

Z8000 CPU
Technical Manual . -• III _
P7':, ~ m­PJr.:, _ ..
7-i1",pw
Zilog

Table of Conlenls
1.1 Introduction .. 1-1
1.2 GeneralOrganization .. 1-1
1.3 Architectural Features ... 1-1

General-Purpose Register File ... 1-2
Instruction Set .. 1-2
Data Types ... " 1-2
Addressing Modes ... 1-2
Multiple Memory Address Spaces 1-3
System/Normal Mode of Operation 1-3
Separate I/O Address Spaces .. 1-3
Interrupt Structure .. 1-3
Multi-Processing .. 1-4
Large Address Space of the Z8001 1-4
Segmented Addressing of the Z8001 .. 1-4
Memory Management .. 1-4

1.4 Benefits of the Architecture ... 1-5
Code Density . 1-5
Compiler Efficiency .. 1-5
Operating System Support .. 1-5
Support for Many Types of Data Structures .. 1-6
Two CPU Versions: Z8001 and Z8002 1-6

1.5 Extended Instruction Facility .. 1-6
1.6 Summary ... 1-6

2.1 Introduction .. 2-1
2.2 General Organization .. 2-1
2.3 Hardware Interface .. 2-3

Address/Data Lines .. 2-3
Segment Number (Z8001 only) ... 2-3
Bus Timing ... 2-3
Status .. 2-3
CPU Control .. 2-4
Bus Control ... 2-4
Interrupts .. 2-4
Segment Trap Request (Z8001 only) 2-4
Multi-Micro Control ... 2-4
System Inputs ... 2-4

2.4 Timing ... 2-4
2.5 Address Spaces ... 2-4

Memory Address Space .. 2-4
I/O Address Space ... 2-5

2.6 General-Purpose Registers .. 2-5
2.7 Special-Purpose Registers . 2-7

Program Status Registers ... 2-7
Program Status Area Pointer .. 2-7
Refresh Counter ... 2-7

2.8 Instruction Execution .. 2-7
2.9 Instructions ... 2-7

Instruction Formats .. 2-8
2.10 Data Types ... 2-8
2.11 Addressing Modes . 2-8
2.12 Extended Processing Architecture 2-8

iii

zaooo Processor
Overview

I

Archi tecture

2

Table of Coaleals (Continued)

2.13 Exceptions ... 2-9
Reset .. 2-9
Traps '" . '" " , 2-9
Interrupts .. 2-9
Trap and Interrupt Service Procedures .. 2-9

3.1 Introduction .. 3-1
3.2 Types of Address Spaces .. 3-1
3.3 I/O Address Space ... 3-1
3.4 Memory Address Spaces .. 3-2

Addressable Data Elements ... 3-2
Segmented and Nonsegmented Addresses 3-2
Segmentation and Memory Management . 3-3

4.1 Introduction 1 •••••••••••••••••••••••••••••••••••• 4-1
4.2 Operating States ; 4" 1

Running State ... 4-1
Stop/Refresh State . 4-1
Bus-Disconnect State " .. 4-1
Effect of Reset .. 4-1

4.3 Instruction Execution .. 4-2
Running-State Modes .. 4-2
Segmented and Nonsegmented Modes 4-2
Normal and System Modes .. 4-3

4.4 Extended Instructions .. 4-4

5.1 Introduction .. 5-1
5.2 Use of CPU Registers ... 5-2
5.3 Addressing Mode Descriptions .. 5-2
5.4 Descriptions and Examples (28002 and 28001 Nonsegmented Mode) 5-3

Register (R) .. 5-3
Immediate (IM) " . 5-3
Indirect Register (IR) .. 5-3
Direct Address (DA) " ... 5-4
Index (X) ... 5-4
Relative Address (RA) 5-4
Base Address (BA) ... 5-5
Base Index (BX) ... 5-6

5.5 Descriptions and Examples (Segmented 28001) 5-6
Register (R) .. 5-6
Immediate (IM) 5-6
Indirect Register (IR) 5-7
Direct Address (DA) 5-7
Index (X) ... 5-8
Relative Address (RA) . 5-8
Base Address (BA) ; 5-9
Base Index (BX) .. 5-10

iv

Architecture
(Continued)

2
Address Spaces

3

CPU Operation

4

Addressing Modes

5

6.1 Introduction .. 6-1

6.2 Functional Summary ... 6-1

Load and Exchange Instructions '" .. 0 0 • 0 • 0 0 • 0 0 •••••• 0 0 0 • 0 • 0 •• 0 • 6-2

Arithmetic Instructions .. 0 ••••• 0 0 • 0 0 • 0 0 ••••••• 0 • 0 ••••• 0 0 • 0 •• 0 •• 0 0 0 • 0 o. 6-2

Logical Instructions. 0 0 • 0 0 • 0 0 • 0 •• 0 • 0 • 0 0 • 0 0 • 0 •••• 0 •• 0 0 • 0 0 0 •• 0 • 0 0 0 •• 0 • 0 • 6-3

Program Control Instructions 0 0 • 0 0 • 0 •• 0 0 ••••••• 0 0 0 •••••• 0 • 0 0 •• 0 • 0 • 0 • 0 •• 6-3

Bit Manipulation Instructions ... 0 •••• 0 0 0 • 0 0 • 0 0 0 •••••• 0 •• 0 • 0 0 0 •• 0 • 0 • 0 0 0 • 6-4

Rotate and Shift Instructions .. 0 • 0 0 • 0 0 • 0 0 ••• 0 • 0 0 0 • 0 ••• 0 •••••••• 0 • 0 • 0 • 0 •• 6-4

Block Transfer and String Manipulation Instructions . 0 •• 0 0 • 0 • 0 0 0 ••••• 0 • 0 • 0 • 6-5

Input/Output Instructions 0 •• 0 • 0 0 • 0 0 • 0 0 0 • 0 0 •••• 0 0 ••• 0 • 0 0 0 • 0 0 0 6-6

CPU Control Instructions 0 •• 0 • 0 0 •• 0 • 0 0 0 0 0 •••••••• 0 ••••• 0 • 0 0 • 0 ••• 0 • 0 0 o. 6-6

Extended Instructions 0 0 0 0 • 0 0 0 ••• 0 •• 0 0 0 • 0 •• 0 • 0 • 0 0 0 0 • 0 • 0 • 0 ••••• 0 ••••• o. 6-7

6.3 Processor Flags 0 0 • 0 •••••••••• 0 •• 0 0 ••••• 0 0 • 0 •• 0 0 •••••• 0 • 0 0 • 0 0 0 • 0 0 • 0 o. 6-7

6.4 Condition Codes 0 • 0 ••• 0 0 •••• 0 0 • 0 • 0 • 0 0 0 0 • 0 • 0 •• 0 0 •••••• 0 • 0 0 •• 0 •••• 0 0 •• 6-8

6.5 Instruction Interrupts and Traps. 0 ••••• 0 •• 0 • 0 0 0 • 0 0 0 •• 0 ••• 0 • 0 0 • 0 0 0 0 • 0 0 0 o. 6-8

6.6 Notation and Binary Encoding 0 • 0 0 00 •••• 0 ••• 0 • 0 ••• 0 0 •••• 0 ••• 0 ••• o. 6-9

6.7 Z8000 Instruction Descriptions and Formats 0 0 • 0 0 0 0 0 ••• 0 0 0 0 ••••• 0 0 • 0 • 0 • o. 6-11

6.8 EPA Instruction Templates ... 0 0 0 0 0 0 0000000000000 000 0000000000000. 0 0 0 6-167

701 Introduction 0 0 0 0 0 0 0 ••• 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 •• 0 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 7-1

7.2 Interrupts 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 ••• 0 • 0 • 0 • 0 • 0 • 0 0 0 0 0 0 0 0 0 7-1

Non-Maskable Interrupt (NMI) 0000 •••••• 00 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 000 ••• 0 • 0 • 0 • 0 0 7-1

Vectored Interrupt (VI) 0 ••• 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 •• 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 7-1

Nonvectored Interrupt (NVI) o. 0 • 0 •• 0 0 • 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 •• 0 0 0 0 0 0 • 0 7-1

7.3 Traps. 0 0 0 0 • 0 0 0 •• 0 •• 0 • 000000000.00.00 •• 0 • 0 ••• 0 00000000000.00.00 ••• 00 7-1

Extended Instruction Trap 0 •• 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 7-1

Privileged Instruction Trap 00 ••• 0 • 0 • 0 0 0 0 • 0 000.00.000.000. 0 •• 0 0 0 0 0 0 • 0 0 0 0 7-1

System Call Trap 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 • 0 •• 0 0 0 000000000.00.0 ••••••• 0 •• 0 0 000. 7-1

Segment Trap 00' •• 0 •• 0 000 0 0 0 • 0 • 0 •••••• 000 0 0 0 0 0 000 00000.000. 0 •• 0 0 0 000 7-1

7.4 Reset 00000 ••• 0 •• 0 0 0000000000.0 •• 0. 00000000.00000000.00. 0 0 • 0 0 0 0 0 0 000 7-2

705 Interrupt Disabling 00000000.00.0. 0 0 0 0 000.00000000.00 •• 0 0 • 0 • 0 0 0 • 0 0 0 0 0 0 7-2

706 Interrupt and Trap Handling 000000000 •• 0.0 •• 0 0 •• 000000000000000 •• 0 •• 0 • 7-2

Acknowledge Cycle 00.0 ••• 0 •••• 0 • 0 0 0 .0000000000.0. 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 o. 7-2

Status Saving 00 0 0 000.0 •••• 0 • 0 0000000000 0 0 • 0 ••• 00' • 0 • 0 0 0 000 0 0 0 0 0 0 0 000 7-2

Loading New Program Status 0 •• 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 o. 7-3

Executing the Service Routine 0 ••••• 0 •• 0 0 •• 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 •••• 0 • 0 • 7-4

Returning from an Interrupt or Trap 0000000 0 0 000000.0 0 0 • 0 ••••• 0 '0, 0 •• 0 0 0 7-4

7.7 Priority 0 0 ••• 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 • 0 •• 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 ••• 0 7-4

8.1 Introduction . 0 0 0 0 0 • 0 0 0 0 ••• 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 8-1

802 Refresh Cycles 0 •• 0 0 0 • 0 0 • 0 • 0 0 ••• 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 • 0 0 0 0 0 8-1

803 Periodic Refresh ... 8-1

8.4 Stop-State Refresh 0 • 0 0 0 ••••••••• 0 • 0 •••• 0 0 0 0 0 0 0 0 0 0 0 8-1

v

Instruction Set

6

Exceptions

7

Refresh

8

Table of Conlenls (Continued)

9.1 Introduction .. 9-1 External Interface
9.2 Bus Operations .. 9-1
9.3 CPU Pins ... 9-2 9

Transaction Pins ... 9-2
Bus Control Pins ... 9-2
Interrupt/Trap Pins .. , 9-2
Multi-Micro Pins .. 9-3
CPU Control .. 9-3

9.4 Transactions .. 9-3
WAIT ... " ... 9-4
Memory Transactions .. 9-4
I/O Transactions .. 9-6
EPU Transfer Transactions .. 9-7
Interrupt/Trap Acknowledge Transactions 9-8
Internal Operations and Refresh Transactions 9-8

9.5 CPU and Extended Processing Unit Interaction 9-10
9.6 Requests .. 9-10

Interrupt/Trap Request .. 9-11
Bus Request . 9-11
Resource Request ... 9-12
Stop Request ... 9-12

9.7 Reset ... 9-13

Hardware Information ... A-I Appendix

A
Z8000 Family SpeCifications ... B-1 Appendix

B
Programmers Quick Reference .. C-l Appendix

C
Glossary of Terms ... D-l Appendix

D

vi

I

1.1 Intro- This chapter provides a summary description
duction of the advanced architecture of the 28000

Microprocessor, with special attention given to
those architectural features that set the 28000
CPU apart from its predecessors. A complete

1.2 General 2ilog's 28000 microprocessor has been
Organization designed to accommodate a wide range of

applications, from the relatively simple to the
large and complex. The 28000 CPU is offered
in two versions: the 28001 and the 28002. Each
CPU comes with an entire family of support
components: a memory management unit, a
DMA controller, serial and parallel I/O
controllers, and extended processing units-all
compatible with 2ilog's 2-Bus. Together with
other 28000 Family components, the advanced
CPU architecture provides in an LSI micro­
processor design the flexibility and sophisti­
cated features usually associated with mini- or
mainframe computers.

The major architectural features of the 28000
CPU that enhance throughput and processing
power are a general purpose register file,
system and normal modes of operation, multi­
ple addressing spaces, a powerful instruction
set, numerous addressing modes, multiple
stacks, sophisticated interrupt structure, a rich
set of data types, separate I/O address spaces
and, for the 28001, a large address space and
segmented memory addressing. Each of these
features is treated in detail in the next section.

These architectural features combine to pro­
duce a powerful, versatile microprocessor. The

1.3 Architec- The architectural resources of the 28000
tural Features CPU include sixteen 16-bit general-purpose

registers, seven data types ranging from bits to
32-bit long words and byte strings, eight user­
selectable addreSSing modes, and an instruc­
tion set more powerful than that of most mini­
computers. The 110 distinct instruction types
combine with the various data types and
addressing modes to form a rich set of 414
instructions. Moreover, the set exhibits a high
degree of regularity: more than 90% of the
instructions can use any of five main address­
ing modes, with 8-bit byte, 16-bit word, and
32-bit long-word data types.

The CPU generates status signals indicating
the nature of the bus transaction that is being
attempted; these can be used to implement
sophisticated systems with multiple address
spaces-memory areas dedicated to speCific

1-1

Chapter 1
18000 Processor Overview

overview of the architecture is provided in
Chapter 2, with detailed descriptions of the
various aspects of the processor provided in
succeeding chapters.

benefits that result from these features are
code density, compiler efficiency, support for
typical operating system operations, and com­
plex data structures. These topics are treated
in Section 1.3.

The CPU has been designed so that a power­
ful memory management system can be used to
improve the utilization of the main memory
and provide protection capabilities for the
system. This is discussed in Section 1.3.12.
Although memory management is an optional
capability-the 28000 CPU is an extremely
sophisticated processor without memory
management-the CPU has explicit features to
facilitate integrating an external memory
management device into a 28000 system con­
figuration.

Finally, care has been taken to prOVide a
very general mechanism for extending the
basic instruction set through the use of extern
al devices (called Extended Processing
Units-EPUs). In general, an EPU is dedicated
to performing complex and time-consuming
tasks so as to unburden the CPU. Typical tasks
for specialized EPUs include floating-point
arithmetic, data base search and maintenance
operations, network interfaces, and many
others. This topic is treated in Section 1.5.

uses. The CPU also has two operating modes,
system and normal, which can be used to
separate operating system functions from nor­
mal application processes. I/O operations have
have been separated from memory accesses,
further enchancing the capability and integrity
of 28000-based systems, and a sophisticated
interrupt structure facilitates the efficient
operation of peripheral I/O devices. Moreover,
the Extended Processing Unit (EPU) capability
of the 28000 allows the CPU to unload many
time-consuming tasks onto external devices.

Special features of the 28000 have been
introduced to facilitate the implementation of
multiple processor systems. In addition, the
28001 CPU has a large, segmented addreSSing
capability that greatly extends the applica­
bility of microprocessors to large system
applications.

1.3 Architec- 1.3.1 General-Purpose Register File. The
tural Features heart of the Z8000 CPU architecture is a file of
(Continued) sixteen 16-bit general-purpose registers. These

general-purpose registers give the Z8000 its
power and flexibility and add to its regular
instruction structure.

General-purpose registers can be used as
accumulators, memory pointers or index reg­
isters. Their major advantage is that the partic­
ular use to which they are put can vary during
the course of a program as the needs of the
program change. Thus, the general-purpose
register file avoids the critical bottlenecks of
an implied or dedicated register architecture,
which must save and restore the contents of
dedicated registers when more registers of a
particular type are needed than are supplied
by the processor.

The Z8000 CPU register file can be
addressed in several ways: as 16 byte registers
(occupying one half of the file) or as 16 word
registers or, by using the register pairing
mechanism, as eight long-word (32-bit) reg­
isters or as four quadruple-word (64-bit)
registers. Because of this register flexibility, it
is not necessary (for example) for a Z8000 user
to dedicate a 32-bit register to hold a byte of
data. Registers can be used efficiently in
the Z8000.

1.3.2 Instruction Set. A powerful instruction
set is one of the distinguishing characteristics
of the Z8000. The instruction set is one
measure of the flexibility and versatility of a
computer. Having a given operation imple­
mented in hardware saves memory and
improves speed. In addition, completeness of
the operations available on a particular data
type is frequently more important than addi­
tional, esoteric instructions, which are unlikely
to affect performance Significantly. The Z8000
CPU provides a full complement of arithmetic,
logical, branch, 1/0, shift, rotate, and string
instructions. In addition, special instructions
have been included to facilitate multiprocess­
ing, multiple processor configurations, and
typical high level language and operating
system functions. The general philosophy of
the instruction set is two-operand register­
memory operations, which include as a special
subset register-register operations. However,
to improve code density, a few memory­
memory operations are used for string manipu­
lation. The two-address format reflects the most
frequently occurring operations (such as
A - A + B). Also, haVing one of the
operands in a rapidly accessible general­
purpose register facilitates the use of inter­
mediate results generated during a
calculation.

1-2

The majority of operations deal with byte,
word, or long-word operands, thereby pro­
viding a high degree of regularity. Also
included in the instruction set are compact,
one-word instructions for the most frequently
used operations, such as branching short
distances in a program.

The instruction set contains some notable
additions to the standard repertoire of earlier
microprocessors. The Load and Exchange
group of instructions has been expanded to
support operating system functions and con­
version of existing microprocessor programs.
The usual arithmetic instructions can now deal
with higher-precision operands, while hard­
ware multiply and divide instructions have also
been added. The Bit Manipulation instructions
can use calculated values to specify the bit
position within a byte or word as well as to
specify the pOSition statically in the instruc­
tion. The Rotate and Shift instructions are con­
Siderably more flexible than those in previous
microprocessors. The String instructions are
useful in translating between different char­
acter codes. Multiple-processor configurations
are supported by special instructions.

1.3.3 Data Types. Many data types are sup­
ported by the Z8000 architecture. A data type
is supported when it has a hardware represen­
tation and instructions which directly apply to
it. New data types can always be simulated in
terms of basic data types, but hardware sup­
port provides faster and more convenient
operations. The basic data type is the byte,
which is also the basic addressable element.
The architecture also supports the follOWing
data types: words (16 bits), long words (32
bits), byte strings, and word strings. In
addition, bits are fully supported and
addressed by number within a byte or word.
BCD digits are supported and represented as
two 4-bit digits in a byte. Arrays are supported
by the Indexed addreSSing mode (see 1.3.4
and Chapter 5). Stacks are supported by the
instruction set and by an external device (the
Memory Management Unit, MMU) available
with the Z8001.

1.3.4 Addressing Modes. The addressing
mode, which is the wayan operand is speci­
fied in an instruction, determines how an
address is generated. The Z8000 CPU offers
eight addressing modes. Together with the
large number of instructions and data types,
they improve the processing power of the
CPU. The addressing modes are Register,
Immediate, Indirect Register, Direct Address,
Index, Relative Address, Base Address, and
Base Index. Several other addressing modes
are implied by specific instructions, including
autoincrement. The first five modes listed

1.3 Architec- above are basic addressing modes that are
tural Features used most frequently and apply to most
(Continued) instructions having more than one addressing

mode. (In the 28002, Base Address and Index
modes are identical, and in the 28001, Base
Addressing capabilites can be simulated with
all instructions, using Based Addressing or the
Memory Management Unit and the Direct or
Indexed Addressing mode.)

1.3.5 Multiple Memory Address Spaces. The
28000 CPU facilitates the use of multiple
address spaces. When the 28000 CPU
generates an address, it also outputs signals
indicating the particular internal activity which
led to the memory request: instruction fetch,
operand reference, or stack reference. This
information can be used in two ways: to
increase the memory space available to the
processor (for example, by putting programs in
one space and data in another); or to protect
portions of the memory and allow only certain
types of accesses (for example, by allowing
only instruction fetches from an area desig­
nated to contain proprietary software). The
Memory Management Unit (MMU) has been
designed to provide precisely these kinds of
protection features by using the CPU­
generated status information.

1.3.6 System/Normal Mode of Operation.
The 28000 CPU can run in either system mode
or normal mode. In system mode, all of the
instructions can be executed and all of the
CPU registers can be accessed. This mode is
intended for use by programs performing
operating system functions. In normal mode,
some instructions may not be executed (e.g.,
I/O operations), and the control registers of
the CPU are inaccessible. In general, this
mode of operation is intended for use by appli­
cation programs. This separation of CPU
resources promotes the integrity of the system,
since programs operating in normal mode can­
not access those aspects of the CPU which deal
with time dependent or system-interface
events.

Programs executing in normal mode which
have errors can always reproduce those errors
for debugging purposes Simply by re-exe­
cuting the program with its original data. Pro­
grams using facilities available only in system
mode may have errors due to timing consider­
ations (e.g. based upon the frequency of disk
requests and disk arm-position) that are harder
to debug because these errors are not easily
reproduced. Thus, the preferred method of
program development is to partition the task
into a portion which can be performed without
those resources accessible only in system mode
(which will usually be the bulk of the task) and
a portion requiring system mode resources.
The classic example of this partitioning comes
from current minicomputer and mainframe
systems: the operating system runs in system

1-3

mode and the individual users write their pro­
grams to run in normal mode.

To further support the system/normal mode
dichotomy, there are two copies of the stack
pointer-one for a system mode stack and
another for a normal mode stack. These two
stacks facilitate the task switching involved
when interrupts or traps occur. To insure that
the normal stack is free of system information,
the information saved on the occurrence of
interrupts or traps is always pushed on to the
system stack before the new program status is
loaded.

1.3.7 Separate I/O Address Spaces. The
28000 Architecture distinguishes between
memory and 110 spaces and thus requires
specific 110 instructions. This architectural
separation allows better protection and has
more potential for extension. The use of
separate 110 spaces also conserves the limited
Z8002 data memory space. There are in fact
two separate 110 address spaces: standard I/O
and special 110. The main advantage of these
two spaces is to provide for two types of
peripheral support chips-standard I/O per­
ipherals and special 110 peripherals-devices
such as the Z8010 Memory Management Unit

that do not respond to standard 110 com­
mands, but do respond to special 110 com­
mands. A second advantage of these two
spaces is that they allow 8-bit peripherals to
attach to the low-order eight bits (standard
I/O) or to the high-order eight bits (special
110) of the processor Address/Data bus.

The increased speed requirements of future
microprocessors are likely to be achieved by
tailoring memory and 110 references to their
respective, characteristic reference patterns
and by using simultaneous I/O and memory
referencing. These future possibilities require
an architectural separation today. Memory­
mapped I/O is still possible, but loss of protec­
tion and lack of expandability are severe
problems.

1.3.8 Interrupt Structure. The sophisticated
interrupt structure of the 28000 allows the pro­
cessor to continue performing useful work
while waiting for peripheral events to occur.
The elimination of periodic polling and idling
loops (typically used to determine when a
device is ready to transmit data) increases the
throughput of the system. The CPU supports
three types of interrupts. A non-maskable
interrupt represents a catastrophic event which
requires immediate handling to preserve
system integrity. In addition, there are two
types of maskable interrupts: non-vectored
interrupts and vectored interrupts. The latter
provides an automatic call to separate inter­
rupt processing routines for each peripheral,
depending on the vector presented by the
peripheral to the Z8000.

1.3 Architec- The 28000 has implemented a priority system
tural Features for handling interrupts. Vectored interrupts
(Continued) have higher priority than non-vectored inter­

rupts. This priority scheme allows the efficient
control of rnany peripheral devices in a 28000
system.

An interrupt causes information relating to
the currently executing program (program
status) to be saved on a special system stack
with a code describing the reason for the
switch. This allows recursive task switches to
occur while leaving the normal stack undis­
turbed by system information. The program
state to handle the interrupt (new program
status) is loaded from a special area in
memory, the program status area, designated
by a pointer resident in the CPU.

The use of the stack and of a pointer to the
program status area is a specific choice made
to allow architectural compatibility if new
interrupts or traps are added to the
architecture.

1.3.9 Multi-Processing. The increase in micro­
processor computing power that the 28000
represents makes simple the design of
distributed processing systems having many
low-cost microprocessors running dedicated
processes.

The 28000 provides some basic mechanisms
that allow the sharing of address spaces among
different microprocessors. Large segmented
address spaces and the support for external
memory management make this possible. Also,
a resource request bus is provided which, in
conjunction with software, provides the exclu­
sive use of shared critical resources. These
mechanisms, and new peripherals such as the
2-FIO, have been designed to allow easy asyn­
chronous communication between different
CPUs.

1.3.10 Large Address Space for the Z8001.
For many applications, a basic address space
of 64K bytes is insufficient. A large address
space increases the range of applications of a
system by permitting large, complex programs
and data sets to reside in memory rather than
be partitioned and swapped into a small
memory as needed. A large address space
greatly Simplifies program and data manage­
ment. In addition, large address spaces and
memories reduce the need for minimizing pro­
gram size and permit the use of higher level
languages. The segmented version of the
28000 generates 23-bit addresses, for a basic
address space of 8 megabytes (8M or 8,388,
608 bytes).

1.3.11 Segmented Addressing of the Z8001.
The segmented version of the 28000 CPU
divides its 23-bit addresses into a 7-bit seg­
ment number and a 16-bit segment offset. The
segment number serves as a logical name of a
segment; it is not altered by the effective

1-4

address calculation (by indexing, for exam­
pIe) .. This corresponds to the way memory is
typically used by a program-one portion of
the memory is set aside to hold instructions,
another for data. In a segmented address
space, the instructions could reside in one seg­
ment (or several different modules in different
segments), and each data set could reside in a
separate segment. One advantage of segmenta­
tion is that it speeds up address calculation
and relocation. Thus, segmentation allows the
use of slower memories than linear addressing
schemes allow. In addition, segments provide
a convenient way of partitioning memory so
that each partition is given particular access
attributes (for example, read-only). The 28000
approach to segmentation (simultaneous access
to a large number of segments) is necessary if
all the advantages of segmentation are to be
realized. A system capable of directly access­
ing only, say, four segments would lack the
needed flexibility and would be constrained by
address space limitations.

1.3.12 Memory Management. Memory
management consists primarily of dynamic
relocation, protection, and sharing of memory.
It offers the following advantages: providing a
logical structure to the memory space that is
independent of the actual physical location of
data, protecting the user from inadvertent
mistakes such as attempting to execute data,
preventing unauthorized access to memory
resources or data, and protecting the
operating system from disruption by the users.

The addresses manipulated by the program­
mer, used by instructions, and output by the
segmented 28000 CPU are called logical
addresses. The external memory management
system takes the logical addresses and trans­
forms them into physical addresses required
for accessing the memory. This address trans­
formation process is called relocation, which
makes user software independent of the physi­
cal memory. Thus, the user is freed from
specifying where information is actually
located in the physical memory.

The segmented 28000 CPU supports memory
management both with segmented addressing
and with program-status information. A seg­
mented addressing space allows individual
segments to be treated differently.

Program status information generated by the
CPU permits an external memory management
device to monitor the intended use of each
memory access. Thus, illegal types of access
can be suppressed and memory segments pro­
tected from unintended or unwanted modes of
use. For example, system tables could be pro­
tected from direct user access. This added pro­
tection capability becomes more important as
microprocessors are applied to large, complex
tasks.

1.4 Benefits of
the Architec­
ture

The features of the Z8000 Architecture com­
bine to provide several significant benefits:
improvements in code density, compiler effi­
ciency, operating system support, and support
for high level data structures.

1.4.1 Code Density. Code density affects both
processor speed and memory utilization. Code
compaction saves memory space-an especial­
ly important factor in smaller systems-and
improves processor speed by reducing the
number of instruction words that must be
fetched and decoded. The Z8000 offers several
advantages with respect to code density. The
most frequently used instructions are encoded
in single-word formats. Fewer instructions are
needed to accomplish a given task and a con­
sistent and regular architecture further
reduces the number of instructions required.

Code density is achieved in part by the use
of special "short" formats for certain instruc­
tions which are shown by statistical analysis to
be most frequently used by assemblers. A
"short offset" mechanism has also been provid­
ed to allow a 2-word segmented address to be
reduced to a single word; this format may be
used by assemblers and compilers.

The largest reduction in program size and
increase in speed results from the consistent
and regular structure of the architecture and
from the more powerful instruction set-factors
that substantially reduce the number of
instructions required for a task. The architec­
ture is more regular relative to preceding
microprocessors because its registers, address
modes, and data types can be used in a more
orderly fashion. Any general-purpose register
except RO can be speCified as an acculumator,
index register, or base register. With a few
exceptions, all basic addressing modes can be
used with all instructions, as can the various
data types.

General-purpose registers do not have to be
changed as often as registers dedicated to a
specifiC purpose. This reduces program size,
since frequent load and store operations are
not required.

1.4.2 Compiler Efficiency. For microprocessor
users, the transition from assembly language to
high-level languages allows greater freedom
from architectural dependency and improves
ease of programming. However, rather than
adapt the architecture to a particular high­
level language, the Z8000 was designed as a
general-purpose microprocessor. (Tailoring a
processor for efficiency in one language often
leads to inefficiency in unrelated languages.)
For the Z8000, language support has been pro­
vided through the inclusion of features
designed to minimize typical compilation and
code-generation problems. Among these
features is the regularity of the Z8000 address-

1-5

ing modes and data types. Access to
parameters and local variables on the pro­
cedure stack is supported by the "Index With
Short Offset" addreSSing mode, as well as the
Base Address and Base Index addreSSing
modes. In addition, address arithmetic is aided
by the Increment and Decrement instructions.

Testing of data, logical evaluation, initializa­
tion, and comparison of data are made possi­
ble by the instructions Test, Test Condition
Codes, Load Immediate Into Memory, and
Compare Immediate With Memory. Since com­
pilers and assemblers frequently manipulate
character strings, the instructions Translate,
Translate And Test, Block Compare, and Com­
pare String all result in dramatic speed
improvements over software simulations of
these important tasks. In addition, any register
except RO can be used as a stack pointer by
the Push and Pop instructions.

1.4.3 Operating System Support. Interrupt
and task-switching features are included to
improve operatLng system implementations.
The memory-management and compiler­
support features are also quite important.

The interrupt structure has three levels: non­
maskable, non-vectored, and vectored. When
an interrupt occurs, the program status is
saved on the stack with an indication of the
reason for this state-switching before a new
program status is loaded from a special area of
memory. The program status consists of the
flag register, the control bits, and the program
counter. The reason for the occurrence is
encoded in a vector that is read from the sys­
tem bus and saved on the stack. In the case of
a vectored interrupt, the vector also deter­
mines a jump table address that points to the
interrupt processing routine.

The inclusion of system and normal modes
improves operating system organization. In the
system mode, all operations are allowed; in the
normal mode, certain system instructions are
prohibited. The System Call instruction allows
a controlled switch of mode, and the imple­
mentation of traps enforces these restrictions.

Traps result in the same type of program
status-saving as interrupts: in both cases, the
information saved is pushed on to a system
stack that keeps the normal stack undisturbed.
The Load Multiple instruction allows the con­
tents of registers to be saved effiCiently in
memory or on the stack. Running programs
can cause program status changes under
direct software control with the Load Program
Status instruction.

Finally, exclusion and serialization can be
achieved with the "atomic" Test And Set
instruction that synchronizes asynchronous
cooperating processes.

1.4 Benefit of
the Architec­
ture
(Continued)

1.5 Extended
Instruction
Facility

1.6 Summary

1.4.4 Support for Many Types of Data Struc­
tures. A data structure is a logical organiza­
tion of primitive elements (byte, word, etc'.)
whose format and access conventions are well­
defined. Common data structures include
arrays, lists, stacks, and strings. Since data
structures are high-level constructs frequently
used in programming, processor performance
is significantly enchanced if the CPU provides
mechanisms for efficiently manipulating them.
The Z8000 offers such mechanisms.

In many applications, one of the most fre­
quently encountered data structures is the
array. Arrays are supported in the Z8000 by
the index and the Base Index addreSSing mode
and by segmented addressing. The Base Index
addreSSing mode allows the use of pointers into
an array (Le., offsets from the array's starting
address). Segmented addreSSing allows an
array to be assigned to one segment, which
can be referenced simply by segment number.

Lists occur more frequently than arrays in
business applications and in general data pro­
cessing. Lists are supported by Indirect Reg­
ister and Base Address addressing modes. The
Base Index addressing mode is also useful for
more complex lists.

Stacks are used in all applications for nest­
ing of routines, block structured languages,
and interrupt handling. Stacks are supported
by the Push and Pop instructions, and multiple
stacks may be implemented based on the
general-purpose registers of the Z8000. In

The Z8000 architecture has a mechanism for
extending the basic instruction set through the
use of external devices. Special opcodes have
been set aside to implement this feature. When
the CPU encounters an instruction with these
opcodes in its instruction stream, it will per­
form any indicated address calculation and
data transfer; otherwise, it will treat the
"extended instruction" as being executed by
the external device. Fields have been set aside
in these extended instructions which can be
interpreted by external devices (Extended Pro-

The architectural sophistication of the Z8000
microprocessor is on a level comparable with
that of the minicomputer. Features such as
large address spaces, multiple memory spaces,
segmented addresses, and support for multiple
processors are beyond the capabilities of the
traditional microprocessor. The benefits of this

1-6

addition, two hardware stack pointers are used
to assign separate stacks to system and normal.
operating modes, thereby further supporting
the separation of system and normal operating
environments discussed earlier.

Byte and word strings are supported by the
Translate and Translate And Test instructions.
Decimal strings use the Decimal Adjust
instruction to do decimal arithmetic on strings
of BCD data, packed two characters per byte.
The Rotate Digit instructions also manipulate
4-bit data.

1.4.5 Two CPU Versions: Z8001 and Z8002.
The Z8000 CPU is offered in two versions: the
Z8001 48-pin segmented CPU and the Z8002
40-pinnonsegmented CPU. The main differ­
ence between the two is addreSSing range. The
Z8001 can directly address 8M bytes of
memory; the Z8002 directly addresses 64K
bytes. The Z8001 has a non-segmented mode of
operation which permits it to execute programs
written for the Z8002.

Not all applications require the large
address space of the Z8001; for these appli­
cations the Z8002 is recommended. Moreover,
many multiple-processor systems can be imple­
mented with one Z8001 and several Z8002s,
instead of exclUSively using Z8001s. Since the
same assembler generates code for both CPUs,
users can buy only the power they require
without having to worry about software incom­
patibility between processors.

cessing Units-EPUs) as opcodes. Thus, by
using appropriate EPUs, the instruction set of
the Z8000 can be extended to include special­
ized instructions.

In general, an EPU is dedicated to perform­
ing complex and time-consuming tasks in
order to unburden the CPU. Typical tasks suit­
able for specialized EPUs include floating­
point arithmetic, data base search and main­
tenance operations, network interfaces,
graphics support operations-a complete list
would include most areas of computing.

architecture-code density, compiler support,
and operating system support-greatly
enhance the power and versatility of the CPU.
The CPU features that support an external
memory management system also enhance the
CPU's applicability to large system
environments.

2
--~.-• III _

.,...-... n_ -
---. ., - -.. -,. 4L ___

7-i1,ll
Zilog

2.1 Intro- This chapter provides an overview of the
duction Z8000 CPU architecture. The basic hardware,

operating modes and instruction set are all
described. Differences between the two ver­
sions of the Z8000 (the nonsegmented Z8002

2.2 General Figure 2.1 contains a block diagram that
Organization shows the major elements of the Z8000 CPU,

namely:

• A 16-bit internal data bus, which is used to
move addresses and data within the CPU.

• A Z-Bus interface, which controls the inter­
action of the CPU with the outside world.

• A set of 16 general-purpose registers, which
is used to contain addresses and data.

• Four special-purpose registers, which con­
trol the CPU operation.

• An Arithmetic and Logic Unit, which is
used for manipulating data and generating
addresses.

• An instruction execution control, which
fetches and executes Z8000 instructions.

Chapter 2
Architecture

and the segmented Z8001) are noted where
appropriate. Most of the subjects covered here
are also treated with greater detail in later
chapters of the manual.

• An exception-handling control, which pro­
cesses interrupts and traps.

• A refresh control, which generates memory
refresh cycles.

Each of these elements is explained in the
following sections. All of the elements are
common to both the 28001 CPU and the Z8002
CPU. The differences between the two versions
of the Z8000 are derived from the number of
bits in the addresses they generate. The Z8002
always generates a 16-bit linear address, while
the Z8001 always generates a 23-bit segmented
address (that is, an address composed of a
7-bit segment number and a 16-bit offset).

I--------------------~

I ~ +

1

REFRESH :l I
GENERAL ¢=> ARITHMETIC

CONTROL I
PURPOSE lOGIC

~ I REGISTERS UNIT

I REFRESH

I COUNTER

~ it it
< >

Z·BUS
INTERNAL DATA BUS INTERFACE

it it
I I INSTRUCTION I I PSAP I L _B.!!.F~R_ J PROGRAM

STATUS t I REGISTERS
INSTRUCTION

-I I I EXECUTION

~ = ::!C= = ~
EXCEPTION

~ CONTROL -- HANDLING

I FCW CONTROL I
t I I

I I
LZBOOOC~ _________________ ~

Figure 2-1. Z8000 CPU Functional Block Diagram

26-0001-0900 2-1

2.2 General
Organization
(Continued)

Figure 2.2 gives a system-level view of the
Z8000. It is important to realize that the Z8000
CPU comes with a whole family of support
components. The Z8000 Family has been
designed to allow the easy implementation of
powerful systems. The major elements of such
a system might include:

• The Z-Bus, a multiplexed address/data
shared bus that links the components of the
system.

• A Z8001 or Z8002 CPU.

• One or more Extended Processing Units
(EPUs), which are dedicated to performing
specialized, time-consuming tasks.

• A memory sub-system, which in Z8001
systems can include one or more Memory

Management Units (MMUs) that offer sophis­
ticated memory allocation and protection
features.

• One or more Direct Memory Access (DMA)
controllers for high-speed data transfers.

• A large number of possible peripheral
devices interfaced to the Z-Bus through
Universal Peripheral Controllers (UPCs)/
Serial Communication Controllers (SCCs)/
Counter-Timer and Parallel I/O Controllers
(CIOs) or other Z-Bus peripheral
controllers.

• One or more FIFO I/O Interface Units
(FIOs) for elastic buffering between the
CPU and another device, such as another
CPU in a distributed processing system.

PERIPHERALS

~~
~ ~

Br----J}_D-=--11---=-=-=zOBU-=-=--S ---=--~ -I
o G

zooo, 0'" { II •• :·P <'----"""::;:"",--S ----ol

11
MEMORY

Figure 2-2. Z8000 System Configuration

2-2 26-0001-090 I

2.3 Hardware
Interface

C8071-0089

Figure 2.3 shows the Z8000 pins grouped
according to function. The Z8001 is packaged
in a 48-pin DIP and the Z8002 is packaged in a
40-pin DIP. The eight additional pins on the
Z8001 are the seven segment-number lines and
the segment trap. Except for those eight, all
pins on the two CPU versions are identical.

The Z8000 is a Z-Bus CPU; thus, activity on
the pins is governed by the Z-Bus protocols
(see The Z-Bus Summary). These protocols
specify two types of activities: transactions,
which cover all data movement (such as
memory references or I/O operations), and
requests, which cover interrupts and requests
for bus or resource control. The folloWing is a
brief overview of the Z8000 pin functions; com­
plete descriptions are found in Chapter 9.

2.3.1 Address/Data Lines. These 16 lines
alternately carry addresses and data. The
addresses may be those of memory locations or
I/O ports. The bus timing signal lines
described below indicate what kind of informa­
tion the Address/Data lines are carrying.

2.3.2 Segment Number (Z8001 only). These
seven lines encode the addresses of up to 128
relocatable memory segments. The segment
signals become valid before the address offset
signals, thus supporting address relocation by
the memory managment system.

2.3.3 Bus Timing. These three lines include
Address Strobe (AS), Data Strobe (DS) and
Memory Request (MREQ). They are used to
signal the beginning of a bus transaction and

0000
000 1
0010
001 1
o 1 00
o 1 0 1
o 1 1 0
o 1 1 1
1 000
100 1
1 0 1 0
1 01 1
1 100
1 101
1 1 1 0
1111

Internal operation
Memory refresh
I/O reference

Definition

Special I/O reference
Segment trap acknowledge
Non-maskable interrupt acknowledge
Non-vectored interrupt acknowledge
Vectored interrupt acknowledge
Data memory request
Stack memory request
Data memory request (EPU)
Stack memory request (EPU)
Instruction space access
Instruction fetch, first word
EPA Transfer
Reserved

Table 2.1 Status Line Codes

2-3

AS ... { os TIMING
iifR!:Q AD 13

A012

READIWRITE

NORMALliWSfEM

BYTE/WORD

"AT"'j
ADDRESS I

ST, DATA BUS

ST,

ST,

STo AD,

CPu{ -
WAIT Z8001

Z8002 CONTROL _ STOP CPU AD,

ADo

BUS{ -
i!iJS1'fQ ,--

-r'::~~
CONTROL BUSAK I SN.

'.""""OTS{ = I SN,

SEGMENT:
NMl I SN,

VI I SN,
NUMBER I

NVi I SN, I
I SN, I

MUL TI·MICRO { MI I SNo I
CONTROL MO

SEGMENT I L~E~ _~R~ __ -.J

+ 5 V GND elK RESET

Figure 2-3. zaooo Pin Functions

to determine when the multiplexed Address/
Data Bus holds addresses or data. The Memory
Request Signal can be used to time control
signals to a memory system.

2.3.4 Status. These lines function to indicate
the kind of transaction on the b~ (STo-ST3),
whether it is a read or write (R/W, where High
is Read and Low is Write), whether it is on
byte or word data (B/W, High = byte,
Low = word), and whether the CPU is
operating in normal mode or system mode
(N7S, High = normal, Low = system). The
STo-ST3 lines also encode additional
characteristics of the bus transactions, as Table
2.1 shows. The availability of status information
defining the type of bus transaction in advance
of data transmission allows bidirectional
drivers and other external hardware elements
to be enabled before data is transferred.

2.3 Hardware
Interface
(Continued)

2.4 Timing

2.5 Address
Spaces

2.3.5 CPU Control. These inputs allow exter­
nal devices to delay the operation of the CPU.
The WAIT line, when active (Low), causes the
CPU to idle in the middle of a bus transaction,
taking extra clock cycles until the WAIT line
goes inactive; it is typically used by memory or
I/O peripherals which operate more slowly
than the CPU. The Stop (STOP) line halts
internal CPU operation when the first word of
an instruction (or the second word of an EPA
instruction) has been fetched. This signal is
useful for single-step instruction execution dur­
ing debugging operations and for enabling
Extended Processing Units to halt the CPU
temporaril y.

2.3.6 Bus Control. These lines proVide the
means for other devices, such as direct
memory access (DMA) controllers, to gain
exclusive use of the system bus, i.e., the signal
lines that are common to several devices in a
system. The external device requesting control
of the bus inputs a bus request (BUSREQ); the
CPU responds with a bus acknowledge
(BUSACK) after three-starting, or electrically
neutralizing, the Address/Data Bus, Bus Tim­
ing lines, Status lines, and Control lines. The
Z-Bus allows a daisy chain to be used to

Figure 2.4 shows the three basic timing
periods of the Z8000: a clock cycle, a bus
transaction, and a machine cycle. A clock
cycle (sometimes called a T-state) is one cycle
of the CPU clock, starting with a rising edge.
A bus transaction covers a single data move­
ment on the CPU bus and will last for three or
more clock cycles, starting with a falling edge

enforce a priority among several external
devices.

2.3.7 Interrupts. Three interrupt inputs are
provided: non-maskable interrupts (NMI), vec­
tored interrupts (VI) and non-vectored inter­
rupts (NV!). These permit external devices to
suspend the CPU's execution of its current
program and begin executing an interrupt ser­
vice routine.

2.3.S Segment Trap Request (ZSOOI
only). This input to the CPU is used by an
external memory-management system to indi­
cate that an illegal memory access has been
attempted.

2.3.9 Multi-Micro Control. The Multi-Micro In
(MI) and Multi-Micro Out (MO) lines are used
in conjunction with instructions such as MSET
and MREQ to coordinate multiple-CPU sys­
tems. They allow exclusive use by one CPU of
a shared resource in a multiple-CPU system.

2.3.10 System Inputs. The four inputs shown
at the bottom of Figure 3 include + 5 V power,
ground, a single-phase clock signal and a CPU
reset. The reset function is described in
Chapter 7.

of AS and ending with a rising edge of DS. A
machine cycle covers one basic CPU operation
and always starts with a bus transaction. A
machine cycle can extend beyond the end of a
transaction by an unlimited number of clock
cycles. Appendix A contains a complete
description of Z8000 timing.

MACHINEI1 CYCLE

BUS
TRANSACTION -l

CLOCK CYCLE I
CPU CLOCK

v
v

Figure 2-4. Basic Timing Periods

The Z8000 supports two main address
spaces corresponding to the two different kinds
of locations that can be addressed:

• Memory Address Space. This consists of the
addresses of all locations in the main
memory of the computer system.

• I/O Address Space. This consists of the
addresses of all I/O ports through which
peripheral devices are accessed.

For more information on address spaces, con­
sult Chapter 3.

2-4

2.5.1 Memory Address Space. Memory
address space can be further subdivided into
Program Memory address space, Data Memory
address space, and Stack Memory address
space, each for both normal and system
modes.

The particular space addressed is deter­
mined by the external circuitry from the code
appearing at the CPU's output status pins
(STo-ST3) -.?nd the state of the Normal/System
signal (N/S pin). Data memory reference, stack
memory reference, and program memory

26-0001-0902

2.5 Address
Spaces
(Continued)

2.6 General­
Purpose
Registers

reference each correspond to a different status
code at the STo-ST3 outputs, allowing three
address spaces to be distinguished for each of
two operating modes, giving six address
spaces in all. Each of the six address spaces
has a range as great as the addressing ability
of the processor. For the non segmented 28002,
each address space can have up to 64K bytes,
giving a potential total system capacity of 384K
bytes of directly addressable memory. The
segmented 28001, on the other hand, provides
up to 48M bytes of directly addressable mem­
ory due to the 23-bit segmented addresses.

Segmentation is a means of partitioning
memory into variable-size segments so that a
variety of useful functions may be imple­
mented, including:

• Protection mechanisms that prevent a user
from referencing data belonging to others,
attempting to modify read-only data or over­
flowing a stack.

• Virtual memory, which permits a user to
write functioning programs under the
assumption that the system contains more
memory than is actually available.

• Dynamic relocating which allows the place­
ment of blocks of data in physical memory

The 28000 CPU contains 16 general-purpose
registers, each 16 bits wide. Any general­
purpose register can be used for any instruc­
tion operand (except for minor exceptions
described at the beginning of Chapter 5).

Figure 2.5 shows these general-purpose reg­
isters. They allow data formats ranging from
bytes to quadruple words .. The word registers
are specified in assembly-language statements
as RO through R15. Sixteen byte registers,

Z8001

RRO\
Rol7

Rl 115

01

RR2 \
R21

R31

RR4 \
R41

R5'

RR6\
R61

R71

RR. \
R'I"

R·I

01

RA10 \ Rl0 I

R11 ,

RR12
\ R121

R13' I .. R14
RR14

R15'

R15

SYSTEM STACK POINTER (SEG. NO.)

NORMAL STACK POINTER (SEG. NO.)

SYSTEM STACK POINTER (OFFSET)

NORMAL STACK POINTER (OFFSET)

Figure 2-5a. ZaDOl General-Purpose Registers

(Register Address Space)

C8064-0207 C8064-0208

independently of user addresses, allowing
better management of the memory resources
and sharing of data and programs.

The signals prOVided on the segmented
28001 CPU assist in implementing these
features, although additional software and
external circuitry (such as the 28010 MMU) are
generally required to take full advantage of
them. Chapter 3 contains an extensive discus­
sion of segmentation and the 28001.

2.5.2 I/O Address Space. 1/0 addresses are
represented as 16-bit words for both the 28001
and 28002.

There are two I/O address spaces, Standard
I/O and Special I/O, which are both separate
from the memory address space. Each 1/0
space is accessed through a separate set of I/O
instructions, which can be executed only when
the CPU is operating in system mode.

Standard I/O instructions transfer data
between the CPU and peripherals and Special
1/0 instructions transfer data to or from exter­
nal CPU support circuits such as the 28010
MMU. Access to Standard or Special I/O
space is distinguished by the status lines
(STo-ST3)·

RHO-RL7, which may be used as accumulators,
overlap the first eight word registers. Register
grouping for larger operands includes eight
double-word (32-bit) registers, RRO-RR14, and
four quad-word registers, RQO-RQ12, which
are used by a few instructions such as Mul­
tiply, Divide, and Extend Sign.

As Figure 2.5 illustrates, the CPU has two
hardware stack pointers, one dedicated to each
of the two basic operating modes, system and

2-5

Z8002

RRO {
Rol7

Rll15

:7 01

01

RR2 {
R21

R31

RL2

RR.{
R·I

R51

RL.

RL5

RRS \
R61

R71 AL6 RL7

RRB {
RBI15

R91

01

\ R101 RR10

R111

\ R121 RR12

R131

{ R141
RR14 R15'

R15
SYSTEM STACK POINTER

NORMAL STACK POINTER

Figure 2-5b. ZaOD2 General-Purpose Registers

(Registers Address Space)

2.6 General­
Purpose
Registers
(Continued)

2.7 Special­
Purpose
Registers

normal. The segmented Z8001 uses a two-word
stack pointer for each mode (R14'/R15' or
R14/R15), whereas the non segmented Z8002
uses only one word for each mode (R15'
or R15).

The system stack pointer is used for saving
status information when an interrupt or trap
occurs and for supporting calls in system

In addition to the general-purpose registers,
there are special-purpose registers. These
include the Program Status registers, the Pro­
gram Status Area Pointer, and the Refresh
Counter; they are illustrated for both CPU ver­
sions in Figure 2.6. Each register can be
manipulated by software executing in system
mode, and some are modified automatically by
certain operations.

2.7.1 Program Status Registers. These
registers include the Flag and Control Word
(FCW) and the Program Counter (PC). They
are used to keep track of the state of an exe­
cuting program.

In the nonsegmented Z8002, the Program
Status registers consist of two words: one each
for the FCW and the PC. In the segmented
Z8001, there are four words: one reserved
word, one word for the FCW and two words for
the segmented PC.

The low-order byte of the Flag and Control
Word (FCW) contains the six status flags, from
which the condition codes used for control of
program looping and branching are derived.
The six flags are:

Carry (C), which generally indicates a carry
out of the high-order bit position of a register
being used as an accumulator.

Zero (Z), which is generally used to indicate
that the result of an operation is zero.

Sign (S), which is generally used to indicate
that the result of an operation is a negative
number.
15 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I)RESERVED

! , I I ! ! I ! ! ! I ! ! !! WORD

1 0 1

rAE (4

SEGMENT NUMBER
, ! I !

Z8001 Program Status Registers

SEGMENT NUMBER
I ! !

UPPER OFFSET
I ! !

Z8001 Program Status Area Poi~ter

RATE
! ! ! I ! ! I tOW,

Z8001 Refresh Counter

mode. The normal stack pointer is used for
subroutine calls in user programs. In normal­
mode operation only the normal stack pointer
is accessible. In system mode, the normal stack
pointer can be directly accessed as a special
control register. The normal mode stack
pointer can be assessed as a special control
register.

Parity/Overflow (P/V), which is generally used
to indicate either even parity (after logical
operations on byte operands) or overflow (after
arithmetic operations).

Decimal-Adjust (D), which is used in BCD
arithmetic to-indicate the type of instruction
that was executed (addition or subtraction).

Half Carry (H), which is used to convert the
binary result of a previous decimal addition or
subtraction into the correct decimal (BCD)
result.

Section 6.3 provides more detail on these
flags.

The control bits, which occupy the high­
order byte of the FCW, are used to enable
various interrupts or to control CPU operating
modes. The control bits are:

Non-Vectored Interrupt Enable (NVIE), Vec­
tored Interrupt Enable (VIE). These bits deter­
mine whether or not the CPU will accept non­
vectored or vectored interrupts (see Section
2.13).

System/Normal Mode (S/N). When this bit is
set to one, the CPU is operating in system
mode; when cleared to zero, the CPU is in
normal mode (see Section 2.8). The CPU out­
put status line (NiS pin) is the complement of
this bit.

Extended Processor Architecture (EPA)
Mode. When this bit is set to one, it indicates
that the system contains Extended Processing
Units, and hence extended instructions
15 0

I 0 I ~N I .PA I v,. INV,.I 0 , 0 , 0 I c I z I s I PN I DA I H I 0 , 0 I)~~~V~~

I ADDRESS I) PROGRAM
L.-I..' -...L--I.'--1!--1!-..I!L......!L.......L.! -L.' -L.' -...L' --I.'--I-..IL.......L.'...... COUNTER

j'

Z8002 Program Status Registers

UPPER POINTER
I ! I I I lo! 0 I o! o! o! 0 1 0 101

Z8002 Program Status Area Pointer

RATE
! I , ! !

ROW
I !

Z8002 Refresh Counter

Figure 2-6. CPU Special Registers

2-6 C8002-0283 26-0001-0903

2.7 Special
Purpose
Registers
(Continued)

encountered in the CPU instruction stream are
executed (see Section 2.12). When this bit is
cleared to zero, extended instructions are
trapped for software emulation.

Segmentation Mode (SEG). This bit is imple­
mEmted only in the 28001; it is always cleared
in the nonsegmented 28002. When set to one,
the CPU is operating in segmented mode, and
when cleared to zero, the CPU is operating in
nonsegmented mode (see Section 2.8).

2.7.2 Program Status Area Pointer
(PSAP). The Program Status Area Pointer
points to an array of progam status values
(FCWs and PCs) in main memory called the
Program Status Area. New Program Status reg-

2.8 Instruction In the normal course of events, the 28000
Execution CPU will spend most of its time fetching

instructions from memory and executing them.
This process is called the running state of the
CPU. The CPU also has two other states that it
occasionally enters.

Stop/Refresh State. This is really one state,
although it may be entered in two different
ways: either automatically for a periodic
memory refresh; or when the STOP line is acti­
vated. In this state, program execution is
temporarily suspended and the CPU makes use
of the Refresh Counter to generate refreshes.
For more information, consult Chapter 8.

Bus-Disconnect State. This is the state the
CPU enters when the DMA, or some other bus
requester, takes over the bus. Program execu­
tion is suspended and the CPU disconnects
itself from the bus.

While the CPU is in the running state, it can
either be handling interrupts or executing

2.9 Instructions The 28000 instruction set contains over 400
different instructions which are formed by
combining the 110 distinct instruction types
(opcodes) with the various data types and
addressing modes. The complete set is divided
into the following groups:

Load and Exchange for register-to-register
and register-lo-memory operations, including
stack management.

Arithmetic for arithmetic operations, including
multiply and divide, on data in either registers
or memory. Compare, increment, and decre­
ment functions are included.

Logical for Boolean operations on data in
registers or memory.

Program Control for program branching (con­
ditional or unconditional), calls, and returns.

Bit Manipulation for setting, resetting and
testing individual bits of bytes or words in
registers or memory.

2-7

ister values are fetched from this area when an
interrupt or trap occurs. As shown in Figure
2.6, the PSAP comprises either one word (non­
segmented 28002) or two words (segmented
28001); for either configuration, the lower byte
of the pointer must be zero. Refer to Chapter 7
for more details about the Program Status Area
and its layout.

2.7.3 Refresh Counter. The CPU contains a
programmable counter that can be used to
refresh dynamic memory automatically. The
refresh counter register consists of a 9-bit row
counter, a 6-bit rate counter and an enable bit
(Figure 2.6). Refer to Chapter 8 for details of
the refresh mechanism.

instructions. If it is executing instructions, the
28000 can be in the system or normal execu­
tion mode. In system mode, privileged instruc­
tions (such as those which perform I/O) can be
executed; in normal mode they cannot. This
dichotomy allows the creation of operating
system software, which controls CPU resources
and is protected from application program
action.

In addition, the CPU will be in either seg­
mented or non segmented mode. In segmented
mode, which is available only on the 28001,
the program uses 23-bit segmented addresses
for memory accesses; in nonsegmented mode,
which is available on both CPUs, the program
uses 16-bit non segmented addresses for mem­
oryaccesses.

While executing instructions, the mode of
the CPU is controlled by bits in the FCW (Sec­
tion 2.8). While handling interrupts, the CPU
is always in system mode and, for the 28001, in
segmented mode.

Rotate and Shift for bytes, words, or, for shifts
only, long words within registers.

Block Transfer and String Manipulation for
automatic memory-to-memory transfers of data
blocks or strings, including compare and
translate functions.

Input/Output for transfers of data between I/O
ports and memory or registers.

Extended for operations involVing Extended
Processing Units.

CPU Control for accessing special registers,
controlling the CPU operating state, synchro­
nizing multiple-processor operation, enabling/
disabling interrupts, mode selection, and
memory refresh.

Chapter 6 contains details on the full instruc­
tion set.

2.9
Instructions
(Continued)

2.10 Data
Types

2.11
Addressing
Modes

2.12 Extended
Processing
Architecture

2.9.1 Instruction Formats. Formats of the
instructions are shown in Figure 2.7. The two
most significant bits in the instruction word
determine whether the compact instruction for­
mat (A) or the general instruction format (B) is
used. Compact formats encode the four most
frequently used instructions into single words,
thereby saving on instruction-memory usage
and increasing execution speed. As long as
the two most significant bits are not logic ones,
the general format applies. In the general for­
mat, the two most significant bits in conjunc­
tion with the source-register field are sufficient
for specifying any of the five main addressing
modes. Source and destination fields are four
bits wide for addressing the 16 general­
purpose registers.

The Z8000 supports manipulation of eight
data types. Five of these have fixed lengths;
the other three have lengths that can vary
dynamically. Each data type is supported by a
number of instructions which operate upon it
directly. These data types are:

• Bit
• Signed and unsigned byte, word, long

word, or quadruple word binary integer

• Byte or word-length logical value

• Word (nonsegmented) or long word
(segmented) address

The information included in Z8000 instruc­
tions consists of the function to be performed,
the type and size of data elements to be
manipulated, and the location of the data
elements. Locations are designated using one
of the following eight addressing modes:

Register Mode. The data element is located in
one of the 16 general-purpose registers.

Immediate Mode. The data element is located
in the instruction.

Indirect Register Mode. The data element can
be found in the . location whose address is in a
register.

Direct Address Mode. The data element can
be found in the location whose address is in
the instruction.

Index Mode. The data element can be found

An important feature of the Z8000 CPU
architecture is the Extended Processing
Architecture (EPA) facility. This faCility pro­
vides a mechanism by which the basic instruc­
tion set of the CPU can be extended via exter­
nal deVices, called Extended Processing Units
(EPUs). A special set of instructions, called
extended instructions, is used to control this
feature. When the CPU encounters one of

A. COMPACT INSTRUCTION FORMAT

LOAD IMMEDIATE BYTE

B.

LOB 11 I 1 I 0 I 0 I I ;

CALL RELATIVE

CALR 11 I 1 I 0 I 1 I
JUMP RELATIVE

ofiset'

JR 11 11 I 1 101 I c~ ; i i off~et

DECREMENT ANt; JUMP ON NON·ZERO

DJNZ 11 J 1 J 1 I 1 I I ; I I W I I I oi, •• 1

GENERAL INSTRUCTION FORMAT (FIRST WORD)

addressing

BYTE OR
WORD

mode
/

I r I J o~co~. I !wi
addressing
mode

I • , I d~sti~atl~n I

WORD OR r-:.f-/.,..-r-J -,--,.-r--r--r-T"I ""Ir--rl-r~,......,
LONG WORD 1'--'---I..I __ ·o;;.:;p;;.::c~::::de:....· _..J.........;;s;;.::ou;;.;:rc.;;... -J..I ::::d.;;;.;·st;;;i~:.:;ati::::~n:...ll

Not.: W indicat.s Word (1) or Byt. (0)

Figure 2-7. Instruction Formats

• Unsigned byt~ decimal integer

• Dynamic-length string of byte data

• Dynamic-length string of word data

• Dynamic-length stack of word data

Bits can be manipulated in registers or
memory. Binary and decimal integers and
logical values can be manipulated in registers
only, although operands can be fetched direct­
ly from memory. Addresses are manipulated
only in registers, and strings and stacks are
manipulated only in memory.

2-8

in the location whose address is the sum of the
contents of a l6-bit index value in a register
and an address in the instruction.

Relative Address Mode. The data element can
be found in the location whose address is the
sum of the contents of the program counter
and a 16-bit displacement in the instruction.

Base Address Mode. The data element can be
found in the location whose address is the sum
of a base address in a register and a 16-bit
displacement in the instruction.

Base Index Mode. The data element can be
found in the location whose address is the sum
of a base address in one register and an index
value in another register.

Chapter 5 defines and illustrates the eight
addreSSing modes.

these extended instructions in its instruction
stream, it will either trap to a software trap
handler to process the instruction or it will
perform the data transfer portion of the
instruction (leaving the data manipulation part
of the instruction to the EPU). Whether the
CPU traps or transfers data depends on the
setting of the EPA bit in the FCW.

26-0001-0904

2.12 Extended
Processing
Architecture
(Continued)

2.13
Exceptions

The underlying philosophy behind the EPA
feature is a view of the CPU as an instruction
processor-the CPU fetches instructions,
fetches data associated with the instruction,
performs the operations and stores the result.
Extending the number of operations performed
does not affect the instruction fetch and
address calculation portion of the CPU activi­
ty. The extended instructions exploit this

Three events can alter the normal execu­
tion of a 28000 program: hardware interrupts
that occur when a peripheral device needs ser­
vice, synchronous software traps that occur
when an error condition arises, and system
reset. Chapter 7 contains a detailed descrip­
tion of exceptions and how they are handled.
Interrupt requests and segmentation trap re­
quests are accepted after the completion of the
instruction execution during which they were
made. At the end of the instruction execution,
a spurious instruction fetch transaction is
usually performed before the interrupt or
acknowledge sequence begins, but the Pro­
gram Counter is not affected by the spurious
fetch.

2.13.1 Reset. A system reset overrides all
other operating conditions. It puts the CPU in
a known state and then causes a new program
status to be fetched from a reserved area of
memory to reinitialize the Flag and Control
Word (FeW) and the Program Counter (PC).

2.13.2 Traps. Traps are synchronous events
that are usually triggered by specific instruc­
tions and recur each time the instruction is
executed with the same set of data and the
same process or state. The four kinds of traps
are:

Extended instruction attempted in non-EPA
mode. The current instruction is an EPU
instruction, but the system is not in EPA mode.
This trap allows system software to either
simulate instruction or abort the program.

Privileged instruction attempted in normal
mode. The current instruction is privileged
(IIO for example), but the CPU is in normal
mode.

System Call (SC) instruction. This instruction
provides a controlled access from normal-mode
to system-mode operation.

Segmentation violation (supplied by external
circuit). A segmentation Violation, such as

2-9

feature-the CPU fetches the instruction and
performs any address calculation that may be
needed. It also generates the timing signals for
the memory access if data must be transferred
between memory and the extended processor.
But the actual data manipulation is handled by
the EPU. The Extended Processing Architec­
ture is explained more fully in Chapter 4.

using an offset larger than the defined length
of the segment, can be made to cause an
external memory management system to signal
a segmentation trap. This can occur only with
the segmented 28001.

