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A New Storage Element Suitable for

Large-Sized Memory Arrays—
The Twistor

By ANDREW H. BOBECK

Three methods have been developed for storing information in a cotnci-
dent-current manner on magnetic wire. The resulting memory cells have
been collectively named the “‘twistor”. Two of these methods utilize the strain
sensitivity of magnetic materials and are related to the century old Wertheim
or Wiedemann effects; the third utilizes the favorable geometry of a wire.

The effect of an applied torsion on a magnetic wire s to shift the preferred
direction of magnetization into a helical path inclined at an angle of 45°
with respect to the axis. The coincidence of a circular and a longitudinal
magnetic field inserts information into this wire in the form of a polarized
helical magnetization. In addition, the magnetic wire itself may be used as
a sensing means with a resultant favorable increase in available signal since
the lines of flux wrap the magnetic wire many times. Equations concerning
the switching performance of a twestor are derived.

An experimental transistor-driven, 320-bit twistor array has been built.
The possibility of applying weaving techniques to future arrays makes the
twistor approach appear economically aitractive.

I. INTRODUCTION

A century ago Wiedemann' observed that if a suitable magnetic rod
which carries a current is magnetized by an external axial field, a twist
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of the rod will result. The effect is a consequence of the resultant helical
flux field causing a change in length of the rod in a helical sense. Con-
versely, it was also observed that a rod under torsion will produce a
voltage between its ends when the rod is magnetized (see Fig. 1).

Recently, during an investigation of the magnetic properties of nickel
wire, it was observed that a voltage was developed across the ends of a
nickel wire as its magnetization state was changed. Both the amplitude
and the polarity of the observed signal could be varied by movements
of the nickel wire. Most surprising, the amplitude of the observed voltage
12 of Fig. 2, was many times that which would be expected if a con-
ventional pickup loop were used.

After determining experimentally that the observed voltage was
generated solely in the nickel wire and was not a result of air flux coupling
the sensing loop (mickel wire plus unavoidable copper return wire), it
was concluded that the flux in the nickel wire must follow a helical path.
This suggested that torsion was the cause of the observed effect, a con-
clusion verified experimentally. The direction of the applied twist de-

APPLY I
Q

OBSERVE V3

Fig. 1 — Observation of an internally induced voltage v: generated by a mag-
netic wire under torsion.

Fig. 2 — Comparison of the internally induced voltage v» to the voltage v,
induced in the pickup loop. '
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termined the polarity and the amount of the twist determined the mag-
nitude of the observed voltage.

As a consequence of these results, it is possible to build mechanical-
to-electrical transducers,? transformers with unity turns ratio but possess-
ing a substantial transforming action, and a variety of basic memory
cells.

This paper will be concerned with a discussion of the memory cells
from both a practical and theoretical viewpoint. It will be shown how
these cells can be fabricated into memory arrays. One such configuration
consists solely of vertical copper wires and horizontal magnetic wires.
Experimental results of the switching behavior of many magnetic ma-
terials when operated in the “twisted’” manner will be given.

II. A COINCIDENT-CURRENT MEMORY CELL — THE TWISTOR

Consider a wire rigidly held at the far end and subjected to a clockwise
torsion applied to the near end. This will result in a stress component of
maximum compression® at an angle of 45° with respect to the axis of the
wire in the right-hand screw sense, and a component of maximum tension
following a left-hand screw sense. All magnetic materials are strain
sensitive to some degree. This will depend upon both the chemical com-
position and the mechanical working of the material. For example, if
unannealed nickel wire is subjected to a torsion, the preferred direction
of magnetization will follow the direction of greatest compression, as
would be predicted from the negative magnetostrictive coefficient of
nickel. Unannealed nickel wire, then, will have a preferred remanent flux
path as shown in Fig. 3.

If the ease of magnetization as measured along the helix is sufficiently
lower than that along the axis or circumference, it is possible to insert
information into the wire in a manner somewhat analogous to the usual

FLUX PATH
|

CLOCKWISE
TWIST

Fig. 3 — Relationship of the mechanical stresses resulting from applied torsion
to the preferred magnetic flux path in nickel.
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coincident-current method. Consider a current pulse I; applied through
the nickel wire in such a direction as to enhance the spiraling flux, and
a second current pulse 7. applied by means of an external solenoid (see
Fig. 4). Coincidentally, the proper amplitude current pulses will switch
the flux state of the wire; either alone will not be sufficient. To sense the
state of the stored information it is necessary either to reverse both cur-
rents, or to overdrive I, in the reverse direction. In an array, the output,
in the form of a voltage pulse, would be sensed across the ends of the
nickel wire. The solenoid may be replaced by a single copper conductor
passing at right angles to the nickel wire. For obvious reasons the mem-
ory cell has been named the “twistor’”. The above method of operation
will be referred to as mode A.

Mode B is the use of the magnetic wire as a direct replacement for the
conventional coincident-current toroid. Its use here differs only in that
the wire itself is used as a sensing winding (refer to Fig. 5). The pulses
I; and I are equal in value and each alone is chosen to be insufficient to
switch the magnetization state of the wire. The coincidence of I; and I,
will, however, result in the writing of a bit of information into the wire.
To read, I; and I are reversed in polarity and applied coincidently. The
output appears as a voltage pulse across the ends of the nickel wire.

//FLUX PATH

Fig. 4 — Coincident currents for the ‘‘write’’ operation in a twistor operated
mode 4. Wire under torsion.

Fig. 5 — For mode B the coincidence of I; and I, is required to exceed the knee
of the ¢-NI characteristic. Wire under torsion.
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The third method of operating the twistor, mode C, is similar in
nature to a method proposed by J. A. Baldwin." In this scheme the wire is
not twisted, so that neither screw sense is favorable. By the proper ap-
plication of external current pulses, information will be stored in the
wire in the form of a flux path of a right-hand screw sense for a 1”7,
and a left-hand screw sense for a “0”’. The operation of the cell is indi-
cated in Figure 6. Note that the writing procedure requires a coinci-
dence of currents; the reading procedure does not. The sign of the
output voltage indicates the stored information.

Modes A and C are best suited for moderate sized memory arrays
since the reading procedure is not a coincident type selection. Thus to
gain access to n’ storage points, an access switch capable of selecting
one of n’ points is required. For large arrays the use of mode B is indi-
cated. It then becomes possible to select one of n” points with a 2n posi-
tion access switch. The crossover point (about 10° bits) is determined by
access circuitry considerations.

WRITEx C— =

U or g

WRITEg

read (< —-f

L

\\1‘/// \{( ”
SIGNAL OUT T OR

Fig. 6 — Read-write cycle for a twistor operated mode C. The wire is not
under torsion.
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III. ANALYSIS OF THE SWITCHING PROPERTIES OF THE TWISTOR

Section 3.1 will deal with the basic properties of magnetic wire as they
pertain to the twistor memory cell. Section 3.2 will be concerned with a
composite magnetic wire. The theoretical conclusions will be supported
by experimental results wherever possible.

3.1 Solid Magnetic Wire

It has been stated above that there is a voltage gain inherent in the
operation of the twistor. This voltage gain makes it possible to obtain
millivolt signals from wires several mils in diameter. An expression will
now be derived relating the axial flux of an unfwisted wire to the circular
flux component of that wire when twisted. Assume that the magnetic
wire has been twisted so that the flux spirals at an angle 8 (normally
6 = 45°) with respect to the axis of the wire. If d and [ are the diameter
and length of the magnetized region respectively, then, for a com-
plete flux reversal the change in the circular flux component is @eire =
1(d/2)(2B; sin 6).

Here, ¢.irc is the flux change that would be observed on a hypothetical
pickup wire which passed down the axis of the magnetic wire. The flux
change which would be observed by a single pickup loop around the wire,
if the magnetic wire were not twisted, iS @iongititudinal =  d°Bs/2.
Therefore, ¢eire/¢iony = 2 I sin 8/7 d, and for § = 45°, this expression
reduces to

Peire ; l/ d
= 593 1)

Thus, for example, if the storage length on a 3-mil wire is 100 mils,

then a 15:1 gain in flux change (or voltage) is obtained.

Voss
2
\_/
___ b
{
/___ r "‘_\
—Rrm % ve— VO@
(a) (b)

Fig. 7— (a) Calculation of the observable voltage V,is for a solid magnetic
wire. (b) Diagram of induced voltage V (r) and resistance R(r).
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The above derivation assumed that the entire circular flux change
could be observed externally. Since the magnetic wire must, of necessity,
serve as the source of the generated voltage the resultant eddy current
flow reduces the observable flux change by a factor of three. Consider Fig.
7; assume that the flux reversal takes place in the classical manner and
consider the circular component of this flux since it alone contributes
to the observable signal. The induced voltage V(r) at any point r is
V({r) = V(0)/(ry — r/ry), where ry is the radius of the wire and V(0)
the voltage at r = 0. But V(r), the induced or open-circuit voltage per
length of wire [, could only exist if the wire were composed of many con-
centric tubes of wall thickness dr, each insulated from one another. In a
long wire no radial eddy currents can exist. Therefore the wire of length [
can be assumed to be faced by a perfect conductor at both of its ends.
It remains to calculate the potential between these ends. The resistance
of the tube is R(r) = pl/2xr dr, where p is the resistivity in ohm-cm.
The resistance of the wire is given by R, = pl/xr,". These resistances
form a voltage divider on the tnduced voltage in the tube and the total
contribution of all tubes is obtained by integration;

pl/ry
Vobserwed f V( ) <pl/21r7”d7'>

_ fo R0 <’"" = ’”> %’” dr @)

7 (0)
I

Thus, (1) must be modified by (2) with the voltage step-up per memory
cell becoming,

Vs _ l/d

Vione 6.66° (3)

3.11 Bullk Flux Reversal — Classical Case

The switching performance of a magnetic wire under transient condi-
tions will now be considered. The speed of magnetization reversal of
magnetic materials under pulse conditions is best characterized by s, ,
the switching coefficient, usually expressed in oersted-microseconds. It
is defined as the reciprocal of the slope of the 1/7T versus H curve where
T is the time required to reverse the magnetization state and H is the
applied magnetic field intensity. Only eddy current losses will be con-
sidered.
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First, consider the case in which the magnetization is entirely circular.
Reversal from one flux remanent state to the other is assumed to occur
uniformly in time 7', . Axial eddy currents will flow down the center of
the wire and return along the surface. The switching coefficient, s, ,
will be obtained by equating the input energy to the dissipated energy.
The total energy dissipated per unit length is,

& =T, f " orP(r) dr, @)
and
PG = [E(:” , 5)

where P(r) the power density is given by E(r) the voltage gradient
squared divided by the resistivity. The average energy per unit volume
is therefore

2
S (V(O) (T‘) - r) - ——V(O)>
s 7'0 3 2
— T dr
1o Jo pl? (6)
_ T, <V(0)>2
18\ I/
Now V(0) = [(dB/dt)rl]107°, so V(0)/l = (2B.ro/T,)10~". Putting this
expression into (6) yields

gnv/cm3 =

2B 327'02

Saver/cma = ng 10—16'- (7)

The input energy per unit volume is

s _ (2B.H cosfy) 107
o 47 ’

&/cm (8)
since AB-H = 2B,H cos 6, where 6, is the angle between the applied
field H and the switching flux. The factor 10" /4r is a constant relating
the energy in joules to the BH product in gauss-oersteds. By equating
(7) and (8), and replacing H by (H — H,), the desired s, expression is
obtained;

(4xBy) 107

so = TulH — Hy) = 9p cos 6,

(oe-usec). 9)

The substitution of H — H, for H requires some explanation. The
switching curve of 1/7s versus H is not a straight line as would be pre-
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dicted from (9) but generally possesses considerable curvature at low
drives. Equation (9) satisfactorily predicts the slope of the switching
curve in the high drive region, but H, must be determined experimen-
tally. In Section 3.12, flux reversal by wall motion is treated as it is a
possible switching mechanism at low drives.

The switching coefficient s, for the case in which the magnetization is
purely axial will now be treated. As above, the flux density will change
from — B, to +B; uniformly in time 7 . The eddy currents, which are
circular, result from an induced voltage V(r) where V(r) = [V (ro)(r/r0)"],
and V() is given by V(re) = [(2B./T.) w1 ]107°. Thus, E(r) = V(r)/2xr,
and E(r) = (Ba/T.)10°. Following the procedure used above, the in-
ternally dissipated energy density is

T, ™ (Bs107%/T,)

Snv/cm3 = 2 27mr dT;
wroe” Jo P :
B (10)
_ sTo —16
Sav/cm3 = <2Tsp> 107
Equating this expression to (8) yields
2 —3
$o = (H — H)T, = ’M, (1)
p cos by

where 6, is defined as the angle between the applied field and the switch-
ing flux now assumed axial.

The helical flux vector in a twistor can be resolved into a circular and
an axial component. Fortunately, since the dissipated energy is pro-
portional to the eddy current density squared, and the axial and cir-
cular current density vectors are perpendicular to each other, it is
possible to write

8av/ems(helical) = &,y/ems(axial) + 8uv/ems(circular). (12)
It follows, for a 45 degree pitch angle, that

seo(axial) + s,(circular)

so(helical) = 5

(13)

where the factor “2” is a consequence of the flux density components
being smaller by 1/4/2 than their resultant. Substitution of (9) and (11)
into (13) gives the desired switching coefficient

137 Bay'10”°
18 pcosf’

sw(helical) = (H — H)T, = - (14)
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" The term cos 8 requires further explanation. The magnetization vector
is constrained by energy considerations to align with the easy direction
of magnetization. The angle between the applied field and the easy
direction of magnetization is called 6. Equation (14) is valid for any
direction of applied field. The angles 6; and 6. used in deriving (9) and
(11) respectively are each 45 degrees for the helical pitch angle assumed
above.

Equation (14) indicates that for maximum switching speed a material
with low saturation flux density and high resistivity is required. The
lower limit on s, will be determined by internal loss mechanisms not
treated here. Experimentally, this lower bound is found to be approxi-
mately 0.2 oe-usec.

3.12 Reversal by Single Wall

The switching time of a twistor when operating in a memory array
under coincident current conditions will depend upon the low-drive
switching coefficient. Experimentally, it is observed that the low drive
8y is several times the high-drive value. In this section, following the
method of Williams, Shockley, and Kittel,” flux reversal by the move-
ment of a single wall will be treated. Only the circular flux case will be
considered.

The technique used to obtain s, is identical to that used in Section
3.1.1 except it is postulated that a single wall concentric to the wire
moves either from the wire surface inward, or from the wire axis outward.
The result is independent of the direction in which the wall moves. As-
sume the wall moves from 7 = 0 to r = 7, as indicated in Fig. 8. In-

%

arp Y6)]

v(r)

Fig. 8 — Flux reversal by expanding wall instantaneously located at radial
position ar, moving with velocity .
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stantaneously, the wall is located at ar, and is traveling with a velocity ».
The induced voltage V,.(r) is,

Voo(r) = (2B,l)107° 0<r<an,
=0 areo < r <1 B

and the observable voltage for a wire of length [ is given by

e
4 P 0
f Voolr) pl/2'n'rdr

= fo oc(r)

= &' Voo(r).

It is clear in the above integration that V..(r) must be treated as a con-
stant. Using expressions (4) and (5)

( °°) 1 — a»2nrrdr

arg

a((J'av/cm3 _
ot wre P

f (V) © — &2mrdr, (16)
7I'7'0p arg

08av/ems? _ (Voc> 1 - a)a2
at l P )

T'he rate of applying energy is

98 _ 8B (H — H,) cos 0) =

Once again hysteresis losses are not included. Since dB/3t = 2Bar,,
and V. is given by (15), the equation of (16) and (17) yields,

oo p(H—H,)cosb
U@ =" 50
Since v = (dr/dt) = r, (da/db),

* _ p(H — H.) cos 8
fo &t - &) da T 8rBue fd‘

3 5
a _a _ p(H — H,) cos 8
575 = @B TR
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When a equals 0, ¢ equals 0, so the constant of integration is zero. When
a equals 1, { equals T, so

167 By’
w = T,H — H,) ==
s ( ) < 15 pcos @

> 10" %*(oe-usec) (18)

Comparison to the corresponding bulk flux reversal case indicates that
the wall motion mechanism is more lossy by a factor of 2.4.

3.2 The Composite Magnetic Wire

It is apparent from the switching data of Fig. 9 that for reasonably
sized solid wires (r, > 1 mil) the switching coefficient s, is unreasonably
high. The typical ferrite memory toroid, for example, when used as a
memory element has an s, of 0.6 oersted-microseconds. The only possi-
bility for high speed coincident-current operation for solid magnetic wires
is that the material have a high coercive force H. , a conclusion not con-
sistent with the trend toward transistor driven memory systems.

By the use of a composite wire it should be possible to reduce the eddy
current losses and still preserve a reasonable wire diameter. A composite
wire, by definition, will consist of a non-magnetic inner wire clad with a
magnetic skin. It may be fabricated by a plating or an extruding process.

The solid wire analysis of Section 3.1 is a special case of composite

6

1 4-79 PERMALLOY;IMIL UNANNEALED
o 2 83Ni,17Fe, 0.5MN;2MIL UNANNEALED
© @ 3 NICKEL;3MIL ANNEALED
5l @ ]o 4 NICKEL ON NICHROME;

Sy 3MIL UNANNEALED,3 = 0.70

i o 5 NICKEL ON COPPER; )
3MIL ANNEALED,3 = 0.75 P

1/ Ty IN psec™!
(8] H

N

0 10 15 20 25 30 35 40
Haxia IN OERSTEDS

Fig. 9 — Reciprocal of flux reversal time T's as a function of applied axial drive,
H, for solid and composite magnetic wires. Sufficient torsion applied to reach
saturation.
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wire analysis which is given in Appendix I. Only the results of the com-
posite wire case will be given here. As indicated in Fig. 10, p1 and ps

(a) (b)

Fig. 10 — (a) Composite wire is composed of non-magnetic core covered by a
magnetic skin. (b) A voltage V(r) is induced in the wire during flux reversal.

are the resistivities of the inner (non-magnetic) and outer (magnetic)
materials. The inner material is contained within a radius r; . The over-
all wire radius is r» . Defining a = ri/r., if Vi is the voltage observed
across the ends of the composite wire twistor memory cell, and V(0)
is the induced voltage at » = 0 for a solid magnetic wire of radius 7, ,
Vons = DV(0), and

g(%__(f_l_gas)_}_a:z_aa
b =22 :

g — ) + e
P2

(19)

The parameter “b” reduces to 1 for @ = 0 in agreement with (2) which
was derived for the solid wire case. Table I gives “b” for various material
and geometry combinations.

