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Chapter 1
Z8000 Processor Overview

1.7 INTRODUCTION

This chapter provides a summary description of the
advanced architecture of the Z8000 microprocessors
with special attention given to those archi-
tectural features that set the 78000 CPUs apart
from their predecessors. A complete overview of
the architecture is provided in Chapter 2, with
detailed descriptions of the various aspects of
the processor provided in succeeding chapters.

1.2 GENERAL ORGANIZATION

Zilog's Z8000 microprocessors have been designed
to accommodate a wide range of applications, from
the relatively simple to the large and complex.
The 28000 CPUs are offered in four versions: the
28001, the 78002, the 78003, and the Z8004. The
CPUs come with an entire Ffamily of support
components: two memory management units, a DMA
controller, serial and parallel I/0 controllers,
and extended processing units--all compatible with
Zilog's Z-BUS. Together with other 78000 Family
components, the advanced CPU architecture in an
LSI microprocessor design provides the flexibility
and the features usually associated with a mini-
or mainframe computer.

The major architectural features of the 28000 CPU
that enhance throughput and processing power are a
general purpose register file, System and Normal
modes of operation, multiple addressing spaces, a
powerful instruction set, numerous addressing
modes, multiple stacks, flexible interrupt
structure, a rich set of data types, and separate
1/0 address spaces. In addition the Z8001 and
78003 offer a large address space and segmented
memory addressing. Both the 28003 and 28004 CPUs
include provisions for the implementation of
virtual memory systems, and enhanced test and set
operations.

These architectural features combine to produce a
powerful, versatile microprocessor. The benefits
that result from these features are code density,
compiler efficiency and support Ffor typical
operating system operations and complex data

structures.
1.3.

These topics are treated in Section

The 278000 CPUs have been designed so that a
powerful memory management system (discussed in
Section 1.3.12) can be used to improve the
utilization of the main memory, to implement a
virtual memory system, and to provide protection
capabilities for the system. Although memory
management is an optional capability-the 78000 CPU
is a powerful processor without it-the CPU has
explicit features to facilitate integrating an
external memory management device into a 28000
system configuration.

Finally, care has been taken to provide a general
mechanism for extending the basic instruction set
through the wuse of external devices (called
Extended Processing Units--EPUs). In general, an
EPU is dedicated to performing complex and
time-consuming tasks so as to unburden the
system's CPU. Typical tasks for specialized EPUs
include floating-point arithmetic, data base
search and maintenance operations, and network
interfaces. This topic is treated in Section 1.5.

The overall design of the Z8000 CPUs provides the
user with a powerful, low-cost, highly adaptable,
CPU in a 40 or 48-pin package.

1.3 ARCHITECTURAL FEATURES

The architectural resources of a Z8000 CPU include
sixteen 16-bit general-purpose registers, seven
data types ranging from bits to 32-bit long words,
to word and byte strings, eight user-selectable
addressing modes, and an instruction set more
powerful than that of most minicomputers. The 110
distinct instruction types combine with the
various data types and addressing modes to form a
set of 414 instructions. Moreover, the
instruction set exhibits a high degree of
reqgularity: more than 90% of the instructions can
use any of five main addressing modes with B8-bit
byte, 16-bit word, and 32-bit long-word data
types.

1-1
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The CPUs generate output status signals that
indicate the nature of the bus transaction that is
being attempted. These signals can be used to
implement systems with multiple address spaces--
memory areas dedicated to specific uses. The CPUs
also have two operating modes, System and Normal,
which can be used to separate operating system
functions from normal applications processes. 1/0
operations have been separated from memory
accesses, further enhancing the capability and
integrity of Z8000-based systems, and a flexible
interrupt structure facilitates the efficient
operation of peripheral I/0 devices. Moreover,
the Extended Processing Unit (EPU) capability of
the Z8000 allows CPUs to unload time-consuming
tasks onto external devices.

Special features have been introduced to
facilitate the  implementation of  multiple
processor systems. In addition, the 28001 and
28003 CPUs have a large addressing capability that
greatly extends the applicability of micro-
processors to large system applications.

1.3.1 General-Purpose Register File

The heart of the 28000 CPU architecture is a file
of sixteen 16-bit general-purpose registers.
These general-purpose registers give the Z8000 its
power and flexibility and add to its regular
structure.

General-purpose registers can be used as
accumulators, memory pointers, or index
registers. Their major advantage is that, as the
needs of the program change, the particular use to
which they are put can vary during the course of a
program. Thus the general-purpose register file
avoids the critical bottlenecks of an implied or
dedicated register architecture, in which the
contents of dedicated registers must be saved and
restored when more registers of a particular type
are needed than are supplied by the processor.

The 28000 CPU register file can be addressed in
several ways: as 16 byte registers (occupying the
upper half of the file) or as 16 word registers,
or, by using the register-pairing mechanism, as
eight long-word (32-bit) registers or as four
quadruple-word (64-bit) registers. Because of
this register flexibility, registers can be used
efficiently in the Z8000. For example, it is not
necessary for a 28000 user to dedicate a 32-bit
register to hold a byte of data.

1.3.2 Instruction Set

A powerful instruction set 1is one of the
distinguishing characteristics of the Z8000. The
instruction set is one measure of the flexibility
and versatility of a computer. Having a given
operation implemented in hardware saves memory and
improves speed. In addition, completeness of the
available operations on a particular data type is
frequently more important than additional
instructions that are unlikely to affect per-
formance significantly. The Z8000 CPU provides a
full complement of arithmetic, logical, branch,
1/0, shift, rotate, and string instructions. In
addition, special instructions have been included
to facilitate multiprocessing, multiple processor
configurations, and typical high-level 1language
and operating-system functions. The general
philosophy of the instruction set is two-operand
register-memory operations, which include, as a
special subset, register-register operations.
However, to improve code density, a few memory-
memory operations are used for string manipu-
lation. The two-address format reflects the most
frequently occurring operations (such as A <-- A +
B). Also, having one of the operands in a rapidly
accessible general-purpose register facilitates
the use of intermediate results generated during a
calculation.

The majority of operations deal with byte, word,
or long-word operands, thereby providing a high
degree of regularity. Compact, one-word instruc-
tions for the most frequently used operations,
such as branching short distances in a program,
are also included in the instruction set.

The instruction set contains notable additions to
the standard repertoire of earlier micro-
processors. The Load and Exchange group of
instructions has been expanded to support oper-
ating system functions and conversion of existing
microprocessor programs. The wusual arithmetic
instructons can now deal with higher-precision

operands, while hardware multiply and divide
instructions have also been added. The Bit
Manipulation instructions can use calculated

values of assembled constants to specify the bit
position within a byte or word. The Rotate and
Shift instructions are considerably more flexible
than those of. previous microprocessors. The
String instructions include one designed
specifically for translating between different
character codes. Multiple-processor configura-
tions are supported by special instructions.

-
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1.3.3 Data Types

Many data types are supported by the 28000 archi-
tecture. A data type is supported when it has a
hardware representation and instructions that
directly apply to it. New data types can always
be simulated in terms of basic data types, but
hardware support provides faster and more con-
venient operations. The basic data type is the
byte, which is also the basic addressable
element. The architecture also supports the
following data types: words (16 bits), long words
(32 bits), byte strings, and word strings. In
addition, bits are fully supported and addressed
by number within a byte or word. BCD digits are
supported and represented as two 4-bit digits in a
byte. Arrays are supported by the Indexed
addressing mode (see 1.3.4 and Chapter 5). Stacks
are supported by the instruction set and by
external devices (Memory Management Units)
available to be used with the segmented 28000
CPUs.

1.3.4 Addressing Modes

The addressing mode, which is the way an operand
is specified in an instruction, determines how an
address is generated. The Z8000 CPU offers eight
addressing modes. Together with the large number
of instructions and data types, they improve the
processing power of the CPU. The addressing modes
are Register, Immediate, Indirect Register, Direct
Address, Index, Relative Address, Base Address,
and Base Index. Several other addressing modes
including autoincrement and autodecrement are
implied by specific instructions, The first five
modes listed above are the basic addressing modes
that are used most frequently and apply to most
instructions having more than one addressing
mode. In the Z8002 and 28004, Base Address and
Index modes are identical.

1.3.5 Multiple Memory Address Spaces

The 28000 CPU facilitates the use of multiple
address spaces. When the 28000 CPU generates a
memory address, it also outputs signals indicating
the particular internal activity that led to the
memory request: instruction fetch, operand
reference, or stack reference. This information
can be used in two ways: to increase the memory
space available to the processor (for example, by
putting programs in one space and data in
another), or to protect portions of the memory and
allow only certain types of access (for example,

by allowing only instruction fetches from an area
designated to contain proprietary software). The
Memory Management Units (MMUs) have been designed
to provide precisely these kinds of protection
features by using the CPU-generated status
information.

1.3.6 System and Normal Modes of Operation

All 78000 CPUs can run in either System mode or
Normal mode. In System mode, all instructions can
be executed and all CPU registers can be
accessed. This mode is intended for use by pro-
grams performing operating system functions. In
Normal mode, some instructions cannot be executed
(e.g., I/0 operations), and the control registers
of the CPU are inaccessible. In general, this
mode of operation is intended for use by appli-
cation programs. This separation of CPU resources
promotes the integrity of the system, since pro-
grams operating in Normal mode cannot access those
aspects of the CPU that deal with time-dependent
or system-interface events.

Programs that produce erroneous results when
executing in Normal mode can usually reproduce
those errors for debugging purposes simply by re-
executing the program with its original data.
Programs using facilities available only in System
mode are more likely to encounter errors that are
due to timing considerations (e.g., based upon the
frequency of disk requests and disk arm-
position). Such problems are difficult to debug
because these errors are not easily reproduced.
Thus, a preferred method of program development is
to partition the task into a portion which can be
performed without those resources accessible only
in System mode (which will usually be the bulk of
the task) and a portion requiring system mode
resources. The classic example of this par-
titioning comes from current minicomputer and
mainframe systems: the operating system runs in
System mode and the individual users write their
programs to run in Normal mode.

To support the System/Normal mode dichotomy, there
are two copies of the stack pointer--one for a
System mode stack and another for a Normal mode
stack. These two stacks facilitate the task
switching involved when interrupts or traps
occur. To ensure that the Normal stack is free of
system information, the information saved on the
occurrence of interrupts or traps is always pushed
onto the System stack before the new program
status is loaded.

1-3
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1.3.7 Separate I/0 Address Spaces

The 78000 architecture distinguishes between
memory and I/0 spaces by providing specific 1/0
instructions. This architectural separation
allows better protection and has more potential
for extension than "memory-mapped" I/0 in which
1/0 and memory references share the same address
space. There are two separate I/0 address spaces:
Standard I/0 and Special I/0. The main purpose of
these two spaces is to provide the Z8010 MMU,
which is connected only to the high-order byte of
the AD bus, with its own I/0 address space.

Memory-mapped I/0 is still possible at the
implementor's option. It can be implemented
simply by ignoring the I/0 instructions.

1.3.8 Interrupt Structure

The flexible interrupt structure of the 28000
allows the processor to continue performing useful
work while waiting for peripheral events to
occur. The elimination of periodic polling and
idling loops (typically used to determine when a
device is ready to transmit data) increases
throughput .

The CPU supports three types of interrupt. A
nonmaskable interrupt represents an event that
requires immediate handling to preserve system
integrity. In addition, there are two types of
maskable interrupt: nonvectored interrupts and
vectored interrupts. The latter provide an
automatic call to interrupt processing routines,
depending on the vector presented by the
peripheral to the Z8000.

The Z8000 has a priority system for handling
interrupts. Vectored interrupts have higher
priority than non-vectored interrupts among
devices attached to one of these interrupt lines;
priority is determined by a daisy chain built into
all Z-Bus peripherals. This priority scheme
allows the efficient control of many peripheral
devices in a 78000 system.

An interrupt causes information relating to the
currently executing program (program status) to be
saved on a special system stack with a code
describing the reason for the interrupt. This
allows recursive task switches to occur while
leaving the Normal mode stack undisturbed by
system information. The address of the interrupt

processing routine and the associated contents of
the FCW Register (new program status) are loaded
from a special area in memory, the program status
area, designated by a pointer resident in the CPU.

The use of the stack and of a pointer to the pro-
gram status area is a specific choice made to
allow flexibility in system design and to allow
architectural compatibility if new interrupts or
traps are added to the architecture.

1.3.9 Multi-Processing

The 78000 provides basic mechanisms that allow the
sharing of address spaces among different micro-
processors. Large segmented address spaces and
the support for external memory management make
this possible. Also, a resource request bus is
provided which, in conjunction with software,
provides the exclusive wuse of shared critical
resources. A Test and Set instruction is also
provided for the management of access to shared
resources. This instruction and its associated
output status code are used to prevent more than
one processor from accessing a resource at the
same time. These mechanisms, and peripherals such
as the Z-FIO (FIFO Input/Output Interface Unit),
have been designed to allow easy asynchronous
communication between different CPUs.

1.3.10 Large Address Space for the
28001 and 78003

For many applications, a basic address space of
64K bytes is insufficient. A larger address space
increases the range of applications of a system by
permitting large, complex programs and data sets.
A large address space simplifies program and data
management. In addition, large address spaces and
memories reduce the need for minimizing program
size and permit the use of higher-level lan-
guages. The segmented versions of the 78000
(28001 and Z8003) generate 23-bit addresses, for a
basic address space of 8 megabytes (8M or
8,388,608 bytes).

Both the 28003 and 28004 CPUs also offer features
that aid the implementation of virtual memory.
The 78003, in particular, when used with the Z8015
MMU which is designed for management of paged
virtual memories, can implement an apparently
unlimited amount of address space organized in
fixed-sized (2K byte) pages. This paged virtual
memory capability combines the benefits of a
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large virtual address space (ease of programming)
with the benefits of a small physical memory (low
cost).

1.3.11 Ségented Addressing

The segmented versions of the 28000 CPU (i.e.,
78001 and Z8003) divide each 23-bit addresses into
a 7-bit segment number and a 16-bit segment off-
set. The segment number serves as the logical
name of a segment; it is not altered by the
effective address calculation (by indexing, for
example). This corresponds to the way memory is
typically used by a program--one portion of the
memory is set aside to hold instructions, another
for data. In a segmented address space, the
instructions could reside in one segment (or
several different modules in different segments),
and each data set could reside in a separate
segment. One advantage of segmentation is that in
systems that use external memory management, it
speeds up address calculation and relocation.
Thus, segmentation allows the use of slower
memories than linear addressing schemes allow. In
addition, segments provide a convenient way of
partitioning memory so that each partition is
given particular access attributes (for example,
read-only). The 28000 approach to segmentation
(simultaneous direct access to the entire 8M byte
address space) does not require the use of segment
registers or other forms of addressing overhead.

1.3.12 Memory Management

Memory management is used primarily for the
dynamic relocation, protection, and sharing of
memory. It offers the following advantages:
allowing a logical structure to the memory space
that is independent of the actual physical
location of data, protecting the user from mis-
takes, preventing unauthorized access to memory
resources or data, and protecting the operating
system from disruption by the users.

The addresses manipulated by the programmer, used
by instructions, and output by the segmented Z8000
CPU are called logical addresses. The external
memory management system ‘takes the logical
addresses and transforms them into the physical
addresses required for accessing the memory. This
address transformation process is called
relocation. This process makes user software
independent of the physical memory. Thus, the
user is freed from specifying where information is
actually located in the physical memory.

The segmented Z8000 CPUs support memory management
both with segmented addressing and with program-
status information. A segmented addressing space
allows individual segments to be treated differ-
ently.

Program status information generated by the CPU
permits an external memory management device to
monitor the intended use of each memory access.
Thus, illegal types of access can be suppressed
and memory segments can be protected from un-
intended or unwanted modes of use. For example,
system tables could be protected from direct user
access. This added protection capability becomes
more important as microprocessors are applied to
large, complex tasks.

1.3.13 Virtual Memory Capability

Both the 28003 and 28004 CPUs are provided with
features that support the use of a virtual memory
system. A virtual memory system permits programs
to reference an address space that exceeds the
size of main (physical) memory.

In virtual memory systems, high-speed main memory
is supported by medium and low-speed secondary
storage devices such as hard disks or floppy
disks. When the CPU in a virtual system issues an
address that references a location that is not
currently stored in main memory, the current
operation must be aborted, a secondary storage
access must be performed to retrieve and load into
main memory block of memory containing the refer-
enced location. The mainstream program must then
be restarted at the point of interruption. The
secondary storage access and restart operations
are invisible to both the user and the executing
program. The system, therefore, appears to have a
memory that is not constrained by the physical
size of main memory.

The maximum size of virtual memory is determined
by the address structure wused and by the
capabilities of the memory management system
used. Zilog provides a memory management chip
(28015) designed specifically to implement a paged
virtual memory system and a segmented MMU for
segmented virtual memory (see Appendix B).

1.4 BENEFITS OF THE ARCHITECTURE

The features of the Z8000 Architecture combine to
provide several significant benefits:
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high-density code

efficient compilation
operating system support
structural data manipulations

1.4.1 Code Density

Code density affects both processor speed and
memory utilization. Compaction of code saves
memory space--an especially important factor in
smaller systems--and improves processor speed by
reducing the number of instruction words that must
be fetched and decoded. The Z8000 offers several
advantages with respect to code density. Code
density is achieved in part by the use of special
"short" formats for certain instructions that
statistical analysis shows to be the most
frequently used. Short formats decrease the
amount of memory required to store instructions.

A "short offset" mechanism has been provided to
allow a 2-word segmented address to be reduced to
a single word; this format may be used by both
assemblers and compilers.

The largest reduction in program size (and con-
sequent increase in speed) results from the
consistent and regular structure of the archi-
tecture and from the powerful Z8000 instruction
set--factors that substantially reduce the number
of instructions required for a task. The archi-
tecture is more regular than preceding
microprocessors, because its registers, addressing
modes, and data types can be used in an orderly
fashion. Any general-purpose register can be
specified as an accumulator, index register, or
base register. With a few exceptions, all basic
addressing modes can be used with all
instructions, as can the various data types.

General-purpose registers do not have to be
changed as often as special-purpose registers.
This too reduces program size, since frequent load
and store operations are not required.

1.4.2 Compiler Efficiency

For microprocessor users, the transition from
assembly language to high-level languages allows
greater freedom from architectural dependency and
improves ease of programming. However, rather
than adapting the architecture to a particular
high-level language, the Z8000 was designed as a
general-purpose microprocessor. (Tailoring a

processor for efficiency in one language often
leads to inefficiency in other languages.) For
the 128000, 1language support has been provided
through the inclusion of features designed to
minimize typical compilation and code-generation
problems. Among these features is the reqularity
of the 78000 addressing modes and data types.
Access to arguments and local variables on a
procedure stack is supported by the "Indexed With
Short Offset" addressing mode, as well as the
Based and Base Indexed addressing modes. In
addition, address arithmetic is aided by the
Increment and Decrement instructions.

Testing of data, logical evaluation, initializa-
tion, and comparision of data are made possible by
the instructions Test, Test Condition Codes, Load
Immediate Into Memory, and Compare Immediate With
Memory. Since compilers and assemblers frequently
manipulate character strings, the instructions
Translate, Translate and Test, Block Compare, and
Compare String all result in speed improvements
over software simulations of these tasks. In
addition, any register except register RO can be
used as a stack pointer by the Push and Pop
instructions.

1.4.3 Operating System Support

Interrupt, task-switching, and memory-management
and compiler-support features improve operating
system implementation.

The interrupt structure has three levels: non-
maskable, nonvectored, and vectored. When an
interrupt occurs, the program status is saved on
the stack with an indication of the reason for
this state-switching; then a new program status is
loaded from a special area of memory. The program
status consists of a flag register, the control
bits, and the program counter. The reason for the
occurrence is encoded in a 16-bit "vector" that is
supplied by the interrupting device and read from
the system bus and saved on the stack by the CPU.
In the case of a vectored interrupt, one byte of
the vector also indexes a table of interrupt
processing routine addresses.

The inclusion of System and Normal modes improves
operating system organization. In the System
mode, all operations are allowed; in the Normal
mode, certain instructions are prohibited. The
System Call instruction allows a controlled switch
of mode, and the Privileged instruction trap
enforces these restrictions.
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Traps result in the same type of program status-
saving as interrupts: in both cases, the informa-
tion saved is pushed onto the system stack leaving
the normal stack undisturbed. The Load Multiple
instruction allows the contents of registers to be
saved efficiently in memory or on the stack when
performing a task switch. Programs, during
execution in System mode, can cause program status
changes under direct software control by using the
Load Program Status instruction.

Finally, process exclusion and serialization can
be achieved with the Test And Set instruction
which  synchronizes asynchronous  cooperating
processes.

A new feature has been added to the ZB8003 and
78004 CPUs; when TSET is executed by these CPUs a
special status code is generated. This code
allows external circuitry to prevent access to the
memory location (semaphore) addressed by TSET
between TSET's read and write operation with that
semaphore. This access protect function aids in
the synchronization of CPU operations in
multiprocessor systems.

1.4.4 Support for Many Types of Data
Structures

A data structure is a logical organization of
primitive elements (byte, word, etc.) whose format
and access conventions are defined. Common data
structures include arrays, lists, stacks, and
strings. Since data structures are high-level
constructs frequently used in  programming,
processor performance is enhanced if the CPU
provides mechanisms for their efficient
manipulations; such mechanisms are offered by
28000 CPUs.

In many applications, one of the most frequently
encountered data structures is the array. Arrays
are supported in the Z8000 by the Index and the
Base Index Addressing modes and by segmented
addressing. The Base Index Addressing mode allows
the use of pointers into an array (i.e., offsets
from the array's starting address). Segmented
addressing allows an array to be assigned to one
segment, so that it can be referenced simply by
segment number.

Lists occur more frequently than arrays in
business applications and in general data
processing. Lists are supported by the Indirect
Register and Base Address Addressing modes. The
Base Index Addressing mode is also useful for more
complex lists.

Stacks are used in all appligations for nesting of
routines, block-structured languages, and inter-
rupt handling. Stacks are supported by the Push
and Pop instructions, and multiple stacks may be
implemented based on the general-purpose registers
of the Z8000. In addition, two hardware stack
pointers are used to assign separate stacks to
System and Normal operating modes, thereby further
supporting the separation of the system and normal
operating environments discussed earlier. The
78010 and 28015 MMUs provide special provisions to
provide stack overflow and to allow dynamic
expansion of stacks.

Byte strings are supported by the Translate and
Translate And Test instructions. Decimal arith-
metic on strings of BCD data, packed two char-
acters per byte is supported by the Add/Subract
Byte with Carry and Decimal Adjust instructions.
The Rotate Digit instructions also manipulate
4-bit data.

1.4.5 Four CPU Versions: Differences

There are four versions of the 28000 CPU: Z8001,
78002, 18003, and Z8004. The primary differences
among these CPUs are summarized in Table 1-1;
details of these differences are given throughout
this manual.

A major consideration in selecting a 78000 CPU is
the amount of physical memory that can be
addressed directly. For users who do not require
a large address space, the nonsegmented versions
(28002 and 78004) of this CPU provide the
capability of addressing up to 64K bytes of
physical memory in each address space, or up to
256K of program/data and system/normal separations
are used (plus two 64k byte I/0 address spaces
separate from memory).

For users who require larger amounts of memory,
the segmented versions (Z8001 and Z8003) of this
CPU provide the basic capability of addressing up
to 8M bytes of physical memory in each address
space.

For users who want a small amount of physical
memory relative to the size of their data/program
address space, the 78003 and 78004 CPUs can be
used to implement virtual memory systems.

Features provided by the Z8000 CPUs enable them to
be directly incorporated into multiprocessor
configurations. The ability of segmented CPUs to
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Table 1.1. 78000 CPUs, Summary of Differences
78001 78002 28003 28004

Addressing Spaces

a. Segmented Yes No Yes No

b. Nonsegmented Yes Yes Yes Yes
Number of Output
Address Bits 23 16 23 16
Virtual Memory
Input Pin (ABORT) No No Yes Yes
Separate External
Interrupt Input Pin
for Access Violation
Signal from MMU Yes No Yes No
TSET Instruction
Enhancement No No Yes Yes
Package Size (Pins) 48 40 48 40

execute, without modification, code written for
the nonsegmented CPUs enable several of the
nonsegmented CPUs to be used with one segmented
CPU to form a multiprocessor system.

1.5 EXTENDED INSTRUCTION FACILITY

The 28000 architecture has a mechanism for extend-
ing the basic instruction set through the use of
external devices. Special opcodes are used with
this feature. When the CPU encounters an
instruction with one of these opcodes in its
instruction stream, it will perform any indicated
address calculation and data transfer; otherwise,
it will treat the "extended instruction" as being
executed by the external device. Fields have been
set aside in these extended instructions to be
interpreted by external devices (Extended
Processing Units--EPUs) as opcodes. Thus, by
using appropriate EPUs, the instruction set of the
78000 can be extended to include specialized
instructions.

In general, an EPU is dedicated to performing

complex and time-consuming tasks in order to
unburden the CPU. Typical tasks suitable for

specialized EPUs include floating-point
arithmetic, data base search and maintenance
operations, network interfaces, and graphics

support operations.

1.6 SUMMARY

The architectural sophistication of the 78000
microprocessor is on a level comparable with that
of the minicomputer. Features of the ZB000 such
as large address spaces, multiple memory spaces,
segmented addresses, and support for virtual
memory systems and multiple processors are beyond
the capabilities of the traditional minicomputer.
The benefits of this sophisticated
architecture--code density, compiler support, and
operating system support--greatly enhance the
power and versatility of the 28000 CPU. The CPU
features that support external memory management
systems also enhance the CPU's applicability to
large system environments.
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Chapter 2
Architecture

— S—
2.1 INTRODUCTION

This chapter provides an overview of the 28000 CPU
architecture. The basic hardware requirements,
operating modes, and instruction set are all
described. Differences among the versions of the
28000 are noted where appropriate. Most of the
subjects covered here are also treated in greater
detail in later chapters of this manual.

2.2 GENERAL ORGANIZATION

Figure 2-1 contains a block diagram that shows the
following major elements of the Z8000 CPU:

————————————

e A 16-bit internal data bus, which is used to
move addresses and data within the CPU

e A Z-BUS interface, which controls the
interaction of the CPU with the outside world

e Sixteen, 16-bit general-purpose registers,
which are used to contain addresses and data

e Four special-purpose Program Status Registers,
which control the CPU operation

® An Arithmetic and Logic Unit, which is used for
manipulating data and generating addresses

| REFRESH |
CONTROL
GENERAL ARITHMETIC |
| PURPOSE LOGIC
REGISTERS UNIT t |
I REFRESH
I COUNTER |
| g e |
| _BUFFER | PROGRAM
I —_——— STATUS |
REGISTERS
l INSTRUCTION
EXECUTION F————n EXCEPTION l
CONTROL o L I HANDLING
| ! Fow | CONTROL |

Figure 2-1. 8000 CPU Functional Block Diagram
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e An instruction execution controller, which
fetches and executes 78000 instructions

e An exception-handling controller, which
processes interrupts and traps

e A refresh controller, which generates memory
refresh cycles

Each of these elements is explained in the
following sections. All of the elements are
common to all of the Z8000 CPUs. The differences
between the segmented and nonsegmented versions of
the CPUs are derived from the number of bits in
the addresses they generate. The 28002 and Z8004
always generate 16-bit linear addresses, while the
78001 and ZB003 always generate 23-bit segmented
addresses (that is, an address composed of a 7-bit
segment number and a 16-bit offset).

Figure 2-2 gives a system-level view of the
78000. It is important to realize that the 28000
CPU is part of a family of components that have
been designed to allow the easy implementation of
powerful systems. The major elements of such a
system might include:

e The Z-BUS, a multiplexed, address/data bus that
links the components of the system

e A 28000 CPU

e One or more Extended Processing Units (EPUs),
which are dedicated to performing specialized,
tasks

e A memory sub-system, which in 78001 or Z8003

systems can include one or more Memory
Management Units (MMUs) which offer memory

PERIPHERALS

1I

scC

I 1

Z8000
CPU

28001 MMy
28003
ONLY MMU

2.BUS :>
<>
FIO

8=

OTHER CPU
OR
PERIPHERAL

(>

MEMORY

Figure 2-2. Typical Z8000 System Configuration

2010-002



Architecture

address translation and access protection
features

e One or more Data Transfer Controllers (DTCs)
for high-speed direct memory access (DMA) data
transfers

e A large number of possible peripheral devices
interfaced to the Z-BUS through Universal
Peripheral  Controllers  (Z-UPCs),  Serial
Communication Controllers (z-scCs),
Counter-Timer and Parallel I/0 Controllers
(Z-CI0s) or other Z-BUS peripheral controllers

e One or more FIFO I/0 Interface Units (FIOs) for
elastic buffering between the CPU and another
device, such as another CPU (not necessarily
from the 78000 family) in a distributed
processing system

2.3 HARDWARE INTERFACE

Figure 2-3 shows the 28000 pins grouped according
to function. The 28001 and Z8003 are packaged in
48-pin DIPs and the 28002 and Z8004 are packaged
in 40-pin DIPs. The eight additional pins on the
78001 and Z8003 are the seven segment-number
output lines and the address translation trap
input. The address trap is designated as SEGT
(Segment Trap) for the 78001 and as SAT
(Segment/Page Address Translation Trap) for the
78003. Except for those eight pins and the 28003
and 28004 ABORT input (which corresponds to an
unused pin of the Z8001 and Z8002 CPUs), all pins
on the four CPU versions are identical.

The 78000 is a Z-BUS CPU; thus, activity on its
pins is governed by the Z-BUS protocol (see the
"Z-BUS Component Interconnect Summary" document

<+—AS AD15 > )
BUS
niminay 1% ADy4 fa—>-
<+—4 MREQ ADy3; jw—>
AD;; j—>
( <«——] READ/WRITE ADyy jw—>
~-— NORMALISYSTEM ADyp >
~«— BYTE/WORD ADg >
ADg [<—> \ ADDRESS/
STATUSJ
~-—4 ST AD; [ DATA BUS
ST, ADg jt—>
~¢—ap STy AD;s pe—p
\ ST 28001 AD, f—s-
——pf§ ABORT** ::gg: AD; >
CPU ) —>|WAIT AD, |=—>
CONTROL ST6F Z8004
-1 STOP CPU AD¢ jw—>
ADg f=—> )
BUS | —>]BUSREQ r— =1~ zs061
CONTROL) ___ lsusack ' SNs zza:ggaa |
| SN5 }—> ONLY |
——p{ NMI | SNy F—> |
INTERRUPTS{ —»{ Vi | SN; —» :Et'i‘l;::r
—1 NVI | SN —> |
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* SAT for Z8003 CPU, SEGT for Z8001 CPU.
** ABORT used in Z8003 and Z8004 CPUs only.

D
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i

Figure 2.3. 78000 Pin Functions
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No. 00-2031-02). This protocol specifies two
types of activities: transactions, which cover
all data movement (such as memory references or
I1/0 operations), and requests, which cover
interrupts and requests for bus or resource
control. The following is a brief overview of the
78000 pin functions; complete descriptions are
found in Chapter 9.

2.3.1 Address/Data Lines

These 16 lines alternately carry addresses or
data. The addresses may be those of memory
locations or I/0 ports. The bus timing signal
lines described below indicate what kind of
information the Address/Data lines are carrying.

2.3.2 Segment Number (Z8001 and Z8003 only)

These seven lines encode the address of up to 128
relocatable memory segments. The segment signals
become valid one CPU clock period before the
address offset signals, thus permitting parallel
processing of addresses to be performed by the
memory management system and the CPU.

2.3.3 Bus Timing

The Address Strobe (AS), Data Strobe (DS) and
Memory Request (MREQ) lines are used to signal the
beginning of a bus transaction and to determine
when the multiplexed Address/Data Bus holds
addresses or data. The Memory Request signal can
be wused to time the transmission of control
signals to a memory system.

2.3.4 Status Lines

These output lines indicate the kind of
transaction on the bus (see Table 2-1.), whether
it is a read or a write (R/W, High = Read, Low =
Write), whether it is on byte or word data (B/W,
High = byte, Low = word), and whether the CPU is
operating in Normal mode or System mode (N/S, High
= normal, Low = system). Status information
defining the type of bus transaction is
transmitted in advance of data transmission to
allow required external hardware elements to be
enabled before data is transferred. The status
lines are enabled by the address strobe (AS) a
minimum of two CPU clock periods before the data

ouput lines are sampled (strobed by data strobe
DS).

Table 2-1. Status Line Codes

ST3-5Tg Definition
0000 Internal Operation
0001 Memory Refresh

0010 1/0 Reference
0011 Special I/0 Reference
0100 Segment Trap Acknowledge
0101 Nonmaskable Interrupt Acknowledge
0110 Nonvectored Interrupt Acknowledge
0111 Vectored Interrupt Acknowledge
17000 Data Memory Request

1001 Stack Memory Request

1010 Data Memory Request (EPU)

1011 Stack Memory Request (EPU)
1100 Instruction Space Access

1101 Instruction Fetch, First Word
17110 Transfer between EPU and CPU
1111 Test and Set Data Access

(28003 and 78004 only)

2.3.5 CPU Control

These inputs allow external devices to delay the
operation of the CPU. The WAIT line, when active
(Low), causes the CPU to idle in the middle of a
bus transaction, taking extra clock cycles until
the WAIT line goes inactive; WAIT is typically
input by memory or I/0 peripherals that operate
more slowly than the CPU. The Stop (STOP) line
halts internal CPU operation when the first word
of an instruction has been fetched. This signal
is used for single-step instruction execution
during debugging operations and for enabling
Extended Processing Units to halt the CPU
temporarily. The ABORT line, when active (Low),
indicates that external memory  management
circuitry has detected an address that does not
correspond to a location in main memory; this
condition causes the CPU to abort the currently
executing instruction. When ABORT is enabled, the
WAIT input must also be asserted for five CPU
clock periods to permit the CPU internal control
mechanism to perform the required abort
instruction operations. This ABORT input is used
in the 78003 and 28004 CPUs in the implementation
of virtual memory systems.
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2.3.6 Bus Control

These lines provide the means for other devices,
such as direct memory access (DMA) controllers, to
gain exclusive use of the signal lines that the
CPU would not normally be using to conduct data
transfers. The external device requesting control
of the bus inputs a bus request (BUSREQ); the CPU
responds with a bus acknowledge (BUSACK) after
three-stating, or electrically neutralizing, the
Address/Data Bus, Bus Timing lines, Status lines,
and Control lines.

2.3.7 Interrupts

Three interrupt inputs are provided: nonmaskable
interrupts (NMI), vectored interrupts (VI) and
nonvectored interrupts (NVI). These inputs permit
external devices to cause the CPU to suspend
execution of its current program and begin
execution of an interrupt service routine.

2.3.8 Address Trap Request (Z8001 and Z8003
only)

This input, when used with the 28001 CPU, is
identified as SEGT (Segment Trap). It is used by
external memory management circuitry to indicate,
when active (Low), that an illegal memory access
operation has been detected.

This input, when lﬁd with the 128003 CPU, is
identified as  SAT (Segment/Page  Address

MACHINE

Translation Trap). It is used by external memory
management circuitry to indicate, when active
(Low), that either a referenced segment or page
does not reside in memory or that an illegal
method of access has been detected.

2.3.9 Multi-Micro Control

The Multi-Micro In (MI) and Multi-Micro Out (MO)
lines are used in conjuction with a four-line
resource bus and a set of four CPU instructions to
coordinate multiple-CPU systems. They allow
exclusive use by one CPU of a shared resource in a
multiple-CPU system.

2.3.10 System Inputs

The four inputs shown at the bottom of Figure
2-3 are: +5 V power, ground, a single-phase clock
signal and a CPU reset. The reset function is
described in Chapter 7.

2.4 TIMING

Figure 2-4 shows the three basic timing periods of
a 78000 CPU: a clock cycle, a bus transaction,
and a machine cycle. A clock cycle (sometimes
called a T-state) is one cycle of the CPU clock,
starting with a rising edge. A bus transaction
covers a single data movement on the CPU bus and
will last for three or more clock cycles, starting
with a falling edge of AS and ending with a rising
edge of DS. A machine cycle covers one basic CPU

CYCLE

BUS
[ TRANSACTION

<—+ CLOCK CYCLE

CPU CLOCK I | I I l | I | I I I | I | | I l

=\

\/

- N\

/"

Figure 2-4. Basic Timing Periods
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operation and always starts with a bus
transaction. A machine cycle can extend beyond
the end of a transaction by an unlimited number of
clock cycles. For more information see Chapter 9.

2.5 ADDRESS SPACES

The 28000 supports two main address spaces that
correspond to the two kinds of location that can
be addressed:

e Memory Address Space. This consists of the
addresses of all locations in the main memory of
the computer system.

s I/0 Address Space. This consists of the
addresses of all I/0 ports through which
peripheral devices are accessed.

See Chapter 3 for more information on address
spaces.

2.5.1 Memory Address Space

Memory address space can be further subdivided,
for both Normal and System modes, into Program
Memory address space, Data Memory address space,
and Stack Memory address space.

The particular space addressed is determined by
the external circuitry from the code appearing at
the CPU's output status pins (STg-5T3) and the
state of the Normal/System signal (N/S pin). Data
memory reference and program memory reference each
correspond to a different status code at the
STg-ST3 outputs, allowing two address spaces to be
distinguished for each operating mode. Each of
the address spaces has a range as great as the
addressing ability of the processor. For the
nonsegmented Z8000 CPUs, each address space can
have up to 64K bytes of directly addressable
memory. The segmented Z8000 CPUs provide up to 8M
bytes of directly addressable memory in each
address space.

Segmentation is a memory management technique in
which memory is partitioned into variably-sized
individually addressed segments. A v'ariety of
useful functions can be implemented in segmented
memory; the following are examples of such
functions:

o Protection mechanisms that prevent a user from
referencing data belonging to others, from
attempting to modify read-only data, or from

e Virtual memory, which permits a user to write
functioning programs as if the system contained
more physical memory than is actually available

e Dynamic relocation, which allows the placement
blocks of data in physical memory independently
of user addresses, allowing better management
of the memory resources and sharing of data and
programs

The control and status signals provided by
segmented 78000 CPUs assist in implementing these
features. However, additional software and
external circuitry (such as the 78010 MMU or
78015 PMMU ) is generally required to take full
advantage of them. See Chapter 3 for an extensive
discussion of segmentation.

2.5.2 Address Space in Segmented or Segmented/
Paged Virtual Memory Systems

The size of the address space in a virtual memory
system is determined by the CPU's address
structure and by the capabilities of the system's
memory managment hardware and software. Memory
Management circuitry external to the CPU can
implement either a segmented or paged virtual
memory system.

In a segmented system, information is transferred
between main and secondary memory on a segment-
by-segment basis. Variable length segments of up
to 64K bytes in length can be used. Segmented
virtual memory systems are supported by the Z8001
and 28003 CPUs.

In a paged system, each segment is divided into
fixed-size pages (standard size is 2048 bytes).
Main memory is divided into page-sized "frames",
and information is then transferred on a
page-by-page basis between main and secondary
memory. Paged virtual. memory systems are
supported by both the 78003 and Z8004 CPUs.

2.5.3 1/0 Address Space

1/0 addresses are represented as 16-bit words for
both the segmented and nonsegmented CPUs.

There are two I/0 address spaces, Standard 1/0 and
Special I/0, which are both separate from the
memory address space. Each I/0 space is accessed
through a separate set of I/0 instructions, which
can be executed only when the CPU is operating in
System mode. While these spaces are essentially
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identical, convention and future compatibility
require that Standard I/0 instructions transfer
data between the CPU and peripherals and Special
I/0 instructions transfer data to or from external
CPU support circuits such as the 28010 and 28015
MMUs. Access to Standard or Special I/0 space is
distinguished by the status lines (STy-ST3).

2.6 GENERAL-PURPOSE REGISTERS

The 78000 CPU contains 16 general-purpose
registers, each 16 bits wide. Any general-purpose
register can be used for any instruction operand
(except for minor exceptions described at the
beginning of Chapter 5).

Figure 2-5 shows these general-purpose registers.
They allow data formats ranging from byte to
quadruple words. The word registers are specified
in  assembly-language statements as RO-R15.
Sixteen byte registers, RHO-RH7 and RLO-RL7, which
can be used as accumulators, overlap the first
eight word registers. Register grouping for
larger operands produces eight double-word
(32-bit) registers, RRO-RR14, which are used for
segmented addresses and  32-bit  arithmetic
instructions, and eight 64-bit registers
RQ4,RQ4,RQ8,RQA12, which are used by the Multiply,
Divide and Extend Sign instructions.

As Figure 2-5 illustrates, the CPU has two
hardware stack pointers, one dedicated to each of
the two basic operating modes, System and Normal
Segmented Z8000 CPUs (Figure 2-5A) used a two-word
stack pointer for each mode (R14'/R15' or
R14/R15), whereas the nonsegmented 28000 CPUs
(Figure 2-5B) used only one word for each mode
(R15' or R15).

The system stack pointer is used for saving status
information when an interrupt or trap occurs and
for supporting subroutine calls in System mode.
The normal stack pointer is used for subroutine
calls in user programs. In Normal-mode operation
only the normal stack pointer is accessible. In
System-mode operation, the system stack pointer is
directly accessed as a general-purpose register.
The normal stack pointer can be accessed as a
special control register.

2.7 SPECIAL-PURPOSE REGISTERS

In addition to the general-purpose registers,
there are special-purpose registers. These
include the Program Status registers, the Program

Status Area Pointer, and the Refresh Counter; they
are illustrated for both CPU types in Figure 2-6.
Each register can be manipulated in software
executing in System mode, and some are modified
automatically by certain operations.

2.7.1 Program Status Registers

These registers include the Flag and Control Word
(FCW) and the Program Counter (PC). They are used
to keep track of the state of an executing
program.

In the nonsegmented CPUs, Program Status consist
of two words: one each for the FCW and the PC.
In the segmented CPUs, Program Status consists of
four words: one reserved word, one word for the
FCW and two words for the segmented PC.

The low-order byte of the Flag and Control Word
(FCW) contains the six status flags, from which
the condition codes used for control of program
looping and branching are derived. The six flags
are:

Carry (C), which generally indicates a carry out
of the high-order bit position of a register being
used as an accumulator.

Zero (Z), which is generally used to indicate
that the result of an operation is zero.

Sign (S), which is generally used to indicate
that the result of an operation is a negative
number.

Parity/Overflow (P/V), which is generally used to
indicate either parity (after logical operations
on byte operands) or overflow (after arithmetic
operations).

Decimal-Adjust (D), which is used in BCD
arithmetic to indicate the type of instruction
that was executed (addition or subtraction).

Half Carry (H), which is used to convert the
result of a previous binary addition or
subtraction of BCD numbers into the correct
decimal result.

Section 6.3 provides more detail on these flags.

The control bits, which occupy the high-order byte
of the FCW, are used to enable interrupts or to
control CPU operating modes. The control bits
are:
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Nonvectored Interrupt Enable (NVIE), Vectored
Interrupt Enable (VIE). These bits indicates
whether or not the CPU will accept nonvectored or
vectored interrupts (see Section 2.13.3).

System/Normal Mode (S/N). When this bit is set to
one, the CPU is operating in System mode; when
cleared to zero, the CPU is in Normal mode (see
Section 2.8). The CPU output status line (N/S
pin) is the complement of this bit.

Extended Processing Architecture (EPA) Enable.
When this bit is set to one, it indicates that the
system contains Extended Processing Units, and
hence extended instructions encountered in the CPU
instruction stream are executed (see Section
2.12). When this bit is cleared to zero, extended
instructions are trapped for software emulation.

Segmentation Mode (SEG). This bit is implemented
only in the Z8001 and ZB003 CPUs; it is always
cleared in the nonsegmented Z8002 and 28004 CPUs.
When this bit is set to one, the CPU is operating
in segmented mode. When this bit is cleared to
zero, the CPU is operating in nonsegmented mode
(see Section 2.8).

2.7.2 Program Status Area Pointer (PSAP)

The Program Status Area Pointer points to an array
of program status values (FCW and PC) in main
memory called the Program Status Area. New FCW
and PC values are fetched from this area when an
interrupt or trap occurs. As shown in Figure 2-6,
the PSAP consists of either one word (nonsegmented
CPUs) or two words (segmented CPUs). For either
configuration, the lower byte of the pointer must
be zero. See Chapter 7 for details about the
Program Status Area and its layout.

2.7.3 Refresh Register

The CPU contains a programmable counter that can
be used to refresh dynamic memory automatically.
The refresh register consists of a 9-bit row
counter, a 6-bit rate counter and an enable bit
(Figure 2-6). See Chapter 8 for details.

2.8 INSTRUCTION EXECUTION

Running State. In the usual course of events, the
78000 CPU spends most of its time fetching

instructions from memory and executing them. This
process is called the running state of the CPU.
The CPU also has two other states that it can
enter.

Stop/Refresh State. This is really one state,
although it can be entered either automatically
for a periodic memory refresh, or when the STOP
line is activated. In this state, program
execution is temporarily suspended and the CPU
makes use of the Refresh Register to generate
refreshes. See Chapters 4 and 8 for more details.

Bus-Disconnect State. This is the state the CPU
enters when a bus requester (such as DMA), takes
over the bus. Program execution is suspended and
the CPU disconnects itself from the bus. See
Chapter 7 for more details.

While the CPU is in the running state, it can
either be handling interrupts or executing
instructions. If it is executing instructions,
the Z8000 can be in the System or Normal execution
mode. In System mode, privileged instructions
(such as those that perform I/0) can be executed;
in Normal mode they cannot. This dichotomy allows
the creation of operating system software that
controls CPU resources and is protected from
application program access.

A CPU operates in either segmented or nonsegmented
mode. In segmented mode, which is available only
on the 78001 and 78003, the program uses 23-bit
segmented addresses for memory accesses; in
nonsegmented mode, which is available on all CPUs,
the program uses 16-bit nonsegmented addreses for
memory accesses.

While executing instructions, the mode of the CPU
is controlled by bits in the FCW (Section 2.7).
During the interrupt/trap response cycle, the CPU
is always in System mode.

2.9 INSTRUCTIONS

The 28000 instrution set contains over 400 differ-
ent instructions which are formed by combining the
110 distinct instruction types (opcodes) with the
various data types and addressing modes. The
complete set is divided into the following groups:

Load and Exchange for register-to-register and
register-to-memory operations, including stack
management .
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Arithmetic for arithmetic operations, including
multipy and divide, on data in either registers or
memory . Compare, increment, and decrement
functions are included.

Logical for Boolean
registers or memory.

operations on data in

Program Control for program branching (conditional
or unconditional), calls, and returns.

Bit Manipulation for setting, resetting and
testing individual bits of bytes or words in
registers or memory.

Rotate and Shift for bytes, words, or for shifts
only long words within registers.

Block Transfer and String Manipulation for
automatic memory-to-memory transfers of data
blocks or strings, including compare and translate
functions.

Input/Output for transfers of data between I1/0
ports and memory or registers.

A. COMPACT INSTRUCTION FORMAT
LOAD IMMEDIATE BYTE

Extended for operations involving Extended
Processing Units.
CPU Control for accessing special registers,

controlling the CPU operating state, synchronizing
multiple-processor operation, enabling/disabling
interrupts, mode selection, and memory refresh.

Chapter 6 contains details on the full instruction
set.

2.9.1 Instruction Formats

Formats of the instructions are shown in Figure
2-7. The two most significant bits (MSBs) in the
instruction word determine whether the compact
instruction format (Figure 2-7,A) or the general
instruction format (Figure 2-7,B) is to be used.

When the two MSBs are both logic ones, the compact
format is to be used. Compact formats enable the
four most frequently wused instructions to be
encoded as single words, thereby saving on
instruction-memory usage and increasing execution
speed.

B |1 1 0 of °

T T 1 1 1 1 1 1 1
r n

CALL RELATIVE

carf1 170 1]

T T LI T T
offset

JUMP RELATIVE

R [1717170] T

T T 1
c |

DECREMENT AND JUMP ON NON-ZERO

paNz [17 1 1 1]

T Tw] " ohont

1
e T ]
]

B. GENERAL INSTRUCTION FORMAT (FIRST WORD)

addressing
moc}e
ag:DOR l I4 | ' o]|:u:o'd<-3r lWJ Isou'rceI |d'esti'natilon|
addressing
moc}e
R T 1 1 1 L T 1 1
XVC?NRGD V?ORD[ ’ l opcode ] source |destination—|

Note: W indicates Word (1) or Byte (0)

Figure 2-7. Instruction Formats
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As when the two most significant bits are not both
logic ones, the general format applies. In the
general format, the two most significant bits in
conjunction with the source-register field are
sufficient for specifying any of the five main
addressing modes. Source and destination fields
are four bits wide for addressing the 16
general-purpose registers.

2.10 DATA TYPES

The Z8000 supports manipulation of eight data

types. Five of these have fixed lengths; the
other three have 1lengths that can vary
dynamically. Each data type is supported by

instructions that operate directly upon it. These
data types are:

e Bit

e Signed byte-length, word-length, long word-
length, or quadruple word-length binary integer

e Byte- or word-length logical value

Word (nonsegmented or short segmented) or long

word (segmented) address

Unsigned byte-length decimal integer

Dynamic-length string of byte data

Dynamic-length string of word data

Dynamic-length stack of word or long-word data

Bits can be manipulated in registers or memory.
Binary and decimal integers and logical values can
be manipulated in registers, although operands can
be fetched directly from memory. Addresses are
manipulated only in registers, but can be fetched
from instruction or data memory. Strings and
stacks can be manipulated only in memory.

2.11 ADDRESSING MODES

The information included in 278000 instructions
consists of the function to be performed, the type
and size of data elements to be manipulated, and
the locations of the data elements. For most
two-operand instructions, one address mode is
fixed, (usually Register Mode) and one of the
following eight addressing modes designated as the
other:

Register Mode (R). The data element is located in
one of the 16 general-purpose registers.

Immediate Mode (IM). The data element is located
in the instruction.

Indirect Register Mode (IR). The data element can
be found in the location whose address is in one
of the general purpose registers.

Direct Address Mode (DA). The data element can be
found in the location whose address is in the
instruction.

Index Mode (X). The data element can be found in
the location whose address is the sum of the
contents of an index value in one of the general
purpose registers and an address in the
instruction.

Relative Address Mode (RA). The data element can
be found in the location whose address is the
contents of the program counter offset by a
displacement in the instruction.

Base Address Mode (BA). The data element can be
found in the location whose address is the sum of
a base address in one of the general purpose
registers and a displacement in the instruction.

Base Index Mode (BX). The data element can be
found in the location whose address is the sum of
a base address and an index value each in separate
general purpose registers.

Chapter 5 defines and illustrates the eight
addressing modes.

2.12 EXTENDED PROCESSING ARCHITECTURE

An important feature of Z8000 CPU architecture is
the Extended Processing Architecture (EPA). EPA
permits the basic instruction set of the CPU to be
extended via the use of external devices, called
Extended Processing Unit (EPUs). A special set of
instructions, called extended instructions, is
used with each EPU. When the CPU encounters an
extended instruction in its instruction stream, it
either traps to a software trap handler to process
the instruction or it performs the data transfer
portion of the instruction (leaving the data
manipulation part of the instruction to the EPU).
Whether the CPU traps or transfers data depends on
the setting of the EPA bit in the FCW.

The underlying philosophy of the EPA feature views
the CPU as an instruction processor--the CPU
fetches an instruction, fetches data associated
with the instruction, performs the specified
operations and stores the result. Extending the

N
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number of operations performed does not affect the
instruction fetch and address calculation portion
of the CPU acitvity. The extended instructions
exploit this feature--the CPU fetches the
instruction and performs any address calculation
that may be needed. The CPU also generates the
timing signals for the memory access if data must
be transferred between memory and the EPU. But
the actual data manipulation is handled by the
EPU. The Extended Processing Architecture is
explained more fully in Chapter 4.

2.13 EXCEPTIONS

Four events can alter the normal execution of a
78000 program: a hardware interrupt which occurs
when a peripheral device needs service, a
synchronous software trap which occurs when an
error condition arises, an instruction abort which
occurs during virtual memory operations, and a
system reset. Chapter 7 contains a detailed
description of exceptions and how they are
handled.

Interrupt requests and address translation trap
requests are accepted on completion of the
instruction execution cycle during which they were
made. At the end of the instruction execution, a
spurious instruction fetch transaction is usually
performed before the interrupt acknowledge
sequence but this fetch does not affect the
Program Counter.

In virtual memory systems, the activation of the
ABORT CPU input initistes a five-cycle abort
interrupt operation. During this period, the CPU
automatically saves information needed to restart
the interrupted instruction execution operation.
On completion of the abort interrupt operation, an
interrupt service routine is initiated. This
routine should locate and load the referenced
information into main memory and then restart the
mainstream program at its point of interruption.

2.13.1 Reset

A system reset overrides all other operating
conditions. It puts the CPU in a known state and
then causes a new program status to be fetched
from a reserved area of memory to reinitialize the
FCW and the PC.

2.13.2 Traps

Traps are synchronous events that are usually
triggered by specific instructions and recur each
time the instruction is executed with the same set
of data and the same processor state. The four
kinds of trap are:

Extended instruction attempted in non-EPA mode.
The current instruction is an EPU instruction, but
the system is not in EPA mode.

Privileged instruction attespted in normal mode.
The current instruction is privileged (I/0 for
example), but the CPU is in Normal mode.

System Call (SC) instruction. This instruction
provides a controlled access from Normal-mode to
System-mode operation.

Segmentation or addressing violation (supplied by
external circuit). This trap is intended for use
by external memory managment circuitry. Only the
segmented CPUs (Z8001 or 28003) can initiate this
type of trap.

2.13.3 hAborts

Both the 78003 and Z8004 CPUs are provided with an
ABORT input which is controlled by external memory
management circuitry or devices. The detection of
an asserted ABORT input by a CPU causes it to
abort the currently executing instruction and to
start saving status information which will be
required to restart the interrupted instruction
execution operation at the point of interruption.
The external circuitry or device must supply five
WAIT inputs to the CPU to provide time for the
save operation. Status information is also
presented to the external circuitry where it must
also be saved for restart purposes.

2.13.4 Interrupts

Interrupts are asynchronous events typically
triggered by peripheral devices needing
attention. Three kinds of interrupt are provided,
each with a separate input to the CPU. The
interrupts are:

2-13
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Nonmaskable interrupts (NMI). These interrupts
cannot be disabled and are usually reserved for
external events that require immediate attention.

Vectored interrupts (VI). These interrupts are
maskable interrupts; eight bits of the vector
output by the interrupting device are used to
select the address to which the CPU will transfer
to after status has been saved.

Nonvectored interrupts (NVI). These interrupts
are maskable interrupts; the vector output by the
interrupting device does not affect the address to
which the CPU transfers after status has been
saved.

2.13.5 Trap and Interrupt Service Procedures

Interrupts and traps are handled similarly by the

78000 CPUs. When the CPU begins to process an
interrupt or trap, it immediately enters its
system mode (segmented for 28001 and Z8003)
regardless of its mode at the time of the
interrupt or trap. The CPU remains in its System
mode until the new program status specified in the
PSA has been established. The program status
information in effect just prior to the interrupt
or trap acknowledgment is pushed onto the system
stack. An additional word, which serves as an
identifier for the interrupt or trap, is
also pushed onto the system stack, where it can be
accessed by the interrupt or trap handler. The
Program Status registers are loaded with new
status information obtained from the Program
Status Area of memory. Then control is
transferred to the service procedure, whose
address is now located in the Program Counter.
For details of interrupt and trap handling, refer
to Chapter 7.




Chapter 3
Address Spaces

-
3.1 INTRODUCTION

Programs and data may be located in the main
memory of the computer system or in peripheral
devices (that is, secondary memory). In either
case, the location of the information must be
specified by an address before that information
can be accessed. A set of these addresses is
called an address space.

The 78000 supports two different types of
address and thus two categories of address space:

e Memory addresses, which specify locations in
main memory.

o I/0 addresses, which specify the ports through
which peripheral devices are accessed.

The CPU generates addresses during four types of
operation:

Instruction fetches, described in Chapter 4.
Operand fetches and stores, described in
Chapter 5.
Exception processing, described in Chapter 7.

8 Refreshes, described in Chapter 8.

Timing  information addresses  is

described in Chapter 9.

concerning

3.2 ADDRESS SPACES, SUBCATEGORIES

Within the two general types of address space
(memory and 1/0), it is possible to distinguish

several subcategories. Figure 3-1 shows the
address spaces that are available on the 28000
CPUs.

The differences among the Z8000 CPUs lies not in
the number and type of address spaces, but rather
in the organization and maximum size of each
space. For the 78001 and 78003, the addressable
memory address space can be divided into 8M byte
spaces. Each 8M byte address space is, in turn,
divided into 128 64K byte segments. For the 28002
and 78004, each memory space is a homogeneous
collection of 64K byte addresses. In both types
of CPUs, the word I/0 address spaces contain 64K
port addresses and the byte I/0 address space
contains 64K port addresses. When an address is
used to access data, the address spaces can be
distingushed by the state of the status lines
STg-ST3 (which is determined by the way the
address was generated) and by the value of the
Normal/System line (N/S) (which is determined by
the state of the S/N bit in the FCW). The most
frequently used options for specifying address
spaces are:

e Instruction Space (status = 1100 or 1101),
Normal mode (N/S = 1) or System mode (N/S =
0). These spaces typically address memory that
contains user programs (Normal) or System
programs (System).

e Data Spaces (status = 1000 or 1010), Normal
mode (N/S = 1) or System mode (N/S = 0). These
spaces may be used to address the data on which
user or system programs operate.

MEMORY ADDRESS SPACES

110 ADDRESS SPACES

SYSTEM MODE | NORMAL MODE

SYSTEM MODE

INSTRUCTIONS | INSTRUCTIONS
DATA DATA
STACK STACK

STANDARD /0

SPECIAL /O

Figure 3-1. Address Spaces on the Z8000 CPUs
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e Standard 1/0 Space (status = 0010). This space
addresses all the I/0 ports that are used for
28000 peripherals.

e Special 1/0 space (status = 0011). This space
addresses ports in CPU support chips (such as
the 28010 Memory Managment Unit).

3.3 1/0 ADDRESS SPACE

All I/0 addresses are represented by 16-bit
words. FEach of the ports addressed is either
eight or 16 bits wide. Transfer to or from 16-bit
ports always involves word data and, for 8-bit
ports, byte data.

The address of a 16-bit port may be even or odd
for both address spaces.

3.4 MEMORY ADDRESS SPACES

Each memory address space in the nonsegmented
28000 CPUs, or each segment in each memory address
space of the segmented Z8000 CPUs, can be viewed
as addressing a string of 64K bytes numbered
consecutively in ascending order. The 8-bit byte
is the basic addressable element in Z8000 memory
address spaces. However, there are three other
addressable data elements:

e Bits, in either bytes or words
e 16-bit words
e 32-bit long words

15 14 13 12 11 10 9 8 7

3.4.1 Addressable Data Elements.

The nature of the data element being addressed
depends on the instruction being executed.
Different opcodes are used for addressing bytes,
words, and long words; only certain instructions
can address bits.

A bit can be addressed by specifying a byte or
word address and the number of the bit within the
byte (0-7) or word (0-15). Bits are numbered
right-to-left, from the 1least to the most
significant. This is consistent with the
convention that bit n corresponds to 2" in the
conventional representation of positive binary
numbers (see Figure 3-2).

The address of a data type longer than one byte
(word or long word) is the same as the address of
the byte with the lowest memory address within the
word or long word (Figure 7-2). This is the
leftmost, highest-order, or most significant byte
of the word or long word.

Word or long word addresses are always
even-numbered. Low bytes of words are stored at
odd-numbered memory locations and high bytes at
even-numbered locations. Byte addresses can be
either even- or odd-numbered.

Only three words in memory are reserved; they are

used for systems reset handling purposes (see
Chapter 7).

BITS IN ABYTE

5 4 3 2 1 0

HEEEEEEEEEEEEEEE

BITS IN A WORD

Address n
[ | BYTE
1 A 1 1 1 1 i
Address n (even) Address n + 1
I UPPER BYTE I LOWER BYTE J WORD
L L 1 A 1 rs 1 L I 1 1 A 1
Address n Address n + 1
r UPPER WORD/UPPER BYTE I I
1 i 1 L 1 L 1 L 1 l 1 1 L A
Address n + 2 Address n + 3 LONG WORD

l | Low
1 1 4 4 1 1 1 i

ER WORD/LOWER BYTE |
1 1

1 1 L

Figure 3-2. Addressable Data Elements
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3.4.2 Segmented and Nonsegmented Addresses

The 28002 and 78004 generate 16-bit addresses
which specify any location within a 64K byte
address space. The 28001 and 28003 generate
23-bit segmented addresses. A segmented address
consists of a 7-bit segment number, which
specifies one of 128 segments, and a 16-bit
offset, which specifies any one of up to 64K bytes
in the specified segment. Each segment is an
independent collection of bytes; thus,
instructions and multiple byte data elements
cannot cross segment boundaries unless explicit
instructions for that purpose are included in the
program. Examples of programs and data that cross
segment boundaries are presented in Chapter 10.
Some of the advantages of address segmentation are
outlined in Section 3.4.3.

Figure 3-3 shows the formats of segmented and
nonsegmented addresses. Nonsegmented addresses
are 16 bits long and thus can be stored in word
registers (Rn), or in memory as word-length
addressable elements. The 23-bit segmented
addresses are embedded in 32-bit long words and
thus can be stored in register pairs (RRn) or long
word memory elements.

When a segmented CPU (Z8001 or Z8003) is operating
in the nonsegmented mode (Chapter 4), it still
generates segmented addresses. The segment number
portion of these addresses is supplied by the
Segment Number portion of the Program Counter
which remains unchanged during the nonsegmented
mode of operation.

Non-Segmented Memory Address

ADDRESS
P

Segmented Memory Address

15 14 8 7 0
o|  SEGMENT # [o, 0 000 000
1 1 L 1 1 L 1 1 1 1 L 1 1
OFFSET
1 I 1 1 1 1 1 1 1 1
15 0

Figure 3-3. Segmented and Nonsegmented
Address Formats

3.4.3 Segmentation and Paging Memory
Management

Addresses manipulated by the programmer, used by
instructions, and output by a segmented Z8000 CPU

are called "logical addresses." An external
memory-management circuit can translate logical
addresses into physical (actual) memory addresses
and perform certain checks to ensure that data and
programs are properly accessed.

The 28010 MMU performs a logical-to-physical
address translation function for the segmented
addresses produced by the Z8001 and 28003 CPUs. A
single MMU holds 64 segment descriptors. Each
descriptor tells where the segment lies in
physical memory, how long the segment is, and what
kind of accesses can be made to the segment. The
MMU uses these descriptors to translate logical
segment numbers and offsets into 24-bit physical
addresses (as shown in Figure 3-4). During
translation, the MMU checks for errors such as an
attempt to write into a read-only segment or a
system segment being accessed by a nonsystem
program. 28010 MMUs are designed to be combined
so that more than 64 descriptors can be supported
in a system at any time.

The 28015 Paged Memory Management Unit (PMMU) is
designed to support a segmented paged virtual
memory for the Z8003 CPU. The PMMU, however, can
also be used to support the other 78000 CPUs.
Each PMMU can manage a memory area of 64
fixed-sized pages, with each page 2048 bytes in
length. Other page sizes can be implemented and
PMMUs can be combined to support more pages. The
PMMUs translate the logical addresses output by
the CPU into physical addresses. Each PMMU can
manage a physical memory address area of 64 pages
(128K bytes); PMMUs can be combined in groups of 8
to address any size of virtual memory. Each PMMU
contains a table of 64 page descriptors. The
information contained by a page descriptor enables
the PMMU to determine the following:

1) whether or not the page containing the
referenced, location is in main memory

2) the types of accesses permitted

3) whether or not the page had been previously
addressed by the executing program

4) whether or not the original contents of the
page had been changed

5) whether or not, the referenced area is to be
used for stack operations; if it is, the PMMU
should issue a write warning if fewer then 256
bytes remain in the page

If the referenced location (i.e. page) is not in
main memory, the PMMU translating the 1logical
address sends an instruction abort to the CPU.
The CPU then aborts the current instruction and
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Figure 3-4. Segmented Address Translation

saves program restart information. The PMMU also
sends a trap request to the CPU to initiate the
execution of a service routine which locates and
loads the desired page into main memory, and then
restarts the mainstream program at the point of
its abort interruption.

The 78000 CPU does not require the use of 28010 or
28015 MMUs; the segment number can be used
directly as part of a physical address. In this
type of application, memory is regarded as being
composed of 128, 64K byte banks with no need for
explicit bank switching.

Some of the benefits of the memory management
features provided by an MMU are:

e Provision for flexible and efficient allocation

of physical memory
execution of programs

resources during the

e Support for multiple, independently executing

programs that can share access to common code
and data

e Protection from unauthorized or unintentional

access to data or programs

e Detection of obviously incorrect use of memory

by an executing program

e Separation of user code from system code
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Segmentation in the Z8001 and Z8003 helps support
memory management in two ways:

e By allowing part of an address (the segment
number) to be output by the CPU early in a
memory transaction. This allows access to the
address descriptor in the MMU without adding to
the basic access time of the memory

e By providing a standard, variable-sized unit of
memory for the protection, sharing, and

movement of data

In addition, segmentation is a natural model for

the support of modular programs and data in a
multi-programming environment. It efficiently
supports re-entrant programs by providing data
relocation for different tasks using common code.

More information about the 28010 MMU and memory
management can be found in An_Introduction to the
28010 MMU Memory Management Unit (contained in
Zilog's Data Book, document #00-2034-02), and
the 78010 MMU Technical Manual (document
#00-2015-01) . Information about the 28015 PMMU
can be found in the 28015 PMMU Technical Manual
(document #03-8223-01).
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Chapter 4
CPU Operation

4.1 INTRODUCTION

This chapter gives a fundamental description of
the operating states of the Z8000 CPU and the
process of instruction execution. The details of
instruction execution are described in Chapters 5
and 6. Other detailed aspects of Z8000 operation
are given in Chapter 7 (Exceptions) and Chapter 8
(Refresh). Chapter 9 describes CPU operations as
they are manifested by the external pins of the
CPU.

4.2 OPERATING ‘STATES

The 78000 CPU has three operating states: Running
state, Stop/Refresh state, and Bus-Disconnect
state. Running state is the usual state of the
processor: the CPU is executing instructions or
handling exceptions. Stop/Refresh state is
entered when the STOP line is asserted or the
refresh counter indicates that a periodic refresh

BUSREQ RELEASED,
STOP INACTIVE

BUS-
DISCONNECT
STATE

should be performed. In this state, memory
refresh transactions, if enabled, are generated
continually (see Chapter 8). Bus-Disconnect state
is entered when the CPU acknowledges a bus request
and gives up control of the system bus. Figure
4-1 shows the three states and the conditions that
cause state transitions.

4.2.1 Running State

While the CPU is in Running state, it is either
executing instructions (as described in Section
4.,3) or handling exceptions (as described in
Chapter 7). The CPU is normally in Running state,
but will leave this state in response to one of
three conditions:

o The refresh mechanism indicates that a periodic
refesh needs to be performed, in which case the
CPU temporarily enters Stop/Refresh state.

STOP RELEASED, OR
PERIODIC REFRESH
COMPLETED

STOP ASSERTED, OR
PERIODIC REFRESH
REQUESTED

BUSREQ RELEASED,

STOP ACTIVE
BUSREQ ASSERTED,
AND ACKNOWLEDGED ON
BUSACK
Figure 4-1. Operating States and Transitions
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e An external bus request pushes the CPU into
Bus~Disconnect state.

e An external stop request pushes the CPU into
Stopped state.

4.2.2 Stop/Refresh State

While the CPU is in Stop/Refresh state, it
generates a continuous stream of refresh cycles
(as discussed in Chapter 8) and does not perform
any other functions. This state provides for the
generation of memory refreshes by the CPU and
allows external devices to suspend CPU operation.
This feature can be used to force single-step
operation of the processor or to synchronize the
CPU with an Extended Processing Unit (as described
in Section 4.4).

The CPU enters Stop/Refresh state when the refresh
mechanism needs to do a refresh or when the STOP
line is activated. It leaves Stop/Refresh state
when neither of these conditions holds or when a
bus request causes the CPU to enter Bus-Disconnect
state.

4.2.3 Bus-Disconnect State

A CPU enters a Bus-Disconnect state from either a
Running state or a Stop/Refresh state when a bus
request has been received on BUSREQ and is
acknowledged on BUSACK (as described in Chapter
9). While in this state, it disconnects itself
from the bus by 3-stating its output. It will
leave Bus-Disconnect state when the external bus
request has been received. The Bus-Disconnect
state is highest in priority in that the presence
of a bus request will force the CPU into this

state, regardless of any other conditions
indicating that a different state should be
entered.

4.2.4 Effect of Reset

Activation of the CPU's RESET line puts the CPU
into a nonoperational state within five clock
cycles, regardless of its previous state or the
states of its other inputs. The CPU will remain
in this state until RESET is deactivated. When
RESET is deactivated, the processor enters the
running state for at least one machine cycle.
Reset is more fully described in Chapters 7 and 9.

4.3 INSTRUCTION EXECUTION

While the CPU is in Running state and executing
instructions, it is controlled by the Program
Status registers (Figure 4-2). The Program
Counter gives the address from which instructions
are fetched, and the flags control branching (as
described in Chapter 6). The control bits
determine the CPU operating states (see section
4-2) and interrupt masking.

Instruction execution consists of the repeated
application of two steps:

e Fetch one or more words comprising a single
instruction from the program memory address
space at the address specified by the Program
Counter (PC).

e Perform the operation specified by the
instruction and update the Program Counter and
flags in the Program Status registers.

The operation performed by an instruction and the
way the flags are wupdated depends on the
particular instruction being executed. The
instruction set is described in Chapter 6. For
most instructions, the PC value is updated to
point to the word immediately following the last
word of the instruction. The effect of this is
that instructions are fetched sequentially from
memory. Exceptions to this are the Branch, Call,
Interrupt Return, Load Program Status, System
Call, Halt, Decrement And Jump If Non-Zero, and
Return instructions, which cause the PC to be set
to a value generated by the instruction. This
causes a transfer of control with execution
continuing at the new address in PC. The exact
operation of these instructions is described in
Chapter 6.

The 78000 CPU is able to overlap the fetching of
one instruction with the operations of the
previous instruction. This facility, called
Instruction Look-Ahead, is illustrated in Figure
4-3. This shows the execution of a series of
memory~to-register instructions, such as a value
in memory being added to the value in a
general-purpose  register. Part of each
instruction is fetched while the previous
instruction execution is being completed. This
mechanism provides faster execution speed than
fetching each instruction only after the prior
instruction has completed execution.
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15 0
UPPER POINTER
0 0 0 0 0 0 0 0
| | | | | | | | | | | |

28002 and Z8004 Program Status Area Pointer

Figure 4-2. Program Status Registers
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l INSTRUCTION AND DATA FETCH EXECUTION l

INSTRUCTION AND DATA FETCH

execution |

INSTRUCTION AND DATA FETCH I EXECUTION ]

Figure 4-3. Instruction Look-Ahead

After executing an instruction and in some cases
(explained in Chapters 6 and 7) during an
instruction's execution, the CPU checks to see if
there are any traps or interrupts pending and not
masked. If so, it temporarily suspends
instruction execution and begins a standard
exception-handling sequence. This sequence, which
is described fully in Chapter 7, causes the value
of the Program Status registers to be saved and a
new value loaded. Instruction execution then
continues with a new PC value and Flag and Control
Word value. The effect is to switch the execution
of the CPU from one program to another.