2.13.3 Interrupts. Interrupts are asynchronous
events typically triggered by peripheral
devices needing attention. The three kinds of
interrupts associated with the three interrupt
lines of the CPU are:

Non-maskable interrupts (NMI). These inter­
rupts cannot be disabled and are usually
reserved for critical external events that
require immediate attention.

Vectored interrupts (VI). These interrupts
cause eight bits of the vector output by the
interrupting device to be used to select a par­
ticular interrupt service procedure to which
the program automatically branches.

Non-vectored interrupts (NVI). These inter­
rupts are maskable interrupts which are all
handled by the same interrupt procedure.

2.13.4 Trap and Interrupt Service Pro­
cedures. Interrupts and traps are handled
Similarly by the 28000 CPU. The 28000 CPU
automatically acknowledges interrupts and
processes traps in system mode. In the case of
the segmented 2800 I, the CPU uses the
segmented mode regardless of its mode at the
time of interrupt or trap. The program status
information in effect just prior to the interrupt
or trap is pushed onto the system stack. An ad­
ditional word, which serves as an identifier for
the interrupt or trap, also is pushed onto the
system stack, where it can be accessed by the
interrupt or trap handler. The Program Status
registers are loaded with new status informa­
tion obtained from the Program Status Area of
memory. Then control is transferred to the ser­
vice procedure, whose address is now located
in the Program Counter. For details of inter­
rupt and trap handling, refer to Chapter 7.

3

3.1 Intro­
duction

3.2 Types of
Address
Spaces

3.3 I/O
Address
Spaces

26-0001-0905

Programs and data may be located in the
main memory of the computer system or in
peripheral devices. In either case, the location
of the information must be specified by an
address of some sort before that information
can be accessed. A set of these addresses is
called an address space.

The Z8000 supports two different types of
addresses and thus two categories of address
spaces:

• Memory addresses, which specify locations
in main memory.

• I/O addresses, which specify the ports
through which peripheral devices are
accessed.

Within the two general types of address
spaces (memory and 1/0), it is possible to dis­
tinguish several subcategories. Figure 3.1
shows the address spaces that are available on
both the Z8001 and the Z8002.

The difference between the Z800 1 and the
Z8002 lies not in the number and type of
address spaces, but rather in the organization
and maximum size of each space. For the
Z8001, each of the six memory address spaces
contains 8M byte addresses grouped into 128
segments, for a total memory addressing capa­
bility of 48M bytes: For the Z8002, each mem­
ory space is a homogeneous collection of 64K
byte addresses. In both the Z8001 and the
Z8002, the 1/0 address spaces contain 64K port
addresses. When an address is used to access
data, the address spaces may be distingUished
by the state of the status lines (STo-ST3) (which
is determined by the way the address was
generated) and by the value of the Normal!
System line (N/S) (which is determined by the
state of the SIN bit in the FCW).

• Instruction Space (status = 1100 or 1101),
normal mode (N/S = 1) or system mode
(N/S = 0). These spaces typically address
memory that contains user programs (nor­
mal) or system programs (system).

All I/O addresses are represented by 16-bit
words. Each of the ports addressed is either
eight or 16 bits wide. Transfer to or from 16-bit
ports always involves word data and, for 8-bit
ports, byte data.

3-1

Chapter 3
Address Spaces

The CPU generates addresses during four
types of operations:

• Instruction fetches, described in Chapter 4.

• Operand fetches and stores, described in
Chapter 5.

• Exception processing, described in
Chapter 7.

• Refreshes, described in Chapter 8.

Timing information concerning addresses is
described in Chapter 9.

• Data Spaces (status = 1000 or 1010), nor­
mal mode (N/S = 1) or system mode
(N/S = 0). These spaces may be used to
address the data that user or system pro­
grams operate on.

• Stack Spaces (status = 1001 or 1011), nor­
mal mode (N/S = 1) or system mode
(N/S = 0). These spaces can be used to
address the system and normal program
stacks.

• Standard I/O Space (status = 0010). This
space addresses all the I/O ports that are
used for Z8000 peripherals.

• Special I/O Space (status = 0011). This
space addresses ports in CPU support chips
(such as the Z80 1 0 Memory Management
Unit).

MEMORY ADDRESS SPACES I/O ADDRESS SPACES

SYSTEM MODE NORMAL MODE SYSTEM MODE

INSTRUCTIONS INSTRUCTIONS STANDARD I/O

DATA DATA
SPECIAL I/O

STACK STACK

Figure 3-1. Address Spaces on the Z8001 and Z8002

The address of a 16-bit port may be even or
odd for both address spaces. In standard 1/0
space, byte ports must have an odd address; in
special I/O space, byte ports must have an
even address.

3.4 Memory
Address
Spaces

Each memory address space in the 28002, or
each segment in each memory address space
on the 28001, can be viewed as addressing a
string of 64K bytes numbered consecutively in
ascending order. The 8-bit byte is the basic
addressable element in 28000 memory address
spaces. However, there are three other
addressable data elements:

• Bits, in either bytes or words.

• 16-bit words.

• 32-bit long words.

3.4.1 Addressable Data Elements. The nature
of the data element being addressed depends
on the instruction being executed. As Chapter
6 explains in detail, different assembler
mnemonics are used for addressing bytes,
words, and long words. Moreover, only certain
instructions can address bits.

A bit can be addressed by specifying a byte
or word address and the number of the bit
within the byte (0-7) or word (0-15). Bits are
numbered right-to-left, from the least to the

7 6 5 4 3 2 1 0

I I I I I I I I I

most significant. This is consistent with the
convention that bit n corresponds to position
2n in the conventional representation of binary
numbers (see Figure 3.2).

The address of a data type longer than one
byte (word or long word) is the same as the
address of the byte with the lowest memory
address within the word or long word (Figure
3.2). This is the leftmost, highest-order, or
most significant byte of the word or long word.

Word or long word addresses are always
even-numbered. Low bytes of words are stored
at odd-numbered memory locations and high
bytes at even-numbered locations. Byte
addresses can be either even- or odd­
numbered.

Certain memory locations are reserved for
system-reset handling. These are described
fully in Chapter 7. Except for these reserved
locations, there are no memory addresses
speCifically designated for a particular
purpose.

BITS IN A BYTE

15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I I BITS IN A WORD

Address n

I I I
BYTE

WORD

Address n Address n + 1

I IUPP~R ~OR~/UP~ER ?YT~ I I I I
Address n + 2

I I I I}
Address n + 3 LONG WORD

I I ' , I ' ,
I ~OW7R ';OR~/L0'1ER IBYT~ I

Figure 3-2. Addressable Data Elements

3.4.2 Segmented and Non-Segmented
Addresses. The two versions of the 28000 CPU
generate two kinds of addresses with different
lengths. The 28002 generates a 16-bit address
specifying one of 64K bytes. The 28001 gener­
ates a 23-bit segmented address. A segmented
address consists of a 7-bit segment number,
which specifies one of 128 segments, and a
16-bit offset, which speCifies one of up to 64K
bytes in the segment. Each segment is an inde­
pendent collection of bytes; thus, instructions
and multiple byte data elements cannot cross
segment boundaries. Some of the advantages
of address segmentation are outlined in Sec­
tion 3.4.3.

Figure 3.3 shows the format of segmented
and nonsegmented addresses. Nonsegmented
addresses are 16 bits long and thus can be
stored in word registers (Rn) or in memory as
word-length addressable elements. The 23-bit
segmented addresses are embedded in a 32-bit

3-2

long word and thus can be stored in a long
word register (RRn) or a long word memory
element. There is a short encoding of
segmented addresses that appears in instruc­
tions and requires only 16 bits.

It is important to realize that even though
the 28001 can operate in nonsegmented mode
(Chapter 4), it always generates segmented
addresses. The segment number is supplied by
the program counter segment number.

15

I I

Non·Segmented Memory Address
(Za002 Only)

ADDRESS
, , , ! , , ! , f

Segmented Memory Address
(ZaOOl Only)

I I

15 14 a 7 0 I 0 ~ SEGMENT # ! 0 0 0 0 0 0 0 0 I
; ; ; ; ; ?FFsE1 ; : : : : :

15 0

Figure 3-3. Segmented and Non-Segmented
Address Formats

26-0001-0906 26-0001-0907

3.4 Memory
Address
Spaces
(Continued)

26-0001-0908

3.4.3 Segmentation and Memory Manage­
ment. Addresses manipulated by the pro­
grammer, used by instructions, and output by
the Z8001 are called "logical addresses." An
external memory-management circuit can
translate logical addresses into physical
(actual) memory addresses and perform certain
checks to insure data and programs are prop­
erly accessed.

The Z80 1 0 Memory Management Unit (MMU)
performs this function for the segmented
addresses produced by the Z8001 CPU. A
single MMU keeps a descriptor for each of 64
segments. This descriptor tells where in
physical memory the segment lies, how long
the segment is, and what kind of accesses can
be made to the segment. The MMU uses these
descriptors to translate logical segment
numbers and offsets into 24-bit physical
addresses (as shown in Figure 3.4). At the
same time, the MMU checks for errors such as
writing into a read-only segment or a system
segment being accessed by a non system pro­
gram. MMUs are designed to be combined so
that more than 64 segments can be supported
at once. The CPU does not require MMUs; the
segment number can be used directly as part
of a physical address.

Some of the benefits of the memory manage­
ment features provided by the MMU are:

• Provision for flexible and efficient allocation
of physical memory resources during the
execution of programs.

• Hardware stack overflow protection.

• Support for multiple, independently execut­
ing programs that can share access to com­
mon code and data.

• Protection from unauthorized or uninten­
tional access to data or programs.

• Detection of obviously incorrect use of
memory by an executing program.

• Separation of users from system functions.

Segmentation in the Z8001 helps support
memory management in two ways:

• By allOWing part of an address (the segment
number) to be output by the CPU early in a
memory cycle. This keeps access to the seg­
ment descriptor in the MMU from adding to
the basic access time of the memory.

• By providing a standard, variable-sized unit
of memory for the protection, sharing, and
movement of data.

In addition, segmentation is the natural
model for the support of modular programs
and data in a multi-programming environment.
It efficiently supports re-entrant programs by
providing data relocation for different tasks
using common code.

More information about the MMU and
memory management can be found in An
Introduction to the Z8010 MMU Memory
Management Unit and in the Z8010 MMU
Technical Manual.

LOGICAL
(virtual)

ADDRESSING
SPACE PHYSICAL

MEMORY

15

I !
OFFSET
! ! !

SEG #
, 1

o

" I
I- I

~J--___ -::;;,_1--_
15 I

Segments of physical
memory can be loaded
from peripheral devices
through the CPU or DMA.

Figure 3-4. Segmented Address Translation

3-3

4

4.1 Intro­
duction

4.2 Operating
States

26-0001-0909

This chapter gives a fundamental description
of the operating states of the Z8000 CPU and
the process of instruction execution. The
details of instruction execution are described
in Chapters 5 and 6. Other detailed aspects of

The Z8000 CPU has three operating states:
Running state, Stop/Refresh state, and Bus­
Disconnect state. Running state is the usual
state of the processor: the CPU is executing
instructions or handling exceptions. Stop/
Refresh state is entered when the STOP line is
asserted or the refresh counter indicates that a
periodic refresh should be done. In this state,
memory refresh transactions are generated
continually (see Chapter 8). Bus-Disconnect
state is entered when the CPU acknowledges a
bus request and gives up control of the system
bus. Figure 4.1 shows the three states and the
conditions that cause state transitions.

4.2.1 Running State. While the CPU is in
Running state, it is either executing instruc­
tions (as described in Section 4.3) or handling
exceptions (as described in Chapter 7). The
CPU is normally in Running state, but will
leave this state in response to one of three con­
ditions:

• The refresh mechanism indicates that a
periodic refresh needs to be done, in which
case the CPU temporarily enters Stop/
Refresh state.

BUSREQ RELEASED,

BUSREQ ASSERTED,
AND ACKNOWLEDGED ON
BUSACK

STOP RELEASED, OR
PERIODIC REFRESH
COMPLETED

STOP ASSERTED, OR
PERIODIC REFRESH
REQUESTED

BUSREQ RELEASED,

STOP ACTIVE

Figure 4-1. Operating States and Transistions

4-1

Chapter 4
CPU Operation

Z8000 operation are given in Chapter 7
(Exceptions) and Chapter 8 (Refresh). Chapter
9 describes CPU operations as they are mani­
fest on the external pins of the CPU.

• An external stop request pushes the CPU
into Stopped state.

• An external bus request pushes the CPU
into Bus-Disconnect state.

4.2.2 Stop/Refresh State. While the CPU is in
Stop/Refresh state, it generates a continuous
stream of refresh cycles (as discussed in Chap­
ter 8) and does not perform any other func­
tions. This state provides for the generation of
memory refreshes by the CPU and allows
external devices to suspend CPU operation.
This feature can be used to force single-step
operation of the processor or to synchronize
the CPU with an Extended Processing Unit (as
described in Section 4.4).

The CPU enters Stop/Refresh state when the
refresh mechanism needs to do a refresh or
when the stop line is activated. It leaves Stop/
Refresh state when neither of these conditions
holds or when a bus request causes the CPU to
enter Bus-Disconnect state .

4.2.3 Bus-Disconnect State. While the CPU is
in Bus-Disconnect state, it does nothing. It
enters Bus-Disconnect state from either Run­
ning state or Stop/Refresh state when a bus
request has been received on BUSREQ and
acknowledged on BUSACK as (described in
Chapter 9). While in this state, it disconnects
itself from the bus by 3-stating its output. It
leaves Bus-Disconnect state when the external
bus request has been released. Note that Bus­
Disconnect state is highest in priority in that
the presence of a bus request will force the
CPU into this state, regardless of any con­
ditions indicating that a different state should
be entered.

4.2.4 Effect of Reset. Activation of the CPU's
RESET line puts the CPU in a nonoperational
state within five clock cycles, regardless of its
previous state or the states of its other inputs.
The CPU will remain in this state until RESET
is deactivated. When this occurs, the program
enters one of the three operating states
described above, depending on the state of
BUSREQ and STOP inputs. Reset is more fully
described in Chapters 7 and 9.

4.3 Instruction While the CPU is in Running state and exe­
Execution cuting instructions, it is controlled by the Pro­

gram Status registers (Figure 4.2). The Pro­
gram Counter gives the address from which
instructions are fetched, the flags control
branching (as described in Chapter 6), and
the control bits determine the mode in which
the CPU operates and the interrupts that are
masked (see Chapter 7).

Instruction execution consists of the repeated
application of two steps:

• Fetch one or more words comprising a
single instruction from the program memory
address space at the address speCified by
the Program Counter (PC).

• Perform the operation speCified by the
instruction and update the Program Counter
and flags in the Program Status registers.

The operation performed by an instruction
and the way the flags are updated depends on
the particular instruction being executed and
is described in Chapter 6. For most instruc­
tions, the PC value is updated to point to the
word immediately folloWing the last word of the
instruction. The effect of this is that instruc­
tions are fetched sequentially from memory.
Exceptions to this are Branch, Call, Interrupt
Return and Load Program Status, and Return
instructions, which cause the PC to be set to a
value generated by the instruction. This causes
a transfer of control with execution continuing
at the new address in PC. The exact operation
of these instructions is described in Chapter 6.

The Z8000 CPU is able to overlap the fetch­
ing of one instruction with the operation of the
previous instruction. This facility, called
Instruction Look-Ahead, is illustrated in Figure
4.3. This shows the execution of a series of
memory-to-register instructions, such as a

IS 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IjRESERVED
I I , I ! ! ! ! ! ! ! ! I!! WORD

10 I

r'E I

SEGMENT HUMBER
! I I ,

Z8001 Proqram Slatus RCeqlSIHs

SEGMENT NUMBER
I I !

UPPER OFFSET

I I I

Z8001 Proqram Status ArCed PUlDlCer

RATE ROW
I I I ! I I I I

Z8001 Relresh Counter

value in memory being added to the value in a
general-purpose register. Part of each instruc­
tion is fetched while the previous instruction
execution is being completed. This mechanism
provides faster execution speed than the
typical alternative of fetching each instruction
only after the prior instruction has completed
execution.

After executing an instruction and in some
cases (explained in Chapters 6 and 7) during
an instruction's execution, the CPU checks to·
see if there are any traps or interrupts pending
and not masked. If so, it temporarily suspends
instruction execution and begins a standard
exception-handling sequence. This sequence,
which is described fully in Chapter 7, causes
the value of the Program Status registers to be
saved and a new value loaded. Instruction exe­
cution then continues with a new PC value and
Flag and Control Word value. The effect is to
SWitch the execution of the CPU from one pro­
gram to another.

4.3.1 Running-State Modes. While the CPU is
executing instructions, its mode will be con­
trolled by three control bits in the FCW: the
System/Normal Mode bit (SiN), the Segmenta­
tion Mode bit (SEG), and the EPA Mode bit.

4.3.2 Segmented and Nonsegmented
Modes. The segmentation mode of the CPU
(segmented or norisegmented) determines the
size and format of addresses that are directly
manipulated by programs. In segmented mode
(SEG = I), programs manipulate 23-bit seg­
mentedaddresses; in nonsegmented mode
(SEG = 0), programs generate 16-bit nonseg­
mented addresses. There are also the folloWing
differences in the address portions of instruc­
tions, which are due to the difference in
address size:

15 0

10 ISINIEP+1EINV1EI 0 IO! 0 I c I z I 5 IPNIDAI H lo! 0 Ijt~~v~~

I ADDRESS Ij PROGRAM

L......L..' --i-' --L' -.....1.'--11---,',--,-' -J...' --,-I --i-I --LI -.....1.1 --,,'--II---,'L.......J COUNTER

Z8002 Proqram SlalusReqlslers

j' , . UPPER POINTER

I I I I I

Z8002 Proqram Sia Ius Area POinler

rRE I I 1
RATE

1

ROW

! I I I

Z8002 Reiresh Counler

Figure 4·2. Program Status Registers

4-2 26-0001-0903

4.3 Instruction
Execution
(Continued)

26-0001-0911

• Indirect and Base Registers are 32-bit
registers in segmented mode and 16-bit
registers in nonsegmented mode.

• Addresses embedded in instructions are
always 16-bits in nonsegmented mode. They
consist of a 7-bit segment number and either
an 8-bit or 16-bit offset in segmented mode.

Segmented mode is available only on the
28001 CPU; on the 28002, the segment bit is
always forced to zero, indicating nonseg-
men ted mode. Because the 28001 supports
segmented and nonsegmented mop.es, it is
possible to run programs written for the 28002
on the 28001 without alteration. The reverse is
not possible. The 28001 CPU always generates
segmented addresses, even when operating in
nonsegmented mode. When a memory access
is made in nonsegmented mode, the offset of
the segmented address is the 16-bit address
generated by the program, and the segment
number is the value of the segment number
field of the Program Counter.

4.3.3 Normal and System Modes. The opera­
tion mode of the CPU (system mode or normal
mode) determines which instructions can be
executed and which Stack Pointer register
is used.

In system mode (SiN = 1), all instructions
can be executed. While in normal mode, cer­
tain privileged instructions that alter sensitive
parts of the machine state (such as I/O opera­
tions or changes to control registers) cannot be
executed.

The second distinction between system and
normal mode is access to the system or normal

INSTRUCTION AND DATA FETCH

Stack Pointer. As shown in Figure 4.4, there
are two copies of the Stack Pointer registers
(Register 15 in the 28002 and Registers 14 and
15 in the 28001): one for normal mode and one
for system mode. When in normal mode, a
reference to the Stack Pointer register by an
instruction will access the normal Stack
Pointer. When in system mode, an access to
the Stack Pointer register will reference the
system Stack Pointer, unless the 28001 is run­
ning in nonsegmented system mode, in which
case a reference to Rl,4 will access the normal
mode R14. This is summarized in Table 4.l.

In normal mode, the system Stack Pointer is
not accessible; in system mode the normal
Stack Pointer is accessed by using a special
Load Control Register instruction (described in
Chapter 6).

The CPU switches modes whenever the Pro­
gram Status Control bits change. This can
happen when a privileged load control instruc­
tion is executed or when an exception (inter­
rupt, trap, or reset) occurs. There is a special
instruction (system call) whose sole purpose is
to generate a trap and thus provide a con­
trolled transition from normal to system mode.

The distinction between normal/system mode
allows the construction of a protected operat­
ing system. This is a program that runs in
system mode and controls the system's
resources, managing the execution of one or
more application programs which run in nor­
mal mode. Normal and system modes, along
with Memory Protection, provide the basis for
protecting the operating system from malfunc­
tions of application programs.

Figure 4-3. Instruction Look-Ahead

Register System Mode Normal Mode
Referenced by

Instruction Segmented Nonsegmented Segmented Nonsegmented

Rl4 System Rl4 Normal Rl4 Normal Rl4 Normal Rl4
Rl5 System Rl5 System Rl5 Normal Rl5 Normal Rl5
RRl4 System Rl4 Normal Rl4 Normal Rl4 Normal Rl4

System Rl5 System Rl5 Normal Rl5 Normal Rl5

Note: 28002 always runs in nonsegmented mode.

Table 4.1 Registers Accessed by References to R14 and RIS.

4-3

4.4 Extended The Z8000 CPU supports seven types
Instructions of extended instructions, which can be exe­

cuted cooperatively by the CPU and an exter­
nal Extended Processing Unit. The execution
of these instructions is controlled by the EPA
control bit in the FCW.

When the EPA bit is zero, it indicates that
there is no Extended Processing Unit con­
nected to the CPU and causes the CPU to trap
(as explained in Chapter 7) when it encounters
an extended instruction. This allows the opera­
tion of the extended instruction to be simulated
by software running on the CPU.

If the EPA bit is set, it indicates that an
Extended Processing Unit is connected to the
CPU in order to process the operation encoded
in the extended instruction. The CPU will fetch
the extended instruction and perform any
address calculation required by that instruc-

RRO {

RO !7

Rll15

RR2 {
R21

R31

RR4 {
R41

R51

RRS {
Rsl

R71

RRB {
RBI15

R·I

{ Rlol
RR10

R111

RA12
{ R121

R131

0:7

tion. If the instruction specifies the transfer of
data, the CPU will generate the timing signals
for this transfer. The CPU will fetch and begin
executing the next instruction in its instruction
stream. The Extended Processing Unit is
expected to monitor the CPU's activity, partici­
pate in extended instruction data transfers
initiated by the CPU, and execute the
extended instruction. While the Extended Pro­
cessing Unit is executing the instruction, the
CPU can be fetching and executing further
instructions. If the CPU fetches another
extended instruction before the Extended Pro­
cessing Unit is finished executing a previous
instruction, the STOP line may be used to
delay the CPU until the previous instruction is
complete. This process is described more fully
in Chapters 6 and 9.

01
01

01 GENERAL
PURPOSE
REGISTERS

! .. , SYSTEM STACK POINTER (SEG. NO.)

R14 NORMAL STACK POINTER (SEG. NO.)

RR14
A1S' SYSTEM STACK POINTER (OFFSET)

R15 NORMAL ST ACK POINTER (OFFSET)

Figure 4·4. General· Purpose Registers

26·0001-0910 4-4

5

5.1 Intro­
duction

26-0001·0912

This chapter describes the eight addressing
modes used by instructions to access data in
memory or CPU registers. Separate sets of
examples for the nonsegmented and segmented
modes of operation are given at the end of the
chapter.

An instruction is a consecutive list of one or
more words aligned at even-numbered byte
addresses in memory. Most instructions have
operands in addition to an operation code

Chapter 5
AddressiDg Modes

(opcode). These operands may reside in CPU
registers or memory locations. The modes by
which references are made to operands are
called "addressing modes." Figure 5.1 illus­
trates these modes. Not all instructions can use
all addreSSing modes; some instructions can
use only a few, and some instructions use none
at all. In Figure 5.1, the term "operand" refers
to the data to be operated upon.

Addressing Mode Operand Addressing Operand Value

In the Instruction In a Register In Memory

R

Register I REGISTER ADDRESS ~

1M

Immediate

*IR
Indirect
Register

I REGISTER ADDRESS ~f------·I OPERAND I

DA

Direct
Address

~~------------------------.. ~

*X

Index

RA

Relative
Address

PC VALUE ~
r;;;DI;;SP~lA~C;EM;'E;;;N7'T "-~========~I OPERAND I

*BA
Base

Address

*BX
Base

Index

*00 not use RO or RRO as indirect, index, or base registers.

Figure 5-1. Addressing Modes

5-1

The content of the
register

In the instruction

The content of the location
whose address is in the
register

The content of the location
whose address is in the
instruction

The content of the loca­
tion whose address is the
address in the instruction
plus the content 01 the
working register.

The content of the location
whose address is the
content of the program
counter. offset by the
displacement in the
instruction

The content of the location
whose address is the
address in the register.
offset by the displacement
in the instruction

The content of the loca­
tion whose address is
the address in a register
plus the index value in
another register.

5.2 Use of The 16 general-purpose CPU registers can,
CPU Registers with the exceptions noted below, be used in

any of the following ways:

• As accumulators, where the data to be
manipulated resides within the register.

• As pointers, where the value in the register
is the memory address of the operand,
rather than the operand itself. In string and
stack instructions, the pointers may be auto­
matically stepped either forward or back­
ward through memory locations.

• As index or base registers, where the con­
tents of the register and the word(s) follow­
ing the instruction are combined to produce
the address of the operand. This allows effi­
cient access to a variety of data structures.

There are two exceptions to the above uses
of general-purpose registers:
• Register RO (or the double register RRO in

segmented mode) cannot be used as an
indirect register, base· register, index regis­
ter, or software stack pOinter.

• Register R15' (or the double register RR14'
in the Z8001) is used in acknowledging
interrupts and therefore can never be used
as an accumulator in system-mode opera­
tion. The system-mode registers, R14' and
R15', are automatically accessed when R14,
R15, or RR14 are referenced by instructions
executed in system mode.

In addition to the general-purpose use of
Z8000 registers, the following registers are
used for special purposes:
• Register R 15 (or the double register RR 14 in

the Z8001) is used as a stack pointer for
subroutine calls and returns.

• The byte register RH 1 is used in the
translate bulleted item instructions (TRDB,
TRDRB, TRIB, TRIRB) and the translate and
test instructions (TRTDB, TRTDRB, TRTIB,
TRTIRB).

• Register RO is used in extended instructions.

In Relative Address (RA) mode, the Program
Counter (PC) is used instead of a general­
purpose CPU register to supply the base

5.3 Addressing The following pages contain descriptions of
Mode the addressing modes of the Z8000. Each
Descriptions description:

• Explains how the operand address is
calculated,

• Indicates which address space (Register,
I/O, Special I/O, Data Memory, Stack
Memory, or Program Memory) the operand
is located in,

• Shows the assembly language format used to
specify the addreSSing mode, and

• Works through an example.

5-2

address for an effective address calculation.
The Program Counter normally is used only to
keep track of the next instruction to be exe­
cuted; whenever an instruction is fetched from
memory, the PC is incremented to point to the
next instruction. For addressing purposes,
however, the updated PC serves as a base for
referencing an operand relative to the location
of an instruction. Operands specified by rela­
tive addressing reside in the program address
space if the memory system distinguishes
between program and data or stack address
spaces.

Two of the addressing modes, Direct
Address and Index, involve an I/O or memory
address as part of the instruction. I/O
addresses are always 16 bits long, as are non­
segmented memory addresses (Z8002), so these
addresses occupy one word in the instruction.
Segmented addresses generated by the Z8001
are 23 bits long. Within an instruction, a seg­
mented address may occupy either two words
(l6-bit long offset) or one word (8-bit short
offset).

As Figure 5.2 illustrates, bit 7 of the seg­
ment number byte distinguishes the two for­
mats. When this bit is set, the long-offset
representation is implied. When the bit is
cleared, the short-offset address representation
is implied. For a short-offset address, the
23-bit segmented address is reduced to 16 bits
by omitting the eight most significant bits of
the offset, which are assumed to be zero.

I

I

15 8 7

11 segment number ". til
, , , , ,

15

long offset
I I I I

15 8 7

short offset
! ! ! !

Figure 5-2. Segmented Memory Address
Within Instruction.

NOTE: Shaded area is reserved.

o .

The descriptions are grouped into two sec­
tions-one for nonsegmented CPU s, the other
for segmented CPUs. Users of the Z8002 need
refer to the first section only; users of the
Z8001 in non segmented mode should also refer
to the first section, while users of Z8001 in
segmented mode should refer to the second
section. In the examples, hexadecimal notation
is used for memory addresses and the contents
of registers and memory locations. The %
symbol precedes hexadecimal numbers in
assembly language text.

26-0001-0913

5.4 Descrip- In this section, the addressing modes of both
tions and the Z8002 and the nonsegmented mode Z8001
Examples are described.
(Z8002 and 5.4.1 Register (R). In the Register addressing
Z8001 Nonseg- mode the instruction processes data taken
mented Mode) from a specified general-purpose register.

Storing data in a register allows shorter
instructions and faster execution than occur
with instructions that access memory.

INSTRUCTION REGISTER

1 OPERATION I REGISTER (-,1 OPERAND 1
THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register
address space. The register length (byte,
word, register pair, or register quadruple) is
speCified by the instruction opcode.

Assembler language format:

RHn, RLn Byte register
Rn Word register
RRn Double-word register
RQn Quadruple-word register

Example of R mode:

LD R2, R3 !load the contents of!
!R3 into R2!

Before Execution

R21A6BSI
R3 9A20

After Execution

R219A20 I
R3 9A20

5.4.2 Immediate (1M). The Immediate address­
ing mode is the only mode that does not indi­
cate a register or memory address as the
source operand. The data processed by the
instruction is in the instruction.

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is
often used to initialize registers. The Z8000 is
optimized for this function, providing several
short immediate instructions to reduce the
length of programs.

Assembler language format (see also
Chapter 6):

#data

Example of 1M mode:

LDB RH2 #%55 !load hex 55 into RH2!

Before Execution

R2 167891

26-0001-0914 26-0001-0915 26-0001-0916 5-3

After Execution

R2 155891

5.4.3 Indirect Register (lR). In the Indirect
Register addreSSing mode, the data processed
is not the value in the speCified register.
Instead, the register holds the address of
the data.

INSTRUCTION REGISTER MEMORY

1 OPERATION I REGISTER ~I OPERAND 1

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE REGISTER.

A single word register is used to hold the
address. Any general-purpose word register
can be used except RO.

Depending on the instruction, the operand
speCified by IR mode will be located in either
I/O address space (I/O instructions), Special
I/O address space (Special I/O instructions),
or data or stack memory address spaces. For
non-I/O references, the operand will be in
stack memory space if the stack pointer (R15)
is used as the indirect register; otherwise, the
operand will be in data memory space.

The Indirect Register mode may save space
and reduce execution time when consecutive
locations are referenced. This mode can also
be used to simulate more complex addreSSing
modes, since addresses can be computed
before the data is accessed.

Assembler language format (see also
Chapter 6):
@Rn

Example of IR mode:

LD R2,@R5 !load R2 with the!

Before Execution

R2 030F

R3 0005
R4 2000

R5 170C

After Execution

R2 OBOE
R3 0005
R4 2000

R5 170C

!data addressed by the!
!contents of R5!

Memory

170A A023
170C OBOE

l70E lODO

5.4 Descrip­
tions and
Examples
(Z8002and
Z8001 Nonseg­
mented Mode)
(Continued)

5.4.4 Direct Address (DA). In the Direct
Addressing mode, the data processed is found
at the address specified in the instruction.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE INSTRUCTION.

Depending upon the instruction, the oper­
and specified by DA mode will be either in I/O
space (I/O instructions), in Special I/O space
(Special I/O instructions), or in data
memory space.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

Assembler language format (see also
Chapter 6):

address either memory, I/O, or
Special I/O

Example of DA mode:

LDB RH2, %5E23 !load RH2 with the!

Before Execution

R2 167891

After Execution

R2 106891

!data in address!
!5E23!

Memory

5E22 1 01061
5E24 0304

5.4.5 Index (X). In the Index Addressing
mode, the instruction processes data located at
an indexed address in memory. The indexed
address is computed by adding the address
speCified in the instruction to an "index" con­
tained in a word register, also speCified by the
instruction. Indexed addressing allows random
access to tables or other complex data struc­
tures where the address of the base of the table
is known, but the particular element index
must be computed by the program.

REGISTER

INDEX h DATA MEMORY

~ ____________________ ~r-~--------~~
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION, OFFSET BY THE CONTENTS OF THE REGISTER.

Any word register can be used as the index
register except RD.

Operands speCified by X mode are always in
the data memory address space except when
Index AddreSSing is used with the Jump and
Call instructions. In these cases, the destina­
tion, computed by adding the index register
contents to the base address, is in program
memory space.

5-4

Assembler language format (see also
Chapter 6):

address (Rn)

Example of X mode:

LD R4, %231A(R3)

Before Execution

R3101FE I
R4 203A

Address Calculation

231A
+OlFE

2518

After Execution

R3101FE I
R4 3DOE

!load into R4 the con-!
!tents of the memory!
!location whose!
!address is 231A +!
!the value in R3!

Memory

2516
2518

251A

5.4.6 Relative Address (RA). In the Relative
Addressing mode, the data processed is found
at an address relative to the current instruc­
tion. The instruction specifies a two's comple­
ment displacement which is added to the Pro­
gram Counter to form the target address. The
Program Counter setting used is the address of
the first instruction following the currently exe­
cuting instruction. (The assembler will take
this into account in calculating the constant
that is assembled into the instruction.)

PC

ADDRESS ~ ~

-~
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

An operand specified by RA mode is always
in the program memory address space.

As with the Direct Addressing mode, the
Relative Addressing mode is used by certain
program control instructions to specify the
address of the next instruction to be executed
(specifically, the result of the addition of the
Program Counter value and the displacement
is loaded into the Program Counter, except
when executing the DJNZ or CALR instruc­
tions. The displacement is then subtracted from
the PC, not added to it.) Relative addressing
allows references forward or backward from
the current Program Counter value and is
used only for such instructions as Jumps or
Calls and special loads (LDR) that can cross
the normally strict boundary between program
and data memory.

26·0001·0917 26·0001·0918 26·0001·0919

Assembler language format (see also
Chapter 6):

address

5.4 Descrip­
tions and
Examples
(Z8002 and
Z8001 Nonseg- Example of RA mode: (Note that the symbol
mented Mode) "$" is used for the value of the current pro-
(Continued) gram counter.)

LDR R2,$+%6 ! load into R2 the con-!
!tents of the memory!
!location whose!
!address is the current!
!program counter!
! + hex 6!

Because the program counter will be advanced
to point to the next instruction when the
address calculation is performed, the constant
that occurs in the instruction will actually
be +2.

5.4.7 Base Address (BA). The Base Address­
ing mode is similar to Index mode in that a
base and offset are combined to produce the
effective address. In Base Addressing, how­
ever, a register contains the base address, and
the displacement is expressed as a 16-bit value
in the instruction. The two are added and the
resulting address points to the data to be pro­
cessed. This addressing mode may be used
only with the Load instructions. Base
Addressing mode, as a complement to Index

Before Execution

R21AOFOI
PC 0202

Address Calculation

0206
+ 2

0208

After Execution

R21FFFEI
PC 0206

Program Memory

0202 3102 }
0204 0002

0206 E801
0208 FFFE

Instruction

mode, allows random access to tables or other
data structures where the displacement of an
element within the structure is known, but the
base of the particular structure must be com­
puted by the program.

Any word register can be used .for the base
address except RO.

An operand speCified by BA mode will be in
stack memory space if the base register is the
stack pointer (R15) and in data memory space
otherwise.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION. OFFSET BY THE CONHNTS OF THE REGISTER.

26-0001-0920

Assembler language format (see also
Chapter 6):

Rn (#disp)

Example of BA mode:

LDL R5(#%18),RR2 !load the long word!
lin RR2 into the!
!memory location!
!whose address is the!
!value in R5 + hex!
! 18!

Before Execution Memory

RR2 R2
R3 20CO OABE

R4 20C2 F50D

R5 20AA 20C4 BADE
20C6 BODI

5-5

Address Calculation

20AA
+ 18

20C2
After Execution Memory

RR2 R2 OAOO

R3 1500 20CO OABE

R4 3100 20C2 OAOO

R5 20AA 20C4 1500

20C6 BODI

5.4 Descrip- 5.4.8 Base Index (BX). The Base Index
tions and addressing mode is an extension of the Base
Examples Addressing mode and may be used only with
(Z8002 and the Load instructions. In this case, both the
Z8001 Nonseg- base address and index (displacement) are
mented Mode) held in registers. This mode allows access to
(Continued) memory locations whose physical addresses

are computed at runtime and are not fully
known at assembly time.

Any word register can be used for either the
base address or the index except RO.

An operand speCified by BX mode will be in
stack memory space if the base register is the
stack pointer (R15) and in data memory
otherwise.

Assembler language format (see also
Chapter 6):

Rn (Rm)

Example of BX mode:

LD R2,R5(R3) ! load into R2 the!
!value whose address!
! is the value in!
!R5 + the value in R3!

Before Execution

R2 IF3A
R3 FFFE

R4 0300

R5 1502

Address Calculation

1502
+FFFE
l500

After Execution

R2 B015
R3 FFFE

R4 0300

R5 1502

REGISTER

Data Memory

14FE 0101

1500 BODE

1502 F732

L-_A_DD_R_ES_S-...J~DATA MEMORY

+ I OPERAND I
REGISTER

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)

'-------; DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF THE ONE REGISTER OFFSET BY THE
DISPLACEMENT IN THE SECOND REGISTER.

In this section, «nn» will often be used
to refer to segment number nn.
5.5.1 Register (R). In the Register addressing
mode, the instruction processes data taken
from a speCified general-purpose register.Stor­
ing data in a register allows shorter instruc­
tions and faster execution than occurs with
instructions that access memory.

INSTRUCTION REGISTER

I OPERATION I REGISTER ~I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register
address space. The register length (byte,
word, register pair, or register quadruple) is
speCified by the instruction opcode.

Assembler language formats (see
also Chapter 6):

RHn, RLn
Rn
RRn
RQn

Example of R mode:

LDL RR2,RR4

Byte register
Word register
Double-word register
Quadruple-word
register

!load the contents!
!of RR4 into RR2!

5-6

Before Execution

RR2 R2

R3

RR4 R4

R5

After Execution

RR2 R2 38A6

R3 745E

RR4 R4 38A6

R5 745E

5.5.2 Immediate (1M): The Immediate address­
ing mode is the only m.ode that does not indi­
cate a register or memory address as the loca­
tion of the source operand. The data processed
by the instruction is in the instruction.

THE OPERAND VALUE IS IN THE INSTRUCTION.

26-0001-0921 26-0001-0922 26-0001-0923

5.5 Descrip­
tions and
Examples
(Segmented
Z800l)
(Continued)

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is
often used to initialize registers. The Z8000 is
optimized for this function, providing several
short immediate instructions to reduce the
length of programs.

Assembler language format (see also
Chapter 6):

#data

Example of 1M mode:

LDB RH2,#%55 !load hex 55 into RH2!

Before Execution

R2 167891

After Execution

R2 155891

5.5.3 Indirect Register (lR). In the Indirect
Register addressing mode, the data processed
is not the value in the speCified register.
Instead, the register holds the address of
the data.

INSTRUCTION REGISTER MEMORY

I OPERATION I REGISTER ~
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE REGISTER.

Depending upon the instruction, the oper­
and speCified by IR mode will be located in
either I/O address space (I/O instructions),
Special I/O address space (Special I/O
instructions), or data or stack memory address
spaces. For non-I/O references, the operand
will be in stack memory space if the stack
pointer (RR14) is used as the indirect register,
otherwise the operand will be in data memory
space.

A 16-bit register is used to hold an I/O or
Special I/O address; a register pair is used to
hDld a memory address. Any general-purpose
register or register pair may be used except RO
or RRO.

The Indirect Register mode may save space
and reduce execution time when consecutive
locations are referenced. This mode can also
be used to simulate more complex addressing
modes, since addresses can be computed
before the data is accessed.

Assembler language formats (see also
Chapter 6):
@Rn

@RRn

Contains I/O or
Special I/O address.
Contains memory
address.

26-0001·0924 26-0001-0925 5-7

Example of memory access using IR mode:

LD R2,@RR4 !load into R2 the!
!value in the memory!
!location addressed!
!by the contents of!
lRR4!

Before Execution

RR2 R2 030F
R3 0005

RR4 R4 2000

R5 170C

After Execution

RR2 R2 OBOE

R3 0005
RR4 R4 2000

R5 170C

Memory

170A* A023
170C OBOE
170E 10D3

• Segment Number 20

Example of 1/0 using IR mode:
OUTB @Rl,RLO

Before Execution

RO I 0A231
Rl 0011

Execution sends the
data "23" to the I/O

device addressed by
"0011."

5.5.4 Direct Address (DA). In the Direct
Addressing mode, the data processed is found
at the address speCified as an operand in the
instruction.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE INSTRUCTION.

Depending upon the instruction, the oper­
and specified by the Direct Address (DA)
mode will be either in I/O space (standard I/O
instructions) ,. or in data memory space. I/O
and Special I/O addresses are one word long;
memory addresses can be either one or two
words long, depending on whether the long or
short format is used.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)
(Continued)

Assembler language format (see also
Chapter 6):

address either memory, 1/0, or
Special 1/0 where dou­
ble angle brackets
"«" and "»"
enclose the segment
number, and vertical
lines "I" and "I"
enclose short-form
memory addresses.

5.5.5 Index (X). In the Index addressing
mode, the instruction processes data are
located at an indexed address in memory. The
indexed address is computed by adding the
address specified in the instruction to an
"index" contained in a word register, also
speCified by the instruction.

The offset of the operand address is com­
puted by adding the 16-bit index value to the
8 or 16-bit offset portion of the address in the

WORD(S)

~-------I

Example of DA mode:

LDB RH2, /« 15» %23/11oad RH2 with the!
!value in memory!
!segment 15, dis-!
!placement 23 (hex)!

Before Execution Memory

R2 167891

«15» 00221 02~61
0024 0304

After Execution

R2 106891

instruction. The segment number of the oper­
and address comes directly from the instruc­
tion. (Any overflow is ignored-it neither sets
the Overflow flag nor increments the segment
number.) Indexed addressing allows random
access to table or other complex data struc­
tures where the address of the base of the table
is known, but the particular element index
must be computed by the program.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION. OFFSET BY THE CONTENTS OF THE REGISTER.

Any word register can be used as the index
register except RO. The address in the instruc­
tion can be one or two words, depending on
whether a long or short offset is used in the
address.

Operands speCified by X mode are always in
the data memory address space.

Assembler language format:

address (Rn)

Example of X mode:

LD R4, «5» %231A(R3) !load into R4 the!
!contents of the!
!memory location!
!whose address is!
! segment 5,!

Before Execution

R31 01FE I
R4 203A

! displacement!
!231A + the!
!value in R3!

Memory

«5» 2516 F3C2
2518 3DOE
251A 7ADA

5-8

Address Calculation

«5» %231A
+ 01FE

«5» %2518

After Execution

R31 OlFE I
R4 3DOE

5.5.6 Relative Address (RA). In the Relative
Addressing mode; the data processed is found
at an address relative to the current instruc­
tion. The instruction specifies a two's comple­
ment displacement which is added to the offset
of the Program Counter to form the target
address. The Program Counter setting used is
the address of the instruction folloWing the
currently executing instruction. (The assem­
bler will take this into account in calculating
the constant that is assembled into the
instruction.)

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

26-0001-0926 26-0001-0927

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)
(Continued)

26-0001-0928

An operand specified by RA mode is always
in the program memory address space. Either
long or short format addresses may be used.

As with the Direct Addressing mode, the
Relative Addressing mode is also used by cer­
tain program control instructions to specify the
address of the next instruction to be executed
(specifically, the result of the addition of the
Program Counter value and the displacement
is loaded into the Program Counter, except
when executing the DJNZ or CALR instruc­
tions; the displacement is then subtracted from
the PC, not added to it). Relative addressing
allows short references forward or backward
from the current Program Counter value and is
used only for such instructions as Jumps and
Calls and special loads (LOR). Note that
because the segment number is unchanged
relative addresses are located in the same seg­
ment as the instruction.

Assembler language format (see also
Chapter 6):

address

Example of RA mode:

LOR R2,$ + 6 !load into R2 the con-!
!tents of the memory!
!location whose!
!address is the!
!current program!
!counter +6!

Because the program counter will be advanced
to point to the next instruction when the
address calculation is performed, the constant
that occurs in the instruction will actually
be +2.

Before Execution

R2 IAOFol

PC 1 ODOOI
0202

« 13»

Address Calculation

« 13»0206
+ 2
« 13»0208

After Execution

R2 I FFFE I
PC 100001

0206

Memory

0202 3102
} Instruction

0204 0002
0206 E801
0208 FFFE

5-9

5.5.7 Base Address (BA). The Base
Addressing mode is similar to Index mode in
that a base and displacement are combined to
produce the effective address. In Base
Addressing, a register pair contains the 23-bit
segmented base address and the displacement
is expressed as a 16-bit value in the instruc­
tion. The displacement is added to the offset of
the base address, and the resulting address
points to the data to be processed. (The seg­
ment number is not changed.) This addressing
mode may be used only with the Load instruc­
tions. Base Addressing mode, as a complement
to Index mode, allows random access to
records or other data structures where the
displacement of an element within the struc­
ture is known, but the base of the particular
structure must be computed by the program.

REGISTER(S)

I ADDRESS t------, MEMORY

~ ________ -t----------~~I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS THE ADDRESS IN THE REGISTER, OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

Any double-word register can be used for
the base address except RRO. The Base
Address mode allows access to locations
whose segment numbers are not known at
assembly time.

An operand specified by BA mode will be in
stack memory space if the base register is the
stack pointer (RR14) and in data memory space
otherwise.

If the segment number is known when the
program is assembled (or loaded, for example,
if the loader can resolve symbolic segment
numbers), the Indexed addreSSing mode may
be used to simulate the based addreSSing
mode. For example, if R2 is known to hold seg­
ment number 18, then the operand specified
using the based address RR2 (#93) can also be
referenced by the indexed address «18»
%93 (R3). The advantage of this simulation is
that indexing mode is supported for most
operations, whereas based is restricted to
LOAD and LOAD ADDRESS. Thus, using
Indexed addressing is faster and leads to com­
pact code.

Assembler language format (see also
Chapter 6):

RRn(#disp) Add the immediate
value to the contents of
RRn; the result is the
address of the operand.

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)
(Continued)

Example of BA mode:

LDL RR4(#%18),RR2 !load the long word!
! in RR2 into the!
!memory location!
!whose address is!
!the value of RR4!
! + hex 18!

Before Execution Data Memory

RR2 R2 OAOO
R3 1500 «31 » 20CO OABE

RR4 R4 2500 20C2 F50D
R5 20AA 20C4 BADE

20C6 BOD1

5.5.8 Base Index (BX). The Base Index
addressing mode is an extension of the Base
Addressing mode and may be used only with
the LOAD and LOAD ADDRESS instructions.
In this case, both the base address and index
are held in registers. The index value is added
to the offset of the base address to produce the

Address Calculation

«13» 1502
+ FFEE
«13»1500

After Execution Data Memory

RR2 R2 OAOO
R3 1500 «31» 20CO OABE

RR4 R4 2500 20C2 OAOO
R5 20AA 20C4 1500

20C6 BOD1

offset of the operand address. The segment
number of the operand address is the same as
the base address. This mode allows access to
memory locations whose physical addresses
are computed at runtime and are not fully
known at assembly time.

REGISTER

L...-_AD_D_RE_SS_~. DATA MEMORY

+ I OPERAND I
REGISTER

L..--------t DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF THE ONE REGISTER OFFSET BY THE
DISPLACEMENT IN THE SECOND REGISTER.

Any register pair can be used for the base
address except RRO. Any word register except
RO can be used for the index. Note that the
Short Offset format for base addresses is ille­
gal in registers.

An operand speCified by BX mode will be in
stack memory space if the base register is the
stack pointer (RR14) and in data memory
otherwise.

Assembler language format (see also
Chapter 6):

RRn (Rn)

Example of BX mode:

LD R2,RR4 (R3) !load into R2 the value!
!whose address is the!
!contents of RR4 +!
!the contents of R3!

Before Execution

RR2 R2 3535
R3 FFFE

RR4 R4 ODOO
R5 1502

Address Calculation

«13» 1502
+ FFEE
«13» 1500
After Execution

RR2 R2 BODE

R3 FFFE
RR4 R4 ODOO

R5 1502

5-10

Data Memory

« 13» 14FE 0101

1500 BODE
1502 F732

Data Memory

« 13» 14FE 0101
1500 BODE
1502 F732

26-0001-0929

6

6.1 Intro­
duction

This chapter describes the instruction set of
the 28000. An overview of the instruction set is
presented first, in which the instructions are
divided into ten functional groups. The
instructions in each group are listed, followed
by a summary description of the instructions.
Significant characteristics shared by the
instructions in the group, such as the available
addressing modes, flags affected, or inter­
ruptibility, are described. Unusual instructions
or features that are not typical of predecessor
microprocessors are pointed out.

Following the functional summary of the
instruction set, flags and condition codes are

6.2 Functional This section presents an overview of the
Summary 28000 instructions. For this purpose, the

instructions may be divided into ten functional
groups:

• Load and Exchange

• Arithmetic

• Logical
• Program Control
• Bit Manipulation
• Rotate and Shift
• Block Transfer and String Manipulation

• Input/Output
• CPU Control
• Extended Instructions

6.2.1 Load and Exchange Instructions.
Instruction Operand(s) Name of Instruction

CLR dst Clear
CLRB

EX dst, src Exchange
EXB

LD dst, src Load
LDB
LDL

LDA dst, src Load Address

LDAR dst, src Load Address Relative

LDK ds!, src Load Constant

LDM dst, src, num Load Multiple

LDR dst, src Load Relative
LDRB
LDRL

POP dst, src Pop
POPL

PUSH dst, src Push
PUSHL

6-1

Chapter 6
Instruction Set

discussed in relation to the instruction set. This
is followed by a section discussing interrupt­
ibility of instructions and a description of
traps. The last part of this chapter consists of a
detailed description of each 28000 instruction,
listed in alphabetical order. This section is
intended to be used as a reference by 28000
programmers. The entry for each instruction
includes a description of the instruction,
addressing modes, assembly language mne­
monics, instruction formats, execution times
and simple examples illustrating the use of the
instruction.

The Load and Exchange group includes a
variety of instructions that provide for move­
ment of data between registers, memory, and
the program itself (i.e., immediate data). These
instructions are supported with the widest
range of addreSSing modes, including the Base
(BA) and the Base Index (BX) mode which are
available here only. None of these instructions
affect any of the CPU flags.

The Load and Load Relative instructions
transfer a byte, word, or long word of data
from the source operand to the destination
operand. A special one-word instruction, LDK,
is also included to handle the frequent require­
ment for loading a small constant (0 to 15) into
a register.

These instructions baSically provide one of
the following three functions:

• Load a register with data from a register or
a memory location.

• Load a memory location with data from a
register.

• Load a register or a memory location with
immediate data.

The memory location is speCified using any
of the addressing modes OR, DA, X, BA,
BX, RA).

The Clear and Clear Byte instructions can
be used to clear a register or memory location
to zero. While this is functionally equivalent to
a Load Immediate where the immediate data is
zero, this operation occurs frequently enough
to justify a special instruction that is more
compact and faster.

6.2 Functional
Summary
(Continued)

The Exchange instructions swap the contents
of the source and destination operands.

The Load Multiple instruction provides for
efficient saving and restoring of registers. This
can significantly lower the overhead of pro­
cedure calls and context switches such as
those that occur at interrupts. The instruction
allows any contiguous group of 1 to 16 regis-.
ters to be transferred to or from a memory
area, which can be designated using the DA,
IR or X addressing modes. (RO is considered to
follow R15, e.g., one may save R9-R15 and
RO-R3 with a single instruction.)

Stack operations are supported by the
PUSH, PUSHL, POP, and POPL instructions.
Any general-purpose register (or register pair
in segmented mode) may be used as the stack
pointer except RO and RRO. The source
operand for the Push instructions and the
destination operand for the Pop instructions
may be a register or a memory location,
specified by the DA, IR, or X addressing
modes. Immediate data can also be pushed
onto a stack one word at a time. Note that byte
operations are not supported, and the stack
pointer register must contain an even value
when a stack instruction is executed. This is
consistent with the general restriction of using
even addresses for word and long word
accesses.

The Load Address and Load Address Rela­
tive instructions compute the effective address
for the DA, X, BA, BX and RA modes and
return the value in a register. They are use-
ful for management of complex data structures.

6.2.2 Arithmetic Instructions
Instruction Operand(s) Name of Instruction

ADC dst, src Add with Carry
ADCB

ADD dst, src Add
ADDB
ADDL

CP dst, src Compare
CPB
CPL

DAB dst Decimal Adjust

DEC dst, src Decrement
DECB

DIV dst, src Divide
DIVL

EXTS dst Extend Sign
EXTSB
EXTSL

INC dst, src Increment
INCB

MULT dst, src Multiply
MULTL

NEG dst Negate
NEGB

SBC dst, src Subtract with Carry
SBCB

SUB dst, src Subtract
SUBB
SUBL

6-2

The Arithmetic group consists of instructions
for performing integer arithmetic. The basic
instructions use standard two's complement
binary format and operations. Support is also
provided for implementation of BCD
arithmetic.

Most of the instructions in this group per­
form an operation between a register operand
and a second operand designated by any of
the five basic addressing modes, and load the
result into the register.

The arithmetic instructions in general alter
the C, Z, Sand P/V flags, which can then be
tested by subsequent conditional jump instruc­
tions. The P/V flag is used to indicate arith­
metic overflow for these instructions and it is
referred to as the V (overflow) flag. The byte
version of these instructions generally alters
the D and H flags as well.

The basic integer (binary) operations are
performed on byte, word or long word oper­
ands, although not all operand sizes are sup­
ported by all instructions. Multiple precision
operations can be implemented in software
using the Add with Carry, (ADC, ADCB),
Subtract with Carry (SBC, SBCB) and Extend
Sign (EXTS, EXTSB, EXTSL) instructions.

BCD operations are not provided directly,
but can be implemented using a binary addi­
tion (ADC, ADCB) or subtraction (SUBB,
SBCB) followed by a decimal adjust instruc­
tion (DAB).

The Multiply and Divide instructions perform
signed two's complement arithmetic on word or
long word operands. The Multiply instruction
(MULT) mutliplies two l6-bit operands and
produces a 32-bit result, which is loaded into
the destination register pair. Similarly, Mult­
iply Long (MULTL) multiplies two 32-bit oper­
ands and produces a 64-bit result, which is
loaded into the destination register quadruple.
An overflow condition is never generated by a
multiply, nor can a true carry be generated.
The carry flag is used instead to indicate
where the product has too many Significant bits
to be contained entirely in the low-order half
of the destination.

The Divide instruction (DIV) divides a 32-bit
number in the destination register pair by a
16-bit source operand and loads a 16-bit quo­
tient into the low-order half of the destination
register. A 16-bit remainder is loaded into the
high-order half. Divide Long (DIVL) operates
similarly with a 64-bit destination register
quadruple and a 32-bit source. The overflow
flag is set if the quotient is bigger than the
low-order half of the destination, or if the
source is zero.

6.2 Functional 6.2.3 Logical Instructions.
Summary Instruction Operand(s) Name of Instruction

(Continued) AND dst, src And
ANDB

COM dst Complement
COMB

OR dst, src Or
ORB

TEST
TESTB
TESTL

XOR
XORB

dst Test

dst, src Exclusive Or

The instructions in this group perform logi­
cal operations on each of the bits of the oper­
ands. The operands may be bytes or words;
logical operations on long word are not sup­
ported (except for TESTL) but are easily imple­
mented with pairs of instructions.

The two-operand instructions, And (AND,
ANDB), Or (OR, ORB) and Exclusive-Or
(XOR,XORB) perform the appropriate logical
operations on corresponding bits of the desti­
nation register and the source operand, which
can be designated by any of four basic add­
ressing modes (R, 1R, DA, 1M, X). The result is
loaded into the destination register.

Complement (COM, COMB) complements
the bits of the destination operand. Finally,
Test (TEST, TESTB, TESTL) performs the OR
operation between the destination operand and
zero and sets the flags accordingly. The Com­
plement and Test instructions can use four
basic addressing modes to specify the
destination.

The Logical instructions set the Z and S flags
based on the result of the operation. The byte
variants of these instructions also set the Parity
Flag (P/V) if the parity of the result is even,
while the word instructions leave this flag
unchanged. The Hand D flags are not affected
by these instructions.

6.2.4 Program Control Instructions.
Instruction

CALL

CALR

DJNZ
DBJNZ

!RET

JP

JR

RET

Operand(s)

dst

dst

r, dst

ee, dst

ee, dst

ce

Name of Instruction

Call Procedure

Call Procedure Relative

Decrement and Jump if
Not Zero

Interrupt Return

Jump

Jump Relative

Return from Procedure

SC sre System Call

This group consists of the instructions that
affect the Program Counter (PC) and thereby
control program flow. General-purpose

6-3

registers and memory are not altered except
for the processor stack pointer and the pro­
cessor stack, which playa significant role in
procedures and interrupts. (An exception is
Decrement and Jump if Not Zero (DJNZ), which
uses a register as a loop counter.) The flags
are also preserved except for IRET which
reloads the program status, including the
flags, from the processor stack.

The Jump OP) and Jump Relative OR)
instructions provide a conditional transfer of
control to a new location if the processor flags
statisfy the condition speCified in the condition
code field of the instruction. (See Section 6.4
for a description of condition codes.) Jump
Relative is a one-word instruction that will
jump to any instruction within the range -254
to + 256 bytes from the current location. Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to
improve code compactness and efficiency.

Call and Call Relative are used for calling
procedures; the current contents of the PC are
pushed onto the processor stack, and the effec­
tive address indicated by the instruction is
loaded into the PC. The use of a procedure
address stack in this manner allows straight­
forwa.rd implementation of nested and recur­
sive procedures. Like Jump Relative, Call
Relative provides a one-word instruction for
calling nearby subroutines. However, a much
larger range, -4092 to + 4098 bytes for CALR
instruction, is prOVided since subroutine calls
exhibit less locality than normal control
transfers.

Both Jump and Call instructions are
available with the indirect register, indexed
and relative address modes in addition to the
direct address mode. These can be useful for
implementing complex control structures such
as dispatch tables.

The Conditional Return instruction is a com­
panion to the Call instruction; if the condition
speCified in the instruction is satisfied, it loads
the PC from the stack and pops the stack.

A special instruction, Decrement and Jump
if Not Zero (DJNZ, DBJNZ), implements the
control part of the basic PASCAL fOR loop in
a one-word instruction.

System Call (SC) is used for controlled
access to facilities provided by the operating
system. It is implemented identically to a trap
or interrupt: the current program status is
pushed onto the system processor stack fol­
lowed by the instruction itself, and a new pro­
gram status is loaded from a dedicated part of

6.2 Functional the Program Status Area. An 8-bit immediate
Summary source field in the instruction is ignored by the
(Continued) CPU hardware. It can be retrieved from the

stack by the software which handles system
calls and interpreted as desired, for example
as an index into a dispatch table to implement
a call to one of the services provided by the
operating system.

Interrupt Return (IRET) is used for returning
from interrupts and traps, including system
calls, to the interrupted routines. This is a
privileged instruction.

6.2.5 Bit Manipulation Instructions
Instruction Operand(s) Name of Instruction

BIT dst, src Bit Test
BITB

RES dst, src Reset Bit
HESB

SET dst,src Set Bit
SETB

TSET dst Test and Set
TSETB

TCC cc, dst Test condition code
TCCB

The instructions in this group are useful for
manipulating individual bits in registers or
memory. In most computers, this has to be
done using the logical instructions with suit­
able masks, which is neither natural nor
efficient.

The Bit Set (SET, SETB) and Bit Reset (RES,
RESB) instructions set or clear a single bit in
the destination byte or word, which can be in
a register or in a memory location specified by
any of the five basic addreSSing modes. The
particular bit to be manipulated may be speci­
fied statically by a value (0 to 7 for byte, 0 to
15 for word) in the instruction itself or it may
be specified dynamically by the contents of a
register, which could have been computed by
previous instructions. In the latter case, the
destination is restricted to a register. These
instructions leave the flags unaffected. The
companion Bit Test instruction (BIT, BITB)
similarly tests a speCified bit and sets the Z flag
according to the state of the bit.

The Test and Set instruction (TSET, TSETB)
is useful in multiprogramming and multipro­
cessing environments; It can be used for
implementing synchronization mechanisms
between processes on the same or differ-
ent CPUs.

Another instruction in this group, Test Con­
dition Code (TCC, TCCB) sets a bit in the des­
tinqtion register based on the state of the flags
as speCified by the condition code in the

6-4

instruction. (See Section 5.6.1 for a list of con­
dition codes.) This may be used to control sub­
sequent operation of the program after the
flags have been changed by intervening
instructions. It may also be used by language
compilers for generating boolean values.

6.2.6 Rotate and Shift Instructions.
Instruction Operand(s) Name of Instruction

RL dst, src Rotate Left
RLB

RLC dst, src Rotate Left through
RLCB Carry

RLDB ds!, src Rotate Left Digit

RR dst, src Rotate Right
RRB

RRC dst, src Rotate Right through
RRCB Carry

RRDB dst, src Rotate Right Digit

SDA dst, src Shift Dynamic Arithmetic
SDAB
SDAL

SDL dst, src Shift Dynamic Logical
SDLB
SDLL

SLA dst, src Shift Left Arithmetic
SLAB
SLAL

SLL dst, src Shift Left Logical
SLLB
SLLL

SRA dst, src Shift Right Arithmetic
SRAB
SRAL

SRL dst, src Shift Right Logical
SRLB
SRLL

This group contains a rich repertoire of
instructions for shifting and rotating data
registers.

Instructions for shifting arithmetically or
logically in either direction are available.
Three operand lengths are supported: 8, 16
and 32 bits. The amount of the shift, which
may be any value up to the operand length,
can be speCified statically by a field in the
instruction or dynamically by the contents of a
register. The ability to determine the shift
amount dynamically is a useful feature, which
is not available in most minicomputers.

The rotate instructions will rotate the con­
tents of a byte or word register in either direc­
tion by one or two bits; the carry bit can be
included in the rotation. A pair of digit rota­
tion instructions (RLDB, RRDB) are especially
useful in manipulating BCD data.

6.2 Functional 6.2.7 Block Transfer And String Manipula-
Summary tion Instructions.
(Continued) Instruction Operand(s) Name of Instruction

CPD dst, src, r, cc Compare and Decrement
CPDB

CPDRB dst, src, r, cc Compare, Decrement and
Repeat

CPI dst, src, r, cc Compare and Increment
CPIB

CPIR dst, src, r, cc Compare, Increment and
CPIRB Repeat

CPSD dst, src, r, cc Compare String and
CPSDB Decrement

CPSDR dst, src, r, cc Compare String,
CPSDRB Decrement and Repeat

CPS I dst, src, r, cc Compare String and
CPSIB Increment

CPSIR dst, src, r, cc Compare String,
CPSIRB Increment and Repeat

LDD dst, src, r Load and Decrement
LDDB

LDDR dst, src, r Load, Decrement and
LDRB Repeat

LDI dst, src, r Load and Increment
LDIB

LDIR dst, src, r Load, Increment and
LDIRB Repeat

TRDB dst. src, r Translate and Decrement

TRDRB dst, src, r Translate, Decrement and
Repeat

TRIB dst. src, r Translate and Increment

TRIRB dst, src, r Translate, Increment and
Repeat

TRTDB src I, src2, r Translate, Test and
Decrement

TRTDRB srcl, src2, r Translate, Test,
Decrement and Repeat

TRTIB src I: src2, r Translate, Test and
Increment

TRTIRB srcl, src2, r Translate, Test, Increment
and Repeat

This is an exceptionally powerful group of
instructions that provides a full complement of
string comparison, string translation and block
transfer functions. Using these instructions, a
byte or word block of any length up to 64K
bytes can be moved in memory; a byte or word
string can be searched until a given value is
found; two byte or word strings can be com­
pared; and a byte string can be translated by

6-5

using the value of each byte as the address of
its own replacement in a translation table. The
more complex Translate and Test instructions
skip over a class of bytes specified by a
translation table, detecting bytes with values
of special interest.