TaBLE I — THE PARAMETER ‘b

a
p1/p2
0.0
0.9 0.8 0.7 (Solid Wire)

0 0.100 0.200 0.300 1.000
v 0.0988 0.194 0.285 .333
3 0.0963 0.184 0.259 .333
1 0.0903 0.163 0.219 .333
3 0.0790 0.135 0.180 .333
10 0.0643 0.112 0.155 .333
0 0.0491 0.0963 0.141 .333
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TABLE II — THE PARAMETER “Ciir.’’

a
o1/p2 o0
09 08 07 (Solid Wire)

0 0.0858 0.353 0.820 1.396
iy 0.0847 0.339 ,0.763 1.396
3 0.0842 0.311 0.657 1.396
1 0.0737 0.256 0.498 1.396
3 0.0595 0.159 0.341 1.396
10 0.0286 0.124 0.243 1.396
© 0.0209 0.0833 0.186 1.396

The switching coefficient, s, , for circular flux reversal, is derived as

_ (81337‘22)]0_3 2[ 2P R AY
= 0 =) cosd a|(l —a—0) p 1-10

w

4a(l — b) d 40 —-1b) | 1 @0
ol -y _a —_pr -2
| B e s
or
2 —3
S = Coire (Bar:)107 (oe-usec). (21)
p2 cos 0
Table II gives Ceir as a function of a and p;/p, .
The switching coefficient s, for axial flux reversal is derived as
_ (wBa"107° (1 —4d* +d'3—4In a))
S = < p2 €OS 0 ) 1— a2 22)
2103
= Caxial (M \ (23)
p2 cos 6/

Table III gives Caxia1 as a function of “a”.
Since, as explained for the solid wire case, the eddy current density
vectors for circular and axial flux reversal are in quadrature,

sw(axial) 4 s,(circular)

s,(helical) = 3

(24)

Substitution of (21) and (23) into (24) gives the required expression;

Ccirc + Caxial\ (Bsrzz) 10..3
2 /) pacosf

so(helical) = ( (25)

A number of composite wire samples have been prepared and evalu-
ated. These include nickel on nichrome and nickel on copper. The switch-
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TABLE IIT — THE PARAMETER ‘‘Caxial’’

a ’ 0.9 | 0.8 0.7

0.0
(Solid Wire)

Caxm; 0.0795 | 0.300 | 0.633 3.142

ing curves for these samples as well as for a number of solid magnetic
wires are shown in Fig. 9. The agreement between the measured values
of s, and the calculated values [(14) and (25)] is quite good. Improved
composite wire samples are under development.

IV. EXPERIMENTAL MEMORY CELLS AND ARRAYS

The initial experiments were performed using commercially available
nickel wire of 3-mil diameter. The ¢-N1I characteristic of this wire in the
helical direction is extremely square. This is a feature of all the magnetic
materials tested whether annealed or unannealed. As a typical example,

PULSE #-NI, 60 CYCLE
APPIED L ' CIRCULAR

TWIST RESPONSE AXIA

IN
RADIANS
PER CM

1.5

0.5

-0.5

-1.0

Fig. 11 — Sixty cycle and switching waveforms for 83 Ni, 17 Fe wire (see Fig. 9)
as a function of applied torsion.
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the 60-cycle characteristics of the axial and circular flux versus axial
drive and the switching voltage waveforms under pulse conditions are
given in Fig. 11 for 2-mil wire of composition 83 Ni, 17 Fe.

Note the negative prespike on the switching waveforms. By simultane-
ous observation of both the axial and circular switching voltage wave-
forms on many different magnetic wires it has been concluded that the
negative prespike is due to an initial coherent rotation of the magnetiza-
tion vector which results in an initial ¢ncrease in the circular flux com-
ponent. It is during this coherent rotation that the normal positive pre-
spike on the axial switching voltage waveform is observed. Because of
the mechanically introduced strain anisotropy, however, the magnetiza-
tion vector is constrained to remain nearly parallel to the easy direction
of magnetization. Thus, the coherent rotation soon ceases and the re-

7

.
e, |
L IMA/G' FAILURE TO WRITE-' - é

IvacneTic IN MILLIAMPERES

Fig. 12 — Range of writing currents for 83 Ni, 17 Fe wire operated mode. A
_Rea(;l:l drlveii held constant at 9 oersteds. Typical signal-to-noise ratio for a read
is indicated.
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Fig. 13 — A 320-bit experimental twistor memory array. The array is transistor
driven.

mainder of the flux reversal process is by an incoherent rotational process.
During this latter time the circular and axial voltage waveforms are
virtually identical.

Fig. 12 gives the range of operation of 2-mil 83 Ni, 17 Fe wire as a
twistor operated by mode A. As a result of the extreme squareness of
the ¢-NT characteristic in helical direction the range of operation en-
closes an area nearly the theoretical maximum. The switching times of
other memory cells tested ranged from 0.2 usec for a 1 mil 4-79 moly-
permalloy wire to 20 usec for a 5 mil perminvar wire. Thus it is seen
that the switching speeds of the twistor compare quite favorably with
those of conventional ferrite toroids and sheets.

It is, of course, possible to store many bits of information along a single
magnetic wire. The allowable number of bits per inch is related to the
coercive force, the saturation flux density, and the diameter of the wire.
For the nickel wire, about 10 bits per inch are possible. Predictions as
to the storage density for a given material can be made by referring to
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suitable demagnetization data. There are, however, interference effects
between cells which are not completely understood at the present time.

A memory array (16 X 20) has been constructed as a test vehicle. An
illustration of this array is shown in Fig. 13. The drive wires have been
woven over glass tubes which house the removable magnetic wires.
Provision is made for varying the torsion and the tension of the in-
dividual magnetic wires. '

As an indication of the performance of the twistor, Fig. 14 is a com-
posite photograph showing the minimum and maximum signal over the
16 bits of a given column for 3-mil nickel wire. Also included are the
noise pulses for these cells, the so-called disturbed zero signals. The
write currents were 2.3 ampere-turns on the solenoid and 130 ma through
the magnetic wire. The read current was 6.0 ampere-turns. The array

Fig. 14 — Composite photograph of the 16 output signals from a column of the
array/of Fig. 13. Average output signal about 3.5 millivolts; sweep speed equals
2 psec/cm.

was transistor driven. A read-write cycle time of 10 microseconds ap-
peared to be possible.

V. DISCUSSION

The twistor is presented as a logical companion to the coincident-
current ferrite core and sheet.” * In many applications it should compete
directly with its ferrite equivalents. Perhaps its greatest use will be
found in very large (>10% memory arrays.

From a cost per bit viewpoint the future of the twistor appears quite
promising. Fabricating and testing the wire should present no special
problems as it is especially suited for rapid, automatic handling. The
possibility of applying weaving techniques to the construction of a
twistor matrix looks promising.

It is possible that, for both mode A and C operation of the twistor, an
array can be built which consists simply of horizontal copper wires and
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vertical magnetic wires — much like a window screen. Preliminary ex-
periments have shown that single cross wires do operate successfully.
The operation of this array would be analogous to a core memory ar-
ray. Physically it could look just like a core array — but without
the cores. :
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APPENDIX I

From Fig. 10, for bulk circular flux reversal in a composite wire, the
induced voltage V(r) for a wire length [ is

Vr) = |:(7'2 — )l <2£S>:| 107%, 0<r<m,
26
= [(rz — )l <2£s>:| 107°, n<r<r. 0

For a solid magnetic wire of radius ry
V() = (21;{21> 107, @7)
Therefore,

V) = <“_r‘zﬁ> V(0), 0<r<m,
28
V(r) =<r2;r> V(0), rn<r<r. “

In general, the resistance of a tube of wall thickness dr is R(r) = pl/
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2rrdr. The resistance of the wire is Ry = pipol/wlpi(rs’ — 1) + pory’).
The observable voltage for a length of wire, [, is

Vs = f V)] (Volt-Divider)

pipal
= f < > V(0) wlpi(re? — n®) 4 pon?]
pil
27r dr

p1pal

+ /.72 (7'2 - 7”> v (0) wlpi(re® — n?) + P27'12]
ry T

pal
2mr dr

This reduces to

—d + 2d)p/p + @' — d°
(1 — a’p/p2 + a? @9)

= bV(0), (30)

where ¢ = 1/ and b is given by reference to (29). The ratio b/% = 3b
is the relative efficiency of the composite as compared to the solid
magnetic wire from an available signal viewpoint. An expression for s,
will now be derived.

The total energy dissipated per unit length [ is

Vs = 7(0) &

Efl= T2 [ pid()2er d, 31)
0

where 7,4(r) is the current density. Now, 74(r) = V(r) — Vous/pl, therefore

V()

iag(r) = (1 —a — b) ol 0<r<m,
(32)
=<1_r_ )V(O) n<r<rs.
Te pzl
The substitution of (32) into (31) yields, after manipulations,
2 2
b = LT <—V§°)> {af [(1 -
p2 P,
(33)

40(1 — b) 4 . 41 =05 1
+“—3——‘2—]+“‘b>'—3—+§}'
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From (8), the applied energy per wire length [ is

o = (B O cos 00T ey,

where only that part of the applied energy associated with the high
drive dynamic losses is included. Equating (33) and (34) and replacing
V(0)/l by (27) results in

_ _ 81I'Bs7'2210_3 f 9 2 P2
Sw = (H HO)TS = mla (1 a b) o=

" (35)
G
— _b)2+%M_a_j+(l_b)2_4<1-b>+11
3 2 3 2/
This can be expressed as
2 -3
S0 = (H = H)T, = Cane PO (00 e, (36)

p2 COS 0

Bulk axial flux reversal in a composite magnetic wire can be treated in
a manner analogous to that used in Section 3.1.1 for the solid wire. The
uniform reversal of the axial flux induces a voltage V(r) in the wire where

V() = Vi) [(}) - (’;—\] I

= O’ 0 < r < rl,
and V(r,)) = [(2B./T)wr,1107°. Since E(r) = V() /2xr,
2
E(r) = Bs <r — Cl—)lO*s. (37)
TS r

TFollowing the procedure of Section 3.1.1.,
Tslo—lﬁ ro Bs2 7,12 2
av/em3 = - — 2
S Jem3 1;'(7'22 — 7‘12) " p2TS2 r p ar dr

{28527'2210_16' [i —d +d'@ - In a):l}

P2 Ts 1 —_ 0,2

(38)

Il

where a = r1/7: as before. Equating this expression to (8) yields

2 -3 2 4
7Bgr:*10 [1 4a° + a'(3 41na)] 39)

w = (H — Hy)Ts =
8 ( 0T p2 €OS @ 1 — a?

213
= Claxial (Bgy_l()) (oe-usec). (40)
p2 COS 0
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Non-Binary Error Correction Codes”

By WERNER ULRICH
(Manuscript received April 19, 1957)

If a notsy channel is used to transmit more than two distinct signals,
information may have to be specially coded to permit occasional errors to be
corrected. If pulse amplitude modulation is used, the most probable error
is a small one, e.g., 6 is changed to 7 or 6. Codes for correcting single small
errors, and for correcting single small errors and detecting double small
errors, in a message of arbitrary length, for an arbitrary number of differ-
ent signals in the channel, are dertved in this paper.

For more specialized situations, the error is not necessarily restricled to a
small value. Codes are derived for correcting any single unrestricted error
in o message of arbitrary length for an arbitrary number of different sig-
nals.

Finally, a set of codes based partially upon the Reed-Muller codes is
described for correcting a number of errors in a more restricted class of
message lengths for an arbitrary number of different signals.

The described codes are readily implemented. Many techniques are used
which have an analog in a binary system. Other techniques are broadly
analogous to binary coding techniques or are special adaptations of a
binary code.

I. INTRODUCTION
1.1 Use of Error Correction Codes

One function of an error correction code is to aid in the correct trans-
mission of digital information over a noisy channel. This process is
illustrated in Fig. 1. An information source gives information to an
encoder; the encoder converts the information into a message containing
sufficient redundancy to permit the message to be slightly mutilated by
the noisy channel and still be correctly interpreted at the destination.
The message is then sent via the noisy channel to a decoder which will

* This paper was submitted to Columbia University in partial fulfillment of

the requirements for the degree of Doctor of Engineering Science in the Faculty
of Engineering.
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reconstruct the original information if the mutilation has not been ex-
cessive. Iinally, the information is sent to an information receptor.

One scheme for correcting errors in a binary system is to send each
binary digit of information three times and to accept at the receiver
that value which is represented by two or three of the received digits.
Then, the encoder is simply an instrument for causing each digit to be
sent, three times, and the decoder consists of a majority organ. However,
many methods are available which are considerably more elegant, and
which will permit more information to be passed through a noisy channel
in a given unit of time. This paper will deal with such methods for
channels capable of sending b different symbols instead of the usual 1 and
0 of a binary channel.

The most convenient explanation of an error correction code has been
made with respect to the transmission of correct digital information
over a noisy channel. This does not imply the restriction of such codes

INFORMATION DECODER INFORMATION
SOURGE [y | ENCODER [ CHANNEL — (c0RRECTOR)[e=»| RECEPTOR
i
)
]
NOISE

Fig. 1 — Transmission over a noisy channel.

to the noisy channel problem exclusively. Actually, the first application
considered for such a code was with respect to computers.! Many large
high speed computers stop whenever an error is detected in some calcu-
lation and must be restarted; with the use of an error correction code
this could be avoided by permitting the computer to correct its own
random errors directly. To the best knowledge of the author, error
correction codes have not yet been used in any major computer. But
the storage system of a computer may, in the future, lend itself to the
use of error correction codes.

TFrequently, very elaborate precautions must be taken in present
storage systems to insure that they are free from errors. Magnetic tapes
must be specially made and handled to guarantee the absence of defects,
magnetic cores must be carefully tested to make sure that no defective
cores get into an array, cathode ray tubes used in Williams Tube or
Barrier Grid Tube storage systems must be perfect. Probably, there are
other storage methods whose development is hampered because of a
common requirement for error-free performance in all storage locations.
With the use of error correction codes, such storage systems could be
-used, if they are sufficiently close to perfection, even though not perfect.
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It is not unlikely that the near future will see the development of
storage systems which will be able to store more than two states at every
basic storage location.? If such systems are developed, it seems likely
that they will be more erratic or noisy than binary storage systems,
since each location must store one of b signals instead of one of two. If a
cathode ray tube storage system were used, for example, different quan-
tities of charge would have to be distinguished; in a binary storage
system, only the presence or absence of charge must be detected. This
suggests that error correction codes may become essential with certain
types of non-binary storage systems. One object of this paper is to
develop codes for this purpose and to discover which number systems
are most easily correctable. ‘

Some investigations have been made on the use of computer systems
using multi-state elements.® A switching algebra has been developed
similar to Boolean algebra for handling switching problems in terms of
multi-state elements. Single device ring counters (the cold cathode gas
stepping tube for example) already exist and might be useful in such
systems. But currently, only limited steps in this direction have been
made. Another object of this paper is to show the advantages and
problems of error correction codes in multi-state systems; it is not un-
reasonable to predict that error correction codes may be more necessary
in multi-state systems than in binary systems.

1.2 Geometric Concept of Error Correciion Codes

A geometric model of a code was suggested by R. W. Hamming!
which can be altered slightly to fit the non-binary case. For an n digit
message, & particular message is a point in n dimensional space. A
single error, however defined, will change the message, and will cor-
respond to another point in 7 dimensional space. The distance between
the original point and the new point is considered to be unity. Thus,
the distance d between the points corresponding to any two messages is
defined as the minimum number of errors which can convert the first
message into the second.

With an error detection and/or correction code, the set of transmitted
messages is limited so that those which are correctly received are recog-
nizable; those messages which are received with fewer than a given
number of errors are either corrected or the fact that they are wrong is
recognized and some other appropriate action (such as stopping a com-
puter) is taken.

In the case of binary codes, an error changes a 1 to 0 or a 0 to 1. In
the non-binary case, two definitions of an error are possible and will be
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used in this paper. A small error changes a digit to an adjacent value.
In a decimal system, a change from 1 to 2 or 1 to 0 is a small error. An
unrestricted error changes a digit to any other value. In a decimal sys-
tem, a change from 1 to 5 is an unrestricted error.

1.3 Material To Be Presented

The various types of codes deseribed in this paper and the sections
in which they are to be found are summarized in Table I. The tech-
niques which are deseribed are summarized below.

The geometric model suggests the simplest approach to error correction
codes. A transmitter has a “codebook” containing all members of the
set of transmitted messages. If the message source gives to the encoder
the signal that the information to be sent is k (that is to say, the kth

TaBLE I — TypEs or Cobzs

Type of Code Distance Type of Error D eg?gggg in

Single Error Detection 2 Small and Unrestricted IT
Single Error Correction 3 Small IIT and 6.1
Single Irror Correction 3

Prime Number Base Unrestricted 4.1

Composite Number Base Unrestricted 4.2
Single Ex(‘iror Correction 4 Small V and 6.1

an

Double Error Detection
Multiple Error Correction — Small 6.2

output of all the outputs associated with the message source), the en-
coder chooses the kth member of the set. The decoder will then look up
the message it receives in its own codebook which contains all possible
received messages, and corresponding to the entry of the received mes-
sage will find the symbols corresponding to k. Or the receiver may
compare the received message with every member of the set of trans-
mitted messages, calculate the distance between the two, and correct
the received message to whichever of the transmitted messages is sep-
arated from the received message by the smallest distance. (It has been
shown by Slepian? that this is the message most likely to be correct in a
symmetrical binary channel having the property that changes from 1 to
0 and from 0 to 1 as a result of noise in the channel are equally likely.)

The practical difficulty with such a code is the large size of the re-
quired codebooks. Most coding schemes try to eliminate such codebooks
and substitute a set of rules for encoding, decoding and correcting
messages.
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One approach toward creating a simple association between the infor-
mation and the message is to use some of the digits of the message for
conveying information directly. The Hamming Code! uses this tech-
nique.

An information digit is a digit of a message that is produced directly
by the information source; in a base b code, an information digit may
have b different values, the choice between these values representing the
information that is to be sent.

A check digit is a digit of a message that is calculated as a function of
the information digits by the encoder. It is sometimes convenient to
represent or calculate a check digit in terms of a recursive formula using
previously calculated check digits as well as information digits. In a
base b code, a check digit may have b check states. When more than one
check digit is used, each different combination of check digits corre-
sponds to a different check state for the message; a message with m
check digits will have b™ message check states.

A systematic® code encoder generates messages containing only infor-
mation digits and check digits. The information source generates only
base b information digits. The Hamming Code is a systematic code.

