)
(Special) Output

Operation:

OUT dst, src
OUTB
SOUT dst, src
SOUIB

dst ... - src

Privileged Instruction

ds!: IR, DA
src: R

ds!: DA
src: R

The contents of the source regIster are loaded into the destinatIon, an Output or
Special Output port. OUT and OUTB are used for Standard I/O operation; SOUT
and SOUTB are used for Special I/O operahon.

Flags:

Destination
Addressing

Mode

IR:

DA:

Example:

6-110

No flags affected.

Nonsegmented Mode
Assembler Language

Syntax Instruction Format 1 Cycles

OUT @Rd, Rs I 00111111 wlRd '" 01 Rs I OUTB @Rd, Rbs

OUT port Rs
IOOll1011 wl Rs 1011S1 OUTB port, Rbs

SOUT port, Rs I pori I
SOUTB port, Rbs

If regIster R6 contams %5252, the mstructIon

OUT %1120, R6

10

12

wIll output the value %5252 to the port % 1120.

Note I' ForSOUT,S = l,otherWlseS = O.

Segmented Mode

Instruction Format l Cycles

I 00111111 wlRd '" 01 Rs I 10

IOOll1011 Wl Rs 1011 S I
12

I port I

Operation:

Flags:

AddreSSing
Mode

IR:

Example:

Privileged Instruction aUTO
(SOUTO)

(Special) Output and Decrement

OUTD dst, src, r
OUTDB
SOUTO
SOUTOB

dst +- src

dst: IR
src: IR

AUTODECREMENT src (by 1 if byte, by 2 if word)
r +- r - 1

This instruction is used for block output of strings of data. OUTD and OUTDB are
used for Standard I/O operation; SOUTD and SOUTDB are used for Special I/O
operation. The contents of the memory locahon addressed by the source register are
loaded mto the I/O port addressed by the destination word regIster. I/O port ad­
dresses are 16 bIts. The source register is then decremented by one if a byte instruc­
tion, or by two if a word instruchon, thus moving the pointer to the previous element
of the string in memory. The word regIster specified by "r" (used as a counter) is
then decremented by one. The address of the I/O port in the destination regIster is
unchanged.

c: Unaffected
Z: Undefmed
S: Unaffected
V: Set If the result of decrementmg r IS zero; cleared otherwIse
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format2 Cycles Instruction Format2 Cycles

OUID @Rd, @Rsl, r
OUIDB @Rd, @Rsl, r

I 0011 1 0 1 1 W! Rs " 011 01 S I
21

LOO111011wJRRHo l101s1
21

S~UID c'Rd, "'RsI, r Loooa I r IRd,,011000 10000 1 r IRd "0110001
SOUIDB @Rd, @Rsl, r

In segmented mode, If regIster R2 contams the I/O port address %0030, regIster RR6
contams %12005552 (segment %12, offset %5552), the word at memory locahon
% 12005552 contams % 1234, and regIster R8 contains % 1001, the mstruchon

OUTD @R2, @RR6, R8

will output the value %1234 to port %0030 and leave the value %12005550 m RR6,
and % 1000 in R8. Register R2 will not be affected. The V flag WIll be cleared. In
nonsegmented mode, a word regIster would be used instead of RR6.

Note I Word regIster In nonsegmented mode, regIster pair In segmented mode

Note 2 For SOUID, S = 1, otherWlse S = O.

6-111

OUTI
(SOUTI)

Privileged Instruction

(Special) Output and Increment

Operation:

Flags:

Addressing
Mode

IR:

6-112

oun dst, src, r
OUTIB
SOUTI
SOUTIB

dst +- src

dst: IR
src: IR

AUTOINCREMENT src (by 1 if byte, by 2 if word)
r +- r - 1

This instruction is used for block output of strings of data. OUTI and OUTIB are
used for Standard IIO operation; SOUTI and SOUTIB are used for Special I/O
operation. The contents of the memory location addressed by the source register are
loaded into the IIO port addressed by the destination word register. I/O port ad­
dresses are 16-bit. The source register is then Incremented by one if a byte instruc­
tion, or by two if a word instruction, thus moving the pointer to the next element of
the string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the destination register is un­
changed.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r IS zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mod, Segmented Mode
Assembler Language

Syntax Instruction Format2 Cycles Instruction Format 2

oun @Rd, '" Rsl, r
OUnB @Rd, @Rsl, r 100111 ollwlRs '" 01001 51 21

I 00 1 1 1 0 1 j w 1 RRs ",0 1 0 0 1 5 I
so UTI @Rd, @Rsl, r l 0000 I r jRd '" oJ1 oooJ 10000 1 r 1 Rd '" ot 10 0 0 I
SOUnB @Rd, @Rsl, r

Cycles

21

Example: This instruction can be used In a "loop" of instructions which outputs a string of
data, but an intermediate operation on each element is required. The following
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit
of each byte set or reset to provide even parity for the entire byte. Bit 7 of each
character is initially zero. This example assumes nonsegmented mode. In segmented
mode, R2 would be replaced with a register pair.

LD RI, #PORT
LDA R2, SRCSTART
LD R3, #80

LOOP:
TESTB @R2
JR PE, EVEN
SETB @R2, #7

EVEN:
OUTIB @RI, @R2, R3
JR NOV, LOOP

DONE:

!load I/O address!
! load start of string!
! initialize counter!

! test byte parity!

!force even parity!

!output next byte!
! repeat until counter

Note 1. Word reglster In nonsegmented mode, register pair In segmented mode.

Note 2' For SOUrI, S = 1; otherwlse S = a

O!

6-113

POP
Pop

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

6-114

POP dst, src
POPL

dst ... - src

dst: R, IR, DA, X
src: IR

AUTOINCREMENT src (by 2 If word, byr4 if long)

The contents of the location addressed by the source register (a stack pointer) are
loaded into the destination. The source register is then incremented by a value
which equals the size in bytes of the destination operand, thus removing the top ele­
ment of the stack by changing the stack pOinter. Any register except RO (or RRO in
segmented mode) can be used as a stack pOinter.

The same register cannot be used in both the source and destination addressing
fields.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

POP Rd, @Rsl
11010101111Rs,,01 Rd I 8 11 ° I 010 111 I RRs" ° I Rd I 8

POPL RRd, (!, Rsl
11 ° I ° 1 ° 1 ° 1 I Rs " ° I RRd I 12 11 ° I 01 01 ° 1 I RRs" 01 RRd I 12

POP@Rdl, @Rsl
10010101111 Rs"O IRd"ol 12 1001010111I RRs ,,0IRRd,,01 12

POPL @Rdl , @Rsl
10010101011 Rs"O IRd ,,01 19 1001010101I RRs "0IRRd,,ol 19

POP address, @Rsl
10110101111 Rs"O 10000 SS ° 11 ° 1 ° 1 1 1 I RRs" ° I ° ° ° ° 16 16
I address J o I segment I offset

01 1 010 111 J RRS"OJ ° ° ° °
SL 1J segment 100000000 18

offset

POPL address, @Rsl
1011010101 I Rs"O I 00001 011 o101011 RRs ,,01oooo 23 SS 23
I address I o I segment I offset

0110101011RRs*010000

SL 1 I segment I 00 0 ° 00 0 ° 25
offset

Destination
Addressing

Mode

X:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

POP addr(Rd), @Rsl
10110101111 Rs",O I Rd",ol 011010 111 j RRs '" 01 Rd",O

16 SS 16 I address I o I segment I offset

01[010111 IRRS",ol Rd",O

SL 1 I segment I ° ° ° ° ° ° ° ° 19

offset

POPL addr(Rd), @Rsl
10 11 010 10 1 1 Rs"'O 1 RMO I

23 SS
0110101011RRS,,,01 Rd",O

23 I address I 01 segment I offset

01j 010101jRRs",Oj Rd",O

SL 11 segment 100000000 26
offset

In non segmented mode, If reglSter RI2 (a stack pomter) contams %1000, the word at
locahon % 1000 contams %0055, and regIster R3 contams %0022, the mstruchon

POP R3, @R12

WIll leave the value %0055 m R3 and the value %1002 m R12. In segmented mode,
a regIster pair must be used as the stack pomter instead of R12.

Note 1 Word register m nonsegmented mode, register pair In segmented mode

6-115

PUSH PUSH
Push

Operation:

Flags:

Source
Addressing

Mode

1M:

IR:

DA:

6-116

PUSH dst, src
PUSHL

dst: 1R
src: R, 1M, JR, D.A., X

AUTODECREMENT dst (by 2 if word, by 4 if long)
dst _ src

Push

The contents of the destination register (a stack pointer) are decremented by a value
which equals the size in bytes of the source operand. Then the source operand is
loaded into the location addressed by the updated destination register, thus adding a
new element to the top of the stack by changing the stack pointer. Any register
except RO (or RRO in segmented mode) can be used as a stack pointer.

With PUSHL, the same register cannot be used for both the source and destination
addressing fields.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

PUSH @RdJ, Rs
11010100111 Rd .. ol Rs I 9 110 I 01 0011 I Rd .. O I Rs I 9

PUSHL @RdJ, RRs
1101 010001 I Rd .. O I Rs I 12 11010100011 Rd .. O I Rs I

PUSH @RdJ, #data
1001 0011 0 1 1 Rd .. O 11 00 lJ 001 001101 1 Rd .. O 11001 1

12 12
I data I dala

PUSH @RdJ, @RsJ
1001010011 I Rd .. O IRs .. 01 13 1001010011 I Rd .. O IRs .. 01 13

PUSHL @RdJ, @RsJ
1001010001 I Rd .. O IRs .. 01 20 1001010001 I Rd .. O IRs .. 01 20

PUSH @RdJ, address
1011010011 I Rd .. O I 00001 SS 01jOl00llJRd .. OJoooo 14 14
I address I oj segment J offset

0110100111 Rd .. oloooo

SL lJ segment J 00000000 17
offset

PUSHL@RdJ, address 1011010001 1 Rd .. O I 00001 01 0100011Rd .. o 10000
21 SS 13

I address J
01 segment 1 offset

0110100011 Rd"oloooo

SL 11 segment 100000000 24
offset

Source
Addressing

Mode

X:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

PUSH @Rdl, addr(Rs)
10110100111 Rd,00l Rs,00l 011 0100111RRd,001 Rs,oO

L I
14 55

o I segment I
14

address offset

011 0100111RRd,oo! Rs,oO

5L 11 .egment 100000000 17
offset

PUSHL @Rdl , addr(Rs)
10110100011 Rd,oO 1 Rs,oO I

21 55 011 01oo01IRRd";:~ 21
I address I ° 1 segment 1 offset

011 0100011RRd,001 Rs,oO

5L 11 segment 100000000 24

offset

In non segmented mode, lf regIster Rl2 (a stack pointer) contains % 1002, the word at
location % 1000 contains %0055, and regIster R3 contains %0022, the instruchon

PUSH @RI2, R3

will leave the value %0022 In location %1000 and the value %1000 In R12. In
segmented mode, a regIster paIr must be used as the stack pointer instead of R12.

Note 1: Word register is used In nonsegmented mode, regIster paIr In segmented mode.

6-117

RES
Reset Bit

Operation:

Flags:

RES dst, src
RESB

dst(src) ..,- 0

ds!: R, IR, DA, X
src: 1M
or
ds!: R
src: R

ThIS mstruchon clears the specihed bIt wlthm the destmahon operand wIthout
affectmg any other bIts m the destmahon. The source (the bIt number) can be
speclhed as eIther an ImmedIate value (Stahc), or as a word regIster whIch contams
the value (DynamIc). In the second case, the deshnahon operand must be a register,
and the source operand must be RO through R7 for RESB, or RO through R15 for
RES. The bIt number IS a value from 0 to 7 for RESB, or 0 to IS for RES, wIth 0
indlcatmg the least slgmhcant bIt.

Only the lower four bIts of the source operand are used to specify the bIt number for
RES, while only the lower three bIts of the source operand are used wIth RESB.
When the source operand IS an ImmedIate value, the "src held" In the mstruchon
format encodmg contams the bIt number m the lowest four bIts for RES, or the
lowest three bits for RESB.

No flags affected

Reset Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: RES Rd, #b
110110001iw! I I 110110001iw! Rd b 4 Rd I b I 4 RESB Rbd, #b

IR: RES Q, Rd 1, #b
10011000+1 Rd"O I b I 11 10+ 000 1iw!RRd"ol b I 11

RESB "' Rd 1, #b

DA: RES address, #b
1011100011wl00001 b I 01[100011w100001 b RESB address, #b
I I

13 55 14
address o I segment! offset

01J100011wl00001 b

5L 11 segment 100000000 16
offset

X: RES addr(Rd), #b
101[10001Iw[Rd"O [b I 01 [1 00011 w 1 Rd" 0 1 b RESB addr(Rd), #b
I I

14 55 14
address o! segment I offset

011100011wl Rd"O 1 b

5L 1 1 segment 1 0 0 0 0 00 0 0 17

offset

6-118

Reset Bit Dynamic

Source
Addressing

Mode

R:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

RES Rd, Rs
10011 00011 wl 0000 I Rs I lool1 00011 wl 0000 I Rs I

RESB Rbd, Rs2
100001 Rd 10000100001

10
l 0000 I Rd 10000 10000 I

If register RL3 contams %B2 (10110010), the instruction

RESB RL3, #1

WIll leave the value %BO (10110000) m RL3.

Note 1 Word register In nonsegmented mode, leglster pair In segmented mode.
Note 2' Word register O~7 only

Cycles

10

6-119

RESFLG
Reset Flag

Operation:

Flags:

RESFLG flag flag: C, z, s, P, v

FLAGS (4:7) .. - FLAGS (4:7) AND NOT Instruchon (4:7)

Any combinahon of the C, Z, S, P or V flags are cleared to zero if the corresponding
bits in the instruction are one. If the bit In the Instruchon corresponding to a flag is
zero, the flag WIll not be affected. All other bIts In the FLAGS regIster are
unaffected. Note that the P and V flags are represented by the same bIt.

There may be one, two, three, or four operands In the assembly language statement,
In any order.

c: Cleared If speclhed, unaffected otherwise
Z: Cleared If speclhed, unaffected otherwIse
S: Cleared If speclhed, unaffected otherwIse
P/V: Cleared If speclhed, unaffected otherwIse
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Example:

6-120

Syntax Instruction Format Cycles Instruction Format

RESFLG flags
11 0 I 0011 0 1 Icz s PIYI 001 1 1 7 11 0 I 001101 Icz 5 PIYI 0011 I

If the C, S, and V flags are set (I) and the Z flag IS clear (0), the statement

RESFLG C, V

w!llieave the S flag set (I), and the C, Z, and V flags cleared (0).

Cycles

7

Operation:

Flags:

Addressing
Mode

Example:

RET cc

Nonsegmented
if cc IS true then
PC ... - @SP
SP +- SP + 2

RET
Return

Segmented
If cc is true then
PC ... - @SP
SP ... - SP + 4

This instruction is used to return to a prevIOusly executed procedure at the end of a
procedure entered by a CALL or CALR instruction. If the condihon specified by
"cc" is satisfied by the flags in the FCW, then the contents of the location addressed
by the processor stack pOinter are popped into the program counter (PC). The next
instruchon executed is that addressed by the new contents of the PC. See section
6.6 for a list of condlhon codes. The stack pOinter used is Rl5 in nonsegmented
mode, or RRl4 In segmented mode. If the condition is not satisfied, then the instruc­
hon following the RET Instruction is executed. If no condition IS specified, the return
IS taken regardless of the flag settings.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles l Instruction Format Cycles l

RET cc 1101011110100001 cc 1 10/7 1101011110 100001 cc 1 13/7

In nonsegmented mode, If the program counter contains %2550, the stack pointer
(R15) contains %3000, locahon %3000 contains %1004, and the Z flag IS clear, then
the instruction

RET NZ

will leave the value %3002 In the stack pOinter and the program counter will contain
% 1004 (the address of the next instruction to be executed).

Note 1 The two values correspond to return taken dnd return not taken

6-121

RL
Rotate Left

Operation:

Flags:

Destination
Addressing

Mode

R:

Example:

6-122

RL dst, src
RLB

Do src hmes: (src = I or 2)
tmp .. - dst
c .. - tmp (msb)
dst(O) .. - tmp (msb)

dst: R
src: 1M

dst (n + I) .. - tmp (n) (for n o to msb - I)

Word: ~~'5

Byte: ~~7 °IJ
The contents of the destmahon operand are rotated left one bit poslhon If the source
operand IS I, or two bIt poslhons If the source operand IS 2. The most sIgnificant bit
(msb) of the destmahon operand IS moved to the bIt 0 poslhon and also replaces the
C flag.

The source operand may be omItted from the assembly language statement and thus
defaults to the value I.

c: Set If the last bIt rotated from the most slgmflcant bIt poslhon was I; cleared
otherwIse

Z: Set If the result IS zero; cleared otherwIse
S: Set If the most slgmflcant bIt of the result IS set; cleared otherwIse
V: Set If anthmehc overflow occurs, that IS, If the SIgn of the destinahon changed

dunng rotahon; cleared otherwISe
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax! Instruction Format2 CyelesS Instruction Format2

RL Rd. #n 1,01"00,1wI Rd 10015 101 6/7 1,01"00,1wI Rd
10015 101 RLB Rbd, #n

If regIster RH5 contams %88 (10001000), the statement

RLB RH5

CyelesS

6/7

will leave the value %11 (00010001) m RH5 and the Carry flag wIll be set to one.

Note 1 n::: source operand
Note 2 s ::; 0 for rotation by 1 bit, s ::: 1 for rotation by 2 bits
Note 3 The given executIon hmes are for rotatlOn by 1 and 2 blts respectively

Operation:

Flags:

Destination
Addressing

Mode

R:

Example:

RLC
Rotate Left through Carry

RLC dst, src
RLCB

Do src limes: (src = 1 or 2)
tmp ... - c
c ... - dst (msb)

dst: R
src: 1M

dst (n + 1) ... - dst (n) (for n
dst (0) 4- tmp

msb - 1 to 0)

Word: ~-115 ~--------:...,o J
I

Byte: ~-17 °IJ
The contents of the destmahon operand WIth the C flag are rotated left one bIt POSI­
lion if the source operand IS 1, or two bIt posllions If the source operand IS 2. The
most slgmhcant bIt (msb) of the destmalion operand replaces the C flag and the
prevIous value of the C flag IS moved to the bIt 0 posilion of the destination durmg
each rotahon.

The source operand may be omItted from the assembly language statement and thus
defaults to the value 1.

C: Set If the last bIt rotated from the most slgmficant bIt posItion was I; cleared
otherWIse

Z: Set If the result IS zero; cleared otherWIse
S: Set If the most slgmhcant bIt of the result IS set; cleared otherwise
V: Set If anthmehc overflow occurs, that IS, If the sIgn of the destmalion changed

durmg rota lion; cleared otherWIse
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntaxl Instruction Format2 Cycles3 Instruction Format2 Cycles3

RLC Rd, #n 1101110011wi Rd 110lsl01 6/7 110 111 0011wi Rd 110lsl01 617 RLCB Rbd, #n

If the Carry flag IS clear (= 0) and regIster RO contams %800F (l 00000000000 1111),
the statement

RLC RO,#2
will leave the value %003D (0000000000111101) m RO and clear the Carry flag.

Note 1. n = source operand.

Note 2 s = 0 for rotation by 1 bit, s .:::: 1 for rotatlOn by 2 bits.

Note 3' The given executIOn hmes are for rotailon by 1 and 2 bits respectIvely

6-123

RLDB
Rotate Left Digit

Operation:

Flags:

Destination
Addressing

Mode

B:

6-124

BLDB link, src

tmp (0:3) .. - lmk (0:3)
lmk (0:3) .. - src (4:7)
src (4:7) .. - src (0:3)
src (0:3) .. - tmp (0:3)

4 3

link

src: R
link: R

4 3

src

The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit
(four bits). The lower digit of the source is moved to the upper digit of the source;
the upper digit of the source is moved to the lower digit of the link, and the lower
digit of the link is moved to the lower digit of the source. The upper digit of the link
is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift
to the left a string of BCD digits, thus multiplying it by a power of ten. The link
serves to transfer digits between successive bytes of the string. This is analogous to
the use of the Carry flag in multiple precision shifting using the RLC instruction.

The same byte register must not be used as both the source and the link.

c: Unaffected
Z: Set If the Imk IS zero after the operallon; cleared otherwIse
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

RLDB RbI, Rbs
110 1 ""'0 1

Rbs
1

Rbi 1 9 110 1 ""'0 1
Rbs

1
Rbi 1

CycleS

9

Example: If location 100 contams the BCD digIts 0,1 (00000001), locahon 101 contams 2,3
(00100011), and locahon 102 contams 4,5 (01000101)

100 rn 101 rn
the sequence of statements

LD R3,#3

LD R2,#102
CLRB RHI

LOOP:
LDB RLl,@R2
RLDB RHJ,RLl
LDB @R2,RLl
DEC R2
DJNZ R3, LOOP

102 rn

!set loop counter for 3 bytes!
1(6 dIgIts)!

!set pomter to low-order dIgIts!
!zero-hlllow-order digIt!

!get next two dIgits!
!shlft dIgIts left one pOSItion!
!replace shifted dIgIts!
!advance pomter!
!repeat unhl counter IS zero!

WIll leave the dIgIts 1,2 (00010010) m locahon 100, the dIgIts 3,4 (00110100) m loca­
tion IOJ, and the dIgIts 5,0 (01010000) m location 102.

100 rn 101 ffi 102 rn
In segmented mode, R2 would be replaced by a register paIr.

6-125

RR
Rotate Right

Operation:

Flags:

Destination
Addressing

Mode

R:

Example:

6-126

RR dst, src
RRB

Do src times: (src = 1 or 2)
tmp dst
c +- tmp (0)
dst (msb) +- tmp (0)

ds!: R
src: IM

dst (n - 1) +- tmp (n) (for n 1 to msb)

Word: ["";';-1'5 ____ ----..;.,0 ;1.0

Byte:
[1,...;-7 _-----'-,0 ;1.0

The contents of the deshnation operand are rotated nght one bIt poslhon If the
source operand IS 1, or two bit posItions If the source operand IS 2. The least signifi­
cant bIt of the destmation operand is moved to the most sIgnificant bit (msb) and
also replaces the C flag.

The source operand may be omItted from the assembly language statement and thus
defaults to the value I.

c: Set If the last bIt rotated from the least sIgnificant posihon was 1; cleared
otherwise

Z: Set If the result IS zero; cleared otherWIse
S: Set If the most sIgnificant bIt of the result IS set; cleared otherWIse
V: Set if anthmehc overflow occurs, that IS, If the sign of the deshnahon changed

durmg rotahon; cleared otherWIse
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Formatl Cycles2 Instruction Formatl

1011sl01 1101110011wi RR Rd, #n 1101110011wi Rd 6/7 Rd Hslol RRB Rbd, #n

If register RL6 contains %31 (00110001), the statement

RRB RL6

Cycles2

6/7

WIll leave the value %98 (10011000) in RL6 and the Carry flag will be set to one.

Note 1 s = 0 for rotatIon by 1 bIt, s = 1 for rotatIon by 2 bItS.
Note 2- The given execuhon times are for rotatIon by 1 and 2 bits respechvely

Operation:

Flags:

Destination
Addressing

Mode

Example:

RRC
Rotate Right through Carry

RRC dst, src
RRCB

Do src hmes: (src = I or 2)
tmp .. - c
c .. - dst (0)

dst: R
src: 1M

dst (n) .. - dst (n + I) (for n
dst (msb) __ tmp

o to msb - I)

Word: [,,...;.;-15 -------:....0~[i}J

Byte:
[.--, 7 __ --;.,0 ~[i}J

The contents of the destmahon operand with the C flag are rotated one bit position If
the source operand IS I, or two bit positions If the source operand IS 2. The least
significant bit of the destmation operand replaces the C flag and the prevIOus value
of the C flag IS moved to the most significant bit (msb) position of the destmation
durmg each rotation.

The source operand may be omitted from the assembly language statement and thus
defaults to the value I.

C: Set If the last bit rotated from the least Significant bit position was I; cleared
otherWise

Z: Set If the result IS zero; cleared otherWise
S: Set If the most Significant bit of the result IS set; cleared otherWise
V: Set If arithmetic overflow occurs, that IS, If the sign of the destination changed

durmg rotation; cleared otherWise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format l Cycles2 Instruction Format l Cycles2

RRC Rd, #n 110111001Jw1 110111001Jw1 Rd 1111s lol 6/7 Rd
RRCB Rbd, #n

If the Carry flag is clear (= 0) and the register RO contains %OODD
(OOOOOOOOllOlllOl), the statement

RRC RO,#2

1111s l01

will leave the value %8037 (lOOOOOOOllOlll) in RO and clear the Carry flag.

Note 1 s == 0 for rotatIon by 1 bit,s = 1 for rotation by 2 bits
Note 2 The gIven execution hmes are for rotahon by 1 and 2 bits respectIvely

6/7

6-127

RRDB
Rotate Right Digit

Operation:

Flags:

Destination
Addressing

Mode

R:

6-128

RRDB lmk, src

tmp (0:3) ... - lmk (0:3)
lmk (0:3) ... - src (0:3)
src (0:3) ... - src (4:7)
src (4:7) ... - tmp (0:3)

4 3

lmkl L.. ___ '---..,.._...J

src: R
link: R

7 • 4 3

src

The low dIgIt of the lmk byte regIster IS logIcally concatenated to the source byte
regIster. The resultmg three-dIgIt quanhty IS rotated to the right by one BCD dIgIt
(four bIts).

The lower dIgIt of the source IS moved to the lower dIgIt of the lmk; the upper digIt
of the source IS moved to the lower dIgIt of the source and the lower dIgit of the lmk
IS moved to the upper dIgIt of the source.

The upper dIgIt of the lmk IS unaffected. In mulhple-dlglt BCD anthmehc, thIs
mstruchon can be used to shlft to the nght a strmg of BCD dIgIts, thus dlvldmg It by
a power of ten. The lmk serves to transfer dIgIts between successive bytes of the
strmg. ThIs IS analogous to the use of the carry flag m mulhple preCISIOn shifting
usmg the RRC mstruchon.

The same byte regIster must not be used as both the source and the link.

c: Unaffected
Z: Set If the link IS zero after the operation; cleared otherwise
S: Undefmed
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

RRDB RbI, Rbs 1101111 100 I Rbs I Rbi 1 9 11011111001 Rbs I RbI 1

Cycles

9

Example: If location 100 contains the BCD digits 1,2 (00010010), location 101 contains 3,4
(00110100), and location 102 contains 5,6 (01010110)

100 r:-r:1
~

101 r::T::l
~

the sequence of statements

LD R3,#3

R2,#100
RHI

LOOP:

LD
CLRB

LDB
RRDB
LDB
INC
DJNZ

RLl,@R2
RHJ,RLl
@R2,RLl
R2
R3,LOOP

102 r;-r.-,
~

!set loop counter for 3 bytes (6
digits)!

!set pointer to hIgh-order digIts!
!zero-flll hIgh-order digit!

!get next two dIgits!
!shlft dIgits right one posihon!
!replace shifted dIgIts!
!advance pOinter!
!repeat until counter is zero!

will leave the digits 0,1 (00000001) In locahon 100, the digits 2,3 (0010001l) in loca­
tion IOJ, and the dIgIts 4,5 (01000101) In locahon 102. RHI will contain 6, the
remainder from dIvIding the string by 10.

100 rn 101 r::T:l
L..:..L:.J

102 rn
In segmented mode, R2 would be replaced by a register pair.

6-129

SBC
Subtract with Carry

Operation:

Flags:

Addressing
Mode

R:

Example:

6-130

SBC dst, src
SBCB

dst ~- dst src - C

dst: R
src: R

The source operand, along wIth the settmg of the carry flag, IS subtracted from the
destmahon operand and the result IS stored m the deshnahon. The contents of the
source are not affected. SubtractlOn IS performed by addmg the two's complement of
the source operand to the destmatlOn operand. In mulhple precIsIon anthmetlc, thIS
mstruchon permIts the carry ("borrow") from the subtrachon of low-order operands
to be subtracted from the subtrachon of hIgh-order operands.

C: Cleared J! there IS a carry from the most slgmhcant bIt of the result; set
otherWIse, mdlcatmg a "borrow"

Z: Set J! the result IS zero; cleared otherWIse
5: Set If the result IS negahve; cleared otherWISe
V: Set If anthmehc overflow occurs, that IS, Jf the operands were of oppoSIte SIgns

and the sIgn of the result IS the same as the sIgn of the source; cleared otherWIse
D: SBC-unaffected; SBCB-set
H: SBC-unaffected; SBCB-cleared If there IS a carry from the most slgmhcant bIt

of the low-order four bIts of the result; set otherWIse, mdlcating a "borrow"

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

SBC Rd, Rs 110111011H Rs I Rd I 5 110111011H Rs I Rd I 5 SBCB Rbd, Rbs

Long subtractIOn may be done wIth the followmg mstructlOn sequence, assummg RO,
Rl contam one operand and R2, R3 contam the other operand:

SUB RI ,R3 !subtract low-order words!
SBC RO,R2 !subtract carry and hIgh-order words!

If RO contams %0038, Rl contams %4000, R2 contams %OOOA and R3 contams
%FOOO, then the above two mstruchons leave the value %002D m RO and %5000
m Rl.

Operation:

Flags:

SC
System Call

SC src

Nonsegmented
SP __ SP - 4

@SP -- PS
SP ... - SP - 2
@SP ... - mstruction
PS -- System Call PS

src: 1M

Segmented
SP ... - SP - 6
@SP ... - PS
SP -- SP - 2
@SP ... - instruchon
PS -- System Call PS

This instruchon IS used for controlled access to operating system software in a man­
ner similar to a trap or mterrupt. The current program status (PS) is pushed on the
system processor stack, and then the mstruction Itself, which includes the source
operand (an 8-blt value) IS pushed. The PS mcludes the Flag and Control Word
(FCW), and the updated program counter (PC). (The updated program counter
value used IS the address of the hrst mstruchon following the SC InstructlOn.)

The system stack pOinter IS always used (R 15 In nonsegmented CPUs, or RR 14 In
segmented CPUs), regardless of whether system or normal mode IS In effect The
new PS IS then loaded from the Program Status block associated With the System
Call trap (see sechon 6.2.4), and control IS passed to the procedure whose address IS
the program counter value contamed in the new PS. This procedure may inspect the
source operand on the top of the stack to determme the parhcular software service
deSired.

The followmg figure Illustrates the format of the saved program status m the system
stack:

SEGMENTED

IDENTIFIER

Few
PC SEGMENT

PC OFFSET --

-1 WORD_

LOW
ADDRESS

HIGH
ADDRESS

The segmented Z8000s always execute the segmented mode of the System Call m­
struction, regardless of the current mode, and set the Segmentation Mode bit (SEG) to
segmented mode (= 1) at the start of the SC instruchon execuhon. All Z8000s set
the System/Normal Mode bit (SIN) to system mode (= 1) at the start of the SC m­
struchon execution. The status pins reflect the settmg of these control bits during the
execution of the SC instruchon. However, the setting of SEG and SIN does not affect
the value of these bits m the old FCW pushed onto the stack. The new value of the
FCW is not effective until the next mstruction, so that the status pins will not be
affected by the new control bits unhl after the SC mstruchon execuhon is completed.

The "src field" m the mstruchon format encoding contams the source operand. The
"src field" values range from 0 to 255 corresponding to the source values 0 to 255.

Flags loaded from Program Status Area

6-131

Source
Addressing

Mode

1M:

Example:

6-132

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycl ..

SC lore I 01111111 I .re I 33 I 01111111 I Ire I 39

In the nonsegmented ZS002, if the contents of the program counter are %1000, the
contents of the system stack pointer (RI5) are %3006, and the Program Counter and
FCW values associated with the System Call trap in the Program Status Area are
%2000 and %5800, respectively, the instruction

SC 113 Isystem call, request code = 31
causes the system stack pointer to be decremented to %3000. Location %3000 con­
tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca­
tion %3004 contains %1002 (the address of the instruction following the SC instruc­
tion). System mode is in effect, and the Program Counter contains the value %2000,
which is the start of a System Call trap handler, and the FCW contaIns %5800.

Operation:

Flags:

SDA
Shift Dynamic Arithmetic

SDA dst. src
SDAB
SDAL

Right (src negative)
Do - src times:

c +- dst (0)

ds!: R
src: R

dst (n) +- dst (n + 1) (for n = 0 to msb - 1)
dst (msb) +- dst (msb)

Left (src positive)
Do src times:

c +- dst (msb)
dst (n + 1) +- dst (n) (for n msb - 1 to 0)
dst (0) +- 0

Right
7

_
7

Byte: c!J1 1-0 0-1
"

_

"
Word: c!J1 1-0 0-1

,.
_

,.
Long:

61

Rn

. ~ ~. ;
Rn+1

n=0.2.4 •...• 14

Left _ 1 __

Rn

Rn+1

n=0.2.4 •...• 14

The destination operand is shifted arithmetically left or right by the number of bit
positions specified by the contents of the source operand. a word register.

The shift count ranges from -8 to +8 for SDAB. from -16 to + 16 for SDA and from
-32 to + 32 for SDAL. If the value is outside the specified range. the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift. while negative values specify a right shift. A shift
of zero positions does not affect the destination; however. the flags are set according
to the destination value. The sign bit is replicated in shifts to the right. and the C
flag is loaded from bit 0 of the destination. The least significant bit is filled with 0 in
shifts to the left. and the C flag is loaded from the most significant bit (msb) of the
destination. The setting of the carry bit is undefined for zero shift.

c: Set if the last bit shifted from the destination was 1. undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise

_

1-_
_

2 .

V: Set if arithmetic overflow occurs. that is. if the sign of the destination changed
during shifting; cleared otherwise

D: Unaffected
H: Unaffected

6-133

Destination
Addressing

Mode

R:

Example:

6-134

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles l Instruction Format Cycles l

SDA Rd, Rs
11011100111 Rd 11011j 11011100111 Rd 11011j
10000 1 Rs 100000000 J 15+3n

Loooo 1 Rs 1000000001

SDAB Rbd, Rs Ll 0[11 001 0 I Rbd 11 0 1 lJ Ll 01 11 00101 Rbd 11 011J
10000 I Rs 100000000 I 15+3n

100 00 I Rs 10000 ooooJ

SDAL RRd, Rs 11 0 1 1 1 0 0 1 1 1 RRd 11 1 1 1j 11 0 1 1 1 0 0 1 1 1 RRd 11 1 1 1 1
15+3n

100001 Rs 10000 ooooJ L 00001 Rs 1 0000 ooooJ

If register R5 contams %C705 (110001110000010 I) and regIster R I contains - 2
(%FFFE or 1111111111111110), the statement

SDA R5,RI

performs an anthmetJc right shift of two bit positions, leaves the value %FICI
(1111000 III 00000 I) m R5, and clears the Carry flag.

Note 1. n ::::: number of bit posltlOns, the execution tIme for n == 0 IS the same as for n ::::: I

15+3n

15+3n

15+3n

Operation:

Flags:

SDL
Shift Dynamic Logical

SOL dst, src
SOLB
SOLL

Right (src negative)
Do - src times

c .- dst (0)

ds!: R
src: R

dst (n) __ dst (n + I) (for n
dst (msb) +- 0

o to msb - 1)

Left (src positive)
Do src times

c ... - dst (msb)
dst (n + I) __ dst (n) (for n msb - 1 to 0)
dst (0) +-

Right Left

Byte:
r7 ______________ ~0 7 0

0--1 1--0 [?J--1L...-___ --...JI- 0

15 0 15 0

Word: o--L..I _______ --'1--0 [?J--1r---------'i1_ 0

Long: O-Ll,',---: _R_" -:1
~i ________ Rn_+_, ______ ---,~[J

~~: __ R_" _--:;:J
~~. __________ Rn_+_, ________ --,I'--o

n=0,2,4, ... ,14 n=0,2,4, ... ,14

The destinahon operand is shifted logically left or right by the number of bit POSI­

tions specified by the contents of the source operand, a word register. The shift
count ranges from -8 to +8 for SDLB, from -16 to + 16 for SDL and from -32 to
+ 32 for SDLL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The most significant bit (msb) is filled with 0 in shifts to the
right, and the C flag is loaded from bit 0 of the destination. The least significant bit
is filled with 0 in shifts to the left, and the C flag is loaded from the most significant
bit of the destination. The setting of the carry bit is undefined for zero shift.

c: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined
0: Unaffected
H: Unaffected

6-135

Destination
Addressing

Mode

R:

Example:

6-136

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

SDL Rd, Rs
11011100111 Rd 10011] 11011100111 Rd 100111

1 0 0 0 0 1 Rs 1 0 000 0 0 0 0 I 15+3n
1 0 0 0 0 I Rs I 00 0 0 0 0 0 0 1

SDLB Rbd, Rs Wh: 10010 1 Rbd 1 0011 1 11 0 1 1 1 0 0 1 0 1 Rbd 1 00 1 1 1

o 0 0 0 1 Rs 1 0 000 0 0 0 0 1
15+3n

1 0000 1 Rs 1 000000001

SDLL RRd, Rs
11011100111 RRd 101111 11 011 1 00 1 1 1 RRd 1 011 1 1

1 0 0 0 0 1 Rs 1 0 0 0 0 0 0 0 0 1
15+ 3n

10000 1 Rs 1000000001

If regISter RLS contains %B3 (10110011) and regIster Rl contains 4
(0000000000000100), the statement

SDLB RLS,Rl

Cycles

15+3n

15 +3n

15+3n

performs a logIcal left shIft of four bIt poslhons, leaves the value %30 (00110000) In

RLS, and sets the Carry flag.

Note In::::: number of bIt postllOns, the executIOn time for n :::: a IS the same d5 for n :::: 1

Operation:

Flags:

SET dst, src
SETB

dst(src) +- 1

dst: R, IR, DA, X
src: 1M
or
dst: R
src: R

SET
Set Bit

Sets the specified bit within the destination operand without affecting any other bits
in the destination. The source (the bit number) can be specified as either an immedi­
ate value (Static). or as a word register which contains the value (Dynamic). In the
second case, the destination operand must be a register, and the source operand
must be RO through R7 for SETB, or RO through R15 for SET. The bit number is a
value from 0 to 7 for SETB or 0 to 15 for SET, with 0 indicating the least significant
bit.

Only the lower four bits of the source operand are used to specify the bit number for
SET, while only the lower three bits of the source operand are used with SETB.
When the source operand is an immediate value, the "src field" in the instruction
format encoding contains the bit number in the lowest four bits for SET, or the
lowest three bits for SETB.

No flags affected

Set Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: SET Rd, #b
1101100101w1 Rd

1
b I 4 1101100101w1 Rd

1
b

1 4 SETB Rbd, #b

IR: SET @Rd1, #b
10011001 olwl Rd",O 1 b

1 11 10011001 olwl RRd",ol I 11 SETB @Rd1, #b
b

DA: SET address, #b
10111001 olwl 0000 I b 1 01110010lwlooooI b SETB address, #b
1 1

13 55 14
address o I segment I offset

0111001 olwl 0000 1 b

5L 11 segment I 0 0 0 0 0 0 0 0 16
offset

X: SET addr(Rd), #b
l0111 001 0lwl Rd",O 1 b J 5501J100101w1Rd",01 b

SETB addr(Rd), #b 14 14
1 address 1 o 1 segment 1 offset

0111 0010Iwi Rd '" 01 b

5L 11 segment 100000000 17
offset

Note 1: Word regIster In nonsegmented mode, regIster palr In segmented mode.

6-137

Set Bit Dynamic
Nonsegmented Mode Segmented Mode

Addressing Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles

R:

Example:

SET Rd, Rs 100110010lwl00001 Rs I lOOj1 001 oJwl 0000 I Rs I
SETB Rbd, Rs' 10000 I Rd I 00000000 I 10 10000 I Rd I 00000000 I

If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the
instruction

SETB RL3, R2

will leave the value %F2 (11110010) in RL3.

Note 2: Word registers 0-7 only.

6-138

10

Operation:

Flags:

Example:

SETFLG
Set Flag

SETFLG flag Flag: C, Z, S, P, V

FLAGS (4:7) +- FLAGS (4:7) OR instruction (4:7)

Any combination of the C, Z, S, P or V flags are set to one if the corresponding bits
in the Instruction are one. If the bit in the instruction corresponding to a flag IS zero,
the flag will not be affected. All other bits in the FLAGS register are unaffected.
Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,
in any order.

c: Set if specified; unaffected otherwise
Z: Set If specified; unaffected otherwise
S: Set if specified; unaffected otherwise
P/V: Set if speCified; unaffected otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format

SETFLG flags
110001101 ICZSPNIOOOll

Segmented Mode

Cycles Instruction Format

7 1100011011CZSPNI000li

If the C, Z, and S flags are all clear (0), and the P flag is set (1), the statement

SETFLG C
will leave the C and P flags set (1), and the Z and S flags cleared (0).

Cycles

7

6-139

SLA
Shift Left Arithmetic

Operation:

Flags:

6-140

SLA dst, src
SLAB
SLAL

Do src times:

dst: R
src: 1M

c ... - dst (msb)
dst (n + 1) ... - dst (n) (for n
dst (0) ... - 0

7 0

msb - I to 0)

Byte: [~}--1'-_____ --JI_o

15 0

Word: [~}--1,-___________ ----,I_o

15 0

Long: ~~5 ______ R_n ____ ~~~
~~. _______________ R_n_+1 ______________ ~I~o

n = 0, 2, 4, ... , 14

The destination operand is shifted arithmetically left the number of bit positions
specified by the source operand. For SLAB, the source is in the range 0 to 8; for
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32.
The least significant bit of the destination is filled with 0, and the C flag is loaded
from the sign bit of the destination. The operahon is the equivalent of a multiplica­
hon of the destination by a power of two with overflow indication. A shift of zero
positions does not affeci the destination; however, the flags are set according to the
destination value with the C flag undefined.

The src field is encoded in the instruction format as the 8- or 16-bit two's comple­
ment positive value of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value I.

c: Set if the last bit shifted from the destination was I, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during shifting; cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing

Mode

R:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles l Instruction Format

SLA Rd, #b 1101110011l Rd 11001 1 1101110011l Rd
11001 1 13+ 3b

SLAB Rbd, #b 11011100101 Rbd jl001J 110 11 1 001 0 I Rbd 11 001 J 13 + 3b

I 0 I b I I 0 I b I
SLAL RRd, #b 11 011 1 0011 I RRd 111 0 1 1 13+3b 11 011 1 001 1 I RRd 111 01 I

I b I I b I

If regIster paIr RR2 contams %1234ABCD, the statement

SLAL RR2,#8

will leave the value %34ABCDOO m RR2 and clear the Carry flag.

Note 1 b = number of bit positIOns, the execuhon time for b = 0 IS the same as for b = 1

Cyclesl

13 + 3b

13 +3b

13+3b

6-141

SLL
Shift Left Logical

Operation:

Flags:

6-142

5LL dst, src
5LLB
5LLL

Do src times:
c +- dst (msb)

ds!: R
src: 1M

dst (n + I) +- dst (n) (for n
dst (0) ... - 0

msb - I to 0)

7 " Byte: [~}-1 1_"

1S

Word: 0---1
1S

Long: 0--1 An

~s Rn +1

n = 0,2,4, ... , 14

" 1_"

" Ii
" 1_"

The destination operand is shifted logically left by the number of bit positions
specified by the source operand. For SLLB, the source is in the range 0 to 8; for
SLL, the source is in the range 0 to 16; for SLLL, the source is in the range 0 to 32.
The least significant bit of the destination is filled with 0, and the C flag is loaded
from the most significant bit (msb) of the destina.tion. This instruction performs an
unsigned multiplication of the destination by a power of two. A shift of zero positions
does not affect the destination; however, the flags are set according to the destina­
tion value. The setting of the carry bit is undefined for zero shIft.

The src field is encoded in the instruction format as the 8- or 16-bit positive value of
the source operand. For each operand size, the operation is undefined if the source
operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value I.

c: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise
Z: Set if the result is zero; cleared otherwise
5: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

Destination
Addressing

Mode

R:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles l Instruction Format

SLL Rd, #b
11011100111 Rd I 0001 1 11011100111 Rd 10001 1 13+ 3b
L b 1 1 b J

SLLB Rbd, #b Ll 0 11 1 0 0 1 0 I Rbd I 00 0 1 1
13+3b

11011100101 Rbd 10001J

l 0 I b 1 L 0 I b 1

SLLL RRd, #b
110 111 0011 I RRd I 01 0 q 13+ 3b

[1 0111 0011 I RRd I 01 01 1

l b 1 L b 1

If regIster R3 contams %4321 (0100001100100001), the statement
SLL R3,#1

WIll leave the value %8642 (1000011001000010) m R3 and clear the carry flag.