All the operations can proceed through the
data in either direction. Furthermore, the
operations may be repeated automatically
while decrementing a length counter until it is
zero, or they may operate on one storage unit
per execution with the length counter decre­
mented by one and the source and destination
pointer registers properly adjusted. The latter
form is useful for implementing more complex
operations in software by adding other instruc­
tions within a loop containing the block
instructions.

Any word register can be used as a length
counter in most cases. If the execution of the
instruction causes this register to be decre­
mented to zero, the PlY flag is set. The auto­
repeat forms of these instructions always leave
this flag set.

The D and H flags are not affected by any of
these instructions. The C and S flags are
preserved by all but the compare instructions.

These instructions use the Indirect Register
(IR) addreSSing mode: the source and destina­
tion operands are addressed by the contents of
general-purpose registers (word registers in
nonsegmented mode and register pairs in seg­
mented mode). Note that in the segmented
mode, only the low-order half of the register
pair gets incremented or decremented as with
all address arithmetic in the Z8000.

The repetitive forms of these instructions are
interruptible. This is essential since the repeti­
tion count can be as high as 65,536 and the
instructions can take 9 to 14 cycles for each
iteration after the first one. The instruction can
be interrupted after any iteration. The address
of the instruction itself, rather than the next
one, is saved on tDe stack, and the contents of
the operand pointer registers, as well as the
repetition counter, are such that the instruc­
tion can simply be reissued after returning
from the interrrupt without any visible dif­
ference in its effect.

6.2 Functional 6.2~8 Input/Output Instructions.
Summary Instruction Operand(s) Name of Instruction

(Continued) IN dst, src Input
INB

IND dst, src, r Input and Decrement
INDB

INDR dst, src, r Input, Decrement and
INDRB Repeat

INI dst, src, r Input and Increment
INIB

INIR dst, src, r Input, Increment and
INIRB Repeat

OTDR dst, src, r Output, Decrement and
OTDRB Repeat

OTIR dst, src, r Output, Increment and
OTIRB Repeat

OUT dst, src Output
OUTB

OUTD dst, src, r Output and Decrement
OUTDB

OUTI dst, src, r Output and Increment
OUTIB

SIN dst, src Special Input
SINB

SIND dst, src, r Special Input and
SINDB Decrement

SINDR dst, src, r Special Input, Decrement
SINDRB and Repeat

SINI dst, src, r Special Input and
SINIB Increment

SINIR dst, src, r Special Input, Increment
SINIRB and Repeat

SOTDR dst, src, r Special Output,
SOTDRB Decrement and Repeat

SOTIR dst, src, r Special Output,
SOTIRB Increment and Repeat

SOUT dst, src Special Output
SOUTB

SOUTD dst, src, r Special Output and
SOUTDB Decrement

SOUTI dst, src, r Special Output and
SOUTIB Increment

This group consists of instructions for trans­
ferring a byte, word or block of data between
peripheral devices and the CPU registers or
memory. Two separate 1/0 address spaces with
16-bit addresses are recognized, a Standard
I/O address space and a Special 1/0 address
space. The latter is intended for use with
special Z8000 Family devices, typically the
Z-MMU. Instructions that operate on the
Special 1/0 address space are prefixed with
the word "special." Standard I/O and Special
1/0 instructions generate different codes on
the CPU status lines. Normal 8-bit peripherals
are connected to bus lines ADo-AD7 . Standard
1/0 byte instructions use odd addresses only.
Special 8-bit peripherals such as the MMU,
which are used with special I/O instructions,

6-6

are connected to bus lines AD8-ADI5. Special
1/0 byte instructions use even addresses only.

The instructions for transferring a single
byte or word (IN, INB, OUT, OUTB, SIN,
SINB, SOUT, SOUTB) can transfer data
between any general-purpose register and any
port in either address space. For the Standard
I/O instructions, the port number may be
specified statically in the instruction or dynam­
ically by the contents of the CPU register. For
the Special 1/0 instructions the port number is
specified statically.

The remaining instructions in this group
form a powerful and complete complement of
instructions for transferring blocks of data
between 1/0 ports and memory. The operation
of these instructions is very similar to that of
the block move. instructions described ear lier ,
with the exception that one operand is always
an I/O port which remains unchanged as the
address of the other operand (a memory loca­
tion) is incremented or decremented. These
instructions are also interruptible.

All 1/0 instructions are privileged, i.e. they
can only be executed in system mode. The
single bytelword 1/0 instructions don't alter
any flags. The block 1/0 instructions, includ­
ing the single iteration variants, alter the Z and
P/V flags. The latter is set when the repetition
counter is decremented to zero.

6.2.9 CPU Control Instructions.
Instruction

COMFLG

DI

EI

HALT

LDCTL
LDCTLB

LDPS

MBIT

MREQ

MRES

MSET

Operand(s)

flag

int

int

dst, src

src

dst

Name of Instruction

Complement Flag

Disable Interrupt

Enable Interrupt

Halt

Load Control Register

Load Program Status

Multi-Micro Bit Test

Multi-Micro Request

Multi-Micro Reset

Multi-Micro Set

NOP No Operation

RESFLG flag Reset Flag

SETFLG flag Set Flag

The instructions in this group relate to the
CPU control and status registers (FCW, PSAP,
REFRESH, etc.), or perform other unusual
functions that do not fit into any of the other
groups, such as instructions that support multi­
microprocessor operation. Most of these
instructions are privileged, with the exception
of NOP and the instructions operating on the
flags (SETFLG, RESFLG, COMFLG,
LDCTLB).

6.2 Functional 6.2.10 Extended Instructions. The 28000
Summary
(Continued)

6.3 Processor
Flags

architecture includes a powerful mechanism
for extending the basic instruction set through
the use of external devices known as Extended
Processing Units (EPUs). (See Section 2.12 for
a more comprehensive presentation of the
Extended Processor Architecture.) A group of
six opcodes, OE, OIi', 4E, 4F, 8E and 8F (in
hexadecimal), is dedicated for the implemen­
tation of extended instructions using this facil­
ity. The five basic addressing modes (R, IR,
DA, 1M and X) can be used by extended
instructions for accessing data for the EPUs.

There are four types of extended instructions
in the 28000 CPU instruction repertoire: EPU
internal operations; data transfers between

The processor flags are a part of the pro­
gram status (Section 2.7.1). They provide a
link between sequentially executed instructions
in the sense that the result of executing one
instruction may alter the flags, and the
resulting value of the flags may be used to
determine the operation of a subsequent
instruction, typically a conditional jump
instruction. An example is a Test followed by a
Conditional Jump:

TEST Rl
JR 2, DONE

DONE:

!sets 2 flag if Rl = a!
!go to DONE if 2 flag is
set!

The program branches to DONE if the TEST
sets the 2 flag, Le., if Rl contains zero.

The program status has six flags for the use
of the programmer and the 28000 processor:

• Carry (C)

• 2ero (2)

• Sign (S)

• Parity/Overflow (P/V)

• Decimal Adjust (D)

• Half Carry (H)
The flags are.modified by many instructions,

including the arithmetic and logical
instru cti ons.

Appendix C lists the instructions and the
flags they affect. In addition, there are 28000
CPU control instructions which allow the pro­
grammer to set, reset (clear), or complement
any or all of the first four flags. The Half-Carry
and Decimal-Adjust flags are used by the
28000 processor for BCD arithmetic correc­
tions. They are not used explicitly by the pro­
grammer.

6-7

memory and EPU; data transfers between EPU
and CPU; and data transfers between EPU flag
registers and CPU flag and control word. The
last type is useful when the program must
branch based on conditions determined by the
EPU. The action taken by the CPU upon
encountering extended instructions is depen­
dent upon the EPA control bit in the CPU's
FCW. When this bit is set, it indicates that the
system configuration includes EPUs; therefore,
the instruction is executed. If this bit is clear,
the CPU traps (extended instruction trap) so
that a trap handler in software can emulate the
desired operation.

The FLAGS register can be separately
loaded by the Load Control Register (LDCTLB)
instruction without disturbing the control bits
in the other byte of the FCW. The contents of
the flag register may also be saved in a reg­
ister or memory.

The Carry (C) flag, when set, generally indi­
cates a carry out of or a borrow into the high­
order bit position of a register being used as
an accumulator. For example, adding the 8-bit
numbers 225 and 64 causes a carry out of bit 7
and sets the Carry flag:

Bit
7 6 5 4 3 2 0

225 1 1 0 0 a a 1
+ 64 a a 0 a a a a

289 c~ a a a a
Carry flag

The Carry flag plays an important role in the
implementation of multiple-precision arithmetic
(see the ADC, SBC instructions). It is also
involved in the Rotate Left Through Carry
(RLC) and Rotate Right Through Carry (RRC)
instructions. One of these instructions is used
to implement rotation or shifting of long strings
of bits.

The 2ero (2) flag is set when the result reg­
ister's contents are zero following certain
operations. This is often useful for deter­
mining when a counter reaches zero. In addi­
tion, the block compare instructions use the 2
flag to indicate when the specified comparison
condition is satisfied.

The Sign (S) flag is set to one when the most
Significant bit of a result register contains a
one (a negative number in two's complement
notation) following certain operations.

6.3 Processor
Traps
(Continued)

6.4 Condition
Codes

6.5 Instruction
Interrupts
and Trap.

The Overflow (V) flag, when set, indicates
that a two's complement number in a result
register has exceeded the largest number or is
less than the smallest number that can be
represented in a two's complement notation.
This flag is set as the result of an arithmetic
operation. Consider the following example:

Bit
7 6 5 4 3 2 0

120 0 0 0 0
+105 0 0 0 0

225
[~

0 0 0 0

Overflow flag

The result in this case (-95 in two's comple­
ment notation) is incorrect, thus the overflow
flag would be set.

The same bit acts as a Parity (P) flag follow­
ing logical instructions on byte operands. The
number of one bits in the register is counted
and the flag is set if the total is even (that is,
P = l). If the total is odd (P = 0), the flag is
reset. This flag is often referred to as the
P/V flag.

The first four flags, C, 2, S, and P/V, are
used to control the operation of certain "condi­
tional" instructions such as the Conditional
Jump. The operation of these instructions is a
function of whether a specified boolean condi­
tion on the four flags is satisfied or not. It
would take 16 bits to specify any of the 65,536
(216) boolean functions of the four flags. Since
only a very small fraction of these are general­
ly of interest, this procedure would be very
wasteful. Sixteen functions of the flag settings
found to be frequently useful are encoded in a
4-bit field called the condition code, which

Interrupts are discussed in detail in
Section 7. This section looks at the relation­
ship between instructions and interrupts.

When the CPU receives an interrupt
request, and it is enabled for interrupts of that
class, the interrupt is normally processed at
the end of the current instruction. However,
certain instructions which might take a long
time to complete are designed to be interrupt­
ible so as to minimize the length of time it
takes the CPU to respond to an interrupt.
These are the iterative versions of the String
and Block instructions and the Block 1/0
instruction. If an interrupt request is received
during one of these interruptible instructions,
the instruction is suspended after the current
iteration. The address of the instruction itself,
rather than the address of the following
instruction, is saved on the stack, so that the
same instruction is executed again when the
interrupt handler executes an IRET. The con-

6-8

The Block Move and String instructions and
the Block 1/0 instructions use the P/V flag to
indicate the repetition counter has decre­
mented to O.

The Decimal-Adjust (D) flag is used for BCD
arithmetic. Since the algorithm for correcting
BCD operations is different for addition and
subtraction, this flag is used to record whether
an add or subtract instruction was executed so
that the subsequent Decimal Adjust (DAB)
instruction can perform its function correctly
(See the DAB instruction for further discussion
on the use of this flag).

The Half-Carry (H) flag indicates a carry out
of bit 3 or a borrow into bit 3 as the result of
adding or subtracting bytes containing two
BCD digits each. This flag is used by the DAB
instruction to convert the binary result of a
previous decimal addition or subtraction into
the correct decimal (BCD) result.

Neither the Decimal-Adjust nor the Half­
Carry flag is normally accessed by the pro­
grammer.

forms a part of all conditional instructions.
The condition codes and the flag settings

they represent are listed in Section 6.6.
Although there are sixteen unique condition

codes, the assembler recognizes more than six­
teen mnemonics for the conditional codes.
Some of the flag settings have more than one
meaning for the programmer, depending on
the context (PE & OV, 2 & EQ, C & ULT,
etc.). Program clarity is enhanced by having
separate mnemonics for the same binary value
of the condition codes in these cases.

tents of the repetition counter and the registers
which index into the block operands are such
that after each iteration when the instruction is
reissued upon returning from an interrupt, the
effect is the same as if the instruction were not
interrupted. This assumes, of course, the inter­
rupt handler preserved the registers, which is
a general requirement on interrupt handlers.

The longest noninterruptible instruction that
can be used in normal mode is Divide Long
(749 cycles in the worst case). Multi-Micro­
Request, a privileged instruction, can take
longer depending on the contents of the des­
tination register.

Traps are synchronous events that result
from the execution of an instruction. The
action of the CPU in response to a trap condi­
tion is similar to the case of an interrupt (see
Section 7). Traps arenon-maskable.

6.5 Instruction
Interrupts
and Traps
(Continued)

6.6 Notation
and Binary
Encoding

The 28000 CPUs implement four kinds of
traps:

• Extended Instruction

• Privileged Instruction in normal mode

• Segmentation violation

• System Call
The Extended Instruction trap occurs when

an Extended Instruction is encountered, but
the Extended Processor Architecture Facility is
disabled, i.e., the EPA bit in the FCW is a
zero. This allows the same software to be run
on 28000 system configurations with or without
EPUs. On systems without EPUs, the desired
extended instructions can be emulated by soft­
ware which is invoked by the Extended
Instruction trap.

The rest of this chapter consists of detailed
descriptions of each instruction, listed in
alphabetical order. This section describes the
notational conventions used in the instruction
descriptions and the binary encoding for some
of the common instruction fields (e. g., register
designation fields).

The description of an instruction begins with
the instruction mnemonic and instruction name
in the top part of the page. Privileged instruc­
tions are also identified at the top.

The assembler language syntax is then given
in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addreSSing modes.

Example:

AND dst, src dst: R
ANDB src: R, 1M, IR, DA, X

The operation of the instruction is presented
next, followed by a detailed discussion of the
instruction.

The next part specifies the effect of the
instruction on the processor flags. This is
followed by a table that presents all the
variants of the instruction for each applicable
addressing mode and operand size. For each
of these variants, the following information is
provided:

A. Assembler Language Syntax. The syntax
is shown for each applicable operand width
(byte, word or long). The invariant part of the
syntax is given in UPPER CASE and must
appear as shown. Lower case characters repre­
sent the variable part of the syntax, for which
suitable values are to be substituted. The syn­
tax shown is for the most basic form of the

6-9

The privileged instruction trap serves to pro­
tect the integrity of a system from erroneous or
unauthorized actions of arbitrary processes.
Certain instructions, called privileged instruc­
tions, can only be executed in system mode.
An attempt to execute one of these instructions
in normal mode causes a privileged instruction
trap. All the 1/0 instructions and most of the
instructions that operate on the FCW are
privileged, as are instructions like HALT
and IRET.

The System Call instruction always causes a
trap. It is used to transfer control to system
mode software in a controlled way, typically to
request supervisor services.

instruction recognized by the assembler. For
example,

ADD Rd,#data

represents a statement of the form
ADD R3,#35. The assembler will also accept
variations like ADD TOTAL, #NEW-DELTA
where TOTAL, NEW and DELTA have been
suitably defined.

The follOWing notation is used for register
operands:

Rd, Rs, etc.:

Rbd Rbs:

RRd RRs:

RQd:

a word register in the
range RO-R15
a byte register RHn or
RLn where n = 0 - 7
a register pair RRO, RR2,
... RR14
a register quadruple
RQO, RQ4, RQ8 or RQ12

The "s" or "d" represents a source or destina­
tion operand. Address registers used in
Indirect, Base and Base Index addreSSing
modes represent word registers in nonseg­
men ted mode and register pairs in segmented
mode. A one-word register used in segmented
mode is flagged and a footnote explains the
situation.

B. Instruction Format. The binary encoding of
the instruction is given in each case for both
the nonsegmented and segmented modes.
Where applicable, both the short and long
forms of the segmented version are given (SS
and SL).

The instruction formats for byte and word
versions of an instruction are usually com­
bined. A single bit, labeled "w," distingUishes

6.6 Notation
and Binary
Encoding
(Continued)

them: a one indicates a word instruction, while
a zero indicates a byte instruction.

Fields specifying register operands are
identified with the same symbols (Rs, RRd,
etc.) as in Assembler Language Syntax. In
some cases, only nonzero values are permitted
for certain registers, such as index registers.
This is indicated by a notation of the form
"RS '* 0."

The binary encoding for register fields is as
follows:

Register Binary

RQO RRO RO RHO 0000
Rl RHI 0001

RR2 R2 RH2 0010
R3 RH3 0011

RQ4 RR4 R4 RH4 0100
R5 RH5 0101

RR6 R6 RH6 0110
R7 RH7 OUI

RQ8 RR8 R8 RLO 1000
R9 RLl 1001

RRlO RIO RL2 1010

Code Meaning

F Always false
Always true

Z Zero
NZ Not zero
C Carry
NC No carry
PL Plus
MI Minus
NE Not equal
EQ Equal
OV Overflow
NOV No overflow
PE Parity even
PO Parity odd
GE Greater than

or equal
LT Less than
GT Greater than
LE Less than or

equal
UGE Unsigned

greater than
or equal

ULT Unsigned
less than

UGT Unsigned
greater than

ULE Unsigned less
than or equal

Register Binary
Rll RL3 1011

RQ12 RR12 R12 RL4 1100
R13 RL5 1101

RR14 R14 RL6 1110
R15 RL7 1111

For easy cross-references, the same symbols
are used in the Assembler Language Syntax
and the instruction format. In the case of ad­
dresses, the instruction format in segmented
mode uses "segment" and "offset" to corres­
pond to "address," while the instruction format
contains "displacement," indicating that the
assembler has computed the displacement and
inserted it as indicated.

A condition code is indicated by "cc" in
both the Assembler Language Syntax and the
instruction formats. The condition codes, the
flag settings they represent, and the binary
encoding in the instruction are as follows:

Flag Setting Binary

0000
1000

Z = 1 0110
Z = a 1110
C = 1 0111
C = 0 1111
S = a 1101
S = 1 0101
Z = a 1110
Z = 1 0110
V = 1 0100
V = a 1100
P = 1 0100
P = a 1100
(S XOR V) = a 1001

(S XOR V) = 1 0001
(Z OR (S XOR V» = a 1010
(Z OR (3 XOR V» = 1 0010

C = a 1111

C = 1 0111

«C =0) AND (Z = 0» 1011

(C OR Z) = 1 0011

Note that some of the condition codes correspond to identical flag settings: i.e., Z-EQ, NZ-NE,
NC-UGE, PE-OV, PO-NOV.

C. Cycles. This line gives the execution time
of the instructions in CPU cycles.

D. Example. A short assembly language
example is given showing the use of the
instruction.

6-10

6.7 Z8000
Instruction
Descriptions
and Formats

Operation:

Flags:

Addressing
Mode

R:

Example:

26-0001-0930

ADC
Add With Carry

ADC dst, src
ADCB

dst dst + src + c

dst: R
src: R

The source operand, along with the setting of the carry flag, is added to the destina­
tion operand and the sum is stored in the destination. The contents of the source are
not affected. Two's complement addition is performed. In multiple precision arith­
metic, this instruction permits the carry from the addition of low-order operands to
be carried into the addition of high-order operands.

C: Set if there is a carry from the most significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
0: ADC-unaffected; ADCB-cleared
H: ADC-unaffected; ADCB-set if there is a carry from the most significant bit of

the low-order four bits of the result; cleared otherwise

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

ADC Rd, Rs I 110111010lwl I I ADCB Rbd, Rbs 110111010lwl Rs I Rd 5 Rs Rd 5

Long addition can be done with the following instruction sequence, assuming RO, Rl
contain one operand and R2, R3 contain the other operand:

ADD Rl,R3 !add low-order words!
ADC RO,R2 !add carry and high-order words!

If RO contains %0000, Rl contains %FFFF, R2 contains %4320 and R3 contains
%0001, then the above two instructions leave the value %4321 in RO and %0000
in RI.

6-11

ADD
Add

Operation:

Flags:

Source
Addressing

Mode

R:

1M:

IR:

ADD dst, src
ADDB
ADDL

dst ,.- dst + src

dst: R
src: R, 1M, 1R, DA, X

The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.

c: Set if there is a carry from the most significant bit of the result; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL-unaffected; ADDB-cleared
H: ADD, ADDL-unaffected; ADDB-set if there is a carry from the most significant

bit of the low-order four bits of the result; cleared otherwise

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

ADD Rd, Rs
110 100000lwi Rs I Rd I 4 110 100000lwi Rs I Rd I 4 ADDB Rbd, Rbs

ADDL RRd, RRs
11010101101 RRs

!
RRd I 8 1101010110! RRs I RRd I 8

ADD Rd, #data 00\ 000001 \ 0000 \ Rd 00\ 000001 \ 0000 I Rd
7 7

data data

AD DB Rbd, #data
00\ 000000 \ 0000 \ Rd 00\ 000000 \ 0000 I Rd

7 7
data I data data \ data

ADDL RRd, #data o 0 I 0 1 0 1 1 0 I 0 0 0 0 I RRd o oj 0 1 0 1 1 0 I 00 0 0 I RRd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) 0 15 data (low) 0

ADD Rd, @Rsl
loolooooolwi Rs*O I ADDB Rbd, @Rsl

Rd I 7 loolooooolwi RHO 1 Rd I 7

ADDL RRd, @Rsl
1001010110 I Rs*O I RRd I 14 100 1 01 011 0 I Rs*O I RRd I 14

6-12

Source
Addressing

Mode

DA:

X:

Example:

26·0001-0931

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

ADD Rd, address r 0 110 00 0 01 w 1 0 0 0 01 Rd 1 01/00000TwTooo01 Rd
ADDB Rbd, address 9 SS r address I o / segment 1 offset

o 1 10 0 00 oT w Too 0 0 T Rd

SL 1 / segment Too 0 0 0 0 0 0

offset

ADDL RRd, address r 0 11 0 1 0 1 1 0 1 0 0 0 01 RRd I 011010110/00001 RRd

r 1 15 SS
address o 1 segment 1 offset

o 1 I 0 1 0 1 1 0 Too 0 01 RRd

SL 1/ segment T 00000000

offset

ADD Rd, addr(Rs)
1011000001w/ RS;i:O / Rd 1 011000001w/ RS;i:O / Rd

ADDB Rbd, addr(Rs)
1 I 10 SS

address o / segment / offset

0110000QlwI RS;i:oT Rd

SL 1 1 segment 1 0 0 0 0 0 0 0 0

offset

ADDL RRd, addr(Rs)
101T 0101101 RS;i:O / RRd 1 01/ 01011 01 RHO T RRd

16 SS
1 address 1 01 segment / offset

01/ 01011 01 RS;i:O / RRd

SL 11 segment 1 00000000

offset

ADD R2, AUGEND !augend A located at %1254!

Before instruction execution:

Memory

1252

R 1254 0 6 4 4

1256

After instruction execution:

Memory

1252

R 1254 0 6 4 4

1256

R2

R2

Ie 3 6 51

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-13

Cycles

10

12

16

18

10

13

16

19

AND
And

Operation:

Flags:

Source
Addressing

Mode

R:

1M:

IR:

DA:

X:

AND dst, src
ANDB

dst __ dst AND src

dst: R
src: R, 1M, IR, DA, X

A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A one bit is
stored wherever the corresponding bits in the two operands are both ones; otherwise
a zero bit is stored. The source contents are not affected.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: AND - unaffected; ANDB - set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Assembler Language
Syntax

AND Rd, Rs
ANDB Rbd, Rs

AND Rd, #data

ANDB Rbd, #data

AND Rd, @Rsl
ANDB Rbd, @Rsl

AND Rd, address
ANDB Rbd, address

AND Rd, addr(Rs)
ANDB Rbd, addr(Rs)

Nonsegmented Mode

Instruction Format Cycles

110 lo00111 wl Rs I Rd 4

7

7

1001000111 wl R~*O I Rd 7

9

10

6-14

Segmented Mode

Instruction Format Cycles

110 lOOO111 wl Rs Rd 4

7

7

55 10

o 1 10 0 0 1 1 I w I 0 0 0 0 I Rd

5L 11 segment 1 0 0 0 0 0000 12

offset

10

o 110001 11 wl Rs * 0 1 Rd

5L 1 1 segment 1 0 0 0 0 0 0 0 0 13

offset

Example: AN DB RL3, # %CE

Before instruction execution:
RL3 Flags

11100111 c z S P/v 0 H

czspdh

After instruction execution:

RL3 Flags

11000110 c z S P/v 0 H

c 0 1 1 d h

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

26-0001-0932 6-15

BIT
Bit Test

Operation:

Flags:

BIT dst, src
BITB

z ~ NOT dst (src)

dst: R, IR, DA, X
src: 1M

or

dst: R
src: R

The specified bit within the destination operand is tested, and the Z flag is set to one
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the
destination are not affected. The bit number (the source) can be specified statically
as an immediate value, or dynamically as a word register whose contents are the bit
number. In the dynamic case, the destination operand must be a register, and the
source operand must be RO through R7 for BITB, or RO through R15 for BIT. The bit
number is a value from a to 7 for BITB, or a to 15 for BIT, with a indicating the least
significant bit. Note that only the lower four bits of the source operand are used to
specify the bit number for BIT, while only the lower three bits of the source operand
are used for BITB.

c: Unaffected
Z: Set if speCified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Bit Test Static

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: BIT Rd, b 1101100111wl 1101100111wl 1 I Rd I b I 4 Rd b 4
BITB Rbd, b

IR: BIT @Rd1, b I 0 0 11 0 0 1 1 I w 1 Rd * 0 1 b I 8 I 0 0 11 0 0 1 1 1 w 1 Rd * 0 I b I 8
BITB @Rd 1, b

DA: BIT address, b 1011100111wl00001 b I 011100111wl00001 b I BITB address, b
I I

10 55 I
11

address o \ segment \ offset

01\100111w100001 b

5L 1 I segment I 0 0 0 0 0000 13

offset

X: BIT addr(Rd), b
101 \10011\ wJ Rd*O I b I o 1 \1 0 0 1 1 I w I Rd * 0 I b I BITB addr(Rd), b
I I

11 55
J

11
address o I segment I offset

o 1 11 0 0 1 1 1 wJ Rd * 0 I b

5L 1 \ segment I 0 0 0 0 0000 14

offset

6-16

Bit Test Static (Continued)

Source
Addressing

Mode

R:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

BIT Rd, Rs I 0 0 11 0 0 1 1 1 wl 0 0 0 01 Rs 1 10 lool10011lwlooool Rs I
BITB Rbd, Rs 10000 1 Rd I 0 0 0 0 I 0 0 0 0 1 1 0 0 0 0 I Rd I 0 0 0 0 I 0 0 0 0 I

If register RH2 contains O/OB2 (10110010), the instruction

BITB RH2, #0

will leave the Z flag set to 1.

Note I: Word register in non segmented mode, register pair in segmented mode.

6-17

Cycles

10

CALL
Call

Operation:

Flags:

Destination

CALL dst

Nonsegmented
SP ... - SP - 2
C ~ SP +- PC
PC +- dst

dst: IR, DA, X

Segmented
SP +- SP - 4
@SP +- PC
PC +- dst

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is RI5 in non segmented mode, or RRI4 in
segmented mode. (The program counter value used is the address of the first instruc­
tion byte following the CALL instruction.) The specified destination address is then
loaded into the PC and points to the first instruction of the called procedure.
At the end of the procedure a RET instruction can be used to return to original pro­
gram. RET pops the top of the processor stack back into the PC.

No flags affected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode

IR:

DA:

X:

Example:

Syntax Instruction Format Cycles Instruction Format Cycles

CALL @Rdl
10010111111 Rd

1
0000 1 10 10010111111 Rd

1
0000 1 15

CALL address
/0110111111000010000/ 01101111110000100001

/ /
12 55 18

address o 1 segment 1 offset 1

011011111 1000010000

5L 1 1 segment 1 0 0 0 0 0 0 0 0 20
offset

CALL addr(Rd)
/ 0 1 1 0 1 1 1 1 1 1 Rd * 0 1 0 0 0 0 I

13 55 01 1 0.11 111 1 Rs*O 10000 1 18
I address I o 1 segment 1 offset 1

o 1 I 0 1 1 1 1 1 1 Rs * 0 1 0 0 0 0

5L 1 I segment 1 0 0 0 0 0000 21
offset

In nonsegmented mode, if the contents of the program counter are % 1000 and the
contents of the stack pointer (RI5) are %3002, the instruction

CALL %2520

causes the stack pointer to be decremented to %3000, the value % 1004 (the address
following the CALL instruction with direct address mode speCified) to be loaded into
the word at location %3000, and the program counter to be loaded with the value
%2520. The program counter now points to the address of the first instruction in the
procedure to be executed.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-18

Operation:

Flags:

Destination
Addressing

Mode

RA:

Example:

CALR dst

N onsegmented
SP +- SP - 2
@SP +- PC

dst: RA

Segmented
SP +- SP - 4
@SP +- PC

CALR
Call Relative

PC +- PC - (2 x displacement) PC +- PC - (2 x displacement)

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 if nonsegmented, or RR14 if
segmented. (The program counter value used is the address of the first instruction
byte following the CALR instruction.) The destination address is calculated and then
loaded into the PC and points to the first instruction of a procedure.

At the end of the procedure a RET instruction can be used to return to the original
program flow. RET pops the top of the processor stack back into the PC.

The destination address is calculated by doubling the displacement in the
instruction, then subtracting this value from the current value of the PC to derive the
destination address. The displacement is a 12-bit signed value in the range -2048 to
+2047. Thus, the destination address must be in the range -4092 to +4098 bytes
from the start of the CALR instruction. In segmented mode, the PC segment number
is not affected. The assembler automatically calculates the displacement by
subtracting the PC value of the following instruction from the address given by the
programmer.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

CALR address
11101 I displacement I 10 11101 I displacement I 15

In non segmented mode, if the contents of the program counter are % 1000 and the
contents of the stack pointer (R15) are %3002, the instruction

CALR PROC

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALR instruction) to be loaded into the word location %3000, and the
program counter to be loaded with the address of the first instruction in procedure
PROC.

6-19

CLR
Clear

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

X:

Example:

CLR dst
CLRB

dst: R, IR, DA, X

dst ~ 0

The destination is cleared to zero.

No flags affected.

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

CLRRd 11 0 10 0 1 1 0 I W I·Rd * 0 11 0 0 0 I 7
CLRB Rbd

CLR @Rdl I 0 0 10 0 1 1 0 1 w 1 Rd * 0 11 0 0 0 I 8 CLRB @Rdl

CLR address
CLRB address

.10110011 0 [w 1 0000 11 000 1
11

1 address I

CLR addr(Rd)
CLRB addr(Rd) I 0 1 10 0 1 1 01 w 1 Rd * 0 110 0 0 I

12 I address I

Segmented Mode

InstructionF ormat

11 0 10 0 1 1 0 1 w 1 Rd * 0 11 0 0 0 I

100100110lwiRd * 01 1 000 I

SS 01100110lwJooool1000J

o 1 segment [offset J

01[0011 olwl 000011000

SL 1 J segment 1 0 0 0 0 0000

offset

SS
0110011 olwl Rd*O 11000 I
01 segment 1 offset I
011001101 w 1 Rd*O 110 0 0

SL 1 1 segment 1 0 0 0 0 0000

offset

If the word at location %ABBA contains 13, the statement

CLR %ABBA

will leave the value 0 in the word at location %ABBA.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-20

Cycles

7

8

12

14

12

15

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

X:

Example:

COM
Complement

COM dst
COMB

(dst - NOT dst)

dst: R, IR, DA, X

The contents of the destination are complemented (one's complement); all one bits
are changed to zero, and vice-versa.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: COM-unaffected; COMB-set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

COMRd
11 0 I 0 0 1 1 0 I w I Rd * 0 I 0 0 0 0 1 7 11 0 I 0 0 1 1 0 I w I Rd * 0 I 0 0 0 0 1

COMB Rbd

COM @Rdl I 0 0 10 0 1 1 0 I w I Rd ~ 0 I 0 0 0 0 1 12 I 0 0 10 0 1 1 0 I w I Rd * 0 I 0 0 0 0 I
COMB ([LRdl

COM address
10110011 01 w 1 00001 0000 I 011001101 wi 0000 10000 I

COMB address 15 55
l address J 01 segment 1 offset I

011001 101 Wi 0000 I 0000

5L 1 1 segment 1 0 0 0 0 0 0 0 0

offset

COM addr(Rd)
10 1 10 0 1 10 1 w 1 Rd * 0 I 0 0 0 0 I o 1 100 1 1 0 I w I Rd * 01 0000 I

COMB addr(Rd) 16 55
l address J 01 segment 1 offset I

o 1 1 0 0 1 1 0 1 w I Rd * 0 I 0 0 0 0

5L 1J segment 10000 0000

offset

If register Rl contains %2552 (0010010101010010)' the statement

COM R1

will leave the value %DAAD (101101010101101) in Rl.

Note I: Word register In nonsegmented mode, register pair in segmented mode.

6-21

Cycles

7

12

16

18

16

19

COMFLG
Complement Flag

Operation:

Flags:

Example:

COMFLG flag Flag: C, Z, S, P, V
FLAGS (4:7) ... - FLAGS (4:7) XOR instruction (4:7)

Any combination of the C, Z, S, P or V flags is complemented (each one bit is
changed to zero, and vice-versa). The flags to be complemented are encoded in a
field in the instruction. If the bit in the field is one, the corresponding flag is com­
plemented; if the bit is zero, the flag is left unchanged. Note that the P and V flags
are represented by the same bit. There may be one, two, three or four operands in
the assembly language statement, in any order.

C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if speCified; unaffected otherwise
P/V: Complemented if specified; unaffected otherwise
D: Unaffected
H: Undefined

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

Segmented Mode

Instruction Format

COMFLG flags
110001101 ICZSPIVI 0 101 1 7 110001101 ICZSP!301 01 1

Cycles

7

If the C, Z, and S flags are all clear (= 0), and the P flag is set (= 1), the statement

COMFLG P, S, Z, C

will leave the C, Z, and S flags set (= 1), and the P flag cleared (= 0).

6-22

Operation:

Flags:

CP dst, src
CPB
CPL

dst - src

dst: R
src: R, 1M, IR, DA, X
or
dst: IR, DA, X
src: 1M

CP
Compare

The source operand is compared to (subtracted from) the destination operand, and
the appropriate flags set accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffected, with the only action being
the setting of the flags. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. There are two variants of this instruc­
tion: Compare Register compares the contents of a register against an operand
speCified by any of the five basic addressing modes; Compare Immediate performs a
comparison between an operand in memory and an immediate value.

C: Cleared if there is a carry from the most significant bit of the result; set other-
wise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Compare Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: CP Rd, Rs
1101001011wl 1101001011wl CPB Rbd, Rbs Rs

1
Rd

1
4 Rs

1
Rd I 4

CPL RRd, RRs
11010100001 Rs

1
Rd I 8 11010100001 Rs

1
Rd I 8

1M: CP Rd, #data
001 00 1 0 1 1 I 0 000 I Rd 00\ 001011 10000 I Rd

7 7
data data

CPB Rbd, #data 00\ 001010100001 Rd 001001010100001 Rd
7 7

data I data data I data

CPL RRd, #data
00\ 010000 100001 Rd 001010000100001 Rd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) 0 15 data (low) 0

IR: CP Rd, @Rsl I 0 0 10 0 1 0 11 wi Rs "" 0 1 I I 0 0 10 0 1 0 11 w 1 RH 0 I I Rd 7 Rd 7 CPB Rbd, @Rsl

CPL RRd, @Rsl I 0 0 I 0 1 0 0 0 0 1 Rs"" 0 1 Rd I 14 I 0 0 1 0 1 0 0 0 0 1 Rs "" 0 1 Rd I 14

6-23

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: CP Rd, address
1011001011wl00001 Rd 1 011001011 w 1 0000 1 Rd CPB Rbd, address
1 1

9 SS 10
address o 1 segment 1 offset

o 11 0 0 1 0 11 w 1 0 0 0 0 I Rd

SL 1 1 segment 1 0 0 0 0 0000 12

offset

CPL RRd, address 1011010000100001 Rd 1 011010000100001 Rd
15 SS 16

1 address 1 01 segment 1 offset

o 11 0 1 0 0 0 0 1 0 0 0 0 1 Rd

SL 1 1 segment 1 0 0 0 0 0000 18
offset

X: CP Rd, addr(Rs)
10 1 10 0 1 0 11w 1 RH 0 1 Rd J o 1 100 1 0 11 wi Rs * 0 1 Rd

CPB Rbd, addr(Rbs) 10 SS 10
1 address 1 o 1 segment 1 offset

o 110 0 1 0 11 w 1 Rs * 0 1 Rd

SL 11 segment 1 0 0 0 0 0000 13

offset

CPL RRd, addr(Rs)
10110100001RS*01 Rd J o 11 0 1 0 0 0 0 1 Rs * 0 I Rd

16 SS 16 I address 1 oJ segment 1 offset

o 1J 010000 1 Rs*O 1 Rd

SL 1 1 segment 1 0 0 0 0 0000 19
offset

Compare Immediate

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language I-------------r----+-----------~---

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: CP @Rd1, #data
11 11

CPB @Rd1, #data
11 11

6-24

Destination
Addressing

Mode

DA:

X:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

CP address, #da ta
011001101 w 10000 10001 o 110 0 1 1 0 I woo 0 0 I 0 0 0 1

address 14 SS 0/ segment offset 15

data data

01100110lw 000010001

11 segment 0000 0000
SL 17

offset

data

CPB address, #data 0110011 olwi 0000 I 0001 01/00110/W 0000[0001

address 14 SS 01 segment offset 15
data

/
data data data

01100110lw 000010001

1J segment 0000 0000
SL 17

offset

data data

CP addr(Rd), #data
o 1 I 0 0 1 10 I W I Rd * 0 I 0 0 0 1 o 1 1 0 0 1 1 01 W Rd * 0 1 0 0 0 1

address 15 SS 01 segment offset 15
data data

o 1 1 0 0 1 1 0 1 W Rd * 0 1 0 0 0 1

11 segment 0000 0000
18 SL

offset

data

CPB addr(Rd), #data
o 1 I 0 0 1 1 0 I W I Rd * 0 I 0 0 0 1 01100110lw Rd*O /0001

address 15 SS 01 segment offset 15
data 1 data data data

011001 101 W Rd*O 10001

11 segment 0000 0000
18 SL

offset

data data

If register R5 contains %0400, the byte at location %0400 contains 2, and the source
operand is the immediate value 3, the statement

CPB @R5,#3

will leave the C flag set, indicating a borrow, the S flag set, and the Z and V flags
cleared.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-25

CPD
Compare and Decrement

Operation:

Flags:

Source
Addressing

Mode

IR:

Example:

CPO dst, src, r, cc
CPOB

dst - src

dst: IR
src: IR

AUTODECREMENT src (by 1 if byte, by 2 if word)
r+-r-l

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See section 6.6.1 for a list of condition codes. Both operands are
unaffected.

The source register is then decremented by one if CPDB, or by two if CPD, thus
moving the pointer to the previous element in the string. The word register specified
by "r" (used as a counter) is then decremented by one.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

CPD Rd, @Rsl, r, cc
CPDB Rbd, @Rsl, r, cc 110111 011 wlRS * 011 000 I

20
11 0 1 1 1 0 1 1 w 1 Rs * 0 11 0 0 0 1

10000 1 r IRd * 01 cc I looool r 1 Rd * 01 cc J

If register RHO contains %FF, register Rl contains %4001, the byte at location
%4001 contains %00, and register R3 contains 5, the instruction

CPDB RHO, @Rl, R3, EO

Cycles

20

will leave the Z flag cleared since the condition code would not have been "equal."
Register Rl will contain the value %4000 and R3 will contain 4. For segmented
mode, R 1 must be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-26

Operation:

Flags:

Source
Addressing

Mode

IR:

Example:

CPDR
Compare Decrement and Repeat

CPDR dst, src, r, cc
CPDRB

dst - src

dst: IR
src: IR

AUTO DECREMENT src (by 1 if byte; by 2 if word)
r+-r-l
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by lice" would be set by the comparison; otherwise the Z
flag is cleared. See section 6.6 for a list of condition codes. Both operands are
unaffected.

The source register is then decremented by one if CPDRB, or by two if CPDR, thus
moving the pointer to the previous element in the string. The word register specified
"r" (used as a counter) is decremented by one. The entire operation is repeated until
either the condition is met or the result of decrementing r is zero. This instruction
can search a string from 1 to 65536 bytes or 32768 words long (the value of r must
not be greater than 32768 for CPDR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

CPDR Rd, @RsI, r, cc
11 0 1 1 1 0 1 I w J Rs * 0 11 1 001 11 0 1 1 1 01 1 wi Rs * 0 11 1 00 1

CPDRB Rbd, @RsI, r, cc 11 +9n looool r J Rd * 01 cc J 1 0000 1 r IRd * 01 cc 1

Cycles2

11 +9n

If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8,
register R2 contains %2008, R3 contains 3, and R8 contains 8, the instruction

CPDR R3, @R2, RB, GT

will leave the Z flag set indicating the condition was met. Register R2 will contain the
value %2002, R3 will still contain 5, and R8 will contain 5. For segmented mode, a
register pair would be used instead of R2.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements compared.

6-27

CPI
Compare and Increment

Operation:

Flags:

Source
Addressing

Mode

IR:

CPI dst, src, r, cc
CPIB

dst - src

dst: IR
src: IR

AUTOINCREMENT src (by 1 if byte; by 2 if word)
r+-r-1

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand and the Z flag is set if the
condition code is specified by "cd' would be set by the comparison; otherwise the Z
flag is cleared. See section 6.6.1 for a list of condition codes. Both operands are
unaffected.

The source register is then incremented by one if CPIB, or by two if CPI, thus
moving the pointer to the next element in the string. The source, destination, and
counter registers must be separate and non-overlapping registers. The word register
specified by "r" (used as a counter) is then decremented by one.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

cpr Rd, @Rsl, r, cc
CPIB Rbd, @Rsl, r, cc 11 0 1 1 1 0 1 I w 1 Rs * ° 1 ° 0 0 0 I 20

110111011w1Rs*01000ol

10000 1 r 1 Rd* 01 cc I 10000
1

r I Rd * 01 cc I

6-28

Cycles

20

Example: This instruction can be used in a "loop" of instructions that searches a string of data
for an element meeting the specified condition, but an intermediate operation on
each data element is required. The following sequence of instructions (to be
executed in non-segmented mode) "scans while numeric," that is, a string is
searched until either an ASCII character not in the range "0" to "9" (see Appendix
C) is found, or the end of the string is reached. This involves a range check on each
character (byte) in the string. For segmented mode, RI must be changed to a
register pair.

LD R3, #STRLEN !initialize counter!
LDA RI, STRSTART ! load start address!
LD RLO,#,9' !largest numeric char!

LOOP:
CPB @RI,#,O' ! test char < 'O'!
JR ULT,NONNUMERIC
CPIB RLO, @RI, R3, ULT ! test char > 'O'!
JR 2, NONNUMERIC
JR NOV, LOOP !repeat until counter O!

DONE:

NONNUMERIC: !handle non-numeric char!

Note I: Word register in nonsegmented mode, register pair in segmented mode.

6-29

CPIR
Compare, Increment and Repeat

Operation:

Flags:

Source
Addressing

Mode

IR:

CPIR dst, src, r, cc
CPIRB

dst - src

dst: R
src: IR

AUTOINCREMENT src (by 1 if byte; by 2 if word)
r +-r - 1
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are
unaffected.

The source register is then incremented by one if CPIRB, or by two if CPIR, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc­
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPIR). The source, destination, and counter
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

CPIR Rd, @Rsl, r, cc
CPIRB Rbd,@Rsl, r, cc 11 0 1 1 1 0 1 I w I Rs * 0 I 0 10 0 I

11 +9n 11 0 1 1 1 0 1 1 w 1 Rs * 0 1 0 1 0 0 I
Looool r IRd * 01 cc I 10000 1 r IRd * 01 cc I

6-30

Cycles2

11 +9n

Example: The following sequence of instructions (to be executed in nonsegmented mode) can
be used to search a string for an ASCII return character. The pointer to the start of
the string is set, the string length is set, the character (byte) to be searched for is
set, and then the search is accomplished. Testing the Z flag determines whether the
character was found. For segmented mode, RI must be changed to a register pair.

LDA
LD
LDB
CPIRB
JR

RI, STRSTART
R3, #STRLEN
RLO, #% D
RLO, @RI, R3, EQ
Z, FOUND

! hex code for return is D!

Note 1: Word register in non segmented mode, register pair in segmented mode.

Note 2: n = number of data elements compared.

6-31

CPSD
Compare String and Decrement

Operation:

Flags:

Addressing
Mode

IR:

Example:

CPSD dst, src, r, cc
CPSDB

dst - src

dst: IR
src: IR

AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r~- r - 1

This instruction can be used to compare two strings of data until the specified condi~
tion is true. The contents of the location addressed by the source register are com­
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by "cc" would be set by the
comparison; otherwise the Z flag is cleared. See section 6.6 for a list of condition
codes. Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDB, or by
two if CPSD, thus moving the pointers to the previous elements in the strings. The
word register specified by "r" (used as a counter) is then decremented by one.

C: Cleard if there is a carry from the most significant bit of the result of the com­
parison; set otherwise, indicating a "borrow'(. Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set is the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

CPSD @Rd1, @Rsl, r, cc
11011101 I wi Rs '* 01 1010 I l1 0 1 1 1 0 1 1 w 1 Rs '* 0 11 0 1 0 I

CPSDB @Rd1,@Rsl,r,cc 25 25
10000 1 r IRd '* 0 I cc I 1 0000 1 r I Rd '* 01 cc J

If register R2 contains %2000, the byte at location %2000 contains %FF, register R3
contains %3000, the byte at location %3000 contains %00, and register R4 contains
I, the instruction (executed in nonsegmented mode)

CPSDB @R2, @R3, R4, UGE

willieave the Z flag set to 1 since the condition code would have been "unsigned
greater than or equal", and the V flag will be set to 1 to indicate that the counter R4
now contains O. R2 will contain %lFFF, and R3 will contain %2FFF. For segmented
mode, R2 and R3 must be changed to register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-32

Operation:

Flags:

Addressing
Mode

IR:

CPSDR
Compare String, Decrement and Repeat

CPSDR dst, src,r, cc
CPSDRB

dst - src

dst: IR
src: IR

AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r+-r-l
repeat until cc is true or r = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by "cc" would be set by the compar­
ison; otherwise the Z flag is cleared. See section 6.6 for a list of condition codes.
Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDRB, or by
two if CPSDR, thus moving the pointers to the previous elements in the strings. The
word register specified by \lr" (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is met or the result of decre­
menting r is zero. This instruction can compare strings from 1 to 65536 bytes or from
1 to 32768 words long (the value of r must not be greater than 32768 for CPSDR).

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven more cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

C: Cleared if there is a carry from the most significant bit of the result of the com­
parison; set otherwise, indicating a "borrow". Thus this flag will be set if the
destination· is less than the source when viewed as unsigned integers

Z: Set if the conditon code generated by the comparison matches cc; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

CPSDR@Rd1,@Rsl,r,cc
110111011wl Rs 11 110 1 110111011wl Rs

1
11101 CPSDRB@Rdl ,@Rsl ,r,cc 11+14n

10000
1

r 1 Rd 1 cc J 10000
1

r
1

Rd 1 cc 1

6-33

Cycles

11+14n

Example: If the words from location %1000 to %1006 contain the values 0, 2, 4, and 6, the
words from location %2000 to %2006 contain the values 0, I, I, 0, register R13 con­
tains %1006, register R14 contains %2006, and register RO contains 4, the instruc­
tion (executed in nonsegmented mode)

CPSDR @R13, @R14, RO, EQ

leaves the Z flag set to 1 since the condition code would have been "equal" (loca­
tions % 1000 and %2000 both contain the value 0). The V flag will be set to 1 indi­
cating r was decremented to O. R13 will contain %OFFE, R14 will contain %lFFE,
and RO will contain O. For segmented mode, R13 and R14 must be changed to
register pairs.

Notel: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements compared.

6-34

Operation:

Flags:

Addressing
Mode

IR:

CPSI
Compare String and Increment

CPSI dst, src, r, cc
CPSIB

dst - src

dst: IR
src: IR

AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r..-r-1

This instruction can be used to compare two strings of data until the specified condi­
tion is true. The contents of the location addressed by the source register are com-­
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by \Icc" would be set by the
comparison; otherwise the Z flag is cleared. See Section 6.6.1 for a list of condition
codes. Both operands are unaffected.

The source and destination registers are then incremented by one if CPSIB, or by
two if CPSI, thus moving the pointers to the next elements in the strings. The word
register specified by \l r" (used as a counter) is then decremented by one.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

CPS! @Rd1,@Rsl,r,ee 11 0 1 1 1 0 1 I w I Rs *- 0 I 0 0 1 oj (1 0 1 1 1 0 1 I w I Rs *- 0 I 0 0 1 0 J
CPSIB @Rd1,@Rsl,r,ee

10000
1

I Rd *- 01 cc I 25
10000 1 I Rd *- 0 I cc I r r

6-35

Cycles

25

Example: This instruction can be used in a "loop" of instructions which compares two strings
until the specified condition is true, but where an intermediate operation on each
data element is required. The following sequence of instructions, to be executed in
nonsegmented mode, attempts to match a given source string to the destination
string which is known to contain all upper-case characters. The match should suc­
ceed even if the source string contains some lower-case characters. This involves a
forced conversion of the source string to upper-case (only ASCII alphabetic letters
are assumed, see Appendix C) by resetting bit 5 of each character (byte) to 0 before
comparison.

LOOP:

DONE:

LDA
LDA
LD

RESB
CPSIB
JR
JR

NOTEQUAL:

Rl, SRCSTART
R2, DSTSTART
R3, #STRLEN

@Rl,#5
@Rl,@R2, R3, NE
Z, NOTEQUAL
NOV, LOOP

! load start addresses!

! initialize counter!

!force upper-case!
! compare until not equqIJ
!exit loop if match fails!
lrepeat until counter = O!
!match succeeds!

!match fails!

In segmented mode, Rl and R2 must both be register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-36

Operation:

Flags:

Addressing
Mode

IR:

CPSIR
Compare String, Increment and Repeat

CPSIR dst, src, r, cc
CPSIRB

dst - src

dst: IR
src: IR

AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r ~ r - 1
repeat until cc is true or r = a

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code speCified by "cc" would be set by the com­
parison; otherwise the Z flag is cleared. See section 6.6.1 for a list of condition
codes. Both operands are unaffected. The source and destination registers are then
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pointers to the
next elements in the strings. The word register speCified by \\r" (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is met or the result of decrementing r is zero. This instruction can compare strings
from 1 to 65536 bytes or from 1 to 32768 words long (the value of r must not be
greater than 32768 for CPSIR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted. The source, destination, and counter registers must be separate and non­
overlapping registers.

C: Cleared if there is a carry from the most significant bit of the result of the last
comparison made; set otherWise, indicating a "borrow". Thus this flag will be set
if the last destination element is less than the last source element when viewed as
unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherWise

S: Set if the result of the last comparison made is negative; c1eared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

CPSIR @Rd1,@Rsl,r,ee
11 0 1 1 1 0 1 I wi Rs * 0 I 0 1 1 0 J l1 011 101 I wi Rs * 0 I 011 01

CPSIRB @Rd1,@Rsl,r,ee 11 + 14"
1 0000

1
r IRd * 0 I cc J looool r lRd * 01 cc J

6-37

Cycles2

11+14"

Example: The CPSIR instruction can be used to compare test strings for lexicographic order.
(For most common character encoding - for example, ASCII and EBCDIC - lexi­
cographic order is the same as alphabetic order for alphabetic test strings that do
not contain blanks.)

Let SI and S2 be text strings of lengths Ll and L2. According to lexicographic
ordering, S 1 is said to be "less than" or "before" S2 if either of the following is true:

• At the first character position at which SI and
S2 contain different characters, the character
code for the S 1 character is less than the
character code for the S2 character .

• SI is shorter than S2 and is equal, character for
character, to an initial substring of S2.

For example, using the ASCII character code, the following strings are ascending
lexicographic order:

A
AUA
ABC
ABCD
ABD

Let us assume that the address of SI is in RR2, the address of S2 is in RR4, the
lengths L 1 and L2 of S 1 and S2 are in RO and R I, and the shorter of L 1 and L2 is in
R6. The the following sequence of instructions will determine whether SI is less than
S2 in lexicographic order:

CPSIRB @RR2, 9RR4, R6, NE IScan to first unequal character I

JR Z,CHAR_COMPARE

CP RO,RI

JR LT, S I_IS_LESS
JR Sl~OT_Less

CHALCOMPARE:
JR ULT, S I_IS_LESS

SI_NOT LESS:

I The following flags settings are possible:
Z = 0, V = 1: Strings are equal through Ll
character (Z = a, V = a cannot occur).
Z = I, V = a or 1: A character position was
found at which the strings are unequal.
C = 1 (S = a or 1): The character in the RR2
string was less (viewed as numbers from a to
255, not as numbers from -128 to + 127).
C = a (S = a or 1): The character in the RR2
string was not lessl

!If Z = I, compare the characters I

I Otherwise, compare string lengths I

I ULT is another name for C = 11

6-38

Operation:

Flags:

Addressing
Mode

R:

DAB
Decimal Adjust

DAB dst dst: R

dst -- DA dst

The destination byte is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADDB, ADCB) or subtraction (SUBB, SBCB),
the following table indicates the operation performed:

Carry Bits 4-7 H Flag Bits 0-3 Number Carry
Before Value Before Value Added After

Instruction DAB (Hex) DAB (Hex) To Byte DAB

0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0

ADDB 0 0-9 1 0-3 06 0
ADCB 0 A-F 0 0-9 60

0 9-F 0 A-F 66
0 A-F 1 0-3 66

0-2 0 0-9 60
0-2 0 A-F 66

SUBB 0 0-9 0 0-9 00 0
SBCB 0 0-8 1 6-F FA 0

7-F 0 0-9 AO
6-F 6-F 9A

The operation is undefined if the destination byte was not the result of a valid addi­
tion or subtraction of BCD digits.

c: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

DAB Rbd 11011100001 Rd 10000 1 5 1101110000 1 Rd 10000
1

6-39

Cycles

5

Example: If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic.

0001 0101
+ 0010 0111

0011 1100 = %3C
The DAB instruction adjusts this result so that the correct BCD representation is
obtained.

0011 1100
+ 0000 0110

0100 0010 42

6-40

Operation:

Flags:

Destination
Addressing

Mode

R:

IR:

DA:

X:

IExample:

DEC dst, src
DECB

dst: R, IR, DA, X
src: 1M

dst __ dst - src (where src = 1 to 16)

DEC
Decrement

The source operand (a value from 1 to 16) is subtracted from the destination operand
and the result is stored in the destination. Subtraction is performed by adding the
two's complement of the source operand to the destination operand. The source
operand may be omitted from the assembly language statement and defaults to the
value 1.

The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from 0 to
15, which corresponds to the source values 1 to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs,

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

DEC Rd, #n 1101101011wI 1 n - 11 Rd
DECB Rbd, #n

DEC @Rd1, #n
100 11 0 1 0 11 wi Rd;l' 0 1 n - 1 I

DECB @Rd1, #n

DEC address, #n 101\101 01\W\ 0000 \ n - 1)
DECB address, #n I address I

DEC addr(Rd), #n 1 0 1 \1 0 1 0 1\ W \ Rd;l' 0 j n - 1 I
DECB addr(Rd), #n

l address 1

If register RIO contains %002A, the statement

DEC RIO

will leave the value %0029 in RIO.

4

11

13

14

Segmented Mode

Instruction Format

1101101011 wI Rd I n - 11

I 0 0 110 1 0 1 1 W I Rd;l' 0 1 n - 11

01j10101\w100001 n-1

55 0 I segment I offset

011101011wl 00001 n-1

5L 1 1 segment 1 0 0 0 0 0000
offset

0111010 1\Wj Rd*O j n - 1
55

o 1 segment \ offset

o 1 11 0 1 0 11 w 1 Rd;l' 0 I n - 1
5L 1 \ segment \ 0 0 0 0 0000

offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-41

Cycles

4

11

14

16

14

17

DI Pri vileged Instruction
Disable Interrupt

Operation:

Flags:

Example:

DIInt

If instruction (0)
If instruction (1)

Int: VI, NVI

o then NVI - 0
o then VI - 0

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI)
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor­
responding bit in the instruction is zero, thus disabling the appropriate type of inter­
rupt. If the corresponding bit in the instruction is one, the control bit will not be
affected. All other bits in the FCW are not affected. There may be one or two
operands in the assembly language statement, in either order.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

DI int

Syntax Instruction Format Cycles Instruction Format Cycles

101111100 1000000lYlyi 7 I 01111100 1000000lYlyi 7

If the NVI and VI control bits are set (1) in the FCW, the instruction:

DI VI

will leave the NVI control bit in the FCW set (1) and will leave the VI control bit in
the FCW cleared (0).

6-42

Operation:

Flags:

DIV dst, src
DIVL

dst: H
src: H, 1M, IR, DA, X

Word: (dst is register pair, src is word):
dst (0:31) is divided by src (0: 15)
(dst (0:31) = quotient x src (0: 15) + remainder)
dst (16:31) +- quotient
dst (0: 15) +- remainder

Long: (dst register quadruple, src is long word or register pair):
dst (0:63) is divided by src (0:31)
(dst (0:63) = quotient x src (0:31) + remainder)
dst (32:63) +- quotient
dst (0:31) +- remainder

DIV
Divide

The destination operand (dividend) is divided by the source operand (divisor), the
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, two's complement integers and division is per­
formed so that the remainder is of the same sign as the dividend. For DIV, the
destination is a register pair and the source is a word value; for DIVL, the destina­
tion is a register quadruple and the source is a long word value.

There a four possible outcomes of the Divide instruction, depending on the division,
and the resulting quotient:

CASE 1. If the quotient is within the range -215 to 215 - 1 inclusive for DIV or
-231 to 231 - 1 inclusive for DIVL, then the quotient and remainder are left in the
destination register as defined above, the overflow and carry flags are cleared to
zero, and the sign and zero flags are set according to the value of the quotient.

CASE 2. If the divisor is zero, the destination register remains unchanged, the
overflow and zero flags are set to one and the carry and sign flags are cleared to
zero.

CASE 3. If the quotient is outside the range _216 to 216 - 1 inclusive for DIV or -232

to 232 - 1 inclusive for DIVL, the destination register contains an undefined value,
the overflow flag is set to one, the carry and zero flags are cleared to zero, and the
sign flag is undefined.

CASE 4. If the quotient is inside the range of case 3 but outside the range of case
1, then all but the sign bit of the quotient and all of the remainder are left in the
destination register, the overflow and carry flags are set to one, and the sign and
zero flags are set according to the value of the quotient. In this case, the sign flag
can be replicated by subsequent instruction into the high-order half of the destina­
tion to produce the two's complement representation of the quotient in the same
precision as the original dividend.

c: Set if V is set and the quotient lies in the range from _216 to 216 -1 inclusive for
DIV or in the range from _232 to 232 - 1 inclusive for DIVL; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise
S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is

negative, cleared if the quotient is non-negative.
V: Set if the divisor is zero or if the computed quotient lies outside the range from

_215 to 215 - 1 inclusive for DIV or outside range from _231 to 231 - 1 inclusive
for DIVL; cleared otherwise

D: Unaffected
H: Unaffected

6-43

Source
Addressing

Mode

R:

1M:

IR:

DA:

x:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format

DIV RRd, Rs
1101 011011 I Rs

1
Rd I 11010110111 Rs

1
Rd I

DIVL ROd, RRs
11010110101 Rs

1
Rd I 11010110101 Rs I Rd I

DIV RRd, #data
001011011100001 Rd 001011011/00001 Rd I

data data I
DIVL ROd, #data

ooLo11010100001 Rd 001011010100001 Rd

31 data (high) 16 31 data (high) 16

15 data (low) 0 15 data (low) 0

DIV RRd, @Rsl I 0 0 I 0 1 1 0 1 1 I Rs *- 0 I Rd I I 0 0 I 0 1 1 0 1 1 1 Rs *- 0 I Rd I
DIVL ROd, @Rsl

1 0 0 I 0 1 1 0 1 0 1 Rs *- 0 I Rd I I 0 0 I 0 1 1 0 1 0 I Rs *- 0 I Rd I
DIV RRd, address

011011011100001 Rd o 1 I 0 1 1 0 1 1 I 0 0 0 0 I Rd I 55
address 01 segment 1 offset I

011011011100001 Rd

5L 1 1 segment I 0 0 0 0 0000

offset

DIVL ROD, address
01101101010000\ Rd o 1 \ 0 1 1 0 10 I 0 0 0 0 I Rd I

55
address oJ segment 1 offset J

011011010100001 Rd

5L 1 l segment 1 0 0 0 0 0000

offset

DIV RRd, addr(Rs)
o 1\ 0 1 1 0 1 1 \ Rs *- 0 I Rd o 11 0 11 01 1 I Rs *- 0 I Rd I 55

address o I segment I offset I
o 11 0 1 1 0 1 1 I Rs *- 0 \ Rd

5L 1[segment I 0 0 0 0 0 0 0 0

offset

DIVL ROd, addr(Rs)
o 1 I 0 1 1 0 1 0 I Rs *- 0 I Rd o 1 I 0 1 1 0 1 01 Rs *- 0 I Rd I 55 J address o I segment I offset

o 11 0 1 1 0 1 0 I RS* 0 I Rd

5L 1 I segment I 0 0 0 0 0000

offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Execution times for each instruction are given in the table under Example.

6-44

Cycles2

Example: The following table gives the DIV instruction execution times for word and long
word operands in all possible addressing modes.

src Word Long Word

NS SS SL NS SS SL
R 107 744

1M 107 744
IR 107 107 107 744 744 744

DA 108 108 III 745 746 748
X 109 109 112 746 746 749

(Divisor is zero)

R 13 13 13 30 30 30
1M 13 13 13 30 30 30
IR 13 13 13 30 30 30

DA 14 15 17 31 32 34
X 15 15 18 32 32 35

(Absolute value of the high-order half of the dividend is larger than the
absolute value of the divisor)

R 25 25 25 51 51 51
1M 25 25 25 51 51 51
IR 25 25 25 51 51 51

DA 26 27 29 52 53 55
X 27 27 30 53 53 56

Note that for proper execution, the "dst field" in the instruction format encoding
must be even for DIV, and must be a multiple of 4 (0, 4, 8, 12) for DIVL. If the
source operand in DIVL is a register, the "src field" must be even.

