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The Ferreed

By A. FEINER
(Manuscript received August 20, 1963)

The advantages of the ferreed as a switching network crosspoint led to an
early decision to adopt it for use in electronic switching systems. The
prospect of large-scale use of the device gave tmpetus to a search for an
economical, casily fabricated component. This paper describes the con-
stderations which influenced the choices of a suitable magnetic malerial,
magnetic circuit geometry, and coil design that were made for the prodiic-
tton model.

I. INTRODUCTION

The concept of the ferreed was presented in an earlier article in this
journal.! The purpose of this paper is to describe the evolution of this
device during its further development.

To recollect, a ferreed is a device born of marriage between miniature
sealed reed contacts (see Ref. 2) and an external magnetic circuit
containing remanently magnetizable members. Operation or release of
the sealed contacts can be controlled by setting the remanent members
in one of two magnetic states by means of short current pulses.

Among the several useful properties that can be brought about in
the ferreeds by selection of the proper magnetic configurations and coil
design is the ability to respond to coordinate excitation — a vital re-
quirement for any device considered for a network crosspoint.

Recognition of the potential advantages of a switching network cross-
point with metallic contacts, absence of holding power and the ability
to operate in times much shorter than prior electromechanical devices
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led to an early decision to adopt it for the network of No. 1 ESS (Elec-
tronic Switching System) — the new telephone switching system sched-
uled for its commercial debut in 1965.

The intended application of the ferreed in the switching network of
No. 1 ESS, where it would appear in very large numbers (1420 cross-
points per line), gave impetus to a search for an economical, easily
fabricated embodiment. Several important choices had to be made with
regard to the geometry of the magnetic circuit, the winding configuration
and the remanent magnetic material. At the same time, the require-
ments of the sealed reed contact were reexamined, and a modified ver-
sion of it known as the 237B contact was adopted for ferreed use.

II. THE CROSSPOINT FERREED

2.1 Chotice of Remanent Material

All original work on the ferreeds was based on the use of a specially
developed cobalt ferrite as the remanent material. In time, certain
inherent difficulties became apparent: notably, a strong temperature
dependence of the magnetic properties and low flux density, leading to
structures of large cross section and poor efficiency. Furthermore, as
more thought was given to the ferreed as a system component, it was
found that the originally postulated microsecond speeds for the actuation
of the ferreed were neither required nor practical from the standpoint
of driving requirements.

These considerations opened the way to a search for a metallic sub-
stitute. Several chromium and tungsten steel compositions were investi-
gated and found wanting due to lack of squareness and fullness of the
hysteresis loop — properties whose importance were stressed in Ref. 1.

The attention soon centered on a recent addition to the list of cobalt-
iron-vanadium alloys — Remendur. The name of this alloy refers to its
primary magnetic characteristic, i.e., a remanence greater than 17,000
gauss. This is coupled with a square hysteresis loop and a coercive force
from 1 to 60 oersteds. With a nominal composition of 48 per cent cobalt,
48 per cent iron, 3.5 per cent vanadium and 0.5 per cent manganese,
Remendur bridges the gap between the high coercive force of Vicalloy
and the low coercive force and high permeability properties of 2V-
Permendur and Supermendur. Fig. 1 shows a hysteresis loop obtained
on a Remendur strip developed for ferreed use. Of importance to the
ferreed application is the squareness B,/B, and fullness \/H,B,/H,B,
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Fig. 1 — Hysteresis loop of Remendur used in ferreeds.

of the hysteresis loop. This property implies that the energy expendi-
ture in establishing a desired end state approaches a minimum, and
that the excess flux generated in the same process is small—important
in view of the interference problems present in ferreed arrays.

2.2 Chotice of Geometry

There exist two basic forms of ferreed structures — the parallel and
the series ferreeds. These are illustrated in Fig. 2. The choice of Remen-
dur, the need for tight magnetic coupling between the remanent mem-
bers and the reed contacts, and the relative ease of fabrication led to
adoption of the series structure for the crosspoint ferreed.

That structure is shown in Fig. 3 in the form used in the ESS network.
Mounted on each side of the reed contacts, which are molded together
in plastic to form a single piece part, and extending approximately over
the length of the glass envelopes, are two flat plates of Remendur.
Notches on the plastic and on the plates permit accurate relative posi-
tioning of the two.

The reeds and the remanent plates are inserted into plastic coil forms
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PARALLEL
FERREED

SERIES
FERREED

OPERATED RELEASED

Fig. 2 — Principles of parallel and series ferreeds.

molded into a steel plate. This steel plate acts as a common shunt for
the whole array — it divides each crosspoint magnetically into two
separately controllable halves, greatly reducing the energy requirement
for producing the release state in which, as shown in Fig. 4, the two
halves of the remanent members are magnetized in opposing directions.
The same steel plate acts as the mechanical backbone of the whole
array.

2.3 Coil Design

The differential excitation mode was selected to provide coordinate
addressing of crosspoints. I'ig. 5 reviews this principle as applied to a
series ferreed. Each crosspoint has two sets of windings — one for each
coordinate. Each set contains a winding of N turns on one side of the
shunt plate and one with a larger number, typically 2N, on the other
side. The 2N-turn winding is connected series opposing the N-turn
winding. One pair of windings is in series with the corresponding pairs
of all erosspoints in the same row, while the other is in series with the
pairs of all crosspoints in the same column of the array. As the paired
windings oppose each other, energization produces the release state in
every crosspoint energized, except the one where both pairs of windings
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are energized simultaneously — the crosspoint at the intersection of the
energized row and the column.

The logic inherent to differential excitation was found to be well
suited to network array operation, in which, in general, only one cross-
point in each row or column need be operated.

No separate release actions are required, as operating a crosspoint
automatically releases other crosspoints associated with the same row
and column.

The design of the coils has to take in account the energization re-
quirements of a single crosspoint as well as the system requirement
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MAGNETIC
X -~ SHUNT

Fig. 5 — Winding configuration for differential excitation of the series ferreed:
(a) winding pattern, (b) mirror symbol notation.

calling for simultaneous pulsing of 32 winding pairs in the process of
establishing a connection through two stages of ferreed switches.

In ESS, these considerations led to the adoption of coils with windings
of 18 and 39 turns wound with 25-gauge copper wire. With these coils,
the nominal operating current pulse of 10 amperes peak amplitude and
250 microseconds duration insures adequate margins for both operation
and release of the crosspoint.

The coils are wound directly on the coil forms by a machine that
winds eight rows (or columns) of crosspoints simultaneously in a con-
tinuous succession, each with a single length of wire. This eliminates
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soldered connections between coils, thus reducing the winding cost and
improving the reliability of the assembly.

The winding sense is reversed in adjacent crosspoints. This magnetic
“checkerboarding’” was found to be an effective means for reducing
magnetic interaction phenomena as well as the noise pickup in the
transmission pairs due to ferreed energizing pulses.

2.4 Crosspoint Arrays

Switching network considerations led to selection of an 8 X 8 cross-
point array as a basic network building block. In Fig. 6, such an array
is shown. In addition, specifically for the concentrating stages of the
network, several other array types were required: a switch providing
each of 16 input terminal pairs with an access to 4 out of 8 available
outputs, and 8 X 4 and 4 X 4 switches. It was found that each of these
arrays could be derived from the basic 8 X 8 apparatus unit by suitably
changing the connections of the control windings and the voice-pair
strappings. Ifig. 7 shows these connections for all the developed ferreed

Fig. 6 — An 8 X 8 ferreed switch with covers removed.
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switch types. As can be expected, this standardization of the physical
size and component parts of the switches has eased the manufacturing
and the network equipment design problems.