4.3.1 Running-State Mode

While the CPU is executing instructions, its mode
is controlled by two control bits in the FCW: the
System/Normal bit (S/N) and the Segmentation Mode
bit (SEG).

4.3.2 Segmented and Nonsegmented
Modes

The segmentation mode of the CPU (segmented or
nonsegmented) determines the size and format of
addresses that are manipulated by programs. In
segmented mode (SEG = 1), programs use 23-bit
segmented addresses; in nonsegmented mode (SEG =
0), programs use 16-bit nonsegmented addresses.
There are also the following differences in the
address portions of instructions, which are due to
the difference in address size:

32-bit
16-bit

e Indirect and Base Registers are
registers in segmented mode and
registers in nonsegmented mode.

® Addresses embedded in instructions are always
16-bit in nonsegmented mode. In segmented mode
addresses consist of either one 16-bit word

(7-bit segment number and an 8-bit offset) or
two 16-bit words (7-bit segment number and a
16-bit offset).

Both the segmented and the nonsegmented modes are
available on the 28001 and Z8003. Only the
nonsegmented mode is available on the Z8002 and
78004, Since both addressing modes are supported
on the 78001 and Z8003, these CPUs can execute,
without alteration, programs prepared for the
78002 and 28004. The reverse is not possible.

The 28001 and ZB8003 CPUs always generate segmented
addresses, even when operating in nonsegmented
mode . When a memory access is made in
nonsegmented mode, the offset of the segmented
address is the 16-bit address generated by the
program, and the segment number is the value of
the segment number field of the Program Counter.

4.3.3 Normal and System Modes

The operating mode of the CPU (System mode or
Normal mode) determines which instructions can be
executed and which Stack Pointer register is used.

In System mode (S/N = 1), all instructions can be
executed. While in Normal mode, privileged
instructions (such as I/0 operations or changes to
control registers) cannot be executed.

The second distinction between System and Normal
mode is access to the system or normal Stack
Pointer. As shown in Figure 4.4, there are two
Stack Pointer registers (R14 and R15 in the Z8002
and 28004, and RR14 in the Z8001 and Z8003): one
for Normal mode and one for System mode. When in
Normal mode, a reference by an instruction to the
Stack Pointer register will access the Normal mode
Stack Pointer. When in System mode, an access to
the Stack Pointer register will normally reference
the System mode Stack Pointer. If, however, the

4-4
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Ro |7 RHO 0i7 ALO 0]
RRO -
R1 |15 RH1 i AL1 o
: RQO
Rz RH2 : RL2 |
RR2
R3[| RH3 1 RL3 |
¥
Ra | RH4 i RL4 |
RR4 n
Rs | RHS ‘ RLS |
: RQ4
re [ RHE : RL6 |
RR6 :
R | RH? ! AL7 ]
RAL
S s o] PURPOSE
REGISTERS
Ro | ] ¢
RQ8
Rio [ |
RR10
Rt [ ]
Ri2 | ]
RR12
R13 | |
R14’ SYSTEM STACK POINTER (SEG. NO.) RQ12
R14 [ NORMAL STACK POINTER (SEG. NO.)
RR14 E—— -
R1§" | SYSTEM STACK POINTER (OFFSET)
A1s | NORMAL STACK POINTER (OFFSET)

Figure 4-4. General Purpose Registers

CPU is either a 28001 or 28003 which is operating
in a nonsegmented system mode, a reference to R14
will access the Normal mode Stack Pointer register
R14 (see Table 4.1).

In Normal mode, the system Stack Pointer is not
accessible; in System mode, the normal Stack

Pointer is accessed by using a special Load
Control Register instruction (described in Chapter
6).

The CPU switches modes whenever the Program Status
Control bits change. This can happen when a
privileged Load Control Register instruction is

Table 4-1. Registers Accessed by Reference to R14 and R15

Register System Mode Normal Mode
Referenced by
Instruction Segmented Nonsegmented Segmented Nonsegmented
R14 System R14 Normal R14 Normal R14 Normal R14
R15 System R15 System R15 Normal R15 Normal R15
RR14 System R14 Normal R14 Normal R14 Normal R14

System R15 System R15

Normal R15 Normal R15

NOTE: 78002 and 78004 always run in nonsegmented mode.

2045-002
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executed, or when an exception (interrupt, trap,
or reset) occurs., The System Call instruction is
used to generate a special trap that provides a
controlled transition from Normal mode to System
mode.

The distinction between Normal and System modes
permits the operating system to run in System mode
and control the system's resources, including the
management of one or more application programs
which run in Normal mode. Separate Normal and
System modes, and memory protection, provide the
basis for protecting an operating system from the
malfunctions of application programs.

4.4 EXTENDED INSTRUCTIONS

The 28000 CPU supports seven types of extended
instructions, which can be executed cooperatively
by the CPU and an external Extended Processing
Unit (EPU). The execution of these instructions
is controlled by the EPA control bit in the FCW.

The EPA bit specifies whether or not an EPU is in
the system. When the EPA bit is zero, no EPU is

in the system. The CPU will then trap when it
encounters an extended instruction (as explained
in Chapter 7). This allows the operation of the
extended instruction to be simulated by software
running on the CPU.

If the EPA bit is set, an EPU is in the system.
The CPU will fetch the extended instruction and
perform any address calculation required by that
instruction. If the instruction specifies the
transfer of data, the CPU will generate the timing
signals for this transfer and will carry out its
portion of the transfer. The CPU will then fetch
and begin executing the next instruction in its
instruction stream. The EPU is expected to
monitor the CPU's activity, participate in
extended instruction data transfers initiated by
the CPU, and execute extended instructions. While
the EPU is executing an instruction, the CPU can
be fetching and executing further instructions.
If the CPU fetches another extended instruction
before the EPU is finished executing an
instruction, the STOP line is used by the EPU to
delay the CPU until the previous instruction is
complete. This process is described more fully in
Chapters 6 and 9.

>
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5.1 INTRODUCTION

This chapter describes the eight addressing modes
used by instructions to access data in memory or
CPU registers. Examples for the nonsegmented and
segmented modes of operation are given at the end
of the chapter.

An instruction is a consecutive list of one or
more words aligned at even-numbered byte addresses
in memory. Most instructions have operands in
addition to an operation code (opcode). These
operands can reside in CPU registers or memory
locations. The modes by which references are made
to operands are called "addressing modes." Figure
5-1 illustrates these modes. Not all instructions
can use all addressing modes; some instructions
can use only a few, and some instructions use none
at all. In Figure 5.1, the term "operand" refers
to the data to be operated upon.

5.2 USE OF CPU REGISTERS

The 16 general-purpose CPU registers can, with the
exceptions noted below, be used in any of the
following ways:

e As accumulators, where the data to be
manipulated resides in the registers.

o As pointers, where the value in the register is
the memory address of the operand, rather than
the operand itself. In string and stack
instructions, the pointers can be automatically
stepped either forward or backward through
memory locations.

e As index or base register, where the contents
of the register and the word(s) following the
instruction are combined to produce the address
of the operand.

There are two exceptions to the above uses of
general-purpose registers:

Chapter 5
Addressing Modes

e Register RO (or the double register RRO in
segmented mode) cannot be used as an indirect
register, base register, index register, or
software stack pointer.

e The System Mode stack register (R15 in the
28002 or 28004 or the double register RR14 in
the 78001 or Z8003) is used in acknowledging
interrupts and therefore it cannot, in general,
be used as an accumulator in System-mode
operation.

In addition to the general-purpose use of Z8000
registers, the following registers are used for
special purposes:

o Register R15 in nonsegmented operation or the
double register RR14 in segmented operation is
used as a stack pointer for subroutine calls
and returns.

e The byte register RH1 is used in the translate
instructions (TRDB, TRDRB, TRIB, TRIRB) and the
translate and test instructions (TRTDB, TRTDRB,
TRTIB, TRTIRB).

e Register RO is used in extended instructions.

In the Relative Address (RA) mode, the program
counter (PC) is used instead of a general-purpose
CPU register to supply the base address for an
effective address calculation.

The PC is normally used to keep track of the next
instruction to be executed; whenever  an
instruction is fetched from memory, the PC is
immediately incremented to point to the next
instruction. This updated PC value is used in
relative addressing as the base address for the
effective address calculation. Operands specified
by relative addressing reside in the program
address space. That is, memory access bus
transactions resulting from relative addressing
operations are accompanied by status output
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Addressing Mode Operand Addressing Operand Value
In the Instruction In a Register In Memory
R
. The content of the
Register | recisten aporess |—=| openrano | register
IM
Immediate In the instruction
*IR
: The of the locati
Indirect -1 i
N REGISTER |—>I A OPERAND whose address is in the
Register r d : register
DA
The content of the location
Direct | ADDRESS = I OPERAND I whose address is in the
Address instruction
*X
The content of the loca-
Ind REGISTER ADDRESS ——l INDEX ]____?\ tion whose address is the
ndex address in the instruction
+ OPERAND
o= 7 : plus the content of the
working register.
RA The content of the location
C VALUE whose address is the
Relative tent of the program
Address M} O [M' counter, offset by the
displacement in the
instruction
*
BA The content of the location
Base REGISTER ADDRESS —»lsAs& ADDRESS |—2 whose address is the
DISPLACEMENT P address in the register,
Address v offset by the displacement
in the instruction
*
BX The content of the loca-
Base REGISTER ADDRESS }—»] BASE ADDRESS tion whose address is
Index REGISTER ADDRESS }—»-1 INDEX (+) the address in a register

plus the index value in
another register.

*Do not use RO or RRO as indirect, index, or base registers.

Figure 5-1.

Addressing Modes
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(ST3-STn) 1100 which encodes "instruction space
3720
access".

5.3 SHORT ENCODING OF SEGMENTED ADDRESSES IN
INSTRUCTIONS

Two of the addressing modes, Direct and Index,
require a memory address as part of the
instruction. Segmented addresses generated by the
Z8001 and ZB003 are 23 bits long. Within an
instruction, a segmented address is represented in
either two words (16-bit long offset) or one word
(8-bit short offset).

As Figure 5-2 illustrates, bit 7 of the segment
number byte distinguishes between the two
formats. When this bit is set, the long-offset
representation is implied. When the bit is
cleared, the short-offset address representation
is implied. For a short-offset address, the
23-bit segmented address is reduced to 16 bits by
omitting the eight most significant bits of the
offset, which are assumed to be zero.

15 8 7 0
[ 1 [ segment number - : .
— . ' 1 L 1

15 ]

L. .

long offset
L L L

8 7 0
short offset l
L

1 1 1 1 1 1 A

15
[o [ segment number
L 1 L L L

Figure 5-2. Segmented Memory Address
Within Instruction

NOTE: Shaded area is reserved.
5.4 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the
addressing modes of the Z8000 CPUs. Each descrip-
tion:

e Explains how the operand address is calculated

e Indicates in which address space (Register, 1/0
Special 1/0, Data memory, or Program memory)
the operand is located

e Shows the assembly language format used to
specify the addressing mode

e Works through an example

The descriptions are grouped into two sections--
one for nonsegmented programs, the other for
segmented programs.

5.5 DESCRIPTIONS AND EXAMPLES

The nonsegmented mode is described in this
section. The information presented applies to the
28002, 28004, and to the Z8001 and Z8003 when
operated in a nonsegmented mode.

5.5.1 Register (R)

In the Register Addressing mode the instruction
operand is located in a specified general-purpose
CPU register. Storing data in a register allows
shorter instructions and faster execution than
accessing memory.

INSTRUCTION REGISTER
| operarion | reaister |1 operano |

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in a general-purpose CPU
register. The register length (byte, word,
register pair, or register quadruple) is implied
by the instruction opcode.

Assembler language format:

RHn,RLn Byte register
Rn  Word register
RRn  Double-word register
RQn Quadruple-word register

Example of R mode:

LD R2,R3 'Load the contents of

R3 into R2!

After Execution

9A20
9A20

Before Execution

R2 | A6B8 R2
R3 |9A20 R3

2010-013, 014
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5.5.2 Immediate (IM)

The Immediate addressing mode does not indicate a
register or memory address as the source operand.
The data processed by the instruction is in the

instruction. IM addressing can only be used to
address source operands, never destination
operands.

INSTRUCTION

OPERATION

WORD(S) | OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers. The 28000 is
optimized for this function, providing several
short immediate instructions to reduce the length
of programs.

Assesbler language format (see also Chapter 6):

fidata
Example of IM mode:

LDB RH2,#%55 'Load hex 55 into RH2!

Before Execution

R2 |6789

After Execution

R2 [5589)

5.5.3 Indirect Register (IR)

In the Indirect Register Addressing mode, the
register holds the address of the operand.

1/0 OR
INSTRUCTION REGISTER MEMORY

| operamion | ReaisteR H ADDRESS H operano |

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

A single word register is used to hold the
address. Any general-purpose word register,
except RO, can be used.

Depending on the instruction, the operand
specified by IR mode will be located in Standard

I/0 address space (Standard I/0 instructions),
Special I/0 address space (Special I/0 instruc-
tions), or data memory address space, or stack
memory address space. For non-I/0 references, the
status lines will indicate stack reference if the
stack pointer (R15) is used as the indirect
register; otherwise, the status lines will
indicate data memory reference.

The Indirect Register mode may save space and
reduce execution time when consecutive locations
are referenced. This mode can also be used to
simulate more complex addressing modes, since
addresses can be computed before the data is
accessed.

Assembler language format (see also Chapter 6):
@Rn

Example of IR mode:
tLoad R2 with the

data addressed by the
contents of R5!

LD R2,@R5

Before Execution Memory

R2 [030F :
R3 [0005 170A [Z023
R4 [2000 170C [OBOE
R5 [ 170C 170E [10D0

After Execution

R2 | OBOE
R3 | 0005
R4 [ 2000
RS | 170C

5.5.4 Direct (DA)

In the Direct addressing mode, the address of the
operand is in the instruction.

INSTRUCTION
/0 OR
OPERATION MEMORY

ADDRESS —DI OPERAND1

WORD

THE OPERAND VALUE IS IN THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

5-4
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Depending upon the instruction, the operand
specified by DA mode will be in Standard I/0 space
(Standard I/0 instructions), in Special 1/0 space
(Special I/0 instructions), or in data memory
space.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed in program memory.
(Actually, the address serves as an immediate
value that is loaded into the Program Counter.)

Assembler language format (see also Chapter 6):

address either memory, I/0, or

Special 1/0

Example of DA mode:

LDB RH2,%5C23 'load RH2 with the
data in location
SE23!

Before Execution Memory
R2 |6789 .
5E22 | 0106
5E24 | 0304

After Execution

ra [069]

5.5.5 Index (X)

In the Index addressing mode, the operand address
is computed by adding the address specified in the
instruction to the contents of a word register,
(called "the index register") which is also
specified by the instruction. Indexed addressing
allows random access to tables or other data
structures when the address of the base of the
table is known, but the index for a particular
element must be computed by the program.

INSTRUCTION

Any word register except RO can be used as the
index register.

Operands specified by X mode are always in data
memory address space, except when Index Addressing
is used with the Jump and Call instructions. In
these cases, the destination, computed by adding
the index register contents to the base address,
is in program memory space.

REGISTER

OPERATIONI REGISTER —->I

INDEX J———v

MEMORY

ADDRESS

>+ OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

Assembler language format (see also
Chapter 6):

address(Rn)
Example of X mode:
LD R4,%231A(R3) !'load into R4 the con-
tents of the memory
location whose

address is 231A +
the value in R3!

Before Execution Memory
R3 [OIFE :
R4 |203A 2516 | F3C2
2518 | 3DOE
251A |7ADA

Address Calculation
231A

+01FE
2518

After Execution

R3 |0OIFE
R4 |3DOE

5.5.6 Relative Address (RA)

In the Relative Address mode the operand is found
at an address relative to the address of the
current instruction. The instruction specifies a

2010-018
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two's complement displacement which is added to
the 16-bit address in the Program Counter to form
the target address. The Program Counter setting
used is the address of the first instruction
following the currently executing instruction.

An operand specified by RA mode is always in the
program memory address space.

Relative addressing is used with the Jr,
CALR, LDR and LDAR instructions.

DINZ,

MEMORY

INSTRUCTION pC
operaTioN  |—>|  AooREss
DISPLACEMENT

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE

INSTRUCTION.

Assesmbler language format
(see also Chapter 6):

address
Example of RA mode:

(Note that the symbol "$" is used for the value of
the current program counter.)

LDR R2,$+%6 !Load into R2 the con-
tents of the memory
location whose

address is the address
of the given instruction
+ hex 6!

Because the program counter is advanced to point
to the next ingstruction before the address

calculation is performed, the constant that occurs
in the instruction is +2.

Before Execution Program Memory

R2 |AQFO :

PC | 0202 0202 {3102 Instruchon
0204 [0002 °
0206 |E801
0208 |FFFE

Address Calculation )

0206

+ 2

0208

After Execution

R2 |FFFE

PC | 0206

5.5.7 Base Address (BA)

The Base Address mode is similar to the Index mode
in that a base and an offset are combined to
produce the effective address. In Base
Addressing, however, a register contains the base
address, and the displacement is expressed as a
16-bit value in the instruction. The two are
added and the result is the address of the
operand. This addressing mode can only be
used with the Load and Load Address instructions.
The Base Address mode allows random access to

tables or other data structures for which the
displacement of an element within the structure is
known, but the base address of the particular
structure must be computed by the program.

Any word register except RO can be used for the
base address

The status lines will indicate a stack reference
if the base register is the stack pointer (R15)
and will indicate data reference otherwise.

INSTRUCTION

REGISTER

OPERATION l REGISTER

DISPLACEMENT

ATA MEMORY
OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

5-6
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Assembler language format (see also
Chapter 6).

Rn(#disp)
Example of BA mode:

LDL RS(#%18),RR2 !load the long word
in RR2 into the
memory location
whose address is
the value in RS +

hex 18!
Before Execution Memory
RR2 R2 [0A00 :
R3 | 1500 20C0 |0ABE
R4 | 3100 20C2 | F50D
R5 [20AA 20C4 |BADE
20C6 |BOD1
Address Calculation
20AA
+ 18
“20C2
After Execution Memory
RR2 R2 [0A00 :
R3 | 1500 20C0 |0ABE
R4 |3100 20C2 |0A00
R5 |20AA 20C4 |1500
20C6 |BOD1

5.5.8 Base Index (BX)

The Base Index addressing mode is an extension of
the Base Addressing mode and can be used only with
the Load and Load Address instructions. In this
case, both the base address and the index
(displacement) are held in registers. This mode

allows access to memory locations whose addresses
are computed at runtime and are not fully known at
assembly time.

Any word register except RO can be used for either
the base address or the index.

The status lines will indicate a stack access if
the base register is the stack pointer (R15),
otherwise, they will indicate data access.

Assesbler language format
(see also Chapter 6)

Rn(Rm)
Example of BX mode:

LD R2,R5(R3) !load into R2 the
value whose address
is the value in base
register RS + the
value in index
register R3!

Before Execution Data Memory
R2 [1F3A :
R3 |FFFE 14FE | 0101
R4 |0300 1500 |BODE
R5 [ 1502 1502 [F732

Address Calculation )

1502
+FFFE
1500

After Execution

INSTRUCTION

l OPERATION | REGISTER 1 | REGISTER 2 '-—->I

R2 | B015
R3 [FFFE
R4 |0300
R5 |1502
REGISTER
ADDRESS DATA MEMORY

REGISTER OPERAND

DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF REGISTER 2 OFFSET BY THE

DISPLACEMENT IN REGISTER 1.
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5.6 DESCRIPTIONS AND EXAMPLES (SEGMENTED Z8001 AND
28003)

In this section, the notation <<nn>> is used to
refer to segment number nn.

5.6.1 Register (R)

In the Register Addressing mode, the operand is
taken from a specified general-purpose CPU
register. Storing data in a register allows
shorter instructions and faster execution than
accessing memory.

INSTRUCTION REGISTER

bPERATIONTREGISTER l——bl OPERAND l

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in a general-purpose CPU
register. The register length (byte, word,
register pair, or register quadruple) is specified
by the instruction opcode.

Assembler Language Formats (see also Chapter 6):

RHn, RLn Byte register
Rn Word register
RRn Double-word register
RQn Quadruple-word register

Example of R mode:

LDL RR2,RR4 'Load the contents

of RR4 into RR2!

Before Execution

RR2 R2 |[A6B8
R3 |9A20
RR4 R4 |38A6
R5 |745E
After Execution
RR2 R2 |38A6
R3 | 745E
RR4 R4 |38A6
R5 |745E

5.6.2 Immediate (IM):

The Immediate Addressing mode does not indicate a
register or memory address as the location of the
source operand. The data processed by the
instruction is in the instruction.

INSTRUCTION
OPERATION

WORD(S) | OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers. The Z8000 is
optimized for this function, providing several
short immediate instructions to reduce the length
of programs.

Assembler language format (see also Chapter 6):
#data
Example of IM mode:

LDB RH2, #%55 !load hex 55 into RH2!

Before Execution

w2 [579]

After Execution

R2 [5589]

5.6.3 Indirect Register (IR)

In the Indirect Register Addressing mode, the
addressed register holds the address of the data.

110 OR
INSTRUCTION REGISTER MEMORY

IOPERATION I neelsrsn—l—>l ADDRESS ]-»[ OPERAND ]

THE OPERAND VALUE IS IN THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending upon the instruction, the operand
specified by IR mode will be located in either I/0
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address space (I/0 instructions), Special 1I/0
address space (Special I/0 instructions), or data
or stack memory address spaces. For non-1/0
references, the status lines will indicate a stack
access if the stack pointer (RR14) is used as the
indirect register, otherwise they will indicate
data reference.

A 16-bit register is used to hold an I/0 or
Special I/0 address; a register pair is used to
hold a memory address. Any general-purpose
register, or register pair, except RO or RRO can
be used.

The Indirect Register mode may save space and
reduce execution time when consective locations
are referenced. This mode can also be used to
simulate more complex addressing modes, since
addresses can be computed before the data is
accessed.

Assembler language formats (see also Chapter 6):

@Rn Contains 1/0 or
Special 1/0 address

@RRn Contains memory
address

Example of memory access using IR mode:

LD R2, @RR4 !load into R2 the
value in the memory
location addressed
by the contents of

RR4!
Before Execution Memory
RR2 R2 [030F :
R3 [0005 170A* | A023
RR4 R4 |2000 170C |0BOE
R5 |170C 170E |10D3
After Execution * Segment Number 20
RR2 R2 |0BOE
R3 | 0005
RR4 R4 [2000
R5 | 170C

Example of I/0 using IR mode:

0OUTB @R1,RLO

Before Execution

RO | 0A23
R1| 0011

Execution sends the
data “'23" to the I/O
device addressed by
“0011.”

5.6.4 Direct Address (DA)

In the Direct Address mode, the operand address is
specified in the instruction.

INSTRUCTION
OPERATION

110 OR
MEMORY

WORD
ADDRESS —>[ OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending upon the instruction, the operand
specified by DA mode will be either in Standard
I1/0 address space (Standard I1/0 instructions),
Special I/0  address space (Special 1/0
instructions), or in data memory space. I/0 and
Special I/0 addresses are one word long; memory
addresses can be either one or two words long,
depending on whether the long or short format is
used.

This mode is also wused by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
addresss serves as an immediate value that is
loaded into the Program Counter.)

Assembler language format (see also Chapter 6):

Either memory, 1/0, or Special 1/0,
where double angle brackets

""" and ">>" enclose the segment
number, and vertical line
delimiters "|" and "|" enclose
short-form memory addresses.

address

Example of DA mode:

LDB RHZ, |<<15>>%23| 1load RH2 with the
value in memory

segment 15, dis-
placement 23 (hex)!

2010-017



Addressing Modes

Before Execution Memory

R2 [6789 :
<< 15>> 0022 {0206
0024 [0304

After Execution

R [o9]

5.6.5 Index (X).

In the Index Addressing mode, the address of the
operand is computed by adding the contents of a
word register (called the "index register")
specified in the instruction to the address
specified in the instruction.

The offset of the operand address is computed by
adding the 16-bit index value to the offset
portion of the segmented address specified in the
instruction. The segment number of the operand
address comes directly from the instruction. The
segment number is wunaffected by the offset
computation; any overflow in the computation is
ignored resulting in "wraparound". Indexed

Operands specified by X mode are always in the
data memory address space.

Assembler language format:
Address(Rn)

Example of X mode:

LD R4, <<5>>%231A(R3) !load into R4 the
contents of the
memory location
whose address is
segment 5,
displacement

231A + the
value in R3!

Before Execution Memory

R3 | OlFE :

R4 | 203A <<5>> 2516 | F3C2
2518 | 3DOE

281A| 7ADA

Address Calculation

addressing allows random access to tables or other << 5>> %231A
complex data structures where the address of the + 01FE
base of the table is known, but the particular
element index must be computed by the program.

P y the prog <<5>> %2518
Any word register can be used as the index re- After Execution
gister except RO. The address in the instruction r3 [OIFE
can be one or two words, depending on whether a
long or short offset is used in the address. R4 | 3DOE

INSTRUCTION REGISTER
OPERATION | REGISTER —-—»I INDEX ]_———V MEMORY

WORD(S) ADDRESS

+ OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

5-10
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5.6.6 Relative Address (RA)

In the Relative Address mode, the data processed
is found at an address relative to the current
ingtruction. The instruction specifies a two's
complement displacement which is combined with the
offset field of the Program Counter to form the
target address. The Program Counter setting used
is the address of the instruction following the
currently executing instruction. (The assembler
will take this into account in calculating the
constant that is assembled into the instruction.)

An operand specified by RA mode is always in the
program memory address space.

Assembler language format (see also Chapter 6):
Address
Example of RA mode:

LDR R2, $+6 !load into R2 the con-
tents of the memory
location whose
address is the
current program
counter + 6!

INSTRUCTION PC

Because the program counter will be advanced to
point to the next instruction before the address
calculation is performed, the constant that occurs
in the instruction is + 2.

Before Execution Memory

<< 13>> 0202 | 3102
Instruction
0204 {0002
PC | 0D00Q 0206 {E801
0202 0208 |FFFE
Address Calculation )

<< 13>>0206
+ 2
<< 13>>0208

After Execution

re [FF7E]

PC | 0D00
0206

OPERATION

MEMORY

DISPLACEMENT

—'FI ADDRESS ~I-—?
\4'/ = OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE

INSTRUCTION.

5.6.7 Base Address (BA)

The Base address mode is similar to the Index
mode in that a base and displacement are combined
to produce the effective address. In Base
addressing, a register pair contains the 23-bit
segmented base address and the displacement is
expressed as a 16-bit value in the instruction.
The displacement is added to the offset of the

base address, to obtain the operand address. (The
segment number is not changed.) This addressing
mode can only be used with the Load instructions.
Base Addressing allows random access to records or
other data structures where the displacement of an
element within the structure is known, but the
base of the structure must be computed by the
program.

INSTRUCTION REGISTER
OPERATION —»I ADDRESS |—' MEMORY
DISPLACEMENT (+) i I
(+) OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS THE ADDRESS IN THE REGISTER, OFFSET BY THE DISPLACEMENT IN THE

INSTRUCTION.

2010-021, 020
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Any double-word register except RRO can be used
for the base address. The Base Address mode
allows access to locations whose segment numbers
are not known at assembly time.

The status lines will indicate a stack access if
the base register is the stack pointer (RR14) and
will indicate a memory access otherwise.

If the segment number is known when the program is
assembled (or loaded if the loader can resolve
symbolic segment numbers), the Index Address mode
may be used to simulate the Base Address mode.
For example, if R2 is known to hold segment number
18, then the operand specified using the base
address RR2 (#93) can also be referenced by the
indexed address <<18>>%93(R3). The advantage of
this simulation is that the Index mode is
supported for most operations, whereas the Base
mode is restricted to LOAD and LOAD ADDRESS.

Assesbler language format (see also Chapter 6):

RRn(#disp) Add the immediate value to
the contents of RRn; the
result is the address of

the operand.

Example of BA mode:

LDL RR4(#%18), RR2 !load the long word
in RR2 into the
memory location
whose address is
the value of RR&

+ hex 18!
Before Execution Data Memory
RR2 R2 [0A00 :
R3 | 1500 <<31>> 20C0 |0ABE
RR4 R4 | 2500 20C2 |F50D
R5 | 20AA 20C4 | BADE
20C6 |BOD1
Address Calculation
<< 13>>1502
+ FFEE
<<13>>1500
After Execution Data Memory
RR2 R2 [0A00 :
R3 | 1500 <<31>> 20C0 |OABE
RR4 R4 | 2500 20C2 |0A00
R5 | 20AA 20C4 | 1500
20C6 | BOD1

5.6.8 Base Index (BX)

The Base Index addressing mode is an extension of
the Base Addressing mode and can be used only with
the Load and Load Address instructions. In this
case, both the base address and index are held in
registers. The index value is added to the offset
of the base address to produce the offset of the
operand address. The segment number of the
operand address is the same as that of the base
address. This mode allows access to memory
locations whose addresses are computed at runtime
and are not fully known at assembly time.

INSTRUCTION

Any register pair can be used for the base address
except RRO. Any word register except RO can be
used for the index. Note that the Short Offset
format for base addresses is not available in
registers.

The status lines will indicate a stack access if
the base register is the stack pointer (RR14) and
will indicate a data access otherwise.

Assembler language format (see also Chapter 6):

RRn(Rn)

REGISTER

| operation | ReaisteR 1 | RecisTeR 2]——»[ ADDRESS

DATA MEMORY

REGISTER
DISPLACEMENT

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF REGISTER 2OFFSET BY THE

DISPLACEMENT IN REGISTER 1.

5-12
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Example of BX mode: Address Calculation
<<13>>1502
LD R2, RR4(R3) !'load into R2 the value + FFEE
whose address is the <<13>>1500
contents of RR4 + After Execution Data Memory
the contents of R3! RR2 R2 [BODE E
R3 |FFFE << 13>> 14FE | 0101
Before Execution Data Memory RR4 R4 [0DO00 1500 | BODE
RR2 R2 [3535 R5 {1502 1502 |F732
R3 | FFFE <<13>> 14FE | 0101 :
RR4 R4 | 0D0OO 1500 | BODE
R5 | 1502 1502 |F732
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Chapter 6
Instruction Set

6.1 INTRODUCTION

This chapter describes the instruction set of the
28000 CPUs. An overview of the instruction set is
presented first, in which the instructions are
divided into ten functional groups. The instruc-
tions in each group are listed, followed by a
summary description of the instructions. Signifi-
cant characteristics shared by the instructions in
the group, such as the available addressing modes,
flags affected, or interruptibility, are des-
cribed. Noteworthy instructions or features are
mentioned.

Following the functional summary of the instruc-
tion set, flags and condition codes are discussed
in relation to the instruction set. This is
followed by a section discussing interruptibility
of instructions and a description of traps. The
last part of this chapter consists of a detailed
description of each 78000 instruction, listed in
alphabetical order by mnemonic. This section is
intended to be used as a reference by 28000
programmers. The entry for each instruction
includes a description of the instruction,
addressing modes, assembly language mnemonics,
instruction formats, execution times and simple
examples illustrating the use of the instruction.

6.2 FUNCTIONAL SUMMARY

This section presents an overview of the 28000
instructions. For this purpose, the instructions
can be divided into ten functional groups:

Load and Exchange

Arithmetic

Logical

Program Control

Bit Manipulation

Rotate and Shift

Block Transfer and String Manipulation
Input/Output

CPU Control

o Extended Instructions

6.2.1 Load and Exchange Instructions

Name of
Instruction Operand(s) Instruction
CLR dst Clear
CLRB
EX dst,src Exchange
EXB
LD dst,src Load
LDB
LDL
LDA dst,src Load Address
LDAR dst,src Load Address Relative
LDK dst,src Load Constant
LDM dst,src,num Load Multiple
LDR dst,src Load Relative
LDRB
LDRL
popP dst,src Pop
POPL
PUSH dst,src Push
PUSHL

The Load and Exchange group includes a variety of
instructions that provide for movement of data
between registers, memory, and the program itself
(e.g., immediate data). These instructions are
supported with the widest range of addressing
modes, including the Base (BA) and the Base
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Index (BX) modes which are available only with the
LD and LDA instructions. None of these instruc-
tions affect the CPU flags.

The Load and Load Relative instructions transfer a
byte, word, or long word of data from the source
operand to the destination operand. Special one-
word instructions are also included to handle
loading a small constant (0 to 15) into a register
or an arbitrary constant into a byte register.

These instructions provide one of the following
three functions:

e Load a register with data from a register or a
memory location

e lLoad a memory location with data from a
register

e lLoad a register or a memory location with
immediate data

The memory location is specified using any of the
addressing modes IR, DA, X, BA, BX, RA. The modes
BA and BX are available with the LD and LDA
instructions. The Relative addressing mode is
used with the LDR and LDAR instructions.

The Clear and Clear byte instructions can be used
to clear a register or memory location to zero.
While this is functionally equivalent to a Load
Immediate where the immediate data is zero, this
operation occurs frequently enough to justify a
special instruction that is more compact.

The Exchange instructions swap the source and
destination operands.

The Load Multiple instruction provides for effi-
cient saving and restoring of registers. This can
lower the overhead of procedure calls and context
switches such as those that occur at interrupts.
The instruction allows any contiguous group of 1
to 16 registers to be transferred to or from a
memory area, which can be designated using the DA,
IR, or X addressing modes. (RO is considered to
follow R15, e.g. R9-R15 and RO-R3 can be saved
with a single instruction.)

Stack operations are supported by the PUSH, PUSHL,
POP, and POPL instructions. Any general-purpose
register (or register pair in segmented mode) can
be used as the stack pointer (except RO and RRO).
The source operand for the Push instructions and
the destination operand for the Pop instructions
can be a register or a memory location, specified
by the DA, IR, or X addressing modes. Immediate
data can also be pushed, one word at a time, onto

a stack. Byte Push and Pop operations are not
supported, and the stack pointer register must
contain an even value when a stack instruction is
executed. This is consistent with the general
restriction of using even addresses for word and
long word accesses.

The Load Address and Load Address Relative
instructions compute the effective address for the
DA, X, BA, BX, and RA modes and return the value
in a register.

6.2.2 Arithmetic Instructions

Name of

Instruction Operand(s) Instruction
ADC dst,src Add with
ADCB Carry
ADD dst,src Add
ADDB
ADDL
cp dst,src Compare
cPB
CPL
DAB dst Decimal

Ad just
DEC dst,src Decrement
DECB
DIV dst,src Divide
DIVL
EXTS dst Extend Sign
EXTSB
EXTSL
INC dst,src Increment
INCB
MULT dst,src Multiply
MULTL
NEG dst Negate
NEGB
SBC dst,src Subtract with
SBCB Carry
SuB dst,src Subtract
sSuBB
SuBL

o
|
N
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The Arithmetic group consists of instructions for
performing integer arithmetic. The basic
instructions use standard two's complement binary
format and operations. Support is also provided
for implementation of BCD arithmetic.

Most of the instructions in this group perform an
operation between a register operand and a second
operand designated by any of the five basic
addressing modes (R, IR, DA, IM, X), and load the
result into the register.

The arithmetic instructions, in general, alter the
C, Z, S and P/V flags, which can then be tested by
subsequent conditional jump instructions. The P/V
flag is used to indicate arithmetic overflow for
these instructions and it is referred to as the V
(overflow) flag. The byte versions of these
instructions generally alter the D and H flags as
well.

The basic integer (binary) operations are
performed on byte, word, or long word operands,
although not all operand sizes are supported by
all instructions. Multiple precision operations
can be implemented in software using the Add with
Carry, (ADC, ADCB), Subtract with Carry (SBC,
SBCB) and Extend Sign (EXTS, EXTSB, EXTSL)
instructions.

BCD operations are not provided directly, but can
be implemented using a binary addition (ADDB,
ADCB) or subtraction (SUBB, SBCB) followed by a
decimal adjust instruction (DAB).

The Multiply and Divide instructions perform
signed two's complement arithmetic on word or long
word operands. The Multiply instruction (MULT)
multiplies two 16-bit operands and produces a
32-bit result, which is loaded into the destin-
ation register pair. Multiply Long (MULTL)
multiplies two 32-bit operands and produces a
64-bit result, which is 1loaded into the
destination register quadruple. An  overflow
condition is never generated by a multiply, nor
can a true carry be generated. The carry flag is
used instead to indicate that the product has too
many significant bits to be entirely contained in
the low-order half of the destination.

The Divide instruction (DIV) divides a 32-bit
number in the destination register pair by a
16-bit source operand and loads a 16-bit quotient
into the 1low-order half of the destination
register. A 16-bit remainder is loaded into the
high-order half. Divide Long (DIVL) operates

similarly with a 64-bit destination register
quadruple and a 32-bit source. The overflow flag
is set if the quotient is bigger than the low-
order half of the destination, or if the source is
zero.

6.2.3 Logical Instructions

Name of
Instruction Operand(s) Instruction
AND dst,src And
ANDB
COM dst Complement
CoMB
OR dst,src Or
ORB
TEST dst Test
TESTB
TESTL
XOR dst,src Exclusive Or
XORB

The instructions in this group perform logical
operations on each of the bits of the operands.
The operands may be bytes or words; logical
operations on long words are not supported (except
for TESTL) but are easily implemented with pairs
of instructions.

The two-operand instructions, And (AND, ANDB), Or
(OR, ORB) and Exclusive-Or (XOR, XORB) perform the
appropriate logical operations on corresponding
bits of the destination register and the source
operands, which can be designated by any of the
five basic addressing modes (R, IR, DA, IM, X).
The result is loaded into the destination
register.

Complement (COM, COMB) complements the bits of the
destination operand. Finally, Test (TEST, TESTB,
TESTL) performs the OR operation between the
destination operand and zero and sets the flags
accordingly. Test long (TESTL) allows 32-bit
logical operations to be performed by two 16-bit
logical operators followed by TESTL to set the
flags. The Complement and Test instructions can
use four basic addressing modes to specify the
destination (IM mode is excluded).

6-3
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The Logical instructions set the Z and S flags
based on the result of the operation. The byte
variants of these instructions also set the Parity
Flag (P/V) if the parity of the result is even,
while the word instructions 1leave this flag
unchanged. The H and D flags are not affected by
these instructions.

6.2.4 Program Control Instructions

Name of
Instruction Operand(s) Instruction
CALL dst Call Procedure
CALR dst Call Procedure
Relative
DINZ r,dst Decrement and
DBINZ Jump if Not Zero
IRET Interrupt Return
JP cc,dst Jump
JR cc,dst Jump Relative
RET cc Return from
Procedure
SC src System Call

This group consists of the instructions that
affect the Program counter (PC) and thereby
control program flow. General-purpose registers
and memory are not altered except for the
processor stack pointer and the processor stack,
which play a significant role in procedures and
interrupts. An exception is Decrement And Jump If
Not Zero (DINZ), which uses a register as a loop
counter. The flags are also preserved except for
IRET which reloads the program status, including
the flags, from the processor stack.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new
location if the processor flags satisfy the condi-
tion specified in the condition code field of the
instruction. (See Section 6.4 for a description
of condition codes.) Jump Relative is a one-word
instruction that will jump to a specified address
within an address range -254 to +256 bytes from

the address of the JR instruction. Most condi-
tional jumps in programs are made to locations
only a few bytes away; the Jump Relative
instruction exploits this fact to improve code
compactness and efficiency.

Call (CALL) and Call Relative (CALR) instructions
are used for calling procedures; the current
contents of the PC are pushed onto the processor
stack, and the effective address indicated by the
instruction is loaded into the PC. The use of a
procedure address stack in this manner allows
straightforward implementation of nested and
recursive procedures. Like Jump Relative, Call
Relative provides a one-word instruction for
calling nearby subroutines. However, a much
larger range of address, -4092 to +4098 bytes for
CALR instruction, is provided since subroutine
calls exhibit less 1locality than normal control
transfers.

Both Jump and Call instructions are available with
the indirect register, indexed and relative
address modes in addition to the direct address
mode.

The Conditional Return instruction (RET) is a
companion to the Call instruction; if the
condition specified in the instruction is
satisfied, it loads the PC from the stack and pops
the stack.

A special instruction, Decrement And Jump if Not
Zero (DINZ, DBINZ), implements the control part of
the basic Pascal FOR 1loop in a one-word
instruction.

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt:
the current program status is pushed onto the
system mode stack and a new program status is
loaded from a dedicated part of the Program Status
Area. An 8-bit immediate source field in the
instruction can be retrieved from the stack by the
software that handles system calls and interpreted
as desired. For example the contents of this
field can be used as an index into a dispatch
table to implement a call to one of the services
provided by the operating system.

Interrupt Return (IRET) is used for returning from
interrupts and traps, including system calls, to
the interrupted routines. This is a privileged
instruction.

6-4
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6.2.5 Bit Manipulation Instructions

Name of
Instruction Operand(s) Instruction
BIT dst,src Bit Test
BITB
RES dst,src Reset Bit
RESB
SET dst,src Set Bit
SETB
TSET dst Test and Set
TSETB
TCcC cc,dst Test
TCCB Condition

Code

The instructions in this group are useful for man-
ipulating individual bits in registers or memory.

The Bit Set (SET, SETB) and Bit Reset (RES, RESB)
instructions set, or clear, a single bit in the
destination byte or word, which can be in a
register or in a memory location specified by any
of the five basic addressing modes. The parti-
cular bit to be manipulated may be specified by a
value (0 to 7 for byte, 0 to 15 for word) in the
instruction itself or it may be specified
by the contents of a register. In the latter
case, the destination is restricted to a
register. These instructions leave the flags
unaffected.

The Bit Test instruction (BIT, BITB) tests a
specified bit and sets the Z flag according to the
state of the bit.

The Test and Set instruction (TSET, TSETB) can be
used for implementing synchronization mechanisms
such as semaphores between processes on the same
or on different CPUs. When executed, by either a
78003 or 78004 CPU, the Test and Set instruction
causes status code 1111 to be output during the
instruction execution when a memory location is
the operand. This code is wused in a
multiprocessor environment to ensure that only one
processor at a time can access the access control
semaphore of a shared resource.

Another instruction in this group, Test Condition
Code (TCC, TCCB) sets the low order bit of the

destination register if the state of the flags
specified by the condition code in the instruction
is true (See Section 6.6.B for a list of condition
codes.) This may be used to control subsequent
operation of the program after the flags have been
changed by intervening instructions. It may also
be used by language compilers for generating
boolean values.

6.2.6 Rotate and Shift Instructions

Name of
Instruction Operand(s) Instruction
RL dst,src Rotate Left
RLB
RLC dst,src Rotate Left
RLCB through Carry
RLDB dst,src Rotate Left

Digit
RR dst,src Rotate Right
RRB
RRC dst,src Rotate Right
RRCB through Carry
RRDB dst,src Rotate Right
Digit

SDA dst,src Shift Dynamic
SDAB Arithmetic
SDAL
SDL dst,src Shift Dynamic
SDLB Logical
SDLL
SLA dst,src Shift Left
SLAB Arithmetic
SLAL
SLL dst,src Shift Left
SLLB Logical
SLLL
SRA dst,src Shift Right
SRAB Arithmetic
SRAL
SRL dst,src Shift Right
SRLB Logical
SRLB
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This group contains instructions for shifting and
rotating the contents of data registers.

Shift Instructions are used to shift the contents
of an operand arithmetically or logically in
either direction. Three operand lengths are
supported: 8, 16 and 32 bits. The amount of the
shift, which may be any value up to the operand
length, can be specified either by the contents of
a field in the instruction or by the contents of a
specified register.

Rotate instructions are wused to rotate the
contents of a specified byte or word register in
either direction by either one or two bit
positions; the carry bit can be included in the
rotation. A pair of digit rotation instructions
(RLDB, RRDB) are useful in manipulating BCD data.

This group includes instructions that provide a
full complement of string comparision, string
translation, and block transfer functions. Using
these instructions, byte or word blocks of any
length up to 64K bytes can be moved in memory, a
byte or word string can be searched until a given
value is found, two byte or word strings can be
compared, and a byte string can be translated by
using the value of each byte as the address of its
own replacement in a translation table. Translate
and Test instructions skip over a class of bytes
specified by a translation table, detecting bytes
with values of special interest.

All the operations can proceed through the data in
either direction. Furthermore, the operations can
be repeated automatically while decrementing a
length counter until it is zero, or they can

6.2.7 Block Transfer and String Manipulation Instructions

Instruction Operand(s) Name of
Instruction

CPD dst,src,r,cc  Compare and Decrement
CPDB
CPDR dst,src,r,cc Compare, Decrement,
CPDRB and Repeat
CPI dst,src,r,cc  Compare and Increment
CPIB
CPIR dst,src,r,cc Compare, Increment,
CPIRB and Repeat
CPSD dst,src,r,cc  Compare String,
CPSDB and Decrement
CPSDR dst,src,r,cc  Compare String,
CPSDRB Decrement and Repeat
CPSI dst,src,r,cc  Compare String,
CPSIB and Increment
CPSIR dst,src,r,cc  Compare String,
CPSIRB Increment and Repeat
LDD dst,src,r Load and Decrement
LDDB
LDDR dst,src,r Load, Decrement,
LDDRB and Repeat

Instruction Operand(s) Name of
Instruction
LDI dst,src,r Load and Increment
LDIB
LDIR dst,src,r Load, Increment,
LDIRB and Repeat
TRDB dst,src,r Translate and Decrement

TRDRB dst,src,t Translate, Decrement

and Repeat
TRIB dst,src,r Translate and Increment
TRIRB dst,src,r Translate, Increment
and Repeat
TRTDB src1,src2,r Translate, Test,
and Decrement
TRTDRB srcl1,src2,r Translate, Test,

Decrement, and Repeat

TRTIB src1,src2,r Translate, Test,
and Increment
TRTIRB srcl,src2,r Translate, Test,
Increment, and Repeat
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operate on one storage unit per execution with the
length counter decremented by one, and the source
and destination pointer registers properly
adjusted. The latter form is useful for adding
other instructions within a loop containing the
block instructions.

Any word register can be used as a length counter
in most cases. If the execution of the instruc-
tion causes this register to be decremented to
zero, the P/V flag is set. In most cases the
auto-repeat forms of these instructions always
leave this flag set.

The D and H flags are not affected by these
instructions. The C anc S flags are preserved by
all but the compare instructions.

These instructions use the Indirect Register (IR)
addressing mode: the source and destination oper-

ands are addressed by the contents of general-
purpose registers (word registers in nonsegmented
mode and register pairs in segmented mode). In
the segmented mode, only the low-order half of the
register pair (the offset) is incremented or
decremented. The segment number is never changed
in 28000 address arithmetic.

The repetitive forms of these instructions are
interruptible. This is essential since the
repetition count can be as high as 65,536 and the
instructions can take 9 to 14 cycles for each
iteration after the first one. The instruction
can be interrupted after any iteration. If the
instruction is not finished, the address of the
instruction itself is saved on the stack together
with the contents of the operand pointer registers
and the repetition counter. The instruction can
then be simply reissued after returning from the
interrupt.

6.2.8 Input/Output Instructions

Instruction Operand(s) Name of

Instruction Operand(s) Name of

Instruction Instruction
IN dst,src Input SIN dst,src Special Input
INB SINB
IND dst,src,r Input and Decrement SIND dst,src,r Special Input and
INDB SINDB Decrement
INDR dst,src,r Input, Decrement, and SINDR dst,src,r Special Input, Decrement,
INDRB Repeat SINDRB and Repeat
INI dst,src,r Input and Increment SINI dst,src,r Special Input and
INIB SINIB Increment
INIR dst,src,r Input, Increment, and SINIR dst,src,r Special Input, Increment,
INIRB Repeat SINIRB and Repeat
OTDR dst,src,r  Output, Decrement, and SOTDR dst,src,r  Special Output,
OTDRB Repeat SOTDRB Decrement, and Repeat
OTIR dst,sre,r Output, Increment, and SOTIR dst,sre,r  Special Output,
OTIRB Repeat SOTIRB Increment, and Repeat
out dst,src Output SouT dst,src Special Output
ouTB S0uTB
ouTD dst,src,r Output and Decrement SOUTD dst,src,r Special Output and
ouTDB SouTDB Decrement
OuTI dst,src,r Output and Increment SOUTI dst,src,r Special Output and
outiB SOUTIB Increment
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This group consists of instructions for
transferring a byte, word, or block of data
between peripheral devices and the CPU registers
or memory. Two separate I/0 address spaces with
16-bit addresses are recognized: a Standard I/0
address space and a Special I/0 address space.
The latter is intended for use with special 78000
Family devices, typically a Memory Management Unit
(MMU).  Instructions that operate on the Special
I1/0 address space are prefixed with the word
"special". Standard I/0 and Special I/0
instructions generate different codes on the CPU
status lines but are otherwise identical. Normal
8-bit peripherals are connected to bus lines
ADg-AD;. Standard 1/0 byte instructions use odd
addresses only. Special 8-bit peripherals such as
the MMU or the Paged Memory Management Unit
(PMMU), which are wused with Special 1I/0
instructions, are connected to bus 1lines
ADg-ADqs. Special I/0 byte instructions use even
addresses only.

The instructions for transferring a single byte or
word (IN, INB, OUT, OUTB, SIN, SINB, SOUT, SOUTB)
can transfer data between any general-purpose
register and any port in either the indicated I/0
address space. For the Standard I/0 instructions,

the port number can be specified in the
instruction or by the contents of the CPU
register. For the Special I/0 instructions the

port number is specified statically.

The remaining instructions in this group
transfer blocks of data between I/0 ports and
memory. The operation of these instructions is
similar to that of the block move instructions
described earlier, but one operand is always an
1/0 port which remains unchanged while the address
of the other operand (a memory location) is
incremented or decremented. These instructions
are also interruptible.

All I/0 instructions are privileged, i.e., they
can be executed only in system mode. The single
byte/word I/0 instructions do not alter any
flags. The block I/0 instructions, including the
single iteration variants, alter the Z and P/V
flags. The latter is set when the repetition
counter is decremented to zero.

The instructions in this group relate to the CPU
control and status registers (FCW, PSAP, REFRESH,
ete.), or perform functions that do not fit into
any of the other groups, such as instructions that
support multimicroprocessor operation. All of
these instructions are privileged, with the

exception of NOP and the instructions operating on
the flags (SETFLG, RESFLG, COMFLG, LDCTLB).

6.2.9 CPU Control Instructions

Name of
Instruction Operand(s) Instruction
COMFLG flag Complement Flag
DI int Disable Interrupt
EI int Enable Interrupt
HALT Halt
LDCTL dst,src Load Control
LDCTLB Register
LDPS sTC Load Program
Status
MBIT Multi-Micro
Bit Test
MREQ dst Multi-Micro
Request
MRES Multi-Micro
Reset
MSET Multi-Micro
Set
NOP No Operation
RESFLG flag Reset Flag
SETFLG flag Set Flag

6.2.10 Extended Instructions

The 28000 architecture includes a mechanism for
extending the basic instruction set through the
use of external devices known as Extended
Processing Units (EPUs). (See Section 2.12 for a
more comprehensive presentation of the Extended
Processing Architecture.) Six opcodes, OE, OF,
4E, 4F, BE and 8F (in hexadecimal), are dedicated
to the implementation of extended instructions
using this facility. Four addressing modes (R,
IR, DA, and X) can be wused by extended
instructions for accessing data for the EPUs.
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There are four types of extended instruction in
the 28000 CPU instruction repertoire: EPU inter-
nal operations, data transfers between memory and
EPU, data transfers between EPU and CPU, and data
transfers between EPU flag registers and the CPU
flag and control word. The last type is useful
when the program must branch based on conditions
determined by the EPU.

Upon encountering extended instructions, the CPU's
action is dependent upon the EPA control bit in
the CPU's FCW. When this bit is set, the
instruction is executed by the EPU. If this bit
is clear, the CPU traps (an extended instruction
trap) so that a trap handler can emulate the
desired operation in software.

6.2.11 Privileged Instructions

The following 1list presents the names and
mnemonics of the Z8000 Privileged Instructions:

Disable Interrupt (DI)

Enable Interrupt (EI)

Halt (HALT)

Input (IN)

Special Input (SIN)

Input and Decrement (IND)

Special Input and Decrement (SIND)

Input, Decrement and Repeat (INDR)

Special Input, Decrement and Repeat (SINDR)
Input and Increment (INI)

Special Input and Increment (SINI)

Input, Increment and Repeat (INIR)

Special Input, Increment and Repeat (SINIR)
Interrupt Return (IRET)

Load Control (LDCTL)

Load Program Status (LDPS)

Multi Micro Bit Test (MBIT)

Multi Micro Request (MREQ)

Multi Micro Reset (MRES)

Multi Micro Set (MSET)

Output, Decrement and Repeat (OTDR)

Special Output, Decrement and Repeat (SOTDR)
Output, Increment and Repeat (OTIR)

Special Output, Increment and Repeat (SOTIR)
Output (OUT)

Special Output (SOUT)

Output and Decrement (OUTD)

Special Output and Decrement (SOUTD)

Output and Increment (OUTI)

Special Output and Increment (SOUTI)

6.3 PROCESSOR FLAGS

The processor flags are part of the program status
(Section 2.7.1). They provide a link between

sequentially executed instructions in the sense
that the result of executing one instruction may
alter the flags, and the resulting value of the
flags can be used to determine the operation of a
subsequent instruction, typically a conditional
jump instruction. For example, the use of a flag
when a Test is followed by a Conditional Jump:

TEST R1 !sets Z FLAG if R1 = 0!
JR Z, DONE 'go to done if Z flag is set!
DONE :

The program branches to DONE if the TEST sets the
Z flag, i.e., if R1 contains zero.

The program status has six flags:

Carry (C)

Zero (Z)

Sign (S)
Parity/Overflow (P/V)
Decimal Adjust (D)
Half Carry (H)

Appendix C lists the instructions and the flags
they affect. In addition, there are 28000 CPU
control instructions that allow the programmer to
set, reset (clear), or complement any or all of
the first four flags. The Half-Carry and
Decimal-Adjust flags are used by the 78000
processor for BCD arithmetic corrections.

The Flags register can be separately loaded by the
Load Control Register (LDCTLB) instruction without
disturbing the control bits in the other byte of
the FCW. In fact, access to the Flags register is
not a privileged operation, while access to the
control bits is privileged. The contents of the
Flag registers can also be saved in a register or
memory.

The Carry (C) flag, when set, generally indicates
a carry out of or a borrow into the high-order bit
position of a register being used as an accumu-
lator. Ffor example, adding the 8-bit numbers 225
and 64 causes a carry out of bit 7 and sets the
Carry flag:

7 6 5 4 3 2 1 0

225 1 1 1 0 O O 0 1
+64 0 1 0 0 0 0 0 0O

289 0 0 1 0 0 0O 0 1
Carry flag

-
1
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The Carry flag plays an important role in the
implementation of multiple-precision arithmetic
(see the ADC, SBC instructions). It is also
involved in the Rotate Left Through Carry (RLC)
and Rotate Right Through Carry (RRC) instruc-
tions. These instructions are used to implement
rotation, or shifting, of long strings of bits.

The Zero (Z) flag is set when the result reg-
ister's contents are zero following certain oper-
ations. This is often useful for determining when
a counter reaches zero. In addition, the block
compare instructions use the Z flag to indicate
that the specified comparison condition is satis-
fied.

The Sign (S) flag is set to one when the most
significant bit of a result register contains a
one (a negative number in two's complement nota-
tion) following certain operations.

The Overflow (V) flag, when set, indicates that a
two's complement number in a result register has
exceeded the largest number, or is less than the
smallest number, that can be represented in a
two's complement notation. This flag is set as
the result of an arithmetic operation. Consider
the following example:

Bit

120
+ 105

o o
- -
-
O -
-
(=0 =]
[= =)
-

225 1 1 1. 0 0 0 0 1
1 = Overflow flag set

The result in this case (-31 in two's complement
notation) is incorrect, thus the overflow flag is
set.

The same bit acts as a Parity (P) flag following
logical instructions on byte operands. The number
of one bits in the register is counted; if the
total is even, parity is said to be even and the
flag P is set (i.e. Pz1). If the total is odd;
parity is odd and the flag P is reset (i.e. Pz0).
This flag is referred to as the P/V flag.

The Block Move and String instructions and the
Block 1/0 instructions use the P/V flag to
indicate that the repetition counter has
decremented to 0.

The Decimal-Adjust (D) flag is used for BCD
arithmetic. Since the algorithm for correcting
BCD operations is different for addition and
subtraction, this flag is used to record whether
an add or subtract instruction was executed so
that the subsequent Decimal Adjust (DAB)
instruction can perform its function correctly.
See the DAB instruction for further discussion on
the use of this flag.

The Half-Carry (H) flag indicates a carry out of
bit 3 or a borrow into bit 3 as the result of
adding or subtracting bytes containing two BCD
digits each. This flag is used by the DAB
instruction to convert the binary result of a
previous decimal addition or subtraction into the
correct decimal (BCD) result,

Neither the Decimal-Adjust nor the Half-Carry flag
is used in condition codes and neither is affected
by the SETFLG, RESFLG, or COMFLG instructions.
The only access to these flags is through the
LDCTL instruction.

6.4 CONDITION CODES

The first four flags, C, Z, S, and P/V, are used
to control the operation of certain "conditional"
instructions such as the Conditional Jump. The
operation of these instructions is a function of
whether a specified boolean condition on the four
flags is satisfied or not. Sixteen of the flag
settings are encoded in a 4-bit field called the
condition code, which forms a part of all
conditional instructions.

The condition codes and the flag settings they
represent are listed in Section 6.6.

Although there are sixteen unique condition codes,
more than sixteen mnemonics are used for the
conditional codes. Some of the flag settings have
more than one meaning for the programmer,
depending on the context (PC & OV, Z & EQ, C &
ULT, ete.).

6.5 INSTRUCTION INTERRUPTS AND TRAPS
Interrupts are discussed in detail in Chapter 7.
This section looks at the relationship between

instructions and interrupts.

When the CPU receives an interrupt request, and it
is enabled for interrupts of that class, the
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interrupt is normally processed at the end of the
current instruction. There are two exceptions:
when an abort instruction interrupt occurs, the
executing instruction is aborted immediately, and
instructions which are designed to be
interruptible so as to minimize the length of time
it takes the CPU to respond to an interrupt. The
latter type instructions are the iterative
versions of the String and Block instructions and
the Block I/0 instructions. When an interrupt
request is received during the execution of the
iterative version of the string/block
instructions, the instruction is suspended after
the current iteration. The address of the
instruction itself is saved on the stack, so that
the same instruction is executed again when the
interrupt handler executes an IRET. The contents
of the repetition counter and the registers that
index into the block operands are such that when
the instruction is reissued upon returning from an
interrupt, the effect is the same as if the
instruction were not interrupted. The interrupt
handler preserved the contents of the registers.

The longest noninterruptible instruction that can
be used in normal mode is Divide Long (728 cycles
in the worst case). Multi-Micro-Request, a
privileged instruction, can take longer depending
on the programmable propagation delay constant.

Traps are synchronous events that result from the
execution of the previous instruction. The action
of the CPU in response to a trap is similar to the
response of an interrupt (see Chapter 7). Traps
are nonmaskable.

The 78000 CPUs implement four kinds of trap:

Extended Instruction

Privileged Instruction in Normal mode

® Addressing violation (segmentation trap in
78001, and Segment/Address Translation Trap
in 28003)

e System Call

The Extended Instruction trap occurs when an
Extended Instruction is encountered, but the
EPA bit in the FCW is zero. This allows the same
software to be run on Z8000 system configurations
with or without EPUs. On systems without EPUs,
the desired extended instructions can be emulated

by software which is invoked by the Extended
Instruction trap handler.

The System Call instruction always causes a trap.
It is used to transfer control to system mode
software in a controlled way, typically to request
supervisor services.

The Privileged Instruction trap serves to protect
the integrity of a system from erroneous or
unauthorized actions of normal mode processes.

Certain instructions, called privileged
instructions, can only be executed in system
mode. An attempt to execute one of these

instructions in normal mode causes a Privileged
Instruction trap. All the 1/0 instructions and
the instructions that operate on the control
portion of the FCW, such as instructions HALT and
IRET, are privileged.

Address Violation traps are initiated by events
external to the CPU such as the detection of an
address violation by an MMU. This type of trap
selects and initiates the routines needed to
service or correct the detected violation. This
type of trap is wuseful in enforcing access
protection rules. Traps of this type are used on
the 28003 and 28004 CPU for the implementation of
virtual memory.

6.6 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the instruction set, with the
instructions listed in alphabetical order by
mnemonic. This section describes the notational
conventions used in the instruction descriptions
and the binary encoding for some of the common
instruction fields (e.g., register designation
fields).

The description of each instruction begins on a
new page. The instruction mnemonic(s) and name is
printed in large bold letters at the top of each
page to enable the reader to easily locate a
desired description. The term "Privileged
Instruction" is also printed at the top of each
page which contains a description of this type of
instruction.
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The assembler language syntax is then given in a
single generic form that covers all the variants
of the instruction, along with a 1list of
applicable addressing modes.

Example:
AND dst,src  dst:R
ANDB src:R, IM, IR, DA,X

The description normally contains the following
items in the given sequence:

1. The operations performed by the instruction.

2. A discussion of the overall operational aspects
of the functions performed by the instruction.

3. The effect the instruction has on each of the
processor flags is given.

4. A table that illustrates all of the variants of

the instruction for each applicable addressing

mode and operand size. The following

information is presented for each of the

variants.

.

A. Instruction Mnemonics. An  instruction
specification is shown for each applicable operand
size (byte, word, or long). The instruction
mnemonic code is given in upper case characters;
lower case characters represent the variable part

of the instruction specification for which
suitable values are to be substituted. For
example,

ADD Rd,#data
represents a statement of the form
ADD R3,#35.

The following notation is wused for register
operands:

Rd, Rs: a word register in the range RO-R15
Rbd, Rbs: a byte register RHn or RLn where
n is within the range of 0 - 7
RRd, RRs: a register pair RRO, RR2, ...,RR14
RQd: a register quadruple RRO, RR4, RR8,
or RR12

The "s" or "d" represents a source or destination
operand. To simplify presentation, the terms

source and destination are used when the instruc-
tion arguments referred to are not strictly source
or destination operands. For example:

EX dst,src or MREQ dst

Address registers used in the Indirect, Base, and
Base Index addressing modes represent word
registers in nonsegmented mode and register pairs
in segmented mode; this situation is flagged and
an explanation is given in a footnote.

B. Instruction Format. The binary encoding of
the instruction is given in each case for both the
nonsegmented and segmented modes. Where
applicable, both the short and long forms of the
segmented version are given (SS and SL).

The instruction formats for byte and word versions
of an instruction are usually combined. A single
bit, labeled, "w", distinguishes them: a one
indicates a word instruction, while a zero
indicates a byte instruction.

Fields specifying register operands are identified
with the same symbols (Rs, RRd, etc.) as described
in item A. In some cases, only nonzero values are
permitted for certain registers, such as index
registers. This is indicated by a notation of the
form "Rs # 0."

The binary encoding for register fields is as
follows:

Register Binary Hex

RQO  RRO RO RHO 0000 0
R1 RH1 0001 1

RR2 R2 RH2 0010 2

R3 RH3 0011 3

RQ4 RR4 R4 RH4 0100 4
RS RHS 0101 5

RR6 R6 RHé 0110 [

R7 RH7 0111 7

RA8  RR8 R8 RLO 1000 8
R9 RL1 1001 9

RR10 R10 RL2 1010 A

R11  RL3 1011 B

RQ12 RR12 R12 RL4 1100 c
R13 RLS 1101 D

RR14 R14 RL6 1110 [

R15 RL7 1111 F

6-12



Instruction Set

In the case of relative addresses, the instruction
format contains a "displacement". The actual value
of this argument is dependent on the value of the
PC at the time the instruction is executed.

A condition code 1is indicated by "cc" in the
instruction formats. The condition codes, the
flag settings they represent, and the binary
encoding in the instructions are as follows:

Code Meaning Flag Setting Binary
F Always false - 0000
Always true - 1000
z Zero Z=1 0110
NZ Not zero 2=0 1110
C Carry C=1 oM
NC No carry cC=0 1mmm
PL Plus S=0 1101
MI Minus S=1 0101
NE Not equal Z1=0 1110
EQ Equal =1 0110
ov Overflow V=1 0100
NOV No overflow V=20 1100
PE Parity even P=1 0100
PO Parity odd P=0 1100
GE Greater than (SXPR V) =0 1001
or equal
LT Less than (S XOR V) =1 0001
GT Greater than (ZOR (SXORV)) =0 1010
LE Less than or (Z OR (S XOR V)) =1 0010
equal
UGE Unsigned C=0 1M
greater than
or equal
ULT Unsigned C=1 o111
less than
UGt Unsigned ((C=0) AND (Z=0)) =1 1011
greater than
ULE Unsigned (COR Z) =1 0011
less than
or equal
Notes: 1. Some of the condition codes correspond to identical flag

settings: i.e., Z-EQ,

NZ-NE, NC-UGE, PE-OV, PO-NOV.

C. Cycles. This line gives the execution time of
the instructions in CPU cycles.

D. Example.
is given.

An instruction specification example

6.7 78000 INSTRUCTION DESCRIPTIONS AND FORMATS

The remainder of this chapter consists of
individual descriptions of each 28000
instruction. These descriptions are arranged in

alphabetical order for ease in reference. Bold
running heads are provided to enable the reader to
easily locate a specific description.
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6.7 Z8000
Instruction ADC
Descriptions Add With Carry
and Formats
ADC dst, src dst: R
ADCB src: R
Operation: dst « dst + src + ¢
The source operand, along with the setting of the carry flag, is added to the destina-
tion operand and the sum is stored in the destination. The contents of the source are
not affected. Two's complement addition is performed. In multiple precision arith-
metic, this instruction permits the carry from the addition of low-order operands to
be carried into the addition of high-order operands.
Flags: C: Set if there is a carry from the most significant bit of the result; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: ADC—unaffected; ADCB—cleared
H: ADC—unaffected; ADCB—set if there is a carry from the most significant bit of
the low-order four bits of the result; cleared otherwise
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: D s [tol11010]w] rs | ra ] 5 | [rofi1010[w] ”e [ na ] 5
Example: Long addition can be done with the following instruction sequence, assuming RO, R1

contain one operand and R2, R3 contain the other operand:

ADD RI,R3 ladd low-order words!
ADC RO,R2 ladd carry and high-order words!

If RO contains %0000, R1 contains %FFFF, R2 contains %4320 and R3 contains
%0001, then the above two instructions leave the value %4321 in RO and %0000
in RI1.
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ADD
Add

ADD dst, src dst: R
ADDB src: R, IM, IR, DA, X
ADDL
Operation: dst « dst + src
The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.
Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL—unaffected; ADDB—cleared
H: ADD, ADDL—unaffected; ADDB—set if there 1s a carry from the most significant
bit of the low-order four bits of the result; cleared otherwise
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ﬁggBﬁgbngbS [10[ooooo[w| Rs | Ra | 4 [10]ocooo[w| Rs | Ra | 4
ADDL RRd, RRs [toJo10110] mrs | RRa | 8 | [1o]o10110] Ars [RRa ] | 8
IM: ADD Rd, #dat
#data 00{000001[0000| Rd . 00{ 000001 [0000| Rd 7
data data
ADDB Rbd, fdata 00{ 000000 [0000] Rbd . 00{000000[0000| Rba 7
data data data data
ADDL  RRd, #data 00[010110]0000] RRd 00[010110]0000] RRd
31 data (high) 16 14 2 data (high) 18 14
15 data (low) 0 15 data (low) 0
IR: ADD Rd, @Rs!
ADDB Rba, ;Rsl Joojooooo|w| Re+0]| Rra | 7 |oojooooo{w|rRsto| ra | 7
ADDL RRd, @Rs! Joojo10110 | Rsz0]| RRa | 14 Jooj 010110 [RRs#0| RRa | 14
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Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: ADD Rd, add
'ADDB Rb:l, a:;le;:ess 01looooo/w|o000| Rd o |ss 01/o0000/w|[0000| Rd 10
address o[ segment offset
01{00000{w[0000| Ra
SL[1] segment [ 00000000 12
offset
ADDL RRd, address 01/010110|0000| RRd o1/0101100000| RRd
15 SS 16
address ol segment oftset
01/010110]0000| RRd
SL]1] segment | 00000000 18
offset
X: ADD Rd, addr(Rs)
ADDB Rbd. adds(Re) 01/00000{W| Rs+0| Rd w0 |ss 01[oo00o[w| Rsx0| Rd 10
address o[ segment offset
01/00000/w| Rs#0| Rd
SL[1] segment | 00000000 13
offset
ADDL RRd, addr(Rs) 01[010110 | Rs»0 | RRd 6 |ss 01[010110 | Rs+0 | RRd 16
address o| segment offset
01{010110 | Rs#0 | RRd
SL[1] segment | 00000000 19
offset
Example: ADD R2, AUGEND laugend A located at %1254!

Before instruction execution:

Memory R2 Flags
1252 |so21] CZSPVDH
1254 |06 4 4 czspan
1256

After instruction execution:

Memory R2 Flags
1262 |c 3 e s} CZSPNDH
1254 o 6 4 4 0010dh
1256

Note 1: Word register in nonsegmented mode, reqister pair in segmented mode
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AND
And

AND dst, src dst: R
ANDB src: R, IM, IR, DA, X
Operation: dst < dst AND src
A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A one bit is
stored wherever the corresponding bits in the two operands are both ones; otherwise
a zero bit is stored. The source contents are not affected.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: AND — unaffected; ANDB — set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ﬁﬁgBﬁgﬁ‘sRs [10jocot11]w] ms | Ra | 4 [toJocos1[w] ”s T ra || 4
IM: AND Rd, #data 00[000111[0000| Rd 7 00[000111[0000| Rd 7
data data
ANDB Rbd, #data 00/000110 0000 Rbd 7 00/ 0001100000 Rbd 7
data data data data
IR: AND Rd, @Rs!
ANDB Rbd. @s;Rsl [oolooo11|w| Rsz0| ra | 7 |oooo011]w|RRs#0| Ra | 7
DA: AND Rd, address 01]00011]w|0000] Rd R
ANDB Rbd, address looot1]w]oooo] o | ssfloooti[wloooo] ng 10
address 0| segment offset
01[00011|w|0000| Rd
SL|1] segment [0000 0000 12
offset )
X: AND Rd, addr(Rs)
ANDB R, agd:(Rs) 01/00011|w| Rs#0| Rd w0 |ss 01/o0011|w Rssol Rd 10
address ol segment offset
01jo0011|w| Rs+0| Rd
SL|1] segment [0000 0000 13

offset
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Example:

ANDB RL3, # %CE

Before instruction execution:

RL3 Flags
| 11100111 ] CZSPVDH
czs p dh

After instruction execution:

RL3 Flags
| 11000110 | CZSPVDH
c011dh

Note 1: Word register in nonsegmented mode, register pair 1n segmented mode.
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BIT

Bit Test

BIT dst, src

BITB

dst: R, IR,
src: IM

or

dst: R
src: R

Operation: Z <« NOT dst (src)

DA, X

The specified bit within the destination operand is tested, and the Z flag is set to one
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the
destination are not affected. The bit number (the source) can be specified statically
as an immediate value, or dynamically as a word register whose contents are the bit
number. In the dynamic case, the destination operand must be a register, and the
source operand must be RO through R7 for BITB, or RO through R15 for BIT. The bit
number is a value from 0 to 7 for BITB, or 0 to 15 for BIT, with O indicating the least
significant bit. Note that only the lower four bits of the source operand are used to
specify the bit number for BIT, while only the lower three bits of the source operand
are used for BITB.