If register RRO (composed of word register RO and R1) contains %00000022 and
register R3 contains 6, the statement

DIV RRO,R3

will leave the value %00040005 in RRO (Rl contains the quotient 5 and RO contains
the remainder 4).

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: The execution time for the instruction will be lower than indicated for divide by zero and certain
overflow conditions.

6-45

DJNZ
Decrement and Jump if Not Zero

Operation:

Flags:

Destination
Addressing

Mode

RA:

Example:

DJNZ R, dst
DBJNZ

R.-R-1

dst: RA

If R '* 0 then PC .- PC - (2 x displacement)

The register being used as a counter is decremented. If the contents of the register
are not zero after decrementing, the destination address is calculated and then
loaded into the program counter (PC). Control will then pass to the instruction
whose address is pointed to by the PC. When the register counter reaches zero, con­
trol falls through to the instruction following DJNZ or DBJNZ. This instruction pro­
vides a simple method of loop control.

The relative addressing mode is calculated by doubling the displacement in the
instruction, then subtracting this value from the updated value of the PC to derive
the destination address. The updated PC value is taken to be the address of the
instruction byte following the DJNZ or DBJNZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the destination address must be in
the range -252 to 2 bytes from the start of the DJNZ or DBJNZ instruction. In the
segmented mode, the PC segment number is not affected. The assembler automatic­
ally calculates the displacement by subtracting the PC value of the following instruc­
tion from the address given by the programmer. Note that DJNZ or DBJNZ cannot be
used to transfer control in the forward direction, nor to another segment in
segmented mode operation.

N a flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

DJNZ R, displacement 111111 Iwl 111111 Iwl I r disp 1 11 r disp 11
DBJNZ Rb, displacement

DJNZ and DBJNZ are typically used to control a "loop" of instructions. In this exam­
ple for non segmented mode, 100 bytes are moved from one buffer area to another,
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter.

LDB RHO,#lOO !initalize counter!
LDA R1, SRCBUF !load start address!
LDA R2, DSTBUF

LOOP:
LDB RLO,@R1 !load source byte!
RESB RLO,#7 !mask off sign bit!
LDB @R2, RLO ! store into destination!
INC R1 !advance painters!
INC R2
DBJNZ RHO, LOOP !repeat until counter OJ

NEXT:

For segmented mode, R1 and R2 must be changed for register pairs.

6-46

Operation:

Flags:

Example:

EI int

If instruction (0)
If instruction (1)

Privileged Instruction

Int: VI, NVI

o then NVI +- 1
o then VI +- 1

EI
Enable Interrupts

Any combination of the Vectored Interrupt (VI) or Non-Vetored Interrupt (NVI) con­
trol bits in the Flags and Control Word (FCW) are set to one if the corresponding bit
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor­
responding bit in the instruction is one, the control bit will not be affected. All other
bits in the FCW are not affected. There may be one or two operands in the assembly
language statement, in either order.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

E1 int

Syntax Instruction Format Cycles Instruction Format Cycles

I 01111100 IOOOO011 Yiyl 7 I 01111100 IOOOO011 ylyi

If the NVI contol bit is set (1) in the FCW, and the VI control bit is clear (0), the
instruction

EI VI

will leave both the NVI and VI control bits in the FCW set (1)

6-47

7

EX
Exchange

Operation:

Flags:

Source
Addressing

Mode

R:

IR:

DA:

X:

Example:

EX dst, src
EXB

dst: R
src: R, IR, DA, X

tmp ... - src (tmp is a temporary internal register)
src +- dst
dst +- tmp

The contents of the source operand are exchanged with the contents of the destina­
tion operand.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

EX Rd, Rs
11 0 11 0 1 1 0 1 w 1 Rs 1 110110110lwl Rd I 6 Rs 1 Rd

EXB Rbd, Rbs

EX Rd, @Rsl I 0 0 11 0 1 1 01 w 1 Rs * 0 1 I 0 0 11 0 1 10 I w I Rs * 0 I EXB Rbd, @Rsl
Rd I 12 Rd

EX Rd, address
EXB Rbd, address 101110110lwl00001 Rd I 15

o 1 11 0 1 1 01 w 1 0 0 0 0 1 Rd

I I
55

address o 1 segment 1 offset

01 11 0 1 10 1 w 1 0 0 0 0 1 Rd

5L 1 1 segment 1 0 0 0 0 0000

offset

EX Rd, addr(Rs)
1011101101w1Rs*0 1 Rd I o 111 0 1 10 1 w I Rs * 0 1 Rd

EXB Rbd, addr(Rs) 16 55
I address I o 1 segment 1 offset

o 1 11 0 1 1 01 w 1 Rs * 0 1 Rd

5L 1 1 segment 1 0 0 0 0 0000

offset

If register RO contains 8 and register R5 contains 9, the statement

EX RO,R5

will leave the values 9 in RO, and 8 in R5. The flags will be left unchanged.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-48

Cycles

I 6

I 12

16

18

16

19

Operation:

Flags:

Destination
Addressing

Mode

R:

Example:

EXTS
Extend Sign

EXTSB dst
EXTS
EXTSL

Byte
if dst (7)

Word
if dst (15)

Long
if dst (31)

dst: R

a then dst (8: 15) .- 000 ... 000
else dst (8: 15) .- Ill. .. 111

a then dst (16:31) ... - 000 ... 000
else dst (16: 31) .- Ill. .. III

a then dst (32:63) .- 000 ... 000
else dst (32:63) .- Ill. .. Ill

The sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTS, the destination is a
register pair; for EXTSL, the destination is a register quadruple.

This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (as,Jor example, before a divide).

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

EXTSB Rd 11011100011 Rd 10000 1 11 11011100011 Rd 10000 1

EXTS RRD 11011100011 Rd 11010 1 11 11011100011 Rd 11010 1

EXTSL RQd 11011100011 Rd 1 0111 I 11 1101110001 1 Rd 10111 I
If register pair RR2 (composed of word registers R2 and R3) contains % 12345678,
the statement

EXTS RR2

will leave the value %00005678 in RR2 (because the sign bit of R3 was 0).

6-49

11

11

11

HALT
Halt

Operation:

Flags:

Privileged Instruction

The CPU operation is suspended until an interrupt or reset request is received. This
instruction is used to synchronize the Z8000 with external events, preserving its state
until an interrupt or reset request is honored. After an interrupt is serviced, the
instruction following HALT is executed. While halted, memory refresh cycles will
still occur, and BUSREQ will be honored.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

HALT

Syntax Instruction Format Cyclesl Instruction Format

I 01111010 I 00000000 I 8+3" 101111010 I 00000000

Note 1: Interrupts are recognized at the end of each 3-cycle period; thus n = number of periods without
interruption.

6-50

Cyclesl

I 8+3n

Operation

Flags:

Source
Addressing

Mode

IR:

DA:

Example:

IN dst, src
INB

SIN dst, src
SINB

dst.- src

Pri vileged Instruction

dst: R
src: IR, DA

dst: R
src: DA

IN
(SIN)

(Special) Input

The contents of the source operand, an Input or Special Input port, are loaded into
the destination register. IN and INB are used for normal 1/0 operation; SIN and
SINB are used for Special 1/0 operation.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IN Rd l , @Rs lool11110lwl I Rs I Rd 10 lool11110lwl Rs I Rd I INB Rbd l , @Rs

IN Rd, port lool111011 wJ Rd j010SJ lool111011 wl Rd 1010 S I INB Rbd, port 12
I port J I port I

SIN Rd, port

SINB Rbd, port

If register R6 contains the I/O port address %0123 and the port %0123 contains
%FF, the statement

INB RH2, @R6

will leave the value %FF in register RH2.

Note 1. Word register in nonsegmented mode; register pair in segmented mode.

6-51

10

12

INC
Increment

Operation:

Flags:

Addressing
Mode

R:

IR:

DA:

X:

Example:

INC dst, src
INCB

dst +- dst + src (src = 1 to 16)

dst: R, 1R, DA, X
src: 1M

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Two's complement addition is performed. The
source operand may be omitted from the assembly language statement and defaults
to the value 1.

The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction.for the source ranges from
o to 15, which corresponds to the source values 1 to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format Cycles

INC Rd, #n
110110100lwl In - 1 I INCB Rbd, #n Rd

INC @Rd1, #-n I 0 0 11 0 1 0 0 1 w 1 Rd * 0 1 n - 1 I INCB @Rd1, #n

INC address, #n
INCB address, #n l01l101001w100001n-11

l address J

INC addr(Rd), #n I 0 1 11 0 1 0 0 1 w 1 Rd * 0 I n - 1 J INCB addr(Rd), #n

I address J

If register RH2 contains %21, the statement

1NCB RH2,#6

will leave the value %27 in RH2.

4

11

13

14

Segmented Mode

Instruction Format

110110100lwl Rd In - 1 I
I 0 0 11 0 1 0 0 1 w 1 Rd * 0 1 n - 1 I

SS 01j101001w10000I n-1

01 segment 1 offset

01110100lwl00001 n-1

sU 1 I segment \ 0 0 0 0 0000

offset

0111 0100lwl Rd*O 1 n - 1
SS

o I segment \ offset

o 1 \1 0 1 0 0 I w I Rd * 0 \ n - 1

SL 1 1 segment 1 0 0 0 0 0000

offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-52

Cycles

4

11

14

16

14

17

Operation:

Flags:

Addressing
Mode

IR:

Example:

Pri vileged Instruction IND
(SIND)

(Special) Input and Decrement

IND dst, src, r
INDB
SIND
SINDB

dst __ src

dst: IR
src: IR

AUTODECREMENT dst (by 1 byte, by 2 if word)
r~-r-1

This instruction is used for block input of strings of data. IND and INDB are used for
normal I/O operation; SIND and SINDB are used for special I/O operation. The con­
tents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register speCified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

IND @Rd1, @Rs, r
1 00 1 1 1 0 1 1 w 1 Rs * 01 000 S I I 0 0 1 1 1 0 1 I w I Rs * 0 I 0 0 0 S I

INDB @Rd1, @Rs, r 21

10000
1

r 1 Rd * 0 11 0 0 0 1 10000 1 r 1 Rd * 0 11 0 0 01
SIND @Rdl, @Rs, r
SINDB @Rdl, @Rs, r

Cycles

21

In segmented mode, if register RR4 contains %02004000 (segment 2, offset %4000),
register R6 contains the I/O port address %0228, the port %0228 contains %05B9,
and register RO contains %0016, the instruction

IND @RR4, @R6, RO

will leave the value %05B9 in location %02004000, the value %02003FFE in RR4,
and the value %0015 in RO. The V flag will be cleared. Register R6 still contains the
value %0228. In nonsegmented mode, a word register would be used instead of
RR4.

N otel: Word register in non segmented mode, register pair in segmented mode.

6-53

INDH
(SINDR)

Pri vileged Instruction

(Special) Input, Decrement and Repeat

Operation:

Flags:

Addressing
Mode

IR:

INDR dst, src, r
INDRB
SINDR
SINDRB

dst - src

dst: IR
src: IR

AUTODECREMENT dst (by 1 if byte, by 2 if word)
r.-r-1
repeat until r = a

This instruction is used for block input of strings of data. INDR and INDRB are used
for normal I/O operation; SINDR and SINDRB are used for special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for INDR or SINDR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

INDR @Rd1, @Rs, r
INDRB @Rd1, @Rs, r

SINDR @Rd1 , @Rs, r
SINDRB @Rd1, @Rs, r

Nonsegmented Mode

Instruction Format

1°° 1110 1 1 w 1 Rs -:1= 01 10 ° 5 I
10000 / r /Rd-:l=O/ooool

6-54

Segmented Mode

Cycles2 Instruction Format Cycles2

11 + 10n I 00111 ° 1\ W \ Rs -:1= 0 \1 00 5 J 11 + 10n
looool r /Rd-:l=O/ooool

Example: If register RI contains %202A, register R2 contains the Special I/O address %OAFC,
and register R3 contains 8, the instruction

SINDRB @RI, @R2, R3

will input 8 bytes from the special I/O port OAFC and leave them in descending
order from %202A to %2023. Register RI will contain %2022, and R3 will contain O.
R2 will not be affected. The V flag will be set. This example assumes nonsegmented
mode; in segmented mode, RI would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

6-55

INI
(SINI)

Privileged Instruction

(Special) Input and Increment

Operation:

Flags:

Addressing
Mode

IR:

Example:

INI dst, src, r
INIB
SINI
SINIB

dst +- src

dst: IR
src: IR

AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r+-r-1

This instruction is used for block input of strings of data. INI, INIB are used for nor­
mal 1/0 operation; SINI, SINIB are used for special 1/0 operation. The contents of
the 1/0 port addressed by the source word register are loaded into the memory loca­
tion addressed by the destination register. 1/0 port addresses are 16 bits. The
destination register is then incremented by one if a byte instruction, or by two if a
word instruction, thus moving the pointer to the next element of the string in
memory. The word register speCified by "r" (used as a counter) is then decremented
by one. The address of the 1/0 port in the source register is unchanged.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

INI @Rd1, @Rs, r
INIB @Rdl, @Rs, r I 00 111 ° 1 1 w 1 Rs '* ° 110 ° S I 21 I 001 11 01 1 W 1 Rs '* ° 11 ° ° S I
SINI @Rd1, @Rs, r loooo[r IRd'*°1 1 0001 10000 1 r IRd'*°1 1 0001
SINIB @Rd1, @Rs, r

Cycles

21

In nonsegmented mode, if register R4 contains %4000, register R6 contains the 1/0
port address %0229, the port %0229 contains %B9, and register RO contains %0016,
the instruction

INIB @R4, @R6, RO

will leave the value %B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented mode, R4 would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-56

Operation:

Flags:

Addressing
Mode

IR:

Privileged Instruction INIH
(SINIR)

(Special) Input, Increment and Repeat

INIR dst, src, r
INIRB
SINIR
SINIRB

dst - src

dst: IR
src: IR

AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r+-r-1
repeat until r = a

This instruction is used for block input of strings of data. INIR and INIRB are used
for normal I/O operation; SINIR and SINIRB are used for special I/O operation. The
contents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element in the string.
The word register speCified by "r" (used as a counter) is then decremented by one.
The address of the I/O port in the source register is unchanged. The entire operation
is repeated until the result of decrementing r is zero. This instruction can input from
1 to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for
INIR or SINIR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

c: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Assembler Language
Syntax

INIR @Rd1, @Rs, r
INIRB @Rd1, @Rs, r
SINIR @Rd1 , @Rs, r
SINIRB @Rd1, @Rs, r

Nonsegmented Mode

Instruction Format

I 0 0 1 1 1 0 1 1 w 1 Rs "* 0 I 0 0 0 S I
(00001 r \Rd"*olooooj

6-57

Segmented Mode

Cycles Instruction Format Cycles

11+10n lo 0 1 1 1 0 1 1 w 1 Rs "* 010 0 0 S J 11 + 10n
(00001 r 1 Rd "* 01 0 0 ° 0 (

Example: In non segmented mode, if register R1 contains %2023, register R2 contains the 1/0
port address %0551, and register R3 contains 8, the statement

INIRB @R1, @R2, R3

will input 8 bytes from port %0051 and leave them in ascending order from %2023
to %202A. Register R1 will contain %202B, and R3 will contain O. R2 will not be
affected. The V flag will be set. In segmented mode, a register pair must be used
instead of R 1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements transferred.

6-58

Operation:

Flags:

Addressing
Mode

Example:

Pri vileged Instruction

IRET

Nonsegmented
SP .- SP + 2 (Pop "identifier")
ps,- @SP
sp.- SP + 4

IRET
Interrupt Return

Segmented
SP .- SP + 2 (Pop "identifier")
PS'- @SP
Sp.- SP + 6

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by an interrupt or trap (including a System Call instruction).
First, the "identifier" word associated with the interrupt or trap is popped from the
system processor stack and discarded. Then contents of the location addressed by
the system processor stack pointer are popped into the program status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW is not effective until the next instruction, so that the status pins will not
be affected by the new control bits until after the IRET instruction execution is com­
pleted. The next instruction executed is that addressed by the new contents of the
PC. The system stack pointer (R15 if nonsegmented, or RR14 if segmented) is used to
access memory. When using a Z8001, the operation of IRET in non segmented mode
is undefined. A Z8001 must be in segmented mode when an IRET instruction is
performed.

c: Loaded from processor stack
Z: Loaded from processor stack
S: Loaded from processor stack
P IV: Loaded from processor stack
D: Loaded from processor stack
H: Loaded from processor stack

Nonsegmented Mode Segmented Mode
Assembler Language

IRET

Syntax Instruction Format Cycles Instruction Format Cycles

I 01111011 I 00000000 I 13 I 01111011 I 00000000 I 16

In the non segmented Z8002 version, if the program counter contains %2550, the
system stack pointer (RI5) contains %3000, and locations %3000, %3002 and %3004
contain %7F03, a saved FCW value, and % 1004, respectively, the instruction

IRET

will leave the value %3006 in the system stack pointer and the program counter will
contain % 1004, the address of the next instruction to be executed. The program
status will be determined by the saved FCW value.

6-59

JP
Jump

Operation:

Flags:

Destination
Addressing

Mode

IR:

DA:

X:

Example:

JP cc, dst dst: IR, DA, X

If cc is satisfied, then PC dst

A conditional jump transfers program control to the destination address if the condi­
tion specified by "cc" is satisfied by the flags in the FCW. See section 6.6 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the IP instruction is
executed.

No flags affected

Nonsegmented Mode
Assembler Language

Syntax Instruction Format

IP CC, @Rd1 100 1 011110 I Rd*O I
IP CC, address

1011011110100001

I address

IP cc, addr(Rdl I 0 1 I 0 1 1 1 1 0 I Rd * 0 I
I address

If the carry flag is set, the statement

IP C, %1520

cc

cc

cc

I

I
I

I
J

Cycles2

10/7

7/7

8/8

Segmented Mode

Instruction Format Cycles2

I 0 0 I 0 1 1 1 1 0 I Rd * 0 I cc I 15/7

011011110100001 cc
SS 8/8

o 1 segment 1 offset

011011110100001 cc

SL 1 I segment I 0 0 0 0 0000 10/10

offset

SS 0 1 I 0 1 1 1 1 0 I Rd * 0 I cc
11/11

o I segment I offset

01 I 011 11 0 I RMO I cc

SL 11 segment I 0 0 0 0 0000 11/11

offset

replaces the contents of the program counter with % 1520, thus transferring control
to that location.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: The two values correspond to jump taken and jump not taken.

6-60

Operation:

Flags:

Destination
Addressing

Mode

RA:

Example:

JR
Jump Relative

JR cc, dst dst: RA

if cc is satisfied then PC +- PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi­
tion specified by "Cc" is satisfied by the flags in the FCW. See section 6.6.1 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JR instruction is
executed. The destination address is calculated by doubling the displacement in the
instruction, then adding this value to the updated value of the PC to derive the
destination address. The updated PC value is taken to be the address of the instruc­
tion byte following the JR instruction, while the displacement is an 8-bit signed value
in the range -128 to + 127. Thus, the destination address must be in the range -254
to + 256 bytes from the start of the JR instruction. In the segmented mode, the PC
segment number is not affected.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

JR ee, address
1
1110 I cc I displacement I 6 111 10 I cc I displacement I 6

1£ the result of the last arithmetic operation executed is negative, the following four
instructions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR MI, $ + 14

If the S flag is not set, execution continues with the instruction following the JR.

A byte-saving form of a jump to the label LAB is

JR LAB

where LAB must be within the allowed range. The condition code is "blank" in this
case, and indicates that the jump is always taken.

6-61

LD
Load

Operation:

Flags:

LO dst, src
LOB
LOL

dst ... - src

dst: R
src: R, IR, DA, X, BA, BX

or
dst: 1R, DA, X, BA, BX
src: R
or
dst: R, 1R, DA, X
src: 1M

The contents of the source are loaded into the destination. The contents of the source
are not affected.

There are three versions of the Load instruction: Load into a register, load into
memory and load an immediate value.

No flags affected

Load Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: LD Rd, Rs 110110000lwi Rs 1 Rd I 3 110110000lwi Rs 1 Rd 1 3
LDB Rbd, Rbs

LDL RRd, RRs 11010101001 RRs 1 RRd 1 5 11010101001 RRs 1 RRd 1 5

IR: LD Rd, @Rsl 1001100001 wi Rs*O 1 Rd 1 7 1001100001 wi RHO I Rd 1 7
LDB Rbd, @Rsl

LDL RRd, @Rsl 10 01 0 1 0 1 0 0 1 Rs * 0 I RRd 1 11 10 01 0 1 0 1 0 0 I Rs * 0 I RRd 1 11

OA: LD Rd, address
LDB Rbd, address 10111 00001 w 1 00001 Rd I o 1 11 0 0 0 0 1 w 1 0 0 0 0 1 Rd 1 10 9 SS

I address I o 1 segment 1 offset I
o 1 110 0 0 0 1 w I 0 0 0 0 1 Rd

SL 1 I segment 1 0 0 0 0 0 0 0 0 12

offset

LDL RRd, address 1011 010100 10000 1 RRd J o 11 0 1 0 1 0 0 1 0000 I RRd 1
12 SS 13

I address I o 1 segment 1 offset J

o 11 0 1 0 1 0 0 1 0 0 0 01 RRd

SL 1 I segment I 0 0 0 0 0 0 0 0 15

offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-62

Load Register (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

X: LD Rd, addr(Rs)
r011100001wl RHOI Rd 1 o 111 00001 w 1 Rs * 01 Rd 1 LDB Rbd, addr(Rs) 10 55 10
r address 1 o I segment I offset I

o 1 110 0 0 0 1 wi Rs * 0 1 Rd

5L 1 [segment 1 0 0 0 0 0 0 0 0 13
offset

LDL RRd, addr(Rs)
f011 010100 [RS"oO [RRd I o 1 1 0 1 0 1 0 0 1 Rs * 0 1 RRd 1 13 55 13
r address I o 1 segment 1 offset I

o 1[0 1 0 1 00 1 Rs * 0 [RRd

5L 1 I segment 1 0 0 0 0 0 0 0 0 16

offset

BA: LD Rd, Rsl(#disp)
r 00111 00 of w 1 RH 0 I Rd I o 0 [1 1 00 0 [W [Rs * 0 [Rd 1 LDB Rbd, Rsl (#disp) 14 14 r displacement I displacement I

LDL RRd, Rsl (#disp) rooT 1 1 0 1 0 1 -I Rs * 0 I Rd 1 o 0 [1 1 0 1 0 1 [Rs * 0 1 Rd I 17 17
f displacement I displacement 1

BX: LD Rd, Rsl (Rx)
r 0 1/1 1 0 0 0 I wi Rs * 0 I Rd I o 111 1 0 0 0 / w I Rs * 0 / Rd I LDB Rd, Rsl(Rx)

rooool Rx -r 0 0 0 0 0 0 0 0 I 14
00001 Rx 1 0 0 0 0 0 0 0 01

14

LDL RRd, Rsl (Rx) r 0 111 1 0 1 01 11 RH 0 -) Rd 1 o 111 1 0 1 0 [11 Rs * 0 1 Rd 1

roo 0 01 Rx 1 0 0 0 0 0 0 0 0 1
17

o 0 0 0 I Rx 1 0 0 0 0 0 0 0 01
17

Load Memory

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: LD @Rd1, Rs 10 0 11 0 1 1 1 1 w 1 Rd * 0 1 Rs I 8 10 0 11 0 1 1 1 1 w I Rd * 0 I Rs I 8
LDB @Rd1, Rbs

LDL @Rd1, RRs I 0 0 I 0 1 1 1 0 1 I Rd * 0 1 RRs I 11 I 0 0 I 0 1 1 1 0 1 I Rd * 0 I RRs I 11

DA: LD address, Rs r 0 1/1 0 1 1 1[wT 0 0 0 0 [Rs I o 1 [1 0 1 1 1 [w 1 0 0 0 0 [Rs I
LDB address, Rbs

r I
11

55 0 1 segment 1 offset 1
12

address

o 111 0 1 1 11 w 1 0 0 0 01 Rs

5L 1 I segment rOO 0 0 0 0 0 0 14

offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-63

Load Memory (Continued)

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: LDL address, RRs
1 0 11 0 1 1 1 0 1 1 0 0 0 0 1 RRs I o 11 0 1 1 1 0 1 1 0 0 0 0 r RRs

14 SS 15
I address J 01 segment 1 offset

o 11 0 1 1 1 0 1 I 0 0 0 0 1 RRs

SL 1 I segment 1 0 0 0 0 0 0 0 0 17

offset

X: LD addr(Rd), Rs
1 0 111 0 1 1 1 1 w I Rd * 0 1 Rs 1 SS 01i101111wl Rd*O-r Rs

LDB addr(Rd), Rbs 12 12
1 address 1 01 segment 1 offset

o 11 0 1 1 1 1 w 1 Rd * 0 1 Rs

SL 11 segment 1 0 0 0 0 0 0 0 0 15
offset

I
LDR addr(Rd), RRs 10110111011 Rd*ol RRs 1 01 1 011101 1 Rd*O 1 RRs

15 SS 15
1 address J o I segment] offset

o ~ 01 1 101 1 Rd*O 1 RRs

SL 1 I segment I 0 0 0 0 0 0 0 0 18

offset

BA: LD Rd1(#disp), Rs I 0 0 11 1 0 0 1 I wl Rd * 0 1 Rs J o 0 11 1 0 0 1 1 w I Rd * 0 I Rs
LDB Rd1(#disp), Rbs 14 14

1 displacement J displacement

LDL Rd1(#disp), RRs
rOO 11 1 0 1 1 1 I Rd * 0 1 RRs I o 0 11 1 0 1 1 1 1 Rd * 0 I RRs

17 17
1 displacement J displacement

BX: LD Rdl (Rx), Rs I 0 111 1 0 0 1 1 w 1 Rd * 0 1 Rs I o 111 1 0 0 11 w 1 Rd * 01 Rs
LDB Rd1(Rx), Rbs I 0 0 0 0 1 Rx 1 0 0 0 0 0 0 0 0 1

14
0000 I Rx 100000000

14

..

LDL Rdl (Rx), RRs
1011 1 1 0 1 1 1 I Rd * 0 I RRs 1 0111 1 0111 1 Rd*O 1 RRs 1

10000 I Rx 100000000 J 17
0000 I Rx 100000000 I 17

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-64

Load Immediate Value

Destination
Addressing

Mode

R:

IR:

DA:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format

LD Rd, #data
00110000110000 I Rd 001100001 00001 Rd

7
data data

LDB Rbd, #data2
001100000 10000 I Rd oo! 100000 00001 Rd

I
7

data data data data

11100 I Rd I data I 5 11100 I Rd I data I
LDL RRd, #data

00101010010000 I RRd 001010100 00001 RRd

31 data (high) 16 11 31 data (high) 16

15 data (low) 0 15 data (low) 0

LD @Rd1, #data o 0 1 0 0 1 1 0 1 I Rd *- 0 1 0 1 0 1 001001101 Rd *- 01 0101
11

data data

LDB @Rd1, #data o 0 I 0 0 1 1 0 0 1 Rd *- 0 I 0 1 0 1 001001100 Rd *- 010101
11

data I data data data

LD address, #data
0110011011000010101 011 001101 0000\0101

address 14 SS 01 segment offset

data data

01\001101 00001 0101

11 segment 0000 0000
SL

offset

data

LDB address, #data 0110011001000010101 01\ 001100 0000\0101

address 14 SS 01 segment offset

data
\

data data data

011001100 0000\0101

1\ segment 0000 0000
SL

offset

data data

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: Although two formats exist for "LDB R, IM", the assembler always uses the short format. In this case, the
"src field" in the instruction format encoding contains the source operand.

6-65

Cycles

7

7

5

11

11

11

15

17

15

17

Load Immediate Value (Continued)

Destination
Addressing

Mode

X:

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LD addr(Rd), #data o 1 I 0 0 1 1 0 1 I Rd '" 0 I 0 1 0 1 01\001101 Rd",O 1 0 1 0 1

address 15 55 01 segment offset 15
data data

01\001101 Rd",O 1 0 1 0 1

5L 11 segment 0000 0000
18

offset

data

LDB addr(Rd), #data o 11 0 0 1 1 0 0 I Rd '" 0 1 0 1 0 1 011001100 Rd",O , 0 1 0 1

address 15 55 01 segment offset 15
data I data data data

01\001100 Rd",O 1 0 1 0 1

11 segment 0000 0000
5L 18

offset

data data

Several examples of the use of the Load instruction are treated in detail in Chapter 4
under addressing modes.

6-66

Operation:

Flags:

Source
Addressing

Mode

DA:

X:

BA:

BX:

LDA
Load Address

LDA dst, src dst: R
src: DA, X, BA, BX

dst ~- address (src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address computation follows the rules for
address arithmetic. The destination is a word register in non segmented mode, and a
register pair in segmented mode.

In segmented mode, the address loaded into the destination has an undefined value
in all reserved bits (bits 16-23 and bit 31). However, this address may be used by
subsequent instructions in the indirect based or base-index addreSSing modes
without any modification to the reserved bits.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDA Rd1, address
1011110110100001 Rd 1 o 1 11 1 0 1 1 0 1 0 0 0 0 1 RRd

I I
12 55

oj segment 1
13

address offset

o 1 11 1 0 1 1 0 1 0 0 0 0 1 RRd

5L 1 1 segment 1 0 0 0 0 0000 15
offset

LDA Rd1, addr(Rs)
1 0 1 11 1 0 1 1 0 1 Rs 1= 0 1 Rd I 0111101101 RS1=O 1 RRd

13 55 13
1 address 1 01 segment 1 offset

0111 1 01 10 1 RS1=O 1 RRd

5L 1J segment 1 0000 0000 16
offset

LDA Rd1, Rsl (#disp) I 0 0 1 1 0 1 0 0 1 RS1= 0 I Rd I o 0 1 1 0 1 00 1 Rs 1= 0 1 Rd
15 15

I displacement I displacement

LDA Rd1, Rsl (Rx) I 0 1 1 1 0 1 0 0 1 Rs 1= 0 1 Rd I o 1 1 1 0 1 0 0 1 Rs 1= 0 1 Rd

I 0 0 0 0 1 Rx 1 0 0 0 0 0 0 0 0 j
15

00001 Rx 1 0 0 0 0 0 0 0 0
15

6-67

Examples: LDA R4,STRUCT

LDA RR2, «3» 8(R4)

LDA RR2,RR4(#8)

lin nonsegmented mode, register R4 is loaded!
!with the non segmented address of the location!
!named STRUCT!

lin segmented mode, if index register R4!
!contains %20, then register RR2 is loaded!
iwith the segmented address «<3», offset %28)!
lin segmented mode, if base register RR4!
!contains %01000020, then register RR2 is loaded!
!with the segment address« 1 » %28!
! (segment I, offset %28)!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

6-68

Operation:

Flags:

Source
Addressing

Mode

RA:

Example:

LDAR dst, src

dst .- ADDRESS (src)

dst: R
src: RA

LDAR
Load Address Relative

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The destination is a word register in
nonsegmented mode, and a register pair in segmented mode. In segmented mode,
the address loaded into the destination has all "reserved" bits (bits 16-23 and bit 31)
cleared to zero.

The relative addressing mode is calculated by adding the displacement in the
instruction to the updated value of the program counter (PC) to derive the address.
The updated PC value is taken to be the address of the instruction byte following the
LDAR instruction, while the displacement is a 16-bit signed value in the range
-32768 to + 32767. The addition is performed following the rules of address
arithmetic, with no modifications to the segment number in segmented mode. Thus
in segmented mode, the source operand must be in the same segment as the LDAR
instruction.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDAR Rd1 , address
100110100100001 Rd I I 00110100 looool_~

15
l

LDAR R2, TABLE

LDAR RR4, TABLE

displacement I I displacement

lin nonsegmented mode, register R2 is loaded!
! with the address of TABLE!

lin segmented mode, register pair RR4 is!
! loaded with the segmented address of TABLE,!
!which must be in the same segment as the program!

Note 1: Word register in non segmented mode, register pair in segmented mode.

6-69

15

LDCTL
Privileged Instruction

Load Control

Operation:

LDCTL dst, src

dst +- src

dst: CTLR
src: R
or
dst: R
src: CTLR

This instruction loads the contents of a general purpose register into a control
register, or loads the contents of a control register into a general-purpose register.
The control register may be one of the following CPU registers:

FCW
REFRESH
PSAPSEG
PSAPOFF
NSPSEG
NSPOFF

Flag and Control Word
Refresh Control
Program Status Area Pointer - segment number
Program Status Area Pointer - offset
Normal Stack Pointer - segment number
Normal Stack Pointer - offset

The operation of each of the variants of the instruction is detailed below. The ones
which load data into a control register are described first, followed by the variants
which load data from a control register into a general purpose register. Whenever
bits are marked reserved, the corresponding bit in the source register must be either
a or the value returned by a previous load from the same control register. For com­
patibility with future CPUs, programs should not assume that memory copies of con­
trol registers contain as, nor should they store data in reserved fields of memory
copies of control registers.

Load Into Control Register
LDCTL FCW, Rs

Operation:

Operation:

FCW (2:7) +- Rs (2:7)
FCW (11:15) +- Rs (11:15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs:

FCW:

LDCTL REFRESH, Rs

REFRESH (1: 15) +- Rs (1: 15)

Rs:

REFRESH:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I ! ! I I

+ + + + + ~ ~ ~ ~ ~ + + ~ + + I re I rate I counter .-- reserved

6-70 26-0001-0933

Operation:

Operation:

Operation:

LDCTL NSPSEG, Rs

NSPSEG (0: 15) - Rs (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I I I I [[[[[[I [[[[[I
l l + + + l + + l + + + + + + +

NSPSEG: I I

In segmented mode, the NSPSEG register is the normal mode R14 and contains the
segment number of the normal mode processor stack pointer which is otherwise
inaccessible for system mode.

In nonsegmented mode, R 14 is not used as part of the normal processor stack
pointer. This instruction may not be used in nonsegmented mode.

LDCTL NSPOFF, Rs
NSP, Rs

NSPOFF (0: 15) - Rs (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I I ! ! ! [! ! !) I [[[! [I
+ + + + + + + + l + + + + + + +

*NSPOFF: I I

""NSP in nonsegmented mode

In segmented mode, the NSPOFF register is R15 in normal mode and contains the
offset part of the normal processor stack pointer. In nonsegmented mode, R15 is the
entire normal processor stack pointer,

In nonsegmented 28002, the mnemonic "NSP" should be used in the assembly
language statement, and indicates the same control register as the mnemonic
"NSPOFF",

LDCTL PSAPSEG, Rs

PSAPSEG (8: 14) - Rs (8: 14)

PSAPSEG:

The PSAPSEG register may not be used in the non segmented 28002. In the
segmented 28001, care must be exercised when changing the two PSAP register
values so that an interrupt occurring between the changing of PSAPSEG and
PSAPOFF is handled correctly. This is typically accomplished by first disabling
interrupts before changing PSAPSEG and PSAPOFF.

6-71

Operation:

Operation:

Operation:

LDCTL PSAPOFF, Rs
PSAP, Rs

PSAPOFF (8: 15) ... - Rs (8: 15)

15 14 13

*PSAPOFF:
~---------------

*PSAP in nonsegmented mode

4 3 2 1 0

In the nonsegmented Z8002, the mnemonic \\PSAP" should be used in the assembly
language statement and indicates the same control register as the mnemonic
\\PSAPOFF". In the segmented Z8001, care must be exercised when changing the
two PSAP register values so that an interrupt occurring between the changing of
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first
disabling interrupts before changing PSAPSEG and PSAPOFF. The low order byte
of PSAPOFF should be O.

Load From Control Register
LDCTL Rd, FCW

Rd (2:7) +- FCW (2:7)
Rd 01: 15) +- FCW 01: 15) (Z8001 only)
Rd 01: 14) +- FCW 01: 14) (Z8002 only)
Rd (0: 1) +- UNDEFINED
Rd (8: 10) +- UNDEFINED
Rd (15) +- 0 (Z8002 only)

FCW: I~Fr::I~/NIFPAI

Rd:

LDCTL Rd, REFRESH

Rd 0 :8) +- REFRESH 0 :8)
Rd (0) +- UNDEFINED
Rd (9: 15) +- UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REFRESH: ~~ ________ ~~~~~~~

Rd:

6-72

Operation:

Operation:

Operation:

LDCTL Rd, PSAPSEG

Rd (8:14).- PSAPSEG (8:14)
Rd (0:7) .- UNDEFINED
Rd (15) .- UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSAPSEG:

'--------undefined ----I
This instruction may not be used in the non segmented version.