The connections shown between the ends of the row and column
control winding chains stem from the access scheme adopted in the
network design. In this scheme, identical current is applied to both
coordinates by connecting them effectively in series when energizing a
crosspoint at their intersection.
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III. DESIGN TECHNIQUE

When the problem of designing the ferreed was first approached, it
was found that the usual lumped-constant, linear magnetic circuit
approach, while sufficient to yield a workable device, did not provide
the means for its optimization; neither did it give an assurance of
margins in face of tolerance allowances that have to be made for the
whole structure, and variations in reed contact properties and in the
magnetic properties of Remendur. Several attempts were made to refine
the analytical tools toward this end. While providing qualitative in-
sight into the operation of the device, they were frustrated from attain-
ing the ultimate goal of a quantitative, explicit solution by the complex-
ity of the problem caused by the rather difficult geometry and the
essential nonlinearity of the magnetic materials.

As a result, the refinements in the ferreed design had to be based
largely on experimental techniques. Over the years, numerous experi-
mental ferreed study techniques have been devised. These include the
use of search coils with integrators, hysteresis measurements of reeds
and the remanent magnetic members, Hall probes in the crosspoint
structure and the reed gap, and reversible permeability measurements
of the reeds. Supplemented by experiments in which the component
parts of the structure, their positioning and the driving conditions
underwent systematic variations, these techniques were instrumental
in arriving at the present structure.

The use of Hall probes provided two study techniques. First, Hall
probes were employed to measure longitudinal magnetic field intensity
along the ferreed axis, after applying varying operate and release pulses.
Second, via the use of specially constructed sealed reeds with Hall
probes mounted in the gap of the reed, it was possible to measure the
resultant magnetic flux density in the reed gap under varying operating
conditions. The drawback of the techniques lies in the upsetting of the
ferreed magnetic circuit by the absence of the reed or introduction of a
permanently open reed structure.

Reversible permeability measurements of the sealed reeds, accom-
plished via inductance measurements of small sense coils at about 100
ke, provided a convenient means of determining the instantaneous ap-
plied mmf to the sealed reeds under varying operating and interference
conditions. The technique was especially useful because it permitted
the use of ordinary sealed reeds under actual operating conditions, and
it was free of drift problems since no integrator circuits were involved.
On the other hand, the nature of the reversible permeability character-

.
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istic of the sealed reed is so insensitive in the released state of the sealed
reeds as to make its use not suitable in that region.

IV. OTHER FERREED TYPES

4.1 The Bipalar Ferreed

In the process of designing a ferreed switching network, the need
arose for a device containing a pair of contacts that would be indi-
vidually controllable. A typical use for this device is disconnection of the
line current sensing element at the line circuit whenever a connection
is established in the switching network (cutoff relay function). A postu-
lated property of this device — to respond to control current pulse polarity
to open or close its contacts — was found to permit integrating the con-
trol access with the one for the crosspoints.

An adaptation of the parallel ferreed principle, shown in Fig. 8,
provided a suitable embodiment meeting this need. Of the two parallel
remanent members, one consists of a permanent magnet material,
Cunife I; the other, surrounded by a single coil, of Remendur. Con-
tact closure or release depends on the polarity of the current pulse
applied to the coil. Eight such devices packaged together form a single
apparatus unit compatible in its length with the crosspoint units.

4.2 The Four-Wire Crosspoint Array

For use in switching networks requiring two separate directions of
transmission, the two-wire crosspoint design has been extended to
permit the operation of four contacts at every crosspoint location. The
four contacts are arranged in a square pattern and are surrounded by an
open-ended box formed by four remanent plates. The windings are
similar to those of the two-wire array and again an eight-by-eight size
has been chosen; Fig. 9 shows an individual erosspoint and an over-
all view of the unit.

V. SUMMARY

Out of the original concept of the ferreed originated a whole class of
useful switching devices. Characterized by small size, high speed of
operation and absence of holding power, they permit retaining the
desirable aspects of metallic contacts in the environment of electronic
switching machines without creating undue time compatibility problems.
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TABLE I — SUMMARY oF FERREED CHARACTERISTICS
Switch Dimensions (Inches) Raf:;g;%ﬁ?& Contact Characteristics
Max,
* | Max.
Peak |y qpy. | Max. | Oper- ]
Code Type Height(Width |Length|Amp. W('d”‘ Res. | ate Surge | Life
@) | ®9) | (ohms)| Time | U2
(ms.)
242 A | 2-wire 8 X 8
200
242 B | 2-wire (2) 8 X 4 | 634 | 21¢ | 914 9 to
500
242 C | 2-wire 16 X 4/8 0.2 3 | 3A*| 2% 10%
200
252 A | 4-wire8 X 8 | 9342149 | 9 | to
300
200
241 B | 2-wire1 X 8 15 | 21 | 934 6 to | 5% 3 3A | 2 X 108
500

* To protect the contacts, crosspoints are operated and released in a dry cir-
cuit — maximum surge current refers to current value applied to closed contacts.
1 Minimum life of 2 X 10% operations with contact resistance below 0.2 ohm.

1 This contact breaks a maximum of 40 ma in its operation.

Table I gives a summary of the characteristics of the ferreed codes now
in existence.
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Recent Developments in Bell System
Relays — Particularly Sealed Contact
and Miniature Relays

By A. C. KELLER
(Manuscript received February 25, 1963)

Relays are among the most important electromechanical devices. They
have been in use for many years and continue, in modern form, to be essen-
tial elements in modern Bell System and military applications, including
electronic switching systems.

The most important recent developments are minialurization, sealed con-
tact relays using glass-enclosed contacts, and “remanent” type devices.

Ferreed and bipolar ferreed coordinatle arrays and individual units are
new and tmportant switching elements. These devices make use of minia-
ture glass-enclosed contacts in combination with “square loop” magnetic
material® such as ferrite or certain iron alloys. They are magnetic “latch-
tng’’ units and are operated or released by short pulses.

I. INTRODUCTION

An important article entitled “Relays in the Bell System” was pub-
lished! in the B.S.T.J. in 1924. This was a comprehensive article on
relays which were then in use in the Bell System, and it gave some in-
formation on typical applications. Since that time, a few articles have
appeared in the B.S.T.J. covering relays, particularly the article? in 1952
describing the general purpose wire spring relay. This is the most widely
used relay in Bell System equipment at the present time. In addition
there have been several comprehensive publications on the design of
relays®4 and several new forms of the wire spring relay, namely the
“two-in-one” relay’ and a magnetic latching form of this device. Minia-
ture wire spring relays have been and are being studied.

* In this paper, this is a remanent material of suitable coercive force range,
generally intermediate between the common permanent magnets and the mate-
rials used for memory, such as cores, thin films, etc.