Section IT offers a general method for obtaining single error detection
codes for both small and unrestricted errors. The idea of mixed digits
(digits which are, in a sense, neither information nor check digits, but a
combination of both) is introduced, and it is shown how mixed digits
may lead to more efficient coding systems. This idea is believed to be
novel. Code systems which use mixed digits are called semi-systematic
codes. Semi-systematic codes are used extensively throughout this
paper.

Section III offers a general method for obtaining single small error
correction codes, including both systematic and semi-systematic codes.

Section IV offers a general method for obtaining the more complicated
single unrestricted error correction codes. The problem is divided into
two parts. Section 4.1 describes codes for correcting single unrestricted
errors in case b, the base of the channel, is a prime number.* Section 4.2
describes a special technique for obtaining the more complex codes for
correcting single unrestricted errors in the event b is a composite num-
ber.

Section V offers a general method for obtaining semi-systematic codes
for correcting single small errors and detecting double small errors. No
general solution has been found for obtaining single error correction or
double error detection codes for the case of unrestricted errors. No gen-

* This class of codes was previously described in a brief summary by Golay.®
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eral solution has been found for multiple error correction codes for the
unrestricted error case.

In Section VI, a number of techniques are presented for using binary
error correction coding schemes for non-binary error correction codes.
Section 6.1 shows how such techniques may be used to obtain non-binary
single error correction codes, and single error correction double error
detection codes, for the small error case. Section 6.2 presents a special
technique, involving the use of an adaptation of the Reed-Muller binary
code, to obtain a class of non-binary multiple error correction codes, for
the small error case.

Section VII shows that an iterative technique of binary coding can be
directly applied to non-binary codes. It also shows how an adapted
Reed-Muller code can be profitably used in such a system.

Section VIII summarizes the results obtained in Sections II-VII and
shows the advantages and shortcomings of many of these codes.

Section IX presents general conclusions which may be drawn from
this paper.

II. SINGLE ERROR DETECTION CODES

Single error detection codes require message points separated in n
dimensional space by a distance of two.

For the binary case, the only two possible types of errors are the
change from a 1 to a 0 and from a 0 to a 1.

A simple technique that is used frequently for binary error detection
codes is to encode all messages in such a manner that every message
contains an even number of 1’s. This is accomplished by adding a parity
check digit to the information digits of a message; this digit is a 1 if an
odd number of 1’s exist in the information digits of a message and is a
0 if an even number of 1’s exist in the information digits. At least two
errors must occur before a message containing an even number of 1’s
can be converted into another message containing an even number of
1’s, since the first error will always cause an odd number of 1’s to
appear. A message with an odd number of 1’s is known to be incorrect.*

An analogous technique may be used for the unrestricted error case in
non-binary codes. We can obtain a satisfactory code by adding a com-
plementing digit to a series of information digits to form a message.

A complementing digit, base b, is defined as a digit which when added
to some other digit will yield a multiple of b.

* Parity check digits may be selected to make the number of 1’s in a message

always odd, but the principle is the same; in this case, an error is recognized if a
received message contains an even number of 1’s,
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For a single unrestricted error detection code, the complementing
digit complements the sum of the information digits. A complementing
digit is a check digit. In the binary case, it is a parity check digit.

As an example, consider a decimal code of this type. A message 823
would require a complementing digit 7, making the total message
8237 (8 + 2 4+ 3 + 7 = 20, a multiple of 10). An error in any one digit
will mean that the sum of the message digits will not be a multiple of 10.

TFor the small error case, it is sufficient to make certain that the sum
of all digits is even since any error of =4z1 would destroy this property.
Ifor the binary case, all errors are small since the only possible error on
any digit is a change by =+1; a simple parity check is adequate. I'or a
non-binary code, it would be wasteful to add a digit just to make sure
that the sum of all digits is even. In a decimal code for example, if the
sum of the message digits is even, the values 0, 2, 4, 6, 8 for the check
digit will satisfy a check, or if the sum of the message digits is odd, the
values 1, 3, 5, 7, 9 will satisfy the check. More information could be
sent if a choice among these values could be associated with informa-
tion generated by the information source.

This introduces the concept of a mixed digit;i.e., a digit which conveys
both check information and message information.

A mized digit is defined as follows: a mixed digit «, base b, is composed
of two components (y, z) where y represents an information component
and z represents a check component. The number of information states
of a mixed digit is B, with y taking the values 0, 1, ---, 8 — 1; the
number of check states of a mixed digit is «, the number base of 2.
In a message containing m check digits and & mixed digits, the number
of check states for the message is b a1 a2+ ... -, Where «; is the
number of check states of the 7’th mixed digit.

If mixed digits are used as part of a code, information must be avail-
able in at least two number bases; b, the number base of the channel,
and B, the number base of the mixed digit. A situation where this arises
naturally is in the case of the algebraic sign of a number; this is a digit
of information, base 2, which may be associated with other digits of
any base. Similarly, any identification which must be associated with
numerical information can be conveniently coded in a number base
different from the number base of the numerical information. Thus, a
mixed digit can sometimes be used conveniently in an information trans-
mission system without complicating the information source and re-
ceptor.

An error detection code for single small errors suggests the use of a
mixed digit. In the decimal code for example, the quibinary” representa-
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TaBiLe II — QuiBiNaARY CoDE

Quinary Component Binary Component Decimal Digit
0 0 0
0 1 1
1 0 2
1 1 3
2 0 4
2 1 5
3 0 6
3 1 7
4 0 8
4 1 9

/

tion of the mixed digit might be used, letting the quinary component of
the mixed digit convey information and the binary component a check.
(Table I1.)

The information source generates blocks of decimal digits followed by
one quinary digit. The messages are then generated in the following
way : record all decimal information digits as information message digits
and take their sum; if the sum is even, the binary component, z, of the
mixed digit is 0, otherwise it is 1. The quinary component, y, of the mixed
digit is taken directly from the information source and combined with
the calculated binary part by the rules of the quibinary code to form
the mixed decimal digit. Thus, z, the value of the mixed digit, is given
by the formula:

x =2y + 2 (1)

TFor example, if the decimal digits of a message are 289 and the quinary
digit of the message is 3, the mixed digit is 7, and the message is 2897.
The sum of the decimal information digits is 19, which is odd, so that
the binary component of the mixed digit is 1; this is combined with the
quinary component, 3, by the rules of the quibinary code table, to form
decimal digit 7. The requirement that the sum of all digits be even is
satisfied by the binary component of the mixed digit, and the informa-
tion associated with the mixed digit is contained in the quinary com-
ponent.

This method is easily extensible to any other number base and is also
extensible to the case of slightly larger but still restricted errors (such
as =1 or =+2), provided that the maximum single error is less than
®—-1)/2.

From the preceding example, it is apparent that mixed digits can be
usefully employed in error detection codes. The use of mixed, check and
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information digits simplified the encoder and decoder. To differentiate
among the classes of codes which will be described in this paper, the
following terms will be used, in addition to those previously defined.

A semi-systematic code encoder produces messages containing only
information, mixed and check digits. The information source generates
information digits in base b for information digits, and in base @ for
mixed digits. (The example given above is a semi-systematic code.)

Of two coding schemes in the same channel base b, each working with
messages of the same length, and each satisfying a given error detection
or correction criterion, the more efficient scheme is defined as the one
which produces the larger number of different possible messages.

III. SINGLE ERROR CORRECTION CODES, SMALL ERRORS (1)

The problems of error correction codes in nonbinary systems are ex-
tensive and must be treated in several distinct sections. The basic differ-
ence between the error correction problem in binary and non-binary
codes is the fact that the sign of the error is important. In a binary
code, if the message 11 is received and it is known that the second digit
is incorrect, only one correction can be made, to 10. But in a decimal
code with errors limited to &1, if the message 12 is received and it is
known that the second digit is wrong, it can be changed to either 11 or 13.

Consider the following simple code for correcting single small errors.
A decimal channel is used, and a message is composed of three informa-
tion digits and one check digit. Let a; represent the check digit and z,,
Z3, 4 the information digits. Here, 2y is chosen to satisfy*

21 + 222 + 33 + 44 = 0 mod 10. 2)

The encoder calculates a; , and transmits the message x2ex324 . This is
received as x/xxy’zy’. The decoder then calculates ¢ given by

¢ = (2 + 2z’ + 3z’ + 4x,) mod 10. 3)

If the assumption is made that at most a single small error exists, then
this error can be corrected by using the following rules, which may be
verified by inspection.

If ¢ = 0, no correction is necessary;

5 > ¢ > 0, decrease the cth digit by one;

* By definition ¢ = ¢ mod b is equivalent to a = ¢ + nb, where a, b, ¢ and n
are integers. The equality notation is used in preference to the congruence nota-
tion throughout this paper, since an addition performed without carry occurs
naturally in many circuits; in terms of such a circuit, the mod b signifies only the
base of the addition, and a true equality exists between the state of two circuits,
with the same output even though one has been cycled more often.
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5 < ¢, increase the (10 — ¢)th digit by one;

¢ = b implies a multiple error or a larger error.

Since the value of ¢ is used for correcting a received message, it is
called the corrector.* Tor the general case, a corrector is defined as
follows. )

In a message encoded to satisfy m separate checks, the result of cal-
culating the checks for the received message at the decoder is an m digit
word called the corrector. There are as many possible values of the cor-
rector as there are check states of the message, although all of the
values of the corrector need not correspond to a correctable error.

It is important that, for a given transmitted message, every different
error will lead to a different value of the corrector; otherwise there will
be no way of knowing which correction corresponds to a particular value
of the corrector. The number of correctable errors may be far less than
the number of possible values of the corrector, so that not all of these
values may be useful for a code to correct a particular class of errors.
However, the number of corrector states sets an upper limit to the num-
ber of possible corrections.

FFor many codes, it is convenient to associate a particular value of a
corrector for the condition that a particular digit has been received too
high by a single increment, for example, a 7 received as an 8.

The characteristic of a digit for a particular code is defined as the value
of the corrector if that digit is incorrectly received, the error having
increased the value of the digit by +1, and all other digits are correctly
received. Obviously, this definition only applies to those codes having the
property that the value of the corrector is independent of the value of the
incorrect digit and of the other digits.

A simple characteristic code encoder produces messages in which each
digit has a distinct characteristic as defined above.

The Hamming code is an example of a simple characteristic code as
is the code previously desecribed. In that example, the characteristic of x;
is 1.

The advantage of a simple characteristic code for single small error
correction is obvious: the association between the calculated checks
and the correction to be performed is simple and does not depend on the
values of the digits of the message.

The following example of a simple characteristic code will illustrate
this principle more fully.

Consider a single small error correction code, working with a quinary

* The terms corrcetor and characteristic were first used in a more restricted
sense in an article on binary coding by Golay .
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(base 3) channel. Each message will consist of ten information digits
and two check digits.

Let x; and x, represent the check digits, and a3, @4, «+ - , 212 represent
the information digits.

The equations for calculating z; and z; are:

1z, + Ozxe + Oz + lay + 1as + las + 12y @
+ 2z5 + 229 + 2210 + 221 + 2212 = 0 mod 5,

Oz; + 1y + 23 -+ 1y + 25 + 3x6 + 42y 5)
+ Oxs + 1xzg + 221 + 3z + 422 = 0 mod 5.

At the decoder, the corrector terms, ¢; and ¢, are calculated using z/,
the received value of z;, in the following formulas:

12y + Oz’ + Oz’ + 1z + 15 + 1lxd + 1x/
‘ + 2xy’ + 2z + 210" 4 220" + 221" = ¢ mod 5,

Oz 4+ 1z + 2z + 12/ + 225’ + 3z6’ + 4o/
+ 0z’ + 1z + 2x1¢" + 321’ + 42" = ¢, mod 5.

(6)

@)

The values of cics corresponding to the condition that one and only
one digit is too high by 1, 2/ = z; 4+ 1, can be read by reading the coeffi-
cients of the ith digit in the corrector formulas. This quantity is therefore
the characteristic of the ¢th digit. If / = x; — 1, then the fives com-
plements of these coefficients will be the value of the corrector. Table I11
lists the characteristics and characteristic complements associated with
each digit.

TABLE III — CHARACTERISTICS AND CHARACTERISTIC COMPLEMENTS
SysTEMATIC QUINARY CODE

Digit Characteristic Complement of Characteristic
X1 10 40
Xa 01 04
X3 02 03
X4 11 44
X35 12 43
Xe 13 42
X7 14 41
Xg 20 30
Xy 21 ’ 34
Xi10 22 33
Xn 23 32
X1z 24 31
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In this code all the possible values of cics correspond to the charac-
teristic of a digit or the complement of this characteristic, except 00
which corresponds to the correct message. (An inspection of equations
(4) through (7) reveals that if z/ = «, for all values of ¢, the values
of ¢; and ¢, are 0). Thus, we can assign a unique correction to each
value of cics .

The above techniques are extensible to other number bases and dif-
ferent length words provided b, the number base of the channel, is
greater than 2. (The equivalent binary channel problem has been treated
by Hamming.") The following set of rules and conventions may be
used for deriving a satisfactory set of characteristics for a simple charac-
teristic systematic code used to correct single small errors for any length
message, and any base, b = 3. The rules must be followed, and the
conventions (which represent one pair of conventions out of the set of
pairs of conventions, which together with Rules 1 and 2 can be used for
deriving a code of this class) if followed, will lead to a reasonably simple
method for encoding and decoding messages.* Since the rules, not the
conventions, limit the efficiency of the code, no set of conventions can
be found which will lead to a more efficient code of this class.

Rule 1. Tor an n digit message (including check digits), m check dig-
its are required and m must satisfy the following inequalities:

" -1 "

2 )

bm — 277L
2

if b is odd,

\%

(8a)

if b is even, n. (8b)

v

Rule 2. No characteristic may be repeated; i.e., each digit must have
a characteristic different from that associated with any other digit.

Convention 1. The various digits of a characteristic are arranged in a
set order; i.e., C1;, Ce;, -+, Cmi. The first digit which is neither zero,
nor (in case b is even) b/2, must be less than b/2. There must be at least
one such digit.

Convention 2. The characteristic of the jth check digit has a 1 in the
jth position and 0’s elsewhere.

Rule 1 is required since, for a code of this t ype, we must be prepared to
correct any digit in one of two ways (&1). This implies a minimum of
2 n + 1 values of the corrector, one for each possible correction, and one
for the case of no corrections. This means that b™, the number of possible

* The above distinction between rules and conventions will be observed
throughout this paper.
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values of the corrector, must be at least 2 n -+ 1, equation (8a). FFor
even bases, we must reject all values of the corrector containing only
the digits 0 and b/2 for representing error conditions for the following
reasons: a positive error leads to a corrector that is the characteristic of
the incorrectly received digit, and a negative error leads to the b-com-
plement of such a characteristic. In order to have unique error correc-
tion, we must be able to distinguish between these two conditions. If a
characteristic were to contain only the digits 0 and b/2, it would be equal
to its own b-complement; such combinations of digits are therefore not
useable as characteristics or characteristic complements.

Rule 2 is required to permit a unique identification of an incorrect
digit in case of a single error.

Convention 1 allows us to distinguish between positive and negative
errors. By observing this convention, a characteristic (corresponding to a
positive error) can be distinguished from its complement (corresponding
to a negative error) by inspecting the first digit of a corrector which is
neither 0 nor b/2. A characteristic will have this digit less than b/2,
a characteristic complement will have this digit greater than b/2. If
the corrector is a characteristic, the correction is minus one; if it is a
characteristic complement, it is plus one.

Once the characteristics have been chosen, the corresponding encoding
procedure may be performed in the following manner: Let a,; represent
the jth digit of the characteristic of information digit z; . Let 2; represent
the check digit which has a characteristic containing a 1 in the jth
position. If convention 2 has been observed, (9) can be used to cal-
culate z;: ’

; a;jx; = —z; mod b. 9)

An encoder calculates each z; and inserts it into the message in those
digit positions which have the characteristic of the jth check digit as-
signed to them.

In more general terms, we use implicit relations that are equivalent
to the explicit equations given by (9). Letting z; represent an informa-
tion or a check digit, and letting C;; represent the jth digit of the charac-
teristic of the 7th information or check digit, these formulas may be re-
written as

> Cyx; = 0 mod b. (10)

i=1

At the receiver, the decoder calculates m different check sums. Let c;
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represent the check sum corresponding to the jth corrector term, and
z; represent the received value of x; : Then,

Z Cijlii/ = C5 mod b. (11)
=

The difference between equations (10) and (11) is the result of any
mutilations caused by the channel. If no error has occurred, all the c¢;’s
are 0; if an error of 4=1 has occurred, the m ¢;’s will form the characteristic
or the characteristic complement, respectively, of the incorrectly re-
ceived digit.

One disadvantage of a systematic code is the discontinuity in the
number of check states as a function of m, the number of check digits.
For example, in decimal code one check digit is required for a message
of up to four digits, and two check digits for up to forty-eight digits.
Obviously, for a message of intermediate length, for example, twelve
digits, many of the corrector states cannot be used for single error cor-
rection since they will not correspond to any single error. A more effi-
cient code would be obtained if the check states were limited to a smaller
number.

One method of reducing the number of check states is to perform the
check in a different modulus than the modulus of the channel. In the
single error detection code using a mixed digit, binary check informa-
tion and quinary message information was conveyed by this digit. This
code was more efficient than a systematic code because each message
contained the minimum number of check states which is 2.

If a mixed digit, x, is composed of the two components (y, z) where ¥
is the information state of the digit and z the check state, it is conven-
ient to combine these two components to form x by means of the formula

T =ay + 2. (12)

We calculate z by using a linear congruence equation modulo «.

The use of this formula permits a decoder to act on 2’, the received
value of z, directly, without first resolving z’ into ¢’ and 2/, because (12)
insures that ' = 3’ mod «. This permits &' to be corrected directly and
then resolved into its components.

As an example, consider a semi-systematic code for correcting a single
small error in a decimal system, using a twelve digit message; ten of the
digits are information digits and two are mixed digits, each conveying
binary message information and quinary check information. (One of
these binary digits might represent the sign of the number.)

With two quinary checks, twenty-five different check states are pos-
sible; for correcting single small errors in a twelve digit message, twenty-
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TABLE IV — CHARACTERISTICS AND CHARACTERISTIC COMPLEMENTS,
SeMI-SysTEMATIC DECIMAL CODE

Digit Characteristics Characteristic Complements
x; (mixed digit) 10 4 0
Xs (mixed digit 01 0 4
X3 0 2 0 3
X4 1 1 4 4
X5 1 2 4 3
Xg 1 3 4 2
X7 1 4 4 1
Xg 2 0 3 0
Xy 2 1 3 4
Xi10 2 2 3 3
Xn 2 3 3 2
X12 2 4 3 1

five corrector states are required, one for each of the two possible cor-
rections (1) for each digit, and one for the case of a correctly received
message. Characteristics may be chosen for the various digits in accord-
ance with the rules and conventions outlined above in this case, since
the check modulus is the same for both check digits. Consequently, it
is no accident that these characteristics, shown in Table IV, are the
same as those shown in Table III.