LDCTL Rd, PSAPOFF
Rd,PSAP

Rd (8: 15) .- PSAPOFF (8: 15)
Rd (0:7) .- UNDEFINED

Rd:
~~~~~~~~--~--------~ 

*PSAP in nonsegmented mode 

In non segmented mode, the mnemonic PSAP should be used in the assembly 
language statement, and it indicates the same control register as the mnemonic 
PSAPOFF. 

LDCTL Rd, NSPSEG 

Rd (0: 15) ... - NSPSEG (0: 15) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

NSPSEG: I ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I 
+ + + + + + + + + + + + + + + + 

Rd: I I 

This instruction is not available in nonsegmented mode. 

6-73 



Operation: 

Flags: 

Source 
Addressing 

Mode 

Destination 
Addressing 

Mode 

LDCTL Rd, NSPOFF 
Rd, NSP 

Rd (0: 15) .... - NSPOFF (0: 15) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

*NSPOFF: I I I I I I I I I I I I I I I I I 
~ ~ ~ ~ + + ~ ~ ~ ~ ~ ~ ~ ~ ~ + 

Rd: I I 
*NSP in nonsegmented mode 

In nonsegmented mode, the mnemonic NSP should be used in the assembly 
language statement, and it indicates the same control register as the mnemonic 
NSPOFF. 

No flags affected, except when the destination is the Flag and Control Word (LDCTL 
FCW, Rs), in which case all the flags are loaded from the source register. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDCTL FCW, Rs 
[ 01111101 I Rs 

1
1010

1 
7 101111101 I Rs 

1
1010

1 
7 

LDCTL REFRESH, Rs I 01 1 1 1 1 01 I Rs 
1

1011 
I 7 I 01111101 I Rs 

1
1011 

1 
7 

LDCTL PSAPSEG, Rs I 01111101 I Rs 
1

1100 
I 7 

LDCTL PSAPOFF, Rs I 01111101 I Rs , 1101 1 7 I 
011 1 1 101 I Rs 

1
1101 

I 7 PSAP, Rs 

LDCTL NSPSEG, Rs 101111101 I Rs 
1
1110 1 7 

LDCTL NSPOFF, Rs I 01111101 I Rs 111111 7 I 01111101 I Rs 11111 1 7 NSP, Rs 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 
~ 

LDCTL Rd, FCW I 01111101 I Rd I 0010
1 

7 101111101 I Rd 
1

0010
1 

7 

LDCTL Rd, REFRESH I 01111101 I Rd I 0 011 1 7 I 011 11 1 01 I Rd I 0011
1 

7 

LDCTL Rd, PSAPSEG 101111101 I Rd 
1
0100

1 
7 

LDCTL Rd, PSAPOFF I 01111101 I Rd 
1

0101
1 7 101111101 I Rd 

1
0101 

I 
7 

LDCTL Rd, PSAP 
LDCTL Rd, NSPSEG 

I 01111101 I Rd 
1
0110

1 
7 

LDCTL Rd, NSPOFF I 01111101 I Rd I 0111 I 7 101111101 I Rd I 0111 I 7 
Rd, NSP 

6-74 



Operation: 

LDCTLB dst, src 

dst ..... - src 

dst: FLAGS 
src: R 
or 
dst: R 
src: FLAGS 

LDCTLB 
Load Control Byte 

This instruction is used to load the FLAGS register or to transfer its contents into a 
general-purpose register. Note that this is not a privileged instruction. 

Load Into FLAGS Register 
LDCTLB FLAGS, Rbs 

FLAGS (2: 7) ..... - src (2: 7) 

The contents of the source (a byte register) are loaded into the FLAGS register. The 
lower two bits of the FLAGS register and the entire source register are unaffected. 

Rbs: 

FLAGS: 

reserved 

Load From FLAGS Register 
LDCTLB Rbd, FLAGS 

Flags: 

dst (2:7) ..... - FLAGS (2:7) 
dst (0: 1) ..... - 0 

The contents of the upper six bits of the FLAGS register are loaded into the destina­
tion (a byte register). The lower two bits of the destination register are cleared to 
zero. The FLAGS register is unaffected. 

FLAGS: 

Rbd: 

When the FLAGS register is the destination, all the flags are loaded from the 
source. When the FLAGS register is the source, none of the flags are affected. 

6-75 



Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDCTLB FLAGS, Rbs 
110001100 1 Rs 

1
1001 

1 
7 110001100 1 Rs 

1
1001 

1 
7 

LDCTLB Rbd, FLAGS I 10001100 I Rd 
1
0001 1 7 I 10001100 I Rd 

1
0001 1 7 

6-76 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

LDD 
Load and Decrement 

LDD dst, src, r 
LDDB 

dst -- src 

dst: IR 
src: IR 

AUTODECREMENT dst and src (by 1 if byte, by 2 if word) 
r--r-I 

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the 
destination register. The source and destination registers are then decremented by 
one if LDDB, or by two if LDD, thus moving the pointers to the previous elements in 
the strings. The source destination, and counter registers must be separate and non­
overlapping registers. The word register specified by "r" (used as a counter) is then 
decremented by one. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

LDD @Rsl, @Rd1, r 
LDDB @Rsl, @Rd1, r 11 0 1 1 1 0 1 1 w 1 Rs ;t: 0 11 0 0 1 1 

20 
11 0 1 1 1 0 1 ,w 1 Rs ;t: 0 11 0 0 1 1 

1 0000 1 r 1 Rd ;t: 0 11 0 0 0 1 r 00001 r IRd;t: 01 1000 1 

Cycles 

20 

In non segmented mode, if register RI contains %202A, register R2 contains %404A, 
the word at location %404A contains %FFFF, and register R3 contains 5, 
the instruction 

LDD @RI, @R2, R3 

will leave the value %FFFF at location %202A, the value %2028 in RI, the value 
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode, 
register pairs would be used instead of R 1 and R2. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

6-77 



LDDR 
Load. Decrement and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

LDDR dst, src, r 
LDDRB 

dst+- src 

dst: IR 
src: IR 

AUTODECREMENT dst and src (by 1 if byte, by 2 if word) 
r+-r-l 
repeat until r = 0 

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location· addressed by the 
destination register. The source and destination registers are then decremented by 
one if LDDRB, or by two if LDDR, thus moving the pointers to the previous elements 
in the strings. The word register specified by \\r" (used as a counter) is then 
decremented by one. The entire operation is repeated until the result of decremen­
ting r is zero. The source, destination, and counter registers must be separate and 
non-overlapping registers. This instruction can transfer from 1 to 65536 bytes or from 
1 to 32768 words (the value for r must not be greater than 32768 for LDDR). 

The effect of decrementing the pOinters during the transfer is important if the source 
and destination strings overlap with the source string starting at a lower memory 
address. Placing the pointers at the highest address of the strings and decrementing 
the pointers ensures that the source string will be copied without destroying the 
overlapping area. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven cycles 
should be .added to this instruction's execution time for each interrupt request that is 
accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

LDDR @Rd1, @Rsl, r 
LDDRB @Rd1, @Rsl, r 

Nonsegmented Mode 

Instruction Format 

110111011wl Rs 11001 1 

1 0000 \ r 
\ Rd \00001 

6-78 

Segmented Mode 

Cycles2 Instruction Format Cycles2 

110111011w/ Rs / 1001 1 11 +9n 
1 0000 \ \ 

\00001 
11 +9n 

r Rd 



Example: In nonsegmented mode, if register RI contains %202A, register R2 contains %404A, 
the words at locations %4040 through %404A all contain %FFFF, and register R3 
contains 6, the instruction 

LDDR @RI, @R2, R3 

will leave the value %FFFF in the words at locations %2020 through %202A, the 
value %20IE in RI, the value %403E in R2, and 0 in R3. The V flag will be set. In 
segmented mode, register pairs would be used instead of RI and R2. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: n = number of data elements transferred. 

6-79 



LDI 
Load and Increment 

Operation: 

Flags: 

Addressing 
Mode 

18: 

Example: 

LDI dst, src, r 
LDIB 

dst +- src 

dst: IR 
src: IR 

AUTOINCREMENT dst and src (by 1 if byte, by 2 if word) 
r+-r-l 

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the 
destination register. The source and destination registers are then incremented by 
one if LDIB, or by two if LDI, thus moving the pointers to the next elements in the 
strings. The source, destination, and counter registers must be separate and non­
overlapping registers. The word register specified by "r" (used as a counter) is then 
decremented by one. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero, cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

LDI @Rd1, @Rsl, r 
11 0 1 1 1 0 1 1 w 1 Rs '* 0 1 0 0 0 1 1 11 0 1 1 1 0 1 I w 1 Rs '* 0 1 0 0 0 1 1 

LDIB @Rd1, @Rsl, r 
10000 1 1 Rd '* 01 1 0 0 oJ 

20 
Looool 1 Rd '* 01 1 0 0 0 I r r 

Cycles 

20 

This instruction can be used in a "loop" of instructions which transfers a string of 
data from one location to another, but an intermediate operation on each data ele­
ment is required. The following sequence transfers a string of 80 bytes, but tests for 
a special value (%OD, an ASCII return character) which terminates the loop if 
found. This example assumes nonsegmented mode. In segmented mode, register 
pairs would be used instead of R 1 and R2. 

LD R3, #80 !initialize counter! 
LDA Rl, DSTBUF ! load start addresses! 
LDA R2, SRCBUF 

LOOP: 
CPB @R2, #%OD ! check for return character! 
JR EO, DONE !exit loop if found! 
LDIB @Rl, @R2, R3 !transfer next byte! 
JR NOV, LOOP ! repeat until counter O! 

DONE: 

Note I: Word register in non segmented mode, register pair in segmented mode. 

6-80 



LDIR LDIR 
Load, Increment and Repeat Load, Increment and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

LDIR dst, src, r 
LDIRB 

dst +- src 

dst: IR 
src: IR 

AUTOINCREMENT dst and src (by 1 if byte; by two if word) 
r+-r-l 
repeat until R = 0 

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the 
destination register. The source and destination registers are then incremented by 
one if LDIRB, or by two if LDIR, thus moving the pointers to the next elements in the 
strings. The word register specified by "r" (used as a counter) is then decremented 
by one. The entire operation is repeated until the result of decrementing r is zero. 
The source, destination, and counter registers must be separate and non-overlapping 
registers. This instruction can transfer from 1 to 65536 bytes or from 1 to 32768 
words (the value for r must not be greater than 32768 for LDIR). 

The effect of incrementing the pOinters during the transfer is important if the source 
and destination strings overlap with the source string starting at a higher memory 
address. Placing the pointers at the lowest address of the strings and incrementing 
the pointers ensures that the source string will be copied without destroying the 
overlapping area. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven cycles 
should be added to this instruction's execution time for each interrupt request that is 
accepted. 

c: Unaffected 
Z: Undefined 
s: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

LDIR @Rd1, @Rsl, r 
LDIRB @Rd1, @Rsl, r 

Nonsegmented Mode 

Instruction Format 

11 0 1 1 1 0 1 1 w 1 Rs '" 0 1 0 0 0 1 I 

10000 1 r 1 Rd '" 0 [ 0 0 0 0 J 

6-81 

Segmented Mode 

Cyc1es2 Instruction Format Cycles2 

11 +9n 
l1 0 1 1 1 01 1 wi Rs '" 0 1 0 0 0 1 I 

11 +9n 
10000 1 r 1 Rd '" 0 [ 0 0 0 0 J 



Example: The following sequence of instructions can be used in nonsegmented mode to copy a 
buffer of 512 words (1024 bytes) from one area to another. The painters to the start of 
the source and destination are set the number of words to transfer is set, and then 
the transfer takes place. 

LDA R1, DSTBUF 
LDA R2, SRCBUF 
LD R3, #512 
LDIR @R1, @R2, R3 

In segmented mode, R1 and R2 must be replaced by register pairs. 

Note I: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: n = number of data elements transferred. 

6-82 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

LDK dst, src 

dst -- src (src = 0 to 15) 

dst: R 
src: 1M 

LDK 
Load Constant 

The source operand (a constant value specified in the src field) is loaded into the 
destination register. The source operand is a value from 0 to 15. It is loaded into the 
four low-order bits of the destination register, while the high-order 12 bits are 
cleared to zero. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDK Rd, #data 11011111011 Rd 1 data I 5 1101111101 1 Rd I data I 5 

To load register R3 with the constant 9: 

LDK R3,#9 

6-83 



LDM 
Load Multiple 

Operation: 

Flags: 

LDM dst, src, n 

dst +- src (n words) 

dst: R 
src: IR, DA, X 
or 
dst: IR, DA, X 
src: R 

The contents of n source words are loaded into the destination. The contents of the 
source are not affected. The value of n lies between 1 and 16, inclusive. This instruc­
tion moves information between memory and registers; registers are accessed in 
increasing order starting with the speCified register; RO follows R15. The instruction 
can be used either to load multiple registers into memory (e.g. to save the contents 
of registers upon subroutine entry) or to load multiple registers from memory (e.g. to 
restore the contents of registers upon subroutine exit). 

The instruction encoding contains values from 0 to 15 in the \\num" field correspond­
ing to values of 1 to 16 for n,the number of registers to be loaded or saved. 

The starting address is computed once at the start of execution, and incremented by 
two for each register loaded. If the original address computation irlVolved a register, 
the register's value will not be affected by the address incrementation during 
execution. Similarly, modifying that register during a load from memory will not 
affect the address used by this instruction. 

No flags affected 

Load Multiple - Registers From Memory 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

IR: LDM Rd, @Rsl, #n o 0 10 1 1 1 0 01 Rs * 0 1 0 0 0 1 00J011100 Rs*O 1 0001 

00001 Rd I 0 0 0 0 I num 
11 +3n 

00001 Rd 00001 num 
11 +3n 

DA: LDM Rd, address, #n 
0110111001000010001 0 1 1011100 00001 0001 

00001 Rd I 0 0 0 0 I num 14+3n SS 0000 I Rd 0000 I num 15+3n 

address 01 segment offset 

011011100 00001 0001 

SL 
0000 I Rd 0000 I num 

17+3n 
1J segment 0000 0000 

offset 

6-84 



Load Multiple- Registers From Memory (Continued) 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

X: LDM Rd, addr(Rs), #n o 1 1 0 1 1 1 0 0 [ Rs * 0 [ 0 0 0 1 01[011100 RSoi·O [ 0001 

00001 Rd I 0 0 0 0 I num 15+3" S5 0000 I Rd 00001 num 15+3" 
address 01 segment offset 

011 011100 Rs*O 10001 

00001 Rd 0000 I num 
18+3" SL 

11 segment 0000 0000 

offset 

Load Multiple - Memory From Registers 

Destination 
Addressing 

Mode 

IR: 

DA: 

X: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDM@Rd1, Rs, #n 
0010111001 Rd*011001 

11 +3" 
001011100 Rd*O 11 001 

11 +3" 
00001 Rs 1 0 0 0 0 I num 00001 Rs 0000 I num 

LDM address, Rs, #n 
0110111001000011001 011 011100 00001 1001 

0000) Rs 1 0000 I num 14+3" SS 00001 Rs 00001 num 15+3" 
address 01 segment offset 

011 011100 00001 1001 

SL 
0000 I Rs 0000 I num 

17+3" 
11 segment 0000 0000 

offset 

LDM addr(Rd), Rs, #n 
01) 01 11 00 1 Rd* 0 11 001 011011100 Rd*O 11001 

o 0 0 0 I Rs I 0 0 0 0 I num 15+3" SS 0000 I ~s 0000 I num 15 +3" 
address o I segment offset 

o 1[ 011100 Rd *0 )1001 

SL 
00001 Rs 0000 I num 

18+3" 
1[ segment 0000 0000 

offset 

In non segmented mode, if register R5 contains 5, R6 contains %0100, and R7 con­
tains 7, the statement 

LDM @R6, R5, #3 
will leave the values 5, %0100, and 7 at word locations %0100, %0102, and %0104, 
respectively, and none of the registers will be affected. In segmented mode, a 
register pair would be used instead of R6. 

Note 1: Word register in nonsegmented mode. register pair in segmented mode. 

Note 2: n = number of registers. 

6-85 



LDPS 
Privileged Instruction 

Load Program Status 

Operation: 

Flags: 

Source 
Addressing 

Mode 

IR: 

DA: 

X: 

LDPS src src: IR, DA, X 

PS .... - src 

The contents of the source operand are loaded into the Program Status (PS), loading 
the Flags and Control Word (FCW) and the program counter (PC). The new value 
of the FCW does not become effective until the next instruction, so that the status 
pins will not be affected by the new control bits until after the LDPS instruction 
execution is completed. The next instruction executed is that addressed by the new 
contents of the PC. The contents of the source are not affected. 

This instruction is used to set the Program Status of a program and is particularly 
useful for setting the System/Normal mode of a program to Normal mode, or for run­
ning a nonsegmented program in the segmented Z8001 version. The PC segment 
number is not affected by the LDPS instruction in nonsegmented mode. 

The format of the source operand (Program Status block) depends on the current 
Segmentation mode (not on the version of the 28000) and is illustrated in the 
following figure: 

NONSEGMENTED 
LOW ADDRESS SEGMENTED 

FCW 

PC 

HIGH ADDRESS 

(shaded area is reserved-must be zero) 

All flags are loaded from the source operand. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDPS @Rsl I 0 0 11 1 1 0 0 1 I Rs"* 0 1 0 0 0 0 I 12 I 0 0 11 1 1 0 0 1 1 Rs"* 0 1 0 0 0 0 I 16 

LDPS address 
101111100110000100001 01111100110000100001 

I J 
16 SS 20 

address o 1 segment 1 offset 1 

0111110011000010000 

SL 1 1 segment 1 0 0 0 0 0000 22 

offset 

LDPS addr(Rs) I 0 1 11 1 1 0 0 1 1 Rs"* 0 1 0 0 0 0 J o 1 11 1 1 0 0 1 I Rs"* 0 1 0 0 0 0 I 
17 SS 20 

I address J o 1 segment J offset 1 

o 1 11 1 1 0 0 1 1 Rs"* 0 1 0 0 0 0 

SL 1 I segment I 0 0 0 0 0 0 0 0 23 

offset 

6-86 03-8003-0934 



Example: In the non segmented Z8002 version, if the program counter contains %2550, register 
R3 contains %5000, location %5000 contains %1800, and location %5.002 contains 
%AOOO, the instruction 

LDPS @R3 

will leave the value %AOOO in the program counter, and the FeW value will be 
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.) In the 
segmented mode, a register pair is used instead of R3. Note: Word register is used 
in nonsegmented mode, register pair in segmented mode. 

6-87 



LDR 
Load Relative 

Operation: 

Flags: 

LDR dst, src 
LDRB 
LDRL 

dst.- src 

dst: R 
src: RA 
or 
dst: RA 
src: R 

The contents of the source operand are loaded into the destination. The contents of 
the source are not affected. The relative address is calculated by adding the 
displacement in the instruction to the updated value of the program counter (PC) 
to derive the operand's address. In segmented mode, the segmented number of the 
computed address is the same as the segment number of the PC. The updated PC 
value is taken to be the address of the instruction byte following the LDR, LDRB, or 
LDRL instruction, while the displacement is' a 16-bit signed value in the range 
-32768 to + 32767. 

Status pin information during the access to memory for the data operand will be Pro­
gram Reference, (1lO0) instead of Data Memory request (1000). 

The assembler automatically calculates the displacement by subtracting the PC value 
of the following instruction from the address given by the programmer. 

This instruction must be used to modify memory locations containing program infor­
mation, such as the Program Status Area, if program and data space are allocated to 
different segments. 

No flags affected 

Load Relative Register 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

RA: LDR Rd, address 10011000lwlooooi Rd I lO011000lwl00001 Rd I LDRB Rbd, address 14 14 
I displacement I l displacement J 

LDRL RRd, address 100110101100001 Rd I l 00110101 Jooool Rd I 17 17 
I displacement J I displacement I 

6-88 



Load Relative Memory 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format 

RA: LDR address, Rs 10011001jWjooooj Rs I lo 0 11 001 I W I 000 o-r Rs I LDRB address, Rbs 14 
I displacement I I displacement I 

LDRL address, RRs 100110111 jooooj Rs J 100110111100001 Rs I 17 
I displacement I I displacement 1 

Example: LDR R2, DATA !register R2 is loaded with the value in the! 
!location named DATA! 

6-89 

Cycles 

14 

17 



MBIT 
Privileged Instruction 

Multi-Micro Bit·Test 

Operation: 

Flags: 

Example: 

MBIT 

S..,.- 1 if MI high (inactive); 0 otherwise 

This instruction is used to synchronize multiple processors' exclusive access to 
shared hardware resources. The multi-micro input pin (MI) is tested, and the S flag 
is cleared if the pin is low (active); otherwise, the S flag is set, indicating that the 
pin is high (inactive). 

After the MBIT instruction is executed, the S flag can be used to determine whether 
a requested resource is available or not. If the S flag is clear, then the resource is 
not available; if the S flag is set, then the resource is available for use by this CPU. 

c: Unaffected 
Z: Undefined 
S: Set if MI is high; cleared otherwise 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

MBIT 

Syntax Instruction Format Cycles Instruction Format Cycles 

I 0111101100001010 I 7 I 0111101100001010 I 

The following sequence of instructions can be used to wait for the availability of a 
resource. 

LOOP: 
MBIT !test multi-micro input! 
JR PL,LOOP !repeat until resource is available! 

AVAILABLE: 

6-90 

7 



Operation: 

Flags: 

Privileged Instruction 
MREQ 

Multi-Micro Request 

MREQ dst dst: R 

z .... a 
if MI low (active) then S .... a 

MO forced high (inactive) 
else MO forced low (active) 

repeat dst .... dst - 1 until dst a 
if MI low (active) then S .... 1 

else S .... a 
MO forced high (inactive) 

z .... 1 

This instruction is used to synchronize multiple processors' exclusive access to 
shared hardware resources. A request for a resource is signalled through the multi­
micro input and output pins (MI and MO), with the Sand Z flags indicating the 
availability of the resource after the MREQ instruction has been executed. 

First, the Z flag is cleared. Then the MI pin is tested. If the MI pin is low (active), 
the S flag is cleared and the MO pin is forced high (inactive), thus indicating that the 
resource is not available and removing any previous request by the CPU from the 
MO line. 

If the MI pin is high (inactive), indicating that the resource may be available, a 
sequence of machine operations occurs. First, the MO pin is forced low (active), 
signalling a request by the CPU for the resource. Next, a finite delay to allow for 
propagation of the signal to other processors is accomplished by repeatedly 
decrementing the contents of the destination (a word register) until its value is zero. 
Then the MI pin is tested to determine whether the request for the resource was 
acknowledged. If the MI pin is low (active), the S flag is set to one, indicating that 
the resource is available and access is granted. If the MI pin is still high (inactive), 
the S flag is cleared to zero, and the MO pin is forced high (inactive), indicating 
that the request was not granted and removing the request signal for the MO. 
Finally, in either case, the Z flag is set to one, indicating that the original test of the 
MI pin caused a request to be made. 

S flag Z flag MO Indicates 

a a 

a 

c: Unaffected 

high 

high 

low 

Request not Signalled 
(resource not available) 
Request not granted 
(resource not available) 
Request granted 
(resource available) 

Z: Set if request was signalled; cleared otherwise 
S: Set if request was signalled and granted; cleared otherwise 
V: Unaffected 
D: Unaffected 
H: Unaffected 

6-91 



Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles1 Instruction Format Cycles1 

R: MREQ Rd 
10111110111 Rd 

1
1101 I 12+7" 10111110111 Rd 11101 I 12+7" 

Example: TRY: 
LD 
MREQ 

JR 

RO,#50 
RO 

MI ,AVAILABLE 

!allow for propagation delay! 
!multi-micro request with delay! 
lin register RO! 

JR Z,NOT_GRANTED 
NOT_AVAILABLE: 

JR TRY 
AVAILABLE: 

MRES 

!resource not available! 

!request not granted! 

!try again after awhile! 
! use resource! 

!release resource! 

Note 1: If the request is made, n = number of times the destination is decremented. If the request is not made, 
n = o. 

6-92 



Operation: 

Flags: 

Example: 

Privileged Instruction 
MRES 

Multi-Micro Reset 

MRES 

MO is forced high (inactive) 

This instruction is used to synchronize multiple processors' exclusive access to 
shared hardware resources. The multi-micro output pin MO is forced high (inactive). 
Forcing MO high (inactive) indicates that a resource controlled by the CPU is 
available for use by other processors. 

No flags affected. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax 

MRES 

MRES 

Instruction Format Cycles Instruction Format 

101111011 I 00001001 I 5 101111011 I 

! signal that resource controlled by this CPU! 
lis available to other processors! 

6-93 

00001001 

Cycles 

I 5 



MSET 
Privileged Instruction 

Multi-Micro Set 

Operation: 

Flags: 

Example: 

MSET 

MO is forced low (active) 

This instruction is l.lsed to synchronize multiple processors' exclusive access to 
shared hardware resources. The multi-micro output pin MO is forced low (active). 
Forcing MO low (active) is used either to indicate that a resource controlled by the 
CPU is not available to other processors, or to signal a request for a resource con­
trolled by some other processor. 

No flags affected. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

MSET 
101111011 100001000 I 5 101111011 100001000 I 5 

MSET !CPU controlled resource not available! 

6-94 



Operation: 

Flags: 

MULT 
Multiply 

MULT dst, src dst: R 
MULTL src: R, 1M, IR, DA, X 

Word 
dst (0:31) ... dst (0: 15) X src (0: 15) 
Long 
dst (0:63) ... dst (0:31) x src (0:31) 

The low-order half of the destination operand (multiplicand) is multiplied by the 
source operand (multiplier) and the product is stored in the destination. The con­
tents of the source are not affected. Both operands are treated as signed, two's com­
plement integers. For MULT, the destination is a register pair and the source is a 
word value; for MULTL, the destination is a register quadruple and the source is a 
long word value. 

For proper instruction execution, the \ldst field" in the instruction format encoding 
must be even for MULT and must be a multiple of 4 (0, 4, 8, 12) for MULTL. If the 
source operand in MULTL is a register, the \l src field" must be even. 

The initial contents of the high-order half of the destination register do not affect the 
operation of this instruction and are overwritten by the result. The carry flag is set to 
indicate that the upper half of the destination register is required to represent the 
result; if the carry flag is clear, the product can be correctly represented in the same 
precision as the multiplicand and the upper half of the destination merely holds a 
sign extension. 

The following table gives execution times for word and long word operands in each 
possible addressing mode. 

src Word Long Word 

NS SS SL NS SS SL 
R 70 70 70 282 + 7*n 282 + 7*n 282 + 7*n 

1M 70 70 70 282 + 7*n 282 + 7*n 282 + 7*n 
IR 70 70 70 282 + 7*n 282 + 7*n 282 + 7*n 

DA 71 72 74 283 +7*n 284 + 7*n 286 +7*n 
X 72 72 75 284 + 7*n 284 + 7*n 287 + 7*n 

(n = number of bits equal to one in the absolute value of the low-order table 32 bits of the destination operand) 

When the multiplier is zero, the execution time of Multiply is reduced to the follOWing limes: 

src Word Long Word 

NS SS SL NS SS SL 
R 18 18 18 30 30 30 

1M 18 18 18 30 30 30 
IR 18 18 18 30 30 30 

DA 19 20 22 31 32 34 
X 20 20 23 32 32 35 

c: MULT-set if product is less than _231 or greater than or equal to 215; cleared 
otherwise; MULTL-set if product is less than 231 or greater than or equal to 231 ; 

cleared otherwise 
Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Cleared 
D: Unaffected 
H: Unaffected 

6-95 



Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2 

R: MULT RRd, Rs 
11010110011 Rs 

1 
Rd I 11010110011 Rs 

1 
Rd I 

MULTL ROd, RRs 
11010110001 Rs 

1 
Rd I 11010110001 Rs 

1 
Rd I 

1M: MULT RRd, #data 
0010 11 00 1100001 Rd 001011001 10000 I Rd 

data data 

MULTL ROd, #data 
001011000100001 Rd 001011000100001 Rd 

31 data (high) 16 31 data (high) 16 

15 data (low) 0 15 data (low) 0 

IR: MULT RRd, @Rsl 
1 0 0 1 0 1 1 0 0 1 1 Rs;to 0 1 Rd I I 0 0 1 0 1 1 0 0 1 1 Rs;to 0 1 Rd I 

MULTL ROd, @Rsl 
1 0 0 1 0 1 1 0 0 0 1 Rs;to 0 1 Rd I I 0 0 1 0 1 1 0 0 0 1 Rs;to 0 1 Rd I 

DA: MULT RRd, address 
0 11011001100001 Rd o 1 I 0 1 1 0 0 1 I 0 0 0 0 I Rd 

SS 
o I segment 1 address offset 

011011001 [00001 Rd 

SL 1 I segment I 0 0 0 0 0000 

offset 

MULTL ROd, address 
011011000100001 Rd 0 11011000100001 Rd 

address SS 01 segment 1 offset 

o 11 0 1 1 0 0 0 I 0 0 0 0 I Rd 

SL 11 segment I 0 0 0 0 0000 

offset 

X: MULT RRd, addr(Rs) o 1 I 0 1 1 0 0 1 1 Rs;to 0 I Rd o 11 0 1 1 0 0 1 I Rs;e 0 I Rd ss 
01 segment 1 address offset 

o 1 I 0 1 1 0 0 1 -r Rs;to 0 I Rd 

SL 11 segment I 0 0 0 0 0 0 0 0 

offset 

MULTL ROd, addr(Rs) o 1 I 0 1 1 0 0 0 I Rs;e 0 I Rd I o 11 0 1 1 0 0 0 I Rs;to 0 I Rd 

address I SS 01 segment I offset 

o 11 0 1 1 0 0 0 I Rs;e 0 I Rd 

SL 11 segment 1 0 0 0 0 0000 

offset 

6-96 



Example: If register RQO (composed of register pairs RRO and RR2) contains 
%2222222200000031 (RR2 contains decimal 49), the statement 

MULTL RQO,#l0 

will leave the value %OOOOOOOOOOOOOIEA (decimal 490) in RQO. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: Execution times for each instruction are given in the preceding tables. 

6-97 



NEG 
Negate 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

IR: 

DA: 

X: 

Example: 

NEG dst 
NEGB 

dst ... - dst 

dst: R, IR, DA, X 

The contents of the destination are negated, that is, replaced by its two's comple­
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by 
themselves since in two's complement representation the negative number with 
greatest magnitude has no positive counterpart; for these two cases, the V flag is set. 

c: Cleared if the result is zero; set otherwise, which indicates a "borrow" 
Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if the result is %8000 for NEG, or %80 for NEGB: cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

NEGRd 110100110lwl 10010 1 Rd 
NEGB Rbd 

NEG @Rdl 1 0 0 10 0 1 1 01 w I Rd;to 0 1 0 0 1 0 1 NEGB @Rdl 

NEG address 101100110lwl0000100101 
NEG B address 

I address I 

NEG addr(Rd) 
NEG B addr(Rd) I 0 1 1 0 0 1 1 01 w 1 Rd;to 0 1 0 0 1 0 I 

I address J 

If register R8 contains %051 F, the statement 

NEG R8 

will leave the value %FAE1 in R8. 

7 

12 

15 

16 

Segmented Mode 

Instruction Format 

110100110lwl Rd 
1

0010 1 

1 0 01 00 1 1 01 w I Rd;to 0 1 00 1 0 1 

0110011 olwl 0000 1 001 01 
55 oj segment I offset I 

0110011 olwl 00001 0010 

5L 1 1 segment I 0 0 0 0 0000 
offset 

55 
o 1 1 0 0 1 1 01 w 1 Rd;to 0 1 0 0 1 0 I 
01 segment 1 offset I 
o 1 1 0 0 1 1 0 1 w 1 Rd;to 0 1 0 0 1 0 

5L 1 1 segment 1 0 0 0 0 0000 

offset 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

6-98 

Cycles 

7 

12 

16 

18 

16 

19 



NOP 
No Operation 

NOP 

Operation: No operation is performed. 

Flags: No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

NOP 110001101 I 00000111 I 7 110001101 I 00000111 I 7 

6-99 



OR 
Or 

Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

DA: 

X: 

OR dst, src 
ORB 

dst +- dst OR src 

dst: R 
src: R, 1M, IR, DA, X 

The source operand is logically ORed with the destination operand and the result is 
stored in the destination. The contents of the source are not affected. The OR opera­
tion results in a one bit being stored whenever either of the corresponding bits in the 
two operands is one; otherwise a zero bit is stored. 

c: Unaffected 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
P: OR-unaffected; ORB-set if parity of the result is even; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

OR Rd, Rs 
110100010lwl I 110100010lwl Rs I Rd I 4 Rs Rd I ORB Rbd, Rbs 

OR Rd, #data 
1001000101100001 Rd I 001000101100001 Rd I 7 
I data I data J 

ORB Rbd, #data 
1001000100100001 Rd I 

7 
001000100100001 Rd I 

I data I data I data I data J 
OR Rd, @Rsl 

100 1000 1 0 I w I Rs * 0 I 100100010I w i Rs*O I ORB Rbd, @Rsl Rd I 7 Rd I 
OR Rd, address 

101100010lwl00001 Rd I 011 000 1OI w l00001 Rd I ORB Rbd, address 
I I 9 55 

J address o I seg~ent I offset 

o 1 10 0 0 10 1 w I 0 0 0 0 I Rd 

5L 1 I segment I 0 0 0 0 0000 

offset 

OR Rd, addr(Rs) 
ORB Rbd, addr(Rs) I 0 1 1 0 0 0 1 01 w 1 Rs * 0 1 Rd I o 1 10 0 0 1 0 I w 1 Rs * 0 I Rd I 

I I 
10 55 

I address o I segment 1 offset 

o 1 10 0 0 10 I w I Rs * 0 I Rd 

5L 1 I segment I 0 0 0 0 0000 

address 

6-100 

Cycles 

4 

7 

7 

7 

10 

12 

10 

13 



Example: If register RL3 contains O/OC3 (1lO00011) and the source operand is the immediate 
value 0/07B (01111011), the statement 

ORB RL3,#O/07B 

will leave the value O/OFB (1111lO11) in RL3. 

Note 1: Word register in non segmented mode, register pair in segmented mode. 

6-101 



OTDR 
(SOTDR) 

Privileged Instruction 

(Special) Output, Decrement and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

OTDR dst, src, r 
OTDRB 
SOTDR 
SOTDRB 

dst ... - src 

dst: IR 
src: IR 

AUTODECREMENT src (by 1 if byte, by 2 if word) 
r...-r-l 
repeat until r = 0 

This instruction is used for block output of strings of data. OTDR and OTDRB are 
used for normal I/O operation; SOTDR and SOTDRB are used for special I/O opera­
tion. The contents of the memory location addressed by the source register are 
loaded into the I/O port addresses by the destination word register. I/O port 
addresses are 16 bits. The source register is then decremented by one if a byte 
instruction, or by two if a word instruction, thus moving the pointer to the previous 
element of the string in memory. The word register specified by "r" (used as a 
counter) is then decremented by one. The address of I/O port in the destination 
register is unchanged. The entire operation is repeated until the result of decrement­
ing r is zero. This instruction can output from 1 to 65536 bytes or 32768 word (the 
value for r must not be greater than 32768 for OTDR or SOTDR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven more 
cycles should be added to this instruction's execution time for each interrupt request 
that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

OTDR @Rd,@Rsl, r 
OTDRB @Rd,@Rsl, r 

SOTDR @Rd,@Rsl, r 
SOTDRB @Rd,@Rsl, r 

Nonsegmented Mode Segmented Mode 

Instruction Format Cycles2 Instruction Format Cycles2 

I 00 111 0 1 1 w 1 Rs '* 01 1 01 S 1 I 0 0 1 1 1 0 1 1 w 1 Rs '* 0 11 0 1 S I 
11 + 10n 11 +10n 

10000
1 

r 1 Rd '* 0 I 0 0 0 0 1 10000
1 

r 1 Rd '* 0 1 0 0 0 0 1 

6-102 



Example: In nonsegmented mode, if register Rll contains %OFFF, register Rl2 contains 
%B006, and Rl3 contains 6, the instruction 

OTDR @Rll, @R12, Rl3 

will output the string of words from locations O/OB006 to %AFFC (in descending 
order of address) to port %OFFF. Rl2 will contain %AFFA, and Rl3 will contain O. 
Rll will not be affected. The V flag will be set. In segmented mode, Rl2 would be 
replaced by a register pair. 

Notel: Word register in nonsegmented mode, register pair in segmented mode. 
Note 2: n = number of data elements transferred. 

6-103 



OTIH 
(SOTIH) 

Pri vileged Instruction 

(Special) Output. Increment and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

OTIR dst, src, r 
OTIRB 
SOTIR 
SOTIRB 

dst .... - src 

dst: IR 
src: IR 

AUTOINCREMENT src (by 1 if byte, by 2 if word) 
r .... -r-l 
repeat until r = 0 

This instruction is used for block output of strings of data. OTIR and OTIRB are used 
for normal 1/0 operation; SOTIR and SOTIRB are used for special 1/0 operation. 
The contents of the memory location addressed by the source register are loaded 
into the 1/0 port addressed by the destination word register. 1/0 port addresses are 
16 bits. The source register is then incremented by one if a byte instruction, or by 
two if a word instruction, thus moving the pointer to the next element of the string in 
memory. The word register specified by "r" (used as a counter) is then decremented 
by one. The address of 1/0 port in the destination register is unchanged. The entire 
operation is repeated until the result of decrementing r is zero. This instruction can 
output from 1 to 65536 bytes or 32768 words (the value for r must not be greater than 
32768 for OTIR or SOTIR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven more 
cycles should be added to this instruction's execution time for each interrupt request 
that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

OTIR @Rd, @Rsl, r 
OTIRB @Rd, @Rsl, r 
SOTIR @Rd, @Rsl, r 
SOTIRB @Rd, @Rsl, r 

Nonsegmented Mode 

Instruction Format Cycles 

I 00 1 11 0 1 1 wi Rs * 01 00 1 5 I 11 + 10n 

10000 1 r IRd * 01 0000 I 

6-104 

Segmented Mode 

Instruction Format Cycles 

I 0 0 1 1 1 0 1 I w 1 Rs * 0 1 0 0 1 5 I 11 + 10n 
10000J r IRd*olooool 



Example: In nonsegmented mode, the following sequence of instructions can be used to output 
a string of bytes to the specified I/O port. The pOinters to the I/O port and the start 
of the source string are set, the number of bytes to output is set, and then the output 
is accomplished. 

LD 
LDA 
LD 
OTIRB 

Rl, #PORT 
R2, SRCBUF 
R3, #LENGTH 
@Rl, @R2, R3 

In segmented mode, a register pair would be used instead of R2. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 
Note 2: n = number of data elements transferred. 

6-105 



OUT 
(SOUT) 
(Special) Output 

Operation: 

OUT dst, src 
OUTB 
SOUT dst, src 
SOUTB 

dst ... - src 

Pri vileged Instruction 

dst: IR, DA 
src: R 

dst: DA 
src: R 

The contents of the source register are loaded into the destination, an Output or 
Special Output port. OUT and OUTB are used for normal 1/0 operation; SOUT and 
SOUTB are used for special I/O operation. 

Flags: 

Destination 
Addressing 

Mode 

IR: 

DA: 

Example: 

No flags affected. 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

OUT @Rd, Rs I 0 0 1 1 1 1 1 I w I Rd * 0 I Rs I OUTB @Rd, Rbs 

OUT port, Rs 
IOO111011 wl Rs 1011 S I OUTB port, Rbs 

SOUT port, Rs I port I 
SOUTB port, Rbs 

If register R6 contains %5252, the instruction 

OUT % 1120, R6 

10 

12 

will output the value %5252 to the port % 1120. 

6-106 

Segmented Mode 

Instruction Format Cycles 

I 0 0 1 1 1 1 1 I w I Rd * 0 I Rs I 10 

IOO111011 wl Rs 1011 S I 12 
I port I 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

Pri vileged Instruction OUTD 
(SOUTO) 

(Special) Output and Decrement 

OUTD dst, src, r 
OUTDB 
SOUTD 
SOUTDB 

dst.- src 

dst: IR 
src: IR 

AUTODECREMENT src (by 1 if byte, by 2 if word) 
r'-r-1 

This instruction is used for block output of strings of data. OUTD and OUTDB are 
used for normal I/O operation; SOUTD and SOUTDB are used for special I/O opera­
tion. The contents of the memory location addressed by the source register are 
loaded into the I/O port addressed by the destination word register. I/O port 
addresses are 16 bits. The source register is then decremented by one if a byte 
instruction, or by two if a word instruction, thus moving the pointer to the previous 
element of the string in memory. The word register specified by "r" (used as a 
counter) is then decremented by one. The address of the I/O port in the destination 
register is unchanged. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

~UID @Rd, @Rsl, r 
OUIDB @Rd, @Rsl, r 1 0 0 1 1 1 0 1 1 w 1 Rs "* 0 11 0 1 S I 

21 
I 0 0 1 1 1 0 1 I w 1 Rs "* 0 11 0 1 S 1 

S~UID @Rd, @Rsl, r 1
0000

1 
r 1 Rd 1 1000 I 10000

1 
r 1 Rd 11000 J 

SOUIDB @Rd, @Rsl, r 

Cycles 

21 

In segmented mode, if register R2 contains the I/O port address %0030, register RR6 
contains %12005552 (segment %12, offset %5552), the word at memory location 
% 12005552 contains % 1234, and register R8 contains % 1001, the instruction 

OUTD @R2, @RR6, R8 

will output the value % 1234 to port %0030 and leave the value % 12005550 in RR6, 
and % 1000 in R8. Register R2 will not be affected. The V flag will be cleared. In 
nonsegmented mode, a word register would be used instead of RR6. 

Note 1: Word register in non segmented mode, register pair in segmented mode. 

6-107 



OUTI 
(SOUTI) 

Privileged Instruction 

(Special) Output and Increment 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

OUTI dst, src, r 
OUTIB 
SOUTI 
SOUTIB 

dst +- src 

dst: IR 
src: IR 

AUTOINCREMENT src (by 1 if byte, by 2 if word) 
r+-r-l 

This instruction is used for block output of strings of data. OUT I and OUTIB are 
used for normal 1/0 operation; SOUTI and SOUTIB are used for special 1/0 opera­
tion. The contents of the memory location addressed by the source register are 
loaded into the I/O port addressed by the destination word register. 1/0 port 
addresses are 16-bit.The source register is then incremented by one if a byte 
instruction, or by two if a word instruction, thus moving the pointer to the next ele­
ment of the string in memory. The word register specified by "r" (used as a counter) 
is then decremented by one. The address of the 1/0 port in the destination register is 
unchanged. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

OUTI @Rd, @Rsl, r 
OUTIB @Rd, @Rsl, r I 0 0 1 1 1 0 1 I w I Rs "* 0 I 0 0 1 S I 21 

I 00 1 1 1 0 1 1 w 1 Rs "* 01 0 0 1 sJ 
SOUTI @Rd, @Rsl, r 10000 1 r I Rd "* 0 11 0 0 0 I 10000 1 r I Rd"* 011000J 

SOUTIB @Rd, @Rsl, r 

6-108 

Cycles 

21 



Example: This instruction can be used in a "loop" of instructions which outputs a string of 
data, but an intermediate operation on each element is required. The following 
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit 
of each byte set or reset to provide even parity for the entire byte. Bit 7 of each 
character is initially zero. This example assumes non segmented mode. In segmented 
mode, R2 would be replaced with a register pair. 

LD RI, #PORT 
LDA R2, SRCSTART 
LD R3, #80 

LOOP: 
TESTB @R2 
JR PE, EVEN 
SETB @R2, #7 

EVEN: 
OUTIB @RI, @R2, R3 
JR NOV, LOOP 

DONE: 

!load I/O address! 
! load start of string! 
! initialize counter! 

! test byte parity! 

! force even parity! 

!output next byte! 
!repeat until counter 

Note I: Word register in nonsegmented mode, register pair in segmented mode. 

6-109 

O! 



POP 
Pop 

Operation: 

Flags: 

Destination 
AddreSSing 

Mode 

R: 

IR: 

DA: 

POP dst, src 
POPL 

dst -- src 

dst: R, IR, DA, X 
src: IR 

AUTOINCREMENT src (by 2 if word, by 4 if long) 

The contents of the location addressed by the source register (a stack pointer) are 
loaded into the destination. The source register is then incremented by a value 
which equals the size in bytes of the destination operand, thus removing the top ele­
ment of the stack by changing the stack pointer. Any register except RO (or RRO in 
segmented mode) can be used as a stack pointer. 

With the POPL instruction, the same register cannot be used in both the source and 
destination addreSSing fields. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycle!) Instruction F drmat Cycles 

POP Rd, @Rsl 
11 0 1 0 1 0 1 1 1 1 Rs '* 0 I Rd. I 8 1101010111IRs,*0! Rd I 8 

POPL RRd, @Rsl 
11 0 1 0 1 0 1 0 1 1 Rs '* 0 I Rd I 12 1101010101I Rs '*°1 Rd I 12 

POP @Rdl , @Rsl I 0 0 I 0 1 0 1 1 1 I Rs '* 0 I Rd '* 0 I 12 1001 010111 I Rs,*O ! Rd '* 01 12 

POPL @Rdl , @Rsl 
1 0 0 I 0 1 0 1 0 1 1 Rs '* 0 1 Rd '* 0 I 19 10010101011 Rs,*O IRd'*01 19 

POP address, @Rsl 
1011 010111 1 Rs,*O 10000 I 55 011 0 10111 1 Rs,*O 10000 

16 16 
I address I o I segment I offset 

011010111 I Rs,*O 10 000 

5L 1 1 segment 1 0 0 0 0 0 0 0 0 19 

offset 

POPL address, @Rsl 
10 1[ 010101 1 Rs,*O 10000 I o 11 0 1 0 1 0 1 1 Rs '* 0 1 0 0 0 0 23 

55 I 23 
l address J o I segment offset 

011 010101 1 RHO 10000 

5L 1 I segment I 0000 0000 26 

offset 

6-110 



Destination 
Addressing 

Mode 

X: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

POP addr(Rdl. @Rsl 
I 0 1 1 0 1 0 1 1 1 1 Rs * 0 1 Rd * 0 J o 1 I 0 1 0 1 1 1 1 Rs * 0 I Rd * 0 

16 SS 16 I address I o I segment I offset 

01 1 010111 1 Rs*O 1 Rd*O 

SL 1 1 segment 1 0 0 0 0 0 0 0 0 19 
offset 

POPL addr(Rd), @Rsl 
1 01 1 01 01 01 1 Rs*O 1 Rd*O I 

23 SS 
o 1 1 0 1 0 1 0 1 1 Rs * 0 1 Rd * 0 I 

23 I address 
I o I segment I offset I 

o 1 I 0 1 0 1 0 1 I Rs * 0 I Rd * 0 

SL 1 1 segment 1 0 0 0 0 0 0 0 0 26 
offset 

In nonsegmented mode, if register R12 (a stack pointer) contains %1000, the word at 
location % 1000 contains %0055, and register R3 contains %0022, the instruction 

POP R3, @R12 

will leave the value %0055 in R3 and the value % 1002 in R12. In segmented mode, 
a register pair must be used as the stack pointer instead of R12. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

6-111 



PUSH 
Push 

Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

DA: 

PUSH dst, src 
PUSHL 

dst: IR 
src: R, 1M, 1R, DA, X 

AUTODECREMENT dst (by 2 if word, by 4 if long) 
dst .- src 

The contents of the destination register (a stack pointer) are decremented by a value 
which equals the size in bytes of the source operand. Then the source operand is 
loaded into the location addressed by the updated destination register, thus adding a 
new element to the top of the stack by changing the stack pointer. Any register­
except RO (or RRO in segmented mode) can be used as a stack pointer. 

With PUSHL, the same register cannot be used for both the source and destination 
addreSSing fields. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

PUSH @Rd1, Rs 11 0 1 0 1 0 0 1 1 1 Rd '* 0 1 Rs I 9 11010100111 Rd'*°l Rs I 9 

PUSHL @Rd1, RRs 11 0 1 0 1 0 0 0 1 1 Rd '* 0 1 Rs I 12 11010100011 Rd,*O I Rs I 12 

PUSH @Rd1, #data 1 ° 0 1 ° 0 1 1 0 1 1 Rd '* 0 11 0 0 1 1 ° ° 1 0011 01 1 Rd,*O 11 0 01 
12 12 

l data J data 

PUSH @Rd1, @Rsl I ° 0 1 ° 1 0 0 1 1 1 Rd '* 0 1 Rs '* ° I 13 10010100111 Rd'*°IRs'*°1 13 

PUSHL @Rd1, @Rsl I ° 0 1 0 1 0 0 0 1 I Rd '* ° I Rs *- ° I 20 10010100011 Rd'*°IRs'*°1 20 

PUSH <it Rd l , address 10 1 1 ° 1 0 0 1 1 1 Rd *- ° 1 0 0 0 oJ ° 1 1 ° 1 0 0 1 1 1 Rd *-0 1 ° 0 0 ° 

I J 
14 SS 14 

address o 1 segment 1 offset 

o 1 I ° 1 0 0 1 1 I Rd *- ° I ° 0 0 ° 

SL 1 1 segment 1 ° 0 0 0 0 0 0 0 17 
offset 

PUSHL@Rd1, address 1 ° 11 ° 1 0 0 0 1 1 Rd '* ° 1 0 0 0 ° I ° 1 J ° 1 0 0 0 1 I Rd '* 01 ° 0 0 0 
21 SS 13 

I address I ° 1 segment I offset 

o 1 1 ° 1 0 0 0 1 I Rd *- ° 1 0 0 0 ° 

SL 1 I segment J ° 0 0 0 0 0 0 0 24 

offset 

6-112 



Source 
Addressing 

Mode 

X: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

PUSH @Rd1, addr{Rs) 1011 010011 1 Rd*O 1 Rs*O I 
14 SS 

o 1 1 0 1 0 0 1 1 1 Rd * 0 1 Rs * 0 I 
14 

I address I o I segment I offset I 

o 11 0 1 0 0 1 1 1 Rd * 0 I Rs * 0 

SL 1 1 segment 1 0 0 0 0 0 0 0 0 17 
offset 

PUSHL @Rdl, addr{Rs) I 0 1 I 0 1 0 0 0 1 I Rd * 0 1 Rs * 0 I 
21 SS 

01 1 010001 1 Rd*O 1 Rs*O I 21 
I address I o I segment I offset I 

011 010001 J Rd*O 1 Rs*O 

SL 1 1 segment too 0 0 0 0 0 0 24 
offset 

In nonsegmented mode, if register R12 (a stack pointer) contains %1002, the word at 
location % 1000 contains %0055, and register R3 contains %0022, the instruction 

PUSH @R12, R3 

will leave the value %0022 in location % 1000 and the value % 1000 in R12. In 
segmented mode, a register pair must be used as the stack pointer instead of R12. 

Note 1: Word register is used in nonsegmented mode, register pair in segmented mode. 

6-113 



RES 
Reset Bit 

Operation: 

Flags: 

RES dst, src 
RESB 

dst( src) -- 0 

dst: R IR, DA, X 
src: 1M 
or 
dst: R 
src: R 

This instruction clears the specified bit within the destination operand without 
affecting any other bits in the destination. The source (the bit number) can be 
specified as either an immediate value (StaticL or as a word register which contains 
the value (Dynamic). In the second case, the destination operand must be a register, 
and the source operand must be RO through R7 for RESB, or RO through R15 for 
RES. The bit number is a value from 0 to 7 for RESB, or 0 to 15 for RES, with 0 
indicating the least significant bit. 

Only the lower four bits of the source operand are used to specify the bit number for 
RES, while only the lower three bits of the source operand are used with RESB. 
When the source operand is an immediate value, the "src field" in the instruction 
format encoding contains the bit number in the lowest four bits for RES, or the 
lowest three bits for RESB. 

No flags affected 

Reset Bit Static 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler L,'lnguage 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

R: RES Rd,_#b 1101100011wl I I 1101100011wl I Rd b 4 Rd 
1 

b 4 
RESB Rbd, #b 

IR: RES @Rd1, #b 
10011 000 11 w 1 Rd * 0 1 b I 11 I 0 01 10 0 0 11 w 1 Rd * 0 1 b I 11 

RESB @Rd1, #b 

DA: RES address, #b 10111 00011 wl 0000 I b 1 011100011wl00001 b RESB address, #b 13 55 14 
I address I o 1 segment 1 offset 

011100011wl00ooI b 

5L 1 1 segment 1 0 0 0 0 0 0 0 0 16 

offset 

X: RES addr(Rd), #b 10 1 11 000 11 wi Rd * 0 1 b I o 1 11 0 0 0 11 w I Rd * 0 I b RESB addr(Rd), #b 14 55 14 
1 address I o I segment 1 offset 

o 1 11 000 11 w I Rd * 0 I b 

5L 1 1 segment I 0 0 0 0 0 0 0 0 17 

offset 

6-114 



Reset Bit Dynamic 

Source 
Addressing 

Mode 

R: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

RES Rd, Rs 10 0 11 0 0 0 11 w 1 0 0 0 0 1 Rs J I 0 0 11 0 0 0 11 w 1 0 0 0 0 1 Rs I 
RESB Rbd, Rs I 0 0 0 0 1 Rd 1 0 0 0 0 I 0 0 0 0 J 10 I 0 0 0 0 I Rd I 0 0 0 0 I 0 0 0 0 I 

If register RL3 contains O/OB2 (0110010), the instruction 

RESB RL3, #1 

will leave the value O/OBO (0110000) in RL3. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

6-115 

Cycles 

10 



RESFLG 
Reset Flag 

Operation: 

Flags: 

Example: 

RESFLG flag flag: C, z, s, P, V 

FLAGS (4:7) +- FLAGS (4:7) AND NOT instruction (4:7) 

Any combination of the C, Z, S, P or V flags are cleared to zero if the corresponding 
bits in the instruction are one. If the bit in the instruction corresponding to a flag is 
zero, the flag will not be affected. All other bits in the FLAGS register are 
unaffected. Note that the P and V flags are represented by the same bit. 

There may be one, two, three, or four operands in the assembly language statement, 
in any order. 

c: Cleared if specified, unaffected otherwise 
Z: Cleared if specified, unaffected otherwise 
S: Cleared if specified, unaffected otherwise 
P/V: Cleared if specified, unaffected otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

RESFLG flags 11 0 I 0 0 1 1 0 1 Ie Z S PIVI 0 0 1 1 I 7 

Segmented Mode 

Instruction Format 

11 0 I 0 0 1 1 0 1 Ie Z S PIVI 0 0 1 1 1 

If the C, S, and V flags are set (1) and the Z flag is clear (0), the statement 

RESFLG C, V 

will leave the S flag set (1), and the C, Z, and V flags cleared (0). 

6-116 

Cycles 

7 



Operation: 

Flags: 

Addressing 
Mode 

Example: 

RET cc 

N onsegmented 
if cc is true then 
PC.- @SP 
SP.- SP + 2 

Segmented 
if cc is true then 
PC.- @SP 
SP .- SP + 4 

RET 
Return 

This instruction is used to return to a previously executed procedure at the end of a 
procedure entered by a CALL or CALR instruction. If the condition specified by 
"cc" is satisfied by the flags in the FCW, then the contents of the location addressed 
by the processor stack pointer are popped into the program counter (PC). The next 
instruction executed is that addressed by the new contents of the PC. See section 
6.6 for a list of condition codes. The stack pointer used is R15 in nonsegmented 
mode, or RR14 in segmented mode. If the condition is not satisfied, then the instruc­
tion folloWing the RET instruction is executed. If no condition is specified, the return 
is taken regardless of the flag settings. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles1 Instruction Format Cycles 1 

RET cc 1101011110100001 cc I 10/7 1101011110100001 cc I 13/7 

In nonsegmented mode, if the program counter contains %2550, the stack pointer 
(R15) contains %3000, location %3000 contains %1004, and the Z flag is clear, then 
the instruction 

RET NZ 

will leave the value %3002. in the stack pointer and the program counter will contain 
% 1004 (the address of the next instruction to be executed). 

Note 1: The two values correspond to return taken and return not taken. 

6-117 



RL 
Rotate Left 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

RL dst, src 
RLB 

Do src times: (src = 1 or 2) 
tmp +- dst 
c +- tmp (msb) 
dst(O) +- tmp (msb) 

dst: R 
src: 1M 

dst (n + 1) +- tmp (n) (for n o to msb - 1) 

Word: ~" 

Byte: 0'-y 7 oJ 
I 

oj 
I 

The contents of the destination operand are rotated left one bit position if the source 
operand is I, or two bit positions if the source operand is 2. The most significant bit 
(msb) of the destination operand is moved to the bit 0 pOSition and also replaces the 
C flag. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

c: Set if the last bit rotated from the most significant bit position was 1; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
0: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntaxl Instruction F ormat2 Cycles3 Instruction Format2 

RL Rd, #n 1101110011wl loolslol 1101110011wl loolslol Rd 6/7 Rd 
RLB Rbd, #n 

If register RH5 contains %88 (0001000), the statement 

RLB RH5 

Cycles3 

6/7 

will leave the value %11 (00010001) in RH5 and the Carry flag will be set to one. 

Note 1: n = source operand. 
Note 2: s = a for rotation by 1 bit; s = 1 for rotation by 2 bits. 
Note 3: The given execution times are for rotation by 1 and 2 bits respectively. 

6-118 03-8003-0935 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

RLC 
Rotate Left through Carry 

RLC 
RLCB 

dst: R 
src: 1M 

Do src times: (src = 1 or 2) 
tmp +- c 

Word: 

Byte: 

c +- dst (msb) 
dst (n + 1) .... - dst (n) (for n 
dst (0) +- tmp 

msb -1 to 0) 

L8~r--15 --------."~ 

~..--7 _------."~ 

The contents of the destination operand with the C flag are rotated left one bit posi­
tion if the source operand is I, or two bit positions if the source operand is 2. The 
most significant bit (msb) of the destination operand replaces the C flag and the 
previous value of the C flag is moved to the bit 0 position of the destination during 
each rotation. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

C: Set if the last bit rotated from the most significant bit position was 1; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax l Instruction Format2 Cycles3 Instruction Format2 Cycles3 

RLC Rd, #n 1101110011wl 110lsl01 110111001!wl 110lsl01 Rd 6/7 Rd 6/7 RLCB Rbd, #n 

If the Carry flag is clear (= 0) and register RO contains %800F (1000000000001111), 
the statement 

RLC RO,#2 

will leave the value %003D (0000000000111101) in RO and clear the Carry flag. 

Note I: n = source operand. 

Note 2: s = 0 for rotation by I bit; s = I for rotation by 2 bits. 

Note 3: The given execution times are for rotation by I and 2 bits respectively. 

6-119 



BLDB 
Rotate Left Digit 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

RLDB link, src 

tmp (0:3) ~- link (0:3) 
link (0:3) ~- src (4:7) 
src (4:7) ~- src (0:3) 
src (0:3) ~- tmp (0:3) 

4 3 

link : 

src: R 
link: R 

t 
4 3 

src 

The low digit of the link byte register is logically concatenated to the source byte 
register. The resulting three-digit quantity is rotated to the left by one BCD digit 
(four bits). The lower digit of the source is moved to the upper digit of the source; 
the upper digit of the source is moved to the lower digit of the link, and the lower 
digit of the link is moved to the lower digit of the source. The upper digit of the link 
is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift 
to the left a string of BCD digits, thus multiplying, it by a power of ten. The link 
serves to transfer digits between successive bytes of the string. This is analogous to 
the use of the Carry flag in multiple precision shifting using the RLC instruction. 

The same byte register must not be used as both the source and the link. 

c: Unaffected 
Z: Set if the link is zero after the operation; cleared otherwise 
S: Undefined 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

RLDB Rbi, Rbs 11011111101 Rbs 1 Rbi 1 9 11011111101 Rbs 1 Rbi 1 

6-120 

Cycles 

9 

03-8003-0936 



Example: If location 100 contains the BCD digits 0,1 (00000001), location 101 contains 2,3 
(00100011), and location 102 contains 4,5 (01000101) 

100 rn 101 rn 102 rn 
the sequence of statements 

LOOP: 

LD 

LD 
CLRB 

R3,#3 

R2,#102 
RHI 

! set loop counter for 3 bytes! 
!(6 digits)! 

!set pointer to low-order digits! 
!zero-filllow-order digit! 

LDB RLl,@R2 !get next two digits! 
RLDB RHl,RLl !shift digits left one position! 
LDB @R2,RLI !replace shifted digits! 
DEC R2 !advance pOinter! 
DJNZ R3, LOOP !repeat until counter is zero! 

will leave the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in loca­
tion 101, and the digits 5,0 (01010000) in location 102. 

100 []J 101 ru 102 rn 
In segmented mode, R2 would be replaced by a register pair. 

6-121 



RR 
Rotate Right 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

RR dst, src 
RRB 

Do src times: (src = 1 or 2) 
tmp +- dst 
c +- tmp (0) 
dot (msb) +- tmp (0) 

dst: R 
src: IM 

dst (n - 1) +- tmp (n) (for n 1 to msb) 

Word: 

Byte: 

[r---,15 -----' ~0 

~.---7 ---' ~0 

The contents of the destination operand are rotated right one bit position if the 
source operand is I, or two bit positions if the source operand is 2. The least signifi­
cant bit of the destination operand is moved to the most significant bit (msb) and 
also replaces the C flag. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

c: Set if the last bit rotated from the least significant position was 1; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Formatl Cycles2 Instruction Formatl 

RR Rd, #n 1101110011wl 1101 11 0011wl Rd 1011 s l01 6/7 Rd 10115 101 RRB Rbd, #n 

If register RL6 contains %31 (00110001), the statement 

RRB RL6 

Cycles2 

6/7 

will leave the value %98 (0011000) in RL6 and the Carry flag will be set to one. 

Note 1: s "':. 0 for rotation by 1 bit; s = 1 for rotation by 2 bits. 

Note 2: The given execution times are for rotation by 1 and 2 bits respectively. 

6-122 03·8003·0937 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

Example: 

03-8003-0938 

RRC 
Rotate Right through Carry 

RRC dst, src 
RRCB 

Do src times: (src = 1 or 2) 
tmp ... - c 
c ... - dst (0) 

dst: R 
src: 1M 

dst (n) -- dst (n + 1) (for n 
dst (msb) __ tmp 

o to msb - 1) 

Word:. 

Byte: 

L 15 0 ~ 
r--", --------..,r-l.:}--J 

L,r--7 

-----," r-GJ 
The contents of the destination operand with the C flag are rotated one bit position if 
the source operand is I, or two bit positions if the source operand is 2. The least 
significant bit of the destination operand replaces the C flag and the previous value 
of the C flag is moved to the most significant bit (msb) position of the destination 
during each rotation. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

C: Set if the last bit rotated from the least significant bit position was 1; cleared 
otherwise 

Z: St~t if the result is zero; cleared otherwise 
S: SEt if the most significant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented .Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format l Cycles2 Instruction Format 1 

RRC Rd, #n 1101110011wl 11115 101 1101110011wl Rd 6/7 Rd 
RRCB Rbd, #n 

If the Carry flag is clear ( = 0) and the register RO contains %OODD 
(0000000011011101), the statement 

RRC RO,#2 

11115 101 

will leave the value %8037 (10000000110111) in RO and clear the Carry flag. 

Note 1: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits 

Note 2: The given execution times are for rotation by 1 and 2 bits respectively. 

6-123 

Cycles2 

6/7 



RRDB 
Rotate Right Digit 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

RRDB link, src 

tmp (0:3) ... - link (0:3) 
link (0:3) ... - src (0:3) 
src (0:3) ... - src (4:7) 
src (4:7) ... - tmp (0:3) 

4 3 I 
link I I-___ ..L...----.,._--I 

t 

src: R 
link: R 

d " ~ 

The low digit of the link byte register is logically concatenated to the source byte 
register. The resulting three-digit quantity is rotated to the right by one BCD digit 
(four bits). 

The lower digit of the source is moved to the lower digit of the link; the upper digit 
of the source is moved to the lower digit of the source and the lower digit of the link 
is moved to the upper digit of the source. 

The upper digit of the link is unaffected. In multiple-digit BCD arithmetic, this 
instruction can be used to shift to the right a string of BCD digits, thus dividing it by 
a power of ten. The link serves to transfer digits between successive bytes of the 
string. This is analogous to the use of the carry flag in multiple precision shifting 
using the RRC instruction. 

The same byte register must not be used as both the source and the link. 

c: Unaffected 
Z: Set if the link is zero after the operation; cleared otherwise 
S: Undefined 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles InstructionF ormat 

RRDB RbI, Rbs 11011111001 Rbs 1 Rbi 1 9 1101111 100 1 Rbs 1 Rbi 1 

6-124 

Cycles 

9 

03-8003-0939 



Example: If location 100 contains the BCD digits 1,2 (00010010), location 101 contains 3,4 
(00110100), and location 102 contains 5,6 (01010110) 

100 r:T:l 
t..2...L:J 

101 ror:l 
~ 

the sequence of statements 

LD R3,#3 

R2,100 
RHI 

LOOP: 

LD 
CLRB 

LDB 
RRDB 
LDB 
INC 
DJNZ 

RLl,@R2 
RHl,RLl 
@R2,RLI 
R2 
R3,LOOP 

102 r:T.'l 
~ 

! set loop counter for 3 bytes (6 
digits) ! 

! set pointer to high-order digits! 
!zero-fill high-order digit! 

! get next two digits! 
! shift digits right one position! 
!replace shifted digits! 
!advance pOinter! 
!repeat until counter is zero! 

will leave the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in loca­
tion 101, and the digits 4,5 (01000101) in location 102. RHI will contain 6, the 
remainder from dividing the string by 10. 

100 rn 101r:T:l 
L...:.L.:.J 

102 

In segmented mode, R2 would be replaced by a register pair. 

6-125 



SBe 
Subtract with Carry 

Operation: 

Flags: 

Addressing 
Mode 

R: 

Example: 

SDC dst, src 
SDCD 

dst +- dst - src - C 

dst: R 
src: R 

The source operand, along with the setting of the carry flag, is subtracted from the 
destination operand and the result is stored in the destination. The contents of the 
source are not affected. Subtraction is performed by adding the two's complement of 
the source operand to the destination operand. In multiple precision arithmetic, this 
instruction permits the carry ("borrow") from the subtraction of low-order operands 
to be subtracted from the subtraction of high-order operands. 

C: Cleared if there is a carry from the most significant bit of the result; set 
otherwise, indicating a "borrow" 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs 

and the sign of the result is the same as the sign of the source; cleared otherwise 
D: SBC-unaffected; SBCB-set 
H: SBC-unaffected; SBCB-cleared if there is a carry from the most significant bit 

of the low-order four bits of the result; set otherwise, indicating a "borrow" 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

SBC Rd, Rs 1101110111wl Rs I Rd I 5 1101110111wl Rs I Rd I 5 SBCB Rbd, Rbs 

Long subtraction may be done with the follOWing instruction sequence, assuming RO, 
RI contain one operand and R2, R3 contain the other operand: 

SUB Rl,R3 !subtract low-order words! 
SBC RO,R2 !subtract carry and high-order words! 

If RO contains %0038, RI contains %4000, R2 contains %OOOA and R3 contains 
%FOOO, then the above two instructions leave the value %002D in RO and %5000 
in RI. 

6-126 



Operation: 

Flags: 

03-8003-0940 

Privileged Instruction 

SC src 

N onsegmented 
SP +- SP - 4 
@SP +- PS 
SP +- SP - 2 
@SP ... - instruction 
PS ... - System Call PS 

src: 1M 

Segmented 
SP +- SP - 6 
@SP ... - PS 
SP +- SP - 2 
@SP ... - instruction 
PS +- System Call PS 

SC 
System Call 

This instruction is used for controlled access to operating system software in a man­
ner similar to a trap or interrupt. The current program status (PS) is pushed on the 
system processor stack, and then the instruction itself, which includes the source 
operand (an 8-bit value) is pushed. The PS includes the Flag and Control Word 
(FCW), and the updated program counter (PC). (The updated program counter 
value used is the address of the first instruction byte following the SC instruction.) 

The system stack pointer is always used (R15 in non segmented mode, or RR14 in 
segmented mode), regardless of whether system or normal mode is in effect. The 
new PS is then loaded from the Program Status block associated with the System 
Call trap (see section 6.2.4), and control is passed to the procedure whose address is 
the program counter value contained in the new PS. This procedure may inspect the 
source operand on the top of the stack to determine the particular software service 
desired. 

The following figure illustrates the format of the saved program status in the system 
stack: 

SEGMENTED 

IDENTIFIER 

FCW 

PC SEGMENT 

PC OFFSET 

---1 WORD-' 

LOW 
ADDRESS 

HIGH 
ADDRESS 

The Z8001 version always executes the segmented mode of the System Call instruc­
tion, regardless of the current mode, and sets the Segmentation Mode bit (SEG) to 
segmented mode (= 1) at the start of the SC instruction execution. Both the Z8001 
and Z8002 versions set the System/Normal Mode bit (SIN) to system mode (= 1) at 
the start of the SC instruction execution. The status pins reflect the setting of these 
control bits during the execution of the SC instruction. However, the setting of SEG 
and SIN does not affect the value of these bits in the old FCW pushed onto the stack. 
The new value of the FCW is not effective until the next instruction, so that the status 
pins will not be affected by the new control bits until after the SC instruction execu­
tion is completed. 

The "src field" in the instruction format encoding contains the source operand. The 
"src field" values range from 0 to 255 corresponding to the source values 0 to 255. 

No flags affected 
Flags loaded from Program Status Area 

6-127 



Source 
Addressing 

Mode 

1M: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

SC #src I 01111 111 I src I 33 I 011 1 1111 I src I 39 

In the nonsegmented.ZS002, if the contents of the program counter are %1000, the 
contents of the system stack pointer (R15) are %3006, and the Program Counter and 
FCW values associated with the System Call trap in the Program Status Area are 
%2000 and %1000, respectively, the instruction 

SC #3 Isystem call, request code = 31 

causes the system stack pointer to be decremented to %3000. Location %3000 con­
tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca­
tion %3004 contains % 1002 (the address of the instruction following the SC instruc­
tion). System mode is in effect, and the Program Counter contains the value %2000, 
which is the start of a System Call trap handler, and the FCW contains %1000. 

6-128 



Operation: 

Flags: 

03-8003-0941 

SDA 
Shift Dynamic Arithmetic 

SDA dst, src 
SDAB 
SDAL 

Right (src negative) 
Do src times: 

C'- dst (0) 

dst: R 
src: R 

dst (n) .- dst (n + 1) (for n 0 to msb - 1) 
dst (msb) .- dst (msb) 

Left (src positive) 
Do src times: 

c .- dst (msb) 
dst (n + 1).- dst (n) (for n msb - 1 to 0) 
dst (0) .- 0 

Right Left 
~7~ ____________ ~O 7 0 

Byte: cS I ~0 ~'---___ -.JI--o 
15 0 15 0 

Word: CSr-.,.I------....,~0 ~r-----------,I __ o 

15 0 15 0 

Long: 9...J.----Rn --,1 
~ ________ R_n_+_1 ________ ~~~ 

n=O,2,4, ... ,14 n=O,2,4, ... ,14 

The destination operand is shifted arithmetically left or right by the number of bit 
positions specified by the contents of the source operand, a word register. 

The shift count ranges from -8 to +8 for SDAB, from -16 to + 16 for SDA and from 
-32 to + 32 for SDAL. If the value is outside the specified range, the operation is 
undefined. The source operand is represented as a 16-bit two's complement value. 
Positive values specify a left shift, while negative values specify a right shift. A shift 
of zero positions does not affect the destination; however, the flags are set according 
to the destination value. The sign bit is replicated in shifts to the right, and the C 
flag is loaded from bit 0 of the destination. The least significant bit is filled with 0 in 
shifts to the left, and the C flag is loaded from the most significant bit (msb) of the 
destination. The setting of the carry bit is undefined for zero shift. 

c: Set if the last bit shifted from the destination was I, undefined for zero shift; 
cleared otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during shifting; cleared otherwise 
D: Unaffected 
H: Unaffected 

6-129 



Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language i--------------r------i--------------r---

Mode Syntax Instruction Format Cyclesl Instruction Format Cyclesl 

R: SDA Rd, Rs 

Example: 

15+3n 

SDAB Rbd, Rs 
15+3n 

SDAL RRd, Rs 
15+3n 

If register R5 contains %C705 (100011100000101) and register Rl contains - 2 
(%FFFE or 1111111111111110), the statement 

SDA R5,Rl 

performs an arithmetic right shift of two bit positions, leaves the value %FICI 
( 1111000 III 00000 1) in R5, and clears the Carry flag. 

Note 1: n = number of bit positions; the execution time for n = 0 is the same as for n = 1. 

6-130 

15+3n 

15+3n 

15+3n 



-Operation: 

Flags: 

03·8003·0942 

SDL 
Shift Dynamic Logical 

SOL dst, src 
SOLB 
SOLL 

Right 
Do src times 

c .... - dst (0) 
dst (n) ---- dst (n + 1) (for n 
dst (msb) ---- 0 

Left 
Do src times 

c .... - dst (msb) 
dst (n + 1) ---- dst (n) (for n 
dst (0) ----

Right 

dst: R 
src: R 

o to msb - 1) 

msb - 1 to 0) 

Left 

Byte: 
7~ ____________ ~O 7~ ____________ ~o 

a --I ~~ 0--t r-a 

15 a 15 a 
Word: o __ I'---______ -----'~~ 0~r-----------1I--o 

15 a 15 a 

Long:o--L~:15 _R_" --.1 
~. _________ R_"_+_l ________ ~~~ 

n=O,2,4, ... ,14 n=O,2,4, ... ,14 

The destination operand is shifted logically left or right by the number of bit posi­
tions specified by the contents of the source operand, a word register. The shift 
count ranges from -8 to +8 for SDL, from -16 to + 16 for SDLB and from -32 to 
+ 32 for SDLL. If the value is outside the specified range, the operation is 
undefined. The source operand is represented as a 16-bit two's complement value. 
Positive values specify a left shift, while negative values specify a right shift. A shift 
of zero positions does not affect the destination; however, the flags are set according 
to the destination value. The most significant bit (msb) is filled with 0 in shifts to the 
right, and the C flag is loaded from bit 0 of the destination. The least significant bit 
is filled with 0 in shifts to the left, and the C flag is loaded from the most significant 
bit of the destination. The setting of the carry bit is undefineq for zero shift. 

c: Set if the last bit shifted from the destination was I, undefined for zero shift; 
cleared otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Undefined . 
0: Unaffected 
H: Unaffected 

6-131 



Destination 
Addressing 

Mode 

R: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

SDL Rd, Rs 
15+3n 15+3n 

SDLB Rbd, Rs 
15+3n 15+3n 

SDLL RRd, Rs 
15+3n 15+3n 

If register RL5 contains %B3 (10110011) and register Rl contains 4 
(0000000000000100), the statement 

SDLB RL5,Rl 

performs a logical left shift of four bit positions, leaves the value %30 (00110000) in 
RL5, and sets the Carry flag. 

Note 1: n = number of bit positions; the execution time for n = 0 is the same as for n = 1. 

6-132 



Operation: 

Flags: 

SET dst, src 
SETB 

dst( src) .- 1 

dst: R, IR, DA, X 
src: 1M 
or 
dst: R 
src: R 

SET 
Set Bit 

Sets the specified bit within the destination operand without affecting any other bits 
in the destination. The source (the bit number) can be specified as either an immedi"­
ate value (Static), or as a word register which contains the value (Dynamic). In the 
second case, the destination operand must be a register, and the source operand 
must be RO through R7 for SETB, or RO through RIS for SET. The bit number is a 
value from 0 to 7 for SETB or 0 to IS for SET, with 0 indicating the least Significant 
bit. 

Only the lower four bits of the source operand are used to specify the bit number for 
SET, while only the lower three bits of the source operand are used with SETB. 
When the source operand is an immediate value, the "src field" in the instruction 
format encoding contains the bit number in the lowest four bits for SET, or the 
lowest three bits for SETB. 

No flags affected 

Set Bit Static 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

R: SET Rd, #b 110110010lwl 1 Rd b I 4 110110010lwl Rd 1 b I 4 SETB Rbd, #b 

IR: SET @Rd1, #b 10011 00 1 01 w 1 Rd * 0 1 b I 11 1 0 011 0 0 10 1 w 1 Rd * 0 1 b I SETB @Rd1, #b 11 

DA: SET address, #b 10111 oOlOl wl 0000 1 b 1 0111OOlOIwl00001 b SETB address, #b 
I J 13 SS 14 

address o 1 segment / offset 

01/10010/wI00001 b 

SL 1/ segment / 0 0 0 0 0 0 0 0 16 
offset 

X: SET addr(Rd), #b 10 111 00 1 0/ wi Rd * 0 1 b 1 SS 01/10010IwJRd*01 b SETB addr(Rd), #b 

I I 14 14 
address oj segment I offset 

011100101w1Rd*ol b 

SL 1 / segment / ° 0 ° ° ° 0 0 0 17 

offset 

6-133 



Set Bit Dynamic 

Addressing 
Mode 

R: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

SET Rd, Rs 
I 0 0 11 0 0 1 0 1 w 1 0 0 0 0 1 Rs I I 0 0 11 0 0 1 0 I w I 0 0 0 0 I Rs I 

SETB Rbd, Rs I 0 0 0 0 I Rd I 0 0 0 0 0 0 0 0 J 10 l 0 0 0 01 Rd I 0 0 0 0 0 0 0 0 I 

If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the 
instruction 

SETB RL3, R2 

will leave the value %F2 (11110010) in RL3. 

Note 1: Word register in nonsegmented.mode, register pair in segmented mode. 

6-134 

10 



Operation: 

Flags: 

Example: 

SETFLG 
Set Flag 

SETFLG flag Flag: C, Z, S, P, v 

FLAGS (4:7) +- FLAGS (4:7) OR instruction (4:7) 

Any combination of the C, Z, S, P or V flags are set to one if the corresponding bits 
in the instruction are one. If the bit in the instruction corresponding to a flag is zero, 
the flag will not be affected. All other bits in the FLAGS register are unaffected. 
Note that the P and V flags are represented by the same bit. 

There may be one, two, three, or four operands in the assembly language statement, 
in any order. 

c: Set if specified; unaffected otherwise 
Z: Set if specified; unaffected otherwise 
S: Set if specified; unaffected otherwise 
P/V: Set if specified; unaffected otherwise 
D: Unaffected 
H: U naffeded 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format 

SETFLG flags 
110001101 ICZSPIVI 0001 I 

Segmented Mode 

Cycles Instruction Format 

7 1100011011CZSPIVI00011 

If the C, Z, and S flags are all clear (0), and the P flag is set (1), the statement 

SETFLG C 

will leave the C and P flags set (1), and the Z and S flags cleared (0). 

6-135 

Cycles 

7 



SLA 
Shift Left Arithmetic 

Operation: 

Flags: 

SLA dst, src 
SLAB 

dst: R 
src: 1M 

SLAL 

Do src times: 
c +- dst (msb) 
dst (n + 1) +- dst (n) (for n 
dst (0) +- 0 

7 0 

msb - 1 to 0) 

Byte: ~--I~ _____ ----II~o 

15 0 

Word: ~--I~ ____________ ......II~o 

15 0 

Long: ~~5 ______ R_n ____ ~~~ 
~~. _______________ Rn_+_1 ______________ ......II~o 

n = 0,2, 4, ... , 14 

The destination operand is shifted arithmetically left the number of bit positions 
speCified by the source operand. For SLAB, the source is in the range 0 to 8; for 
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32. 
A shift of zero positions does not affect the destination; however, the flags are set 
according to the destination value. The least significant bit of the destination is filled 
with 0, and the C flag is loaded from the sign bit of the destination. The operation is 
the equivalent of a multiplication of the destination by a power of two with overflow 
indication. 

The src field is encoded in the instruction format as the 8- or 16-bit two's comple­
ment positive value of the source operand. For each operand size, the operation is 
undefined if the source operand is not in the speCified range. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

c: Set if the last bit shifted from the destination was I, undefined for zero shift; 
cleared otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during shifting; cleared otherwise 
D: Unaffected 
H: Unaffected 

6-136 03·8003·0943 



Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language I-------------r-----t-------------,.---

Mode Syntax Instruction Format Cycles! Instruction Format Cyclesl 

R: SLA Rd, #b 

Example: 

13+3b 

SLAB Rbd, #b 
13+3b 

SLAL RRd, #b 
13+3b 

If register pair RR2 contains %1234ABCD, the statement 

SLAL RR2,#8 

will leave the value %34ABCDOO in RR2 and clear the Carry flag. 

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = I. 

6-137 

13+3b 

13+3b 

13+3b 



SLL 
Shift Left Logical 

Operation: 

Flags: 

8LL dst, src 
8LB 
8LLL 

Do src times: 
c ... - dst (msb) 

dst: R 
src: 1M 

dst (n + 1).- dst (n) (for n 
dst (0) .- 0 

msb - 1 to 0) 

7 0 

Byte: 0-1 1 __ 
0 

15 

Word: 0-1 
15 

Long: 0-1 Rn 

~5 Rn+1 

n = 0,2,4, .'" 14 

0 

1 __ 0 

0 

:~. 
The destination operand is shifted logically left by the number of bit positions 
specified by the source operand. For SLLB, the source is in the range 0 to 8; for 
SLL, the source is in the range 0 to 16; for SLLL, the source is in the range 0 to 32. 
A shift of zero positions does not affect the destination; however, the flags are set 
according to the destination value. The setting of the carry bit is undefined for zero 
shift. The least significant bit of the destination is filled with 0, and the C flag is 
loaded from the most significant bit (msb) of the destination. This instruction per­
forms an unsigned multiplication of the destination by a power of two. 

The src field is encoded in the instruction format as the 8- or 16-bit positive value of 
the source operand. For each operand size, the operation is undefined if the source 
operand is not in the speCified range. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

c: Set if the last bit shifted from the destination was I, undefined for zero shift; 
cleared otherwise 
Z: Set if the result is zero; cleared otherwise 
8: Set if the most significant bit of the result is set; cleared otherwise 
V: Undefined 
D: Unaffected 
H: Unaffected 

6-138 03-8003-0944 



Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language I-------------~--_+_-----------__r---

Mode Syntax Instruction Format Cycles 1 Instruction Format Cycles 1 

R: SLL Rd, #b 

Example: 

13+3b 

SLLB Rbd, #b 
13+3b 

SLLL RRd, #b 
13+3b 

If register R3 contains %4321 (0100001100100001), the statement 

SLL R3,#1 

will leave the value %8642 (000011001000010) in R3 and clear the carry flag. 

Note 1; b = number of bil positions; the execution time for b = 0 is the same as for b = 1. 

6-139 

13+3b 

13+3b 

13+3b 



SRA 
Shift Right Arithmetic 

Operation: 

Flags: 

SRA dst, src 
SRAB 

dst: R 
src: 1M 

SRAL 

Do src times: 
c +- dst (0) 
dst (n) +- dst (n + l)(for n 0 to msb - 1) 
dst (msb) +- dst (msb) 

Byte: 

15 

Word: ~~I __________ ~~G 

15 

Long: 

9,"--,,1 __ Rn _-----'J 
Rn+1 ~~ 

n = 0,2,4, ... , 14 

The destination operand is shifted arithmetically right by the number of bit positions 
specified by the source operands. For SRAB, the source is in the range 0 to 8; for 
SRA, the source is in the range 0 to 16; for SRAL, the source is in the range 0 to 32. 
A right shift of zero for SRA is not possible. The most significant bit (msb) of the 
destination is replicated, and the C flag is loaded from bit 0 of the destination, this 
instruction performs a signed division of the destination by a power of two. 

The src field is encoded in the instruction format as the 8- or 16-bit two's comple­
ment negative of the source operand. For each operand size, the operation is 
undefined if the source operand is not in the specified range. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

c: Set if the last bit shifted from the destination was 1; cleared otherwise 
Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Cleared 
D: Unaffected 
H: Unaffected 

6-140 03-8003-0945 



Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language /--------------r----+-----------....,.---

Mode Syntax Instruction Format Cyclesl Instruction Format Cyclesl 

R: SRA Rd, #b 

Example: 

13+3b 

SRAB Rbd, #b 
13+3b 

SRAL RRd, #b 
13+3b 

If register RH6 contains 0/03B (00 III 0 11), the statement 

SRAB RH6,#2 

will leave the value O/OOE (00001110) in RH6 and set the carry flag. 

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = 1. 

6-141 

13+3b 

13+3b 

13+3b 



SRL 
Shift Right Logical 

Operation: 

Flags: 

SRL dst, src 
SRLB 

dst: R 
src: IM 

SRLL 

Do src times: 
c +- dst (0) 
dst (n) +- dst (n + l)(for n 0 to msb - 1) 
dst (msb) +- 0 

Byte: 

15 

Word: 0-1-1 ____________ .;..J~0 

15 

Long: 

'2,.---" _R_n _1 
~ ______________ R_n+_1 ______________ ~~0 

n = 0,2,4, ... , 14 

The destination operand is shifted logically right by the number of bit positions 
specified by the source operand. For SRLB, the source operand is in the range 0 to 
8; for SRL, the source is in the range 0 to 16; for SRLL, the source is in the range 0 
to 32. A right shift of zero .for SRL is not possible. The most significant bit (msb) of 
the destination is filled with 0, and the C flag is loaded from bit 0 of the destination. 
This instruction performs an unsigned division of the destination by a power of two. 

The src field is encoded in the instruction format as the 8- or 16-bit negative value of 
the source operand in two's complement rotation. For each operand size, the opera­
tion is undefined if the source operand is not in the range specified above. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value of 1. 

c: Set if the last bit shifted from the destination was 1; cleared otherwise 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is one; cleared otherwise 
V: Undefined 
D: Unaffected 
H: Unaffected 

6-142 03-8003-0946 



Destination 
Addressing 

Mode 

R: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cyclesl Instruction Format 

SRL Rd, #b 11 0 11 1 0 0 1 1 1 Rd 10001 1 11 0 11 1 0 0 1 1 1 Rd 
13+3b 

l -b 1 1 -b 

SRLB Rbd, #b 11011100101 Rd 10001 1 l10J1100101 Rd 
13+3b 

1 0 1 -b 1 l 0 1 

110 1,10 0 "_Ib Rd 
SRLL RRd, #b 1101110011 1 Rd 10101 1 13+3b 

I -b 1 

If register RO contains % 1111 (0001000100010001), the statement 

SRL RO,#6 

10001 1 
1 

10001J 
-b J 

10
, 0 'I 

will leave the value %0044 (0000000001000100) in RO and clear the carry flag. 

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = 1. 

6-143 

Cyclesl 

13+3b 

13+3b 

13+3b 



SUB 
Subtract 

Operation: 

Flags: 

Source 

SUB dst, src 
SUBB 
SUBL 

dst +- dst - src 

dst: R 
src: R, 1M, 1R, DA, X 

The source operand is subtracted from the destination operand and the result is 
stored in the destination. The contents of the source are not affected. Subtraction is 
performed by adding the two's complement of the source operand to the destination 
operand. 

c: Cleared if there is a carry from the most significant bit; set otherWise, indicating 
a "borrow" 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs 

and the sign of the result is the same as the sign of the source; cleared otherwise 
0: SUB, SUBL-unaffected; SUBB-set 
H: SUB, SUBL-unaffected; SUBB-cleared if there is a carry from the most 

significant bit of the low-order four bits of the result; set otherwise, indicating a 
"borrow" 

Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

R: SUB Rd, Rs 
110 loooo11 wl 1 

Rs Rd 1 4 110 loOO011 wl Rs 
1 

Rd I 4 
SUBB Rbd, Rbs 

SUBL RRd, RRs 
11010100101 RRs 

1 
RRd I 8 11010100101 RRs 

1 
RRd I 8 

1M: SUB Rd, #data 
00100001010000 I Rd 001000010 10000 I Rd 

7 7 
data data 

SUBB Rbd, #data 
001000011 100 0 0 I Rd 001000011 10000 I Rd 

7 7 
data 1 data data 1 data 

SUBL RRd, #data 
o oj 0 1 0 0 1 0 10 0 0 0 I Rd 001010010 \ 0000\ Rd 

31 data (high) 16 14 31 data (high) 16 14 

15 data (low) 0 15 data (low) 0 

IR: SUB Rd, @Rsl 
SUBB Rbd, @Rsl I 0 0 10 0 0 0 1 1 w 1 Rs * 0 1 Rd I 7 I 0 0 1 0 0 0 0 11 w 1 Rs * 0 1 Rd I 7 

SUBL RRd, @Rsl I 0 0 1 0 1 0 0 1 0 I Rs * 0 I Rd I 14 I 0 0 I 0 1 0 0 1 0 I Rs * 0 I Rd I 14 

6-144 



Source 
Addressing 

Mode 

DA: 

X: 

Example: 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

SUB Rd, address r 01 To 0 0 0 11 wi 0000 I Rd 1 SUBB Rbd, address r I address 

SUBL RRd, address 
r011 010010 100001 Rd I 
I address I 

SUB Rd, addr{Rs) 
10 1 10 0 0 0 11 w I Rs,< 0 I Rd I SUBB Rbd, addr{Rs) r 1 address 

SUBL RRD, addr{Rs) I 0 1 I 0 1 0 0 1 0 I Rs * 0 I Rd I 
I address 1 

If register RO contains %0344, the statement 

SUB RO,#%AA 

will leave the value %029A in RO. 

9 

15 

10 

16 

Segmented Mode 

Instruction Format 

o 1 I 0 0 0 0 11 w I 0 0 0 0 I Rd 

55 1 o 1 segment offset 

o 1 1 0 0 0 0 11 w 1 0 0 0 0 1 Rd 

5L 1 I segment 1 0 0 0 0 0 0 0 0 

offset 

011010010100001 Rd 

55 1 o 1 segment offset 

o 1 I 0 1 0 0 1 010 0 0 0 T Rd 

5L 1 I segment I 0 0 0 0 0 0 0 0 

offset 

o 1 1 0 0 0 0 11 w I Rs * 0 1 Rd 

55 I o I segment offset 

o 1 10 0 0 0 11 w I Rs * 01 Rd 

SL 1 I segment I 0 0 0 0 0 0 0 0 

offset 

o 1 1 0 1 00 1 0 I Rs * 0 I Rd 1 55 
01 segmentT I offset 

o 1 1 0 1 0 0 1 01 Rs * 01 Rd 

5L 1 I segment 1 0 0 0 0 0 0 0 0 

offset 

Note I: Word register in nonsegmented mode, register pair in segmented mode. 

6-145 

Cycles 

10 

12 

16 

18 

10 

13 

16 

19 



Tee 
Test Condition Code 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

Tee cc, dst 
TeeB 

if cc is satisfied then 
dst (0) -- I 

dst: H 

This instruction is used to create a Boolean data value based on the flags set by a 
previous operation. The flags in the FeW are tested to see if the condition specified 
by "cc" is satisfied. If the condition is satisfied, then the least significant bit of the 
destination is set. If the condition is not satisfied, bit zero of the destination is not 
cleared but retains its previous value. All other bits in the destination are unaffected 
by this instruction. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TCC ee, Rd 1101101111wl I 1101101111wl Rd cc I 5 
TCCB ee, Rbd 

If register HI contains 0, and the Z flag is set, the statement 

Tee EQ,HI 

will leave the value I in HI. 

6-146 

Rd I cc I 

Cycles 

5 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

IR: 

DA: 

TEST 
Test 

TEST dst 
TESTB 
TESTL 

dst OR 0 

dst: R, IR, DA, X 

The destination operand is tested (logically ORed with zero), and the Z, Sand P 
flags are set to reflect the attributes of the result. The flags may then be used for 
logical conditional jumps. The contents of the destination are not affected. 

c: Unaffected 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most Significant bit of the result is set; cleared otherwise 
P: TEST-unaffected; TESTL-undefined; TESTB-set if parity of the result is even; 

cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

TEST Rd 110100110lwl 10100 1 110100110lwl 10100 1 TESTB Rbd 
Rd 7 Rd 7 

TESTL RRd 11010111001 Rd 11000 1 13 11010111001 Rd 11000 1 13 

TEST @Rdl 10010011 olwl Rd * 01 01 00 I TESTB @Rdl 8 1 0 0 1 0 0 1 1 01 w 1 Rd * 0 1 0 1 0 0 1 8 

TESTL @Rdl 1001 0111 00 1 Rd * 011 0001 13 1 0 0 1 0 1 1 1 0 0 1 Rd * 0 11 0 0 0 1 13 

TEST address 101100110lwl00ool0100J 0110011 olwl 00001 0100 
TESTB address 11 55 12 

1 address 1 o 1 segment 1 offset 

011001101 w 1 00001 0100 
5L 1 1 segment 1 0 0 0 0 0 0 0 0 14 

address 

TESTL address 101101110010000110001 
16 55 

01101110010000110001 
17 

1 address 1 01 segment 1 offset J 
0110111001000011000 

5L 1 1 segment 1 0 0 0 0 0 0 0 0 19 

offset 

6-147 



Destination 
Addressing 

Mode 

X: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TEST addr(Rd) 
I 0 1 1 0 0 1 10 1 w 1 Rd '" 0 1 0 1 0 0 I o 1 1 0 0 1 10 1 w 1 Rd '" 0 1 0 1 0 0 TESTB addr(Rd) 

l J 
12 55 

address o i segment 1 offset 

o 1 10 0 1 10 I w I Rd", 0 I 0 10 0 

5L 1 1 segment I 0 0 0 0 0 0 0 0 

offset 

I 0 1 I 0 1 1 1 0 0 I Rd", 0 11 0 0 0 I 
17 55 

o 1 I 0 1 1 1 0 0 I Rd '" 0 11 0 0 0 

I address J o I segment I offset 

o 1 I 0 1 1 1 0 0 1 Rd", 0 11 0 0 0 

5L 1 I segment 1 0 0 0 0 0 0 0 0 

offset 

If register R5 contains %FFFF (1111111111111111), the statement 

TEST R5 

will set the S flag I clear the Z flag I and leave the other flags unaffected. 

Note 1: Word register in non segmented mo?e, register pair in segmented mode. 

6-148 

Cycles 

12 

15 

17 

20 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

THDB 
Translate and Decrement 

TRDB dst, src, r 

dst +- src[ dst] 
AUTODECREMENT dst by 1 
r+-r-l 

dst: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the location addressed by the destination register (the "target byte") 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. The addition is performed following the 
rule for address arithmetic, with the target byte treated as an unsigned 8-bit value 
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table which replaces the original contents of the location 
addressed by the destination register. 

The destination register is then decremented by one, thus moving the pointer to the 
previous element in the string. The word register specified by "r" (used as a 
counter) is then decremented by one. The original contents of register RHI are lost 
and are replaced by an undefined value. Rl in nonsegmented mode, or RRO in 
segmented mode, must not be used as a source or destination pointer, and R 1 should 
not be used as a counter. The source, destination, and counter registers must be 
separate and non-overlapping registers. 

Because the 8-bit target byte is added to the source register to obtain the address of 
a translation value, the table may contain 256 bytes. A smaller table size may be 
used where it is known that not all possible 8-bit target byte values will occur. The 
source register is unchanged. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TRDB @Rdl, @Rsl, r 
11 0 [1 1 1 0 0 0 1 Rd * 0 11 0 0 0 I 

25 
1101111000IRd*O!1000J 

10000 1 
r I Rs * 0 [ 0 0 ° 0 J 10000 1 

r I Rs * 0 I 0 ° 0 oJ 

Cycles 

25 

In non segmented mode, if register R6 contains %400 I, the byte at location %4001 
contains 3, register R9 contains %1000, the byte at location %1003 contains %AA, 
and register R12 contains 2, the instruction 

TRDB @R6, @R9, R12 

will leave the value %AA in location %4001, the value %4000 in R6, and the value 
1 in R12. R9 will not be affected. The V flag will be cleared. RHI will be set to an 
undefined value. In segmented mode, R6 and R9 would be replaced with 
register pairs. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

6-149 



TRDRB 
Translate, Decrement and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRDRB dst, src, R 

dst .-. src [dst] 
AUTODECREMENT dst by 1 
r.-.r-l 
repeat until r = 0 

dst: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the location addressed by the destination register (the "target byte") 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. The addition is performed following the 
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value 
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table that replaces the original contents of the location 
addressed by the destination register. 

The destination register is then decremented by one, thus moving the pointer to the 
previous element in the string. The word register specified by "r" (used as a 
counter) is then decremented by one. The entire operation is repeated until the 
result of decrementing r is zero. This instruction can translate from 1 to 65536 bytes. 
The original contents of register RH 1 are lost and are replaced by an undefined 
value. The source register is unchanged. The source, destination, and counter 
registers must be separate and non-overlapping registers. 

Because the 8-bit target byte is added to the source register to obtain the address of 
a translation value, the table may contain 256 bytes. A smaller table size may be 
used where it is known that not all possible 8-bit target byte values will occur. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

TRDRB @Rbd1, @Rbs1, r 

Nonsegmented Mode 

Instruction Format Cycles2 

110 I 1 1 1 0 0 0 I Rd *' 0 11 1 0 0 1 
11 + 14n 

10000 1 r I Rs *' 0 I 0 0 0 0 1 

6-150 

Segmented Mode 

Instruction Format Cycles2 

11011110001Rd*,0111001 
11 + 14n 

1 0000 1 r IRs *' 01 00001 



Example: 

03-8003-0948 

In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000 
through %4002 contain the values %00, %40, %80, respectively, register R9 con­
tains % 1000, the translation table from location % 1000 through % lOFF contains 0, 
1,2, ... , %7F, 0, 1,2, ... , %7F (the second zero is located at %1080), and register 
R 12 contains 3, the instruction 

TRDRB @R6, @R9, Rl2 

will leave the values %00, %40, %00 in byte locations %4000 through %4002, 
respectively. Register R6 will contain %3FFF, and Rl2 will contain O. R9 will not be 
affected. The V flag will be set, and the contents of RH 1 will be replaced by an 
undefined value. In segmented mode, R6 and R9 would be replaced by register 
pairs. 

BEFORE 

%1000 00000000 

%4000 %1001 00000001 

%4001 %1002 00000010 

%4002 · · · 
AFTER %107F o 1 1 1 1 1 1 1 

%1080 00000000 

%4000 %1081 00000001 

%4001 %1082 00000010 

%4002 · · · %10FF o 1 1 1 1 1 1 1 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: n = number of data elements translated. 

6-151 



TRIB 
Translate and Increment 

Operation: 

Flags: 

Addressing 
Mode 

TRIB dst, src, R 

dst ..- src[ dstl 
AUTOINCREMENT dst by 1 
r..-r-l 

dst: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the location addressed by the destination register (the "target byte") 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. The addition is performed following the 
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value 
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table which replaces the original contents of the location 
addressed by the destination register. The destination register is then incremented 
by one, thus moving the pointer to the next element in the string. The word register 
specified by "r" (used as a counter) is then decremented by one. The original con­
tents of register RHI are lost and are replaced by an undefined value. The source 
register is unchanged. The source, destination, and counter registers must be 
separate and non-overlapping registers. 

Because the 8-bit target byte is added to the source register to obtain the address of 
a translation value, the table may contain 256 bytes. A smaller table size may be 
used where it is known that not all possible 8-bit target byte values will occur. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TRIB @Rd1 , @Rsl, r 
[1 oj 1 11 000 I Rd ", 0 I 0000 I 110 I 1 1 1 0 0 0 I Rd ", 0 I 0 0 0 0 I 
loooo\ I Rs ", 0 I 0 0 0 0 I 25 loooo\ \ Rs ", 0 \ 0 0 0 oj r r 

6-152 

Cycles 

25 



Example: 

03-8003-0947 

This instruction can be used in a "loop" of instructions which translate a string of 
data from one code to any other desired code, but an intermediate operation on 
each data element is required. The following sequence translates a string of 1000 
bytes to the same string of bytes, with all ASCII "control characters" (values less 
than 32, see Appendix C) translated to the "blank" character (value = 32). A test, 
however, is made for the special character "return" (value = 13) which terminates 
the loop. The translation table contains 256 bytes. The first 33 (0-32) entries all con­
tain the value 32, and all other entries contain their own index in the table, counting 
from zero. This example assumes non segmented mode. In segmented mode, R4 and 
R5 would be replaced by register pairs. 

LOOP: 

DONE: 

LD R3, #1000 
LDA R4, STRING 
LDA R5, TABLE 

CPB 
JR 
TRIB 
JR 

@R4, #13 
EQ, DONE 
@R4, @R5, R3 
NOV, LOOP 

TABLE + 0 

TABLE+1 

TABLE + 2 

TABLE + 32 

TABLE + 33 

TABLE + 34 

TABLE + 255 

00100000 

00100000 

00100000 

· · · 
00100000 

00100001 

00100010 

· · · 
11111111 

! initialize counter! 
!load start addresses! 

!check for return character! 
!exit loop if found! 
! translate next byte! 
!repeat until counter a! 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

6-153 



TRIRB 
Translate, Increment and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRIRB dst, src, R 

dst .... - src[ dstl 
AUTOINCREMENT dst by 1 
r .... -r-l 
repeat until r = 0 

dst: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the location addressed by the destination register (the "target by te") 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. The addition is performed following the 
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value 
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table which replaces the original contents of the location 
addressed by the destination register. The destination register is then incremented 
by one, thus moving the pointer to the next element in the string. The word register 
specified by \\r" (used as a counter) is then decremented by one. The entire opera­
tion is repeated until the result of decrementing r is zero. This instruction can 
translate from 1 to 65536 bytes. The original contents of register RHI are lost and are 
replaced by an undefined value. The source register is unaffected. The source, 
destination, and counter registers must be separate and non-overlapping registers. 

Because the 8-bit target byte is added to the source register to obtain the address of 
a translation value, the table may contain 256 bytes. A smaller table size may be 
used where it is known that not all possible 8-bit target byte values will occur. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so that the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

TRIRB @Rd1, @Rsl, r 

Nonsegmented Mode 

Instruction Format Cycles2 

llO 11 1 1 0 0 0 1 Rd * 0 1 0 10 0 I 
11 + 14" 

(00001 r I Rs * 0 I 0 0 0 0 I 

6-154 

Segmented Mode 

Instruction Format Cycles2 

11 0 11 1 1 0 0 0 1 Rd * 0 1 0 10 0 1 
11 + 14" 

(00001 r 1 Rs * 0 1 0 0 0 0 I 



Example: The following sequence of instructions can be used to translate a string of 80 bytes 
from one code to another. The pointers to the string and the translation table are set, 
the number of bytes to translate is set, and then the translation is accomplished. 
After executing the last instruction, the V flag is set and the contents of RHI are lost. 
The example assumes nonsegmented mode. In segmented mode, R4 and R5 would 
be replaced by register pairs. 

LDA R4, STRING 
LDA R5, TABLE 
LD R3, #80 
TRIRB @R4, @R5, R3 

Note I: Word register in non segmented mode, register pair in segmented mode. 

Note 2: n = number of data elements translated. 

6-155 



TRTDB 
Translate, Test and Decrement 

Operation: 

Flags: 

Addressing 
Mode 

IH: 

Example: 

THTOB srcI, src2, R 

RHI .... - src2[srcI] 
AUTODECREMENT srci by 1 
r .... -r-I 

src 1: IR 
src 2: IR 

This instruction is used to scan a string of bytes testing for bytes with special 
meaning. The contents of the location addressed by the first source register (the 
"target byte") are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the 
address of an 8-bit value within the table which is loaded into register RHl. The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. The first 
source register is then decremented by one, thus moving the pointer to the previous 
element in the string. The word register specified by "r" (used as a counter) is then 
decremented by one. The second source register is unaffected. The source, destina­
tion, and counter registers must be separate and non-overlapping registers. 

Because the 8-bit target byte is added to the second source register to obtain the 
address of a translation value, the table may contain 256 bytes. A smaller table size 
may be used where it is known that not all possible 8-bit target byte values will 
occur. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
0: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TRTDB @Rsll, @Rs2!, r \1 0 11 1 1 0 0 0 IRS1 * _~ 1 0 10 1 25 11 0 11 1 1 0 0 0 \RS1 * ~ 1 0 1 0 I 
10000

1 
r IRS2 * 01 0 0 0 0 I looool r JRS2 * 01 ooooJ 

Cycles 

25 

In nonsegmented mode, if register R6 contains %4001, the byte at location %4001 
contains 3, register R9 contains % 1000, the byte at location % 1003 contains %AA, 
and register R12 contains 2, the instruction 

TRTDB @R6, @R9, R12 

Will leave the value %AA in RH1, the value %4000 in R6, and the value 1 in R12. 
Location %4001 and register R9 will not be affected. The Z and V flags will be 
cleared. In segmented mode, register pairs must be used instead of R6 and R9. 

Note I: Word register in nonsegmented mode, register pair in segmented mode. 

6-156 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRTDRB 
Translate, Test, Decrement and Repeat 

TRTDRB src I, src 2, R 

RHI .- src 2[srcll 
AUTODECREMENT srcl by 1 
r'-r-l 
repeat until RH 1 = 0 or r = 0 

src 1: IR 
src 2: IR 

This instruction is used to scan a string of bytes testing for bytes with special 
meaning. The contents of the location addressed by the first source register (the 
"target byte") are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the 
address of an 8-bit value within the table which is loaded into register RHl. The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. The first 
source register is then decremented by one, thus moving the pointer to the previous 
element in the string. The word register specified by "r" (used as a counter) is then 
decremented by one. The entire operation is repeated until either the Z flag is clear, 
indicating that a non-zero translation value was loaded into RHl, or until the result 
of decrementing r is zero. This instruction can translate and test from 1 to 
65536 bytes. The source, destination, and counter registers must be separate and 
non-overlapping registers. 

Target byte values which have corresponding zero translation-table entry values are 
to be scanned over, while target byte values which have corresponding non-zero 
translation-table entry values are to be detected. Because the 8-bit target byte is 
added to the second source register to obtain the address of a translation value, the 
table may contain 256 bytes. A smaller table size may be used where it is known that 
not all possible 8-bit target byte values will occur. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so that the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format 

TRTDRB@Rs1 1,@Rs21,r 
11 0 11 1 1 0 0 0 IRS1 * 011 1 1 0 1 

11 + 14n 
11 01 1 1 1 0 0 0 IRs1 * 011 1 1 0 1 

1 0000 1 r IRS2 * 011 1 1 0 1 1 00001 r IRS2 * 1!l1 1 1 oJ 

6-157 

Cycles2 

11 + 14n 



Example: In non segmented mode, if register R6 contains %4002, the bytes at locations %4000 
through %4002 contain the values %00, %40, %80, repectively, register R9 contains 
% 1000, the translation table from location % 1000 through % 10FF contains 0, 1, 
2, ... , %7F, 0, 1, 2, ... , %7F (the second zero is located at %1080), and register 
R12 contains 3, the instruction 

TRTDRB @R6, @R9, R12 

will leave the value %40 in RHI (which was loaded from location % 1040). Register 
R6 will contain %4000, and R12 will contain 1. R9 will not be affected. The Z and V 
flags will be cleared. In segmented mode, register pairs are used instead of R6 
and R9. 

%1000 00000000 

%4000 %1001 00000001 

%4001 %1002 00000010 

%4002 · · · 
%107F o 1 1 1 1 1 1 1 

%1080 o 0 0 0 '0 0 0 0 

%1081 00000001 

%1082 00000010 

· · · 
%10FF o 1 1 1 1 1 1 1 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: n = number of data elements translated. 

6-158 03-8003-0949 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRTIB 
Translate, Test and Increment 

TRTIB src I, src 2, R 

RHI ... - src2[srcil 
AUTOINCREMENT srci by 1 
r...-r-I 

src 1: IR 
src 2: IR 

This instruction is used to scan a string of bytes testing for bytes with special 
meaning. The contents of the location addressed by the first source register (the 
"target byte") are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the 
address of an 8-bit value within the table which is loaded into register RHl. The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. The first 
source register is then incremented by one, thus moving the pointer to the next ele­
ment in the string. The word register specified by "r" (used as a counter) is then 
decremented by one. The second source register is unaffected. The source, destina­
tion, and counter registers must be separate and non-overlapping registers. 

Because the 8-bit target byte is added to the second source register to obtain the 
address of a translation value, the table may contain 256 bytes. A smaller table size 
may be used where it is known that not all possible 8-bit target byte values 
will occur. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TRTIB @Rsll, @Rs2!, r 
[1 01111 000 IRS1 * 01 001 01 25 

1101111000 IRS1 * 01001 oj 
I 00001 r IRS2 * 01 0 0 0 0 I I 00001 r IRS2 * 01 0 0 0 0 I 

6-159 

Cycles 

25 



Example: This instruction can be used in a "loop" of instructions which translate and test a 
string of data, but an intermediate operation on each data element is required. The 
following sequence outputs a string of 72 bytes, with each byte of the original string 
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case 
characters are translated to upper case, and any embedded control characters are 
skipped over. The translation table contains 128 bytes, which assumes that the most 
significant bit of each byte in the string to be translated is always zero. The first 32 
entries and the 128th entry are zero, so that ASCII control characters and the 
"delete" character (%7F) are suppressed. The given instruction sequence is for 
non segmented mode. In segmented mode, register pairs would be used instead of R3 
and R4. 

LOOP: 

DONE: 

LD 
LDA 
LDA 

TRTIB 
JR 
OUTB 
JR . 

R5, #72 
R3, STRING 
R4, TABLE 

@R3, @R4, R5 
Z, LOOP 
PORTn, RHI 
NOV, LOOP 

! initialize counter! 
! load start address! 

!translate and test next byte! 
. !skip control character! 

!output characters! 
!repeat until counter = O! 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

6-160 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRTIRB 
Test, Increment and Repeat 

TRTIRB src I, src 2, R 

RHI +- src2[srcl] 
AUTOINCREMENT sreI by 1 
r+-r-l 
repeat until RH 1 = 0 or R = 0 

src 1: IR 
src 2: IR 

This instruction is used to scan a string of bytes, testing for bytes with special 
meaning. The contents of the location addressed by the first source register (the 
\\target by te") are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the 
address of an 8-bit value within the table which is loaded into register RHl. The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. 

The first source register is then incremented by one, thus moving the pointer to the 
next element in the string. The word register specified by \\r" (used as a counter) is 
then decremented by one. The entire operation is repeated until either the Z flag is 
clear, indicating that a non-zero translation value was loaded into RHl, or until the 
result of decrementing r is zero. This instruction can translate and test from 1 to 
65536 bytes. The source, destination, and counter registers must be separate and 
non-overlapping registers. 

Target byte values which have corresponding zero translation table entry values are 
scanned over, while target byte values which have corresponding non-zero transla­
tion table entry values are detected and terminate the scan. Because the 8-bit target 
byte is added to the second source register to obtain the address of a translation 
value, the table may contain 256 bytes. A smaller table size may be used where it is 
known that not all possible 8-bit target byte values will occur. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so that the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format 

TRTIRB @Rsll, @Rs21, r 
11 0 11 1 1 0 0 0 IRS1 *" 01 0 1 1 0 1 11 + 14n 11 01 1 1 1 0 0 0 IRS1 *" ol 0 1 1 0 I 
loooo] r lRS2 *" 01 1 1 1 0 1 1 0000 1 r IRS2 *" 01 1 1 1 0 I 

6-161 

Cycles2 

11 + 14n 



Example: The following sequence of instructions can be used in nonsegmented mode to scan a 
string of 80 bytes, testing for special characters as defined by corresponding non­
zero translation table entry values. The pointers to the string and translation table 
are set, the number of bytes to scan is set, and then the translation and testing is 
done. The Z and V flags can be tested after the operation to determine if a special 
character was found and whether the end of the string has been reached. The 
translation value loaded into RHI might then be used to index another table, or to 
select one of a set of sequences of instructions to execute next. In segmented mode, 
R4 and R5 must be replaced with register pairs. 

LDA R4, STRING 
LDA R5, TABLE 
LD R6, #80 
TRTIRB @R4, @R5, R6 
JR NZ, SPECIAL 

END_OF _STRING: 

SPECIAL: 
JR OV,LAST_CHAIL-SPECIAL 

Note 1: Word register in non segmented mode, register pair in segmented mode. 

Note 2: n = number of data elements translated. 

6-162 



Operation: 

Flags: 

Addressing 
Mode 

ft: 

1ft: 

DA: 

X: 

T5ET dst 
T5ETB 

S +- dst( msb) 
dst(O:msb) +- 111. .. 111 

dst: R, IR, DA, X 

T8ET 
Test and Set 

Tests the most significant bit of the destination operand, copying its value into the S 
flag, then sets the entire destination to all 1 bits. This instruction provides a locking 
mechanism which can be used to synchronize software processes which require 
exclusive access to certain data or instructions at one time. 

During the execution of this instruction, BUSRQ is not honored in the time between 
loading the destination from memory and storing the destination to memory. For 
systems with one processor, this ensures that the testing and setting of the destination 
will be completed without any intervening accesses. This instruction should not be 
used to synchronize software processes residing on separate processors where the 
destination is a shared memory location, unless this locking mechanism can be 
guaranteed to function correctly with multi-processor accesses. 

c: Unaffected 
Z: Unaffected 
5: Set if the most significant bit of the destination was 1; cleared otherwise 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TSET Rd 
110100110lwl 1

0110
1 

Rd 7 110100110lwl Rd 
1
0110 1 TSETB Rbd 

TSET @Rd1 I 0 0 1 0 0 1 1 01 w 1 Rd * 0 1 0 1 1 0 I 11 I 0 01 00 1 1 01 wi Rd * 0 1 0 11 0 I TSETB @Rd1 

TSET address 
101100110lwl0000101101 0110011 olwl 0000 I 011 0 

TSETB address 14 SS I address I o I segment 1 offset 

0110011 olwl 0000 I 011 0 

SL 1 I segment I 0 0 0 0 0 0 0 0 

offset 

TSET addr{Rd) I 0 1 10 0 1 1 0 I w I Rd * 0 1 0 1 1 0 J o 1 1 0 0 1 1 0 I w I Rd * 0 1 0 1 1 0 
TSETB addr{Rd) 

I I 
15 SS 

address o I segment 1 offset 

o 1[ 0 0 1 1 0 I w I Rd * 0 I 0 1 1 0 

SL 1 1 segment I 0 0 0 0 0 0 0 0 

offset 

6-163 

Cycles 

7 

11 

15 

17 

15 

18 



Example: A simple mutually-exclusive critical region may be implemented by the following 
sequence of statements: 

ENTER: 
TSET 
JR 

SEMAPHORE 
MI,ENTER ! loop until resource con-! 

!trolled by SEMAPHORE! 
lis available! 

!Critical Region-only one software process! 
!executes this code at a time! 

CLR SEMAPHORE 

6-164 

! release resource controlled! 
!by SEMAPHORE! 



Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

DA: 

X: 

XOR dst, src 
XORB 

dst -.- dst XOR src 

dst: R 
src: R, 1M, IR, DA, X 

XOR 
Exclusive Or 

The source operand is logically EXCLUSIVE ORed with the destination operand and 
the result is stored in the destination. The contents of the source are not affected. 
The EXCLUSIVE OR operation results in a one bit being stored whenever the cor­
responding bits in the two operands are different; otherwise, a zero bit is stored. 

c: U naffeded 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
P: XOR-unaffected; XORB-set if parity of the result is even; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

XOR Rd, Rs 110100100lwl 110100100lwl 
1 I Rs 

1 
Rd I 4 Rs Rd 4 XORB Rbd, Rbs 

XOR Rd, #data 1001001001100001 Rd 1 00100100110000 I Rd 
7 7 

1 data I data 

XORB Rbd, #data 1001001000100001 Rd 1 001001000 10000 I Rd 
7 7 

1 data 1 data 1 data I data 

XOR Rd, @Rsl 100100100lwi Rs*O 1 I 1 0 0 I 0 0 1 0 0 I w 1 Rs * 0 I I Rd 7 Rd 7 XORB Rbd, @Rsl 

XOR Rd, address 101J00100lwl00001 Rd I 011001 001 w I 0000 I Rd XORB Rbd, address 9 SS 10 
1 address I 01 segment 1 offset 

01100100lwl0000T Rd 

SL 1 I segment I 0 0 0 0 0 0 0 0 12 
offset 

XOR Rd, addr(Rs) I 0 1 10 0 1 0 0 I w I Rs * 0 I Rd I 01100100lwl Rs*O I Rd 
XORB Rbd, addr(Rs) 10 SS 10 

1 address I o I segment I offset 

o 1 10 0 10 0 1 w I Rs * 0 T Rd 

SL 11 segment I 0 0 0 0 0 0 0 0 13 

offset 

6-165 



Example: If register RL3 contains O/OC3 (11000011) and the source operand is the immediate 
value 0/07B (01111011), the statement 

XORB RL3,#O/07B 

will leave the value O/OB8 (10111000) in RL3. 

Note 1: Word register in non segmented mode, register pair in segmented mode. 

6-166 



6.8 EPA 
Instruction 
Templates 

Operation: 

There are seven "templates" for EPA instruc­
tions. These templates correspond to EPA 
instructions, which combine EPU operations 
with possible transfers between memory and an 
EPU, between CPU registers and EPU regis­
ters, and between the Flag byte of the CPU's 
FCW and the EPU. Each of these templates is 
described on the following pages. The descrip­
tion assumes that the EPA control bit in the 
CPU's FCW has been set to l. In addition, the 
description is from the point of view of 
the CPU-that is, only CPU activities are 
described; the operation of the EPU is implied, 

Memory ..,.- EPU 

but the full specification of the instruction 
depends upon the implementation of the EPU 
and is beyond the scope of this manual. 

Fields ignored by the CPU are shaded in the 
diagrams of the templates. The 2-bit field in bit 
positions 0 and 1 of the first word of each 
template would normally be used as an identi­
fication field for selecting one of up to four 
EPUs in a multiple EPU system configuration. 
Other shaded fields would typically contain 
opcodes for instructing an EPU as to the oper­
ation it is to perform in addition to the data 
transfer speCified by the template. 

Extended Instruction 
Load Memory from EPU 

The CPU performs the indicated address calculation and generates n EPU memory 
write transactions. The n words are supplied by an EPU and are stored in n con­
secutive memory locations starting with the effective address. 

Flags/Registers: No flags or CPU registers are affected by this instruction. 

Clock Cycles 
mode dst NS SS SL 
0 0 IR (dst =1= 0) 11 +3n 
0 I X (dst =1= 0) 15+3n 15+3n 18+3n 
0 1 DA (dst= 0) 14+3n 15+3n 17 +3n 

26-0001-0951 6-167 



Extended Instruction 
Load EPU from Memory 

Operation: EPU +- Memory 

The CPU performs the indicated address calculation and generates n EPU memory 
read transactions. The n consecutive words are fetched from the memory locations 
starting with the effective address. The data is read by an EPU and operated upon 
according to the EPA instruction encoded into the shaded fields. 

Flags/Registers: No flags or CPU registers are affected by this instruction. 

mode src 

0 0 IR (src *- 0) 
0 1 X (src *- 0) 
0 1 DA (src = 0) 

Extended Instruction 
Load CPU from EPU 

Operation: CPU +- EPU registers 

Clock Cycles 

N5 55 
11 + 3n 
15+3n 15+3n 
14+3n 15+3n 

5L 

18+3n 
17 +3n 

The contents of n words are transferred from an EPU to consecutive CPU registers 
starting with register dst. CPU registers are transferred consecutively I with register 0 
following register 15. 

Flags/Registers: No flags are affected by this instruction. 

Execution Time: 11 + 3n cycles. 

6-168 26-0001-0952 26-0001-0953 



Operation: EPU -- CPU registers 

Extended Instruction 
Load EPU from CPU 

The contents of n words are transferred to an EPU from consecutive CPU registers 
starting with register src. CPU registers are transferred consecutively, with register 0 
following register 15. 

Flags/Registers: No flags are affected by this instruction. 

Execution Time: 11 + 3n cycles. 

Operation: Flags __ EPU 

Extended Instruction 
Load FeW from EPU 

The Flags in the CPU's Flag and Control Word are loaded with information from an 
EPU on AD lines ADo-AD7' 

Flags/Registers: The contents of CPU register 0 are undefined after the execution of this instruction. 

Execution Time: 14 cycles. 

26-0001-0954 6-169 



Extended Instruction 
Load EPU from FeW 

Operation: EPU .- Flags 

The Flags in the CPU's Flag and Control Word are transferred to an EPU on AD 
lines ADo-AD7 . 

Flags/Registers: The flags in the FCW are unaffected by this instruction. 

Execution Time: 14 cycles. 

Extended Instruction 
Internal EPU Operation 

Operation: Internal EPU Operation 

The CPU treats this template as a No Op. It is typically used to initiate an internal 
EPU operation. 

Flags/Registers: The flags in the FCW are unaffected by this instruction. 

Execution Time: 14 cycles. 

26-0001-0956 26-0001-0955 6-170 



7 





7.1 Intro- The 28000 CPU supports three types of 
duction exceptions (conditions that can alter the nor-

mal flow of program execution): 

• interrupts 

• traps 

• reset 
Interrupts are asynchronous events typically 

triggered by peripheral devices needing atten­
tion. They cause the processor to temporarily 
suspend its present program execution in 
order to service the requesting device. Traps 
are synchronous events that are responses by 
the CPU to certain events detected during the 

7.2 Interrupts Three kinds of interrupts are activated by 
three different pins on the 28000 CPU. (Inter­
rupt handling for all interrupts is discussed in 
Section 7.6.) 

7.2.1 Non-Maskable Interrupt (NMI). 
This type of interrupt cannot be disabled 
(masked) by software. It is typically reserved 
for highest-priority external events that require 
immediate attention. 

7.2.2 Vectored Interrupt (VI). One result of 
any interrupt or trap is that a 16-bit identifier 
word is pushed onto the system stack (see Sec­
tion 7.6.2). This word may be used to identify 
the source of the interrupt or trap. In vectored 
interrupts, this identifier is also used by the 

7.3 Traps The 28001 and 28002 CPUs support three 
traps generated internally. The 28001 supports 
a fourth trap, which is generated externally 
(but synchronously) by the Memory Manage­
ment Unit. Since a trap always occurs when all 
its defining conditions are present, traps can­
not be disabled. (Trap handling operations are 
discussed in Section 7.6.) 

7.3.1 Extended Instruction Trap. This trap 
occurs when the CPU encounters an extended 
instruction (see Section 6.2.10) while the EPA 
bit in the FCW is cleared. This trap allows the 
program to simulate the operations of the EPU 
when none is present in the system or to abort 
the program. 

7.3.2 Privileged Instruction Trap. This trap 
occurs whenever an attempt is made to execute 
a privileged instruction while the CPU is in 
normal mode (S/N bit in the FCW is cleared). 

7-1 

Chapter 7 
Exceptions 

attempted execution of an instruction. Thus, 
the major distinction between traps and inter­
rupts is their origin: a trap condition is always 
reproducible by re-executing the program that 
created the traps, whereas an interrupt is 
generally independent of the currently exe­
cuting task. A reset overrides all other condi­
tions, including all interrupts and traps. It 
occurs when the RESET line is activated, and it 
causes certain control registers to be initial­
ized. The action that the 28000 CPU takes in 
response to an interrupt, trap, or reset is 
similar; hence, they are treated together in this 
chapter. 

CPU hardware as a pointer to select a particu­
lar interrupt service routine. The processing of 
vectored interrupts is thus considerably faster 
than would be the case if a general trap hand­
ler had to first examine the identifier, then 
branch off to the appropriate service routine. 
These interrupts can be disabled by software. 

7.2.3 Nonvectored Interrupts (NVI). These 
interrupts also result in an identifier word 
being pushed onto the system stack. However, 
the CPU does not use the identifier as a vector 
to select a service routine: all non-vectored 
interrupts are serviced by the same routine. 
They can be disabled by software. 

This trap allows the CPU to detect and prevent 
operation (such as I/O) that could disable the 
system. 

7.3.3 System Call Trap. This trap occurs 
whenever a System Call (SC) instruction is 
executed. It allows an orderly transition to be 
made between normal mode and system mode. 

7.3.4 Segment Trap. This trap occurs when 
ever the SEG T line is asserted on a 2800 I, 
regardless of the state of the SEG bit in the 
FCW. This trap is generated by external 
memory management hardware, such as the 
28010 Memory Management Unit (MMU), and 
is the result of detecting a memory access 
violation (such as an offset larger than the 
assigned segment length) or a write warning 
(a write into the lowest 256 bytes of a stack). 
See the MMU Technical Manual for more 
information on memory management hardware. 



7.4 Reset 

7.5 Interrupt 
Disabling 

7.6 Interrupt 
and Trap 
Handling 

A reset initializes selected control registers 
of the CPU to system speCifiable values. A 
reset can occur at the end of any clock cycle, 
provided the RESET line is Low. 

A system reset overrides all other consider­
ations, including interrupts, traps, bus 
requests, and stop requests. A reset should be 
used to initialize a system as part of the power­
up sequence. 

Within five clock cycles of the RESET 
becoming Low, ADo-AD15 are 3-stated; 
AS,DS, MREQ, BUSACK, and MO are forced 
High; STo-ST3 are forced High and SNo - SN6 
are forced Low. The R/W, B/W, and N/Slines 
are undefined. RESET must be held Low five 

Vectored and nonvectored interrupts can be 
enabled or disabled independently via software 
by setting or clearing appropriate control bits 
in the Flag and Control Word (FCW). Two 
control bits in the FCW control the maskable 
interrupts: VIE and NVIE. Any control bit may 
be changed by automatically loading a new 
FCW during an interrupt or trap acknowledge 
sequence and may be restored to its previous 
setting by an Interrupt Return (IRET) instruc­
tion. When VIE is I, vectored interrupts are 
enabled; when NVIE is I, non-vectored inter­
rupts are enabled. These two flags may be set 

The CPU response to a trap or interrupt 
request consists of five steps: acknowledging 
the external request (for interrupts and seg­
ment traps), saving the old program status 
information, loading a new program status, 
executing the service routine, and returning to 
the interrupted task. Interrupt timing is shown 
on page A-2. 

7.6.1 Acknowledge Cycle. An external 
acknowledge cycle is required only for exter­
nally generated requests. As described in 
Chapter 9, the main effect of such a cycle is to 
receive from the external device a 16-bit iden­
tifier word, which will be saved with the old 
program status. Before the acknowledge cycle, 
the CPU enters segmented (Z8001 only) system 
mode. (The NIS line indicates that a transition 
has been made to system mode.) The old FCW 
is not affected by this change in mode. The 
CPU remains in this mode until it begins to 
execute the exception service routine, at which 
time its mode is dictated by the FCW. 

7.6.2 Status Saving. The old program status 
information is saved by being pushed on the 
system stack in the follOWing order: the Pro­
gram Counter (PC: 16 bits for Z8002; 16-bit 
offset followed by a word containing the 7-bit 

7-2 

clock cycles to properly reset the CPU. 
Three clock cycles after RESET has returned 

to High, consecutive memory read cycles are 
executed in system mode to initialize the Pro­
gram Status registers. In the Z8001, the first 
cycle reads the FCW from location 0002, the 
next reads the PC from location 0004, and the 
follOWing initial instruction fetch cycle starts 
the program. Each of these fetches is made 
from system program address space. In the 
Z8002, the first cycle reads the PC from loca­
tion 0004 and the follOWing initial instruction 
fetch cycle starts the program. Each of these 
fetches is made from the program address 
space. 

or cleared together or separately. In addition, 
these control bits are set when the FCW is 
loaded. Any control bit may be changed by 
the occurrence of an interrupt or trap and then 
be restored to its previous setting by an Inter­
rupt Return (IRET) instruction. 

When a type of interrupt has been disabled, 
the CPU ignores any interrupt request on the 
corresponding input pin. Because maskable 
interrupt requests are not retained by the 
CPU, the request signal must be asserted until 
the CPU acknowledges the request. 

segment number for Z8001); the Flag and Con­
trol Word (FCW); and finally, the interrupti 
trap identifier word. The identifier word con­
tains the reason or source of the trap or inter­
rupt. For internal traps, the identifier is the 
first word of the trapped instruction. For seg­
ment trap or interrupts, the identifier is the 
value on the data bus read by the CPU 
during the interrupt-acknowledge or trap­
acknowledge cycle. The format of the saved 
program status in the system stack is illustrated 
in Figure 7.l. 

SYSTEM STACK 
~~~~Tg= AFTER __ IDENTIFIER 