Note 1 b = number of bit posItions, the execullon time for b = 0 IS the same as for b = I

Cyclesl

13+3b

13 + 3b

13 + 3b

6-143

SRA
Shift Right Arithmetic

Operation:

Flags:

6-144

SRA dst, src
SRAB
SRAL

Do src hmes:
c +- dst (0)

dst: R
src: 1M

dst (n) +- dst (n + 1)(for n
dst (msb) +- dst (msb)

o to msb - 1)

Byte:

15

Word: cS~I------------~~0
15

Long: 8..-1-,1 ___ Rn -----1
Rn+1 ~~

n = 0,2,4, ... , 14

The destination operand is shifted arithmetically right by the number of bit positions
specified by the source operand. For SRAB, the source is in the range 1 to 8; for
SRA, the source IS in the range 1 to 16; for SRAL, the source IS in the range 1 to 32.
A right shift of zero for SRA is not possible. The most significant bit (msb) of the
destination is replicated, and the C flag is loaded from bit 0 of the destination, this
instruction performs a signed division of the destination by a power of two.

The src field is encoded In the instruction format as the 8- or 16-bit two's comple­
ment negative of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

c: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

Destination
Addressing

Mode

R:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cyc:les1 Instruction Format

SRA Rd, #b 110 1 110011J
b

Rd
1
1001 1

11011100111 Rd 11001J
13+3b

I -b J
SRAB Rbd, #b 11 01 11 001 0 I Rbd 11 001 1 11 0 l11 001 0 I Rbd 11 00 1J

13+3b
1 0 I -b J 1 0 I -b I

SRAL RRd, #b l1 01 11 001 1 I RRd [11 01J 13+3b 110 11 1 00 1 1 I RRd 11 1 0 1 I
1 -b I l -b J

If register RH6 contams %3B (00111011), the statement

SRAB RH6,#2
will leave the value %OE (00001110) m RH6 and set the carry flag.

Note I b = number of blt posltions. the executlOn tIme for b = 0 15 the same as for b = I

Cyc:les1

13+3b

13+3b

13+3b

6-145

SRL
Shift Right Logical

Operation:

Flags:

6-146

SRL dst, src
SRLB
SRLL

Do src times:
c .. - dst (0)

ds!: R
src: IM

dst (n) +- dst (n + 1)(for n
dst (msb) +- 0

o to msb - 1)

Byte:

15
VVord: o~I~ ____________________________ ~~~

15
Long:

'2r:-15 _---::-Rn~---..;..,1
L-___________ Rn_+1 __________ ~~~

n = 0, 2, 4, ... , 14

The destination operand is shifted logically right by the number of bit positions
specified by the source operand. For SRLB, the source operand is in the range 1 to
8; for SRL, the source is in the range 1 to 16; for SRLL, the source is in the range 1
to 32. A right shift of zero for SRL is not possible. The most significant bit (msb) of
the destinatlOn is fiiled with 0, and the C flag is loaded from bit 0 of the destination.
This instruction performs an unsigned division of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or 16-bit negative value of
the source operand in two's complement notation. For each operand size, the opera­
tion IS undefined if the source operand is not in the range speCified above.

The source operand may be omitted from the assembly language statement and thus
defaults to the value of I.

c: Set if the last bit shifted from the destination was I; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is one; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

Destination
Addressing

Mode

R:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles! Instruction Format

SRL Rd, #b .11011100111 Rd 100011 11011100111 Rd 10001 1 13+ 3b
I -b 1 1 -b J

SRLB Rbd, #b 11 01 1 1 00 1 0 I Rbd 1000 1J 1101110010 1 Rbd Lo 0 0 1J
13 +3b

1 0 1 -b 1 1 0 1 -b 1
SRLL RRd, #b 11 01 1 1 001 1 1 RRd 1 01 0 1 1 110 11 1 0 0 1 1 1 RRd 1 0 1 0 1 1 13 + 3b

1 -b 1 1 -b 1

If register RO contains %1111 (0001000100010001), the statement

SRL RO,#6

wJllleave the value %0044 (0000000001000100) In RO and clear the carry flag.

Note 1 b = number of bIt posltlons, the execution time for b :::: 0)5 the same as for b = 1

Cycles!

13+ 3b

13+ 3b

13+ 3b

6-147

SUB
Subtract

Operation:

Flags:

Source

SUB dst, src
SUBB
SUBL

dst ... - dst - src

ds!: R
src: R, 1M, IR, DA, X

The source operand IS subtracted from the destination operand and the result IS
stored m the destmahon. The contents of the source are not affected. Subtraction IS
performed by addmg the two's complement of the source operand to the destinahon
operand.

c: Cleared if there IS a carry from the most sIgnIficant bit; set otherwIse, indlcatmg
a "borrow"

Z: Set If the result IS zero; cleared otherwise
S: Set If the result IS negative; cleared otherwIse
V: Set If anthmetJc overflow occurs, that IS, If the operands were of opposite sIgns

and the sIgn of the result IS the same as the sIgn of the source; cleared otherwIse
D: SUB, SUBL-unaffected; SUBB-set
H: SUB, SUBL-unaffected; SUBB-cleared If there IS a carry from the most

SIgnIficant bIt of the low-order four bIts of the result; set otherWIse, mdlcating a
\'borrow"

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: SUB Rd, Rs
1101000011wl Rs I Rd I 4 110100001iw! Rs I Rd I 4

SUBS Rbd, Res I !

SUBL RRd, RRs
11010100101 RRs I RRd I 8 11010100101 RRs I RRd I 8

1M: SUB Rd, #data
ooi 000010] 00001 Rd

7
o 0] 0 000 1 0 I 00 0 0 I Rd

7
data data

SUBB Rbd, #data
o 0 I 000 0 1 1 I 0 0 0 0 I Rbd o 0 I 00 0 0 1 1 I 00 0 0 I Rbd 7 7

data I data data] data

SUBL RRd, #data 001 01 001 0 I 0000 I RRd o 0 I 0 1 0 0 1 0 I 00 0 0 I RRd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) 0 15 data (low) 0

IR: SUB Rd, @Rsl
10010000 ll w l RHO I Rd I SUBB Rbd, @Rsl

7 10010000 liw!RRS*O I Rd I 7

SUBL RRd, @Rsl
1001 01 001 0 I Rs * 0 I RRd I 14 10010100101RRs*01 RRd I 14

6-148

Source
Addressing

Mode

DA:

X:

Example:

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

SUB Rd, address
/011000011wl 0000 1 Rd I SUBB Rbd, address
I address I

SUBL RRd, address
/011 01 001 0 1 0000 1 RRd /

l address 1

SUB Rd, addr{Rs)
1011000011wl RHO 1 Rdl

SUBB Rbd, addr{Rs)
/ address /

SUBL RRD, addr{Rs)
/011 01 001 0 1 RH 0 1 RRd /

I address /

If regIster RO contams %0344, the statement

SUB RO,#%AA

wJ!1 leave the value %029A m RO.

9

15

10

16

Segmented Mode

Instruction Format

011000011wl0000J Rd
55 o I segment I offset

011000011wl00001 Rd

5L 11 segment 100000000

offset

o 1 1 0 1 00 1 0 1 00 0 0 1 RRd
S5

o I segment 1 offset

01 0100tol 00001 RRd

5L 11 segment 1 0 0 0 0 00 0 0

offset

0110000 11wl Rs*ol Rd
55 o I segment I offset

01j00001wJ Rs"O 1 Rd

5L 1 1 segment 1 0 0 0 0 000 0

offset

o 1 1 0 1 00 1 0 1 Rs" 01 RRd
55

o I segment I offset

o 11 0 1 00 1 01 Rs", oj RRd

5L 11 segment 100000000

offset

Note I Word register In nonsegmented mode, register palr In segmented mode

Cycles

10

12

16

18

10

13

16

19

6-149

Tee
Test Condition Code

Operation:

Flags:

Destination
Addressing

Mode

R:

Example:

6-150

TCC cc, dst
TCCB

if cc IS sahshed then
dst (0) +- I

dst: H

This Instruction IS used to create a Boolean data value based on the flags set by a
previous operahon. The flags in the FeW are tested to see if the condition specified
by "cc" IS sahshed. If the condlhon is sahsfled, then the least significant bit of the
destination IS set. If the condition IS not satished, bit zero of the destination is not
cleared but retains ItS previous value. All other bits In the destinahon are unaffected
by this instruchon.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

Tee ee, Rd 1101101111wi Rd I TeeE ee, Rbd
cc 1 5 1101101111wi

If register HI contains 0, and the Z flag IS set, the statement

Tee EQ,HI
Will leave the value I In HI.

Rd I cc 1

Cycles

5

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

TEST
Test

TEST dst
TESTB
TESTL

dst OR 0

ds!: R, JR, DA, X

The destmahon operand IS tested (logically ORed With zero), and the Z, Sand P
flags are set to reflect the attnbutes of the result. The flags may then be used for
logical condlhonal Jumps. The contents of the deshnallon are not affected.

c: Unaffected
Z: Set If the result IS zero; cleared otherwise
S: Set If the most slgmhcant bit of the result IS set; cleared otherwise
P: TEST-unaffected; TESTL-undehned; TESTB-set If panty of the result IS even;

cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

TEST Rd
1101001101w1 10100 I 1101001101w1 Rd 7 Rd

10100 I 7
TESTB Rbd

TESTL RRd
11010111001 RRd

11000 1
13 1101 011 100 I RRd

11000 1
13

TEST "'Ed]
100 I 0 01 1 olwl Rd " 01 01 001 8 10010011 olwlRRd*olOI 001 8

TESTB ",Rd]

TESTL q'Rd]
10010111001Rd,,0110001 13 10 0 I 0 1 1 1 00 I RRd *0 11 0 0 0 I 13

TEST address
L01JOOll 0lwl 0000 101001 0110011 0lwl 00001 0100

TESTB address 11 55 12
I address I o I segment I offset

0110011 01 w I 0000 I 0 1 00

5L 11 segment 100000000 14

address

TESTL address
10110111001000011000/ 011011100 1000011000

16 55 17
/ address I oJ segment 1 offset

0110111001000011000

5L 1 I segment I 0 000 0 0 0 0 19

offset

6-151

Destination
Addressing

Mode

X:

Example:

6-152

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

TEST addr(Rd)
TESTB addr(Rd) 10 1[00 1 1 0 [w [Rd" 0 [0 1 0 0 I

12 55
01[00110[W[Rd,,0!0100

I address I o I segment I offset

01[00110[W[Rd"O [0100

5L 11 segment I 00 0 0 0 0 0 0

offset

lo 1[01110 0 [Rd"ojl 0 0 oj
17

01[011100 [Rd"O [I 000
55

I address I o I segment I offset

01[011100 [Rd"O [1000

5L 1 [segment [0 0 0 0 0 0 0 0

offset

If regIster R5 contains %FFFF (llllllllllllllll), the statement

TEST R5

WIll set the S flag, clear the Z flag, and leave the other flags unaffected,

Note 1 Word regIster In nonsegmented mode, regIster paIr in segmented mode

Cycles

12

15

17

20

Operation:

Flags:

Addressing
Mode

IR:

Example:

TRDB dst, src, r

dst +- src[dstl
AUTODECREMENT dst by 1
r +- r - 1

dsl: IR
src: IR

TRDB
Translate and Decrement

This instruclion is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con­
tamed in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition IS performed following the
rule for address arithmetic, with the target byte treated as an unsigned 8-blt value
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table whICh replaces the original contents of the location
addressed by the destmation register.

The destination register IS then decremented by one, thus moving the pointer to the
previous element m the strmg. The word register specified by "r" (used as a
counter) IS then decremented by one. The original contents of register RHI are lost
and are replaced by an undefmed value. RO and Rl in nonsegmented mode, or RRO in
segmented mode, must not be used as a source or destination pointer, and Rl should
not be used as a counter. The source, destination, and counter registers must be
separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contam 256 bytes. A smaller table size may be
used where It is known that not all possible 8-blt target byte values Will occur. The
source register is unchanged.

c: U naffecled
Z: Undefined
S: Unaffecled
V: Set if the result of decrementing r is zero; cleared otherWise
D: U naffecled
H: U naffecled

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

TRDB <1<Rd1, "' Rsl, r L10llll000 IRd,,01 1000 1
25

1101111000IRRd,,0!1000J

10000 1 r IRH 01 ooooJ 10000 1 r IRRs"olooool

Cycles

25

In nonsegmented mode, if register R6 contains %4001, the byte at location %4001
con tams 3, register R9 contains % 1000, the byte at location % 1003 contains %AA,
and register R12 contains 2, the instruclion

TRDB @R6, @R9, R12

will leave the value %AA in location %4001, the value %4000 in R6, and the value
1 in R12. R9 will not be affecled. The V flag will be cleared. RHI will be set to an
undefined value. In segmented mode, R6 and R9 would be replaced with
register pairs.

Note 1 Word register m nonsegmented mode, register pair 1D segmented mode

6-153

TRDRB
Translate, Decrement and Repeat

Operation:

Flags:

Addressing
Mode

IR:

6-154

TRDRB dst, src, r

dst .- src [dst]
AUTODECREMENT dst by I
r.- r - I
repeat unhl r = 0

ds!: IR
src: IR

This mstruction IS used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destinahon register (the "target byte")
are used as an index into a table of translahon values whose lowest address IS con­
tamed in the source register. The index IS computed by adding the target byte to the
address contained in the source register. The addition IS performed followmg the
rules for address arithmehc, with the target byte treated as an unsigned 8-blt value
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
hon value withm the table that replaces the onginal contents of the location
addressed by the destmation register.

The deshnahon register IS then decremented by one, thus movmg the pointer to the
previous element in the string. The word register specIfied by "r" (used as a
counter) is then decremented by one. The enhre operation IS repeated unhl the
result of decrementing r IS zero. ThiS mstruchon can translate from I to 65536 bytes.
The onginal contents of register RH I are lost and are replaced by an undefined
value. The source register IS unchanged. The source, destinahon, and counter
registers must be separate and non-overlappmg registers.

Because the 8-blt target byte IS added to the source register to obtain the address of
a translahon value, the table may contain 256 bytes. A smaller table size may be
used where It IS known that not all posSIble 8-blt target byte values will occur.

ThiS mstruction can be mterrupted after each execution of the basic operation. The
program counter of the start of thiS mstruchon IS saved before the interrupt request
is accepted, so the mstruction can be properly resumed. Seven cycles should be
added to thiS mstruchon's execution hme for each interrupt request that IS accepted.

c: Unaffected
Z: Undefined
5: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

TRDRB @Rd', @Rs', r

Nonsegmented Mode

Instruction Format

11011110001Rd;<0111001

10000 1 r IRs;<°looool

Segmented Mode

Cycles2 Instruction Format Cycles2

1101 1110001RRd;<0111001
11 + 14n

L 00001 JRRS ,,0 I ° ° ° ° I 11 + 14n
r

Example: In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9 con­
tains % 1000, the translation table from location % 1000 through % IOFF contains 0,
1,2, ... , %7F, 0, 1,2, ... , %7F (the second zero is located at %1080), and register
RI2 contains 3, the instruchon

TRDRB @R6, @R9, RI2

will leave the values %00, %40, %00 In byte locations %4000 through %4002,
respechvely. Register R6 will contain %3FFF, and RI2 will contain O. R9 will not be
affected. The V flag will be set, and the contents of RHI will be replaced by an
undefined value. In segmented mode, R6 and R9 would be replaced by register
pairs.

BEFORE

%1000 00000000

%4000 %1001 00000001

%4001 %1002 00000010

%4002 · · ·
AFTER %107F o 1 1 1 1 1 1 1

%1080 00000000

%4000 %1081 00000001

%4001 %1082 00000010

"/0 4002 ~--

· · %10FF o 1 1 1 1 1 1 1

Note 1- Word reglst.er In nonseqmented mode, regIster pau In segmented mode.

Note 2. n = number of data elements translated.

6-155

TRIB
Translate and Increment

Operation:

Flags:

Addressing
Mode

6-156

TRIB ds!, src, r

ds! .. - src[ds!]
AUTOINCREMENT ds! by 1
r .. -r-l

ds!: IR
src: IR

ThIS instruction IS used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination regIster (the "target byte")
are used as an Index Into a table of translation values whose lowest address is con­
tained In the source register. The index is computed by adding the target byte to the
address contained In the source regIster. The addition IS performed follOWing the
rules for address arithmetic, wIth the target byte treated as an unsigned 8-blt value
extended wIth hIgh-order zeros. The sum is used as the address of an 8-blt transla­
tion value within the table whIch replaces the original contents of the location
addressed by the destination regIster. The destination regIster IS then incremented
by one, thus moving the pOinter to the next element in the string. The word register
specIfied by "r" (used as a counter) is then decremented by one. The original con­
tents of regIster RHI are lost and are replaced by an undefined value. The source
register IS unchanged. The source, destination, and counter registers must be
separate and non-overlapping regIsters.

Because the 8-blt target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it IS known that not all possible 8-bit target byte values will occur.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set If the result of decrementing r IS zero; cleared otherWIse
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

TRIB ,,'Rd1, @Rsl, r
1101111000 IRd", 01 0000 1 11 01 1 1 1 0 0 0 IRRd", 0 1 DODD 1

25
1 0000 1 r IRs",olooool 1 0000 1 r IRRS",olooool

Cycles

25

Example: This instruchon can be used m a "loop" of mstructions which translate a strmg of
data from one code to any other desired code, but an mtermediate operation on
each data element IS reqUIred. The following sequence translates a stnng of 1000
bytes to the same strmg of bytes, with all ASCII "control characters" (values less
than 32, see Appendix C) translated to the "blank" character (value = 32). A test,
however, IS made for the special character "return" (value = 13) which term mates
the loop. The translahon table contams 256 bytes. The hrst 33 (0-32) entnes all con­
tam the value 32, and all other entnes contam th81r own mdex In the table, countmg
from zero. ThiS example assumes non segmented mode. In segmented mode, R4 and
R5 would be replaced by register pairs.

LOOP:

DONE:

LD R3, #1000
LDA R4, STRING
LDA R5, TABLE

CPB
JR
TRIB
JR

@R4, #13
EQ, DONE
@R4, @R5, R3
NOV, LOOP

TABlE+O

TABlE+l

TABLE + 2

TABLE+32

TABLE+33

TABlE+34

TABLE + 255

00100000

00100000

00100000

· · ·
00100000

00100001

00100010

· · ·
11111111

!mlhahze counter!
! load start addresses!

!check for return character!
!exlt loop if found!
!translate next byte!
!repeat until counter O!

Note 1 Word register In nonsegmented mode, register pair m segmented mode

6-157

TRIRB
Translate, Increment and Repeat

Operation:

Flags:

Addressing
Mode

IR:

6-158

TRIRB dst, src, r

dst ... - src[dst]
AUTOINCREMENT dst by 1
r --- r - 1
repeat until r = 0

dst: IR
src: IR

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r" (used as a counter) is then decremented by one. The entire opera­
tion is repeated until the result of decrementing r is zero. This instruction can
translate from 1 to 65536 bytes. The original contents of register RHI are lost and are
replaced by an undefined value. The source register is unaffected. The source,
destination, and counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translahon value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted so that the mstruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

TRIRB @RdJ. @RsJ. r

Nonsegmented Mode

Instruction Format

11011110001Rd;<0101001

1 0000 1 r IRuolooool

Segmented Mode

Cycles2 Instruction Formal Cycles2

1101111000 IRRd;<01 01 00 I
11 + 14" 11 + 14"

1 0000 1 r IRRs;<ol 0000 I

Example: The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pomters to the strmg and the translation table are set,
the number of bytes to translate is set, and then the translation is accomplished.
After executmg the last instruction, the V flag IS set and the contents of RHI are lost.
The example assumes non segmented mode. In segmented mode, R4 and R5 would
be replaced by register paIrs.

LDA R4, STRING
LDA R5, TABLE
LD R3, #80
TRIRB @R4, @R5, R3

Note I Word register In nonsegmented mode, register palr m segmented mode

Note 2 n == number of data elements translated

6-1~9

TRTDB
Translate, Test and Decrement

Operation:

Flags:

Addressing
Mode

IH:

6-160

THTDB srcl, src2, r

RHI +- src2[srcll
AUTODECREMENT srcl by 1
r .. -r-i

src 1: IR
src 2: IR

Th1s instruction is used to scan a string of bytes testing for bytes with special
meanmg. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translahon values whose lowest
address is contained m the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed followmg the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-b1t value w1thm the table whlCh 1S loaded mto reg1ster RHI. The Z
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pomter to the previous
element in the string. The word register specified by "r" (used as a counter) is then
decremented by one. The second source register is unaffected. The source and
counter registers must be separate and non-overlappmg registers.

Because the 8-bit target byte 1S added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it 1S known that not all possible 8-bit target byte values will
occur.

c: Unaffected
Z: Set if the translation value loaded mto RHI is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

TRTDB@RsJl. @Rs21, r 110 11 1 1 0 0 0 IRal " ~ 1 0 1 oj 25 11 0111 1 00 0 IRRsl" ~ 1 0 1 0 1

1 0000 1 r IRS2" 01 00001 1000 0 1 r IRRS2"~ 0 0 0 0 1

Cycles

25

In nun8eyrIl~nieci rnoae, II reglsier R6 contaIns 704001, the byte ai locahon 704001
contains 3, reg1ster R9 contains %1000, the byte at location %1003 contains %AA,
and register Rl2 contains 2, the instruction

TRTDB @R6, @R9, Rl2

Will leave the value %AA in RHl, the value %4000 in R6, and the value 1 in R12.
Location %4001 and reg1ster R9 wlil not be affected. The Z and V flags will be
cleared. In segmented mode, register pairs must be used mstead of R6 and R9.

Note 1 Word regIster m nonsegmented mode, regIster paIr In segmented mode

Operation:

Flags:

Addressing
Mode

IR:

TRTDRB
Translate, Test, Decrement and Repeat

TRTDRB srcl, src2, r

RHI +- src 2[srcll
AUTODECREMENT srcl by I
r+-r-I
repeat until RH I * 0 or r = 0

srcl: IR
src2: IR

This instruction IS used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address IS contamed in the second source register. The index is computed by adding
the target byte to the address contamed m the second source register. The addition
is performed followmg the rules for address arithmetic, with the target byte treated
as an unsigned 8-blt value extended with high-order zeros. The sum is used as the
address of an 8-bit value wlthm the table which is loaded mto register RHI. The Z
flag IS set if the value loaded mto RHI is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pomter to the prevIOus
element m the string. The word register specIfied by "r" (used as a counter) is then
decremented by one. The entire operation is repeated until either the Z flag IS clear,
indicating that a non-zero translation value was loaded mto RHI, or until the result
of decrementing r is zero. This instruction can translate and test from I to
65536 bytes. The source and counter registers must be separate and non-overlappmg
registers.

Target byte values which have correspondmg zero translation-table entry values are
to be scanned over, while target byte values which have correspondmg non-zero
translation-table entry values are to be detected. Because the 8-blt target byte IS
added to the second source register to obtam the address of a translation value, the
table may contain 256 bytes. A smaller table Size may be used where It is known that
not all possible 8-blt target byte values will occur.

This mstruction can be interrupted after each execution of the basic operation. The
program counter of the start of this mstruction IS saved before the interrupt request
IS accepted so that the mstruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each mterrupt request that IS accepted.

c: Unaffected
Z: Set if the translation value loaded into RHI IS zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

TRTDRB@Rs]1,@Rs21,r
110 11 1 1 0 0 0 IRsl " 011 1 1 0 1 1101111000 IRRS1,,01111 01

L 0 0 0 01 IRS20F 01111 01
11 + 14n

100001 IRRsuoll 1 1 0 1
11 + 14n

r r

6-161

Example:

6-162

In nonsegmented mode. if register R6 contains %4002. the bytes at locations %4000
through %4002 contain the values %00, %40. %80. repectively. register R9 contains
%1000. the translation table from location %1000 through % !OFF contains O. I.
2 •...• %7F. 0, 1.2 %7F (the second zero is located at %1080), and register
RI2 contains 3. the instruction

TRTDRB @R6. @R9. RI2
will leave the value %40 in RHI (which was loaded from location %1040). Register
R6 will contain %4000. and RI2 will contain 1. R9 will not be affected. The Z and V
flags will be cleated. In segmented mode. register pairs are used instead of R6
and R9.

%1000 00000000

%4000 %1001 00000001

%4001 %1002 00000010

%4002 · · ·
%107F o 1 1 1 1 1 1 1

%1080 00000000

%1081 00000001

%1082 00000010

· · · %10Ff= o 1 1 1 1 1 1 1

Note 1. Word regIster In nonsegmented mode, register paIr In segmented mode.

Note 2. n = numbet of data elements translated

Operation:

Flags:

Addressing
Mode

IR:

TRTIB
Translate, Test and Increment

TRTIB srcl, src2, r

RHI .. - src2[srcll
AUTOINCREMENT srcl by I
r .. - r - I

srcl: IR
src2: IR

This mstruction is used to scan a string of bytes testmg for bytes with special
meaning. The contents of the locahon addressed by the hrst source register (the
"target byte") are used as an mdex into a table of translation values whose lowest
address IS con tamed m the second source register. The mdex IS computed by adding
the target byte to the address con tamed in the second source regISter. The addlhon
is performed followmg the rules for address anthmetic, With the target byte treated
as an unSigned 8-bit value extended With high-order zeros. The sum IS used as the
address of an 8-blt value wlthm the table which is loaded into register RHI. The Z
flag IS set If the value loaded mto RHI IS zero; otherWise the Z flag IS cleared. The
contents of the locahons addressed by the source registers are not affected. The first
source register IS then mcremented by one, thus movmg the pointer to the next ele­
ment m the strmg. The word register specified by "r" (used as a counter) is then
decremented by one. The second source register IS unaffected. The source and
counter regISters must be separate and non·overlappmg registers.

Because the 8-blt target byte IS added to the second source regISter to obtam the
address of a translahon value, the table may contam 256 bytes. A smaller table size
may be used where it IS known that not all possible 8-bit target byte values
Will occur.

c: Unaffected
Z: Set if the translahon value loaded mto RHI IS zero; cleared otherWise
S: Unaffected
V: Set if the result of decrementmg r IS zero; cleared otherWise
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

TRTIB (i}Rs] I , "'Rs21 , r
11 0 11 1 1 0 0 0 IRs1 " 01 0 0 1 0 I 11 01111 000 IRRs1" ~ 001 0 I
I 0000 I IRs2 " 01 0 0 0 0 I 25

100001 IRRsu~oooo I r r

Cycles

25

6-163

Example:

6-164

This mstruction can be used m a "loop" of instructions whIch translate and test a
strmg of data, but an intermedIate operatJon on each data element IS required. The
following sequence outputs a strmg of 72 bytes, wIth each byte of the original string
translated from ItS 7-blt ASCII code to an 8-blt value with odd panty. Lower case
characters are translated to upper case, and any embedded control characters are
sklpped over. The translahon table contams 128 bytes, whIch assumes that the most
sigmficant bIt of each byte m the string to be translated is always zero. The hrst 32
entnes and the 128th entry are zero, so that ASCII control characters and the
"delete" character (%7F) are suppressed. The gIven mstruchon sequence IS for
nonsegmented mode. In segmented mode, register paIrs would be used mstead of R3
and R4.

LOOP:

DONE:

LO
LOA
LOA

TRTIB
JR
OUTB
JR

R5, #72
R3, STRING
R4, TABLE

@R3, @R4, R5
Z, LOOP
PORTn, RHI
NOV, LOOP

!Imhahze counter!
!load start address!

!translate and test next byte!
!sklp control character!
!output characters!
!repeat until counter = O!

Note 1 Word reglster In nonsegmented mode, regIster palr m segmented mode

Operation:

Flags:

Addressing
Mode

IR:

TRTIRB
Translate, Test, Increment and Repeat

TRTIRB srcl, src2, r

RHI -- src2[srclJ
AUTOINCREMENT srcl by I
r +- r - I
repeat unbl RHI "* 0 or r = 0

src I: IR
src2: IR

This instruction is used to scan a string of bytes, testing for bytes wIth specIal
meaning. The contents of the location addressed by the hrst source register (the
"target byte") are used as an Index into a table of translahon values whose lowest
address is contained in the second source register. The index IS computed by adding
the target byte to the address contained In the second source register. The addlhon
is performed following the rules for address arithmetic, with the target byte treated
as an unsIgned 8-btt value extended wIth hIgh-order zeros. The sum is used as the
address of an 8-bit value within the table which IS loaded into register RHl. The Z
flag IS set if the value loaded Into RHI is zero; otherwIse the Z flag IS cleared. The
contents of the locations addressed by the source registers are not affected.

The hrst source regIster is then Incremented by one, thus moving the pOinter to the
next element in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated unhl either the Z flag IS
clear, indicating that a non-zero translabon value was loaded into RH I, or until the
result of decrementing r is zero. This Instruchon can translate and test from I to
65536 bytes. The source and counter registers must be separate and non-overlapping
registers.

Target byte values which have corresponding zero translation table entry values are
scanned over, while target byte values which have corresponding non-zero transla­
bon table entry values are detected and terminate the scan. Because the 8-bit target
byte is added to the second source regIster to obtain the address of a translation
value, the table may contain 256 bytes. A smaller table size may be used where it is
known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the Instruction can be properly resumed. Seven cycles should be
added to thIS instruction's execution time for each interrupt request that is accepted.

c: Unaffected
Z: Set If the translation value loaded into RHI is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

TRTlRB ®Rsll, ®Rs21, r 11 011 1 1 0 0 0 IRS1 " 01 0 1 1 0 I 11 + 140 1101111000 IRRS1"01 0 110 I
10000 1 r IRS2 " 011 1 1 0 I 1 0000 1 r IRRS2,,011 1 1 0 I

Cycles2

11 + 140

6-165

Example:

6-166

The followmg sequence of mstruchons can be used m nonsegmented mode to scan a
strmg of 80 bytes, testmg for special characters as defined by correspondmg non­
zero translation table entry values. The pOinters to the strmg and translahon table
are set, the number of bytes to scan IS set, and then the translahon and teshng is
done. The Z and V flags can be tested after the operahon to determme if a specIal
character was found and whether the end of the string has been reached. The
translahon value loaded into RHI mIght then be used to mdex another table, or to
select one of a set of sequences of mstruchons to execute next. In segmented mode,
R4 and RS must be replaced with regIster pairs.

LDA
LDA
LD
TRTIRB
JR

END_OF _STRING:

SPECIAL:
JR

LAST_CHAR SPECIAL:

R4, STRING
RS, TABLE
R6, #80
@R4, @R5, R6
NZ, SPECIAL

Note 1 Word register In nonsegmented mode, reglster paJr In segmented mode

Note 2 n = number of data elements translated

Operation:

Flags:

Addressing
Mode

8:

18:

DA:

X:

TSET dst
TSETB

S -- dst(msb)
dst(O:msb) -- 111...111

dst: R, IR, DA, X

TSET
Test and Set

This instruction tests the most significant bit of the destination operand, copying its
value into the S flag, then sets the entire destination to all 1 bits. It provides a lock­
ing mechanism which can be used to synchronize software processes which require
exclusive access to certain data or instructions at one time.

During the execution of this instruction, BUSREQ is not honored in the time between
loading the destination from memory and storing the destination to memory. For
systems with one processor, this ensures that the testing and setting of the destination
will be completed without any intervening accesses. To synchronize software pro­
cesses residing on separate processors where the destination is a shared memory
location, TSET should be used with a Z8003 CPU.

c: Unaffected
Z: Unaffected
S: Set if the most significant bit of the destination was 1; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

TSET Rd
1101001101w1 1011 0 1 TSETB Rbd

Rd 7 1101001101wl Rd 1011 0 1

TSET@Rdl
10010011 olwl Rd .. O I 011 01 11 10010011 olwlRRd"ol 0 110 I TSETB@Rdl

TSET address 10110011 olwl 0000 10110 I 01100110 1 w 1 0000 1 0 11 0
TSETB address 14 SS

I address J o I segment I offset

011001101w100oo10110

SL 11 segment 100000000

offset

TSET addr(Rd) 1011001101wl Rd .. O 101101 1011001101wl Rd .. O 10110
TSETB addr(Rd)

I I 15 SS address o 1 segmant 1 offset

011001101wl Rd .. O 10110

SL 11 segmant 100000000

off •• t

Cycles

7

11

15

17

15

18

6-167

Example:

6-168

A simple mutually-exclusive critical region may be Implemented by the following
sequence of statements:

ENTER:
TSET
JR

SEMAPHORE
MI,ENTER !loop until resource con-!

!trolled by SEMAPHORE!
lls available!

!Critical Region-only one software process!
!executes this code at a time!

CLR SEMAPHORE !release resource controlled!
!by SEMAPHORE!

Operation:

Flags:

Source
Addressing

Mode

R:

1M:

IR:

DA:

X:

XOR dst, src
XORB

dst +- dst XOR src

dst: R
src: R, 1M, JR, DA, X

XOR
Exclusive Or

The source operand IS logIcally EXCLUSIVE ORed with the destinahon operand and
the result IS stored in the destination. The contents of the source are not affected.
The EXCLUSIVE OR operahon results In a one bit being stored whenever the cor­
responding bits In the two operands are different; otherwise, a zero bit is stored.

c: Unaffected
Z: Set If the result is zero; cleared otherwIse
S: Set if the most significant bit of the result is set; cleared otherwise
P: XOR-unaffected; XORB-set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

XOR Rd, Rs
110100100lwi 11OI001 00H Rs

1
Rd

1
4 Rs

1
Rd

1
4

XORB Rbd, Rbs

XOR Rd, #data
1001001001100001 Rd I 00100100110000 I Rd

7 7
I data I data

XORB Rbd. #data
LooJ 001000 10000 L Rbd I 001001000100001 Rbd

7 7
L data I data I data I data

XOR Rd, <1;Rsl
100100100H R O 1 Rd I 7 100100100H Rs"O 1 RRd I 7 XORB Rbd, <i;Rsl

XOR Rd, address
101100100lwl00001 Rd I 01100100lwl00001 Rd

XORB Rbd, address 9 55 10
I address J 01 segment I offset

01100100lwl00001 Rd

5L 1 I segment I 00 0 0 0000 12
offset

XOR Rd, addr(Rs)
L01j001 oolwj R."O I Rd I 01100100lwl Rs"O I Rd

XORB Rbd, addr(Rs) 10 55 10
I address I o I segment I offset I

011001001W1Rs"oJ Rd

5L 1 I segment I 00 0 0 00 0 0 13

offset

6-169

Example:

6-170

If register RL3 contams %C3 (11000011) and the source operand IS the immediate
value %7B (01111011), the statement

XORB RL3,#%7B

will leave the value %B8 (10111000) m RL3.

Note I Word regIster In nonsegmented mode, register pair In segmented mode

6.8 EPA Instruction TeAlplates

There are seven "templates" for EPA instructions.
These templates correspond to EPA instructions,
which combine EPU operations with possible
transfers between memory and an EPU, between CPU
registers and EPU registers, and between the Flag
byte of the CPU's FCW and the EPU. Each of these
templates is described on the following pages.
The description assumes that the EPA control bit
in the CPU's FCW has been set to 1. In addition,
the description is from the point of view of the
CPU--that is, only CPU activities are described;
the operation of the EPU is implied, but the full

Operation: Memory -- EPU

specification of the instruction depends upon the
implementation of the EPU and is beyond the scope
of this manual.

Fields ignored by the CPU are shaded in the
diagrams of the templates. The 2-bit field in bit
positions 0 and 1 of the first word of each
template would normally be used as an identifica­
tion field for selecting one of up to four EPUs in
a multiple EPU system configuration. other shaded
fields would typically contain opcodes for
instructing an EPU as to the operation it is to
perform in addition to the data transfer specified
by the template.

Extended Instruction
Load Memory from EPU

The CPU performs the indicated address calculation and generates n EPU memory
write transactions. The n words are supplied by an EPU and are stored in n con­
secutive memory locations starting with the effective address and increasing in ad­
dress.

Flags/Registers: No flags or CPU registers are affected by this instruction.

Source
Addressing

Mode
Operation

IR: @ Rd - EPU

DA: EPU - address

X: EPU - addr (Rs)

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

15 + 3n

17 + 3n

15 + 3n

18 + 3n

6-171

Extended Instruction
Load EPU from Memory

Operation: EPU .. - Memory

The CPU performs the indicated address calculation and generates n EPU memory
read transactions. The n consecutive words are fetched from the memory locations
starting with the effective address. The data is read by an EPU and operated upon
according to the EPA instruction encoded into the shaded fields.

Flags/Registers: No flags or CPU registers are affected by this instruction.

Source
Addressing

Mode
Operation

IR: . EPU - @ Rs

DA: EPU - address

X: EPU - addr (Rs)

6-172

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

14 + 3n 55

5L

15 + 3n 55

5L

Operation: CPU -- EPU registers

Extended Instruction
Load CPU from EPU

The contents of n words are transferred from an EPU to consecutive CPU registers
starting with register dst. CPU registers are loaded consecutively, with register 0
following register 15.

Flags/Registers: No flags are affected by this instruction.

Source
Addressing

Mode

R:

Operation:

Nonsegmented Mode Segmented Mode
Operation

Instruction Format Cycles Instruction Format Cycles

Rd - EPU

EPU -- CPU registers

11 +4n 11 +4n

Extended Instruction
Load EPU from CPU

The contents of n words are transferred to an EPU from consecutive CPU registers
starting with register src. CPU registers are transferred consecutively, with register 0
following register 15.

Flags/Registers: No flags are affected by this instruction.

Source
Addressing

Mode

R:

Operation

EPU - Rs

Nonsegmented Mode

Instruction Format Cycles

11 +4n

Segmented Mode

Instruction Format Cycles

11 +4n

6-173

Extended Instruction
Load FeW from EPU

Operation: Flags.- EPU

The Flags in the CPU's Flag and Control Word are loaded with information from an
EPU on AD lines ADo-AD7.

Flags/Registers: The contents of CPU register 0 are undefined after the execution of this instruction.

Nonsegmented Mode
Operation

Source
Addressing

Mode Instruction Format Cycles

R: FCW - EPU

Extended Instruction
Load EPU from FeW

Operation: EPU.-- Flags

15

Segmented Mode

Instruction Format Cycles

15

The Flags in the CPU's Flag and Control Word are transferred to an EPU on AD
lines ADO-AD7 .

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Source
Addressing

Mode

R:

6-174

Operation

EPU - FCW

Nonsegmented Mode

Instruction Format Cycles

15

Segmented Mode

Instruction Format Cycles

15

Operation: Internal EPU Operation

Extended Instruction
Internal EPU Operation

The CPU treats this template as a No Op. It is typically used to initiate an internal
EPU operation.

Flags/Registers: No flags or registers are affected.

Source
Addressing

Mode
Operation

EPU INTERNAL
OPERATION

Nonsegmented Mode

Instruction Format Cycles

11 +4"

Segmented Mode

Instruction Format Cycles

11 +4"

6-175

7.1 INTRmUCTUIiI

Exceptions are conditions that can alter the
normal flow of program execution. The Z8000 CPU
supports four types of exception:

• interrupts
• traps
• abort (18003 and Z8004 only)
• reset

Interrupts are triggered by peripheral devices
that need attention. They cause the processor to
suspend program execution in order to service the
requesting device. Traps are responses by the CPU
to certein events detected during the attempted
execution of an instruction. Thus, the
difference between traps and interrupts is their
origin. A trap condition is always reproducible
by re-executing the program that created the
traps, whereas an interrupt is generally
independent of the currently executing task.
Abort is a special trap-like exception that is
used in the implementation of virtual memory
systems. An abort exception is controlled by
external memory management circuitry or peripheral
device such as the 18015 PMMU. If the CPU in a
virtual system outputs an address which does not
correspond to any location in main memory, an
Abort Instruction function is initiated in the CPU
(see Section 7.4). A reset overrides all other
conditions, including all interrupts and traps.
It occurs when the RESET line is activated, and it
causes certein control registers to be
initialized.

7.2 INTERRUPTS

Three kinds of interrup,t are activated by three
different pins on the 18000 CPU. (Interrupt
handling for all interrupts is discussed in
Section 7.6).

Chapter 7
ExceptloDs

7.2.1 Non.askable Interrupt (NMI)

This type of interrupt cannot be disabled (masked)
by software. It is typically reserved for
external events that require immediate attention.

7.2.2 Vectored Interrupt (VI)

One result of any interrupt or trap is that a
16-bit identifier word is pushed onto the system
stack (see Section 7.6.2). This word can be used
to identify the source of the interrupt or trap.
for vectored and non-vectored interrupts, this
identifier is supplied by the interrupting device
and read from the bus by the CPU during the
interrupt acknowledge cycle. for vectored
interrupts, the low order byte of this identifier
is used by the CPU hardware as an index to a table
of interrupt service routine addresses. These
interrupts can be disabled by clearing the VIE bit
in the fCW.

7.2.' Nonvectored Interrupts (NYI)

These interrupts also result in an identifier word
being pushed onto the system stack, however, the
CPU does not use the identifier as a vector to
select a service routine; all nonvectored
interrupts are serviced by the same routine. They
can be disabled by clearing the NVIE bit in the
fCW.

7.' TRAPS

All Z8000 CPUS support three traps generated
internally. The Z8001 and Z8003 CPUs support a
fourth trap, which is controlled externally (but
synchronously) by either a Z110g MMU or external
memory management circuitry. This fourth trap is
intended for use in virtual memory systems to

7-1

Exceptions

report access violations and page faults to the
CPU.

Traps cannot be disabled. (Trap handling
operations are discussed in Section 7.7).

7.3.1 Extended Instruction Trap

This trap occurs when the CPU encounters an
extended instruction (see Section 6.2.10) while
the EPA bit in the FCW is cleared. One of the
major uses of this trap is to allow the program to
simulate the operations of the EPU when none is
present in the system.

7.3.2 Privileged Instruction Trap

This trap occurs whenever an attempt is made to
execute a privileged instruction while the CPU is
in System mode (SIN bit in the FCW is cleared).

7.3.3 Syste. Call Trap

This trap occurs whenever a System Cali (SC)
instruction is executed. It allows an orderly
transition to be made from Normal mode to System
mode.

7.3.4 seg.ent/Address Violation Trap (Z8001
and Z8003 only)

There are two types of address violation traps
both of which are controlled by an input (or
inputs) from memory management hardware external
to the CPU.

A Segment Trap is controlled by CPU input SECT for
Z8001 and SAT for Z8003. This trap is initiated
by the external memory management circuitry.
Violations which enable this trap include the
detection of an address offset value which is
larger than the length of the assigned segment, a
write warning (a write into the lowest 256 byte
section of a stack was detected), and violations
of segment or page attributes (refer to MMU and
PMMU descriptions in Appendix B).

7-2

7.3.5 Abort Trap (Z8003 and Z8~ only).

An Abort trap is initiated in the CPU by the
assertion of the CPU ABORT input. This input is
controlled by external memory management circuitry
in the implementation of a virtual memory
system. When ABORT is asserted with inputs WAIT
and SAT, an Abort Instruction function followed by
a SAT trap operation are initiated in the CPU.

Note: The Z8004 does not have a SAT input; either
the NVI, VI, or the NMI input can be used in its
place.

7.4 ABORT INSTRUCTION fUNCTION

In a virtual memory system, the detection of a CPU
output address that references a location that Is
not in main memory will cause the memory
management circuitry to activate a CPU abort
exception (CPU input ABORT is asserted). This
initiates an Abort Instruction Function in the CPU
which aborts the current instruction execution and
saves all of the information that is needed to
restart the instruction at the point of
interruption. The Abort Instruction Function must
be followed by an externally controlled trap (SAT
for the Z8003 and any interrupt input for the
Z8004). The trap must initiate the execution of a
user-prepared routine that will bring the segment
or page containing the referenced locat ion into
main memory and will perform the functions needed
to restart the aborted instruction at the point of
interruption. A maskable interrupt should be used
for the Z8004 trap function since this type of
interrupt has a higher priority than non-maskable
interrupts. Details of the abort operations are
given in Chapter 9.