Flags: C: Unaffected

Z: Set if specified bit is zero; cleared otherwise

S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Bit Test Static

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Languag
Mode Syntax Instruction Format Cycles Instruction Format Cycles
H BIT Rd, #b
R BITBsz,//b [1of10011jw] Ra | b | 4 l1ol10011{w] ra | b ] 4
IR: BIT @ Rd!, #b
BITE @ Rd" b Jool10011{w|Ra=0| b | 8 looj10011{w|RRaxo] b | 8
DA: BIT address, b 01/10011/w/oooo] b 01[10011]w[o000] b
BITB address, #b 10 SS 1
address 0| segment offset
01I10011lw ooool b
SL|1] segment [0000 0000 13
offset
X: BIT addr(Rd), #b T
01]10011]W| Rd+0| b o1{10011|w|Rd=0| b
BITB addr(Rd), #b pvm— 1 SS ol sogment proswn 1
o1[10011|w|Rd=0| b
SL|1| segment | 0000 0000 14
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Bit Test Dynamic

Source

Addressing | Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: BIT Rd, Rs 00[10011|/w[oo00| s 10 00[10011/wooao[ ms 10
BITB Rbd, Rs? 0000 Rd [0000[0000 0000 Ra |0000]0000
Example: If register RH2 contains %B2 (10110010), the instruction

BITB RH2, #0

will leave the Z flag set to 1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Word registers 0-7 only.
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CALL

Call

CALL dst dst: IR, DA, X
Operation: Nonsegmented Segmented
SP <« SP - 2 SP <« SP - 4
@SP <« PC @SP <« PC
PC < dst PC < dst
The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 in nonsegmented mode, or RR14 in
segmented mode. (The program counter value used is the address of the first instruc-
tion following the CALL instruction.) The specified destination address is then
loaded into the PC and points to the first instruction of the called procedure.
At the end of the procedure a RET instruction can be used to return to original pro-
gram. RET pops the top of the processor stack back into the PC.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CALL ¢Rd! Joolo11111 ] ravo [0000] 10 loof 011111 [RRD%0[0000] | 15
DA: CALL address 01[011111 0000 0000 01011111 0000|0000
12 SS 18
address o| segment offset
01]011111] 00000000
SL|1] segment [0000 0000 20
offset
X CALL addr(Rd) 01011111 Rd=0]0000 3 |ss 01fo11111 ] Rew foooof | o
address o] segment offset
01{011111 [ Rd#0 0000
SL|1] segment [0000 0000 21
offset
Example: In nonsegmented mode, if the contents of the program counter are %1000 and the

contents of the stack pointer (R15) are %3002, the instruction
CALL %2520

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALL instruction with direct address mode specified) to be loaded into
the word at location %3000, and the program counter to be loaded with the value
%2520. The program counter now points to the address of the first instruction in the
procedure to be executed.

Note 1: Word register in nonsegmented mode, reqister pair in segmented mode.
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CALR

Call Relative

Operation:

CALR dst dst: RA

Nonsegmented Segmented

SP < SP - 2 SP <« SP - 4

@SP <« PC @SP <« PC

PC < PC + (2 x displacement) PC <« PC+(2 x displacement)

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 in nonsegmented mode, or RR14 in
segmented mode. (The program counter value used is the address of the first instruc-
tion following the CALR instruction.) The destination address is calculated and then
loaded into the PC and points to the first instruction of a procedure.

At the end of the procedure a RET instruction can be used to return to the original
program flow. RET pops the top of the processor stack back into the PC.

The destination address is the sum of twice the displacement in the instruction and
the current value of the PC. The displacement is a 12-bit signed value in the range
-2048 to +2047. Thus, the destination address must be in the range -4094 to + 4096
bytes from the start of the CALR instruction. In segmented mode, the PC segment
number is not affected. The assembler automatically calculates the displacement by
subtracting the PC value of the following instruction from the address given by the
programmer and dividing the result by 2.

Flags:

No flags affected

Destination
Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles

RA:

CALR address I 1101 l displacement 1 10 lﬂ 01 L displacement ] 15

Example:

In nonsegmented mode, if the contents of the program counter are %1000 and the
contents of the stack pointer (R15) are %3002, the instruction

- CALR PROC
causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALR instruction) to be loaded into the word location %3000, and the

program counter to be loaded with the address of the first instruction in procedure
PROC.
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CLR
Clear

CLR dst dst: R, IR, DA, X
CLRB
Operation: dst - 0
The destination is cleared to zero.
Flags: No flags affected.
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: CLR Rd
CIRB Rbd [toJoo110/w] ra [1000] 7 [10Joo110{w] ra [1000]| 7
IR: CLR @Rd!
CLRB eRd! [oojoo110{w|Rd=+0]1000] 8 |oojoo110{w|RRa0[1000]| 8
DA: CLR address
CLRB address o1joo110/w[o000[1000 i lss 01{o0110/w|0000[1000 12
address 0| segment offset
01j00110/w/0000[1000
SL 1[ segment (0000 0000 14
offset
X: CLR addr(Rd)
CLRB addr(Rd) 01/o0110{w|Rd=0 1000 2 |ss 01]00110/w| Rd=0[1000 12
address o] segment offset
01[00110/w|Rd+0 1000
SL[1] segment 0000 0000 15
offset
Example: If the word at location %ABBA contains 13, the statement

CLR

%ABBA
will leave the value 0 in the word at location % ABBA.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
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COM

Complement
COM dst dst: R, IR, DA, X
COMB
Operation: (dst « NOT dst)
The contents of the destination are complemented (one’'s complement); all one bits
are changed to zero, and vice-versa.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result 1s set; cleared otherwise
P: COM—unaffected; COMB—set 1f parity of the result is even; cleared otherwise
D: Unattected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: COM Rd
COMB Rbd [1o[oo110/w] Rra [oo00] 7 [10Joo110[w] ra Joooo]| 7
IR: COM @Rd!
00/00110W|Rd +0/{0000 12 00{00110|(W|RRd#0{0000 12
coM wBdl [sseraw[ra=o[sves] [ rrslw [mensess]
DA: COM address o1{o0110/w|[0000[0000 o1{oo110{w|0000]0000
COMB address 15 Ss 16
address OI segment offset
01{o0110{w| 0000|0000
SL[1] segment [0000 0000 18
offset
X: ggﬁ;d?j;md) 01{0o0110/w| Rd=0 0000 % |ss 01]00110{w| Ra+0 0000 1
addr(Rd) address 0[ segment offset
01]00110/w| Rd=0 0000
SL{1] segment [0000 0000 19
offset
Example: If register Rl contains %2552 (0010010101010010), the statement

COM Rl
will leave the value %DAAD (1101101010101101) 1n R1.

Note | Word register in nonsegmented mode, register pair in segmented mode
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COMFLG

Complement Flag

COMFLG flag Flag: C, Z, S, P, V
FLAGS (4:7) «- FLAGS (4:7) XOR instruction (4:7)

Operation:

Any combination of the C, Z, S, P or V flags is complemented (each one bit is
changed to zero, and vice-versa). The flags to be complemented are encoded in a
field in the instruction. If the bit in the field is one, the corresponding flag is com-
plemented; if the but is zero, the flag is left unchanged. Note that the P and V flags
are represented by the same bit. There may be one, two, three or four operands in
the assembly language statement, in any order.

Flags:

C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if specified; unatffected otherwise
P/V: Complemented 1if specified; unaffected otherwise
D: Unaffected

H: Undefined

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
COMFLG flags | 10001101 fczsevjo101] 7 | 10001101 fczspvo101] 7

Example:

If the C, Z, and S flags are all clear (=0), and the P flag is set ( = 1), the statement
COMFLG P, S, 2 C
will leave the C, Z, and S flags set (=1), and the P flag cleared (=0).




CP

Operation:

Compare
CP dst, src dst: R
CPB src: R, IM, IR, DA, X
CPL or
dst: IR, DA, X
src: IM
dst — src

The source operand is compared to (subtracted from) the destination operand, and
the appropriate flags set accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffected, with the only action being
the setting of the flags. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. There are two variants of this instruc-
tion: Compare Register compares the contents of a register against an operand
specified by any of the five basic addressing modes; Compare Immediate performs a

comparison between an operand in memory and an immediate value.

Flags:

C: Cleared if there is a carry from the most significant bit of the result; set other-
wise, indicating a “borrow”

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared otherwise

D: Unaffected
H: Unaffected

Compare Register

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ggé‘gbg?%s [1ojooto1|w] rs | ra ] 4 [10]oo101{w| Rs | &a | 4
CPL RRd, RRs [10[ 010000 | RRs | RR4 | 8 |10/ 010000] RRs | RR4 | 8
IM: CP Rd, #data 00{001011[0000] Rd ; 00[001011]0000] Rd ;
data data
CPB Rbd, #data 00001010 0000] Rbd ; 00[001010]0000] Rba ;
data data data data
CPL RRd, #data 00/010000 [0000| RRd 00/010000]0000| RRd
31 data (high) 16 14 31 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: gﬁBRg'bfleRSl Joojoo101|w|Rs20| Ra | 7 Jooloo101]w]/Rs#0| Ra | 7
CPL RRd, @Rs! [oo] 010000 Rs=0] Rra | 14 [00] 010000 Rs+0] rra | 14
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Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: CP Rd, address
CPB Rbd, address o1loo101{w|ooo0]| Rd o |ss o1]ooto1]w|oo0o| Rd 10
address 0| segment offset
01{00101/w|[0000] Rd
SL[1] segment [0000 0000 12
offset
CPL RRd, address 01] 010000 |0000| RRd 01] 010000 [0000| RRd
15 SS 16
address ol segment offset
01) 010000 0000 Rd
SL[1] segment 0000 0000 18
offset
X: CP Rd, addr(Rs)
CPB Rbrt. s (Rbs) 01/00101|W| Rs#0 | Rd 10 |sslo Joo101w| Rs+0 | RRd 10
address 0| segment offset
01{00101/W| Rs#0| Rd
sL|{1] segment 0000 0000 13
offset
CPL RRd, addr(Rs) 01 0100001Rs*0| RRd 16 |ss 011010000 Rs*°| RRd 16
address ol segment offset
01/ 010000 | Rs#0 | RRd
SL|1] segment |0000 0000 19
offset
Compare Immediate
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CP @Rd!, fdata oofoot10/w]Ra=0[0001 " 00]00110[w[rra+0[0001 ;
data data 1
CPB @Rdl, fdata 00[00110|w| Rd=0]0001 » 00{00110{w|RRd#0[0001 "

data data

data data
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Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: CP address, fdata 01/o0110/w|0000 /0001 01[o0110{w/0000[0001
address 14 SS|o ] segment offset 15
data data
01Joo110/w/0000]0001
sL 1I segment (0000 0000 17
offset
data
CPB address, fdata o1]oo11o|w|oooo|ooo1 o!loouolw ooooloom
address 14 |SS|o I segment offset 15
data I data data data
01]o0110/w[0000[0001
st 1—[ segment | 0000 0000 17
offset
data l data
X: CP addr(Rd), #data 01Jo0110]/w]Rd = o[0001 01{00110/w[Rd «0[0001
address 15 SS ol segment offset 15
data data
01]o0110/w|Rd=0[0001
SL 11 segment |0000 0000 18
offset
data
CPB addr(Rd), #data 01]o0110[w|Rd+0[0001 o1loo11o|w Rd¢010001
address 15 SS o] segment offset 15
data l data data data
01]00110/w[Rd=0]0001
. 1[ segment | 0000 0000 18
oftset
data l data
Example: If register R5 contains %0400, the byte at location %0400 contains 2, and the source

operand is the immediate value 3, the statement

CPB @RS,#3

will leave the C flag set, indicating a borrow, the S flag set, and the Z and V flags

cleared.

Note 1. Word register 1in nonsegmented mode, register pair in segmented mode
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CPD

Compare and Decrement

CPD dst, src, T, cc dst: R
CPDB src: IR

Operation: dst — src
AUTODECREMENT src (by 1 if byte, by 2 if word)
rer-1
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source reqgister are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are un-
affected.
The source register is then decremented by one if CPDB, or by two if CPD, thus
moving the pointer to the previous element in the string. The word register specified
by "r” (used as a counter) is then decremented by one. The source, destination,
and count registers must be separate and non-overlapping registers.

Flags: C: Undetined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPD Rd, @Rs!, r, cc 000
CPDB Rbd, @Re'" 2. cc 1011101 |w|[Rs #0[1000 20 1011101 |W|RRs#0[1 20
0000] r Rd | cc 0000 r Rd | cc
Example: If register RHO contains %FF, register Rl contains %4001, the byte at location

%4001 contains %00, and register R3 contains 5, the instruction
CPDB RHO, @RI, R3, EQ
will leave the Z flag cleared since the condition code would not have been “equal.”

Register Rl will contain the value %4000 and R3 will contain 4. For segmented
mode, Rl must be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
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CPDR

Compare, Decrement and Repeat

Operation:

CPDR dst, src, r, cc dst: R
CPDRB src: IR

dst — src

AUTODECREMENT src (by 1 if byte; by 2 if word)
rer -1

repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
cohdition code specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are unaf-
fected.

The source register is then decremented by one if CPDRB, or by two if CPDR, thus
moving the pointer to the previous element in the string. The word register specified
by “r"” (used as a counter) is decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc-
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPDR). The source, destination, and count
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

C: Undefined

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Undefined

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Source
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

CPDR Rd, @Rs!, r, cc 1011101|w[rs = 0] 1100 1011101]W[RRs=0] 1100
CPDRB Rbd, @Rsl, r, cc

11+9n 11+9n

0000 r [ Rd [ e 0000 r [ Ra | cc

Example:

If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8,
register R2 contains %2008, R3 contains 5, and R8 contains 8, the instruction

CPDR R3, @R2, R8, GT
will leave the Z flag set indicating the condition was met. Register R2 will contain the

value %2002, R3 will still contain 5, and R8 will contain 2. For segmented mode, a
register pair would be used instead of R2.

Note 1: Word register in nonsegmented mode, reqgister pair in segmented mode.
Note 2: n = number of data elements compared.
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CPI

Compare and Increment

CPI dst, src, r, cc dst: IR
CPIB src: IR

Operation: dst — src
AUTOINCREMENT src (by 1 if byte; by 2 if word)
rer-1
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand and the Z flag is set if the
condition code specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are
unaffected.
The source register is then incremented by one if CPIB, or by two if CPI, thus
moving the pointer to the next element in the string. The word register specified by
“r" (used as a counter) is then decremented by one. The source, destination, and
counter registers must be separate and non-overlapping registers.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPIRd, @Rsl, r, cc 1011101 |W|Rs £ 00000 1011101 |W|RRs#0{0000
CPIB Rbd, @Rs!, r, cc 20 20
o000 r Rd | cc 0000 r | md | e
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Example:

This instruction can be used in a "loop” of instructions that searches a string of data
for an element meeting the specified condition, but an intermediate operation on
each data element is required. The following sequence of instructions (to be
executed in non-segmented mode) “'scans while numeric,” that is, a string is
searched until either an ASCII character not in the range “0" to 9" (see Appendix
C) is found, or the end of the string is reached. This involves a range check on each
character (byte) in the string. For segmented mode, Rl must be changed to a

register pair.

LD

LDA

LDB
LOOP:

CPB

IR

CPIB

JR

IR
DONE:

NONNUMERIC:

R3, #STRLEN
Rl, STRSTART
RLO,#9

@R1,#0'
ULT,NONNUMERIC
RLO, @RI, R3, ULE
NZ, NONNUMERIC
NOV, LOOP

linitialize counter!
lload start address!
llargest numeric char!
ltest char < ‘0!

ltest char < 9!

Irepeat until counter = 0!

thandle non-numeric char!

Note 1. Word register 1n nonsegmented mode, register pair in segmented mode
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CPIR

Compare, Increment and Repeat

Operation:

CPIR dst, src, r, cc dst: R
CPIRB src: IR

dst — src

AUTOINCREMENT src (by 1 if byte; by 2 if word)
rer -1

repeat until ccistrueorR = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are
unaffected.

The source register is then incremented by one if CPIRB, or by two if CPIR, thus
moving the pointer to the next element in the string. The word register specified by
“r"” (used as a counter) is then decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc-
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPIR). The source, destination, and counter
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

Flags:

C: Undefined

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Undefined

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Source
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

CPIR Rd, @Rsl, r, cc
’ ‘o 1011101 |W
CPIRB Rbd,@Rs!, r, cc | Rs #0!0100 1011101|W RRs [0100

11+9n 11+9n

0000[ Rd | cc 0000 Rd | cc

7
W
&



Example:

The following sequence of instructions (to be executed in nonsegmented mode) can
be used to search a string for an ASCII return character. The pointer to the start of
the string is set, the string length is set, the character (byte) to be searched for is
set, and then the search is accomplished. Testing the Z flag determines whether the
character was found. For segmented mode, Rl must be changed to a register pair.

LDA R1, STRSTART

LD R3, #STRLEN

LDB RLO, #% D lhex code for return is D!
CPIRB RLO, @Rl, R3, EQ

JR Z, FOUND

Note 1: Word register in nonsegmented mode, register pair 1n segmented mode.
Note 2: n=number of data elements compared.
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CPSD

Compare String and Decrement

Operation:

CPSD dst, src, r, cc dst: IR

CPSDB src: IR

dst — src

AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
rer—1

This instruction can be used to compare two strings of data until the specified condi-
tion is true. The contents of the location addressed by the source register are com-
pared to (subtracted from) the contents of the location addressed by the destination
reqgister. The Z flag is set if the condition code specified by “cc”” would be set by the
comparison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition
codes. Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDB, or by
two if CPSD, thus moving the pointers to the previous elements in the strings. The
word register specified by “r” (used as a counter) is then decremented by one.

The source, destination, and count registers must be separate and non-overlapping
registers.

Flags:

C: Cleared if there is a carry from the most significant bit of the result of the com-
parison; set otherwise, indicating a “borrow”. Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set is the result of the comparison is negative; cleared otherwise

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPSD;’RO‘H(”RS'_' Tccl J1011101|w|Rs 2 0[1010 25 1011101 |W|RRs#0[1010 2
CPSDB «Rdl« Rs' r,cc 0000 r [Ra=0| cc 0000] r [ARao| ec
Example: If register R2 contains %2000, the byte at location %2000 contains %FF, register R3

contains %3000, the byte at location %3000 contains %00, and register R4 contains
1, the instruction (executed in nonsegmented mode)

CPSDB @R2, @R3, R4, UGE
will leave the Z flag set to 1 since the condition code would have been “unsigned
greater than or equal”, and the V flag will be set to 1 to indicate that the counter R4

now contains 0. R2 will contain %1FFF, and R3 will contain %2FFF. For segmented
mode, R2 and R3 must be changed to register pairs.

Note 1 Word register in nonsegmented mode, register pair in segmented mode.
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CPSDR

Compare String, Decrement and Repeat

Operation:

CPSDR dst, src,r, cc dst: IR
CPSDRB src: IR

dst — src
AUTODECREMENT dst and src (by 1 if byte; by 2 if word)

rer-1
repeat until ccistrueorr = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by “cc” would be set by the compar-
ison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition codes.
Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDRB, or by
two if CPSDR, thus moving the pointers to the previous elements in the strings. The
word register specified by "r” (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is met or the result of decre-
menting r is zero. This instruction can compare strings from 1 to 65536 bytes or from
1 to 32768 words long (the value of r must not be greater than 32768 for CPSDR).
The source, destination, and count registers must be separate and non-overlapping
registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven more cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags:

C: Cleared if there is a carry from the most significant bit of the result of the com-
parison; set otherwise, indicating a “borrow”. Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers

Z: Set if the conditon code generated by the comparison matches cc; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

CPSDR@Rd!,@Rs!,r,cc
CPSDRB@Rd!,@Rs!,r,cc

1011101 |W| Re®o [1110

0000] r | Raw| cc

11+14n

1011101 |W|RRs%0 [1110

0000 r [RRaso| cc

11+14n

6-37



Example:

If the words from location %1000 to %1006 contain the values 0, 2, 4, and 6, the
words from location %2000 to %2006 contain the values O, 1, 1, O, register R13 con-
tains %1006, register R14 contains 962006, and register RO contains 4, the instruc-
tion (executed in nonsegmented mode)

CPSDR @RIl3, @R14, RO, EQ

leaves the Z flag set to 1 since the condition code would have been “equal” (loca-
tions %1000 and %2000 both contain the value 0). The V flag will be set to 1 indi-
cating RO was decremented to 0. R13 will contain %0FFE, R14 will contain %IFFE,
and RO will contain 0. For segmented mode, R13 and R14 must be changed to
register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n=number of data elements compared.
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CPSI

Compare String and Increment

CPSI dst, src, 1, cc dst: IR
CPSIB src: IR
Operation: dst — src
AUTOINCREMENT dst and src (by 1 1f byte, by 2 1f word)
rer—1
This instruction can be used to compare two strings of data until the specified condi-
tion 1s true. The contents of the location addressed by the source register are com-
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag 1s set 1f the condition code specified by “cc”” would be set by the
comparison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition codes.
Both operands are unaffected.
The source and destination registers are then incremented by one if CPSIB, or by
two if CPSI, thus moving the pointers to the next elements 1n the strings. The word
register specified by "r"’ (used as a counter) 1s then decremented by one.
The source, destination, and count registers must be separate and non-overlapping registers.
Flags: C: Cleared if there is a carry from the most signiticant bit of the result of the comparison;
set otherwise, indicating a “borrow”. Thus this flag will be set 1if the destination 1s less
than the source when viewed as unsigned integers
Z: Set 1f the condition code generated by the comp arison matches cc; cleared otherwise
S: Set 1s the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r 1s zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPSI @Rdl,@Rsl,r,cc 1011101|w|Rs 0[0010 1011101 w|RRs=0[0010
CPSIB @Rd!,@Rs!,r,cc 25 25
0000[ r [Raso| cc 0000] r [RRazo| cc
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Example:

This instruction can be used 1n a “loop” of instructions which compares two strings
until the specified condition 1s true, but where an intermediate operation on each
data element is required. The following sequence of instructions, to be executed in
nonsegmented mode, attempts to match a given source string to the destination
string which is known to contain all upper-case characters. The match should suc-
ceed even if the source string contains some lower-case characters. This involves a
forced conversion of the source string to upper-case (only ASCII alphabetic letters
are assumed, see Appendix C) by resetting bit 5 of each character (byte) to 0 before
comparison.

LDA R1, SRCSTART lload start addresses!
LDA R2, DSTSTART
LD R3, #STRLEN hinitialize counter!
LOOP:
RESB @R1,#5 lforce upper-case!
CPSIB @R1,@R2, R3, NE lcompare until not equal!
JR Z, NOTEQUAL lexit loop if match fails!
JR NOV, LOOP Irepeat until counter = 0!
DONE: . Imatch succeeds!
NOTEQUAL: . Imatch fails!

In segmented mode, Rl and R2 must both be register pairs.

Note I Word register in nonsegmented mode, register pair in segmented mode

o

o



CPSIR

Compare String, Increment and Repeat

CPSIR dst,src,r,cc dst: IR
CPSIRB src: IR
Operation: dst — src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
rer-1

repeat until ccistrueorr = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flaqg is set if the condition code specified by “cc” would be set by the com-
parison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition
codes. Both operands are unaffected. The source and destination registers are then
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pointers to the
next elements in the strings. The word register specified by "'r"” (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is met or the result of decrementing r is zero. This instruction can compare strings
from 1 to 65536 bytes or from 1 to 32768 words long (the value of r must not be
greater than 32768 for CPSIR). The source, destination, and counter registers must

be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags: C: Cleared if there is a carry from the most significant bit of the result of the last
comparison made; set otherwise, indicating a “borrow”. Thus this flag will be set
if the last destination element is less than the last source element when viewed as
unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

: Set if the result of the last comparison made is negative; cleared otherwise

: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode

Addressing | Assembler Language

Mode Syntax Instruction Format Cycles? Instruction Format Cycles?

IR: CPSIR @Rd!,«Rs!,r,cc 1
: o 011101 |W|Rs=0]{0110 1011101
CPSIRB @Rd!,@Rs! r,cc [wire » 11+14n [wirscolot10] |\ 4y
0000] r Jrdx0| cc 0000] r |RRa#0] cc
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Example: The CPSIR instruction can be used to compare text strings for lexicographic order.
(For most common character encodings—for example, ASCII and EBCDIC— lexico-
graphic order is the same as alphabetic order for alphabetic text strings that do not
contain blanks.)

Let S1 and S2 be text strings of lengths L1 and L2. According to lexicographic
ordering, Sl is said to be “less than"” or “before” S2 if either of the following is true:

m At the first character position at which S1 and
S2 contain different characters, the character
code for the S1 character is less than the
character code for the S2 character.
m Sl is shorter than S2 and is equal, character for
character, to an initial substring of S2.
For example, using the ASCII character code, the following strings are in ascending
lexicographic order:
A
AA
ABC
ABCD
ABD
Let us assume that the address of Sl is in RR2, the address of S2 is in RR4, the
lengths L1 and L2 of Sl and S2 are in RO and R1, and the shorter of L1 and L2 is in
R6. The the following sequence of instructions will determine whether S1 is less than
S2 in lexicographic order:
CPSIRB @RR2, @RR4, R6, NE IScan to first unequal character!
IThe following flags settings are possible:
Z =0,V = 1: Strings are equal through L1
character (Z = 0, V = 0 cannot occur).
Z =1,V = Oor l: A character position was
found at which the strings are unequal.
C = 1(S = 0or 1): The character in the RR2
string was less (viewed as numbers from 0 to
255, not as numbers from -128 to +127).
C = 0(S = Oor l): The character in the RR2
string was not less!

JR Z,CHAR_COMPARE IIf Z=1, compare the characters!
CP RO,R1 IOtherwise, compare string lengths!

JRLT, S1__IS__LESS
JR S1_NOT__LESS

CHAR_COMPARE:
JR ULT, S1_IS__LESS IULT is another name for C=1!

S1_NOT LESS:

S1_IS__LESS:




DAB

Decimal Adjust

DAB dst dst: R

Operation: dst « DA dst

The destination byte is adjusted to form two 4-bit BCD digits following a binary addi-
tion or subtraction operation on two BCD encoded bytes. For addition

(ADDB, ADCB) or subtraction (SUBB, SBCB), the following table indicates the
operation performed:

Carry Bits 4-7 H Flag Bits 0-3 Number Carry
Before Value Before Value Added After

Instruction DAB (Hex) DAB (Hex) To Byte DAB
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
ADDB 0 0-9 1 0-3 06 0
ADCB 0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
SUBB 0 0-9 0 0-9 00 0
SBCB 0 0-8 1 6-F FA 0
1 71-F 0 0-9 A0 1
1 6F 1 6-F 9A 1

The operation is undefined if the destination byte was not the result of a binary addi-
tion or subtraction of BCD digits.

Flags: C: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: DAB Rbd [10[ 110000 ] Rod [0000] | 5 |10/ 110000 | Rbd [0000] | 5
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Example: If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic.

0001 0101
+0010 0111
0011 1100 = %3C
The DAB instruction adjusts this result so that the correct BCD representation is
obtained.
0011 1100
+0000 0110

0100 0010 = 42
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DEC

Decrement
DEC dst, src dst: R, IR, DA, X
DECB src: IM
Operation: dst - dst — src (where src = 1 to 16)
The source operand (a value from 1 to 16) is subtracted from the destination operand
and the result 1s stored in the destination. Subtraction is performed by adding the
two's complement of the source operand to the destination operand. The source
operand may be omitted from the assembly language statement and defaults to the
value 1.
The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from 0 to
15, which corresponds to the source values 1 to 16.
Flags: C: Unatfected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs,
and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: DEC Rd, #n
' 10{10101/W| Rd -1 4 010 Rd -1 4
peran | e e ] [l 5 [2=7]
IR: DEC «Rd!, #n
' 00{10101|W| Rd%0 - 1 00/10101/W|RRd#0| n - 1 1
prcens | [fewiWmeeolaer] | v | [elmeimels=]
DA: DEC address, #n 01[10101]wfoo00]n—1 i o1f10101[wloooofn-1f| .
DECB address, #n address ss oI segment offset
01]10101|w[0000[n -1
sL[1] segment 0000 0000 16
offset
X: DEC addr(Rd), #n 01[10101|w| Rd=0[n - 1 01]10101|w| Rd=0]n -1
DECB addr(Rd), #n 14 SS 14
address 0| segment offset
01[10101|W[ Rd=0] n -1
SL{1] segment |0000 0000 17
offset
Example: If register R10 contains %0024, the statement

DEC RIO
will leave the value %0029 in R10.

Note 1* Word register in nonsegmented mode, register pair in segmented mode.
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DI Privileged Instruction

Disable Interrupt
DI Int Int: VI, NVI
Operation: If instruction (0) = O then NVI < 0

If instruction (1) = O then VI « 0

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI)
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor-
responding bit in the instruction 1s zero, thus disabling the appropriate type of inter-
rupt. If the corresponding bit in the instruction is one, the control bit will not be
affected. All other bits in the FCW are not affected. There may be one or two
operands in the assembly language statement, in either order.

Flags: No flags affected.
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
DI int [o1111100 [000000[¥]}] 7 [o1111100 [000000[V]}] 7
Example: If the NVI and VI control bits are set (1) in the FCW, the instruction:

DI VI

will leave the NVI control bit in the FCW set (1) and will leave the VI control bit in
the FCW cleared (0).




DIV
Divide

Operation:

DIV dst, src dst: R
DIVL src: R, IM, IR, DA, X

Word: (dst is register pair, src is word):
dst (0:31) is divided by src (0:15)
(dst (0:31) = quotient x src (0:15) + remainder)
dst (0:15) < quotient
dst (16:31) < remainder
Long: (dst register quadruple, src is long word or register pair):
dst (0:63) is divided by src (0:31)
(dst (0:63) = quotient x src (0:31) + remainder)
dst (0:31) < quotient
dst (32:63) < remainder

The destination operand (dividend) is divided by the source operand (divisor), the
quotient is stored in the low-order half of the destination and the remainder 1s stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, two's complement integers and division is per-
formed so that the remainder is of the same sign as the dividend. For DIV, the
destination is a reqister pair and the source 1s a word value; for DIVL, the destina-
tion is a register quadruple and the source is a long word value.

There a four possible outcomes of the Divide instruction, depending on the division,
and the resulting quotent:

CASE 1. If the quotient is within the range -215 to 215 — 1 inclusive for DIV or
-281 to 231 — ] inclusive for DIVL, then the quotient and remainder are left in the
destination register as defined above, the overflow and carry flags are cleared to
zero, and the sign and zero flags are set according to the value of the quotient.

CASE 2. 1If the divisor 1s zero, the destination register remains unchanged, the
overflow and zero flags are set to one and the carry and sign flags are cleared to
zero.

CASE 3. If the guotient is outside the range -216 to 216 — 1 inclusive for DIV or -232
to 282 — 1 1nclusive for DIVL, the destination register contains an undefined value,
the overflow flag is set to one, the carry and zero flags are cleared to zero, and the
sign flag 1s undefined.

CASE 4. If the quotient 1s inside the range of case 3 but outside the range of case
1, then all but the sign bit of the quotient and all of the remainder are left in the
destination reqgister, the overflow and carry flags are set to one, and the sign and
zero flags are set according to the value of the quotient. In this case, the sign flag
can be replicated by subsequent instruction into the high-order half of the destina-
tion to produce the two's complement representation of the quotient in the same
precision as the original dividend.

Flags:

C: Set if V is set and the quotient lies in the range from -216 to 216 — ] inclusive for
DIV or in the range from -232 to 232 -1 inclusive for DIVL; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise

S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is
negative, cleared if the quotient is non-negative.

V: Set if the divisor is zero or if the computed quotient lies outside the range from
-215 to0 215~ 1 inclusive for DIV or outside range from -23! to 23! -1 inclusive
for DIVL; cleared otherwise

D: Unaffected

H: Unaffected
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Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles2
R: DIV RRd, Rs [1o]o11011] rs [ RRa] | 107 [1o[o11011] Rs | RRd || 107
DIVL RQd, RRs [ro]o11010] RRs | Rad ] 744 [10]011010] RRs [ Rad || 744
IM: DIV RRd, #data 00{ 011011 [0000] RRd 00/011011]0000] RRd
107 107
data data
DIVL RQd, #data 00[ 011010 /0000| Rad 00[011010]0000| Rad
31 data (high) 16 744 31 data (high) 16 744
15 data (low) 0 15 data (low) 0
IR: DIV RRd, @Rs! [oo 011011 Rsv0] mra | [oo[ 011011 TrRs#0 | RRa ]
107 107
DIVL RQd, @Rs! foo[ 011010 | Rs=0| Rad | loo{ 011010 [RRs+0| Raa |
DA: DIV RRd, address 01011011 [0000| RRd 01/011011]0000] RRd
108 |ss 109
address Ol segment offset
01]011011/0000] RRd
111
SL|[1] segment [0000 0000
offset
DIVL RQD, address 01011010 0000| Rod 01]011010[0000| Rad
445 SS 746
address OI segment offset
01] 011010|0000| Rad
SL[1] segment {0000 0000]f 748
offset
X: DIV RRd, addr(Rs) 01| 011011 | Rs+0| RRd 01] 011011 [ Rs#0| RRd
109 |SS 109
address 0] segment offset
01/ 011011 | Rs#0 | RRd
SL|1] segment [0000 o00of| 112
offset
DIVL RQd, addr(Rs) 01/ 011010 Rs#0| Rad 01/ 011010 Rs=0 | Rad
748 SS 746
address ol segment offset
01/ 011010 Rs=0| Rad
SL 1| segment | 0000 0000]| 7%
offset
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Example:

If register RRO (composed of word register RO and R1) contains %00000022 and
reqgister R3 contains 6, the statement

DIV RRO,R3
will leave the value %00040005 in RRO (R1 contains the quotient 5 and RO contains
the remainder 4).

Note 1 Word register in nonsegmented mode, register pair in segmented mode.

Note 2' The execution time for the instruction will be lower by 94 cycles for word, 714 for long word than in-
dicated for divide by zero and by 82 for word, 693 for long word for overflow conditions.
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DJNZ

Decrement and Jump if Not Zero

Operation:

DINZ R, dst
DBJNZ dst: RA

R

<« R -1
IfR #

0 then PC -« PC - (2 x displacement)

The register being used as a counter is decremented. If the contents of the register
are not zero after decrementing, the destination address is calculated and then
loaded into the program counter (PC). Control will then pass to the instruction
whose address is pointed to by the PC. When the register counter reaches zero, con-
trol falls through to the instruction following DINZ or DBJNZ. This instruction pro-
vides a simple method of loop control.

The relative addressing mode is calculated by doubling the displacement in the
instruction, then subtracting this value from the updated value of the PC to derive
the destination address. The updated PC value is taken to be the address of the
instruction following the DINZ or DBINZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the destination address must be in
the range -252 to 2 bytes from the start of the DINZ or DBJNZ instruction. In the
segmented mode, the PC segment number is not affected. The assembler automatic-
ally calculates the displacement by subtracting the PC value of the following instruc-
tion from the address given by the programmer and dividing the result by 2. Note
that DJNZ or DBJNZ cannot be used to transfer control in the forward direction, nor
to another segment in segmented mode operation.

Flags:

No flags affected

Destination
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

RA:

Ebsorsl I o = U o e Y

Example:

DINZ and DBINZ are typically used to control a "loop” of instructions. In this exam-
ple for nonsegmented mode, 100 bytes are moved from one buffer area to another,
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter.

LDB RHO,#100 linitalize counter!
LDA R1, SRCBUF lload start address!
LDA R2, DSTBUF
LOQP:
LDB RLO,@RI1 lload source byte!
RESB RLO,#7 Imask off sign bit!
LDB @R2, RLO Istore into destination!
INC Rl ladvance pointers!
INC R2
DBINZ RHO, LOOP Irepeat until counter = 0!
NEXT:

For segmented mode, R1 and R2 must be changed to register pairs.
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Privileged Instruction

EI

Enable Interrupts

El int Int: VI, NVI

Operation: If instruction (0) = O then NVI «- 1
If instruction (1) = 0 then V] - 1
Any combination of the Vectored Interrupt (VI) or Non-Vetored Interrupt (NVI) con-
trol bits in the Flags and Control Word (FCW) are set to one if the corresponding bit
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor-
responding bit in the instruction is one, the control bit will not be affected. All other
bits in the FCW are not affected. There may be one or two operands in the assembly
language statement, in either order.

Flags: No flags atfected

Nonsegmented Mode

Segmented Mode

Assembler Language
Syntax

Instruction Format

Cycles

Instruction Format

Cycles

Elint

Jo1111100 [000001 Y[}

J 01111100 [000001 [V]V]

Example:

If the NVI contol bt is set (1) in the FCW, and the VI control bit is clear (0), the

instruction

EI VI

will leave both the NVI and VI control bits in the FCW set (1)
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EX

Exchange
EX dst, src dst: R
EXB src: R, IR, DA, X
Operation: tmp < src (tmp is a temporary internal register)
src < dst
dst -« tmp
The contents of the source operand are exchanged with the contents of the destina-
tion operand.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: g((;g'bgs%s rofro11olw] Rrs | ma | 6 f1ol1o110]w] rs [ Ra || 6
IR: gBRgLngRsl Joo[10110{w|[Rs20 | Ra | 12 looj10110{w|Rs=0| ma || 12
DA: EX Rd, address
EXB Rba. address 01[10110/w|0000| Rd 15 |ss 01{10110{w[0000| Rd 16
address ol segment offset

01[10110{w|[0000| Rd
SL[1] segment |0000 0000f| 18

offset

X: EX Rd, addr(Rs) o1]10110/w|Rs+0 | Rd

01(10110|{W| Rs=0 Rd
EXB Rbd, addr(Rs) 16 |ss I W] Reo |

16
address 0[ segment offset

01[10110/w|Rs=0 | Ra
SL[1] segment [0000 0000][ 19
offset

Example: If register RO contains 8 and register RS contains 9, the statement
EX RO,RS
will leave the values 9 in RO and 8 in R5. The flags will be left unchanged.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
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EXTS

Extend Sign
EXTSB dst dst: R
EXTS
EXTSL
Operation: Byte
if dst (7) = O then dst (8:15) - 000...000
else dst (8:15) <« 111...111
Word
if dst (15) = O then dst (16:31) <« 000...000
else dst (16:31) « 111...111
Long
if dst (31) = O then dst (32:63) < 000...000
else dst (32:63) < 111...111
The sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTSB, the destination is a
word; for EXTS, the destination is a register pair; for EXTSL, the destination is a
register quadruple.
This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (as, for example, before a divide).
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: EXTSB Rd J1o[ 110001 | ra [0000] 1 l1o[ 110001 ] ra [o000] 11
EXTS RRD |1o] 110001 ] mRa [1010] 1 [10[ 110001 ] ARa [1010] 1"
EXTSL RQd J1o] 110001 ] Rrad [0111] 11 J1o[ 110001 ] Rada [0111] 1
Example: If register pair RR2 (composed of word reqgisters R2 and R3) contains % 12345678,

the statement

EXTS RR2
will leave the value %00005678 1n RR2 (because the sign bit of R3 was 0).
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HALT

Halt

Privileged Instruction

Operation:

HALT

The CPU operation is suspended until an interrupt or reset request is received. This
instruction is used to synchronize the Z8000 with external events, preserving its state
until an interrupt or reset request is honored. After an interrupt is serviced, the
instruction following HALT is executed. While halted, memory refresh cycles will
still occur, and BUSREQ will be honored.

Flags:

No flags affected

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles! Instruction Format Cyclesl

HALT

[ 01111010 [ 00000000 | | 8+3n | [o1111010 | 00000000 ] | 8+3n

Note 1 Interrupts are recognized at the end of each 3-cycle period, thus n = number of periods without
interruption
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Privileged Instruction IN

(SIN)

(Special) Input
IN dst, src dst: R
INB src: IR, DA
SIN dst, src dst: R
SINB src: DA
Operation dst « src

The contents of the source operand, an Input or Special Input port, are loaded into
the destination register. IN and INB are used for Standard /O operation; SIN and
SINB are used for Special 1/O operation.

Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles Instruction Format ! Cycles
IR: IN Rd, @R
INB Rbd@i oFs fool11110{w[Rs20 | Ra | | 10 Joof11110{w|Rrso | Ra | | 10
DA: IN Rd, port
INB Rbd port 00[11101|w| Rd |010S 12 00[11101|w| Ra |o10s 12
port port
SIN Rd, port
SINB Rbd, port
Example: If register R6 contains the I/O port address %0123 and the port %0123 contains
%FF, the statement
INB RH2, @R6

will leave the value %FF 1n register RH2.

Note 1. For SIN, S = 1; otherwise S = 0
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INC

Increment

Operation:

INC dst, src
INCB

dst: R, IR, DA, X

src: IM

dst < dst + src (src = 1 to 16)

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Two's complement addition is performed. The
source operand may be omitted from the assembly language statement and defaults

to the value 1.

The value of the source field in the instruction is one less than the actual value of the

source operand . Thus, the coding in the instruction for the source ranges from

0 to 15, which corresponds to the source values 1 to 16.

Flags:

C: Unaffected

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise

D: Unaffected
H: Unaffected

Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: INC Rd,
T Colfow e [r=] | * | [ehoreow i) *
IR: INC @Rd!, #n
INCB @Rd!, #n [oo[10100{w|Rd+0]n-1] 1" loo[10100|w|RRaso[n-1]| 11
DA: INC address, #n
INCB address, #n o1[10100/w[o0000|n -1 s |ss o1f10100{wloooo[n-1]| ,,
address o] segment offset
01/10100{w/0000]n -1
SL{1] segment |0000 0000|| 16
offset
X: INC addr(Rd), #n
INCB addr(Rd), #n 01]10100{w|Rd=0[n - 1 14 |gg o1fto100]w|Raso[n-1]f .,
address Ol segment offset
01[10100|w| Rd=0]|n -1
SL|1] segment [0000 0000]| 17
offset
Example: If register RH2 contains %21, the statement

INCB RH2,#6
will leave the value %27 in RH2.

Note 1: Word register in nonsegmented mode, register pair 1n segmented mode.
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Privileged Instruction ( S:][:EB)

(Special) Input and Decrement

IND dst, src, r dst: IR
INDB src: IR
SIND
SINDB
Operation: dst <« src
AUTODECREMENT dst (by 1 byte, by 2 if word)
rer—1
This instruction is used for block input of strings of data. IND and INDB are used for
normal I/O operation; SIND and SINDB are used for special I/O operation. The con-
tents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by “r"’ (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged.
Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: IND @Rd!, @Rs, r 0011101|W[Rs 01005 0011101|W[Rs #0[1008
INDB @Rd!, @Rs, r 21 21
0000] r [raz0|1000 0000] r [ra=0[1000
SIND @Rd!, @Rs, r
SINDB @Rd!, @Rs, r
Example: In segmented mode, if register RR4 contains %602004000 (segment 2, offset %4000),

register R6 contains the I/O port address %0228, the port %0228 contains %05B9,
and register RO contains %0016, the instruction
IND @RR4, @R6, RO

will leave the value %05B9 in location %02004000, the value %02003FFE in RR4,
and the value %0015 in R0O. The V flag will be cleared. Register R6 still contains the
value %0228. In nonsegmented mode, a word register would be used instead of

RR4.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
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IN

DR
(SINDR)

Privileged Instruction

(Special) Input, Decrement and Repeat

INDR dst, src, r dst: IR
INDRB src: IR
SINDR
SINDRB
Operation: dst < src
AUTODECREMENT dst (by 1 if byte, by 2 if word)
rer — 1
repeat untilr = 0
This instruction is used for block input of strings of data. INDR and INDRB are used
for normal I/O operation; SINDR and SINDRB are used for special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "'r"’ (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for INDR or SINDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: INDR @Rd!, @Rs, r
INDRB @Rd!, @Rs, r oo11101]wiRs +0l1008| o\ 5.t [0011101[WRs 0[1008] |11 g,
SINDR @Rd!, @Rs, r 0000] r |Rd%0[{0000 oooo| r |Rd#0|0000
SINDRB @Rd!, @Rs, r
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Example: If register R1 contains %202A, register R2 contains the Special I/O address %0AFC,
and register R3 contains 8, the instruction
SINDRB @Rl, @R2, R3
will input 8 bytes from the Special I/O port 0AFC and leave them in descending
order from %202A to %2023. Register Rl will contain %2022, and R3 will contain 0.
R2 will not be affected. The V flag will be set. This example assumes nonsegmented
mode; in segmented mode, R1 would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode
Note 2: n = number of data elements transferred
Note 3 For SINDR, S = 1, otherwise S = 0.
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INI
(SINI)

Privileged Instruction

(Special) Input and Increment

INI dst, src, r dst: IR
INIB src: IR
SINI
SINIB
Operation: dst < src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
rer — 1
This instruction is used for block input of strings of data. INI, INIB are used for nor-
mal I/O operation; SINI, SINIB are used for special I/O operation. The contents of
the I/O port addressed by the source word register are loaded into the memory loca-
tion addressed by the destination register. I/O port addresses are 16 bits. The
destination register is then incremented by one if a byte instruction, or by two if a
word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r"” (used as a counter) is then decremented
by one. The address of the I/O port in the source register is unchanged.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: INI @Rd!, @Rs, r
INIB @Rd!, @Rs, r 0011101 |W|Rs #0f000s| | 0011101|W|Rs 2 0[000S 21
SINI @Rd!, @Rs, r oooo| r |Rd=0{1000 ooool r |Rd#o0[1000
SINIB @Rd!, @Rs, r
Example: In nonsegmented mode, if register R4 contains %4000, register R6 contains the I/O

port address %0229, the port %0229 contains %B9, and register RO contains %0016,
the instruction
INIB @R4, @R6, RO

will leave the value %B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented mode, R4 would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, reqgister pair in segmented mode.

6-60



Privileged Instruction INIR

(SINIR)

(Special) Input, Increment and Repeat

INIR dst, src, r dst: IR
INIRB src: IR
SINIR
SINIRB
Operation: dst < src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
rer—1
repeat untilr = 0
This instruction 1s used for block input of strings of data. INIR and INIRB are used
for Standard I/O operation; SINIR and SINIRB are used for Special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register 1s then incremented by one if a byte instruction, or by
two 1f a word 1nstruction, thus moving the pointer to the next element in the string.
The word register specified by “r"’ (used as a counter) 1s then decremented by one.
The address of the I/O port 1n the source register 1s unchanged. The entire operation
1s repeated until the result of decrementing r is zero. This instruction can input from
1 to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for
INIR or SINIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction 1s saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted. The source, destination, and count registers must be separate and
non-overlapping registers.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format3  (Cycles? Instruction Format3  |Cycles?
IR: INIR @Rd!, @Rs, r
INIRB @Rd!, @Rs, r 0011101|w[Rs #0[000s 11+10n| [0011101|W|Rs x0[000S] |11 10n
SINIR @Rd!, @Rs, r oooo[ r |Rd#0{0000 oooo| r |RRd%0[0000
SINIRB @Rd!, @Rs, r
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Example:

In nonsegmented mode, if register Rl contains %2023, register R2 contains the /O
port address %0551, and register R3 contains 8, the statement

INIRB @RI, @R2, R3

will input 8 bytes from port %0551 and leave them in ascending order from %2023
to %202A. Register Rl will contain %202B, and R3 will contain 0. R2 will not be
affected. The V flag will be set. In segmented mode, a register pair must be used
instead of R1.

Note ] Word register 1n nonsegmented mode, register pair in segmented mode
Note 2 n = number of data elements transferred

Note 3 For SINIR, S = 1, otherwise S = 0
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Privileged Instruction

IRET

Interrupt Return

Operation:

IRET

Nonsegmented Segmented

SP <« SP + 2 (Pop “identifier”) SP <« SP + 2 (Pop “1dentifier”’)
PS - @gp PS -« @Sp

SP< SP + 4 SP<+ SP + 6

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by an interrupt or trap (including a System Call instruction).
First, the “identifier” word associated with the interrupt or trap is popped from the
system stack and discarded. Then the contents of the location addressed by the
system stack pointer are popped into the program status (PS), loading the Flags and
Control Word (FCW) and the program counter (PC). The new value of the FCW is
not effective until the next instruction, so that the status pins will not be affected by
the new control bits until after the IRET instruction execution is completed. The next
instruction executed 1s that addressed by the new contents of the PC. The system
stack pointer (R15 if nonsegmented, or RR14 if segmented) is used to access
memory. When using a Z8001 or Z8003, the operation of IRET in nonsegmented
mode is undefined. A Z8001/3 must be in segmented mode when an IRET instruction
1s performed.

Flags:

C: Loaded from system stack
Z: Loaded from system stack
S: Loaded from system stack
P/V: Loaded from system stack
D: Loaded from system stack
H: Loaded from system stack

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

IRET

[o01111011 [ 00000000 | 13 [ 01111011 [ 00000000 | 16

Example:

In the nonsegmented Z8002 version, if the program counter contains %2550, the
system stack pointer (R15) contains %3000, and locations %3000, %3002 and %3004
contain %7F03, a saved FCW value, and %1004, respectively, the instruction

IRET

will leave the value %3006 in the system stack pointer and the program counter will
contain %1004, the address of the next instruction to be executed. The program
status will be determined by the saved FCW value.
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JP

Jump
JP cc, dst dst: IR, DA, X
Operation: If cc is satisfied, then PC <« dst
A conditional jump transfers program control to the destination address if the condi-
tion specified by “cc” 1s satisfied by the flags i1n the FCW. See section 6.6 for a list
of condition codes. If the condition is satishied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JP instruction is
executed.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: JP ce, @Rd! loo[o11110[Raz0| cc | | 1017 loofo11110 [RRa=0] cc || 1517
DA: JP cc, address o1|01111oloooo| o 011011110 oooo| "
7517 SS 8/8
address o] segment offset
01011110 [0000| cc
SL[1] segment [0000 00o00|| 10110
offset
X: JP cc, addr(Rd)
01[011110 | Rd#0| cc o |ss 01[011110 [Rd=0| ec a8
address Ol segment offset
01[011110 [Rd=0| cc
SL 11 segment {0000 0o0o0Of| 11/11
offset
Example: If the carry flag is set, the statement

JP C, %1520

replaces the contents of the program counter with %1520, thus transferring control

to that location.

Note 1 Word register in nonsegmented mode, reqister pair in segmented mode

Note 2. The two values correspond to jump taken and jump not taken
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JR

Jump Relative

Operation:

JR cc, dst dst: RA

if cc is satistied then PC <= PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi-
tion specified by “cc” is satisfied by the flags in the FCW. See Section 6.6 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JR instruction is
executed. The destination address is calculated by doubling the displacement in the
instruction, then adding this value to the updated value of the PC. The updated PC
value is taken to be the address of the instruction following the JR instruction, while
the displacement is an 8-bit signed value in the range —128 to +127. Thus, the
destination address must be in the range —254 to +256 bytes from the start of the JR
instruction. In the segmented mode, the PC segment number is not affected.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

Flags:

No flags affected

Destination
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

RA:

JR cc, address

ITI 1 0| cc [ displacememJ 6 l1 11 0[ cc ] displacement I 6

Example:

If the result of the last arithmetic operation executed is negative, the next four
instructions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR ML, $ +14
If the S flag is not set, execution continues with the instruction following the JR.
A byte-saving form of a jump to the label LAB 1s

JR LAB

where LAB must be within the allowed range. The condition code is “blank” in this
case, and indicates that the jump is always taken.
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LD
Load

LD dst, src dst: R
LDB src: R, IR, DA, X, BA, BX
LDL
or
dst: IR, DA, X, BA, BX
src: R
or
dst: R, IR, DA, X
src: IM
Operation: dst <« src
The contents of the source are loaded into the destination. The contents of the source
are not affected.
There are three versions of the Load instruction: Load into a register, load into
memory and load an immediate value.
Flags: No flags affected

Load Register

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: IﬂgBRgiog,sts l10]10000fw| rs | Ra | 3 1o]10000lw| rs | ra || 3
LDL RRd, RRs [1o]o10100] rRs [ RRa | 5 [toJo10100] RRs [ RRa ]| &
IR: thRgiﬁRéle] [oof1o0oo|w]Rs=0] Rra | 7 loof1o000| wrRs=0| ra ]| 7
LDL RRd, @Rs! [oo] 010100 Rs+0] Rra | 1 fooJ 10100 rRs <] RRa || 11
DA: %gé‘géﬁfgf{m 01{10000{w|0000| Ra s |ss 01]10000/w|oooo| Rd 10
address 0| segment offset
01/10000|w|0000] Rd
SL 1| segment | 00000000 12
offset
LDL RRd, address 01/ 010100 [0000| RRd 01/ 010100 |0000| RRd
12 SS 13
address 0] segment offset
01/ 010100 [0000| RRd
sL 1| segment | 0000 0000 15
offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.




Load Register (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: LD Rd, addr(Rs)
. 01/10000|W| Rs#0 | Rd
LDB Rbd. addr(Rs) T I I s = | 10 ss o1|1oooo|w Rs#o] Rd 10
address 0| segment offset
01 1oooo|w Rs#0 [ Rd
SL|1] segment [ 0000 0000 13
offset
LDL RRd, addr(Rs) 01] 010100 [Rs#0] RRd 01[ 010100 [ Rs=0 [ RRa
13 |ss 13
address 0[ segment offset
01] 010100 | Rs#0 | RRd
SL|1] segment | 00000000 16
oftset
BA: LD Rd, Rs!(#disp)
: w{ R 11000|W|RRs#0
LDB Rbdl, Rt (fehep) 00{11000|W|Rs=0| Rd 1 00[11000|W|RRs+0| RRd 1
displacement displacement
LDL RRd, Rs!(#disp) 00[110101 [ Rs#0] RRd - 00[ 110101 [RRs+0] RRd 17
displacement displacement
BX: LD Rd, Rs!(Rx)
IDB Rbd. Fs: (Rx) o1|11ooo|w Rs:ol Rd 1 o1i11ooo|w RRS*O] Rd 1a
oooo| Rx {0000 0000 oooo] Rx {0000 0000
LDL RRd, Rs!(Rx) 0111010 1] Rs=0 | RRd 1 01[11010] 1|rRs 0| RRd .
0000 Rx [0000 0000 0000] Rx 0000 0000
Load Memory
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LD @Rd!, Rs 00{10111|W[Rd = 0| Rs
, 8 00{10111/W|RRd#0| Rs 8
word e | [rofierii[W]ezo] w ] oo [omere ]
LDL @Rd!, RRs lool 011101 [Ra 0| RRs | 1 JooJo11101[RRa=0| RRs || 11
DA: LD address, Rs
. 01{10111|W|0000| R
DB aioss, Rbs 01[10111]w[o000| Rs a |ss [ | | ms 12
address 0| segment offset
01[10111]w[ooo0] rs
SL[1] segment [ 0000 0000 14
offset

Note 1

Word register in nonsegmented mode, reqister pair in segmented mode
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Load Memory (Continued)

Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: LDL address, RRs
01/011101 [0000]| RRs a |ss 01011101 [0000] RRs s
address Ol segment offset
01]011101 [0000] RRs
SL 1' segment ( 0000 0000 17
offset
X: LD addr(Rd), Rs
. 10111]w w
LDB adde (R, Fbs 0110111|w|Rd=0| Rs 2 |ss 01[10111|w|Rd=0] Rs 12
address 0] segment offset
01[10111|w| Rd=0| Rs
SL[1] segment | 0000 0000 15
offset
LDL addr(Rd), RRs 01[ 011101 Rd=0] RRs 5 |ss 01]011101 [ Rd»0] RRs s
address 0] segment offset
01] 011101 | Rd+0 | RRs
SL 11 segment | 0000 0000 18
offset
BA: LD Rd!(#disp), Rs 0
LDB Ral ey, Hos 00[11001|w|Rd=0 | Rs 14 00[11001|w|RRd=0| Rs 14
displacement displacement
LDL Rd!(#chsp). RRs 00[110111 [ Rd=0| RRs 17 00110111 [RRd+0| RRs 17
displacement displacement
BX: LD Rd!(Rx), Rs
' 1 1
LDB Rl (i), Rbe 01[11001/w| Rd=0 | Rs 18 01]11001|w[RRd+0| Rs 1
0000] Rrx |o00000000 0000] Rx [o0000 0000
LDL Rd!(Rx), RRs 01110111 | Rd=0| RRs 01] 110111 [RRd=0| RRs
17 17

0000] Rx [o00000000

0000] R« [o00000000

Note 1* Word register in nonsegmented mode, reqister pair 1n segmented mode
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Load Immediate Value

Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: LD Rd, #data 00100001 [0000| Rd ; 00{ 100001 [0000] Rd 7
data data
2
LDB Rbd, #data 00| 100000 [0000| Rbd ; 00[ 100000 [0c00] Rbd ;
data data data data
[1100] Rd | data | 5 [1100] Ra |  aata ]| 5
LDL RRd, #data 0o/ 010100 [0000] RRd 00[ 010100 |0000] RRd
31 data (high) 16 11 31 data (high) 16 11
15 data (low) 0 15 data (low) 0
IR: LD @Rd!, #data 00/ 001101 [Rd=0[0101 » 00/ 001101 |RRd#0[ 0101 »
data data
LDB @Rd!, fdata 00[001100 [Ra=0[0101 “ 00[001100 [RRa+0[0101 »
data data data data
DA: LD address, #data 01] 001101] 00000101 01{001101[0000[0101
address 14 SS o| segment offset 15
data data
01| 001101|0000[0101
1| segment {0000 0000
SL 17
offset
data
LDB address, fdata (01{ 001100 0000[0101 o1|oo11oo 0000[0101
address 14 SS o] segment offset 15
data | data data data
01/ 001100 [0000]0101
1 segment {0000 0000
sl 17

offset

data [ data

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: Although two formats exist for "LDB R, IM”, the assembler always uses the short format. In this case, the
“src field” in the instruction format encoding contains the source operand.
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Load Immediate Value (Continued)

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: LD addr(Rd), #data 01] 001101 | Rd0 0101 01{ 001101 [ Rd+0 /0101
address 15 SS 0| segment offset 15
data data
o1| 001101 | Rd=0 |o101
sL 1{ segment (0000 0000 18
offset
data
LDB addr(Rd), #data 01/ 001100 | Rd#0 0101 01{001100| Rd+0 0101
address 15 SS 0[ segment offset 15
data | data data data
01{0011 00| Rd+0 0101
sL 1| segment 0000 0000 18
offset
data l data
Example: Several examples of the use of the Load instruction are treated in detail in Chapter 5

under addressing modes.
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LDA
Load Address

LDA dst, src dst: R

src: DA, X, BA, BX

Operation: dst <« address (src)
The address of the source operand 1s computed and loaded into the destination. The
contents of the source are not affected. The address computation follows the rules for
address arithmetic. The destination is a word register 1n nonsegmented mode, and a
register pair in segmented mode.
In segmented mode, the address loaded into the destination has an undefined value
in all reserved bits (bits 16-23 and bit 31). However, this address may be used by
subsequent instructions in the indirect, base, or base-index addressing modes
without any modification to the reserved buts.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: LDA Rdl, address 01/110110]0000] Rd 01110110 0000] RRd
12 SS 13
address OI segment offset
01[110110 0000/ RRd
SL 1[ segment {0000 0000 15
offset
X: LDA Rd!, addr(Rs)
' 0110 Rd 01/110110 [ Rs#0 | RRd
01111 [Rs#OI 13 ss l S # l 13
address OI segment offset
01110110 | Rs=0 | RRd
SL 1] segment | 0000 0000 16
offset
BA: LDA Rd!, Rs! (#disp) 00110100 | Rs#0| Rd s 00110100 [RRs#0| RRd s
displacement displacement
BX: LDA Rdl, Rs! (Rx) 01110100 [Rs=0| Rd .5 01110100 |[RRs#0| RRd 15
0000 Rx [0000 0000 0000( Rx [0000 0000

Note 1: Word register in nonsegmented mode, register pair 1n segmented mode.
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Examples:

LDA R4.STRUCT lin nonsegmented mode, register R4 is loaded!
Iwith the nonsegmented address of the location!
Inamed STRUCT!

LDA RR2, <<3>> 8(R4) lin segmented mode, 1if index register R4!
Icontains %20, then register RR2 is loaded!
lwith the segmented address (segment 3, offset %28)!
LDA RR2,RR4(#8) lin segmented mode, if base register RR4!
Icontains %01000020, then register RR2 is loaded!
Iwith the segment address << 1 >> %,28!
I(segment 1, offset %28)!

Note 1| Word reqister in nonsegmented mode, register pair in segmented mode.
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LDAR

Load Address Relative

Operation:

LDAR dst, src dst: R
src: RA

dst < address (src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The destination is a word register in
nonsegmented mode, and a register pair in segmented mode. In segmented mode,
the address loaded into the destination has all “reserved’” bits (bits 16-23 and bit 31)
cleared to zero.

The relative addressing mode 1s calculated by adding the displacement in the
instruction to the updated value of the program counter (PC) to derive the address.
The updated PC value is taken to be the address of the instruction following the
LDAR instruction, while the displacement is a 16-bit signed value in the range
-32768 to +32767. The addition is performed following the rules of address
arithmetic, with no modifications to the segment number i1n segmented mode. Thus
1n segmented mode, the source operand must be 1n the same segment as the LDAR
instruction.

The assembler automatically calculates the displacement by subtracting the PC value
of the following nstruction from the address given by the programmer.

Flags:

No flags affected

Source
Addressing
Mode

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

RA:

LDAR Rd!, address

00110100 [0000| Rd 00110100 [0000| RRd
15

displacement displacement

15

Example:

LDAR R2, TABLE lin nonsegmented mode, register R2 is loaded!
lwith the address of TABLE!

LDAR RR4, TABLE Iin segmented mode, register pair RR4 1s!
lloaded with the segmented address of TABLE,!
Iwhich must be in the same segment as the program!

Note 1. Word reg:ster in nonsegmented mode, register pair in segmented mode
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LDCTL Privileged Instruction
Load Control

LDCTL dst, src dst: CTLR
src: R
or
dst: R
src: CTLR
Operation: dst < src

This instruction loads the contents of a general purpose register into a control
register, or loads the contents of a control register into a general-purpose register.
The control register may be one of the following CPU registers:

FCW Flag and Control Word

REFRESH Refresh Control

PSAPSEG Program Status Area Pointer - segment number
PSAPOFF Program Status Area Pointer - offset

NSPSEG Normal Stack Pointer - segment number
NSPOFF Normal Stack Pointer - offset

The operation of each of the variants of the instruction is detailed below. The ones
which load data into a control register are described first, followed by the variants
which load data from a control register into a general purpose register. Whenever
bits are marked reserved, the corresponding bit in the source register must be either
0 or the value returned by a previous load from the same control register. For com-
patibility with future CPUs, programs should not assume that memory copies of con-
trol registers contain Os, nor should they store data in reserved fields of memory
copies of control registers.

Load Into Control Register
LDCTL FCW, Rs

Operation: FCW (2:7) = Rs (2:7)
FCW (11:15) - Rs (11:15)

e
FCW: [sec|siNera vi lnv@&g dclz|slpv o] Eﬁ%’»ﬁ

reserved

LDCTL REFRESH, Rs

Operation: REFRESH (1:15) - Rs (1:15)
Rs:
REFRESH:

151413121110987 6 5 4 3 210

IHHHHHHH

rate counter @“ reserved

o\
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LDCTL NSPSEG, Rs

Operation: NSPSEG (0:15) - Rs (0:15)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
HS: LLI¢J¢l¢|¢L¢ILI¢I¢L¢LL1¢ILI$I¢IL|
NSPSEG: | o ooy
In segmented mode, the NSPSEG register is the normal mode R14 and contains the
segment number of the normal mode processor stack pointer which is otherwise
inaccessible for system mode.
In nonsegmented mode, R14 is not used as part of the normal processor stack
pointer. This instruction may not be used in nonsegmented mode.
LDCTL NSPOFF, Rs
NSP, Rs
Operation: NSPOFF (0:15) - Rs (0:15)
15 141312 11 10 9 8 7 6 5 4 3 2 1 0
RS: L 1 L 1 1 1 - L -l  — L 1 L 1 L I
*NSPOFF: [ L | L Il 1 L 1 1 | 1 L 1 1 L I
*NSP in nonsegmented mode
In segmented mode, the NSPOFF reqgister is R15 in normal mode and contains the
offset part of the normal processor stack pointer. In nonsegmented mode, R15 1s the
entire normal processor stack pointer.
In nonsegmented mode, the mnemonic “"NSP” should be used in the assembly
language statement, and indicates the same control register as the mnemonic
“NSPOFF".
LDCTL PSAPSEG, Rs
Operation: PSAPSEG (8:14) < Rs (8:14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs:

1 L Il Il 1 | L

“TTIIT] ¥

PSAPSEG: ki segment number

reserved

The PSAPSEG register may not be used in nonsegmented operation. In
segmented Z8000s, care must be exercised when changing the two PSAP register
values so that an interrupt occurring between the changing of PSAPSEG and
PSAPOFF 1s handled correctly. This is typically accomplished by first disabling
interrupts before changing PSAPSEG and PSAPOFF.
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Operation:

LDCTL PSAPOFF, Rs
PSAP, Rs

PSAPOFF (8:15) - Rs (8:15)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L]
EREETEN

*PSAPOFF: | offset (upper byte)

*PSAP in nonsegmented mode

In the nonsegmented Z8000s, the mnemonic "PSAP" should be used in the assembly
language statement and indicates the same control register as the mnemonic
“PSAPOFF”. In the segmented Z8000s, care must be exercised when changing the
two PSAP register values so that an interrupt occurring between the changing of
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first
disabling interrupts before changing PSAPSEG and PSAPOFF. The low order byte
of PSAPOFF should be 0.

Operation:

Load From Control Register
LDCTL Rd, FCW

Rd (2:7) < FCW (2:7)

Rd (11:15) == FCW (11:15) (Z8001 only)
Rd (11:14) «== FCW (11:14) (Z8002 only)
Rd (0:1) < UNDEFINED

Rd (8:10) <= UNDEFINED

Rd (15) - 0 (Z8002 only)

15 14 1312 11 10 9 8 7 6 5 4 3 2

FCW: Lssjsmlemlvn |Nv1}‘ I c z | s 1PIV| D l H 1 o]

HH¢I HHH

IR

Rd: |

[} defined )

Operation:

LDCTL Rd, REFRESH

Rd (1:8) < REFRESH (1:8)
Rd (0) «- UNDEFINED
Rd (9:15) «- UNDEFINED

151413121110987654 3210

REFRESH: | re| rate counter

HHHH

Rd: [ updotines

o

o



Operation:

LDCTL Rd, PSAPSEG

Rd (8:14) < PSAPSEG (8:14)
Rd (0:7) < UNDEFINED
Rd (15) < UNDEFINED

15 14 13 12 11 10 9 8

PSAPSEG: } segment number

7

‘VV!V‘V!!
Ra:| | . ] |
L }

This instruction may not be used in nonsegmented mode.

Operation:

LDCTL Rd, PSAPOFF
Rd, PSAP

Rd (8:15) < PSAPOFF (8:15)
Rd (0:7) <= UNDEFINED

15 14 13 12 11 10 9 8

*PSAPOFF: ‘ offset (upper byte)

rzasaany

R undefined 1

*PSAP in nonsegmented mode

In nonsegmented mode, the mnemonic PSAP should be used in the assembly
language statement, and 1t indicates the same control register as the mnemonic

PSAPOFF.

Operation:

LDCTL Rd, NSPSEG

Rd (0:15) «- NSPSEG (0:15)

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1

j:u‘wu'mw'mw',

SEG

.
!
.

Rd

This 1instruction 1s not available in nonsegmented. mode.
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LDCTL Rd, NSPOFF

Rd, NSP
Operation: Rd (0:15) -« NSPOFF (0:15)
15 14131211 10 9 8 7 6 5 4 3 2 1 0
NSPOFF:( o]
Rd: I I 1 I L 1 1 L L L 1 L | L — l
*NSP in nonsegmented mode
In nonsegmented mode, the mnemonic NSP should be used in the assembly
language statement, and 1t indicates the same control register as the mnemonic
NSPOFF.
Flags: No flags affected, except when the destination 1s the Flag and Control Word (LDCTL
FCW, Rs), in which case all the flags are loaded from the source register.
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
LDCTL  FCW,Rs | 57711101 | rs |1010] 7 [o1111101 ] mrs [1010] 7
LDCTL REFRESH, Rs fot111101] Rs [1011] 7 [o1111101 | ms [1011] 7
LDCTL PSAPSEG, Rs [oirivior] m [1i00] | 7
LDCTL PSAPOFF, R
PoAP Ro s [o1111101 ] ms [1101] 7 Jot111101] Rrs [1101] 7
LDCTL NSPSEG, Rs [o1111101 ] rs [1110] 7
LDCTL NSPOFF, Rs
NP, B [o1111101 ] Bs [1111] 7 Jot111101 | Rs [1111] 7
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
LDCTL Rd, FCW fo1111101] Ra [o010] 7 [o1111101 ] Rra [o010] 7
LDCTL Rd, REFRESH fo1111101 ] Ra Jo011] 7 [o1111101 | Ra [o0011] 7
LDCTL Rd, PSAPSEG [o1111101 ] ~a [o100] 7
LDCTL Rd, PSAPOFF
LDOTL Rd DSAP Jot111101 ] Ra ]o1o1| 7 Jo1111101 ] ra |0101] 7
LDCTL Rd, NSPSEG [o1111101 | Rra |0110] 7
LDCTL Rd, NSPOFF Jot111101] Ra lo111] 7 [or111101] R o111} 7

Rd, NSP




LDCTLB

Operation:

Load Control Byte
LDCTLB dst, src dst: FLAGS
src: R
or
dst: R
src: FLAGS
dst - src

This instruction 1s used to load the FLAGS requster or to transfer its contents into a
general-purpose register. Note that this 1s not a privileged instruction.

Load Into FLAGS Register

LDCTLB FLAGS, Rbs

FLAGS (2:7) - src (2:7)

The contents of the source (a byte register) are loaded into the FLAGS register. The
lower two bats of the FLAGS register and the entire source register are unatfected.

Rbs: I ) I 0 OJ

FLAGS: [c]z[slpv[o[n] ]

reserved

Load From FLAGS Register

LDCTLB Rbd, FLAGS

dst (2:7) <= FLAGS (2:7)
dst (0:1) == 0

The contents of the upper six bits of the FLAGS register are loaded into the destina-
tion (a byte register). The lower two bits of the destination register are cleared to
zero. The FLAGS regster 1s unaffected.