15
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It is the purpose of this paper, in part, to bring together in one article
some of the newer relays of importance to the Bell System, including a
few which are experimental at this time. In this survey, the most im-
portant recent developments are miniaturization, sealed contact relays
using glass-enclosed contacts, and magnetic latching devices. Frequency
sensitive relays® are included, as are ferreed” and bipolar coordinate
arrays. Such arrays consist of individual units of miniature glass-enclosed
contacts (typically 2 or 4 at each crosspoint) in combination with a
suitable ‘“square loop” magnetic material such as certain ferrites or
certain iron alloys which have controllable magnetic remanence. These
devices are magnetic latching devices and can be operated or released
by pulses as short as 5 microseconds. Arrays of this type are important
units in Bell System electronic switching systems such as No. 1 ESS.8

Relays are made in larger quantities by the Bell System than ever
before, and also more relays are made by more manufacturers outside
the Bell System than ever before. The increasing use of relays is of
interest in view of the rapid development of solid-state switching devices
and systems and their higher switching speeds. In general, solid-state
devices operate in microseconds or better compared with milliseconds or
longer for electromechanical devices. The reasons® for the continued use
and expansion of the uses of relay type switching devices are: (z) relays,
with their large ratio of open to closed contact impedance, often result
in equipment designs which are simple and inexpensive yet fast enough
to make unimportant any increase in switching speed; (¢7) relays can be
used singly and in small numbers without the associated common con-
trol equipment often required to take full advantage of the sensational
speeds of solid-state switching devices; (727) the rapid expansion of
switching of all kinds requires more of many types of switching equip-
ment, including both solid-state and electromechanical types; and (¢v)
relays and solid-state devices are developing a compatibility, and in
fact combinations of both have been developed, notably the ferreed.
Compatibility has accelerated the miniaturization of new relay designs
because they are often used together. Relay size reductions of £ or more
in volume have been achieved.

Reliability is also becoming increasingly important, and lower failure
rates are often required under more severe operating conditions. In
military applications, this relates particularly to vibration, shock,
temperature and humidity. Miniature relays often perform better under
vibration and shock conditions than larger types because of the lower
inertia of the moving parts and the higher natural frequencies of their
smaller parts.
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II. MINIATURE SEALED CONTACTS AND RELAYS USING THESE

There are two general classes of sealed contacts of the glass enclosed
type. These are the dry reed'® type and the mercury-wetted!! type.

Relays using the larger form of dry reed sealed contacts have been
described in previous papers.® Two new miniature dry reed sealed con-
tacts are shown in Fig. 1, and for comparison the larger 224A type,!°
which has been in Bell System applications for a number of years,
particularly in the digit register package in the No. 5 crossbar system.
All of these sealed contacts, shown in Fig. 1, consist of two magnetic
reeds sealed in a glass tube. Dry reed sealed contacts are free from ex-
ternal influences such as dust, corrosive atmospheres, and ambient
pressures, and are relatively free of temperature effects. They do require
a high degree of care and control during manufacture if maximum per-
formance and uniformity are needed. In general, the mating contact
surfaces are plated with gold, silver, rhodium, etc., or combinations of
these, sometimes diffused under a controlled atmosphere. These opera-
tions are necessary in order to achieve a low and stable contact resistance
and to avoid sticking, which may be the case with certain soft precious
metals. The 237A (or G29) was the first of the miniature dry reed
sealed contacts to be applied in systems applications. As described in
Ref. 10, it is essentially a scaled-down (1 to 3) version of the larger
224A sealed contact.

Fig. 1 — Dry reed sealed contacts: top, miniature type 237A (G-29); center,
miniature type 237B; lower, standard type 224A.
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The 237B miniature dry reed sealed contact was developed specifically
for the crosspoint contacts of the switching network in electronic
switching systems, although it is now also applied in certain relays in
such systems and is suitable for general applications. The new require-
ments for the crosspoint application are: (¢) higher breakdown volt-
age —of the order of 880 volts, (77) closer operate and release values,
and (#77) contact resistance of less than 0.2 ohm during 1,000,000 opera-
tions. These new and more severe requirements made it necessary (7) to
pressurize the sealed contacts, (i) to control tolerances more closely,
and (¢i7) to improve the contact life by combinational plating of gold and
silver. In addition, the reeds of the 237B design have been simplified
by eliminating the “hinge” sections at a slight sacrifice in size. The in-
crease is from the 237A length of 0.875 inch to 1.00 inch.

Operation of such contacts is by the application of a magnetic field,
and several different methods are shown in Fig. 2. Fig. 2(a) shows the
operation by passing the current through a winding surrounding the
sealed contact. Fig. 2(b) shows one elementary form of ferreed where
the operation results from pulse operation and magnetizing a ‘“‘square
loop” ferrite element. In this case the sealed contact remains closed with-
out holding power because it is “magnetically latched.” Release is by a
pulse smaller in magnitude and of opposite polarity. Figs. 2(c) and 2(d)
show other ferreed structures.

Typical values for the operating characteristics of these sealed con-
tacts in air core coils are as shown in Table I. These operate ampere-
turn values are minimum values in a simple air core test winding and,
in general, faster speeds are obtained by increasing the applied ampere-
turns. The minimum operate times as listed result, in general, by apply-
ing several times* the minimum operate ampere-turns.

Although sealed contacts can be operated by pulses of sufficient dura-
tion in the circuit shown in Fig. 2(a), the contact will remain closed
only during an interval approximately the time that the current flows
through the winding. Pulse operation of most interest is associated with
“magnetic latching.” This can be done by using a magnetic bias either
by a suitable remanent member —as shown in Fig. 2(b) —or by a
biasing winding. The operating time of such devices can be of the order
of that obtained with normal neutral operation of sealed contacts.
However, the ferreed type of operation can result in “effective’ operat-
ing times very much faster and in the microsecond region.

There is another form of magnetic latching of sealed contacts which
uses remanent reeds for the elements of the sealed contact. In this case,

* Operate time is a function of applied power (EI).
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TABLE I— TypicaL OPERATING CHARACTERISTICS

Operate Release Approximate

Scaled Contact (Ampere-Turns) (Ampere-Turns) Minimum Operate Time

(milliseconds)

224 A 90 £ 12 34 +£ 8 about 1.0
237A (G29) 34 =+ 12 18 &= 8 “ 0.5
237B 30.6 = 5.5 15 + 4 “ 0.5

discussed in Refs. 7 and 12, the contacts are also locked by residual
magnetism. As is the case with series or parallel ferreeds using non-
remanent reed contacts, remanent reed sealed contacts may be operated
by pulses shorter than the time of contact closure, but they may also be
operated with longer pulses of lower power because the operation is
dependent essentially on the input pulse energy. The advantage of
remanent reeds is chiefly in the lower energy levels when they are used
as crosspoints in a switching network, although these energy levels are
somewhat higher than required to operate soft reeds in permanent
magnet latching relays of this type. In comparing remanent reed sealed
contacts and remanent sleeve crosspoints, the minimum energy in
microwatt seconds, EIt* for operate and release, is important. Estimates
are shown in Table IT.

The energy relations also show how it is possible, in a given ferreed
or remanent reed device, to trade time for the magnitude of the pulse
current. For example, a 5-microsecond operate time would require a
pulse of about 10 times the current value of that required to operate
the same device (with a different winding) in 50 microseconds, ctc.

Conventional type relays using the miniature 237A and 237B sealed
contacts are shown in Tig. 3. Fig. 3(a) shows the 237A (G-29) sealed
contact in a 2-make relay (GA 53702) as used in certain missile systems.
Fig. 3(b) shows the 311A relay, which is a 3-make switching system
relay using the 237B sealed contact. These relays are operated, under
nominal conditions, at about 0.2 watt and 0.32 watt, respectively. Other
designs with break contacts or transfer contacts have been made of
similar size. Such relays make use of permanent magnets to bias the
break contacts closed in the unenergized condition. By energizing the
coil, these contacts are caused to open. Break and transfer contacts of
this type have been made using the larger 224A sealed contact and have
been deseribed in a previous article.!* There are limitations relating to

* F = applied steady-state voltage in volts
I = peak current in amperes
{ = time in seconds
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TABLE II —InPUT REQUIREMENTS FOR OPERATE AND RELEASE
FOorR Two SEALED CoNTacTS PER CROSSPOINT

Operation Release
Nlo | Eltmin NIp Ellnin
Remanent reed contact 32 94 36 80
Remanent sleeve crosspoint 100 1900 70 900

reoperation at high currents through the coil and also to variations with
operating current of the break and make sequence in such transfer con-
tacts. In particular, break-before-make contacts cannot always be
assured under all operating conditions. For this reason several forms of
3-element transfer sealed contacts have been studied to provide break-
before-make action under all conditions. One such experimental dry
reed transfer* sealed contact is shown in Fig. 4(a). In this particular
form, all 3 reeds are made of magnetic material. Fig. 4(b) shows the
design relations required for good operation and a sketch of the device.
Other dry reed transfer sealed contact forms are also under consideration.