7.5 RESET

A reset initializes selected control registers of
the CPU to system specifiable values. A reset can
occur at the end of any clock cycle, provided the
RESET line is Low.

A system reset overrides all other considerations,
including interrupts, traps, bus requests, and

stop requests. A reset must be used to initialize
a system as part of the power-up sequence.

Within five clock cycles of the RESET becoming Low
ADo-A015 are 3-stated; AS, OS, MREQ, BUSACK, and
MO are forced Low. The RM, BM, and N/S lines
are undefined. RESEr must be held Low five clock
cycles to reset the CPU.

Three clock cycles after RESET has returned to
High, consecutive memory read cycles are executed
in system mode to initialize the Program Status
registers. In the ZBDD1 and laD03, the first
cycle reads the rcw from Location 0002 in segment
number O. The second cycle reads the PC segment
number value from locations 0004 and the third
cycle reads the PC offset value from location 0006
in segment number O.

Each of these fetches is made with the instruction
memory access code (binary 1100) on status lines
ST3-STO' The next initial instruction cycle
starts the mainstream program.

In the lB002 and the ZB004, the first cycle reads
the rcw from memory location 2 and the second
cycle reads the PC value from location 4. Each of
these fetches is made with the instruction memory
access code (binary 1100) on status lines
ST3-STO' The next initial instruction cycle
starts the program.

7.6 INrERRUPT DISABlING

Vectored and nonvectored interrupts can be enabled
or disabled independently by setting or clearing
appropriate control bits in the Flag and Control
Word (rCw). Two control bits in the rcw control
the maskable interrupts: VIE and NVIE. Any
contro 1 bit can be changed when a new rcw is
lodded from the PSA during an interrupt or trap
acknowledge sequence and will be restored to its
previous setting by an Interrupt Return (IRET)
instruction. When VIE is 1, vectored interrupts
are enabled; when NVIE is 1, nonvectored
interrupts are enabled. These two flags can be
set or cleared either together or separately. In
addition, these control bits are set when the rcw
is loaded using either the LOPS or LOCTL rcw
instruction.

When any type of interrupt has been disabled, the
CPU ignores any interrupt request on the

Exceptions

corresponding input pin. Because masked interrupt
requests are not retained by the CPU, the request
signal must be asserted until the CPU acknowledges
the request.

7.7 INTERRUPT AN) TRAP HANllING

The CPU response to a trap or interrupt request
consists of four steps: acknowledging the exter­
nal request (for interrupts and segment or address
traps), saving the current program status
information, loading a new program status, and
transferring to the service routine. Returning to
the interrupted task at the end of the service
routine is accomplished by executing the IRET
instruction which removes the saved information
from the stack and restores the status. Interrupt
timing is shown in Chapter 9.

7.7.1 Acknowledge Cycle

An external acknowledge cycle is required only for
externally generated requests. As described in
Chapter 9, the main effect of such a cycle is to
enable the CPU to receive from the external device
a 16-bit identifier word, which will be saved with
the current program status. Before the
acknowledge cycle, the CPU enters its System
mode. The N!S line is asserted to indicate that a
transition has been made to System mode. The
saved rcw is not affected by this Change in mode.
The CPU remains in System mode until it begins to
execute the exception service routine, at which
time its mode is dictated by the rcw.

7.7 2 status Saving

The current program status information is saved
on the system stack in the following order of
entry: the Program Counter, the rlag and Control
Word, and finally, the interrupt/trap identifier
word. The identifier word contains the reason or
source of the trap or interrupt. ror internal
traps, the identifier is the first word of the
trapped instruction. ror segment or address trap
or interrupts, the identifier is the value on the
data bus read by the CPU during the interrupt­
acknowledge or trap-acknowledge cycle. The format
of the saved program status in the system stack is
illustrated in rigure 7-1.

7-3

Exceptions

Z8002
and

Z8004

LOW
ADDRESS

Z8001
and

Z800a

LOW
ADDRESS

SYSTEMSP IDENTIFIER SYSTEM STACK IDENTIFIER
AFTER TRAP POINTER AFTER
OR INTERRUPT FCW TRAP OR FCW

INTERRUPT

PC SEGMENT PC

PC OFFSET
SYSTEM STACK --SYSTEMSP POINTER BEFORE

BEFORE TRAP TRAP OR
OR INTERRUPT INTERRUPT

!-1WORD_ !-1WORD_

HIGH HIGH
ADDRESS ADDRESS

Figure 7-1. Fonal: of Saved Progr_ status in the Systa. stack

Table 7-1 shows the PC valua that is pushed onto
the stack for each type of interrupt and trap.

7.7.J Loading Haw Progr_ status

After saving the current program status, the new
program status (PC and FCW) is automatically
loaded from the Program Status Area in system
program memory (i.e. status outputs ST rSTo
indicate IFN' and N/S indicates System mode).
The particular status words fetched from the
Program status Area are a function of the type of
trap or interrupt and (for vectored interrupt) of
the interrupt vector. Figure 7-2 shows the format
of the Program Status Area.

For each kind of interrupt or trap other than a
vectored interrupt, there is a single program
status block that is automatically loaded into the
Flag and Control Word and the Program Counter.

The size of each program status block depends on
the version of the l8000 (two words for the
nonsegmented CPUS (Z8002, Z8004) and four words
for the segmented CPUs (l8001, lB003).

For all vectored interrupts, the same Flag and
Control Word (FCW) is loaded from the
correaponding program status block. However, the
appropriate Program Counter (PC) value is selected
from up to 256 (l8002, l8004) or 128 (l8001,l8003)
different values in the Program Status Area.

Table 7-1. PC Value Puehed For Each Interrupt or Trap

Exceptioo

Extended Instruction Trap
Privileged Instruction Trap
System Call Trap
Address Violation Trap
All Interrupts

PC Value is Address Of:

Second word of instruction
Second word of instruction
Next instruction
Depends on external circuitry
Next instruction*

* If an interruptible instruction (e.g., LOIR) is executing but
not completed, then the next instruction is the current
instruction.

7-4 2010-023

BYTE OFFSET
HEX DECIMAL

o o

8 8

10 16

18 24

20 32

28

30

38

3C

40

44

40

48

56

60

64

68

· · · ·
570

PROGRAM STATUS AREA
POINTER (PSAP)

r ,
I SEG. NO. I I UPPER I

OFFSET

Z8001
and

Z8003

RESERVED

----RESERVED
FCW EXTENDED

INSTRUCTION
--1 SEG 1--....- TRAP

PC OFFSET ---RESERVED
FCW PRIVILEGED

--1SEG~
INSTRUCTION

TRAP
PC OFFSET ----RESERVED

FCW SYSTEM

..JSEGL-
CALL
TRAP

PC OFFSET ---RESERVED
FCW SEGMENT

..J_SEGb-
TRAP

PC OFFSET ----RESERVED
FCW NON·MASKABLE

..J_SEG_~ INTERRUPT

PC OFFSET ----RESERVED
FCW NON· VECTORED

..J SEG1--....- INTERRUPT

PC OFFSET ----RESERVED
FCW

--!SEG.b-
PCoOFFSET

-!SE':b:-
PC2 OFFSET VECTORED

--1_ SEG.,===-
INTERRUPTS

PC. OFFSET

· · · ·
.....JSE~'==--
PC25. OFFSET ----

--,
~.~.J
IMPLIED

Z8002
and

Z8004

FCW

PC

FCW

PC

FCW

PC

NOT USED

FCW

PC

FCW

PC

FCW

PCo

PCI

PC2

· · · ·
PCz55

figure 7-2. Progr_ status Area

Exceptions

BYTE OFFSET
DECIMAL HEX

o o

4 4

8 8

12 C

16 10

20 14

24 18

28 lC

30 IE

32 20

34 22

540 21C

The low-order eight bits of the identifier placed
on the data bus by the interrupting device is
multiplied by two and used as an offset into the
Program Status Area following the fCW for vectored
interrupts. On the ZB002 and ZB004, the
identifier value 0 selects the first PC value, the
value 1 selects the second PC, and so on up to the

identifier value 255. On the lB001 and ZB003, the
identifier value 0 selects the first PC value, the
value 2 selects the second PC, and so on up to
identifier value 254, which selects the 12Bth PC
value. Odd identifier values cannot normally be
used with the ZB001 or ZB003 CPUs.

2010·024 7-5

Exceptions

The Program Status Area is addressed by a special
control register, the Program Status Area Pointer,
or PSAP. This pointer is one word for the
nonsegmented CPUs and two words for the segmented
CPUs. As shown in figure 7-2, the pointer
contains a segment number (if applicable) and the
high-order byte of a 16-bit offset address. The
low-order byte is assumed to contain zeros; thus
the Program Status Area must start on a 256-byte
address boundary. The programmer accesses the
PSAP using the Load Control Register instruction
(LDCTL).

7.7.4 Executing the Service Routine

Loading the new program status automatically
initializes the Program Counter to the starting
address of the service routine required by the
interrupt or trap causing this routine to be
executed. Because a new fCW is loaded, the
maskable interrupts can be disabled for the
initial processing of the service routine by a
suitab Ie choice of fCW. This allows edtical
information to be stored before subsequent
interrupts are handled. Service routines that
enable interrupts permit interrupts to be handled
in a nested fashion.

7.7.5 Returning fro. an Interrupt or Trap

Upon completion, the service routine can execute
an Interrupt Return instruction (IREn to cause
execution to continue at the point where the
interrupt or trap occurred. IRET causes informa­
tion to be popped from the system stack in the
following order: the identifier is discarded, the
saved fCW and PC are restored. The newly loaded
fCW takes effect with the next fetched instruc­
tion, which is determined by the restored Program
Counter.

On ZB001 and lB003 CPUs, IRET can be executed only
in segmented mode; in nonsegmented mode the
operation is undefined.

In Virtual Memory Systems, the instruction
interrupted
interrupted
register(s)

by an Abort condition may have been
after it had modified a CPU
but before it had completed

execution. When such a condition occurs, special
software must ensure that a correct restart
environment is established. The software
requirements for restarting an aborted instruction
are described in Appendix D.

7-6

The specific point in the instruction execution
cyc Ie at which an abort can occur is determined by
the external memory management circuitry used.
The instruction restart algorithm used will then
depend on the operation of the memory management
circuitry used. If a lilog MMU or PMMU is used,
the needed restart information is presented in
their respective technical manual, document number
03-B070-01 for the ZB010 MMU and document number
03-B22301 for the ZB015 PMMU.

7.8 PRIORITY

Because it is possible for several exceptions to
occur simultaneously, the CPU enforces a priority
scheme for deciding which event wi 11 be honored
first. The following gives the descending prior­
ity order:

• Reset
• Internal Trap (i.e., privileged instruction,

system call, extended instruction)
• Nonmaskable Interrupt
• Addressing Violation or Segment/Address Trans­

lation Trap (lB001 and ZB003 only)
• Vectored Interrupt
• Nonvectored Interrupt

The priority system works as follows:

1. When a reset is requested, it is performed
immediately.

2. If several non-reset exceptions occur simul­
taneously, the one that has the highest prior­
ity and is also enabled (traps and nonmaskable
interrupts are always enabled) is acknowledged,
current status is saved, and new status is
loaded. The new status consists of the
starting address of the service routine (PC)
and a new fCW that may disable vectored or
nonvectored interrupts.

3. If any enabled exceptions remain after the new
fCW is loaded, the highest-priority exception
is aCknowledged immediately (see Step 2). Note
that in this case, the current status is the PC
and fCW of the first exception's service
routine.

4. The process described in steps 2 and 3 is
repeated until no enabled exceptions remain.
At that point, the current PC and fCW will
contain the status values for the lowest
priority exception that was acknowledged.

5. The execution of the service routine now pro­
ceeds in the reverse of the order in which the
exceptions were acknowledged. After all the
exceptions have been serviced, the original
status ia restored and execution resumes.

Within each of the classes above, there can be
several interrupt sources. The internal traps are
mutually exclusive and therefore need no priority
resolution within that class. The other types
arise from external sources; thus when several
devices share the same request line, the
possibliity arises that two or more devices may

Exceptions

request service from the CPU simultaneously.
Either all the interrupt sources must be serviced
simultaneously (as with MMU), or competing
requests must be resolved external to the CPU.
The Z-BUS definitions provide for a daisy-chain
interrupt structure; all Z-BUS compatible
peripherals have input and output pins (lEI and
lEO) to implement this type of priority interrupt
system.

An external priority interrupt controller can also
be used. The Z-ClO, for example, is designed to
be used in this manner with the l8000 CPUs.

7-7

8.1 INTRODUCTION

All 18000 CPUs have an internal mechanism for re­
freshing dynamic memory. This mechanism can be
activated in two ways:

• When the Refresh Enable (RE) bit in the CPU
Refresh control register is set to one (figure
8-1), a memory refresh cycle is performed
periodically at a rate specified by the RATE
field in the counter. (See Section 8.3).

• When the STOP line is activated, the CPU gener­
ates memory refreshes cycles continuously.
(See Section 8.4.)

8.2 REFRESH CYClES

The refresh mechanism is a way of generating a
special kind of bus transaction called a refresh
cycle, which is described in Chapter 9. A refresh
cycle is three clock cycles long and when due, it
will be inserted immediately after the last clock
cycle of the current bus transaction.

During a refresh cycle, status lines ST 3-STO are
aet to 0001, address lines ADO-AD8 contain the
memory ROW value, and address lines A9-A15 are
undefined. The ROW value determines the memory
row that is being refreshed on this cycle. Since
memory is word-organized, ADO is always zero.
After the refresh cycle ia complete, the ROW field
is incremented by two, thus stepping through 256
rows numbered 0,2,4 ••• ,510.

Chapter 8
Refresh

8.' PERIIDIC REfRESH

The Refresh Enable (RE) bit controls only Periodic
Refresh; refresh cycles can be generated using the
STOP line, regardless of the state of RE. When RE
is set to one, the value of the 6-bit RATE field
determines the time between successive refreshes
(the refresh period). When RATE = 0, the refresh
period is 256 clock cycles; when RATE = n, the
refresh period is 4n clock cycles. for example,
if there is a 4 MHz clock, the refresh period is
between 1 !ls and 64 !ls, while with a 10MHz clock,
the refresh period will be between 400ns and 25.6
!ls).

The LDCTL instruction is used to set the refresh
rate, to set or clear RE, or to initialize the ROW
field. (See Section 6.6 for a detailed discussion
of this instruction.)

The refresh cycle is generated as soon as possible
after the refresh period has elapsed, usually,
after the last clock cycle of the current
transaction. If the CPU receives a trap or an
interrupt simultaneously with a Periodic Refresh
request, the refresh operation is performed first.

When the CPU does not have control of the bus
(that is, while BUSACK is asserted and the CPU
enters Bus-Disconnect state or while the WAIT line
is activated), the CPU cannot issue refresh
cycles. To deal with this situation, all 18000
CPUs have internal circuitry that counts and

RATE I I I I I I i ROW ADDRESS i 0 I

Fi!JIre B-1. Refresh Control Register

2010-025 8-1

Refresh

remembers skipped refresh cycles. When the CPU
regains control of the bus, or when the WAIT line
is deactivated, it immediately issues the skipped
refresh cycles. The internal circuitry can record
up to two skipped refresh operations.

After a reset operation, Periodic Refresh is
disabled (RE is cleared) and the internal
circuitry that counts skipped refreshes is
cleared.

8-2

8.4 STOP-STATE REfRESH

The CPU has three internal operating states: Run,
Stop and Bus-Disconnect (see Section 2.8). The
Stop state is entered each time the STOP line is
activated; while the CPU is in this state, it
continuously generates three-c lock-cycle refresh
transations. When STOP goes High again, one more
refresh cycle is performed, then the CPU enters
the Run state.

9.1 INTRWUCTION

This chapter covers the external manifestations
(i.e., the activity on the CPU pins) that result
from the operations described in Chapters 2
through 8. Since the pins are connected to the
system bus (see Figure 2.3 in Chapter 2), much of
the discussion will center on the bus and bus
operations. The I8000 CPU is designed to be
compatible with the Zilog I-BUS protocols, which
are described in the "Component Interconnect I-BUS
Summary," document number 00-2031-01. In the
sections that follow, the interface between the
IBOOO CPU and its environment is described in
detail.

9.2 BUS OPERATIONS

Two kinds of operation can occur on the system
bus: transactions and requests. At any given
time, one device (either the CPU or a bus
requester, such as the 18016 DMA Controller) has
control of the bus and is known as the bus
master. A transaction is initiated by the bus
master and is responded to by some other device on
the bus. Only one transaction can proceed at a
time; six kinds of transaction can occur:

• Memory transaction. Transfers eight or 16 bits
of data to or from a memory location (Section
9.4.2) •

• I/O transaction. Transfers eight or 16 bits of
data to or from a peripheral or CPU support
component, such as an MMU (Section 9.4.3).

• EPU transfer. Transfers 16 bits of data between
the CPU and an EPU (Section 9.4.4).

• Interrupt/Trap Acknowledge transactioo.
Acknowledges an interrupt or trap and transfers
an identification/status word (or vector) from
the interrupting or trapping device (Section
9.4.5).

o Refresh transaction. Refreshes dynamic memory
only, does not transfer data (Section 9.4.7).

Chapter 9
Extemallaterface

• Internal operation transaction. Data is not
transferred. Indicates that the CPU ia
performing an operation that does not require
data to be transferred on the bus (Section
9.4.7).

Only the bus master can initiate transactions. A
request, however, can be initiated by a component
that does not have control of the bus. Five types
of request can occur:

• Interrupt request. Requests the attention of
the CPU (Section 9.6.1).

• Bus request. Requests control of the bus to
initiate transactions (Section 9.6.2).

• Resource request. Requests control of a
particular system resource (Section 9.6.3).

• Abort request. Terminates instruction execution
(Section 9.6.4).

• Stop request. Suspends CPU instruction exection
(Section 9.6.5).

When an interrupt or bus request is made, it is
answered by the CPU according to its type: for an
interrupt request, an interrupt acknowledge
transaction is initiated; for a bus request, the
CPU enters Bus-Disconnect state, relinquishes the
bus, and activates an acknowledge signal; for a
stop request, the CPU stops execution and enters
Stop/Refresh state. A resource request does not
require CPU action, since it occurs on a separate
bus that uses external logic to link CPU pins MI
and MO in a daisy chain. A CPU generates a
Resource Request when it executes a multi-micro
request instruction. An Abort request causes the
CPU to terminate execution of the current
instruction immediately.

9.3 CPU PINS

The CPU pins can be grouped into five categories
according to their functions (Figure 9-1).

9-1

External Interface

9.3.1 Transaction Pins

These signals provide timing, control, and data
transfer for Z-BUS transactions.

ADo-AD15• Address/Data (Bidirectional, active
High, 3-state). These multiplexed data and
address lines carry I/O addresses, memory
addresses, and data during l-BUS transactions.
for the l8001 and l8003, only the offset portion
of memory addresses is carried on these lines.

SNo-SN7• Segment Number (Z8001/3 only, output,
active High, 3-state). These lines contain 'the
segment number por';ion of a memory address.

BUS{ TIMING

STATUS

READIWRITE

NORMAUmTE'M

BYTE/WORD

STO-5T 3. (Output, active High, 3-state). These
lines indicate the kind of transaction occurring
on the bus and give additional information about
the transaction (such as the address space for
memory transactions).

AS. Address Strobe (Output, active low,
3-state) • The rising edge of AS indicates the
beginning of a transaction and shows that the
ADO-AD15 , STO-ST3, N/S, R/W, and B!W signals are
valid.

os. Data Strobe (Output, active low, 3-state).
OS provides timing for data movement to or from
the CPU.

AD,s

AD,.

AD13

AD,.

AD"

AD,o

AD.

ADa ADDRESS I
AD7 DATA BUS

ADs

ADs

Z8001
Z8002
Z8003
Z8004

AD.

ADo

AD.

MULTI.MICRO {
CONTROL

• SAT for 28003 CPU, SEGT for 2800 I CPU,
•• ABORT used In 28003 and L;8004 CPU, only,

CPU AD,

,--
I SNs

I SNs

I
I SN3

I
I SN,

I SNo

I
·SAT L __

+5 V GND elK

figure 9-1. Pin functions

- - ZSOO1&l
Z8003 I
ONLY I

SEGMENT I
NUMBER I

I
I
I

9-2 2010-003

R/W. Read/Write (Output, Low = Write, 3-state).
This signal determines the direction of data
transfer for memory, I/O, or EPU transfer
transactions.

B/II. Byte/Word (Output, Low = Word, 3-state).
This signal indicates whether a byte or word of
data is to be transmitted during a transaction.

N/'!i. Normal/System mode (Output, Low = System
mode, 3-state). This output indicates whether the
CPU is in Normal or System operating mode.

WAIT. (Input, active Low). A Low on this line
causes the CPU to extend the duration of a bus
cycle by inserting additional clock cycles.

HREQ. Memory Request (Output, active Low,
3-state). A falling edge on this line indicates
that the address/ data bus is holding a memory
address.

9.3.2 Bus Control Pins

These pins carry signals for requesting and
obtaining control of the bus from the CPU.

BUSREQ. Bus Request (Input, active Low). A Low
indicates that a bus requester has obtained, or is
trying to obtain, control of the bus.

BUSACK. Bus Acknowledge (Output, active Low). A
Low on this line indicates that the CPU has
relinquished control of the bus in response to a
bus request.

9.3.3 Interrupt/Trap Pins

These pins convey interrupt and external trap
requests to the CPU.

ABORT. Abort Request (lB003/4 only, input,
active Low). When ABORT is asserted it initiates
an Instruction Abort in the CPU. This input must
be followed immediately by an interrupt.

NMI. Nonmaskable Interrupt. (Input, active
Low). A High-to-Low transition on NMI requests a
nonmaskable interrupt.

NYI. Nonvectored Interrupt (Input, active Low).
A Low on this line requests a nonvectored
interrupt.

External Interface

VI. Vectored Interrupt (Input, active Low). A
Low on this input requests a vectored interrupt.

SAT. Segment/Address Translation Trap (lB003
only, input, active Low). A Low on this input
requests a Segment/Address Translation trap.

SECT. Segment Trap (lB001 only, input, active
Low). A Low on this line requests a segment trap.

9.3.4 Multi-Micro Pins

These pins are the l8000's interface to the l-BUS
resource request lines.

MI. Multi-Micro In (Input, active Low). This
input is used to sample the state of the resource
request lines.

MO. Multi-Micro Out (Output, active Low). This
line is used by the CPU to make resource requests.

9.3.5 CPU Control

These pins carry signals that control the overall
operation of the CPU.

STOP. (Input, active Low). When asserted this
line suspen~s CPU operation either after the fetch
of the first word of an instruction or during an
EPU instruction if the EPU is busy.

RESET. (Input, active Low). A Low on this line
resets the CPU.

9.4 TRANSACTIONS

Data transfers to and
accomplished through the

from the CPU are
use of transactions.

All transactions start with Address Strobe (AS)
being driven Low and then raised High by the CPU.
On the rising edge of AS, the status lines STO-ST3
are valid; these lines indicate the type of trans­
action being initiated (see Table 9-1). The six
types of transactions are discussed in section
9.4. Associated with the status lines are three
other lines that become valid at this time. These
are Normal/System (N/S) , Read/Write (R/~), and
Byte/Word (BjW). Except where indicated below,

9-3

External Interface

CLOCK

AS
(ADDRESS STROBE)

WAIT samplod
for memory and
EPU transfer
transactions.

WAIT sampled for
110 and Interruptltrap Data on AD lines
acknowledge Is sampled for
transactions. transfers to CPU.

BASIC BASIC BASIC

Four clock cycles added
here on Interruptltrap --...

~CYCLE--~+----CYCLE~i .. ·----~Et3-----··J~CYCLE--

1 2 Cyclo pro •• nt only lor 110 3
interrupt/trap
acknowledge transactions.

acknowledge transaction. _ WAIT clock cyclo. added
here in response to WAIT line.

AS failing Indicates first AS nslng Indicates that status
clock cycle of a transaction. and address lines are valid.

SNo-SN.
(SEGMENT NO.) SEGMENT NUMBER

ADo-AD"
(ADDRESS OFFSET)

STo-ST3,
ri, ri, SIN

(STATUS
INFORMATION)

-{
WRITE {

iii
(DATA

STROBE)

ADo-AD,.
(DATA)

Os
(DATA

STROBE)

ADo-AD,.
(DATA)

Segment No. becomes
available one clock cycle
before rest of address.

Status Information becomes
available at the same time
as tlie address and remains
actiye throughout the trans·
action.

Memory, EPU transfers and"'"
interruptltrap acknowledge.

I I
For transfers to the CPU
(Memory reads, 110 reads,

"" For continuation see Read and
Write below.

STATUS INFORMATION

The memory, .,0 device or
EPU pllc •• data on tho AD
lines.

:~~:~~;'t!~pma~:~~:::'ge) .. G-----+-------+~
the AD line. are first
3-.tated by tho CPU.

For transfers from the CPU
(Memory write., 110 wrlta.,
and transfers to tha EPU) "­
the CPU pIece. the data on

thajD IIna •.

DATA

figure 9-2. Trmmaction Tilling

9-4 2010·026

External Interface

Table 9-1. Status Codes

Kind of Transactioo

Internal Operation 0000

Refresh 0001

1/0 Transaction

Interrupt
Acknowledge
Transaction

Memory
Transaction

EPU/CPU Transfer

locked Memory
Transaction

{
0010
0011

1
0100
0101
0110
0111

I 1000
1001
101()*

1011*
1100
1101

1110

1111

Additional Infor.atioo

Standard 1/0
Special I/O

Segment/Address Translation Trap
Nonmaskable Interrupt
Nonvectored Interrupt
Vectored Interrupt

Data Address Space
Stack Address Space
Data Address Space, EPU Transfer
Stack Address Space, EPU Transfer
Program Address Space
Program Address Space,
first Word of Instruction

Test and Set Instruction

*On earlier l8000 CPUs status codes 1000 and 1001, rather than 1010

and 1011, indicate that the EPU is to capture or supply the data.

N!S designates the operating mode of the CPU, R/W
designates the direction of data transfer (read to
the CPU, write from the CPU), and B/W designates
the size of the data item being transferred.

If the transaction requires an address, it too is
valid on the rising edge of AS. No address is
required for interrupt acknowledge, EPU transfer,
or internal operation transactions. (In the
l8001 and Z8003, the segment number lines SNO-SN6
are valid one clock cycle before the rising edge
of AS to allow external memory management
hardware to perform some of its functions in
paralle I with the CPUs address computation. See
Chapter 2 for more information.)

The CPU uses Data Strobe (DS) to time the actual
data transfer. In refresh and internal operation
transactions the CPU does not transfer any data
and thus does not activate DS. for write

operations (R/W = low), a low on DS indicates that
valid data from the bus master is on the ADO-A015
lines. for read operations (R/W = High), the bus
master places lines ADO-AD15 into the high
impedance state before driving DS low so that the
addressed device can put its data on the bus. The
bus master samples this data on the falling clock
edge that precedes the rising edge of DS.

9.4.1 WAIT

As shown in figure 9-2, WAIT is sampled on the
falling clock edge of the last clock cycle before
data is sampled by the CPU (Read) or DS rises
(Read or Write). If WAIT is low, another cycle is
added to the transaction before data is sampled or
DS rises. In this added cycle, and in all
subsequent added WAIT cyc les input WA IT is again
sampled on the falling edge and, if it is low,

9-5

External Interface

another cycle is added to the transaction. In
this way, the transaction can be extended to an
arbitrary length to accommodate slow memories or
peripherals.

All WAIT inputs to the CPU must be synchronized
with the CPU clock.

9.4.2 Me.ory Transactions

Memory transactions move data to or from memory
when the CPU makes a memory access. Thus, they
are generated during program execution to fetch
instructions from memory or to fetch or store
memory data. They are also generated to store the
current program status and to fetch new program
status during interrupt, trap, or reset handling.

As shown in Figure 9-3, a memory transaction is
three clock cycles long unless extended by
inserted WAIT cycles. The status pins, besides
indicating a memory transaction, give the
following information:

• Whether the memory access is to the data (1000,
1010), stack (1001,1011), or program
(1101,1101) address space (Chapter 3).

• Whether the first word of an instruction (1101)
or another program element (1100) is being
fetched.

• Whether the data for the access is to be
supplied (write code 1010) or captured (read
code 1011) by an Extended Processing Unit.

For the la002, the full memory address will be on
ADO-AD15 when AS rises. For the la001, the offset
portion of the segmented address will be on
ADO-AD15 and the segment number portion will be on
SNO-SN6 when AS rises. The segment portion will
become valid on SNO-SN6 approximately one cycle
before ADO-AD15 is valid.

During the transfer of bytes into the CPU, the
input byte can be read from either the high or low
half of the bus depending on the state of bus line
ADD. If ADD is set to 1, input is taken from
lines ADrADo; if ADD is set to 0, input is taken
from lines A15-ADB• During the transfer of bytes
from the CPU, the contents of each output byte are
repeated on both halves of the bus. Figure 9-4
illustrates the manner in which memory is
organized. For byte reads (B/W High, R/w High)

9-6

the CPU uses only the byte whose address it
outputs. For byte writes (B/W High, R/WLow), the
memory should store only the byte whose address
was output by the CPU. For word transfers, (B/W =
Low), all 16 bits are captured by the CPU (Read:
R/W = High) or stored by the memory (Write: R/W =
Low).

As explained more fully in Section 9.5, a lBOOO
CPU and an Extended Processing Unit act like a
single CPU with the CPU providing addresses,
status and timing information and the EPU
providing, or capturing, data.

9.4.3 I/O Transactions

I/O transactions move data to or from peripherals
or CPU support devices (e.g., MMUs). They are
generated during the execution of I/O
instructions.

As shown in Figure 9-5, I/O transactions are four
clock cycles long at a minimum, and they may be
lengthened by the addition of WAIT cycles. The
extra clock cycles allow for slower peripheral
operation.

I/O cycles are like memory cycles, except for the
extra Wait state and the different ST3-STO status
and MREQ values. Peripherals whose speeds are
better matched to the 3-cycle memory transaction
can be interfaced using memory-mapped I/O.

Peripherals designed to be used with the lBOOO
CPUs can generally be interfaced directly to the
CPU using the I/O transaction mechanism without
the need for special hardware to generate Wait
states.

The status lines indicate whether the access is to
the Standard I/O (0010) or Special I/O (0011)
address space. The N/5 line is always Low,
indicating System mode. The I/O address is found
on ADO-AD15 when AS rises. Since the I/O address
is always 16 bits long, the segment number lines
are undefined on lB001 and lB003 CPUs.

Word data (B!W = Low) to or from the CPU is
transmitted on ADO-AD15• As stated in Section
9.3.3, byte data is sent to the CPU on either half
of the bus and byte data and address outputs of
the CPU are repeated on both halves of the bus.
This allows peripheral devices or CPU support
devices to attach to only eight of the 16 ADO-AD15

External Interface

Tn T , T • T 3

CLOCK I l ~
,l DATA SAMPLED

T FOR READ - ~WAIT WAIT CYCLES ADDED SAMPLED

WAIT

STATUS
(BNi, N/Ii,
STo-ST31

SNo-SNe SEGMENT NUMBER

AS

--
MREQ

(>
AD ~.

READ
MEMORY ADDRESS >--- DATA IN

J-

DS
READ

-

/ L R/W
READ

AD MEMORY ADDRESS DATA OUT
WRITE

DS
WRITE

r R/W \ WRITE

Figure 9-3. Mlhmry Read and Write Tr_action

2010-027 9-7

External Interface

lines. The Read/Write line (R/W) indicates the
direction of the data transfer: peripheral-to-CPU
(Read: R/W = High) or CPU-to-peripheral (Write:
R/W = Low).

9.4.4 EPU Transfer Transactions

EPU transfer transactions move data between the
CPU and an Extended Processing Unit (EPU) or
between an EPU and memory. During EPU/CPU
transfers, the CPU can transfer data either to or
from an EPU, it can either read from, or write to,
the EPU's status registers, and can perform
transfers between the EPU and memory. EPU
transfer transactions are performed during the
execution of EPA instructions.

EPU memory transfer transactions are the same as
memory transactions (Figure 9-3). No address is
generated, and status codes 1010 and 1011 are
used. In a multiple EPU system, the EPU that is
to participate in a transaction is selected

ADO-AD15

implicitly, as described in Section 9.5, rather
than by an address. EPU-CPU transactions have the
same timing relationships as I/O transactions
(Figure 9-5).

The data transferred is 16-bit words (B/W = Low),
except for transfer between the Flags byte of the
FCW and an EPU. In this case, a byte of data is
transferred on ADO-AD7 (B/W = High). The Read/
Write line (R/W) indicates the direction of the
data transfer. The N/S line indicates either
System mode (Low) or Normal mode (High).

9.4.5 Interrupt/Trap Acknowledge
Transactions

Acknowledge transactions acknowledge an interrupt
or trap and read a 16-bit identifier word from the
device that generated the interrupt or trap. The
transactions are generated by the CPU when an
interrupt or segment trap is detected.

16·BIT Z·BUS DATA PATH

UPPER
BYTE
BANK

D
BUS DRIVER RECEIVERS

DO

SNo-SN7 (EVEN ADDRESS)

LOWER
BYTE
BANK

(ODD ADDRESS)

9-8

B/W

ADo--~~~~>-~-+~L-~

UPPER
BANK
ENABLE

LOWER
BANK

R/W --t==~~=L"/------------"'" ENABLE

Figure 9-4. Hemry Organization

2010-028

External Interface

T, T, TWA T3

• ~

CLOCK I I ~ ~
1

DATA SAMPL

- 1 FOR READ

WAIT
WAIT CYCLES ADDED SAMPLED

ED

WAIT

- ex STATUS
B/VI, ST o-ST 3) -

HIS
LOW

- r\ AS

HIGH
MREQ

- ex (> C AD
PORT ADDRESS ~------ DATA IN INPUT - i

DS
INPUT

R/Vi J ~ INPUT -

AD
PORT ADDRESS DATA OUT OUTPUT - -

DS
OUTPUT

- ""- r R/Vi \ OUTPUT

Figure 9-5. Input/Output Transaction

2045-0!O 9-9

External Interface

Acknowledge transactions are ten clock cycles long
at a minimum (as shown in Figure 9-6), having five
automatic Wait cycles. The Wait cycles are used
to give the interrupt priority daisy chain (or
other priority resolution device) time to settle
before the identifier word is read. (Consult the
"l-BUS Component Interconnect Summary," document
number 00-2031-01 for more information on the
operation of the priority daisy-chain).

The status lines identify the type of exception
that is being acknowledged. The possibilities are
Segment Trap or Segment/Address Translation Trap
(0100), Nonmaskable Interrupt (0101), Nonvectored
Interrupt (0110), and Vectored Interrupt (0111).
No address is generated. The N/S line indicates
System mode (Low), the R!W line indicates Read
(High), and the BN line indicates Word (Low).

The only item of data transferred is the identi­
fier word, which is always 16 bits long and is
captured from the ADO-AD15 lines on the falling
clock edge as DS goes High.

As shown in Figure 9-6, there are two places where
WAI r is sampled, and thus WAIT cycles can be
inserted at two points in acknowledge
transactions. The first serves to delay the
falling edge of Os to allow the daisy chain a
longer time to settle, and the second serves to
delay the point at which data is read.

9.4.6 Interrupt/Trap Request and kknowledge
Operatioos

The following paragraphs describe the operations
required to initiate a trap interrupt and
acknowledge function. Refer to Figure 9-6 for
timing.

The VI, NVI, and SAT inputs, as well as the state
of the internal NMI latch, are sampled at the
beginning of T3'

In response to an interrupt or trap, the sub­
sequent IF1 cycle is exercised. The Program
Counter, however, is not updated, but the system
Stack Pointer is decremented.

9-10

The next machine cycle is the interrupt
acknowledge cycle. This cycle has five automatic
Wait states, and additional Wait states can be
inserted. After the last Wait state, the CPU
reads the information on ADO-AD15 and stores it
temporarily, to be saved on the stack later in the
acknowledge sequence. This word identifies the
source of the interrupt or trap. For internal
traps, the identifier is the first word of the
trapped instruction. For external events, the
identifier is the contents of the data bus as
sampled during T3 of the acknowledge cycle.
During nonvectored and nonmaskable interrupts and
Segment/Address Translation Trap, all 16-bits can
represent peripheral device status information.
For the vectored interrupt, the low byte is an
index to the array of PC values in the PSA, and
the high byte can be used for extra status.
During and after the acknowledge cycle, the N(S
output indicates the automatic change to System
mode.

9.4.7 Internal Operations and Refresh
Transactioos

There are two kinds of bus transaction that do not
transfer data: internal operations and memory
refresh. Both look like a memory transaction,
except that Data Strobe remains High and no data
is transferred.

For internal operation transactions (shown in
Figure 9-7), the Address and Segment Number lines
contain arbitrary data when the Address Strobe
goes High. The R,iW line indicates Read (High),
the Blw line is undefined, and N(S is the same as
for the immediately preceding transaction. This
transaction is initiated to maintain a minimum
transaction rate while the CPU is doing a long
internal operation.

A memory refresh transaction (shown in Figure 9-8)
is generated by the ZBOOO CPU's refresh mechanism
as described in Chapter 8 and can come immediately
after the final clock cycles of any other transac­
tion. The Refresh register's 9-bit ROW field is
output on ADo-ADa during the normal time for
addresses. Refresh transactions can be used to

'"
~
8

'" .!,.

CYCLE OF ANY " .. FETCH IF1 I' .. CYCLE II SAVING
INSTRUCTION (ABORTED) AUTOMATIC WAIT STATES ~

LAST MACHINE I INSTRUCTION I ACKNOWLEDGE I STATUS

,~.JiJi.Jis JiJ" , " " :- ~. ;. ... A----TW-A-----TWA 13 14 IS

WAIT

is

Vi, NYI, *iiT

NMI

INTERNAL
NMI

·SAT for Z8003 CPU. SEGT for ZSDDI CPU.

RlW

B1W

STo-ST. ACKNOWLEDGE

~----+-----------------------------~

AD (IDENTIFIER ~)

MREQ

figure 9-6. Seg.ent/Address Tr_Iation Trap Interrupt Request and Acknowledge

..,
x ...
'" ...
::>
III
......
::> ...
'" ...
..."

III
'"

External Interface

generate refreshes for dynamic RAMs. The value of
N/S, R/W, and B/W during a refresh transaction is
the same as for the immediately preceeding
transaction.

WAIf is not sampled during internal operations or
refresh cycles.

T 1

CLOCK I -

AD UNDEFINED

aiVi

9.5 CPU AN> EXTfJ't)[I) PROCESSING UNIT (EPU)
INTERACTION

A l8000 CPU and one or more EPUs work together
like a single CPU component, with the CPU
providil)g address, status and timing signals and
the EPU supplying and capturing data. The EPU

T. T3

1 I

INTERNAL OPERATION

"'>--
~.

HIGH

UNDEFINED

MIS SAME AS PREVIOUS CYCLE

figure 9-7. Internal Operation naing

9-12 2045·014

monitors the instructions fetched and the status
and timing signals output by the CPU so that it
will know when to participate in a memory or EPU
transfer transaction. When the EPU is to
participate in a memory transaction, the CPU
places its AD lines into the high impedance state
while DS is Low, so that the EPU can use them.

In order to know which transaction it is to
participate in, the EPU must track the following
sequence of events:

1. When the CPU fetches the first word of an
instruction (ST3-STO = 1101), the EPU must also
capture the intruction returned by memory. If
the, instruction is an extended instruction, it
will have an ID field which indicates whether
or not the EPU is to execute the instruction.

T,

I -
CLOCK

STo-STa

External Interface

2. If the instruction is to be executed by the
EPU, the next non-refresh transaction by the
CPU will fetch the second word of the instruc­
tion (ST3-STO = 1100). The EPU must also cap­
ture this word.

3. If the instruction involves a read or write to
memory, there will be zero or more program
fetches by the CPU (ST 3-STO = 1100) to obtain
the address portion of the extended instruc­
tion. The next one to 16 non-refresh transac­
tions by the CPU will transfer data between
memory and the EPU. (See Table 9-1 for
codes.)The EPU must supply the data (Write, RIll
Low) or capture the data (Read, R/W High) for
each transaction, just as if it were part of
the CPU. In both cases, the CPU will 3-state
its AD lines while data is being transferred

T. T3

I I
r---

REFRESH

-< ~.

REFRESH ADDRESS >-- - - ---~--------. i
AD

SAME AS PREVIOUS CYCLE

I
RlW, BlW, Hli}

figure 9-8. Me.ory Refresh Tilling

2045-015 9-13

External Interface

(OS Low). EPU memory transfers are always
word-oriented (Bli Low).

4. If the instruction involves a transfer between
the CPU and EPU, the next one to 16 non-refresh
transactions by the CPU will transfer data
between the EPU and CPU (STJ-STO = 1110).

To follow the above sequence, an EPU has to
monitor the BUSACK line to verify that the
transaction it is monitoring on the bus was
generated by the CPU. It should also be noted
that in a multiple EPU system, there is no indica­
tion on the bus as to which EPU is cooperating
with the CPU at any given time. This must be
determined from the opcodes and 10 fields of the
extended instructions the EPU captures.

A final aspect of CPU-EPU interaction is the u~
of the CPU's STOP pin. When an EPU begins to
execute an extended instruction, the CPU can
continue fetching and executing instructions. If
the CPU fetches another extended instruction
before the first one has completed execution, the
EPU must activate the CPU's STOP pin to stop
the CPU (as described in Section 9.6.5) until
execution of the previous EPU instruction is
completed.

Besides determining whether or not to participate
in the execution of an EPA instruction, the EPU
must determine from the first two instruction
words:

• Whether or not a memory access will be made.
• The number of words of data to be transferred

for memory or EPU-CPU transfers.
• The operation to be performed on the data.

9.6 REQIESTS

There are four kinds of request that the Z-BUS
supports and in which the ZBOOO CPU participates.
These are

• Interrupt/Trap requests, which another device
Initiates and the CPU accepts and acknowledges.

• Bus requests, which
master initiates and
acknowledges.

another potential
the CPU accepts

bus
and

• Resource requests, which any device capable of
implementing the request protocol (usually the

9-14

CPU) can request. No component has control by
default of the resource controlled by the
resource bus.

The CPU supports an additional request beyond
those of the Z-BUS:

• Stop request, which another device initiates
and the CPU accepts.

When a request is made, it is answered according
to its type: for bus requests, an acknowledge
signal is sent (Sections 9.6.2 and 9.6.3); for
Stop request, the CPU enters the Stop/Refresh
state. In all cases except Stop, the Z-BUS
provides for a daisy~hain priority mechanism to
arbitrate between simultaneous requests.

9.6.1 Interrupt/Trap Request

The Z8000 CPU supports three interrupts and one
external trap (segment or segment/address
translation trap) as shown in Figure 9-6. The
Interrupt Request line (INT) of a Z-BUS peripheral
that is capable of generating an interrupt may be
tied to any of the three ZBOOO interrupt pins
(NMI. NVI, VI). Several devices can be connected
to one pin, in which case the devices must be
arranged in a priority daisy chain using the lEI
and lEO pins available on all Z-BUS peripherals.
The segment trap or segment/address translation
trap pin (SEGT for Z8001, SAT for Z8003) is
activated by the memory management hardware. The
CPU uses the same protocol for handling requests
on any of these pins. Here is the sequence of
events that is followed:

• Any High-to-Low transition on the NMI input is
asynchronously edge-detected, and the internal
NMI latch is set. At the beginning of the last
clock cycle in the last machine cycle of any
instruction, the VI, NV I , and SEGT inputs are
sampled along with the state of the internal
NMI latch.

• If an interrupt or trap is detected, the
subsequent initial instruction fetch cyc Ie is
exercised, but nullified.

• The next machine cycle is the interrupt
acknowledge transaction (see Section 9.4.5)
which results in an identifier word from the
highest-priority interrupting device being read
from the AD lines.

• This word, along with the program status
information, is stored on the System mode
stack, and new status information is loaded
(see Chapter 7).