INTERRUPT
FCW

PC

SYSTEM STACK

~~~~Tg= BEFORE __ 

INTERRUPT 

_ lWORD_ 

LOW 
ADDRESS 

SYSTEM SP 
AFTER TRAP 
OR INTERRUPT 

SYSTEM SP 
BEFORE TRAP 
OR INTERRUPT 

HIGH 
ADDRESS 

Z8001 

IDENTIFIER 

FCW 

PC SEGMENT 

PC OFFSET .... 

_lWORD _ 

LOW 
ADDRESS 

HIGH 
ADDRESS 

Figure 7-1. Format of Saved Program Status in the 
System Stack 

26-0001-0958 



7.6 Interrupt 
and Trap 
Handling 
(Continued) 

26·0001·0959 

The following table shows the PC value that 
is pushed on the stack for each type of inter­
rupt and trap. 

Exception: 

Extended Instruction Trap 

Privileged Instruction Trap 

System Call Trap 
Segment Trap 
All Interrupts 

PC Value Is Address of: 

Next Instruction 
(Single Word Privileged 
Instruction) 

Second Word of Instruction 
(Multiple Word Privileged 
Instruction) 

Next Instruction 
Next Instruction' t 
N ext Instruction t 

• Assumes successful completion of instruction fetch 

t If executing an interruptable instruction (e.g. LDIR) 
and the instruction has not completed, then the next 
instruction is the current instruction. 

7.6.3 Loading New Program Status. After 
saving the current program status, the new 
program status (PC and FCW) is automatically 
loaded from the Program Status Area in system 
program memory. The particular status words 
fetched from the Program Status Area are a 
function of the type of trap or interrupt and 
(for vectored interrupt) of the interrupt vector. 
Figure 7.2 shows the format of the Program 
Status Area. 

For each kind of interrupt or trap other than 
a vectored interrupt, there is a single program 
status block that is automatically loaded into 
the Program Status registers (which includes 
the Flag and Control Word and the Program 
Counter). 

Note that the size of each program status 
block depends on the version of the 28000 (two 
words for the nonsegmented 28002 and four 
words for the segmented 28001). 

For all vectored interrupts, the same Flag 
and Control Word (FCW) is loaded from the 
corresponding program status block. However, 
the appropriate Program Counter (PC) value is 
selected from up to 256 (28002) or 128 (28001) 
different values in the Program Status Area. 
The low-order eight bits of the identifier 
placed on the data bus by the interrupting 
device is multiplied by two and used as an off­
set into the Program Status Area follOWing the 
FCW for vectored interrupts. On the 28002, 
the identifier value 0 selects the first PC value, 
the value 1 selects the second PC, and so on 
up to the identifier value 255. On the 28001, 
the identifier value 0 selects the first PC value, 

7-3 

the value 2 selects the second PC, and so on 
up to the identifier value 254, which selects 
the 128th PC value. All vectors on 28001 
systems must be even. 

The Program Status Area is addressed by a 
special control register, the Program Status 
Area Pointer, or PSAP. This pointer is one 
word for the non segmented 28002 and two 
words for the segmented 28001. As shown in 
Figure 7.2, the pointer contains a segment 
number (if applicable) and the high-order byte 
of a 16-bit offset address. The low-order byte is 
assumed to contain zeros; thus the Program 
Status Area must start on a 256-byte address 
boundary. The programmer accesses the PSAP 
using the Load Control Register instruction 
(LDCTL). 

PROGRAM STATUS AREA 
POINTER (PSAP) 

~ 

OFFSET IMPLIED ~ T-PPER, =~~~ 

BYTE OFFSET Z8001 Z8002 BYTE OFFSET 
HEX DECIMAL ...---=.:;,;;,:..;..-,---+--.r----"=--, DECIMAL HEX 

o RESERVED 0 0 

RESERVED 
EXTENDED FCW 

~pS;~~ 
INSTRUCTION 

TRAP PC 

10 
RESERVED 

FCW 
FCW PRIVILEGED 

~p~E~F~ 
INSTRUCTION 

TRAP PC 

18 
RESERVED 

SYSTEM FCW 
FCW 

~p~E~~ 
CALL 
TRAP 

32 
RESERVED 

FCW SEGMENT NOT USED 

-.Jp~E~km-
TRAP 

40 
RESERVED 

FCW 
FCW NON·MASKABLE 

-.Jp~E~Jrnr 
INTERRUPT 

PC 

--
RESERVED 

48 
FCW NON-VECTORED 

FCW 

.-Jp~E~Jrnr 
INTERRUPT 

PC 

38 
RESERVED 

FCW 28 1C 
FCW 

3C 60 .-Jp~E~Jrnr PC, 1E 

H~~~~ VECTORED 
PC, 32 

H~~~~ 
INTERRUPTS 

PC, 34 

H~~~~ pCn 

23A 21C 

Figure 7-2. Program Status Area 



7.6 Interrupt 
and Trap 
Handling 
(Continued) 

7.7 Priority 

7.6.4 Executing the Service Routine. Loading 
the new program status automatically initializes 
the Program Counter to the starting address of 
the service routine to process the interrupt or 
trap. This program is now executed. Because a 
new FCW was loaded, the maskable interrupts 
can be disabled for the initial processing of the 
service routine by a suitable choice of FCW. 
This allows critical information to be stored 
before subsequent interrupts are handled. Ser­
vice routines that enable interrupts before exit­
ing permit interrupts to be handled in a nested 
fashion. 

Because it is possible for several exceptions 
to occur simultaneously, the CPU enforces a 
priority scheme for deciding which event will 
be honored first. The following gives the 
descending priority order: 

• Reset 
• Internal Trap (Le., privileged instruction, 

system call, extended instruction) 

• Non-Maskable Interrupt 

• Segment Trap (Z8001 only) 

• Vectored Interrupt 

• Nonvectored Interrupt 

This is how the priority system works: 

• Whenever a reset is requested, it is immedi­
ately performed. 

• If several non-reset exceptions occur simul­
taneously, the one that has the highest 
priority and is also enabled (traps and non­
maskable interrupts are always enabled) is 
acknowledged, old status is saved, and new 
status is loaded. The new status consists of 
the starting address of the service routine 
(PC) and a new FCW that may disable vec­
tored and nonvectored interrupts. 

• If any enabled exceptions remain, the 
highest-priority one is acknowledged, the 
old status is saved, and the new status is 
loaded. Note that in this case, the old status 
is the PC and FCW of the previous excep­
tion's service routine. 

7-4 

7.6.5 Returning from an Interrupt or Trap. 
Upon completion, the service routine can exe­
cute an Interrupt Return instruction, IRET, to 
cause execution to continue at the point where 
the interrupt or trap occurred. IRET causes 
information to be popped from the system stack 
in the following order: the identifier is dis­
carded, the saved FCW and PC are restored. 
The newly loaded FCW takes effect with the 
next fetched instruction, which is determined 
by the restored Program Counter. 

On Z8001 CPUs, IRET can be executed only 
in segmented mode; in non segmented mode 
the operation is undefined. 

• This process is repeated until no enabled 
exceptions remain. At that point, the cur­
rent PC and FCW will contain the status 
values for the lowest priority exception that 
was acknowledged. 

• The execution of the service routines now 
proceeds in reverse priority order. That 
is, the lowest priority exception is 
serviced first. 

• After all the exceptions have been serviced, 
the original status is restored and execution 
resumes. 

Within each of the classes above, there can 
be multiple-interrupt sources. The internal 
traps are mutually exclusive and therefore 
need no priority resolution within that class. 
The other types arise from external sources; 
thus when multiple devices share the same 
request line, the possibility arises that more 
than one device may request service from the 
CPU simultaneously. Either all the interrupt 
sources must be serviced Simultaneously (as 
with the MMU) or competing requests must be 
resolved externally to the CPU, for example, 
by means of a daisy-chain or priority interrupt 
controller. This resolution is done during the 
interrupt acknowledge cycle. 



8 
-~.-• III _ 

.:, ~ n_ 

--- ., - LRIaIP -,. 4RL~ 

7; 1",,., 
Zilog 





8.1 Intro­
duction 

8.2 Refresh 
Cycles 

8.3 Periodic 
Refresh 

8.4 Stop-State 
Refresh 

26-0001-0960 

The Z8000 CPU has an internal mechanism 
for refreshing dynamic memory. This 
mechanism can be activated in two ways: 

• When the Refresh Enable (RE) bit in the 
CPU Refresh Counter is set to one (Figure 
8.1), memory refresh is performed period­
ically at a rate specified by the RATE field 
in the counter. (See Section 8.3.) 

The refresh mechanism is a way of gener­
ating a special kind of bus transaction called a 
refresh cycle, which is described in Chapter 9. 
A refresh cycle is three clock cycles long and 
may be inserted immediately after the last 
clock cycle of any transaction. 

During a refresh cycle, the status lines are 
set to 0001 and the address lines ADI-ADs are 

The Refresh Enable (RE) bit controls only 
Periodic Refresh; refresh cycles may be 
generated using the STOP line, regardless of 
the state of RE. When RE is set to one, the 
value of the 6-bit RATE field determines the 
time between successive refreshes (the refresh 
period). When RATE = 0, the refresh period 
is 256 clock cycles; when RATE = n, the 
refresh period is 4n clock cycles. (Thus, if 
there is a 4 MHz clock, the refresh period can 
be from 1 /A-S to 64 /A-s.) 

The LDCTL instruction is used to set the 
refresh rate, to set or clear RE, or to initialize 
or read the ROW field. (See Section 6.7 for a 
detailed discussion of this instruction.) 

The refresh cycle is generated as soon as 
possible after the refresh period has elapsed. 
This usually means after the last clock cycle of 
the current transaction. If the CPU receives a 

The CPU has three internal operating states: 
Running, Stop, and Bus-Disconnect states (see 
Section 2.8). Stop state is entered during the 
first word fetch of an instruction if STOP is 
activated before the machine cycle begins, or 
during the second word fetch of an EPA 

8-1 

Chapter 8 
Refresh 

• When the STOP line is activated, the CPU 
generates memory refreshes continuously. 
(See Section 8.4.) 

I I I I I I I I I I I I 
: ROW ADDRESS : 0 I RATE 

AD. AD7 ADs ADs AD, AD3 AD2 AD, ADo 

Figure 8-1. Refresh Control Register 

set to the value of the row address counter. 
Address lines ADg-AD15 are undefined, and 
ADo is always O. The ROW value determines 
the memory row that is being refreshed on this 
cycle. Since memory is word-organized, ADo 
is always zero. After the refresh cycle is com­
plete, the ROW field is incremented by two, 
thus stepping through 256 rows. 

trap or an interrupt simultaneously with a 
Periodic Refresh request, the refresh operation 
is performed first. 

When the CPU does not have control of the 
bus (that is, when BUSACK is asserted and the 
CPU enters Bus-Disconnect state) or when the 
WAIT line is deactivated, the CPU issues the 
skipped refresh cycles. To deal with this situa­
tion, both Z8000 CPUs have internal circuitry 
that records when the refresh period has 
elapsed and refresh cycles cannot be gener­
ated. When the CPU regains control of the 
bus, or when the WAIT line is reactivated, it 
immediately issues the skipped refresh cycles. 
The internal circuitry can record up to two 
such skipped refresh operations. 

After a reset operation, Periodic Refresh is 
disabled (RE is cleared) and the internal cir- . 
cuitry that counts skipped refreshes is cleared. 

instruction if the STOP line is activated before 
the start of the machine cycle. When STOP is 
found High again, one more refresh cycle is 
performed, then the remaining clock cycles of 
the instruction fetch are executed. (See 
Appendix A for more timing information.) 





9 





9.1 Intro­
duction 

9.2 Bus 
Operations 

This chapter covers the external manifesta­
tions (e.g., the activity on the CPU pins) that 
result from the operations described in 
Chapters 2 through 8. Since the pins are con­
nected to the system bus (see Figure 2.3 in 
Chapter 2), much of the discussion will center 

Two kinds of operations can occur on the 
system bus: transactions and requests. At any 
given time, one device (either the CPU or a 
bus requester, such as the Z8016 DMA Con­
troller) has control of the bus and is known as 
the bus master. A transaction is initiated by 
the bus master and is responded to by some 
other device on the bus. Only one transaction 
can proceed at a time; six kinds of transactions 
can occur: 

• Memory transaction. This type is used to 
transfer eight or 16 bits of data to or from a 
memory location (Section 9.4.2). 

• I/O transaction. This type is used to transfer 
eight or 16 bits of data to or from a periph­
eral or CPU support component, such as an 
MMU (Section 9.4.3). 

• EPU transfer. This type is used to transfer 
16 bits of data between the CPU and an EPU 
(Section 9.4.4). 

• Interrupt/Trap Acknowledge. This type is 
used to acknowledge an interrupt or trap 
and to transfer an identification/status word 
from the interrupting or trapping device 
(Section 9.4.5). 

• Refresh. These transactions do not transfer 
data. They refresh dynamiC memory (Sec­
tion 9.4.6). 

• Internal operation. These transactions do 

9-1 

Chapter 9 
External Interface 

on the bus and bus operations. The Z8000 CPU 
is designed to be compatible with the Zilog 
Z-Bus protocols, which are described in the 
Z-Bus Summary. In the sections that follow, the 
interface between the Z8000 CPU and its 
environment is described in detail. 

not transfer data. They indicate that the 
CPU is performing an operation that does 
not require data to be transferred on the bus 
(Section 9.4.6). 

Only the bus master may initiate trans­
actions. A request, however, may be initiated 
by a component that does not have control of 
the bus. Four types of requests can occur: 

• Interrupt request. This type is used to 
request the attention of the CPU (Section 
9.6.1). 

• Bus request. This type is used to request 
control of the bus to initiate transactions 
(Section 9.6.2). 

• Resource request. This type is used to 
request control of a particular system 
resource (Section 9.6.3). 

• Stop request. This type is used to delay 
CPU instruction execution (Section 9.6.4). 

When an interrupt or bus request is made, it 
is answered by the CPU according to its type: 
for interrupt request, an interrupt acknowledge 
transaction is initiated; for bus requests, the 
CPU enters Bus Disconnect state, relinquishes 
the bus, and activates an acknowledge signal; 
for stop requests, the CPU stops execution and 
enters Stop/Refresh state. A resource request 
is generated by the CPU when it executes a 
multi-micro request instruction. 



9.3 CPU Pins The CPU pins can be grouped into five 
categories according to their functions 
(Figure 9.1). 

9.3.1 Transaction Pins. These signals provide 
timing, control, and data transfer for Z-Bus 
transactions. 

ADo-AD1S• Address/Data (Output, active High, 
3-state). These multiplexed data and address 
lines carry I/O addresses, memory addresses, 
and data during Z-Bus transactions. For the 
Z8001, only the offset portion of memory 
addresses is carried on these lines. 

SNO-SN7• Segment Number (Z8001 only, Out­
put, active High, 3-state). These lines contain 
the segment number portion of a memory 
address. 

STo-ST3. (Output, active, High, 3-state). 
These lines indicate the kind of transaction 
occurring on the bus and give additional 
information about the transaction (such as the 
address space for memory transactions). 

AS. Address Strobe (Output, active Low, 
3-state). The rising edge of AS indicates the 
beginning of a transaction and shows that the 
Address, STo-ST3, NiS, R/W, and B/W signals 
are valid. 

DS. Data Strobe (Output, active Low, 3-
state). DS provides timing for data movement 
to or from the CPU. 

R/W. Read/Write (Output, Low = Write, 3-
state). This signal determines the direction of 
data transfer for memory, I/O, or EPU transfer 
transactions. 

B/W. Byte/Word (Output, Low = Word, 
3-state). This signal indicates whether a byte 
or word of data is to be transmitted during a 
transaction. 

WAIT. (Input, active Low). A Low on this line 
indicates that the responding device needs 
more time to complete a transaction. 

MREQ. Memory Request (Output, active Low, 
3-state). A falling edge on this line indicates 
that the address/data bus is holding a memory 
address. 

9.3.2 Bus Control Pins. These pins carry 
signals for requesting and obtaining control of 
the bus from the CPU. 

BUSREQ. Bus Request (Input, active Low). A 
Low indicates that a bus requester has 
obtained or is trying to obtain control of 
the bus. 

BUSACK. Bus Acknowledge (Output, active 
Low). A Low on this line indicates that the 
CPU has relinquished control of the bus in 
response to a bus request. 

9.3.3 Interrupt/Trap Pins. These pins convey 
interrupt and external trap requests to 
the CPU. 
NMI. Non-Maskable Interrupt (Input, Edge 
activated). A High-to-Low transition on NMI 
requests a non-maskable interrupt. 

NVI. Non- Vectored Interrupt (Input, active 
Low). A Low on this line requests a non­
vectored interrupt. 

VI. Vectored Interrupt (Input, active Low). A 
Low on this line requests a vectored interrupt. 

SEGT. Segment Trap (Z8001 only, Input, 
active Low). A Low on this line requests a seg­
ment trap. 

AD" 

AD" 
READIWRlfE AD" 

NORMAL/SYSTEM AD,o 

TRANS­
ACTIONS 

BYTE/WORD 

ST, 

ST2 

ST, 

STo 

_WAIT 

CPU{ - STOP 
CONTROL RESET 

BUS{ - BUSREQ 
CONTROL BUSACK 

Z8001 
Z8002 

CPU 

r--
I SN, 

ADDRESSI 
DATA BUS 

INTERRUPTS{ =: ~ 
NVI 

I 
I 

SN. 

SEGMENT: 
SN. 

SN, I NUMBER I 
I SN2 I 

SN, 

MULTI.MICRO{ MI 
CONTROL Mo 

-rz::~~ 

I I 
I SNo I 

L~E~ SEGMENT I 
_ ~R~ __ .J 

+5 V GND ClK 

Figure 9-1. Pin Functions 

9-2 26-0001-0961 



9-3. CPU Pins 9.3.4 Multi-Micro Pins. These pins are the 9.3.5 CPU Control. These pins carry signals 
which control the overall operation of (Continued) Z8000's interface to the Z-Bus resource request 

lines. the CPU. 

9.4 Trans­
actions 

26-0001-0962 

MI. Multi-Micro In (Input, active Low). This 
input is used to sample the state of the 
resource request lines. 

MO. Multi-Micro Out (Output, active 
Low). This line is used by the CPU to make 
resource requests. 

Data transfers to and from the CPU are 
accomplished through the use of transactions. 
Figure 9.2 shows the general timing for a 
transaction. 

STOP. (Input, active Low). This line is used to 
suspend CPU operation during the fetch of the 
first word of an instruction. 

RESET. (Input, active Low). A Low on this line 
resets the CPU. 

All transactions start with Address Strobe 
(AS) being driven Low and then raised High 
by the CPU. On the rising edge of AS, the 
status lines STo-ST3 are valid; these lines indi-

CLOCK 

WAIT sampled 
for memory and 
EPU transfer 
transacjns. 

WAIT sampled for 
1/0 and interruptltrap Data on AD lines 
acknowledge is sampled tor 
transactions. transfers to CPU. 

AS 
(ADDRESS STROBE) 

SNo-SN, 
(SEGMENT NO.) 

ADo-AD" 
(ADDRESS OFFSET) 

STo-ST,. 
RIW. BrN. SIN 

(STATUS 
INFORMATION) 

{

Os 
(DATA 

READ STROBE) 

ADo-AD" 
(DATA) 

(

Os 
(DATA 

STROBE) 

WRITE ADo-AD" 

(DATA) 

Cycle pre.ent only lor 110 
interrupUtrap 
acknowledge transactions. 

__ WAIT clock cycle. added 
here in response to WAIT line. 

AS failing indicates first 
clock cycle of a transaction. 

As rising indicates that status 
and address lines are valid. 

SEGMENT NUMBER 

Segment No. becomes 
available one clock cycle 
before rest of address. 

Status information becomes 
available at the same time 
as the address and remains 
active throughout the trans­
action. 

Memory, EPU transfers and ,.",. 
interrupt/trap acknowledge. 

I I 
For transfers to the CPU 
(Memory reads, 110 reads, 

, For continuation see Read and 
Write below. 

The memory, 110 device or 
EPU places data on the AD 
lines. 

~~~::r~e;:t~:pma~r~~:::ge) ... G----I-----+~ 
the AD lines are first
J..tated by the CPU.

For transfers from the CPU
(Memory writes, 1/0 writes,
and Iran.'er. to the EPU)
the CPU place. the dolo on

the jD line •.

DATA

Figure 9-2. Transaction Timing

9-3

9-4. Trans­
actions
(Continued)

cate the type of transaction being initiated (see
Table 9.1; the six types of transactions are dis­
cussed in the sections that follow). Associated
with the status lines are three other lines that
become valid at this time. These are Normal!
System (N/S), Read/Write (RlW), and
Byte/Word (B/W). Except where indicated
below, NlS designates the operating mode of
the CPU, RlW deSignates the direction of data
transfer (read to the CPU, write from the
CPU), and B/W designates the length of the
data item being transferred.

If the transaction requires an address, it too
is valid on the rising edge of AS. No address is
required for interrupt acknowledge, EPU
transfer, or internal operation transactions. (In
the Z800 I, the segment number lines SNo-SN6
are valid one clock cycle earlier to allow for
external memory management hardware. See
Chapter 2 for more information.)

The CPU uses Data Strobe (DS) to time the
actual data transfer. (Note that refresh and
internal operation transactions do not transfer
any data and thus do not activate DS.) For
write operations (RlW = Low), a Low on DS
indicates that valid data from the bus master is
on the ADo-AD15 lines. For read operations
(RlW = High), the bus master makes
ADo-AD15 3-state before driving DS Low so
that the addressed device can put its data on
the bus. The bus master samples this data on
the falling clock edge just before raising
DS High.

Kind of Transaction 5T3-5TO

Internal Operation 0000

Refresh 0001

I/O Transaction {001O
0011

Interrupt ro 0101
Acknowledge 0110

Transaction 0111

ro 1001

Memory 1010
Transaction 1011

1100
1101

EPU Transfer 1110

Reserved IIII

9.4.1 WAIT. As shown in Figure 9.2, WAIT is
sampled on a falling clock edge one cycle
before data is sampled by the CPU (Read) or
DS rises (Read or Write). If WAIT is Low,
another cycle is added to the transaction
before data is sampled or DS rises. In this
added cycle and all subsequent cycles added
due to WAIT being Low , WAIT is again sam­
pled on the falling edge and, if it is Low,
another cycle is added to the transaction. In
this way, the transaction can be extended to an
arbitrary length to accommodate (for example)
slow memories or I/O devices that are not yet
ready for data transfer.

It must be emphasized that the WAIT input
is synchronous. Thus, it must meet the setup
and hold times given in Appendix A in order
for the CPU to function correctly. This
requires asynchronously generated WAIT
signals to be synchronized before they are
input into the CPU.

9.4.2 Memory Transactions. Memory Trans­
actions move data to or from memory when the
CPU makes a memory access. Thus, they are
generated during program execution to fetch
instructions from memory (Chapter 4) and to
fetch and store memory data (Chapter 5). They
are also generated to store old program status
and fetch new program status during interrupt
and trap handling and after reset (Chapter 7).

As shown in Figure 9.3, a memory trans­
action is three clock cycles long unless

Additional Information

Standard I/O
Special I/O

Segment Trap
Non-Maskable Interrupt
Non- Vectored Interrupt
Vectored Interrupt

Data Address Space
Stack Address Space,
Data Address Space, EPU Transfer
Stack Address Space, EPU Transfer
Program Address Space,
Program Address Space, First Word of Instruction

Table 9-1. Status Codes

9-4

9-4. Trans­
actions
(Continued)

26-0001-0963

extended as explained above in W AlI. The
status pins, besides indicating a memory trans­
action, give the following information:

• Whether the memory access is to the data
(1000, 1010), stack (1001, 1011), or program
(1100, 110 l) address space (Chapter 3).

• Whether the first word of an instruction is
being fetched (1101).

• Whether the data for the access is to be
supplied (write) or captured (read) by an
Extended Processing Unit (1010, 1011).

Tn T,

CLOCK I ---- ~----~
I

WAIT

Status codes 1000 and 1001 may also indi­
cate that the EPU is to capture or supply the
data.

F or the Z8002, the full memory address will
be on ADo-AD15 when AS rises. For the
Z8001, the offset portion of the segmented
address will be on ADo-AD15 and the segment
number portion will be on SNo-SN6 when AS
rises. The segment portion will also be on
SNo-SN6 approximately one cycle before
ADO-AD15 is valid.

T, 3

~ "- DATA SAMPLED

T FOR READ ~.~ WAIT CYCLES ADDED SAMPLED

STATUSES----+-----------~~ r-------~------------_r------------+_~
(B/W, N/S,

sTo-sT3) ____ +-__________ ~---J '-------~------------_r------------+_-'

SNo-SNe

AS

MREQ

AD
READ

SEGMENT NUMBER

__ -+ __________ +-J MEMORY ADDRESS '>---
1-

---+-----------+-----------+--
DS

READ

R/W /
READ -+------1--'

AD
WRITE

DS
WRITE

---+-----------+--'
MEMORY ADDRESS DATA OUT

R/W \ r WRITE

--+-----------+--~------~----------+-----------~~--

Figure 9-3. Memory Read and Write Transaction

9-5

9-4. Trans­
actions
(Continued)

Bytes transferred to or from odd memory
(address bit 0 is 1) locations are always trans­
mitted on lines ADo-AD7 (bit 0 on ADo). Bytes
transferred to or from even memory locations
(address bit 0 is 0) are always transmitted on
lines ADs-AD15 (bit 0 on ADs). Thus, the
memory attached to a Z8000 will look like that
shown in Figure 9.4. For byte reads (B/W .
High, R/W High) the CPU uses only the byte
whose address it output. For byte writes (B/W
High, R/W Low), the memory should store only
the byte whose address was output. During
byte memory writes, the CPU places the same
byte on both halves of the bus, and the proper
byte must be selected by testing Ao. For word
transfers, (B/W = Low), all 16 bits are cap­
tured by the CPU (Read: R/W = High) or
stored by the memory (Write: RlW = Low).