FLAGS: F;T:IZIP;‘V);I:W' o]
YYYYY ¢|

Rbd: [

o]

Flags:

When the FLAGS regster 1s the destination, all the flags are loaded from the
source. When the FLAGS register 1s the source, none of the flags are affected.
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Assembler Language

Nonsegmented Mode

Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles
LDCTLB FLAGS, Rbs | 5001100 | Rbs [1001] 7 [ 10001100 | Rbs [1001] 7
LDCTLB Rbd, FLAGS | 15001100 | Rba ]0001] 7 | 10001100 | Rbd [0001] 7
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LDD

Load and Decrement

LDD dst, src, r dst: IR
LDDB src: IR
Operation: dst < src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
rer -1
This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDB, or by two if LDD, thus moving the pointers to the previous elements in
the strings. The word register specified by “r"’ (used as a counter) is then decrement-
ed by one. The source, destination, and counter registers must be sep arate and non-
overlapping registers.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDD @Rs!, «Rd!, r 1011101|w|Rs 20/ 1001 1011101|w|RRs#0[ 1001
LDDB @Rs!, ¢Rd!, r * 20 20
oooo| r |Rd=0{1000 0000] r [rra=o[1000
Example: In nonsegmented mode, if register Rl contains %2024, register R2 contains %404A,

the word at location %404A contains % FFFF, and register R3 contains 5,
the instruction

LDD @R], @R2, R3
will leave the value % FFFF at location %2024, the value %2028 in R1, the value
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode,
register pairs would be used instead of R1 and R2.

Note 1: Word reqister in nonsegmented mode, reqister pair in segmented mode
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LDDR

Load, Decrement and Repeat

LDDR dst, src, r dst: IR
LDDRB src: IR
Operation: dst < src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
rergr -1

repeat untilr = 0

This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDRB, or by two if LDDR, thus moving the pointers to the previous elements
in the strings. The word register specified by "r"’ (used as a counter) is then
decremented by one. The entire operation is repeated until the result of decremen-
ting r is zero. The source, destination, and counter registers must be separate and
non-overlapping registers. This instruction can transfer from 1 to 65536 bytes or from
1 to 32768 words (the value for r must not be greater than 32768 for LDDR).

The effect of decrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags: C: Unaffected
: Undefined
: Unaffected
: Set

: Unaffected
: Unaffected

Nonsegmented Mode Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?

IR: LDDR @Rd!, @Rs!, r

! ! 1011101 |W(Rs # 0{1001 1011101 |W 1001
LDDRB @Rd!, GRs!, r |w[rs 11+8n [w]rRsz0
0000 r [Rd #0[0000 0000 r [RRd=0[0000

11+9n
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Example: In nonsegmented mode, if register R1 contains %202A, register R2 contains %404A,
the words at locations %4040 through %404A all contain %FFFF, and register R3
contains 6, the instruction

LDDR @RI, @R2, R3

will leave the value %FFFF in the words at locations %2020 through %202A, the
value %201E in R1, the value %403E in R2, and 0 in R3. The V flag will be set. In
segmented mode, register pairs would be used instead of Rl and R2.

Note 1 Word reqister in nonsegmented mode, register pair in segmented mode.

Note 2* n = number of data elements transferred.
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LDI

Load and Increment
LDI dst, src, r dst: IR
LDIB src: IR
Operation: dst - src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
rer -1
This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIB, or by two if LDI, thus moving the pointers to the next elements in the
strings. The word register specified by "r” (used as a counter) is then decremented
by one. The source, destination, and counter registers must be separate and non-
overlapping registers.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero, cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDI @Rd!, @Rs!, r 1011101|w|Rs # 0] 0001 1011101|w[RRs#0[0001
LDIB @Rd!, @Rs!, r 0000 r [Rd=0[1000 2 0000] r [Rra+0[1000 20
Example: This instruction can be used in a “loop” of instructions which transfers a string of

data from one location to another, but an intermediate operation on each data ele-
ment is required. The following sequence transfers a string of 80 bytes, but tests for
a special value (%0D, an ASCII return character) which terminates the loop if
found. This example assumes nonsegmented mode. In segmented mode, register
pairs would be used instead of Rl and R2.

LD R3, #80 linitialize counter!

LDA R1, DSTBUF lload start addresses!

LDA R?, SRCBUF
LOOP:

CPB @R2, #%0D Icheck for return character!

JR EQ, DONE lexit loop if found!

LDIB @R1, @R2, R3 ltransfer next byte!

JR NOV, LOOP Irepeat until counter = 0!
DONE:

Note I: Word register in nonsegmented mode, register pair in segmented mode.
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LDIR

Load, Increment and Repeat

LDIR dst, src, r dst: IR
LDIRB src: IR
Operation: dst < src
AUTOINCREMENT dst and src (by | if byte; by two if word)
rer-1

repeat untilR = 0

This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIRB, or by two if LDIR, thus moving the pointers to the next elements in the
strings. The word register specified by "r” (used as a counter) is then decremented
by one. The entire operation is repeated until the result of decrementing r is zero.
The source, destination, and counter registers must be separate and non-overlapping
registers. This instruction can transfer from 1 to 65536 bytes or from 1 to 32768
words (the value for r must not be greater than 32768 for LDIR).

The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags: C: Unaffected

Z: Undefined

S: Unaffected
s Set

: Unaffected

H: Unaffected

Nonsegmented Mode Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?

IR: LDIR @Rd!, @Rs!, r
LDIRB @Rdl, @Rs!, r 1o111o1|w Rs #0({ 0001 11+9n 1o111o1|w RRs+0{ 0001

11+9n
0000 r [Rrda=0]o000 0000] r [rRd#0[0000
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Example:

The following sequence of instructions can be used 1n nonsegmented mode to copy a
buffer of 512 words (1024 bytes) from one area to another. The pointers to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LDA Rl, DSTBUF
LDA R2, SRCBUF
LD RS, #512
LDIR e@Rl, @R2, R3

In segmented mode, R1 and R2 must be replaced by reqgister pairs.

Note 1 Word register in nonsegmented mode, register pair in segmented mode
Note 2 n = number of data elements transterred

6-86



LDK

Load Constant

LDK dst, src dst: R
src: IM

Operation: dst < src (src = O to 15)

The source operand (a constant value specified in the src field) is loaded into the
destination register. The source operand is a value from 0 to 15. It is loaded into the
four low-order bits of the destination register, while the high-order 12 bits are -
cleared to zero.

Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: LDK Rd, fdata 1ol 111101] Rd | data | 5 [1o[111101] Rd | data ] 5
Example: To load reqgister R3 with the constant 9:

LDK R3,#9
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LDM

Load Multiple

Operation:

LDM dst, src, n dst: R
src: IR, DA, X
or
dst: IR, DA, X
src: R

dst < src(n words)

The contents of n source words are loaded nto the destination. The contents of the
source are not affected. The value of n lies between 1 and 16, inclusive. This instruc-
tion moves information between memory and requsters; registers are accessed 1n
increasing order starting with the specified register; RO follows R15. The instruction
can be used either to load multiple registers into memory (e.g. to save the contents
of registers upon subroutine entry) or to load multiple registers from memory (e.q. to
restore the contents of registers upon subroutine exit).

The 1nstruction encoding contains values from O to 15 in the "num" field correspond-
ing to values of 1 to 16 for n, the number of registers to be loaded or saved.

The starting address is computed once at the start of execution, and incremented by
two for each register loaded. If the original address computation involved a register,
the register’s value will not be affected by the address incrementation during
execution. Similarly, modifying that register during a load from memory will not
affect the address used by this instruction.

Flags:

No flags affected

Load Multiple - Registers From Memory

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles? Instruction Format Cycles?

IR: LDM Rd, @Rs!, #n 00011100 | Rs=0 0001 00[ 011100 [RRsz0]0001
11+3n 11+3n

ooool Rd {0000 n-1 oooo| Rd [0000| n-1

DA: LDM Rd, address, #n 011011100 0000[0001 011011100 0000|0001
ooool Rd |0000| n—-1 14+3n| SS ooool Rd |0000| n-1 || 15+3n

address OI segment offset

01011100 0000|0001

0000 n—
sL 0000| Rd "1 |l 7430

1] segment [0000 0000

oftset
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Load Multiple - Registers From Memory (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
X: LDM Rd, addr(Rs), #n 011011100 Rs#0 | 0001 o1]o111oo Rs+0 [ 0001
oooo] Rd |0000| n-1 15+3n| SS ooool Rd |0000| n-1 || 15+3n
address OI segment offset
o1|o11100 Rs#0 [ 0001
00 Rd |0000| n-1
suforoe] we . 18+3n
1| segment 0000 00O0O
offset
Load Multiple - Memory From Registers
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: LDM&Rd!, Rs, #n 00[ 011100 | Rd=0[1001 00[ 011100 [RRd=0[1001
11+ 3n 11+3n
0000] Rrs [0000] n—1 0000] Rs [0000] n-1
DA: LDM address, Rs, #n 01]0111000000[1001 01]011100]0000[1001
oooo] Rs [0000| n-1 14+3n|SS ooool Rs |0000| n-1 15+3n
address 0| segment offset
o1|o11100 0000|1001
0000| Rs |0000| n—
sL [ e "'l 17+3n
1[ segment |0000 0000
offset
X: LDM addr(Rd), Rs, #n o1[o1noo Rd#0 (1001 01[011100 Rd#0 (1001
ooool Rs [0000| n-1 15+3n(SS ooool Rs |[0000| n-1 15+3n
address 0 | segment offset
01011100 |Rd»0[1001
0000| Rs [0000| n-1
sL [ » . 18+3n
1[ segment 0000 0000
offset
Example: In nonsegmented mode, 1if register R5 contains 5, R6 contains %0100, and R7 con-

tains 7, the statement
LDM @R6, RS, #3
will leave the values 5, %0100, and 7 at word locations %0100, %0102, and %0104,

respectively, and none of the registers will be affected. In segmented mode, a
register pair would be used 1nstead of R6.

Note 1 Word register in nonsegmented mode, register pair in segmented mode
Note 2. n = number of reqgisters
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LDPS Privileged Instruction

Load Program Status
LDPS src src: IR, DA, X
Operation: PS < src

The contents of the source operand are loaded into the Program Status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW does not become effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the LDPS instruction
execution is completed. The next instruction executed is that addressed by the new
contents of the PC. The contents of the source are not affected.

This instruction 1s used to set the Program Status of a program and 1s particularly
useful for setting the System/Normal mode of a program to Normal mode, or for run-
ning a nonsegmented program in segmented Z8000s. The PC segment number is not
affected by the LDPS instruction in nonsegmented mode.

The format of the source operand (Program Status block) depends on the current
Segmentation mode (not on the version of the Z8000) and is illustrated in the
following figure:

NONSEGMENTED LOW ADDRESS SEGMENTED
FCwW oo e e
PC FCW
PC SEG NO
HIGH ADDRESS PC OFFSET

(shaded area is reserved—must be zero)

Flags: All flags are loaded from the source operand.
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDPS @ks! loo[ 111001 | Rs=0 [0000] | 12 loo] 111001 [RRs+0[0000]| 16
DA: LDPS address 01/111001 00000000 01[111001 [0000[0000
16 SS 20
address 0 l segment offset
01/ 111001 ]0000]0000
SL 1[ segment (0000 0000 22
offset
X: LDPS addr(Rs) 01/111001 [ Rs=0 [0000 01111001 | Rs20[0000
17 SS 20
address 0 I segment offset
01111001 | Rs+0 | 0000
SL|1| segment [0000 0000|| 23
offset

Note 1. Word register 1s used 1n nonsegmented mode, register pair in segmented mode.
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Example:

In nonsegmented Z8000s, if the program counter contains %2550, register
R3 contains %5000, location %5000 contains %1800, and location %5002 contains
% A000, the instruction

LDPS @R3

will leave the value %A000 in the program counter, and the FCW value will be
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.) In the
segmented mode, a register pair is used instead of R3.
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LDR

Load Relative
LDR dst, src dst: R
LDRB src: RA
LDRL or
dst: RA
src: R
Operation: dst < src

The contents of the source operand are loaded 1nto the destination. The contents of
the source are not affected. The relative address 1s calculated by adding the
displacement 1n the instruction to the updated value of the program counter (PC)

to derive the operand’s address. In segmented mode, the segmented number of the
computed address 1s the same as the segment number of the PC. The updated PC
value is taken to be the address of the instruction following the LDR, LDRB, or
LDRL 1instruction, while the displacement 1s a 16-bit signed value 1n the range
-32768 to +32767.

Status pin information during the access to memory for the data operand will be Pro-
gram Reference, (1100) instead of Data Memory request (1000).

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

This instruction must be used to modify memory locations containing program infor-
mation, such as the Program Status Area, if program and data space are separated
by the memory system.

Flags:

No flags affected

Load Relative Register

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
RA: LDR Rd, address 0011000]W] 0000] Rd 0011000|W|0000| Rd
LDRB Rbd, address 14 14
displacement displacement
LDRL RRd, address 00110101 [0000] RRd . 00110101 |0000| RRd 17
displacement displacement

6-92



Load Relative Memory

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
RA: LDR address, R
LDRIBGadrderZSss, sts oo11oo1rw|oooo| Rs 14 oo1ioo1|w]ooool Rs 14
displacement displacement
LDRL address, RRs 00110111 [0000| RRs 1 00110111 [0000] RRs 17
displacement displacement
Example: LDR R2, DATA Ireqgister R2 is loaded with the value in the!

llocation named DATA!
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Privileged Instruction

MBIT

Multi-Micro Bit Test

MBIT

Operation: S «- 11f MI high (inactive); O otherwise

This instruction 1s used to synchronize multiple processors’ exclusive access to

shared hardware resources. The multi-micro input pin (MI) 1s tested, and the S flag
1s cleared if the pin is low (active); otherwise, the S flag 1s set, indicating that the

pn 1s high (1nactive).

After the MBIT instruction 1s executed, the S flag can be used to determine whether
a requested resource 1s available or not. If the S flag 1s clear, then the resource 1s
not available; if the S flag 1s set, then the resource 1s available for use by this CPU.

Flags: C: Unaffected
Z: Undefined
S: Set if MI 1s high; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
MBIT I o111101100001010 | 7 | o111101100001010 | 7
Example: The following sequence of instructions can be used to wait for the availability of a
resource.
LOOP:
MBIT ltest multi-micro input!

JR  PL,LOOP Irepeat until resource 1s available!

AVAILABLE:

6-94



Privileged Instruction
MREQ

Multi-Micro Request

Operation:

MREQ dst dst: R

f MI low (active) then S < 0
MO forced high (inactive)
else MO forced low (active)
repeat dst <- dst — 1 untildst = 0
if MI low (active) then S < 1
else S« 0
MO forced high (inactive)

o

<]

This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. A request for a resource is signalled through the multi-
micro input and output pins (MI and MO), with the S and Z flags indicating the
availability of the resource after the MREQ instruction has been executed.

First, the Z flag 1s cleared. Then the MI pin 1s tested. If the MI pin is low (active),
the S flag 1s cleared and the MO pin 1s forced high (inactive),thus indicating that the
resource is not available and removing any previous request by the CPU from the
MO hne.

If the MI pin is high (inactive), indicating that the resource may be available, a
sequence of machine operations occurs. First, the MO pin is forced low (active),
signalling a request by the CPU for the resource. Next, a finite delay to allow for
propagation of the signal to other processors is accomplished by repeatedly
decrementing the contents of the destination (a word register) until its value is zero.
The original value of the counter must be greater than 2. Then the MI pin is tested to
determine whether the request for the resource was acknowledged. If the MI pin is
low (active), the S flag is set to one, indicating that the resource is available and
access 1s granted. If the Ml pin is still high (inactive), the S flag is cleared to zero,
and the MO pin is forced high (inactive), indicating that the request was not granted
and removing the request signal for the MO. Finally, in either case, the Z flag is set
to one, indicating that the original test of the MI pin caused a request to be made.
External hardware should inhibit bus request while MO is active to ensure and upper
bound on request timing.

Sflag Zflag MO Indicates

0 0 high Request not signalled
(resource not available)

0 1 high Request not granted
(resource not available)

1 1 low Request granted
(resource available)

Flags:

C: Unaffected

Z: Set if request was signalled; cleared otherwise

S: Set if request was signalled and granted; cleared otherwise
V: Unaffected

D: Unaffected

H: Unaffected
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Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: MREQ Rd lot[111011] ma [1101] [12+7n| Jo1]111011] ra [1101] [12+7n
Example: TRY:
LD RO, #5 lallow for propagation delay!
MREQ RO Imulti-micro request with delay!
lin register RO!
JR MI,AVAILABLE
JR Z,NOT_GRANTED
NOT__AVAILABLE: Iresource not available!
NOT_GRANTED: Irequest not granted!
JR TRY Itry again after awhile!
AVAILABLE: luse resource!
MRES Irelease resource!
Note 1 If the request 1s made, n = number of times the destination 1s decremented If the request 1s not made,

n=0

o
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Privileged Instruction

MRES

Multi-Micro Reset

MRES

Operation: MO 1s forced high (inactive)
This instruction 1s used to synchronize multiple processors’ exclusive access to
shared hardware resources. The multi-micro output pin MO 1s forced high (inactive).
Forcing MO high (1nactive) indicates that a resource controlled by the CPU is
available for use by other processors.

Flags: No flags affected.

Assembler Language

Nonsegmented Mode

Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles
MRES [ 01111011 [ 00001001 | 5 [ 01111011 [ 00001001 | 5
Example: MRES Isignal that resource controlled by this CPU!

lis available to other processors!
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MSET Privileged Instruction

Multi-Micro Set
MSET
Operation: MO is forced low (active)

This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. The multi-micro output pin MO is forced low (active).
Forcing MO low (active) is used either to indicate that a resource controlled by the
CPU is not available to other processors, or to signal a request for a resource con-
trolled by some other processor.

Flags: No flags atfected.
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
MSET Jo1111011 | 00001000 | 5 [ 01111011 | 00001000 | 5
Example: MSET ICPU controlled resource not available!




MULT

Multiply

MULT dst, src dst: R
MULTL src: R, IM, IR, DA, X
Operation: Word
dst (0:31) <« dst (0:15) Xx src (0:15)
Long
dst (0:63) <+ dst (0:31) x src (0:31)
The low-order half of the destination operand (multiplicand) 1s multiplied by the
source operand (multiplier) and the product 1s stored in the destination. The con-
tents of the source are not affected. Both operands are treated as signed, two's com-
plement integers. For MULT, the destination 1s a register pair and the source 1s a
word value; for MULTL, the destination 1s a register quadruple and the source 1s a
long word value.
For proper instruction execution, the “dst field” in the instruction format encoding
must be even for MULT and must be a multiple of 4 (0, 4, 8, 12) for MULTL. If the
source operand in MULTL 1s a register, the “src field” must be even.
The inihial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The carry flag 1s set to
indicate that the upper half of the destination regster 1s required to represent the
result; 1f the carry flag 1s clear, the product can be correctly represented in the same
precision as the multiplicand and the upper half of the destination merely holds a
sign extension.
The following table gives execution times for word and long word operands in each
possible addressing mode.
src Word Long Word
NS SS SL NS SS SL
R 70 70 70 282+7*n 282+7'n 282+7°n
M 70 70 70 282+7*n 282+7"'n 282+7'n
IR 70 70 70 282+7'n 282+7'n 282+7'n
DA 71 72 74 283+7'n 284+7'n 286+7'n
X 72 72 75 284+7'n 284+7"n 287+7'n
(n = number of bits equal to one i the absolute value of the low-order 16 buts of the destination operand)
When the multipher 1s zero, the execution time of Multiply 1s reduced to the following times:
src Word Long Word
NS SS SL NS SS SL
R 18 18 18 30 30 30
M 18 18 18 30 30 30
IR 18 18 18 30 30 30
DA 19 20 22 31 32 34
X 20 20 23 32 32 35
Flags: C: MULT—set if product 1s less than —2!5 or greater than or equal to 2!5; cleared

otherwise; MULTL—set if product is less than —23! or greater than or equal to 23!;

cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
: Unaffected
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Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
Y 34
R: MULT RRd, Rs J1olo11001| Rs | AR | [10]011001] Rs [ RRa]
MULTL RQd, RRs [10[011000]| rs | mRa | [10]o11000] Rrs [ RRd]
IM: MULT RRd, #data 00/ 011001 [0000] RRd 00/ 011001]0000] RRd
data data
MULTL RQd, #data 00/011000 |0000] Rad 00011000 [0000| ROd
31 data (high) 16 31 data (high) 16
15 data (low) 0 15 data (low) 0
IR: MULT RRd, @Rs! Joojo11001 | Rsx0| RRd | Joolo11001 [RRs=0| RRd |
MULTL ROd, @Rs! Joolo11000 [ Rs=0] Raa | Joo[ 011000 |RRs~0| Rad |
DA: MULT RRd, address 01/ 011001 ]0000] RRd ss 01/011001|0000| RRd
address 01 segment offset
01/ 011001 /0000] RRd
SL|1| segment [0000 0000
oftset
MULTL RQd, address 01011000 [0000| Rad ss 01/011000 0000/ Rad
address ol segment offset
01/011000 0000 ] Rod
SL[1] segment 0000 0000
offset
X: MULT RRd, addr(Rs) 01[011001 | Rs#0 | RRd ss 01/ 011001 | Rs+0| RRd
address 0[ segment offset
01[011001 [ Rs=0 | RRd
SL 11 segment | 0000 0000
offset
MULTL RQd, addr(Rs) | 53T 011000 | Re<0 | Rad ss 01] 011000 Rs+0 | Rad
address oJ segment offset
01/011000 | Rs#0 | Rad
SL[1] segment [0000 0000
oftset




Example:

If register RQO (composed of register pairs RRO and RR2) contains
962222222200000031 (RR2 contains decimal 49), the statement

MULTL RQO,#10
will leave the value %00000000000001EA (decimal 490) in RQO.

Note 1 Word register in nonsegmented mode, reqister pair in segmented mode
Note 2 Execution times for each instruction are given in the preceding tables
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NEG

Negate
NEG dst dst: R, IR, DA, X
NEGB
Operation: dst <« —dst
The contents of the destination are negated, that 1s, replaced by its two's comple-
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by
themselves since 1n two's complement representation the negative number with
greatest magnitude has no positive counterpart; for these two cases, the V flag 1s set.
Flags: C: Cleared if the result 1s zero; set otherwise, which indicates a “borrow”
Z: Set 1if the result 1s zero; cleared otherwise
S: Set 1if the result 1s negative; cleared otherwise
V: Set if the result 1s %8000 for NEG, or %80 for NEGB: cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ﬁggéRgbd {10]oo110]w]| Rra oo10] 7 [10o0110{w| Ra |o010]| 7
IR: EggB@é‘g‘dl [ooloo110{w]|Rax0[0010] | 12 loojoo110[w|RRa+0j0010]| 12
DA: NEG address
NEGD o 01jo0110/w|0000]0010 5 |ss o01joo110/w/o000 0010 "
address 0] segment offset
o1loo11o|w oooo|oo1o
SL 1| segment |0000 0000 18
offset
X: NEG addr(Rd) "
NEGB addr(Rd) 01/00110{w|Rd=0 0010 © |ss 01{00110{w| Rd+0 [0010 1
address o| segment offset
o1loo110{w| Rd=0 0010
SL 1| segment [0000 0000 19
offset
Example: It register R8 contains %051F, the statement

NEG R8

will leave the value %FAE] 1in R8.

Note 1 Word register 1n nonsegmented mode, register pair in segmented mode
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NOP

No Operation

NOP
Operation: No operation 1s performed.
Flags: No flags affected

Assembler Language
Syntax

Nonsegmented Mode

Segmented Mode

Instruction Format

Cycles

Instruction Format

Cycles

NOP

[10001101 | 00000111 |

| 10001101 [ 00000111 ]
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OR
Or

OR dst, src dst: R
ORB src: R, IM, IR, DA, X
Operation: dst < dst OR src
The source operand is Iogically ORed with the destination operand and the result is
stored in the destination. The contents of the source are not affected. The OR opera-
tion results in a one bit being stored whenever either of the corresponding bits in the
two operands is one; otherwise a zero bit is stored.
Flags: C: Unaffected
Z: Set 1if the result is zero; cleared otherwise
S: Set if the most significant bit of the result 1s set; cleared otherwise
P: OR—unaffected; ORB—set 1if parity of the result is even; cleared otherwise
D: Unatiected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: 8§BRgi;dR,sts [10loootolw| ms | ma | 4 [1oJoooto{w| s | mra || 4
IM: OR Rd, #data 00[000101]0000] Ra ; 00[000101[0000] Rd ;
data data
ORB Rbd, #data 00[000100]0000] Rd 00[000100 0000 Rd 7
data data 7 data data
IR: 83153&?5}351 [5o]o0o10w] Rsvo] ma ] 7 looJooo1o|w|rRs=0] ra || 7
DA: 8?&1353‘1?:;:653 01]/00010{w|[0000| Ra 01jooo10[w|oooo| Rd 10
' address 9 Ss 0[ segment offset
01jooo10/w[oooo| Rd
SL qsegmen( 0000 0000 12
offset
X: (C))gBﬂgbgd:;(g:()Rs) 01/00010/W| Rs#0| Rd 10 01jooo10]w|Rsx0| Rd 10
' address ss 0| segment offset
01Jooo1o|w Rstol Rd
SL[1] segment [0000 0000 13
address
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Example:

If register RL3 contains %C3 (11000011) and the source operand is the immediate
value %7B (01111011), the statement

ORB RL3,#%7B
will leave the value %FB (11111011) in RL3.

Note 1 Word register in nonsegmented mode, register pair in segmented mode




OTDR

Privileged Instruction

(SOTDR)

(Special) Output, Decrement and Repeat

OTDR dst, src, r dst: IR
OTDRB src: IR
SOTDR
SOTDRB
Operation: dst <« src
AUTODECREMENT src (by 1 if byte, by 2 1f word)
rer-1
repeat untilr = 0
This instruction is used for block output of strings of data. OTDR and OTDRB are
used for Standard I/O op eration; SOTDR and SOTDRB are used for Sp ecial I/O
operation. The contents of the memory location addressed by the source register are
loaded into the I/O port addresses by the destination word register. I/O port ad-
dresses are 16 bits. The source register is then decremented by one if a byte instruc-
tion, or by two if a word instruction, thus moving the pointer to the previous element
of the string 1n memory. The word register specified by “r"’ (used as a counter) is
then decremented by one. The address of I/O port in the destination register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can output from 1 to 65536 bytes or 32768 word (the value for r
must not be greater than 32768 for OTDR or SOTDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request 1s accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that 1s accepted.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format? Cycles? Instruction Format? Cycles?
IR: @Rd,@Rs!, r
8¥gngcﬂid,2;sl,r 0011101]w[Rs #0]1015 11+10n 0011101|w|RRs=0[101$ 1410
SOTDR @RA.@Rs!. 0000] Rd#0[0000 0000] Rd#0[0000
SOTDRB @Rd,@Rs!, r
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Example:

In nonsegmented mode, if register R11 contains %0FFF, register R12 contains
%B006, and R13 contains 6, the instruction

OTDR @RI1l, @R12, R13
will output the string of words from locations %B006 to % AFFC (in descending

order of address) to port %0FFF. R12 will contain % AFFA, and R13 will contain 0.

R11 will not be affected. The V flag will be set. In segmented mode, R12 would be
replaced by a register pair.

Note 1 Word register in nonsegmented mode, reqister pair in segmented mode
Note 2 n = number of data elements transferred.
Note 3. For SOTDR, S = 1, otherwise S = 0
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OTIB. Privileged Instruction
(SOTIR)

(Special) Output, Increment and Repeat

OTIR dst, src, r dst: IR
OTIRB src: IR
SOTIR

SOTIRB

Operation: dst - src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
rer — 1
repeat untilr = 0

This instruction is used for block output of strings of data. OTIR and OTIRB are used
for Standard I/O operation; SOTIR and SOTIRB are used for Special /O operation.
The contents of the memory location addressed by the source register are loaded
into the I/O port addressed by the destination word register. I/O port addresses are
16 bits. The source register 1s then incremented by one if a byte instruction, or by
two 1if a word 1nstruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r"’ (used as a counter) 1s then decremented
by one. The address of I/O port in the destination register is unchanged. The entire
operation 1s repeated until the result of decrementing r is zero. This instruction can
output from 1 to 65536 bytes or 32768 words (the value for r must not be greater than
32768 for OTIR or SOTIR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that 1s accepted.

: Unaffected
: Undefined
: Unaffected
Set

: Unaffected
: Unaffected

Flags:

mu<suNQ

Nonsegmented Mode Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format3 Cycles Instruction Format3 Cycles

IR: OTIR @Rd, @Rs!, r
OTIRB «Rd, @Re!, r 0011101|W|Re #0[0018] |14, 4on [o011101]W]RRs=0[001s] |,; , 10
SOTIR «Rd, «Rs!, r 0000] r [Rd«o0fo000 0000] r [Rd=o0foo00

SOTIRB @Rd, @Rs!, r
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node, the following sequence of instructions can be used to output
' the specihied I/O port. The pointers to the I/O port and the start
3 are set, the number of bytes to output 1s set, and then the output

#PORT
SRCBUF
#LENGTH
., @R2, R3

le, a register pair would be used instead of R2.

nonsegmented mode, register pair in segmented mode
Jata elements transterred
1, otherwise S = 0.
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Privileged Instruction

OUT
(SOUT)

(Special) Output
OUT dst, src dst: IR, DA
OUTB src: R
SOUT dst, src dst: DA
SOUTB src: R
Operation: dst - src

The contents of the source register are loaded 1nto
Special Output port. OUT and OUTB are used for
and SOUTB are used for Special I/O operation.

Flags: No flags affected.
Destination Nonsegmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles
IR: OUT @Rd, Rs
OUTB @R, Rbs Joot1111]wlra=o] rs | 10
DA: OUT port, Rs
OUTE port, Rbs 0011101|w| Rs Ions 12
SOUT port, Rs port
SOUTB port, Rbs
Example: If register R6 contains %5252, the instruction

OUT %1120, R6
will output the value %5252 to the port %1120.

Note 1 For SOUT, S = 1, otherwise S = 0
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Example:

In nonsegmented mode, the following sequence of instructions can be used to output
a string of bytes to the specified I/O port. The pointers to the I/O port and the start
of the source string are set, the number of bytes to output 1s set, and then the output
1s accomplished.

LD R1, #PORT
LDA R2, SRCBUF
LD R3, #LENGTH

OTIRB @R1, @R2, R3
In segmented mode, a register pair would be used instead of R2.

Note 1 Word register in nonsegmented mode, register pair in segmented mode
Note 2 n = number of data elements transferred
Note 3 For SOTIR, S = 1; otherwise S = 0.
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OUT
(SOUT)

Privileged Instruction

(Special) Output
OUT dst, src dst: IR, DA
OUTB src: R
SOUT dst, src dst: DA
SOUTB src: R
Operation: dst - src

The contents of the source register are loaded into the destination, an Output or
Special Output port. OUT and OUTB are used for Standard /O operation; SOUT
and SOUTB are used for Special /O operation.

Flags: No flags affected.
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles Instruction Format! Cycles
IR: OUT @Rd, Rs
OUTB @R, Rbs Joot1111]w/Ra=0] Rs | 10 0011111/w|Rd=0| Rs | 10
DA: OUT port, Rs
OUTB port, Bbs oo11101]w| Rs [o11s 12 0o11101|w| Rs o118 12
SOUT port, Rs port port
SOUTRB pert, Rbs
Example: If register R6 contains %5252, the instruction

OuT

%1120, R6

will output the value %5252 to the port %1120.

Note 1- For SOUT, S = 1, otherwise S = 0.
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rivileged Instruction OUTD
Privileged Instruct (SOUTD)

(Special) Output and Decrement

OUTD dst, src, r dst: IR
OUTDB src: IR
SOUTD
SOUTDB

Operation: dst < src
AUTODECREMENT src (by 1 if byte, by 2 if word)
rer -1
This instruction is used for block output of strings of data. OUTD and OUTDB are
used for Standard I/O operation; SOUTD and SOUTDB are used for Special I/O
operation. The contents of the memory location addressed by the source register are
loaded 1nto the I/O port addressed by the destination word register. I/O port ad-
dresses are 16 bits. The source register is then decremented by one if a byte instruc-
tion, or by two if a word instruction, thus moving the pointer to the previous element
of the string in memory. The word register specified by "r" (used as a counter) is
then decremented by one. The address of the I/O port in the destination reqister is
unchanged.

Flags: C: Unatfected
Z: Undefined
S: Unaffected
V: Set1if the result of decrementing r 1s zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format? Cycles Instruction Format? Cycles
IR: 88¥BB@ggd@£§slrr 0011101|w/Rs = 0[101s ’1 0011101 |W[RRs#0[1015 o
SOUTD 6Rd, €3, © 0000 r [Rd #0[1000 0000 r |Ra #0[1000
SOUTDB @Rd, @Rsl!, r
Example: In segmented mode, 1if register R2 contains the I/O port address %0030, register RR6

contains % 12005552 (segment %12, offset %5552), the word at memory location

%12005552 contains %1234, and register R8 contains %1001, the instruction

OUTD @R2, @RR6, R8

will output the value %1234 to port %0030 and leave the value %12005550 1in RR6,
and %1000 in R8. Register R2 will not be affected. The V flag will be cleared. In

nonsegmented mode, a word register would be used instead of RR6.

Note 1 Word register in nonsegmented mode, register pair in segmented mode
Note 2 For SOUTD, S = 1, otherwise S = 0.
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OUT
(SOU

Privileged Instruction

(Special) Output and Increment

OUTI dst, src, r dst: IR
OUTIB src: IR
SOUTI
SOUTIB
Operation: dst <« src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
rer—1
This instruction is used for block output of strings of data. OUTI and OUTIB are
used for Standard I/O operation; SOUTI and SOUTIB are used for Special I/O
operation. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/0O port ad-
dresses are 16-bit. The source register is then incremented by one if a byte instruc-
tion, or by two if a word instruction, thus moving the pointer to the next element of
the string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the destination register is un-
changed.
Flags: C: Unaffected
Z: Undetined
S: Unaffected
V: Set if the result of decrementing r 1s zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format? Cycles Instruction Format? Cycles
IR: 88313@&;1&’@3;15,12 oo11101|w/Rs = 0l001S 21 0011101|W[RRs=0{001§ ’
SOUTI @Rd, @Rs!, r 0000] r [Ra=0]1000 0000[ r [Rd=0[1000
SOUTIB @Rd, @Rs!, r

6-112



Example:

This instruction can be used 1n a “loop” of instructions which outputs a string of
data, but an intermediate operation on each element is required. The following
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit
of each byte set or reset to provide even parity for the entire byte. Bit 7 of each
character is initially zero. This example assumes nonsegmented mode. In segmented
mode, R2 would be replaced with a register pair.

LD R1, #PORT lload I/O address!

LDA R2, SRCSTART lload start of string!

LD R3, #80 linitialize counter!
LOOP:

TESTB @R2 ltest byte parity!

IR PE, EVEN

SETB @R2, #7 lforce even parity!
EVEN:

OUTIB @R1, @R2, R3 loutput next byte!

JR NOV, LOOP Irepeat until counter = 0!
DONE:

Note 1. Word register in nonsegmented mode, register pair in segmented mode.
Note 2 For SOUTI, S = 1; otherwise S = 0
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POP

Pop
POP dst, src dst: R, IR, DA, X
POPL src: IR
Operation: dst <« src
AUTOINCREMENT src (by 2 if word, by if long)
The contents of the location addressed by the source register (a stack pointer) are
loaded into the destination. The source register is then incremented by a value
which equals the size in bytes of the destination operand, thus removing the top ele-
ment of the stack by changing the stack pointer. Any register except RO (or RRO in
segmented mode) can be used as a stack pointer.
The same register cannot be used in both the source and destination addressing
fields.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: POP Rd, @Rs! J10{010111[Rs = 0] Ra | 8 J10[010111[RRs+0] Ra || 8
POPL RRd, ¢Rs! [10[010101[Rs + 0] RR4 | 12 [10] 010101 [RRs=0] RRa || 12
IR: POP @Rdl, @Rs! [ooTo10111 ] Rs=0]ra = o] 12 [oo[ 010111 RRs=0]RRa+0] | 12
POPL @Rd!, @Rs! fool 010101 [Rs»0{Rd <0] 19 [oo] 010101 [RRs+0|RRa+0] | 19
DA: POP address, @Rs! 01[010111[Rs=0[0000 6 |ss 01] 010111 |RRs0/0000 .
address OI segment offset
o1Lo1o1 11 RRS#OBODO
SL[1] segment | 0000 0000 18
offset
POPL address, @Rs!
01]010101 | Rs0]0000 2 |ss 01] 010101 |RRs=0]0000 2
address ol segment offset
01]010101 |RRs#0/0000
SL[1] segment | 0000 0000 25
offset
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Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: POP addr(Rd), @Rs! 01[010111 [ Rs=0 | Rd=0 01[010111 [RRs=0[ Rd=0
16 SS 16
address OT segment offset
01010111 |RRs=0| Rd=0
SL 1T segment | 0000 0000 19
offset
POPL addr(Rd), @Rs! 01/010101 [ Rs+0 | Rd=0 01/010101 |RRs 0| Rd=0
23 SS 23
address 0| segment offset
o1ln1o1o1 RRs#O[Rd#O
SL 1[ segment | 00000000 26
offset
Example: In nonsegmented mode, 1f register R12 (a stack pointer) contains %1000, the word at

location %1000 contains %0055, and register R3 contains %0022, the instruction
POP R3, @R12

will leave the value %0055 1n R3 and the value %1002 in R12. In segmented mode,
a register pair must be used as the stack pointer instead of R12.

Note 1 Word register in nonsegmented mode, register pair in segmented mode
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PUSH

PUSH

Push Push
PUSH dst, src dst: IR
PUSHL src: R, IM, IR, DA, X
Operation: AUTODECREMENT dst (by 2 if word, by 4 if long)
dst < src
The contents of the destination register (a stack pointer) are decremented by a value
which equals the size in bytes of the source operand. Then the source operand is
loaded into the location addressed by the updated destination register, thus adding a
new element to the top of the stack by changing the stack pointer. Any register
except RO (or RRO in segmented mode) can be used as a stack pointer.
With PUSHL, the same register cannot be used for both the source and destination
addressing fields.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
PUSH @Rd!, Rs [10[ 010011 [ Raz0] Rs | 9 |10f 010011 [ Raz0] ns || 9
PUSHL @Rd!, RRs [1o[ 010001 Raz0] rs | | 12 [fo[ 010001 Ra+0] rs |
IM: PUSH @Rd!, #data 00/ 001101 Rd=0[1001 00/ 001101 | Rd=0 [1001
12 12
data data
IR: PUSH @Rdl, @Rs! [oo[ 010011 [Rdx0[Rs+0] | 13 loo 010011 [ Raxo[rs +0]| 13
PUSHL @Rd!, @Rs! [oo[ 010001 | Rd=0 [Rs = o] 20 loo] 010001 | Raz0|Rs 0} | 20
DA: PUSH @Rd!, address
01/ 010011 | Rd+0|0000 4 |ss 01/ 010011 | Rd=0 0000 14
address o| segment offset
o1| 010011 Rd;eoloooo
SL{1| segment {0000 0000 17
offset
PUSHL@Rd!, address 01010001 | Rd=0[0000
01]010001 | Ra=0[0000 o1 |ss | #0 | 1
address 0| segment offset
01/010001 | Rd+0]0000
SL[1] segment | 0000 0000 24
offset
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Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X PUSH @Rd!, addr(Rs) 01/010011 | Rd#0 | Rs+0 i |ss 01010011 |RRA+0| Rs=0 1
address 0| segment offset
01]010011 [RR+0! Rs=0
SL]1] segment [0000 0000 17
offset
PUSHL @Rd!, addr(Rs)
adadr(his 01| 010001 [ Rd=0|Rs=0 a1 |ss 01/ 010001 [RRd+0[ Rs=0 21
address 0] segment offset
01] 010001 |RRd#0| Rs=0
SL{1] segment | 0000 0000 24
offset
Example: In nonsegmented mode, 1f register R12 (a stack pointer) contains %1002, the word at

location %1000 contains %0055, and register R3 contains %0022, the instruction
PUSH @RI12, R3

will leave the value %0022 1n location %1000 and the value %1000 in R12. In

segmented mode, a reqgister pair must be used as the stack pointer instead of R12.

Note 1: Word reqister 1s used in nonsegmented mode, register pair in segmented mode.
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RES

Reset Bit

Operation:

RES dst, src dst: R, IR, DA, X
RESB src: IM

or

dst: R

src: R

dst(src) - 0

This instruction clears the specified bit within the destination operand without
affecting any other bits 1n the destination. The source (the bit number) can be
specified as either an immediate value (Static), or as a word register which contains
the value (Dynamic). In the second case, the destination operand must be a register,
and the source operand must be RO through R7 for RESB, or RO through R15 for
RES. The bit number 1s a value from 0 to 7 for RESB, or O to 15 for RES, with 0
indicating the least significant but.

Only the lower four bits of the source operand are used to specify the bit number for
RES, while only the lower three bits of the source operand are used with RESB.
When the source operand 1s an immediate value, the “'src field” in the instruction
format encoding contains the bit number 1n the lowest four bits for RES, or the
lowest three bits for RESB.

Flags:

No flags affected

Reset Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RES Rd, #b
RESB Rbd. #b [10l10001|w| ra | b | 4 l10l10001lw] ra | b || 4
IR: RES «Rd!, #b
RESB e Rd! b Jool10001|w|Ra=0| b | 1 loo]10001|w|rRRa=o] b || 11
DA: RES address, #b
HESB address. #b 01]10001/w|oooo] b 1 |ss 01[10001[w[o000] b 1
address 0( segment offset
o01[10001/w|oo0o]| b
sL 1J segment | 0000 0000 16
offset
X: ‘RES addr(Rd), #b
RESE addr(Ra), b 01]10001|w|Ra=0| b s |ss 01{10001w| Rd=0| b 1a
address ol segment offset
o0110001|w|Rdz0] b
SL 1Lsegmenl 00000000 17
offset
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Reset Bit Dynamic

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RES Rd, Rs
RESB Rbd. Rs? 00j10001]w|0000] Rs 0 00[10001|w|o000]| Rs 10
ooooJ Rd [0000{0000 oooo[ Rd {0000[0000
Example: If register RL3 contains %B2 (10110010), the instruction

RESB RL3, #1

will leave the value %B0 (10110000) in RL3.

Note | Word register in nonsegmented mode, register pair in segmented mode.
Note 2- Word register 0-7 only
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RESFLG

Reset Flag

Operation:

RESFLG flag flag: C,Z, S, P,V

FLAGS (4:7) <« FLAGS (4:7) AND NOT 1instruction (4:7)

Any combination of the C, Z, S, P or V flags are cleared to zero if the corresponding
bits in the instruction are one. If the bit in the instruction corresponding to a flag is

zero, the flag will not be affected. All other bits in the FLAGS reqister are
unaffected. Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,

1n any order.

Flags:

C: Cleared if specified, unaffected otherwise
Z: Cleared if specified, unaffected otherwise
S: Cleared 1if specified, unaffected otherwise
P/V: Cleared if specified, unaffected otherwise
D: Unaffected

H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
RESFLG flags l10[o01101czsPv]oo11 7 l1o[oo1101]czspvfo011] 7

Example:

If the C, S, and V flags are set (1) and the Z flag 1s clear (0), the statement
RESFLG C, V
will leave the S flag set (1), and the C, Z, and V flags cleared (0).
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RET

Operation:

Return
RET cc
Nonsegmented Segmented
if cc 1s true then if cc is true then
PC « @SP PC « @SP
SP « SP + 2 SP « SP + 4

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by a CALL or CALR instruction. If the condition specified by
“oc” is satisfied by the flags in the FCW, then the contents of the location addressed
by the processor stack pointer are popped into the program counter (PC). The next
instruction executed is that addressed by the new contents of the PC. See section
6.6 for a list of condition codes. The stack pointer used is R15 in nonsegmented
mode, or RR14 1in segmented mode. If the condition is not satisfied, then the instruc-
tion following the RET instruction is executed. If no condition 1s specified, the return
1s taken regardless of the flag settings.

Flags: No flags atfected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
RET cc [1o] 011110 0000] ec | | 10/7 | [10[ 011110 0000] cc | [ 137
Example: In nonsegmented mode, 1f the program counter contains %2550, the stack pointer

(R15) contains %3000, location %3000 contains %1004, and the Z flag 1s clear, then
the instruction
RET NZ

will leave the value %3002 1n the stack pointer and the program counter will contain
%1004 (the address of the next instruction to be executed).

Note | The two values correspond to return taken and return not taken
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RL

Rotate Left
RL dst, src dst: R
RLB src: IM
Operation: Do src times: (src = 1 or 2)
tmp < dst
c <« tmp (msb)
dst(0) <« tmp (msb)
dst (n + 1) <= tmp (n) forn = Otomsb — 1)
15 0 J
Word: l
N 5]
Byte: J
The contents of the destination operand are rotated left one bit position 1if the source
operand 1s 1, or two bit positions 1if the source operand 1s 2. The most significant bit
(msb) of the destination operand 1s moved to the bit 0 position and also replaces the
C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set 1if the last bit rotated from the most significant bit position was 1; cleared
otherwise
Z: Set 1f the result 1s zero; cleared otherwise
S: Set 1f the most significant bit of the result 1s set; cleared otherwise
V: Set if arithmetic overflow occurs, that 1s, 1if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax! Instruction Format?2 Cycles? Instruction Format2 Cycles?
R: RL Rd, #n
RLB Rba, fn [1o]11001]w] ra Jod[s]o] 6I7 [10]11001[w] ra Joo[s]o] 67
Example: If register RH5 contains %88 (10001000), the statement

RLB RHS5
will leave the value %11 (00010001) in RHS5 and the Carry flag will be set to one.

Note 1 n = source operand
Note 2 s = 0 for rotation by 1 bit, s = 1 for rotation by 2 bits
Note 3 The given execution times are for rotation by 1 and 2 bits respectively
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RLC

Rotate Left through Carry

RLC dst, src dst: R
RLCB src: IM
Operation: Do src times: (src = 1 or 2)
tmp <« ¢
C < dst (msb)
dst(n + 1) «- dst (n) (forn = msb-1 to 0)
dst (0) - tmp
15 o J
Word: 4_.| ]
7 0 J
Byte: ]
The contents of the destination operand with the C flag are rotated left one bit posi-
tion if the source operand 1s 1, or two bit positions 1if the source operand 1s 2. The
most significant bit (msb) of the destination operand replaces the C flag and the
previous value of the C flag 1s moved to the bit O position of the destination during
each rotation.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise
Z: Set 1if the result 1s zero; cleared otherwise
S: Set 1if the most significant bit of the result 1s set; cleared otherwise
V: Set if arithmetic overflow occurs, that 1s, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax! Instruction Format?2 Cycles? Instruction Format? Cycles3
R: RLC Rd,
RLCBRbﬁ?#n [1o]11001]w] Ra |10[s]o] 617 J1o]11001]w| Ra [10]s]o 617
Example: If the Carry flag 1s clear (= 0) and register RO contains %800F (1000000000001111),

the statement
RLC RO,#2
will leave the value %003D (0000000000111101) in RO and clear the Carry flag.

Note 1. n = source operand.
Note 2 s = O for rotation by 1 bit, s = 1 for rotation by 2 bats.
Note 3 The given execution times are for rotation by 1 and 2 bits respectively
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RLDB

Rotate Left Digit
RLDB link, src src: R
link: R
Operation: tmp (0:3) < link (0:3)

(
link (0:3) <« src (4:7)
src (4:7) < src (0:3)
src (0:3) <= tmp (0:3)

7 4 3 l 0 7 4 3 41 0
Ink [ | | | | | sre
t 1 !

The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit
(four bits). The lower digit of the source is moved to the upper digit of the source;
the upper digit of the source is moved to the lower digit of the link, and the lower
digit of the link is moved to the lower digit of the source. The upper digit of the link
is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift
to the left a string of BCD digits, thus multiplying it by a power of ten. The link
serves to transfer digits between successive bytes of the string. This is analogous to
the use of the Carry flag in multiple precision shifting using the RLC instruction.

The same byte register must not be used as both the source and the link.

Flags: C: Unaffected
Z: Set if the link 1s zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unatfected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RLDB Rbl, Rbs 1ol 111110 nos | mor | 9 [1o{111110] mos | mor | 9
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Example: If location 100 contains the BCD digits 0,1 (00000001), location 101 contains 2,3
(00100011), and location 102 contains 4,5 (01000101)

100 [o]7] 101 [2]3] 102 [«]¢]

the sequence of statements

LD R3,#3 Iset loop counter for 3 bytes!
1(6 digits)!

LD R2,#102 Iset pointer to low-order digits!

CLRB RH1 Izero-fill low-order digt!
LOOP:

LDB RL1,@R2 lget next two digits!

RLDB RHI1,RL1 Ishift digits left one position!

LDB @R2,RL1 Ireplace shifted digts!

DEC R2 ladvance pointer!

DINZ R3, LOOP Irepeat until counter 1s zero!

will leave the digits 1,2 (00010010) 1n location 100, the digits 3,4 (00110100) 1n loca-
tion 101, and the digits 5,0 (01010000) 1n location 102.

100 []2] 101 [2]4] 102 [s]e]

In segmented mode, R2 would be replaced by a register pair.
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RR

Rotate Right

RR dst, src dst: R
RRB src: IM
Operation: Do src times: (src = 1 or 2)
tmp <+ dst
c <+ tmp (0)
dst (msb) < tmp (0)
dst (n — 1) = tmp (n) (for n = 1 to msb)
L 15 0
Word: I
Byte: I
The contents of the destination operand are rotated right one bit position if the
source operand 1s |, or two bit positions 1f the source operand 1s 2. The least signifi-
cant bit of the destination operand is moved to the most significant bit (msb) and
also replaces the C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit rotated from the least significant position was 1; cleared
otherwise
Z: Set 1if the result 1s zero; cleared otherwise
S: Set 1f the most significant bit of the result 1s set; cleared otherwise
V: Set if arithmetic overflow occurs, that 1s, 1if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles? Instruction Format! Cycles?
R: RR Rd,
RRB Rbﬁ?#n l10[11001]w] Rd Jo1/s]o] 617 [10]11001]w] ra Jo1ls]o] 617
Example: If register RL6 contains %31 (00110001), the statement

RRB RL6
will leave the value %98 (10011000) in RL6 and the Carry flag will be set to one.

Note 1 s = O for rotation by 1 bit, s = 1 for rotation by 2 buts.
Note 2 The given execution times are for rotation by 1 and 2 bits respectively
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RRC

Rotate Right through Carry

RRC dst, src dst: R
RRCB src: IM
Operation: Do src times: (src = 1 or 2)
tmp - ¢
c < dst (0)
dst (n) - dst(n + 1) forn = Otomsb - 1)
dst (msb) <« tmp
L 15 0
Word: { —{c]
L 7 0
Byte: | —={c]
The contents of the destination operand with the C flag are rotated one bit position if
the source operand 1s 1, or two bit positions 1f the source operand 1s 2. The least
significant bit of the destination operand replaces the C flag and the previous value
of the C flag 1s moved to the most significant bit (msb) position of the destination
during each rotation.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set 1f the last bit rotated from the least significant bit position was 1; cleared
otherwise
Z: Set 1if the result 1s zero; cleared otherwise
S: Set if the most significant bit of the result 1s set; cleared otherwise
V: Set if anthmetic overflow occurs, that 1s, if the sign of the destination changed
during rotation; cleared otherwise
D: Unatfected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles? Instruction Format! Cycles?
RRC Rd, #
RROB Rbd?#n [10[11001|w| Rra 11]s]o] 617 t1ol11001jw| Ra [11]s]o] 617
Example: If the Carry flag is clear ( =0) and the register RO contains %00DD

(0000000011011101), the statement
RRC RO,#2
will leave the value %8037 (10000000110111) in RO and clear the Carry flag.

Note 1 s = O for rotation by 1 bit, s = | for rotation by 2 bits
Note 2 The given execution times are for rotation by 1 and 2 bits respectively
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RRDB
Rotate Right Digit

RRDB link, src src: R
link: R
Operation: tmp (0:3) <= link (0:3)
link (0:3) <= src (0:3)
src (0:3) < src (4:7)
src (4:7) < tmp (0:3)
7 4 3 l 0 7‘* [ 4 3 ¢ 0
link I [ | I L ] src
The low digit of the link byte register 1s logically concatenated to the source byte
register. The resulting three-digit quantity 1s rotated to the right by one BCD digit
(four bats).
The lower digit of the source 1s moved to the lower digit of the link; the upper digit
of the source 1s moved to the lower digit of the source and the lower digit of the link
1s moved to the upper digit of the source.
The upper digit of the link 1s unaffected. In multiple-digit BCD arithmetic, this
instruction can be used to shift to the right a string of BCD digits, thus dividing 1t by
a power of ten. The link serves to transfer digits between successive bytes of the
string. This 1s analogous to the use of the carry flag in multiple precision shifting
using the RRC 1nstruction.
The same byte register must not be used as both the source and the link.
Flags: C: Unaffected
Z: Set if the link 1s zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RRDB Rbl, Rbs {10/ 111100] Rbs | mbl | 9 [1o[111100] Ros | mor | 9
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Example: If location 100 contains the BCD digits 1,2 (00010010), location 101 contains 3,4
(00110100), and location 102 contains 5,6 (01010110)

100 101 102

[T:]

the sequence of statements

LD R3,#3 Iset loop counter for 3 bytes (6
digits)!

LD R2,#100 Iset pointer to high-order digts!

CLRB RH1 !zero-fill high-order digit!
LOOP:

LDB RL1,@R2 lget next two digits!

RRDB RHI1,RLI Ishift digits right one position!

LDB @R2,RL1 Ireplace shifted digits!

INC R2 ladvance pointer!

DINZ R3,LOOP Irepeat until counter is zero!

will leave the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in loca-
tion 101, and the digits 4,5 (01000101) 1n location 102. RH1 will contain 6, the
remainder from dividing the string by 10.

100 101 102

an

In segmented mode, R2 would be replaced by a register pair.
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SBC

Subtract with Carry
SBC dst, src dst: R
SBCB src: R
Operation: dst < dst — src — C

The source operand, along with the setting of the carry flag, 1s subtracted from the
destination operand and the result 1s stored in the destination. The contents of the
source are not affected. Subtraction 1s performed by adding the two's complement of
the source operand to the destination operand. In multiple precision anthmetic, this
instruction permits the carry (“'borrow”) from the subtraction of low-order operands
to be subtracted from the subtraction of high-order operands.

Flags: C: Cleared 1if there 1s a carry from the most significant bit of the result; set
otherwise, indicating a “borrow’’
Z: Set 1if the result 1s zero; cleared otherwise
S: Set 1f the result 1s negative; cleared otherwise
V: Set if anthmetic overflow occurs, that 1s, 1if the operands were of opposite signs
and the sign of the result 1s the same as the sign of the source; cleared otherwise
D: SBC—unaffected; SBCB—set
H: SBC—unaffected; SBCB—cleared if there 1s a carry from the most significant bit
of the low-order four bits of the result; set otherwise, indicating a “‘borrow”’
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: gggBRgi)dR,sts {1ol11011]w| s | Ra | 5 [1ol11011]w] rs | Ra | 5
Example: Long subtraction may be done with the following instruction sequence, assuming RO,

R1 contain one operand and R2, R3 contain the other operand:

SUBRI,R3 Isubtract low-order words!

SBC RO,R2 Isubtract carry and high-order words!
If RO contains %0038, R1 contains %4000, R2 contains %000A and R3 contains
%F000, then the above two instructions leave the value %002D 1n RO and %5000
in RI1.
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SC

System Call

Operation:

SC src src: IM

Nonsegmented Segmented

SP « SP - 4 SP <« SP - 6

@SP <« PS @SP < PS

SP <« SP -2 SP <« SP - 2

@SP - 1nstruction @SP < instruction
PS < System Call PS PS <« System Call PS

This instruction 1s used for controlled access to operating system software in a man-
ner similar to a trap or interrupt. The current program status (PS) is pushed on the
system processor stack, and then the instruction itself, which includes the source
operand (an 8-bit value) 1s pushed. The PS includes the Flag and Control Word
(FCW), and the updated program counter (PC). (The updated program counter
value used 1s the address of the first instruchion following the SC mstruction.)

The system stack ponter 1s always used (R15 in nonsegmented CPUs, or RR14 in
segmented CPUs), regardless of whether system or normal mode 1s in effect The

new PS 1s then loaded from the Program Status block associated with the System
Call trap (see section 6.2.4), and control 1s passed to the procedure whose address 1s
the program counter value contained in the new PS. This procedure may inspect the
source operand on the top of the stack to determine the particular software service
desired.

The following figure 1llustrates the format of the saved program status in the system
stack:

NONSEGMENTED SEGMENTED

Low LOW
ADDRESS ADDRESS
SP AFTER ——| IDENTIFIER

STACK POINTER
AFTER TRAP —| IDENTIFIER FCwW

OR INTERRUPT Fow PC SEGMENT

PC OFFSET
STACK POINTER pe s
BEFORE TRAP  ——»| SP BEFORE ——»
OR INTERRUPT

<«—1 WORD —| <1 WORD —|
HIGH HIGH
ADDRESS ADDRESS

The segmented Z8000s always execute the segmented mode of the System Call in-

struction, regardless of the current mode, and set the Segmentation Mode bit (SEG) to

segmented mode ( = 1) at the start of the SC instruction execution. All Z8000s set
the System/Normal Mode bit (S/N) to system mode ( = 1) at the start of the SC in-
struction execution. The status pins reflect the setting of these control bits during the
execution of the SC instruction. However, the setting of SEG and S/N does not affect
the value of these bits in the old FCW pushed onto the stack. The new value of the
FCW is not effective until the next instruction, so that the status pins will not be
affected by the new control bits until after the SC instruction execution is completed.

The “src field” in the instruction format encoding contains the source operand. The
“src field” values range from 0 to 255 corresponding to the source values 0 to 255.

Flags:

Flags loaded from Program Status Area
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Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IM: SC fsrc Jor111141 ] se | 33 fotr11111 ] sie | 39
Example: In the nonsegmented 28002, if the contents of the program counter are %1000, the

contents of the system stack pointer (R15) are %3006, and the Program Counter and
FCW values associated with the System Call trap in the Program Status Area are
%2000 and %5800, respectivély, the instruction

SC #3 Isystem call, request code = 3!

causes the system stack pointer to be decremented to %3000. Location %3000 con-

tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca-

tion %3004 contains %1002 (the address of the instruction following the SC instruc-
tion). System mode is in effect, and the Program Counter contains the value %2000,
which is the start of a System Call trap handler, and the FCW contains %5800.
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SDA

Shift Dynamic Arithmetic

SDA dst, src dst: R
SDAB src: R
SDAL
Operation: Right (src negative)
Do - src times:
c < dst (0)
dst(n) < dst(n + 1) (forn = Otomsb - 1)
dst (msb) <+ dst (msb)
Lett (src positive)
Do src times:
c <+ dst (msb)
dst(n + 1) < dst (n) (forn = msb — 1t00)
dst (0) < 0
Right Left
7 0 7 0
Byte: [{I [ }—> I<—-——o
15 0 15 0
Word: Dl, | l_’ [=—o
15 [
Long: [—>—II | Rn i .4—-' Rn |4—|
15 0
Rn+1 H Rn+1 |<—0
n=0,2,4,...,14 n=0,2,4,...,14
The destination operand is shifted arithmetically left or right by the number of bit
positions specified by the contents of the source operand, a word register.
The shift count ranges from -8 to +8 for SDAB, from -16 to + 16 for SDA and from
-32 to +32 for SDAL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The sign bit is replicated in shifts to the right, and the C
flag is loaded from bit O of the destination. The least significant bit is filled with 0 in
shifts to the left, and the C flag is loaded from the most significant bit (msb) of the
destination. The setting of the carry bit is undefined for zero shift.
Flags: C: Set if the last bit shifted from the destinaticn was 1, undefined for zero shift;

cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise

D: Unaffected

H: Unaffected
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Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles! Instruction Format Cycles!

R: SDA Rd, Rs 10[ 110011 Rd [1011 10/110011 ] Rd 1011
15+ 3n 154+ 3n

0000] Rs [00000000 0000| Rs |0000 0000

SDAB Rbd, Rs 10[ 110010 Rbd [1011 10110010 Rbd [1011
15+3n 15+3n

0000| Rs | 00000000 0000] Rs | 00000000

SDAL RRd, Rs

' 11| RRd [1111 110011 | RRd |1111
10] 1100 ] 1543n 10/ 11001 Rd | 15+3n

0000] Rrs | 00000000 0000 Rs | 00000000

Example: If register R5 contains %C705 (1100011100000101) and register R1 contains -2

(%FFFE or 1111111111111110), the statement

SDA R5,Rl

performs an arithmetic right shift of two bit positions, leaves the value %F1C1

(1111000111000001) 1n RS, and clears the Carry flag.

Note 1. n = number of bit positions, the execution time for n =0 1s the same as forn = 1
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SDL

Shift Dynamic Logical

SDL dst, src dst: R
SDLB src: R
SDLL
Operation: Right (src negative)
Do —src times
c < dst (0)
dst (n) «~ dst(n + 1) forn = Otomsb - 1)
dst (msb) -« 0
Left (src positive)
Do src times
c < dst (msb)
dst (n + 1) - dst (n) forn = msb — | to 0)
dst (0) -
Right Left
7 0 7 0
Byte: 0 _>L ]._. <__[ |<-— 0
15 0 15 0
WOI‘dZ 0—-—>I l——» <—r ]4—0
15 0 15 0
Long: o—={ An I—I <—-r Rn |<—I
L15 0 15 0
L Rn+1 l—v Rn+1 —|<—-0
n=0,2,4,...,14 n=0,24,...,14
The destination operand is shifted logically left or right by the number of bit posi-
tions specified by the contents of the source operand, a word register. The shift
count ranges from —8to +8 for SDLB, from —16to +16 for SDL and from —32to
+ 32 for SDLL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The most significant bit (msb) is filled with O in shifts to the
right, and the C flag is loaded from bit O of the destination. The least significant bit
is filled with 0 in shifts to the left, and the C flag is loaded from the most significant
bit of the destination. The setting of the carry bit is undefined for zero shift.
Flags: C: Set if the last bit shifted from the destination was 1, undefined for zero shift;

cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected
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Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SDL Rd, Rs
' 10[110011| Rd |0011 10[110011| Rd [0011
| l 15+3n l I 15+3n
ooool Rs | 00000000 0000] Rs | 00000000
SDLB Rbd, Rs 10[ 110010 Rbd [0011 10/ 110010] Rbd [0011
15+3n 15+3n
0000] Rs | 00000000 oooo[ Rs | 00000000
SDLL RRd, Rs 10[110011] RRd [0111 10/ 110011] RRd [0111
15+ 3n 15+3n
ooool Rs | 00000000 oooo] Rs | 00000000
Example: If register RLS contains %B3 (10110011) and register Rl contains 4

(0000000000000100), the statement

SDLB RL5,R1

performs a logical left shift of four bit positions, leaves the value %30 (00110000) in
RL5, and sets the Carry flag.

Note I n = number of bit positions, the execution time for n = 0 1s the same as forn = |
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SET

Set Bit

Operation:

SET dst, src
SETB

dst(src) <« 1

dst: R, IR,
src: IM
or

dst: R
src: R

DA, X

Sets the specified bit within the destination operand without affecting any other bits
in the destination. The source (the bit number) can be specified as either an immedi-
ate value (Static), or as a word register which contains the value (Dynamic). In the
second case, the destination operand must be a register, and the source operand
must be RO through R7 for SETB, or RO through R15 for SET. The bit number is a
value from 0 to 7 for SETB or 0O to 15 for SET, with O indicating the least significant

bit.

Only the lower four bits of the source operand are used to specify the bit number for
SET, while only the lower three bits of the source operand are used with SETB.
When the source operand is an immediate value, the “src field” in the instruction
format encoding contains the bit number in the lowest four bits for SET, or the

lowest three bits

for SETB.

Flags:

No flags affected

Set Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SET Rd, #b
SETB Rba. b [1o[10010{w] Ra | b | 4 [1o]to010]w| Ra | b || 4
IR: SET @Rd!, #b
SETB @Rd! #b [oo[10010/w|Rax0| b | 11 [ool1oo10[w[RrRd=0l b || 11
DA: SET address, #b
SETB address, #b 01‘10010‘W|0000[ b 13 sS 01b°°10]w 0000] b 14
address OI segment offset
01/10010{w[o000| b
SL 1| segment | 0000 0000 16
offset
X: SET addr(Rd), #b
SETB addr(®d) #b 01l10010/w| Rd=0| b 1w |ss o1/10010/w[rd=0| b 1
address 0| segment offset
01]10010{w|Rd =0 b
SL|1| segment | 00000000 17
offset

Note 1: Word reqister 1n nonsegmented mode, register pair 1n segmented mode.
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Set Bit Dynamic

Nonsegmented Mode

Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SET Rd, Rs 00{10010/w|o000| Rs oo[1o010/w[oooo| Rs
SETB Rbd, Rs? 10 10
oooo[ Rd (00000000 oooo| Rd (00000000
Example: If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the

instruction

SETB RL3, R2
will leave the value %F2 (11110010) in RL3.

Note 2: Word registers 0-7 only.
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SETFLG
Set Flag

Operation:

SETFLG flag Flag: C, Z, S,P, V

FLAGS (4:7) - FLAGS (4:7) OR instruction (4:7)

Any combination of the C, Z, S, P or V flags are set to one if the corresponding bits
in the instruction are one. If the bit in the instruction corresponding to a flag 1s zero,
the flag will not be affected. All other bits in the FLAGS register are unaffected.
Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,
in any order.

Flags:

C: Set if specified; unaffected otherwise
Z: Set if specified; unaffected otherwise
S: Set if specified; unaffected otherwise
P/V: Set if specified; unaffected otherwise
D: Unaffected

H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
SETFLG flags | 10001101 [czspiviooo1] 7 [ 10001101 [czspiviooo1 | 7

Example:

If the C, Z, and S flags are all clear (0), and the P flag is set (1), the statement
SETFLG C
will leave the C and P flags set (1), and the Z and S flags cleared (0).
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SLA

Shift Left Arithmetic

SLA dst, src dst: R
SLAB src: IM
SLAL
Operation: Do src times:
C < dst (msb)
dst (n + 1) - dst (n) (forn = msb — 1 to 0)
dst (0) - O
7 0
Byte: <—{ o
15 0
Word: <—{ J«—o
15 0
Long: B‘—‘I Rn ]<_—|
15 0
Rn+1 I<———0
n=20,24,..14
The destination operand is shifted arithmetically left the number of bit positions
specified by the source operand. For SLAB, the source is in the range 0 to 8; for
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32.
The least significant bit of the destination is filled with 0, and the C flag is loaded
from the sign bit of the destination. The operation is the equivalent of a multiplica-
tion of the destination by a power of two with overflow indication. A shift of zero
positions does not affect the destination; however, the flags are set according to the
destination value with the C flag undefined.
The src field is encoded in the instruction format as the 8- or 16-bit two's comple-
ment positive value of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit shifted from the destination was 1, undefined for zero shift;

cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise

D: Unaffected

H: Unaffected
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Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SLA Rd, #b 10{110011| Rd 1001 10[110011| Rd [1001
13+3b 13+3b
b b
SLAB Rbd, #b p
10/ 110010 Rbd |100 13+3p| |10 110010 Rbd [1001] |4 o
0 b [} b
SLAL RRd, #b 10/ 110011 [ RRa [1101| |0 o] [10[110011] RRa J1101] | o, o
b b
Example: If register pair RR2 contains %1234ABCD, the statement

SLAL RR2,#8

will leave the value %34ABCDO00 in RR2 and clear the Carry flag.

Note 1

b = number of bit positions, the execution time for b = 0 1s the same asforb = 1
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SLL

Shift Left Logical

SLL dst, src dst: R
SLLB src: IM
SLLL

Operation: Do src times:

c <« dst (msb)
dst (n + 1) = dst (n) (forn = msb — 1 to 0)
dst (0) - O

0

7
Byte: <—| I‘_"

Word: E|<—is Je—o

Long: E‘—{ 5 Ro Dl‘—l

15 0
Rn+1 l*—o

n=2024,..14

The destination operand is shifted logically left by the number of bit positions
specified by the source operand. For SLLB, the source is in the range 0 to 8; for
SLL, the source is in the range 0 to 16; for SLLL, the source is in the range 0 to 32.
The least significant bit of the destination is filled with 0, and the C flag is loaded
from the most significant bit (msb) of the destination. This instruction performs an
unsigned multiplication of the destination by a power of two. A shift of zero positions
does not affect the destination; however, the flags are set according to the destina-
tion value. The setting of the carry bit is undefined for zero shift.

The src field is encoded in the instruction format as the 8- or 16-bit positive value of
the source operand. For each operand size, the operation is undefined if the source
operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

Flags: C: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected
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Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SLL Rd, #b
10110011 | Rd |0001 13+3b 10[110011| Rd [0001 13+3b
b b
SLLB Rbd, #b
10[110010 | Rbd [0001 13+3b 10/110010 | Rbd [0001 1343b
0 b [ b
SLLL RRd, #b
10[ 110011 ARd [0101 1343 10/110011| RRd 0101 13+3b
b b
Example: If reqgister R3 contains %4321 (0100001100100001), the statement

SLL R3,#1

will leave the value %8642 (1000011001000010) in R3 and clear the carry flag.

Note | b = number of bit positions, the execution time for b =0 1s the same asforb = 1
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SRA

Shift Right Arithmetic

Operation:

SRA dst, src dst: R
SRAB src: IM
SRAL

Do src times:
c < dst (0)
dst (n) <= dst (n + 1)(forn = Otomsb - 1)
dst (msb) < dst (msb)

0

7
Byte: [—;Ij l I_'

15 0

Word: c
[—;l‘ | F{e]

15 0

Long: lj[ Rn J__I
‘_.['5 19

n=2024..14

The destination operand is shifted arithmetically right by the number of bit positions
specified by the source operand. For SRAB, the source is in the range 1 to 8; for
SRA, the source 1s in the range 1 to 16; for SRAL, the source 1s in the range 1 to 32.
\ right shift of zero for SRA is not possible. The most significant bit (msb) of the
destination is replicated, and the C flag is loaded from bit O of the destination, this
instruction performs a signed division of the destination by a power of two.
The src field is encoded 1n the instruction format as the 8- or 16-bit two's comple-
ment negative of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

Flags:

C: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected
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Destination

Nonsegmented Mode

Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SRA Rd, #b
' 0(110011| Rd [1001 10{ 110011 | Rd [1001
! l l l 13+3b l AI 13+3b
-b -b
SRAB Rbd, #b 10/ 110010 | Rbd 1001
10/ 110010 [ Rbd 1001 13436 | 13+3b
0 -b (] -b
SRAL RRd, #b
10|110011TRR¢I1101 13+3b 101110011|RRd|1101 1343b
-b -b
Example: If register RH6 contains %3B (00111011), the statement

SRAB RHS6,#2
will leave the value %0E (00001110) in RH6 and set the carry flag.