For more information about the interrupt
structure, consult the "Component Interconnect
Z-BUS summary."*

Interrupt requests are sampled during the
penultimate clock cycle of each instruction;
however, the decision to accept the request is
made at the start of the next instruction and the
instruction fetch is aborted if the pending
interrupt is enabled. Thus if an interrupt
request is pending during the execution of Enable
Interrupt (or LOPS, LD FCW, SC or IRET which would
enable the interrupt), the pending interrupt will
be acknowledged after the execution of that
instruction. For example, if a vectored interrupt
is pending and the instruction sequence to be
executed is

EI VI
01 VI

then the vectored interrupt will be acknowledged
between the execution of the EI and 01
instruction. Note that a 7 cycle aborted initial
instruction fetch is inserted between the
execution of the EI instruction and the interrupt
acknowledge sequence.

9.6.2 Bus Request

To generate transactions on the bus, a potential
bus master (such as a DMA Controller) must gain
control of the bus by making a bus request (shown
in Figure 9-9). A bus request is initiated by
pulling BUSREQ Low. Several bus requesters may be
wired to the BUSR[Q pin; priorities are resolved
externally to the CPU, usually by a priority daisy
chain (see the "Component Interconnect Z-BUS
Summary"*) •

The asynchronous BUSREQ signal generates an
internal BUSREQ, which is synchronous. If the
external BUSREQ is Low at the beginning of any
machine cycle, the internal BUSREQ will cause the
bus acknowledge line (BUSACK) to be asserted after
the current machine cycle is completed. The CPU
then enters Bus-Disconnect state and gives up
control of the bus. All CPU output pins, except
BUSACK and MO, are 3-stated.

*Document number 00-2031-01

External Interface

The CPU regains control of the bus two clock
cycles after BUSREQ rises. Thus any device
desiring control of the bus must wait at least two
cycles after BUSREQ has risen before pulling it
down again.

9.6.3 Resource Request

The CPU generates resource requests by executing
the Multi-Micro Request (MREQ) instruction. The
CPU tests the availability of the shared resource
by examining MI. If MY is High, the resource is
available, otherwise the CPU must try again
later. The MO pin is used to make the resource
request. MO is pulled Low, then, after a delay
for arbitration of priority, MI is tested again.
If it is Low, the CPU has control of the resource;
if it is still High, the request was not granted
and MO must be deactivated. If the request was
granted MO must be kept active until the CPU is
ready to release the resource, whereupon MO is
deactivated by an MRES instruction.

The "Component
describes an
implemented with

Interconnect Z-BUS Summary"*
arbitration scheme that is
a resource request daisy chain.

9.6.4 Stop Request

As shown in Figure 9-10, the STOP pin is normally
sampled on the falling clock edge immediately
preceding an initial instruction fetch cycle. If
STOP is found Low, the CPU enters Stop/Refresh
state and a stream of memory refresh cycles is
inserted after the third clock cycle in the
instruction fetch. The ROW field in the Re fresh
Register is incremented by two after every refresh
cycle.

When STOP is found High again, the next refresh
cycle is completed; then the original instruction
fetch continues.

If the EPA bit in the FCW is set (indicating an
EPU is in the system), the STOP line is also
sampled on the falling clock edge immediately
preceding the second word of an instruction
fetch--if the first word indicates an extended
instruction. Thus, the STOP line can be used by
an [PU to deactivate the CPU whenever the CPU
fetches an extended instruction before the [PU has
finished processing an earlier one. The STOP line
can also be used to single-step the CPU.

9-15

'-D
..!..
'"

!?
en
6
;::;

!-ANY M CYCLE _ BUS AVAILABLE ~

CLOCK

BUSREQ

INTERNAL
BUSREQ

BUSACK

AS

SN

AD

I T, To Ta Tx Tx Tx

~--

~--------

)-_._-----

STO·ST3,
MREQ, DS, I

BIW, RlW, NIS)---------

Figure 9-9. Bus. Request/Acknowledge Tilling

Tx Tx Tx

~
CD ...
:l .,
.....
~
CD,
Pi
CD

:£
<n
6
W

'" ..!.

I" '" "I I .. REFRESH • I I .. REFRESH • I
T, T2 T, IT,. T2. T,. I I T'R T2R T'R I T, T,

CLOCK

STOP SAMPLED

STOP\ / \ / >OC J\'---_____ _

---S>-- <>- :~~~~~~ ~-
~INSTRUCTION

AD

AS

DS \ I

MREQ \ /\ /

STo-STa J IF, X,, ___________ _

B/W =-\ /
RlW HIGH

REFRESH
ADDRESS

v
~-

\ I
MEMORY REFRESH C

______ C

Figure 9-10. stop liiUng

,."
X
~
CD .,
~
III
.....
~
CD .,
~

III
CD

External Interface

9.7 ABORT REQUEST

The timing for an Instruction Abort operation is
shown in Figure 9-11. As shown, the CPU (l8003 or
l8004) monitors its A80RT input during each bus
transaction that is generated. If the ABORT input
is asserted during clock cycle T2 , then the
currently executing instruction is aborted. If no
abort is indicated, but input WAIT is asserted,
the ABORT input is tested during each added WAIT
cycle (T 2). When input ABORT is asserted, the
WAIT input must also be asserted for five cycles
to permit the CPU internal control mechanism to
abort the current instruction. When the WAIT
input is deasserted, the CPU will acknowledge any
pending interrupt request. The memory management
circuit that caused the instruction abort must
also initiate an interrupt. Input SAT is provided
for this purpose on the l8003, but any interrupt
input can be used with either the l8003 or the
Z8004. This interrupt will initiate the software
routine that will bring into memory the required
information and restart the interrupted mainstream
program at the exact point of interruption. Care
must be taken in the selection and use of the
interrupt associated with an abort to prevent a
higher-priority interrupt from occurring and being
processed between the abort instruction function
and the processing of the interrupt associated
with the abort.

9-18

9.8 RESET

A hardware reset puts. the Z8000 into a known state
and initializes selected control r8ljJisters of the
CPU to system sJ!lecifiable values (as e!escri4>eCil i'l'1
Chapter 7). A reset will begin at the end of 8Ao/

clock cycle, if the RESET line is low.

A system reset overrides all other operations of
the CPU, including interrupts, traps, b~

requests, and stop requests. A rese·t sAould b-e
used to initialize a system as part of the
power-up sequence.

Within five clock cycles of the RESET line
becoming Low (Figure 9-12) ADO-AD15 are 3-stated,
AS, DS, MREQ, BUSACK, MO, and STO-5T3 are forced
High, and SNO-SN6 are forced Low. The R/W, B/W
and N/S lines are undefined. Reset must be held
Low for at least five clock cycles.

After RESET has returned High for three clock
cycles, consecutive memory-read transactions are
executed in System mode to intitalize the Program
Status registers. These correspond to the memory
accesses described in Chapter 7.

ClK

AS

DS

ABORT

WAIT

SAT

NOTE * = Clock Sample :POInts

2084-007

VIRTUAL ADDRESS
ABORT

SAT
ABORT

(1'1)

r igure 9-11. Abort Request Hung

External Interface

ACKNOWLEDGE
CYCLE

9-19

External Interface

9-20

I I I I I I I

~ I~ I~ Ii Il

iii

:1 ...

2045-016

10.1 INTRODUCTION

The purpose of this chapter is to demonstrate how
the features of the ZBOOO CPU can be used to solve
typical software problems.
on specific programming
Section 10.12) • In the

The first half focuses
techniques (through
second half, fully

worked-out programs are presented for several
important or illustrative problems.

A goal of programming is to allow computer users
to deal with the high-level operations of their
applications and to escape from the details of
machine design and behavior. Many programming
techniques have been designed with this gosl in
mind. This section introduces some widely used
programming techniques and shows how they are
implsmented using the ZBOOO architecture and
instruction set.

10.2 DATA TYPES

All computer applications are based upon the
interpretation of collections of bits--as numbers,
text, logical flags, and so forth. The term data
type refers to a bit collection of specified size
and interpretation.

Every computer provides direct support for some
data types, and the programmer provides programs
to support the manipulation of other deeired date
types. The ZBDOD architecture provides direct
support for several frequently used data types and
the instructions for performing the operations
associated with them. These are described below.

Bits. A two-valued logical flag is the simplest
useful interpretation of s bit collection, and its
natural size is ona bit. Unlike many earlier com­
puters, the ZBODD has instructions that allow any
bit in memory or in any general-purpose register
to be set, tested, or cleared. Thus, any bit can
be used as a logical flsg, and flags can be packed
into words or bytes without undue increase in
processing overhead. M important application of

Chapter 10
Program ' Teehaiqu ..

this idea is a bit table, an array of 1-bit
logical flags stored in consecutive bits of
consecutive bytes of memory.

Digits. An important bit collection is a number,
and an important special case of numbers is a
decimal or hexadecimal digit. n,ese are most
conveniently represented by collections of four
bits (occasionally referred to as nibbles). The
ZBOOO supports digits with the RRDB, RlDB, and DAB
instructions, and the 0 and H bits in the Flags
register.

Bytes.
byte.

A collection of eight bits is called a
Almost all ZBOOO instructions that take

arguments have byte versions. (The Push, Pop,
Multiply, and Divide instructions are the only
important exceptions.) The two principal
interpretations of bytes are as signed whole
numbers and as codes for text characters. These
interpretations are not enforced by the hardware,
but some ZBOOO features are designed with one or
the other interpretation in mind. for example,
the Translate and Test instruction and the P
(parity) bit in the Flags register support the
text data type, while the arithmetic instructions
support signsd whole numbers. The ZBODO has 16
byte registers.

Words. A collection of 16 bits is called a word.
Almost all argument-taking instructions have word
versions. (The Block Translate and Test
instructions and the Decimal Arithmetic Support
instructions are the only exceptions.) The
principal interpretations of words are as signed
and unsigned whole numbers, ZBDOO instructions,
index values, and nonsegmented addresses. The
ZBOOO provides 16 word registers.

long Words. A collection of 32 bits is called a
long word. The principal interpretations of long
words are as segmented addresses and as signed and
unsigned whole numbers. The ZBDDO provides
long-word versions of its load, Push, snd Pop
instructions and supports 32-bit signed whole
numbers with long-word versions of its four main

10-1

Programming Techniques

arithmetic operations: add, subtract, multiply,
and divide. The lBOOO provides eight long-word
registers.

Quadruple .ords. The Long Multiply and Long
Divide instructions involve the use of 64-bit
signed whole numbers • Four quadruple-word
registers are provided for this purpose.

In addition to these data types, several other
collections of bits are manipulated by certain
lBOOO instructions.

Addresses. The LOA and LDAR instructions generate

and save addresses. Addresses are words or long
words, depending upon the segmentation mode of the
CPU at the time of execution.

Register Sets. The LDM instruction manipulates
register sets during the movement of information
between general-purpose registers and memory. A
register set consists of from 1 to 16 words stored
in contiguous memory locations or in consecutive
word registers.

Data blocks. The l8000 block instructions
manipulate data blocks, which can be from 1 to
65,536 words or bytes stored in contiguous memory
locations. An important special case of a data
block is a text string.

As subsequent examples illustrate, this larye
selection of data types offers Z8000 programmers
simple approaches to solving a wide variety of
programming problems.

10.3 ADDRESSING MODES

The l8000 addressing modes were chosen and
designed with the programmer's needs in mind. Here
is a brief summary of the ideas behind these
modes.

Direct Addressing. With Direct addressing, the
actual memory address of the argument is contained
in the instruction. This is especially useful in
programs assembled by hand and in "patches."

Register Addressing. This addressing mode allows
fast access to intermediate results. Almost all
two-operand instructions require the use of
register addressing for one of the operands.

Immediate Addressing. Immediate addressing is
similar to direct addressing, but the actual value
of the argument rather than its address is con­
tained in the instruction. Immediate addressing
can only be used for source arguments.

Indirect Register Addressing. In this mode the
address of the argument is in an address register
(a word or long-word Register, depending upon the
segmentation mode). Its variants, the Auto­
increment and Autodecrement modes, are used with
the Push and Pop instructions to implement stacks,
and with the block instructions to effect oper­
ations on sets of contiguous words or bytes in
memory. Indirect Register addressing is used when
addresses are passed as arguments to subroutines
and to implement more elaborate access techniques,
such as linked lists. Figure 10-1 is a simple

LDA RR2,X
LOOP: LOB RHO,®RR2

TESTS RHO

!RR2 = address of text array!
!Fetch next character!

10-2

JR l,ENDLP

LDB ®RR2,RHO
INC R3
JR LOOP

ENDLP: •••

!Done when NUL reached!
! (Modify the character·)!
!Replace character by modified character!
! Point at next character!

Figure 10-1. Exaq>le of Indirect Register Addressing

example of its use--;J loop to read successive
bytes of memory until a zero terminator is found
and to replace each byte with a modified value.

In this example, RR2 is used as an address
register to point at (that is, contain the address
of) successive bytes of a text string. Notice
that the instruction

INC R3

is used to point to the next byte. This takes
advantage of the way segmented addresses are
stored in registers but assumes that the text
string does not extend outside of the memory
segment. A later example deals with arrays that
extend beyond one segment.

Notice also that the instruction

is used to
register RR2.

LOA RR2,X

set the contents of the address
An alternative instruction is

LDL RR2,#X

but it should be avoided, because it needlessly
ties the Gode to a specific segmentation mode.

I"*" Ad!Dessintj. In the Index addressing mode, a
fixed address is stored ill the instruction and a
displacement is stored in a register. n,is
is required when an array is being processed using
a varying index. For example, consider the
following FORTRAN instructions:

DO 13 I = N1, N2
13 TABLE(I) = TABLE(I)+I

Programming TechniqlJes

This can be implemented using Index addressing as
shown in Figure 10-2.

Assume that the registers have been set:

RO cont ains N2
R1 contains N1 (R1 will be I)

Two-dimensional arrays can be handled easily by a
program that computes the offset associated with
an index pair • For examp le, suppose that the M x
N array of bytes TABLE is stored consecutively in
memory as follows:

TABLE(1,1), lABLE(2,1), ••• ,lABLE (M,1),
TABLE(1,2), ...

Each column is a one-dimensional array, and these
one-dimensional arrays are stored end to end in
contiguous bytes of memory. (TIlis format is
standard in FORTRAN.) A two-dimensional array can
be viewed as a one-dimensional array of dimension
MN, and the element TABLE(I,J) of the two­
dimensional array is the element TABLE([J-1]*M+I)
in the one-dimensional array. If R1 contains 1-1,
R2 cont ains J-1 , and R3 cant ains M, then the
following code loads TABLE(I,J) into RHO:

LD R5,R2
MUll RR4, R3
ADD R5,R1
LOB RHO,TABLE(R5)

!RR4 (xxx,J-1)!
!RR4 (0, [J-1]*M)!
!R5 [J-1]*M+[I-1]!

This code assumes that MN ~ 65,536. If this is
not true, then Index addressing cannot be used
directly and the assumption that the columns of
TABLE are stored end-to-end cannot be made.
Instead, J is used as an index to a table of
memory addresses (called a "dope vector"), and

LD R3, R1
SLA R3

LOOP:CP R1,RO

!Use R3 for actual offset!
!Assume two-byte entries!
!Is I > N2 yet?!

DONE:

JR GT,DONE
LD R2,TABLE-2(R3)

ADD R2,R1
LD TABLE-2(R3),R2
INC R1
INC R3,112
JR LOOP

!Done if so!
!TABLE(I) - FORTRAN arrays start at 1!
!T ABLE (I)+I !
!Replace original TABLE(I) value!
! Increment I!

figure 10-2. Use of Index Addressing

10-3

Programming Techniques

each of these addresses is the start of the
corresponding column. If R1 contains 1-1, RZ
contains J-1 and the table of column base
addresses is at an address contained in RR4, then
the following code loads TABLE (I,J) into RHO:

LO R3,RZ
SLA R3,'2
LOL RR6,RR4(R3)
LOB RHO,RR6(R1)

! R3 = 4*(J-1)!
!RR6 = address of ·Jth column!

This code uses Base Index addressing (see below).
It is so efficient that it can be used even when
MN oS. 65,536.

ror nonsegmented operation, Index addressing can
be used to simulate Base addressing (see below),
since addresses and offsets are both 16 bits. ror
example,

AOO RD ,S(R15)

adds the fifth word of the stack to RD. (NOTE:
If separate data and stack spaces are used, this
technique does not work. When R15 is used in the
Index addressing mode, the status outputs ST 3-STO
reflect data reference, not stack reference.)

In segmented mode, the same technique can be used
if the segment number is known when the program is
assembled. ror example, if the stack has been
assigned to segment 12 (that is, IH4 coptains
OCOO), then

ADO RO,«1Z»S(R15)

adds the fifth word on the stack to RD.

Use of Index addressing to simulate Base
addressing is helpful because Base addressing is
aveilable only with the Load instruction.

8_ Addressing. Base addressing specifies the
address of an argument as the sum of a

10-4

LOOP: LOB RHO,RR2('72)
CPB RHO,#%41

ENDLP:

JR EQ,ENDLP
ADO R3,#BO
JR LOOP

displacement contained in the instruction and a
base address contained in an address register.
ror example,

LO RD ,RR14(#S)

can be used in segmented mode to access the fifth
word of the stack.

The Base addressing mode is the key to a
subroutine argument-passing convention that uses a
stack (see Section 10.4).

Base addressing is useful in acceSSing items in
records or more general data structures of
predefined format, especially when the address of
the record in memory is not known in advance. ror
example, if a number of BO-character records have
been read into memory end to end starting at a
location specified in RR2, then the code shown in
rigure 10-3 steps through the records until one
is found in which the seventy-third character is
equal to 41H.

8_ Index AddrB8Sing. Base Index addressing
takes both the base address and the displacement
from registers. One example of it was shown above
in the code to handle large two-dimensional
arrays. other examples are shown in this chapter.

Base Index addressing is also useful in a
generalization of the record or data struct<.lre
example given in rigure 10-3. ror example, if the
termination condition were the presence of 41H in
eny of positions 73 through SO, the code of rigure
10-3 would appear as shown in rigure 10-4.

Relative Addressing. This is a variant of Base
addressing in which the base register is always
the Program Counter. It helps the programmer
produce position-independent code (see Section
10.6), and it leads to more compact code in many
cases. Also, if separate data and instruction
memories are used, the LOR instruction is the only

!Get 73rd character!
!Compare with %41!
!Done if equal!
!otherwise, point at next record!

Programming Techniques

LOOP: LD R4,'72
LOOP1: LOB RHO,RR2(R4)

CPB RHO,'''41
JR EQ,ENOLP

INC R4

!Set to 73rd position!
!Get R4th charecter!
!Compsre with "41
!Done if equal!

CP R4,#80
!Otherwise, give R4 next index!
ICompare position with last!

JR LT,LOOP1
ADD RJ,'80

!If not past last, try next position!
!Otherwise, point at next record!

JR LOOP
ENOLP:

Figure 10-4. Use of Base Index Addressing

way to refer to a constant that is assembled as
part of the program (except immediate data in
instructions) •

Further examples using the ZBOOO addressing modes
are given in the following sections.

10.4 STACKS

A stack is a last-in, first-out (LIFO) buffer of
finite but unspecified size. It is like a steck of
plates on a table in a room: plates can only be
added to or removed from the top and while there
is no preset msximum number of plstes, the room
does have a ceiling. Sometimes the metaphor used
ie a stack of plates on a spring in a well (as at
a steam table); this eccounts for the names PUSH
and POP used for the operations of adding or
removing items, but in the usual computer
implementations the items stsy fixed like plates
on a table.

In the ZBOOO, stecks are implemented as arrays of
declared fixed sizes, but an external memory­
mspping fecility allows stacks to be open ended,
with additional memory allocations made as
needed. The Push and Pop instructions are
designed to work with stecks thst grow downwsrd;
that is, the first item on the stack occupies the
highest-numbered memory location. Programs, on
the other hand, grow upward; that is, as eech
instruction is added to the program or as program
modules are linked together, higher and higher­
numbered addresses are used. This provides an
efficient way for a program and a steck to share
a given block of memory. The program can begin at

the lowest-numbered address and grow upward as
developments increase its size; the steck can
begin at the highest-numbered location and grow
downwsrd ss the program is executed. This is the
most flexible and efficient use of the spece. If
there is room for both the program and the steck
in memory, then memory is automatically sllocated
successfully.

A steck in the ZBOOO uses an address register to
keep track of the location of the top item (the
lowest-numbered item). The steck register slways
contains the address of the top item because of
the way PUSH and POP work. PUSH first decrements
the stack register by 2 or 4, csusing it to point
at the next free word or long-word location and
then stores its argument at that location. POP
first fetches the item pointed to by the steck
register, then increments the stack register.

Reference to items on a stack can be made using
the Base or Base Index addressing mode. For
example, if RR4 is a stack register, then RR4('O),
RR4(#2), and RR4(#4) refer to the top, second,
and third words on the steck, respectively. Also,
as previously explained, Index addressing can be
used to refer to stack items when the steck I s
segment number is known at assembly time.
Reference to stack items is illustrated in
Section 10.7, Subroutines.

The most common use of stecks is for dynamic
allocstion of temporary storage spece. The two
pieces of code in Figure 10-5 show how a program
can eccumulate words for future processing. The
first uses fixed temporary storage; the second
uses a steck.

10-5

Programming Techniques

!Accumulating words in a fixed buffer!

CLR R4 ! Word counter!
lOA RR2, BUF

LP: CALL GETWD
!RR2 always points at next free location!
!Get next word!

JR C,DONE
LD @RR2,RO
INC R3,fl2
INC R4

!If C set, no more to get!
!Store word, increment pointer!

!Count the word!
JR LP .

DONE:

!Accumulating words on a stack!

CLR R4
LP: CALL GETWD

!Word counter!
!Get next word!

JR C,DONE
PUSH @RR2,RO
INC R4

!If C set, no more to get!
!Store word, increment pointer!
! Count the word!

JR LP

DONE:

figure 10-5. Accunulation Of Words Within A fixed Buffer And ()-o A stack

In the first piece of code, a buffer called BUF is
allocated to the program at assembly time. Each
time this code is executed, words are stored in
this buffer, starting at the beginning of the
buffer; Tt"le second piece of code has no storage
of its own; every time it is executed it stores
words on the stack controlled by RR2. It is
assumed that the system initializes this stack
before the process including this code begins
running.

Using a stack in this way has several advantages:

• The total amount of space needed by the stack
is usually less than the amount required by
fixed allocation.

• Storage mangement is separate from the
implementation of the function. This tends to
simplify the implementation of functions.

• Program functions can be encoded in ROM more
easily and management of RAM can be localized.

• It is easier to make program functions
shareable (see below); in the preceding
example, several different sets of words might
have been accumulated in different parts of the

10-6

stack by different calls on the code. This
would not be possible with the fixed-buffer
accumulation.

Thera are also soma disadvantages to lIsing stacks
in this way. In general, programs that use a
stack must leave it exactly as they found it;
every item pushed onto the stack must be popped
off before completion of the program. This is
because the same stack used by the program that
calls the given program is also used by programs
called by the given program. For example,
consider the following code:

PUSH @RR4,RO
CALL SUBR
POP RO,@RR4

This is a common means of saving a value, in this
case RO, that would otherwise be destroyed by the
intermediate operation, in this case CALL SUBR.
But this procedure fails if the SUBR routine does
not leave the stack controlled by RR4 exactly as
it was found.

The requirement that each program regulate its
stack use can make checkout difficult, since a
subroutine's failure in stack management can lead

to anomalies in the behavior of the calling
program. The symptom and cause can be in
seemingly unrelated portions of the program.
Also, there is a dedicated stack register used for
subroutine calling; failure in its management
can cause symptoms that are difficult to recognize
and usually interferes with the standard checkout
procedures.

Dynamic allocation of temporary storage leads to
another checkout problem: it is difficult to
examine memory after the fact to look for the
causes of anomalous behavior. A desired piece of
information may have been overwritten, and it is
difficult to determine where a given program
stored its intermediate or temporary data.

In general, stack use is not as flexible as the
use of dedicated storage. For example, in the
preceding code, once the words are accumulated in
BUF, they are processed any way the programmer
desires. Index addressing of the form

ADD R1 ,BUF(R2)

makes the fixed buffer a random access memory.
With a stack, on the other hand, only the top item
is easily available. other items can be accessed
using Base or Base Index addressing of the form

LD Rl, RR6(112)
LD R2,RR6(RJ)

If the stack segment number is known when the
program is assembled, the Index addressing mode
can be used, as in the preceding ADD example. For
example:

ADD R1, «seg no»2(R7)

adds the next-to-last word received to R1.

DONE: SLA R4
JR Z,FINIS

GETNXT: DEC R4,1I2
LD RO,RR2(R4)

Programming Technique~

The stack addressing methods described allow items
in memory to be examined without giving up their
places (as happens with POP), but the offsets (112
or R3 in the above lines) are measured from the
top of the stack, that is, from the last item
placed there. To process the items in a first-in,
first-out (FIFO) order requires a complicated
computation that can lead to errors. For example,
referring to the sample code of Figure 10-5 for
accumulating words on a stack, Figure 10-6 shows
the code at DONE that allows the words to be
examined in the order received.

Stack initialization is straightforward. The
stack register must be set to the address one word
above (that is, at a higher-numbered address than)
the first word to be used by the stack. This
works regardless of whether words or long words
are used. (In fact, there is no problem with
mixing words and long words on a stack, as long as
any item pushed with a PUSHL instruction is popped
with a POPL instruction.) So, for example, if a
stack uses locations FOOO-FFFF of segment 6, the
first word used by the stack is at location FFFE.
The stack register should be initialized to
segment 6, offset zero.

Boundary protection has two aspects: overflow and
underflow. Overflow occurs when all locations
assigned to a stack have been filled and another
push is attempted. Underflow results from an
attempt to pop items from an empty stack. The
Push and Pop instructions provide no direct
support for boundary protection. This is achieved
in software by using push and pop subroutines that
check for overflow or underflow before pushing or
popping. An external memory management facility
can also help detect stack overflow.

The preceding discussion applies to all stacks in
the l8000. The l8000 automatically uses stacks

!Multiply by II bytes/word!
!No words to examine!
!Convert count to offset!
!Fetch the word from the RR2 stack!

!(Process the word)!
TEST R4 ! R4 contains II of bytes remaining!
JR NZ ,GETNXT

FINIS:

figure 10-6. Exalination Of Words In The Order Received

10-7

Programming Techniques

for subroutine calling and for saving CPU status
on traps and interrupts, and for these purposes an
implicit stack register is used. The implicit
stack register is R15 for non segmented operation
and RR14 for segmented operation. Furthermore,
there are two copies of the implicit stack
register, one for system mode operation and one
for Normal mode. In ordinary 'operation, each is
referred to as R15 or RR14, but when referring to
the Normal mode stack register while operating in
System mode, the LDCTL instruction is used with
the argument NSP (in non segmented operation) or
the arguments NSPSEG and NSPOFF (in segmented
operation). It is not possible to refer to the
System mode stack register while operating in
normal mode.

There are several points about this implicit stack
register that are important to understand:

• When the implicit stack register is used as an
address register (that is, in a Push or Pop
instruction in the Indirect Register mode) or
as a base register in the Base or Base Index
modes, the status lines ST3-STO reflect stack
reference status rather than data reference
status.

• An interrupt can occur between the execution
of any two Z8000 instructions (or even between
repetitions in the block instructions). The
System mode impUcit stack register is used
for saving the CPU status, so it must never
contain a higher-numbered address than that of
any location containing stack data.

• The Normal mode implicit stack register is not
involved in the processing of interrupts, but
it is used for saving subroutine return
addresses in Normal mode. Therefore,
whenever a subroutine call is made while
operating in Normal mode, the Normal mode
implicit stack register must not contain a
higher-numbered address than that of any
location containing stack data.

Although the significance of these points may not
be immediately obvious, they need to be considered
when the stack is used other than as a last-in,
first-out (LIFO) buffer accessed only with Push
and Pop instructions.

One approach to processing stack items in an order
other than last-in, first-out is to alter the
value of the stack register temporarily. For
example, after pushing five words onto the stack,

10-8

one might wish to increment the stack register by
10 and step through the words in the order
received, decrementing the stack register by two
before each access. At the end of this process,
the stack register returns to its correct value.
This works with any other stack (assuming no
pushes or pops are done on it during the
processing), but with the System mode implicit
stack register, any trap or interrupt causes CPU
status to overwrite a portion of the five words
being processed. This technique can be used with
the Normal mode implicit stack register provided
that no subroutine calls are executed in the
course of processing.

One approach to processing stack items that avoids
these problems is to move the stack register
contents into some other address register and then
treat the stack data in question as an array (or
other data structure) addressed by the new address
register. Additional pushes and pops on the stack
(such as those caused by traps, interrupts, or
subroutine calls) are then handled correctly
without affecting the processing of the stack
elements. There are two potential problems with
this approach:

• When the contents of the implicit stack
register are moved into another address
register and the other register is used for
referring to the stack items, the status
outputs ST3=STO will show data reference.
Thus, this technique cannot be used without
modification if the status outputs are used
for directing references to separate data and
stack memories.

• The programmer must be careful in using
addresses that point into the stack. Since
the stack storage is allocated dynamically,
the same stack memory locations can be used in
other ways that change their contents.
Naturally, a change to the stack location
contents before they are completely processed
can only occur as the result of a programming
error, but this sort of error is easy to make,
especially if a stack management scheme is
being used. Furthermore, there is no way to
determine by examination of the saved stack
address whether the contents are still valid.

A similar technique, subject to the same potential
problems, is to use the stack for temporary
storage of an array, character string, or other
data structure and to pass the address of that
structure to a utility subroutine for processing.

The called program generally does not use the
implicit stack register as an address register for
processing the structure.

Since the lBOOO architecture does not allow words
to be stored at odd addresses, and since an
interrupt can occur at any time, the system mode
implicit stack register must never contain an odd
address. For this reason, pushes and pops of
bytes cennot be allowed on the system mode
implicit stack register. This is most easily done
by providing for no byte Push and Pop
instructions.

Saving byte registers can be accomplished by
seving the entire word register. Restoring byte
registers without disturbing the other half of the
word register must be simulated. For example, if

PUSH IItRRB, RO

is used to simulate PUSHB IIIRRB,RLO, then POPB
RLO,IIIRRB can be simulated by

LOB RLO,RRB('1)
INC R~,#2

10.~ CONDITION CODES

Condition codes are names for logical combinations
of flags bits. There are eight such combinations
and an opposite for each, for a total of 16
condition codes. Of the eight, one is "always
true"; four are single-bit combinations (C = 0, V
= 0, S = 0, l = 0), and three are multi-bit
combinations [S XOR V = 0, l OR (S XOR V) = 0, C
OR l = 0].

Because the condition codes are designed for use
in a variety of lBOOO applications, some of these
combinations have more than one name. Following
are some typical applications and the condition
code names associated with them.

Aritt.etic Result Testing. An arithmetic
operation (for example, ADD RO,R1) ill performed
and the result is used for conditional control
(for example, a branch).

Programming Techniques

Code Meaning ~te Code

l Result is lero Nl Non-Zero
MI Result is negative PL Plus

(MInus)
C Carry (or borrow) NC No Carry

occurred
OV OVerflow occurred NOV No OVerflow

Logical Result Testing. A logical operation (for
example, AND RO, R1) is performed and the result
is used for conditional control.

Code

l
PE

Resul t is Zero
Parity is Even

(byte op only)

",posite Code

Nl
PO

Non-lero
Parity Odd

Arithnetic co.parison. Two arithmetic values are
compared by CP a,b (for example, CP RO,R1). The
relationship between the values is to be
determined.

Code Meaning ",posite Code

EQ a = b Equal NE Not Equal
LT a < b Less Than GE Greater or Equal
LE a < b Less than GT Greater Than

or Equal

Unsigned Arithnetic co.parison. Two unsigned
values (for example, addresses) are compared by
CP a,b (for example, CP RO,R1). The relationship
between the values is to be determined.

Code Meaning ",posite Code

EQ a = b Equal NE Not Equal
ULT e < b Unsigned Less UGE Unsigned Greater

Than or Equal
ULE a,S,b Unsigned Less UGT Unsigned Greater

than or Equal Than

MiscelI_oua Situations. There are many ZBOOO
instructions (for example, MREQ, shift instruc­
tions, block instructions) that set specific flags
bits in other ways. Also, the programmer can use
the flags bits for passing information between

10-~

Programming Techniques

routines. SETFLG and RESFLG are provided for this
purpose and any of the 16 combinations can be
tested using any of the available names.

Code Maaning ~posite Code

Ll 5 XOR V = 1 GE
LE (5 XOR V) OR I = GT
ULE C OR Z = 1 UGT
OV,PE,V* V = NOV,PO,NV*
MI,S* 5 = PL,NS*
I,EQ I = NI,NE
C,ULl C = NC,UGE

(*V, NV, 5, NS not recognized by all assemblers)

It is important to understand the operation of the
fest instruction. TEST sets 5 and I to reflect
the value of its argument; that is, 5 is set if
the high-order bit of the argument is set, and Z
is set if the value of the argument is not set.
The only other bit set is P/V. For byte arguments
it is set to reflect the parity, for long-word
arguments it is undefined, and for word arguments
it is unaffected. C is always unaffected by TEST.

MI and EQ are the only condition codes solely
dependent upon I and 5, so there is no easy way to
determine whether the tested argument is less than
or equal to zero. There are several ways around
this:

• CP a, #0 can be used instead of TEST a; C,
I, 5, and V will be set according to their
arithmetic meanings. This works for byte,
word, or long-word arguments.

• For word arguments only, if V is clear, TEST a
can be used; if a ~ 0, then LE is true.

• TEST a can be followed by two tests:

TEST a
JR LT,X
JR EQ,X

(come here if a > 0)

X: (come here if a ~ 0)

This works for byte, word, or long-word arguments.

It is often desirable to postpone the testing of a
condition until after the execution of instruc­
tions that must be performed regardless of the
outcome of the test. For this reason, Z8000

10-10

instructions do not change the settings of the
flag bits except to report the outcomes of their
operations. In particular, the transfer
instructions (CALL, CALR, JP, JR, REf) and the
data-moving instructions (CLR, LD, EX, SET, TCC,
etc.) do not affect the flags bits. For example,
in the code of Figure 10-7, the result of the
addition is stored via the pointer RR4,
regardless of the values of the flag bits.

ADD RO,R1
LD IIDRR4,RO

JR OV,W
JR l,X
JR MI,V

!(otherwise come here)!

Figure 10-7. Test Instructions

If the LD I!!IRR4,RO instruction affected the flags
bits, it could not be placed before the tests.
Instead, a LD I!!IRR4,RO instruction would have to
appear at each of the four locations to which
control might pass as a result of the testing, and
the code would take the form shown in Figure 10-8.

W:

X:

ADD RO,R1
JR OV,W
JR l,X
JR MI, V

LD tlRR4,RO

LD GlIRR4,RO

LD GlIRR4,RO

V: LD I!!IRR4,RO

Figure 10-8. ExBIIIPle With LDlRR4,RO Instruction

If, however the example in Figure 10-7 required
the unconditional execution of

INC R5,#2

after the LO instruction (to point RR4 at the next
word of storage), the INC instruction could not
have been placed before the conditional JR
instructions, since INC affects l, 5, and V.
(However, POP RO,@RR4 would solve that
difficulty.)

To avoid duplicating the increment instruction at
each of four locations in the program, the Flags
register can be saved and restored as follows:

LOCTLB RH6,FLAGS
INC R5,fl2
LOCTLB FLAGS,RH6

The saving and restoring of the Flags register is
not a privileged operation.

One important use of flags bits is based upon the
ability to postpone testing: passing information
back from subroutines. For example, consider the
routine in Figure 10-9.

This routine might be called in a sequence like

Programming Techniques

LP: CALL GETCH
CALL TSTHEX

!Get next char into RLO!
!Is it hex?!

JR C,X !C=1 means "no"!
! (Code for the case: char is hex)!

JR LP
X: !(Code for the case: char not hex)!

JR LP

There are several advantages in using condition
codes this way:

• Registers are undisturbed. The flag bits are
usually available, since they cannot be used
for long-term storage. If registers are used
to pass this kind of information, additional
instructions are necessary for saving and
restoring previous register values.

• The calling routine can ignore the information
if it is irrelevant to the specific case.
This is in contrast to the commonly used
technique of signaling different conditions by
returning to different locations (for example,
to the first or second word after the call).

!Test the ASCII character in RLO to see whether it is a hex digit.

CALL TSTHEX; RLO = the character
Return with registers unchanged and C=O if a digit, C=1 if not.

ASClER='630; ASC9=ASClER+9
ASCA='~41 ; ASCF =ASCA+5

TSTHEX: CPB RLO,flASClER
JR ULT,NOTHEX

CPB RLO ,IIASC9
JR ULE,ISHEX

CPB RLO,flASCA
JR ULT,NOTHEX

CPB RLO,flASCF
JR ULE,ISHEX

NOTHEX: SETFLG C
RET

ISHEX: RESFLG C
RET

!0-9 range!
!A-F range!

!Compare with "zero"!
! All digits are > "zero"!
!In "0" to "9" range?!
! Yes--success!
!Now try "A" (> "zero")
! Between "9" and "A"--fail!
!In "A" to "F" range?!
!Yes--success!
! Return C=1!

! Return C=O!

Figure 10-9. Exa.ple, Testing an ASCII Dlaracter

10-11

Proqramming Te~hniques

This difference is especially important if the
return of an error condition is being added to
an existing routine. In this case, existing
calls do not need to be modified immediately.

• The use of flag bits takes advantage of the
lBOOO's conditional instruct ions.
other than "returns to different
has to be followed by a testing

Any scheme
locations"
procedure,
flag bits which would

anyway.
involve the use of

The technique of using flag bits to return
information from subroutines can be adapted for
use with "system call" routines as well, so a
sequence such as the following is possible:

SC IIHXTEST
JR C,X

This sequence cannot be accomplished by using the
SETFLG and RESFLG instructions in the system
routine. System routines called through the SC
mechanism behave like interrupt routines: CPU
status (inc luding flags) is saved on the R15 or
RR14 stack when the SC is executed, and it is
restored from the stack when the I RET is
executed. Therefore, the copy of flags saved on
the stack must be modified to reflect the desired
returned settings. Modification of stack
locations by called programs is tricky. For
p.xample; when the SC trap first occurs, the s:,Wed
FCW is the second word on the stack; it can be
accessed as R15(U2) or RR14(U2). If the SC
handling program then calls the subroutine
corresponding to the given index (UHXTEST in the
example above), the subroutine return is stored on

SCOISP: EX R13,®RR14
PUSH ®RR14,R12
PUSH ®RR14,RO
LOB RLO,RR14(1/7)

the stack. Access to the saved FCW is then done
as R15(1I4) or RR14(116). If the called subroutine
begins by saving registers, the offset changes
again. For example, after a

PUSHL ®15,RRO
or a

PUSHL ®RR14,RRO

the new offsets become R15(1IB) and RR14(U10).
Similarly, each time the processing routine calls
a subroutine or uses the stack For temporary
storage, the situation changes.

Not only is changing the FCW value saved on the
stack potentially error prone, but the type of
error that can occur is serious. Thus, change to
the saved FCW value is better done by the
SC-dispatch routine, the routine whose address
appears in the program status area entry
corresponding to the SC trap. An SC-dispatch
routine to accomplish this is shown in Figure
10-10.

Many variations on this dispatch mechanism are
possible, depending on the system in which it
functions. This example illustrates the use of
condition codes, but is not a model SC dispatcher.

10.6 POSITION-INDEPENDENT PROGRAMS

A position-independent program is one that can be
moved to difFerent locations in memory without
changing its behavior. The instructions and
program constants are in a Fixed order, but their

!Save RR12, get "reason" into R13!

!Use RLO to pass saved FLAGS!
!(OFfset of FLAGS is 7 aFter above
saves) !

!(Code to compute processing subroutine
address From "reason" and leave it in RR12)!

CALL ®RR12 !Call processing routine!
JR C,NOMSG !Oont use updated FLAGS!

LOB RR14(1n),RLO !Update flags on stack!
NOMSG: POP RO,®RR14 !Restore RO!

POP R12,®RR14 ! Restore RR12!
LO R13,@RR14
IRET

Figure 10-10. Ex~le of Using An SC-Dispatch Routine To Change To A Saved FCW

10-12

behavior does not depend upon the actual addresses
of the memory locations where they are stored.

An example of a position-independent program is
the subroutine TSfHEX of Figure 10-9. Figure
10-11 contains an assembled version of this
subroutine starting at location 1000H.

1000 OAD8 3030 TSTHEX: CPB RLO,#ASClER
1004 E709 JR ULT,NOTHEX
1006 OAD8 39}9 CP8 RLO,#ASC9
100A [J08 JR ULE,ISHEX
100C OA08 4141 CPB RLO,#ASCA
1010 E703 JR ULT, NOTHEX
1012 OA08 4646 CPB RLO,IIASCF
1016 D02 JR ULE,ISHEX
1018 8081 NOTHEX: SETFLG C
101A 9E08 RET
101C 8083 ISHEX: RESFLG C
101E 9E08 RET

Figure 10-11. AssetIbled Version Of s.broutine
TSTHEX

Because of Relative addressing, the hex values of
the instructions remain the same wherever the
program is assembled. This is true despite the
fact that the symbols NOTHEX (at location 1018)
and ISHEX (at location 101C) are referred to by
instructions in the program. To understand this,
consider the two instances of the instruction

JR ULT,NOTHEX

The hex values corresponding to these two
instances are not the same, because NOTHEX is
used in these two instructions simply as a
convenience to the programmer. They are actually
two different instructions:

JR ULT,$+lII14

JR ULT,$+lII8

In other words, these instructions do not rely on
the fact that NOTHEX is at 1018H. Instead they
require the destination to be 14 or 8 locations
after the location containing the instruction.

Position-independent programs contribute in
several ways to achieving modularity. One way is
by using "silicon software." Imagine a set of
programs, each available on a ROM, that provide a

Programming Techniques

variety of software tools, such as a debugger, an
editor, and a text-formatting program. If each of
these programs is position-independent, the system
dasigner can select from among these ROMs and
aSsign a set of memory addresses to each, thus
building a custom-tailored system. A variation of
this idea is a "demand loading" memory system that
loads position-independent programs from secondary
storage into any available RAM area whenever calls
are made on them.

As another example, consider a debugging program
that can be loaded into RAM wherever space is
available. For example, it could reside in a
buffer area while the initialization code was
executing and then move to overlay the
initialization code while the program used the
buffers.

These examples show some of the uses of position­
independent programs. When writing position­
independent programs, the main rule is, "Don 't
use addresses in instructions." Addresses in
instructions are generally used in the Direct and
Index addressing modes and as immediate argu­
ments. Direct and Index addressing cannot be used
in position-independent programs except when Index
addressing is used as previously described to
simulate 8ase addressing. The use of addresses
as immediate arguments should be avoided. The same
result can be achieved with the LOA and LOAR
instructions.

Relative addressing--the CALR, JR, LOR, and LOAR
instructions--is the principal tool available to
the programmer writing position-independent
programs. Another important tool is the use of
fixed-location utilities called from position­
independent programs. For example, in a demand­
loading scheme, segment zero might be dedicated
to routines that are always resident. If so, the
first 2~6 bytes of segment zero can consist of
subroutine entry points, and calls can be made on
these subroutines by using Direct or Index
addressing from position-independent programs.
(The first 2~6 bytes of each segment can be
addressed by using a short segmented address.)
The system call trap can also be used to access
system routines from position-independent
programs.

Many variations on these ideas are possible,
depending on what is to be fixed and what is to be
position-independent. Use of the stack for
temporary storage automatically achieves position

10-13

Programming Techniques

independence of the data. If the stack is not
used, position independence of data can be
achieved using the LDAR instruction, the Indirect
Register, or the Base and Base Index addressing
modes.

The kind of position independence discussed here
is an independence from the particular range of
addresses assigned to the program. Another kind
of position independence is provided by, an
external memory-mapping facility, which allows a
given address range to correspond to different
physical memory locations.

10.7 SUBROUTINES

The principal property of ZBOOO subroutines is
that they use RET as an exit so that they can be
called from more than one place. Invocation of
subroutines is accomplished with the CALL (or
CALR) instruction. CALL and RET perform
comp lementary functions. When a CALL (or CALR)
instruction is executed, the address of the
following memory location is saved on the RR14 or
R1~ stack. Then transfer is made to the address
specified in the CALL instruction. When a RET
instruction is executed, the address on top of the
RR14 or R1~ stack is popped into the PC; that is,
it is removed from the stack and a transfer to
that address is made.