III. FERREEDS AND BISTABLE DEVICES USING MINIATURE SEALED CON-
TACTS

Ferreeds were first deseribed in an article” in the B.S.T.J. in 1960.
Figs. 5 to 7 show several ferreed units. Fig. 5(a) shows one of the origi-

Fig. 3 — Relays using miniature sealed contacts: (a) 2 make contact missile
relay GA 53702, (b) 3 make contact relay type 311A.
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nal parallel type ferreeds described in the 1960 article. Fig. 5(b) is a
drawing of the same device. I'ig. 6(a) shows another later series ferreed
in which a sleeve of a “square loop” material (Remendur®) of the iron
alloy type is used. FFig. 6(b) shows the flux patterns for the ferreed
shown in Fig. 6(a). Fig. 7 shows a crosspoint using Remendur plates.
An important characteristic of all of the ferreeds shown in Figs. 5 to 7
is the balanced magnetic release arrangement that eliminates marginal
requirements on the release current.

In all cases one remanent member remains magnetized (half the
remanent member in the series ferreed) while the field in the other
member (or half member) is reversed in changing states. The field

* Remendur is an alloy of vanadium-iron-cobalt.
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energy* which must be supplied to the operating coils to reverse mag-
netization is of the order of 3 to 5 times the remanent field energy of the
remanent member and of the order of 10 or more on a pulse energy basis.

There should be no inherent difference in the performance of the
parallel and series type ferreeds except (a) due to the energy require-
ment and (b) due to the dynamic characteristics in the sleeve or plate
series ferreed where the flux through the reeds is necessarily reversed
during each pulse. In this case the field due to the operating winding is
in the opposite direction to the field supplied by the remanent members
when the winding is not energized. The energy requirement mentioned
in (a) can be less for the parallel type due to somewhat smaller air
return reluctance, but on the other hand, the sleeve or plate series type
provides better magnetic coupling,.

The ferreeds having operate times down to about 5 microseconds use
“square loop” ferrite magnetic materials. Somewhat simpler, less ex-
pensive and less temperature-sensitive forms of ferreeds use iron alloy
metallic remanent materials in sleeve, plate, ete., form at some sacrifice
in speed. However, speeds of about 50 microseconds or less are quite
feasible. In any of these ferreeds, the magnetic material is set to the
magnetized condition in microseconds. As a result of this, the sealed con-
tacts close about 0.2 to 0.5 millisecond later. For almost all practical
circuit conditions, this can be taken as operation in microseconds be-
cause circuit elements of this type are not usually required to release
until other circuit operations are completed. Typical important ferrife
characteristics for ferreed operation are coercive force, H., of 30-35
oersteds at maximum field, H, of 1000 and saturation flux density, B,
of 4500 gauss, with corresponding remanence By about 2800. Typical
magnetic characteristics of an iron alloy (Remendur) used with ferreeds
are: H,, 37-42 oersteds at maximum field, H, 100 and saturation flux
density of 21,000 gauss, with corresponding remanence By of 17,000.

3.1 Ferreed and Bistable Arrays

In switching networks for electronic switching systems,® arrays and
equipment assemblies of individual ferreed units are needed, for ex-
ample 8 by 8, 1 by 8, ete. These have been needed in 2-wire and 4-wire
forms. Accordingly, in the 8 by 8 array of the 4-wire type, 256 sealed
contacts are needed. In one form, such arrays use four flat plates of

* The field energy is proportional to the product of the saturation flux for the
reeds and the magnetomotive force required to develop this flux. Better magnetic

coupling between the remanent members and the reeds will reduce the field energy
required.
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Remendur which are rolled in such a direction as to give the maximum
magnetic properties in the direction of the reed axes.

The operation of a ferreed array is somewhat similar to that of a
crossbar switch in that a particular crosspoint is operated by the simul-
taneous operation of particular vertical and horizontal rows. A particu-
lar crosspoint is thereby operated and held in this condition without
holding power. The winding arrangements of the ferrced elements are
such that the other crosspoints remain unoperated. To release the cross-
point, in effect, reverse currents reset the magnetic material to the un-
magnetized condition; hence the sealed contacts open. I'ig. 8 shows an
8 by 8,2-wire array or switch.

The ferreed shown in I'igs. 6(a) or 7 is the basic crosspoint element of
the array shown in Fig. 8. This form contains 2 miniature dry reed sealed
contacts surrounded by a sleeve (flat plates are more recent) of remanent
magnetic material (Remendur). The magnetic shunt plate, positioned at
the midpoint of the sleeve, separates the sleeve or plates magnetically
into two independent halves. When the two halves are magnetized
series-aiding, the flux return is through the reeds, causing the sealed
contacts to close. When they are magnetized in series-opposition, the
sealed contacts open.

Each end of each crosspoint has two windings. A winding on one end
is connected in series-opposition, with the winding of half the number
of turns on the other end, as shown in Fig. 6(a). When either of the two
sets of windings is energized, the two ends of the sleeve or plate are
poled oppositely and the sealed contacts are opened. When the two sets
of windings are energized simultaneously with equal currents, the two
ends are poled series-aiding and the sealed contacts close.

In a typical switch, 64 ferreed crosspoints are assembled together to
form an 8 by 8 switch. Internal to the switch, the windings of rows and
columns form a common multiple. To close a crosspoint, current is
passed in one column and out one row via a common multiple. The cross-
point at the intersection of the column and row then closes. At the same
time, current passes through one of the two windings of all other fer-
rends in the same row and column, causing any that are operated to
release. This is a differential mode of operation, called ‘‘destructive
mark”; it is characterized by the absence of specific network release
operations, ie. “taking down” connections. Connections are ‘‘taken
down” as a direct result of, and at the same time as, connections that
are set up.

Bipolar ferreeds are also needed in switching systems. Fig. 9 shows
the magnetic circuit of one form of an individual bipolar element. A
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combination of a “square loop’”” material is used together with a perma-
nent magnet arranged as shown in relation to the sealed contacts. In
this case more than one sealed contact may be used at each crosspoint.
The bipolar unit gives a cutoff relay action. Fig. 10 shows a 1 by 8 unit
of the 2-wire type. These open or close the reed contacts in response to
the polarity of the current through a single winding.

IV. MERCURY-WETTED SEALED CONTACTS AND RELAYS

Tig. 11 shows a number of mercury-wetted sealed contacts of the
transfer contact type. The 226D type is one of the smallest and most
recent types. It is different from the others shown in that it is a break-
before-make contact. The break-before-make action is the result of
design changes, Fig. 11, of the pole-piece contact elements. Sealed con-
tacts with mercury-wetted contacts are important because they have
been shown to have the least contact chatter, often none, also have the
longest operating life of any relays yet designed, and can exceed one
billion operations.