Let Cy and C: represent the characteristic of the ith digit, and let
y1 and ¥ represent the two binary information digits. Then:

12

Z C’,-lx,- = —21 mod 5, Ty = 21 + 57, (13)
i=3 :

12

> Cur; = —zsmod 5, X = 23 + 5y . (14)
i=3

Because 2; = 23 mod 5 and z2 = 2z, mod 5, these relations can be re-
written implicity to resemble equation (10):
12

> Cax; = 0 mod 5, (15)
i=1
12
Zl Cizxi =0 IIlOd 5. (16)

At the decoder, the corrector cic; is calculated by:

12
E Cﬂxi, = C mod 5, ’ (17)

12
Z Cizxi, = C2 mod 5. (18)
i=1
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If the corrector is 00, the message has been correctly received; other-
wise, the corrector is either the characteristic or characteristic comple-
ment of the incorrect digit, from which plus one or minus one respec-
tively must be subtracted as a correction.

Consider the general case. Let 2y, 2, - - - , x represent the &k informa-
tion digits; y1, ¥2, ', Y= represent the information state of the m
mixed digits, and 2y, 22, -+, 2, represent the check state of the m
mixed digits. In addition, let o4 , a2, - - -, an represent the number base
of z1, 22, *-+, 2m respectively; B1, B2, -+, B represent the number
of possible states of ¥, y2, -+, ¥n respectively, and xpy1, Tpse, -+,
Zi+m represent the values of the mixed digits after the message has been
encoded. (Note that for simplicity, a check digit is considered as a special
case of a mixed digit; its information state is permanently 0.) The follow-
ing encoding procedure may be used in which 2;, z2, -« -, x% are used
directly as part of the transmitted message. This is a semi-systematic
code, which means that information digits are not changed in coding.
To derive the mixed digits, the following formulas are used:

an® + -+ auds = —zimod ay (19-1)
Twtny = thar + 21 (20-1)
apty + o0 A aaxr + GeinTet = —zomod a;  (19-2)
Tty = Yoot2 + 2o (20-2)
apxy + -0 A+ apte + 00+ g inTE4i-n

= —z;mod ;  (19)

2y = Y+ 2 (20-))
am + 0+ @+ 0 GngrmToim—y = —Zmmod an  (19-m)
Tosrm) = YmOm + Zm - (20-m)

In each case, the value of the check component z;, of a mixed digit
2@ is determined by a formula involving the information digits and
previously calculated mixed digits. Immediately after z; has been de-
termined, zg.; is caleulated for possible use in calculating z¢yq .
After the message has been completely encoded the following equations,
analogous to (10), will be satisfied. '
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Let C;; represent aj; in equation (19-j). Then,
k+m

z; C,‘jﬂli =0 mod aj . (21)
(Since z@4; = z; mod «;, substitution of x4 for z; in equation (19-j)
will continue to satisfy the equation.)

At the decoder, equation (21) is changed to

htm

> Ciyzi’ = ¢; mod o (22)

=1
In (22), x/ represents the received value of z;, and c; represents the jth
digit of the corrector. If all the digits have been correctly received, i.e.,
z{ = z;for all values of 7, then ¢; = ¢o = --- = ¢, = 0; [see equation
(21)]. If x, had been received incorrectly so that x,’ = 2, + 1, but all
other digits had been correctly received, then the value of ¢; (the jth
digit of the corrector) would be calculated in the following manner:

k+m

C; mod a; = Z Oﬁxi'
=1

k+m

c;mod a; = Y Ciwy + Chy = Cy; (23)
=

Equation (23) proves that Cy; is actually the jth digit of the charac-
teristic of x; , because by definition, the characteristic of x; is the value
of the corrector when z,’ = x, + 1, and all other digits have been cor-
rectly received. This means that the general term, C;; of (21), is actually
the jth digit of the characteristic of the ¢th digit and that this is a simple
characteristic code.

Tor the case that 2x’ = a1, — 1, the value of the corrector is such that
if it were incremented, digit by digit, by the characteristic of a3, the
corrector would be composed only of zeros. Incrementing the corrector
by the characteristic of x; is equivalent to recalculating the corrector
with z;” increased by one, which in this case would amount to calculat-
ing the corrector for the case of a correctly received message. The
latter is composed of all zeros [see (21)]. Thus, for the case of a single
error of —1, the corrector is the characteristic complement of the digit
which is incorrectly received. For a semi-systematic or systematic code,
the characteristic complement is an m digit word whose jth digit is the
complement modulo a; of the jth digit of the characteristic.

Equation (20-j) shows that generally «;3; cannot exceed b. (An ex-
ception is given below.) The maximum value of y;is 8; — 1 since y is a
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digit in the number base 8; . The maximum value of z; is usually a; — 1,
since z; is a digit in the number base «;. Thus,

Teps = Yiaj 2 S b — 1, (24)
Bi— Daj+a; —1=2b—1, (25)
a;B; £ 0. (26)

Equation (24) restates (19-j), and also states that the maximum value
of any digit «, is b — 1, where b is the number base of the channel. In
(25), the maximum values of ; and z; are substituted to yield the result
shown in (26). '

It was stated above that the maximum value of z; is usually o; — 1.
An exception occurs only in case z; checks only itself and other mixed
digits, the latter being restricted to fewer than b — 1 states. Under such
circumstances, the value of z is sometimes restricted, so that even though
z is calculated to satisfy a check, modulo «; [see equation (19-j)], it can-
not assume «; — 1 values. Tor example, a code for transmitting a
single digit message over a decimal channel and permitting the correc-
tion of small errors, might use as the set of transmitted messages the
digits, 0, 3, 6, 9. In this case, « = 3 (any correct message satisfies the
check z = 0 mod 3) and 8 = 4 since four different messages may be
transmitted. In this case, z is restricted to the value 0 because the mixed
digit checks only itself.

In order to correct single errors of <1, using a simple characteristic
code, it is necessary and sufficient that every characteristic be different
from every other characteristic, and that it also be different from the
complement of every other characteristic.

The following rules and conventions may be used to derive a set of
characteristics which meet the requirements for a simple characteristic
semi-systematic or systematic code for correcting small errors for any
base b = 3 and an arbitrary length message. No set of conventions can
be found which will lead to a more efficient code of this class, since the
rules, not the conventions limit the efficiency of the code.

Rule 1. For an n digit message, including mixed digits, containing m
mixed or check digits of which m; are associated with an even modulus,
a, the inequality

(al-ag- ves Oy — 2m1)/2 g n (27)

must be satisfied.
Rule 2. No characteristic may be repeated, i.e., each digit must have
a characteristic different from that associated with any other digit.
Rule 3. Since the mth check is the last one to be calculated, and the
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characteristic of the mth mixed digit must therefore contain only a single
digit which is not 0, @,, must be greater than 2.

Convention 1. The various digits of a characteristic are arranged in a
set order, i.e., Ca, Cis, + -+, Ciy . The first digit which is neither 0 nor
a;/2 must be less than «;/2. There must be at least one such digit.

Convention 2. The characteristic of the jth mixed digit has a 1 in the
Jth position and 0’s elsewhere, provided that o; # 2. If a; = 2, the char-
acteristic of this mixed digit has a 1 in the jth and mth positions, and 0’s
elsewhere.

Rule 1 is required because the number of possible corrector states is
air@z ... -am, of which only those containing at least one digit which
is neither 0 nor /2 can be associated with the 2n possible errors. The
same reasons used for Rule 1 for the systematic code case are equally
applicable here; a characteristic containing only the digits 0 or «;/2 in
the jth position is not distinguishable from its complement.

Rule 2 is required to permit a unique identification of an incorrect
digit.

Rule 3 is necessary to derive the sign of an error on the mth mixed digit.

The reasons for using Conventions 1 and 2 in the case of the sys-
tematic code are equally applicable in this case. For the case a = 2,
however, a special convention must be used to avoid a conflict with
Convention 1.

The procedure for converting a set of characteristics into an error
correcting code system is the same for a semi-systematic code as for a
systematic code except that the following additional functions must be
performed: the encoder must combine check states with information
states to derive mixed digits, and the decoder must resolve mixed digits
into information and check digits after it has performed its corrections.

By using these rules and conventions, the most efficient simple charac-
teristic code can be determined. For messages of length n (including
mixed or check digits), the following relations must be satisfied:

Let

P=orar ... an,
Q=8B ... Bm,
my = number of even a’s.
Then:
P —=2")/2 =z n, (28)
af; = b. (29)*

* For exceptions, see above,
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TABLE V— DEciMAL Error CorrecTioN CODES

” P —1%- al, oz, ... B1,Bz2, ... C2n+41
1 3 2.5 3 4 3*
2 5 5 5 2 5
3 10 10 10 1 7
4 10 10 10 1 -9
5 15 16.7 5,3 2,3 11
6 15 16.7 5 3 23 13
7 15 16.7 5 3 23 15
8 20 20 10, 2 15 17
9 25 25 5 5 22 19
10 25 25 5,5 2,2 21
1 25 25 5 5 22 23
12 25 25 5,5 2,2 25
13 30 33.3 10, 3 1,3 27
14 30 33.3 10, 3 1,3 29
15 40 40 10,2, 2 155 * 31
16 40 40 10, 2, 2 1,5,5 33
17 50 50 10, 5 1, 2 35
18 50 50 10, 5 1,2 37
19 50 50 10, 5 1,2 39
20 50 50 10,5 12 11

* The single digit message containing the points 0, 3, 6, 9 is an exception to
the inequality a8 = b, because the mixed digit checks only itself.

For the most efficient code b™/Q should be minimized. This term repre-
sents the ratio of the number of possible messages for an n digit message
with and without error correction. This is normally at least as great as
2n + 1, the number of possible corrections on such a message.

Table V shows the most efficient decimal codes of this type for an n
digit message, for values of »n from 1 to 20. Where two or more different
codes are equally efficient, the code with the fewest mixed digits is shown.
It is easy to convert from a code using two mixed digits with a; = 5,
a; = 2, to one using a check digit with « = 10, or to make the inverse
conversion, and to show that both codes are equally efficient.

IV. SINGLE ERROR CORRECTION CODES, UNRESTRICTED ERROR

The problem of correcting an unrestricted error on one digit of a
message must be divided into two categories, depending on whether b
is a prime number or a composite number. As will be seen, the error
correction problem for prime bases is considerably simpler than that for
composite bases. The method for correcting errors in prime number
systems was discovered by Golay,® although this did not come to the
author’s attention until after he had worked out the same method. The
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adaptation to non-prime channel bases is believed to be novel. Since the
adaptation makes use of the code for prime bases, both will be described.

4.1 Prime Number Base, Single Unrestricted Error Correction Code

This code depends upon a fundamental property of prime numbers,
well known in number theory.” Let p represent a prime number and d,
¢, and w represent non-negative integers less than p, related by the
expression:

dw = ¢ mod p. (30)

If d # 0, then d and ¢ uniquely determine w.

In order to have a simple characteristic systematic code for correcting
unrestricted errors, it is necessary and sufficient that the set of charac-
teristics shall have the property that all multiples of all characteristics
are distinct. Equation (30) implies a unique correspondence between mul-
tiples of a characteristic and the characteristic itself, if we consider ¢ to
be the multiple, d the multiplying factor and w a digit of the charac-
teristic. An error, d, is simply identifiable if a known digit of a charac-
teristic is always 1. If each characteristic is distinet from every other and
if a sufficient number of check digits are available, a simple characteristic
code can be obtained. In the following set of rules and conventions which
may be used for deriving a set of characteristics for a simple charac-
teristic systematic code for correcting single unrestricted errors, p repre-
sents the prime number base of the channel. The number base of the
channel must be prime, and the length of the message is arbitrary. Since
the rules and not the conventions limit the efficiency of the code, no other
set of conventions may be found which will lead to a more efficient code
of this class.

Rule 1. For an n digit message, m check digits are required and m
must satisfy the inequality
p" =1
p— 1

Rule 2. Each digit must have a different characteristic.

Convention 1. The digits of a characteristic are arranged in a set
order, i.e., CyCi - -+ Cim . The first digit which is not 0 must be 1.

Convention 2. The characteristic of the jth check digit has a 1 in the
jth position and 0’s elsewhere.

Rule 1 is required for a code for correcting single unrestricted errors
since any digit must be correctable in one of p — 1 ways. This implies
a minimum of n(p — 1) + 1 states for the corrector, one for each cor-

(1)
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rection and one for the correct message. When m check digits are used,
p™ corrector states are obtained.

Rule 2 and Convention 2 are the same for the single small error cor-
rection systematic codes. The same reasons apply for both cases.

Convention 1 is changed from the equivalent convention for the small
error correction code, because the magnitude of the error, not only its
sign, must be derivable for a code for correcting single unrestricted
errors.

An encoder first encodes the message according to (32), where C,;
represents the jth digit of the characteristic of «;,

Z C,‘jxi = 0 mod b. (32)

The decoder caleulates the corrector using the following formula where
x; represents the received value of x; ;

Z Ciﬂ)il = Cj mod b. (33)

The decoder then examines the digits of the corrector in order. The
first digit which is not 0 shows the magnitude, d, of the error. All digits
are then divided by d (provided d # 0). (That division is unique, as
shown by (30).) The result of this division is the characteristic of the
incorrect digit, which is then corrected by subtracting d.

Consider a code for correcting a single unrestricted error in a six digit
message for a base 5 channel:

(34)

A value of 2 for m will satisfy equation (34). The characteristics are 14,
13, 12, 11, 10 and 01, the last two being check digit characteristics, for
X1, T2, T3, Ta, X5, and xg respectively. Here, x;, 22, @3, and z, are in-
formation digits. The encoding formulas are:

21+ 22+ 23 + 2 = —x5 mod 5, (35)
42y + 3x9 + 213 + 24 = —x mod 5. (36)

The decoding and correcting formulas are: (xz/ is the received value of
IC,')

o+ x 2 + 2 + x5’ = ¢ mod 5, (37)
4z, + 3z’ + 2" + x + a6’ = 2 mod 5. (38)

The corrector is ¢ics .
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Suppose that a message 221321 is received as 224321. Then:
¢, = 13 = 3 mod 5, (39)
¢ = 26 = 1 mod 5. (40)

To find the characteristic of the digit, x, , that was incorrectly received
from the value of the corrector, (41) and (42) must be solved:

dCiy = ¢ = 3 mod 5, (41)
d Chg_ = Cy = 1 mod 5. (42)

Because the first non-zero digit of any characteristic is 1, (41) can be
solved for d since Cy; = 1. This yields the result, d = 3. Using this result,
(42) is solved for Cjs ; by inspection, Cre = 2, since 3-2 = 6 = 1 mod 5.
Thus the characteristic of the incorrect digit, Ch Che, is 12, and the
error d, is 3; 23’ must therefore be reduced by 3 to get the correct value.
Since the message was received with 3" too high by an amount 3, this
result confirms our expected correction.

Any correction that is applied must be applied on a modulo b basis.
For example, if a correction of —2 is indicated on a digit whose re-
ceived value is 1, 1 — 2 = 4 mod 5, which means that the digit is cor-
rected to 4.

Codes of this type are restricted in their construction. No mixed digits
may be used, and the number base must be prime. For the case of
n= [ —1)/(p— 1]+ 1, g+ 1 check digits are required [see (31)].
This means that the number of information digits for a message of
this length is the same as for a message one digit shorter, which requires
only g check digits. A comparable binary case is the Hamming Code
example of an eight binary digit message (four information digits)
compared with a seven digit message (also four information digits). In
the binary case, the extra digit is useful for double error detection, but
unfortunately, this is not the case for non-binary codes.

4.2 Composite Number Base, Single Unrestricted Error Correcting Code

The problem of correcting an unrestricted error on a single digit,
working with a number base b, that is not a prime is much more difficult.
Many relatively inefficient techniques exist. For example, characteristics
containing only binary numbers (0 and 1) might be used; (this would
amount to using the Hamming Code directly). This is obviously ineffi-
cient since the corrector associated with any single digit error of amount
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d, would contain only the digits 0 and d, thus wasting most of the pos-
sible corrector values.*

It is possible to encode and decode using the prime factors of the
number base, performing separate and independent corrections on each
factor. This is also inefficient, since for many cases, information as to
which digit is in error is found independently in two or more ways, while
for certain values of the error, it can be found in only one way. Working
with mixed digits and check bases, « lower than b, is not satisfactory
since certain values of the error (o in particular) will never show up in a
particular check. The technique used for primes will not work since
multiples of two different characteristics may be identical; for example,
base 10, characteristics 11 and 13, error 5, will both yield correctors of 55.

Another technique that is relatively efficient is, however, available.
It involves performing all check, encoding and decoding operations in a
number base p, where p is some prime number (usually, the lowest)
that is equal to or greater than b. (In case b is a prime, we use the pro-
cedure outlined above, which is a special case of the procedure to be
described below.)

The obvious difficulty in such a procedure is that while the informa-
tion channel can only handle b levels, the check digits may assume p
levels, corresponding to the required p check states. This dilemma can
be resolved by adding an adjustment digit. The object of this digit is to
permit check information to be transmitted in a base greater than b,
the channel base. The idea of an adjustment digit can best be illus-
trated by an example. Supposefor a decimal channel, checks are performed
in a unodecimal (base 11) code. Let v represent the value corresponding to
ten. (The consecutive integers in a unodecimal system are then 0, 1, 2,
3, ---,9 7,10, 11, ---, 19, 1y, 20, etc.) Suppose in a particular mes-
sage, four check digits, 21, 22, 2z, 21, calculated modulo 11 from decimal
information digits are used, whose values are 1, 0, v, 8. A fifth digit,
2o is added such that the sums modulo 11 of 21 + 2z, 22 + 20, 23 + 20,
24 + 2 are kept constant at 1, 0, v, 8 respectively. There are eleven dif-
ferent words satisfying the condition: [1, 0, v, 8] = [(z1 ¥+ 20), (22 + 20),
(23 + 20), (21 + 20)]. These are shown in Table VI. Of these words, six do
not contain the digit v, and so may be transmitted over a decimal chan-
nel. Thus, an adjustment digit permits check digits which are calculated
in a number system of a higher base than b, to be transmitted over a base
b channel. When an adjustment digit is used in base p for adjusting m
digits so that transmission over a channel in base b is possible, a mini-

* A waste of corrector values is equivalent to an excessive number of check
states for a message, which in turn implies an excessive number of check digits.
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mum of b — m(p — D) states are allowed for the adjustment digit. (Ior
certain values of the check digits, more states could be allowed, but a
code for utilizing these extra states becomes unwieldy.) Tor the case
b = 10, p = 11, this turns out to be 10 — m. At least one state must
be available for each adjustment digit, to have a workable code.