In this way, the programmer can encode commonly
used functions in one place and then make use of
them by CALLs whenever they are needed. The CALL
of the given subroutine is like another
instruction added to the CPU's instruction set.
This is the most important tool of the assembly
language programmer; it allows instructions to be
used that are relevant to the application at hand,
thereby simplifying and clarifying assembly
language programs.

The CALL and RET instructions provide the
subroutine calling mechanism but do not dictate a
specific means of argument passing. For example,
if a subroutine is needed to compute the square
root of a number, the programmer must decide how
to specify that number to the subroutine. The
progranuner must also decide how the subroutine
will report the answer.

There are three commonly used methods for argument
passing:

10-14

• In a register
• On a stack
• In the program, in locations following the

call

Each of these methods can be used to pass actual
arguments or to pass the address of an argument
table.

The return of answers to the calling program has
four commonly used options:

• In a register
• On a stack
• By returning to addresses at varying offsets

from the CALL
• By manipulating flag bits

The use of registers for subroutine argument
passing and result returning is the most popular
and most efficient option. For example, to
implement the FOR1RAN statement Y=SQRf(X) the
following code can be used:

LDL RRO,X
CALL SQRT
LDL Y,RRO

!Get X!
!Compute square root!
!Store in Y!

Here the subroutine SQRT takes its argument in RRD
and returns the answer in RRD.

Tne code for a SQRT routine that takes arguments
and returns results on a stack might be:

PUSHL aRR6,X
CALL SQRT
POPL Y,Il!IRR6

This assumes that a stack controlled by RR6 is
available for use in argument passing.

There are times when passing arguments on a stack
is preferable to using registers. There might be
more arguments than can be accommodated in the
registers, or it might be desirable to make the
subroutine re-entrant (see Section 10.B). When a
stack is used for passing arguments, the
subroutine usually uses the Base or Base Index
addressing modes to refer to them. For example,
suppose that the subroutine BIGSQRT accepts an
array of 14 numbers on the RR6 stack an~ replaces
each with its square root. The code might look
like that of Figure 10-12.

BIGSQRT: LDK RZ,#14
CLR R3

LOOP: LDL RRO,RR6(R3)
CALL SQRT
LDL RR6(R3) , RRO
INC R3,#4
DJNl RZ,LOOP
RET

!Set argument Counter!
!Initialize index!
!Get next arg!
!Compute square root!
! Store it back!
!Arguments are 4 bytes!
ILoop if more arguments I

Programming Techniques

Figure 10-12. Ex8llple Using a stack For Passing Ar~s

In non segmented operation or in segmented
operation when the stack segment number is known
at assembly time, Index addressing can also be
used to refer to stack items. The passing of
arguments by including them in the program
following the CALL, and the return of status
information by returning to addresses at varying
offsets from the CALL, are illustrated in the
following code:

CALL SQRT
X
V

ICompute square rootl
IAdr of argument!
!Adr at which to store result I

JR NEGX I Error return: X was negative!
(Execution resumes here if no error)

The subroutine SQRT used with this sort of call
might look like the one in Figure 10-13.

The code makes it apparent that this is an awkward
means of passing information. It was originally
developed for computers that had few registers and
no multiple-word instructions and that stored
their return addresses in the subroutines rather

SQRT: LDL RR12,®RR14
LDL RRZ,IlIRR12
LDL RRO,OORZ
INC R13,fl4
LDL RRZ,OOR12
INC R13,fl4
TESTL RRO

JR MI,ERREX

than on a stack. It is not well suited to the
lBOOO.

Often it is convenient to use an argument table
whose address is passed to the subroutine. The
subroutine refers to the table elements as it
would to arguments on a stack--it uses Base or
Base Index addressing. An example of such a table
is given in Section 10.13.4

The flag bits provide a convenient means of
passing error or status information back from a
subroutine. Since RET does not affect any flag
bits, a condition can be set in a subroutine and
tested in the calling program. For example, the
SQRT routine might use C to indicate that an error
condition prevented it from computing a square
root. The calling program might look like this:

LDL RRO,X
CALL SQRT

JR C,ERREX
LDL V,RRO

IGet saved return!
IGet address of X!
IThen get X itselfl
IStep over adr of XI
IGet address of V!
IStep over adr of VI
I Test XI
! Error if X < O!

IGet the argument I
ICompute the square root!
!C set if error!
IStore the result!

INC R13,#Z
I (Compute square
LDL ®RRZ,RRO
LDL IlIRR14,RR12
RET

!Step over error exit I
root) I

I Store in VI
ERREX: IPut updated Return adr on stackl

Figure 10-13. Ex8llple, Subroutine SQRT

10-1~

Programming Techniques

10.8 RE-ENTRANT PROGRAMS

Often in computer systems, two or more distinct
processes seem to be running simultaneously.
Actually, the computer alternates between these
processes, dropping each one in turn, then picking
it up at the point at which it was dropped. Since
the CPU's most fundamental resources are generally
not duplicated, the two processes share them. For
example, the values of the FCW and the PC being
used for one process must be saved before they are
set to the values appropriate for the next
process. There are other resources that may need
to be saved, such as the general-purpose registers
and memory. The context of the processes is the
total set of registers and memory that needs to be
saved for each process when it is suspended and
later restored. The operation of saving one
context and restoring another is called context
switching.

Calling Program (in segment 6)

A re-entrant program is a program that can be used
simultaneously by two or more processes. A
program is re-entrant if, and only if, it refers
only to registers and memory locations that are
included in the process contexts.

One example of concurrent processes arises when
interrupts are used. In this case, the CPU
provides for the automatic saving of the PC and
FCW. Let us assume that we are working with a
system in which every interrupt-processing routine
saves and restores RRO and RR2. Figure 10-14
shows three pieces of code that form the basis of
an extended 11 tustration of how re-entrancy is
achieved.

The routine MULTEN is re-entrant, since it refers
only to registers and memory locations in the
context assumed above. The references to RR14(H4)
are to a location in the context. This is because
the contents of RR14 (or R15 in the nonsegmented

100 93E3
102 5FOO 0600 2000
108 97E3

PUSH ®RR14,R3
CALL MULTEN
POP R3,®RR14

! Put argument on stack!
!Multiply it by 10!
!Return argument to R3!

10-16

10A

MULTEN Program (in segment 6)

2000 31E1 0004
2004 B02A
2006 9920
2008 33E1 0004
200C 9E08

MULTEN: LD R1,RR14(H4)
LOK R2,H10
MULT RRO,R2
LO RR14(H4),R1
RET

Interrupt-Processing Program (in segment 8)

600 91EO IROUT: PUSHL ®RR14,RRO
602 91E2 PUSHL ®RR14,RR2
604 31EO 0008 LO RO,RR14(H8)
608 93EO PUSH ®RR14,RO
60A 5FOO 0600 2000 CALL MULTEN
610 97EO POP RO,®RR14

!Get argument!
! Constant Multiplier!
! 10 x argument!
!Replace arg with result!

! Save!
registers!

!Get "reason"!
!Compute!

10 x "reason"!
!RO gets 10 x "reason"!

------------------ !(Perform other tasks)!
630 95E2 POPL RR2,®RR14 ! Restore!
632 95EO POPL RRO,®RR14 registers!
634 7BOO IRET

Figure 10-14. Re-entrant IIlLTEN Routine, a Calling Progr8lll, and an Interrupt-Processing Progr8111

case) are implicitly saved and restored in
switching to and from interrupt processing, and
all memory locations at a positive offset from the
base defined by RR14 are, in effect, separate
copies of that portion of the context.

The example shows how the execution of MULTEN,
called from the code starting at 100, is
interrupted to allow the interrupt-processing
routine IROUT to run. In turn, IROUT calls MULTEN,
so MUL TEN must work simultaneously in two
contexts.

This example follows the changing contents of the
registers RO, R1, R2, R3, RR14, PC, and fCW, and
shows the section of the stack used during
execution of this portion of the program. figure
10-15 lists the assumed initial values.

Registers
~ Contents

RO 0000
R1 1111
R2 2222
R3 0003
RR14 (0400,009A)
PC (0600,0100)
fCW DBBO

stack
Address Contents

(none used yet)

Figure 10-15. Initial Values For Registers,
PC and Few For [xaaple

As the first instruction, at 100 of segment 6, is
executed, the stack register value changes to
(0400,009B) and stack location 9B contains 0003,
the contents 0 f R3. The PC is incremented to
(0600,0102), and everything else is unchanged.
The next instruction is the call to MULTEN.
figure 10-16 shows the status following that call.

Register stack
~ Contents Address Contents

RO
R1
R2
R3
RR14
PC
fCW

0000
1111
2222
0003
(0400,0094)
(0600,2000)
DBBO

9B
96
94

0003 argument
010B saved PC
0600

Figure 10-16. Values After Call To
MlLTEN FrOlR 102

Programming Techniques

figure 10-17 shows the situation after the first
two instructions of Multen have been executed.
Suppose at this point that an interrupt occurs and
that IROUT is the processing routine. figure
10-1 B shows the status immediately following the
interrupt. The first two instructions of IROUT
push RRO and RR2 onto the st ack • Then the
"reason" is fetched and pushed onto the stack as
an argument for the call to MULTEN. MULTEN is
called, and after the first two instructions of
MULTEN have been executed, we are exactly where we
were before the interrupt. figure 10-19 shows the
new status.

Register
~ Contents

RO 0000
R1 0003
R2 OOOA (10 = %A)
R3 0003
RR14 (0400,0094)
PC (0600,2006)
fCW OBBO

stack
Address

9B
96
94

Contents

0003
010B
0600

figure 10-17 status Before the Interrupt

Registers
~ Contents

stack
Address Contents

RO
R1
R2
R3
RR14
PC
fCW

0000
0003
OOOA

9B
96
94

0003 92
(0400,00BC) 90
(OBOO,0600) BE
OBOO* BC

0003
010B
0600
2006 saved PC
0600
OBBO saved fCW
0005 "reason"*

*To make the example concrete, assume a value of
0005 for "reason" and an fCW value of OBOO
associated with the interrupt.

Figure 10-18. status I.-liately Following the
Interrupt

The stack locations 7E, BO, and B2 in figure 10-19
play the same role as did 94, 96, and 98 in figure
10-17. If the contents of stack locations 84 thru
98 in figure 10-19 are covered up, there would be
no essential difference between the two figures.
The only record of the first execution of MULTEN
is stored in these stack locations. Conversely,
in figure 10-17, if the portion of the stack with

10-17

Programming Techniques

Register
Name Contents

Stack
Address Contents

RO
R1
R2

0000
0005
OOOA

9B
96
94

0003 Argument & return address for first (interrupted) execution of
010B MUllEN
0600

R3 0003 92
RR14 (0400,007E) 90

2006 CPU status & "reason" pushed automatically when the interrupt
0600 occurred

PC (0600,2006) BE DBBO
FCW DBOO BC 0005

BA
BB

0003
0000

RRO,RR2 values saved by IROUT (contain register values set
during first execution of MULTEN)

B6 0003
B4 OOOA
B2 0005 Argument & return address for second execution of MULTEN
BO 0610
7E OBOO

Execution of MUllEN is at the exact point reached before the interrupt (Figure 10-17). Every
value in Figure 10-17 is somewhere on the stack in this figure.

Figure 10-19 Current and Saved Contexts for IIILTEN

addresses 100 through 114 were shown (nothing
tells us where the stack originally started), the
context of a previous execution of MULTEN might be
found.

Assume that execution proceeds without further
interrupts. MULTEN computes 5 x A and stores the
result at stack location 82 [at RR14(U4)]. Its RET
causes the contents of 7E and BO to be popped into
the PC and execution resumes in IROUT, where the
0032 (5 x A) is popped into RO and presumably is
used in the "perform other tasks" section of
IROUT.

When execution in IROUT reaches 630, the RR2 and
RRO values are restored from the stack. At this
point, status is exactly as shown in Figure 10-1B,
except that the PC (and possibly the FCW) has a
different value. The execution of the IRET
restores the saved values of PC and FCW, leaving
the status originally shown in Figure 10-17.

Register
Name Contents

RO 0000

Execution of MUllEN proceeds at 2006 as if there
had never been an interrupt. The result of 3 x A
(lE) is stored in stack location 9B [R14(H4)].
The RET at ZOOC causes the saved PC to be restored
from stack locations 94 and 96. Execution of the
original program then resumes at lOB of segment 6,
where the result of the multiplication is popped
into to. lile status at tllis point is shown in
Figure 10-20. All of the values here are exactly
as they would have been if the execution of MULTEN
had not been interrupted.

This example also illustrates how the definition
of re-entrancy depends upon the properties of the
surrounding system. If RR4 and RR6 instead of RRO
and RR2 had been preserved by interrupt-processing
routines, then MUL TEN would not be re-entrant and
it could not be called from interrupt-processing
routines.

Stack
Address Contents

(none still in use)
R1 001E Result of MULT RRO,R2
R2 OOOA Result of LDK R2,H10
R3 001E Result of POP R3,®RR14
RR14 (004,009A)
PC (0600,010A)
FCW DBOO FLAGS set by MULT RRO,R2

Figure 10-20. Final Values for IIILTEN Routine

10-lB

The MUL TEN example illustrates context switching
triggered by interrupts. Another instance of
re-entry, for which it is harder to provide a
simple illustration, is a program shared by e
number of cnncurrent processes, each doing
apprmdmately the same thing. For example, a
BASIC or Pascal timesharing system might have one
copy of the interpreter that works on the user's
programs "coocurrently," switching from one to the
next either at the expiration of a "time slice" or
when the user's program pauses for I/O. Each user
would have an interpretable program and a
temporary storage stack. These would be in the
user's private memory and would be addressed using
a base register and an offset (pseudo-PC) register
for the interpretable program and a stack register
for the stack. These registers and the other
general-purpose registers used by the interpreter
constitute the context to be switched. The
re-entry of the interpreter depends upon its
reference to the user's memory areas only through
the use of the registers making up the context.

10.9 CONTEXT SWITCHING

In Section 10.7, we defined the context of a
process to be the values of all registers and
memory locations that need to be saved before
another process running "at the same time" can
have its turn at using them. In general, the
context of a process consists of the entire
register and memory contents, but in most
applications measures are taken to keep the size
of the context to a ml.mmum. fixed storage
locations can be avoided, and the times at which
context switches occur can be controlled.

fixed storage locations must become part of the
context of a process if some other process can
change the contents between the time its value is
set and the time it is no longer needed. On the
other hand, a process that "ties up the loose
ends" before another process can run can have a
small context, even though it may use and abandon
many registers and locations during the period in
which other processes cannot run. The recursive
subroutine QUICK presented in Section 10.13.6 is
an example of this phenomenon.

In most context-switching schemes, the stack is
used for storage of all or part of saved process
contexts, as illustrated in Section 10.8. Saving
registers on the stack is accomplished efficiently
by using the LDM instruction. For example,

DEC R15,/116
DEC R15,/112
LDM @RR14,RO,/114

Programming Techniques

!Can't decrement by 28!
! all at once!

causes registers RO through R13 to be saved on the
RR14 stack.

Saving control registers, if necessary, is
accomplished by loading them into registers and
then saving the registers. If it is necessary to
save the FCW explicitly, care must be taken that
the saving operations do not affect the flag bits
before they are saved or after they are restored.
For example, the DEC instruction affects V, Z, and
S, so after the above instructions have been used
to save the registers, it is too late to save
flags. A variation on the preceding code that
saves flags is:

PUSHL @RR14,RR12
LDCTL R12,FCW
SUB R15,/124
LDM @RR14,RO,/112
PUSH @RR14,R12

!Make room to work!
!Get FCW into R12!
!finish saving registers!

! Save FCW!

Of the control registers, the Normal Stack Pointer
is the one most likely to be part of a process
context in a multi-processing system. To save it,
the following instructions are added to the above:

LDCTL R12,NSPSEG
LDCTL R13,NSPOFF
PUSHL @RR14,RR12

If fixed locations are part of the process
context, their contents also must be saved. In
the code shown in Figure 10-21, assume that RR2
contains the address of a list of fixed word
locations whose contents must be saved. Assume
that the list is terminated by a double word, -1.
This code causes the contents of these locations
to be saved on the stack, each accompanied by the
corresponding address.

LOOP: LDL RR4,@RR2
CPL RR4,/1-1

DONE:

JR EQ,DONE
LD RO,@RR4
PUSH @RR14,RO
PUSHL IiRR14,RR4
INC R5,/14

JR LOOP

!Get next item!
!Test for terminator!
!Done if -1 encountered!
! Get contents!
!Save both!

!Increment list pointer!

Figure 10-21. EX8IIIPle, Saving Contents of
Fixed Locations ~to Stack

10-19

Programming Techniques

10.10 INTERRUPTS

An interrupt forces a context switch. Since there
is almost no control of the time a switch to the
interrupt context occurs, interrupt routines must
save and restore the values of any registers,
control registers, or memory locations they use.
(An exception is a memory location purposely
changed by the interrupt routine, such as a flag
indicating that output of a given line of text is
finished.)

Before interrupts can be used, the linkage between
the interrupt and the processing routine must be
established. This is done using the Program
Status Area (PSA) and the Program Status Area
Pointer (PSAP). The format of the Program Status
Area is described in Chapter 2.7.2. In the PSA, a
CPU status (FCW and PC) is specified for every
allowed interrupt type. In contrast with machines
that used fixed memory locations for such
interrupt response definition, the PSA of the
lBOOO can be anywhere in program memory so long as
it is on a 256-byte block boundary (that is, the
last eight bits of its address are zero). This
means that the PSA can be assembled with the
program without conflicting with the loader's use
of the interrupt facility. The only thing
remaining to be done at initialization time is to
set up the PSAP and then to enable interrupts. If

the PSA begins at PSALOC, setting up the PSAP can
be done by:

LDA RRO,PSALOC
LDCTL PSAPSEG,RO
LDCTL PSAPOFF,R1

The use of interrupts for input or output of data
requires communication between the program
requesting the input or output and the associated
interrupt-processing routines. Furthermore, an
,interrupt-processing routine must communicate with
itself; that is, whenever an interrupt occurs, it
must know exactly what it is doing and how far
along it is.

The solution to providing communication between
interrupt and application routines and to
providing temporary storage for the interrupt
routines is a set of fixed memory locations (often
called a process status b lock or context block)
containing pointers, counters, flags, etc.

When the application routine needs to perform an
I/O operation, it calls on an initiator routine.
For example, it may need to send the ASCII

10-20

characters for "HELLO" to a CRT screen. The
initiator program sets a pointer in the context
block to the zero-terminated string of ASCII
characters for "HELLO" provided by the application
program, and it sets a flag in the context block
to "BUSY." Then it does whatever is necessary to
assure that output interrupts for the CRT screen
begin to occur. As each interrupt occurs, the
processing routine transmits another character of
the string and advances the pointer in the context
block. When the pointer reaches the terminating
zero, the interrupt routine sets the flag in the
context block to "DONE." Meanwhile, the
application program can be doing other things. If
it needs to output another string, it waits for
the flag to change from "BUSY" to "DONE." It can
enter a loop in which all it does is test the
flag, or it can do other things while the output
proceeds.

This sort of communication between tasks
proceeding under interrupt and application
programs is sometimes used to implement an event­
driven timesharing system. Instead of entering a
loop to wait for the flag to change from "BUSY" to
"DONE," the program defers to other tasks,
allowing them to execute until they too are held
up waiting for an I/O operation to be completed.

10.11 INITIAlIZATION

For the programmer responsible for the entire CPU
instead of simply providing programs to run under
some system, the sequence of operations following
a cold start (reset) is important.

Execution begins when the CPU fetches its CPU
status (FCW and PC) from instruction memory
addresses beginning at segment 0, offset 2. The
FCW is at offset 2, the PC at offset 4. If an
external memory-mapping unit is in use, it must be
capable of dealing properly with these initial
fetches, even before any code is executed to
establish memory-mapping parameters.

The PC value at location 4 is the address of the
first instruction to be executed. The FCW value
should leave the CPU in System mode and segmented
operation (unless the CPU is a ZB002) with all
maskable interrupts disabled. The nonmaskable
interrupt (NMI) should be disabled at this point
also, but that is impossible, so the system must
be designed so that the NMI cannot occur
immediately after a reset.

The initialization code first sets the PSAP to
point at the previously assembled PSA. The
implicit stack register (R15 or RR14) must then be
set. If an external memory mapping facility is
used, its parameters are set up as soon as
possible. Until then, it must continue to handle
all instruction, data and stack references
properly. Once the stack register and the PSAP
are properly initialized, interrupts can be
enabled. If the Refresh register is to be used,
it is initialized during this sequence.

10.12 PROGRAMMING fOR BOTH SEGMENTATION MODES

It is important for zaooo programmers to know how
to write programs for operation in one segmenta­
tion mode that can be adapted for use in the other
segmentation mode with minimal alterations. The
only way two modes differ is in the format of
addresses--in instructions, in general-purpose
registers, in the PC, in control registers, and on
the stack after subroutine calls, traps, or
interrupts. Therefore, the solution to this lies
in finding mode-independent ways of handling
addresses. Addresses are manipulated by programs
in many ways. The most common are:

• Loading them into registers

• Performing arithmetic on them

• Using them in the Indirect Register, Base and
Base Index addressing modes

• Moving them out of registers and into memory
or onto the stack

ADREG = R2; ADOFF R2
SAVREG = R4
SR = R15

LDA ADREG,XYZ
LO RO,®ADREG
INC ADOFF, lIZ
LD R1,®ADREG
PUSH ®SR,ADREG
LD SAVREG,ADREG

Programming Techniques

The two program fragments shown in Figure 10-22
are segmented and nonsegmented versions of the
same algorithm. If symbolic definitions are given
for the address registers, the code takes the form
shown in Figure 10-23.

Non-Se~nted

LDA R2,XYZ
LD RO,®R2
INC R2,#2
LD R1,I!!JR2
PUSH ®R15,R2
LD R4,R2

SegtlBflted

LDA RR2,XYZ
LD RO,®RR2
INC R3,#2
LD R1,®RR2
PUSHL ®RR14,RR2
LDL RR4,RR2

Figure 10-22. Exanple of Segmented vs.

Non~nted COde

With the symbolic definitions, the two pieces of
code are very similar. The remaining problem is
the "L" in the mnemonics. If there were an
assembler that recognized the perfectly
unambiguous source statements

LD RR4,RR2
PUSH ®RR14,RR2

and generated the long-word versions
instructions, then at the source code
segmented and nonsegmented programs
identical. Without such an assembler,

of the
level the
would be
the only

other possibility is conditional assembly. Except
for very small programs, this is unlikely to be
workable, unless the conditional instructions are
built into a set of address-manipulation macros.

ADREG = RR2; ADOFF R3
SAVREG = RR4
SR = RR14

LDA ADREG,XYZ
LD RO,®ADREG
INC ADOFF, fI2
LD R1,®ADREG
PUSHL ®SR,ADREG
LDL SAVREG,ADREG

figure 10-23. Asseabled COde for Seg_nted &: Non~nted [xanples

10-21

Programming Techniques

for example (following no particular macro
syntax), an address pushing macro could be defined
as follows:

Solution: The items are added one at a time to an
initially cleared accumulator. Any occurrence of
a V indication following any of the additions is
registered, and V is set upon completion if
overflow occurs at any point during the operation.

Then,

APUSH x,y =
if Y is an RR, then

"PUSHL Il!lx, y"
else

"PUSH Il!lx, y"

APUSH SR,ADREG

is the next-to-Iast line of either of the programs
in figure 10-23.

Notice that the sum can be correct even if
overflow occurs; for example, let the array be
(32,765,8, -25). The first sum, 32,765 + 8,
yields -32,763 and an overflow indication. The
second sum, (-32,763) + (-25) yields 32,748 and
another overflow indication. The final answer is
correct.

32,748 = 32,765 + 8 + (-25).

10.13 PROGIW'UNG EXAtI'l[S An overflow indication is set upon completion of
the addition, and the programmer can choose to
take action. Alternatively, the addition program
might take action on overflow (such as by
terminating the process), but the programmer
calling the function has more information about
the intended use of the sum and the nature of the
data. The code for this appears in figure 10-24.

Sections 10.1 through 10.12 showed how specific
features of the Z8000 are related to standard
programming techniques. The paragraphs within
this section present some complete ex amp les to
give a clearer picture of how Z8000 instructions
and features are used.

10.13.1 Adding An Array Of Nuabers

Probla.: To find the sum of an array of 16-bit
signed numbers.

10-22

!Addition subroutine
CALL SUM with RR2 = array address

RO = number of words in the array (0 to 32,767)
Returns sum in R1; V is set on return if an arithmetic overflow
occurred in any of the addition operations used in forming the
sum.
The contents of RO, R2, R3 and R4 are lost.

SUM:

LOOP:

CLR R1
CLR R4
CP RO ,flO

JR LE,ENDLP
ADD R1,Il!lRR2
TCC OV,R4
INC R3,1I2
DEC RO
JR LOOP

!Initialize sum to zero!
!R4 saves any V's!
!Done when RO no longer!
! greater than zero!
!Add in the next!
!Save overflow indication!
!Increment array pointer!
!Decrement loop counter!

ENDLP: RESfLG V
TEST R4 !V=O if no overflow!

RET Z
SETFLG V !otherwise V=1!
RET

figure 10-Z4. [xlIIIple, Addition Subroutine

Programming Techniques

Notes to Figure 10-24:

1. Notice that the test for the loop termination condition is done first; this allows the program to
behave properly if the initial value of RO is zero--it returns a sum of zero. Also notice that the
test is for LE instead of for EQ. This is simply a precaution. If the count becomes negative, then
there is a programming error somewhere, and it is best to stop immediately.

Given that we wish to test for a counter value less than or equal to zero, we use

CP RO,#O
instead of

TEST RO

Because the TEST instruction leaves the V bit unaffected, while the definition of LE is Z OR
(5 XOR V).

An alternative to
CP RO ,#0

is the sequence
REsFLG V; TEST RO

but this sequence does not work with the TEsTB instruction, because TEsTB uses V to report the
parity of the byte (since P = V), and this is unrelated to the sign.

2. Notice the use of the TCC instruction. Initially R4 is cleared; if V is clear (no overflow occurred
in the ADD), then

TCC OY,R4

leaves R4 unaffected. If Y is set (overflow did occur), then

TCC OV, R4

causes the low-order bit to be set. This means that if overflow ever occurs, R4 will be non-zero for
the remainder of the time, since the only instruction affecting R4 after it is initially cleared is
the TCC, which either sets it or leaves it unaffected.

It is important to note that the TCC instruction ~ not set the destination value to zero if the
specified condition code is false.

3. Notice the use of

INC R3,ff2

to increment the array pointer RR2. This is done because the segmented address arithmetic is done
separately on the segment and offset portions of the address.

As written, the program wraps around the end of a segment, treating the word at offset zero as the
successor to the word at offset 65,534 (FFFE). If this is to be treated as an error, a test can be
made for this condition. Z can be used, but this does not necessarily work with larger increments;
if long words are being added, for example, INC R3,#4 might change R3 from FFEE to 2. Another
approach is to test for this condition on entry, using the initial values of RR2 and RO.

10-23

Programming Techniques

10.13.2 Deter.ining The Parity Of A Byte string

Probl_: To find the parity of an arbitrarily
long byte string and to set P (PE true) if the
total number of bits in the string of bytes is
even, to clear P (PO true) if the total number of
bits is odd.

Solutioo: The parity of a byte string is, by
definition, the sum of its bits modulo 2. Since
addition is associative (i.e., the sum is the same
if the items are grouped, subtotals computed for
the groups, and the SUbtotals added), the parity
of the byte string is the sum of the parities of
its bytes.

furthermore, if a and b are binary numbers (in
particular, if they are bytes), then the parity of
(a XOR b) equals the parity of a plus the parity

of b. (It suffices to prove this for one-bit
arguments a and b, since the parity of an n-bit
binary number is the sum of the parities of its n
bits. The proof for one-bit arguments is
accomplished by considering the four possible bit
combinations.) Therefore, the total parity can be
determined as follows:

• Initialize a register to zero.

• for each byte of the string, compute the XOR
of the byte with the current contents of the
register.

• Test the parity of the final contents of the
register.

The code for this appears in Figure 10-25.

!Subroutine to test the parity of an arbitrarily long
byte string

BIGPAR:
LOOP:

ENDLP:

CALL BIGPAR with RR2 = address of the byte string
R1 = number of bytes (0 to 32,767)

Returns with P set (PE true) if parity is even, P
clear (PO true) if parity is odd. Contents of RO,
R1, R2 are lost.

CLRB RLO ! Accumulate parity in RLO!
CP R1,1I0 I All tested yet?!

jR LE,ENDLP IIf so, determine rinal parity!
XORB RLO,®RR2 IXOR this byte with RLO!
INC R3 and set up!
DEC R1 for next byte!
JR LOOP
TESTB RLO !final parity!
RET

figure 10-25. £X8llple of the Detenination of Parity of a Byte string

NDtes to Figure 10-25:

1. Notice that by initially clearing RLO, we assure that a zero-length string has ~parity.

2. If we wish to allow for from 0 to 65,535 bytes in the string, we replace

JR LE,ENDLP
with

JR EQ,ENDLP

In this case we are using the contents of R1 as an unsigned number in the range 0 to 216-1 instead of
as a signed number in the range -215 to 215-1.

10-24

Programming Techniques

3. If we wish to allow for from 1 to 6S,536 bytes in the string, we remove the instructions

CP R1,10
JR LE,ENDLP

and move the label LOOP down to the XORB instruction. The instructions

DEC R1
JR LOOP

become
DJNZ R1,LOOP

and the label ENDLP is no longer be needed.

4. For long byte strings, the efficiency of this routine can be increased by using the XOR instruction
to process whole words at a time. Special tests have to be included to handle strings that begin at
an odd byte or end at an even byte.

10.13.3 kcesing An Array larger Than 65,536
Bytes

Probln: To manage a one-dimensional array that
is too large to fit within one memory segment and
has too many elements to be indexed by a 16-bit
word.

Solution: Two solutions to this problem are
presented. One provides high efficiency but
little flexibility, and the other provides great
flexibilit y, but substantial cost in processing
overhead.

The high-efficiency scheme uses an arbitrary
segmented address as the address of the first
array element and assumes that the array is stored
contiguously in memory. Segmented address (N+1,
0) is assumed to follow address (N,65,535); that
is, consecutively numbered segments are treated as
contiguous pieces of the address space. If the
segment number bits were bits 6 through 0 of the
high-order segmented address byte, this
interpretation would be achieved automatically
simply by treating segmented addresses as 32-bit
unsigned integers. Since this is not the case,
the addition of an offset to the starting address
of the array must include an operation that takes
bits 6-0 of the high-order word of the result and
adds them to the segment number field, which is in
bits 14-8.

A subroutine is provided to take the base
segmented address in one long-word register and an
offset in another long-word register. The offset
must be less than 223. The algorithm used causes
a wraparound from segment 127 to segment 0, so the
full 223 bytes of segmented address space are
used, regardless of the base segmented address.
The code for this version appears in Figure 10-26.

The high-flexibility scheme also uses a 23-bit
offset, or virtual address, but instead of a
starting segmented address and a contiguous array,
it uses a virtual-to-segmented address mapping
scheme that works as follows (see Figure 10-27):

• An array of "virtual" addresses in ascending
numerical order (V1, V2, ••• ,Vn is provided. A
segmented address (SO' 51, ••• ,5n_1) is associ­
ated with each. Virtual addresses 0 through
V,-1 are mapped. into a contiguous block of
segmented addresses, starting at SO. V1
through V2-1 are mapped into a block at 51'
and so on.

• The given virtual address, v, is compared with
each of V1' V2' ••• , Vn until the first Vi is
found for which v < Vi. If v ~ Vn' an arror
indication is returned.

• The segmented address 5i_1 + (v-Vi _1) is
returned (VO is assumed to be zero).

10-25

Programming Techniques

!Address-mapping subroutine (high-efficiency version)
CALL ADMAP with RR2 = virtual address (23 bits)

RR4 = starting segmented address
Returns with RR2 = segmented address corresponding

to the given virtual address and RR4 preserved.

ADMAP: ADD R3,R5
ADCB RL2,RH4
EXB RH2,RL2
RET

NOTE: The EXB instruction is unnecessary if the result
is returned in RR4. The code for this is:

ADMAP: ADD R5,R3
ADCB RH4,RL2
RET

The longer version given above allows the array base to
be maintained in RR4 at all times.

figure 10-26. EXlllllple of Accessing Arrays larger Than 64K Bytes

ARRAY OFFSET SEGMENTED
(VIRTUAL ADDRESS) ADDRESSES

0 0

}SEGO VI 65535
O-Vl 0

}SEG1 V2 55535
0

}SEG2 Vl-V2

V3 65535

Vs-Vs 0
}SEG3

V4 65535
0

}SEG4
Vs V2-VS 65535

0

}SEG5 VS
65535

MAPPING TABLE
0

}SEG6
VI, So V3-V4

V2, SI
65535

· (V-VK + SK-1)
0

}SEG7 VIRTUAL _
• _ SEGMENTED S4 V4-VS

ADDRESS · ADDRESS 65535
V6, Ss • • •

0,0

Figure 10-27. "'-ry Mapping

The address calculation 5i _1 + (v-Vi _1) is
performed as for the high-efficiency scheme above,
so that consecutively numbered segments are

treated as contiguous, and wraparound occurs from
segment 127 to segment o.

10-26 2010-029

Programming Techniques

As an example, suppose we have an array of 200,000
bytes that we wish to store in memory in three
sections:

expressing the 32-bit
addresses depends upon
used. Simpler ways
assemblers.

constants and
the specific

are possib Ie

segmented
assembler

with some

0-84,999 starting at segment 6,
offset 30,000

85,000-131,071 starting at segment 14,
offset 0

In this example, suppose that RR2 contains a
virtual address, that is, an index between 0 and
199,999. It can be translated into a segmented
address with the following code:

131,072-199,999 starting at segment 19,
offset 45,000

LOA RR4,MAPTAB
CALL ADMAP

The subroutine is called with the address of the
virtual-to-segmented address mapping table in one
double-word register and the virtual address in
another. For this example, the mapping table takes
the form shown in Figure 10-28. The means of

The code for the high-flexibility solution appears
in Figure 10-29.

MAPTAB: 0; 0 IVO=OI
%600;30000 150=(6,30000) I

1;19464 IV1=85,OOO (= 216 + 19464)1
%[00; 0 151=(14,0) I

2; 0 I V2=131 ,0721
%1300;-20536 152=(19,45000)1

3; 3392 IV3=200,OOO (= 3 x 216 + 3392)1
0; 0 ITwo 32-bit zeros terminate I
0; 0

Figure 10-28. £X8llple, MallOry Happing Stmroutine

IAddress-mapping subroutine (high-flexibility version)
CALL ADMAP with RR2 = virtual address (23 bits)

RR4 = address of mapping table
Returns with C=O and RR2 = segmented address; or

C=1 if virtual address out of range
The contents of RR4 are lost.

ADMAP: INC R5,#8
TESTL ®RR4

JR Z,ERREX
CPL RR2,@RR4

JR GE,ADMAP
FIND: DEC R5,#8

SUBL RR2,@RR4
INC R5,#4
ADDL RR2,@RR4
ADDB RH2,RL2
CLRB RL2
RESFlG C; RET

ERREX: SETFLG C; RET

I Step to next entryl
I Terminator? I
I Yes-out of rangel
ICompare v with ViI
I If v ~ Vi' try nextl
IBack up to Vi_11
IRR2 = v-Vi_11
I Step to Si_1 I
IRR2 = Si_1 + (v-Vi _1)I
ICarry overflow to segment fieldl
I Clear "reserved" bitsl
IC=O for success return I
IC=1 for out-of-range return I

Figure 10-29. EX8llple, flexible tte.ory Happing Subroutine

10-27

Prgaramming Techniques

Notes to Figure 18-29:

1. The algorithms here are designed for random accesa. A loop to atep through a byte array addressed
for the high-efficiency version uses the following sort of address computation:

LDl RR2,RR4 !Start at the beginning!
LOOP: !If at end of array, exit!

!Perform operation on the array element!
INC R3 ! step to next addrees!

JR NZ,LOOP !Still in the segment!
INCB RH2 !New segment!
JR LOOP

2. Notice the use of the VO entry in the MAP TAB table. Even though VO can only be zero, the program is
simplified by including an entry for it in the table.

3. There is no error checking performed in either routine. several errors can occur: RR2 can contain a
virtual address of greater than 23 bits, or MAPTAB can be incorrectly formed or can define an array
that overlaps itself.

The checking of RR2 in either version must be done dynamically. The checking of MAPTAB can be done
once when the table is created or each time it is changed. A special routine can be provided for
thie purpose.

4. The DEC RS,'8 and INC RS,'4 instructions in the mapping computation are required because the Based
Addressing mode cannot be used with the ADD and SUB instructionS. If it could, the code at FIND
might be

fIND: SUBL RR2,RR4(#-B)
ADDL RR2,RR4('-4)

In the nonsegmen~eo mode, lnoexed addressing can be used to simulate based aaaressing (see Section
10.2 Addressing Modes), but of course, this program would not be used in nonsegmented operations.

S. Many applicstione using large arrsys do not need to have the entire array in memory at all times.
The high-flexibility version of address mapping can be used to implement a demand-loading scheme.
for this, the code at "FIND:" must recognize a special value for the base segmented address Si-1 that
signifies that the arrsy section in question is not currently present in main memory. (Si-1=231-1 is
a good value for this purpose.) At this point a call can be made on a demand-losding routine that
loads the section in question and passes back its actual segmented address for storsge in the
address-mapping table.

10-28

10.13.. RB.oving Trailing Blanks

PrObla.: To replace a fixed-length array of text
(such as a card image) by a possibly shorter array
containing the initial segment of the original
array up to and including the last non-blank
character. This type of operation 1s useful when
a set of fixad-length arrays (for example, a card
deck) is to be read into memory. Elimination of

!Subroutine to remove trailing blanks

Programming Techniques

trailing blanks allows more records to fit into a
buffer of given size.

Solut1oo: The ZBOOO block instructions that use
the autodecrement mode are designed to handle this
sort of problem. The array is scanned backward
until the first non-blank character is found. The
code for this appears in Figure 10-30.

CALL STRIP with RR2 = address of the array
R1 = , of bytes in the array (1 to 65,536)

Returns with RO = number of bytes in stripped array.
The contents of RO, R1 and RR2 are lost.

BLANK=32

STRIP:

Notes to rigure 10-30:

!ASCII Code for blank!

LOB RLO,#BLANK
ADD R3,R1
OEC R3
CPDRB RLO,@RR2,R1,NE
LD RO, R1

RET NI
INC RO
RET

!Comparison character!
!Set RR2 to point!
! at end of array!
!Scan backward to non-blank!
!Remaining count (Z not affected)!
!If all-blank return RO=O!
!Count the final non-blank!

Figure 10-30. Exllllple. Remving Trailing Blanks

1. Notice the computation to set RR2 to point at the last byte of the array. R3 is the offset portion of
the address in RR2. Adding R1 (the number of bytes in the array) to R3 leaves RR2 pointing at the
first byte following the array. OEC R3 brings RR2 back to its array. (R1 = 0 means 65,536 bytes.)

2. The Block Compare instruction terminates when the count in R1 reaches zero or when one of the CPS
RLO,I!IIRR2 operations causes the NE condition to be true. R1 is decremented for each comparison,
whether or not there is a match. Therefore, if a match occurs (which the block compare instruction
signals by setting Z), the count remaining in R1 is one less than the number of bytes in the stripped
array. If no match occurs, R1 is decremented to zero, which is equal to the number of bytes in the
stripped array.

10-29

Programming Techniques

10.1'.5 Deteraining Whether A 16-8it WOrd Is A
Bit Palindrooe

condition is called a bit palindrome, since it
reads the same frontwards and backwards.

PrObla.: To determine whether or not a given
16-bit word satisfies the condition

Solution: This problem illustrates the use of the
zaooo bit-testing instructions that allow the bit
number to be specified in a register. The
solution given here is the straight forward one:
comparing bit n with bit (15-n) for n = 0, 1, 2,
••• , 7. The code appears in Figure 10-31.

Bit n = Bit (1,-n)

for n = 0, 1, 2, ••• , 1,. A word meeting this

!Subroutine to test for bit palindromes
CALL BITPAL with RO = 16-bit word to be tested.
Returns with C=1 if not a bit palindrome, C=O if it is.
Register use: R1 = n; R2 = 15-n; RH3 = loop count; RL3 = scratch.

BITPAL: CLR R1
LOK R2,n1,
LDB RH3,na

LOOP: CLRB RL3
BIT RO,R1
TCCB NZ,RLJ
RLB RL3
BIT RO,R2
TeCB Nl,RL3
TESTB RL3

JR PO,NOTPAL
INC R1
DEC R2
DBJNZ RH3,LODP
RESFLG C; RET

NOTPAL: SETFLG C; RET

! Set n = O!
! and 1,-n = 151
!Set loop counter!

!Test Bit nand!
! move it into RL3!
!Make room for Bit 15-o!
!Test Bit 1'-n and!
! move it into RL3!
!Bit n = Bit 15-n if and!
! only if parity of RL3 is even!
!Increment n!
! Decrement 1,-o!
! Loop until count exhausted!
!Success: set C=O and return!
!Failure: set C=1 and return!

Figure 10-'1 Exlllllple, Test for Bit Palindroms Subroutine

Notes to Figure 10-'1:

1. This example illustrates the operation of the Bit Test instruction. A more efficient solution to the
problem involves a direct comparison of the two bytes of RO after reversing one of them with a loop
like:

LOUP:
LDK RZ,nB
RLCB RLO
RRCB RL1
DJNl RZ, LOOP
RLCB RLO

2. The condition code Nl is used in the Tee instructions. BIT sets l if the bit is clear and clears l if
the bit is set.

3. Tee instructions are used to save the bit values, and TEST is used to compare them by testing the
parity of the byte into which they have been stored. Both simplify the flow of controL Not using
these techniques results in the sort of jumping around shown in Figure 10-32.

10-30

Progranming Tech!liques

"NOT PALINDROME"
EXIT

NO

figure 10-32. A Poor Alternative to the Use of Tee

10.13.6 Sorting

Probletl: Given an array A of "items" and an order
relation "~', rearrange the items of A in such a
way that for integers i and j and items ai and aj,
ai .$. aj whenever i .$. j. The items of A can be
integers, floating point numbers, character
strings, or any other data type. The order
relation can be any ordering appropriate to the
given data type, for example, dictionary order for
character strings.

Solution: An adaptation of the "quicksort"
algorithm of C.A.R. Hoare is used. A program is
written to sort an array of 16-bit 2 's complement

2010-030

integers in ascending numerical order. The
organization of the program into subroutines
indicates how other items and orderings can be
used.

Assume that A is an array indexed from 0 to N.
Quicksort is a recursive procedure that begins by
arbitrarily selecting one of the items of A as the
"pivot" value. Then a preliminary rearrangement
of A is made as follows: For some i, 0 .$. i .$. N,
ai is the pivot value and ~ .$. ai if 0 .$. k .$. i,
ak ~ ai if i < k .$. N. That is, all items less
than, or equal to, the pivot are moved into the
"left half" of the array and all those greater
than, or equal to, the pivot are moved into the
"right half."

10-31

Programming Techniques

Once this is done, the same process is performed
on each of the two array segments So to si_1 snd
ai+1 to sN. These segments are usually not of
equal size. Implementation of the algorithm
requires a minimum of stack storage if at each
stage the smaller segment is sorted first.

23-bit numbers in the range of 0 to B,3BB,607 and
that the array elements are 16-bit signed
integers. A base segmented address and an address
computation similar to that of the high-efficiency
version of ADMAP (Section 10.23.3) are used. The
generalization to other types of element is
straightforward. The code for this appears in
Figures 10-33 through 10-3B. In this example assume that array offsets are

10-32

ISubroutine Quicksort
CALL QUICK with RR12 = array address

RR10 = U (offset of upper limit)
RRB = L (offset of lower limit)

Returns with array elements at offsets between Land U (inclusive)
sorted. Land U are 23-bit integers in the range 0 to B,3BB,607.

Register use:
RR14: Stack Register
RR12: Always contains starting segmented address of array

RQB: (L,U) on call; shorter (L,U) range returned by SHORT
RQ4: longer (L,U) range returned by SHORT
RQO: used by subroutines of QUICK

QUICK: CPL RRB,RR10
RET GE

CALR PART
CALR SHORT
DEC R15,n8
LDM ®RR14,R4,n4

! Compare L, U!
!Return if L > U!
!Partition: RQ4, RQ8 get ranges!
!Put shorter range in RQ8, longer
!Save RQ4 - longer (L,U) range!

in RQ4!