The small size of the 226D mercury sealed contact can be packaged



30 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

Fig. 10 — 1 by 8 assembly of 2-wire bipolar ferreeds.

in a small-size relay. However, two new relay designs using the new
mercury sealed contact, the 314A and the 315A, do not require size
reduction because they are chiefly expected to replace larger Bell System
relays, namely the 255 and 280 types in certain applications where im-
proved performance is needed.

The 314A is expected to replace the 255 type polar relay in telegraph
circuits and to reduce maintenance in these. Fig. 12 shows the 255 re-
lay and the new 314A relay. As can be seen, these are plug-in types and
are interchangeable.

The 315A shown in Iig. 13 is a plug-in type and is expected to replace
some of the codes of the 280 type polar relay, particularly those used in
the No. 5 crossbar system, in order to improve performance and reduce
maintenance. This is important in that the 280 type relays used in the
No. 5 crossbar system show the highest relay trouble rate in terms of
troubles per 1000 relays per year. However, 280 type relays are used in
smaller numbers, in such systems, to perform special and exacting func-
tions.

All of the mercury sealed contacts discussed, or used by the Bell
System up to the present time, are required to operate in a vertical
position within certain limits, usually &= 30 degrees. Military applica-
tions, particularly, would be served by an “all-position’”” mercury sealed
contact. Several forms of such contacts have been built and studied.
Most of these have been judged to be rather complicated and relatively



BELL SYSTEM RELAYS 31

expensive to control and manufacture. A more recent and simpler ex-
perimental design is shown in Fig. 14. Basically, this is a modification of
the 226D sealed contact shown in Fig. 11 but modified in two ways:
(7) excess mercury is removed during manufacture, including the usual
pool of mercury, and (#7) armature changes have been made to improve
the contact performance under shock and vibration conditions. By re-
ducing the amount of available mercury for replenishment at the contact
surface, the life of the sealed contact is reduced, but several million op-

Fig. 11 — Mercury-wetted sealed contacts: left, 218 type; left center, 222 type
make-before-break contact; right center, 226B type make-before-break contact;
right, 226D type break-before-make contact.
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Fig. 12 — Telegraph relays: left, standard 255 type; right, new 314A type us-
ing 226D sealed contact.

erations are possible. For many applications this is adequate. This relay
is described in detail in an article’ in the Bell Laboratories Record.

V. MINIATURE ARMATURE TYPE RELAYS

5.1 Rotary Armature Relays

A miniature relay of this type was described in a paper'® in 1959.
Fig. 15(a) is a photograph of this relay and Fig. 15(b) is a drawing of its
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Fig. 13 — Polar relays: right, standard 280 type; left, new 315A type using
226D sealed contact.

. ]}"‘ig. 14 — Experimental “all position’’ mercury-wetted sealed contact model ‘
T-116.
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major elements. It has been in manufacture for military applications as
the GS 57668 relay. It is of the “crystal can” size and has a rotary
armature operating two transfer contacts symmetrically arranged. As
compared with similar relays it has the following advantages: (7) im-
proved contact reliability, particularly in dry ecireuits, by the use of
twin precious metal contacts in a separate sealed contact chamber free
of all organic materials; this eliminates the so-called “brown powder”
problem in which organic polymers are formed with resulting high-re-
sistance contacts; (i7) elimination of bearing friction and the associated
erratic performance; this is accomplished by using a reed type spring
armature suspension; and (¢47) a magnetic design of improved sensi-
tivity with corresponding reduced effect due to stray magnetic fields.

5.2 Telstar Satellite Type Relays™

Fig. 16 shows a relay similar to the ‘“‘crystal can” relay shown in Fig,
15 except that it operates or releases on pulses. It uses magnetic latch-
ing so that no holding power is required. This relay is used in the Bell
System Telstar satellites; in fact nine each are used in Telstar I and
Telstar II. Fig. 16(a) is a photograph of the relay, and Tig. 16(b) is a
drawing of the chief features. It is characterized by the dual armatures
in which the two armatures are connected together by a small permanent
magnet. I'ig. 16(c) shows the control circuit in Telstar I using the relay.

5.3 MA and M B Miniature Relays'

A new series of relays known as MA and MB types has recently
been developed, primarily to save space for equipment installed on the
premises of Bell System customers. Manufacture of these was started at
the Western Electric Co. plant at Kearny, N. J., in 1962. Fig. 17 shows
the MA and MB relays. The MA relay has a maximum contact capacity
of 4 transfer contacts and the MB, which uses some of the same piece
parts, has a maximum contact capacity of 6 transfer contacts.

These relays have most of the basic features of the standard wire
spring relay (Ref. 2), namely: (z) code card operation to provide a simple
means for a wide variety of contact combinations; (#7) low stiffness,
pretensioned springs; (#77) coplanar spring groups to simplify welding
and handling and to standardize assembly in manufacture; (iv) contact
materials and contact forces identical with the standard wire spring
relay; (v) essential elimination of locked contacts because of the card
operation; (vi) twin precious metal contacts; etc. The basic contact
springs are shown in Fig. 18 before and after shearing the ends of the
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Fig. 18 — Contact springs for MB type relay.

contact spring groups. Typical contact and winding information and
operating currents are given in Table ITI. As is the case for the standard
general purpose wire spring relay, a few code cards are sufficient for a
large number of contact combinations.

The MA and MB relays do not have the sensitivity* or the contact
capacity of the wire spring relays, but they are much smaller, i.e., about
+ the volume, and they are suitable for mounting on printed circuit
boards. One such typical plug-in printed circuit package is shown in
Tigs. 19(a) and 19(b). The same principles used in the MA and MB
relays can also be used in crossbar switch designs to reduce the size and
weight to about 15 per cent of the present types.

* Ampere-turn sensitivity of the 6 transfer MB relay is about 185, compared
with 160 for the AF wire spring relay and 220 for the AX (5 transfer) relay. How-
ever, because of the larger coil on wire spring relays, the relative power sensitivi-
ties for 6 transfer relays are about: 0.45 watt for the MB, 0.18 for the AF, 0.14 for
the AJ, and 0.55 for the AK relay.
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TaBLE III —SoMmE Typicar MA anp MB Reray Copk

INFORMATION
Code Springs Winding Resistance Operate Current
(ohms) (amperes)
MA'1 4 traﬂsfers 915 0.016
2 makes 590 0.013
MA3 2 breaks
3 transfers 915 0.016
MaA 4 1 contlnulty o
3 makes 2100 0.0078
MA 7 1 transfer
2 transfers 590 0.021
MA 11 2 cont1nu1t1es
MB 1 6 transfers 590 0.024
2 transfers
1 continuity 915 0.018
MB 3 2 makes
1 break
MB 4 6 makes 915 0.016
2 cont1nu1t1es
MB 6 2 makes 915 0.0175
1 early break
3 transfers 590 0.024
MB 7 {3 continuities

VI. FREQUENCY SENSITIVE RELAY—THE VIBRATING REED SELECTOR

Another miniature device, shown in Iig. 20, is a frequency sensitive
relay called the 215 type tuned reed selector.® Fig. 21 shows a drawing of
the basic operating principles. The selector shown in Fig. 20 has been in
manufacture at the Western Electric Co. in North Carolina, starting in
1962, primarily for the Bell System BeLLBOY radio paging service.!® The
selector is basically a highly precise and stable miniature tuning fork
associated with a lightweight contact. It is smaller and more stable,
and is an improved design for manufacture compared with an earlier
similar device known as the type 212 selector.?? These devices are very
sensitive, responsive only to sustained frequencies of the order of 0.5
second, and insensitive to noise interference. Ifig. 22 shows the data over
a wide temperature range for two of these devices, operating at nominal
frequencies of 517.5 and 997.5 cycles per second and at corresponding
bandwidths of about 1.1 and 1.3 ceycles per sccond. Sufficient stability
has been achieved so that, for the BELLBOY service, 33 different fre-
quencies spaced 15 cycles apart are provided in less than one octave
between 517.5 and 997.5 cycles. By using three different frequencies at
a time, more than 5000 combinations are possible for selective ringing
of a particular customer.