As explained more fully in Section 9.5, a
Z8001 CPU and an Extended Processing Unit
act like a single CPU with the CPU providing
addresses, status and timing information and
the EPU providing or capturing data.

9.4.3110 Transactions. 1/0 transactions move
data to or from peripherals or CPU support
devices (e.g., MMUs). They are generated
during the execution of 1/0 instructions.

ADo-AD15

As shown in Figure 9.5, 1/0 transactions are
four clock cycles long at minimum, and they
may be lengthened by the addition of WAIT
cycles. The extra clock cycles allow for slower
peripheral operation.

The status lines indicate whether the access
is to the Standard 1/0 (0010) or Special 1/0
(0011) Address Spaces. The NiS line is always
Low, indicating system mode. The 1/0 address
is found on ADo-AD15 when AS rises. Since
the 1/0 address is always 16 bits long, the seg­
ment number lines are undefined on Z8001
CPUs. For byte transfers (B/W = High) in
Standard I/O space, addresses must be odd;
for byte transfers in Special 110 space,
addresses must be even.

Word data (B/W = Low) to or from the CPU
is transmitted on ADo-AD15. Byte data
(B/W = High) is transmitted on ADo-AD7 for
Standard 1/0 and on ADs-AD15 for Special
1/0. This allows peripheral devices or CPU
support devices to attach to only eight of the
16 ADo-AD16 lines. The Read/Write line (RlW)
indicates the direction of the data transfer:
peripheral-to-CPU (Read: R/W = High) or
CPU-to-peripheral (Write: R/W = Low).

16·BIT Z·BUS DATA PATH

D

LOWER
BYTE
BANK

(ODD ADDRESS)

Do

LOWER
BANK

RIW --t==:!:::==l..J>---------...J ENABLE

Figure 9·4. Memory Organization

9-6 26-0001-0964

9-4. Trans­
actions
(Continued)

C8002~0289

9.4.4 EPU Transfer Transactions. These trans­
actions move data between the CPU and an
Extended Processing Unit (EPU), thus allowing
the CPU to transfer data to or from an EPU or
to read or write an EPU's Status Registers.
They are generated during the execution of
the EPA instruction.

EPU transfer transactions have the same
form as memory transactions (Figure 9.3) and
thus are three clock cycles long, unless
extended by WAIT. No address is generated,
and there is only one status code that can be
used on the STo-ST 3 lines (1110). In a multiple

T, T,

CLOCK I n -
WAIT

- ex STATUSES
(BNi, ST o-ST ,) -

"'S

-rLJ AS

MREQ

- ex AD
PORT ADDRESS ~------INPUT - I~

DS
INPUT

R/W U INPUT -

- ex AD
PORT ADDRESS OUTPUT -

DS
OUTPUT

--r\ R/W
OUTPUT

EPU system, the EPU which is to participate in
a transaction is selected implicitly, as
described in Section 9.5, rather than by an
address.

The data transferred is 16-bit words
(B/W = Low), except for transfers between the
Flags byte of the FeW and an EPU. In this
case, a byte of data is transferred on ADo-AD7
(B/W = High). The Read/Write line (R/W)
indicates the direction of the data transfer. The
N/s line indicates either system mode (Low) or
normal mode (High).

TWA T,

r--
~ D 1

DATA SAMPLED
T FOR READ

C,WAIT
SAMPLED WAIT CYCLES ADDED

LOW

HIGH

G:) c

"-
DATA OUT

r

Figure 9-5. Input/Output Transaction

9-7

9-4. Trans­
actions
(Continued)

9.4.5 Interrupt/Trap Acknowledge Trans­
actions. These transactions acknowledge an
interrupt or trap and read a 16-bit identifier
word from the device that generated the inter­
rupt or trap. The transactions are generated
automatically by the hardware when an inter­
rupt or segment trap is detected.

These transactions are eight clock cycles
long at a minimum (as shown in Figure 9.6),
having five automatic WAIT cycles. The WAIT
cycles are used to give the interrupt priority
daisy chain (or other priority resolution
device) time to settle before the identifier word
is read. (Consult the Z-Bus Summary for more
information on the operation of the priority
daisy -chain.)

The status lines identify the type of excep­
tion that is being acknowledged. The possibil­
ities are Segment Trap (0100), Non-Maskable
Interrupt (0101), Non-Vectored Interrupt
(0110), and Vectored Interrupt (0111). No
address is generated. The NiS line indicates

system mode (Low), the RlW line indicates
READ (High), and the B/W line indicates
Word (Low).

The only item of data transferred is the
indentifier word, which is always 16 bits long
and is captured from the ADo-AD.lli..J.ines on
the falling clock edge just before DS is
raised High.

As shown in Figure 9.6, there are two places
where WAIT is sampled and thus a WAIT
cycle may be inserted. The first serves to delay
the falling edge of DS to allow the daisy chain
a longer time to settle, and the second serves
to delay the point at which data is read.

9.4.6 Internal Operations and Refresh Trans­
actions. There are two kinds of bus trans­
actions made by the CPU that do not transfer
data: internal operations and memory refresh.
Both transactions look like a memory trans­
action, except that Data Strobe remains High
and no data is transferred.

~
LASTMACHINE I INSTRUCTION ACKNOWLEDGE I STATUS
~~;~~U°ciT~~Y---t..- (~i6CR~~~) -+---------AU-TO-MA-TiCWAITCS~~~~s ---------- SAVING

T, Ti Ta T, •••••••••• T1

CLOCK JLJ1JLJ" JLf

Vi, iiii, SEaT

INTERNAL
iiMi

------~~~~--

RIW

BIW

STO-ST3

"'------------"-WAITCYCLESADOED

(I....-___J)

Figure 9-6. Interrupt and Segment Trap Request and Acknowledge Transition.

9-8 C8002-0290

9-4. Trans­
actions
(Continued)

For internal operation transaction (shown in
Figure 9.7), the Address and Segment Number
lines contain arbitrary data when the Address
Strobe goes High. The R/W line indicates
Read (High); the B/W line is undefined, and
N/S is the same as for the immediately
preceding transaction. This transaction is initi­
ated to maintain a minimum transaction rate
while the CPU is doing a long internal
operation.

A memory refresh transaction (shown in
Figure 9.8) is generated by the 28000 CPU's

CLOCK

MREQ, Os, R/W

oiii

MIS

refresh mechanism as described in Chapter 8
and can come immediately after the final clock
cycle of any other transaction. The memory
refresh counter's 9-bit ROW field is output on
ADo-ADs during the normal time for
addresses. This transaction can be used to
generate refreshes for dynamic RAMs. The
value of NIS, R/W, and B/W is the same as for
the immediately preceeding transaction.

W ArT is not sampled during internal opera­
tion or refresh cycles.

)--

Figure 9-7. Internal Operation Timing

STo-ST3

REFRESH ADDRESS >------- -------- -C

Alii, B/ii, MIS }_--t _____ -t-__ SA_"_EAS_PR_EV_'O_US1-CY_C_LE ____ +-__ _

Figure 9-8. Memory Refresh Timing

C8002-0293 C8002-0294 9-9

9.5 CPU and
Extended Prow
cessing Unit
Interaction

A Z8000 CPU and one or more Extended
Processing Units (EPUs) work together like a
single CPU component, with the CPU pro­
viding address, status and timing signals and
the EPU supplying and capturing data. The
EPU monitors the status and timing signals out­
pu t by the CPU so that it will know when to
participate in a memory or EPU transfer trans­
action. When the EPU is to participate in a
memory transaction, the CPU puts its AD lines
in 3-state while DS is Low, so that the EPU may
use them.

In order to know which transaction it is to
participate in, the EPU must track the follow­
ing sequence of events:

• When the CPU fetches the first word of an
instruction (ST3-STO = 1101), the EPU must
also capture the instruction returned by
memory. If the instruction is an extended
instruction, it will have an ID field which
indicates (along with the second instruction)
whether or not the EPU is to execute the
instruction.

.. If the instruction is to be executed by the
EPU, the next non-refresh transaction by the
CPU will fetch the second word of the
instruction (ST 3-ST a = 11 00). The EPU
must also capture this word.

• If the instruction involves a read or write to
memory, there will be zero or more program
fetches by the CPU (ST3-STO = 1100) to
obtain the address portion of the extended
instruction. The next one to 16 non-refresh
transactions by the CPU will transfer data
between memory and the EPU (ST3-STO =
1000, 1001, 1010, or lOll). The EPU must
supply the data (Write, R/W Low) or cap­
ture the data (Read, R/W High) for each
transaction, just as if it were part of the
CPU. In both cases, the CPU will 3-state its

9.6 Requests There are three kinds of request signals that
the Z-Bus supports and the Z8000 CPU par­
ticipates in. These are

• Interrupt/Trap requests, which another
device initiates and the CPU accepts and
acknow ledges.

• Bus requests, which another potential bus
master initiates and the CPU accepts and
acknowledges.

• Resource requests, which any device
capable of implementing the request pro­
tocol (usually the CPU) can request. No
component has control of the resource by
default.

AD lines while data is being transferred
(DS Low). EPU memory transfers are always
word-oriented (B/W Low).

• If the instruction involves a transfer between
the CPU and EPU, the next one to 16 non­
refresh transactions by the CPU will transfer
data between the EPU and CPU
(ST3-STO = 1110).
Note that in order to follow this sequence, an

EPU will have to monitor the BUSACK line to
verify that the transaction it is monitoring on
the bus was generated by the CPU. It should
also be noted that in a multiple EPU system,
there is no indication on the bus as to which
EPU is cooperating with the CPU at any given
time. This must be determined by the EPUs
from the extended instructions they capture.

A final aspect of CPU-EPU interaction is the
use of the CPU's STOP pin. When an EPU
begins to execute an extended instruction, the
CPU can continue fetching and executing
instructions. If the CPU fetches another
extended instruction before the first one has
completed execution, the EPU must activate
the CPU's STOP pin to stop the CPU (as
described in Section 9.7) until the instruction
completes execution.

Besides determining whether or not to par­
ticipate in the execution of an EPA instruction,
the EPU must determine from the first two
instruction words

II Whether or not a memory access will be
made and how many words of instruction
will be fetched before the data is
transferred.

II The number of words of data to be trans­
ferred for memory or EPU-CPU transfers.

.. The operation to be performed on its data.

The CPU supports an additional request
beyond those of the Z-Bus:

II Stop request, which another device initiates
and the CPU accepts.

When a request is made, it is answered
according to its type: for interrupt/trap
requests, an interrupt/trap acknowledge trans­
action is initiated (Section 9.4.4); for bus
requests, an acknowledge signal is sent (Sec­
tions 9.6.2 and 9.6.3); for Stop request, the
CPU enters the Stop/Refresh state. In all cases
except Stop, the Z-Bus prOVides for a daisy­
chain priority mechanism to arbitrate between
simultaneous requests.

9-10

9-6. Requests
(Continued)

C8002-0291

9.6.1 Interrupt/Trap Request. The Z8000 CPU
supports three interrupts and one external trap
(segment trap) as shown in Figure 9.6. The
Interrupt Request line (INT) of a device that is
capable of generating an interrupt may be tied
to any of the three Z8000 interrupt pins (NMI,
NVI, VI). Several devices can be connected to
one pin, the devices arranged in a priority
daisy chain (see the Z-Bus Summary). The seg­
ment trap pin (SEGT) is activated by the
memory management hardware. The CPU uses
the same protocol for handling requests on any
of these pins. Here is the sequence of events
that is followed:

• Any High-to-Low transition on the NMI
input is asynchronously edge-detected, and
the internal NMI latch is set. At the begin­
ning of the last clock cycle in the last
machine cycle of any instruction, the VI,
NVI, and SEGT inputs are sampled along
with the state of the internal NMI latch.

• If an interrupt or trap is detected, the sub­
sequent initial instruction fetch cycle is
exercised, but aborted.

• The next machine cycle is the interrupt
acknowledge transaction (see Section 9.4.4)
that results in an identifier word from the
highest-priority interrupting device being
read off the AD lines.

• This word, along with the program status
information, is stored on the system stack,
and new status information is loaded (see
Chapter 7).

For more information about the system-level
aspects of the interrupt structure, consult the
Z-Bus Summary.

9.6.2 Bus Request. To generate transactions
on the bus, a potential bus master (such as the
DMA Controller) must gain control of the bus
by making a bus request (shown in Figure
9.9). A bus request is initiated by pulling
BUSREQ Low. Several bus requesters may be
wired to the BUSREQ pin; priorities are
resolved externally to the CPU, usually by a
priority daisy chain (see the Z-Bus Summary) .

The asynchronous BUSREQ signal generates
an internal BUSREQ, which is synchronous. If
the external BUSREQ is Low at the beginning

_----BUS AVAILABLE----..

CLOCK

INTERNAL
BUSREQ

SN

AD

Tx Tx Tx

~-- ---- ---- --­
--------------------~

MREQ,Ds,---------------------------------4-
STo-ST3,

B/W, R/iV, N/S ---------------------------------4..J

Figure 9-9. Bus Request/Acknowledge Timing

9-11

Tx Tx

9-6. Requests
(Continued)

of any machine cycle, the internal
BUSREQ will cause the bus acknowledge line
(BUSACK) to be asserted after the current
machine cycle is completed. The CPU then
enters Bus-Disconnect state and gives up con­
trol of the bus. All CPU Output pins, except
BUSREQ and MO, are 3-stated.

The CPU regains control of the bus two
clock cycles after BUSREQ rises. Any device
desiring control of the bus must wait at least
two cycles after BUSREQ has risen before
pulling it down again.

9.6.3 Resource Request. The CPU generates
resource requests by executing the Multi-Micro
Request (MREQ) instruction. The CPU tests the
availability of the shared resource by examin­
ing MI. If MI is High, the resource is
available, otherwise the CPU must try again
later. The MO pin is used to make the resource
request. MO is pulled Low, then, after a delay

T, I_"~--REFRESH-----I T1R T2R T3R

CLOCK

for arbitration of priority, MI is tested again. If
it is Low, the CPU has control of the resource;
if it is still High, the request was not granted.
In the case of failure, MO must be deactivated.
But if successful, MO must be kept active until
the CPU is ready to release the resource
whereupon MO is deactivated by an MRES
instruction.

The Z-Bus Summary describes an arbitration
scheme that is implemented with a resource
request daisy chain.

9.6.4 Stop Request. As shown in Figure 9-10,
the STOP pin is normally sampled on the fall­
ing clock edge immediately preceding an ini­
tial instruction fetch cycle. If STOP is found
Low, the CPU enters Stop/Refresh state and a
stream of memory refresh cycles is inserted
after the third clock cycle in the instruction
fetch. The ROW field in the Refresh Counter is
incremented by two after every refresh cycle.

I---REFRESH---I
~ ~ ~ ~ T,

"'
STOP\~/ _____ ~\~/ __ ~DC J\~ __________ __

AD -C~)--

\'--_--'1
ST.-ST3 ===><'--___ IF_, __ --'Xl....... _____ _ _________________ x==

I __ _______________ x==
Riw

Figure 9-10. Stop Timing

9-12 C8002-0292

9-6. Requests
(Continued)

9.7 Reset

When STOP is found High again, the next
refresh cycle is completed, then the original
instruction continues.

If the EPA bit in the FCW is set (indicating
an EPU is in the system), the STOP line is also
sampled on the on the falling clock edge
immediately preceding the second word of an

A hardware reset puts the Z8000 in a known
state and initializes selected control registers
of the CPU to system specifiable values (as
described in Section 7.4). A reset will begin at
the ~nd of any clock cycle, if the RESET line
is Low.

A system reset overrides all other operations
of the chip, including interrupts, traps, bus
request$ and stop requests. A reset should be
used to initialize a system as part of the power­
up sequence.

Within five clock cycles of the RESET

\~--------------
________J}-----

" ____________J!

MREQ ______________ -J!

Ds __________________________ -J!
STO-ST3 ___________________J!

siw

BUSAK ___________ ~!

MO ____________ -J!

instruction fetch-if the first word indicates an
extended instruction. Thus, the STOP line may
be used by an EPU to deactivate the CPU
whenever the CPU fetches an extended
instruction before the EPU has finished pro­
cessing an earlier one. The STOP line may
also be used to externally single-step the CPU.

line becomin~ow._J!igure 9.11), ADo-AD15
are 3-stated; AS, DS, MREQ, BUSACK,
Mo, and STo-ST3 are forced High; SNo-SN6
are forced Low. The R/W, B/W and N/S lines
are undefined. Reset must be held Low at least
five clock cycles.

After RESET has returned High for three
clock cycles, consecutive memory-read trans­
actions are executed in the system mode to ini­
tialize the Program Status Registers. These cor­
respond to the memory accesses described in
Section 7.4

Figure 9-11. Reset Timing

C8002-0295 9-13

.II.

AS

os
MREO

AD"
READ/WRif£ AD" -N OR MAL/SYSTEM AD,o -TRANS- BYTE/WORD AD, -ACTIONS

AD, -ST, AD, -ST, AD, -ST, AD, -STo AD,

WAIT
Z8001

CPU
STOP

CONT~~~{ =: RESET ADo

BUS{ -
BUSREO

CONTROL BUSACK SN,

'.'~.um{ :::::
SN,

NMI SN,

Vi SN,

NVi SN,

SN,

MUL TI·MICRO { MI SNo

CONTROL MO

SEGT

t t
+5 V GND ClK

Z8001 CPU Pin Functions

AS

os
MREQ

READIWRITE

NORMAL/SYSTEM
TRANS- BYTE/WORD
ACTIONS

ST,

ST,

ST,

STo

INTERRUPTS{ =: ~
NVi

MUL TI.MICRO { MI
CONTROL MO

Z8002
CPU

AD,s -AD'4 -AD
'

3 -AD'2

AD,

Z8002 CPU Pin Functions

C8071·0089 C8002·0286 C8002·0287

Appendix A

ADo AD,

AD, SN,

AD,o SN,

AD" AD,

AD'2 AD,

ADDRESSI AD13 AD,
DATA BUS STOP SN,

M, AD,

AD,s AD,

AD14 AD,

+5V AD,

Vi SN,

liIVi GND

SEGT CLOCK

)UGME.,
NUMBER

NMf AS
RESET RESERVED

MO B/W

MREO N/S

os R/W

ST, BUSACK

ST, WAIT

ST, BUSREO

STo SNo
SEGMENT
TRAP SN, SN,

Z8001 Pin Assignments

AD, ADo

AD,o AD,

AD'1 AD,

AD'2 AD,

ADDRESS I AD13 AD,

DATA BUS STOP AD,

M, AD,

AD,

AD14 AD,

+5V GND

Vi CLOCK

NVi AS

RESERVED

RESET BIW

N/S

R/W

os BUSACK

ST, WAiT

ST, BUSREO

ST, STo

Z8002 Pin Assignments

A-I

Composite
AC Timing RESET =:>C &<==
Diagram _'--------_ ... I+~ I-~

CS002-0296

NMI X V
I~

Vi, NYI

SEGT

:~---------------------~~~ ~ ~
~

This composite timing dia­
gram does not show actual
timing sequences. Refer to
this diagram only for the
detailed timing relationships
of individual edges. Use the
preceding illustrations as an
explanation of the various
timing sequences.

STOP

WAIT

Timing measurements are
made at the following
voltages:

High Low

~~ ~K=
.. __ -------------------~----~ ~ __ _44_~~J61 ~ ~ -V

Clock
Output
Input
Float

4.0V
2.0V
2.0V
c,.v

O.SV
o.sv
o.sv

±O.5V
BUSREQ

--@--I (69J_ --1.®- (

J)

--®-+ --++-l--f-(17'i-l-----1
(

1-f.iO\I l"... -@--VI_J;;;;\I- - '"" l"'i __
1- 0.d----1 - roo- - I~r- --~ I~ ---®--

~~ I--~ I~~~ /
.J.t--+---+--+--+-......j--~I.-I--~f_®__ /I~i-

MEMORY READ/ ~rr-~IN~~--_+----~--l_----...,jo!'f! ,.. i"" --
-®- ~ I

MEMORY WRITE/ ~ Jot'"",i-

-@-I==~I
~~ __________ ~+--+ ______ ~__ ~ / ~i-

INPUT/OUTPUT/ (l .k

«I'-~I -®-I~-@--I
INTERRUPT ./~--+---------+-... J..,.--I---J ~ /' ~t- I"'i

ACKNOWLEDGE --/ ' ,. y - ':iC, --
-@- -®-I "JJ ,l>--

REA~~R~:~: ________ I--@-_,X
47

-(,

NORM:~~:'~T;:D ~------------------------__ -------------~

A-2

AC
Character­
istics

Number Symbol Parameter
Z8001lZ8002
Min Max

Z8001A/Z8002A
Min Max

(ns) (ns) (ns) (ns)

1 TcC Clock Cycle Time 250 2000 165 2000
2 TwCh Clock Width (High) 105 2000 70 2000
3 TwCl Clock Width (Low) 105 2000 70 2000
4 TfC Clock Fall Time 20 10

- 5 - TrC Clock Rise Time----------------20------10-
6 TdC(SNv) Clock t to Segment Number Valid (50 pF load) 130 110
7 TdC(SNn) Clock t to Segment Number Not Valid 20 10
8 TdC(Bz) Clock t to Bus Float 65 55
9 TdC(A) Clock t to Address Valid 100 75

- 10- T dC(Az) --Clock t to Address Float -------------65 ------55-
11 TdA(DI) Address Valid to Data In Required Valid 455* 305*
12 TsDI(C) Data In to Clock j Setup Time
13 TdDS(A) DS t to Address Active
14 TdC(DO) Clock t to Data Out Valid

50
80*

100

20
40*

75
- 15 - ThDI(DS)-- Data In to DS t Hold Time --------- 0 ------ 0 ----

16 TdDO(DS) Data Out Valid to DS t Delay 295* 195*
17 TdAMR Address Valid to MREQ j Delay 55* 35*
18 TdC(MR) Clock j to MREQ I Delay 80 70
19 TwMRh MREQ Width (High) 210* 135*

- 20 - TdMR(A) --MREQ I to Address Not Active ------- 70* ----- 35 * ----
21 TdDO(DSW) Data Out Valid to DS I (Write) Delay 55* 35*
22 TdMR(DI) MREQ j to Data In Required Valid
23 TdC(MR) Clock j MREQ t Delay
24 TdC(ASf) Clock t to AS j Delay

350*
80
80

225*
60
60

- 25 - TdA(AS) --Address Valid to AS t Delay --------55*----- 35* ----
26 TdC(ASr) Clock j to AS I Delay
27 TdAS(DI) AS t to Data In Required Valid

90
340*

28 TdDS(AS) DS t to AS I Delay 70* 35*
29 TwAS AS Width (Low) 85* 55*

80
215*

- 30- TdAS(A)--AS t to Address Not Active Delay------ 60*----- 30* ----
31 TdAz(DSR) Address Float to ITS (Read) I Delay 0 0
32 TdAS(DSR) AS t to DS (Read) j Delay 70* 35*
33 TdDSR(DI) DS (Read) I to Data In Required Valid
34 TdC(DSr) Clock j to DS t Delay

185*
70

130*
65

- 35- TdDS(DO)--DS t to Data Out and STATUS Not Valid----75*----- 45*----
36 TdA(DSR) Address Valid to DS (Read) j Delay 180* 110*
37 TdC(DSR) Clock t to bs (Read) I Delay 120 85
38 TwDSR DS (Read) Width (Low) 275* 185*
39 TdC(DSW) Clock j to DS (Write) I Delay 95 80

- 40- TwDSW--- DS (Write) Width (Low)---------- 185*-----110* ----
41 TdDSI(DI) DS (Input) I to Data In Required Valid
42 TdC(DSf) Clock I to DS (I/O) j Delay
43 TwDS DS (I/O) Width (Low)
44 TdAS(DSA) AS t to DS (Acknowledge) j Delay

410*
1065*

320*
120

255*
690*

200*
100

- 45 - TdC(DSA) -- Clock t to DS (Acknowledge) j Delay --------120 ------85-
46 TdDSA(DI) DS (Ack.) j to Data In Required Delay 435* 295*
47 TdC(S) Clock t to Status Valid Delay 110 85
48 TdS(AS) Status Valid to AS t Delay 50* 30*
49 TsR(C) RESET to Clock t Setup Time 180 70

- 50- ThR(C)--- RESET to Clock t Hold Time --------- 0 ------ 0 ----
51 TwNMI NMI Width (Low) 100 70
52 TsNMI(C) NMI to Clock t Setup Time 140 70
53 TsVI(C) VI, NVI to Clock t Setup Time 110 50
54 Th VI(C) VI, NVI to Clock t Hold Time 0 0

- 55- TsSGT(C)-- SEGT to Clock t Setup Time 70 55 ----
56 ThSGT(C) SEGT to Clock I Hold Time 0 0
57 TsM1(C) Mr to Clock t Setup Time 180 110
58 ThMr(C) Mj to Clock t Hold Time 0 0
59 TdC(Mo) Clock 1 to Mo Delay 120 85

- 60- TsSTP(C) -- STOP to Clock I Setup Time ----.,------ 140 ----- 70 ----
61 ThSTP(C) STOP to Clock I Hold Time 0 0
62 TsWT(C) WAIT to Clock! Setup Time 50 30
63 ThWT(C) WAIT to Clock) Hold Time 10 10
64 TsBRQ(C) BUSREQ to Clock t Setup Time 90 80

- 65- ThBRQ(C) -- BUSREQ to Clock t Hold Time 10 10 ----
66 TdC(BAKr) Clock 1 to BUSACK I Delay
67 TdC(BAKf) Clock 1 to BUSACK) Delay

100
100

75
75

• Clock-cycle-time-dependent characteristics. A-3

Clock- Z8001/Z8002 Z8001A/Z8002A
Cycle-Time- Number Symbol Equation Equation
Dependent
Characteristics 11 TdA(DI) 2TcC + TwCh - 150 ns 2TcC + TwCh - 95 ns

13 TdDS(C) TwCl - 25 ns TWCl - 30 ns

16 TdDO(DS) TcC + TwCh - 60 ns TcC + TwCh - 40 ns

17 TdA(MR) TwCh - 50 ns TwCh - 35 ns

-- 19--- TwMRh--- TcC - 40 ns TcC - 30 ns

20 TdMR(A) TwCl - 35 ns TwCl - 35 ns

21 TdDO(DSW) TwCh - 50 ns TwCh - 35 ns

22 TdMR(DI) 2TcC - 150 ns 2TcC - 105 ns

25 TdA(AS) TwCh - 50 ns TwCh - 35 ns

- 27--- TdAS(Dl)-- 2TcC - 160 ns 2TcC - 115 ns

28 TdDS(AS) TwCl - 35 ns TwCl - 35 ns

29 TwAS TwCh - 20 ns TwCh - 15 ns

30 TdAS(A) TwCl - 45 ns TwCl - 40 ns

32 T dAS(DSR) TwCl - 35 ns TwCl - 35 ns

--33--- TdDSR(DI)-- TcC + TwCh - 170 ns-- TcC + TwCh - 105 ns--------

35 TdDS(DO) TwCl - 30 ns TwCl - 25 ns

36 TdA(DSR) TcC - 70 ns TcC - 55 ns

38 TwDSR TcC + TwCh - 80 ns TcC + TwCh - 50 ns

40 TwDSW TcC - 65 ns TcC - 55 ns

-- 41--- TdDSl(DI)-- 2TcC - 180 ns----- 2TcC - 130 ns-----------

43 TwDS 2TcC - 90 ns 2TcC - 75 ns

44 TdAS(DSA) 4TcC + TwCl - 40 ns 4TcC + TwCl - 40 ns

46 TdDSA(DI) 2TcC + TwCh - 170 ns 2TcC + TwCh - 105 ns

48 TdS(AS) TwCh - 55 ns TwCh - 40 ns

A-4

Absolute
Maximum
Ratings

Standard
Test
Conditions

DC
Character-
istics

Ordering
Information

C8085-0006

Voltages on all inputs and outputs
with respect to GND -0.3 V to + 7.0 V

Operating Ambient

Temperature 0 °e to + 70 °e
Storage Temperature -65 °e to + 150 °e

The characteristics below apply for the
following standard test conditions, unless
otherwise noted. All voltages are referenced to
GND. Positive current flows into the refer­
enced pin. Standard conditions are as follows:

• +4.75 V ~ Vee ~ +5.25 V

• GND = 0 V
• ooe ~ TA ~ +70 oe

Symbol Parameter Min

VeH Clock Input High Voltage Vee-O.4

VeL Clock Input Low Voltage -0.3

VIH Input High Voltage 2.0

VIHRESET High Voltage on Reset Pin 2.4

VlL Input Low Voltage -0.3

VOH Output High Voltage 2.4

VOL Output Low Voltage

IlL Input Leakage

IlLSEGT Input Leakage on Segt Pin -100

lOL Output Leakage

ICC Vee Supply Current

Part Number
Temperature Number

Range of Pins

28001 CPU O°C to +70°C 48
28002 CPU O°C to +70°C 40

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device.
This is a stress rating only; operation of the device at any
condition above those indicated in the operational sections
of these specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

All ac parameters assume a load capacitance of 100 pF max, ex­
cept for parameter 6 (50 pF max). Timing references between two
output signals assume a load difference of 50 pF max.

Max

Vee+ 0.3

0.45

Vee+ 0.3

Vee to 0.3

0.8

0.4

±10

100

±10

300

Package

CeramiC

CeramiC

A-5

Unit Condition

V Driven by External Clock
Generator

V Driven by External Clock
Generator

V

V

V

V IOH = -250 ",A

V IOL = +2.0 ",A

",A 0.4 s VIN s +2.4 V

",A

",A 0.4 s VIN s +2.4 V

rnA

Description

Segmented 16-Bi t Microprocessor

Non-Segmented 16-Bit Microprocessor

Package
Dimensions

PIN 1
IDENTIFICATION

40 21

20

1 ~':i~ 'I
0.185 0.095 0 530 ~.g~~
MA< ~

m! !!
0.125 0.050 0.100 0.018
MIN - 1-±.015 BOTH ENDS --J 1-±.010 TYP -11- ±.003 TYP

0.060
0.020

40-Pin Ceramic Package (Z8002)

48 25

PIN 1
IDENTIFICATION

I-~S:~--I

~'''O'
±.010- -

TYP

l-0.600_1
REF

24

~[~:ii 'I 0.040
0.185 0.095 0.530 + .007
MAX Mj

m! !!
0.125 0.050 0.100 0.018
MIN - 1- ±.025 BOTH ENDS --J 1- ±.010 TYP --J 1- ±.003 TYP

0.060
0.020

48-Pin Ceramic Package (Z8001)

A-6

B

~
Zilog

Features

Description

• Dynamic segment relocation makes software
addresses independent of physical memory
addresses.

• Sophisticated access validation protects
memory areas from unauthorized or unin­
tentional access.

• MMU architecture supports multiprogram­
ming systems ..

Declining memory costs coupled with the
increasing power of microprocessors has
accelerated the use of'high-levellanguages,
sophisticated operating systems, complex pro­
grams and large data bases in micromputer
systems. The Z8001 microprocessor CPU sup­
ports these trends with an eight megabyte
direct address space as well as a rich and
powerful instruction set. The Z80 1 0 Memory
Management Unit (MMU) provides flexible and

A·····~I ~
AD,s A23

AD,. A22

AD'3 A2'

AD'2 A20

DATA BUS ADll A'9

AD,o A,s - ADg A17 - ADs A,s PHYSICAL
A,s ADDRESS

A,.

A'3

Z8010 A'2
MMU

All

A10

A9

As

SEGMENT
SEGT SUP TRAP SUPPRESS

DMA/SEGMENT _ DMASYNC R/W

~ }.TUU.
N/S

BUS TIMING { ==: AS ST3

os ST2

ST,

CHIP SELECT _ cs STo

+ 5 V GND ClK RESET DECOUPLE

Figure 1. Pin Functions

C8048-00SJ C8048-0033 B-1

Z8010 MMU
Memory
Management Unit

Product
Brief

Preliminary

August 1979

• Sixty-four variable-sized segments from 256
to 64K bytes can be managed within a total
physical address space of 16M bytes; all 64
segments are randomly accessible.

• Multiple MMUs can support several transla­
tion tables for each of the six Z8001 address
spaces.

efficient support for this large address space
by offering dynamiC segment relocation as well
as numerous memory-protection features.

The primary memory of a computer is one
of its major resources. As such, the manage­
ment of this resource becomes a major con­
cern as demands on it increase. These
demands arise from multiple users (or multiple
tasks within a dedicated application), the need
to increase system integrity by limiting access

cs N/S

DMASYNC RiW
SEGT AS

SUP os
RESET STo

A23 ST,

A22 ST2

A2' ST3

A20 ADs

A'9 AD9

+5V AD10

A,s AD"

A17 ClK

A,s GND

A,s AD'2

A14 AD'3

A'3 AD14

A'2 AD,s

All SNo

A,o SN,

Ag SN2

As SN3

DECOUPLE SN.

SNs SNs

Figure 2. Pin Assignments

Description
(Continued)

to various portions of the memory, and from
the need to structure large, complex programs
and systems.

Multiple tasks (or users) of a system that
can reside anywhere in memory are called
reiocatabie. Generally, systems in which all
tasks are relocatable offer far greater flexibility
in responding to changing system environ­
ments. Another aspect of multiple-task envi­
ronments is sharing: separate tasks can
execute the same program on'different data, or
several tasks may execute different programs
using the same data.

Unfortunately, a problem that arises in
multiple-task systems is that of system integrity.
Tasks must be protected from unwanted inter­
actions with other tasks; user tasks must be
prohibited from performing operating system
functions; and user tasks must also be pro­
tected from themselves so they cannot overflow
the areas allotted to them.

In addition to these considerations, support
for the design and implementation of large,
complex programs and systems is itself an
important consideration. Modern trends are
toward the partitioning of a complex task into
small, simple, self-contained subtasks that have
well-defined interfaces. Because these subtasks
interact with each other, communication
between them must be carefully controlled.
Memory-management systems can offer effec­
tive solutions for implementing large systems
modularly designed.

The Z8010 Memory Management Unit sup­
ports multiple-process and large modular soft­
ware systems with dynamic segment relocation.
Futhermore, it enhances system integrity with

(-;-DO-AD7

I

I) ~ 1\ ADa-AD'5

~ 1
Z8001 SNo-SN6

CPu ~ 1
STo-ST3

~ SEGT

AS f--
OS f---
RIW f---
NIS f--pW

a powerful set of memory protection features.

Relocation. Dynamic segment relocation
makes user software addresses independent of
the physical memory addresses, thereby free­
ing the user from specifying where information
is actually located in the physical memory and
providing a flexible, efficient method for sup­
porting multi-programming systems.

The Z-MMU uses a translation table to
transform the 23-bit logical addresses from the
Z8001 CPU into 24-bit addresses for the
physical memory. Memory segments are
variable in size from 256 bytes to 64K, in
increments of 256 bytes. Pairs of Z-MMUs sup­
port the 128 segment numbers available for the
various Z8001 CPU address spaces. Within an
address space, any number of Z-MMUs can be
used to accommodate multiple translation
tables for system and normal operating modes,
or to support more sophisticated memory­
management systems.

System Integrity. Z-MMU memory-protection
features safeguard memory areas from
unauthorized or unintended access by
associating special access restrictions with
each segment. A segment is assigned a "per­
sonality" conSisting of several attributes when
it is initially entered into the Z-MMU. When a
memory reference is made, these attributes are
checked against the status information sup­
plied by the Z8001 CPU. If a mismatch occurs,
a trap is generated and the CPU is inter­
rupted. The CPU can then check the status
registers of the MMU to determine the cause
and take appropriate action to correct the prob­
lem.

1\
00-07)

J
Da- D'5)

~
Ao-A7)

1
Aa-A23) MEMORY

V
SUP

Z8010

STo-~i MMU

AS

os

~
BI~

Figure 3. The MMU in a Z8000 System

B-2 C8048-0052

~
Zilog

Features

Description

C8067-0045

• Multiplexed address/data bus, shared by
I/O and memory.

• Peripherals may be asynchronous.

• Up to 24-bit memory address, 16-bit I/O.

• 8 or 16 data bits.

The Z-bus is a shared bus that links the com­
ponents of the Z8000 family. A bus user can be
any device that can generate bus transactions.
Five different types of transactions can be
passed on the Z-bus to serve the basic needs of
I/O and memory structures in a distributed­
processing environment. The five types are:

• Memory access

• I/O transfer

• Interrupt

• Bus request

• Resource request

Direct addressing of the internal registers of
peripherals is facilitated by the use of
multiplexed address and data lines. (See
Figure 1.) The Z- bus is asynchronous, so
peripherals' clocks need not be synchronized
with the CPU clock, which is therefore not
transmitted on the bus directly. The signals
(strobes, acknowledges, etc.) generated in the
course of any transaction provide all necessary
timing information.

Memory Access. Status signals issued by the
CPU distinguish memory transactions from
others and select the address space to be
accessed. Slow memory devices may assert the
WAIT signal to prolong the transaction.
Extended addresses may be used with the
segmented Z8001 CPU and the Z8010 MMU.
Other status signals define direction (R/W),
Normal/System (N/S), Byte/Word (B/W), and
the various address spaces.

B-3

Z-Bus
System Structure

Descriptive
Brief

Preliminary

August 1979

• Daisy-chained bus request.

• Daisy-chained resource request.

• Vectored or non vectored interrupts.

• Separate memory and I/O address space.

------PRIMARy SIONALS------

BUS
MASTER

EXTENDED ADDRESS

STATUS>

--AS_
--05_
--R/W_
--Biw _
_ WAIT-­

_RESET __

CLOCK

ADO-AD15~EfS EXTENDED ADDRESS DECODE
STATUS

CLOCK

PERIPHERAL
AND MEMORY

-----BUS REQUEST SIONALS-----­

BUSREO

CPU
--BUSACK­

r----BAi­L-
BAO

_

REQUESTER

------INTERRUPT SIGNALS -----­

_iliff---

CPU

r----IEI­L-
1EO

_

PERIPHERAL

-----RESOURCE REQUEST SIONALS----

Z·BUS
COMPONENT

--MMRO_

_MMST-­

_MMAI----,

_MMAO--l

Figure 1. Z-Bus Signals

MUL TI·MICRO
REQUEST
NETWORK

Description
(Continued)

HIGHEST
PRIORITY

Z·BUS
PERIPHERAL

Z·BUS
PERIPHERAL

LOWEST
PRIORITY

Z.BUS
PERIPHERAL

+5 V lEI ADo-AD,Jls. os iNT INTACK

A'c::r I Itt I
lEO lEI ADo-AD, AS os iNT iNTACK lEO lEI ADo-AD, AS os iNT· INTACK lEO

I Itt I t

7,~111 t

ADo-ACT '; AS ~ 1 I I I I I
Z.BUS os 1 I 1 I ,
CPU

iNT 1 f ,
WAIT I-

STATUS ~ STATUS L , L.

DECODER r ,

ADa-AD1s f<:=:=J FROM 18·BIT PERIPHERALS

Figure 2. Interrupt Connections

1/0 Transfer. The status line 1/0 reference
distinguishes 1/0 transactions from others. The
16-bit multiplexed bus is used for address and
data (without extension), and AS, DS, R/W,
B/W, and WAIT are used in a similar way.

Direct addressing of the internal registers of
peripherals is facilitated by the use of
multiplexed address and data lines. (See
Figure 1.) The Z-bus is asynchronous, so
peripherals' clocks need not be synchronized
with the CPU clock, which is therefore not
transmitted on the bus directly. The signals
(strobes, acknowledges, etc.) generated in the
course of any transaction provide all necessary
timing information.
Interrupt. The Z-bus interrupt scheme is an
interrupt-under-service priority daisy chain
that requires no separate priority controller.
Interrupt requests are all tied directly to the
INT pin of the CPU. (See Figure 2.) Physical
position along the IEI/IEO daisy chain deter­
mines the priority assigned to any given
peripheral. Upon receipt of an INT signal, the
CPU issues an INTACK. (See Figure 3.) This
temporarily inhibits further interrupt requests,
while all devices that have initiated interrupt
requests prior to that INTACK drop their lEO

T2' Tw

CLOCK

ADO-AD7 -4-"----1--'