CALR QUICK !Recursive call to sort the shorter range!
LDM R8,®RR14,'4 !Restore longer range - into RQ8!
T .. ,I" 1")4 t:: An
.un ... rllj,ftO

CALR QUICK
RET

!Recursive call to sort the longer range!

Figure 10-:U. £X8llple, Sort Subroutine Quicksort Initialization

!Subroutine of QUICK to put shorter range first
CALL SHORT with RQ4 = one (L,U) range

RQ8 = another (L,U) range
Returns with shorter range in RQB, longer in RQ4
Register use: as for QUICK. RRO contents are lost.

SHORT: LDL RRO,RR6
SUBL RRO,RR4
PUSHL ®RR14,RRO
LDL RRO,RR10
SUBL RRO,RR8
CPL RRO,®RR14
POPL RRO,®RR14

RET LE
EX R4,R8
EX R5,R9
EX R6,R10
EX R7,R11
RET

!RRO = U-L for RQ4!

! Save first U-L!
!RRO = U-L for RQ8!

! Compare lengths!
!Clear the stack!
!Return if RQ8 length ~ RQ4 length!
!Exchange RQ4 & RQ8!

Figure 10-34. Quicksort Slmroutine to Position Shorter Range Firat

Programming Techniques

!Partitioning subroutine of QUICK
CAll PART with registers as for QUICK
Returns with array segment between land U partitioned
around a pivot element with index I. Returns the two
ranges to be sorted: (l,I-1) in RQ8 & (I+1,U) in RQ4.
Register use: RQ8 = (l,U)j RQ4 = (I,J). On return,
RQ4,RQ8 are new ranges. RQO is used by subroutines.

PART: CAlR SETPIV
lDl RR4,RR8
lDl RR6,RR10
CAlR DECI

lPI: CAlR UPI
CAlR DOWNJ

JR C,MOVPIV
CAlR EXCHIJ
JR lPI

MOVPIV: CAlR EXCHIP
lDl RR6,RR10
lDl RR10,RR4
CAlR DECI
EX R4,R10
EX R5,R11
CAlR INCI
RET

!Choose pivotj initialize pivot routines!
! Set I = l!
!Set J = U!
!Decrement I: I=l-1!
!Increment I until aI ~ pivot value!
!Decrement J until aJ i pivot or J < I!
!J i I: only pivot remains to be moved!
!Exchange aI and aJ values!

!Exchange aI and pivot values!
!Move I to end of RQ4 (where J was)!
!Move I to end of RQ8 (where U was)!
!Decrement I: RR4 = I-1!
!Exchange RR4,RR10:
!Now RQ8 = (l,I-1)j RR4 I!
!Increment I: Now RQ4 = (I+1,U)!

figure 10-'5. Quicksort Partitioning Subroutine

!Subroutines of PART for moving I and J
CAll UPI: returns with I incremented until aI ~ pivot value
CAll DOWNJ: returns with J decremented until aJ i pivot
or J i Ij returns C=1 if J i I, otherwise C=O
Register use: As for PART.

UPI: CAlR INCI
CAlR CPPI

RET lE
JR UPI

DOWNJ: CAlR DECJ
CPl RR4,RR6

JR l T ,DJ1
SETflG Cj RET

DJ1: CAlR CPPJ
JR l T ,DOWNJ

RESflG Cj RET

! Increment I!
!Compare pivot value with ail
!Return if pivot value i ail
!otherwise keep incrementing!

!Decrement J!
! Compare I,J!
!I < J: proceed!
!J < I: return C=1!
!Compare pivot with aJ!
!Keep decrementing if pivot value i aJ!
lotherwise return with C=O!

!Routines to increment or decrement I or J.
ESIZE = 2 !Entries are words: two bytes!
INCI: ADDl RR4,#ESIlE

RET
DECJ: SUBl RR6,UESIlE

RET
DECI: SUBl RR4,#ESIlE

RET

figure 10-'6. Quicksort Subroutine for Moving I and J

10-'3

Programming Techniques

!Pivot Setting and Comparison Subroutines
CALL SErPIV - chooses pivot & saves its value in a

register
CALL CPPI - compare pivot value, aI. Set FLAGS.
CALL CPPJ - compare pivot value, aJ. Set FLAGS.
Register use: as For PART. RO = temp. R1 = saved pivot
value. RR2 = calling argument and actual address
returned by ADCOMP

SETPIV: LDL RR2,RR10 !RR2 = U!
CALR ADCOMP ! RR2 = actual address of aU!
LD R1,®RR2 !Choose aU as pivot value!
RET

CPPI: LDL RR2,RR4 !RR2 I!
JR IJM

CPPJ: LDL RR2,RR6 !RR2 J!
IJM: CALR ADCOMP !RR2 adr of item to be compared!

CP R1,@RR2
RET

Figure 10-37. Quicksort Subroutines for Pivot Setting and Coq>arison

10-34

!Exchange Subroutines
CALL EXCHI - exchange aI and pivot values.
CALL EXCHIJ - exchange aI and aJ values.
Register use: as For PART. RD = temp. R1 = saved pivot
value. RR2 = calling argument and actual address
returned by ADCOMP

EXCHIJ: LDL RR2,RR4
CALR ADCOMP
LD RO,@RR2
PUSHL @RR14,RR2
LDL RR2,RR6
CALR ADCOMP
EX RO,@RR2
PQPL RR2,@RR14
LD @RR2,RO
RET

EXCHIP: LDL RR2,RR4
CALR ADCOMP
EX R1,@RR2
LDL RR2,RR10
CALR ADCOMP
LD @RR2,R1
RET

iRR2 I!
!RR2 actual address of aI!
!RQ = aI!
!Save address of aI!
! RR2 = J!
!RR2 = actual addresss of aJ!
!Exchange: RO=aJ' aJ replaced by aI!
!Restore aI address!
!Replace aI by aJ!

! RR2 = I!
!RR2 = actual address of aI!
!Exchange aI with saved pivot value!
!RR2 = U (offset of pivot element)!
!RR2 = actual address of aU!
!Replace aU by aI!

ADCOMP: ADDL RR2,RR12 !Add array base to offset!
ADDS RH2,RL2 !Carry overflow into segment field!
CLRB RL2 !Clear reserved bits!
RET

Figure 10-38. Quicksort Exchange Subroutines

Programming Technigues

Notes to figure 10-Ja

1. This code falls into two principal categories: the code to implement the algorithms and the code to
manipulate the indices and data items. The algorithm is implemented by the routines QUICK, PART,
SHORT, UPI, oOWNJ and SETPIV. The manipulation and comparison of data items and the arithmetic on
array indices occur in the routines INCI, oECI, oECJ, CPPI, CPPJ, EXCHIP, EXCHIJ, and SETPIV. The
mapping of array offsets into actual memory addresses occurs in AoCOMP.

The organization used here facilitates the alteration of QUICK for other applications. for example,
a nonsegmented version can be produced simply by changing all instances of ~RR2 to ~R3 and keeping
the non segmented array address in R13 with a zero in R12. All references to RR14 also have to be
changed to refer to R1~. The resulting code is less efficient than a tailor-made nonsegmented
version, but this does not matter in many applications.

As another example, QUICK could be changed so that it sorts bytes by redefining the symbol ESIZE to
take the value 1. Instead of using RO as a temporary location and R1 for the saved pivot value, the
routines SETPIV, CPPI, CPPJ, EXCHIP, and EXCHIJ need byte registers. Then the four Lo instructions,
the CP instruction, and the two EX instructions in those routines must be changed to byte versions.

Sorting on the basis of other ordering relations is facilitated by this program orgnization. for
example, decreasing numerical order could be used simply by replacing the instruction CP R1,IIlIRR2
with:

Lo RO,I!lIRR2
CP RO,R1

in the CPPI/CPPJ routine (CP IIIIRR2,R1 is not a legal instruction). The program could have byte
constants representing the various flags combinations it wishes to return. for example, the less
than condition can be returned by the following sequence of instructions at the end of the
subroutine:

LOB RHO,ILTVAL
LoCTLB fLAGS,RHO
RET

The symbol LTVAL might have the value %20, corresponding to C = 0, Z = 0, S = 1, V = 0, 0 = 0, and
H = O.

2. The CPPI and CPPJ routines illustrate the useful programming technique of multiple entry points. An
alternative organization is

CPPI: LoL RR2,RR4
CALR IJM
RET

CPPJ: LoL RR2,RR6
CALR IJM
RET

The code at IJM in both organizations is shared. The objective of this is not principally to save
memory space but rather to assure that these two related functions are carried out according to a
common algorithm.

10-3~

Programming T2chniques

3. The SETPIV routine is mainly concerned with data manipulation. but it slso implicitly embodies a
part of the quicksort algorithm. the choice of a pivot element. Use of aU for the pivot is
inefficient if the array is already sorted. Other algorithmli\ can be used to make the choice.

4. The use of Z3-bit indices stored in long-word registers simplifies index comparisons such as those
that occur in QUICK and SHORT. To use the same code for one-word registers. the index values would
heve to be restricted to 15 bits. If 16-bit indices are ueed. the comparisons must be the unsigned
versions. In that case. special tssts must be made for the case L > U. in both SHORT and QUICK. In
particular. the caae U = -1. L = O. a termination condition for QUICK. needs further special
handling.

10.13.7 Pctlrr-ial Evaluation A subroutine (code shown in Figure 10-39) is
provided that accepts as its arguments the
variable x and the address of a parameter table
describing the array. The table hae the following
format:

Prob_1 Given a set of coefficients
a1 ••••• an and a variable x. compute

Solution I The coefficients ao ••••• ~ the
variable x. all of the products akx. the
intermediate sums. and the find aum are assumed
to be within the range of 32-bit signed integers.
_231 to 231 _1.

lSubroutine to perform' polynomial evaluations!
CALL POLY with RRO = x

n (1 word)
aO (2 words)

~ (2 words)

RR2 = adr. of table (n. aO' •••• ~)
Returns with RR4 = f(x). contents of RR2 and R6-R13 lost

V = 0 if all values in bounds. 1 otherwise.
Register uSBi RRO. RR2 -- calling arguments

I
POLY:

LOOP:

RR4 -- running sum R1Z -- coefficient counter
RR6 -- xk (k=0.1 ••••• n) R13 -- error flag
RQ8 -- scratch

POP R12.8RR2
lOl RR6.11
lOl RR4.,O
CLR R13
POPl RR10.8RRZ
CALR MULCH
AOOl RR4.RR10
TCC OV.R13
DEC R12

lGet n from table to set counter!
lInitislize: xk = 1 (i.e •• k = 0)
I f(x) = 0

Error flag = 0
!Get ak from the table!
lRR10 = skxkl
!f(x) = f(x) + akxkl
!Remember overflow. if anyl
!Decrement coefficient counter I
I Done if < 01
lGet xl
! RR10 = xk+11
lReplace xk by xk+1 (i.e •• increment k)!
!Perform computation for new kl

POlEX:

JR Ml.POlEX
LDL RR10.RRO
CALR MULCH
lDl RR6.RR10
JR LOOP
RESFlG V
TEST R13

RET l
SETFlG V; RET

!Were there any overflows?!
No -- return with V = O!
Yes -- return with V = 1!

Figure 10-39. ExlllllPle. Subroutine To Perf_ Polynotinal [valuations

Programming Techniques

the required instruction is

MULTL RQ8,RR6

The subroutine returns the value f(x). In
addition, the results of computations are checked
at each stage to verify that they remain within
the stated bounds. If the bounds are exceeded at
any stage, V is set when the subroutine returns
its final result.

The code is arranged so thet multiplications are
required at two places. In each case, the
arguments are manipulated in the registers so that

A subroutine is provided to execute this
instruction and to verify that the result fits
into RR10, the low-order half of RQ8. If not, a
bit is set in an error-flag register that is
initially cleared to zero by the main routine. The
code for the multiply and check routine is shown
in Figure 10-40.

Notes to Figure 110:

!Multiply and check subroutine!
MULCH: HULTL RQ8,RR6 !Perform the multiplication!

PUSHL IRR14,RR8 !Save high-order 32 bits!
EXTSL RQ8 !Set high-order 32 bits to proper value!
CPL RR8,tlRR14
fCC NE,R13
INC R15,1I4
RET

tWas it already OK?!
!If not, then overflow occurred!
!Discard saved RR8!

Figure 10-'10. EXlllllple, ~tiply and DIeck Subroutine

1. Notice the structure of the loop in POLY. There is no test at the beginning, so the loop is always
executed at least once. The effect of this is that tables with negative values of n will be treated
as if they had n = O.

There is also no test at the end of the loop. Instead, the decrement of the coefficient counter and
the test for termination appear immediately following the latest update of the running sum and before
the computation of xk+1• The overall length of the program can be shortened by moving this test to
the end of the loop, but then xn+1 is always computed unnecessarily. In addition to the wasted
computation, this leads to an erroneous overflow indication if xn+1 exceeds the 32-bit limitation.

2. The subroutine MULCH illustrates the use of the multiplication and sign extension instructions. The
instruction

HULTL RQB, RR6

causes the contents RR10 (the low-order half of RQB) to be multiplied by the contents of RR6 and the
resulting value to be stored in RQB. The original contents of RQB (the high-order half of RQB) are
irrelevant. The instruction

EXTSL RQB

causes the contents of RQB to be replaced by a number whose value is the same as that of RR10 but
which has twice as many bits. Assuming that all results are within the range of signed 32-bit
numbers, the EXTSL instruction should cause no change to RRB. This explains the test performed in
MULCH.

3. The use of the TCC instruction to remember the occurrence of overflows is similar to its use in
Section 2.1.

10-37

Programming Techniques

10.13.8 PSEUDO-RANDOM NUMBER GENERATION

Proble.: To provide a subroutine that returns an
"unpredictable" 16-bit number.

Solution: The solution presented is sometimes
referred to as the power residue method. A large
positive number N with few prime factors is
chosen. The values returned by the function RND on
successive calls 1,2, ••• are defined as follows:

(mod 216)

RNDk = (RNDk_1 AND (215_1» X N (mod 216)

for k = 2,3, •••

lRandom-number routines

The algorithm used requires that the routine know
at each stage the value it returned when last
called. The storage space for remembering this
value is provided by the caller in a table whose
address is passed to the routine each time it is
called. An initializing routine is provided for
setting up the table. figure 10-41 shows the code
for the initializing routine and the pseudo-random
number generator.

CALL INRAND with RR2 = address of 2-word temp storage table.
Returns with table "initialized," R1 lost, and RO = N.

10-38

CALL RAND with RR2 = address of the table.
Returns with RO = "random" number & table updated.

Register use:
RRO: Dest for multiplication; RO returns the random number.
RR2: address of table.

N 15419 IN = 17*907l

RAND: LD R1,RR2(#2) I R1 ~ Rt\!Dk_i 1
RES R1,fl15 lR1 = RNDk_1 AND 215_1l
MUL T RRO, ®RR2 lRRO = (RNDk_1 AND (215_1»*Nl
LD RO,R1 1 RO = RNDkl
LD RR2(fl2),RO 1 Remember RNDk for next call 1
RET

INRAND: LD RO,flN
LD I!IIRR2,RO 1 Save N in tablel
LD RR2(fJ2),RO lRNDO = Nl
RET

figure 10-41. Ex8llple. Rando. Nullber Generator

Programming Techniques

Notes to figure 111-41:

1. This is a quick and dirty pseudo-random number generator. For a thorough discussion of random-number
theory and algorithms, refer to Chapter 3 of "The Art of Complete Programming, Volume 2:

2.

Seminumerical Algorithms," by Donald E. Knuth.

Similar routines can be used for 32-bit random numbers.
its argument size from the table. The desired size could
table accordingly.

In fact, RAND could be generalized to take
be passed to INRAND, which would set up the

3. The choice of the number N could be made by the caller and passed, possibly as an option, to INRAND.

4. Note the use of the instruction
RES R1,1t15

as an alternative to
AND R1, i!%7FFF •

5. Note that the use of an argument table makes RAND a re-entrant routine.

10-39

-
A

.­~ , -~
-~. 4YL~

7~=--,---·1 "1"1'
Zilog

Appendix A

AS AD1" ns{ OS ADu
TIMING

MREQ AD13

AD12 ADo 48 AD.

READIWRITE ADll AD, 2 47 SN.

NORMAUmTEM AD10 AD10 3 SN.

BYTElWORD ADe ADl1 4 ADr

ADDRESS I AD1• 5 AD.
STATUS DATA BUS AD13 6 AD. ST3

ST. ADe STOP 7 SN,

STI AD. M! 8 41 AD.

STo Z8OO1 AD. AD1• 9 ADa

CPU ADa AD1' 10 AD.

AD.! +5V 11 ADI

AD1 Vi 12
Z8OO1 SN.

NVI 13 CPU GND

SEGT 14 CLOCK

NMI 15 AS

RESET 16 RESERVED

AMI MO 17 Bm

Vi SEGMENT MREQ 18 N/S NUMBER
NVi OS 19 Rm

STa 20 BUSACK

MULTI·MICRO { ST. 21 WAIT
CONTROL STI 22 BUSREQ

STo 23 SNo

SN3 24 SNI

+5 V GND ClK

Z8001 CPU Pin Functions Z80m Pin Assignments

2010-031. 032 A-1

Appendix A

AD15

AD14

J.mm AD13

AD12

READJWl!i1'I'! ADll

NORMAUm'I'EfI AD10

BYTE/WORD ADg

ADa ADDRESS I ADg 40 ADo
STATUS

AD7 DATA BUS AD10 2 39 ADa

ADa ADll 3 38 AD7

ADs AD12 4 37 ADa

AD4 AD13 5 AD,

Z8002 AD3 STOP 8 ADs

CPU{
CPU

AD. Mi 7 AD3
CONTROL ADl AD15 8 AD2

AD14 9 AD1

BUS{ +5V 10 31 GND
CONTROL VI

Z8002
CLOCK 11 CPU

iiiVl 12 AS

NMI 13 RESERVED

RESET 14 BIW

MO 15 NIl

~ 18 RtW

~ 17 BUSACK

ST3 18 Wjijf

ST. 19 ~

STl 20 21 STo

t t t
+5 V GND ClK

28002 CPU Pin Functions 28002 Pin Assignments

A-2 2010-033, 034

Appendix A

AD,s

AD,.

AD"

AD,. ADo 1 AD,

READ~ AD" ADo 2 SN,

NORMAU~ AD,o AD,o SNs

BYTElWORil AD, ADI1 AD?

AD, ADDRESS I AD,. ADa
STATUS

AD7 DATA BUS AD,s ~D.

ADa STOP SN.

ADs ii 41 ADs

AD. AD,s 9 ADa

ADs AD,. 10 AD.
Z8003

AD. +5V 11 AD,
CPU

AD, Vi 12 SN.

NVI 13
Z8003

CPU OND

SAT 14 CLOCK

NMI 15 AI
RESET 16 AiOiif

MO 17 BNi
SEGMENT MREQ 18 NtS
NUMBER

DS 19 RiW
STs 20 BUSACK

iii ST. 21 WAIT

Mo ST, 22 BUSREQ
SEGMENT/PAGE

OR STo 23 SNo
TRANSLATION TRAP

SNa 24 SN,

+5V GND elK

zaOO3 Pin Functions za003 Pin Assignments

2010·035, 036 A-3

Appendix A

BUS{ TIMINO

STATUS

READIWRi'fE"

NORMAU~

BYTElWORD

STo

Z8004
CPU

INTERRUPTS{ - ~
NVI

MULTIOMICRO{ Pi!
CONTROL MO

t t t
+5 V GND ClK

AD1S

ADu

AD13

AD12

AD11

AD10

ADs

ADa

AD7

AD.

ADs

AD.

AD3

AD.

AD1

Z8004 Pin Functions

A-4

ADDRESS I
DATA BUS

ADa ADo

AD10 2 ADs

AD11 3 AD7

AD12 4 ADs

AD13 5 AD.

STOP 6 ADs

M! 7 AD3

AD15 8 A~

AD1. 9 AD1

+5V 10 GND

Vi
Z8004

CLOCK 11 CPU
NVI 12 AS

NMI 13 RESERVED

RESET 14 BtW

MO 15 N/!

MREQ 16 RfW

OS 17 BUSACK

ST3 18 WAIT

ST. 19 BUSREQ

ST1 20 STo

Z8004 Pin Assignments

2010-037. 038

B

7;1"
Zilog

~
Zilog

Features

Description

2096-001, 002

• Binary, function, and pin compatibility with
the Z8001l2 microprocessors.

• Designed-in compatibility with present and
future Zilog Memory Management Units
(MMUs).

• Operates with up to a 10 MHz clock.

The Z8003/4 Virtual Memory Processor Unit
(VMPU), a 16-bit MOS microprocessor, offers
integral provisions for operation in a virtual
memory environment, in addition to the
features of the Z800l CPU. The Z8003 VMPU
generates 23-bit addresses. The address space
is organized into 128 segments, each up to 64K
bytes in length. The Z8004 generates l6-bit ad­
dresses. The Z8003/4 VMPU addressing
scheme distinguishes between memory space
for program, data, and stack in each of two
modes, System and Normal.

For use in shared-memory multiprocessor
systems, the Z8003/4 VMPU provides an output

8UO{ TIMING

u.ru.j

CONT::~{
8UO{

CONTROL

MULTIOMICRO{
CONTROL

ABORT

+5V OND eLK RiSE'i'

Figure I. Pin Assignments

ADDRES.'
DATA aus

--)-~:~~~
•• OMENT:
NUMBER I

I
I
I

s~~;:~ ::::5.1
-,"~IO..!!T.!!.A~-.l

Appendix B

Z8003/4 Z8000™ VMPU
Virtual MelDory
Processing Unit

Product
Brief

June 1982

• Status lines indicate the read/write phase of
the Test and Set instruction for use in
multiprocessor systems.

• 23-bit segmented addresses for Z8003.

• l6-bit non-segmented addresses for Z8004.

on the status lines (STo-ST3), indicating the
read/write phase of the Test and Set (TSET)
instruction. This status output can be used
externally for arbitration of bus control.

In a virtual memory environment, the pro­
grams and data being operated on need not
reside simultaneously in main memory. Thus,
provision must be made for retrieving parts of
a program or data located in "secondary"
storage (such as a disk). Attempts by the
microprocessor to access instructions or data
not in main memory are called "accesses to
nonresident data." When this is done, the
transaction accessing the nonresident data
must be interrupted, the state of the
microprocessor saved, the program or data in
secondary storage moved to main memory, the
state of the microprocessor restored, and the
interrupted instruction restarted.

The Z8003/4 VMPU provides an external
abort pin to permit the interruption of instruc-

Figure 2. Virtual Memory Environment

B-1

Appendix B

Description
(Continued)

Functional
Description

eLK

AS

OS

ABORT

WAIT

Summary

B-2

tion execution before the instruction com­
pletes.

When the 28003/4 VMPU is used in a
multiprocessor system, there may be dual­
ported memories used by the processors. In
this type of system, a resources manager arbi­
trates simultaneously attempted accesses to
shared resources. When a processor tests to

The 28003/4 VMPU can operate in a virtual
memory environment. The virtual memory
capability is provided by an instruction abort
function on pin 33 of the 28003 and on pin 28
of the 28004. When this pin WAIT, and SAT
are activated at the same time, an instruction
abort sequence begins. This abort sequence
leaves the VMPU in a well-defined state, allow­
ing a software recovery. To make this recovery
smoothly, the software must know which
instruction was aborted and how much of the
instruction was executed. Figure 3 shows the
timing sequence for the abort function. Figure

4 MHz 6 MHz 10 MHz
Ts SOns 30 n$ 25 ns
Th Ons 0 ns 0 ns

Tr' __ Tr' __ TW ___ TW __ T_W __ T_W __ T_W __ T~' ", ••• ~

VIRTUAL ADDRESS
ABORT

NOTES: '*" = Clock S~unple Pomts

y~~L

ABORT
(ltd

ACKNOWLEDGE
CYCLE

Figure 3. Instruction Abort Timing

The 2ilog VMPU is the first 16-bit
microprocessor that offers integral provision
for operation in a virtual memory environment.
The upward compatibility of the VMPU with

see if a resource is in use, the read/write por­
tion of the test transaction must not be inter­
rupted or the probability of a collision
increases greatly. The 28003/4 VMPU provides
features that help to avoid collisions during
accesses to shared resources via the enhanced
TSET instruction.

4 shows the sequence of hardware and soft­
ware events that occurs when an instruction is
aborted.

During the read phase of the TSET
instruction on the 28003/4 VMPU, the status
lines STo-ST3 are all set to Is. On the 28001/2
all I s on the status lines is a reserved status
encoding.

The 28003/4 VMPU is compatible with the
28000 Family of microprocessor and peripheral
devices. Instruction set and bus transaction
protocols of the VMPU can be found in the
Z8000 CPU Technical Manual (document
number 00-201O-C). The VMPU enhance­
ments are described in the VMPU Product
Specification.

NO
ABORT THE

INSTRUCTION

TRAP

• SAVE STATUS
• SWAP IN PROGRAMI

DATA ELEMENT
• RESTORE STATUS

NOTE: The abort sequence IS Imtlated when ABORT, SAT, and
WAIT are actIvated.

Figure 4. Instruction Abort Function Flow

the 28001/2 CPU means that applications soft­
ware developed for a 2800112 CPU will
execute directly on the VMPU, preserving
investments in software and development tools.

2096-003, 004

~
Zilog

Features

Description

2046-051, 033

• Dynamic segment relocation makes software
addresses independent of physical memory
addresses.

• Access validation to protect memory areas
from unauthorized or unintentional access.

D Overflow warning and expansion provi­
sion for stack segments.

• 64 variable-sized segments from 256 to
65,536 bytes can be mapped into a total

The 28010 Memory Management Unit (MMU)
manages the large 8M byte address spaces of
the 28001 or 28003 CPU. The MMU provides
dynamic segment relocation as well as
numerous memory protection features.

Dynamic segment relocation makes user soft­
ware addresses independent of the physical
memory addresses, thereby freeing the user
from speCifying where information is actually

DMASYNC

BUS TIMINO {- ~
os

CHIP SELECT ---+- cs

za010
MMU

+ 5 V GND elK RESET

A"

A"

A"

A"

A"
A18

A17

A18 PHYSICAL
A15 ADDRESS

A"

A13

A"

A"

"" A,

A,

.,Vi _)
NIS--

8T3 .--
8T2"""- STATUS

8T1 ..--

STo-

Figure 1. Pin Functions

Appendix B

Z8010
Z8000™ Z·MMU Memory
Management Unit

Product
Brief

March 1982

physical address space of 16M bytes; all 64
segments are randomly accessible.

• Can be used with either the 28001 or 28003
CPU.

• Multiple MMUs can support several transla­
tion tables for each 28001/3 address space.

• MMU architecture supports multi-program­
ming systems and virtual memory implemen­
tations.

located in the physical memory. It also pro­
vides a fleXible, efficient method for support­
ing multi-programming systems. The MMU
uses a translation table to transform the 23-bit
logical address output from the 2800113 CPU
into a 24-bit address for the physical memory.
(Only logical memory addresses go to an MMU
for translation; 1/0 addresses and data bypass
this component.)

cs N/S

DMASYNC RIW
SEGi' AS

sUP DS
iIESEi' STo

A" ST,

A" ST,

A" ST,

A" AD,

A18 AD,

Vee AD10

A18 AD11

A17 elK

A16 OND

A15 AD12

A14 AD13

A13 AD14

A" AD15

A" SNo

A10 SN,

A, SN,

A, SN,

RESERVED SN.

SN, SN,

Figure 2. Pin Assignments

B-3

Appendix B

Description
(Continued)

Segmented
Addressing

B-4

Memory segments are variable in size from
256 bytes to 64K bytes, in increments of 256
bytes. Pairs of MMUs support the 128 segment
numbers available for a 28001/3 CPU address
space. Within an address space, any
number of MMUs can be used to accommodate
multiple translation tables for System and Nor­
mal operating modes, or to support more
sophisticated memory-management systems.

MMU memory-protection features safeguard
memory areas from unauthorized or unin­
tended access by associating special access
restrictions with each segment. A segment is
assigned a number of attributes when its
descriptor enters into the MMU. When a
memory reference is made, these attributes are
checked against the status information sup­
plied by the CPU. If a mismatch occurs, a trap

A segmented address space-compared
with linear addressing-is closer to the way a
programmer uses memory because each pro­
cedure and data set can reside in its own
segment.

The 8M byte 28001/3 addressing spaces are
divided into 128 relocatable segments of up to
64K bytes each. A 23-bit segmented address
Uses a 7-bit segment number to point to the
segment, and a 16-bit offset to address any
byte relative to the beginning of the segment.
The two parts of the segmented address are
manipulated separately.

The MMU diVides the physical memory into
256-byte blocks. Segments consist of physically
contiguous blocks. Certain seg~ents may be
so designated that writes into the last block
generate a warning trap. If such a segment is
used as a stack, this warning can be used to
increase the segment size and prevent a stack
overflow error.

The addresses manipulated by the program­
mer, used by instructions and output by the
CPU are called logical addresses. The MMU
takes the logical addresses and transforms
them into the physical addresses required for
accessing the memory (Figure 3). This address
transformation process is called relocation.

The relocation process is transparent to user
software. A translation table in the MMU
associates the 7-bit segment number with the
base address of the physical memory segment.
The 16·bit logical address offset is added to the
physical base address to obtain the actual
physical memory location. Because a base
address always has a low byte equal to zero,
only the high-order 16 bits are stored in the

is generated and the CPU is interrupted. The
CPU can then check the status registers of the
MMU to determine the cause.

Segments are protected by modes of permit­
ted use, such as read only, system only,
execute only and CPU-access only. Other seg­
ment management features include a write­
warning zone useful for stack operations and
status flags that record read or write accesses
to each segment.

The MMU is controlled via 22 Special I/O
instructions from the 28001/3 CPU in System
mode. With these instructions, system software
can assign program segments to arbitrary
memory locations, restrict the use of segments
and monitor whether segments have been read
or written.

MMU and used in the addition. Thus the low­
order byte of the physical memory location is
the same as the low-order byte of the logical
address offset. This low-order byte therefore
bypasses the MMU, thus reducing the number
of pins required.

23·81T LOGICAL ADDRESS

8 5 0 15 a 7

E:~~~~~ ~~~ ~~ SEQ NO OFFSET

r----------
I r.Eo.o:'l : ,.... _____ """'I~:~ I ~~s:
I .. I
I TABLE OF 64 • 1
I SEOMENT DESCRIPTOR • I
I REGISTERS • 1

I I
I -- -- -- -- -- n n+841
I ________ - n+1. I
I • I
I I
I I
I I
I I
I _,,_ .!,27.J
I
I
I
I
I
I

...
24·81T PHYSICAL ADORE ••

Figure 3. Loglcal-to-Physlcal Address Translation

2046-029

~
Zilog

Features

Description

8074-001

• PMMU architecture supports paged, virtual
memory systems for the Z8003 VMPU.

• Dynamic page relocation makes software
addresses independent of physical memory
addresses.

• Memory-management features provide
access validation to protect memory areas
from unauthorized or unintentional access,
and a write-warning indicator to prevent
stack overflow.

The Z8015 Paged Memory Management Unit
(PMMU) is designed to support a paged virtual
memory system for the Z8003 Virtual Memory
Processor Unit (VMPU). Although designed
primarily for the Z8003, the PMMU can also be
used to support the other CPUs in the Z8000
Family. Memory-management features allow
access validation for memory protection and a
write-warning to prevent stack overflow. An
instruction abort for accesses to pages not in
main memory allows restarting of instructions
in the Z8003 VMPU. Each PMMU can manage
a basic memory area of sixty-four 2048-byte,
fixed-size pages. The VMPU's 8M byte logical
address space is translated by the PMMU into
a 16M byte physical address space. Page size
can be easily changed and multiple PMMUs
can be combined to support more pages. The
PMMU is produced in a 64-pin package.

Appendix B

Z8015 Z8000™PMMU
Paged Memory
Management Unit

Product
Brief

June 1982

• 64 pages, each 2048 bytes in length, can be
mapped into a total physical address space
of 16 megabytes.

• PMMU can be used to implement systems
with larger or smaller page sizes.

• The number of accessible pages can be
increased by using multiple PMMUs to sup­
port separate translation tables for each
Z8003 VMPU address space.

A23

A"

ADDRESSI A"
DATA BUS A"

A"

A"

A"

A"

A"

A"

Au

A"

A"

A"
A,

A,

SUP

RiW
NIS

S:r3

ST,

ST,

STo

+ 5 V GNO elK RESET

Figure I. Pin Functions

PHYSICAL
ADDRESS

SUPPRESS

} ""~

B-5

Appendix 9

Functional
Description

Segmented
AddreSSing
and Address
Translation

9-6

The Z8015 Paged Memory Management Unit
(PMMU) manages the 8M byte addressing
spaces of the Z8003 VMPU. The PMMU pro­
vides dynamic page relocation as well as
numerous memory protection features.

Dynamic page relocation makes user soft­
ware addresses independent of the physical
memory addresses, thereby freeing the user
from specifying where information is located in
the physical memory. It also provides a flexi­
ble, efficient method for supporting multipro­
gramming systems. The PMMU uses a content­
addressable translation table to transform the
23-bit logical address output from the VMPU
into a 24-bit address for the physical memory.
(Only logical memory addresses go to a PMMU
for translation; 1/0 addresses and data bypass
this component.)

The PMMU is designed to use a memory
page 2048 bytes in length. Multiple PMMUs
can be used to support more than 64 pages
within a given address space. In addition,
PMMUs can be used to accommodate separate
translation tables for system and normal
operating modes. The basic page length of
2048 bytes can be increased or decreased
using a minimal amount of external circuitry.

The PMMU is designed to implement a
paged virtual memory using the Z8003 VMPU.
The PMMU saves sufficient information to
recover from an instruction abort due to a
page fault. The instruction can be restarted
after the required information has been placed
in primary memory and the P~.11'.1U's descrip
tors updated to allow address translation to the
selected primary memory loc5ltions.

As an aid in implementing efficient paging
algorithms, the PMMU provides Changed and
Referenced flags for each page. The Changed

The addresses manipulated by the program­
mer, used by instructions, and output by the
VMPU are called logical addresses. The
PMMU translates logical addresses into the
physical addresses required for accessing the
memory.

The 23-bit logical addresses output by the
VMPU divide an 8M byte addreSSing space
into 128 segments of up to 64K bytes each. A
23-bit segmented address consists of a 7-bit
segment number and a 16-bit offset used to
address any byte relative to the beginning of
the segment. The two parts of the segmented
address (segment number and offset) can be
manipulated separately.

The PMMU divides physical memory into

flag indicates that a page has been altered and
hence must be copied to secondary storage
before that physical memory can be used for
another page. The Referenced flag can be
used to determine which pages have not been
accessed by an executing program. This infor­
mation is useful in a variety of memory­
management algorithms.

PMMU memory protection features
safeguard memory areas from unauthorized or
unintended access by associating special
access restirctions with each page. A page is
assigned a number of attributes when its
descriptor is initially entered into the PMMU.
Pages are protected by modes of permitted
use, such as read only, system only, and exe­
cute only. The Valid flag indicates whether or
not a descriptor has been initialized. When a
memory reference is made, these attributes are
checked against the status information sup­
plied by the VMPU. If a mismatch occurs, the
instruction is aborted, a Trap Request signal is
generated and the VMPU is interrupted. The
VMPU then checks the status registers of the
PMMU to determine the cause of the abort.

The PMMU is controlled by 20 special I/O
instructions, which can be issued from the
VMPU in system mode only. With these
instructions, system software can assign pro­
gram pages to arbitrary memory locations,
restrict the use of pages, and monitor whether
pages have been read or written.

The PMMU has two operating modes: an
dudress translation mode in which addresses
are translated automatically as they are
received, and a command mode, during which
specific registers in the PMMU are accessed
using special I/O commands.

2048-byte pages. Pages are assumed to be
allocated in memory on 2048-byte boundaries
so that the II low-order bits of the starting
location of each page are always equal to zero.
Segments in a virtual memory system can con­
sist of pages that need not be in physical
storage. Those segment pages in main memory
need not be contiguous. Segments can have a
variable number of pages. Any page can be
designated so that writes into the lowest
numbered 128 bytes generate a warning trap
without an instruction abort. If such a page is
used as the last page of the system stack, the
warning trap can be used to allocate another
page to the stack segment and prevent a stack
overflow error.

~
Zilog

Features

Description

2016-039,041

• Two independent, 0 to 1M bit/second, full­
duplex channels, each with a separate
crystal oscillator, baud rate generator, and
Digital Phase-Locked Loop for clock
recovery.

• Multi-protocol operation under program
control; programmable for NRZ, NRZI, or
FM data encoding.

• Asynchronous mode with five to eight bits
and one, one and one-half, or two stop bits
per character; programmable clock factor;
break detection and generation; parity,
overrun, and framing error detection.

The Z-SCC Serial Communication Controller
is a dual-channel. multi-protocol data com­
munication peripheral for Z-BUS use. It is
software-configured to satisfy a wide variety of
serial communication applications. Its bask
function is serial-to-parallel and parallel-to­
serial conversion. In addition, the Z-SCC has
internal functions that minimize the need for
external random logic on the circuit card.

AD, TxDA \ SERIAL
AD, R)(OA ...-1 DATA

AD, TRxCA -I CHANNEL
AD, RTxCA _I CLOCKS

A03 SYNCA -- CH·A
AD, WiAEaA CHANNEL
AD, 0'iRiREQA CONTROLS

ADo RlSA
FOR MODEM,
DMA,OR

AS OTHER

OS

R/W hOB I SERIAL
RxDB ~ DATA

I CHANNEL
CLOCKS

CHANNEL CH·B

lEO CONTROLS
FOR MODEM,
DMA,OR

Z8030 OTHER

Z·SCC

t t t
+5V GND PCLK

Figure 1. Pin FunclioDS

Appendix B

Z8030 Z8000™ Z-SCC
Serial Communications
Controller

Product
Brief

March 1982

• Synchronous mode with internal or external
character synchronization on one or two
sync characters and CRC generation and
checking with CRC-16 or CRC-CCITT
preset to either Is or Os.

• SDLC/HDLC mode with comprehensive
frame-level control, automatic zero insertion
and deletion, I-field residue handling, abort
generation and detection, CRC generation
and checking, and loop mode operation.

• Local loopback and auto-echo modes.

The Z-SCC handles asynchronous formats,
synchronous byte-oriented protocols such as
IBM Bisync, and synchronous bit-oriented pro­
tocols such as HDLC and IBM SDLC. It also
supports virtually any other serial data tra.n.sfer
application (cassette or diskette interface, for
example).

The device can generate and check CRC
codes in any synchronous mode and can be

AD, ADo

A03 AD,

AD, AD,

AD, AD,

iNT os
lED AS
lEI R/W

INTACK CSo
+5V cs,

ViiRE'QA ONO

SYNCA WiAECe
RTxCA SYNCS

RxDA RTxCB

TRxCA RxOS

TxDA TRxes

DTR/REQA TxDB

RlSA DTRIREQB

elSA RISS

DeDA erss
PCLK CCDS

Figure 2. Pin AsslgllJllenls

B-7

Appendix 6

Description
(Continued)

Typical
Applications

6-8

programmed to check data integrity in various
modes. It also has facilities for modem controls
in both channels. In applications where these
controls are not needed, the modem controls
can be used for general-purpose I/O.

As is standard among Zilog peripheral com­
ponents, the Z-BUS daisy-chain interrupt
heirarchy is supported.

The Z-SCC contains the necessary multi­
plexed address/data bus interface with strobe
and chip select lines to function as a Z-BUS
peripheral. It includes internal control and
interrupt logic, two full-duplex channels and
two baud-rate generators. Associated with
each channel are several read and write
registers for mode control as well as the logic
necessary to interface to modems or other
external devices.

ADDRESSJ~.
DATA~

CPU
BUS 110

CONTROL WL-__J

INTERRUPT
CONTROL

LINES

INTERNAL
CONTROL

LOGIC

INTERRUPT
CONTROL

LOGIC

INTERNAL BUS

The read and write register group for each
channel includes eight control registers, two
sync-character registers, and four status
registers. Each baud rate generator has two
read/write registers for holding the time con­
stant that determines baud rate. Associated
with the interrupt logic is a write register for
interrupt vector and three read registers: vec­
tor with status, vector without status, and inter­
rupt pending status.

The logic for each channel provides format­
ting, synchronization and validation for data
transferred to and from the channel interface.
The modem control inputs are monitored by
the control logic under program control. All of
the modem control signals are general purpose
in nature and optionally can be used for func­
tions other than modem control.

CHANNEL B
REGISTERS

__ } MODEM, DMA, OR
OTHER CONTROLS

} SERIAL DATA

..- } CHANNEL CLOCKS

SYNC
WAIT/REQUEST

Figure 3. Functional Block Diagram

Figure 4 shows how a Z-SCC can be con­
nected with Channel A programmed for the
Synchronous Data Link Control (SDLC) Loop
mode, functioning as a secondary station. If
NRZI or FM coding is used, no clock lines are
required because the clock can be recovered
from the received data, using the Z-SCC's on­
chip Digital Phase Locked Loop (DPLL).
Another Z-SCC (not shown), programmed for
the SDLC mode, would be the controlling sta­
tion, polling the loop for traffic. The figure
shows a typical, asynchronous serial port
being serviced by Channel B of the Z-SCC. It
could just as well support another synchronous
data link, or even a high-speed link, transfer­
ring data via a DMA controller.

{

TxDA }

CHANNEL ~ SDLC
A RxDA LOOP

Z8030
sec

'~'l
TxDB

TRxes

RTxCB
MODEM } DATA

RxDB LINK

CONTROL

Figure t. Loop Secondary Station and Serial Port

8051·0040.0070

~
Zilog

Features

Description

2014-0035, 0036

• Two independent 8-bit, double-buffered,
bidirectional I/O ports plus a 4-bit
special-purpose I/O port. I/O ports
feature programmable polarity,
programmable direction (Bit mode), "pulse
catchers," and programmable open-
drain outputs.

• Four handshake modes, including 3-Wire
(like the IEEE-488).

• REQUEST/WAIT signal for high-speed data
transfer.

The 28036 Z-CIO Counter/Timer and
Parallel I/O element is a general-purpose
peripheral circuit, satisfying most
counter/timer and parallel I/O needs
encountered in system designs. This versatile
device contains three I/O ports and three
counter/timers. Many programmable options
tailor its configuration to speCific applications.

ADDRESSIDATA {~ ~~~
BUS- AD3

.-.. AD2

AD,

~ ADo

BUS TIMINO { ~ ~
AND RESET ______ DS Z803.

{
___ Riii Z·CIO

CONTROL -----. Cso
---.... CS1

{ --.... :ACK
INTERRUPT ~ lEI

lEO

PCLK +5 V GND

Figure 1. Pin Functions

Appendix B

Z8036 Z8000™ z-elo
CounterlTimer and
Parallel 1/0 Unit

Product
Brief

March 1982

• Flexible pattern-recognition logic, program­
mable as a 16-vector priority interrupt con­
troller.

• Three 16-bit counter/timers with up to
four external access lines per counter/timer
(count input, output, gate, and trigger).
and three output duty cycles (pulsed,
one-shot, and square-wave), programmable
as retriggerable or nonretriggerable.

• Easy to use since all registers are read/write
and directly addressable.

The use of the device is simplified by making
all internal registers (command, status, and
data) readable and (except for status bits)
writable. In addition, each register is given its
own unique address so that it can be
accessed directly-no special sequential
operations are required. The Z-CIO is directly
Z-BUS compatible.

AD, AD,

AD, AD,

AD, AD,

AD, AD,

os Cs;;
RIW cs,

GND All

PB, PAo

PB, PA,

PB, PA,

PB, P,,"

PB, P,,"

PB, PA,

PB, P"

PB, PA,

PCLK iNfACK
lEI fNT

lEO +5V

pc, pc,
pc, pc,

Figure 2. Pin Assignments

6-9

Appendix B

Architecture The 28036 2-CIO consists of a 2-BUS inter-
face, three I/O ports (Ports A and Bare
general-purpose 8-bit ports linkable into a
16-bit port; Port C is a special-purpose 4-bit
port), three 16-bit CounterlTimers (CIT I, CIT
2, CIT 3), an interrupt control logic block, and
an internal control logic block. Ports A and B
are identical; B also is able to provide external
access to CIT 1 and CIT 2. Either port can be
specified as a handshake-driven, double­
buffered port (input, output, or bidirectional)
or a control-type port with programmable
individual bit direction. Pattern recognition
interrupt generation on match is provided; one
mode facilitates implementing a priority inter­
rupt controller.