Note 1 b = number of bit positions, the execution time for b = 0 1s the same asforb =1
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SRL

Shift Right Logical

SRL dst, src dst: R
SRLB src: IM
SRLL
Operation: Do src times:
c < dst (0)
dst (n) < dst(n + 1)(forn = Otomsb — 1)
dst (msb) < 0
7 L]
Byte: o[
15 0
Word: o—={ I—-
15 [
Long: 0"[7 Rn +_]
L 15 0
l Rn+1 l.-..
n=2024,..14
The destination operand is shifted logically right by the number of bit positions
specified by the source operand. For SRLB, the source operand is in the range 1 to
8; for SRL, the source is in the range 1 to 16; for SRLL, the source is in the range 1
to 32. A right shift of zero for SRL is not possible. The most significant bit (msb) of
the destination is filled with 0, and the C flag is loaded from bit 0 of the destination.
This instruction performs an unsigned division of the destination by a power of two.
The src field is encoded in the instruction format as the 8- or 16-bit negative value of
the source operand in two's complement notation. For each operand size, the opera-
tion 1s undefined if the source operand is not in the range specified above.
The source operand may be omitted from the assembly language statement and thus
defaults to the value of 1.
Flags: C: Set if the last bit shifted from the destination was 1; cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the most significant bit of the result is one; cleared otherwise
V: Undefined

D: Unaffected

H: Unaffected
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Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SRL Rd, #b Rd [0001 110011 Rd |0001
o 1ro011] n | jawap| [rolrroort] ma | 13+3b
-b -b
SRLB Rbd, #b
10[110010 | Rbd o001 13436 10/110010 | Rbd [0001 134+3b
0 -b 0 -b
SRLL RRd, #b
10|11oo11[jdj£01 13+43b 101110011—[“«1—[0101 13+3b
-b -b
Example: If register RO contains %1111 (0001000100010001), the statement

SRL RO,#6
will leave the value %0044 (0000000001000100) in RO and clear the carry flag.

Note | b = number of bit positions, the execution time for b = 01s the same asforb = 1
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SUB

Subtract
SUB dst, src dst: R
SUBB src: R, IM, IR, DA, X
SUBL
Operation: dst « dst — src
The source operand 1s subtracted from the destination operand and the result 1s
stored 1n the destination. The contents of the source are not affected. Subtraction 1s
performed by adding the two's complement of the source operand to the destination
operand.
Flags: C: Cleared if there 1s a carry from the most significant bit; set otherwise, indicating
a “borrow”
Z: Set 1f the result 1s zero; cleared otherwise
S: Set 1if the result 1s negative; cleared otherwise
V: Set 1if arithmetic overflow occurs, that 1s, if the operands were of opposite signs
and the sign of the result 1s the same as the sign of the source; cleared otherwise
D: SUB, SUBL—unaffected; SUBB—set
H: SUB, SUBL—unaffected; SUBB—cleared 1if there 1s a carry from the most
significant bit of the low-order four bits of the result; set otherwise, indicating a
“borrow”
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: gggBRg.ESSRbs |[10jo00o1{w| Rs | Ra | 4 | [10fooo01{w| Rs | Ra | 4
SUBL RRd, RRs [1o]o10010] RRs | RRa | 8 [10[ 010010 RRs | RRd | 8
IM: SUB Rd, #dat
#data 00{ 000010 0000| Rd 7 00[000010]0000] Rd .
data data
SUBB Rbd, #data 00000011 [0000] Rbd 7 00{000011[0000] Rbd 7
data data data data
SUBL RRd, #data 00[010010]0000] RRd 00/ 010010]0000] RRd
31 data (high) 16 14 31 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: SUB Rd, @Rs! 1
SUBB Rbd, @s»Rsl {oofoooo1][w|Rsz0| Ra | 7 [oojoooo1|w]rrs<o] Ra | 7
SUBL RRd, @Rs! [oo] 010010 Rs=0] rRa | 14 [oo] 010010 RRs+0] RRd | 14
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Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: SUB Rd, address 01foo001]/w[o000] Rd 01]00001/w|0000| Rd
SUBB Rbd, address 9 SS - 10
address 0| segment offset
01 oooo1]w oooo‘ Rd
SL{1] segment [ 00000000 12
offset
SUBL RRd, address 01/ 0100100000 RRd 01]010010]0000] RRd
15 SS 16
address 0] segment offset
01010010 oooo{ RRd
SL[1] segment [0000 0000 18
offset
X: SUB Rd, addr(Rs) 01]00001|w| Rs=0| Rd o1]o0001|w Rs+0| Rd
SUBB Rbd, addr(Rs) 10 | sS 10
address 0[ segment offset
0100001[w[Rs=0[ ra
SL[1] segment [0000 0000 13
offset
SUBL RRD, addr(Rs)
01] 010010[Rs+0 | RRd % |ss 01]010010 | Rs»0 | RRd 18
address 0] segment offset
01]010010| Rs+0| RRd
SL 1] segment | 0000 0000 19
offset
Example: If register RO contains %0344, the statement

SUB RO,#%AA
will leave the value %029A 1n RO.

Note 1

Word register in nonsegmented mode, register pair in segmented mode
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TCC

Test Condition Code
TCC cc, dst dst: R
TCCB
Operation: if cc 1s satisfied then
dst (0) - 1

This instruction 1s used to create a Boolean data value based on the flags set by a
previous operation. The flags in the FCW are tested to see if the condition specified
by “cc’’ 1s satisfied. If the condition is satisfied, then the least significant bit of the
destination 1s set. If the condition 1s not satisfied, bit zero of the destination is not
cleared but retains 1ts previous value. All other bits in the destination are unaffected
by this instruction.

Flags: No flags aftected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: TCC cc, Rd
' 10 w| R ol10 w| Rd
TCOB ce, Rbd L[1o1111 [ d [ cc ] 5 [1 11 111[_[ [ cc l 5

Example: If register Rl contains 0, and the Z flag 1s set, the statement

TCC EQ,RI

will leave the value 1 1n RI.
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TEST

Test
TEST dst dst: R, IR, DA, X
TESTB
TESTL
Operation: dst OR 0
The destination operand is tested (logically ORed with zero), and the Z, S and P
flags are set to reflect the attributes of the result. The flags may then be used for
logical conditional jumps. The contents of the destination are not atfected.
Flags: C: Unaffected
Z: Set 1f the result 1s zero; cleared otherwise
S: Set if the most significant bit of the result 1s set; cleared otherwise
P: TEST—unaffected; TESTL—undefined; TESTB—set 1f parity of the result 1s even;
cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: %g%g?{bd 10001 10{w| e [o100] 7 |[1o]oo110lw] Rra [o100|| 7
TESTL RRd 1ol 011100] RRa [1000] 13 1o/ 011100 RRa [1000]| 13
IR: %ga@ggldl loojoo110{w[ra+0[0100] 8 JooJoo110[wlrRra<0]0100]| 8
TESTL @Rd! Jooj 011100 /R =0[1000] | 13 Jool 011100 [rra=0]1000]| 13
DA: %g%ﬁaii(ﬁ;s 01]o0110{W|o000]0100 i lss o1[0011o|w 0000/0100 12
address o] segment oftset
01{o0110/w/oo0o]o100
SL 1] segment | 0000 0000 14
address
TESTL address 01/011100 [0000 1000 6 |s 01]011100 [0000[1000 17
address S 0| segment offset
01011100 0000[1000
SL 1[ segment | 0000 0000 19

offset
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Destination

Nonsegmented Mode

Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: TEST addr(Rd)
TESTD addr(RA) 01/00110[W|Rd=0 0100 2 |ss 01/00110/w| Rd=0 [0100 12
address or segment offset
01/00110{W| Rd=0 [0100
SL[1] segment | 00000000 15
offset
01/ 011100| Rd=0[1000 01] 011100 |Rd=0[1000
17 SS 17
address OI segment oftset
01[011100 | Rd=0 1000
SL[1] segment | 00000000 20
offset
Example: If register R5 contains %FFFF (1111111111111111), the statement

TEST RS

will set the S flag, clear the Z flag, and leave the other flags unaffected.

Note 1

Word register in nonsegmented mode, register pair in segmented mode
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TRDB

Translate and Decrement

Operation:

TRDB dst, src, r dst: IR
src: IR

dst <« src[dst]
AUTODECREMENT dst by 1

rer -1

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination reqgister (the “target byte”’)
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition 1s performed following the
rule for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register.

The destination register 1s then decremented by one, thus moving the pointer to the
previous element 1n the string. The word register specified by """ (used as a

counter) 1s then decremented by one. The original contents of register RH1 are lost
and are replaced by an undefined value. RO and R1 in nonsegmented mode, or RRO in
segmented mode, must not be used as a source or destination pointer, and Rl should
not be used as a counter. The source, destination, and counter registers must be
separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where 1t is known that not all possible 8-bit target byte values will occur. The
source register is unchanged.

Flags:

C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H:

Unatfected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: TRDB ¢Rdl, @Rs!, r 10/111000 [Rd#0[1000 »s 10/ 111000 [RRd=0[ 1000 25
0000 « [rs=0]0000 0000] r [RRs+0[0000
Example: In nonsegmented mode, if register R6 contains %4001, the byte at location %4001

contains 3, register R9 contains %1000, the byte at location %1003 contains % AA,
and register R12 contains 2, the instruction

TRDB @R6, @R9, R12
will leave the value % AA in location %4001, the value %4000 in R6, and the value
1 in R12. R9 will not be affected. The V flag will be cleared. RH1 will be set to an
undefined value. In segmented mode, R6 and R9 would be replaced with
register pairs.

Note 1 Word register 1in nonsegmented mode, register pair in segmented mode
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TRDRB

Translate, Decrement and Repeat

TRDRB dst, src, r dst: IR
src: IR
Operation: dst < src [dst]
AUTODECREMENT dst by 1
rer — 1

repeat untilr = 0

This 1nstruction 1s used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte”)
are used as an index into a table of translation values whose lowest address 1s con-
tained in the source register. The index 1s computed by adding the target byte to the
address contained in the source register. The addition 1s performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table that replaces the original contents of the location
addressed by the destination regster.

The destination register 1s then decremented by one, thus moving the pointer to the
previous element in the string. The word register speciied by "'r”’ (used as a
counter) is then decremented by one. The entire operation 1s repeated until the
result of decrementing r 1s zero. This instruction can translate from 1 to 65536 bytes.
The original contents of register RH1 are lost and are replaced by an undefined
value. The source register 1s unchanged. The source, destination, and counter
registers must be separate and non-overlapping registers.

Because the 8-bit target byte 1s added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where 1t 1s known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction 1s saved before the interrupt request
is accepted, so the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that 1s accepted.

Flags: C: Unaffected
Z: Undefined

S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: TRDRB @Rd', @Rs', r 10{ 111000 [Rd=0[1100 10{ 111000 [RRd#0{1100
| s 11+1an| |10 . 11+14n
0000] r [Rsxo0lo000 0000] r [rrs=0[o000

6-154



Example: In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9 con-
tains %1000, the translation table from location %1000 through %10FF contains O,
1,2, ..., %7F, 0, 1, 2, ..., %7F (the second zero is located at %1080), and register
R12 contains 3, the instruction

TRDRB @R6, @R9, R12

will leave the values %00, %40, %00 1n byte locations %4000 through %4002,
respectively. Register R6 will contain %3FFF, and R12 will contain 0. R9 will not be
atfected. The V tlag will be set, and the contents of RH1 will be replaced by an
undefined value. In segmented mode, R6 and R9 would be replaced by register
pairs.

BEFORE
%1000 00000000
%4000 | 00000000 %1001 [0000000 1
%4001 [01000000 %1002 [0 0000010
%4002 {10000000 . .
. .
. B
AFTER %107F [0 1111111
%1080 {00000000
%4000 [0 0000000 %1081 [0000000 1
%4001 [0 1000000 %1082 [0000001 0
%4002 [0 0000000 . .
. .
. .
%10FF [0 1111111

Note 1* Word register 1n nonsegmented mode, register pair 1n segmented mode.
Note 2. n = number of data elements translated.
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TRIB

Translate and Increment

TRIB dst, src, r dst: IR
src: IR
Operation: dst <« src[dst]
AUTOINCREMENT dst by 1
rer—1

This instruction 1s used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination reqister (the “target byte")
are used as an index into a table of translation values whose lowest address is con-
tained 1n the source register. The index is computed by adding the target byte to the
address contained 1n the source register. The addition 1s performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register 1s then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r"’ (used as a counter) is then decremented by one. The original con-
tents of register RH1 are lost and are replaced by an undefined value. The source
register 1s unchanged. The source, destination, and counter registers must be
separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it 1s known that not all possible 8-bit target byte values will occur.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r 1s zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
TRIB @Rd!, @Rs!, r 10[ 111000 [Rd = 0[0000 »s 10[ 111000 |rra+0[0000 »s
0000' r Rs #0(0000 OOOO—I r TRR.'»#O 0000
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Example:

This instruction can be used 1n a “loop” of instructions which translate a string of
data from one code to any other desired code, but an intermediate operation on
each data element 1s required. The following sequence translates a string of 1000
bytes to the same string of bytes, with all ASCII “control characters” (values less
than 32, see Appendix C) translated to the “blank”” character (value = 32). A test,
however, 1s made for the special character “return” (value = 13) which terminates
the loop. The translation table contains 256 bytes. The first 33 (0-32) entries all con-
tain the value 32, and all other entries contain their own index 1n the table, counting
from zero. This example assumes nonsegmented mode. In segmented mode, R4 and
R5 would be replaced by register pairs.

LD R3, #1000 linitialize counter!

LDA R4, STRING lload start addresses!

LDA RS, TABLE
LOOP:

CPB @R4, #13 Icheck for return character!

JR EQ, DONE lexit loop if found!

TRIB @R4, @R5, R3 ltranslate next byte!

JR NOV, LOOP Irepeat until counter = 0!
DONE:

TABLE +0 00100000
TABLE +1 00100000
TABLE +2 00100000

. .

. .

. .
TABLE+32 |00100000
TABLE +33 00100001
TABLE + 34 00100010

TABLE+255 |11 111111

Note | Word register in nonsegmented mode, register pair in segmented mode
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TRIRB

Translate, Increment and Repeat

TRIRB dst, src, r dst: IR
src: IR
Operation: dst <« src[dst]
AUTOINCREMENT dst by 1
rer-—1

repeat untilr = 0

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte”)
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r"” (used as a counter) is then decremented by one. The entire opera-
tion is repeated until the result of decrementing r is zero. This instruction can
translate from 1 to 65536 bytes. The original contents of register RH1 are lost and are
replaced by an undefined value. The source register is unaffected. The source,
destination, and counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set

D: Unaffected

H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: TRIRB @Rd!, @Rs!, r 10[ 111000 [Rd = 0]0100 10[ 111000 [rRd=0l0100
11+14n 11+14n
0000 r [Rs=o0[0000 0000 r [rRs#0|0000
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Example:

The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pointers to the string and the translation table are set,
the number of bytes to translate is set, and then the translation is accomplished.
After executing the last instruction, the V flag 1s set and the contents of RH1 are lost.
The example assumes nonsegmented mode. In segmented mode, R4 and R5 would
be replaced by register pairs.

LDA R4, STRING
LDA RS, TABLE
LD R3, #80
TRIRB @R4, @RS, R3

Note 1 Word register 1n nonsegmented mode, register pair in segmented mode

Note 2 n = number of data elements translated
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TRTDB

Translate, Test and Decrement

Operation:

TRTDB srcl, src2, r src 1: IR
src 2: IR

RHI1 <« src2[srcl]
AUTODECREMENT srcl by 1

rer —1

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”’) are used as an index into a table of translation values whose lowest
address is contained 1n the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which 1s loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pointer to the previous
element in the string. The word register specified by “r"” (used as a counter) is then
decremented by one. The second source register is unaffected. The source and

counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte 1s added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it 1s known that not all possible 8-bit target byte values will

occur.

Flags:

: Unaffected

: Set if the translation value loaded into RH1 is zero; cleared otherwise
: Unaffected

: Set if the result of decrementing r is zero; cleared otherwise

: Unaffected

: Unaffected

Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language
Syntax

Instruction Format

Cycles

Instruction Format Cycles

IR:

TRTDB @Rsl!, @Rs2!, r

10[ 111000

Rs1 =

1010

0000]

Rs2 = 0

0000

25

10{ 111000 |RRs1%0 1010 25

0000] r [RRs2+0{0000

- 0
Lxampies

In nonsegmenied mode, 1f regisier N6 contains %4001, the byte at locaion %04001
contains 3, register R9 contains %1000, the byte at location %1003 contains % AA,

and register R12 contains 2, the instruction

TRTDB @R6, @R9, R12

Will leave the value % AA in RH1, the value %4000 in R6, and the value 1 in R12.
Location %4001 and register R9 will not be affected. The Z and V flags will be
cleared. In segmented mode, register pairs must be used instead of R6 and R9.

Note I Word register in nonsegmented mode, register pair in segmented mode
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TRTDRB

Translate, Test, Decrement and Repeat

Operation:

TRTDRB srcl, src2, r srcl: IR
src2: IR

RH1 <« src 2[srcl]
AUTODECREMENT srcl by 1
rer -1

repeat until RH1 # Qorr =0

This instruction 1s used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”’) are used as an index into a table of translation values whose lowest
address 1s contained in the second source reqister. The index is computed by adding
the target byte to the address contained 1n the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag 1s set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source reqgister is then decremented by one, thus moving the pointer to the previous
element 1n the string. The word register specified by “"r”’ (used as a counter) is then
decremented by one. The entire operation is repeated until either the Z flag 1s clear,
indicating that a non-zero translation value was loaded into RH1, or until the result
of decrementing r is zero. This instruction can translate and test from 1 to

65536 bytes. The source and counter registers must be separate and non-overlapping
reqgisters.

Target byte values which have corresponding zero translation-table entry values are
to be scanned over, while target byte values which have corresponding non-zero
translation-table entry values are to be detected. Because the 8-bit target byte 1s
added to the second source register to obtain the address of a translation value, the
table may contain 256 bytes. A smaller table size may be used where 1t is known that
not all possible 8-bit target byte values will occur.

This 1nstruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction 1s saved before the interrupt request
15 accepted so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that 1s accepted.

Flags:

C: Unaffected

Z: Set if the translation value loaded into RH1 1s zero; cleared otherwise
S: Unaffected

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

@ 1 @ 1
TRTDRB@Rsl!,@Rs2! r 10/ 111000 [Rst % 01110 10{ 111000 RRs120/1110

11 +14n 11+14n

0000[ r |Rs2+0/1110 0000! r |RRs2#0/ 1110
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Example:

In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, repectively, register R9 contains
%1000, the translation table from location %1000 through %10FF contains 0, 1,

2, ..., %7F, 0, 1, 2, ..., %7F (the second zero is located at %1080), and register
R12 contains 3, the instruction

TRTDRB @R6, @R9, R12

will leave the value %40 in RH1 (which was loaded from location %1040). Register
R6 will contain %4000, and R12 will contain 1. R9 will not be affected. The Z and V
flags will be cleared. In segmented mode, register pairs are used instead of R6

and R9.

%4000
%4001
%4002

00000000

01000000

10000000

%1000
%1001
%1002

.

.

.
%107F
%1080
%1081
%1082

.

.

.

%10FF

00000000

00000001

00000010

011111114

00000000

00000001

00000010

.

01111111

Note 1. Word reqister in nonsegmented mode, register pair 1n segmented mode.

Note 2. n = number of data elements translated
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TRTIB

Translate, Test and Increment

Operation:

TRTIB srcl, src2, r srcl: IR
src2: IR

RH1 < src2[srcl]
AUTOINCREMENT srcl by 1

rer—1

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”’) are used as an index into a table of translation values whose lowest
address 1s contained 1n the second source register. The index 1s computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum 1s used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag 1s set 1if the value loaded into RH1 1s zero; otherwise the Z flag 1s cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register 1s then incremented by one, thus moving the pointer to the next ele-
ment 1n the string. The word register specified by “'r" (used as a counter) is then
decremented by one. The second source register 1s unaffected. The source and
counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte 1s added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it 1s known that not all possible 8-bit target byte values

will occur.

Flags:

: Unaffected

: Set if the translation value loaded into RH1 1s zero; cleared otherwise
: Unaffected

:+ Set if the result of decrementing r 1s zero; cleared otherwise

: Unaffected

: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

IR:

TRTIB @Rsl!, @Rs2!,
RTIB @Rsl!, ¢Rs21, x 10[111000 [Rst = g{00 10 10[111000 [RRs120[0010

25 25

0000] r |Rs2+0/0000 0000] r [RRs2#0{0000
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Example:

This instruction can be used 1n a “loop” of instructions which translate and test a
string of data, but an intermediate operation on each data element 1s required. The
following sequence outputs a string of 72 bytes, with each byte of the original string
translated from 1ts 7-bit ASCII code to an 8-bit value with odd parity. Lower case
characters are translated to upper case, and any embedded control characters are
skipped over. The translation table contains 128 bytes, which assumes that the most
significant bit of each byte 1n the string to be translated is always zero. The first 32
entries and the 128th entry are zero, so that ASCII control characters and the
“delete” character (%7F) are suppressed. The given instruction sequence 1s for
nonsegmented mode. In segmented mode, register pairs would be used instead of R3
and R4.

LD R5, #72 hnithalize counter!
LDA R3, STRING lload start address!
LDA R4, TABLE
LOOP:
TRTIB @R3, @R4, R5 Itranslate and test next byte!
JR Z, LOOP Iskip control character!
OUTB PORTn, RH1 loutput characters!
JR NOV, LOOP Irepeat until counter = 0!
DONE:

Note I Word reqister in nonsegmented mode, register pair in segmented mode
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TRTIRB

Translate, Test, Increment and Repeat

Operation:

TRTIRB srcl, src2, r srcl: IR
src2: IR

RH1 < src2[srcl)
AUTOINCREMENT srcl by 1
rer -1

repeat until RH1 # Qorr = 0

This instruction is used to scan a string of bytes, testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index 1s computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which 1s loaded into register RH1. The Z
flag 1s set if the value loaded into RH1 is zero; otherwise the Z flag 1s cleared. The
contents of the locations addressed by the source registers are not affected.

The first source register is then incremented by one, thus moving the pointer to the
next element in the string. The word register specified by "r” (used as a counter) is
then decremented by one. The entire operation is repeated until either the Z flag 1s
clear, indicating that a non-zero translation value was loaded into RH1, or until the
result of decrementing r is zero. This instruction can translate and test from 1 to
65536 bytes. The source and counter registers must be separate and non-overlapping
registers.

Target byte values which have corresponding zero translation table entry values are
scanned over, while target byte values which have corresponding non-zero transla-
tion table entry values are detected and terminate the scan. Because the 8-bit target
byte is added to the second source register to obtain the address of a translation
value, the table may contain 256 bytes. A smaller table size may be used where it is
known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

Flags:

C: Unaffected

Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

TRTIRB @Rsl!, @Rs2!, r

Rs1%0/ 0110
10[111000 [Rs1 = 00110 11+14n 10[111000 |RRs120) 11+14n

0000]  |Rs2=0[1110 0000] r |RRs20[1110
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Example:

The following sequence of instructions can be used in nonsegmented mode to scan a
string of 80 bytes, testing for special characters as defined by corresponding non-
zero translation table entry values. The pointers to the string and translation table
are set, the number of bytes to scan 1s set, and then the translation and testing is
done. The Z and V flags can be tested after the operation to determine if a special
character was found and whether the end of the string has been reached. The
translation value loaded into RH1 might then be used to index another table, or to
select one of a set of sequences of instructions to execute next. In segmented mode,
R4 and R5 must be replaced with register pairs.

LDA R4, STRING
LDA R5, TABLE
LD R6, #80
TRTIRB @R4, @R5, R6

JR NZ, SPECIAL
END__OF__STRING: .

SPECIAL:
JR OV,LAST__CHAR__SPECIAL

LAST__CHAR__SPECIAL:

Note I Word register 1n nonsegmented mode, register pair in segmented mode
Note 2 n = number of data elements translated

6-166



TSET

Test and Set
TSET dst dst: R, IR, DA, X
TSETB
Operation: S <« dst(msb)
dst(0O:msb) <« 111...111
This instruction tests the most significant bit of the destination operand, copying its
value into the S flag, then sets the entire destination to all 1 bits. It provides a lock-
ing mechanism which can be used to synchronize software processes which require
exclusive access to certain data or instructions at one time.
During the execution of this instruction, BUSREQ is not honored in the time between
loading the destination from memory and storing the destination to memory. For
systems with one processor, this ensures that the testing and setting of the destination
will be completed without any intervening accesses. To synchronize software pro-
cesses residing on separate processors where the destination is a shared memory
location, TSET should be used with a Z8003 CPU.
Flags: C: Unaffected
Z: Unaffected
S: Set if the most significant bit of the destination was 1; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: TSET Rd
TSETB Rbd [10foo110{w| Ra [0110] 7 [1oJoo110lw] ra Jo110]| 7
IR: TSET @Rd!
TSBTB G4l foojoo110[w|Ra=0[o110] | 11 [ooJoo110[w[rRaxolo110]| 11
DA: TSET address
e 01{0o0110/w/0000(0110 1 | ss 01oo110/w|oo00fo110 15
address Ol segment offset
01/oo110/w|0000[0110
SL[1] segment | 00000000 17
offset
X: TSET addr(Rd)
TSETD addr(Rd) o1{oo110|/w|Rd=0]0110 5 |ss 01/00110/w|Rd=0 0110 5
address 0| segment offset
01/00110[/W| Rd=0[0110
SL[1] segment | 00000000 18
offset
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Example: A simple mutually-exclusive critical region may be implemented by the following
sequence of statements:

ENTER:
TSET SEMAPHORE
IR MI,ENTER lloop until resource con-!

Itrolled by SEMAPHORE!
lis available!

ICritical Region—only one software process!
lexecutes this code at a time!

CLR SEMAPHORE Irelease resource controlled!
by SEMAPHORE!
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XOR

Exclusive Or

XOR dst, src dst: R
XORB src: R, IM, IR, DA, X
Operation: dst « dst XOR src
The source operand 1s logically EXCLUSIVE ORed with the destination operand and
the result 1s stored in the destination. The contents of the source are not atfected.
The EXCLUSIVE OR operation results 1n a one bit being stored whenever the cor-
responding bits in the two operands are different; otherwise, a zero bit is stored.
Flags: C: Unaffected
Z: Set 1if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: XOR—unaffected; XORB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: XOR R4, R
YORB Rbd,SRbs |10foo100[w| rs | ma | a4 l1ojooroo[w| rs | Rra || 4
IM: XOR Rd, #data
00/001001]0000| Rd 7 00[001001]0000] Rd ;
data data
XORB Rbd, fdata 00/ 0010000000 Rbd . 00001000 (0000 Rbd 7
data data data data
IR: XOR Rd, @Rs!
XORB Rbd, @ Rs! Joojoo100[w|Rsz0| Ra | 7 Jooloo1oo|w|Rrs+0] RRa || 7
DA: XOR Rd, address
XORB Rbd. adduess o01o0100{w|0000| Ra o |ss o1loo100/w[o000| Rd 10
address Ol segment offset
o1]00100{w/0000] Rd
SL ﬂ segment | 00000000 12
offset
X: XOR Rd, addr(Rs)
el v o1loo100/w|Rs=0| Rd w0 |ss 01{00100[w[Rs+0| Rd 10
address 0' segment offset
o1loo100[w| Rs#0| Rd
SL|1] segment | 00000000 13
offset
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Example: If register RL3 contains %C3 (11000011) and the source operand 1s the immediate
value %7B (01111011), the statement

XORB RL3,#%7B
will leave the value %B8 (10111000) in RL3.

Note ] Word register in nonsegmented mode, register pair in segmented mode
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6.8 EPA Instruction Templates

There are seven "templates" for EPA instructions.
These templates correspond to EPA instructions,
which combine EPU operations with possible
transfers between memory and an EPU, between CPU
registers and EPU registers, and between the Flag
byte of the CPU's FCW and the EPU. Each of these
templates is described on the following pages.
The description assumes that the EPA control bit
in the CPU's FCW has been set to 1. In addition,
the description is from the point of view of the
CPU--that is, only CPU activities are described;
the operation of the EPU is implied, but the full

specification of the instruction depends upon the
implementation of the EPU and is beyond the scope
of this manual.

Fields ignored by the CPU are shaded in the
diagrams of the templates. The 2-bit field in bit
positions 0 and 1 of the first word of each
template would normally be used as an identifica-
tion field for selecting one of up to four EPUs in
a multiple EPU system configuration. Other shaded
fields would typically contain opcodes for
instructing an EPU as to the operation it is to
perform in addition to the data transfer specified
by the template.

Extended Instruction
Load Memory from EPU

Operation: Memory < EPU
The CPU performs the indicated address calculation and generates n EPU memory
write transactions. The n words are supplied by an EPU and are stored in n con-
secutive memory locations starting with the effective address and increasing in ad-
dress.
Flags/Registers: No flags or CPU registers are affected by this instruction.
Source Nonsegmented Mode Segmented Mode
Addressing Operation
Mode Instruction Format Cycles Instruction Format Cycles
IR: @ Rd — EPU o 00{00 1111 [RRd=0|11[
T 141 4+ 3n l |i 55 | P
¥ T
DA: EPU - address 01foo1111[0000[11] 01001111 [0000[11],]
B LS 14 + 3n|SS|’ SRR n 115 + 3n
address ol segment offset
01/0011 1:7!:2'0_90 1)
DERRSEII RN
oL e L g 17 + 3n
1| segment | 00000000
offset
X: EPU - addr (Rs) 01[001111]Rd=0 [11]37] 01001111 Rd=0 11@
e m | 15+ 8niSSociin i i n [[15 4+ 3n
address OL segment l offset
01001111 |Rd=0 [1155%
FRNON o e S Y: n-1
SL [Faiia *“"«”’T st 18 + 3n
:_Lsegmem 00000000
offset
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Extended Instruction
Load EPU from Memory

Operation: EPU <« Memory
The CPU performs the indicated address calculation and generates n EPU memory
read transactions. The n consecutive words are fetched from the memory locations
starting with the effective address. The data is read by an EPU and operated upon
according to the EPA instruction encoded into the shaded fields.
Flags/Registers: No flags or CPU registers are affected by this instruction.
Source Nonsegmented Mode Segmented Mode
Addressing Operation
Mode Instruction Format Cycles Instruction Format Cycles
IR: _EPU — @Rs
11 + 3n 11 + 3n
DA: EPU - address
14 + 3n|SS 15 + 3n
address segment offset
001111000001
SL 17 + 3n
segment | 00000000
oftset
X: EPU - addr (Rs) 01|/ 001111 001111
I 15 + 3n|SS 15 + 3n
address segment
001111
n1
SL 18 + 3n

00000000
offset

1| segment
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Extended Instruction
Load CPU from EPU

Operation: CPU < EPU registers

The contents of n words are transferred from an EPU to consecutive CPU registers
starting with register dst. CPU registers are loaded consecutively, with register O

following register 15.

Flags/Registers: No flags are affected by this instruction.

Source Nonsegmented Mode Segmented Mode
Addressing Operation
Mode Instruction Format Cycles Instruction Format Cycles
R: Rd - EPU [ToJoo1111]0
> 11+4n 11+4n
Extended Instruction
Load EPU from CPU
Operation: EPU < CPU registers

The contents of n words are transferred to an EPU from consecutive CPU registers
starting with register src. CPU registers are transferred consecutively, with register 0

following register 15.

Flags/Registers: No flags are affected by this instruction.

Source Nonsegmented Mode Segmented Mode
Addressing Operation
Mode Instruction Format Cycles Instruction Format Cycles
R: EPU — Rs
11+4n 11+4n
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Extended Instruction
Load FCW from EPU

Operation: Flags <= EPU

The Flags in the CPU’s Flag and Control Word are loaded with information from an
EPU on AD lines ADg-AD;.

Flags/Registers: The contents of CPU register 0 are undefined after the execution of this instruction.

Source Nonsegmented Mode Segmented Mode
Addressing Operation
Mode Instruction Format Cycles Instruction Format Cycles

R: FCW — EPU 15 15

Extended Instruction
Load EPU from FCW

Operation: EPU <« Flags

The Flags in the CPU'’s Flag and Control Word are transferred to an EPU on AD
lines ADg-ADj.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Source Nonsegmented Mode Segmented Mode
Addressing Operation
Mode Instruction Format Cycles Instruction Format Cycles

R: EPU — FCW 15 15
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Extended Instruction
Internal EPU Operation

Operation:

Internal EPU Operation

The CPU treats this template as a No Op. It is typically used to initiate an internal

EPU operation.

Flags/Registers: No flags or registers are affected.

Source Nonsegmented Mode Segmented Mode
Addressing Operation
Mode Instruction Format Cycles Instruction Format Cycles
EPU INTERNAL 11+4n 11+4n

OPERATION
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Chapter 7
Exceptions

7.1 INTRODUCTION

Exceptions are conditions that can alter the
normal flow of program execution. The 78000 CPU
supports four types of exception:

interrupts

traps

abort (Z8003 and 28004 only)
reset

Interrupts are triggered by peripheral devices
that need attention. They cause the processor to
suspend program execution in order to service the
requesting device. Traps are responses by the CPU
to certain events detected during the attempted
execution of an instruction. Thus, the
difference between traps and interrupts is their
origin. A trap condition is always reproducible
by re-executing the program that created the
traps, whereas an interrupt is generally
independent of the currently executing task.
Abort is a special trap-like exception that is
used in the implementation of virtual memory
systems. An abort exception is controlled by
external memory management circuitry or peripheral
device such as the 28015 PMMU. If the CPU in a
virtual system outputs an address which does not
correspond to any location in main memory, an
Abort Instruction function is initiated in the CPU
(see Section 7.4). A reset overrides all other
conditions, including all interrupts and traps.
It occurs when the RESET line is activated, and it
causes certain  control registers to be
initialized.

7.2 INTERRUPTS

Three kinds of interrupt are activated by three
different pins on the 28000 CPU. (Interrupt
handling for all interrupts is discussed in
Section 7.6).

7.2.1 Nonmaskable Interrupt (NMI)

This type of interrupt cannot be disabled (masked)
by software. It is typically reserved for
external events that require immediate attention.

7.2.2 Vectored Interrupt (VI)

One result of any interrupt or trap is that a
16-bit identifier word is pushed onto the system
stack (see Section 7.6.2). This word can be used
to identify the source of the interrupt or trap.
For vectored and non-vectored interrupts, this
identifier is supplied by the interrupting device
and read from the bus by the CPU during the
interrupt acknowledge cycle. For vectored
interrupts, the low order byte of this identifier
is used by the CPU hardware as an index to a table
of interrupt service routine addresses. These
interrupts can be disabled by clearing the VIE bit
in the FCW.

7.2.3 Nonvectored Interrupts (NVI)

These interrupts also result in an identifier word
being pushed onto the system stack, however, the
CPU does not use the identifier as a vector to
select a service routine; all nonvectored
interrupts are serviced by the same routine. They
can be disabled by clearing the NVIE bit in the
FCW.

7.3 TRAPS

All 78000 CPUs support three traps generated
internally. The 78001 and Z8003 CPUs support a
fourth trap, which is controlled externally (but
synchronously) by either a Zilog MMU or external
memory management circuitry. This fourth trap is
intended for use in virtual memory systems to




Exceptions

report access violations and page faults to the
CPU.

Traps cannot be disabled. (Trap handling
operations are discussed in Section 7.7).

7.3.1 Extended Instruction Trap

This trap occurs when the CPU encounters an
extended instruction (see Section 6.2.10) while
the EPA bit in the FCW is cleared. One of the
major uses of this trap is to allow the program to
simulate the operations of the EPU when none is
present in the system.

7.3.2 Privileged Instruction Trap

This trap occurs whenever an attempt is made to
execute a privileged instruction while the CPU is
in System mode (S/N bit in the FCW is cleared).

7.3.3 System Call Trap

This trap occurs whenever a System Call (SC)
instruction is executed. It allows an orderly
transition to be made from Normal mode to System
mode.

7.3.4 Segment/Address Violation Trap (28001
and 78003 only)

There are two types of address violation traps
both of which are controlled by an input (or
inputs) from memory management hardware external
to the CPU.

A Segment Trap is controlled by CPU input SEGT for
28001 and SAT for Z8003. This trap is initiated
by the external memory management circuitry.
Violations which enable this trap include the
detection of an address offset value which is
larger than the length of the assigned segment, a
write warning (a write into the lowest 256 byte
section of a stack was detected), and violations
of segment or page attributes (refer to MMU and
PMMU descriptions in Appendix B).

7.3.5 Abort Trap (Z8003 and Z8004 only).

An Abort trap is initiated in the CPU by the
assertion of the CPU ABORT input. This input is
controlled by external memory management circuitry
in the implementation of a virtual memory
system. When ABORT is asserted with inputs WAIT
and SAT, an Abort Instruction function followed by
a SAT trap operation are initiated in the CPU.

Note: The 28004 does not have a SAT input; either
the NVI, VI, or the NMI input can be used in its
place.

7.4 ABORT INSTRUCTION FUNCTION

In a virtual memory system, the detection of a CPU
output address that references a location that is
not in main memory will cause the memory
management circuitry to activate a CPU abort
exception (CPU input ABORT is asserted). This
initiates an Abort Instruction Function in the CPU
which aborts the current instruction execution and
saves all of the information that is needed to
restart the instruction at the point of
interruption. The Abort Instruction Function must
be followed by an externally controlled trap (SAT
for the 78003 and any interrupt input for the
Z8004). The trap must initiate the execution of a
user-prepared routine that will bring the segment
or page containing the referenced location into
main memory and will perform the functions needed
to restart the aborted instruction at the point of
interruption. A maskable interrupt should be used
for the 28004 trap function since this type of
interrupt has a higher priority than non-maskable
interrupts. Details of the abort operations are
given in Chapter 9.

7.5 RESET

A reset initializes selected control registers of
the CPU to system specifiable values. A reset can
occur at the end of any clock cycle, provided the
RESET line is Low.

A system reset overrides all other considerations,
including interrupts, traps, bus requests, and

7-2
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stop requests. A reset must be used to initialize
a system as part of the power-up sequence.

Within five clock cycles of the RESET becoming Low
ADU-AD15 are 3-stated; AS, DS, MREQ, BUSACK, and
MO are forced Low. The R/W, B/W, and N/S lines
are undefined. RESET must be held Low five clock
cycles to reset the CPU.

Three clock cycles after RESET has returned to
High, consecutive memory read cycles are executed
in system mode to initialize the Program Status
registers. In the 28001 and 28003, the first
cycle reads the FCW from Location 0002 in segment
number 0. The second cycle reads the PC segment
number value from locations 0004 and the third
cycle reads the PC offset value from location 0006
in segment number O.

Each of these fetches is made with the instruction
memory access code (binary 1100) on status lines
ST3-STg. The next initial instruction cycle
starts the mainstream program.

In the Z8002 and the 78004, the first cycle reads
the FCW from memory location 2 and the second
cycle reads the PC value from location 4. Each of
these fetches is made with the instruction memory
access code (binary 1100) on status lines
ST3-STg. The next initial instruction cycle
starts the program.

7.6 INTERRUPT DISABLING

Vectored and nonvectored interrupts can be enabled
or disabled independently by setting or clearing
appropriate control bits in the Flag and Control
Word (FCW). Two control bits in the FCW control
the maskable interrupts: VIE and NVIE. Any
control bit can be changed when a new FCW is
lodded from the PSA during an interrupt or trap
acknowledge sequence and will be restored to its
previous setting by an Interrupt Return (IRET)
instruction. When VIE is 1, vectored interrupts
are enabled; when NVIE is 1, nonvectored
interrupts are enabled. These two flags can be
set or cleared either together or separately. In
addition, these control bits are set when the FCW
is loaded using either the LDPS or LDCTL FCW
instruction.

When any type of interrupt has been disabled, the
CPU ignores any interrupt request on the

corresponding input pin. Because masked interrupt
requests are not retained by the CPU, the request
signal must be asserted until the CPU acknowledges
the request.

7.7 INTERRUPT AND TRAP HANDLING

The CPU response to a trap or interrupt request
consists of four steps: acknowledging the exter-
nal request (for interrupts and segment or address
traps), saving the current program status
information, loading a new program status, and
transferring to the service routine. Returning to
the interrupted task at the end of the service
routine is accomplished by executing the IRET
instruction which removes the saved information
from the stack and restores the status. Interrupt
timing is shown in Chapter 9.

7.7.1 Acknowledge Cycle

An external acknowledge cycle is required only for
externally generated requests. As described in
Chapter 9, the main effect of such a cycle is to
enable the CPU to receive from the external device
a 16-bit identifier word, which will be saved with
the current program status. Before the
acknowledge cycle, the CPU enters its System
mode. The N/S line is asserted to indicate that a
transition has been made to System mode. The
saved FCW is not affected by this change in mode.
The CPU remains in System mode until it begins to
execute the exception service routine, at which
time its mode is dictated by the FCW.

7.7 2 Status Saving

The current program status information is saved
on the system stack in the following order of
entry: the Program Counter, the Flag and Control
Word, and finally, the interrupt/trap identifier
word. The identifier word contains the reason or
source of the trap or interrupt. For internal
traps, the identifier is the first word of the
trapped instruction. For segment or address trap
or interrupts, the identifier is the value on the
data bus read by the CPU during the interrupt-
acknowledge or trap-acknowledge cycle. The format
of the saved program status in the system stack is
illustrated in Figure 7-1.
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Z8002 Z8001
and and
Z8004 Z8003
Low Low
ADDRESS ADDRESS
SYSTEM SP -] IDENTIFIER SYSTEM STACK —»| IDENTIFIER
AFTER TRAP POINTER AFTER
OR INTERRUPT FCW TRAP OR FCW
INTERRUPT
PC SEGMENT PC
PC OFFSET SYSTEM STACK —»
SYSTEM SP - POINTER BEFORE
BEFORE TRAP TRAP OR
OR INTERRUPT INTERRUPT
|<¢— 1 WORD —>| l<¢— 1 WORD —»|
HIGH HIGH
ADDRESS ADDRESS

Figure 7-1.

Format of Saved Program Status in the System Stack

Table 7-1 shows the PC value that is pushed onto
the stack for each type of interrupt and trap.

7.7.3 Loading New Program Status

After saving the current program status, the new
program status (PC and FCW) is automatically
loaded from the Program Status Area in system
program memory (i.e. status ST3-STg
indicate IFy, and N/S indicates System mode).
The particular status words fetched from the
Program Status Area are a function of the type of
trap or interrupt and (for vectored interrupt) of
the interrupt vector. Figure 7-2 shows the format
of the Program Status Area.

outputs
p

Table 7-1.

For each kind of interrupt or trap other than a
vectored interrupt, there is a single program
status block that is automatically loaded into the
Flag and Control Word and the Program Counter.

The size of each program status block depends on
the version of the 28000 (two words for the
nonsegmented CPUs (Z8002, Z8004) and four words
for the segmented CPUs (28001, Z8003).

For all vectored interrupts, the same Flag and
Control Word (FCW) is loaded from the
corresponding program status block. However, the
appropriate Program Counter (PC) value is selected
from up to 256 (28002, 28004) or 128 (28001,28003)
different values in the Program Status Area.

PC Value Pushed For Each Interrupt or Trap

Exception

PC Value is Address Of:

Extended Instruction Trap
Privileged Instruction Trap
System Call Trap

Address Violation Trap

All Interrupts

Second word of instruction
Second word of instruction
Next instruction

Depends on external circuitry
Next instruction*

* If an interruptible instruction (e.g., LDIR) is executing but
not completed, then the next instruction is the current

instruction.

7-4
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PROGRAM STATUS AREA
POINTER (PSAP)

—

—_———n
[ see.no. | | uepEr | 0.0 |

OFFSET  IMPLIED
28001 28002
and and
BYTE OFFSET 28003 28004 BYTE OFFSET
HEX  DECIMAL - DECIMAL  HEX
0 ) RESERVED 0 0
RESERVED |
8 8 FowW EXTENDED FCw 4 4
INSTRUCTION
HE) TRAP pc
PCOFFSET |
RESERVED
10 16 Fow PRIVILEGED Fcw 8 8
INSTRUCTION
rJ seg____ | 7 tRap pC
PCOFFSET |
18 24 REst:')IED SYSTEM FCW 12 (o]
CALL
EE] I e Y pC
PCOFFSET | __
» % REii'\‘f‘IIED SEGMENT
BES e NOT USED 16 10
PCOFFSET |
RESERVED
28 40 FCW 2 14
FCW NON-MASKABLE 0
_J SEG INTERRUPT pe
PCOFFSET_|__ _
30 48 RESERVED FCW 24 18
FCW NON-VECTORED
L_j SEG INTERRUPT pC
PCOFFSET |
RESERVED
38 56 = FCW 28 1c
| |sEG
P
¢ PCo OFFSET Co 30 1E
SEG
%0 N
PC, OFFSET VECTORED PC1 32 20
SEG INTERRUPTS .
c 34 22
a4 68 PC4 OFFSET 2
L] L] L] L] L] L]
[ ] [ ] L] L] L] L]
L] . . . L] L]
[ ] [ ] [ ] L] L] .
| [ sEG
PC
PCpss OFFSET | 255
570 540 21C
Figure 7-2. Program Status Area

The low-order eight bits of the identifier placed
on the data bus by the interrupting device is
multiplied by two and used as an offset into the
Program Status Area following the FCW for vectored
interrupts. On the 178002 and 178004, the
identifier value O selects the first PC value, the
value 1 selects the second PC, and so on up to the

identifier value 255. On the 78001 and 78003, the
identifier value 0 selects the first PC value, the
value 2 selects the second PC, and so on up to
identifier value 254, which selects the 128th PC
value. 0dd identifier values cannot normally be
used with the Z8001 or Z8003 CPUs.
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The Program Status Area is addressed by a special
control register, the Program Status Area Pointer,
or PSAP. This pointer is one word for the
nonsegmented CPUs and two words for the segmented
CPUs. As shown in Figure 7-2, the pointer
contains a segment number (if applicable) and the
high-order byte of a 16-bit offset address. The
low-order byte is assumed to contain zeros; thus
the Program Status Area must start on a 256-byte
address boundary. The programmer accesses the
PSAP using the Load Control Register instruction
(LbeTL).

7.7.4 Executing the Service Routine

Loading the new program status automatically
initializes the Program Counter to the starting
address of the service routine required by the
interrupt or trap causing this routine to be
executed. Because a new FCW is loaded, the
maskable interrupts can be disabled for the
initial processing of the service routine by a
suitable choice of FCW. This allows critical
information to be stored before subsequent
interrupts are handled. Service routines that
enable interrupts permit interrupts to be handled
in a nested fashion.

7.7.5 Returning from an Interrupt or Trap

Upon completion, the service routine can execute
an Interrupt Return instruction (IRET) to cause
execution to continue at the point where the
interrupt or trap occurred. IRET causes informa-
tion to be popped from the system stack in the
following order: the identifier is discarded, the
saved FCW and PC are restored. The newly loaded
FCW takes effect with the next fetched instruc-
tion, which is determined by the restored Program
Counter.

On Z8001 and Z8003 CPUs, IRET can be executed only
in segmented mode; in nonsegmented mode the
operation is undefined.

In Virtual Memory Systems, the instruction
interrupted by an Abort condition may have been
interrupted after it had modified a CPU
register(s) but before it had completed

execution. When such a condition occurs, special
software must ensure that a correct restart
environment is established. The software

requirements for restarting an aborted instruction
are described in Appendix D.

The specific point in the instruction execution
cycle at which an abort can occur is determined by
the external memory management circuitry used.
The instruction restart algorithm used will then
depend on the operation of the memory management
circuitry used. If a Zilog MMU or PMMU is used,
the needed restart information is presented in
their respective technical manual, document number
03-8070-01 for the 78010 MMU and document number
03-822301 for the 28015 PMMU.

7.8 PRIORITY

Because it is possible for several exceptions to
occur simultaneously, the CPU enforces a priority
scheme for deciding which event will be honored
first. The following gives the descending prior-
ity order:

® Reset

e Internal Trap (i.e., privileged instruction,
system call, extended instruction)
Nonmaskable Interrupt

e Addressing Violation or Segment/Address Trans-
lation Trap (Z8001 and Z8003 only)

e Vectored Interrupt

e Nonvectored Interrupt

The priority system works as follows:

1. When a reset is requested, it is performed
immediately.

2. If several non-reset exceptions occur simul-
taneously, the one that has the highest prior-
ity and is also enabled (traps and nonmaskable
interrupts are always enabled) is acknowledged,
current status is saved, and new status is
loaded. The new status consists of the
starting address of the service routine (PC)
and a new FCW that may disable vectored or
nonvectored interrupts.

3. If any enabled exceptions remain after the new
FCW is loaded, the highest-priority exception
is acknowledged immediately (see Step 2). Note
that in this case, the current status is the PC
and FCW of the first exception's service
routine.

4. The process described in steps 2 and 3 is

repeated until no enabled exceptions remain.

At that point, the current PC and FCW will

contain the status values for the lowest

priority exception that was acknowledged.
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5. The execution of the service routine now pro-
ceeds in the reverse of the order in which the
exceptions were acknowledged. After all the
exceptions have been serviced, the original
status is restored and execution resumes.

Within each of the classes above, there can be
several interrupt sources. The internal traps are
mutually exclusive and therefore need no priority
resolution within that class. The other types
arise from external sources; thus when several
devices share the same request line, the
possibliity arises that two or more devices may

request service from the CPU simultaneously.
Either all the interrupt sources must be serviced
simultaneously (as with MMU), or competing
requests must be resolved external to the CPU.
The Z-BUS definitions provide for a daisy-chain
interrupt  structure; all  Z-BUS compatible
peripherals have input and output pins (IEI and
IED) to implement this type of priority interrupt
system.

An external priority interrupt controller can also
be used. The Z-CIO, for example, is designed to
be used in this manner with the 28000 CPUs.







Chapter 8
Refresh

8.1 INTRODUCTION

All 78000 CPUs have an internal mechanism for re-
freshing dynamic memory. This mechanism can be
activated in two ways:

e When the Refresh Enable (RC) bit in the CPU
Refresh control register is set to one (Figure
8-1), a memory refresh cycle is performed
periodically at a rate specified by the RATE
field in the counter. (See Section 8.3).

e When the STOP line is activated, the CPU gener-
ates memory refreshes cycles continuously.
(See Section 8.4.)

8.2 REFRESH CYCLES

The refresh mechanism is a way of generating a
special kind of bus transaction called a refresh
cycle, which is described in Chapter 9. A refresh
cycle is three clock cycles long and when due, it
will be inserted immediately after the last clock
cycle of the current bus transaction.

During a refresh cycle, status lines ST3-STg are
set to 0001, address lines ADg-ADg contain the
memory ROW value, and address lines Ag-Aqs are
undefined. The ROW value determines the memory
row that is being refreshed on this cycle. Since
memory is word-organized, ADg is always zero.
After the refresh cycle is complete, the ROW field
is incremented by two, thus stepping through 256
rows numbered 0,2,4...,510.

8.3 PERIODIC REFRESH

The Refresh Enable (RE) bit controls only Periodic
Refresh; refresh cycles can be generated using the
STOP line, regardless of the state of RE. When RE
is set to one, the value of the 6-bit RATE field
determines the time between successive refreshes
(the refresh period). When RATE = 0, the refresh
period is 256 clock cycles; when RATE = n, the
refresh period is 4n clock cycles. For example,
if there is a 4 MHz clock, the refresh period is
between 1 ps and 64 ps, while with a 10MHz clock,
the refresh period will be between 400ns and 25.6
us).

The LDCTL instruction is used to set the refresh
rate, to set or clear RE, or to initialize the ROW
field. (See Section 6.6 for a detailed discussion
of this instruction.)

The refresh cycle is generated as soon as possible
after the refresh period has elapsed, usually,
after the 1last clock cycle of the current
transaction. If the CPU receives a trap or an
interrupt simultaneously with a Periodic Refresh
request, the refresh operation is performed first.

When the CPU does not have control of the bus
(that is, while BUSACK is asserted and the CPU
enters Bus-Disconnect state or while the WAIT line
is activated), the CPU cannot issue refresh
cycles. To deal with this situation, all 78000
CPUs have internal circuitry that counts and

1 1 1 1 1 "l ue 1 1 1 ] ]
L L] T L] L] T
LRE RATE ROW ADDRESS o]
ADg AD; ADg ADg AD4 AD3 AD, ADy ADg
Figure 8-1. Refresh Control Register
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remembers skipped refresh cycles. When the CPU
regains control of the bus, or when the WAIT line
is deactivated, it immediately issues the skipped
refresh cycles. The internal circuitry can record
up to two skipped refresh operations.

After a reset operation, Periodic Refresh is
disabled (RE is cleared) and the internal
circuitry that —counts skipped refreshes is
cleared.

8.4 STOP-STATE REFRESH

The CPU has three internal operating states: Run,
Stop and Bus-Disconnect (see Section 2.8). The
Stop state is entered each time the STOP line is
activated; while the CPU is in this state, it
continuously generates three-clock-cycle refresh
transations. When STOP goes High again, one more
refresh cycle is performed, then the CPU enters
the Run state.




9.1 INTRODUCTION

This chapter covers the external manifestations
(i.e., the activity on the CPU pins) that result
from the operations described in Chapters 2
through 8. Since the pins are connected to the
system bus (see Figure 2.3 in Chapter 2), much of
the discussion will center on the bus and bus
operations. The 78000 CPU is designed to be
compatible with the Zilog Z-BUS protocols, which
are described in the "Component Interconnect Z-BUS
Summary," document number 00-2031-01. In the
sections that follow, the interface between the
78000 CPU and its environment is described in
detail.

9.2 BUS OPERATIONS

Two kinds of operation can occur on the system
bus:  transactions and requests. At any given
time, one device (either the CPU or a bus
requester, such as the Z8016 DMA Controller) has
control of the bus and is known as the bus
master. A transaction is initiated by the bus
master and is responded to by some other device on
the bus. Only one transaction can proceed at a
time; six kinds of transaction can occur:

e Memory transaction. Transfers eight or 16 bits
of data to or from a memory location (Section
9.4.2).

e I/0 transaction. Transfers eight or 16 bits of
data to or from a peripheral or CPU support
component, such as an MMU (Section 9.4.3).

o EPU transfer. Transfers 16 bits of data between
the CPU and an EPU (Section 9.4.4).

o Interrupt/Trap Acknowledge transaction.
Acknowledges an interrupt or trap and transfers
an identification/status word (or vector) from
the interrupting or trapping device (Section
9.4.5).

o Refresh transaction. Refreshes dynamic memory
only, does not transfer data (Section 9.4.7).

Chapter 9
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B

o Internal operation transaction. Data is not
transferred. Indicates that the CPU is
performing an operation that does not require
data to be transferred on the bus (Section
9.4.7).

Only the bus master can initiate transactions. A
request, however, can be initiated by a component
that does not have control of the bus. Five types
of request can occur:

¢ Interrupt request. Requests the attention of
the CPU (Section 9.6.1).

o Bus request. Requests control of the bus to
initiate transactions (Section 9.6.2).

e Resource request. Requests control of a
particular system resource (Section 9.6.3).

e Abort request. Terminates instruction execution
(Section 9.6.4).

e Stop request. Suspends CPU instruction exection
(Section 9.6.5).

When an interrupt or bus request is made, it is
answered by the CPU according to its type: for an
interrupt request, an interrupt acknowledge
transaction is initiated; for a bus request, the
CPU enters Bus-Disconnect state, relinquishes the
bus, and activates an acknowledge signal; for a
stop request, the CPU stops execution and enters
Stop/Refresh state. A resource request does not
require CPU action, since it occurs on a separate
bus that uses external logic to link CPU pins MI
and M0 in a daisy chain. A CPU generates a
Resource Request when it executes a multi-micro
request instruction. An Abort request causes the
CPU to terminate execution of the current
instruction immediately.

9.3 CPU PINS

The CPU pins can be grouped into five categories
according to their functions (Figure 9-1).
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9.3.1 Transaction Pins

These signals provide timing, control, and data
transfer for Z-BUS transactions.

ADg-AD45.  Address/Data (Bidirectional, active
High, 3-state). These multiplexed data and
address lines carry I/0 addresses, memory
addresses, and data during Z-BUS transactions.
For the 28001 and 28003, only the offset portion
of memory addresses is carried on these lines.

SNg-SN7.  Segment Number (Z8001/3 only, output,
active High, 3-state). These lines contain ‘the
segment number portion of a memory address.

STg-ST3. (Output, active High, 3-state). These
lines indicate the kind of transaction occurring
on the bus and give additional information about
the transaction (such as the address space for
memory transactions).

AS. Address Strobe {(Output, active Low,
3-state). The rising edge of AS indicates the
beginning of a transaction and shows that the
ADg-AD{s, STg-ST3, N/S, R/W, and B/W signals are
valid.

DS. Data Strobe (Output, active Low, 3-state).
DS provides timing for data movement to or from
the CPU.

<+—|As AD15 >
BUS
TmiNg) =% AD1 [—>-
-+— MREQ ADq3 je—>
ADq; je—>
( ~«— READ/WRITE ADy; >
~¢——| NORMAL/SYSTEM ADyo j=—>
~-——BYTE/WORD ADg je—>
ADg [«—> \ ADDRESS/
STATUS< --—{ST; AD; > >DATA BUS
ST, ADg je—>
+—1 ST4 ADs <>
\ *+—STo 28001 AD; j—p
( —]ABORT** :ggg: AD; pe—>-
CPU ) —WAIT 28004 AD; fe—>
CONTROLi —alsTOP oPU AD; |t
ADg fe—> )
BUS | —>{BUSREQ ==~ zs007
CONTROL)  __ l5isack | SNefl— z:::; 3“‘ I
I SNs5 p—> ONLY |
—-{ NMI | SNy —> I
INTERRUPTS{ —{Vi | s :sarg:r:rl
—| NVI | SNy p—> |
I SNy - l
MULTI-MICRO ] —>{M™i | SNof—> ) |
CONTROL ) <«—{¥0
Mo | SEGMENTIPAGE |
TSAT j«— ADDRESS TRANS-
L __ | _tAToNTRAP_
+5V GND CLK RESET

* SAT for 28003 CPU, SEGT for Z8001 CPU.
** ABORT used 1n Z8003 and Z8004 CPUs only.

Figure 9-1.

Pin Functions
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R/W. Read/Write (Output, Low = Write, 3-state).
This signal determines the direction of data
transfer for memory, I1/0, or EPU transfer
transactions.

B/M. Byte/Mord (Output, Low = Word, 3-state).
This signal indicates whether a byte or word of
data is to be transmitted during a transaction.

N/S. Normal/System mode (Output, Low = System
mode, 3-state). This output indicates whether the
CPU is in Normal or System operating mode.

WAIT. (Input, active Low). A Low on this line
causes the CPU to extend the duration of a bus
cycle by inserting additional clock cycles.

MREQ. Memory Request (Output, active Low,
3-state). A falling edge on this line indicates
that the address/data bus is holding a memory
address.

9.3.2 Bus Control Pins

These pins carry signals for requesting and
obtaining control of the bus from the CPU.

BUSREQ. Bus Request (Input, active Low). A Low
indicates that a bus requester has obtained, or is
trying to obtain, control of the bus.

BUSACK. Bus Acknowledge (Output, active Low). A
Low on this 1line indicates that the CPU has
relinquished control of the bus in response to a
bus request.

9.3.3 Interrupt/Trap Pins

These pins convey interrupt and external trap
requests to the CPU.

ABORT. Abort Request (28003/4 only, input,
active Low). When ABORT is asserted it initiates
an Instruction Abort in the CPU. This input must
be followed immediately by an interrupt.

NMI. Nonmaskable Interrupt. (Input, active
Low). A High-to-Low transition on NMI requests a
nonmaskable interrupt.

NVI. Nonvectored Interrupt (Input, active Low).
A Low on this 1line requests a nonvectored
interrupt.

VI. Vectored Interrupt (Input, active Low). A
Low on this input requests a vectored interrupt.

SAT. Segment/Address Translation Trap (Z8003
only, input, active Low). A Low on this input
requests a Segment/Address Translation trap.

SEGT. Segment Trap (Z8001 only, input, active
Low). A Low on this line requests a segment trap.

9.3.4 Multi-Micro Pins

These pins are the 7Z8000's interface to the Z-BUS
resource request lines.

MI. Multi-Micro In (Input, active Low). This
input is used to sample the state of the resource
request lines.

MD. Multi-Micro Out (Output, active Low). This
line is used by the CPU to make resource requests.

9.3.5 CPU Control

These pins carry signals that control the overall
operation of the CPU.

STOP. (Input, active Low). When asserted this
line suspends CPU operation either after the fetch
of the first word of an instruction or during an
EPU instruction if the EPU is busy.

RESET. (Input, active Low).
resets the CPU.

A Low on this line

9.4 TRANSACTIONS

Data transfers to and from the CPU are
accomplished through the use of transactions.

All transactions start with Address Strobe (AS)
being driven Low and then raised High by the CPU.
On the rising edge of AS, the status lines STp-STs
are valid; these lines indicate the type of trans-
action being initiated (see Table 9-1). The six
types of transactions are discussed in section
9.4. Associated with the status lines are three
other lines that become valid at this time. These
are Normal/System (N/S), Read/Write (R/W), and
Byte/Word (B/W). Except where indicated below,
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Table 9-1. Status Codes

Kind of Transaction ST3-STy Additional Information
Internal Operation 0000
Refresh 0001
I/0 Transaction 0010 Standard 1/0

0011 Special 1/0
Interrupt 0100 Segment/Address Translation Trap
Acknowledge 0101 Nonmaskable Interrupt
Transaction 0110 Nonvectored Interrupt

0111 Vectored Interrupt

1000 Data Address Space

1001 Stack Address Space
Memory 1010* Data Address Space, EPU Transfer
Transaction 1011% Stack Address Space, EPU Transfer

1100 Program Address Space

1101 Program Address Space,

First Word of Instruction

EPU/CPU Transfer 1110

Locked Memory
Transaction 1M1

Test and Set Instruction

*0n earlier Z8000 CPUs status codes 1000 and 1001, rather than 1010
and 1011, indicate that the EPU is to capture or supply the data.

N/S designates the operating mode of the CPU, R/W
designates the direction of data transfer (read to
the CPU, write from the CPU), and B/W designates
the size of the data item being transferred.

If the transaction requires an address, it too is
valid on the rising edge of AS. No address is
required for interrupt acknowledge, EPU transfer,
or internal operation transactions. (In the
28001 and 78003, the segment number lines SNg-SNg
are valid one clock cycle before the rising edge
of AS to allow external memory management
hardware to perform some of its functions in
parallel with the CPUs address computation. See
Chapter 2 for more information.)

The CPU uses Data Strobe (DS) to time the actual
data transfer. In refresh and internal operation
transactions the CPU does not transfer any data
and thus does not activate DS. For write

operations (R/W = Low), a Low on DS indicates that
valid data from the bus master is on the ADy-ADqg
lines. For read operations (R/W = High), the bus
master places lines ADg-AD45 into the high
impedance state before driving DS Low so that the
addressed device can put its data on the bus. The
bus master samples this data on the falling clock
edge that precedes the rising edge of DS.

9.4.1 WAIT

As shown in Figure 9-2, WAIT is sampled on the
falling clock edge of the last clock cycle before
data is sampled by the CPU (Read) or DS rises
(Read or Write). If WAIT is Low, ancother cycle is
added to the transaction before data is sampled or
DS rises. In this added cycle, and in all
subsequent added WAIT cycles input WAIT is again
sampled on the falling edge and, if it is Low,

9-5
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another cycle is added to the transaction. In
this way, the transaction can be extended to an
arbitrary length to accommodate slow memories or
peripherals.

All WAIT inputs to the CPU must be synchronized
with the CPU clock.

9.4.2 Memory Transactions

Memory transactions move data to or from memory
when the CPU makes a memory access. Thus, they
are generated during program execution to fetch
instructions from memory or to fetch or store
memory data. They are also generated to store the
current program status and to fetch new program
status during interrupt, trap, or reset handling.

As shown in Figure 9-3, a memory transaction is
three clock cycles long unless extended by
inserted WAIT cycles. The status pins, besides
indicating a memory transaction, give the
following information:

e Whether the memory access is to the data (1000,
1010), stack (1001,1011), or program
(1101,1101) address space (Chapter 3).

e Whether the first word of an instruction (1101)
or another program element (1100) is being
fetched.

e Whether the data for the access is to be
supplied (write code 1010) or captured (read
code 1011) by an Extended Processing Unit.

For the 78002, the full memory address will be on
ADy-AD45 when AS rises. For the 28001, the offset
portion of the segmented address will be on
ADg-ADqs5 and the segment number portion will be on
SNg-SNg when AS rises. The segment portion will
become valid on SNg-SNg approximately one cycle
before ADg-AD;g5 is valid.

During the transfer of bytes into the CPU, the
input byte can be read from either the high or low
half of the bus depending on the state of bus line
ADg. If ADy is set to 1, input is taken from
lines AD7—ADO; if ADD is set to 0, input is taken
from lines Aqg-ADg. During the transfer of bytes
from the CPU, the contents of each output byte are
repeated on both halves of the bus. Figure 9-4
illustrates the manner in which memory is

organized. For byte reads (B/W High, R/W High)

the CPU uses only the byte whose address it
outputs. For byte writes (B/W High, R/W Low), the
memory should store only the byte whose address
was output by the CPU. For word transfers, (B/W =
Low), all 16 bits are captured by the CPU (Read:
R/W = High) or stored by the memory (Write: R/W =
Low).

As explained more fully in Section 9.5, a Z8000
CPU and an Extended Processing Unit act like a
single CPU with the CPU providing addresses,
status and timing information and the EPU
providing, or capturing, data.

9.4.3 1/0 Transactions

1/0 transactions move data to or from peripherals
or CPU support devices (e.g., MMUs). They are
generated during the execution of 1/0
instructions.

As shown in Figure 9-5, I/0 transactions are four
clock cycles long at a minimum, and they may be
lengthened by the addition of WAIT cycles. The
extra clock cycles allow for slower peripheral
operation.

1/0 cycles are like memory cycles, except for the
extra Wait state and the different ST3-STy status
and MREQ values. Peripherals whose speeds are
better matched to the 3-cycle memory transaction
can be interfaced using memory-mapped 1/0.

Peripherals designed to be used with the Z8000
CPUs can generally be interfaced directly to the
CPU using the I/0 transaction mechanism without
the need for special hardware to generate Wait
states.

The status lines indicate whether the access is to
the Standard 1/0 (0010) or Special I1/0 (0011)
address space. The N/S 1line is always Low,
indicating System mode. The I/0 address is found
on ADg-AD4s5 when AS rises. Since the I/0 address
is always 16 bits long, the segment number lines
are undefined on Z8001 and Z8003 CPUs.

Word data (B/W = Low) to or from the CPU is
transmitted on ADp-ADqg5. As stated in Section
9.3.3, byte data is sent to the CPU on either half
of the bus and byte data and address outputs of
the CPU are repeated on both halves of the bus.
This allows peripheral devices or CPU support
devices to attach to only eight of the 16 ADg-ADqs
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lines. The Read/Write line (R/W) indicates the
direction of the data transfer: peripheral-to-CPU
(Read: R/W = High) or CPU-to-peripheral (Write:
R/W = LOW) -

9.4.4 EPU Transfer Transactions

EPU transfer transactions move data between the
CPU and an Extended Processing Unit (EPU) or
between an EPU and memory. During EPU/CPU
transfers, the CPU can transfer data either to or
from an EPU, it can either read from, or write to,
the EPU's status registers, and can perform
transfers between the EPU and memory. EPU
transfer transactions are performed during the
execution of EPA instructions.

EPU memory transfer transactions are the same as
memory transactions (Figure 9-3). No address is

as described in Section 9.5, rather
EPU-CPU transactions have the
I1/0 transactions

implicitly,
than by an address.
same timing relationships as
(Figure 9-5).

The data transferred is 16-bit words (B/W = Low),
except for transfer between the Flags byte of the
FCW and an EPU. In this case, a byte of data is
transferred on ADg-AD; (B/W = High). The Read/
Write line (R/W) indicates the direction of the
data transfer. The N/S line indicates either
System mode (Low) or Normal mode (High).

9.4.5 Interrupt/Trap Acknowledge
Transactions

Acknowledge transactions acknowledge an interrupt
or trap and read a 16-bit identifier word from the
device that generated the interrupt or trap. The

generated, and status codes 1010 and 1011 are transactions are generated by the CPU when an
used. In a multiple EPU system, the EPU that is interrupt or segment trap is detected.
to participate in a transaction is selected
16-BIT 2-BUS DATA PATH
AD15 ADg AD; ADg
I BUS DRIVER RECEIVERS ||
/ > D; Do »10; Do
ADDRESS | |
ADo-AD15 TRANS- I |
LATION I UPPER | LOWER
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BW '*D——_——D_ ENABLE
AD >c
0 LOWER
BANK
AW =1 . ENABLE

Figure 9-4.
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Acknowledge transactions are ten clock cycles long
at a minimum (as shown in Figure 9-6), having five
automatic Wait cycles. The Wait cycles are used
to give the intertupt priority daisy chain (or
other priority resolution device) time to settle
before the identifier word is read. (Consult the
"Z-BUS Component Interconnect Summary," document
number 00-2031-01 for more information on the
operation of the priority daisy-chain).

The status lines identify the type of exception
that is being acknowledged. The possibilities are
Segment Trap or Segment/Address Translation Trap
(0100), Nonmaskable Interrupt (0101), Nonvectored
Interrupt (0110), and Vectored Interrupt (0111).
No address is generated. The N/S line indicates
System mode (Low), the R/W line indicates Read
(High), and the B/W line indicates Word (Low).

The only item of data transferred is the identi-
fier word, which is always 16 bits long and is
captured from the ADy-AD4s5 lines on the falling
clock edge as DS goes High.

As shown in Figure 9-6, there are two places where
WAIT is sampled, and thus WAIT cycles can be
inserted at two points in acknowledge
transactions. The first serves to delay the
falling edge of DS to allow the daisy chain a
longer time to settle, and the second serves to
delay the point at which data is read.

9.4.6 Interrupt/Trap Request and Acknowledge
Operations

The following paragraphs describe the operations
required to initiate a trap interrupt and
acknowledge function. Refer to Figure 9-6 for
timing.

The VI, m, and §E inputs, as well as the state
of the internal NMI latch, are sampled at the
beginning of T3.

In response to an interrupt or trap, the sub-
sequent IFq cycle is exercised. The Program
Counter, however, is not updated, but the system
Stack Pointer is decremented.

The next machine cycle is the interrupt
acknowledge cycle. This cycle has five automatic
Wait states, and additional Wait states can be
inserted. After the last Wait state, the CPU
reads the information on ADg-AD45 and stores it
temporarily, to be saved on the stack later in the
acknowledge sequence. This word identifies the
source of the interrupt or trap. For internal
traps, the identifier is the first word of the
trapped instruction. For external events, the
identifier is the contents of the data bus as
sampled during T3 of the acknowledge cycle.
During nonvectored and nonmaskable interrupts and
Segment/Address Translation Trap, all 16-bits can
represent peripheral device status information.
For the vectored interrupt, the low byte is an
index to the array of PC values in the PSA, and
the high byte can be used for extra status.
During and after the acknowledge cycle, the N/S
output indicates the automatic change to System
mode .

9.4.7 Internal Operations and Refresh
Transactions

There are two kinds of bus transaction that do not
transfer data: internal operations and memory
refresh. Both look like a memory transaction,
except that Data Strobe remains High and no data
is transferred.

For internal operation transactions (shown in
Figure 9-7), the Address and Segment Number lines
contain arbitrary data when the Address Strobe
goes High. The R/W line indicates Read (High),
the B/W line is undefined, and N/S is the same as
for the immediately preceding transaction. This
transaction is initiated to maintain a minimum
transaction rate while the CPU is doing a long
internal operation.