40 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

(a)

Fig. 19 — Plug-in printed wiring board with MB type relays: (a) apparatus
side, (b) wiring side.

Stability of materials and design have been measured, and these
show the total frequency change from —40°C to 4+80°C to be less than
0.5 cycle and the bandwidth change to be less than 0.2 eycle. At operat-
ing power levels of 100 microwatts, the intermittent contact will close
to a low-resistance level over 20 per cent or more of the cycle time. An
important factor in this has been the use of a nickel-iron-molybdenum
alloy® (Vibralloy). This material has controlled elastic and magnetic
properties.
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The lightweight contact is essential so that the selector frequency is
unchanged when the intermittent contact is made. The contacts are
rhodium against platinum rhodium. Clearly, contact life is important
and circuits are used typically to change the potential on an electron
tube or transistor to trigger a switching or signaling function without
exceeding a contact current of a few milliamperes. In the BELLBOY appli-
cation a transistor oscillator is triggered to give an audible signal.
However, the short contact closures occurring at a rate of hundreds per
second may therefore control pulses that have an integrated or average
power that is a substantial fraction of a watt. For example, only small
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Fig. 21 — Tuned reed selector schematic.
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Fig. 23 — Direct operation of mercury-wetted relay from low-level frequency
frequency signals via tuned reed selectors.

changes in frequency or sensitivity were measured over a test period of
1500 hours in a 12-volt circuit with a 240-ohm resistor giving a closing
current, of 50 milliamperes. The power capacity of the contacts can, in
fact, be used to operate relays or other devices directly: for example,
mercury sealed contact relays with large contact current capacity. One
such cireuit is shown in Fig. 23. In this circuit the selector contact is
used as a synchronous rectifying means to generate de from the same
ac source that operates the selector. When the input frequency corre-
sponds to that of the selector, the contact closes in synchronism once
each cycle to send unidirectional pulses to the capacitor and relay in
parallel. The capacitor serves to smooth the pulses so that the relay
winding has nearly a constant current in it. Combination eircuits using
reed selectors and mercury-wetted contact relays provide a simple
means of selectively controlling substantial powers to perform a mul-
tiplicity of functions over a single pair of wires.

VII. REMARKS

In the telecommunications field, rapid advances are being made in
many new areas of technology. Devices and systems based on these will
naturally be compared and evaluated for Bell System applications with
older devices and systems. In such comparisons, care is needed to do
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this, not only with devices at hand but with the possibilities that pres-
ently exist on the basis of general advances made in the older fields.
One of the older and important areas is that of electromechanical devices
such as the relays discussed in this article. Decisions can then be made
and devices chosen, not on the basis of technology, but on the basis of
the best performance, cost, and over-all systems requirements. Relays,
in modern form, sometimes in miniature form, can be expected to be
important devices in the future as they have been in the past.
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Overflow Traffic from a Trunk

Group with Balking*

By PETER LINHART
(Manuscript received April 18, 1963)

A stream of telephone calls is submitted to a group of trunks, the first-
choice group, according to a recurrent process. We allow balking on this
trunk group; t.e., if a call finds I of the first-choice trunks busy it may be
served, with probability pi. , or may fazl to be served, with probability q, .
A call which fails to receive immediate service on the first-choice trunk group
is submitted to a second-choice trunk group, the overflow group. We also
allow balking on the overflow group. Calls which fail to receive immediate
service on the overflow group are lost to the system. Holding limes have
negative-exponential distribution.

We give methods for finding the joint distributions of numbers of busy
trunks on the first-choice and overflow groups, at overflow inslants (i.e.,
inslants at which calls are submatled to the overflow group), at arrival in-
stants, and al arbilrary instants. We consider the transient as well as the
limiting distributions (and demonstrate the existence of the limiting distri-
butions).

The methods developed are illustrated by several examples. Numerical
results are given for the blocking in the particular case that the first-choice
group constitutes a random slip, while the overflow group s full-access
(common).

I. INTRODUCTION

1.1 Balking and Overflow Traffic

A telephone call is submitted to a group of m trunks. This call may
fail to occupy a trunk, even though not all m trunks are busy. There
may be a number of reasons for such a failure, e.g.: the calling line may
not have access to any #dle trunks, some equipment other than the

* This paper represents part of a doctoral dissertation submitted to the Sub-
committee on Applied Mathematics, Columbia University.
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trunk itself may be required to complete a connection and this equip-
ment may be busy, or the m trunks may be merely first-stage links in
a connecting network and there may be no free path through this net-
work. Whatever the cause of the failure, we shall say that the submitted
call balks (although the word is perhaps more appropriate in queueing
theory applications). In this paper we shall restrict ourselves to the case
in which the probability of balking depends only on the number of
busy trunks: if an arriving call finds % trunks busy, it is served, with
probability p , or balks with probability ¢. (px + ¢ = 1). If all trunks
are busy, an arriving call cannot be served, and therefore ¢, = 1. Thus
we subsume blocking under the term balking.

The traffic which overflows from a trunk group with balking has
different characteristics from that which overflows from a full-access
group. [By a full-access trunk group we mean one for which ¢, = 0
(k < m), gn = 1.] Suppose recurrent traffic is submitted to a full-access
group (when we refer to recurrent input traffic we mean that the inter-
vals between arriving calls are independent, identically distributed
random variables). Suppose further that the holding times of calls have
negative-exponential distribution. Then, as Conny Palm' has shown,
the overflow traffic is also recurrent. This is not the case for traffic
overflowing from a trunk group with balking.

The traffic which balks on the first-choice group may be submitted
to an overflow group of, say, M trunks. There may also be balking on
the overflow group. Now L. Takées® has treated in detail the process
of numbers of busy trunks in a trunk group with balking to which a
recurrent stream of calls of negative-exponential holding times is sub-
mitted. Thus, if the first-choice group is full-access, we know how to
describe what goes on on the overflow group. However, if the first-choice
group is not full-access, the stream of calls submitted to the overflow
group is not recurrent, and therefore further analysis is required to
describe the process of numbers of busy trunks on the overflow group.
We attempt to treat this problem in the present paper; in so doing, we
are led to consider the joint distribution of numbers of busy trunks on
the first-choice and overflow groups, which is also of interest in itself.

1.2 Mathematical Description of the Problem, and Some N otation

Calls are submitted to a group of m trunks, the first-choice group, at
successive instants 71, 72, -+, 7., -+ . The interarrival times, 6, =
To — T (n = 2, 3,4, ---), are independent, identically distributed
random variables with common distribution function

Plo, = o} = F(z),
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and we speeify further that P{r; £ 2} = F(z). We assume that the

{6.) are not lattice variables (i.e., that the interarrival times are not
confined to multiples of a constant), that F(0) = 0 and that

0<a< »w,

where

o« = fo " P (2)

is the mean interarrival time.

Note that the class of recurrent inputs just described includes, among
others: Poisson arrivals, equally spaced arrivals, and, as previously
remarked, arrivals which are themselves overflows from a full-access
trunk group to which a Poisson process of calls with negative-exponential
holding time is submitted.