Ports A and B each contain 12 registers. The
Data Path registers are the Input, Output, and
Buffer registers. The Mode Specification and
Handshake Specification registers define the
mode of operation of the ports. The reference
pattern (for pattern match) is specified by the
Pattern Polarity, Pattern Transition, and Pat­
tern Mask registers. Detailed characteristics of
the bit paths are controlled by the Data Path
Polarity, Data Direction, and Special 1/0 Con­
trol registers. The Command and Status
register contains the primary control and status
bits. Registers associated with unused
capabilities do not need initialization.

Port C provides handshake lines for Ports A
and B as needed. Unused lines can provide

external access to CIT 3 or to bit 1/0. Port C
has five registers. The Data Path registers are
the Input and Output registers. The bit path
definition registers are the Data Path Polarity,
Data Direction, and Special 1/0 Control
registers.

The three identical CounterlTimers each
consist of a 16-bit down-counter, a 16-bit Time
Constant register (which holds the initial
down-counter value), a 16-bit Current Count
register (for reading the down-counter con­
tents), and CIT Mode SpeCification and CIT
Command and Status registers. Counter input,
gate input, trigger input, and CIT output lines
are optionally available, as are the pulse, one­
shot, or square-wave CIT output duty cycles.
Each CIT can be programmed as retriggerable
or not.

The interrupt control logic provides standard
2-BUS interrupt capabilities. There are five
registers (Master Interrupt Control register,
three Interrupt Vector registers, and the Cur­
rent Vector register) associated with the inter­
rupt logic. In addition, the ports' Command
and Status registers and the counterltimers'
Command and Status registers include bits
associated with the interrupt logic. Each of
these registers contains three bits for interrupt
control and status: Interrupt Pending (IP),
Interrupt Under Service (IUS), and Interrupt
Enable (IE).

Figure 3. Block Diagram

B-10 2014-001

Features

Description

2020-096. 097

• l28-byte FIFO buffer provides asynchronous
bidirectional CPU/CPU or CPU/peripheral
interface, expandable to any width in byte
increments by use of multiple FIOs.

• Interlocked 2-Wire or 3-Wire Handshake
logic port mode; Z-BUS or non-Z-BUS
interface.

• Pattern-recognition logic stops DMA
transfers and/or interrupts CPU; preset byte
count can initiate variable-length DMA
transfers.

The Z8038 FlO provides an asynchronous
l28-byte FIFO buffer between two CPUs or
between a CPU and a peripheral device. This
buffer interface expands to a IS-bit or wider
data path and expands in depth to add as
many Z8060 FIFOs as are needed.

The FlO manages data transfers by assuming
Z-BUS, non-Z-BUS microprocessor (a general­
ized microprocessor interface), Interlocked

+5V GND

Figure 1. Pin FunctiOllS

Appendix B

18038 ZlOOOTM
I-FlO FIFO lapull
Output laterface Ualt

Product
Brief

March 1982

• Seven sources of vectored/nonvectored
interrupt which include pattern-match,
byte count, empty or full buffer status;
a dedicated "mailbox" register with
interrupt capability provides CPU/CPU
communication.

• REQUESTIW AIT lines control high-speed
data transfers.

• All functions are software controlled via
directly addressable read/write registers.

2-Wire Handshake, and 3-Wire Handshake
operating modes. These modes interface
dissimilar CPUs or CPUs and peripherals
running under differing speeds or protocols,
allowing asynchronous data transactions and
improving 110 overhead by as much as two
orders of magnitude. Figures 1 and 2 show
how the signals controlling these operating
modes are mapped to the FlO pins.

161
111
I!:I
I!!I
00
III
rAJ
IBl
rn •
flI

.,

Figure 2. Pin AalgDlll8DI8

8-11

Appendix 8

Description
(Continued)

Functional
Description

8-12

The FlO supports the Z-BUS interrupt pro­
tocols, generating interrupts upon any of the
following seven events: a write to a message
register, change in data direction, pattern
match, status match, over/underflow error,
buffer full and buffer empty status. Each inter­
rupt source can be enabled or disabled, and
can also place an interrupt vector on the port
address/data lines.

The data transfer logic of the FlO has been

TO
Z-BUS

OR GENERAL
MICROPROCESSOR

CONTROLI ,,_--_/1
INTERFACE

LOGIC
PORT 1

specially designed to work with DMA (Direct
Memory Access) devices for high-speed
transfers. It provides for data transfers to or
from memory each machine cycle, while the
DMA device generates memory address and
control signals. The FlO also supports variably
sized block length, improving system
throughput when multiple variable length
messages are transferred.

TO
Z·BUS

OR GENERAL
MICROPROCESSOR

OR
PORT WITH

HANDSHAKE

l\r--"/I CONTROll
INTERFACE

LOGIC
PORT 2

Figure 3. Functional Block Diagram

Operating Modes. Ports 1 and 2 operate in
any of the twelve combinations of operating
modes listed in Table 2. Port I functions in
either the Z-BUS or non-Z-BUS microprocessor
modes, while Port 2 functions in Z-BUS, non­
Z-BUS, Interlocked 2-Wire Handshake, and
3-Wire Handshake modes. Table I describes
the signals and their corresponding pins in
each of these modes.

SlgDGi Z-BUS Z·BUS
PI ... Low Byt. High Byte

~ REQIWT REQIWT

[!] DMASTB DMASTB
@J os os
iii RlW R!W
[]] CS CS
I!J AS AS
[Q] INTACK AO
[jj] lEO Aj

IT] lEI A2
[j] iN!' A3

*2 SIde only,

The pin .diagrams of the FlO ports are iden­
tical, except for two pins on the Port 1 Side,
which select that port's operating mode. Port
2' s operating mode is programmed by two bits
in Port l's Control register O. Table 2
describes the combinations of operating
modes; Table I describes the control signals
mapped to pins A-J in the five possible
operating modes.

Inlerlocked '·Wlre
Non-Z-BUS HS Pori" NS Port"

REQIWT RFD/DAV RFDIDAV

DACK ACKIN DAVIDAC

Ri5 FULL DACIRFD

WR EMPTY EMPTY

CE CLEAR CillJi
C/O DATADIR DATA DIR

INTACK INO INa

lEO OUTI OUTI

lEI Oil Oil
INT OUT3 OUT3

Table I. Control Signal Assignments

Mode Control Bits Operating Mode

Port 1 Port 2

Z-BUS Low Byte

Z-BUS Low Byte

Z-BUS Low Byte

Z-BUS Low Byte

Z-BUS High Byte

Z-BUS High Byte

Z-BUS High Byte

Z-BUS HIgh Byte

Non-Z-BUS

Non-Z-BUS

Non-Z-BUS

Non-Z-BUS

Z-BUS Low Byte

Non-Z-BUS

3-Wlre Handshake

2· Wire Handshake

Z-BUS High Byte

Non-Z-BUS

3-Wlre Handshake

2-Wlre Handshake

z-BUS Low Byte

Non-Z-BUS

3-Wlre Handshake

2-Wlre Handshake

Table 2. Operating Modes

8049-0098

~
Zilog

Features

Description

2123·001. 002

• Asynchronous, bidirectional first-in, first-out
buffer.

• Extends depth of Z-FIO without limit.

• 128 x 8 organization.

The Z-FIFO first-in, first-out buffer unit is a
128 x 8-bit memory with bidirectional data
transfer capability and handshake logic. Its
structure is similar to that of other FIFOs that
are commonly available, such as the AM2812
and the 3351. The handshake logic used is
compatible with that of the Z8, the Z-CIO, and

+5 V GND

Figure 1. Pin Functions

Appendix 6

Z8060
Z8000™ FIFO Buffer Unit
and I-FlO Expander

Product
Brief

March 1982

• 3-state data outputs.

• Empty and Full status pins are wire-ORed
among multiple stages.

Z-FIO. Z-FIFO buffers can be cascaded, end to
end, without limit, their RFD/DAV and ACKIN
Signals daisy-chained, to make a FIFO array
any desired number of words deep. Two such
channels in parallel, suitably controlled, make
up a 16-bit-wide buffer array.

RFD/DAVA +5V

ACKINA RFDfDAVB

FULL ACKiNB
EMPTY CIEAJi

OEA DIR AlB

Do. OE.
0,. Do.

0,. 0,.
03. 0,.
D •• 03.
DSA D ••

DSA D ••

0" 0..
GND 0,.

Figure 2. Pin Assignments

6-13

Appendix B

Description
(Continued)

B-14

TOZ·BUI
OR08N.RAL

MIORONOO ••• OR

Figure 3. Using FIFO. to Extend FlO Depth

DATA IN :::::x VALID DATA X X VALID DATA X
ACKIN \ / '---.J

RPD , I '---.J

Figure 4. Two-Wire Interlocked H"ndshake Timing (Input)

DATA OUT :::::x ____ y_A_Ll_D_D_AT_A ____ .. X VALID DATA x:::
ACKIN

DAV ''-__ ...J/

~

'---.J
Figure 5. Two-Wire Interlocked Handshake Timing (Output)

TOZ-8US
OIlOB.BRAL
M.CROPROC ... OR

2047-101 2020-019.020

B
Zilog

Features

Description

2017-069,095

• Complete slave microcomputer, for
distributed processing Z-BUS use.

• ZS architecture and instruction set.

• 2K bytes of on-chip ROM.

o Available in standard or development
configuration.

• Three programmable I/O ports, two with
optional2-Wire Handshake.

• Six levels of priority interrupts from eight

The ZS090 Universal Peripheral Controller
(Z-UPC) is an intelligent peripheral controller
for distributed processing applications (Figure
3). The Z-UPC unburdens the host processor
by assuming tasks traditionally done by the
host (or by added hardware), such as perform­
ing arithmetic, translating or formatting data,
and controlling I/O devices. Based on the ZS
microcomputer architecture and instruction
set, the Z-UPC contains 2K bytes of internal
program ROM, a 256-byte register file, three
8-bit I/O ports, and two counter/timers.

l-AD7
....... AD,

......... ADs

ADDRESS' ~ AD4
DaTA BUS AD3

~AD2

......... AD1

-ADo

TIM~~: I AS
AND RESET \ - liS Z8080

z·upc

{

iNfOR P3&

MaSTl!1I ----. INTACK OR P32

INTEAR~:~ lEI OR '30
lEO OR P3r

+5V

GND

Figure 1. Pia FUDCtloll8

Appendix B

Z8090
Z8000™ Z-OPC Onlvenal
Peripheral Controller

Product
Brief

March 1982

sources: six external sources and two inter­
nal sources.

• Two programmable 8-bit counter/timers
each with a 6-bit prescaler. Counter/Timer
TO is driven by an internal source, and
Counter/Timer Tl can be driven by internal
or external sources. Both counter/timers are
independent of program execution.

• 256-byte register file, accessible by both the
master CPU and Z-UPC, using a fail-safe
message-passing protocol.

The Z-UPC offers fast execution time; an
effective use of memory; and sophisticated
interrupt, I/O, and bit manipulation. Using a
powerful and extensive instruction set
combined with an efficient internal addressing
scheme, the Z-UPC speeds program execution
and efficiently packs program code into the
on-chip ROM.

An important feature of the Z-UPC is an
internal register file containing I/O port and
control registers accessed both" by the Z-UPC
program and by its associated master CPU.

+5V 1

PCLK

lEO OR par
lEI OR P30 4

_ lNf OR PS, 6

INTACK OR P3a I

III 7

AD,

AI>.!

.o,

'3e

.o.
PI,

PI,

,"
'"

Figure 2. Pia _Igameata

B-15

Appendix B

Description
(Continued)

Z-8US TO
MASTRR

CPU

6-16

This architecture results in both byte and
programming efficiency, because Z-UPC
instructions can operate directly on VO data
without moving it to and from an accumulator.
Such a structure allows the user to allocate as
many general-purpose registers as the applica­
tion reqUIres for data buffers between the CPU
and peripheral devices. All general-purpose
registers can be used as address pointers,
index registers, data buffers, or stack space.

The register file is logically divided into 16
groups, each consisting of 16 working
registers. A Register Pointer is used in con­
junction with short format instructions,
resulting in tight, fast code and easy task
switching.

Communication between the master CPU
and the register file takes place via one group
of 19 interface registers addressed directly by
both the master CPU and the Z-UPC, or via a
block transfer mechanism. Access by the
master CPU is controlled by the Z-UPC to
allow independence between the master CPU
and Z-UPC software.

The Z-UPC has 24 pins that can be dedi­
cated to I/O functions. Grouped logically into
three 8-line ports, they can be programmed in
many combinations of input or output lines,
with or without handshake, and with push-pull
or open-drain outputs. Ports 1 and 2 are bit-

programmable; Port 3 has four fixed inputs
and four outputs.

To relieve software from coping with real­
time counting and timing problems, the Z-UPC
has two 8-bit hardware counter/timers, each
with a fixed divide-by-four, and a 6-bit pro­
grammable prescaler. Various counting modes
may be selected.

In addition to the 40-pin standard configura­
tion, the Z-UPC is available in four special
configurations:

• A 64-pin RAM development version with
external interface for up to 4K bytes of RAM
and 36 bytes of internal ROM permitting
down-loading from the master CPU.

• A Protopack RAM version with a socket for
up to 2K bytes of RAM, with 36 bytes of
internal ROM permitting down-loading from
the master CPU.

• A 64-pin ROM development version with
external interface for up to 4K bytes of ROM
and no internal ROM.

• A Protopack ROM version with a socket for
2K bytes of ROM and no internal ROM.

This range of versions and configurations
makes the Z-UPC compatible with most system
peripheral device control methods.

H08TCitU
INTBRFACE Z·UPC MICROCOMPUTER

ADo-AD,

lEI

lEO

INTERFACE
REGISTERS

(PART OF REGISTER
FILE)

L _____ -,

+5V GND PCLK

PROGRAM
MEMORY
2K)(8

lAP

REGISTER
FILE

.... 8

Figure 3. Functional Block Diagram

2017-087

~
Zilog

Features

Description

2031-0045

• Defines the interface protocols used by
Z8000 family members for data transfer,
interrupt Signaling, and resource sharing.

• Provides multiplexed address/data bus
shared by memory and I/O transfers, using
separate protocols.

• Provides 16 or more memory address bits;
16-bit I/O addresses; 8 or 16 data bits.

• Allows direct addressing of registers within
peripherals.

The Z-BUS is the high-speed parallel shared
bus that links components of the Z8000 Family
and provides family members with a common
communication interface that supports:

• Data Transfer. Data can be moved between
bus masters (such as a CPU) and memories
or peripherals.

• Interrupts. Interrupts can be generated by
peripherals and serviced by CPUs over
the bus.

• Resource Control. Distributed management
of shared resources (including the bus itself)
is supported by a daisy-chain priority
mechanism.

The heart of the Z-BUS is a set of multi­
plexed address/data lines and the signals that
control these lines. Multiplexing data and
addresses onto the same lines makes more effi­
cient use of pins, facilitates expansion of the
number of data and address bits, and allows
direct addressing of a peripheral's internal
registers, which simplifies I/O programming.

A daisy-chained priority mechanism resolves
interrupt and resource requests, thus allowing
distributed control of the bus and eliminating
the need for separate priority controllers. The
resource-control daisy chain allows wide
physical separation of components.

The Z-BUS is asynchronous in the sense that
peripherals do not need to be synchronized
with the CPU clock. All timing information is
provided by Z-BUS signals.

Appendix 6

Z·BUS®
Component Interconnect

Descriptive
Brief

March 1982

• Provides bus signals that allow separate
CPU and peripheral clocks.

• Supports polling, vectored interrupts and
non-vectored interrupts.

• Defines a simple priority interrupt scheme,
without a separate controller, through a
daisy-chain interrupt structure.

• Supports distributed control of bus and
other shared resources through bus and
resource request protocols.

------PRIMARy SIONALS------

BUS
MASTER

< AD,-AD" >
EXTENDED ADDRESS

STATUS>
--As~

--0$----.
--RIW--+-
--s/Vi ----.-
"""'--WAIT-­

-4--RESET------.

PERIPHERAL
AND MEMORY

-----BUS REOUEST SIONALS----­

"--BUSREQ~

--BUSACK______..
CPU

REQUESTER

C:::: BAi~
BAO"­

-----INTERRUPT SIONALS------

~iNf--

~IEI---'"

L- 1E04--

PERIPHERAL

----RESOURCE REQU",ST SIONALS----

Z·BUS
COMPONENT

--MMRQ~

4--iiiMSf-­
~MMAI----,

______ MMAO----.J

Figure I. Z-BUS Signals

MULTI-MICRO
REQUEST
NETWORK

6-17

Appendix B

Memory and
1/0 Data
Transfers

Interrupt

Bus and
Resource
Requests

B-1B

When a processor accesses a memory
location or I/O deVICe via the Z-BUS, both
the address and data are transferred over
ADo-ADI5. The address is transmitted while
Address Strobe (AS) is Low at the beginning of
a transfer, and data is moved while Data
Strobe (DS) is Low at the end of a transfer (as
shown in Figure 2). The status lines serve to
distinguish between I/O and memory and
among the various memory address spaces.
The ReadlWrite (R/W) line and Byte/Word
(B/W) line determine the type of transfer;
WAIT allows slow memory or peripherals to
delay data transfer.

The Z-BUS interrupt scheme is an mterrupt­
under-service priority daisy chain that requires
no separate priority controller. Interrupt
requests are all tied directly to the INT pm of
the CPU. (See Figure 3.) Physical position
along the IEIIIEO daisy chain determines the
prIOrity assigned to any given peripheral.

A complete interrupt cycle consists of an
interrupt request followed by an mterrupt­
acknowledge transaction. The request, which

HIOHEST
PRIORITY

Z·BUS
PERIPHI!!RAL

ADO-AD11
(RBAD)

ADo-AD •• ~ ";,ATA >--
(WRITE' ~----------'-

Figure 2. Z-BUS Memory and I/O TraDBfe ..

consists of INT pulled Low by a peripheral,
notifies the CPU that an mterrupt is pending.
The interrupt-acknowledge transaction, which
is Initiated by the CPU as a result of the
request, performs two functions: 1) using the
IEI/IEO daisy chain it selects the peripheral
whose interrupt is to be acknowledged; 2) it
obtains a vector that identifies the selected
device and the cause of interrupt.

Z·8US
PERIPHERAL

LOW.ST
PRIORITY

Z·BUS
NlUPH&RAL

+C:rrrt ti- lEO lEI ADo-ADr.Q os iN'f iNflffi(lEO lei ADo-AD7.q D! IRT rATACK lEO

I Itt I ~c-----t I I I ,
ADo-A07 +l ..

Z·BUS 1m CPU ..,.
WAIT -

STATUS ====>[STATUS l
DI!CODIR r

AD8-A015 ¢=:J ".OM • .·B'T P'.'P.E.ALS

Figure 3. Interrupt Co ecllo ...

For a device other than the CPU (which is
default master) to gain control of the bus, it
must make a bus request by forCing BUSREQ
Low. After BUSREQ is pUlled Low, the Z-BUS
CPU relinquishes the bus and indicates this
condition by pulling BUSACK Low. This Low
signal is propagated through the BAIIBAO
daisy chain until it reaches a bus requester
that is ready to use the bus.

This requester uses the bus and then
releases BUSREQ and allows BAO to follow
BAl. When all simultaneously requesting
devices have relinquished the bus, BUSREQ
goes High, returning control of the bus to the
CPU.

The resource request cham is used to share
a resource among several Z-BUS CPUs, none
of whICh is default master of that resource. The
resource-request signals and protocol are
similar to that of the bus request, except that
there is no default master.

BUS
REQUIISTERS

Z-BUS CPU

iAi
BusREai----1

iiAO

Figure 4. Bus Request CollUlectloDS

C8067-0047 2031-0193

c

A

B

c

o

E

LOWER \UBItE (1IEXl. UPPER IIISTIIUCTIOR BYTE

0 I 2 S , 5 •
ADD. ADD SUBB SUI ORB OR AlIDI

R -IR R -IR R -IR R -IR R-IR R-IR R-IR
R -1M R-IM R-IM R -1M R -1M R-IM R-IM

CPt PUSRL 8UIL P1ISH LDL POPL ADDL
R -IR IR -IR R -1ft 1ft - 1ft R -IR IR -IR R-IR
R -1M R -1M R-IM R -1M

LDI LD RE8B us BETI BET IlTI
R-IR R -1ft 18 -1M 1ft -1M 1ft -1M IR -1M IR -1M
R -IN R-IM R -R R -R R -R R-R R - R

LDI LD LDI LD LDA LDL RBVD
R -BA R -BA BA - R SA -R R -BA R -BA
LDRB LDR LDRB LDR LDAR LDBL

R -RA R -RA RA -R RA - R R -RA R -R

ADDB ADD SUBB SUI ORB OR MDI
R-X R-X R -x R-X R - X R - X R -x

R - DA R -OA R -OA R -OA R -DA R -DA R -OA

CPt PUSRL BUlL PUIR LDL POPL ADDL
R-X 1ft -x R -x IR -x R-X 1ft -. X R -x

R -DA IR -DA R -DA 1ft -DA R -OA IR ~DA R -OA

LDI LD USB REB BETI BET IITI
R -x R-X X -1M X -1M X -1M X-1M X -1M

R -DA R -DA DA -1M DA -1M DA - 1M DA -1M DA -1M

LDB 1M LDB LD LDA LDL LDA
R - BX Table ax -R BX -8 R - 8X R - BX R -x

7 R -DA

ADDI ADD SUlI 8U1 ORB OR
R -R R-R R-R R -R R-R R - R

CPt PUSRL SUIL PUIR LDL POPL
R -R IR -R R -R 1ft -8 R-R R -IR

LDI LD REBB REB BETI BET
R -R R-R R-IM R -1M R-IM R-IM

DJIlI llJ:T8 1M 1M ADCI ADC
llJ:T8I Table Table R -R R -R

R apt , ,
LDI

R -1M

CALK
PC -RA

JR
PC - RA

DIRJ:
DIJRZ

PC -RA

Notes:

I) Reserved InstructJons (RSVD) should not be
used. Tile result of their executJon IS not defIned.

2) The executJon of an extended Instruction will
result In an Extended InstructIon Trap Ii the EPA
bit in the FeW IS a zero. II the flag IS a one the
Extended InstructIon WIll be executed by the EPU
function.

MDI
R-R

ADDL
R - R

IITI
R -1M

SBCB
R -R

7 • • A

AlID :lORB :lOR CH
R -IR R -1ft R-IR R -IR
R -1M R -1M R -1M R-IM

pop NULTL NULT DIYL
1ft -1ft R - 1ft R - 1ft R-IR

R -1M R -1M R -1M

BIT 1IIC1 IRC DECI
IR -1M 18 -1M 1ft -1M IR -1M
R-R

LDL RBVD LDP8 1M
BA - R IR Tft
R~!"R

ARD :lORB :lOR CH
R-X R -x R - X R -x

R - DA R -OA R -OA R -OA

pop NULTL NULT DIYL
IR- X R -x R - X' R - X

1ft -DA R -DA R -DA R -DA

lIT IRCI IRC DECI
X -1M X -1M X -1M X -1M
DA-IM DA -1M DA -1M DA -1M

LDL RBVD LDPS HALT
8X - R PS - x

PS - DA

AlID XORB :lOR CPB
R-R R - R R - R R-R

pop NULTL MULT DIYL
R - 1ft R -R R -R R -R

lIT IRCI IRC DECI
R-IM R -1M R -1M R-IM

sse 1M RBVD 1M
R-R Table Table

s •

Op Code Map

Appendix C

I C ~E. .L
CP S" 1M ElITEft1) DTE1ID

R-IR fable T"b. IIIST IIIST
R-IM I I

DIY 1M LDL JP CALL
R - 1ft Table Ift-R PC-1ft PC-1ft
R -1M 2

DEC ED U LDI LD
1ft - IM R-Ift R-IR Ift-R IR-R

1M IllS IR OUTS OUT
T~ R-IR R-IR IR-R IR-R
II

CP 1M 1M ElITEft1) EXTERD
R-X Table Table (HIT IIIST

R - DA (I

DIY 1M LDL JP CALL
R -x Table X-R PC-X PC-X

2 DA-R PC-DA PC-DA

DEC ED U LDB LD
X -1M R-X R-X X-R X-R

DA -1M R-DA R-DA DA-R DA-R

1M EI 1M .RBVD sc
Table DI Table

7 7

CP 1M 8" llJ:TE1ID ElITEft1)
R-R Table Table IIIST. IRST.

I I

DIY 1M RBVD RET RBVD
R-R Table PC-(SPI

2

DEC ED U TCCI TCC
R -1M R-R R-R R R

1M RRDB LUI BLDB RBVD
Table R R-IM R •

C-1

Appendix C

OC
COMB

IR

CPB
IR,IM

NEGB
IR

RSVD

TESTB
IR

LDB
JR-IM

TSETB
IR

RSVD

CLRB
IR

C-2

OD 4C 4D IC
COM COMB COM COMB

IR x x R
DA DA

CP CPB CP LDCTLB
Ift.IM X,IM X,IM R-FLGS

DA,IM DA,IM

MEO NEGB MEO NEGI
IR x X R

DA DA

RSVD RSVD RSVD RSVD

TEST TESTB TEST TESTB
IR X x R

DA DA

LD LDB LD RSVD
lA-1M X-1M X-1M.

DA-IM DA-IM

TBET TSETB TSET TSETB
IR x x R

DA DA

RSVD RSVD RSVD RSVD

CLK CLRB CLR CLRB
IR x X R

DA DA

PUSH LDCTLB
1M FLGS-R

'---- '----

Table I. Upper Instruction Byte

9C

LJ
TESTL

IR

LDM
I8-A

Table 2. Upper Instruction Byte

ID
COM IIIIB l1li

R IR-IR IR-IR
IIIIRB IIIIR
IR-IR 1ft-1ft

SETFLQ
SIIIIB SIIII
IR-IR IR-Ift
SIIIIRB SIIIIR

NEG 1ft-1ft IR-IR
R

oum oun
IR-lft IR-IF

RESFLG OTIRB OUTIR
IR-IR IR-IR

soum SOUTI
TEST IR-IR IR-IR

R SOTIRB SOTIR
IR-IR IR-IR

COMFLG INB IN
R-DA R-DA

TSET
R SIIIB SIN

R-DA R-DA

NOP

OUTB OUT
OA-R OA-R

CLK
R

SOUTB SOUT
OA-R DA-R

INDB IND
Ift-IR IR-IA
INDRII INDR
IR-IR IR-IR

SlNDB SIND
1ft-1ft Ift-I8

SlNDRB SINDR
Ift-IR IR-lR

OumB oum
A IA-IR lA-1ft

omRB omR
IR-IR 18-1ft

soumB soum
1ft-1ft IR-IR

somRB somR
IR-IR IR-IR

Table 3. Upper Instruction Byte

Appendix C

Ba B3 B8 BA BB 1B 10

TRIB
IR

IRET RSVD
PC-(SSP}

RLB RL
(1 bit) (I bit)

CPIB CPI
lR IR

R R

LOIB LDI
RSVD RSVD RSVD SLLB SLL

R R
SRLB SRL

IR-IR IR-lR
LOIRB LOIR
IR-IR lR-lR

R R TRTIB CPSIB CPSI RSVD LDcn

RLB RL lR IR IR R-FCW

(2 blls) (2 bits)
R R

RSVD RSVD RSVD RSVD LDCTL

SOLB SOL
R -RFRSH

R R

TRIRB CPRIB CPIR RSVD LOCTL
IR R-

PSAPSEG RRB RR
IR lR

(1 bit) (l bit)
R R

RSVD RSVD RSVD RSVD Locn
R-

SLLL PSAPOFF
RSVD R

SRLL

'" TRTIRB

5 IR
RSVD LOCTL

R -NSPSEG
RRB RR

CPSIRB CPSIR
IR IR

" 0
0:

(2 bits) (2 blls)

R R

" RSVD :>
t=
'"

RSVD Locn
R-NSPOFF

RSVD SOLL

RSVD RSVD

R !i

~ TROB
IR

MSET RSVD

RLeB RLC

CPOB CPO
lR IR

~ RSVD MRES RSVD

(1 bit) (I bit)

R R
LOOB LOO

el
i:!
Ii!
15 TRTOB

~ IR
MBIT LDcn

FCW-R

SLAB SLA
R R

SRAB SRA
R R

RLCB RLC

IR-IR JR-IR
LDORB LOOR
IR-IR IR-IR

CPSOB CPSD
IR lR

A (2 blls) (2 bits)

RSVD RSVD LOCTL
R R

RSVD RSVD
RFRSH-R

SOAB SOA
R R

TRORB CPORB CPOR LOCTL
c lR lR lR PSAPSEG

RRCB RRC -R

c (I hit) (1 bit)

R R RSVD RSVD RSVD MREQ LDcn
R PSAPOFF

SLAL -R

RSVD R
SRAL TRTORB CPSORB CPSOR RSVD LOCTL

lR IR lR NSPSEG-R

RRCB RRC
(2 bits) (2 bits)

R R LOCTL
RSVD RSVD RSVD RSVD NSPOFF-R

SOAL
RSVD R

Table 4. Table 5. Table 6. Table 7.
Upper Instruction Byte Upper Instruction Byte Upper Instruction Byte Upper Instruction Byte

C-3

Appendix C

Topical
Index Data Addreulag Flags

IDBtructloa Duc:rtptloa MulDODlc Typ .. Modea Affected

Arithmetic
Add with Carry ADC B,W R C, Z, S, V, D', H'
Add ADD B, W,L R, 1M, IR, DA, X C, Z, S, V, D', H'
Compare (Immediate) CP B,W IR, DA, X C,Z,S, V
Compare (Register) CP B, W,L R, 1M, IR, DA, X C, Z, S, V
Decimal Adjust Bit DAB B IR C, Z, S
Decrement DEC B,W R, IR, DA, X Z,S, V
DIVIde DIV W,L R, 1M, IR, DA, X C, Z, S, V
Extend Sign EXTS B, W,L R C, Z, S, V
Increment INC B,W R, IR, DA, X Z, S, V
Multiply MULT W,L R, 1M, IR, DA, X C, Z, S, V
Negate NEG B,W R, IR, DA, X C, Z, S, V
Subtract with Carry SBC B,W R C, Z, S, V, D', H'
Subtract SUB B, W,L R, 1M, IR, DA, X C, Z, S, V, D', H'

Bit MaDlpulatloa
Bit Test BIT B,W R Z
BIt Reset (Slatic) RES B,W R, IR, DA, X
BIt Reset (Dynamic) RES B,W R
Bit Set (SialIc) SET B,W R, IR, DA, X
BIt Set (DynamIc) SET B,W R
Bit Test and Set TSET B,W R, IR, DA, X S

Block Traaafer aad Siriag MaDlpulatloa
Compare and Decrement CPD B,W IR C, Z, S, V
Compare, Decrement, and Repeat CPDR B,W IR C, Z, S, V
Compare and Increment CPI B,W IR C, Z, S, V
Compare, Increment, and Repeat CPIR B,W IR C, Z, S, V
Compare String and Decrement CPSD B,W IR C, Z, S, V
Compare String, Decrement, and Repeat CPSDR B,W IR C, Z, S, V
Compare String and Increment CPSI B,W IR C, Z, S, V
Compare String, Increment, and Repeat CPSIR B,W IR C, Z, S, V
Load and Decrement LDD B,W IR V
Load, Decrement, and Repeat LDDR B,W IR V
Load and Increment LDI B,W IR V
Load, Increment, and Repeat LDIR B,W IR V
Translate and Decrement TRDB B IR Z, V
Translate, Decrement, and Repeat TRDRB B IR Z, V
Translate and Increment TRIB B IR Z, V
Translate, Increment, and Repeat TRIRB B IR Z, V
Translate, Test, and Decrement TRTDB B IR Z, V
Translate, Test, Decrement, Repeat TRTDRB B IR Z, V
Translate, Test, and Increment TRTIB B IR Z, V
Translate, Test, Increment, and Repeat TRTIRB B IR Z, V

CPU Coatrollaatructioaa
Complement Flag COMFLG C', 7!', S', P', V'
Disable Interrupt DI
Enable Interrupt EI
Halt HALT
Load Control RegIster (from regIster) LDCTL R C", 7!', S', P', D', H'
Load Control Register (to register) LDCTL
Load Program Status LDPS IR,DA,X C, Z, S, P, D, H
Multi-Bit Test MBIT S
Multi-MICro Request MREQ Z,S
MullI-Mlcro Reset MRES
MullI-Mlcro Set MSET
No Operation Nap
Reset Flag RESFLG C', 7!', S', P', V'
Set Flag SETFLG C', 7!', S', P', V'

1. Flag affected only for byte operahon.

2. Flag modIfIed only If speCIfIed by the mstrucllon.

C-4

Appendix C

Topical
Index
(Continued) Data Aclclrealng Flap

Iutructlon Description Mnemonic Typn Modes Aflected.

Input/Output ID8lructloD8' Regular Special
Input (S)IN' B,W IR,DA (DA)
Input and Decrement (S)IND' B,W IR (IR) V
Input, Decrement and Repeat (S)lNDR' B,W IR (IR) V
Input and Increment (S)INI' B,W IR (IR) V
Input, Increment, and Repeat (S)INIR' B,W IR (IR) V
Output (S)OUT' B,W IR,DA (DA)
Output and Decrement (S)OUTD' B,W IR (IR) V
Output, Decrement, and Repeat (S)OUTDR' B,W IR (IR) V
Output and Increment (S)OUTI' B,W IR (IR) V
Output, Increment, and Repeat (S)OUTIR' B,W IR (IR) V

Logteallulruc:tloD8
And AND B,W R, 1M, IR, DA, X Z, S, P
Complement COM B,W R, IR, DA, X Z,S,P
Or OR B,W R, 1M, IR, DA, X Z,S,P
Test TEST B, W,L R, IR, DA, X Z,S,P
Test Condttion Code TCC B,W R
Exclusive Or XOR B,W R, 1M, IR, DA, X Z, S,P

Program Control IDBtructloD8
Call Procedure CALL IR, DA, X
Call Prooedure Relative CALR RA
Decrement, Jump if Not Zero DJNZ B,W RA
Interrupt Return IRET C,Z,S,P,D,H
Jump JP IR, DA,X
Jump Relative JR RA
Return From Procedure RET
System Call SC

Rotate and Shllt IDBtructioDB
Rotate Left RL B,W R
Rotate Left Through Carry RLC B,W R C, Z, S, V
Rotate Left Digit RLDB B R Z,S
Rotate Right RR B,W R C,Z,S, V
Rotate Right Through Carry RRC B,W R C,Z,S, V
Rotate Right Digit RRDB B R 2, S
Shift Dynamic Arithmetic SDA B, W,L R C,Z, S, V
Shift Dynamic Logical SDL B, W,L R C, Z, S, V
Shlft Left Arithmehc SLA B, W,L R C,Z,S, V
Shift Left Logical SLL B, W, L R C,2,S, V
Shilt Right Arithmetic SRA B, W,L R C, Z, S, V
Shift Right LoglCal SRL B, W,L R C, Z, S, V

3. Each I/O mstruction has a SpecIal counterpart used to alert other deVIces that a SpecIal va transachon IS occur-
rmg. The SpecIal I/O mnemOnIC IS S + Regular mnemomc. Refer to secbon 6.2.8 for further details.

C-5

Appendix C

RR. (
R. fT

R1 1,5

RR2(
R2f

R.I

RR'(

.. ,
R.'

RR'(
R·I

RT I

RR'(
flll,s

R.'

RRtO I R10 I

R11 I

RA12 I R121

R131

{ R14' R14

RR14 A1S'

R15

C-6

RH, oir RLO

RH' Rl1

.,
RR, /

R.I T RH' • IT RLD

R,I15 RH' RL' .,
RH2 RL2

RH' RL>
RR2/

R21 RH2 RlO

R.f RH' RlO

RO'

RH. RU

RHS RL5
RR./

R·I RH. RL.

R·I RH' RLO
RO'

RH' RLe

RHT RLI

R.\
RR./

RH. RLa

RT I RHT RU

RR8/
R8j15

R.'

.,
RQ.

RR10 / A",

Ai,l

RA12/
Ani

A13'
SYSTEM STACK POINTE (SEG NO) R012

NORMAL STACK POINTER (seG NO I

SYSTEM STACK POINTER tOFFSEn

NORMAL STACK POINTER (OFFSET)

{ A14 ,
RR14 Ats SYSTEM STACK POINTER

A15 NORMAL STACK POINTER

Z8001 General Purpose Registe .. Z8002 General Purpose Regiate ..

Register Binary

ROO RRO RO RHO 0000
RI RHI 0001

RR2 R2 RH2 0010
R3 RH3 0011

R04 RR4 R4 RH4 0100
R5 RH5 0101

RR6 R6 RH6 0110
R7 RH7 o III

R08 RR8 R8 RLO 1000
R9 RLI 1001

RRIO RIO RL2 1010
Rll RL3 1011

ROl2 RRI2 RI2 RL4 1100
RI3 RL5 1101

RRI4 RI4 RL6 1110
RI5 RL7 I III

Binary Encoding for Register Fields

SYSTEM SP ...
AFTER TRAP
OR INTERRUPT

SYSTEM SP ...
BEFORE TRAP
OR INTERRUPT

Z8002
and

Z8004

IDENTIFIER

FCW

PC SEGMENT

PC OFFSET

Z8001
and

Z8003

LOW
ADDRESS

SYSTEM STACK __ IDI:NTIFIER
POINTER AFTER
TRAP OR
INTERRUPT

FCW

PC

SYSTEM STACK --POINTER BEFORE
TRAP OR
INTERRUPT

Hex

0
I
2
3
4
5
6
7
8
9
A
B
C
D
E
F

LOW
ADDRESS

_ 1WORD __ _lWORD _

HIGH HIGH

I ~--.. --- I "'.., n .. ,;;J~

Format of Saved Program Status In the System Stack

. , . ,
RO'

RO.

.,
ROO

RQf2

2045·002. 003 2010·024

BYTE OFFSET
HEX DECIMAL

o

10 16

18 24

20 32

28 40

30 48

38 56

3C 60

40 64

44 68

570

2010-039, 024

CONTROL BITS ,.

15

CONTROL BITS

FLAGS

PROGRAM COUNTER

NONSEGMENTED

FLAGS

clzlsHDIH
• PC SEGMENT NUMBER

PROGRAM COUNTER OFFSET

SEGMENTED

Program Status Blocks

PROG RAM STATUS AREA
POINTER (PSAP)

"" ,
I SEG. NO. I l UPPER J

OFFSET

Z8001
and

Z8003

RESERVED

RESERVED

FCW EXTENDED

f.J pScE~kru-
INSTRUCTION

TRAP

RESERVED

FCW PRIVILEGED

f.J_SEG_~
INSTRUCTION

TRAP
PC OFFSET ----
RESERVED

FCW SYSTEM

f--J_SEG~
CALL
TRAP

PC OFFSET ----
RESERVED

FCW SEGMENT

W_SEG~ TRAP

PC OFFSET ----
RESERVED

FCW NON-MASKABLE

f.J.SEG_~ INTERRUPT

PC OFFSET ----
RESERVED

FCW NON-VECTORED

f--J_SEG_~ INTERRUPT

PC OFFSET ----
RESERVED

FCW

WSEG.b:=-
PCoOFFSET

WSE~,==-
PC. OFFSET VECTORED

W_SEG_b::-
INTERRUPTS

PC. OFFSET

· · ·
k-:!SE~~
PC ••• OFFSET ----

--,
~.~.J
IMPLIED

Z8002
and

Z8004

FCW

PC

FCW

PC

FCW

PC

NOT USED

FCW

PC

FCW

PC

FCW

PC.

PC,

PC.

· · ·
PC255

Program Status Area

Appendix C

BYTE OFFSET
DECIMAL HEX

12 C

16 10

20 14

24 18

28 1C

3D 1E

32 20

34 22

540 21C

C-7

Appendix C

Condition
Codes

C-B

Code Meahlng Flag Setting Binary

F Always false' 0000
Always true 1000

Z Zero Z = I 0110
NZ Not zero Z = a 1110
C Carry C = 1 0111
NC No carry C = a 1111
PL Plus 5 = 0 1101
MI Minus 5 = 1 0101
NE Not equal Z = a 1110
EQ Equal Z = I 0110
OV Overflow V = I 0100
NOV No overflow V = a 1100
PE Parity even P = I 0100
PO Panty odd P = a 1100
GE Greater than (5 XOR V) = a 1001

or equal
LT Less than (5XOR V) = I 0001
GT Greater than (Z OR (5 XOR V» = a 1010
LE Less than or (ZOR (5 XOR V» = I 0010

equal
UGE UnsIgned C = a 1111

greater than
or equal

ULT UnsIgned C = I 0111
less than

UGT Unsigned ((C =0) AND (Z = 0» 1011
greater than

ULE Unsigned less (C OR Z) = I 0011
than or equal

This table provides the condition codes and the flag settings they represent.

Note that some of the condition codes correspond to identical flag settings: i.e., Z-EQ, NZ-NE,
NC-UGE, PE-OV, PO-NOV.

* Presently not Implemented In PLZI ASM zaooo compiler.

78543210

I I I I BITS IN A BYTE

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

I I I I BITS I. A WORD

Addre8. n

I I
BYTE

Address n even Add n + 1

UPPER BYTE LOWER BYTE WORO

Address n Address n + 1

I ~PP~R ":OR~IUP~ER ~YT~ I ! I}
;:Ad=d::: .. :: .. ~n;,.::+~2:"-____ -F-... =,.~.::.,:!n,.::+..:3,.,.,.,.....,==...,...., LONG WORD

I I ~OW~R '-';OR~'LO~ER ,8YT~ I

Addres.able Dala Elemenls

2010-007

Z8000
Addr8S8lng
Mod ..

Powers
012
and 16

2010·012

Addreulng Mode

•

Immediate

...
1Ddlrec:t
Register

D&

Direct
Address

·X

IDClex

B&

Relative
Address

·U

Base
Address

·B.
Base

IDdex

I REGIBTERADDRE8I ~

I AiEQlSTERADDRESS ~1------+l1 ~

~I-------------~.~

I .. ·IST ••• DD H 'ND.X t-----J. _
t. :!"'~'~"~D~.~ ... ~jr--:f-~=::::==~

PC VALUE t-----J. _
[~Dt~.P~L~"~E~M~'''~}~====:::::~

Appendix C

Operand Value

10 !be laatruc:tkm

The __ I 01 !be _loa

."- ad Ia In !be
register

The coateDt 01 !be I_OD
."- addrea Ia In !be
I.-tructlon

The eDDlenl ollhe 1_·
1100 ._ addrea Ia !be
addr ... In the lDIilructioa.
plus lhe cooteol 01 !be
worklag register.

The cooteol ollhe ~Ikm ._ addrea Ia !be

_101 !be program
COWlIer. oIIIel by !be
d1ap_11n !be
_OD

The coaleol 01 !be ~Ikm
._ acldr_1a lhe

a~ In !be rapier.
0I1a! by !be dlaplacemeol
In !be IDstructlOD

The coaleol 01 the ~
Iloow_a~1a

the a~ In a reglaler
pi ... lhe IlIdex ""I ... 10
_her regIater.

"Do not use RO or RRO 48 Indlrect. lndex. or base reQlsters.