A memory refresh transaction (shown in Figure 9-8)
is generated by the Z8000 CPU's refresh mechanism
as described in Chapter 8 and can come immediately
after the final clock cycles of any other transac-
tion. The Refresh register's 9-bit ROW field is
output on ADg-ADg during the normal time for
addresses. Refresh transactions can be used to
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generate refreshes for dynamic RAMs. The value of
N/S, R/W, and B/W during a refresh transaction is
the same as for the immediately preceeding
transaction.

WAIT is not sampled during internal operations or
refresh cycles.

Ty

9.5 CPU AND EXTENDED PROCESSING UNIT (EPU)
INTERACTION

A 28000 CPU and one or more EPUs work together
like a single CPU component, with the CPU
providing address, status and timing signals and
the EPU supplying and capturing data. The EPU
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MREQ, DS, RIW HIGH
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Figure 9-7.

Internal Operation Timing
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monitors the instructions fetched and the status
and timing signals output by the CPU so that it
will know when to participate in a memory or EPU
transfer transaction. When the EPU is to
participate in a memory transaction, the CPU
places its AD lines into the high impedance state
while DS is Low, so that the EPU can use them.

In order to know which transaction it is to
participate in, the EPU must track the following
sequence of events:

1. When the CPU fetches the first word of an
instruction (ST3-STg = 1101), the EPU must also
capture the intruction returned by memory. If
the instruction is an extended instruction, it
will have an ID field which indicates whether
or not the EPU is to execute the instruction.

Tp———p] L—T;—-——»

2. If the instruction is to be executed by the
EPU, the next non-refresh transaction by the
CPU will fetch the second word of the instruc-
tion (ST3-STg = 1100). The EPU must also cap-
ture this word.

3. If the instruction involves a read or write to
memory, there will be zero or more program
fetches by the CPU (ST3-STg = 1100) to obtain
the address portion of the extended instruc-
tion. The next one to 16 non-refresh transac-
tions by the CPU will transfer data between
memory and the EPU. (See Table 9-1 for
codes.)The EPU must supply the data (Write, R/W
Low) or capture the data (Read, R/W High) for
each transaction, just as if it were part of
the CPU. In both cases, the CPU will 3-state
its AD lines while data is being transferred

Ty >l
p——
CLOCK
WAIT
$To-8ST3 X REFRESH

= [\__/
- \

T

AD X REFRESH ADDRESS :)—————-————---——_-,._C

SAME AS PREVIOUS CYCLE

Figure 9-8. Memory Refresh Timing
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(DS Low). EPU memory transfers are always
word-oriented (B/W Low).

4. If the instruction involves a transfer between
the CPU and EPU, the next one to 16 non-refresh
transactions by the CPU will transfer data
between the EPU and CPU (ST3-5Tg = 1110).

To follow the above sequence, an EPU has to
monitor the BUSACK 1line to verify that the
transaction it is monitoring on the bus was
generated by the CPU. It should also be noted
that in a multiple EPU system, there is no indica-
tion on the bus as to which EPU is cooperating
with the CPU at any given time. This must be
determined from the opcodes and I0 fields of the
extended instructions the EPU captures.

A final aspect of CPU-EPU interaction is the use
of the CPU's STOP pin. When an EPU begins to
execute an extended instruction, the CPU can
continue fetching and executing instructions. If
the CPU fetches another extended instruction
before the first one has completed execution, the
EPU must activate the CPU's STOP pin to stop
the CPU (as described in Section 9.6.5) until
execution of the previous EPU instruction is
completed.

Besides determining whether or not to participate
in the execution of an EPA instruction, the EPU
must determine from the first tws i

words:

e Whether or not a memory access will be made.

e The number of words of data to be transferred
for memory or EPU-CPU transfers.

e The operation to be performed on the data.

9.6 REQUESTS

There are four kinds of request that the Z-BUS
supports and in which the Z8000 CPU participates.
These are

e Interrupt/Trap requests, which another device
Initiates and the CPU accepts and acknowledges.

e Bus requests, which another potential bus
master initiates and the CPU accepts and
acknowledges.

o Resource requests, which any device capable of
implementing the request protocol (usually the

CPU) can request. No component has control by
default of the resource controlled by the
resource bus.

The CPU supports an additional request beyond
those of the Z-BUS:

e Stop request, which another device initiates
and the CPU accepts.

When a request is made, it is answered according
to its type: for bus requests, an acknowledge
signal is sent (Sections 9.6.2 and 9.6.3); for
Stop request, the CPU enters the Stop/Refresh
state. In all cases except Stop, the 2Z-BUS
provides for a daisy-chain priority mechanism to
arbitrate between simultaneous requests.

9.6.1 Interrupt/Trap Request

The Z8000 CPU supports three interrupts and one
external trap (segment or segment/address
translation trap) as shown in Figure 9-6. The
Interrupt Request line (INT) of a Z-BUS peripheral
that is capable of generating an interrupt may be
tied to any of the three 78000 interrupt pins
(NMI, NVI, VI). Several devices can be connected
to one pin, in which case the devices must be
arranged in a priority daisy chain using the IEI
and IEQ pins available on all Z-BUS peripherals.
The segment trap or segment/address translation
trap pin (SEGT for 128001, SAT for 128003) is
activated by the memory management hardware. The
CPU uses the same protocol for handling requests
on any of these pins. Here is the sequence of
events that is followed:

e Any High-to-Low transition on the NMI input is
asynchronously edge-detected, and the internal
NMI latch is set. At the beginning of the last
clock cycle in the last machine cycle of any
instruction, the VI, NVI, and SEGT inputs are
sampled along with the state of the internal
NMI latch.

e If an interrupt or trap is detected, the
subsequent initial instruction fetch cycle is
exercised, but nullified.

e The next machine cycle is the interrupt
acknowledge transaction (see Section 9.4.5)
which results in an identifier word from the
highest-priority interrupting device being read
from the AD lines.
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e This word, along with the program status
information, is stored on the System mode
stack, and new status information is loaded
(see Chapter 7).

For more information about the interrupt
structure, consult the "Component Interconnect
Z-BUS summary."*

Interrupt requests are sampled during the
penultimate clock cycle of each instruction;
however, the decision to accept the request is
made at the start of the next instruction and the
instruction fetch is aborted if the pending
interrupt is enabled. Thus if an interrupt
request is pending during the execution of Enable
Interrupt (or LDPS, LD FCW, SC or IRET which would
enable the interrupt), the pending interrupt will
be acknowledged after the execution of that
instruction. For example, if a vectored interrupt
is pending and the instruction sequence to be
executed is

EI VI
DI VI

then the vectored interrupt will be acknowledged
between the execution of the EI and DI
instruction. Note that a 7 cycle aborted initial
instruction fetch is inserted between the
execution of the EI instruction and the interrupt
acknowledge sequence.

9.6.2 Bus Request

To generate transactions on the bus, a potential
bus master (such as a DMA Controller) must gain
control of the bus by making a bus request (shown
in Figure 9-9). A bus request is initiated by
pulling BUSREQ Low. Several bus requesters may be
wired to the BUSREQ pin; priorities are resolved
externally to the CPU, usually by a priority daisy
chain (see the "Component Interconnect Z-BUS
Summary"*).

The asynchronous BUSREQ signal generates an
internal BUSREQ, which is synchronous. If the
external BUSREQ is Low at the beginning of any
machine cycle, the internal BUSREQ will cause the
bus acknowledge line (BUSACK) to be asserted after
the current machine cycle is completed. The CPU
then enters Bus-Disconnect state and gives up
control of the bus. All CPU output pins, except
BUSACK and MO, are 3-stated.

*Document number 00-2031-01

The CPU regains control of the bus two clock
cycles after BUSREQ rises. Thus any device
desiring control of the bus must wait at least two
cycles after BUSREQ has risen before pulling it
down again.

9.6.3 Resource Request

The CPU generates resource requests by executing
the Multi-Micro Request (MREQ) instruction. The
CPU tests the availability of the shared resource
by examining MI. If MI is High, the resource is
available, otherwise the CPU must try again
later. The MO pin is used to make the resource
request. MO is pulled Low, then, after a delay
for arbitration of priority, MI is tested again.
If it is Low, the CPU has control of the resource;
if it is still High, the request was not granted
and MO must be deactivated. If the request was
granted MO0 must be kept active until the CPU is
ready to release the resource, whereupon MO is
deactivated by an MRES instruction.

The "Component Interconnect Z-BUS  Summary"*
describes an  arbitration scheme that is
implemented with a resource request daisy chain.

9.6.4 Stop Request

As shown in Figure 9-10, the STOP pin is normally
sampled on the falling clock edge immediately
preceding an initial instruction fetch cycle. If
STOP is found Low, the CPU enters Stop/Refresh
state and a stream of memory refresh cycles is
inserted after the third clock cycle in the
instruction fetch. The ROW field in the Refresh
Register is incremented by two after every refresh
cycle.

When STOP is found High again, the next refresh
cycle is completed; then the original instruction
fetch continues.

If the EPA bit in the FCW is set (indicating an
EPU is in the system), the STOP line is also
sampled on the falling clock edge immediately
preceding the second word of an instruction
fetch--if the first word indicates an extended
instruction. Thus, the STOP line can be used by
an EPU to deactivate the CPU whenever the CPU
fetches an extended instruction before the EPU has
finished processing an earlier one. The STOP line
can also be used to single-step the CPU.
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9.7 ABORT REQUEST

The timing for an Instruction Abort operation is
shown in Figure 9-11. As shown, the CPU (Z8003 or
78004) monitors its ABORT input during each bus
transaction that is generated. If the ABORT input
is asserted during clock cycle T,, then the
currently executing instruction is aborted. If no
abort is indicated, but input WAIT is asserted,
the ABORT input is tested during each added WAIT
cycle (Tp). When input ABORT is asserted, the
WAIT input must also be asserted for five cycles
to permit the CPU internal control mechanism to
abort the current instruction. When the WAIT
input is deasserted, the CPU will acknowledge any
pending interrupt request. The memory management
circuit that caused the instruction abort must
also initiate an interrupt. Input SAT is provided
for this purpose on the 78003, but any interrupt
input can be used with either the Z8003 or the
78004. This interrupt will initiate the software
routine that will bring into memory the required
information and restart the interrupted mainstream
program at the exact point of interruption. Care
must be taken in the selection and use of the
interrupt associated with an abort to prevent a
higher-priority interrupt from occurring and being
processed between the abort instruction function
and the processing of the interrupt associated
with the abort.

9.8 RESET

A hardware reset puts the Z8000 into a known state
and initializes selected control registers of the
CPU to system specifiable values (as described in
Chapter 7). A reset will begin at the end of any
clock cycle, if the RESET line is low.

A system reset overrides all other operations of
the CPU, including interrupts, traps, bus
requests, and stop requests. A reset should be
used to initialize a system as part of the
power-up sequence.

Within five clock cycles of the RESET line
becoming Low (Figure 9-_12) ADg-AD4s5 are 3-stated,
AS, DS, MREQ, BUSACK, MO, and STg-ST3 are forced
High, and SNy-SNg are forced Low. The R/W, B/W
and N/S lines are undefined. Reset must be held
Low for at least five clock cycles.

After RESET has returned High for three clock
cycles, consecutive memory-read transactions are
executed in System mode to intitalize the Program
Status registers. These correspond to the memory
accesses described in Chapter 7.
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10.1 INTRODUCTION

The purpose of this chapter is to demonstrate how
the features of the Z8000 CPU can be used to solve
typical software problems. The first half focuses
on specific programming techniques (through
Section 10.12). In the second half, fully
worked-out programs are presented for several
important or illustrative problems.

A goal of programming is to allow computer users
to deal with the high-level operations of their
applications and to escape from the details of
machine design and behavior. Many programming
techniques have been designed with this goal in
mind. This section introduces some widely used
programming techniques and shows how they are
implemented using the 78000 architecture and
instruction set.

10.2 DATA TYPES

All computer applications are based upon the
interpretation of collections of bits--as numbers,
text, logical flags, and so forth. The term data
type refers to a bit collection of specified size
and interpretation.

Every computer provides direct support for some
data types, and the programmer provides programs
to support the manipulation of other desired data
types. The 78000 architecture provides direct
support for several frequently used data types and
the instructions for performing the operations
associated with them. These are described below.

Bits. A two-valued logical flag is the simplest
useful interpretation of a bit collection, and its
natural size is one bit. Unlike many earlier com-
puters, the Z8000 has instructions that allow any
bit in memory or in any general-purpose register
to be set, tested, or cleared. Thus, any bit can
be used as a logical flag, and flags can be packed
into words or bytes without undue increase in
processing overhead. An important application of

Chapter 10
Programming Techniques

this idea is a bit table, an array of 1-bit
logical flags stored in consecutive bits of
consecutive bytes of memory.

Digits. An important bit collection is a number,
and an important special case of numbers is a
decimal or hexadecimal digit. These are most
conveniently represented by collections of four
bits (occasionally referred to as nibbles). The
78000 supports digits with the RRDB, RLDB, and DAB
instructions, and the D and H bits in the Flags
register.

Bytes. A collection of eight bits is called a
byte. Almost all 78000 instructions that take
arguments have byte versions. (The Push, Pop,
Multiply, and Divide instructions are the only
important exceptions.) The two principal
interpretations of bytes are as signed whole
numbers and as codes for text characters. These
interpretations are not enforced by the hardware,
but Some 28000 features are designed with one or
the other interpretation in mind. For example,
the Translate and Test instruction and the P
(parity) bit in the Flags register support the
text data type, while the arithmetic instructions
support signed whole numbers. The Z8000 has 16
byte registers.

Words. A collection of 16 bits is called a word.
Almost all argument-taking instructions have word

versions. (The Block Translate and Test
instructions and the Decimal Arithmetic Support
instructions are the only exceptions.) The

principal interpretations of words are as signed
and unsigned whole numbers, 28000 instructions,
index values, and nonsegmented addresses. The
78000 provides 16 word registers.

Long Words. A collection of 32 bits is called a
long word. The principal interpretations of long
words are as segmented addresses and as signed and
unsigned whole numbers. The Z8000 provides
long-word versions of its Load, Push, and Pop
instructions and supports 32-bit signed whole
numbers with long-word versions of its four main
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arithmetic operations: add, subtract, multiply,
and divide. The Z8000 provides eight long-word
registers.

Quadruple Words. The Long Multiply and Long
Divide instructions involve the use of 64-bit
signed whole numbers. Four quadruple-word
registers are provided for this purpose.

In addition to these data types, several other
collections of bits are manipulated by certain
28000 instructions.

Addresses. The LDA and LDAR instructions generate
and save addr « Addr are words or long
words, depending upon the segmentation mode of the
CPU at the time of execution.

Register Sets. The LDM instruction manipulates
register sets during the movement of information
between general-purpose reyisters and memory. A
register set consists of from 1 to 16 words stored
in contiguous memory locations or in consecutive
word registers.

Data blocks. The 78000 block instructions
manipulate data blocks, which can be from 1 to
65,536 words or bytes stored in contiguous memory
locations. An important special case of a data
block is a text string.

[ Ay 111

=3 - e 4 (e P b L P .
As subsequent examples illustrate, th

larye
selection of data types offers Z8000 programmers
simple approaches to solving a wide variety of

programming problems.

10.3 ADDRESSING MODES

The 78000 addressing modes were chosen and
designed with the programmer's needs in mind. Here
is a brief summary of the ideas behind these
modes.

Direct Addressing. With Direct addressing, the
actual memory address of the argument is contained
in the instruction. This is especially useful in
programs assembled by hand and in "patches."

Register Addressing. This addressing mode allows
fast access to intermediate results. Almost all
two-operand instructions require the wuse of
register addressing for one of the operands.

Immediate Addressing. Immediate addressing is
similar to direct addressing, but the actual value
of the argument rather than its address is con-
tained in the instruction. Immediate addressing
can only be used for source arguments.

Indirect Register Addressing. In this mode the
address of the argument is in an address register
(a word or long-word Register, depending upon the
segmentation mode). Its variants, the Auto-
increment and Autodecrement modes, are used with
the Push and Pop instructions to implement stacks,
and with the block instructions to effect oper-
ations on sets of contiguous words or bytes in
memory. Indirect Register addressing is used when
addresses are passed as arguments to subroutines
and to implement more elaborate access techniques,
such as linked lists. Figure 10-1 is a simple

LDA RR2,X
LOOP: LDB RHO,@RR2
TESTB RHO
JR Z,ENDLP

'RR2 = address of text array!
tFetch next character!

1Done when NUL reached!

1(Modify the character)!

LDB @RR2,RHO

INC R3

JR LOOP
ENDLP: . . .

'Replace character by modified character!
!Point at next character!

Figure 10-1. Example of Indirect Register Addressing
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example of its use--a loop to read successive
bytes of memory until a zero terminator is found
and to replace each byte with a modified value.

In this example, RR2Z is used as an address
register to point at (that is, contain the address
of) successive bytes of a text string. Notice
that the instruction

INC R3

is used to point to the next byte. This takes
advantage of the way segmented addresses are
stored in registers but assumes that the text
string does not extend outside of the memory
segment. A later example deals with arrays that
extend beyond one segment.

Notice also that the instruction
LDA RR2,X

is used to set the contents of the address
register RR2. An alternative instruction is

LDL RRZ,#X

but it should be avoided, because it needlessly
ties the code to a specific segmentation mode.

Index Addressing. In the Index addressing mode, a
fixed address is stored in the instruction and a
displacement is stored in a register. This
is required when an array is being processed using
a varying index. For example, consider the
following FORTRAN instructions:

DO 13 I = N1,N2
13 TABLE(I) = TABLE(I)+I

This can be implemented using Index addressing as
shown in Figure 10-2.

Assume that the registers have been set:

RO contains N2
R1 contains N1 (R1 will be I)
Two-dimensional arrays can be handled easily by a
program that computes the offset associated with
an index pair. For example, suppose that the M x
N array of bytes TABLE is stored consecutively in
memory as follows:

TABLE(1,1), TABLE(2,1),...,TABLE (M,1),
TABLE(1,2),...

Each column is a one-dimensional array, and these
one-dimensional arrays are stored end to end in
contiguous bytes of memory. (This format is
standard in FORTRAN.) A two-dimensional array can
be viewed as a one-dimensional array of dimension
MN, and the element TABLE(I,]) of the two-
dimensional array is the element TABLE([J-1]1*M+I)
in the one-dimensional array. If R1 contains I-1,
R2 contains J-1, and R3 contains M, then the
following code loads TABLE(I,J) into RHO:

LD R5,R2 IRRG = (xxx,J-1)!
MULT RR4,R3 IRRG = (0, [J-11*M)!
ADD R5,R1 1RS = [J-11%M+[I-1]!

LDB RHO,TABLE(RS)

This code assumes that MN < 65,536. If this is
not true, then Index addressing cannot be used
directly and the assumption that the columns of
TABLE are stored end-to-end cannot be made.
Instead, J is used as an index to a table of
memory addresses (called a "dope vector"), and

LD R3,R1 'Use R3 for actual offset!
SLA R3 !Assume two-byte entries!
LOOP:CP R1,RO 1Is I > N2 yet?!
JR GT,DONE 'Done if so!
LD R2,TABLE-2(R3) 'TABLE(I) - FORTRAN arrays start at 1!
ADD R2,R1 'TABLE(I)+I!
LD TABLE-2(R3),R2 |Replace original TABLE(I) value!
INC R1 !Increment I!
INC R3,#2
JR LOOP N
DONE : o« o

Figure 10-2. Use of Index Addressing
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each of these addresses is the start of the
corresponding column. If R1 contains I-1, R2
contains J-1 and the table of column base
addresses is at an address contained in RR4, then
the following code loads TABLE (I,J) into RHO:

LD R3,R2
SLA R3,#2
LDL RR6,RR4(R3)
LDB RHO,RR6(R1)

1IR3 = 4*%(J-1)!
IRR6 = address of -Jth column!

This code uses Base Index addressing (see below).
It is so efficient that it can be used even when
MN < 65,536.

For nonsegmented operation, Index addressing can
be used to simulate Base addressing (see below),
since addresses and offsets are both 16 bits. For
example,

ADD RO,8(R15)

adds the fifth word of the stack to RO. (NOTE:
If separate data and stack spaces are used, this
technique does not work. When R15 is used in the
Index addressing mode, the status outputs ST3-STg
reflect data reference, not stack reference.)

In segmented mode, the same technique can be used
if the segment number is known when the program is
assembled. For example, if the stack has been
assigned to segment 12 (that is; R14 contains
0C00), then

ADD RO,<<12>>8(R15)
adds the fifth word on the stack to RO.
Use of Index addressing to simulate Base
addressing is helpful because Base addressing is

available only with the Load instruction.

Base Addressing.
address of an

Base addressing specifies the
argument as the sum of a

displacement contained in the instruction and a
base address contained in an address register.
For example,

LD RO,RR14(#8)

can be used in segmented mode to access the fifth
word of the stack.

The Base addressing mode is the key to a
subroutine argument-passing convention that uses a
stack (see Section 10.4).

Base addressing is useful in accessing items in
records or more general data structures of
predefined format, especially when the address of
the record in memory is not known in advance. For
example, if a number of 80-character records have
been read into memory end to end starting at a
location specified in RR2, then the code shown in
Figure 10-3 steps through the records until one
is found in which the seventy-third character is
equal to 41H.

Base Index Addressing. Base Index addressing
takes both the base address and the displacement
from registers. One example of it was shown above
in the code to handle large two-dimensional
arrays. Other examples are shown in this chapter.

Base Index addressing is also wuseful in a
generalization of the record or data structure
example given in Figure 10-3. For example, if the
termination condition were the presence of 41H in
any of positions 73 through 80, the code of Figure

10-3 would appear as shown in Figure 10-4.

Relative Addressing. This is a variant of Base
addressing in which the base register is always
the Program Counter. It helps the programmer
produce position-independent code (see Section
10.6), and it leads to more compact code in many
cases. Also, if separate data and instruction
memories are used, the LDR instruction is the only

LOOP:  LDB RHO,RR2(#72)
CPB RHO,#%41
JR EQ,ENDLP
ADD R3,#80
JR LOOP
ENDLP: , . .

1Get 73rd character!

!Compare with %41!

1Done if equal!

|0therwise, point at next record!

Figure 10-3. Use of Base Addressing
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LOOP: LD R4,#72
LOOP1: LDB RHO,RR2(R4)
CPB RHO,#%41
JR EQ,ENDLP
INC R&
CP R4,#80
JR LT,LO0P1
ADD R3,#80
JR LOOP
ENDLP: . . .

1Set to 73rd position!

!Get R4th character!

{Compare with %41

'Done if equal!

'0therwise, give R4 next index!
'Compare position with last!

'If not past last, try next position!
t0therwise, point at next record!

Figure 10-4. Use of Base Index Addressing

way to refer to a constant that is assembled as
part of the program (except immediate data in
instructions).

Further examples using the 78000 addressing modes
are given in the following sections.

10.4 STACKS

A stack is a last-in, first-out (LIFO) buffer of
finite but unspecified size. It is like a stack of
plates on a table in a room: plates can only be
added to or removed from the top and while there
is no preset maximum number of plates, the room
does have a ceiling. Sometimes the metaphor used
is a stack of plates on a spring in a well (as at
a steam table); this accounts for the names PUSH
and POP used for the operations of adding or
removing items, but in the wusual computer
implementations the items stay fixed like plates
on a table.

In the 78000, stacks are implemented as arrays of
declared fixed sizes, but an external memory-
mapping facility allows stacks to be open ended,
with additional memory allocations made as
needed. The Push and Pop instructions are
designed to work with stacks that grow downward;
that is, the first item on the stack occupies the
highest-numbered memory location. Programs, on
the other hand, grow upward; that is, as each
instruction is added to the program or as program
modules are linked together, higher and higher-
numbered addresses are used. This provides an
efficient way for a program and a stack to share
a given block of memory. The program can begin at

the lowest-numbered address and grow upward as
developments increase its size; the stack can
begin at the highest-numbered location and grow
downward as the program is executed. This is the
most flexible and efficient use of the space. If
there is room for both the program and the stack
in memory, then memory is automatically allocated
successfully.

A stack in the Z8000 uses an address register to
keep track of the location of the top item (the
lowest-numbered item). The stack register always
contains the address of the top item because of
the way PUSH and POP work. PUSH first decrements
the stack register by 2 or 4, causing it to point
at the next free word or long-word location and
then stores its argument at that location. POP
first fetches the item pointed to by the stack
register, then increments the stack register.

Reference to items on a stack can be made using
the Base or Base Index addressing mode. For
example, if RR4 is a stack register, then RR4(#0),
RR4(#2), and RR4(#4) refer to the top, second,
and third words on the stack, respectively. Also,
as previously explained, Index addressing can be
used to refer to stack items when the stack's
segment number is known at assembly time.
Reference to stack items is illustrated in
Section 10.7, Subroutines.

The most common use of stacks is for dynamic
allocation of temporary storage space. The two
pieces of code in Figure 10-5 show how a program
can accumulate words for future processing. The
first uses fixed temporary storage; the second
uses a stack.
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'Accumulating words in a fixed buffer!

CLR R4
LDA RR2, BUF

LP: CALL GETWD

JR C,DONE

LD @RR2,R0
INC R3,#2
INC R4
JRLP’

DONE: . . .

!Accumulating words on a stack!

CLR R4
LP: CALL GETWD
JR C,DONE
PUSH @RR2,R0
INC R4
JR LP

DONE: . . .

!Word counter!

'RR2 always points at next free location!
!Get next word!

'If C set, no more to get!

!Store word, increment pointer!

1Count the word!

!Word counter!

!Get next word!

'If C set, no more to get!
!Store word, increment pointer!
!Count the word!

Figure 10-5. Accumulation Of Words Within A Fixed Buffer And On A Stack

In the first piece of code, a buffer called BUF is
allocated to the program at assembly time. Each
time this code is executed, words are stored in
this buffer, starting at the beginning of the
buffer. The second piece of code has no storage
of its own; every time it is executed it stores
words on the stack controlled by RR2. It is
assumed that the system initializes this stack
before the process including this code begins
running.

Using a stack in this way has several advantages:

e The total amount of space needed by the stack
is wusually less than the amount required by
fixed allocation.

e Storage mangement is separate from the
implementation of the function. This tends to
simplify the implementation of functions.

e Program functions can be encoded in ROM more
easily and management of RAM can be localized.

e It is easier to make program functions
shareable (see below); in the preceding
example, several different sets of words might
have been accumulated in different parts of the

stack by different calls on the code. This

would not be possible with the fixed-buffer

accumulation.
There are alsoc some disadvantages to using stacks
in this way. In general, programs that use a
stack must leave it exactly as they found it;
every item pushed onto the stack must be popped
off before completion of the program. This is
because the same stack used by the program that
calls the given program is also used by programs
called by the given program. For example,
consider the following code:

PUSH @RR4,R0
CALL SUBR
POP RO,@RR4

This is a common means of saving a value, in this
case RO, that would otherwise be destroyed by the
intermediate operation, in this case CALL SUBR.
But this procedure fails if the SUBR routine does
not leave the stack controlled by RR4 exactly as
it was found.

The requirement that each program regulate its
stack use can make checkout difficult, since a
subroutine's failure in stack management can lead
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to anomalies in the behavior of the calling
program. The symptom and cause can be in
seemingly unrelated portions of the program.
Also, there is a dedicated stack register used for
subroutine calling; failure in its  management
can cause symptoms that are difficult to recognize
and usually interferes with the standard checkout
procedures.

Dynamic allocation of temporary storage leads to
another checkout problem: it is difficult to
examine memory after the fact to look for the
causes of anomalous behavior. A desired piece of
information may have been overwritten, and it is
difficult to determine where a given program
stored its intermediate or temporary data.

In general, stack use is not as flexible as the
use of dedicated storage. For example, in the
preceding code, once the words are accumulated in
BUF, they are processed any way the programmer
desires. Index addressing of the form

ADD R1,BUF (R2)

makes the fixed buffer a random access memory.
With a stack, on the other hand, only the top item
is easily available. Other items can be accessed
using Base or Base Index addressing of the form

LD R1,RR6(#2)
LD R2,RR6(R3)

If the stack segment number is known when the
program is assembled, the Index addressing mode
can be used, as in the preceding ADD example. For
example:

ADD R1, <<seg no>>2(R7)

adds the next-to-last word received to R1.

The stack addressing methods described allow items
in memory to be examined without giving up their
places (as happens with POP), but the offsets (#2
or R3 in the above lines) are measured from the
top of the stack, that is, from the last item
placed there. To process the items in a first-in,
first-out (FIF0) order requires a complicated
computation that can lead to errors. For example,
referring to the sample code of Figure 10-5 for
accumulating words on a stack, Figure 10-6 shows
the code at DONE that allows the words to be
examined in the order received.

Stack initialization is straightforward. The
stack register must be set to the address one word
above (that is, at a higher-numbered address than)
the first word to be used by the stack. This
works regardless of whether words or long words
are used. (In fact, there is no problem with
mixing words and long words on a stack, as long as
any item pushed with a PUSHL instruction is popped
with a POPL instruction.) So, for example, if a
stack wuses locations FOOO-FFFF of segment 6, the
first word used by the stack is at location FFFE.
The stack register should be initialized to
segment 6, offset zero.

Boundary protection has two aspects: overflow and
under flow. Overflow occurs when all locations
assigned to a stack have been filled and another
push is attempted. Underflow results from an
attempt to pop items from an empty stack. The
Push and Pop instructions provide no direct
support for boundary protection. This is achieved
in software by using push and pop subroutines that
check for overflow or underflow before pushing or
popping. An external memory management facility
can also help detect stack overflow.

The preceding discussion applies to all stacks in
the 78000. The Z8000 automatically uses stacks

DONE s SLA R4

JR Z,FINIS
DEC R4,#2
LD RO,RR2(R4)

GETNXT:

TEST R4
JR NZ,GETNXT

FINIS: c e

'Multiply by # bytes/word!

!No words to examine!

1Convert count to offset!

{Fetch the word from the RR2 stack!
! (Process the word)!

'R4 contains # of bytes remaining!

Figure 10-6. Examination Of Words In The Order Received
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for subroutine calling and for saving CPU status
on traps and interrupts, and for these purposes an
implicit stack register is wused. The implicit
stack register is R15 for nonsegmented operation
and RR14 for segmented operation. Furthermore,
there are two copies of the implicit stack
register, one for system mode operation and one
for Normal mode. In ordinary operation, each is
referred to as R15 or RR14, but when referring to
the Normal mode stack register while operating in
System mode, the LDCTL instruction is used with
the argument NSP (in nonsegmented operation) or
the arguments NSPSEG and NSPOFF (in segmented
operation). It is not possible to refer to the
System mode stack register while operating in
normal mode.

There are several points about this implicit stack
register that are important to understand:

e When the implicit stack register is used as an
address register (that is, in a Push or Pop
instruction in the Indirect Register mode) or
as a base register in the Base or Base Index
modes, the status lines ST3-STy reflect stack
reference status rather than data reference
status.

e An interrupt can occur between the execution
of any two ZB000 instructions (or even between
repetitions in the block instructions). The
System mode implicit stack register is used
for saving the CPU status, so it must never
contain a higher-numbered address than that of

any location containing stack data.

e The Normal mode implicit stack register is not
involved in the processing of interrupts, but
it is wused for saving subroutine return
addresses in Normal mode. Therefore,
whenever a subroutine call is made while
operating in Normal mode, the Normal mode
implicit stack register must not contain a
higher-numbered address than that of any
location containing stack data.

Although the significance of these points may not
be immediately obvious, they need to be considered
when the stack is used other than as a last-in,
first-out (LIFO) buffer accessed only with Push
and Pop instructions.

One approach to processing stack items in an order
other than last-in, first-out is to alter the
value of the stack register temporarily. For
example, after pushing five words onto the stack,

one might wish to increment the stack register by
10 and step through the words in the order
received, decrementing the stack register by two
before each access. At the end of this process,
the stack register returns to its correct value.
This works with any other stack (assuming no
pushes or pops are done on it during the
processing), but with the System mode implicit
stack register, any trap or interrupt causes CPU
status to overwrite a portion of the five words
being processed. This technique can be used with
the Normal mode implicit stack register provided
that no subroutine calls are executed in the
course of processing.

One approach to processing stack items that avoids
these problems is to move the stack register
contents into some other address register and then
treat the stack data in question as an array (or
other data structure) addressed by the new address
register. Additional pushes and pops on the stack
(such as those caused by traps, interrupts, or
subroutine calls) are then handled correctly
without affecting the processing of the stack
elements. There are two potential problems with
this approach:

e When the contents of the implicit stack
register are moved into another address
register and the other register is used for
referring to the stack items, the status
outputs ST3-ST; will show data reference.
Thus, this technique cannot be used without
modification if the status outputs are used
for directing references to separate data and
stack memories.

The programmer must be careful in using
addresses that point into the stack. Since
the stack storage is allocated dynamically,
the same stack memory locations can be used in
other ways that change their contents.
Naturally, a change to the stack location
contents before they are completely processed
can only occur as the result of a programming
error, but this sort of error is easy to make,
especially if a stack management scheme is
being used. Furthermore, there is no way to
determine by examination of the saved stack
address whether the contents are still valid.

A similar technique, subject to the same potential
problems, is to use the stack for temporary
storage of an array, character string, or other
data structure and to pass the address of that
structure to a utility subroutine for processing.
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The called program generally does not use the
implicit stack register as an address register for
processing the structure.

Since the Z8000 architecture does not allow words
to be stored at odd addresses, and since an
interrupt can occur at any time, the system mode
implicit stack register must never contain an odd
address. For this reason, pushes and pops of
bytes cannot be allowed on the system mode
implicit stack register. This is most easily done
by providing for no byte Push and Pop
instructions.

Saving byte registers can be accomplished by
saving the entire word register. Restoring byte
registers without disturbing the other half of the
word register must be simulated. For example, if

PUSH @RR8,R0

is used to simulate PUSHB @RR8,RLO, then POPB
RLO,@RRB can be simulated by

LDB RLO,RR8(#1)
INC R9,#2

10.5 CONDITION CODES

Condition codes are names for logical combinations
of flags bits. There are eight such combinations
and an opposite for each, for a total of 16
condition codes. Of the eight, one is "always
true"; four are single-bit combinations (C = 0, V
=0, S =0, Z = 0), and three are multi-bit
combinations [S XOR V = 0, Z OR (S XOR V) = 0, C
OR Z = 0].

Because the condition codes are designed for use
in a variety of 28000 applications, some of these
combinations have more than one name. Following
are some typical applications and the condition
code names associated with them.

Arithmetic Result Testing. An  arithmetic
operation (for example, ADD RO,R1) is performed
and the result is used for conditional control
(for example, a branch).

Code Meaning Opposite Code

z Result is Zero NZ Non-Zero

MI Result is negative PL Plus
(MInus)

c Carry (or borrow) NC No Carry
occurred

ov OVerflow occurred NOV  No OVerflow

Logical Result Testing. A logical operation (for
example, AND RO, R1) is performed and the result
is used for conditional control.

Code Meaning Opposite Code
z Result is Zero NZ Non-Zero
PE Parity is Even PO Parity Odd

(byte op only)

Arithmetic Comparison. Two arithmetic values are
compared by CP a,b (for example, CP RO,R1). The

relationship between the values is to be
determined.
Code Meaning Opposite Code
EQ a = b Equal NE Not Equal
LT a < b Less Than GE Greater or Equal
LE a { b Less than GT Greater Than

or Equal

Unsigned Arithmetic Comparison. Two unsigned
values (for example, addresses) are compared by
CP a,b (for example, CP RO,R1). The relationship
between the values is to be determined.

Code Meaning Opposite Code

EQ a = b Equal NE Not Equal

ULT a < b Unsigned Less UGE Unsigned Greater
Than or Equal

ULE  a < b Unsigned Less UGT Unsigned Greater
than or Equal Than

Miscellaneous Situations. There are many Z8000
instructions (for example, MREQ, shift instruc-
tions, block instructions) that set specific flags
bits in other ways. Also, the programmer can use
the flags bits for passing information between
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routines. SETFLG and RESFLG are provided for this
purpose and any of the 16 combinations can be
tested using any of the available names.

Code Meaning Opposite Code
LT SXORV =1 GE

LE (SXORVYORZ=1 GT

ULE CORZ=1 uGT

OV,PE,V* V = 1 NOV,PO,NV*
MI,S* S=1 PL,NS*

Z,EQ Z=1 NZ,NE

C,uLT c=1 NC,UGE

(*V, NV, S, NS not recognized by all assemblers)

It is important to understand the operation of the
Test instruction. TEST sets S and Z to reflect
the value of its argument; that is, S is set if
the high-order bit of the argument is set, and Z
is set if the value of the argument is not set.
The only other bit set is P/V. For byte arguments
it is set to reflect the parity, for long-word
arguments it is undefined, and for word arguments
it is unaffected. C is always unaffected by TEST.

MI and EQ are the only condition codes solely
dependent upon Z and S, so there is no easy way to
determine whether the tested argument is less than
or equal to zero. There are several ways around
this:

e CP a, #0 can be used instead of TEST a; C,
Z, S, and V will be set according to their
arithmetic meanings. This works for byte,
word, or long-word arguments.

e For word arguments only, if V is clear, TEST a
can be used; if a £ 0, then LE is true.

e TEST a can be followed by two tests:

TEST a
JR LT,X
JR EQ,X
(come here if a > 0)

X: (come here if a < 0)
This works for byte, word, or long-word arguments.

It is often desirable to postpone the testing of a
condition until after the execution of instruc-
tions that must be performed regardless of the
outcome of the test. For this reason, 28000

instructions do not change the settings of the
flag bits except to report the outcomes of their
operations. In particular, the transfer
instructions (CALL, CALR, JP, JR, RET) and the
data-moving instructions (CLR, LD, EX, SET, TCC,
etc.) do not affect the flags bits. For example,
in the code of Figure 10-7, the result of the
addition is stored via the pointer RR4,
regardless of the values of the flag bits.

ADD RO,R1
LD @RR4,RO
JR 0OV,W
JR Z,X
JR MIL,Y
! (otherwise come here)!

Figure 10-7. Test Instructions

If the LD @RR4,RD instruction affected the flags
bits, it could not be placed before the tests.
Instead, a LD @RR4,R0 instruction would have to
appear at each of the four locations to which
control might pass as a result of the testing, and
the code would take the form shown in Figure 10-8.

ADD RO,R1
JR OV,W

IR Z,X

JR MI,Y
LD @RR4,R0
W: LD @RR4,RO
X: LD @RR4,RO
Y: LD @RR4,RO

Figure 10-8. Example With LD@RR4,RO Instruction

If, however the example in Figure 10-7 required
the unconditional execution of

INC R5,#2

10-10



Programming Techniques

after the LD instruction (to point RR4 at the next
word of storage), the INC instruction could not
have been placed before the conditional JR

instructions, since INC affects Z, S, and V.
(However, POP RO,@RR4  would solve that
difficulty.)

To avoid duplicating the increment instruction at
each of four locations in the program, the Flags
register can be saved and restored as follows:

LDCTLB RH6,FLAGS
INC R5,#2
LDCTLB FLAGS,RH6

The saving and restoring of the Flags register is
not a privileged operation.

One important use of flags bits is based upon the
ability to postpone testing: passing information
back from subroutines. For example, consider the
routine in Figure 10-9.

This routine might be called in a sequence like

LP: CALL GETCH
CALL TSTHEX

!Get next char into RLO!
1Is it hex?!

JR C,X 1C=1 means "no"!
! (Code for the case: char is hex)!
JR LP
X: ! (Code for the case: char not hex)!
JR LP

There are several advantages in using condition
codes this way:

e Registers are undisturbed. The flag bits are
usually available, since they cannot be used
for long-term storage. If registers are used
to pass this kind of information, additional
instructions are necessary for saving and
restoring previous register values.

e The calling routine can ignore the information
if it is irrelevant to the specific case.
This is in contrast to the commonly used
technique of signaling different conditions by
returning to different locations (for example,
to the first or second word after the call).

!Test the ASCII character in RLO to see whether it is a hex digit.

CALL TSTHEX; RLO = the character
Return with registers unchanged and C=0 if a digit, C=1 if not.

1

ASCZER=%30; ASC9=ASCZER+9

ASCA=%41;  ASCF=ASCA+5

TSTHEX: CPB RLO,#ASCZER
JR ULT,NOTHEX

CPB RLO,#ASC9
JR ULE,ISHEX

CPB RLO,#ASCA
JR ULT,NOTHEX

CPB RLO,#ASCF
JR ULE,ISHEX

SETFLG C

RET

RESFLG C

RET

NOTHEX:

ISHEX:

Figure 10-9.

10-9 range!
tA-F range!

1Compare with "zero"!

tAll digits are > "zero"!
fIn "0" to "9" range?!

! Yes--success!

INow try "A" (> "zero")
!Between "9" and "A"--fail!
!In "A" to "F" range?!

! Yes--success!

'Return C=1!

tReturn C=0!

Example, Testing an ASCII Character
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This difference is especially important if the
return of an error condition is being added to
an existing routine. In this case, existing
calls do not need to be modified immediately.

e The use of flag bits takes advantage of the
Z8000's conditional instructions. Any scheme
other than '"returns to different locations"
has to be followed by a testing procedure,
which would involve the use of flag bits
anyway.

The technique of wusing flag bits to return
information from subroutines can be adapted for
use with "system call" routines as well, so a
sequence such as the following is possible:

SC #HXTEST
JR C,X

This sequence cannot be accomplished by using the
SETFLG and RESFLG instructions in the system
routine. System routines called through the SC
mechanism behave 1like interrupt routines: CPU
status (including flags) is saved on the R15 or
RR14 stack when the SC is executed, and it is
restored from the stack when the IRET is
executed. Therefore, the copy of flags saved on
the stack must be modified to reflect the desired
returned settings. Modification of stack
locations by called programs is tricky. For
example, when the SC trap first cccure, the saved
FCW is the second word on the stack; it can be
accessed as R15(#2) or RR14(#2). If the SC
handling program then calls the subroutine
corresponding to the given index (#HXTEST in the
example above), the subroutine return is stored on

the stack. Access to the saved FCW is then done
as R15(#4) or RR14(#6). If the called subroutine
begins by saving registers, the offset changes
again. For example, after a

PUSHL @15,RR0
or a
PUSHL @RR14,RR0O

the new offsets become R15(#8) and RR14(#10).
Similarly, each time the processing routine calls
a subroutine or uses the stack for temporary
storage, the situation changes.

Not only is changing the FCW value saved on the
stack potentially error prone, but the type of
error that can occur is serious. Thus, change to
the saved FCW value is better done by the
SC-dispatch routine, the routine whose address
appears in the program status area entry
corresponding to the SC trap. An SC-dispatch
routine to accomplish this is shown in Figure
10-10.

Many variations on this dispatch mechanism are
possible, depending on the system in which it
functions. This example illustrates the use of
condition codes, but is not a model SC dispatcher.

10.6 POSITION-INDEPENDENT PROGRAMS

A position-independent program is one that can be
moved to different locations in memory without
changing its behavior. The instructions and
program constants are in a fixed order, but their

SCDISP: EX R13,@RR14
PUSH @RR14,R12
PUSH @RR14,R0
LDB RLO,RR14(#7)

!Save RR12, get "reason" into R13!

!Use RLO to pass saved FLAGS!
1 (Offset of FLAGS is 7 after above
saves) !

! (Code to compute processing subroutine
address from "reason" and leave it in RR12)!

CALL @RR12
JR C,NOMSG
LDB RR14(#7),RLO
NOMSG:  POP RO,@RR14
POP R12,@RR14
LD R13,@RR14
IRET

1Call processing routine!
!Dont use updated FLAGS!
!Update flags on stack!
!Restore RO!

!Restore RR12!

Figure 10-10. Example of Using An SC-Dispatch Routine To Change To A Saved FCW
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behavior does not depend upon the actual addresses
of the memory locations where they are stored.

An example of a position-independent program is
the subroutine TSTHEX of Figure 10-9. Figure
10-11 contains an assembled version of this
subroutine starting at location 1000H.

1000 0AD8 3030 TSTHEX: CPB RLO,#ASCZER

1004 E709 JR ULT,NOTHEX
1006 0A08 3939 CPB RLO,{ASC9
100A E308 JR ULE,ISHEX
100C OAO8 4141 CPB RLO,{ASCA
1010 E703 JR ULT, NOTHEX
1012 OAD8 4646 CPB RLO,#ASCF
1016 E302 JR ULE,ISHEX
1018 8081 NOTHEX: SETFLG C

101A 9E08 RET

101C 8D83 ISHEX:  RESFLG C

101E 9E08 RET

Figure 10-11. Assembled Version Of Subroutine
TSTHEX

Because of Relative addressing, the hex values of
the instructions remain the same wherever the
program is assembled. This is true despite the
fact that the symbols NOTHEX (at location 1018)
and ISHEX (at location 101C) are referred to by
instructions in the program. To understand this,
consider the two instances of the instruction

JR ULT,NOTHEX

The hex values corresponding to these two
instances are not the same, because NOTHEX is
used in these two instructions simply as a
convenience to the programmer. They are actually
two different instructions:

JR ULT,$+%14
JR ULT,$+%8

In other words, these instructions do not rely on
the fact that NOTHEX is at 1018H. Instead they
require the destination to be 14 or 8 locations
after the location containing the instruction.

Position-independent  programs contribute in
several ways to achieving modularity. One way is
by using "silicon software." Imagine a set of
programs, each available on a ROM, that provide a

variety of software tools, such as a debugger, an
editor, and a text-formatting program. If each of
these programs is position-independent, the system
designer can select from among these ROMs and
assign a set of memory addresses to each, thus
building a custom-tailored system. A variation of
this idea is a "demand loading" memory system that
loads position-independent programs from secondary
storage into any available RAM area whenever calls
are made on them.

As another example, consider a debugging program
that can be loaded into RAM wherever space is
available. For example, it could reside in a
buffer area while the initialization code was
executing and then move to overlay the
initialization code while the program used the
buffers.

These examples show some of the uses of position-
independent programs. When writing position-
independent programs, the main rule is, "Don't
use addresses in instructions.” Addresses in
instructions are generally used in the Direct and
Index addressing modes and as immediate argu-
ments. Direct and Index addressing cannot be used
in position-independent programs except when Index
addressing is used as previously described to
simulate Base addressing. The use of addresses
as immediate arguments should be avoided. The same
result can be achieved with the LDA and LDAR
instructions.

Relative addressing--the CALR, JR, LDR, and LDAR
instructions--is the principal tool available to
the programmer writing  position-independent
programs. Another important tool is the use of
fixed-location wutilities called from position-
independent programs. For example, in a demand-
loading scheme, segment zero might be dedicated
to routines that are always resident. If so, the
first 256 bytes of segment zero can consist of
subroutine entry points, and calls can be made on
these subroutines by wusing Direct or Index
addressing from position-independent programs.
(The first 256 bytes of each segment can be
addressed by using a short segmented address.)
The system call trap can also be used to access
system routines from position-independent
programs.

Many variations on these ideas are possible,
depending on what is to be fixed and what is to be
position-independent. Use of the stack for
temporary storage automatically achieves position
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independence of the data. If the stack is not
used, position independence of data can be
achieved using the LDAR instruction, the Indirect
Register, or the Base and Base Index addressing
modes.

The kind of position independence discussed here
is an independence from the particular range of
addresses assigned to the program. Another kind
of position independence is provided by an
external memory-mapping facility, which allows a
given address range to correspond to different
physical memory locations.

10.7 SUBROUTINES

The principal property of Z8000 subroutines is
that they use RET as an exit so that they can be
called from more than one place. Invocation of
subroutines is accomplished with the CALL (or
CALR)  instruction. CALL and RET  perform
complementary functions. When a CALL (or CALR)
instruction is executed, the address of the
following memory location is saved on the RR14 or
R15 stack. Then transfer is made to the address
specified in the CALL instruction. When a RET
instruction is executed, the address on top of the
RR14 or R15 stack is popped into the PC; that is,
it is removed from the stack and a transfer to
that address is made.

In this way, the programmer can encode commonly
used functions in one place and then make use of
them by CALLs whenever they are needed. The CALL
of the given subroutine is 1like another
instruction added to the CPU's instruction set.
This is the most important tool of the assembly
language programmer; it allows instructions to be
used that are relevant to the application at hand,

thereby simplifying and clarifying assembly
language programs.
The CALL and RET instructions provide the

subroutine calling mechanism but do not dictate a
specific means of argument passing. For example,
if a subroutine is needed to compute the square
root of a number, the programmer must decide how
to specify that number to the subroutine. The
programmer must also decide how the subroutine
will report the answer.

There are three commonly used methods for argument
passing:

e In a register

e On a stack

e In the program, in locations following the
call

Each of these methods can be used to pass actual
arguments or to pass the address of an argument
table.

The return of answers to the calling program has
four commonly used options:

In a register
On a stack
By returning to addresses at varying offsets
from the CALL
e By manipulating flag bits

The use of registers for subroutine argument
passing and result returning is the most popular
and most efficient option. For example, to
implement the FORTIRAN statement Y=SQRT(X) the
following code can be used:

LDL RRQ,X 1Get X!
CALL SQRT !Compute square root!
LDL Y,RRO !Store in Y!

Here the subroutine SQRT takes its argument in RRO
and returns the answer in RRO.

The code for a SQRT routine that takes arguments
and returns results on a stack might be:

PUSHL @RR6,X
CALL SGRT
POPL Y,@RR6

This assumes that a stack controlled by RR6 is
available for use in argument passing.

There are times when passing arguments on a stack
is preferable to using registers. There might be
more arguments than can be accommodated in the
registers, or it might be desirable to make the
subroutine re-entrant (see Section 10.8). When a
stack is used for passing arguments, the
subroutine usually uses the Base or Base Index
addressing modes to refer to them. For example,
suppose that the subroutine BIGSQRT accepts an
array of 14 numbers on the RR6 stack and replaces
each with its square root. The code might look
like that of Figure 10-12.
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BIGSQRT: LDK R2,#14
CLR R3

LOOP: LDL RRO,RR6(R3)
CALL SQRT
LDL RR6(R3),RRO
INC R3,#4
DINZ R2,LOCP
RET

!Set argument Counter!
'Initialize index!

1Get next arg!

!Compute square root!
!Store it back!
!Arguments are 4 bytes!
'Loop if more arguments!

Figure 10-12. Example Using a Stack For Passing Arguments

In  nonsegmented operation or in segmented
operation when the stack segment number is known
at assembly time, Index addressing can also be
used to refer to stack items. The passing of
arguments by including them in the program
following the CALL, and the return of status
information by returning to addresses at varying
offsets from the CALL, are illustrated in the
following code:

CALL SQRT !Compute square root!

X !Adr of argument!

Y 'Adr at which to store result!
JR NEGX 'Error return: X was negative!

(Execution resumes here if no error)

The subroutine SQRT used with this sort of call
might look like the one in Figure 10-13.

The code makes it apparent that this is an awkward
means of passing information. It was originally
developed for computers that had few registers and
no multiple-word instructions and that stored
their return addresses in the subroutines rather

than on a stack. It is not well suited to the
28000.

Often it is convenient to use an argument table
whose address is passed to the subroutine. The
subroutine refers to the table elements as it
would to arguments on a stack--it uses Base or
Base Index addressing. An example of such a table
is given in Section 10.13.4

The flag bits provide a convenient means of
passing error or status information back from a
subroutine. Since RET does not affect any flag
bits, a condition can be set in a subroutine and
tested in the calling program. For example, the
SQRT routine might use C to indicate that an error
condition prevented it from computing a square
root. The calling program might look like this:

LDL RRO,X !Get the argument!

CALL SQRT !Compute the square root!
JR C,ERREX !C set if error!

LDL Y,RRO !Store the result!

SQRT: LDL RR12,@RR14

LDL RR2,@RR12
LDL RRO,@RR2
INC R13,#4
LDL RR2,@RR12
INC R13,#4
TESTL RRO

JR MI,ERREX
INC R13,#2

! (Compute square root)!

LDL @RR2,RRO
ERREX: LDL @RR14,RR12
RET

!Get saved return!
!Get address of X!
!Then get X itself!
!Step over adr of X!
!Get address of Y!
!Step over adr of Y!
tTest X!

!Error if X < 0!

1Step over error exit!

!Store in Y!
1Put updated Return adr on stack!

Figure 10-13. Example, Subroutine SQRT
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10.8 RE-ENTRANT PROGRAMS

Often in computer systems, two or more distinct
processes seem to be running simultaneously.
Actually, the computer alternates between these
processes, dropping each one in turn, then picking
it up at the point at which it was dropped. Since
the CPU's most fundamental resources are generally
not duplicated, the two processes share them. For
example, the values of the FCW and the PC being
used for one process must be saved before they are
set to the values appropriate for the next
process. There are other resources that may need
to be saved, such as the general-purpose registers
and memory. The context of the processes is the
total set of registers and memory that needs to be
saved for each process when it is suspended and
later restored. The operation of saving one
context and restoring another is called context
switching.

A re-entrant program is a program that can be used
simultaneously by two or more processes. A
program is re-entrant if, and only if, it refers
only to registers and memory locations that are
included in the process contexts.

One example of concurrent processes arises when
interrupts are used. In this case, the CPU
provides for the automatic saving of the PC and
FCW. Let us assume that we are working with a
system in which every interrupt-processing routine
saves and restores RRO and RR2. Figure 10-14
shows three pieces of code that form the basis of
an extended illustration of how re-entrancy is
achieved.

The routine MULTEN is re-entrant, since it refers
only to registers and memory locations in the
context assumed above. The references to RR14(#4)
are to a location in the context. This is because
the contents of RR14 (or R15 in the nonsegmented

Calling Program (in segment 6)

100 93E3
102 5F00 0600 2000
108 97€3

MULTEN Program (in segment 6)

2000 31E1 0004
2004 BD2A
2006 9920
2008 33E1 0004
200C 9E08 RET

PUSH @RR14,R3
CALL MULTEN

POP R3,8RR14
M4 emmmen

MULTEN: LD R1,RR14(#4)
LDK R2,#10
MULT RRO,R2
LD RR14(#4),R1

'Put argument on stack!
IMultiply it by 10!
!Return argument to R3!

'Get argument!

1Constant Multiplier!

110 x argument!

!Replace arg with result!

Interrupt-Processing Program (in segment 8)

600 91E0 IROUT: PUSHL @RR14,RRO !Save!

602 91E2 PUSHL @RR14,RR2 ! registers!

604 31E0 0008 LD RO,RR14(#8) !Get "reason"!

608 93E0 PUSH @RR14,R0 !Compute!

60A 5F00 0600 2000 CALL MULTEN ! 10 x "reason"!

610 97E0 POP RO,@RR14 'RO gets 10 x "reason"!
------------------ 1 (Perform other tasks)!

630 95E2 POPL RR2,@RR14  !Restore!

632 95E0 POPL RRO,@RR14 ! registers!

634 7800 IRET

Figure 10-14. Re-entrant MULTEN Routine, a Calling Program, and an Interrupt-Processing Program
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case) are implicitly saved and restored in
switching to and from interrupt processing, and
all memory locations at a positive offset from the
base defined by RR14 are, in effect, separate
copies of that portion of the context.

The example shows how the execution of MULTEN,
called from the code starting at 100, is
interrupted to allow the interrupt-processing
routine IROUT to run. In turn, IROUT calls MULTEN,
so MULTEN must work simultaneously in two
contexts.

This example follows the changing contents of the
registers RO, R1, R2, R3, RR14, PC, and FCW, and
shows the section of the stack used during
execution of this portion of the program. Figure
10-15 lists the assumed initial values.

Figure 10-17 shows the situation after the first
two instructions of Multen have been executed.
Suppose at this point that an interrupt occurs and
that IROUT is the processing routine. Figure
10-18 shows the status immediately following the
interrupt. The first two instructions of IROUT
push RRO and RR2 onto the stack. Then the
"reason" is fetched and pushed onto the stack as
an argument for the call to MULTEN. MULTEN is
called, and after the first two instructions of
MULTEN have been executed, we are exactly where we
were before the interrupt. Figure 10-19 shows the
new status.

Registers Stack
Name Contents Address Contents
RO 0000 (none used yet)
R1 1M
R2 2222
R3 0003
RR14 (0400,009A)
PC (0600,0100)
FCW D880

Figure 10-15. Initial Values For Registers,
PC and FCW For Example

Register Stack
Name Contents Address Contents
RO 0000 98 0003
R1 0003 96 0108
R2 000A (10 = %A) 94 0600
R3 0003
RR14 (0400,0094)
PC (0600,2006)
FCW D880

Figure 10-17 Status Before the Interrupt

As the first instruction, at 100 of segment 6, is
executed, the stack register value changes to
(0400,0098) and stack location 98 contains 0003,
the contents of R3. The PC is incremented to
(0600,0102), and everything else is unchanged.
The next instruction is the call to MULTEN.
Figure 10-16 shows the status following that call.

Register Stack
Name Contents Address Contents
RO 0000 98 0003 argument
R1 "M 96 0108 saved PC
R2 2222 94 0600
R3 0003
RR14 (0400,0094)
PC (0600,2000)
FCW D880

Figure 10-16. Values After Call To
MULTEN From 102

Registers Stack

Name Contents Address Contents

RO 0000 98 0003

R1 0003 96 0108

R2 000A 94 0600

R3 0003 92 2006 saved PC
RR14 (0400,008C) 90 0600

PC (0800,0600) 8E D880 saved FCW
FCW D80O0* 8c 0005 "reason"*

*To make the example concrete, assume a value of
0005 for "reason" and an FCW value of D800
associated with the interrupt.

Figure 10-18. Status Immediately Following the
Interrupt

The stack locations 7E, 80, and 82 in Figure 10-19
play the same role as did 94, 96, and 98 in Figure
10-17. If the contents of stack locations 84 thru
98 in Figure 10-19 are covered up, there would be
no essential difference between the two figures.
The only record of the first execution of MULTEN
is stored in these stack locations. Conversely,
in Figure 10-17, if the portion of the stack with
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Register Stack
Name Contents Address Contents
RO 0000 98 0003
R1 0005 96 0108  MULTEN
R2 000A 94 0600
R3 0003 92 2006
RR14  (0400,007E) 90 0600 occurred
PC (0600,2006) SE D880
FCW D800 8C 0005
8A 0003
88 0000
86 0003
84 000A
82 0005
80 0610
7E 0800

Acgument & return address for first (interrupted) execution of

CPU status & "reason" pushed automatically when the interrupt

RRO,RR2 values saved by IROUT (contain register values set
during first execution of MULTEN)

Argument & return address for second execution of MULTEN

Execution of MULTEN is at the exact point reached before the interrupt (Figure 10-17). Every
value in Figure 10-17 is somewhere on the stack in this figure.

Figure 10-19 Current and Saved Contexts for MULTEN

addresses 100 through 114 were shown (nothing
tells us where the stack originally started), the
context of a previous execution of MULTEN might be
found.

Assume that execution proceeds without further
interrupts. MULTEN computes 5 x A and stores the
result at stack location 8z [at RRia4(#4)]j. Its RET
causes the contents of 7E and 80 to be popped into
the PC and execution resumes in IROUT, where the
0032 (5 x A) is popped into RO and presumably is
used in the "perform other tasks" section of
IROUT.

When execution in IROUT reaches 630, the RR2 and
RRO values are restored from the stack. At this
point, status is exactly as shown in Figure 10-18,
except that the PC (and possibly the FCW) has a
different value. The execution of the IRET
restores the saved values of PC and FCW, leaving
the status originally shown in Figure 10-17.

Execution of MULTEN proceeds at 2006 as if there
had never been an interrupt. The result of 3 x A
(1E) is stored in stack location 98 [R14(#4)].
The RET at 200C causes the saved PC to be restored
from stack locations 94 and 96. Execution of the
original program then resumes at 108 of segment 6,
where the result of the multiplication is popped
into R3. Ihe status at this point is shown in
Figure 10-20. All of the values here are exactly
as they would have been if the execution of MULTEN
had not been interrupted.

This example also illustrates how the definition
of re-entrancy depends upon the properties of the
surrounding system. If RR4 and RR6 instead of RRO
and RR2 had been preserved by interrupt-processing
routines, then MULTEN would not be re-entrant and
it could not be called from interrupt-processing
routines.

Register Stack
Name Contents Address Contents
RO 0000 (none still in use)
R1 B01E Result of MULT RRO,R2
R2 000A Result of LDK R2,#10
R3 001E Result of POP R3,@RR14
RR14 (004,009A)
PC (0600,010A)
FCW D800 FLAGS set by MULT RRO,R2

Figure 10-20. Final Values for MULTEN Routine
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The MULTEN example illustrates context switching
triggered by interrupts. Another instance of
re-entry, for which it is harder to provide a
simple illustratien, is a program shared by a
number of concurrent processes, each doing
approximately the same thing. For example, a
BASIC or Pascal timesharing system might have one
copy of the interpreter that works on the user's
programs "concurrently," switching from one to the
next either at the expiration of a "time slice" or
when the user's program pauses for 1/0. Each user
would have an interpretable program and a
temporary sterage stack. These would be in the
user's private memory and would be addressed using
a base register and an offset (pseudo-PC) register
for the interpretable program and a stack register
for the stack. These registers and the other
general-purpose registers used by the interpreter
constitute the context to be switched. The
re-entry of the interpreter depends upon its
reference to the user's memory areas only through
the use of the registers making up the context.

10.9 CONTEXT SWITCHING

In Section 10.7, we defined the context of a
process to be the values of all registers and
memory locations that need to be saved before
another preocess running "at the same time" can
have its turn at using them. In general, the
context of a process consists of the entire
register and memory contents, but in most
applications measures are taken to keep the size
of the context to a minimum. Fixed storage
locations can be avoided, and the times at which
context switches occur can be controlled.

Fixed storage locations must become part of the
context of a process if some other process can
change the contents between the time its value is
set and the time it is no longer needed. On the
other hand, a process that "ties up the loose
ends" before another process can run can have a
small context, even though it may use and abandon
many registers and locations during the period in
which other processes cannot run. The recursive
subroutine QUICK presented in Section 10.13.6 is
an example of this phenomenon.

In most context-switching schemes, the stack is
used for storage of all or part of saved process
contexts, as illustrated in Section 10.8. Saving
registers on the stack is accomplished efficiently
by using the LDM instruction. For example,

DEC R15,#16
DEC R15,#12
LDM @RR14,R0,#14

!Can't decrement by 28!
! all at once!

causes registers RO through R13 to be saved on the
RR14 stack.

Saving control registers, if necessary, is
accomplished by 1loading them into registers and
then saving the registers. If it is necessary to
save the FCW explicitly, care must be taken that
the saving operations do not affect the flag bits
before they are saved or after they are restored.
For example, the DEC instruction affects V, Z, and
S, so after the above instructions have been used
to save the registers, it is too late to save
flags. A variation on the preceding code that
saves flags is:

tMake room to work!
1Get FCW into R12!
'Finish saving registers!

PUSHL @RR14,RR12
LDCTL R12,FCW
SUB R15,#24

LDM @RR14,R0,#12
PUSH @RR14,R12 !Save FCW!

Of the control registers, the Normal Stack Pointer
is the one most likely to be part of a process
context in a multi-processing system. To save it,
the following instructions are added to the above:

LDCTL R12,NSPSEG
LDCTL R13,NSPOFF
PUSHL @RR14,RR12

If fixed locations are part of the process
context, their contents also must be saved. In
the code shown in Figure 10-21, assume that RR2
contains the address of a list of fixed word
locations whose contents must be saved. Assume
that the list is terminated by a double word, -1.
This code causes the contents of these locations
to be saved on the stack, each accompanied by the
corresponding address.

LOOP: LDL RR4,@RR2 1Get next item!

CPL RR4,#-1 1Test for terminator!
JR EQ,DONE tDone if -1 encountered!
LD RO,@RR4 1Get contents!

PUSH @RR14,R0
PUSHL @RR14,RR4
INC R3,#4

JR LOOP

!Save both!

!Increment list pointer!

Figure 10-21. Example, Saving Contents of
Fixed Locations Onto Stack
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10.10 INTERRUPTS

An interrupt forces a context switch. Since there
is almost no control of the time a switch to the
interrupt context occurs, interrupt routines must
save and restore the values of any registers,
control registers, or memory locations they use.
(An exception is a memory location purposely
changed by the interrupt routine, such as a flag
indicating that output of a given line of text is
finished.)

Before interrupts can be used, the linkage between
the interrupt and the processing routine must be
established. This is done using the Program
Status Area (PSA) and the Program Status Area
Pointer (PSAP). The format of the Program Status
Area is described in Chapter 2.7.2. In the PSA, a
CPU status (FCW and PC) is specified for every
allowed interrupt type. In contrast with machines
that wused fixed memory locations for such
interrupt response definition, the PSA of the
28000 can be anywhere in program memory so long as
it is on a 256-byte block boundary (that is, the
last eight bits of its address are zero). This
means that the PSA can be assembled with the
program without conflicting with the loader's use
of the interrupt facility. The only thing
remaining to be done at initialization time is to
set up the PSAP and then to enable interrupts. If
the PSA begins at PSALOC, setting up the PSAP can
be done by:

LDA RRO,PSALOC
LDCTL PSAPSEG,RO
LDCTL PSAPOFF,R1

The use of interrupts for input or output of data
requires communication between the program
requesting the input or output and the associated
interrupt-processing routines. Furthermore, an
Ainterrupt-processing routine must communicate with
itself; that is, whenever an interrfupt occurs, it
must know exactly what it is doing and how far
along it is.

The solution to providing communication between
interrupt and application routines and to
providing temporary storage for the interrupt
routines is a set of fixed memory locations (often
called a process status block or context block)
containing pointers, counters, flags, etc.

When the application routine needs to perform an
1/0 operation, it calls on an initiator routine.
For example, it may need to send the ASCII

characters for "HELLO" to a CRT screen. The
initiator program sets a pointer in the context
block to the zero-terminated string of ASCII
characters for "HELLO" provided by the application
program, and it sets a flag in the context block
to "BUSY." Then it does whatever is necessary to
assure that output interrupts for the CRT screen
begin to occur. As each interrupt occurs, the
processing routine transmits another character of
the string and advances the pointer in the context
block. When the pointer reaches the terminating
zero, the interrupt routine sets the flag in the
context block to "DONE." Meanwhile, the
application program can be doing other things. If
it needs to output another string, it waits for
the flag to change from "BUSY" to "DONE." It can
enter a loop in which all it does is test the
flag, or it can do other things while the output
proceeds.

This sort of communication between tasks
proceeding under interrupt and application
programs is sometimes used to implement an event-
driven timesharing system. Instead of entering a
loop to wait for the flag to change from "BUSY" to
"DONE," the program defers to other tasks,
allowing them to execute until they too are held
up waiting for an I/0 operation to be completed.

10.11 INITIALIZATION

For the programmer responsible for the entire CPU
instead of simply providing programs to run under
some system, the sequence of operations following
a cold start (reset) is important.

Execution begins when the CPU fetches its CPU
status (FCW and PC) from instruction memory
addresses beginning at segment 0, offset 2. The
FCW is at offset 2, the PC at offset 4. If an
external memory-mapping unit is in use, it must be
capable of dealing properly with these initial
fetches, even before any code is executed to
establish memory-mapping parameters.

The PC value at location 4 is the address of the
first instruction to be executed. The FCW value
should leave the CPU in System mode and segmented
operation (unless the CPU is a 28002) with all
maskable interrupts disabled. The nonmaskable
interrupt (NMI) should be disabled at this point
also, but that is impossible, so the system must
be designed so that the NMI cannot occur
immediately after a reset.

10-20



Programming Techniques

The initialization code first sets the PSAP to
point at the previously assembled PSA. The
implicit stack register (R15 or RR14) must then be
set. If an external memory mapping facility is
used, its parameters are set up as soon as
possible. Until then, it must continue to handle
all instruction, data and stack references
properly. Once the stack register and the PSAP
are properly initialized, interrupts can be
enabled. If the Refresh register is to be used,
it is initialized during this sequence.

10.12 PROGRAMMING FOR BOTH SEGMENTATION MODES

It is important for Z8000 programmers to know how
to write programs for operation in one segmenta-
tion mode that can be adapted for use in the other
segmentation mode with minimal alterations. The
only way two modes differ is in the format of
addresses--in instructions, in general-purpose
registers, in the PC, in control registers, and on
the stack after subroutine calls, traps, or
interrupts. Therefore, the solution to this lies
in finding mode~independent ways of handling
addresses. Addresses are manipulated by programs
in many ways. The most common are:

e Loading them into registers
e Performing arithmetic on them

e Using them in the Indirect Register, Base and
Base Index addressing modes

e Moving them out of registers and into memory
or onto the stack

The two program fragments shown in Figure 10-22
are segmented and nonsegmented versions of the
same algorithm. If symbolic definitions are given
for the address registers, the code takes the form
shown in Figure 10-23.

Non-Segmented Segmented

LDA R2,XYZ LDA RR2,XYZ

LD RO,@R2 LD RO,@RR2

INC R2,#2 INC R3,#2

LD R1,@R2 LD R1,@RR2

PUSH @R15,R2 PUSHL @RR14,RR2
LD R4,R2 LDL RR4,RR2

Figure 10-22. Example of Segmented vs.
Nonsegmented Code

With the symbolic definitions, the two pieces of
code are very similar. The remaining problem is
the "L" in the mnemonics. If there were an
assembler that recognized the perfectly
unambiguous source statements

LD RR4,RR2
PUSH @RR14,RR2

and generated the long-word versions of the
instructions, then at the source code level the
segmented and nonsegmented programs would be
identical. Without such an assembler, the only
other possibility is conditional assembly. Except
for very small programs, this is unlikely to be
workable, unless the conditional instructions are
built into a set of address-manipulation macros.

ADREG = R2; ADOFF = R2
SAVREG = R4
SR = R15

LDA ADREG,XYZ
LD RO,@ADREG
INC ADOFF,#2
LD R1,BADREG
PUSH @SR,ADREG
LD SAVREG,ADREG

ADREG = RR2; ADOFF = R3
SAVREG = RR4
SR = RR14

LDA ADREG,XYZ
LD RO,@ADREG
INC ADOFF, #2
LD R1,@ADREG
PUSHL @SR,ADREG
LDL SAVREG,ADREG

Figure 10-23. Assembled Code For Segmented & Nonsegmented Examples
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For example (following no particular macro
syntax), an address pushing macro could be defined
as follows:

APUSH x,y =
if y is an RR, then
"PUSHL @x, y"
else
"PUSH @x,y"

Then,
APUSH SR,ADREG

is the next-to-last line of either of the programs
in Figure 10-23.

10.13 PROGRAMMING EXAMPLES

Sections 10.1 through 10.12 showed how specific
features of the 78000 are related to standard
programming techniques. The paragraphs within
this section present some complete examples to
give a clearer picture of how Z8000 instructions
and features are used.

10.13.1 Adding An Array Of Numbers

Problem: To find the sum of an array of 16-bit
signed numbers.

Solution: The items are added one at a time to an
initially cleared accumulator. Any occurrence of
a V indication following any of the additions is
registered, and V is set wupon completion if
overflow occurs at any point during the operation.