The characteristic of an adjustment digit is determined in the follow-
ing way: if an adjustment digit adjusts the sth check digit, then the jth
digit of the characteristic of the adjustment digit is 1; otherwise, it is 0.
The characteristic of all other digits may be derived using the rules de-
scribed above for the prime number base channel, except that p, the
prime number base of the code must be used instead of b, the number

TABLE VI — ILLUSTRATION OF ADJUSTMENT DIGIT

20 31 Z2 Z3 24
0 1 0 b% 8
1 0 y 9 7
2 v 9 8 6
3 9 8 7 5
4 8 7 6 4
5 7 6 5 3
6 6 5 4 2
7 5 4 3 1
8 4 3 2 0
9 3 2 1 v
v 2 1 0 9

base of the channel, for generating characteristics. A message is initially
encoded using a value of 0 for an adjustment digit. Subsequently, if the
adjustment digit always has at least ¢ allowable states, it may be used
to transmit one additional information digit, base ¢, of information. If
the value of this information digit is ¥, the (y 4+ 1)stlowest possible value
of the adjustment digit (making the lowest value equivalent to y = 0)
meeting the requirement that all adjusted check digits are no greater
than b — 1 is transmitted. The adjustment digit in conjunction with
its associated check digits conveys a digit, base ¢, of information.

In the example given above, ¢ = 6 and if y is 4, the fifth lowest value
of 2o, 7, is transmitted. The lowest value must be associated with y =
The values of zp21202324 that are sent over the decimal channel are 75431.

An example of such a code is one using a decimal channel working in a
unodecimal base for the purposes of encoding and error correction. The
word length, n, is twelve, nine decimal information digits, one octal (base
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8) information digit associated with the adjustment digit, and two check
digits. The characteristics are the following:

a1y x5 16 29 12
2 19 xs 15 Ty 11 (adjustment digit)
x3 18 a7 14 xy 10 (check digit)
xy 17 x3 13 212 01 (check digit)
Let 2 and z» represent the values of the check digits 211 and 9,
originally derived from xi, @2, +++, %3, Xy ¢
e+ 2+ - 2y = —zip mod 11, (43)
yaxr + 9xs + 8x3 4+ -+ 4+ 209 = —z2 mod 11. (44)

Jrom zy and 212, the ten different words (0, 211, 212), (1, 201 — 1, 212 — 1),
2,20 — 2,22 —2), -+, (9,20 — 9, 212 — 9) are formed. If y is the
value of the octal information digit, the (y + 1)st such word, that does
not contain the digit v, is selected and transmitted as the last three
digits of the message. For example, if 211 = 2, 21 = 1 and y = 6, the ten
words are (07 27 1)7 (1: 17 0)) (2) 0) 7)> (3) Y, 9)7 (4y 97 8)) (57 8: 7)) (Gy 77 6)7
(7, 6, 5), (8, 5, 4), (9, 4, 3); the word (8, 5, 4) is selected since it is the
seventh in the sequence that does not contain any +’s. Table VII shows
the choice of the three last digits as a funetion of y, given z;; = 2, 255 = 1.

Formula (45) is used for calculating the corrector. Let C';; represent
the jth digit of the characteristic of .z;, ¢; the jth digit of the cor-
rector, and x;” the received value of x; . Then,

12
¢; = » Cizs mod 11. (45)

i=1

The translation from corrector to correction is the same as if the original

TaBre VII — ReLaTioN BETWEEN ADJUSTED DIGIT AND
ASSOCIATED INFORMATION
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message had been in a unodecimal code. (This has been illustrated in
Section 4.1.)

The first step of the encoding procedure is to calculate the unadjusted
check digits. Next, the adjusted check digits and adjustment digit are
selected according to the value of y, the information digit associated with
the adjustment. The message is then ready for transmission.

At the decoder, the message is first corrected as if it had been re-
ceived as a unodecimal message. The information digits are then in
their corrected states. Next, the adjustment digit and the check digits
are examined and the inverse of the encoding process used to select a
particular set of check and adjustment digits is used to reconstruct the
value of ¥ which originally controlled the selection. In the example given
above, the values of 219 , 211 , 212 are 8, 5, 4 respectively; the decoder recog-
nizes that this is the seventh lowest value of 1y, which means that the
value of y, used in selecting 23 and the adjusted values of z;; and 2y,
was 6.

The code described above is fairly efficient; about 90 per cent of the
corrector values can be associated with corrections; the product of the
information states and the check states is about 97 per cent of the
total number of states of a twelve decimal digit word. Each of the above
factors reduces the efficiency of the code below a possibly unattainable
maximum. It will be noted, however, that this reduction is relatively
small in both cases, and is very much lower than would be the case for
any of the rejected schemes. The scheme is not difficult to instrument;
relatively little additional equipment is required in addition to the
basic equipment for instrumenting a simple prime number base chan-
nel, unrestricted single error correcting code system. _

The method of adjustment digits is general and can be used for de-
riving a single error correction code for correcting unrestricted errors
for any channel base. Any convenient prime check base, p, at least as
great as b may be used, although the lowest will generally be the most
efficient. The only requirements which must be fulfilled are that the
number of states of the adjustment digit must be at least 1, and that at
least two check digits must be associated with each adjustment digit.
An adjustment digit associated with m check digits, working with a
channel baseb and a check base p,may have b — m(p — b) different states.

V. SINGLE ERROR CORRECTION, DOUBLE ERROR DETECTION CODES FOR
CORRECTING SMALL ERRORS

Single error correction, double error detection codes are very useful
in situations where a message may occasionally be repeated. In order
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for a correction code to be reasonably useful in a system with random
noise or errors, the errors must be relatively infrequent, which makes
double errors still more infrequent. If means are available for an occa-
sional but very infrequent repetition of a message, a single error correc-
tion, double error detection code will increase the reliability of a digital
system, since a message may be repeated if a double error is recognized.

This section will show how the ideas of the single error correction,
double error detection Hamming Code may be combined with the ideas
of semi-systematic single small error correction codes (described in Sec-
tion III) to derive simple and efficient codes for correcting single small
errors and detecting double small errors.

In order to derive a simple characteristic code for correcting single
small errors, and detecting double small errors, a set of characteristics
must be found having the property that the sum or difference of two
characteristics or their complements or double the value of one charac-
teristic or its complement be distinguishable from the value of any
single characteristic or its complement. The sum of two characteristics
represents the value of the corrector for a message with two errors of
+1, 41, the difference represents two errors of +1, —1, the sum of
their complements represents two errors of —1, —1; double a charac-
teristic represents an error of +2, and double a complement, represents
an error of —2. To have a true single error correction, double error de-
tection code for small errors, all these cases must be distinguished from
the case of a single error or no error by making certain that the value of
the corrector for any of these cases is different than the value of the
corrector corresponding to any single error and no error.

Table VIII gives the characteristics used in the single error correction
Hamming Code and the single error correction, double error detection
Hamming Code for conveying four digits of information in a message
containing seven or eight binary digits respectively.

An inspection ot Table VIII shows that the sum (performed without
carries from column to column) of any two characteristics in the right
part of the table is distinguished by having at least one 1 in the first
three places and a 0 in the last place. This distinguishes it from any
single characteristic since all characteristics have a 1 in their last place.

Some difficulties arise in trying to adopt such a scheme directly in a
non-binary system. I'or the code to be efficient, an over-all check would
have to be performed using a mixed digit; only two check states are
required for an over-all parity check, and if b > 3, (b representing the
number base of the channel) at least two information states are pos-
sible. But the over-all check digit, which performs a binary check, is not
checked by any other digit. This means that although errors might be
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detected in an over-all check digit, difficulties would be encountered in
determining the direction of the correction, so that the information
conveyed by the mixed digit could be used. Actually, means are avail-
able, for accomplishing an adaptation of binary techniques. These meth-
ods are described in Section VII but they are less straightforward than
the ones described below.

For channels with base b, greater than 3, at least one check may be
made using a check base, a,, , that is 4 or greater. If characteristics are
used whose last digit (the digit associated with the «.,, check) is always 1,
and whose only other limitation is that each characteristic is different
from every other characteristic, a satisfactory code is obtained. Single
errors are corrected in the normal way. If the last digit of the corrector
is 1 or e — 1, the erroris 4=1 respectively on the digit whose charac-

TaBLE VIII — CHARACTERISTICS FOR HaMMING CODES

Single Error Single Error
Correction B Dot
001 Check Digit X1 0011
010 Check Digit X2 0101
011 Information Digit X3 0111
100 Check Digit X4 1001
101 Information Digit X5 1011
110 Information Digit Xs 1101
111 Information Digit X7 1111
Over-all Check Digit Xs 0001

teristic or whose characteristic complement is indicated by the cor-
rector. If the last digit of the corrector is 2 or a,, — 2, or the last digit is 0
and other digits are not all 0, a double error is indicated. If the entire
corrector is made up of 0’s, the message is correct as received.

An example is a code for a ten digit message, decimal base channel;
eight decimal information digits, one mixed digit conveying binary
message information (such as the sign of the decimal number) and qua-
ternary (base 4) check information, and one check digit are transmitted
in each message. Let a; and z, represent the mixed and check digit re-
spectively, x; through 1o the information digits, 7, the binary informa-
tion conveyed by z; , and z; the quaternary check information conveyed
by z: . The encoding formulas are:

2.’1/'3 + 32:4 + 4$5 + 51’6 + 63’)7 + 71’3 + 81‘9 + 9.’1710 = —X2 mod ].O, (4:6)
ot wst ot asdwetar b+ 2t aw = —zmod4, (47)
Xy = 21 + 42/1 . (48)

1t



1370 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1957

Note that (46), (47) and (48) must be applied consecutively, in that
order, since (47) cannot be applied without knowing x. obtained from
46), and (48) requires z; , obtained from (47).

The characteristics are 01, 11, 21, 31, 41, 51, 61, 71, 81, 91 respec-
tively; the complements of the charactemstlcs are 03 93, 83 73, 63, 53,
43, 33, 23, 13 respectively. The corrector, c¢cs, is calculated at the
decoder by the following formulas (z;/ is the received value of z.):

G = iﬂ: ()¢ — 1) mod 10 (49)
= io: z;’ mod 4 (50)

=1

Consider the example of a message with decimal information digits
3752065 2and binary information digit 1. Then x, = 3, 2, = 3,
and y;, = 1, yielding a value of 7 for z; . The message issent as7 3 3 7
52 0 6 5 2. Suppose that the sixth digit is changed to 1 in transmis-
sion. Then the corrector has a value 53; this is the complement of the
characteristic of the sixth digit and indicates that the sixth digit should
be incremented by 1 according to the rules previously stated. If the
sixth digit had been received as 1 and the seventh digit also received as 1
(an error of +1), then the corrector value would be 10, indicating a
double error (see rules stated above).

If a multiple of 4 is used as «a,, , the last digit of a characteristic may
assume all odd values below a,,/2. The rule then is that an even value of
the last digit of the corrector, or a 0 for the last digit and other digits
of the corrector not all 0, indicates a double error.

The following set of rules and conventions may be used with any
base b = 4, and any length of message, for deriving a set of charac-
teristics for a semi-systematic code for correcting single small errors and
detecting double small errors. Since the conventions restrict the effi-
ciency of the code, it is conceivable that a different set of conventions
will yield a more efficient code in some cases; (51) may be modified
through the use of an alternate set of conventions.

Rule 1. No two digits may have identical characteristics.

Convention 1. Choose for a, a multiple of 4. Let o /4 = g.

Convention 2. The characteristic of the mixed digit associated with
a, contains a single 1 in the last position; the rest of its digits are 0.

Convention 3. The characteristics of the jth mixed or check digit con-
tains a 1 in the last position, a 1 in the jth position and 0’s elsewhere.

Convention 4. The characteristic of an information digit has an odd
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number less than «,,/2 in its last position. The rest of its digits are
arbitrary.

Convention 5. The above conventions restrict the choice of charac-
teristics. In order to have n distinet characteristics, m mixed or check
digits, using check bases oy, as, -+, an, are required, and inequality
(51) must be satisfied:

n = a@e ... 01ty (51)

Codes may be derived using the above conventions only if b = 4.
IFor the ternary case, a relatively efficient code may be obtained by
using one ternary digit as an over-all parity check digit. The rest of the
message is in a single small error correction code, derived using the
rules and conventions of Section III. Any single small error will lead to a
failure of the parity check, and a double small error will lead to a failure
of other checks but not the parity check.

No general solution has been found for deriving an efficient single
error correction double error detection code for the unrestricted error
case. Also, no general solution has been found for deriving an efficient
multiple error correction code for the unrestricted error case. A reason-
ably efficient method has been found for correcting multiple errors in
the more important small error case; this is discussed in Section 6.2.

VI. THE USE OF BINARY ERROR CORRECTION TECHNIQUES IN NON-BINARY
SYSTEMS

In this section, methods for using binary codes for the correction of
errors in a non-binary system are described. Although the single small
error correction codes obtained in this manner are generally less flexible
than the codes obtained in Section III, the class of multiple error correc-
tion codes described in Section 6.2 is the only reasonably satisfactory
class of such codes that has been found. The codes described in this
section are semi-systematic but are not simple characteristic codes.

6.1 Single Small Error Correction Codes

Binary codes are most conveniently used for correcting small errors
(+1). Suppose any digit, base b, has an associated pair of binary digits,
arranged in such a way that a change of &1 in the base b digit will
change only one of the two binary digits. For b = 10, an association
such as the one shown in Table IX might be used. For example, if a
6 is received as a 7, the associated binary message would indicate
that the second of the binary digits is incorrect; a 7 can be corrected
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Tasre IX — AssociaTep BiNARY Diaits ForR CORRECTION
oF SMALL ERRORS

Decimal Digit Associated Binary Digits

DO W =O
=]
—_

TaBLE X — REFLECTED QUIBINARY CODE

Decimal Digit Quinary Component Binary Component |Associated Binary Digits
0 0 0 00
1 0 1 01
2 1 1 11
3 1 0 10
4 2 0 00
5 2 1 01
6 3 1 11
7 3 0 10
8 4 0 00
9 4 1 01

to an 8 or a 6, but only the correction to 6 would correspond to a
change in the second binary digit of the associated binary message.

If the first of the associated binary digits is the odd or even indication
of a quinary component of a decimal digit, a decimal digit can convey
ten states rather than the four states of the associated binary digits.
The combination of binary and quinary digits shown in Table X may
be called a reflected quibinary code because of its analogy with the re-
flected binary code.* _

If a method were available for transmitting without error (e.g., by
using an error correcting code) a message composed of the associated
binary digits in a base b code, small errors could be corrected in the
base b digits.

An examination of Table X for resolving a decimal digit into binary
and quinary components, reveals that a change of =1 on any decimal

* The reflected binary code has the property that each increment changes only
one binary digit; for example, the eight successive words of a three binary digit
reflected binary code are 000, 001, 011, 010, 110, 111, 101, 100.
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digit will change only one of these two components. Further, an error
corresponding to a change in the quinary component can be uniquely
corrected if the error in the decimal digit is assumed to be ==1. For
example, if a received 6 is discovered to have an incorrect quinary com-
ponent, only a decrease in the quinary component making the decimal
digit 5 is a possible correction, since an increase in the quinary com-
ponent would correspond to the decimal digit 9, a change of more than
+1 from 6.

A system is shown in Fig. 2 for taking advantage of these properties.

INFORMATION SOURCE

QUINARY BINARY
INFORMATION INFORMATION
DIGITS n n~-m DIGITS

ODD OR EVEN
RECOGNITION CIRCUIT

BINARY
DIGITS

SYSTEMATIC BINARY ERROR
CORRECTION CODE ENCODER

9

BINARY MESSAGE BINARY PARITY .
INFORMATION CHECK DIGITS REFLECTED
DIGITS (NOT USED) QUIBINARY
COMBINER
INFORMATION RECEPTOR DECIMAL
MESSAGE
BINARY QUINARY CHANNEL
INFORMATION INFORMATION
DIGITS DIGITS
n-m n
REFLECTED
QUIBINARY
RESOLVER
n QUINARY [y
DIGITS N | BINARY
DIGITS
QUINARY ODD OR EVEN
CORRECTION RECOGNITION
CIRCUIT CIRCUIT
BINARY ] BINARY
DIGITS DIGITS
n
2n BINARY DECODER

2n| AND CORRECTOR |l

Fig. 2 — Use of binary codes with a decimal channel.
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In this example, an information source generates n quinary and n —m
binary information digits for each message. All quinary digits go through
an odd or even recognition circuit to be converted into binary digits for
the purpose of generating a binary error correction code message. These
binary digits and the binary digits generated by the information source
are fed into a systematic binary error correction code encoder whose
output is a binary message containing 2n digits, of which m are parity
check digits. This output is divided into two parts, 2n — m original
inputs to the encoder unchanged by the encoding process (this is a sys-
tematic encoder which does not change information digits in encoding),
and m parity check digits.

The m parity check digits are then combined with m of the quinary
information digits through the use of the reflected quibinary combiner
to form m of the decimal digits of the decimal message that is trans-
‘mitted; the other decimal digits are formed by combining the n — m
binary information digits with the rest of the quinary information
digits.

The decimal message is transmitted over the noisy channel and arrives
with one or more (a number limited by the choice of the binary code)
errors of 1 on decimal digits. It is fed into a reflected quibinary resolver
which resolves decimal digits into binary and quinary components in
accordance with the reflected quibinary code (Table X). The quinary
digits are then fed into an odd or even recognition circuit to form binary
digits; these and the binary outputs of the resolver are fed into a binary
decoder and corrector, working with the same code as the binary en-
coder. The output of this corrector should correspond to the output of
the original binary encoder.

In the decoder, the binary digits are corrected. When the binary digit
derived from a quinary digit is corrected, however, the quinary digit is
not yet correct. The correction of the quinary digit is performed by
examining both the corrected binary digit derived from the quinary
digit and the corrected binary digit which was derived from the same
decimal digit as the quinary digit in question. The rules for correcting
the quinary digit are given in Table XI.

As an example, consider the application of a Hamming Code for
transmitting ten binary digits in a fourteen binary digit message.