AS

TW Tw

WAIT SAMPLED
TO EXTEND

VECTOR ACCESS
TIME

(,

~~~~OR 
Tw Tw (T3 

M-+---+---+---+---+---+~ __ ~ __ ~~ 

WAIT -

Figure 3. Interrupt Acknowledge Timing 

outputs. (Multiple INTs might occur 
simultaneously.) The highest-priority IEO has 
the effect of removing IEI inputs from all 
devices beyond it on the same daisy chain, 
thereby preventing them from requesting inter­
rupts further until their IEI inputs are restored. 
Three Wait cycles after the leading edge of 
INTACK (or more, if WAIT has been asserted 
by the highest-priority device requesting ser­
vice), to allow the chain to settle, a DS from 
the CPU stimulates the one highest-priority re­
questing peripheral to place its vector on the 
bus. Two (or more) additional Wait cycles 
later, the service routine is invoked, and 
INTACK is returned high. At this time, all re­
questers of higher priority than the one being 
serviced (those whose IEI lines are still high) 
are enabled, and may generate new interrupt 
requests. Once a peripheral has been serviced 
it unmasks the daisy chain so lower-priority in­
terrupts can be generated. 

Bus Request. The bus request is used to 
transfer control of the Z-bus for memory or I/O 
transactions. The BUSRQ input line to the 
Z-bus CPU, the wired-OR of BRQ outputs from 
all requesters, initiates a bus request. The 
BUSAK output line from the CPU is daisy­
chained through BAI inputs and BAO outputs 

, of all requesters in order of priority, to grant 
use of the bus to the first requester whose 
BAO is held high at that time. 

B-4 

Resource Request. The resource request 
chain is used to share a resource among 
several Z-bus CPUs, none of which is default 
master of that resource. The resource-request 
protocol is similar to that of the bus request, 
except for an added status line that inhibits all 
requesters from issuing requests any time the 
resource is busy. The acknowledge daisy-chain 
resolves contention in the event of simul­
taneous requests. 

C8067·0047 C8067-0102 



~ 
Zilog 

Features 

Description 

• Complete slave microcomputer, for 
distributed-processing Z-Bus use. 

• Unmatched power of Z8 architecture, 
instruction set. 

• Three programmable I/O ports, two with 
2-wire handshake, or any combination of 
data and control lines. 

• Six levels of priority interrupts to Z- UPC. 

The Z-UPC Universal Peripheral Controller 
is a distributed microcomputer that performs 
the three basic interfacing functions needed to 
interface a CPU with peripherals: device con­
trol by ROM-resident internal software, data 
manipulation, such as reformatting or 
arithmetic, and data buffering in internal 
registers. 

The Z- UPC is similar to the Z8 microcom­
puter and uses the Z8 instruction set. Under 

ADDRESSI ! ~ ~~ 
DATA BUS _ AD, 

-AD, 

-AD, 

-ADo 

TIM~~~ I AID 
AND RESET \ - RD 

UPC 

{

_WR 
CONTROL _ cs 

WAIT 

{ 

iNfOR P3. 

INTERRUPT - INTACK OR P3, 
MASTER CPU _ lEI OR P30 

lEO OR P3, 

PCLK_ 

+5V_ 

GND_ 

Pl'_) 
Pl._ 

Pl._ 

Pl. PORT 1 
P13 ........... 

Pl,_ 

Pl, 

Plo_ 

P3, _} 
P3. 

PORT 3 
P3,_ 

P3. 

P2, _) P2._ 

P2s 

P2._ 
P2, PORT 2 

P2, 

P2, 

P20 

Figure 1. Pin Functions 

C8068-0069 C8068-0095 B-5 

Z8034 upe 
Universal 
Peripheral Controller 

Product 
Brief 
Preliminary 

February 1980 

• Two programmable 8-bit counter/timers with 
6-bit prescalers. 

• 256 byte register file, accessible by both 
master CPU and Z-UPC, as allocated by 
Z- UPC program. 

• 2K bytes of on-chip program ROM for effi­
ciency, versatility. 

program control, its three 8-line I/O ports can 
be tailored to the needs of its user. Perma­
nently configured as a single-chip controller 
with 2K bytes of internal ROM, the Z-UPC 
executes instructions in 2.2 I-'S average using a 
4-MHz clock source. Its register file contains 
256 bytes, of which 234 are general-purpose 
registers, 19 are status and control registers, 
and three are port registers. 

+5V P3, 

PCLK P3. 

lEO OR P3, P2, 

lEI OR P30 P2. 

iNT OR P3s P2s 

INTACK OR P3, P2. 

RD P23 

WR P2, 

WAIT P2, 

cs P20 

GND P33 

AID P3, 

AD, Pl, 

AD. Pl. 

AD. Pl. 

AD, Pl. 

AD3 P13 

AD, Pl, 

AD, Pl, 

ADo Plo 

Figure 2. Pin Assignments 



Description 
(Continued) 

03-8068-02 

The Z-UPC Universal Peripheral Controller 
is an intelligent device that generates all the 
control signals peripheral devices need. 
Because it does off-line arithmetic, translates 
data before transmitting, and buffers data, the 
Z- UPC unburdens the master CPU, thereby 
increasing the overall speed and efficiency of 
the system in which it resides. 

Based upon the Z8 miCrocomputer architec­
ture, the Z-UPC offers fast execution time, effi­
cient use of memory, and sophisticated inter­
rupt, I/O, and bit manipulation. Its powerful 
and extensive instruction types, combined with 
its efficient internal register addressing 
scheme, not only speeds program execution, 
but also efficiently packs program into the on­
chip ROM. 

A unique characteristic of the Z- UPC is its 
register file, which contains I/O port and con­
trol registers that can be accessed both by the 
Z-UPC program and by its associated master 
CPU. This results in byte efficiency, program­
ming efficiency, and address space efficiency 
because Z- UPC instructions can operate direct­
lyon I/O data without moving it to and from 
an accumulator. It also allows the Z- UPC user 
to allocate as data buffer between the CPU and 
the peripheral all register space not in use as 

Z·BUS TO 
MASTER 

CPU 

ADo-AD7 

HOST CPU INTERFACE 

INTERFACE 
REGISTERS 

(PART OF REGISTER 
FILE) 

BUS 
TIMING 

WR_ AND 
Cs_ C.DNTROL 

WAIT 

INT 

lEO 

Voo Vss CLOCK 

accumulators, address pointers, index regis­
ters, or stack. Registers not used as buffer are 
protected against CPU access. 

The register file is divided into 16 groups of 
16 working registers each. A register pointer 
allows fast, short-format instructions to access 
anyone of these groups quickly, resulting in 
fast and easy task switching. Two-way com­
munication between the master CPU and the 
register file is facilitated by another pointer 
that positions 16 interface registers anywhere 
within the register file. These registers are 
accessed directly by both the master CPU and 
the slave Z-UPC. Four more registers, similarly 
accessed, convey control and status informa­
tion. 

All of Z-Bus's daisy-chained priority inter­
rupt system can be implemented in the Z- UPC 
under software control, or the Z-UPC can be 
programmed to function in a polled 
environment. In all, the Z- UPC has 24 pins 
that can be dedicated to I/O functions. 
Grouped logically into three 8-line ports, they 
can be programmed in many combinations of 
inputs, outputs, and bidirectional lines, with or 
without handshake and with push-pull or open­
drain outputs. 

PROGRAM 
MEMORY 
2K x 8 

(110 OPTIONAL 
CONTROL FUNCTION) 

Figure 3. Z-UPC Functional Block Diagram 

B-6 C8068-0087 



~ 
Zilog 

Features 

Description 

• Two independent 8-bit double-buffered 
bidirectional I/O ports plus a special­
purpose 4-bit I/O port. 

• Four handshake modes including 3-wire. 

• Request/Wait line for high speed data 
transfer. 

The Z8036 CIO Counter/timer and Parallel 
I/O element is a general-purpose peripheral 
circuit that satisfies most counter/timer and 
parallel I/O needs encountered in system 
designs. This versatile device contains three 
I/O ports and three counter/timers. Many pro­
grammable options tailor its configuration to 
specific applications. The use of the device is 
Simplified by making all internal registers 
(command, status, and data) readable and 
(except for status bits) writable. Also, each 
register is given its own unique address so it 
can be accessed directly-no special sequen­
tial operations are required. The Z-CIO is 
directly Z-Bus compatible. 

Either 8-bit I/O port can be a handshake 

ADDR~~ l~ 
AD, PA, =:1 AD, PAs 

ADs PAs 

AD. PA. 

~rTA DATA 
BUS -

ADo PAo - AD2 PA2 - AD, PA, - ADo PAo 

BUS {_ As Z8036 PB, 

~ )~RTO 
TIMING 

AND RESET - DS CIO PBs 

CONTROL {=: RIW PBs 

CsO PB. 

CS, PBo 

'NTERRU",{ = iNT PB2 

INTACK PB, 

lEI PBo 

lEO PCo 

~ }PDRTC PC2 

PC, 

PCo 

t t 
PCLK +5 V GND 

Figure 1. Pin Functions 

C8050-0035 C8050-0036 B-7 

Z8036 CIO 
Counter/Timer and 
Parallel I/O Unit 

Product 
Brief 

Preliminary 

February 1980 

• Three independent 16-bit counters. 

• All registers read/write and directly 
addressable. 

• Flexible pattern recognition logic, program­
mable as 16-input interrupt controller. 

byte port or a bit port. In the bit mode, data 
direction is programmable bit by bit. In the 
handshake mode, the ports can be input, out­
put, or bidirectional, and they may be linked 
to form a 16-bit port. The four handshake 
modes include 3-wire (like IEEE-488), 
interlocked (for interfacing to a Z-UPC, Z-FIO 
or another Z-CIO), strobed, and pulsed. The 
pulsed mode connects one counter/timer with 
the handshake logic for interfacing a 
mechanical device such as a printer. The 4-bit 
port provides handshake controls, special 
controls (Wait/Request) or general-purpose I/O. 

The counter/timer section contains three 
16-bit counters, two of which can be software­
configured as a 32-bit counter/timer. Up to 

AD. ADo 

ADs AD2 

AD, AD, 

AD, ADo 

OS CsO 
RIW CS, 

GND AS 

PBo PAo 

PB, PA, 

PB2 PA2 

PBo PAo 

PB. PA. 

PBs PAs 

PBs PAs 

PA, 

INTACK 

lEI !NT 
lEO +5V 

PCo PCo 

PC, PC2 

Figure 2. Pin ASSignments 



Description 
( Continued) 

03-8050-02 

four I/O lines for each counter are available 
for direct external control and status informa­
tion. All counters have a programmable output 
duty cycle, continuous or single-cycle oper­
ation, and the counting process can be pro­
grammed to be either retriggered or nonretrig­
gered. 

Figure 3 shows how the Z-CIO is used. The 
two general purpose 8-bit ports are similar. 
They can be programmed as handshake 
driven, double-buffered ports (input, output, 
or bidirectional) or as control ports in which 
the direction of each bit is individually pro­
grammable. Port B can also be speCified to 
provide external access for two of the counter/ 
timers. Each port includes pattern recognition 
logic allowing interrupt generation when a 
speCified pattern is detected. The pattern 
recognition logic can be programmed so that 
the port functions like a priority interrupt con­
troller. 

To control these capabilities, each port con­
tains 13 registers. Three of these, the input, 
output, and buffer registers, are data path 
registers. Two others, the mode speCification 
and handshake speCification registers, define 
the mode of the port and specify what hand­
shake to use, if any. The reference pattern for 
the pattern recognition logic is defined in 
three registers, the pattern polarity, pattern 
transition, and pattern mask registers. The 
detailed characteristics of each bit path (for 
example,the direction of data flow, or whether 
a path is inverting or noninverting) are pro­
grammed using the data path polarity, data 
direction, and special I/O control registers. 
The primary control and status bits are 
grouped in a single register so that after the 
ports are configured initially, only this register 

-
----_.1 AS 

need be accessed often. One register contains 
the interrupt vector associated with each port. 
To facilitate initialization, the port logic is 
designed so that if a capability of the port is 
not required the registers associated with that 
capability are ignored and need not be pro­
grammed. 

The function of port C depends upon the 
roles of ports A and B. Port C provides hand­
shake lines for the other two when required. 
Any bits of port C not so used can be used as 
I/O lines or as external access to the third 
counter/timer. 

Besides the data input and output registers, 
three registers are needed. These specify the 
details of each bit path: data path polarity, 
data direction, and special I/O control. 

The three counter/timers are all identical. 
Each is composed of a 16-bit down-counter, a 
16-bit time constant register (which holds the 
value loaded into the down-counter), a 16-bit 
current count register (used to read the con­
tents of the down-counter), and two 8-bit 
registers for control and status (the mode 
select and control registers). All three share a 
common vector register. 

Each counter/timer can be programmed as 
either counter or timer. Up to four port I/O 
lines can be designated as external access 
lines for it. The lines are: Counter Input, Gate 
Input, Trigger Input, and Counter/Timer Out­
put. Three different counter/timer output duty 
cycles are available: pulse, one-shot, or 
square wave. The operation of the counter/ 
timer can be specified to be either single cycle 
or continuous. The counting sequence may be 
retriggered or nonretriggered, under program 
control. 

P~7 I-----...JI\\I ~7 PRINTER 

:~~ v Do 
pc, l HANDSHAKE 

-'IDS PC2 } 
-----t RiVi Z8036 PC, 1-+------1 

=======-=--=.": .. II~ CIO ::: :::=======~. C:K~~~L 
PBs 1------1 

Z·BUS 

-
_-----lINT PB,I----, 
-----o ... IINTACK PB, 1------, 

·A----·:::-~----:-::~lll ~ :"."' 
~ 

NON Z·BUS 
PERIPHERAL 

( 11'--__________ ----'1\\1 STA~:: Z.BUS 

~ V ,--P_E_RI_PH_E_RA_L--J 

Figure 3. Functional Block Diagram 

B-8 C8050-0067 



~ 
Zilog 

Features 

Description 

• Two independent, 0 to 1M bit per second, 
full-duplex channels, each with its own 
quartz oscillator, baud-rate generator, and 
digital phase-locked loop for clock 
recovery. 

• Multi-protocol operation under program 
control. 

• Programmable for NRZ, NRZI, or FM 
coding. 

• Asynchronous mode with 5 to 8 bits and I, 
1 \12, or 2 stop bits per character, program­
mable clock factor, break detection and 
generation, and parity, overrun, and fram-

The Z-SCC Serial Communication Controller 
is a dual-channel, multi-protocol data com­
munication peripheral for Z-Bus use. It is 
software-configured to satisfy a wide variety of 
serial communication applications. Its basic 
function is serial-to-parallel and parallel-to­
serial conversion. However, the Z-SCC also 
contains a repertoire of new, sophisticated 
internal functions that minimize the need for 

AD, TxDA } SERIAL 
AD. RxDA _ DATA 

ADs TRxCA -}CHANNEL 
ADDRESSI AD, RTxCA _ CLOCKS 

DATA BUS ADs SYNCA - CH·A 
AD, Wiiffii A CHANNEL - AD, DTR/REO A CONTROLS - ADD RTSA 

FOR MODEM, 
DMA,OR 

BUS{_ AS CTSA - OTHER 
TIMING Os DCDA ANDRESET - -

CONTROL {=: R/W TxDB } SERIAL 
CS, RxDB _ DATA 

~ TRxCB -}CHANNEL 

ONTOOAUPT I::: iN! RTxCB CLOCKS 

INTACK ffiiCe -lEI W/REO B CHANNEL CH·B 

lEO DTR/REO B CONTROLS 

RTSB 
FOR MODEM, 
DMA, OR 

Z8030 
CTSB - OTHER SCC 
DCDB -

t t t 
+5V GND PCLK 

Figure 1. Pin Functions 

C805!·0039 C805!·004! B-9 

Z8030 SCC Serial 
Communications 
Controller 

Product 
Brief 
Preliminary 

February 1980 

ing error detection. 

• Bisynchronous mode with internal or exter­
nal character synchronization on one or two 
sync characters and CRC generation and 
checking with CRC-16 or CRC-CCITT 
preset to either 1 s or Os. 

• SDLC/HDLC mode with comprehensive 
frame-level control, automatic zero insertion 
and deletion, I-field residue handling, abort 
generation and detection, CRC generation 
and checking, and SDLC loop mode 
operation. 

• Localloopback and auto-echo modes. 

external random logic on the circuit card. 
The Z-SCC handles asynchronous formats, 

synchronous byte-oriented protocols such as 
IBM Bisync, and synchronous bit-oriented pro­
tocols such as HDLC and IBM SDLC. This ver­
satile device also supports virtually any other 
serial data transfer application (cassette or 
diskette interface, for example). 

The deVice can generate and check CRC 

AD, ADD 

ADs AD, 

ADs AD, 

AD, ADs 

iNr os 
lEO AS 
lEI MY; 

INTACK CSo 
+5V CS, 

Wiiffii A GND 

SYNCA W/REO B 

RTxCA SYNCB 

RxDA RTxCB 

TRxCA RxDB 

TxDA TRxCB 

DTR/REO A TxDB 

RTSA DTR/REO B 

CTSA RTSB 

DCDA CTSB 

PCLK DCDB 

Figure 2. Pin Assignments 



Description 
(Co'ntinued) 

Typical 
Applications 

03-8051-02 

codes in any synchronous mode and can be 
programmed to check data integrity in various 
modes. It also has facilities for modem controls 
in both channels. In applications where these 
controls are not needed, the modem controls 
can be used for general-purpose I/O. 

As is standard among Zilog peripheral com­
ponents, the Z-Bus daisy-chain interrupt 
heirarchy is supported. 

The Z-SCC contains the necessary multi­
plexed address/data bus interface with strobe 
and chip select lines to function as a Z-Bus 
peripheral. It includes internal control and 
interrupt logic, two full-duplex channels and 
two baud-rate generators. Associated with 
each channel are several read and write 
registers for mode control as well as the logic 
necessary to interface to modems or other 
external devices. 

ADDRESS/~ 
DATA~ 

CONTROL 

CPU 
BUS 110 

INTERRUPT 
CONTROL 

LINES 

INTERNAL 
CONTROL 

LOGIC 

INTERRUPT 
CONTROL 

LOGIC 

The read and write register group for each 
channel includes ten control registers, two 
sync-character registers, and four status 
registers. Each baud rate generator has two 
read/write registers for holding the time con­
stant that determines baud rate. Associated 
with the interrupt logic is a write register for 
interrupt vector and three read registers; vec­
tor with status, vector without status, and inter­
rupt pending status. 

The logic for both channels provides format­
ting, synchronization and validation for data 
transferred to and from the channel interface. 
The modem control inputs are monitored by 
the control logic under program control. All of 
the modem control signals are general purpose 
in nature and optionally can be used for func­
tions other than modem control. 

_ } MODEM. DMA, OR 
OTHER CONTROLS 

-} MODEM, DMA, OR 
OTHER CONTROLS 

l SERIAL DATA 

__ I CHANNEL CLOCKS 

SYNC 
WAIT/REQUEST 

Figure 3. Functional Block Diagram 

Figure 4 shows how a Z-SCC can be con­
nected with channel A programmed for the 
Synchronous Data Link Control (SDLC) Loop 
mode, functioning as a secondary station. If 
NRZI or FM coding is used, no clock lines are 
required because the clock can be recovered 
from the received data, using the Z-SCC's on­
chip digital phase locked loop (DPLL). 
Another Z-SCC (not shown), programmed for 
the SDLC mode, would be the controlling sta­
tion, polling the loop for traffic. The figure 
shows a typical, asynchronous serial port 
being serviced by channel B of the Z-SCC. It 
could just as well support another synchronous 
data link, or even a high-speed link, transfer­
ring data via a DMA controller. 

B-lO 

'"'~'" { ~ Z8030 

} 

SDLC 
LOOP 

SCC 

TxDB 
r---

'"':'" { 
TRxCB r------
RTxCB 

MODEM 
RxDB -

CONTROL 

} 

DATA 
LINK 

----
Figure 4. Loop Secondary Station and Serial Port 

C8051-0040 C8051-0070 



~ 
Zilog 

Features 

Description 

• Asynchronous bidirectional FIFO buffer, 
used with most major microprocessors as 
CPU/CPU or CPU/peripheral interface. 

• Interlocked 2-wire or 3-wire handshake port 
mode; Empty, Full, and Request/Wait lines 
for high-speed data transfer. 

• 128 x 8 organization, expandable to any 
width; cascadable to any depth. 

The Z-FIO is a general-purpose micro­
processor interface that provides elastic buffer­
ing between asynchronous CPUs in a parallel­
processor network or between CPU and 
peripheral circuits. The Z-FIO can interface a 
Z-Bus microprocessor or any other major pro­
cessor to another microprocessor or to a 
peripheral circuit or port. 

In Z8000 systems, the FlO furthers dis­
tributed-processor operation because it can 
interconnect components or subsystems 
operating at different speeds. Also, it can 
increase system throughput by transferring 

Mo 

+5 V GND 

Figure 1. Pin Functions 

C8049·0096 C8049009"/ B-11 

Z8038 FlO 
FIFO Input/Output 
Interface Unit 

Product 
Brief 

Preliminary 

February 1980 

• Preset byte count in FlO buffer can inter­
rupt CPU. 

• All registers directly addressable. 

• Vectored/non-vectored interrupts on 
pattern/status match, over/underflow error, 
buffer status. 

words as well as bytes. This bidirectional 
device accepts data and holds it until it can be 
used by another device in the system. In most 
I/O transactions, introducing a l28-deep buffer 
cuts interrupt servicing overhead by two 
orders of magnitude. 

The Z-FIO greatly facilitates system 
throughput by moving variable-size blocks 
under either direct memory access or interrupt 
control-an especially important consideration 
when fast peripheral circuits need interfaCing. 
Complete status information is also provided 
for operation in polled environments. 

+5V 

DO 

0, Do 

02 0, 

03 02 

D. 03 

05 D. 

Os 05 

0, Os 

M, 0, 

GND Mo 

Figure 2. Pin Assignments 



Pin 
Assignments 

Description 
(Continued) 

Operating 
Modes 

Z-Bus Z-Bus 
Low Byte High Byte 

~ REQ/WT REQ/WT 

[!] DMASTB DMASTB 

@] DS 15S 

~ R/W R/W 

!il CS CS 

IT] AS AS 

@] INTACK Aa 

lliJ lEO Al 

[!] lEI A2 

OJ INT A3 

'Port 2 side only. See table below. 

The internal functions of the Z-FIO are 
shown in the block diagram (Figure 3). It is 
made up of two ports that are identical except 
for programming. The port programmed by 
pins Mo and Ml is called Port 1; the port pro­
grammed by bits Bo and Bl is called Port 2. 

Each port of the FlO has sixteen program­
mable registers that define operating protocols 
and pin signals. Common to both ports, and 
situated between them, is the 128 x 8 RAM 
used for data storage. The RAM is capable of 
simultaneous, independent read and write 
operations. This means, for example, that the 
Port 1 CPU can write a byte of data into the 
FlO without disturbing a simultaneous read 
operation by the Port 2 CPU. The outputs of 
the read and write counters are used to 

TO 
Z·BUS 

OR GENERAL 
MICROPROCESSOR 

CONTROLI ,,---., 
INTERFACE 

LOGIC 
PORT 1 

2-Wire 3-Wire 
Non-Z-Bus HS Port'" HS Port'" 

REQ/WT RFD/DAV RFD/DAV 

DACK ACKIN DAV/DAC 

RD FULL DAC/RFD 

WR EMPTY EMPTY 

CS CLEAR CLEAR 

Cio DATA DJR DATA DIR 

INTACK INa INa 

lEO OUT I OUT I 

lEI OE OE 

INT OUT3 OUT3 

address the buffer RAM, and also are fed into 
a subtractor to determine the current number 
of bytes in the memory. This number can be 
read by either CPU from a status register 
dedicated to each port. Another programmable 
register is compared against the status register 
to generate interrupts and/or start and stop 
DMA transfers. A pair of port registers allows 
for communication between CPUs, bypassing 
the main buffer memory. 

Operating Modes. The Z-FIO has twelve 
different programmable modes (Table below). 
The states of two package pins determine the 
mode of operation of Port I, and Port 2 is pro­
grammed by two bits (Bo and Bl) in one of the 
Port 1 control registers. 

TO 
Z·BUS 

OR GENERAL 
MICROPROCESSOR 

OR 
PORT WITH 

HANDSHAKE 

"----,, CONTROLI 
INTERFACE 

LOGIC 
PORT 2 

Figure 3. Functional Block Diagram 

Mode MI MO BI BO 

Z- Bus Low Byte Z- Bus Low Byte 

Z-Bus Low Byte Non-Z-Bus 

Z-Bus Low Byte 3-Wire HS 

Z-Bus Low Byte 2-Wire HS 

Z-Bus High Byte Z-Bus High Byte 

Z-Bus High Byte Non-Z-Bus 

Z-Bus High Byte 3-Wire HS 

Z-Bus High Byte 2-Wire HS 

Non-Z-Bus Z-Bus Low Byte 

Non-Z-Bus Non-Z-Bus Low Byte 

10 Non-Z-Bus 3-Wire HS 

11 Non-Z-Bus 2-Wire HS 

B-12 
C8049-0098 



ZI 
Zilog 

Features 

Description 

• Asynchronous, bidirectional first-in, first-out 
buffer. 

• Extends depth of Z-FIO without limit. 

• 128 x 8 organization. 

The Z-FIFO first-in, first-out buffer unit is a 
128 x 8-bit memory with bidirectional data 
transfer capability and handshake logic. Its 
structure is similar to that of other FIFOs that 
are commonly available, such as the AM2812 
and the 3351. The handshake logic used is 
compatible with that of the Z8, the Z-CIO, and 
Z-FIO. Z-FIFO buffers can be cascaded, end to 
end, without limit, their RFD/DAVand ACKIN 
signals daisy-chained, to make a FIFO array 
any desired number of words deep. Two such 
channels in parallel, suitably controlled, make 
up a 16-bit-wide buffer array. 

Z8060 FIFO 
FIFO Buffer Unit 
and Z·FIO Expander 

Product 
Brief 

Preliminary 

February 1980 

• 3-state data outputs. 

• Empty and Full status pins are wire-ORed 
among multiple stages. 

1
-0

7 
: 0

7
_) _06 I 06_ 

Os P~RT I P~RT 0
5 

_ 

DATA - 0, : 0, DATA 
BUS 0 3 I 0 3 _ BUS 

_ 0, Z8060 0,_ 
_ 0, FlrO 0,_ 
-Do I 0 0 -

{ 

- ACKIN I ACKIN _ } 

CONTROL _ RFDIDAV : RFD/DA_ v _ CONTROL 

OUTPUT I OUTPUT 

- E~~~.L ~~~E -

+5 V GND 

Figure 1. Pin Functions 

ANY NUMBER OF FIFOS 

TO Z·BUS 
OR GENERAL 

MICROPROCESSOR 

.-----~ r-----, 

Figure 2. Using FlFOs to Extend FIOs 

TO Z·BUS 
OR GENERAL 
MICROPROCESSOR 

C8065-0099 C8065-0 I 0 I 
B-13 

03-8065-02 





c 





Appendix C 

Clock Cycles· 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

ADC R,src R Add with Carry 
ADCB R - R + src + carry 

ADD R,src R 4 4 4 8 8 8 Add 
ADDB 1M 7 7 7 14 14 14 R-R+src 
ADDL IR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

AND R,src R 4 4 4 AND 
ANDB 1M 7 7 7 R - RAND src 

IR 7 
DA 9 10 12 
X 10 10 13 

BIT dst,b R 4 4 4 Test Bit Static 
BITB IR 8 Z flag - NOT dst bit specified by b 

DA 10 11 13 
X 11 11 14 

BIT dst,R R 10 10 10 Test Bit Dynamic 
BITB Z flag - NOT dst bit specified by 

contents of R 

CALL dst 1R 10 10 15 Call Subroutine 
DA 12 18 20 Autodecrement SP 
X 13 18 21 @ SP - PC 

PC - dst 

CALR dst RA 10 10 15 Call Relative 
Autodecrement SP 
@ SP - PC 
PC - PC + dst( range -4094 to 
+4096) 

CLR dst R 7 7 Clear 
CLRB IR 8 dst - 0 

DA 11 12 14 
X 12 12 15 

COM dst R 7 Complement 
COMB IR 12 dst - NOT dst 

DA 15 16 18 
X 16 16 19 

COMFLG flags 7 Complement Flag 
(Any combination of C, Z, S, PIV) 

CP R,src R 4 4 4 8 8 8 Compare with Register 
CPB 1M 7 7 7 14 14 14 R - src 
CPL IR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

CP dst,1M 1R 11 Compare with Immediate 
CPB DA 14 15 17 dst - 1M 

X 15 15 18 

• NS = Non-Segmented. SS = Short Segmented Offset. SL =Segmented Long Offset, Blank = Not Implemented. 

COl 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

CPD RX,src,Ry,cc IR 20 Compare and Decrement 
CPDB RX - src 

Autodecrement src address 
Ry - Ry - 1 

CPDR Rx,src,Ry,cc IR (11 + 9n) Compare. Decrement and Repeat 
CPDRB Ry - src 

Autodecrement src address 
Rx - Ry - 1 
Repeat until cc is true or Ry 0 

CPI RX,src,Ry,cc IR 20 Compare and Increment 
CPIB RX - src 

Autoincrement src address 
Ry - Ry - 1 

CPIR RX,src,Ry,cc IR (11 + 9n) Compare. Increment and Repeat 
CPIRB RX - src 

Autoincrement src address 
Ry - Ry - 1 
Repeat until cc is true or Ry = 0 

CPSD dst,src,R,cc IR 25 Compare String and Decrement 
CPSDB dst - src 

Autodecrement dst and src addresses 
R - R- 1 

CPSDR dst,src,R,cc IR (11 + 14n) Compare String. Deer. and Repeat 
CPSDRB dst - src 

Autodecrement dst and src addresses 
R-R-l 
Repeat until cc is true or R = 0 

CPSI dst,src,R,cc IR 25 Compare String and Increment 
CPSIB dst - src 

Autoincrement dst and src addresses 
R-R-l 

CPSIR dst,src,R,cc IR (11 + 14n) Compare String. Incr. and Repeat 
CPSIRB dst - src 

Autoincrement dst and src addresses 
R-R-l 
Repeat until cc is true or R = 0 

DAB dst R 5 5 5 Decimal Adjust 

DEC dst,n R 4 4 4 Decrement by n 
DECB IR 11 dst - dst - n 

DA 13 14 16 (n = 1...16) 
X 14 14 17 

DI'" int Disable Interrupt 
(Any combination of NVI, VI) 

DIV R,src R 107 744 Divide (signed) 
DIVL 1M 107 744 Woid: Rn + 1 - Rn,n + 1 + src 

IR 107 107 107 744 744 744 Rn - remainder 
DA 108 109 III 745 746 748 Long Word: Rn + 2,n + 3- Rn ... n + 3+ src 
X 109 109 112 746 746 749 Rn,n + 1 - remainder 

*Privileged instruction. Executed in system mode only. 

C-2 



Clock CIcles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

DJNZ R,dst RA 11 11 11 Decrement and Jump if Non-Zero 
DBJNZ R-R-l 

If R *- 0: PC - PC + dst(range -254 to 0) 

EI* int 7 7 Enable Interrupt 
(Any combination of NVI, VI) 

EX R,src R 6 6 6 Exchange 
EXB IR 12 R - src 

DA 15 16 18 
X 16 16 19 

EXTS dst R 11 11 11 11 11 11 Extend Sign 
EXTSB Extend sign of low order half of dst 
EXTSL through high order half of dst 

HALT* ( 8 + 3 n) HALT 

IN* R,src IR 10 Input 
INB* DA 12 12 12 R - src 

INC dst,n R 4 4 4 Increment by n 
INCB IR 11 dst - dst + n 

DA 13 14 16 (n = 1...16) 
X 14 14 17 

IND* dst,src,R IR 21 Input and Decrement 
INDB* dst - src 

Autodecrement dst addresed 
R-R-l 

INDR* dst,src,R IR (11 + IOn) Input. Decrement and Repeat 
INDRB* dst - src 

Autodecrement dst address 
R-R-l 
Repeat until R = 0 

INI* dst,src,R IR 21 Input and Increment 
INIB* dst - src 

Autoincrement dst address 
R-R-l 

INIR* dst,src,R IR (11 + IOn) Input. Increment and Repeat 
INIRB* dst - src 

Autoincrement dst address 
R-R-l 
Repeat until R = 0 

IRET* 13 13 16 Interrupt Return 
PS - @ SP 
Autoincrement SP 

JP cc,dst IR 10 15 (taken) Jump Conditional 
IR 7 7 (not taken) If cc is true: PC - dst 
DA 7 8 10 
X 8 8 11 

JR cc,dst RA 6 6 6 Jump Conditional Relative 
If cc is true: PC - PC + dst 
(range -256 to + 254) 

*Privileged instruction. Executed in system mode only. 

C-3 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

LD R,src R 3 3 3 5 5 5 Load into Register 
LDB 1M 7 7 7 11 11 11 R - src 
LDL 1M 5 (byte only) 

1R 7 11 
DA 9 10 12 12 13 15 
X 10 10 13 13 13 16 

BA 14 14 17 17 
BX 14 14 17 17 

LD dst,R 1R 8 11 Load into Memory (Store) 
LDB DA 11 12 14 14 15 17 dst - R 
LDL X 12 12 15 15 15 18 

BA 14 14 14 17 17 17 
BX 14 14 14 17 17 17 

LD dst,1M 1R 11 Load Immediate into Memory 
LDB DA 14 15 17 dst - 1M 

X 15 15 18 

LDA R,src DA 12 13 15 Load Address 
X 13 13 16 R - source address 

BA 15 15 15 
BX 15 15 15 

LDAR R,src RA 15 15 15 Load Address Relative 

LDCTL* CTLR,src R 7 7 Load into Control Register 
CTLR - src 

LDCTL* dst,CLTR R 7 7 Load from Control Register 
dst - CTLR 

LDCTLB FLGR,src R 7 7 7 Load into Flag Byte Register 
FLGR - src 

LDCTLB dst,FLGR R Load from Flag Byte Register 
dst - FLGR 

LDD dst,src,R 1R 20 Load and Decrement 
LDDB dst - src 

Autodecrement dst and src addresses 
R-R+l 

LDDR dst,src,R 1R (11 + 9 n) Load. Decrement and Repeat 
LDDRB dst - src 

Autodecrement dst and src addresses 
R - R - 1 
Repeat until R = 0 

LOI dst,src,R IR 20 Load and Increment 
LOIB dst - src 

Autoincrement dst and src addresses 
R-R-l 

LOIR dst,src,R 1R (11 + 9 n) Load. Increment and Repeat 
LDIRB dst - src 

Autoincrement dst and src addresses 
R-R-l 
Repeat until R = 0 

C-4 



Clock Cycles 

Mnemonics Operands Addr. Word, Byte Long Word Operation 
Modes NS SS SL NS SS SL 

LOK R,src 1M 5 Load Constant 
R - n (n = 0 ... 15) 

LOM R,src,n IR 11 Load Multiple 
DA 14 15 17 + 3n dst - src (n consecutive words) 
X 15 15 18 (n = 1...16) 

LOM dst,R,n 1R 11 Load Multiple (Store Multiple) 
DA 14 15 17 + 3n dst - R (n consecutive words) 
X 15 15 18 (n = 1 ... 16) 

LOPS* src IR 12 Load Program Status 
DA 16 20 22 PS - src 
X 17 20 23 

LOR R,src RA 14 14 14 17 17 17 Load Relative 
LORB R - src 

(range -32768 ... + 32767) 

LOR dst,R RA 14 14 14 17 17 17 Load Relative (Store Relative) 
LORB dst - R 
LORL (range -32768 ... + 32767) 

MBIT* 7 Test Multi-Micro Bit 
Set if M] is Low; reset S if M] is High. 

MREQ* dst R (12 + 7n) Multi-Mircre Request 

MRES* 5 Multi-Micro Reset 

MSET* 5 5 5 Multi-Micro Set 

MULT R,src R 70 70 70 282 + 282 + 282 + Multiply (signed) 
MULTL 1M 70 70 70 282 + 282 + 282 + Word: Rn,n+l- Rn+l' src 

IR 70 282+ Long Word: Rn ... n+3-Rn+2, n+3 . src 
DA 71 72 74 283 + 283 + 286 + + Plus seven cycles for each 1 in the 
X 72 72 75 284 + 284 + 287 + absolute value of the low order 16 bits of the 

multiplicand. 

NEG dst R 7 7 Negate 
NEGB IR 12 dst - a - ds! 

DA 15 16 18 
X 16 16 19 

NOP 7 No Operation 

OR R,src R 4 4 4 OR 
ORB 1M 7 7 7 R - R OR src 

IR 7 
DA 9 10 12 
X 10 10 13 

OTOR* dst,src,r IR (11 + 10 n) Output, Decrement and Repeat 
OTORB* dst - src 

Autodecrement src address 
R-R-l 
Repeat until R = a 

*Privileged instructions. Executed in system mode only. 

C-5 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

OTIR* dst,src,R IR (11 + 10 n) Output. Increment and Repeat 
OTIRB* dst - src 

Autoincrement scr address 
R-R-l 
Repeat until R = 0 

OUT* dst,R IR 10 Output 
OUTB* DA 12 12 12 dst - R 

OUTD* dst,src,R IR 21 Output and Decrement 
OUTDB* dst - src 

Autodecrement src address 
R-R-l 

oun* dst,src,R IR 21 Output and Increment 
OUTIB* dst - src 

Autoincrement src address 
R-R-l 

POP dst,IR R 8 8 8 12 12 12 Pop 
POPL 1R 12 19 dst - IR 

DA 16 16 18 23 23 25 Autoincrement contents of R 
X 16 16 19 23 23 26 

PUSH IR,src R 9 9 9 12 12 12 Push 
PUSHL 1M 12 12 12 Autodecrement contents of R 

IR 13 20 IR - src 
DA 14 14 16 16 21 23 
X 14 14 17 21 21 24 

RES dst,b R 4 4 4 Reset Bit Static 
RESB IR 11 Reset dst bit speCified by b 

DA 13 14 16 
X 14 14 17 

RES dst,R R 10 10 10 Reset Bit Dynamic 
RESB Reset dst bit speCified by contents R 

RESFLG flag 7 7 Reset Flag 
(Any combination of C, Z, s, PIV) 

RET cc 10 10 13 (taken) Return Conditional 
7 7 7 (not taken) 1£ cc is true: PC - @ SP Autoincrement SP 

RL dst,n R 6 for n = Rotate Left 
RLB R 7 for n = 2 by n bits (n = 1, 2) 

RLC dst,n R 6 for n = 1 Rotate Left through Carry 
RLCB R 7 for n = 2 by n bits (n = 1, 2) 

RLDB R,src R 9 9 9 Rotate Digit Left 

RR dst,n R 6 for n = Rotate Right 
RRb R 7 for n = 2 by n bits (n = 1, 2) 

RRC dst,n R 6 for n = 1 Rotate Right through Carry 
RRCB R 7 for n = 2 by n bits (n = 1, 2) 

*Privileged instruction. Executed in system mode only. 

C-6 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

RRDB R,src R 9 9 9 Rotate Digit Right 

SBC R,src R 5 5 5 Subtract with Carry 
SBCB R - R - src - carry 

SC src 1M 33 39 System Call 
Autodecrement SP 
@ SP - old PS 
Push instruction 
PS - System Call PS 

SDA dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic 
SDAB Shift dst left or right 
SDAL by contents of R 

SDL dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Logical 
SDLB Shift dst left or right 
SDLL by contents of R 

SET dst,b R 4 4 4 Set Bit Static 
SETB 1R 11 Set dst bit specified by b 

DA 13 14 16 
X 14 14 17 

SET dst,R R 10 10 10 Set Bit Dynamic 
SETB Set dst bit specified by contents of R 

SETFLG flag X 7 7 Set Flag 
(Any combination of C, Z, S, PIV) 

SIN* R,src DA 12 12 12 Special Input 
SINB* R - src 

SIND* dst,src,R 1R 21 Special Input and Decrement 
SINDB* dst - src 

Autodecrement dst address 
R-R-l 

SINDR* dst,src,R IR (11 + IOn) Special Input, Decrement and Repeat 
SINDRB* dst - src 

Autodecrement dst address 
R-R-l 
Repeat until R = 0 

SINI* dst,src,R IR 21 Special Input and Increment 
SINIB* dst - src 

Autoincrement dst address 
R-R-l 

SINIR* dst,src,R IR (11 + IOn) Special Input. Increment and Repeat 
SINIRB* dst - src 

Autoincrement dst address 
R-R-l 
Repeat until R = 0 

SLA dst,n R (13 + 3n) (13 + 3n) Shift Left Arithmetic 
SLAB by n bits 
SLAL 

SLL dst,n R (13 + 3n) (13 + 3n) Shift Left Logical 
SLLB by n bits 
SLLL 

*Privileged instruction. Executed in system mode only. 

C-7 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

SOTOR* dst,src,R 1R (11 + 10 n) Special Output. Oecr. and Repeat 
SOTORB* dst - src 

Autodecrement src address 
R-R-l 
Repeat until R = 0 

SOTIR* dst,src,R R (11 + 10 n) Special Output. Incr. and Repeat 
SOTIRB* dst - src 

Autoincrement src address 
R-R-l 
Repeat until R = 0 

SOUT* dst,src DA 12 12 12 Special Output 
SOUTB* dst - src 

SOUTO* dst,src,R 1R 21 Special Output and Decrement 
SOUTOB* dst - src 

Autodecrement src address 
R-R-l 

SOUTI* dst,src,R 1R 21 Special Output and Increment 
SOUTIB* dst - src 

Autoincrement src address 
R-R-l 

SRA dst,n R (13 + 3 n) (13 + 3 n) Shift Right Arithmetic 
SRAB by n bits 
SRAL 

SRL dst,n R (13 + 3 n) (13 + 3 n) Shift Right Logical 
SRLB by n bits 
SRLL 

SUB R,src R 4 4 4 8 8 8 Subtract 
SUBB 1M 7 7 7 14 14 14 R - R - src 
SUBL 1R 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

Tee cc,dst R 5 5 5 Test Condition Code 
TCeB Set LSB if cc is true 

TEST dst R 7 7 13 13 13 Test 
TESTB IR 8 13 dst OR 0 

DA 11 12 14 16 17 19 
X 12 12 15 17 17 20 

*Privileged instructions. Executed in system mode only. 

C-8 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes N5 55 5L N5 55 5L 

TRDB dst,sre,R 1R 25 Translate and Decrement 
dsl - sre(dsl) 
Aulodeerernenl dsl address 
R-R-I 

TRDRB dsl,sre,R IR (II + 14n) Translate. Decrement and Repeat 
dst - sre (dst) 
Autodeerernent dst address 
R-R-I 
Repeat until R = 0 

TRIB dst,sre,R IR 25 Translate and Increment 
dst - sre(dst) 
Autoinerernent dst address 
R-R-I 

TRIRB dst,sre,R 1R (11 + 14n) Translate. Increment and Repeat 
dst - sre(dst) 
Autoinerernent dst address 
R-R-I 
Repeat until R = 0 

TRTDB srel,sre2,R IR 25 Translate and Test. Decrement 
RHI - sre2(srel) 
Autodeerernent sre I address 
R-R-I 

TRTDRB srcl ,sre2, R IR (II + 14n) Translate and Test. Deer. and Repeat 
RHI - sre2 (sre 1) 
Autodeerernent sre I address 
R - R - I 
Repeat until R = 0 or RH I "* 0 

TRTIB srcl ,sre2, R IR 25 Translate and Test. Increment 
RHI - sre2 (sre 1) 
Autoinerernent sre address 
R - R - 1 

TRTIRB srel,sre2,R IR (II + 14n) Translate and Test. Incr. and Repeat 
RHI - sre2(srel) 
Autoinerernent sre 1 address 
R - RI 
Repeat until R = 0 or RHI "* 0 

T5ET dst R 7 7 Test and Set 
T5ETB 1R 11 S flag - MSB of dst 

DA 14 15 17 dst - allIs 
X 15 15 18 

XOR R,sre R 4 4 4 Exclusive OR 
XORB 1M 7 7 7 R - R XOR sre 

IR 7 
DA 9 10 12 
X 10 10 13 

C-9 



A 

c 

D 

LOWER NIBBLE (HEX). UPPER INSTRUCTION BYTE 

ADDB ADD SUBB SUB ORB OR 
R -IR R - IR R -IR R -IR R -IR R -: IR 
R -1M R -1M R -1M R -1M R -1M R -1M 

CPL PUSHL SUBL PUSH LDL POPL 
R -IR IR -IR R -IR IR -IR R - lR lR -IR 
R -1M R -1M R -1M 

LDB LD RESB RES SETB SET 
R-lR R - IR lR -1M lR -1M IR -1M IR -1M 
R -1M R -1M R-R R-R R - R R-R 

LDB LD LDB LD LDA LDL 
R - BA R - BA BA - R BA - R R - BA R - BA 

LDRB LDR LDRB LDR LDAR LDRL 
R - RA R - RA RA - R RA - R R - RA R - RA 

Al>DB ADD SUBB SUB ORB OR 
R-X R-X R-X R-X R-X R-X 

R - DA R - DA R - DA R - DA R - DA R - DA 

CPL PUSHL SUBL PUSH LDL POPL 
R-X IR - X R-X lR - X R-X lR-X 

R - DA IR - DA R - DA IR - DA R - DA lR -DA 

LDB LD RESB RES SETB SET 
R-X R-X X -1M X -1M X - 1M X -1M 

R - DA R - DA DA -1M DA -1M DA - 1M DA - 1M 

LDB S .. LDB LD LDA LDL 
R - BX Tabl. BX - R BX - R R - BX R - BX 

7 

ADDB ADD SUBB SUB ORB OR 
R-R R - R R - R R-R R-R R - R 

CPL PUSHL SUBL PUSH LDL POPL 
R-R IR - R R-R lR - R R-R R-lR 

LOB LD RESB RES SETB SET 
R - R R - R R - 1M R - 1M R -1M R - 1M 

DAB EXTS S_ 5_ ADeB ADe 
EXTSB Tabl. Tabl. R-R R - R 

R EX~SL 4 4 

LDB 
R- 1M 

CALK 
PC - RA 

JR 
PC - RA 

DJNZ 
DBJNZ 

PC - RA 

Notes: 

1) Reserved Instructions (RSVD) should not be 
used. The result of their execution is not defined. 

ANDB 
R -IR 
R -1M 

ADDL 
R -IR 
R -1M 

BITB 
IR -1M 
R-R 

RSVD 

ANDB 
R-X 

R - DA 

ADDL 
R-X 

R - DA 

BITB 
X - 1M 

DA - 1M 

LDA 
R - X 

R - DA 

ANDB 
R - R 

ADDL 
R-R 

BITB 
R -1M 

SBCB 
R - R 

2) The execution of an extended instruction will 
result in an Extended Instruction Trap if the EPA 
bit in the FeW is a zero. If the flag is a one the 
Extended Instruction will be executed by the EPU 
function. 

A 

AND XORB XOR CPB 
R -IR R-lR R - IR R -IR 
R -1M R -1M R -1M R -1M 

POP MULTL MULT DIVL 
lR -IR R -IR R - IR R -IR 

R -1M R -1M R -1M 

BIT INCB INC DECB 
lR -1M lR -1M IR -1M IR -1M 
R-R 

LDL RSVD LDPS S .. 
BA - R IR Table 

LDRL 3A 
RA - R 

AND XORB XOR CPB 
R-X R-X R - X R-X 

R - DA R - DA R - DA R - DA 

POP MULTL MULT DIVL 
IR - X R - X R-X R-X 

IR -DA R - DA R - DA R - DA 

BIT INCB INC DECB 
X -1M X - 1M X - 1M X -1M 

DA - 1M DA -1M DA - 1M DA -1M 

LDL RSVD LDPS HALT 
BX - R PS - X 

PS - DA 

AND XORB XOR CPB 
R-R R-R R - R R-R 

POP MULTL MULT DIVL 
R -IR R-R R - R R-R 

BIT INCB INC DECB 
R - 1M R -1M R -1M R - 1M 

SBC S- RSVD S_ 
R-R Tabl. Tabl. 

5 8 

Op Code Map 

C-lO 

B C D E F 

CP S .. S .. EXTEND EXTEND 
R -IR Table Table INST INST 
R -1M I I 

DIV S .. LDL JP CALL 
R-lR Table IR-R PC-lR PC-IR 
R -1M 2 

DEC EXB EX LDB LD 
lR -1M R-lR R-IR IR-R IR-R 

S_ INB IN OUTB OUT 
Table R-lR R-IR IR-R IR-R 

3iB 

CP S- S_ EXTEND EXTEND 
R-X Table Table INST INST 

R - DA I I 

DIV S .. LDL JP CALL 
R-X Table X-R PC-X PC-X 

2 DA-R PC-DA PC-DA 

DEC EXB EX LDB LD 
X - 1M R-X R-X X-R X-R 

DA - 1M R-DA R-DA DA-R DA-R 

S- EI 5 .. RSVD SC 
Tabl. DI Table 

7 7 

CP S_ S .. EXTEND EXTEND 
R - R Tabl. Table INST. INST. 

I I 

DlV S_ RSVD RET RSVD 
R-R Tabl. PC-ISP) 

2 

DEC EXB EX TCCB TCC 
R - 1M R-R R-R R R 

S_ RRDB LOX RLDB RSVD 
Tabl. R R-IM R 

8 



OC 

COMB 
lR 

CPB 
IR.IM 

NEGB 
IR 

RSVD 

TESTB 
IR 

LOB 
IR-IM 

TSETB 
IR 

RSVD 

CLRB 
IR 

OD 4C 4D 8C 
COM COMB COM COMB 

IR X X R 
DA DA 

CP CPB CP LOCTLB 
IR.IM X.IM X.IM R-FLGS 

DA.IM DA.IM 

NEG NEGB NEG NEGB 
IR X X R 

DA DA 

RSVD RSVD RSVD RSVD 

TEST TESTB TEST TESTB 
IR X X R 

DA DA 

LD LDB LO RSVD 
IR-IM X-1M X-1M 

DA-IM DA-IM 

TSET TSETB TSET TSETB 
IR X X R 

DA DA 

RSVD RSVD RSVD RSVD 

CLR CLRB CLR CLRB 
IR X X R 

DA DA 

PUSH LDCTLB 
1M FLGS-R 

- '----

Table 1. Upper Instruction Byte 

IC 9C 

c:J 
~ 

5C 
RSVD U 

TESTL 
lR 

LDM 
lR-R 

LDM 
R-X 

R-DA 

TESTL 
X 

DA 

LDM 
X-R 
DA-R 

Table 2. Upper Instruction Byte 

80 3A 3B 

COM INIB INI 
R IR-IR lR-lR 

INIRB INm 
lR-lR lR-lR 

SETFLG 
SINIB SINI 
lR-lR IR-IR 
SINmB SINm 

NEG lR-lR IR-IR 
R 

OUTIB oun 
IR-lR IR-IR 

RESFLG OTIRB ourm 
lR-IR lR-lR 

sounB soun 
TEST IR-IR IR-IR 

R SOTIRB SOTm 
lR-IR IR-IR 

COMFLG INB IN 
R-DA R-DA 

TSET 
R SINB SIN 

R-DA R-DA 

NOP 

OUTB OUT 
DA-R DA-R 

CLR 
R 

SOUTB SOUT 
DA-R DA-R 

INOB IND 
lR-IR IR-IR 
INDRB INOR 
lR-IR IR-IR 

SINOB SINO 
IR-IR IR-IR 

SINORB SINOR 
IR-IR IR-IR 

OUTOB OUTO 
A IR-IR IR-IR 

OTORB OTOR 
IR-IR IR-IR 

SOUTOB SOUTO 
IR-IR IR-IR 

SOTDRB SOTOR 
lR-IR IR-IR 

Table 3. Upper Instruction Byte 

C-ll 



B2 B3 B8 BA BB 7B 70 

TRIB 
IR 

IRET RSVD 
PC-(SSP) 

RLB RL 
(I bit) (I bit) 

CPIB CPI 
IR IR 

R R 

LOIB LOI 
RSVD RSVD RSVD 

SLLB SLL 
R R 

SRLB SRL 

IR-IR IR-IR 
LOIRll LOIR 
IR-IR IR-IR 

R R TRTIB CPSIB CPSI RSVD LOCTL 

RLB RL IR IR IR R-FCW 

(2 bits) (2 bits) 
R R 

RSVD RSVD RSVD RSVD LOCTL 

SOLB SOL 
R -RFRSH 

R R 

TRIRB CPRIB CPIR RSVD LOCTL 
IR R-

PSAPSEG RRB RR 
IR IR 

(I bit) (I bit) 
R R 

RSVD RSVD RSVD RSVD LDCTL 
R-

SLLL PSAPOFF 
RSVD R 

SRLL 
!oj TRTIRB 

'" IR >< IQ 

RSVD LOCTL 
R-NSPSEG 

!oj 

'"' >< 
IQ RRB RR 

CPSIRB CPSIR 
IR IR 

12:; g 
U RSVD 
~ 

~ 
rn 
!!S 

RSVD LOCTL 
R -NSPOFF 

12:; g 
u 
~ 

~ 
rn 
!!S 

(2 bits) (2 bits) 
R R 

RSVD SOLL 
R 

RSVD RSVD 

ffi TROB 
~ IR 9 

MSET RSVD ffi 
~ 
0 ... RLCB RLC 

CPOB CPO 
IR IR 

B ;; RSVD MRES RSVD ~ 
(I bit) (1 bit) 

R R 
LOOB LOO 

!oj 

;;:j 
IQ 

Ii: 

~ TRTOB 

0 
IR 

... 
MBIT LOCTL 

FCW-R 

Col ... 
IQ 
IQ 

Ii: 
ffi 

~ 

SLAB SLA 
R R 

SRAB SM 
R R 

RLCB RLC 

IR-IR IR-IR 
LOORB LOOR 
IR-IR IR-IR 

CPSOB CPSO 
IR IR 

A (2 bits) (2 bItS) 

RSVD RSVD LDCTL 
R R 

RSVD RSVD 
RFRSH-R 

SOAD SOA 
R R 

TRORB CPORB CPOR LOCTL 
IR IR IR PSAPSEG 

RRCB RRC -R 

C (! bit) (! bit) 
R R RSVD RSVD RSVD MREQ LOCTL 

R PSAPOFF 

SLAL -R 

RSVD R 
SRAL TRTORB CPSORB CPSOR RSVD LDCTL 

IR IR iR NSPSEG-R 

RRCB RRC 
(2 bits) (2 bits) 

RiwD 
LOCTL 

RSVD NSPOFF-R 

R R 

RSVD RSVD 

SOAL 
RSVD R 

Table 4. Table 5. Table 6. Table 7. 
Upper Instruction Byte Upper lnstl'uction Byte Upper Instruction Byte Upper Instruction Byte 

C-12 



Topical 
Index Data Addressing Flags 

Instruction Description Mnemonic Types Modes Affected 

Arithmetic 
Add with Carry ADC B, W R C, Z, S, V, DI, HI 
Add ADD B, W, L R, 1M, IR, DA, X C, Z, S, V, DI, HI 
Compare (Immediate) CP B, W IR, DA, X C, Z, S, V 
Compare (Register) CP B, W,L R, 1M, IR, DA, X C, Z, S, V 
Decimal Adjust Bit DAB B IR C, Z, S 
Decrement DEC B, W R, IR, DA, X Z,S, V 
Divide DIV W, L R, 1M, IR, DA, X C, Z, S, V 
Extend Sign EXTS B, W, L R C,Z, S, V 
Increment INC B, W R, IR, DA, X Z,S, V 
Multiply MULT W, L R, 1M, IR, DA, X C, Z, S, V 
Negate NEG B, W R, IR, DA, X C, Z, S, V 
Subtract with Carry SBC B,W R C, Z, S, V, DI, HI 
Subtract SUB B, W, L R, 1M, IR, DA, X C, Z, S, V, DI, HI 

Bit Manipulation 
Bit Test BIT B, W R Z 
Bit Reset (Static) RES B, W R, IR, DA, X 
Bit Reset (Dynamic) RES B, W R 
Bit Set (Static) SET B, W R, IR, DA, X 
Bit Set (Dynamic) SET B,W R 
Bit Test and Set TSET B, W R, IR, DA, X S 

Block Transfer and String Manipulation 
Compare and Decrement CPD B, W IR C,Z, S, V 
Compare, Decrement, and Repeat CPDR B, W IR C, Z, S, V 
Compare and Increment CPI B, W IR C, Z, S, V 
Compare, Increment, and Repeat CPIR B, W IR C, Z, S, V 
Compare String and Decrement CPSD B, W IR C, Z, S, V 
Compare String, Decrement, and Repeat CPSDR B, W IR C,Z, S, V 
Compare String and Increment CPSI B, W IR C, Z, S, V 
Compare String, lricrement, and Repeat CPSIR B, W IR C, Z, S, V 
Load and Decrement LDD B, W IR V 
Load, Decrement, and Repeat LDDR B, W IR V 
Load and Increment LDI B, W IR V 
Load, Increment, and Repeat LDIR B, W IR V 
Translate and Decrement TRDB B IR Z, V 
Translate, Decrement, and Repeat TRDRB B IR Z, V 
Translate and Increment TRIB B IR Z, V 
Translate, Increment, and Repeat TRIRB B IR Z, V 
Translate, Test, and Decrement TRTDB B IR Z, V 
Translate, Test, Decrement, Repeat TRTDRB B IR Z, V 
Translate, Test, and Increment TRTIB B IR Z, V 
Translate, Test, Increment, and Repeat TRTIRB B IR Z, V 

CPU Control Instructions 
Complement Flag COMFLG C', Z', S', p', V' 
Disable Interrupt DI 
Enable Interrupt EI 
Halt HALT 
Load Control Register (from register) LDCTL R C', Z', S', p', D', H' 
Load Control Register (to register) LDCTL 
Load Program Status LDPS IR, DA, X C, Z, S, P, D, H 
Multi-Bit Test MBIT S 
Multi-Micro Request MREQ Z, S 
Multi-Micro Reset MRES 
Multi-Micro Set MSET 
No Operation NOP 
Reset Flag RESFLG C', Z', S', p', V' 
Set Flag SETFLG C', Z', S', p', V' 

1. Flag affected only for byte operation. 

2. Flag modified only if speCified by the instruction. 

C-13 



Topical 
Index 
(Continued) Data Addressing Flags 

Instruction Description Mnemonic Types Modes Affected 

Input/Output Instructions' Regular Special 
Input (S)IN' B, W IR, DA (DA) 
Input and Decrement (S)IND' B, W IR (IR) V 
Input, Decrement and Repeat (S)INDR' B, W IR (IR) V 
Input and Increment (S)INI' B, W IR (IR) V 
Input, Increment, and Repeat (S)INIR' B, W IR (IR) V 
Output (S)OUT' B, W IR, DA (DA) 
Output and Decrement (S)OUTD' B, W IR (IR) V 
Output, Decrement, and Repeat (S)OUTDR' B, W IR (IR) V 
Output and Increment (S)OUTI' B, W IR (IR) V 
Output, Increment, and Repeat (S)OUTIR' B, W IR (IR) V 

Logical Instructions 
And AND B, W R, 1M, IR, DA, X Z, S, P 
Complement COM B, W R, IR, DA, X Z, S, P 
Or OR B, W R, 1M, IR, DA, X Z, S, P 
Test TEST B, W, L R, IR, DA, X Z, S,P 
Test Condition Code TCC B, W R 
Exclusive Or XOR B, W R, 1M, IR, DA, X Z, S, P 

Program Control Instructions 
Call Procedure CALL IR, DA, X 
Call Procedure Relative CALR RA 
Decrement, Jump if Not Zero DJNZ B, W RA 
Interrupt Return IRET C,Z, S,P,D, H 
Jump JP IR, DA, X 
Jump Relative JR RA 
Return From Procedure RET 
System Call SC 

Rotate and Shift Instructions 
Rotate Left RL B, W R 
Rotate Left Through Carry RLC B, W R C,Z,S, V 
Rotate Left Digit RLDB B R Z, S 
Rotate Right RR B, W R C, Z, S, V 
Rotate Right Through Carry RRC B, W R C, Z, S, V 
Rotate Right Digit RRDB B R Z, S 
Shift Dynamic Arithmetic SDA B, W, L R C, Z, S, V 
Shift Dynamic Logical SDL B, W, L R C,Z, S, V 
Shift Left Arithmetic SLA B, W, L R C,Z, S, V 
Shift Left Logical SLL B, W, L R C, Z, S, V 
Shift Right Arithmetic SRA B, W, L R C,Z, S, V 
Shift Right Logical SRL B, W, L R C,Z, S, V 

3. Each 1/0 instruction has a Special counterpart used to alert other devices that a Special 1/0 transaction is occur~ 
ring. The Special 1/0 mnemonic is S + Regular mnemonic. Refer to section 6.2.8 for further details. 

C-14 



AAO j 
AD!' Oi' O! 

AAO 1 
Aol' i' 01 

Al !15 Rll'5 01 

RR21 
R21 

RR2j 
R21 ----"l 

R31 R31 

RR·I 
R·I 

RR'( 
R·I RL' 

R51 R51 

R.61 
R61 

RR61 
R61 

R'I R'I Rl6 RL7 

RR81 
R81'5 01 RA8( 

R8115 01 
R91 R91 

I R101 I R101 
ARlO RR10 

R111 R111 

I R121 

I~" 
I R121 

RR12 AA12 

R131 R131 

[ ... SYSTEM STACK POINTER (SEG. NO.) 

RR14 ( 
R141 

R14 NORMAL STACK POINTER (SEG. NO.) (NSPSEG) 
SYSTEM STACK POINTER RR14 

R15' SYSTEM STACK POINTER (OFFSET) NORMAL STACK POINTER (NSP) 

R15 NORMAL STACK POINTER (OFFSET) (NSPOFF) 

Z8001 General Purpose Registers Z8002 General Purpose Registers 

Register Binary 

RQO RRO RO RHO 0000 
Rl RHI 0001 

RR2 R2 RH2 0010 
R3 RH3 0011 

RQ4 RR4 R4 RH4 0100 
R5 RH5 0101 

RR6 R6 RH6 0110 
R7 RH7 0111 

RQ8 RR8 R8 RLO 1000 
R9 RLl 1001 

RRI0 RIO RL2 1010 
Rll RL3 1011 

RQ12 RR12 R12 RL4 1100 
R13 RL5 1101 

RR14 R14 RL6 1110 
R15 RL7 1111 

Binary Encoding for Register Fields 

Z8002 

LOW 

SYSTEM STACK I-----f ADDRESS 

~~~~T~= AFTER..... IDENTIFIER !~~~~~~:P 
INTERRUPT FCW OR INTERRUPT

PC

SYSTEM STACK

~~~~T~= BEFORE_ 

INTERRUPT t------i 

_ ,WORD_ 

SYSTEM SP 
BEFORE TRAP 
OR INTERRUPT 

HIGH 
ADDRESS 

Z800' 

IDENTIFIER 

FCW 

PC SEGMENT 

PC OFFSET 

_'WORD _ 

Hex 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

LOW 
ADDRESS 

HIGH 
ADDRESS 

Format of Saved Program Status in the System Stack 

C-15 

I~' 



CONTROL BITS FLAGS 
15 a 
FE3SIN IEPAI VI INVI'_ C I z Is IplYl D I H _ 

PROGRAM COUNTER 

NONSEGMENTED 

15 a 

• dL 4 'ml 
CONTROL BITS FLAGS 

• PC SEGMENT NUMBER "'_I 

BYTE OFFSET 
HEX DECIMAL 

a 

10 16 

18 24 

20 32 

28 40 

30 48 

38 56 

3C 60 

40 64 

44 68 

23A 570 

PROGRAM COUNTER OFFSET 

SEGMENTED 

Program Status Blocks 

PROGRAM STATUS AREA 
POINTER (PSAP) 

~ 

I "'" I _r=~~~ OFFSET IMPLIED 

Z8a01 Z8002 

RESERVED 

---
RESERVED 

FCW EXTENDED FCW 

INSTRUCTION 

~p~~kru- TRAP PC 

--
RESERVED 

FCW PRIVILEGED FCW 

~p~E~F~ 
INSTRUCTION 

TRAP PC 

RESERVED 
---

FCW SYSTEM FCW 

Wp~E~F~ 
CALL 
TRAP PC 

--RESERVED 

FCW SEGMENT NOT USED 

..Jp~E~~ 
TRAP 

--RESERVED 

FCW NON·MASKABLE 
FCW 

..Jp~E~F~ 
INTERRUPT 

PC 

--
RESERVED 

FCW NON·VECTORED 
FCW 

..Jp~E~F~ 
INTERRUPT 

PC 

--RESERVED 

FCW 
FCW 

..Jp~t~kw- PC, 

..Jp~~~~ VECTORED 
PC2 

..JP~~~hm-
INTERRUPTS 

PC3 

~p~:~~ PCn 

--

Program Status Area 

C-16 

BYTE OFFSET 
DECIMAL HEX 

12 

16 10 

20 14 

24 18 

28 1C 

30 1E 

32 20 

34 22 

540 21C 



Condition 
Codes Code Meaning Flag Setting Binary 

F Always false* 0000 
Always true 1000 

Z Zero Z = I 0110 
NZ Not zero Z = 0 1110 
C Carry C=l 0111 
NC No carry C = 0 IIII 
PL Plus S = 0 1101 
MI Minus S = I 0101 
NE Not equal Z = 0 1110 
EQ Equal Z = I 0110 
OV Overflow V = I 0100 
NOV No overflow V = 0 1100 
PE Parity even P = I 0100 
PO Parity odd P = 0 1100 
GE Greater than (S XOR V) 0 1001 

or equal 
LT Less than (S XOR V) I 0001 
GT Greater than (Z OR (S XOR V)) = 0 1010 
LE Less than or (Z OR (S XOR V)) = I 0010 

equal 
UGE Unsigned C = 0 IIII 

greater than 
or equal 

ULT Unsigned C = I 0111 
less than 

UGT Unsigned ((C = 0) AND (Z 0)) 1011 
greater than 

ULE Unsigned less (C OR Z) = 1 0011 
than or equal 

This table provides the condition codes and the flag settings they represent. 

Note that some of the condition codes correspond to identical flag settings: i.e., Z-EQ, NZ-NE, 
NC-UGE, PE-OV, PO-NOV. 

*Presently not implemented in PLZIASM Z8000 compiler. 

7 6 5 4 3 2 1 

BITS IN A BYTE 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

BITS IN A WORD 

Address n 

BYTE 

Address n (even) Address n + 1 

UPPER BYTE LOWER BYTE WORD 
, ! ! ! , , 

Address n Address" + 1 

I ~PP~R ~OR~/uP~ER ~YT~ I I} 
~Ad~d~re=ss~n~+~2~ ________ -TA~dd~re=ss~n~+~3 ________ ~ LONG WORD 

I I ~OW~R ~OR~'LO~ER IBYT~ I 

Addressable Data Elements 

C-17 



Z8000 
Addressing 
Modes 

Powers 
of 2 
and 16 

Addressing Mode 

R 

Register 

1M 

Immediate 

"IR 

Indirect 
Register 

DA 

Direct 
Address 

"X 

Index 

RA 

Relative 
Address 

*BA 

Base 
Address 

"BX 
Base 

Index 

Operand Addressing 

In the Instruction In a Register In Memory 

I REGISTER ADDRESS ~ 

I REGISTER ADDRESS ~------·I OPERAND I 

~-------------------------.. ~ 

PC VALUE I-----t 
r;;;DIS;;p;;::LA~C;EM;'E;;;N;T "--~::-::-::-::-::-::-::-=~I OPERAND I 

Operand Value 

The content of the 
register 

In the instruction 

The content of the location 
whose address is in the 
register 

The content of the location 
whose address is In the 
instruction 

The content of the loca­
tion whose address is the 
address in the instruction 
plus the content of the 
working register_ 

The content of the location 
whose address is the 
content of the program 
counter. offset by the 
displacement in the 
instruction 

The content of the location 
whose address is the 
address in the register. 
offset by the displacement 
in the instruction 

The content of the loca­
tion whose address is 
the address in a register 
plus the index value in 
another register. 

·00 not use RO or RRO as indirect. index. or base registers. 

2n n 16n n 

256 2° 16° 1 0 

512 2' 16' 16 1 

28 162 256 2 
1024 10 

2'2 163 4096 3 
2048 11 2'6 16' 65536 4 
4096 12 2"" 165 1 048576 5 

8 192 13 22' 166 16777216 6 

2'" 167 268435456 7 
16384 14 

232 168 4294967296 8 
32768 15 

236 169 68719476736 9 
65536 16 2'" 16'° 1 099511 627 776 10 

131072 17 2" 16" 17592186044416 11 

262 144 18 248 16'2 281 474976710 656 12 

252 16'3 4 503 599 627 370 496 13 
524288 19 

256 16" 72 057 594 037 927 936 14 
1 048576 20 200 16'5 I 152 921 504 606 846 976 15 
2 097 152 21 
4 194304 22 Powers of 16 
8388608 23 

16 777 216 24 

Powers of 2 

C-IB 



8 7 6 4 2 

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal 

o 

268,435,456 16,777,216 1,048,576 65,536 4,096 256 16 

536,870,912 33,554,432 2,097,152 131.072 8,192 512 2 32 

805,306,368 50,331,648 3,145,728 196,608 12,288 768 3 48 

1,073,741,824 67,108,864 4,194,304 262,144 16,384 1,024 64 

1,342,177 ,280 83,886,080 5,242,880 327,680 20,480 1,280 80 

1.610,612,736 100,663,296 6,291,456 393,216 24,576 1,536 96 

1.879,048,192 117,440,512 7,340,032 458,752 28,672 1,792 112 

2,147,483,648 8 134,217,728 8,388,608 524,288 32,768 8 2,048 8 128 8 8 

2,415,919.104 150,994,944 9,437,184 589,824 36,864 2,304 144 

A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10 

B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11 

C 3,221,225,472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12 

D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13 

E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14 

F 4,026,531,840 F 251,658,240 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15 

8 7 6 4 3 2 

Hexadecimal and Decimal Interger Conversion Table 

To Convert Hexadecimal to Decimal 

1. Locate the column of decimal numbers corresponding to 
the left-most digit or letter of the hexadecimal: select 
from this column and record the number that cor­
responds to the position of the hexadecimal digit or 
leiter. 

2. Repeat step 1 for the units (second from the left) 
position. 

3. Repeat step 1 for the units (third from the left) position. 

4. Add the numbers selected from the table to form the 
decimal number. 

To convert integer numbers greater than the capacity of 
the table, use the techniques below: 

Hexadecimal to Decimal 

Succesive cumulative mulitplication from left to right, 
adding units position. 

Example: D3416 = 338010 

D = 13 

3 

4 

xl6 
208 
+ 13 
2IT 
x 16 

3376 
+4 

3380 

Example: 

Conversion of 
Hexadecimal Value 

D34 

I.D 3328 

2. 3 48 

3. 4 6 

4. Decimal 3380 

To Convert Decimal to Hexadecimal 

1. (a) Select from the tabel the highest decimal number 
that is equal to or less than the number to be 
converted. 

(b) Record the hexadecimal of the column containing 
the selected number. 

(c) Subtract the selected decimal from the number to be 
converted. 

2. Using the remainder from step l(c) repeat all of step 1 
to develop the second position of the hexadecimal (and 
a remainder). 

3. Using the remainder from step 2 repeat all of step 1 to 
develop the units pOSition of the hexadecimal. 

4. Combine terms to form the hexadecimal number. 

Decimal to Hexadecimal 

Divide and collect the remainder in reverse order. 

Example: 338010 = D3416 

1613380 ~remainder 

16~4 r 
16~3 

D 

C-19 

Example: 

Conversion of 
Decimal Value 

3380 

1. D - 3328 

2. 3 

52 

-48 

4 

3.4 -4 

4. Hexadecimal D34 



ASCII Hexadecimal Character Meaning Hexadecimal Character 
Characters 

00 NUL NULL Character 40 @ 

01 SOH Start of Heading 41 A 
02 STX Start of Text 42 B 
03 ETX End of Text 43 C 

--04 EOT -- End of Transmission 44 D 
05 ENQ Enquiry 45 E 
06 ACK Acknowledge 46 F 
07 BEL Bell 47 G 

--08 BS --Backspace 48 H 
09 HT Horizontal Tabulation 49 I 
OA LF Line Feed 4A J 
OB VT Vertical Tabulation 4B K 

--OC FF -- Form Feed 4C L 
OD CR Carriage Return 4D M 
OE SO Shift Out 4E N 
OF SI Shift In 4F 0 

--10 DLE -- Data Link Escape 50 P 
11 DCl Device Control 1 51 Q 
12 DC2 Device Control 2 52 R 
13 DC3 Device Control 3 53 S 

--14 DC4 -- Device Control 4 54 T 
15 NAK Negative Acknowledge 55 U 
16 SYN Synchronous Idle 56 V 
17 ETB End of Transmission Block 57 W 

--18 CAN --Cancel 58 X 
19 EM End of Medium 59 Y 
lA SUB Substitute 5A Z 
lB ESC Escape 5B [ 

--lC FS -- File Separator 5C \ 
lD GS Group Separator 5D J 

IE RS Record Separator 5E 
IF US Unit Separator 5F 

--20 SP -- Space 60 
21 ! 61 a 
22 62 b 
23 # 63 c 

--24 $ 64 d 
25 % 65 e 
26 & 66 
27 67 9 

--28 68 h 
29 69 
2A 6A j 

2B + 6B k 
--2C 6C I 

2D 6D m 
2E 6E n 
2F I 6F 0 

--30 0 70------ p 
31 1 71 q 
32 2 72 
33 3 73 

--34 4 74 
35 5 75 u 
36 6 76 v 
37 7 77 w 

--38 8 78 x 
39 9 79 y 
3A 7A 
3B 7B 

--3C < 7C 
3D 7D 
3E > 7E "v 

3F 7F DEL Delete 

C-20 



D 

m_ 





Glossary of 
Terms 

address: A number that specifies one par­
ticular element in a set of similar elements. 
May be either a memory address or an 1/0 
address (q.q. v). (See also segmented address, 
logical address, physical address.) 

address space: A set of addresses. The 28000 
can access eight separate address spaces: 
normal-mode program memory space, system­
mode program memory space, normal-mode 
data memory space, ::;ystem-mode data memory 
space, normal-mode stack memory space, 
system-mode stack memory space, standard 
I/O space, and special I/O space. (See normal 
mode, system mode, program memory address 
space, data memory address space, stack 
memory address space, standard I/O address 
space, and special I/O address space.) 

addressing mode: The way in which the 
address of an operand (q.v.) is specified. 
There are eight addressing modes: Register, 
Immediate, Indirect Register, Direct Address, 
Index, Base Address, Relative Address, Base 
Index (q.q.v). 

autodecrement: The contents of a register are 
decremented and then used as specified by the 
instruction. 

autoincrement: The contents of a register are 
used as specified by the instruction and then 
incremented. 

Base address (BA) addressing mode: A 
based address consists of a register that con­
tains the base and a 16-bit displacement (q.v.). 
The displacement is added to the base and the 
resulting address indicates the effective 
address (q.v.). In nonsegmented mode, the 
base address is held in a word register (q.v.) 
and the displacement is in the instruction. In 
segmented mode, the segmented base address 
is held in a register pair and the displacement 
is in the instruction. 

Base Index (BX) addressing mode: Based 
Indexed addressing is similar to Based 
addressing except that the displacement 
("index"), as well as the base, is held in a 
register. In non segmented mode, the base 
address is held in a word register and the 
index is held in a word register. In segmented 
mode, the segmented base address is held in a 
register pair (q. v.) and the index is held in a 
word register. 

D-l 

Appendix D 

BCD digit: A Binary Coded Decimal digit is 
an encoding of the ten decimal digits into a 
4-bit code that is simply the first ten binary 
numbers in the binary number system (starting 
with 0). This code is used to represent and 
process numbers in the base-lO (decimal) 
format. 

bus: A group of signal lines, which connects 
the devices in a system. 

Bus-Disconnect state: The CPU state during 
which the CPU is not the bus master and may 
not initiate transactions (q. v.) on the bus. 

bus master: The device in control of the bus. 
Must be a device that is able to initiate 
transactions. 

bus request: A request for control of the bus. 

byte: A byte is eight contiguous bits; a byte in 
memory starts on an addressable byte 
boundary. 

byte register: An 8-bit register. The 28000 
CPU contains 16 general-purpose byte 
registers, deSignated RLn and RHn (n = 0-7). 

clock cycle: One cycle of the CPU clock, 
beginning with a rising edge. 

condition: An event detected by the hardware 
and indicated by setting the appropriate flag. 
A condition is caused by the execution of an 
instruction and is always reproducible. The 
28000 has six flags to record these events, 
called status flags (q. v.). 

context switching: Interrupting the activity in 
progress and switching to another activity. A 
context switch involves saving for later restora­
tion the contents of the general-purpose 
registers, the Program Counter and the Flag 
and Status Word (q.v.). 

CPU state: Either Running state, Stop/Refresh 
state, or Bus-Disconnect state (q.q. v.). 

data memory address space: A memory 
address space (q.v.) that is identified by the 
status codes 1000 or 1010. 

data structure: A logical organization of 
primitive elements (e.g. byte or word) whose 
format and access conventions are well­
defined. Examples of data structures are 
tables, lists and arrays. 



Glossary of 
Terms 

data type: The way in which bits are grouped 
and interpreted. For an instruction, the data 
type of an operand determines its size and the 
significance of its bits. Operand data types 
include byte, word, long word, byte string, 
word string, and BCD digit. 

Direct Address (DA) addressing mode: In this 
mode, the operand address is contained within 
the instruction. 

displacement: A number contained in the 
instruction for use in calculating the effective 
address (q. v.) of an operand. The displace­
ment is added to the contents of a register dur­
ing the calculation. 

DMA: Direct Memory Access is a method for 
transferring data to or from main memory at 
high speed by avoiding the CPU registers. 

effective address: The address obtained after 
indirect or indexing modification. In non­
segmented mode, the effective address is a 
16-bit number. In segmented mode, the effec­
tive address consists of a 7-bit segment number 
and 16-bi t offset. In systems with memory 
management, the effective address is the 
logical address which must be translated to 
obtain the physical memory address. 

flags: Bits in the Flag and Control Word 
(q.v.) that indicate conditions (q.v.). 

Flag and Control Word: One of the two Pro­
gram Status registers; it contains flags (q.v.) 
and bits that control the operation of the CPU. 

Immediate (I) addressing mode: In this 
mode, the operand is contained within the 
instuction. 

Index (X) addressing mode: In this mode, the 
operand address is obtained by adding the 
con ten ts of an index regi ster (q. v.) to a base 
address contained in the instruction. 

index register: A word register used to con­
tain a displacement for use in effective address 
calculation. 

Indirect Register (lR) addressing mode: In 
this mode, the operand address is contained 
within a register. 

instruction fetch: An access to program 
memory address space (q.v.). 

interrupt request: An event other than a trap 
or jump or call instruction that changes the 
normal flow of instruction execution. (See non­
maskable, non-vectored, and vectored 
interrupts. ) 

interrupt service routine: The routine exe­
cuted in response to an interrupt. 

interrupt/trap acknowledge transaction: The 
transaction initiated by the CPU in response to 
an interrupt or trap. Obtains an identifier word 
from the interrupting device or memory man­
agement hardware. 

D-2 

I/O address: The address of an I/O port, 
always 16 bits long. Word ports may have even 
or odd addresses, Special I/O byte ports are 
even, Standard I/O byte ports are odd. 

I/O transaction: A transaction that transfers 
data to or from a peripheral device or memory 
management hardware. 

logical address: The address manipulated by 
the programmer, used by instructions and out­
put by the Z8001. 

long word: A long word is 32 contiguous bits; 
a long word in memory starts on an even 
addressable byte boundary. 

machine cycle: One basic CPU operation, 
starting with a bus transaction (q. v.). 

memory address: An address specifying a 
location in memory. Word and long-word 
addresses must be even, byte addresses may 
be even or odd. 

memory management: The process of trans­
lating logical addresses into physical 
addresses (q.q.v.), plus certain protection 
functions. 

memory transactions: A transaction that 
transfers data to or from main memory. 

normal mode: A Running-state (q.v.) mode in 
which the SIN flag in the FCW is 0 and the 
N/S line is High. In this mode, the CPU may 
not execute privileged instructions (q. v.). 

non-maskable interrupts: In terrupts (q. v . ) 
which cannot be disabled. 

nonsegmented mode: A Running-state mode 
of the Z8001 CPU. In this mode, all addresses 
are generated with the same segment 
number (q.v.). 

non-vectored interrupts: Interrupts (q. v.) 
which do not use the identifier word as a vec­
tor to an interrupt service routine (q. v.). 

offset: In a Z8001 CPU, the 16-bit value that 
appears on the AD lines when an address is 
generated. 

operand: An item of data operated on by an 
instruction. 

physical address: The address required for 
accessing the memory, obtained from the 
logical address generated by the Z8001 by 
memory management hardware, for example, 
the Z8010 Memory Management Unit. 

privileged instruction: An instruction intend­
ed for use primarily by an operating system, 
which can be executed only in system mode. 
In general, instructions that change the pro­
cessor state or perform I/O are privileged. 

Program Counter (PC): One of the two Pro­
gram Status registers (q.v.). Contains the 
address of the current instruction word. 



Glossary of 
Terms 

program memory address space: The 
memory address space (q. v.) indicated by the 
status codes (1100 or 110 1). 

Program Status Area: The area in memory 
reserved for the starting program status of the 
interrupt and trap service routines. 

Program Status Area Pointer: The register 
that contains the starting address of the Pro­
gram Status Area. 

Program Status registers: The two registers 
(PC and FCW) that contain the program 
status. 

refresh counter: A register that controls the 
Z8000 dynamic memory, periodic-refresh 
mechanism. Used to set the refresh rate and to 
enable the mechanism. 

refresh cycle: A type of transaction used to 
refresh dynamic memory. It is three clock 
cycles long. 

Refresh/Stop state: A CPU state entered 
whenever the STOP line is asserted. A con­
tinuous stream of refresh cycles (q.v.) is 
generated. 

register: A storage location in hardware logic 
other than the memory. Bits within a register 
are numbered from 0, with the least Significant 
being the rightmost. See also byte register, 
word register, register pair, and register quad. 

Register (R) addressing mode: In this mode, 
the operand is in a general-purpose register. 

register pair: One of eight pairs of general­
purpose word registers, designated RRn 
(n = 0,2,4, ... , 12, 14). 

register quad: One of four groups of four 
word registers, designated ROn (n = 0, 4, 
8, 12). 

Relative Address (RA) addressing mode: In 
this mode, the operand address is calculated 
by adding a displacement found in the instruc­
tion to the current PC value. 

request: Either an interrupt request, bus 
request, resource request, or STOP request 
(qq.v.). An external device requests that the 
CPU perform some action. 

reset: An internal CPU operation that initial­
izes the Program Status registers. It is acti­
vated by the RESET line. 

Running state: One of the three CPU states. 
In this state, the CPU is fetching and exe­
cuting instructions or handling interrupts. 

segment: In a 28001, a set of adjacent 
memory addresses (up to 64K) with the same 
segment number (q.v.) on lines SNo-SN6. 

segment number: A number specifying a 
memory segment (q.v.). Placed on the 
SNo-SN6 lines during memory transactions in 
Z8001 system. Part of a segmented 
address (q.v.). 

D-3 

segmented address: In Z8001 CPU's, a 23-bit 
value consisting of a 7-bit segment number 
(q.v.) and a 16-bit offset (q.v.). 

segmented mode: One of the Running-state 
modes of the 28001 CPU. In this mode, CPU 
generates addresses that can have different 
segment numbers. 

special I/O address space: An 1/0 address 
space (q.v.) that is identified by the status 
code 1011. Used to access memory manage­
ment hardware. 

stack: A data structure used for temporary 
storage or for procedure and interrupt service 
routine linkages. A stack uses the last-in, first­
out concept. As items are added to, or pushed 
onto, the stack, the stack pointer decrements; 
as items are removed from, or popped off, the 
stack, the stack pointer increments. 

stack memory address space: A memory 
address space (q.v.) that is identified by the 
status codes 1001 and 1011. 

stack pointer: A general-purpose register 
indicating the top (lowest address) of a stack. 

standard I/O address space: An 1/0 address 
space (q. v.) that is identified by the status 
code 0010. Used for accessing peripherals. 

status code: A 4- bit encoding of the CPU's 
current transaction, for example, internal 
operation, segment trap acknowledge, or stack 
memory request. 

status flags: Status flags are set according to 
the outcome of certain instructions to direct 
the subsequent flow of the program as neces­
sary. There are six status flags: Carry, Zero, 
Sign, Parity/Overflow, Decimal Adjust and 
Half Carry. The first four are grouped together 
to determine the condition code, the last two 
are used in programs manipulating BCD 
digits. 

status lines: The lines STo-ST3, which contain 
the status code during transactions. 

stop request: A request that is made by acti­
vating the STOP line. 

Stop/Refresh state: See Refresh/Stop state. 

system mode: A Running-state mode (q.v.) in 
which the SIN flag in the FCW is 1 and the 
N/S line is Low. In this mode, the CPU may 
exercise privileged instructions (q. v.). 

transaction: One of the basic bus operations. 
A transaction lasts three or more clock cycles 
and covers a single data movement on the bus. 



Glossary of 
Terms 

trap: A condition that occurs at the end of an 
instruction that caused an illegal operation. 
The Z8000 traps are internal traps arising from 
system call, unimplemented instruction and 
privileged instructions executed in normal 
mode, and an external trap, the segmentation 
trap, arising from memory access violations in 
systems with memory management. A trap is 
similar to an interrupt in that it causes the exe­
cuting program to be interrupted and the Pro­
gram Status registers to be saved on the system 
stack. Traps cannot be disabled. 

vectored interrupts: Interrupts (q. v.) which 
use the identifier word as a vector to the inter­
rupt service routine (q. v.). May be 
disabled. 

D-4 

WAIT cycle: A clock cycle during which the 
WAITline is active. Used to prolong trans­
actions, since no signal line is sampled while 
WAIT is active. 

word: Two contiguous bytes (16 bits) starting 
on an even addressable byte boundary. Bits 
are numbered from the right, 0 through 15. A 
word is identified by the address of the byte 
containing the most significant bit, bit 15. 

word register: A 16-bit register. 