Notice that the sum can be correct even if
overflow occurs; for example, let the array be
(32,765, 8, -25). The first sum, 32,765 + 8,
yields -32,763 and an overflow indication. The
second sum, (-32,763) + (-25) yields 32,748 and
another overflow indication. The final answer is
correct:

32,748 = 32,765 + 8 + (-25).

An overflow indication is set upon completion of
the addition, and the programmer can choose to
take action. Alternatively, the addition program
might take action on overflow (such as by
terminating the process), but the programmer
calling the function has more information about
the intended use of the sum and the nature of the
data. The code for this appears in Figure 10-24.

tAddition subroutine

CALL SUM with RR2 = array address

RO = number of words in the array (0 to 32,767)
Returns sum in R1; V is set on return if an arithmetic overflow
occurred in any of the addition operations used in forming the

sum.

The contents of RO, R2, R3 and R4 are lost.

1

SUM:  CLR R1
CLR R&
CP RO,#0

JR LE,ENDLP
ADD R1,8RR2
TCC OV,R4
INC R3,#2
DEC RO
JR LOOP
RESFLG V
TEST R4

RET Z
SETFLG V
RET

LOOP:

ENDLP:

Figure 10-24.

!Initialize sum to zero!
'R4 saves any V's!

!Done when RO no longer!

! greater than zero!

'Add in the next!

!Save overflow indication!
!Increment array pointer!
!Decrement loop counter!

V=0 if no overflow!

!0Otherwise V=1!

Example, Addition Subroutine
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Notes to Figure 10-24:

1.

Notice that the test for the loop termination condition is done first; this allows the program to
behave properly if the initial value of RO is zero--it returns a sum of zero. Also notice that the
test is for LE instead of for EQ. This is simply a precaution. If the count becomes negative, then
there is a programming error somewhere, and it is best to stop immediately.

Given that we wish to test for a counter value less than or equal to zero, we use

CP RO,#0
instead of
TEST RO

Because the TEST instruction leaves the V bit unaffected, while the definition of LE is Z OR
(S XOR V).

An alternative to
CP RO,#0
is the sequence
RESFLG V; TEST RO

but this sequence does not work with the TESTB instruction, because TESTB uses V to report the
parity of the byte (since P = V), and this is unrelated to the sign.

Notice the use of the TCC instruction. Initially R4 is cleared; if V is clear (no overflow occurred
in the ADD), then

TCC OV,R4
leaves R4 unaffected. If V is set (overflow did occur), then
TCC OV,R4
causes the low-order bit to be set. This means that if overflow ever occurs, R4 will be non-zero for
the remainder of the time, since the only instruction affecting R4 after it is initially cleared is

the TCC, which either sets it or leaves it unaffected.

It is important to note that the TCC instruction does not set the destination value to zero if the
specified condition code is false.

Notice the use of
INC R3,#2

to increment the array pointer RR2. This is done because the segmented address arithmetic is done
separately on the segment and offset portions of the address.

As written, the program wraps around the end of a segment, treating the word at offset zero as the
successor to the word at offset 65,534 (FFFE). If this is to be treated as an error, a test can be
made for this condition. Z can be used, but this does not necessarily work with larger increments;
if long words are being added, for example, INC R3,#4 might change R3 from FFEE to 2. Another
approach is to test for this condition on entry, using the initial values of RRZ and RO.
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10.13.2 Determining The Parity Of A Byte String

Problem: To find the parity of an arbitrarily
long byte string and to set P (PE true) if the
total number of bits in the string of bytes is
even, to clear P (PO true) if the total number of
bits is odd.

of b. (It suffices to prove this for one-bit
arguments a and b, since the parity of an n-bit
binary number is the sum of the parities of its n
bits. The proof for one-bit arguments is
accomplished by considering the four possible bit
combinations.) Therefore, the total parity can be
determined as follows:

Solution: The parity of a byte string is, by o Initialize a register to zero.

definition, the sum of its bits modulo 2. Since

addition is associative (i.e., the sum is the same e For each byte of the string, compute the XOR

if the items are grouped, subtotals computed for of the byte with the current contents of the

the groups, and the subtotals added), the parity register.

of the byte string is the sum of the parities of

its bytes. o Test the parity of the final contents of the
register.

Furthermore, if a and b are binary numbers (in
particular, if they are bytes), then the parity of The code for this appears in Figure 10-25.
(a XOR b) equals the parity of a plus the parity

!Subroutine to test the parity of an arbitrarily long
byte string
CALL BIGPAR with RR2 = address of the byte string
R1 = number of bytes (0 to 32,767)
Returns with P set (PE true) if parity is even, P
clear (PO true) if parity is odd. Contents of RO,
R1, R2 are lost.
!
BIGPAR: CLRB RLO
LOOP:  CP R1,#0
JR LE,ENDLP
XORB RLO,@RR2

tAccumulate parity in RLO!

1A11 tested yet?!

iIf so, determine final parity!
IXOR this byte with RLO!

INC R3 ! and set up!
DEC R1 ! for next byte!
JR LOOP

ENDLP: TESTB RLO IFinal parity!
RET

Figure 10-25. Example of the Determination of Parity of a Byte String

Notes to Figure 10-25:
1. Notice that by initially clearing RLO, we assure that a zero-length string has even parity.
2. If we wish to allow for from 0 to 65,535 bytes in the string, we replace
JR LE,ENDLP
with

JR EQ,ENDLP

In this case we are using the contents of R1 as an unsigned number in the range 0 to 216~1 instead of
as a signed number in the range -215 to 215-1.
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3. If we wish to allow for from 1 to 65,536 bytes in the string, we remove the instructions

CP R1,#0
JR LE,ENDLP

and move the label LOOP down to the XORB instruction. The instructions

DEC R1
JR LOOP

become

DJINZ R1,L00P

and the label ENDLP is no longer be needed.

4. For long byte strings, the efficiency of this routine can be increased by using the XOR instruction
to process whole words at a time. Special tests have to be included to handle strings that begin at

an odd byte or end at an even byte.

10.13.3 Accesing An Array Larger Than 65,536
Bytes

Problem: To manage a one-dimensional array that
is too large to fit within one memory segment and
has too many elements to be indexed by a 16-bit
word.

Solution: Two solutions to this problem are
presented. One provides high efficiency but
little flexibility, and the other provides great
flexibility, but substantial cost in processing
overhead.

The high-efficiency scheme wuses an arbitrary
segmented address as the address of the first
array element and assumes that the array is stored
contiguously in memory. Segmented address (N+1,
0) is assumed to follow address (N,65,535); that
is, consecutively numbered segments are treated as
contiguous pieces of the address space. If the
segment number bits were bits 6 through 0 of the
high-order segmented address byte, this
interpretation would be achieved automatically
simply by treating segmented addresses as 32-bit
unsigned integers. Since this is not the case,
the addition of an offset to the starting address
of the array must include an operation that takes
bits 6-0 of the high-order word of the result and
adds them to the segment number field, which is in
bits 14-8.

A subroutine is provided to take the base
segmented address in one long-word register and an
offset in another long-word register. The offset
must be less than 223. The algorithm used causes
a wraparound from segment 127 to segment 0, so the
full 223 bytes of segmented address space are
used, regardless of the base segmented address.
The code for this version appears in Figure 10-26.

The high-flexibility scheme also uses a 23-bit
offset, or virtual address, but instead of a
starting segmented address and a contiguous array,
it uses a virtual-to-segmented address mapping
scheme that works as follows (see Figure 10-27):

® An array of '"virtual" addresses in ascending
numerical order (Vq, Vz,...,V, is provided. A
segmented address (Sgs Sqse-.9S,.1) is associ-
ated with each. Virtual addresses 0 through
Vq-1 are mapped . into a contiguous block of
segmented addresses, starting at Sg. Vq
through Vp-1 are mapped into a block at S,
and so on.

e The given virtual address, v, is compared with
each of Vq, Vgy..., V, until the first V; is
found for which v < Vi. If v > V., an error
indication is returned.

e The segmented address Sj q + (v-Vj_q) is
returned (VO is assumed to be zero).
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{Address-mapping subroutine (high-efficiency version)
CALL ADMAP with RR2 = virtual address (23 bits)

Returns
to the giv
]

RR4 = starting segmented address
with RR2 = segmented address corresponding
en virtual address and RR4 preserved.

ADMAP: ADD R3,R5

ADC
EXB
RET

NOTE: The
is returned
ADMAP: ADD
ADCI
RET

The longer

B RLZ,RH4
RHZ,RL2

EXB instruction is unnecessary if the result
in RR4. The code for this is:

RS, R3
B RH4,RL2

version given above allows the array base to

be maintained in RR4 at all times.

Figure 10-26. Example of Accessing Arrays Larger Than 64K Bytes
ARRAY OFFSET SEGMENTED
(VIRTUAL ADDRESS) ADDRESSES
0 0
Vs 6553 }SEOO
so 0'V1 0 5
Va 85535 }SEM
0
$q V1i-V2 }seoz
A 65535
- 0
Ss Ve-Ve }ssos
V. 65535
¢ 0
SEG4
Vs S2 V2-V3 65535
0
Vs SEGS
65535
MAPPING TABLE Ss VaoV SEGE
Vi, So 3-Va
65535
V2, $1 -V + S 0
° v-Vk + Sk-1)
R — * ——> SEGMENTED S Vi-Vs SEG7
. ADDRESS 65535
Ve, S5
. .
. .
. .
0,0
Figure 10-27. Memory Mapping
The address calculation S;_¢ + (v-Vi-1) is treated as contiguous, and wraparound occurs from
performed as for the high-efficiency scheme above, segment 127 to segment O.

so that consecutively numbered

segments are
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As an example, suppose we have an array of 200,000
bytes that we wish to store in memory in three
sections:

0-84,999 starting at segment 6,
offset 30,000

85,000-131,071 starting at segment 14,
offset O

131,072-199,999 starting at segment 19,
offset 45,000

The subroutine is called with the address of the
virtual-to-segmented address mapping table in one
double-word register and the virtual address in
another. For this example, the mapping table takes
the form shown in Figure 10-28. The means of

expressing the 32-bit constants and segmented
addresses depends upon the specific assembler
used. Simpler ways are possible with some
assemblers.

In this example, suppose that RR2 contains a
virtual address, that is, an index between 0 and
199,999. It can be translated into a segmented
address with the following code:

LDA RR4,MAPTAB
CALL ADMAP

The code for the high-flexibility solution appears
in Figure 10-29.

MAPTAB:  0; 0  1Vg=0!
%600530000  !Sp=(6,30000)!
1519464  1V4=85,000 (= 216 4+ 19464)!
%E00; 0 1S4=(14,0)!
25 0 1Vy=131,072!
%1300;-20536  !S,=(19,45000) !
3; 3392 1V3=200,000 (= 3 x 2'6 4+ 3392)¢
0; 0 !Two 32-bit zeros terminate!
0; 0

Figure 10-28. Example, Memory Mapping Subroutine

'Address-mapping subroutine (high-flexibility version)
CALL ADMAP with RR2 = virtual address (23 bits)
RR4 = address of mapping table
Returns with C=0 and RR2 = segmented address; or
C=1 if virtual address out of range
The contents of RR4 are lost.

1
ADMAP: INC RS,#8
TESTL @RR4
JR Z,ERREX
CPL RR2,8RR4
JR GE,ADMAP
FIND:  DEC RS,#8
SUBL RR2,@RR&4
INC RS, #4
ADDL RR2,@RR4
ADDB RH2,RL2
CLRB RL2
RESFLG C; RET
ERREX: SETFLG C; RET

tStep to next entry!
!Terminator?!

! Yes-out of range!

!Compare v with Vj!

! If v > Vi, try next!

!Back up to Vj_q!

'RR2 = v-Vj_q!

!Step to S;_q!

'RR2 = 51_1 + (V-Vi_1)!
!Carry overflow to segment field!
!Clear "reserved" bits!

1C=0 for success return!

1C=1 for out-of-range return!

Figure 10-29. Example, Flexible Memory Mapping Subroutine
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Notes to Figure 10-29:

1. The algorithms here are designed for random access. A loop to step through a byte array addressed
for the high-efficiency version uses the following sort of address computation:

LDL RR2,RR4 1Start at the beginning!
LOOP: !If at end of array, exit!
!Perform operation on the array element!

INC R3 1Step to next address!
JR NZ,LO0P 1Still in the segment!

INCB RH2 !New segment!

JR LOOP

2. Notice the use of the VO entry in the MAPTAB table. Even though VO can only be zero, the program is
simplified by including an entry for it in the table.

3. There is no error checking performed in either routine. Several errors can occur: RR2 can contain a
virtual address of greater than 23 bits, or MAPTAB can be incorrectly formed or can define an array
that overlaps itself.

The checking of RR2 in either version must be done dynamically. The checking of MAPTAB can be done
once when the table is created or each time it is changed. A special routine can be provided for
this purpose.

4. The DEC R5,#8 and INC RS,#4 instructions in the mapping computation are required because the Based
Addressing mode cannot be used with the ADD and SUB instructions. If it could, the code at FIND
might be

FIND: SUBL RR2,RR4(#-8)
ADDL RR2,RR4(#-4)

in the nonsegmented mode, indexed addressing can be used to simulate based addressing (see Section
10.2 Addressing Modes), but of course, this program would not be used in nonsegmented operations.

5. Many applications using large arrays do not need to have the entire array in memory at all times.
The high-flexibility version of address mapping can be used to implement a demand-loading scheme.
For this, the code at "FIND:" must recognize a special value for the base segmented address Si-1 that
signifies that the array section in question is not currently present in main memory. (Si-1=231-1 is
a good value for this purpose.) At this point a call can be made on a demand-loading routine that
loads the section in question and passes back its actual segmented address for storage in the
address-mapping table.
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10.13.4 Removing Trailing Blanks trailing blanks allows more records to fit into a

buffer of given size.

Problem: To replace a fixed-length array of text
(such as a card image) by a possibly shorter array Solution: The Z8000 block instructions that use

containing the initial segment of the original the autodecrement mode are designed to handle this
array up to and including the 1last non-blank sort of problem. The array is scanned backward
character. This type of operation is useful when until the first non-blank character is found. The
a set of fixed-length arrays (for example, a card code for this appears in Figure 10-30.

deck) is to be read into memory. Elimination of

!Subroutine to remove trailing blanks
CALL STRIP with RR2 = address of the array
R1 = # of bytes in the array (1 to 65,536)
Returns with RO = number of bytes in stripped array.
The contents of RO, R1 and RR2 are lost.
1

BLANK=32 tASCII Code for blank!

STRIP: LDB RLO,#BLANK ! Comparison character!
ADD R3,R1 1Set RR2 to point!
DEC R3 ! at end of array!
CPDRB RLO,@RR2,R1,NE !Scan backward to non-blank!
LD RO,R1 !Remaining count (Z not affected)!
RET NZ {If all-blank return R0=0!
INC RO 1Count the final non-blank!
RET

Figure 10-30. Example, Removing Trailing Blanks

Notes to Figure 10-30:

1.

2,

Notice the computation to set RR2 to point at the last byte of the array. R3 is the offset portion of
the address in RR2. Adding R1 (the number of bytes in the array) to R3 leaves RR2 pointing at the
first byte following the array. DEC R3 brings RR2 back to its array. (R1 = O means 65,536 bytes.)

The Block Compare instruction terminates when the count in R1 reaches zero or when one of the CPB
RLO,BRR2 operations causes the NE condition to be true. R1 is decremented for each comparison,
whether or not there is a match. Therefore, if a match occurs (which the block compare instruction
signals by setting Z), the count remaining in R1 is one less than the number of bytes in the stripped
array. If no match occurs, R1 is decremented to zero, which is equal to the number of bytes in the
stripped array.
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10.13.5 Determining Whether A 16-Bit Word Is A
Bit Palindrone

Problem: To determine whether or not a given
16-bit word satisfies the condition

Bit n = Bit (15-n)

for n =0, 1, 2, ..., 15. A word meeting this

condition is called a bit palindrome, since it
reads the same frontwards and backwards.

Solution: This problem illustrates the use of the
28000 bit-testing instructions that allow the bit
number to be specified in a register. The
solution given here is the straightforward one:
comparing bit n with bit (15-n) for n = 0, 1, 2,
eesy 7. The code appears in Figure 10-31.

!Subroutine to test for bit palindromes

CALL BITPAL with RO = 16-bit word to be tested.

Returns with C=1 if not a bit palindrome, C=0 if it is.

Register use: R1 = n; R2 = 15-n; RH3 = loop count; RL3 = scratch.

1
BITPAL: CLR R1

1Set n = O!
LDK R2,#15 ! and 15-n = 15!
LDB RH3,#8 !Set loop counter!
LOOP:  CLRB RL3
BIT RO,R1 1Test Bit n and!
TCCB NZ,RL3 ! move it into RL3!
RLB RL3 {Make room for Bit 15-n!
BIT RO,R2 !Test Bit 15-n and!
TCCB NZ,RL3 ! move it into RL3!
TESTB RL3 1Bit n = Bit 15-n if and!

JR PO,NOTPAL ! only if parity of RL3 is even!

INC R1
DEC R2

! Increment n!
tDecrement 15-n!

DBINZ RH3,L00P !Loop until count exhausted!

RESFLG C; RET
NOTPAL: SETFLG C; RET

!Success: set C=0 and return!
{Failure: set C=1 and return!

Figure 10-31 Example, Test for Bit Palindromes Subroutine

Notes to Figure 10-31:

1. This example illustrates the operation of the Bit Test instruction. A more efficient solution to the
problem involves a direct comparison of the two bytes of RO after reversing one of them with a loop

like:
LDK R2,#8
LOOP:  RLCB RLO
RRCB RL1
DINZ R2,L00P
RLCB RLO

2. The condition code NZ is used in the TCC instructions. BIT sets Z if the bit is clear and clears Z if

the bit is set.

3. TCC instructions are used to save the bit values, and TEST is used to compare them by testing the

parity of the byte into which they have been stored.

Both simplify the flow of control. Not using

- these techniques results in the sort of jumping around shown in Figure 10-32.

10-30



Programming Techniques

SET CLEAR

BIT
SET 15-n CLEAR

SET

A/
“NOT PALINDROME”
EXIT

LOOP
COUNT
EXHAUSTED

NO

“PALINDROME”
EXIT

Figure 10-32. A Poor Alternative to the Use of TCC

10.13.6 Sorting

Problem: Given an array A of "items" and an order
relation "<", rearrange the items of A in such a
way that for integers i and j and items ai and aj,
ai < aj whenever i < j. The items of A can be
integers, floating point numbers, character
strings, or any other data type. The order
relation can be any ordering appropriate to the
given data type, for example, dictionary order for
character strings.

Solution: An adaptation of the "quicksort"
algorithm of C.A.R. Hoare is used. A program is
written to sort an array of 16-bit 2's complement

integers in ascending numerical order. The
organization of the program into subroutines
indicates how other items and ordérings can be
used.

Assume that A is an array indexed from 0O to N.
Quicksort is a recursive procedure that begins by
arbitrarily selecting one of the items of A as the
"pivot" value. Then a preliminary rearrangement
of A is made as follows: For some i, O LigN,
ai is the pivot value and g < a; if 0 < k £ i,
a, > a; if i < k < N. That is, all items less
than, or equal to, the pivot are moved into the
"left half" of the array and all those greater
than, or equal to, the pivot are moved into the
"right half."

2010-030
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Once this is done, the same process is performed
on each of the two array segments ag to a;_4 and
aj,q to ay. These segments are usually not of
equal size. Implementation of the algorithm
requires a minimum of stack storage if at each
stage the smaller segment is sorted first.

In this example assume that array offsets are

23-bit numbers in the range of 0 to 8,388,607 and
that the array elements are 16-bit signed
integers. A base segmented address and an address
computation similar to that of the high-efficiency
version of ADMAP (Section 10.23.3) are used. The
generalization to other types of element is
straightforward. The code for this appears in
Figures 10-33 through 10-38.

!Subroutine Quicksort
CALL QUICK with RR12 = array address
RR10 = U (offset of upper limit)
RR8 = L (offset of lower limit)
Returns with array elements at offsets between L and U (inclusive)
sorted. L and U are 23-bit integers in the range 0 to 8,388,607.
Register use:
RR14: Stack Register
RR12: Always contains starting segmented address of array
RQ8: (L,U) on call; shorter (L,U) range returned by SHORT
RQ4: longer (L,U) range returned by SHORT
RQO: used by subroutines of QUICK

!
QUICK: CPL RR8,RR10 ! Compare L,U!

RET GE 'Return if L > U!
CALR PART 'Partition: RQ4, RQ8 get ranges!
CALR SHORT 'Put shorter range in RQ8, longer in RQ4!
DEC R15,#8 !Save RQ4 - longer (L,U) range!
LDM @RR14,R4,#4
CALR QUICK !Recursive call to sort the shorter range!

LDM R8,@8RR14,#4 !Restore longer range - into RQ8!
INC R15,#8

CALR QUICK 'Recursive call to sort the longer range!
RET

Figure 10-33. Example, Sort Subroutine Quicksort Initialization

!Subroutine of QUICK to put shorter range first
CALL SHORT with RQ4 = one (L,U) range
RQ8 = another (L,U) range
Returns with shorter range in RQ8, longer in RQ4
Register use: as for QUICK. RRO contents are lost.
1
SHORT: LDL RRO,RR6 IRRO = U-L for RQ4!
SUBL RRO,RR4
PUSHL @RR14,RRO !Save first U-L!
LDL RRO,RR10 'RRO = U-L for RQ8!
SUBL RRO,RR8
CPL RRO,@RR14  !Compare lengths!
POPL RRO,@RR14 !Clear the stack!

RET LE 'Return if RQ8 length < RQ4 length!
EX R4,R8 !Exchange RQ4 & RQ8!
EX R5,R9
EX R6,R10
EX R7,R11
RET

Figure 10-34. Quicksort Subroutine to Position Shorter Range First
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tPartitioning subroutine of QUICK

CALL PART with registers as for QUICK

Returns with array segment between L and U partitioned
around a pivot element with index I. Returns the two
ranges to be sorted: (L,I-1) in RQ8 & (I+1,U) in RQ4.
Register use: RQ8 = (L,U); RQ4 = (I,J). On return,
RQ4,RQ8 are new ranges. RQO is used by subroutines.

!

PART:  CALR SETPIV 1Choose pivot; initialize pivot routines!

LDL RR4,RR8 1Set I = L!
LDL RR6,RR10 1Set J = U!
CALR DECI {Decrement I: I=L-1!

LPI: CALR UPI !Increment I until ay > pivot value!
CALR DOWNJ !Decrement J until aj < pivot or J < I!

JR C,MOVPIV 13 < I: only pivot remains to be moved!

CALR EXCHIJ !Exchange aj and ay values!
JR LPI

MOVPIV: CALR EXCHIP {Exchange aj and pivot values!

LDL RRé6,RR10 tMove I to end of RQ4 (where J was)!
LDL RR10,RR4 IMove I to end of RQ8 (where U was)!

CALR DECI {Decrement I: RR4 = I-1!

EX R4,R10 'Exchange RR4,RR10: !

EX R5,R11 'Now RQ8 = (L,I-1); RR4 = I!
CALR INCI tIncrement I: Now RQ4 = (I+1,U)!
RET

Figure 10-35. Quicksort Partitioning Subroutine

!Subroutines of PART for moving I and J

CALL UPI: returns with I incremented until aj > pivot value
CALL DOWNJ: returns with J decremented until aj < pivot

or J i I; returns C=1 if J ﬁ I, otherwise C=0

Register use: As for PART.

'
UPI: CALR INCI ! Increment I!

CALR CPPI !Compare pivot value with aj!
RET LE 'Return if pivot value < ay!
JR UPI !0therwise keep incrementing!
DOWNJ: CALR DECJ {Decrement J!
CPL RR4,RR6 ! Compare I,J!
JR LT,DI 1T < J: proceed!
SETFLG C; RET '3 £ I: return C=1!
DJ1: CALR CPPJ !Compare pivot with aj!

JR LT,DOWNJ  !Keep decrementing if pivot value £ aj!
RESFLG C; RET  !0therwise return with C=0!

!Routines to increment or decrement I or J.

ESIZE = 2 !Entries are words: two bytes!
INCI: ADDL RR4,#ESIZE
RET
DECJ:  SUBL RRé6,#ESIZE
RET
DECI: SUBL RR4,#ESIZE
RET

Figure 10-36. Quicksort Subroutine For Moving I and J
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!Pivot Setting and Comparison Subroutines

CALL SETPIV - chooses pivot & saves its value in a
register
CALL CPPI - compare pivot value, aj. Set FLAGS.
CALL CPPJ - compare pivot value, aj. Set FLAGS.
Register use: as for PART. RO = temp. R1 = saved pivot
value. RR2 = calling argument and actual address
returned by ADCOMP
!

SETPIV: LDL RRZ,RR10 fRR2 = U!

CALR ADCOMP 'RR2 = actual address of ay!
LD R1,@RR2 !Choose aj as pivot value!
RET
CPPI: LDL RR2,RR4 'RR2 = I!
JR IM
CPPJ:  LDL RR2,RR6 IRR2 = J!
IM: CALR ADCOMP IRR2 = adr of item to be compared!
CP R1,@RR2
RET

Figure 10-37. Quicksort Subroutines for Pivot Setting and Comparison

{Exchange Subroutines

CALL EXCHI - exchange aj and pivot values.

CALL EXCHIJ - exchange a; and aj values.

Register use: as for PART. RO = temp. R1 = saved pivot
value. RR2 = calling argument and actual address
returned by ADCOMP

]
EXCHIJ: LDL RRZ,RR4 iRRZ = 1!
CALR ADCOMP 'RR2 = actual address of aj!
LD RO,8RR2 1RO = ay!
PUSHL @RR14,RR2 !Save address of aj!
LDL RR2,RRé6 IRR2 = J!
CALR ADCOMP !RR2 = actual addresss of aj!
EX RO,@RR2 tExchange: RO=aj, aj replaced by ay!
POPL RR2,@8RR14 !Restore aj address!
LD @RR2,R0 !'Replace ay by aJ!
RET
EXCHIP: LDL RR2,RR4 RR2 = 1
CALR ADCOMP 'RR2 = actual address of aj!
EX R1,8RR2 !Exchange ajy with saved pivot value!
LDL RR2,RR10 IRR2 = U (offset of pivot element)!
CALR ADCOMP IRR2 = actual address of ay!
LD @RR2,R1 !Replace ay by ajp!
RET

ADCOMP: ADDL RRZ,RR12  !Add array base to offset!

ADDB RH2,RL2 !Carry overflow into segment field!
CLRB RL2 !Clear reserved bits!
RET

Figure 10-38. Quicksort Exchange Subroutines
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Notes to Figure 10-38

1.

This code falls into two principal categories: the code to implement the algorithms and the code to
manipulate the indices and data items. The algorithm is implemented by the routines QUICK, PART,
SHORT, UPI, DOWNJ and SETPIV. The manipulation and comparison of data items and the arithmetic on
array indices occur in the routines INCI, DECI, DECJ, CPPI, CPPJ, EXCHIP, EXCHIJ, and SETPIV. The
mapping of array offsets into actual memory addresses occurs in ADCOMP.

The organization used here facilitates the alteration of QUICK for other applications. For example,
a nonsegmented version can be produced simply by changing all instances of @RR2Z to @R3 and keeping
the nonsegmented array address in R13 with a zero in R12. All references to RR14 also have to be
changed to refer to R15. The resulting code is less efficient than a tailor-made nonsegmented
version, but this does not matter in many applications.

As another example, QUICK could be changed so that it sorts bytes by redefining the symbol ESIZE to
take the value 1. Instead of using RO as a temporary location and R1 for the saved pivot value, the
routines SETPIV, CPPI, CPPJ, EXCHIP, and EXCHIJ need byte reyisters. Then the four LD instructions,
the CP instruction, and the two EX instructions in those routines must be changed to byte versions.

Sorting on the basis of other ordering relations is facilitated by this program orgnization. For
example, decreasing numerical order could be used simply by replacing the instruction CP R1,@RR2
with:

LD RO,@RR2
CP RO,R1

in the CPPI/CPPJ routine (CP @RR2,R1 is not a legal instruction). The program could have byte
constants representing the various flags combinations it wishes to return. For example, the less
than condition can be returned by the following sequence of instructions at the end of the
subroutine:

LDB RHO,#LTVAL
LDCTLB FLAGS,RHO
RET

The symbol LTVAL might have the value %20, corresponding to C=0,2 =0, S=1, V=20, D=0, and
H = 0.

The CPPI and CPPJ routines illustrate the useful programming technique of multiple entry points. An
alternative organization is

CPPI: LDL RRZ,RR4
CALR IJM
RET

CPPJ: LDL RR2,RR6
CALR IJM
RET

The code at IJM in both organizations is shared. The objective of this is not principally to save
memory space but rather to assure that these two related functions are carried out according to a
common algorithm.
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3. The SETPIV routine is mainly concerned with data manipulation, but it also implicitly embodies a
part of the quicksort algorithm, the choice of a pivot element. Use of alU for the pivot is
inefficient if the array is already sorted. Other algorithms can be used to make the choice.

4. The use of 23-bit indices stored in long-word registers simplifies index comparisons such as those
that occur in QUICK and SHORT. To use the same code for one-word registers, the index values would
have to be restricted to 15 bits. If 16-bit indices are used, the comparisons must be the unsigned
versions. In that case, special tests must be made for the case L > U, in both SHORT and QUICK. In
particular, the case U = -1, L = 0, a termination condition for QUICK, needs further special
handling.

10.13.7 Polynomial Evaluation A subroutine (code shown in Figure 10-39) is

provided that accepts as its arguments the

Problem: Given a set of coefficients ap, variable x and the address of a parameter table

@q9eeey3, and a variable x, compute describing the array. The table has the following

format:
f(x) = ag + ayx + azx2 + oee agx™,
n (1 word)

Solution: The coefficients an,...,a,\(, the ag (2 words)

variable x, all of the products ax*, the .

intermediate sums, and the final sum are assumed .

to be within the range of 32-bit signed integers, .

=231 o 2311, a, (2 words)

1Subroutine to perform polynomial evaluations!
CALL POLY with RRO = x
RR2 = adr. of table (n, agy <.« a,)
Returns with RR4 = f(x), contents of RR2 and R6-R13 lost
V = 0 if all values in bounds, 1 otherwise.
gister use: RRO, RRZ -- calling arguments
RR4 -~ running sum R12 -~ coefficient counter
RR6 ~- xK (k=0,1,...,n) R13 -- error flag
RQ8 -- scratch

POLY: POP R12,8RR2 1Get n from table to set counter!

LDL RR6,#1 tInitialize: xk =1 (i.e., k = 0) !
LDL RR4,#0 ! f(x) =0 !
CLR R13 ! Error flag = 0 !
LOOP:  POPL RR10,@RR2 !Get ak from the table!
CALR MULCH IRR10 = g xK1
ADDL RR4,RR10  1F(x) = f(x) + axK1
TCC OV,R13 ! Remember overflow, if any!
DEC R12 tDecrement coefficient counter!
JR MI,POLEX ! Done if < O!
LDL RR10,RRO 1Get x!
CALR MULCH IRR10 = x**+1
LDL RR6,RR10  !Replace x by xK*1 (i.e., increment k)!
JR LOOP {Perform computation for new k!
POLEX: RESFLG V
TEST R13 !Were there any overflows?!
RET Z ! No -- return with V = 0!
SETFLG V; RET ! Yes -- return with V = 1!

Figure 10-39. Example, Subroutine To Perform Polynominal Evaluations
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The subroutine returns the value f(x). In
addition, the results of computations are checked
at each stage to verify that they remain within
the stated bounds. If the bounds are exceeded at
any stage, V is set when the subroutine returns
its final result.

The code is arranged so that multiplications are
required at two places. In each case, the
arguments are manipulated in the registers so that

the required instruction is
MULTL RQ8,RR6

A subroutine is provided to execute this
instruction and to verify that the result fits
into RR10, the low-order half of RQ8. If not, a
bit is set in an error-flag register that is
initially cleared to zero by the main routine. The
code for the multiply and check routine is shown

in Figure 10-40.

fMultiply and check subroutine!
MULCH: MULTL RQB,RR6  !Perform the multiplication!
PUSHL @RR14,RR8 !Save high-order 32 bits!

EXTSL RQ8 1Set high-order 32 bits to proper value!
CPL RR8,8RR14 !'Was it already OK?!

TCC NE,R13 'If not, then overflow occurred!

INC R15,#4 'Discard saved RR8!

RET

Figure 10-40. Example, Multiply and Check Subroutine

Notes to Figure 40:

There is no test at the beginning, so the loop is always
The effect of this is that tables with negative values of n will be treated

Instead, the decrement of the coefficient counter and

The overall length of the program can be shortened by moving this test to
In addition to the wasted

The original contents of RQ8 (the high-order half of RQ8) are

Assuming that all results are within the range of signed 32-bit
This explains the test performed in

1. Notice the structure of the loop in POLY.
executed at least once.
as if they had n = 0.
There is also no test at the end of the loop.
the test for termination appear immediately following the latest update of the running sum and before
the computation of xK*1,
the end of the loop, but then x™'! is always computed unnecessarily.
computation, this leads to an erroneous overflow indication if x™1 exceeds the 32-bit limitation.
2. The subroutine MULCH illustrates the use of the multiplication and sign extension instructions. The
instruction
MULTL RQ8,RR6
causes the contents RR10 (the low-order half of RQ8) to be multiplied by the contents of RR6 and the
resulting value to be stored in RQ8.
irrelevant. The instruction
EXTSL RQ8
causes the contents of RQ8 to be replaced by a number whose value is the same as that of RR10 but
which has twice as many bits.
numbers, the EXTSL instruction should cause no change to RR8.
MULCH.
3.

The use of the TCC instruction to remember the occurrence of overflows is similar to its use in
Section 2.1.
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10.13.8 PSEUDO-RANDOM NUMBER GENERATION

Problem: To provide a subroutine that returns an
"unpredictable" 16-bit number.

Solution: The solution presented is sometimes
referred to as the power residue method. A large
positive number N with few prime factors is
chosen. The values returned by the function RND on
successive calls 1,2,... are defined as follows:

RND; = N2 (mod 216)
RND) = (RND,_4 AND (2'°-1)) X N (mod 216)

for k = 2,3,...

The algorithm used requires that the routine know
at each stage the value it returned when last
called. The storage space for remembering this
value is provided by the caller in a table whose
address is passed to the routine each time it is
called. An initializing routine is provided for
setting up the table. Figure 10-41 shows the code
for the initializing routine and the pseudo-random
number generator.

!Random-number routines

CALL INRAND with RR2 = address of 2-word temp storage table.
Returns with table "initialized," R1 lost, and RO = N.

CALL RAND with RR2 = address of the table.
Returns with RO = "random" number & table updated.

Register use:

RRO: Dest for multiplication; RO returns the random number.

RR2: address of table.
1

|
K=-1*

AND 21511

MULT RRO, @RR2 IRRO = (RND,_q AND (21-1))*N1

N = 15419 IN = 17%907!
RAND: LD R1,RR2(#2) 'R1 = RND.
RES R1,#15 IR1 = RNDy_4
LD RO,R1 1RO = RND!
LD RR2(#2),R0
RET

INRAND: LD RO,#N
LD @RR2,R0
LD RR2(#2),R0
RET

IRNDg = N!

!Remember RND) for next call!

!Save N in table!

Figure 10-41. Example, Random Number Generator
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Notes to Figure 10-41:

1.

This is a quick and dirty pseudo-random number generator. For a thorough discussion of random-number
theory and algorithms, refer to Chapter 3 of "The Art of Complete Programming, Volume 2:
Seminumerical Algorithms," by Donald E. Knuth.

Similar routines can be used for 32-bit random numbers. In fact, RAND could be generalized to take
its argument size from the table. The desired size could be passed to INRAND, which would set up the
table accordingly.

The choice of the number N could be made by the caller and passed, possibly as an option, to INRAND.
Note the use of the instruction

RES R1,#15
as an alternative to

AND R1,#%7FFF.,

Note that the use of an argument table makes RAND a re-entrant routine.
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Appendix A

BUS
TIMING

STATUSY

CPU
CONTROL

BUS
CONTROL

INTERRUPTS

MULTI-MICRO

CONTROL | «—

|AS

bsS

MREQ

READ/WRITE
NORMALI/SYSTEM
BYTE/WORD

STy

ST,

28001
CPU

AD1s
AD14
ADy3
ADy2
ADq4

ADyp |

ADy

ADg |

ADy
ADg
ADs
AD,
AD;
AD,
AD4
ADg

SNg
SNs
SNa
SN;
SN2
SNy
SNg

I Tnnn

Pt

+5V GND CLK

Z8001 CPU Pin Functions

ADDRESS/
DATA BUS

7

SEGMENT
NUMBER

7/
SEGMENT
TRAP

ADg [ 1 48
AD [] 2 a7
Ay, []3 46
ADy [ 4 45
ADy, 5 44
ADz [ 6 43
stop []7 42
wm s M
ADys E‘ 9 40
AD,, [] 10 39
+5V E 1 38
vi E 12 7
— 28001
ni [ 13 CPU 36
SEGT [] 14 35
i [] 15 34
RESET [ 16 33
wo [ 17 32
MREG [] 18 31
bs[] 19 30
sT; ] 20 29
sT, [ 21 28
sTy [] 22 27
sTo [] 28 26
SNs [] 24 25

ADg
a SNg
[] sNs
] Ap;
(] Aps
: AD,4
[ sn,
: ADs
(] Ao,
[] Ao,
[] ap,
[ sN,
] anD
] cLock
1 7s

RESERVED
BIW

I NS
] riw
[] 5USACK
] wair
] BUSREG
SNo
SNy

78001 Pin Assignments
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BUS
TIMING

STATUSY

CPU
CONTROL

BUS
CONTROL

{
{
{

MULTI-MICRO
CONTROL

i

| AS
bs
MREQ

READ/WRITE
NORMAL/SYSTEM
BYTE/WORD

ST,
ST,
STy
STo

28002
CPU

&
d i
'é‘:u

AD1s
ADq4
ADq3
ADs2
ADq4
ADyo
ADg
ADs
AD;
ADg
ADs
AD,y
AD;
AD,
AD4
ADo

P

+5V GND CLK

28002 CPU Pin Functions

-
|
r—>
—>
|
—
[—p
< | ADDRESS/ ADsE 1 40 [ apo
l«—>» ([ DATA BUS ADyo 2 39 J ADg
> ap,, [ 3 38 [] ap,
. AD, [ 4 37 [] Aps
- FY N 36 [J Ao,
- stor[] e 35 [] Aps
—> mild? 34 ] Ap,
- Aps[] 8 33[] ap,
l—> ) Apy, [ o 32[] Ap,
+5V O 28002 ' [] aND
Vi1 “epy 30 []ctock
Nvi [] 12 29 7] As
i [ 13 28 [ ] RESERVED
RESET [] 14 27 [] 8 W
wo [ 15 26 [ NS
MREG [ 16 25 ] AW
ps E 17 24 ] BUSACK
st [ 18 23 [] WATT
ST [ 19 22 BUSREQ
ST [] 20 21[] STo
78002 Pin Assignments
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BUS
TIMING

STATUS

CPU
CONTROL

BUS
CONTROL

INTERRUPTS

MULTI-MICRO
CONTROL

LU L UL et 1t

P —

'§ ;jﬁl.ﬂ

2

‘EE

2|
<

NORMAL/SYSTEM
BYTE/WORD

(2]

Ts
T2
Ty
To

n n »

cPU

ﬂlﬂg

b2

239
2

RESET

BUSREQ

|BUSACK

3z

28003

ADss
ADyq
ADy3
AD;2
ADyy
ADyo
ADg
ADg
AD;
ADg
ADs
ADg
AD3

AD4
ADg

SNg
§N5
SNa
SN3
SN2

SN; |

SNp

SAT j—

T e

P

+5V GND CLK

Z8003 Pin Functions ‘

ADDRESS/
DATA BUS

J

SEGMENT
NUMBER

SEGMENT/PAGE
OR
TRANSLATION TRAP

AD, [
AD, [
ADyo E
ADy; [
ADy; []
ADy; [

sTor [

s
alulal

-
o

+ »
o o
Sl< =

E

z
E

2 7
aﬂaﬁ
misinininininininin

STs

[ ]
b

&
0

SN3

©W O N O e W N =

T S g

Z8003
CPU

47
46
45
44
43
42
41
40

38 []

38
37
36
3
34
33
32
31
30
29
28
27
26
25

: ADg
SNg
g SNs
] Ao,
(] Ao,
[ AD,
(] sn,
] Aps
(1 Ap,
AD;
: AD,
[ sw,
] ano
] cLock
1 as
[] ABoRT
Jew
NS
/W
] BUSACK
] war
] BUsREQ
1SN,
[]sN,

Z8003 Pin Assignments
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BUS
TIMING

STATUS

CPU
CONTROL

—

BUS
CONTROL

INTERRUPTS

MULTI-MICRO
CONTROL

A — —— ——

]

§18| al
[>

READ/WRITE
NORMAL/SYSTEM
BYTE/WORD

—— Z8004
STOP cPU

AD1s
AD14
ADq3
ADy2
ADq4
ADyo
ADg
ADg
AD;
ADg
ADs
AD4
AD3
AD;
AD4
AD,

bt

+5V GND CLK

Z8004 Pin Functions

ADDRESS/
DATA BUS

AD, [ 1 40 [] Ap,
ADy [ 2 39 [] ap,
apy, [ 3 38 [] ao,
AD [ 4 37 [] Ape
apys [ 5 3s [ apn,
stop[] s 35 [] Aps

mi[] 7 34 [] apg
apis[] 8 33[] ap,

Apy [ 9 32[] Ao,
+sv[]1 31[] GND

vi[] 22234 30 [ cLock
nvi [ 12 29[ As

NmI [ 13 28 [] RESERVED

RESET [] 14 27 [] 8w
mo[] 15 26 [ NS
mREQ [] 16 25 ] RW

DS E 17 24 g BUSACK

sTs [] 18 23 [] WaIT

sT2 [ 19 22 [] BUSREQ
sTy [] 20 21[] STo
Z8004 Pin Assignments
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Appendix B

Z8003/4 Z8000™ YMPU
Virtual Memory
Processing Unit

Ya

Product
Brief

June 1982
Features B Binary, function, and pin compatibility with B Status lines indicate the read/write phase of
the Z8001/2 microprocessors. the Test and Set instruction for use in
® Designed-in compatibility with present and multiprocessor systems.
future Zilog Memory Management Units B 23-bit segmented addresses for Z8003.
(MMUs). B 16-bit non-segmented addresses for Z8004.
B Operates with up to a 10 MHz clock.

Description The Z8003/4 Virtual Memory Processor Unit on the status lines (STg-ST3), indicating the
(VMPU), a 16-bit MOS microprocessor, offers read/write phase of the Test and Set (TSET)
integral provisions for operation in a virtual instruction. This status output can be used
memory environment, in addition to the externally for arbitration of bus control.
features of the Z8001 CPU. The Z8003 VMPU In a virtual memory environment, the pro-
generates 23-bit addresses. The address space grams and data being operated on need not
is organized into 128 segments, each up to 64K reside simultaneously in main memory. Thus,
bytes in length. The Z8004 generates 16-bit ad- provision must be made for retrieving parts of
dresses. The Z8003/4 VMPU addressing a program or data located in “‘secondary”
scheme distinguishes between memory space storage (such as a disk). Attempts by the
for program, data, and stack in each of two microprocessor to access instructions or data
modes, System and Normal. not in main memory are called “accesses to

For use in shared-memory multiprocessor nonresident data.” When this is done, the
systems, the Z8003/4 VMPU provides an output transaction accessing the nonresident data
must be interrupted, the state of the
' microprocessor saved, the program or data in
ous) T |5 o D secondary storage moved to main memory, the
TIMING .
<] FmEn ADy; f— state of the microprocessor restored, and the
ADia [ interrupted instruction restarted.
<+ READ/WRITE e
T Norusveren ::., bg The Z8003/4 VMPU provides an external
~——]BvTEWoRD ADp [e—s- abort pin to permit the interruption of instruc-
ADg [ | ADDRESS/
STATUSY s, AD; je—s [ DATA BUS
et ST, ADg
«—qsT; AD; fa—n- ﬂ
«—q5Tp ::: : .— ow?‘ns:ue f,:.o,oua ABORT
ABORT 28003 fw— O
ot o B mET
ADg -
pu;{——wsnza '—-——---———-‘ Y
CONTROL 28003 2-BUS
4-—‘ BUSACK : ::: : ONLY : — -_D
| NI | SNy f—> |
INTERRUPTS{ —¥I Y S :5:!:::1'
T : ::: t : l PERIPHERAL n l PERIPHERALD I MMV_U
MULTI-MICRO { —lm | SN | N \ J
CONTROL | <— o | SEGMENT PAGE |
ABORT ———»-] ABORT _LB_YI‘,DROE%N;_"U
l MAIN MEMORY l
+5V GND CLK RESET
Figure 1. Pin Assignments Figure 2. Virtual Memory Environment
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Appendix B

Description
(Continued)

tion execution before the instruction com-
pletes.

When the Z8003/4 VMPU is used in a
multiprocessor system, there may be dual-
ported memories used by the processors. In
this type of system, a resources manager arbi-
trates simultaneously attempted accesses to
shared resources. When a processor tests to

see if a resource is in use, the read/write por-
tion of the test transaction must not be inter-
rupted or the probability of a collision
increases greatly. The Z8003/4 VMPU provides
features that help to avoid collisions during
accesses to shared resources via the enhanced
TSET instruction.

Functional
Description

The Z8003/4 VMPU can operate in a virtual
memory environment. The virtual memory
capability is provided by an instruction abort
function on pin 33 of the Z8003 and on pin 28
of the Z8004. When this pin WAIT, and SAT
are activated at the same time, an instruction
abort sequence begins. This abort sequence
leaves the VMPU in a well-defined state, allow-
ing a software recovery. To make this recovery
smoothly, the software must know which
instruction was aborted and how much of the
instruction was executed. Figure 3 shows the
timing sequence for the abort function. Figure

4MHz 6MHz 10 MHz
Ts 50ns 30ns 25ns
Th Ons Ons Ons

.

U

T T Tw _Tw Tw _Tw _Tw T

L

4 shows the sequence of hardware and soft-
ware events that occurs when an instruction is
aborted.

During the read phase of the TSET
instruction on the Z8003/4 VMPU, the status
lines STp-ST3 are all set to 1s. On the Z8001/2
all 1s on the status lines is a reserved status
encoding.

The Z8003/4 VMPU is compatible with the
78000 Family of microprocessor and peripheral
devices. Instruction set and bus transaction
protocols of the VMPU can be found in the
Z8000 CPU Technical Manual (document
number 00-2010-C). The VMPU enhance-
ments are described in the VMPU Product
Specification.

Y
NO

ABORT THE
Th—! | ) L INSTRUCTION
ABORT \ ' ’ b
]
) )
WAIT [ TRAP
o SAVE STATUS
© SWAP IN PROGRAM/
DATA ELEMENT
o RESTORE STATUS
SAT ‘
() (, *
EXECUTE NEXT RESTART
VIRTUAL ADDRESS ABORT ACKNOWLEDGE L] ABORTED
ABORT (t) CYCLE INSTRUCTION INSTRUCTION
NOTES: + = Clock Sample Ponts NOTE: The abort sequence 1s imtiated when ABORT, SAT, and
WAIT are activated.
Figure 3. Instruction Abort Timing Figure 4. Instruction Abort Function Flow
Summary The Zilog VMPU is the first 16-bit the Z8001/2 CPU means that applications soft-

microprocessor that offers integral provision
for operation in a virtual memory environment.
The upward compatibility of the VMPU with

ware developed for a Z8001/2 CPU will
execute directly on the VMPU, preserving
investments in software and development tools.
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Appendix B

Z8010
Z8000™ Z-MMU Memory
Management Unit

Product
Brief

March 1982
Features B Dynamic segment relocation makes software physical address space of 16M bytes; all 64
addresses independent of physical memory segments are randomly accessible.
addresses. m Can be used with either the Z8001 or Z8003
B Access validation to protect memory areas CPU.
from unauthorized or unintentional access. ® Multiple MMUs can support several transla-
0O Overflow warning and expansion provi- tion tables for each Z8001/3 address space.
sion for stack segments. B MMU architecture supports multi-program-
B 64 variable-sized segments from 256 to ming systems and virtual memory implemen-
65,536 bytes can be mapped into a total tations.

Description The Z8010 Memory Management Unit (MMU)  located in the physical memory. It also pro-
manages the large 8M byte address spaces of vides a flexible, efficient method for support-
the Z8001 or Z8003 CPU. The MMU provides ing multi-programming systems. The MMU
dynamic segment relocation as well as uses a translation table to transform the 23-bit
numerous memory protection features. logical address output from the Z8001/3 CPU

Dynamic segment relocation makes user soft- into a 24-bit address for the physical memory.
ware addresses independent of the physical (Only logical memory addresses go to an MMU
memory addresses, thereby freeing the user for translation; I/O addresses and data bypass
from specifying where information is actually this component.)
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<«—»| ADg Atg PHYSICAL Az E ST,

Ats p—> ADDRESS O ST,

—f SNg Ats p——> A: E AD’

—| SNs A3 —n Azo N

19 [ ADg

SEGMENT T N e vee O AD1o

NumBER | | SN mMMU A > a1 [ AD1y

=] SNy At f—> A [ CLK
g B Ao f—> A [ GND
SNo Ao f—> a5 [ AD;2
SEGMENT <] SEGT 5UF |—» supPRESS ::: E :::
_ A [ ADs
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o o] nE
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CHIP SELECT —»| &5 STo |-— SNs a SNs

+5V GND CLK RESET
Figure 1. Pin Functions Figure 2. Pin Assignments
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Appendix B

Description
(Continued)

Memory segments are variable in size from
256 bytes to 64K bytes, in increments of 256
bytes. Pairs of MMUs support the 128 segment
numbers available for a Z8001/3 CPU address
space. Within an address space, any
number of MMUs ¢an be used to accommodate
multiple translation tables for System and Nor-
mal operating modes, or to support more
sophisticated memory-management systems.

MMU memory-protection features safequard
memory areas from unauthorized or unin-
tended access by associating special access
restrictions with each segment. A segment is
assigned a number of attributes when its
descriptor enters into the MMU. When a
memory reference is made, these attributes are
checked against the status information sup-
plied by the CPU. If a mismatch occurs, a trap

is generated and the CPU is interrupted. The
CPU can then check the status registers of the
MMU to determine the cause.

Segments are protected by modes of permit-
ted use, such as read only, system only,
execute only and CPU-access only. Other seg-
ment management features include a write-
warning zone useful for stack operations and
status flags that record read or write accesses
to each segment.

The MMU is controlled via 22 Special I/O
instructions from the Z8001/3 CPU in System
mode. With these instructions, system software
can assign program segments to arbitrary
memory locations, restrict the use of segments
and monitor whether segments have been read
or written.

Segmented
Addressing

A segmented address space—compared
with linear addressing—is closer to the way a
programmer uses memory because each pro-
cedure and data set can reside in its own
segment.

The 8M byte Z8001/3 addressing spaces are
divided into 128 relocatable segments of up to
64K bytes each. A 23-bit segmented address
uses a 7-bit segment number to point to the
segment, and a 16-bit offset to address any
byte relative to the beginning of the segment.
The two parts of the segmented address are
manipulated separately.

The MMU divides the physical memory into
256-byte blocks. Segments consist of physically
contiguous blocks. Certain segments may be
so designated that writes into the last block
generate a warning trap. If such a segment is
used as a stack, this warning can be used to
increase the segment size and prevent a stack
overflow error.

The addresses manipulated by the program-
mer, used by instructions and output by the
CPU are called Jogical addresses. The MMU
takes the logical addresses and transforms
them into the physical addresses required for
accessing the memory (Figure 3). This address
transformation process is called relocation.

The relocation process is transparent to user
software. A translation table in the MMU
associates the 7-bit segment number with the
base address of the physical memory segment.
The 16-bit logical address offset is added to the
physical base address to obtain the actual
physical memory location. Because a base
address always has a low byte equal to zero,

only the high-order 16 bits are stored in the

MMU and used in the addition. Thus the low-
order byte of the physical memory location is
the same as the low-order byte of the logical
address offset. This low-order byte therefore
bypasses the MMU, thus reducing the number
of pins required.
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Appendix B

Z8015 28000 PMMU
Paged Memory
Management Unit

Ya

Product
Brief

June 1982
Features B PMMU architecture supports paged, virtual B 64 pages, each 2048 bytes in length, can be
memory systems for the Z8003 VMPU. mapped into a total physical address space

B Dynamic page relocation makes software of 16 megabytes.
addresses independent of physical memory B PMMU can be used to implement systems
addresses. with larger or smaller page sizes.

B Memory-management features provide B The number of accessible pages can be
access validation to protect memory areas increased by using multiple PMMUs to sup-
from unauthorized or unintentional access, port separate translation tables for each
and a write-warning indicator to prevent 78003 VMPU address space.
stack overflow.

Description The Z8015 Paged Memory Management Unit

(PMMU) is designed to support a paged virtual -~ ::‘5

memory system for the Z8003 Virtual Memory : AD::

Processor Unit (VMPU). Although designed <] Ay,

primarily for the Z8003, the PMMU can also be <—>{ ADyy

used to support the other CPUs in the Z8000 <> Abw has [—>

s «—»] ADg Az >

Family. Memory-management features allow ADDRESS) | <—>] A0s Az

access validation for memory protection and a DATA BUS \ —a] Ap; An f—n

write-warning to prevent stack overflow. An —>{ ADg A |—>

instruction abort for accesses to pages not in :: :‘;5 A"“ —

main memory allows restarting of instructions D, N

: > Abs e PHYSICAL

in the Z8003 VMPU. Each PMMU can manage —} an; Ais |—> / ADDRESS

a basic memory area of sixty-four 2048-byte, —| AD: A f—>

fixed-size pages. The VMPU’s 8M byte logical T A% eots ::: —

address space is translated by the PMMU into — s ™M™ A

a 16M byte physical address space. Page size —] sns Ao f—s

can be easily changed and multiple PMMUs seament ) ] SNa Ay f—>

can be combined to support more pages. The NumBer |\ | ::’ Ao

PMMU is produced in a 64-pin package. e 505 L—» suppress

——»1 SNo
TRAP REQUEST «—] TRAP
ABORT REQUEST <+ ABORT
DMAISEGMENT —>] DMASYNC RW pe—
N§ fe—
—{ AS STy fe—
BUS TIMING { 5 T2 STATUS
’ STy pS——
CHIP SELECT —>] C§ ST fe—
CHIP ENABLE —>] CE
byt
+5V GND CLK RESET
Figure 1. Pin Functions
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Appendix B

Functional
Description

The Z8015 Paged Memory Management Unit
(PMMU) manages the 8M byte addressing
spaces of the Z8003 VMPU. The PMMU pro-
vides dynamic page relocation as well as
numerous memory protection features.

Dynamic page relocation makes user soft-
ware addresses independent of the physical
memory addresses, thereby freeing the user
from specifying where information is located in
the physical memory. It also provides a flexi-
ble, efficient method for supporting multipro-
gramming systems. The PMMU uses a content-
addressable translation table to transform the
23-bit logical address output from the VMPU
into a 24-bit address for the physical memory.
(Only logical memory addresses go to a PMMU
for translation; I/O addresses and data bypass
this component.)

The PMMU is designed to use a memory
page 2048 bytes in length. Multiple PMMUs
can be used to support more than 64 pages
within a given address space. In addition,
PMMUs can be used to accommodate separate
translation tables for system and normal
operating modes. The basic page length of
2048 bytes can be increased or decreased
using a minimal amount of external circuitry.

The PMMU is designed to implement a
paged virtual memory using the Z8003 VMPU.
The PMMU saves sufficient information to
recover from an instruction abort due to a
page fault. The instruction can be restarted
after the required information has been placed

: . , .
in primary memory and the PMMU's descrip

tors updated to allow address translation to the
selected primary memory locations.

As an aid in implementing efficient paging
algorithms, the PMMU provides Changed and
Referenced flags for each page. The Changed

flag indicates that a page has been altered and
hence must be copied to secondary storage
before that physical memory can be used for
another page. The Referenced flag can be
used to determine which pages have not been
accessed by an executing program. This infor-
mation is useful in a variety of memory-
management algorithms.

PMMU memory protection features
safeguard memory areas from unauthorized or
unintended access by associating special
access restirctions with each page. A page is
assigned a number of attributes when its
descriptor is initially entered into the PMMU.
Pages are protected by modes of permitted
use, such as read only, system only, and exe-
cute only. The Valid flag indicates whether or
not a descriptor has been initialized. When a
memory reference is made, these attributes are
checked against the status information sup-
plied by the VMPU. If a mismatch occurs, the
instruction is aborted, a Trap Request signal is
generated and the VMPU is interrupted. The
VMPU then checks the status registers of the
PMMU to determine the cause of the abort.

The PMMU is controlled by 20 special I/O
instructions, which can be issued from the
VMPU in system mode only. With these
instructions, system software can assign pro-
gram pages to arbitrary memory locations,
restrict the use of pages, and monitor whether
pages have been read or written.

The PMMU has two operating modes: an
address translation mode in which addresses
are translated automatically as they are
received, and a command mode, during which
specific registers in the PMMU are accessed
using special I/O commands.

Segmented
Addressing
and Address
Translation

The addresses manipulated by the program-
mer, used by instructions, and output by the
VMPU are called logical addresses. The
PMMU translates logical addresses into the
physical addresses required for accessing the
memory.

The 23-bit logical addresses output by the
VMPU divide an 8M byte addressing space
into 128 segments of up to 64K bytes each. A
23-bit segmented address consists of a 7-bit
segment number and a 16-bit offset used to
address any byte relative to the beginning of
the segment. The two parts of the segmented
address (segment number and offset) can be
manipulated separately.

The PMMU divides physical memory into

2048-byte pages. Pages are assumed to be
allocated in memory on 2048-byte boundaries
so that the 11 low-order bits of the starting
location of each page are always equal to zero.
Segments in a virtual memory system can con-
sist of pages that need not be in physical
storage. Those segment pages in main memory
need not be contiguous. Segments can have a
variable number of pages. Any page can be
designated so that writes into the lowest
numbered 128 bytes generate a warning trap
without an instruction abort. If such a page is
used as the last page of the system stack, the
warning trap can be used to allocate another
page to the stack segment and prevent a stack
overflow error.
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Appendix B

Z8030 28000 2-SCC
Serial Communications

Controller

Ya

Zilog

Product
Brief

March 1982
Features B Two independent, 0 to 1M bit/second, full- B Synchronous mode with internal or external
duplex channels, each with a separate character synchronization on one or two
crystal oscillator, baud rate generator, and sync characters and CRC generation and
Digital Phase-Locked Loop for clock checking with CRC-16 or CRC-CCITT
recovery. preset to either ls or Os.

B Multi-protocol operation under program B SDLC/HDLC mode with comprehensive
control; programmable for NRZ, NRZI, or frame-level control, automatic zero insertion
FM data encoding. and deletion, I-field residue handling, abort

m Asynchronous mode with five to eight bits generation and detection, CRC gene.ration
and one, one and one-half, or two stop bits and checking, and loop mode operation.
per character; programmable clock factor; M Local loopback and auto-echo modes.
break detection and generation; parity,
overrun, and framing error detection.

Description The Z-SCC Serial Communication Controller The Z-SCC handles asynchronous formats,
is a dual-channel, multi-protocol data com- synchronous byte-oriented protocols such as
munication peripheral for Z-BUS use. It is IBM Bisync, and synchronous bit-oriented pro-
software-configured to satisfy a wide variety of tocols such as HDLC and IBM SDLC. It also
serial communication applications. Its basic supports virtually any other serial data transfer
function is serial-to-parallel and parallel-to- application (cassette or diskette interface, for
serial conversion. In addition, the Z-SCC has example).
internal functions that minimize the need for The device can generate and check CRC
external random logic on the circuit card. codes in any synchronous mode and can be
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BUS (| 7S GTSA |«— | OTHER _+svlde a2 ] o8
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Figure 1. Pin Functions Figure 2. Pin Assignments
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Appendix B

Description
(Continued)

programmed to check data integrity in various
modes. It also has facilities for modem controls
in both channels. In applications where these
controls are not needed, the modem controls
can be used for general-purpose [/O.

As is standard among Zilog peripheral com-
ponents, the Z-BUS daisy-chain interrupt
heirarchy is supported.

The Z-SCC contains the necessary multi-
plexed address/data bus interface with strobe
and chip select lines to function as a Z-BUS
peripheral. It includes internal control and
interrupt logic, two full-duplex channels and
two baud-rate generators. Associated with
each channel are several read and write
registers for mode control as well as the logic
necessary to interface to modems or other
external devices.

The read and write register group for each
channel includes eight control registers, two
sync-character registers, and four status
registers. Each baud rate generator has two
read/write registers for holding the time con-
stant that determines baud rate. Associated
with the interrupt logic is a write register for
interrupt vector and three read registers: vec-
tor with status, vector without status, and inter-
rupt pending status.

The logic for each channel provides format-
ting, synchronization and validation for data
transferred to and from the channel interface.
The modem control inputs are monitored by
the control logic under program control. All of
the modem control signals are general purpose
in nature and optionally can be used for func-
tions other than modem control.
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CONTROL
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CONTROL «— | MoDEM, DMa, OR
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i
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DISCRETE e 1
CONTROL j«<— | moDEM. DMA OR
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B [

CHANNEL B
REGISTERS

-

- } SERIAL DATA
[

CHANNEL B

N4

} CHANNEL CLOCKS

| SYNC
[ WAIT/REQUEST

BAUD
GENERATOR
B

Figure 3. Functional Block Diagram

Typical
Applications

Figure 4 shows how a Z-SCC can be con-
nected with Channel A programmed for the
Synchronous Data Link Control (SDLC) Loop
mode, functioning as a secondary station. If
NRZI or FM coding is used, no clock lines are
required because the clock can be recovered
from the received data, using the Z-SCC's on-
chip Digital Phase Locked Loop (DPLL).
Another Z-SCC (not shown), programmed for
the SDLC mode, would be the controlling sta-
tion, polling the loop for traffic. The figure
shows a typical, asynchronous serial port
being serviced by Channel B of the Z-SCC. It
could just as well support another synchronous
data link, or even a high-speed link, transfer-
ring data via a DMA controller.

TxDA
CHANNEL SDLC
|-
28030
scc
TxDB
TRXCB
CHANNEL RTxCB DATA
s P MODEM LINK
“CoNTROL

Figure 4. Loop Secondary Station and Serial Port
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Appendix B

Z8036 28000 2-CI10
Counter/Timer and
Parallel I/0 Unit

Product
Brief

March 1982
Features B Two independent 8-bit, double-buffered, B Flexible pattern-recognition logic, program-
bidirectional I/O ports plus a 4-bit mable as a 16-vector priority interrupt con-
special-purpose I/O port. 1/O ports troller.
teature programmable polarity, N B Three 16-bit counter/timers with up to
programmable direction (Bit mode), “pulse four external access lines per counter/timer
catc‘hers, and programmable open- (count input, output, gate, and trigger),
drain outputs. and three output duty cycles (pulsed,
B Four handshake modes, including 3-Wire one-shot, and square-wave), programmable
(like the IEEE-488). as retriggerable or nonretriggerable.
B REQUEST/WAIT signal for high-speed data B Easy to use since all registers are read/write
transfer. and directly addressable.
Description The 78036 Z-CIO Counter/Timer and The use of the device is simplified by making

Parallel I/O element is a general-purpose
peripheral circuit, satisfying most
counter/timer and parallel I/O needs
encountered in system designs. This versatile
device contains three I/O ports and three
counter/timers. Many programmable options

tailor its configuration to specific applications.
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Figure 1. Pin Functions

all internal registers (command, status, and
data) readable and (except for status bits)
writable. In addition, each register is given its
own unique address so that it can be

accessed directly—no special sequential
operations are required. The Z-CIO is directly
Z-BUS compatible.
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Figure 2. Pin Assignments
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Appendix B

Architecture

The Z8036 Z-CIO consists of a Z-BUS inter-
face, three I/O ports (Ports A and B are
general-purpose 8-bit ports linkable into a
16-bit port; Port C is a special-purpose 4-bit
port), three 16-bit Counter/Timers (C/T 1, C/T
2, C/T 3), an interrupt control logic block, and
an internal control logic block. Ports A and B
are identical; B also is able to provide external
access to C/T 1 and C/T 2. Either port can be
specified as a handshake-driven, double-
buffered port (input, output, or bidirectional)
or a control-type port with programmable
individual bit direction. Pattern recognition
interrupt generation on match is provided; one
mode facilitates implementing a priority inter-
rupt controller.

Ports A and B each contain 12 registers. The
Data Path registers are the Input, Output, and
Buffer registers. The Mode Specification and
Handshake Specification registers define the
mode of operation of the ports. The reference
pattern (for pattern match) is specified by the
Pattern Polarity, Pattern Transition, and Pat-
tern Mask registers. Detailed characteristics of
the bit paths are controlled by the Data Path
Polarity, Data Direction, and Special I/O Con-
trol registers. The Command and Status
register contains the primary control and status
bits. Registers associated with unused
capabilities do not need initialization.

Port C provides handshake lines for Ports A
and B as needed. Unused lines can provide

external access to C/T 3 or to bit I/O. Port C
has five registers. The Data Path registers are
the Input and Output registers. The bit path
definition registers are the Data Path Polarity,
Data Direction, and Special I/O Control
registers.

The three identical Counter/Timers each
consist of a 16-bit down-counter, a 16-bit Time
Constant register (which holds the initial
down-counter value), a 16-bit Current Count
register (for reading the down-counter con-
tents), and C/T Mode Specification and C/T
Command and Status registers. Counter input,
gate input, trigger input, and C/T output lines
are optionally available, as are the pulse, one-
shot, or square-wave C/T output duty cycles.
Each C/T can be programmed as retriggerable
or not.

The interrupt control logic provides standard
Z-BUS interrupt capabilities. There are five
registers (Master Interrupt Control register,
three Interrupt Vector registers, and the Cur-
rent Vector register) associated with the inter-
rupt logic. In addition, the ports’ Command
and Status registers and the counter/timers’
Command and Status registers include bits
associated with the interrupt logic. Each of
these registers contains three bits for interrupt
control and status: Interrupt Pending (IP),
Interrupt Under Service (IUS), and Interrupt
Enable (IE).

INTERRUPT
LoGIC
INTERRUPT

CONTROL

PN

PORT
INTERNAL BUS A 8
PORT A
o

: DATA BUS :

Z-BUS
INTERFACE
—C—
CONTROL

PORT
c
PORT C
o

COUNTER/
TIMER 3

INPUTS

INTERNAL
CONTROL
LOGIC

COUNTER/
TIMER 2

& : :
PORT B
o

=)
_

COUNTER/
TIMER 1

11l 1l

Figure 3. Block Diagram
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Appendix B

Z8038 Z8000™
Z-F10 FIFO Input/
Output Interface Unit

Ya

Zilog

Product
Brief

March 1982
Features B 128-byte FIFO buffer provides asynchronous =~ B Seven sources of vectored/nonvectored

bidirectional CPU/CPU or CPU/peripheral interrupt which include pattern-match,
interface, expandable to any width in byte byte count, empty or full buffer status;
increments by use of multiple FIOs. a dedicated “mailbox’’ register with

B Interlocked 2-Wire or 3-Wire Handshake interrupt capability provides CPU/CPU
logic port mode; Z-BUS or non-Z-BUS communication.
interface. B REQUEST/WAIT lines control high-speed

B Pattern-recognition logic stops DMA data transfers.
transfers and/or interrupts CPU; preset byte B All functions are software controlled via
count can initiate variable-length DMA directly addressable read/write registers.
transfers.

Description The Z8038 FIO provides an asynchronous 2-Wire Handshake, and 3-Wire Handshake
128-byte FIFO buffer between two CPUs or operating modes. These modes interface
between a CPU and a peripheral device. This dissimilar CPUs or CPUs and peripherals
buffer interface expands to a 16-bit or wider running under differing speeds or protocols,
data path and expands in depth to add as allowing asynchronous data transactions and
many Z8060 FIFOs as are needed. improving I/O overhead by as much as two

The FIO manages data transfers by assuming orders of magnitude. Figures 1 and 2 show
Z-BUS, non-Z-BUS microprocessor (a general- how the signals controlling these operating
ized microprocessor interface), Interlocked modes are mapped to the FIO pins.

T
( <—>|D; ll 07 [ ag : 4[] +sv
<] D¢ 1 Dg [ B 2 3 []&
<] Ds | D5 &> ag s ! 38 []E
DATA | <—=|04 | el peust og « ' vge
BUS ) =10 Lonrlpont ™ [* B0 ! 3
->j0; 4 |2 Dpfe—> G]m spont ! porrss (18
<—{p, SIDE ! SIDE p, fe—sp- ;1 2 . FE
\ < Do : Dy > E SIDE | SIDE
-—|[@] 1 A |}— Qe | b :
H o mg e | 32 []E
= DI W10 zeoss [T
controL{ | % 28038 % - ) conTRoL nljn  Flo [l
= = g
\ —={ [ | G n;E 14 | 27 [] 0.
: % : % : D[] 15 : 26 []0s
INTERRUPT 0 ' INTERRUPT os[] 16 | 25£]04
pe S N -5
o[} 18 23 []0s
courmunﬂou{ ™ i wwe ! 22 [0
— My : QND; 20 : 21 [JMo
4-1V GND
Figure 1. Pin Functions Figure 2. Pin Assignments
2020-096, 097
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Appendix B

Description The FIO supports the Z-BUS interrupt pro- specially designed to work with DMA (Direct
(Continued)  tocols, generating interrupts upon any of the Memory Access) devices for high-speed
following seven events: a write to a message transfers. It provides for data transfers to or
register, change in data direction, pattern from memory each machine cycle, while the
match, status match, over/underflow error, DMA device generates memory address and
buffer full and buffer empty status. Each inter- control signals. The FIO also supports variably
rupt source can be enabled or disabled, and sized block length, improving system
can also place an interrupt vector on the port throughput when multiple variable length
address/data lines. messages are transferred.
The data transfer logic of the FIO has been
o O B
10 DATA 128 x8 DATA OR GENERAL
2BUS BUFFER RAM BUFFER MICROPROCESSOR
MICROPROGESSOR z ] l z PORT 1 ::> MEMORY —_—> poRT2 z ‘ l I;: PORT WITH
HANDSHAKE
CONTROL/ CONTROL/ :‘L: CONTROL/ CONTROL/
INTERFACE STATUS STATUS INTERFACE
LOGIC PORT 1 PORT 2 LOGIC
PORT 1 <:> REGISTERS :> REGISTERS <:> PORT 2
Figure 3. Functional Block Diag
Functional Operating Modes. Ports 1 and 2 operate in The pin .diagrams of the FIO ports are iden-
Description  any of the twelve combinations of operating tical, except for two pins on the Port 1 side,

modes listed in Table 2. Port 1 functions in
either the Z-BUS or non-Z-BUS microprocessor
modes, while Port 2 functions in Z-BUS, non-
Z-BUS, Interlocked 2-Wire Handshake, and
3-Wire Handshake modes. Table 1 describes
the signals and their corresponding pins in

which select that port’s operating mode. Port
2's operating mode is programmed by two bits
in Port 1's Control register 0. Table 2
describes the combinations of operating

modes; Table 1 describes the control signals

mapped to pins A-] in the five possible

each of these modes. operating modes.
Signal Z-BUS 2-BUS Interlocked 3-Wire
Pins Low Byte High Byte Non-Z-BUS HS Port* HS Port*
[&] REQ/WT REQ/WT REQ/WT  RFD/DAV  RFD/DAV
DMASTB DMASTB  DACK ACKIN DAV/DAC
[c] DS DS RD FULL DAC/RFD
o] RW RW WR EMPTY EMPTY
[E] cs cs CE CLEAR CLEAR
[¥] AS AS c/b DATADIR  DATA DIR
[a] INTACK Ag INTACK INg INg
[H] IEO Ay IEO ouT) ouT)
1] IEI A IEI OE OE
] INT A3 INT OUT3 OUT3
*2 side only.
Table 1. Control Signal Assignments
Mode Control Bits Operating Mode
M M B By Port 1 Port 2
[ o 0 0 Z-BUS Low Byte Z-BUS Low Byte
0 [ [ 1 Z-BUS Low Byte Non-Z-BUS
0 0 1 0 Z-BUS Low Byte 3-Wire Handshake
0 0 1 1 Z-BUS Low Byte 2-Wire Handshake
0 1 0 0 Z-BUS High Byte Z-BUS High Byte
0 1 ) 1 Z-BUS High Byte Non-Z-BUS
0 1 1 0 Z-BUS High Byte 3-Wire Handshake
0 1 1 1 Z-BUS High Byte 2-Wire Handshake
1 0 0 0 Non-Z-BUS 2-BUS Low Byte
1 0 0 1 Non-Z-BUS Non-Z-BUS
1 0 1 0 Non-Z-BUS 3-Wire Handshake
1 0 1 1 Non-Z-BUS 2-Wire Handshake

Table 2. Operating Modes

B-12
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Appendix B

Z8060
Z8000™ FIFO Buffer Unit
and Z-F10 Expander

Ya

Product

-
Zilog Brief
March 1982
Features B Asynchronous, bidirectional first-in, first-out B 3-state data outputs.
buffer. B Empty and Full status pins are wire-ORed
B Extends depth of Z-FIO without limit. among multiple stages.
B 128 X 8 organization.