Using a code of this type, single errors of 41 may be corrected in a
seven digit decimal message, transmitting seven quinary digits of in-
formation and three binary digits of information. The characteristics
required for a fourteen binary digit Hamming Code message are shown
in the first column of Table XI1I,
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TaBLE XI — CORRECTING QUINARY Digrrs

0 2 5 i
Even 0 0 None
Even 0 1 None
Even 1 0 -1
Even 1 1 +1
Odd 0 0 +1
Odd 0 1 —1
Odd 1 0 None
Odd 1 1 None

TaBLE XII — Binary CobE USED FOR CORRECTING
DEcimMaL MESSAGE

CharBal?taerr}i’stics a b Position in Decimal Message
0 0 0 1| Parity Check Digt () (0) | Binary comp. of 1st digit
0 0 1 0| Parity Check Digit (0) (0) | Binary comp. of 2nd digit
0011 1 1 Binary comp. of 3rd digit
0 1 0 0] Parity Check Digit (1) | (1) | Binary comp. of 4th digit
01 01 0 0 Binary comp. of 5th digit
0110 0 0 | Binary comp. of 6th digit
01 11 1 3 Quinary comp. of 7th digit
1 0 0 0| Parity Check Digit (1) | (1) | Binary comp. of 7th digit
1 001 1 3 Quinary comp. of 6th digit
1010 0 2 Quinary comp. of 5th digit
1011 0 4 Quinary comp. of 4th digit
1100 1 1 Quinary comp. of 3rd digit
1101 1 3 Quinary comp. of 2nd digit
1110 0 0 Quinary comp. of 1st digit

To illustrate the method completely, a strictly binary example will
first be illustrated, then a related decimal example. In column a of Table
X1I1, the digits of a binary message are indicated and in column b, the
binary and quinary information digits. The values of the parity check
digits, which are shown in parentheses, are calculated by the usual for-
mula. Let C;; represent the jth digit of the characteristic of the 7th
digit (including parity check digits):

14

=1
This formula applies for all values of j and in this case will yield four
implicit equations each with one unknown term, the value of the parity
check digit. Using the given values of the binary information digits,
the values of the parity check digits are calculated. These are shown in
parentheses in Table XII.
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The binary message is
00110011100110.

TFor this example, the quinary components (quinary information digits)
of decimal digits are chosen odd if the corresponding digit of the binary
example is 1, even if that digit is 0. The binary and quinary components
are then combined by the rules of the reflected quibinary code to form
the decimal digits 0 7 2 9 4 7 6. For example, the quinary and binary
components of the fifth digit are 2 and 0, respectively; the decimal digit
which has these components is 4, the fifth decimal digit of the message.

Consider the binary case. Suppose that the message is mutilated in
transmission so that the tenth digit is received incorreetly. The message
is mutilated from

00110011100110
to
00110011110110.

The decoder and corrector calculates the corrector by

14
C; = Z 113;01‘]' mod 2. (53)
7=1
In this formula, ¢; is the jth digit of the corrector and z; the received
value of ;. In this example the corrector is 1 0 1 0, which means that
the tenth digit, which has this characteristic, is wrong and should be
changed to 0.
The corresponding error in the decimal example is a change in the
fifth digit from 4 to 3. If the message 0 7 2 9 3 7 6 is received, the
resolver and quinary to binary converter delivers the message

00110011110110
to the decoder instead of
00110011100110

corresponding to the correct message. The corrected binary message is
produced at the output of the decoder and corrector. When the quinary
and binary components of the fifth digit are examined by the gquinary
correction circuit, the following inputs exist:

Received quinary digit 1 (0dd) (quinary component of
received decimal 3)
Corrected binary digit
derived from quinary 0 (By
Corrected binary digit
from same decimal number 0 (By).
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Table XI shows that the quinary digit must be increased by 1 to 2,
which combined with the binary 0 conveyed by the same decimal digit
yields a decimal value of 4, the original transmitted value.

The best semi-systematic simple characteristic code for correcting
single small errors in a seven digit message allows 6 X 10° possible mes-
sages in a seven digit message (see Table V), whereas this code allows
6.25 X 10°. This code is therefore slightly more efficient. In addition,
this code has the special advantage that any error of =2 on one digit
is recognizable since the corrector will have a value of 1111 for the asso-
ciated binary message. (An inspection of the choice of characteristics
and assignment of characteristics to the two components of any decimal
digit will confirm this.)

This general technique can be applied to any base b channel, provided

TaBLE XIII — CoMPONENTS OF QUINARY DIGITS

Mixed Digit Information Digit
Quinary Digit Info. Comp. Check Comp. Quinary Digit Binary Comp. | Ternary Comp.
0 0 0 0 0 0
1 0 1 1 1 0
2 1 1 2 1 1
3 1 0 3 0 1
4 not used not used 4 0 2%

* If quinary information is initially generated, the combination (1, 2) will not
oceur.

that b is greater than 3. For odd bases, the digits which convey a parity
check component and an information component cannot be utilized effi-
ciently since one state of the base b digit is not available. For example,
using a base 5, (see Table XIII), only two information and two parity
check states may be conveyed by one digit, since the use of a third infor-
mation state would require at least six states for the mixed digit. In
the case of information digits, however, all states can be used. In the
quinary example, the resolution of a digit into two components and the
subsequent recombination is subject to the restraint that one of the com-
binations (1, 2) will not occur, which can be assured if the information
source generates quinary digits.

Tor the case of high redundancy codes having the property that the
associated binary code contains more than 50 per cent parity check
digits (corresponding to a negative value of n — m in Fig. 2), at least
some of the base b digits must convey two or more parity check digits.

This can be easily accomplished: a decimal digit can convey three
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TaBLe XIV — DrcimmaL Dicit CoNvEYING THREE Binary Dicits

Decimal Digit Binary Components
0 000
1 0 0 1
2 011
. 3 010
4 110
5 111
6 1 01
7 1 00
8 not used
9 not used

parity check digits if a simple reflected binary code correspondence be-
tween binary and decimal digits is maintained as shown in Table XIV.

An extension of this idea is the encoding of the original information
(i.e., the information that is shown coming out of the information source
in Fig. 2) in some error detection or correction code. For example, the
decimal to reflected quibinary code resolver will cause both components
to be incorrect if an error of 2 in a decimal digit occurs. In this case,
the system shown in Fig. 2 will automatically make a correction on the
decimal digit of either 42 or —2 depending upon the value of the re-
ceived decimal digit, and provided a double error correction binary
code is used. Such a correction will be incorrect about half the time. If
the received binary digit is compared to the corrected binary digit and
the received quinary digit is compared to its corrected odd or even digit,
an error of 422 can be detected without changing the code. If one extra
binary check digit, treated as an information digit by the encoder and
decoder, is transmitted in the message, this binary digit can convey the
information necessary for determining the sign for a correction of =2,
provided that only one such correction is required for any one message.
A rule for determining the value of this digit is:

B, =0 if > ¢ = (0or1) mod 4,
=1

I

(54)

B.=1 if >

=1

(2 or 3) mod 4,

where ¢, represents the ¢th quinary information digit, and B. represents
the special check digit. If the received message contains one error of 42
on a digit, two possible corrections may be made on the quinary compo-
nent of this digit; &1. Obviously, only one of these corrections will
satisfy the equation for determining B, since the two possible corrected
values of g are two units apart.



NON-BINARY ERROR CORRECTION CODES 1379

Note that the associated binary codes for performing such a corree-
tion must have the property that two binary digits may be corrected
since an error of =2 corresponds to incorrect values for two associated
binary digits. If the noise is such that errors of 42 are not very unlikely,
it may be desirable to place the binary and the quinary components of
any one decimal digit in a different binary error correction code word so as
to make the errors independent. In a seven decimal digit message, as an
example, the quinary components of the first four decimal digits can be
used to generate parity check digits which are conveyed by the binary
components of the last three decimal digits. The binary component
of the fourth decimal digit (this might be B.) and the quinary com-
ponents of the last three decimal digits generate parity check digits
conveyed by the binary components of the first three decimal digits.
Two separate binary error correction code messages are then conveyed
by a single seven digit decimal code message. Each message is in a four
information digit, three parity check digit Hamming Code. Through the
use of this code, one error in the binary component of any decimal digit,
and one error in the quinary component of any deeimal digit may be
corrected. A

In certain cases, the quinary digits themselves might be encoded in an
error correction code for single unrestricted errors before the binary
process is carried out. This is helpful chiefly for occasional large errors,
leading to initial miscorrections.

The variations based upon the principles described, which can be
applied to any channel, provided b = 4, including the pyramiding of one
code scheme upon another, are almost endless. Generally, the last
encoding and first decoding step should be able to correct many more
errors than the first encoding step. For example, if quinary components
are encoded in single unrestricted error correction quinary code, the bi-
nary code should probably be a triple or quadruple error correction code;
otherwise a correction may not correspond to the most probable error
condition, and the correction scheme loses its effectiveness.

These techniques cannot be conveniently applied to the ternary chan-
nel, since a ternary digit cannot be resolved into two components effi-
ciently.

6.2 Multiple Small Error Correction Codes

One limitation of the above techniques is the requirement for a sys-
tematic binary code;i.e., a code in which some of the binary information
digits are transmitted directly, and others are determined by parity
checks on information and previously calculated check digits. These
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TaBLE XV — REED-MULLER CopEs — 256 DiciT MESSAGE

Number of Digits of Information per Message Number of Errors Correctable per Message

255 0

247 1

219 3

163 7

93 : 15

37 31

9 63

1 127

systematic codes are conveniently applicable only to the correction of
single errors and a few special cases of multiple errors.

The Reed-Muller® codes are not systematic codes, (“systematic”
being used in the narrow sense indicated above, not in the sense of Ham-
ming'), but offer the advantage that multiple error correction is rela-
tively straightforward. For this reason, it is desirable to find some way
of adapting the binary Reed-Muller codes for correcting a number of
small errors in non-binary codes.

To explain the nature of the Reed-Muller codes completely is beyond
the scope of this paper; a list of their important features is sufficient.
This is:

1. The length of a message is 2* binary digits for the simpler versions
of the code.

2. If ¢, represents the number of combinations of d items taken
¢ at a time, and C.7 = d!/[c}(d — ¢)!], then 2* — D7, Cr_; information
digits may be transmitted correctly in a message containing 2* digits,
if no more than 2™ — 1 errors occur in the messages; 2™ errors are de-
tected but they are not always correctable. The Reed-Muller codes for
correcting a large number of errors will frequently correct more than
2™ — 1 errors, and will always correct 2™ — 1 or fewer errors.

These values are given for a 256 digit message in Table XV.

3. Each digit of the transmitted message is a parity check of a group
of digits from the information source; the message cannot be broken down
into information digits and check digits.

4. The decoding is accomplished by a number of majority decisions
among different groups of message digits.

A technique will be described for using a Reed-Muller code efficiently
to correct a number of small (41) errors for any code base b that is a
multiple of 2, and also, at a small sacrifice of efficiency, a number of larger
errors.

A theorem, stating that any code which is generated by a set of parity
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checks will contain the same set of allowable messages as some systematic
code, was proved by Hamming." In particular, such a theorem indicates
that a Reed-Muller code will contain the same set of allowable messages
as some systematic code. This was also proved by Slepian,” who has given
a simple method of deriving a systematic code generating the same set
of messages as a Reed-Muller code. For convenience, such a code will be
called an SERM code (Systematic Equivalent Reed-Muller code).

A Reed-Muller decoder serves to derive the information digits from a
message in Reed-Muller code which may have been mutilated by noise.
If a Reed-Muller decoder is followed by a Reed-Muller encoder, the com-
bination serves as a noise eliminator (provided the noise is within the
correction bounds of the code), since the output of the encoder is the
noiseless Reed-Muller code message that is equivalent to the noisy
message that entered the decoder. This property is useful since it means
that any message, drawn from the set of Reed-Muller code messages,
which has not been mutilated outside the bounds set up by a particular
Reed-Muller code, will be restored to its original form, by a Reed-Muller
decoder followed by a Reed-Muller encoder. Since an SERM code will
produce only messages included in the set of messages of the correspond-
ing Reed-Muller code, the SERM code can be used in conjunction with a
Reed-Muller decoder and encoder to permit transmission over a noisy
channel in a systematic code.

The two systems shown in Fig. 3 are therefore equivalent in their
error correction properties. In both cases, messages from the set of Reed-
Muller code messages are sent, and since the same decoder is used ini-
tially, both systems will correct errors in the received message in the
same manner. The Reed-Muller encoder in the second system is re-
quired because a Reed-Muller decoder does not correct a message but
derives information digits from the received message directly. The
derived information digits, however, necessarily correspond to some
corrected form of thereceived message and, in effect, the decoder performs
the same correction as it would perform by deriving the corrected form of
the message first.

INFORMATION| REED MULLER NOISY REED MULLER |[INFORMATION
T ENCODER CHANNEL DECODER |7 —>
INFORMATION| SERM NOISY RM | | RM DIGIT |[INFORMATION
R ENCODER [ |CHANNEL [~ | DECODER ENCODER [ |SELECTOR[™ —

Fig. 3 — Equivalent systems using SERM and Reed-Muller codes.
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TaABLE XVI — MuLTIPLE SMALL ERROR CoRrREcCTION CODE
Usine SERM Cobpes wiTH DEciMAL CHANNEL

Information Digits : Check Digits, No. of Small E
Message Length (Equlv%iegnittsl)Demmal (Lquw:la)lieénittsl)Demmal Cogreoctatr;llg perr;:’;:
128 127.7 .3 0
128 125.3 2.7 1
128 116.9 11.1 3
128 100.0 28.0 7

This means that a Reed-Muller code can be adapted to the system
shown in Tfig. 2. The Systematic Binary Error Correction Code Encoder
is simply an SERM encoder; this is permissible since the SERM codes
are systematic. The Binary Decoder and Corrector is simply a Reed-
Muller decoder followed by a Reed-Muller encoder. Everything else
remains unchanged.

This scheme offers flexibility for the correction of large numbers of
small errors. Proper initial error correction encoding of the original in-
formation digits will permit correction of a small number of large errors.

Table XVI shows some typical cases of the correction of many small
errors in a decimal message as a function of the number of information
and check digits in a message of constant length. For convenience, every-
thing is shown in equivalent decimal digits, even though in the actual
code, binary and quinary information digits are used. Only the first few
entries are considered, since the message composed exclusively of the
digits 0, 3, 6, 9 in which any number of small errors in a decimal channel
may be corrected (this code is described by the first entry of Table V) is
more efficient than the codes corresponding to subsequent entries on
Table XVI. This code, which is very easy to instrument, will transmit
the equivalent of 77 decimal digits in a 128 decimal digit message.

One problem not efficiently solved by these techniques is the multiple-
error correction ternary channel problem. A technique which can be
used is a code identical to the regular binary Reed-Muller Code, except
that all equations will be modulo 3 instead of modulo 2. In decoding, this
will sometimes require subtraction instead of addition; in modulo 2
equations there is no difference between these operations, but in modulo 3
equations, the two operations are distinct. The same procedure can be
used for correcting multiple unrestricted errors in any base.

VII. ITERATIVE CODES

All the codes described above have one disadvantage; occasional ex-
cessive noise will yield a non-correctable message. In order to approach
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error free transmission, some iterative coding procedure may be used:
This problem has been solved by Elias.® His methods are directly appli-
cable to non-binary codes, since nothing restricts the digits to blnary
values. :

In order to minimize the complexlty of an iterative coding procedure
systematic codes are desirable. The advantages of the Reed-Muller code
are significant however, especially for the case of a relatively noisy.
channel. A sound procedure for a binary channel would therefore be to
use SERM codes, (see Fig. 3); such codes are more efficient than iterated
Hamming Codes in a relatively noisy channel.

VIII. SUMMARY AND ANALYSIS

Many codes have been presented in this paper, all constructed by
some combination of procedures involving linear congruence or modulo
equations.

In most cases, more efficient codes exist. Exhaustive procedures exist
for deriving maximum efliciency codes, although the codes derived in
this manner usually require an extensive codebook, both at the encoder
and at the decoder. Even for simple single error correction binary codes,
the most efficient code is not always a systematic code. For example,
the best systematic single error correction binary code working with an
eight digit message has only 16 different allowable messages; it is known!4
that a non-systematic code with at least 19 allowable messages exists.

In the case of non-binary codes, the situation is somewhat worse.
Very few of the codes given in this paper take advantage of the fact that,
for most situations, a digit that is incorrectly received as 0 or b — 1 is
usually corrected only in one direction and no need exists to specify
whether the correction is 1. Most of the codes are arranged so that
any received digit may be corrected either positively or negatively. No
codes have been found which take full advantage of such a property,
other than codebook codes, except for isolated instances of short message
codes having symmetrical properties. Ifor example, the single digit,
single small error correction decimal code having 0, 3, 6, 9 as the allow-
able messages takes full advantage of this property, and is, at the same
time, a true semi-systematic code.

It is extremely difficult to find the ultimate limits of efficiency of code-
book codes. The exhaustive procedures are totally impractical except for
very short messages. If an analysis is restricted to codes which do not
take advantage of the property that certain values of digits may be
corrected in only one direction, and it is assumed that each possible
message is mutilated to the same number of incorrect messages, one



1384 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1957

limit to the efficiency of codes may be found. This limit can be derived
from the fact that an error correction code decoder and correction cir-
cuit must be able to convert any message which contains errors within
the bounds of the correction performed by the code, into the value of
the message as originally transmitted, or must be able to derive the
original information which was fed into the encoder. Thus, if each mes-
sage may be mutilated in w ways, and still be corrected, then at least w
messages must be associated with each allowed message. This is indi-
cated diagrammatically in Fig. 4. The messages produced by the encoder
are shown at the left; each one fans out to w — 1 mutilated messages
plus the original message. The decoder converts any of these w messages
into the original message.

The value of w can be determined by taking all possible combinations
of errors that can be corrected by a coding system. For example, for a
code system which can correct up to (d — 1)/2 small errors in different
digits in an n digit message, w is given by

(d—1)/2

w= Y 02, (55)

=0
where d is the minimum distance between messages, and

n!
Cin =
n — 2)k!

This equation merely signifies that w is the sum of all combinations of
positive and negative (accounting for the 2 term) errors in up to
(d — 1)/2 different digits out of n digits. For single errors, w = 2n 4 1.

INFORMATION ENCODER CHANNEL DECODER INFORMATION
SOURCE RECEPTOR

1
—_— } N —_—
I
M. W DIFFERENT

7/ MESSAGES
/
/

Fig. 4 — Graphical representation of an error correction code.
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The number of different messages that can be produced by the en-
coder must be no greater than b»/w, subject to the above restriction, b»
representing the maximum number of messages that the decoder may
receive as an input. If only systematic and semi-systematic codes are
considered, the number of messages is limited to multiples of powers of
b and of the information component base 8 of mixed digits. The number
of check states must be at least as large as w, so that w different correc-
tors may be calculated and associated with w different corrections.