2a D 18" D

256 8 2' 16' 1 0

512 9 2' 16' 16 1

2' 16' 256 2
1024 10

2" 16' 4096 3
2048 1l 218 16' 65536 4
4096 12 2'" 16' 1048576 5

8192 13 2" 166 16777216 6

16384 14 2'" 16' 268 435 456 7
232 166 4294 967 296 ·8

32768 IS 236 16' 68 719 476 736 9
65536 16 2"' = 1610 I 099 511 627 776 10

131072 17 2" 16" 17592186 044 416 11

262144 - 18 2- 16" 281 474976710656 12

524286 19 2" 1613 4 503 S99 627 370 496 13

2" 1614 72 057 594 037 927 936 14
1048576 20 2"' 1618 1 152 921 504 606 846 976 IS
2097152 21
4194304 22 Powers 01 18
8388608 23

16777216 24

Powers 01 2

C-9

Appendix C

8 7 6 5 4 3 2

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal

° ° ° ° ° °
268,435,456 16,777,216 1,048,576 65,536 4,096 256 16

536,870,912 33,554,432 2,097,152 131,072 2 8,192 512 32

3 805,306,368 50,331,648 3,145,728 196,608 12,288 768 48 3

4 1,073,741,824 67,108,864 4,194,304 262,144 16,384 1,024 64

5 1,342,177,280 83,886,080 5,242,880 327,680 20,480 1,280 80

6 1,610,612,736 100,663,296 6,291,456 393,216 24,576 1,536 96 6

1,879,048,192 117,440,512 7,340,032 458,752 28,672 1,792 112

2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768 2,048 8 128 8 8

9 2,415,919,104 150,994,944 9,437,184 589,824 36,864 2,304 144

A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10

B 2,952,790,016 B 184,549,376 B II ,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11

C 3,221,225,472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12

D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13

E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14

F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

8 7 6 5 4 3 2

Hexadecimal and Decimallnterger Conversion Table

C-10

To Convert Hexadecimal to Decimal

1. Locate the column of deCImal numbers correspondmg to
the left-most dIgIt or letter of the hexadecimal: select
from thIS column and record the number that COf­

responds to the posItJon of the hexadecImal dIgIt or
letter.

2. Repeat step I for the urnts (second from the left)
pOSItIon.

3. Repeat step I for the urnts (third from the left) posItJon.

4. Add the numbers selected from the table to form the
deCImal number.

To convert mteger numbers greater than the capaCIty of
the table, use the techrnques below:

Hexadecimal to Decimal

Succeslve cumulative muhtphcahon from left to right,
addmg umts posihon.

Example: D3416~33801O Example:
D ~ 13

xl6
208

3 + 13
2IT
x 16

3376
4 +4

3380

r---C~o-n-v-er-s-io-n-o~f--~

Hexadecimal Value
D34

J.D

2.3

3.4

3328

48

6

4. DeCImal 3380

To Convert Decimal to Hexadecimal

I. (a) Select from the tabel the hIghest deCImal number
that IS equal to 'or less than the number to be
converted.

(b) Record the hexadecImal of the column contaInIng
the selected number.

(c) Subtract the selected deCImal from the number to be
converted.

2. USIng the remaInder from step I(c) repeat all of step I
to develop the second pOSItion of the hexadecImal (and
a remamder),

3. USIng the remaInder from step 2 repeat all of step I to
develop the urnts posIlIon of the hexadeCImal.

4. CombIne terms to form the hexadecImal number.

Decimal to Hexadecimal

DIVIde and collect the remamder in reverse order.

Example: 338010 ~ D3416

1613380 ",remaInder

16~4 r
16~3

D

Example:

Conversion of
Decimal Value

3380

J.D -3328

52

2. 3 -48

4

3.4 -4

4. Hexadecimal D34

Appendix C

ASCII Hexadecimal Character Meaning Hexadecimal Character

Characters
00 NUL NULL Character 40 @
01 SOH Start 01 Heading 41 A
02 STX Start 01 Text 42 B
03 ETX End 01 Text 43 C

--04 EOT -- End 01 Transmission 44 D
05 ENQ Enquiry 45 E
06 ACK Acknowledge 46 F
07 BEL Bell 47 G

--08 BS --Backspace 48 H
09 HT HOrlzontal Tabulahon 49 I
OA LF Line Feed 4A J
OB VT Verhcal Tabulation 4B K

--OC FF -- Form Feed 4C L
OD CR Carriage Return 4D M
OE SO ShIft Out 4E N
OF SI Shilt In 4F 0

--10 DLE -- Data Link Escape 50 P
II DCl DevIce Control I 51 Q
12 DC2 DevIce Control 2 52 R
13 DC3 DevICe Control 3 53 S

--14 DC4 -- Device Control 4 54 T
15 NAK Negative Acknowledge 55 U
16 SYN Synchronous Idle 56 V
17 ETB End 01 Transmission Block 57 W

--18 CAN --Cancel 58 X
19 EM End 01 MedIum 59 Y
lA SUB SubstItute 5A Z
lB ESC Escape 5B [

--IC FS -- File Separator 5C \
lD GS Group Separator 5D J
IE RS Record Separator 5E
IF US Unit Separator 5F

--20 SP-~ Space 60
21 ! 61 a
22 62 b
23 # 63 c

--24 $ 64 d
25 % 65 e
26 & 66 1
27 67 g

--28 68 h
29 69
2A 6A)

2B + 6B k
--2C 6C 1

2D 6D m
2E 6E n
2F / 6F 0

--30 0 70 p
31 1 71 q
32 2 72
33 3 73

--34 4 74
35 5 75 u
36 6 76 v
37 7 77 w

--38 8 78 x
39 9 79 y
3A 7A
3B 7B

--3C < 7C
3D 7D
3E > 7E '" 3F ? 7F DEL Delete

C-11

D

INTRODUCTION

This Appendix presents the software algorithms
required to restart an aborted 18003 or 18004
instruction. It was assumed in the preparation of
this document that the reader would be famBar
with the fOllowing: 1) the 18000 assembly
language, 2) operating systems, particularly
memory management, 3) the 18010 Memory Management
Unit (MMU) , and 4) the 18015 Paged Memory
Management Unit (PMMU).

Restarting most instructions only requires setting
the program counter to point to the first word of
the aborted instruction. Some instructions,
however, are aborted after they have modified some
CPU registers but before their execution is
completed. For example if a "Compare and
Increment" instruction is aborted during execution
because the memory number or word to be used for
the comparison is not in main memory, then the
register used as a counter wi 11 have been
decremented. Thus, before restarting the
instruction,
incremented.

the counter register must be

When an instruction is aborted, the CPU saves the
values contained by the Flag and Control Word
(FCW) and the Program Counter (PC) of the aborted
instruction on the system stack together with
information read from the MMUs during the
address/trap acknowledge sequence. The fault
handler routine is automatically invoked to
process the address translation trap. This
routine saves a copy of the aborted program's
registers so that another program can be executed
while the aborted program waits for data or
instructions to be loaded into the main memory.

In the following discussion, the terms "PC" and
"register" refer to copies of the aborted
program's PC and registers, which typically reside
in main memory during the suspension of the
aborted program's execution.

Appendix D

The steps for restarting an instruction are as
follows:

1.

2.

3.

4.

5.

6.

Determine which MMU or PMMU caused the CPU
instruction abort.

If the MMU or PMMU that caused the abort was
managing stack memory and the abort was the
result of a Page Write Warning (PWW) then,
exit routine; otherwise, continue with the
next step.

Determine whether or not the hardware was in
the segmented mode.

Read the address of the aborted
from the appropriate MMU (or
external hardware and update the

instruction
PMMU) and

PC with it.
The address's segment number and high byte are
obtained from the MMU (or PMMU); the low byte
is obtained from external hardware.

Read the violation address from the
appropriate MMU (or PMMU) and perform any
action required to establish the validity of
the requested address (e.g., bring in the
page{s) from secondary memory, or mark an
already resident page as valid).

Read the Bus Status register from the
appropriate MMU (or PMMU). If the status
indicates that a trap had ocurred during an
instruction fetch cycle then exit the routine;
otherwise, continue with the next step.

7. Using the updated PC, examine the instruction
to see if any CPU registers have been
modified. (Suggestion: use the upper byte of
the instruction and a 256-bit table which
identifies potential cases.) If the
instruction did not modify any registers, then
exit the routine. Some instructions aborted
in a paged virtu.al memory system require that
the number of successful data reads and writes

0-1

Appendix D

performed during the executed portion of the
instruction cycle be saved for restart. This
information is normally read from a hardware
data transfer counter set up to count the
number of successful data transfers performed
since the completion of the last instruction
fetch cycle. In the paged version of the MMU,
however, this information is automatically
collected and stored.

B. Call the register fix-up routine, and exit the
current routine.

fIX-UP ROUTU£

The fix-up routine examines the aborted
instruction and modifies the register file if
necessary. The number of instructions that can
generate memory traps depends' upon whether a
segmented or paged virtual memory system is
implemented. In a paged system, data can cross
page boundaries; this operation, however adds
complexity to the register fix-up routine as well
as increasing the number of instructions that
might have modified registers before being
aborted.

When a program is run in System mode, several
assumptions regarding the operating system are
made (no assumptions are made about programs run
in Normal mode):

• The fault handler will not generate a fault
until all critical data has been saved.

• The system stack always resides in main memory,
thus, accessing the system stack never causes a
fault.

• I/O buffers always reside in primary memory;
thus, an I/O instruction never causes a fault.

0-2

• The Program Status Area always resides in main
memory.

The reasons behind these assumptions are as
follows: If the system stack is not located in
main memory, the "saved" PC and FCW data pushed in
response to an interrupt or trap acknowledge is
lost unless captured by external hardware.

If the Program Status Area (PSA) is not located in
main memory, the occurrence of any trap or
interrupt causes an address trap to be generated
when the new program status is fetched. The new
address trap forces the CPU to jump to whatever
memory address was present on the bus when the MMU
stopped generating trap requests (that is, the
address of the "fetched" program status).

The location of input/output buffers outside of
main memory would result (except for extremely low
speed devices) in transfer overruns or underruns.
Such operations would cause data read from devices
to be lost upon the detection of a memory fault.

Tables 1 and 2 list all the instructions that may
require modification to the registers before they
can be restarted. Instructions not listed do not
require additional action other than the
correction of the Program Counter. The lists
presented in Tab les 1 and 2 are based on the
lB003/4 implementation of the l8000 instruction
set. Only those actions given in these tables are
to be performed before restarting the
corresponding instruction. All actions listed
must be performed even if the specifications of
the instruction involved indicate that registers
will be modified during its execution.

Only those registers indicated in Tables 1 and 2
should be "corrected" in the case of an abort.

Table 1. Instructions Thst May Have Modified CPU Registers When Aborted
in a Seg.ented Virtual Me.ary.

Appendix D

INSTRUCTION DESCRIPTION

LDI(R):

CPI(R), TR(T)I(R):
CPD(R), TR(T)D(R):

CPSI(R) :

LOD(R), CPSD(R):

CALL(R):
CALL:
CALR:

POP:

POPL:

If bus cycle status indicates that a read was attempted to an absent segment (RjW
bit=1), increment the Counter register by one.

If a write was attempted to an absent segment (R/W bit=O), increment the Counter
register by one and decrement the Destination Pointer register by one if byte move
or by two if word move.

Increment the Counter register by one.

Increment the Counter register by one. Compare the Source Pointer address with
the violation address. If they are equal, then no further action is required;
otherwise decrement the Destination Pointer register by one if comparing bytes
compare or by two if comparing words.

Same as the increment versions, but the Destination Pointer must be incremented.

Increment R15 (the offset field of the Stack Pointer) by two if in a non segmented
mode or by four if in a segmented mode.

If R/llbit of bus cycle status=O (write attempted to an absent segment), decrement
Stack Pointer by 2 and restart instruction.

Same as POP but decrement by 4.

Table 2. Instructions That May Have Modified CPU Registers When Aborted
in a Paged Virtual MB.ory Systu..

INSTRUCTION DESCRIPTION

LDL from memory: If the Destination register pair was used in the address calculation .!!!2. the Data
Read/Write counter in the PMMU indicates that one read was successfully completed
(i.e., the second half of the long word being loaded caused the page fault), then
the even register of the pair was modified and the register may require correction
before restarting the instruction; otherwise no action is required.

In segmented mode:

If the addressing mode was Indirect Register or Base, store the violation ad'dress
segment number in the even register of the destination pair.

If the addressing mode was Index and the even register of the destination pair was
used as the index register, subtract the base address offset in the instruction
from the violation address offset, store the result in the index register, and
decrement that register by two.

()..J

Appendix 0

Table 2. (Continued)

INSTRUCTION ~IPTION

PUSHL from
memory:

LOI(R), CPI(R),
CPSI(R), TR(T)I(R):

LOD(R), CPO(R),
CPSO(R), TR(T)O(R):

LOPS:

0-4

If the addressing mode was Base Index then:

If the Destination pair was used as the Base Address pair, store the violation
address segment number in the even register of the destination pair.

If the even register of the destinaton pair was used as the index register,
subtract the Base Address offset from the violation address offset, store the
result in the Index register, and decrement that register by two.

In nonsegmented mode:

If the addressing mode was Indirect register and the even register of the
destination pair was used as the Indirect register, then decrement the violation
address by two and store the result in the even register of the destination pair.

If the addressing mode was Base or Index and the even register of the destination
pair was used as the base or index register, subtract the address component in the
instruction from the violation address, store the result in the even register of
the destination pair, and decrement that register by two.

If the addressing mode was Base Index with one of the address registers used as
the even register of the destination pair, subtract the other address register
from the violation address, store the result in the even register of the
destination pair and decrement that register by two.

I f the addressing mode was Base Index and the even register was used as both the
Base and Index register, decrement the violation address by two, store the result
in the even register of the register pair, and shift that register one position to
the right (divide by two).

If bus status indicates that a write was aborted (i.e., the bus status is not C16
or 016) and the data Read/Write counter indicates completion of three data
transactions, increment the Stack Pointer by four; otherwise, no action is
required.

Same as given in Table 1 for segmented virtual memory instruction CALL (R), CALL
and CALR.

If the Data Read/Write counter indicates that no read was successfull~ completed,
no action is required.

If one read was successfully completed, then if the saved FCW equals the first
word of the PS (i.e., the CPU was in nonsegmented mode), clear the Segmentation
mode bit and set the System mode bit in the saved FCW.

If two reads were succassfully completed (i.e., the CPU was in Segmented mode),
set both the Segmentation and System mode bits in the saved FCW.

Appendix D

Table 2. (Continued)

INSTRUCTION DESCRIPTION

RET:

POP:

POPL:

LDM from memory:

If the Data Read/Write counter indicates that no reads were successfully
completed, and if in Nonsegmented mode, decrement R1 S (the offset field of the
Stack Pointer) by two; otherwise, no action is required.

If one read was successful, decrement R15 by four.

If one read was successful, decrement stack pointer by two.

If two reads were successful, decrement stack pointer by four.

If bus status and the Data Read/Write counter indicate that n reads were
successfully completed, then a register used in the address calculation may have
been modified. If this is the case, the register needs to be corrected in the
manner described below; otherwise, no action is required.

If the Indirect Register addressing mode was used in Segmented mode and the
indirect register pair has been modified, subtract 2(n + 1) from the violation
address offset and store the segment number and computed offset in the register
pair. In Nonsegmented mode, subtract 2(n + 1) from the violation address and
store the result in the Indirect register.

If the Index addressing mode was used and the index register has been modified,
subtract the offset in the instruction and 2(n + 1) from the violation offset, and
store the result in the Index register.

0-5

Appendix D

ALGORITHM FOR SEGMENTED VIRTUAL MEMORY REGISTER FIX-UP

Definitions:

RW

SEG =

VADDR

Read/Write counter in PMMU
or R/W bit in MMU bus cycle
status register

Segmented/Nonsegmented mode,
SEG = 1 --> Segmented mode
of operation

violation address (two words
if segmented, one word if
nonsegmented)

Rs, RRs

Rsl

Rd, RRd

Rdl

Rc

LN

=

=

=

source register

source register Rs + 1 (for
example, if RR8 = S RRs then
Rsl is R9)

destination register

destination register Rd + 1

count register

lowest nibble of first word
of an instruction

Upper Byte of lip Code
B8:

fix-Up
(Translate)

D-6

DO-Df, lf, 5f:
Rc <-- Rc + 1;
(Call, Call Relative)
If SEG = 1 THEN R15 <-- R15 + 4

ELSE R15 <-- R15 + 2
BA: (Load or Compare Byte String)

Rc <-- Rc + 1;

LDI:

CPSI, CPSIR:

LDD:

CPSD, CPSDR:

CASE LN
1: If RW = 0
(i.e. If WRITE)

THEN IF SEG = 1 THEN Rdl <-- Rdl - 1
ELSE Rd <-- Rd - 1

2,6: IF SEG = 1 THEN If RRs # VADDR THEN Rdl <-- Rdl -
ELSE IF Rs ~ VADDR THEN Rd <-- Rd - 1

9: If RW = 0 THEN IF SEG = 1 THEN Rdl <-- Rdl + 1
(i.e. If WRITE) ELSE Rd <-- Rd + 1

A,E: If SEG = 1 THEN If RRs ~ VADDR THEN Rdl <-- Rdl + 1
ELSE IF Rs ~ VADDR THEN Rd <-- Rd + 1

BB: (Load or Compare Word String)
Rc <-- Rc + 1;
CASE LN

THEN If SEG = 1 THEN Rd1 <-- Rd1 - 2
ELSE Rd <-- Rd - 2

1: IF RW = 0
(i.e. If WRITE)

2,6: IF SEG = 1 THEN If RRs ~ VADDR THEN Rd1 <-- Rdl - 2
ELSE If Rs ~ VADDR THEN Rd <-- Rd - 2

9: If RW = 0 THEN IS SEG = 1 THEN Rd1 <-- Rdl + 2
(i.e. If WRITE) ELSE Rd <-- Rd + 2

A,E: If SEG = 1 THEN If RRs ~ VADDR THEN Rdl <-- Rd1 + 2
ELSE If Rs ~ VADDR THEN Rd <-- Rd + 2

Appendix 0

ADDITIONAl CASES fOR PAGED VIRTUAl MEMORIES

Additional Definitions:

RW

FCW

PSW

Upper
Byte

=

=

=

Read/Write Counter in PMMU

saved FCW of aborted program

first word of data fetched
during LOPS instruction
(i.e., if RW = 1 then PSW
= contents of memory location
VAOOR - 2)

fix-Up

11,51: (Push Long from memory)
IF RW = 3 THEN IF SEG = THEN Rd1 <-- Rd1 + 4

ELSE Rd <-- Rd + 4

VSEG violation segment number

VOFF violation offset

IOFF = offset in address in the
aborted instruction

Rx index register

14,35: (Load Long from memory--Indirect, Base, using RRd or Rd as the address register)
IF RW = 1 THEN IF SEG = 1 THEN Rd <-- VSEG

ELSE Rd <-- VOFF - 2

54: (Load Long--Index using Rd as the index register)

75:

IF RW = 1 THEN IF Rs = 0 THEN Rd <-- VOFF - IOFF - 2

(Load Long--Base Index)
IF RW = 1 THEN IF SEG = THEN IF RRd is the address register

THEN Rd <-- VSEG
ELSE IF Rd = Rx THEN Rd <-- VSEG

ELSE Rd <-- VOFF - Rs - 2
ELSE IF Rs # Rx THEN Rd <-- (VOFF - 2) / 2
ELSE IF Rd = Rs THEN Rd <-- VOFF - Rx - 2

ELSE Rd <-- VOFF - Rs - 2
39: (Load Program Status)

IF RW = 1 THEN IF FCW = PSW THEN FCW <-- 4000
ELSE IF RW = 2 THEN FCW <-- COOO

9E: (Return)
IF RW = 0 AND SEG = 0 THEN R15 <-- R15 - 2

ELSE IF RW = 1 THEN R15 <-- R15 - 4

1C: (Load Multiple--Indirect)
IF SEG = 1 THEN Rs <-- VSEG; Rs1 <-- VOFF - 2(n + 1)

ELSE Rs <-- VOFF - 2(n + 1)

5C: (Load Multiple--Index)
IF Rx = 0 THEN Rs <-- VOFF - IOFF - 2(n + 1)

()"'7

G

n_ ~

abort: The interruption of an instruction
execution cycle before its completion. Abort
interrupts occur in Z8000 virtual memory
systems when the executing instruchon
references information not in main memory.

address: An entity that specifies one par­
ticular element in a set of similar elements.
May be either a memory address or an I/O
address (q.q.v). (See also segmented address,
logical address, physical address.)

address space: A set of addresses. The Z8000
can access eight separate address spaces:
normal-mode program memory space, system­
mode program memory space, normal-mode
data memory space, system-mode data memory
space, normal-mode stack memory space,
system-mode stack memory space, standard
1/0 space, and special I/O space. (See normal
mode, system mode, program memory address
spoce, data memory address space, stack
memory address space, standard I/O address
space, and special I/O address spoce.)

addressing moc:le: The way in which the
address of an operand (q.v.) is speCified.
There are eight addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Index, Base Address, Relative Address, Base
Index (q.q.v).

autoc:lecrement: The contents of a register are
decremented and then used as specified by the
instruction.

autolncrement: The contents of a register are
used as specified by the instruction and then
incremented.

Base Address (BA) addressing moc:le: A base
address consists of a register that contains the
base and a I6-bit displacement (q.v.). The
displacement is added to the base and the
resulting address indicates the effective
address (q.v.). In nonsegmented mode, the
base address is held in a word register (q. v.)
and the displacement is in the instruction. In
segmented mode, the segmented base address
is held in a register pair and the displacement
is in the instruction.

Glossary

Base Index (BX) addressing mode: Base
Index addressing is similar to Base addressing
except that the displacement ("index"), as well
as the base, is held in a register. In nonseg­
mented mode, the base address is held in a
word register and the index is held in a word
register. In segmented mode, the segmented
base address is held in a register poir (q.v.)
and the index is held in a word register.

BCD digit: A Binary Coded Decimal digit is
an encoding of the ten decimal digits into a
4-bit code that is simply the first ten binary
numbers in the binary number system (starting
with 0). This code is used to represent and
process numbers in the base-IO (decimal)
format.

bus: A group of signal lines, which connects
the devices in a system.

Bus-Disconnect state: The CPU state during
which the CPU is not the bus master and may
not initiate transactions (q.v.) on the bus.

bus master: The device in control of the bus.
Must be a device that is able to initiate
transactions.

bus request: A request for control of the bus.

byte: A byte is eight contiguous bits; a byte in
memory starts on an addressable byte
boundary.

byte register: An 8-bit register. The Z8000
CPU contains 16 general-purpose byte
registers, designated RLn and RHn (n = 0-7).

clock cycle: One cycle of the CPU clock,
beginning with a rising edge.

condition: An event detected by the hardware
and indicated by setting the appropriate flag.
A condition is caused by the execution of an
instruction and is always reproducible. The
Z8000 has six flags to record these events,
called status flags (q.v.).

context switching: Interrupting the activity in
progress and switching to another activity. A
context SWitch involves saving for later restora­
tion the contents of the general-purpose
registers, the Program Counter and the Flag
and Status Word (q.v.).

G-1

Glossary

G-2

CPU state: Either Running state, Stop/Refresh
state, or Bus-Disconnect state (q.q.v.).

data memory address space: A memory
address space (q.v.) that is identified by the
status codes 1000 or 1010.

data structure: A logical organization of
primitive elements (e.g. byte or word) whose
format and access conventions are well­
defined. Examples of data structures are
tables, lists and arrays.

data type: The way in which bits are grouped
and interpreted. For an instruction, the data
type of an operand determines its size and the
significance of its bits. Operand data types
include byte, word, long word, byte string,
word string, and BCD digit.

Direct Address (DA) addressing mode: In this
mode, the operand address is contained within
the instruction.

displacement: A number contained in the
instruction for use in calculating the effective
address (q.v.) of an operand. The displace­
ment is added to the contents of a register dur­
ing the calculation.

DMA: Direct Memory Access is a method for
transferring data to or from main memory at
high speed by avoiding the CPU registers.

effective address: The address obtained after
indirect or indexing modification. In non­
segmented mode, the effective address is a
16-bit number. In segmented mode, the effec­
tive address consists of a 7-bit segment number
and 16-bit offset. In systems with memory
management, the effective address is the
logical address which must be translated to
obtain the physical memory address.

flags: Bits in the Flag and Control Word
(q.v.) that indicate conditions (q.v.).

Flag and Control Word (FCW): One of the
two Program Status registers; it contains flags
(q.v.) and bits that control the operation of the
CPU.

Immediate (1M) addressing mode: In this
mode, the operand is contained within the
instuction.

Index (X) addressing mode: In this mode, the
operand address is obtained by adding the
contents of an index register (q.v.) to a base
address contained in the instruction.

Index register: A word register used to con­
tain a displacement for use in effective address
calculation.

Indirect Register (lR) addressing mode: In
this mode, the operand address is contained
within a register.

instruction fetch: An access to program
memory address space (q. v.).

interrupt request: An event other than a trap
or jump or call instruction that changes the
normal flow of instruction execution. (See non­
maskable, non-vectored, and vectored
interrupts.)

Interrupt service routine: The routine exe­
cuted in response to an interrupt.

interrupt/trap acknowledge transaction: The
transaction initiated by the CPU in response to
an interrupt or trap. Obtains an identifier word
from the interrupting device or memory man­
agement hardware.

I/O address: The address of an VO port,
always 16 bits long. Word ports may have even
or odd addresses, Special VO byte ports are
even, Standard I/O byte ports are odd.

I/O transaction: A transaction that transfers
data to or from a peripheral device or memory
management hardware.

logical address: The address manipulated by
the programmer, used by instructions and out­
put by the 28000.

long word: A long word is 32 contiguous bits;
a long word in memory starts on an even
addressable byte boundary.

machine cycle: One basic CPU operation,
starting with a bus transaction (q.v.).

memory address: An address specifying a
location in memory. Word and long-word
addresses must be even, byte addresses may
be even or odd.

memory management: The process of trans­
lating logical addresses into physical
addresses (q.q. v.), plus certain protection
functions.

memory transactions: A transaction that
transfers data to or from main memory.

Normal mode: A Running-state (q. v.) mode in
which the siN flag in the FCW is 0 and the
NiS line is High. In this mode, the CPU may
not execute privileged instructions (q.v.).

non-maskable Interrupts: Interrupts (q.v.)
which cannot be disabled.

nonsegmented mode: A Running-state mode
of the 28000 CPUs. For segmented CPUs in
this mode, all addresses are generated with the
same segment number (q.v.).

non-vectored interrupts: Interrupts (q. v.)
which do not use the identifier word as a vec­
tor to an interrupt service routine (q.v.).

offset: In a 28001 CPU, the 16-bit value that
appears on the AD lines when an address is
generated.

operand: An item of data operated on by an
instruction.

physical address: The address required for
accessing the memory, obtained from the
logical address generated by the 28000 by
memory management hardware, for example,
the Z8010 Memory Management Unit.

privileged instruction: An instruction intend­
ed for use primarily by an operating system,
which can be executed only in System mode.
In general, instructions that change the pro­
cessor state or perform I/O are privileged.

Program Counter (PC): One of the two Pro­
gram Status registers (q.v.). Contains the
address of the current instruction.

program memory address space: The
memory address space (q.v.) indicated by the
status codes (1100 or 1101).

Program Status Area: The area in memory
reserved for the starting program status of the
interrupt and trap service routines.

Program Status Area Pointer (PSAP): The
register that contains the starting address of
the Program Status Area.

Program Status registers: The two registers
(PC and FCW) that contain the program
status.

Refresh counter: A register that controls the
Z8000 dynamic memory, periodic-refresh
mechanism. Used to set the refresh rate and to
enable the mechanism.

Refresh cycle: A type of transaction used to
refresh dynamic memory. It is three clock
cycles long.

Refresh/Stop state: A CPU state entered
whenever the STOP line is asserted. A con­
tinuous stream of refresh cycles (q.v.) is
generated.

register: A storage location in hardware logic
other than the memory. Bits within a register
are numbered from 0, with the least significant
being the rightmost. See also byte register,
word register, register pair, and register quad.

Register (R) addressing model In this mode,
the operand is in a general-purpose register.

register pair: One of eight pairs of general­
purpose word registers, designated RRn
(n = 0, 2, 4, ... 12, 14).

register quad: One of four groups of four
word registers, designated ROn (n = 0,4,8,
12).

Relative Address (RA) addressing mode: In
this mode, the operand address is calculated
by adding a displacement found in the instruc­
tion to the current PC value.

request: Either an interrupt request, bus
request, resource request, or STOP request
(qq. v). An external device requests that the
CPU perform some action.

Glossary

reset: An internal CPU operation that initial­
izes the Program Status registers. It is acti­
vated by the RESET line.

Running state: One of the three CPU states.
In this state, the CPU is fetching and exe­
cuting instructions or handling interrupts.

segment: In a 28001, a set of adjacent
memory addresses (up to 64K) with the same
segment number (q.v.) on lines SNo-SN6.

segment number: A number specifying a
memory segment (q.v.). Placed on the
SNo-SN6 lines during memory transactions in
28001 system. Part of a segmented
address (q. v.).

segmented address: In segmented 28000
CPU's, a 23-bit value conSisting of a 7-bit seg­
ment number (q.v.) and a 16.-bit offset (q.v.).

segmented mode: One of the Running-state
modes of the segmented 28000 CPU. In this
mode, CPU generates addresses that can have
different segment numbers.

Special I/O address space: An I/O address
space (q.v.) that is identified by the status
code 0011. Used to access memory manage­
ment hardware.

stack: A data structure used for temporary
storage or for procedure and interrupt service
routine linkages. A stack uses the last-in, first­
out concept. As items are added to, or pushed
onto, the stack, the stack pointer decrements;
as items are removed from, or popped off, the
stack, the stack pointer increments.

stack memory address space: A memory
address space (q.v.) that is identified by the
status codes 1001 and 1011.

Stack Pointer: A general-purpose register
indicating the top (lowest address) of a stack.

Standard I/O address space: An I/O address
space (q.v.) that is identified by the status
code 0010. Used for accessing peripherals.

status code: A 4-bit encoding of the CPU's
current transaction, for example, internal
operation, segment trap acknowledge, or stack
memory request.

status flags: Status flags are set according to
the outcome of certain instructions to direct
the subsequent flow of the program as neces­
sary. There are six status flags: Carry, Zero,
Sign, Parity/Overflow, Decimal Adjust and
Half Carry. The first four are grouped together
to determine the condition code, the last two
are used in programs manipulating BCD
digits.

status lines: The lines STo-ST3, which contain
the status code during transactions.

G-3

Glossary

G-4

stop request: A request that is made by acti­
vating the STOP line.

Stop/Refresh state: See Refresh/Stop state.

System mode: A Running-state mode (q.v.) in
which the SiN flag in the FCW is 1 and the
NIS line is Low. In this mode, the CPU may
exercise privileged instructions (q. v.).

transaction: One of the basic bus operations.
A transaction lasts three or more clock cycles
and covers a single data movement on the bus.

trap: A condition that occurs at the end of an
instruction that caused an illegal operation.
The 28000 traps are internal traps arising from
system call, EPA instruction and privileged in­
structions executed in normal mode, and an
external trap, the segmentation/address trap,
arising from memory access violations in
systems with memory management. A trap is
similar to an interrupt in that it causes the exe­
cuting program to be interrupted and the Pro­
gram Status registers to be saved on the system
stack. Traps cannot be disabled.

vectored interrupts: Interrupts (q.v.) which
use the identifier word as a vector to the inter­
rupt service routine (q. v.). May be
disabled.

virtual memory: A memory management
technique in which the system's logical
memory address space is not necessarily the
same as, and can be much larger than, the
available physical memory address space. Vir­
tual memory is supported by use of memory
mapping hardware and secondary storage
devices.

WAIT cycle: A clock cycle during which the
WAITline is active. Used to prolong trans­
actions, since no signal line is sampled while
WAITis active.

word: Two contiguous bytes (16 bits) starting
on an even addressable byte boundary. Bits
are numbered from the right, 0 through 15. A
word is identified by the address of the byte
containing the most Significant bit, bit 15.

word register: A 16-bit register.

I

ABORT 1:8, 2:3, 7:2, 9:3
Acknowledge Cycle 7:3

-A-

Address Formats (Segmented and Nonsegmented) 3:3
Address/Data Lines 2:4, 8:1, 9:2
Addressing Modes 1:3, 2:12, 10:2-5
Address Spaces 1:1,3-5,8, 2:6

I/O 1 :4, 2:6
Memory 2:6, 9:6
Multiple Memory 1:3
Virtual 1:4-5, 2:6, 7:6

Arithmetic Instructions 1:2, 6:1-2

-8-

Base Address (BA) 1:3, 2:12, 5:2, 10:4
Nonsegmented Mode 5:6
Segmented Mode 5:11

Base Index (BX) 1:3, 2:12, 5:2, 10:4
Nonsegmented Mode 5:7
Segmented Mode 5:12

Bit Manipulation Instruction 1:2, 6:1,5
Block Transfer and String Manipulation
Instruction 1:2, 6:1,6

Bus Request Acknowledge (BUSACK) 2:5, 4:2, 8:1,
9:3,15

Bus Control Pins 2:3, 9:3
Bus-Disconnect State, CPU 2:10, 4:1-2, 9:15
Bus Master 9:1,15
Bus Operations 9:1
Bus Request (BUSREQ) 2:3,5 4:2, 9:3,15
Bus Timing 2:5, 9:3,4
Bus Transactions

EPU transfer 9:1,6
Internal Operation 9:1,3,10
Interrupt/Trap Acknowledge 9:1,10
I/O 9:1,6
Memory 9:1,6
Refresh 8:1, 9:1,10

Index

-C-

Condition Codes 6:1,5,10,13, 10:9
CPU Control Instructions 6:1,8
CPU and EPU Interaction 9:1,6,15
CPU Operation 4:1
CPU Pins 9: 1-3
CPU Versions 1:1,7-8

Data Bus 2:1-5
Data Spaces 3: 1

Data Structures 1:7
Data Types 1:1,3, 2:12, 10:1
Direct Address (DA) Mode 1:3, 2:12, 10:2

Nonsegmented Mode 5:4-5
Segmented Mode 5:9-10

Direct Memory Access (DMA) 1:1,3, 2:3,5, 9:1

-E-

EPA Instructions 2:10-13
EPU Transfer Transactions 6:9, 9:5-6
Exceptions 2:13, 7:1
Extended Instructions 1:8, 2:13, 4:6, 6:8-9
Extended Instruction Trap 2:13, 4:6, 6:9,11, 7:2,6
Extended Processing Architecture (EPA) 1:1,

2:12-13, 6:11
Extended Processing Units 1:1,8, 2:2, 4:2,6, 6:8,
9:1,15

-F-

Flags and Control Word (FCW) 2:7,9-10, 4:4,
6:8,11, 7:2,6, 9:15

FCW Control Bits 2:10
Extended Processor Architecture (EPA) Mode 2:10,
7:2, 9:15

1-1

Index

Nonvectored Interrupt Enable (NVIE) 2:10, 7:3
Segmentation Mode (SEG) 2:10, 4:4
System/Normal (S/N) Mode 2:10, 3:1, 4:4, 7:2
Vectored Interrupt Enable (VIE) 2:10, 7:3

fCW flags 2:7
Carry (C) 2:7, 6:3-4,7,9
Decimal-Adjust 2:7, 6:3-4,7,10
Half Carry (H) 2:7, 6:3-4,7,10
Parity/Overhead (PV) 2:7, 6:3-4,7,10
Sign (S) 2:7, 6:3-4,7,10
lero (l) 2:7, 6:3-4,7,10

General Purpose Registers 1:1, 2:7-8, 4:5, 5:1,
6:2

General Purpose Re~ister file 1:1-2

-1-

Immediate (1M) Address Mode 1:3, 5:2 10:2
Nonsegmented Mode 5:4
Segmented Mode 5:8

Index (X) Address Mode 1:3, 5:2, 10:3
Nonsegmented Mode 5:5
Segmented Mode 5:10

Indirect Register (IR) Address Mode 1:3, 5:2, 10:2
Nonsegmented Mode 5:4
Segmented Mode 5:8-9

Instruction Execution 2:10, 4:2,4
Instruction formats 2:11, 6:12-13
Instruction Set 1:1-2, 2:10, 6:1
Instruction Space 3:1
Internal Operations and Refresh Transactions 9:10
Interrupts 2:5,13-14, 6:10, 7:1
Interrupt Disabling 7:3
Interrupt Structure 1:4,6
Interrupt/Trap Acknowledge Transactions 9:1,10
Interrupt and Trap Handling 7:3
Interrupt/Trap Pins 9:3
Interrupt/Trap Request 9:10
I/O Address Spaces 1:4, 2:6
Input/Output Transactions 9:6

Load and Exchange Instructions 1:2, 6:1
Logical Addresses 3:3-4
Logical Instructions 6:1,3

Memory Address Space 2:6, 3:2

1-2

Memory Management 1:5
Memory Management Units (MMU) 1:5, 3:3
Memory Request (MREQ) 7:3, 9:3
Memory Transactions 9:1,6
Multiple Memory Address Spaces 1:3
Multi-Micro Pins 9:3
Multiprocessing 1:4

New Program Status 1:4
Non Maskable Interrupt (NMI) 2:5,14, 7:1, 9:3
Nonsegmented Address 1:7, 2:2, 3:2-3, 9:3
Nonvectored Interrupt (NVI)"2:5,14, 7:1, 9:3
Normal/System 1:7

Modes 1:1,3, 2;6, 4:4-6
Pin 2:10, 9:3
Signal (N/S) 3:1, 4:4, 9:3,5

Operating States, CPU 4:1
8us Disconnected 4:1-2, 8:1-2, 9:15
Running 4:1,4, 8:2
Stop/Refresh 4:1-2, 8:2, 9:15

Operating System Support 1:6-7

-p-

Paged System (Virtual Memory) 1:4, 2:6
Position Independent Programs 10:12
Processor Flags 6:9, 10:13
Priority, Interrupt 1:4, 7:6
Privileged Instruction Trap 6:11, 7:2
Program

Examples 10:22,39
for Segmented/Nonsegmented Modes 10:21
Initialization 10:20
Re-entrant 10:16

Program Control Instructions 6:1,4
Program Counter (PC) 1:6, 2:7,9-10, 4:2-3, 7:4-5
Program Status 2:7, 7:3-5
Program Status Area 2:7, 7:4-5
Program Status Area Pointer (PSAP) 2:7,10, 7:6
Program Status Registers 2:7,9

fCW Register 2:7,9
PC Register 2:7,9

Refresh 8:1
Counter 8:1
Cycles 8:1

-R-

Enable Bit (RE) 8:1
PeJ;'iod 8:1-2
Transaction 9:10

Register (R) Address Mode 1:3
Nonsegmented Mode 5:3
Segmented Mode 5:8

Relative Address (RA) Address Mode 1:3, 10:4
Nonsegmented Mode 5:5-6
Segmented Mode 5:11

Relocation 1:5
Requests

Bus 9:1,15
Interrupt 9:1,10
Resource 9:1,15
Stop 9:1,15

Reset 8:1
(RESET) Line 9:3

Rotate and Shift Instructions 6:1,5
Running State, CPU 4:1-2

-5-

Segment Number 1:5, 2:4,9, 3:4-5, 4:4, 9:2
Segment Trap 7:2, 9:3
Segment/Page Address Translation Trap (SAT) 2:5
Segmentation 1:5, 2:6
Segmented Address 3:3

Short word form 3:2
Long word form 3:2
Translation 3:3-4

Segmentation Mode Bit (SEG) 2:10
Segmented/Nonsegmented Modes 4:4
Special I/O Space 1:4, 2:6, 3:1-2
Special Purpose Registers 2:7, 4:3

Program Status 2:7,9
Program Status Area Pointer (PSAP) 2:7,9
Refresh Counter 2:7,9

Stack Spaces 3: 1
Standard I/O Space 1:4, 2:6, 3:1-2
Status

Bus Transactions 9:5
Code Definitions 2:4

Stacks 10:5

Stop
Line (STOP) 4:1, 8:1-2
Stop State 4:2

Syntax, Assembly Language 6:11
System Call Trap 6:11, 7:2

-T-

Timing
Abort Request 9:17
CPU Clock Cycle 2:5
Instruction Look-Ahead 4:4
Stop 9:17

Transactional Pins, CPU 9:2
Traps

Extended Instruction 2:13, 7:1-2
Privileged Instruction 2:13, 7:1-2

Index

Segmentation or Addressing Violation 2:13, 7:1-2
System Call (SC) Instruction 2:13, 7:1-2

Trap and Interrupt Handling 7:3-6

-v-

Vectored Interrupt (VI) 2:5,14, 7:3, 9:3
Virtual Memory 1:1,4-5, 2:6

AddreSSing space 2:6
Capability 1:5

WAIT 9:3,5
Words

Single 10:2
Long 10:2
Quad 10:2

Z-BUS 2:1-2

-11-

-z-

1-3

00-2010-06

Beader'l Comme.1s

Your feedback about this document helps us ascertain your needs and fuUlll them in the future.
Please take the time to flll out this questionnaire and return it to us. This information wlll be
helpful to us and. in time. to future users of Zllog products.

Title of this document:

Your Name:
Company Name: __ __

Address:

Briefly describe application: __ __

Does this publlcation meet your needs? 0 Yes 0 No If no. why?

How are you using this publication? How do you find the material?

o As an introduction to the subject? Excellent Good Poor

o As a reference? Technicality 0 0 0

o As an instructor or student? Organization 0 0 0

Completeness 0 0 0

Rated on a seale of 1 to 10. this document is a ______ _

What would have improved the material? __ _

Other comments and suggestions:

If you found any mistakes In this document. please let us know what and where they are:

Please clip, fold, and return to Zilog, Inc.

· .•...........•..

111I11

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 35, CAMPBELL, CA.

POSTAGE WILL BE PAID BY ADDRESSEE

Zilog
1315 Dell Ave.

Campb~ll, California 95008
ATTENTION: Corporate Publications

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...

~
I
I
I
I

Zilog West Midwest East United Kingdom
Sales Sales & Technical Center Sales & Technical Center Sales & Technical Center Zi10g (U.K.) Limited
Offices Zilog, Incorporated Zilog, Incorporated Zi1og, Incorporated Zilog House

1315 Dell Avenue 951 North Plum Grove Road Corporate Place 43-53 Moorbridge Road
Campbell, CA 95008 Suite F 99 South Bedford St. Maidenhead
Phone: (408) 370-8120 Schaumburg, IL 60 195 Burlington, MA 01803 Berkshire, SL6 8PL England
TWX: 910-338-7621 Phone: (312) 885-8080 Phone: (617) 273-4222 Phone: 0628-39200

Sales & Technical Center
TWX: 910-291-1064 TWX: 710-332-1726 Telex: 848609

Zi1og, Incorporated Sales & Technical Center Sales & Technical Center France
18023 Sky Park Circle Zilog, Incorporated Zilog, Incorporated
Suite J 28349 Chagrin Blvd. 240 Cedar Knolls Rd. Zi1og, Incorporated
Irvine, CA 92714 Suite 109 Cedar Knolls, NJ 07927 Cedex 31
Phone: (714) 549-2891 Woodmere, OH 44122 Phone: (201) 540-1671 92098 Paris La Defense
TWX: 910-595-2803 Phone: (216) 831-7040

Technical Center
France

Sales & Technical Center
FAX: 216-831-2957

Zilog, Incorporated
Phone: (1) 334-60-09
TWX: 611445F

Zilog, Incorporated South 3300 Buckeye Rd . I

15643 Sherman Way Suite 401 West Germany
Suite 430 Sales & Technical Center Atlanta, GA 30341
Van Nuys, CA 91406 Zilog, Incorporated Phone: (404) 451-8425 Zilog GmbH
Phone: (213) 989-7485 4851 Keller Springs Road,

Sales & Technical Center
Eschenstrasse 8

TWX: 910-495-1765 Suite 211 0-8028 TAUFKIRCHEN
Dallas, TX 75248 Zi1og, Incorporated Munich, West Germany

Sales & Technical Center Phone: (214) 931-9090 1442 U.S. Hwy 19 South Phone: 89-612-6046 Zilog, Incorporated TWX: 910-860-5850 Suite 135 Telex: 529110 Zilog d .
1750 112th Ave. N.E. Clearwater, FL 33516
Suite 0161 Zilog , Incorporated Phone: (813) 535-5571 Japan
Bellevue, WA 98004 7113 Burnet Rd.
Phone: (206) 454-5597 Suite 207 Zilog, Incorporated Zilog, Japan K.K.

Austin, TX 78757 613-B Pitt St. Konparu Bldg . 5F
Phone: (512) 453-3216 Cornwall, Ontario 2-8 Akasaka 4-Chome

Canada K6J 3R8 Minato-Ku, Tokyo 107
Phone: (613) 938-1121 Japan

Phone: (81) (03) 587-0528
Telex: 2422024 NB: Zilog J

Zilog, Inc. 1315 Dell Ave. , Campbell, California 95008 Telephone (408)370-8000 TWX 910-338-7621

00-2010-06 Printed in USA