Description The Z-FIFO f{irst-in, first-out buffer unit is a Z-FIO. Z-FIFO buffers can be cascaded, end to
128 x 8-bit memory with bidirectional data end, without limit, their RFD/DAV and ACKIN
transfer capability and handshake logic. Its signals daisy-chained, to make a FIFO array
structure is similar to that of other FIFOs that any desired number of words deep. Two such
are commonly available, such as the AM2812 channels in parallel, suitably controlled, make
and the 3351. The handshake logic used is up a 16-bit-wide buffer array.
compatible with that of the Z8, the Z-CIO, and

L
~—>»| D; : D7 |=—> T
<—>| Dg | Dg |a—> RFD/DAV, [ 1 | 28] +5V
<«>iD; ol g Ds|le—> ACKINa [ 2 | 27 [ ] RFDIDAVs
DATA ] <—>|Ds : D |«—> \ pATA FuLL s le® ACKINg
BUS\ <«—»{D; | D; j«—» ( BUS EMPTY [J4 A | B 55 [ crean
<—»{D, 28060 D, |e—> OEa s ;o [JorAB
<—|D, "ro D, [« ooa 6 28060 2 |J OEs
<], 1 Do | o 7 F'ro 22 ] Dos
—>|AcKN | ACKIN |*— D2 [ 8 | 21 [ bie
CONTROL { ——| RFDI/DAV \ RFD/IDAV |«—— » CONTROL oaa ]9 I 20 [] 0z
—{ | B e | wHo
—>»| DIR A/B Dea [] 12 | 17 [ pss
COMMON ) ~ | FuLL ora Q1s [ 106
CONTROL | <—] emery anp [ 14 [ B ors
—»]| crEAR ]
+5V GND
Figure 1. Pin Functions Figure 2. Pin Assignments
2123-001, 002
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Description MAY ADD
(Continued) ANY NUMBER OF FIFOS
PORT PORT A A PORT 'O'RT —_— PORT PORT| 4 N |PORT PORT
! ! ‘{—‘. / * 28060 <:°£-‘ $ * uo.o. ‘t‘—l. / : ! :I>
riF0 riFo
RFDIDAV ATKIN = — — -] RFOIDAV ACKIN
ATKIN RFDIDAV [ — ] ACKIN RFDIDAV
10 z-8US 70 2.8Us
OR QENERAL s z038 28038 OR GENERAL
MICROPROCESSOR | 55 ﬁ ﬁ Fio 3
CONTROL CONTROL

FIO CONTROL 4

IN/OUT CONTROL 4

< 7

Z}A
!

=

Figure 3. Using FIFOs to Extend FIO Depth

DATA IN x VALID DATA K X VALID DATA X

Figure 5. Two-Wire Interlocked Handshake Timing (Output)

B-14

2047-101 2020-019, 020



Appendix B

28090
Z8000™ Z-UPC Universal
Peripheral Controller

Y

Zilog

Product
Brief

March 1982

Features

B Complete slave microcomputer, for
distributed processing Z-BUS use.

B Z8 architecture and instruction set.
B 2K bytes of on-chip ROM.

O Available in standard or development
configuration.

W Three programmable I/O ports, two with
optional 2-Wire Handshake.

m Six levels of priority interrupts from eight

sources: six external sources and two inter-
nal sources.

B Two programmable 8-bit counter/timers
each with a 6-bit prescaler. Counter/Timer
TO is driven by an internal source, and
Counter/Timer T1 can be driven by internal
or external sources. Both counter/timers are
independent of program execution.

B 256-byte register file, accessible by both the
master CPU and Z-UPC, using a fail-safe
message-passing protocol.

Description

The Z8090 Universal Peripheral Controller
(Z-UPC) is an intelligent peripheral controller
for distributed processing applications (Figure
3). The Z-UPC unburdens the host processor
by assuming tasks traditionally done by the
host (or by added hardware), such as perform-
ing arithmetic, translating or formatting data,
and controlling I/O devices. Based on the Z8
microcomputer architecture and instruction
set, the Z-UPC contains 2K bytes of internal
program ROM, a 256-byte register file, three
8-bit I/O ports, and two counter/timers.

<[ AD; Pl7 o>

~—»| ADg Plg j—>

| ADs P15 f—
ADDRESS/ | <+—>|ADs PU*—> 1 poRT 1

DATA BUS | «—»]aD; Pl fe—>

<—»{aD; Pl fe—>

<] ADy P1y f—>

<} ADy P1g |

BUS | —|As P33 fe—

TIMING \ 28090

AND RESET | — DS 20 oF PUI—> | RT3

‘ —| W P3t|e—

CONTROL l —>|C8 P f—n

<«—] WA P27 |e—n

~«——INT OR P35 P2g |

MAS.':I'E: ——»] INTACK OR P32 P25 {w—»
INTERRUPT | | 'E1 OR P30 P2 PORT 2

~«— |EO OR P37 P23 [t

P2 fe—>

+5V ——p P2y f—>

PCLK ——] P2o|e—n

GND ——»]

Figure 1. Pin Functions

The Z-UPC offers fast execution time; an
effective use of memory; and sophisticated
interrupt, I/O, and bit manipulation. Using a
powerful and extensive instruction set
combined with an efficient internal addressing
scheme, the Z-UPC speeds program execution
and efficiently packs program code into the
on-chip ROM.

An important feature of the Z-UPC is an
internal register file containing I/O port and
control registers accessed both by the Z-UPC
program and by its associated master CPU.

+sV[]1 4[] p3y
pcLk[]2 0[] p3g

1E0 OR P37[]3 sy
1E1OR P39 [J4 7] P2
_INTORP3s[]5 ss[]P2s
NTACK OR P22[J6 s P2,
- mi 4[] r2s

RW[ s 3[Jr2,

SO o000 2 []P24

&L zupe r2

GND [T 11 s0[]P3;

WAIT [ 12 200 P3y
Ap;[]13 28[Jp17
ADg[]14 24 m 40
Aps[l1s 26[]p1s

ADs[ 16 2] P1e
Aps[]17 4[]r1
Ap2[118 2[]r12

Api 1 22 P4y
Abo[J20 21 P10

Figure 2. Pin Aulgnmqnts

2017-069, 095

B-15




Appendix B

Description
(Continued)

2-8US TO
MASTER {
cpPu

This architecture results in both byte and
programming efficiency, because Z-UPC
instructions can operate directly on I/O data
without moving it to and from an accumulator.
Such a structure allows the user to allocate as
many general-purpose registers as the applica-
tion requires for data buffers between the CPU
and peripheral devices. All general-purpose
registers can be used as address pointers,
index registers, data buffers, or stack space.

The register file is logically divided into 16
groups, each consisting of 16 working
registers. A Register Pointer is used in con-
junction with short format instructions,
resulting in tight, fast code and easy task
switching.

Communication between the master CPU
and the register file takes place via one group
of 19 interface registers addressed directly by
both the master CPU and the Z-UPC, or via a
block transfer mechanism. Access by the
master CPU is controlled by the Z-UPC to
allow independence between the master CPU
and Z-UPC software.

The Z-UPC has 24 pins that can be dedi-
cated to I/O functions. Grouped logically into
three 8-line ports, they can be programmed in
many combinations of input or output lines,
with or without handshake, and with push-pull
or open-drain outputs. Ports 1 and 2 are bit-

programmable; Port 3 has four fixed inputs
and four outputs.

To relieve software from coping with real-
time counting and timing problems, the Z-UPC
has two 8-bit hardware counter/timers, each
with a fixed divide-by-four, and a 6-bit pro-
grammable prescaler. Various counting modes
may be selected.

In addition to the 40-pin standard configura-
tion, the Z-UPC is available in four special
configurations:

B A 64-pin RAM development version with
external interface for up to 4K bytes of RAM
and 36 bytes of internal ROM permitting
down-loading from the master CPU.

B A Protopack RAM version with a socket for
up to 2K bytes of RAM, with 36 bytes of
internal ROM permitting down-loading from
the master CPU.

B A 64-pin ROM development version with
external interface for up to 4K bytes of ROM
and no internal ROM.

B A Protopack ROM version with a socket for
2K bytes of ROM and no internal ROM.

This range of versions and configurations
makes the Z-UPC compatible with most system
peripheral device control methods.

HOST CPU e
INTERFACE 2Z-UPC MICROCOMPUTER
' |
|
PROGRAM :_—: P porT  |—
MEMORY CouNTER K o
'é‘e'é“s?éﬁi ! 2K x 8 AND CONTROL 1 - ?
ADo-AD; § |
(PART OF REGISTER | DY
FILE) -~
| | controL " HANDSHAKE
| UNIT —] >
<~ | TT
INTERNAL INSTRUCTION BUS
] >
| | ——
> |
s | RP PORT |+
DS —»| BUSG | 2 "o
= TIMIN
RW —1 aND IRP
&8 ——»| CONTROL | >
WAIT <+—i | -~
2TIMERS REGISTER -~
FILE
| 256 x 8
HANDSHAKE
I
: L P33 fe—ro
12
L——— == - PORT "X 3 wo
— 3 P3y j—
INT ——o P35 INTERNAL DATA BUS .
NTACK 2z |\ —
iNTACK ——>] p3, 12 ] | | ] |
[p— Y |
- Z.BUS ALY uPC
€0 Par INTERRUPT | AND INTERRUPT
LOGIC | FLAGS LOGIC
(V0 FUNCTION f f
1S OPTIONAL) +5V GND PCLK
Figure 3. F 1 Block Diag
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Appendix B

Z-BUS®
Component Interconnect

Ya

Zilog

Descriptive
Brief

March 1982
Features B Defines the interface protocols used by B Provides bus signals that allow separate
78000 family members for data transfer, CPU and peripheral clocks.
interrupt signaling, and resource sharing. B Supports polling, vectored interrupts and
B Provides multiplexed address/data bus non-vectored interrupts.
shared by memory and I/O transfers, using m Defines a simple priority interrupt scheme,
separate protocols. without a separate controller, through a
B Provides 16 or more memory address bits; daisy-chain interrupt structure.
16-bit I/O addresses; 8 or 16 data bits. B Supports distributed control of bus and
B Allows direct addressing of registers within other shared resources through bus and
peripherals. resource request protocols.
Description The Z-BUS is the high-speed parallel shared PRIMARY SIGNALS
bus that links components of the Z8000 Family
and provides family members with a common
communication interface that supports:
B Data Transfer. Data can be moved between EXTENDED ADDRESS )
bus masters (such as a CPU) and memories
or peripherals. Pere
B Inferrupts. Interrupts can be generated by = _
peripherals and serviced by CPUs over MAsTER 5§—»  AND MEMORY
the bus. R ———
B Resource Control. Distributed management 4__—:%
of shared resources (including the bus itself) ~— RESE—
is supported by a daisy-chain priority
mechanism. Ano-AD‘s:> s
EXTENDED ADDRESS DECODE p—»
The heart of the Z-BUS is a set of multi- STATUS
plexed address/data lines and the signals that
control these lines. Multiplexing data and BUS REQUEST SIGNALS
addresses onto the same lines makes more effi- ~——BUSREG—>
cient use of pins, facilitates expansion of the cPu *BU;;“_: REQUESTER
number of data and address bits, and allows FAD <——
direct addressing of a peripheral’s internal INTERRUPT SIGNALS
registers, which simplifies I/O programming. ~—n
A daisy-chained priority mechanism resolves
interrupt and resource requests, thus allowing cpPu E DECODE X PERIPHERAL
distributed control of the bus and eliminating
the need for separate priority controllers. The
resource-control daisy chain allows wide :,‘::,____
physical separation of components. T SIGNALS
The Z-BUS is asynchronous in the sense that WO —— LTLMICRO
peripherals do not need to be synchronized componus "'—"%‘: REQUEST
with the CPU clock. All timing information is ] Mo
provided by Z-BUS signals.
Figure 1. Z-BUS Signals
2031-0045 B-17



Appendix B

Memory and
1/0 Data

When a processor accesses a memory
location or I/O device via the Z-BUS, both

Transfers the address and data are transferred over
ADg-AD;js. The address is transmitted while bs \ ! /
Address Strobe (AS) is Low at the beginning of
a transfer, and data is moved while Data /\

=L ADo-AD DATA
Strobe (DS) is Low at the end of a transfer (as * nea) Nt D—
shown in Figure 2). The status lines serve to
distinguish between [/O and memory and A e —ooressX DATA r—
among the various memory address spaces.
Thejead/Write (R/W) line and Byte/Word Figure 2. Z-BUS Memory and 1/O Transfers
(B/W) line determine the type of transfer;
WAIT allows slow memory or peripherals to
delay data transfer.

Interrupt The Z-BUS interrupt scheme is an interrupt- consists of INT pulled Low by a peripheral,
under-service priority daisy chain that requires notifies the CPU that an interrupt is pending.
no separate priority controller. Interrupt The interrupt-acknowledge transaction, which
requests are all tied directly to the INT pin of is initiated by the CPU as a result of the
the CPU. (See Figure 3.) Physical position request, performs two functions: 1) using the
along the IEI/IEO daisy chain determines the IEI/IEO daisy chain it selects the peripheral
priority assigned to any given peripheral. whose interrupt is to be acknowledged; 2) it

A complete interrupt cycle consists of an obtains a vector that identifies the selected
interrupt request followed by an interrupt- device and the cause of interrupt.
acknowledge transaction. The request, which

HIGHEST LOWEST
PRIORITY PRIORITY
Z-BUS Z-BUS Z.-BUS
PERIPHERAL PERIPHERAL PERIPHERAL
+5V JEI ADo-AD; AS DS TNT INTACK IEO IEl ADo-AD; AS DS INT INTACK IEO |EI ADo-ADy AS DS INT INTACK IEO
T T =TI T
ADg-AD7 K A +5V
= Tl l } iy
we o= ! /£
iNT o
WAIT [
e 4 /-
ADg-AD1s <:| FROM 16-BIT PERIPHERALS
Figure 3. Interrupt Connections

Bus and For a device other than the CPU (which is

Resource default master) to gain control of the bus, it 2.8US CPU

Requests must make a bus request by forcing BUSREQ
Low. After BUSREQ is pulled Low, the Z-BUS BUSACK BUSREG

CPU relinquishes the bus and indicates this
condition by pulling BUSACK Low. This Low
signal is propagated through the BAI/BAO
daisy chain until it reaches a bus requester
that is ready to use the bus.

This requester uses the bus and then
releases BUSREQ and allows BAO to follow
BAI. When all simultaneously requesting
devices have relinquished the bus, BUSREQ
goes High, returning control of the bus to the
CPU.

The resource request chain is used to share
a resource among several Z-BUS CPUs, none
of which is default master of that resource. The
resource-request signals and protocol are
similar to that of the bus request, except that
there is no default master.

BUS
REQUESTERS

— AN+ 5V

Figure 4. Bus Request Connections

i
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Appendix C

UPPER NIBBLE (HEX), UPPER INSTRUCTION BYTE

=)

w

LOWER NIBBLE (HEX). UPPER INSTRUCTION BYTE

0 1 2 3 4 5 [] 7 ] 9 A B c D F
ADDB ADD SUBB SUB ORB OR ANDB AND XORB XOR CPB cP See See | EXTEND | EXTEND
R~IR|R-BR | R—IR |R BRI R—~IR|[R—WR [R—R | R—=IR |R—IR |R~IR | R—IR | R—IR | Table Table INST INST
R~M |R—=IM|R~M |R~M|R—=IM|R~IM |R~IM|R—IM [R—IM [R—IM | R—IM [ R—1IM 1 1

CPL PUSHL SUBL PUSH LDL POPL ADDL POP MULTL MULT DIVL DIV See LDL P CALL
R~R |R—~R|R—~R [R—BR|R—IR|mR—B|R—R|R—IR|R—B | R—IR|R—IR | R—IR | Table IR—R | PC—IR | PC—IR
R—IM R~ IM R—IM R —IM R~M|R~=IM|R=IM|R~IM| 2

LDB LD RESB RES SETB SET BITB BIT INCB INC DECB DEC EXB EX LDB LD
R=IR |R=R|R=IM [R—=IM|R—IM|R—IM|R—M|R—~IM|R~IM|[R—IM|R—IM|IR—IM|R-IR R—IR IR—R IR—R
R-~M |R—M| R—=R |R—=R | R—R | R—=R | R—R | R—R

LDB A ] LDB o] LDA LDL RSVD LDL RSVD LDPS See See INB IN OUTB our
R<—BA [R—BA|BA—~R |BA—R|R=—BA|R—BA BA — R IR Table Table | R—IR R—IR IR—R IR—R
LDRB R LDRB LDR AR RL LDRL 3R 3B
R—RA |R—RA|RA—R |RA—R|R—RA|R—RA RA—R
ADDB ADD SUBB SUB ORB OR ANDB AND XORB XOR CPB cp See See EXTEND | EXTEND
R=X |R=X | R=X [R~=X | R=X | R=X |R—=X | R=X | R=X | R=X | R=X | R =X | Table Table INST INST
R=DA JR—DA|R~DA |R—DA|R~DA|R—DA|R=~DA|R—DA|R~DA|R~DA|R~DA|R~DA| 1 1

CPL PUSHL SUBL PUSH oL POPL ADDL POP MULTL MULT DIVL DIV See LDL P CALL
R=X |R=X| R=X |R=X | R—=X | R=X [R=X |R=X | R=X | R=x | R=X | R=x | Table X—R PC—X | PC=X
R=DA [IR=DA|R~DA |[IR—DA|R=DA|IR=DA|R—DA |IR —=DA |R—DA |R—DA | R~ DA 2 DA=R | PC—DA | PC—DA

LDB LD RESB RES SETB SET BITB BIT INCB INC DECB DEC EXB EX LDB LD
R—X | R—Xx ~M [X=M [X=IM | XM |[X=IM |[X—=IM [X=IM [ X=IM [ X=IM | X—=IM | R=X R=X X—R X—R
R—DA |R~=DA|DA ~IM|DA~IM |DA ~IM|DA —IM [DA —IM [DA ~IM [DA ~ IM |[DA —IM|DA —IM|DA —= M |p~pa | R—~DA | DA—R | DA-R

LDB See LDB LD LDA LDL LDA LbL RSVD LDPS HALT See H See ‘RSVD sC
R~ BX | Table | BX —R [BX—R [R—BX | R—BX | R—X |BX—R PS = X Table DI Table

7 R = DA PS = DA 7 7
ADDB ADD SUBB SUB ORB OR ANDB AND XORB XOR CPB CP See See EXTEND
R=R |R=R | R=R |R-R | R—=R | R=R |R—R | R=R | R=R | R=R | R=R | R—=R |Table | Table INST. INST.
1 1

CPL PUSHL SUBL PUSH LDL POPL ADDL POP MULTL MULT DIVL DIV See RSVD RET RSVD

R~R |R=R| R=R |[R<~R | R~R [R-R |R—R |R—=IR | R=R | R=R | R=R | R—R | Table PC—(SP)
2

LDB LD RESB RES SETB SET BITB BIT INCB INC DECB DEC EXB )2 4 TCCB TCC
R=R |R-R |R=M |R—=IM |R-~IM |R~IM |[R—=IM |R—IM |R—IM |R—IM | R—IM | R—=IM | R=R R—R R R
DAB EXTS See See ADC SBCB SBC See RSVD See See RRDB LDK RLDB RSVD

EXTSB Table Table R+R R<R | R—R R+R Table Table Table R R—IM R

R Zx:sl. 4 4 5 [} L]

LDB
R—IM
CALR
PC — RA

R
PC - RA
DJNZ
DBINZ -
PC — RA

Op Code Map
Notes: .

1) Reserved Instructions (RSVD) should not be
used. The result of their execution 1s not defined.

2) The execution of an extended instruction will

result 1n an Extended Instruction Trap if the EPA

bit in the FCW 1s a zero. If the flag 15 a one the

Extended Instruction will be executed by the EPU
function.
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LOWER NIBBLE (HEX). LOWER INSTRUCTION BYTE

oc oD [ 4D 8C 8D
COMB | coM COMB | COM COMB | com
IR IR X X R R
DA DA
CPB CP CPB CP LDCTLB | SETFLG
IR,IM IR,IM X,IM XM R—FLGS
DAIM | DAIM
NEGB NEG NEGB NEG NEGB NEG
IR IR X X R R
DA DA
RSVD | RSVD RSVD | RSVD RSVD | RESFLG
TESTB | TEST TESTB | TEST TESTB | TEST
IR IR X X R R
DA DA
—
LDB 1D LDB LD RSVD | COMFLG
IR—IM IR~IM X—IM XM
DA~IM | DA—IM
TSETB TSET TSETB TSET TSETB TSET
IR IR X X R R
DA DA
RSVD | RSVD RSVD | RSVD RSVD NOP
CLRB CLR CLRB CLR CLRB CLR
IR IR X X R R
DA DA
PUSH LDCTLB
™ FLGS —R
Table 1. Upper Instruction Byte
1c 5C [
E [ RSVD RSVD
E = DM DM
25 R-IR R—X
R~DA
L
= TESTL TESTL TESTL
52 8 IR X R
DA
2
<] E LDM LDM
3 0 IR=R X—R
2 DA-R

Table 2. Upper Instruction Byte

A 3B
INIB INI
R—R | IR—IR
INIRB INIR
R-R | IR-IR
SINIB SINI
R~R | IR—IR
SINIRB SINIR
R=R | R~
OUTIB ouTt
R-R | IR=IF
OTIRB UTIR
R~R | R—IR
SOUTIB | SOUTI
R-R | R—IR
SOTIRB | SOTIR
E R~R | R—IR
INB IN
g R=DA | R—DA
E SINB SIN
2 R=DA | R—DA
-o' OUTB out
E DA—R DA—R
g SOUTB SouT
DA—R | DA-R
) INDE | IND
R—R | R—IR
INDRB INDR
R-R | R—IR
SINDB SIND
R~ | IR=IR
SINDR
R~R | R~
OUTDB OouTD
R-R | R—IR
OTDRB | OTDR
IR—~R | R—IR
SOUTDB | SOUTD
IR~R | IR~IR
SOTDRB | SOTDR
R-IR | IR—IR
Table 3. Upper Instruction Byte
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LOWER NIBBLE (HEX). LOWER INSTRUCTION BYTE

B2 B3
RLB RL
(1 bty (1 bty
R R
SLLB SLL
R R
SRLB SRL
R R
RLB RL
(2 bats) (2 bts)
R R
SDLB SDL
R R
RRB RR
(1 bit) (1 bit)
R R
SLLL
RSVD R
SRLL
RRB RR
2bits) | (2bits)
R R
RSVD SDLL
R
RLCB RLC
(1 bit) (1 bit)
R R
SLAB SLA
R R
SRAB SRA
R R
RLCB RLC
@bits) | (2buts)
R R
SDAB SDA
R R
RRCB RRC
(b (1 bat)
R R
SLAL
RSVD R
SRAL
RRCB RRC
(2bits) | (2bits)
R R
SDAL
RSVD R
Table 4.
Upper Instruction Byte

TRIB
0 IR

1 RSVD

TRTIB

RSVD

TRIRB

RSVD

TRTIRB
6 IR

RSVD

TRDB
IR

RSVD

TRTDB

LOWER NIBBLE (HEX). LOWER INSTRUCTION BYTE
®

RSVD

TRDRB

RSVD

TRTDRB

F RSVD

Table 5.
Upper Instruction Byte

BA BB
CPIB CPI
IR IR
LDIB LDI
IR—IR | IR—IR
LDIRB | LDIR
IR—=IR | IR—IR
CPSIB | CPSI
IR IR
RSVD | RSVD
CPRIB | CPIR
IR IR
RSVD | RSVD
CPSIRB | CPSIR
IR IR
RSVD | RSVD
CPDB CPD
IR IR
LDDB LDD
IR-IR | IR-IR
LDDRB | LDDR
IR-IR | IR-IR
CPSDB | CPSD
IR IR
RSVD | RSVD
CPDRB | CPDR
IR IR
RSVD | RSVD
CPSDRB | CPSDR
IR IR
RSVD | RSVD

Table 6.

Upper Instruction Byte

7B 7D
IRET RSVD
PC —(SSP)
RSVD RSVD
RSVD LDCTL
R—FCW
RSVD LDCTL
R~—RFRSH
RSVD LDCTL
Re
PSAPSEG
RSVD LDCTL
R—
PSAPOFF
RSVD LDCTL
R —NSPSEG
RSVD LDCTL
R —NSPOFF
MSET RSVD
MRES RSVD
MBIT LDCTL
FCW-R
RSVD LDCTL
RFRSH—-R
LDCTL
PSAPSEG
-R
MREQ LDCTL
R PSAPOFF
-R
RSVD LDCTL
NSPSEG —R
LDCTL
RSVD | NSPOFF —R
Table 7.

Upper Instruction Byte
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Topical
Index ’ Data Addressing Flags
Instruction Description Mnemonic Types Modes Affected

Arithmetic

Add with Carry ADC B, W R C, 2,8V, D,H
Add ADD B,W,L R, IM, IR, DA, X C, 2,8 VD, H
Compare (Immediate) CP B, W IR, DA, X CZS,V
Compare (Register) CP B,W,L R, IM, IR, DA, X C, 2,8V
Decimal Adjust Bit DAB B IR C.Z5S
Decrement DEC B, W R, IR, DA, X Z,8V

Divide DIV W,L R,IM, IR, DA, X C ZsS,V
Extend Sign EXTS B, W, L R C,Z,8V
Increment INC B, W R,IR, DA, X 2,8V

Multiply MULT W,L R,IM, IR, DA, X C, 2,58V
Negate NEG B, W R, IR, DA, X C,ZS8V
Subtract with Carry SBC B, W R C, 2,8 VD H
Subtract SUB B,W,L R, IM, IR, DA, X C,Z,8 V,D,H
Bit Manipulation

Bit Test BIT B, W R Z

Bit Reset (Static) RES B, W R, IR, DA, X —

Bit Reset (Dynamic) RES B, W R —

Bit Set (Static) SET B, W R, IR, DA, X —

Bit Set (Dynamic) SET B W R —

Bit Test and Set TSET B, W R, IR, DA, X S
Block Transfer and String Manipulation

Compare and Decrement CPD B, W IR C,Z 58S,V
Compare, Decrement, and Repeat CPDR B, W IR CZsS,V
Compare and Increment CPI B, W IR C/ZS,V
Compare, Increment, and Repeat CPIR B, W IR C,Z 85V
Compare String and Decrement CPSD B, W IR C, 2,8V
Compare String, Decrement, and Repeat =~ CPSDR B, W IR C,ZS,V
Compare String and Increment CPSI B, W IR CZ5SV
Compare String, Increment, and Repeat CPSIR B, W IR C, Z5S,V

Load and Decrement LDD B, W IR A

Load, Decrement, and Repeat LDDR B, W IR v

Load and Increment LDI B, W IR \

Load, Increment, and Repeat LDIR B, W IR v

Translate and Decrement TRDB B IR Z,Vv

Translate, Decrement, and Repeat TRDRB B IR Z,V

Translate and Increment TRIB B IR Z,Vv

Translate, Increment, and Repeat TRIRB B IR zZ,V

Translate, Test, and Decrement TRTDB B IR Z,V

Translate, Test, Decrement, Repeat TRTDRB B IR Z,V

Translate, Test, and Increment TRTIB B IR Z,V

Translate, Test, Increment, and Repeat TRTIRB B IR Z,V

CPU Control Instructions

Complement Flag COMFLG — —_ c,zZ, 8, PV
Disable Interrupt DI — — —

Enable Interrupt EI o — —

Halt HALT — — —

Load Control Reqister (from register) LDCTL — R C?, 7%, 8%, P, D, H?
Load Control Register (to register) LDCTL — — —

Load Program Status LDPS — IR, DA, X C, 2,8, P,DH
Multi-Bit Test MBIT — — S

Multi-Micro Request MREQ — — Z,S

Multi-Micro Reset MRES — — —

Multi-Micro Set MSET — — —

No Operation NOP — — —

Reset Flag RESFLG — — Cc, 7, S, PV
Set Flag SETFLG — — Cc, 2z, 8PV

1. Flag affected only for byte operation.
2. Flag modified only if specified by the instruction.
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Topical

Index

(Continued) Data Addressing Flags

Instruction Description Mnemonic Types Modes Affected

Input/Output Instructions’ Regular Special
Input (S)IN° B, W IR, DA (DA) —
Input and Decrement (S)IND* B, W IR (IR) \'4
Input, Decrement and Repeat (S)INDR® B.W IR (IR) v
Input and Increment (S)INP B W IR (IR) v
Input, Increment, and Repeat (S)INIR® B, W IR (IR) v
Output (S)ouT® B, W IR, DA (DA) —
Output and Decrement (S)OUTD® B, W R (IR) v
Output, Decrement, and Repeat (S)YOUTDR® B, W IR (IR) \'A
Output and Increment (S)ouTr B W IR (IR) )
Output, Increment, and Repeat (S)OUTIR® B, W IR (IR) v
Logical Instructions
And AND B.W R,IM, IR, DA, X Z,5 P
Complement COM B, W R, IR, DA, X Z,SP
Or OR B, W R, IM, IR, DA, X Z,8 P
Test TEST B,W,L R, IR, DA, X Z,S, P
Test Condition Code TCC B, W R —
Exclusive Or XOR B, W R, IM, IR, DA, X Z,S P
Prog Control Instructi
Call Procedure CALL — IR, DA, X —
Call Procedure Relative CALR — RA —
Decrement, Jump if Not Zero DINZ B, W RA —
Interrupt Return IRET — — C,2,S8,P,DH
Jump JP — IR, DA, X —
Jump Relative JR — RA —_
Return From Procedure RET — — —
System Call sC — —
Rotate and Shift Instructions
Rotate Left RL B, W R —
Rotate Left Through Carry RLC B, W R CZ5V
Rotate Left Digit RLDB B R ZS
Rotate Right RR B, W R CZSV
Rotate Right Through Carry RRC B W R C,ZS,V
Rotate Right Digit RRDB B R Z,8
Shift Dynamic Arithmetic SDA B,W,L R C,Z S,V
Shift Dynamic Logical SDL B,W,L R C,Z5S,V
Shuft Left Arithmetic SLA B,W,L R C 758,V
Shift Left Logical SLL B,W,L R C,ZS8V
Shift Right Arithmetic SRA B.W,L R C,Z,8 V
Shift Right Logical SRL B,W,L R C,ZSs,V

3. Each I/O nstruction has a Special counterpart used to alert other devices that a Special I/O transaction 1s occur-
ring. The Special I/O mnemonic 1s S + Regular mnemonic. Refer to section 6.2.8 for further details.
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{ Ro [7 RHO 0i7 RLO o] l Ro[7 RHO 07 RLO o]
RRO RRO
R [15 RH1 1 ALY o] i f1s RH1 i AL 0]
{ 2 RH2 i AL2 | Rae l Rz2[ RH2 1 RL2 1
RR2 AR2
a3 RH3 1 RL3 ] rs[ RH3 ! RL3 |
‘ R RH4 j RL4 B naf RH4 j LS ]
RR4 . RRa
ws [ RHS j ALS ] { rs[ RHS 1 ALS |
RO4
- { ne [ RHE i RLS 1 e el RHE T ALE ]
ar[ RH7 | RL7 | S T T AT ]
ARS : " r's "} e { ne s 0]
Y
nas o] 1
nmn{ ro[ ] o l R0 1
A1t | ] ri1[ |
RAR12 ‘ el I anr2 { 12| ]
R [ | s ]
R14’ RQ12
R4 NORMAL STACK POINTER (SEG NO) | ]
RR14 . AR14
g — R1S SYSTEM STACK POINTER
R15 'NORMAL STACK POINTER (OFFSET) RIS NORMAL STACK POINTER
Z8001 General Purpose Registers Z8002 General Purpose Registers
Register Binary Hex
RQO  RRO RO RHO 0000 0
Rl RH1 0001 1
RR2 R2 RH2 0010 2
R3 RH3 0011 3
RQ4 RR4 R4 RH4 0100 4
R5 RHS 0101 5
RR6 R6 RH6 o110 6
R7 RH?7 o111 7
RQ8 RR8 R8 RLO 1000 8
R9 RL1 1001 9
RR10 RIO RL2 1010 A
R1l RL3 1011 B
RQI2 RRI2 R12 RL4 1100 e}
RI3 RL5 1101 D
RR14 R14 RL6 1110 E
R15 RL7 1111 F
Binary Encoding for Register Fields
28002 28001
and and
28004 28003
Low Low
ADDRESS ADDRESS
SYSTEM SP  —»| [IDENTIFIER SYSTEM STACK —»] |IDENTIFIER
AFTER TRAP POINTER AFTER
OR INTERRUPT FCW TRAP OR FCW
INTERRUPT
PC SEGMENT PC
PCOFFSET | svstemSTACK —»
SYSTEM SP -1 POINTER BEFORE
BEFORE TRAP TRAP OR
OR INTERRUPT INTERRUPT
<= 1 WORD — |¢«— 1 WORD —»~|
HigH HIGH
l I LA Rt I I NUVNEDY

Format of Saved Program Status in the System Stack

RO4

Ras

RQ12

C-6
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BYTE OFFSET

HEX
0

28

30

38

3C

40

ey

DECIMAL
0

24

32

40

48

64

ceee

570

b B

r PROGRAM COUNTER J
NONSEGMENTED

CONTROL BITS FLAGS

Eqslﬁ[EPAl vi [uvm I s |PN I DTH -

PC SEGMENT NUMBER

| PROGRAM COUNTER OFFSET ]

SEGMENTED

Program Status Blocks

PROGRAM STATUS AREA
POINTER (PSAP)

[seono.] [uerer ]| 000 ]

09 4
OFFSET  IMPLIED
28001 28002
and and
28003 28004 BYTE OFFSET
DECIMAL __ HEX
RESERVED [) [)
RESERVED |
oW EXTENDED Few 4 4
INSTRUCTION
| |sea TRAP pC
PC OFFSET e
RESERVED
Fow PRIVILEGED Fcw 8 8
INSTRUCTION
| Isec TRAP PC
PCOFFSET | _
RESERVED
v SYSTEM FCw 12 c
CALL
[ Tsea] TRAP pc
PCOFFSET | __
RESERVED
FCW SEGMENT
5] A NOT USED 16 10
PCOFFSET |_ _ _
RESERVED
FCw 20 14
FCW NON-MASKABLE
INTERRUPT
SEG| o
PCOFFSET | __ _ _ __
RESERVED row ” 1
FCW NON.VECTORED
INTERRUPT
SEG] re
PCOFFSET |_ _ _
RESERVED
28 1c
W FCw
| |sea
[
PCoOFFSET Co 30 1€
SEG
PC, OFFSET | VECTORED PCy 32 2
SEG INTERRUPTS
PC: 34 22
PC4 OFFSET 2
R N . .
: . . 4
: : . H
: : . :
| Jsec____| PC2s5
[PCoss OFFSET | __ __
540 21C

Program Status Area

2010-039, 024



Appendix C

Condition
Codes

Code
F

Z
NZ
C
NC
PL
MI
NE
EQ
ov
NOV
PE
PO
GE

LT
GT
LE

UGE

ULT
UGT
ULE

Meaning Flag Setting

Always false*
Always true
Zero

Not zero
Carry

No carry
Plus

Minus

Not equal
Equal
Overflow

No overflow
Parity even
Parity odd
Greater than (SXORV) =0
or equal

Less than (SXORV) =1
Greater than (ZOR (SXOR V))
Less than or (ZOR (SXOR V))
equal

Unsigned C=0

greater than

or equal

Unsigned C=1

less than

Unsigned ((C=0)AND(Z = 0)) = 1
greater than

Unsigned less (CORZ) =1

than or equal

.

WO<S<NNODUQONN '

O~ o m~—"0rro0g 90O+~

non

Binary

1000
0110
1110
0111
1111
1101
0101
1110
0110
0100
1100
0100
1100
1001

0001
1010
0010

1111

0111
1011
0011

This table provides the condition codes and the flag settings they represent.

Note that some of the condition codes correspond to identical flag settings: i.e., Z-EQ, NZ-NE,

NC-UGE, PE-OV, PO-NOV.

*Presently not implemented in PLZ/ASM Z8000 compiler.

I | [ l I ’ I I] BITS IN A BYTE

LT TP T T T] ] emswawom
Address n
| svre
Address n (even) Address n + 1
I UPPER BYTE | LOWER BYTE ] woro
P Vb Y Ntk b
Address n Address n + 1
UPPER WORD/UPPER BYTE I
haikiri bl il NS
Address n + 2 Address n + 3 LONG WORD
I LOWER WORD/LOWER BYTE ]
N S Attt
Addressable Data Elements

c-8
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28000
Addressing Addressing Mode Operand Addressing Operand Value
Modes
In the Instruction In a Register In Memory
R
Register [[recisten anoress }—{ operano | “"I content of the
IM
Immediate In the instruction
‘IR
Indirect [Reaisten avoness J—=[ avoness } { l :‘;..m oddrmd 'll:.in lhn'
Register 1 register
DA
The content of the location
Direct ADDRESS whose address is in the
pliect [ - {oreo ] whose add
‘X
The content of the loca-
REGISTER ADDRESS INDEX tion whose address is the
Index pyo ~ ddress in the i i
plus the content of the
working register.
RA The content of the location
Relative m Comtont of the progra
| DISPL 1ﬁ 0 OPERAND counter, offset by the
Address ] displ in the
instruction
‘BA The content of the location
Base REGISTER ADDRESS |—»] BASE ADDRESS Ij\. whose address is the
dd in the regt
Address e v offset by the displacement
in the instruction
‘BX The content of the loca-
Base REGISTER ADDRESS BASE ADDRESS tion whose address is
Index REGISTER ADDRESS |—»{  INDEX + OPERAND the address in a register
plus the index value in
another register.
*Do not use RO or RRO as indirect, index, or base registers.
Powers
2n n 162 n
of 2 256 8 2 = 16° ! 0
and 16 . = 16 16 1
512 9 22 =16
8 = 2 256 2
1024 10 2 16
m = 163 4096 3
2048 11 21 = 164 65 536 4
4 096 12 2 = 16° 1048 376 2
% = 166 16 777 216
8192 13 2: = 167 268 435 456 7
16384 14 22 = 16
22 = |g8 4 294 967 296 -8
32768 15 2% = 16 68 719 476 736 9
65 536 16 20 = 16 1099 511 627 776 10
o z oo B ose 12
26 = 162 474
222 ;‘8‘; ig 2= = 168 4 503 599 627 370 496 13
524 2= - jgu 72 057 594 037 927 936 14
1048576 20 22 = 165 1 152 921 504 606 846 976 15
2097 152 21
4194 304 22 Powers of 16
8 388 608 23
16 777 216 24
Powers of 2

2010-012
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8 7 6 5 4 3 2 1
Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 536870912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 1610612736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,879,048,192 7 117,440,512 7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 2,415919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 3,221,225472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15
8 7 6 5 4 k] 2 1
Hexadecimal and D 1 Interger Conversion Table
To Convert Hexadecimal to Decimal To Convert D 1 to Hexadecimal

1. Locate the column of decimal numbers corresponding to

the left-most digit or letter of the hexadecimal: select

1. (a) Select from the tabel the highest decimal number

that 1s equal to ‘or less than the number to be

from this column and record the number that cor-
responds to the position of the hexadecimal digit or
letter.

. Repeat step 1 for the units (second from the left)
position.

. Add the numbers selected from the table to form the
decimal number.

To convert integer numbers greater than the capacity of
the table, use the techmques below:

H, deci

1 to Deci 1

Succesive cumulative mulitplication from left to right,
adding units position.

Example: D34)5=3380)g Example:

. Repeat step 1 for the units (third from the left) position.

D= 13 Conversion of
1(2_5_3 Hexadecimal Value
3= 113 D34
211 1.D 3328
x16
3376 2.3 48
4 = +4
3380 3.4 _ 6
4. Decimal 3380

4.

D

converted.

(b) Record the hexadecimal of the column containing
the selected number.

(c) Subtract the selected decimal from the number to be
converted.

. Using the remainder from step 1(c) repeat all of step 1

to develop the second position of the hexadecimal (and
a remainder).

. Using the remainder from step 2 repeat all of step 1 to

develop the units position of the hexadecimal.
Combine terms to form the hexadecimal number.

deei 1

imal to H

Divide and collect the remainder in reverse order.

Ex
16
16
16

ample: 3380)9=D34)4 Example:
13380 remainder Conversion of
211\ Decimal Value
13 \3 3380
\D 1.D —-3328
52
2.3 -48
4
3.4 -4
4. Hexadecimal D34 j
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ASCII
Characters

Hexad Ch Meaning Hexadecimal Character
00 NUL NULL Character 40 @
01 SOH Start of Heading 41 A
02 STX Start of Text 42 B
03 ETX End of Text 43 (¢]
— 04 EOT End of Trar 44 D
05 ENQ Enquiry 45 E
06 ACK Acknowledge 46 F
07 BEL Bell 47 G
— 08 BS Backspace 48 H
09 HT Horizontal Tabulation 49 1
0A LF Line Feed 4A J
0B VT Vertical Tabulation 4B K
—_0C FF Form Feed 4C L
0D CR Carriage Return 4D M
OE SO Shift Out 4E N
OF SI Shift In 4F o
— 10 DLE Data Link Escape 50 P
11 DC1 Device Control 1 51 Q
12 DC2 Device Control 2 52 R
13 DC3 Device Control 3 53 S
—_— 14 DC4 Device Control 4 54 T
15 NAK Negative Acknowledge 55 1)
16 SYN Synchronous Idle 56 \'s
17 ETB End of Transmission Block 57 w
—18 CAN Cancel 58 X
19 EM End of Medium 59 Y
1A SUB Substitute 5A Z
1B ESC Escape 5B [
—1C FS File Separator 5C \
1D GS Group Separator 5D ]
1E RS Record Separator S5E A
1F Us Unit Separator SF —
—20 SP Space 60 !
21 ! 61 a
22 " 62 b
23 # 63 c
—_—24 $ 64 d
25 % 65 e
26 & 66 f
27 N 67 g
—_28 ( 68 h
29 ) 69 1
2A * 6A )
2B + 6B k
—2C ! 6C 1
2D - 6D m
2E . 6E n
2F / 6F o
— 30 0 70 p
31 1 71 q
32 2 72 r
33 3 73 s
—34 4 74 t
35 5 75 u
36 6 76 v
37 7 77 w
—38 8 78 x
39 9 79 y
3A : 7A z
3B ; 7B {
— 3C < 7C 1
3D = 7D }
3E > 7E ~
3F ? 7F DEL Delete

c-11
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Appendix D

INTRODUCTION

This Appendix presents the software algorithms
required to restart an aborted 28003 or 278004
instruction. It was assumed in the preparation of
this document that the reader would be familar
with the following: 1) the 28000 assembly
language, 2) operating systems, particularly
memory management, 3) the 28010 Memory Management
Unit (MMU), and 4) the 128015 Paged Memory
Management Unit (PMMU).

Restarting most instructions only requires setting
the program counter to point to the first word of
the aborted instruction. Some instructions,
however, are aborted after they have modified some
CPU registers but before their execution is
completed. For example if a "Compare and
Increment" instruction is aborted during execution
because the memory number or word to be used for
the comparison is not in main memory, then the
register used as a counter will have been

decremented. Thus, before restarting the
instruction, the counter register must be
incremented.

When an instruction is aborted, the CPU saves the
values contained by the Flag and Control Word
(FCW) and the Program Counter (PC) of the aborted
instruction on the system stack together with

information read from the MMUs during the
address/trap acknowledge sequence. The fault
handler routine is automatically invoked to
process the address translation trap. This

routine saves a copy of the aborted program's
registers so that another program can be executed
while the aborted program waits for data or
instructions to be loaded into the main memory.

In the following discussion, the terms "PC" and
"register" refer to copies of the aborted
program's PC and registers, which typically reside
in main memory during the suspension of the
aborted program's execution.

—
The steps for restarting an instruction are as
follows:

1. Determine which MMU or PMMU caused the CPU
instruction abort.

2. If the MMU or PMMU that caused the abort was
managing stack memory and the abort was the
result of a Page Write Warning (PWW) then,
exit routine; otherwise, continue with the
next step.

3. Determine whether or not the hardware was in
the segmented mode.

4. Read the address of the aborted instruction
from the appropriate MMU (or PMMU) and
external hardware and update the PC with it.
The address's segment number and high byte are
obtained from the MMU (or PMMU); the low byte
is obtained from external hardware.

5. Read the violation address from the
appropriate MMU (or PMMU) and perform any
action required to establish the validity of
the requested address (e.g., bring in the
page(s) from secondary memory, or mark an
already resident page as valid).

6. Read the Bus Status register from the
appropriate MMU (or PMMU). If the status
indicates that a trap had ocurred during an
instruction fetch cycle then exit the routine;
otherwise, continue with the next step.

7. Using the updated PC, examine the instruction
to see if any CPU registers have been
modified. (Suggestion: use the upper byte of
the instruction and a 256-bit table which
identifies potential cases.) If  the
instruction did not modify any registers, then
exit the routine. Some instructions aborted
in a paged virtual memory system require that
the number of successful data reads and writes
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performed during the executed portion of the
instruction cycle be saved for restart. This
information is normally read from a hardware
data transfer counter set up to count the
number of successful data transfers performed
since the completion of the last instruction
fetch cycle. In the paged version of the MMU,
however, this information is automatically
collected and stored.

8. Call the register fix-up routine, and exit the
current routine.

FIX-UP ROUTINE

The fix-up routine examines the  aborted
instruction and modifies the register file if
necessary. The number of instructions that can
generate memory traps depends' upon whether a
segmented or paged virtual memory system is
implemented. In a paged system, data can cross
page boundaries; this operation, however adds
complexity to the register fix-up routine as well
as increasing the number of instructions that
might have modified registers before being
aborted.

When a program is run in System mode, several
assumptions regarding the operating system are
made (no assumptions are made about programs run
in Normal mode) :

e The fault handler will not generate a fault
until all critical data has been saved.

e The system stack always resides in main memory,
thus, accessing the system stack never causes a
fault.

e I/0 buffers always reside in primary memory;
thus, an 1/0 instruction never causes a fault.

e The Program Status Area always resides in main
memory .

The reasons behind these assumptions are as
follows: If the system stack is not located in
main memory, the "saved" PC and FCW data pushed in
response to an interrupt or trap acknowledge is
lost unless captured by external hardware.

If the Program Status Area (PSA) is not located in
main memory, the occurrence of any trap or
interrupt causes an address trap to be generated
when the new program status is fetched. The new
address trap forces the CPU to jump to whatever
memory address was present on the bus when the MMU
stopped generating trap requests (that is, the
address of the "fetched" program status).

The location of input/output buffers outside of
main memory would result (except for extremely low
speed devices) in transfer overruns or underruns.
Such operations would cause data read from devices
to be lost upon the detection of a memory fault.

Tables 1 and 2 list all the instructions that may
require modification to the registers before they
can be restarted. Instructions not listed do not
require additional action other than the
correction of the Program Counter. The lists
presented in Tables 1 and 2 are based on the
28003/4 implementation of the Z8000 instruction
set. Only those actions given in these tables are
to be performed before restarting the
corresponding instruction. All actions 1listed
must be performed even if the specifications of
the instruction involved indicate that registers
will be modified during its execution.

Only those registers indicated in Tables 1 and 2
should be "corrected" in the case of an abort.
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Table 1. Instructions That May Have Modified CPU Registers When Aborted

in a Segmented Virtual Memory.

INSTRUCTION

LDI(R):

CPI(R), TR(T)I(R):
CPD(R), TR(T)D(R):

CPSI(R):

l LDD(R), CPSD(R):

DESCRIPTION

If bus cycle status indicates that a read was attempted to an absent segment (R/W
bit=1), increment the Counter register by one.

If a write was attempted to an absent segment (R/W bit=0), increment the Counter
register by one and decrement the Destination Pointer register by one if byte move
or by two if word move.

Increment the Counter register by one.

Increment the Counter register by one. Compare the Source Pointer address with
the violation address. If they are equal, then no further action is required;
otherwise decrement the Destination Pointer register by one if comparing bytes

compare or by two if comparing words.

Same as the increment versions, but the Destination Pointer must be incremented.

CALL(R): Increment R15 (the offset field of the Stack Pointer) by two if in a nonsegmented
CALL: mode or by four if in a segmented mode.
CALR:
POP: If R/W bit of bus cycle status=0 (write attempted to an absent segment), decrement
Stack Pointer by 2 and restart instruction.
POPL: Same as POP but decrement by 4.
Table 2. Instructions That May Have Modified CPU Registers When Aborted
in a Paged Virtual Memory System.
INSTRUCTION DESCRIPTION

LDL from memory:

If the Destination register pair was used in the address calculation and the Data
Read/Write counter in the PMMU indicates that one read was successfully completed
(i.e., the second half of the long word being loaded caused the page fault), then
the even register of the pair was modified and the register may require correction
before restarting the instruction; otherwise no action is required.

In segmented mode:

If the addressing mode was Indirect Register or Base, store the violation address
segment number in the even register of the destination pair.

If the addressing mode was Index and the even register of the destination pair was
used as the index register, subtract the base address offset in the instruction
from the violation address offset, store the result in the index register, and
decrement that register by two.
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Table 2. (Continued)

INSTRUCTION

PUSHL from
memory :

LDI(R), CPI(R),
CPSI(R), TR(T)I(R):
LDD(R), CPD(R),
CPSD(R), TR(T)D(R):

LDPS:

DESCRIPTION
If the addressing mode was Base Index then:

If the Destination pair was used as the Base Address pair, store the violation
address segment number in the even register of the destination pair.

If the even register of the destinaton pair was used as the index register,
subtract the Base Address offset from the violation address offset, store the
result in the Index register, and decrement that register by two.

In nonsegmented mode:

If the addressing mode was Indirect register and the even register of the
destination pair was used as the Indirect register, then decrement the violation
address by two and store the result in the even register of the destination pair.

If the addressing mode was Base or Index and the even register of the destination
pair was used as the base or index register, subtract the address component in the
instruction from the violation address, store the result in the even register of
the destination pair, and decrement that register by two.

If the addressing mode was Base Index with one of the address registers used as
the even register of the destination pair, subtract the other address register
from the violation address, store the result in the even register of the
destination pair and decrement that register by two.

If the addressing mode was Base Index and the even register was used as both the
Base and Index register, decrement the violation address by two, store the result
in the even register of the register pair, and shift that register one position to
the right (divide by two).

If bus status indicates that a write was aborted (i.e., the bus status is not C16
or D16) and the data Read/Write counter indicates completion of three data
transactions, increment the Stack Pointer by four; otherwise, no action is
required.

Same as given in Table 1 for segmented virtual memory instruction CALL (R), CALL
and CALR.

If the Data Read/Write counter indicates that no read was successfully completed,
no action is required.

If one read was successfully completed, then if the saved FCW equals the first
word of the PS (i.e., the CPU was in nonsegmented mode), clear the Segmentation
mode bit and set the System mode bit in the saved FCW.

If two reads were successfully completed (i.e., the CPU was in Segmented mode),
set both the Segmentation and System mode bits in the saved FCW.
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Table 2. (Continued)

INSTRUCTION

RET:

POP:
POPL:

LDM from memory:

DESCRIPTION

If the Data Read/Write counter indicates that no reads were successfully
completed, and if in Nonsegmented mode, decrement R15 (the offset field of the
Stack Pointer) by two; otherwise, no action is required.

If one read was successful, decrement R15 by four.
If one read was successful, decrement stack pointer by two.
If two reads were successful, decrement stack pointer by four.

If bus status and the Data Read/Write counter indicate that n reads were
successfully completed, then & register used in the address calculation may have
been modified. If this is the case, the register needs to be corrected in the
manner described below; otherwise, no action is required.

If the Indirect Register addressing mode was used in Segmented mode and the
indirect register pair has been modified, subtract 2(n + 1) from the violation
address offset and store the segment number and computed offset in the register
pair. In Nonsegmented mode, subtract 2(n + 1) from the violation address and
store the result in the Indirect register.

If the Index addressing mode was used and the index register has been modified,
subtract the offset in the instruction and 2(n + 1) from the violation offset, and
store the result in the Index register.
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ALGORITHM FOR SEGMENTED VIRTUAL MEMORY REGISTER FIX-UP

Definitions:
RW = Read/Write counter in PMMU Rs, RRs = source register
or R/W bit in MMU bus cycle
status register Rs1 = source register Rs + 1 (for
example, if RR8 = S RRs then
SEG = Segmented/Nonsegmented mode, Rs1 is R9)
SEG = 1 --> Segmented mode
of operation Rd, RRd = destination register
VADDR = violation address (two words Rd1 = destination register Rd + 1
if segmented, one word if
nonsegmented) Re = count register

LN = lowest nibble of first word
of an instruction

Upper Byte of Op Code Fix-Up

B8: (Translate)
Rc <-- Rec + 13
DO-DF, 1F, SF: (Call, Call Relative)

IF SEG = 1 THEN R15 <-- R15 + 4
ELSE R15 <-- R15 + 2

BA: (Load or Compare Byte String)
Rc <-- Rc + 1;
CASE LN
LDI: 1 IF RW =0 THEN IF SEG = 1 THEN Rd1 <-- Rd1 - 1
(i.e. IF WRITE) ELSE Rd <-- Rd - 1

CPSI, CPSIR: 2,6: IF SEG = 1 THEN IF RRs # VADDR THEN Rd1 <-- Rd1 - 1
ELSE IF Rs # VADDR THEN Rd <-- Rd - 1
LDD: 9: IF RW =0 THEN IF SEG = 1 THEN Rd1 <-- Rd1 + 1
(i.e. IF WRITE) ELSE Rd <~- Rd + 1
CPSD, CPSDR: A,E: IF SEG = 1 THEN IF RRs # VADDR THEN Rd1 <-- Rd1 + 1
ELSE IF Rs # VADDR THEN Rd <-- Rd + 1

BB: (Load or Compare Word String)
Rc <== Rc + 1;
CASE LN
1: IF RW = 0 THEN IF SEG = 1 THEN Rd1 <-- Rd1 - 2
(i.e. IF WRITE) ELSE Rd <== Rd - 2

2,6: IF SEG = 1 THEN IF RRs # VADDR THEN Rd1 <-- Rd1 - 2
ELSE IF Rs # VADDR THEN Rd <-- Rd - 2
9: IF RW =0 THEN IS SEG = 1 THEN Rd1 <-- Rd1 + 2
(i.e. IF WRITE) ELSE Rd <-- Rd + 2
AE: IF SEG = 1 THEN IF RRs # VADDR THEN Rd1 <-- Rd1 + 2
ELSE IF Rs # VADDR THEN Rd <-- Rd + 2
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ADDITIONAL CASES FOR PAGED VIRTUAL MEMORIES

Additional Definitions:

RW = Read/Write Counter in PMMU VSEG = violation segment number
FCW = saved FCW of aborted program VOFF = violation offset
PSW = first word of data Fetched I0FF = offset in address in the
during LDPS instruction aborted instruction
(i.e., if RW = 1 then PSW
= contents of memory location Rx = index register
VADDR - 2)
Upper
Byte Fix-Up

11,51:  (Push Long from memory)
IF RW = 3 THEN IF SEG = 1 THEN Rd1 <-- Rd1 + &4
ELSE Rd <-- Rd + 4

14,35: (Load Long from memory--Indirect, Base, using RRd or Rd as the address register)
IF RW = 1 THEN IF SEG = 1 THEN Rd <-- VSEG
ELSE Rd <-- VOFF - 2

54: (Load Long--Index using Rd as the index register)
IF RW = 1 THEN IF Rs = O THEN Rd <-- VOFF - IOFF - 2

75:  (Load Long--Base Index)
IF RW = 1 THEN IF SEG = 1 THEN IF RRd is the address register

THEN Rd <-- VSEG

ELSE IF Rd = Rx THEN Rd <-- VSEG
ELSE Rd <-- VOFF - Rs - 2

ELSE IF Rs # Rx THEN Rd <-- (VOFF - 2) / 2

ELSE IF Rd = Rs THEN Rd <-- VOFF - Rx - 2
ELSE Rd <-- VOFF - Rs - 2

]

39: (Load Program Status)
IF RW = 1 THEN IF FCW = PSW THEN FCW <-- 4000
ELSE IF RW = 2 THEN FCW <-- COOO

9E:  (Return)
IF RW = 0 AND SEG = O THEN R15 <== R15 - 2
ELSE IF RW = 1 THEN R15 <-- R15 - 4

1C:  (Load Multiple--Indirect)
IF SEG = 1 THEN Rs <=~ VSEG; Rs1 <--= VOFF - 2(n + 1)
ELSE Rs <=- VOFF - 2(n + 1)

5C:  (Load Multiple--Index)
IF Rx = O THEN Rs <-= VOFF - IOFF = 2(n + 1)
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abort: The interruption of an instruction
execution cycle before its completion. Abort
interrupts occur in Z8000 virtual memory
systems when the executing instruction
references information not in main memory.

address: An entity that specifies one par-
ticular element in a set of similar elements.
May be either a memory address or an I/O
address (g.q.v). (See also segmented address,
logical address, physical address.)

address space: A set of addresses. The Z8000
can access eight separate address spaces:
normal-mode program memory space, system-
mode program memory space, normal-mode
data memory space, system-mode data memory
space, normal-mode stack memory space,
system-mode stack memory space, standard
1/O space, and special I/O space. (See normal
mode, system mode, program memory address
space, data memory address space, stack
memory address space, standard I/O address
space, and special I/0 address space.)

addressing mode: The way in which the
address of an operand (q.v.) is specified.
There are eight addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Index, Base Address, Relative Address, Base
Index (g.q9.v).

autodecrement: The contents of a register are
decremented and then used as specified by the
instruction.

autoincrement: The contents of a register are
used as specified by the instruction and then
incremented.

Base Address (BA) addressing mode: A base
address consists of a register that contains the
base and a 16-bit displacement (q.v.). The
displacement is added to the base and the
resulting address indicates the effective
address (q.v.). In nonsegmented mode, the
base address is held in a word register (q.v.)
and the displacement is in the instruction. In
segmented mode, the segmented base address
is held in a register pair and the displacement
is in the instruction.

Glossary

Base Index (BX) addressing mode: Base
Index addressing is similar to Base addressing
except that the displacement (“index’’), as well
as the base, is held in a register. In nonseg-
mented mode, the base address is held in a
word register and the index is held in a word
register. In segmented mode, the segmented
base address is held in a register pair (q.v.)
and the index is held in a word register.

BCD digit: A Binary Coded Decimal digit is
an encoding of the ten decimal digits into a
4-bit code that is simply the first ten binary
numbers in the binary number system (starting
with 0). This code is used to represent and
process numbers in the base-10 (decimal)
format.

bus: A group of signal lines, which connects
the devices in a system.

Bus-Disconnect state: The CPU state during
which the CPU is not the bus master and may
not initiate fransactions (g.v.) on the bus.

bus master: The device in control of the bus.
Must be a device that is able to initiate
transactions.

bus request: A request for control of the bus.

byte: A byte is eight contiguous bits; a byte in
memory starts on an addressable byte
boundary.

byte register: An 8-bit register. The Z8000
CPU contains 16 general-purpose byte
registers, designated RLn and RHn (n = 0-7).

clock cycle: One cycle of the CPU clock,
beginning with a rising edge.

condition: An event detected by the hardware
and indicated by setting the appropriate flag.
A condition is caused by the execution of an
instruction and is always reproducible. The
Z8000 has six flags to record these events,
called status flags (q.v.).

context switching: Interrupting the activity in
progress and switching to another activity. A
context switch involves saving for later restora-
tion the contents of the general-purpose
registers, the Program Counter and the Flag
and Status Word (q.v.).
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CPU state: Either Running state, Stop/Refresh
state, or Bus-Disconnect state (g.q.v.).

data memory address space: A memory
address space (q.v.) that is identified by the
status codes 1000 or 1010.

data structure: A logical organization of
primitive elements (e.g. byte or word) whose
format and access conventions are well-
defined. Examples of data structures are
tables, lists and arrays.

data type: The way in which bits are grouped
and interpreted. For an instruction, the data
type of an operand determines its size and the
significance of its bits. Operand data types
include byte, word, long word, byte string,
word string, and BCD digit.

Direct Address (DA) addressing mode: In this
mode, the operand address is contained within
the instruction.

displacement: A number contained in the
instruction for use in calculating the effective
address (q.v.) of an operand. The displace-
ment is added to the contents of a register dur-
ing the calculation.

DMA: Direct Memory Access is a method for
transferring data to or from main memory at
high speed by avoiding the CPU registers.

effective address: The address obtained after
indirect or indexing modification. In non-
segmented mode, the effective address is a
16-bit number. In segmented mode, the effec-
tive address consists of a 7-bit segment number
and 16-bit offset. In systems with memory
management, the effective address is the
logical address which must be translated to
obtain the physical memory address.

flags: Bits in the Flag and Control Word
(g.v.) that indicate conditions (q.v.).

Flag and Control Word (FCW): One of the
two Program Status registers; it contains flags
(g.v.) and bits that control the operation of the
CPU.

Immediate (IM) addressing mode: In this
mode, the operand is contained within the
instuction.

Index (X) addressing mode: In this mode, the
operand address is obtained by adding the
contents of an index register (g.v.) to a base
address contained in the instruction.

index register: A word register used to con-
tain a displacement for use in effective address
calculation.

Indirect Register (IR) addressing mode: In
this mode, the operand address is contained
within a register.

instruction fetch: An access to program
memory address space (q.v.).

interrupt request: An event other than a trap
or jump or call instruction that changes the
normal flow of instruction execution. (See non-
maskable, non-vectored, and vectored
interrupts.)

interrupt service routine: The routine exe-
cuted in response to an interrupt.

interrupt/trap acknowledge transaction: The
transaction initiated by the CPU in response to
an interrupt or trap. Obtains an identifier word
from the interrupting device or memory man-
agement hardware.

I/0 address: The address of an I/O port,
always 16 bits long. Word ports may have even
or odd addresses, Special I/O byte ports are
even, Standard I/O byte ports are odd.

I/0 transaction: A transaction that transfers
data to or from a peripheral device or memory
management hardware.

logical address: The address manipulated by
the programmer, used by instructions and out-
put by the Z8000.

long word: A long word is 32 contiguous bits;
a long word in memory starts on an even
addressable byte boundary.

machine cycle: One basic CPU operation,
starting with a bus transaction (q.v.).

memory address: An address specifying a
location in memory. Word and long-word
addresses must be even, byte addresses may
be even or odd.

memory management: The process of trans-
lating Jogical addresses into physical
addresses (g.g.v.), plus certain protection
functions.

memory transactions: A transaction that
transfers data to or from main memory.

Normal mode: A Running-state (q.v.) mode in
which the S/N flag in the FCW is 0 and the
N/S line is High. In this mode, the CPU may
not execute privileged instructions (g.v.).

non-maskable interrupts: Inferrupts (q.v.)
which cannot be disabled.

nonsegmented mode: A Running-state mode
of the Z8000 CPUs. For segmented CPUs in
this mode, all addresses are generated with the
same segment number (q.v.).

non-vectored interrupts: /nterrupts (q.v.)
which do not use the identifier word as a vec-
tor to an inferrupt service routine (q.v.).

offset: In a Z8001 CPU, the 16-bit value that
appears on the AD lines when an address is
generated.

operand: An item of data operated on by an
instruction.
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physical address: The address required for
accessing the memory, obtained from the
logical address generated by the Z8000 by
memory management hardware, for example,
the Z8010 Memory Management Unit.

privileged instruction: An instruction intend-
ed for use primarily by an operating system,
which can be executed only in System mode.
In general, instructions that change the pro-
cessor state or perform I/O are privileged.

Program Counter (PC): One of the two Pro-
gram Status registers (q.v.). Contains the
address of the current instruction.

program memory address space: The
memory address space (q.v.) indicated by the
status codes (1100 or 1101).

Program Status Area: The area in memory
reserved for the starting program status of the
interrupt and trap service routines.

Program Status Area Pointer (PSAP): The
register that contains the starting address of
the Program Status Area.

Program Status registers: The two registers
(PC and FCW) that contain the program
status.

Refresh counter: A register that controls the
28000 dynamic memory, periodic-refresh
mechanism. Used to set the refresh rate and to
enable the mechanism.

Refresh cycle: A type of transaction used to
refresh dynamic memory. It is three clock
cycles long.

Refresh/Stop state: A CPU state entered
whenever the STOP line is asserted. A con-
tinuous stream of refresh cycles (q.v.) is
generated.

register: A storage location in hardware logic
other than the memory. Bits within a register
are numbered from 0, with the least significant
being the rightmost. See also byte register,
word register, register pair, and register quad.

Register (R) addressing mode: In this mode,
the operand is in a general-purpose register.

register pair: One of eight pairs of general-
purpose word registers, designated RRn
(n=0,2,4,..12, 14).

register quad: One of four groups of four
word registers, designated ROn (n = 0, 4, 8,
12).

Relative Address (RA) addressing mode: In
this mode, the operand address is calculated
by adding a displacement found in the instruc-
tion to the current PC value.

request: Either an interrupt request, bus
request, resource request, or STOP request
(gg.v). An external device requests that the
CPU perform some action.

reset: An internal CPU operation that initial-
izes the Program Status registers. It is acti-
vated by the RESET line.

Running state: One of the three CPU states.
In this state, the CPU is fetching and exe-
cuting instructions or handling interrupts.

segment: In a Z8001, a set of adjacent
memory addresses (up to 64K) with the same
segment number (q.v.) on lines SNy-SNg.

segment number: A number specifying a
memory segment (q.v.). Placed on the
SNp-SNg lines during memory transactions in
Z8001 system. Part of a segmented

address (q.v.).

segmented address: In segmented Z8000
CPU'’s, a 23-bit value consisting of a 7-bit seg-
ment number (g.v.) and a 16-bit offset (q.v.).

segmented mode: One of the Running-state
modes of the segmented Z8000 CPU. In this
mode, CPU generates addresses that can have
different segment numbers.

Special I/0 address space: An /O address
space (qg.v.) that is identified by the status
code 0011. Used to access memory manage-
ment hardware.

stack: A data structure used for temporary
storage or for procedure and interrupt service
routine linkages. A stack uses the last-in, first-
out concept. As items are added to, or pushed
onto, the stack, the stack pointer decrements;
as items are removed from, or popped off, the
stack, the stack pointer increments.

stack memory address space: A memory
address space (q.v.) that is identified by the
status codes 1001 and 1011.

Stack Pointer: A general-purpose register
indicating the top (lowest address) of a stack.

Standard 1/0 address space: An I/O address
space (g.v.) that is identified by the status
code 0010. Used for accessing peripherals.

status code: A 4-bit encoding of the CPU’s
current transaction, for example, internal
operation, segment trap acknowledge, or stack
memory request.

status flags: Status flags are set according to
the outcome of certain instructions to direct
the subsequent flow of the program as neces-
sary. There are six status flags: Carry, Zero,
Sign, Parity/Overflow, Decimal Adjust and
Half Carry. The first four are grouped together
to determine the condition code, the last two
are used in programs manipulating BCD
digits.

status lines: The lines STp-ST3, which contain
the status code during transactions.
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stop request: A request that is made by acti-
vating the STOP line.

Stop/Refresh state: See Refresh/Stop state.

System mode: A Running-state mode (g.v.) in
which the S/N flag in the FCW is 1 and the
N/S line is Low. In this mode, the CPU may
exercise privileged instructions (q.v.).

transaction: One of the basic bus operations.
A transaction lasts three or more clock cycles
and covers a single data movement on the bus.

trap: A condition that occurs at the end of an
instruction that caused an illegal operation.
The Z8000 traps are internal traps arising from
system call, EPA instruction and privileged in-
structions executed in normal mode, and an
external trap, the segmentation/address trap,
arising from memory access violations in
systems with memory management. A trap is
similar to an interrupt in that it causes the exe-
cuting program to be interrupted and the Pro-
gram Status registers to be saved on the system
stack. Traps cannot be disabled.

vectored interrupts: Inferrupts (q.v.) which
use the identifier word as a vector to the infer-
rupt service routine (q.v.). May be

disabled.

virtual memory: A memory management
technique in which the system’s logical
memory address space is not necessarily the
same as, and can be much larger than, the
available physical memory address space. Vir-
tual memory is supported by use of memory
mapping hardware and secondary storage
devices.

WAIT cycle: A clock cycle during which the
WAIT line is active. Used to prolong trans-
actions, since no signal line is sampled while
WAIT s active.

word: Two contiguous bytes (16 bits) starting
on an even addressable byte boundary. Bits
are numbered from the right, 0 through 15. A
word is identified by the address of the byte
containing the most significant bit, bit 15.

word register: A 16-bit register.
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Reader’'s Comments

Your feedback about this document helps us ascertain your needs and fulfill them in the future.
Please take the time to fill out this questionnaire and return it to us. This information will be
helpful to us and, in time, to future users of Zilog products.

Title of this document:

Your Name:

Company Name:

Address:

Briefly describe application:

Does this publication meet your needs? [ Yes [0 No

If no, why?

How are you using this publication?
O As an introduction to the subject?
O As a reference?

[0 As an instructor or student?

Rated on ascale of 1 to 10, this document isa

What would have improved the material?

How do you find the material?

Excellent
Technicality 0
Organization m]
Completeness O

Good Poor
O O
O O
(] O

Other comments and suggestions:

If you found any mistakes in this document, please let us know what and where they are:

Please clip, fold, and return to Zilog, Inc.
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