Subject to the above restrictions, the following statements may be
made. ‘

1. The systematic single small error correction codes derived using
the rules of Section III are the most efficient systematic single small
error correction codes possible. IFor those codes in which the two sides
of inequality (8a) are equal, no code, not even a non-systematic code, is
more efficient.

2. The systematic single unrestricted error correction codes derived
using the rules of Section 4.1 are the most efficient systematic single
unrestricted error correction codes. For those codes in which the two
sides of inequality (31) are equal, no code is more efficient.

3. No codes are more efficient than those semi-systematic codes,
derived using the rules of Section III, for which the two sides of in-
equalities (28) and (29) are equal and m; = 0. It is difficult to make
more general statements about semi-systematic codes, because spe-
cial techniques (such as those of Section VI), not all of which are known,
may be used with these codes.

For multiple error correction codes, other techniques are both simpler
and more efficient than the straight systematic and semi-systematic
techniques described in Sections ITI, IV and V. One such scheme has
been described in detail in Section VI. No codes have been found which
approach the limit set by w, but the codes described in Section 6.2 are
moderately efficient.

Throughout this paper, all techniques which involve vast complica-
tions at the expense of slight additional efficiency have been avoided.
Codebook methods are always possible. If a technique is almost as com-
plicated as a codebook technique with only slightly greater efficiency
than a simple technique, the simple technique would always be used in
practice, and the codebook satisfies the mathematical and theoretical
requirements. In a sense, a really complicated technique is only useful
for deriving a better lower limit for the maximum efficiency of a code-
book code. In the non-binary case, however, a codebook system is con-
siderably more efficient than any code system which does not take ad-
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vantage of the fact that all transmitted messages are not mutilatable to
an equal number of correctable received messages. »

IFrom the point of view of deriving lower limits to the maximum effi-
ciency of a codebook technique, such a consideration is vital. Except for
a few relatively trivial cases, no codes have been found which take sig-
nificant advantage of the above consideration, for deriving such a
limit.*

IX. CONCLUSION

In this paper, techniques have been presented for deriving error cor-
rection codes for non-binary systems. None of the methods presented
are overly complicated, nor do they require excessive storage capacity
for either the encoding or decoding and correction system.

The codes are sufficiently simple so that their use with a non-binary
storage system may be considered, and the development of such a
storage system should not be stopped because a system without flaws or
not subject to noise cannot be realized.

An important disadvantage of using error correction codes with such
a system is the time requirement. Correction usually requires a signifi-
cant amount of time. This is probably one reason why the Hamming
Code is not used more extensively. The more advanced and complicated
codes, such as the Reed-Muller Codes, suffer particularly from the
amount of time required for a correction. The codes described in this
paper are therefore probably best suited to medium or low speed stor-
ages, which are not read too frequently.

A study of this type may be of some interest to those who have been
considering the use of multi-state devices for building switching systems
and computers, since this paper represents a study of a typical problem.
Certain lessons may be derived from this study:

1. Restriction to a single number base for all operations is a severe
handicap. The more advanced codes presented in this paper, require
extensive use of different number base operations. The ability, inside
the computer, to change number bases for different operations, may well
be useful.

2. Different problems are best solved using different number bases.
For example, the use of an even number base is desirable for multiple
small error correction codes, while the use of a prime number base is
desirable for correcting single large errors. It is the author’s opinion that

* Note that this restriction has less significance in the case of binary codes. In

a symmetrical channel with only two available signals, each value of a digit may
be changed in as many ways, namely, one, as every other.
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number bases which are the product of several small factors are best.
Suggested values are six, ten and twelve. Number bases with two differ-
ent prime factors, may offer an advanta{:‘{e, since they permit simple
translation and change of number base among at least three different
numbers.

In the comparison between binary and non-binary error correction
codes, the following observations may be made:

1. Keeping the amount of information per message fixed, a binary
single error correction code is less efficient than a non-binary single
small error correction code, provided b, the channel base, is greater than
three, but is more efficient than a non-binary single unrestricted error
correction code.

2. Non-binary codes are slightly more complicated to implement than
binary codes; this applies to multiple error correction codes as well as to
single error correction codes. The amount of added complication is in no
case really extensive.

It was initially hoped that this study might also produce some addi-
tional binary error correction techniques. One such technique was dis-
covered: the use of a systematic equivalent Reed-Muller code to ap-
proach error free coding (see Section VII).

Finally, the author wishes to express the hope that further work on
non-binary systems will be encouraged by this study.
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Shortest Connection Networks
And Some Generalizations

By R. C. PRIM
(Manuscript received May 8, 1957)

The basic problem considered is that of interconnecting a given set of
terminals with a shortest possible network of direct links. Simple and prac-
tical procedures are given for solving this problem both graphically and
computattonally. It develops that these procedures also provide solutions
for a much broader class of problems, containing other examples of practical
interest.

I. INTRODUCTION

A problem of inherent interest in the planning of large-scale communi-
cation, distribution and transportation networks also arises in connec-
tion with the current rate structure for Bell System leased-line services.
It is the following:

Basic Problem — Given a set of (point) terminals, connect them by a
network of direct terminal-to-terminal links having the smallest possible
total length (sum of the link lengths). (A set of terminals is ‘“connected,”
of course, if and only if there is an unbroken chain of links between every
two terminals in the set.) An example of such a Shortest Connection Net-
work is shown in Fig. 1. The prescribed terminal set here consists of
Washington and the forty-eight state capitals. The distances on the par-
ticular map used are accepted as true.

Two simple construction principles will be established below which
provide simple, straight-forward and flexible procedures for solving the
basic problem. Among the several alternative algorithms whose validity
follows from the basic construction prineiples, one is particularly well
adapted for automatic computation. The nature of the construction
principles and of the demonstration of their validity leads quite naturally
to the consideration, and solution, of a broad class of minimization prob-
lems comprising a non-trivial abstraction and generalization of the basic
problem. This extended class of problems contains examples of practical
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interest in quite different contexts from those in which the basic prob-
lem had its genesis.

II. CONSTRUCTION PRINCIPLES FOR SHORTEST CONNECTION NETWORKS

In order to state the rules for solution of the basic problem concisely,
it is necessary to introduce a few, almost self-explanatory, terms. An
1solated terminal is a terminal to which, at a given stage of the construc-
tion, no connections have yet been made. (In Fig. 2, terminals 2, 4, and
9 are the only isolated ones.) A fragment is a terminal subset connected
by direct links, between members of the subset. (In Fig. 2, 8-3, 1-6-7-5,
5-6-7, and 1-6 are some of the fragments; 2-4, 4-8-3, 1-5-7, and 1-7 are

S o

3

1 BO/O

o4

5

Fig. 2 — Partial connection network.

not fragments.) The distance of a terminal from a fragment of which it
is not an element is the minimum of its distances from the individual
terminals comprising the fragment. An isolated fragment is a fragment
to which, at a given stage of the construction, no external connections
have been made. (In Tig. 2, 8-3 and 1-6-7-5 are the only isolated frag-
ments.) A nearest neighbor of a terminal is a terminal whose distance
from the specified terminal is at least as small as that of any other. A
nearest neighbor of a fragment, analogously, is a terminal whose distance
from the specified fragment is at least as small as that of any other.

The two fundamental construction principles (P1 and P2) for shortest
connection networks can now be stated as follows:

Principle 1 — Any isolated terminal can be connecled to a nearest
netghbor.

Principle 2 — Any isolated fragment can be connecled to a nearest
netghbor by a shortest available link.

For example, the next steps in the incomplete construction of Fig. 2
could be any one of the following:

(1) add link 9-2 (P1 applied to Term. 9)
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(2) add link 2-9 (P1 applied to Term. 2)

(3) add link 4-8 (P1 applied to Term. 4)

(4) add link 8-4 (P2 applied to frag. 3-8)

(5) add link 1-9 (P2 applied to frag. 1-6-7-5).

One possible sequence for completing this construction is: 4-8 (P1), 8-2
(P2), 9-2 (1), and 1-9 (P2). Another is: 1-9 (P2), 9-2 (P2), 2-8 (P2),
and 8-4 (P2).

As a second example, the construction of the network of Fig. 1 could
have proceeded as follows: Olympia-Salem (P1), Salem-Boise (P2), Boise-
Salt Lake City (P2), Helena-Boise (P1), Sacramento-Carson City (P1),
Carson City-Boise (P2), Salt Lake City-Denver (P2), Phoenix-Santa Fe
(P1), Santa Fe-Denver (P2), and so on.

The kind of intermixture of applications of P1 and P2 demonstrated
here is very efficient when the shortest connection network is actually
being laid out on a map on which the given terminal set is plotted to
scale. With only a few minutes of practice, an example as complex as
that of Fig. 1 can be solved in less than 10 minutes. Another mode of
procedure, making less use of the flexibility permitted by the construe-
tion principles, involves using P1 only once to produce a single frag-
ment, which is then extended by successive applications of P2 until the
network is completed. This highly systematic variant, as will emerge
later, has advantages for computer mechanization of the solution proc-
ess. As applied to the example of Fig. 1, this algorithm would proceed
as follows if Sacramento were the indicated initial terminal: Sacramento-
Carson City, Carson City-Boise, Boise-Salt Lake City, Boise-Helena,
Boise-Salem, Salem-Olympia, Salt Lake City-Denver, Denver-Cheyenne,
Denver-Santa Fe, and so on.

Since each application of either P1 or P2 reduces the total number
of isolated terminals and fragments by one, it is evident that an N-ter-
minal network is connected by N-1 applications.

III. VALIDATION OF CONSTRUCTION PRINCIPLES

The validity of P1 and P2 depends essentially on the establishment
of two necessary conditions (NC1 and NC2) for a shortest connection
network (SCN):

Necessary Condition 1 — Every terminal tn a SCN is directly con-
nected to at least one nearest neighbor.

Necessary Condition 2 — Every fragment tn a SCN 1is connected to at
least one nearest neighbor by a shortest available path.

To simplify the argument, it will at first be assumed that all distances
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between terminals are different, so that each terminal or fragment has
a single, uniquely defined, nearest neighbor. This restriction will be
removed later.

Consider first NC1. Suppose there is a SCN for which it is untrue.
Then [Fig. 3(a)] some terminal, £, in this network is not directly joined
to its nearest neighbor, n. Since the network is connected, ¢ is necessarily
joined directly to some one or more terminals other than n — say f1,

-+, f» . For the same reason, » is necessarily joined through some chain,
C, of one or more links to one of f, ---, f- —say to f, . Now if the link
t — fr isremoved from the network and the link ¢ — n is added [Fig. 3(b)],
the connectedness of the network is clearly not destroyed — f;. being
joined to ¢ through n and C, rather than directly. However, the total
length of the network has now been decreased, because, by hypothesis,
t — nisshorter than ¢ — f; . Hence, contrary to the initial supposition, the
network contradicting NC1 could not have been the shortest, and the
truth of NC1 follows. From NCI1 follows P1, which merely permits the
addition of links which NCI1 shows have to appear in the final SCN.

Turning now to NC2, the above argument carries over directly if ¢
is thought of as a fragment of the supposed contradictory SCN, rather
than as an individual terminal — provided, of course that the ¢ — nlink
substituted for ¢ — f;, is the shortest link from 7 toany of the terminals
belonging to ¢. From the validity of NC2 follows P2 — again the links
whose addition is permitted by P2 are all necessary, by NC2, in the
final SCN.

The temporary restrictive assumption' that no two inter-terminal
distances are identical must now be removed. A reappraisal of the
proofs of NC1 and NC2 shows that they are still valid if n is not the .
only terminal at distance { — n from ¢, for in the supposedly contradictory
network the distance ¢ — f, must be greater than ¢ — n. What remains to be
established is that the length of the final connection network resulting

(b)

Fig. 3 — Schematic demonstration of NCI.
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from successive applications (N — 1 for N terminals) of Pland P2 is
independent of which nearest neighbor is chosen for connection at a
stage when more than one nearest neighbor to an isolated terminal or

t is available. This is a consequence of the following considera-
tions: For a prescribed terminal set there are only a finite number of
connection networks (certainly fewer than CYNV® _ the number of
distinet waysof choosing NV — 1 links from the total of N(N — 1) /2 possible
links). The length of each one of this finite set of connection networks is
a continuous function of the individual interterminal distances, d;; (as a
matter of f ct, it is a linear function with coefficients 0 and 1). With
the d;; specified, the length, L, of a shortest connection network is
simply the smallest length in this finite set of connection network
lengths. Therefore L is uniquely determined. (It may, of course, be
associated with more than one of the connection networks.) Now, if at
each stage of construction employing P1 and P2 at which a choice is to
be made among two or more nearest neighbors ny , - - -, n, of an isolated
terminal (or fragment) ¢, a small positive quantity, e, is subtracted from
any specific one of the distances dyn,, - -+, di, — say from d,,, — the
construction will be uniquely determined. The total length, L', of the
resulting SCN for the modified problem will now depend on e, as well
as on the d;; of the original terminal set. The dependence on e will be
continuous, however, because the minimum of a finite set of continuous
functions of e (the set of lengths of all connection networks of the modi-
fied problem) is itself a continuous function of e. Hence, as ¢ is made
vanishingly small, L’ approaches L, regardless of which “nearest neigh-
bor’’ links were chosen for shortening to decide the construction.

IV. ABSTRACTION AND GENERALIZATION

In the examples of Figs. 1 and 2, the terminal set to be connected was
represented by points on a distance-true map. The decisions involved
in applying P1 and P2 could then be based on visual judgements of
relative distances, perhaps augmented by application of a pair of di-
viders in a few close instances. These direct geometric comparisons can
of course, be replaced by numerical ones if the inter-terminal distances
are entered on the terminal plot, as in Fig. 4(a). The application of P1
and P2 goes through as before, with the relevant ‘“nearest neighbors”
determined by a comparison of numerical labels, rather than by a
geometric scanning process. For example, P1 applied to Terminal 5 of
Fig. 4(a) yields the Link 5-6 of the SCN of Fig. 4(b), because 4.6 is
less than 5.6, 8.0, 8.5, and 5.1, and so on.
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When the construction of shortest connection networks is thus reduced
to processes involving only the numerical distance labels on the various
possible links, the actual location of the points representing the various
terminals in a graphical representation of the problem is, of course.
inconsequential. The problem of Fig. 4(a) can just as well be represented
by Fig. 5(a), for example, and P1 and P2 applied to obtain the SCN
of Fig. 5(b). The original metric problem concerning a set of points in
the plane has now been abstracted into a problem concerning labelled
graphs. The correspondence between the terminology employed thus
far and more conventional language of Graph Theory is as follows:

terminal <> vertex

possible link < edge

length of link <> “length” (or “weight’’) of edge

connection network <« spanning subgraph

(without closed loops) <> (spanning subtree)

L=17.6 @
(@) (b)

Fig. 4 — Example of a shortest spanning subtree of a complete labelled graph.

L=17.6

(a) (b)

Fig. 5 — Example of a shortest spanning subtree of a complete labelled graph.
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shortest connection network <> shortest spanning subtree

SCN «> SS8
It will be useful and worthwhile to carry over the concepts of “fragment”’
and “nearest neighbor” into the graph theoretic framework. P1 and P2
can now be regarded as construction principles for finding a shortest
spanning subtree of a labelled graph.

In the originating context of connection networks, the graphs from
which a shortest spanning subtree is to be extracted are complete graphs;
that is, graphs having an edge between every pair of vertices. It is
natural, now, to generalize the original problem by seeking shortest
spanning subtrees for arbitrary connected labelled graphs. Consider, for
example, the labelled graph of Fig. 6(a) which is derived from that of
Fig. 5(a) by deleting some of the edges. (In the connection network
context, this is equivalent to barring direct connections between certain
terminal pairs.) It is easily verified that NC1 and NC2, and hence P1
and P2, are valid also in these more general cases. For the example of
Tig. 6(a), they yield readily the SSS of Fig. 6(b).

As a further generalization, it is not at all necessary for the validity
of P1 and P2 that the edge “lengths” in the given labelled graph be
derived, as were those of Figs. 4-6, from the inter-point distances of
some point set in the plane. PI and P2 will provide a SSS for any con-
nected labelled graph with any set of real edge ‘‘lengths.” The “lengths’’
need not even be positive, or of the same sign. See, for example, the
labelled graph of Fig. 7(a) and its SSS, Fig. 7(b). It might be noted in
passing that this degree of generality is sufficient to include, among
other things, shortest connection networks in an arbitrary number of
dimensions.

A further extension of the range of problems solved by P1 and P2
follows trivially from the observation that the maximum of a set of

L=23.8

(a) (b)

Fig. 6 — Example of a shortest spanning subtree of an incomplete labelled graph.
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real numbers is the same as the negative of the minimum of the negatives
of the set. Therefore, P1 and P2 can be used to construct a longest
spanning subtree by changing the signs of the “lengths” on the given
labelled graph. Fig. 8 gives, as an example, the longest spanning subtree
for the labelled graph of Figs. 4(a) and 5(a).

It is easy to extend the arguments in support of NC1 and NC2 from
the simple case of minimizing the sum to the more general problems of
minimizing an arbitrary increasing symmetric function, or of maximizing
an arbitrary decreasing symmetric function, of the edge ‘“lengths” of a
spanning subtree. (A symmetric function of n variables is one whose
value is unchanged by any interchanges of the variable values; e.g.,

itz + - - F Xy, 1% - - Xy, S0 225 + sin 22+ - ¢ - 4 sin 22,
(x + x + -+ + 2,92 ete.) From this follow the non-trivial generali-
zations.

The shortest spanning subtree of a connected labelled graph
also minimizes all increasing symmetric functions, and maxi-
mizes all decreasing symmetric functions, of the edge “lengths.”

L=-8

(a) (b)

Fig. 7 — Example of a shortest spanning subtree of a labelled graph with
some ‘“lengths’ negative.

(Fig. 8 — The longest spanning subtree of the labeled graph of Figs. 4(a) and
5(a).
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The longest spanning subtree of a connected labelled graph
also maximizes all increasing symmetric functions, and mini-
mizes all decreasing symmetric functions, of the edge “lengths.”

For example, with positive “lengths” the same spanning subtree that
minimizes the sum of the edge ‘“lengths’ also minimizes the product and
the square root of the sum of the squares. At the same time, it maximizes
the sum of the reciprocals and the product of the arc cotangents.