If the nth call receives service, then its holding time is a random varia-
ble, x.. The {x.} are independent and identically distributed, with
common distribution function

1—¢”° forx = 0
r {Xn é X } =
0 foraz < 0
and are independent of the arrival process {7,}.
Note that we are measuring time in units of the mean holding time;
thus @ = 1/« is the submitted traffic in erlangs.
An arriving call which finds k trunks of the first-choice group busy is
served with probability pi, or balks with probability ¢.. We have

pk’+qk‘=1 (k=0;1>"'7m)
gm = 1.

A call which balks on the first-choice group is immediately submitted
to a second group of M trunks, the overflow group (we allow the case
M = o). We denote the sequence of instants at which calls are sub-
mitted to the overflow group by {T»} (N = 1,2, 3,-.-). If such a
call finds K trunks of the overflow group busy, it is served, with prob-
ability ('« , or balks, with probability Hx . We have

GK+HK=]. (I{=0,1,"’,ﬂ[)
HM=1 (lfM<°°).

We make the following plausible restriction on the balking proba-
bilities
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pe >0 for kb <m
Gg >0 for K < M.

A call which balks on the overflow group is said to be blocked. It im-
mediately disappears from the system and is not resubmitted; i.e., lost
calls are cleared.

We now define the following random variables:

£(¢) = number of busy trunks on first-choice group at time ¢

En = E(Tn —)
£ = §(Ty —) (the superscript “0” means “overflow’.)
(1) = number of busy trunks on overflow group at time ¢
En = E(Tn _)
Ex' = E(Ty —).

We also define the following probabilities, which it will be our object
to determine:

Plgy® =k, Ex° = K} = P°(L,K,N)
lim P°(k,K,N) = P°(k,K)

Nox
Plt, = k, B, = K} = P(k,Kn)
lim P(k,Kn) = P(kK)

P{E(t) =k, E(t) = K} = P(k,K,t)
lim P(k,K,l) = P*(5,K).

t>0

When one of the variables k or K in one of these probabilities is not
written, it is understood to be summed over, c.g.

M
P(kt) = > P(kK,t).
K=0
A quantity of particular interest in applications is the blocking

m M
B=>Y 3 qP(kK).

k=0 K=0

We shall also have ocecasion to refer to the blocking on the first-choice
group

b= 2 qP(k).
k=0
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Further notation will be introduced as it is needed. The notation will
as far as possible conform to that of Takécs.” We shall, when possible,
use lower-case letters to refer to the first-choice group and the corre-
sponding capital letters for the overflow group. Equations of Ref. 2
will be denoted by a T: e.g., “(T44).” We note here only the following
definitions:

o(s) = fo " A ()

1 el _
e =120 (G=D
Cis) =TT 284D (o) = ).

im0 1 — o(s + 7)

1.3 Previous Results

Let us denote the interoverflow times by Oy = T — Ty.1. As we
have mentioned, if the first-choice group is full-access, the {@x} are
independent and identically distributed. In this case let us denote their
common distribution function by

G(z) = P{Oy = a}

with Laplace-Stieltjes transform

v(s) = f: ¢ T dG(z).

Takées® solves a recurrence of Palm' to obtain

2’(?)0—-1(—8) . (1)

v(s) =§l<mj‘l>a:}@7

A. Descloux® gives convenient recurrence formulas for calculating
v(s) and the moments of G(z) in the case of Poisson input, i.e., when

1—e¢®“(z=0)

0 (x < 0)

=0

F(z) = {

Some results exist for P(k,K) in the case of Poisson input [for which,
and only for which, as we shall see, P*(k,K) = P(k,K)]. The first of
these is due to L. Kosten.’ He considers a full-access first-choice group
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and an infinite full-access overflow group. Let us denote binomial
moments with respect to the overflow group by

U(kR) = é <§> P(E,K).

Then Kosten finds

Co"(a)Cr ()
Cr(a)Cria™(a)”

(See also the appendix by J. Riordan to a paper of R. I. Wilkinson.®)
The polynomials in (2) are defined by

by e (jH+R -1\ o7
et =505 s ®)

—1> = 1. J. Riordan (Ref.

U(k,R) = Co"(a) (2)

0
7, p. 120) remarks that these polynomials are closely related to the
Poisson-Charlier polynomials C,(z,a); in fact

Ci'(a) = Cx(—R,a).

E. Brockmeyer,® N. Bech,’ and K. Lundkvist consider a problem
which differs from Kosten’s only in that M is finite (Gi = 0). Brock-
meyer finds

PK) = & (~0%ax (1 5) Ons=@) @)

so that Co(a) = d/k!, if we agree that (

where

Te= 3 (-0 (52 e (S=12,0,00

J=8
1
o = oy
_ 1 1 A (L =1\, me
”‘wwaﬂwég—J“ (a).

We do not consider here more complicated trunking situations (graded
multiples, alternate routing arrangements in which the overflow group
is at the same time the first-choice group for other sources of traffic).
See, however, Wilkinson,® and R. Syski (Ref. 11, chapters 7, 8§, 10).

Takdcs? gives, for arbitrary g, methods of finding P(k,n), P(k),
P(k,t), and P*(k). Thus in what follows we shall take the attitude that
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everything we need concerning the first-choice group only is, in principle,
known.

1.4 An Example

This paper grew out of the following problem, in which both balking
and overflow are involved. Subscriber lines are connected to the m
trunks of the first-choice group in such a way that each line has access
to only v of them. We refer to a particular set of v trunks as the access
pattern for a particular line or group of lines. Equal traffic is submitted

to each of the (?) possible access patterns. When a connection is made,

any idle trunk in the subscriber’s access pattern is equally likely to be
selected. This arrangement is referred to as a random slip, or Erlang’s
ideal grade. It is easy to see that the balking probabilities are

g, =0, for 0=k <+, and
for vy £k < m.

Traffic which balks on the first-choice group is submitted to a full-
access overflow group of A trunks. If a call is blocked on the overflow
group, it is lost.

Such an arrangement may be economically desirable. The average
traffic carried per trunk (for a given blocking probability, B) is less than
for a full-access group of m + M trunks, but the traffic per crosspoint
is greater. Knowing the costs of trunks and of crosspoints, and given
m -+ M and the desired value of B, one wishes to select v and m so as
to minimize the cost per unit, of carried traffic. We shall give some nu-
merical results for this arrangment.

II. THE STATE OF THE SYSTEM AT OVERFLOW INSTANTS

2.1 Transtent Behaviour

Unless the first-choice group is full-access, the overflow process {7}
is not recurrent and the sequence { Zy°} is not a Markov chain. However,
the sequence of pairs of random variables {£y°, Ey°} is a homogeneous
Markov chain. This may be seen as follows. Suppose we know that
#(Ty—) = kand E(Ty—) = K. Ty is an arrival instant; because the
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arrival process is recurrent and independent of the holding times, the
history of the system before 7'~ has no effect on the epochs of future
arrivals. Ty is an overflow instant; whether or not the overflowing call
is accepted by the overflow group depends only on the value of K. Be-
cause of the exponential distribution of holding times, the stochastic
behaviour of the system after T'» is independent of the ages of calls in
progress at Ty . Thus the values of £(Ty—) and E(T»—) determine the
whole future stochastic behaviour of the system. Therefore we are led
first to a consideration of the probabilities P°(k,K,N ).