It seems likely that these extensions of the original class of problems
soluble by P1 and P2 contain many examples of practical interest in
quite different contexts from the original connection networks. A not
entirely facetious example is the following: A message is to be passed
to all members of a certain underground organization. Each member
knows some of the other members and has procedures for arranging a
rendezvous with anyone he knows. Associated with each such possible
rendezvous — say between member “”’ and member “j” —is a certain
probability, p.;, that the message will fall into hostile hands. How is
the message to be distributed so as to minimize the over-all chances of
its being compromised? If members are represented as vertices, possible
rendezvous as edges, and compromise probabilities as “length’ labels
in a labelled graph, the problem is to find a spanning subtree for which
1 — O — p;) is minimized. Since this is an increasing symmetric
function of the p.;’s, this is the same as the spanning subtree minimiz-
ing £ pi; , and this is easily found by P1 and P2.

Another application, closer to the original one, is that of minimizing
the lengths of wire used in cabling panels of electrical equipment. Re-
strictions on the permitted wiring patterns lead to shortest connection
network problems in which the effective distances between terminals
are not the direct terminal-to-terminal distances. Thus the more general
viewpoint of the present section is applicable.

V. COMPUTATIONAL TECHNIQUE

Return now to the exemplary shortest connection network problem
of Tigs. 4(a) and 5(a) which served as the center for discussion of the
arithmetizing of the metric factors in the Basic Problem. It is evident
that the actual drawing and labelling of all the edges of a complete
graph will get very cumbersome as the number of vertices increases —
an N-vertex graph has (1/2)(N? — N) edges. For large N, it is convenient
to organize the numerical metric information in the form of a distance
table, such as Fig. 9, which is equivalent in content to Fig. 4(a) or Fig.
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5(a). (A distance table can also be prepared to represent an incomplete
labelled graph by entering the length of non-existent edges as «.)
When it is desired to determine a shortest connection network directly
from the distance table representation — either manually, or by machine
computation — one of the numerous particular algorithms obtainable

1 2 3 4 5 6

1 — [ 675228 )56 )36

21 67| — | 577351 |32

35257 — (348540

4128 73] 34| — 8.0 | 4.4

5156 ) 51)85[80] — |46

6]136) 32| 40| 44|46 | —

Fig. 9 — Distance table equivalent of Figs. 4(a) and 5(a).

i
2 3 4 5 6 2 3 5. 6
6.7 |5.2| 28 )5.6 | 3.6 4 I 7.3 J 3.4 ' 8.0 l 4.4|

(RN NN R ECON N

w

5 6

2
F

(1) 1 (4) | (1) | (1)

(&R o

5

2
F 5.7 | 5.6 | 3.6 6

(3) | (10 ]| (1

4

2 5 5
3.2(4.6 2

F

(6) | (6)

¢
5

4.6
(6)

Fig. 10 — Illustrative computational determination of a shortest connection
network.
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by restricting the freedom of choice allowed by P1 and P2 is distinctly
superior to other alternatives. This variant is the one in which P1 is
used but once to produce a single isolated fragment, which is then ex-
tended by repeated applications of P2.

The successive steps of an efficient computational procedure, as ap-
plied to the example of Fig. 9, are shown in Fig. 10. The entries in the
top rows of the successive I tables are the distances from the connected
fragment to the unconnected terminals at each stage of fragment growth.
The entries in parentheses in the second rows of these tables indicate
the nearest neighbor in the fragment of the external terminal in question.
The computation is started by entering the first row of the distance
table into the F table (to start the growing fragment from Terminal 1).
A smallest entry in the F table is then selected (in this case, 2.8, asso-
ciated with External Terminal 4 and Internal Terminal 1). The link 1-4
is deleted from the I table and entered in the Solution Summary (Fig.
11). The remaining entries in the first stage I’ table are then compared
with the corresponding entries in the ‘“4” row of the distance table
(reproduced beside the first 7 table). If any entry of this ‘“added ter-
minal”’ distance table is smaller than the corresponding /7 table entry,
it 1s substituted for it, with a corresponding change in the parenthesized
index. (Since 3.4 is less than 5.2, the 3 column of the /' table becomes
3.4/(4).) This process is repeated to yield the list of successive nearest
neighbors to the growing fragment, as entered in Iig. 11. The F and
“added terminal” distance tables grow shorter as the number of un-
connected terminals is decreased.

This computational procedure is easily programmed for an automatic
computer so as to handle quite large-scale problems. One of its advan-
tages is its avoidance of checks for closed cycles and connectedness.
Another is that it never requires access to more than two rows of distance
data at a time — no matter how large the problem.

SOLUTION SUMMARY

LINK LENGTH
1-4 2.8
4-3 3.4
1-6 3.6
6-2 3.2
6—.5 4.6

Fig. 11 — Solution summary for computation of Fig. 10.
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VI. RELATED LITERATURE AND PROBLEMS

J. B. Kruskal, Jr.! discusses the problem of constructing shortest
spanning subtrees for labelled graphs. He considers only distinet and
positive sets of edge lengths, and is primarily interested in establishing
uniqueness under these conditions. (This follows immediately from NCI
and NC2.) He also, however, gives three different constructions, or
algorithms, for finding SSS’s. Two of these are contained as special
cases in P1 — P2, The third is — “Perform the following step as many
times as possible: Among the edges not yet chosen, choose the longest
edge whose removal will not disconnect them’ While this is not directly
a special case of P1 — P2, it is an obvious corollary of the special case
in which the shortest of the edges permitted by P1 — P2 is selected at
each stage. IKruskal refers to an obscure Czech paper? as giving a con-
struction and uniqueness proof inferior to his.

The simplicity and power of the solution afforded by P1 and P2 for
the Basic Problem of the present paper comes as something of a surprise,
because there are well-known problems which seem quite similar in
nature for which no efficient solution procedure is known.

One of these is Steiner’s Problem: Find a shortest connection network
for a given terminal set, with freedom to add additional terminals
wherever desired. A number of necessary properties of these networks
are known? but do not lead to an effective solution procedure.

Another is the Traveling Salesman Problem: Find a closed path of
minimum length connecting a prescribed terminal set. Nothing even
approaching an effective solution procedure for this problem is now
known (early 1957).

REFERENCES

1. J.B.Kruskal, Jr., On the Shortest Spanning Subtree of a Graph and the Travel-
ing Salesman Ploblem Proc. Amer. Math. Soc. 7, pp. 48-50, 1956.

2. Otakar Bortivka, On a Minimal Problem, Price Moravske Pridovedecké Spdec-
nosti, 3, 1926.

3. R. Courant and H. Robbins, What s Mathematics, 4th edition, Oxford Univ.
Press, N. Y., 1941, pp. 374 et seq.






A Network Containing a Périodically

Operated Switch Solved by

Successive Approximations

By C. A. DESOER

(Manusecript received June 15, 1956)

This paper concerns itself with the analysis of a lype of periodically
switched network that might be used in time mulliplex systems. The econom-
ics of the situation require that the ratio of the switch closure time 7 to the
switching period T be small. Using this assumption, the analysis is performed
by successive approximations. More precisely the zeroth approximation to
the transmission s obtained from a block diagram analogous to those used
in sampled servomechanisms. From the convergence proof of the successive
approximation scheme, it follows that when v/ T is small, the zeroth approxi-
mation s very close to the exact transmission. A discussion of some examples
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I. INTRODUCTION

One main contributor to the cost of transmission circuits is the trans-
mission medium itself. Thus it is important to share the transmission
medium among as many messages as possible. One possible method is
the frequency multiplex where each message utilizes a different frequency
band of the whole band available in the medium. An alternate method
is the time multiplex where each message is assigned a time slot of dura-
tion 7 and has access to that time slot once every T seconds. It is obvious
that the economics of the situation requires that 7 be as small as possible
and T as large as possible so that the largest possible number of messages
are transmitted over the medium. For this very reason the analysis of
periodically switched networks is of special interest in the case where
/T is small.

W. R. Bennett* has published an exact analysis of this problem without
any restrictions either on the network or on the ratio r/7'. It is believed,
however, that the analysis presented in this paper will, in most practical
cases, give the desired answer with a considerable reduction in the
amount of calculations. The simplification of the analysis is mainly a
result of the assumption that 7/7 is small.

T'irst the successive approximation method of solution will be discussed
in general terms. Next it will be shown that the zeroth approximation
to the transmission through the network can be obtained from the gain
of a block diagram analogous to those used in the analysis of sampled
servomechanisms. The nature of the zeroth approximation is further
clarified by some general discussion and some examples. Next it is shown
that the successive approximations converge. The convergence proof then
suggests some slight modifications of the block diagram to obtain a more
accurate solution.

II. DESCRIPTION OF THE SYSTEM

The system under consideration is shown on Fig. 1. It consists of two
reactive networks N; and N, connected through a switch S which is it-
self in series with an inductance £. N, is driven at its terminal pair (1)

N1 II‘ NZ
st 1 s —> o 1
+= + 1 + || +
I f E, | Co=! B, Es |==C | Ea SR,
1 ]
S—i - o s
| L 4

Fig. 1 — System under consideration.
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1 - o -1 -7 _ &
fo= = =27 T—Zfr—a’o_” 13

¥4 L?

Fig. 2 — Resonant circuit.

by a current source /o which is shunted by a one ohm resistor. Ny is also
terminated at its terminal pair (1) by a one ohm resistor B, which is the
load resistor of the system. The switch S is periodically closed for a dura-
tion 7. The switching period is 7'. Thus if the switch is closed during the
interval (0, 7) it will be closed during the intervals (nT, nT + ) for

= 1,2, 3, --- . The inductance £ is selected so that the series circuit
shown on Fig. 2 has a resonant frequency f. = 1/27; i.e., the time
during which the switch is closed is exactly one-half period of the circuit
of Fig. 2. ‘

The switch S acts as a sampler and, as a result of the well-known modu-
lating properties of sampled systems, the sampling period 7 must be
chosen such that the frequency 1/27 is larger than any of the frequencies
present in the signals generated by I, . Furthermore, in order to eliminate
all the sidebands generated by the switching, N, must have a high in-
sertion loss for all frequencies above 1/27T cps.

In the analysis that follows networks N; and N, will be assumed to be
identical: it should, however, be stressed that this assumption is not
necessary for the proposed method of analysis.* This assumption is
made because in the practical situation which motivated this analysis
N, and N, were identical since transmission in both directions was re-
quired.

In order for the system under consideration to achieve the maximum
degree of multiplexing, the closure time 7 of the switch will be taken as
small as practically possible and the switching period 7 as large as pos-
sible (consistent with the bandwidth of the signals to be transmitted).
As a result the ratio 7/7 is very small, of the order of 10 or less in prac-
tical cases. Consequently the resonant frequency f, of the series resonant
circuit shown on Fig. 2, is many times larger than any of the natural
frequencies of N1 and N, .

* The modifications required for the case where N, is not identical to N are
given in Appendix IV.
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Fig. 3 — System under consideration when N; and N are lossless ladders.
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The problem is to determine the relation between Iy, the voltage
across R, , and I, .

III. METHOD OF SOLUTION

Let us first write the equations of the system. Obviously the equations
will depend on the exact configuration of the networks N; and N, . IFor
simplicity we shall write them for the case where Ny and N, are dissipa-
tionless low-pass ladder networks. As will become apparent later this
assumption is not essential to the argument. What is essential, however,
is the fact that both N; and N, should start (looking in from the switch)
with a shunt capacitor C' and a series inductance L, , the element value
of L, being much larger than €. Using a method of analysis advocated
by T. R. Bashkow,? we obtain, for the network of Fig. 3, the equations:

Ly =

dv . .
d;l = "‘R’Ll — Vg + Rlo

d . .
Cldi;=11—lz

v, . .
Cn -d_i = In—-1 n
di,
dt

d62
€

L, =, — e (1.a)

i, — A  (Lb)

di,
C
d€3

o= LAl — 4. (.d)

lez — eJA() (o) ¢ R (1)

. 7
LnddL; = €3 — vn/
dv,,l ] .y
di

[
)
3

I
=
3
|
-

: I
vy’ b
C: 7;— =14 — 4

di/

LIW_
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where
+o0

AW = > [u(t — kET) — u(t — kT — 7)), )

with u{t) =1 for t>0, and u{) =0 for ¢t <O.

This system of linear time varying equations may be broken up into
three sub-systems I, , R and I, . It is this subdivision that suggests a
successive approximation scheme that will be shown to converge to the
exact solution.

The zeroth approximation is obtained as follows: when the switch is
closed, i.e., A(f) = 1, the resonant current 7, is much larger than the cur-
rents 7, and ¢,/. Thus, during the switch closure time, 7, and 7,,’ are neg-
lected with respect to 7, in (1.b) and (1.d). Hence when A({) = 1 the
system R may be solved for 7,(t), es(f) and e;(f) in terms of the initial
conditions. The resulting function e,(¢) and given function 4,(¢) are then
the forcing functions of the system I,. The other function e;(¢) ig the
forcing function of the system I,. Under these assumptions, the periodic
steady-state solution corresponding to an applied current (t) = Ioe™"
is easily obtained.

The zeroth approximation will be distinguished by a subsecript “0”,
Thus 7,0(t) is the (steady state) zeroth approximation to the exact solu-
tion z.(f).

The first approximation will be the solution of the system (1), pro-
vided that during the switch closure time the functions 7,(¢) and 2,/ (¢)
in (1.b) and (1.d) are respectively replaced by the known functions
10(f) and 7,0’ (¢). And, more generally, the (¢ 4+ 1)th approximation will
be the solution of (1) provided that during the switch closure time, the
functions 7,(¢) and 7,’(t), in (1.b) and (1.d), are respectively replaced by
the known solutions for 7.(t), and 7,’(t) given by the kth approximation
It will be shown later that this successive approximation scheme con-
verges. Let us first describe a simple method for obtaining the zeroth
approximation.

IV. THE ZEROTH APPROXIMATION

4.1 Introduction

The problem is to obtain the steady-state solution of (1) under the
excitation 4(t) = I,e™. Using the approximations indicated above,
during the switch closure time (that is when A(f) = 1) the system R
becomes
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d€2 . .
CW = —,(HAD), 3)
¢ % = [es — e5]A(D), @)
dey .
C i OA®). 5)

Differentiating the middle equation and eliminating de;/dt and des/dt
wegetfor0 =t < 7:

de
in which we used the notation 6(f) for the Dirac function and the knowl-
edge that

- —%m(t) +§ [ea(t) — ex(D)18(0) ©)

BO _ 50y — ot - ). @
di
Equation (6) represents the behavior of the resonant circuit of Fig. 2

for the following initial conditions:

i(0+) =0, ®
di,(04) _ e(0) — e3(0)
= 7 ) ©)

In Appendix I it is shown that the resulting current 7,(¢) is, for the in-
terval 0 £ ¢t < 7,

() = Clex(0) — es(0)]s1(0), (10)
where
stinr—t =1wosinwot for 0=2t<r
si() =327 T2 (11)
0 elsewhere
with

=T _4/2
wo—;—/‘/;;. (12)

Thus the zeroth approximation to the exact 7.(¢) is given for the interval
0=t=Thy

Lo(l) = Clea(0) — e3(0)]s1(2). (13)
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We shall now show that the zeroth approximation may be conveniently
obtained from the block diagram of Fig. 4.

4.2 Description of the Block Diagram

All the blocks of the block diagram are unilateral and their correspond-
ing transfer functions are defined in the following. Capital symbols repre-
sent £-transform of the corresponding time functions, thus Io(p) is the
L-transform of 4y(t).

Referring to Fig. 1,

E\(p)

2e®) = Fy b
Thus Z:2(p) represents the transfer impedance of N; when its output is
open-circuited (i.e., I, = 0). Since N; and N, are identical we also have,
from R, = 1 and reciprocity, Zi2(p) = E./I,, where I, is the cur-
rent entering N, .

The impulse modulator is periodically operated every T seconds,
and has the property that if its input is a continuous function f(f) its
output is a sequence of impulses:

J_rfj 7(0) 8@t — kT).

The transfer function S;(p) is defined by

2
Si(p) = Llsi(t)] = __2w0 - cosh 27 772 (14)
p + wo 2
Let Z(p) be the driving point impedance at the terminal pair (2) of N, .
It is also that of N, since N, and N, are assumed to be identical.
Let V(p) be the output of the first block, then, by definition, V(p) =
Z1a(p)Iy . Let v(f) be the corresponding time function. The voltage v(t)

IMPULSE

MODULATOR
IO ) — E4
o CSi(p) Zyp —0
NO

TE.
ALL BLOCKS ARE UNILATERAL

Fig. 4 — Zeroth-approximation block diagram.



SWITCHED NETWORK FOR TIME MULTIPLEX SYSTEMS 1411

is the output voltage of N, when N, is excited by the current source
I, and the switch S remains open at all times.

4.3 Analysts of the Block Diagram

Tor simplicity, suppose that the system starts from a relaxed condi-
tion (i.e., no energy stored) at ¢ = 0. Let 2(t) = £7'[Z(p)]. Considering
the network N; as driven by 4, and 1,0, it follows that the voltage e.(t)
shown on TFig. 3 is given by

en(l) = o(t) — fo i)t — ) dt. (15)
Similarly
en(l) = fo t i)zt — ) dt. (16)
Thus
enll) — enlt) = v(t) — 2 fo i)t — 1) dt. (17)

These equations have been derived by considering Ifig. 1. They could
have been also derived from the block diagram of I'ig. 4 as follows: let
L(p) be the output of CSi(p). As a result, the output of the block
27 (p) is 2Z(p)I,o(p). When this latter quantity is subtracted from V(p)
one gets V(p) — 2Z(p)I.o(p), which is the £-transform of the right-hand
side of (17). Referring to the block diagram it is also seen that this
quantity is the input to the impulse modulator.

Thus we see that if I,o(p) is the output of CSi(p), then the input of
the impulse modulator is ey(t) — es(t) by virtue of (17). If this is the
case the output of C'Si(p) is given by Cle2(0) — €30(0)]s1(t), for 0 =t < T,
which, according to (9), is #.(?).

Thus the block diagram of Fig. 4 is a convenient way of obtaining the
zeroth approximation to the periodic steady-state solution.

In order to use the techniques developed for sampled data systems," *
we introduce the following notation? If f(t) = £7'[F(p)], then we define
F*(p) by the relation

+ow
F*(p) =% > Flp + jn), (18)

n=—00

where

Wy = — . ’ (19)
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If f(0+) is defined by lim f(¢*), then, provided f(0+) = 0,*
>0

F*(p) = & [f:jo f@) 8t — nT):|. (20)

Going back to the system of Fig. 4 we get’

[le(p)fo(p)]*CS1(p)Zu(p)

Bolp) = = tismzaon

(21)

and

_ [le(p) Io(p)]*C'Sl(p)
L) = T oemsmze

where according to the notation defined by (18)

(22)

Zu(p) L)) = 