If £(t) = k, E(1) = K, then we say that at time ¢ the system is in
the state (k,K). The values of £5° are limited to those & for which ¢ > 0.
We denote the set of such integers & by @. As initial conditions we take
£0+4+) =1, E(0+) = I < . (It is not required that ¢« € ®@.) Under
these initial conditions, we seek P°(k,K,N) fork € @; K =0,1,2, --- ;
N =1,2,3, ---.

Let us now define the following quantities:

Gir(z) = Pléwn” = k, Oy £ 2 [ E(Tw+) = j}
= Pltyn’ =k, Oyn < x| by = j}
=Pl =k Th £ «| £0+) = j)

with Laplace-Stieltjes transform

vin(s) = f: ¢ dGy (z)

M

U°(k,RN) = 2 (g) P°(k,K,N) (R=10,1,---,M)
K=R
=~ (K

V(kRN) = 2 (R) GxP°(k,K,N) (R=0,1,---,M)
K=R

V(k,—1,N) = 0.

We may now state:
Theorem 1: The distribution P°(k,K,N) is uniquely determined by
the binomial moments U°(k,R,N); the latter are determined by

U = (1) 1a(R) (3)

U(kEN +1) = ;‘/ﬂ:(R)[U"(j,R,N) + V'GE - 1N).  (6)
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Proof: The transition probabilities for the homogeneous Markov
chain {£y°, Zx°} are given by

p’(5,J; BK) = Py’ =k, By’ = K| &° = j, Ex° = J}
B fo P {Evi’ = K |2y = J, Onp = 2} dGi(2).

It is easy to sce that

P{EN+10= I<| By = J, ®N+1= 90}

J+ 1\ o J41—
=GJ< }E)e K(l—e )J+1K

+ HJ <t{{_> e—xK(l _ 6—::)J—K.
Thus
PG K) = [ 6 ) e - s
0 K
S (7)
+ HJ([{) e—zK(l _ e—z)J—K}.
Now
m M
P(EKN + 1) = 2 > p°(4,J;k,K)P°(j,JN). (8)
=0 J=0

Substituting (7) in (8), and taking the Rth binomial moment with
respect to the overflow group, we obtain

CLRN+1) =53 f: dG(z) [G’<J } 1>

je@ =0 R

+ H,(é)jl e P°(j,J,N)

= S u(R) [(}Q + G(RJ_ 1)] P°(j, J, N)

jeq J=0
= Z 'YJk(R) [Uo(j) R) N) + VO(J-)R - 1) N)]’
Jjea

which is (6).
For N = 1, we have
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Pk K, 1) = fo dGy(z) (};) e (1 — ) x
so that

v, B 1) = [ " i) (;) o = Gﬁ) vau(R),

which is (5).
From the definition of U°(k,R,N), we have

> (—1)rE (2) U(k, B, N)

(9)

Now, for any finite N the double series on the right contains a finite
number of terms, even if M = . This is so because

P(kJN)=0 for k+J=¢+1+ N,

and we have assumed I < «.
Thus the double series can be rearranged, and one obtains readily
that the binomial moments determine the probabilities according to

P°(k, K, N) = é (—1)" % @) Uk, R, N). (10)

In (5) and (6), the quantities v;,(R) occur as coefficients. We regard
these coefficients as known because they can be expressed in terms of
certain quantities determined by Takdaes.” Let

M (z) = E {number of 7, in (0,z] for which ¢, = k| £(0+) = 4},

with Laplace-Stieltjes transform
pa(s) = fo e dMu(z).

Takdcs gives a method for finding the px(s) [(T70), in which, however,
the index 7 is implicit]. The way in which the quantities u;(R) deter-
mine the v;z(R) is expressed in the following lemma (in which, it is to
be noted, values of the indices j,k, etc. are no longer restricted to the
set @).

Lemma 1: Define M °(x) = E {number of Ty in (0,x] for which &y° =



OVERFLOW TRAFFIC 55
k| £(04) = 1}, with Laplace-Stieltjes transform
pat(s) = [ ¢ aMas(a).

Let p*" be the square matrix with elements p;.°(R); 3,k = 0,1, -+, m.
Let v" be the square matriz with elements v;.(R); j,b = 0,1, -+, m.
Then, for R = 1,2, --+ |

v = ME T (11)

where I is the (m + 1) by (m + 1) unit matriz.
Sinee, obviously

wir’(R) = qup(R), (12)

(11) provides the desired relation between the v ;. (R) and the pj(R).
Proof: We shall first show that

i’ (R) = vu(R) + ’"g Y R)uw (R) (13)

forR =12 ---.

Suppose £(0+) = j, and consider a given R-tuple of trunks on the
overflow group which are all busyat ¢t = 04-. If T = «, the probability
that the overflow at T will find this R-tuple still busy is e~ ™. .

Thus

viu(R) = f;w e dGi(x)

is the probability that this R-tuple is still busy at 7 and that £(T:,—)
= k.

Again, if this R-tuple remains busy just until ¢ = =z, the expected
number of overflows from k to find it busy is M ;°(z). Therefore the
unconditional expectation of the number of overflows from k£ to find
it busy is

j:o Mjko(x) d(]. e B_Rx) = ]:O B_Rx d]”,ko(di) = u,'ko(R).

Denote (temporarily) by [u;."(R) | [] the expected number of overflows
from k to find this R-tuple still busy, on the condition that £(7,—) =1
and the R-tuple is still busy at ¢t = Th—.

Then, by the principle of total expectation,

pat(B) = 3 las () | thva(R). (14)
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Now because of the exponential holding-time distribution
lup’(R) |1] = pu’(R) for 1k (15)
and '
i’ (R) | k] = 1 + p’(R). (16)
Substituting (15) and (16) into (14), we obtain (13). Equation (13)
may be written
p =t R (17)

Thus, to prove the lemma, it remains to show that (E + u*'%) is
nonsingular.
From (17)

(B =" ="

Therefore

(B = o")-( + p"") = B
det (B — 4") - det (I + p”") = 1.

Sinee clearly both det (E — 4%) and det (E + ') are finite (for
R > 0), it follows that det (I8 — 4") 5 0 and det (&£ + p°'%) = 0,
which completes the proof of the lemma.

We note, for later use, that we have also shown that

pt = (B — 4" (18)

We need a separate method for finding «v;:(0), the above argument
being invalid because u;:°(0) = « forall k € Q.

We notice that v;z(0) = Gu() = P{g(T,—) = k| £0+) = j}.

The quantities v;:(0) are determined by the following system of
equations:

vi1(0) = qu f: dF (z) (‘;) e — e¢7) T + lf; P vi+1,:(0) -
L i (19
_/; dF (x) (‘i) (1l — )t (7,6 =0,1,---,m).

This may be seen as follows:
The event {£(T1—) = k} can occur in these mutually exclusive ways:
(¢) the first arrival after ¢ = 0 encounters k busy trunks on the first-
choice group, with probability
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j:o dr(z) <-;c) (L — Y

and overflows, with probability g ; )

(4¢) the first arrival after ¢ = 0 encounters I busy trunks and does
not overflow [so that £(71+) = I + 1]; the next overflow following
this occurrence is from k [probability v;41,:(0)].

For each k, (19) is a set of linear equations in the +;:(0). These
cquations determine the v;:(0) uniquely if the coefficient matrix is
nonsingular (for each k). Call this matrix A”. If we can show that
| A;,;® | > ; A ;i for each j, it will follow from the theorem of Lévy-

7

Hadamard-Gerschgorin (Ref. 12, p. 79) that det A® 5 0. That is,
we want to show that

g o [ " ar(z) (71) (L — ) < L (20)
The left side of (20) is evidently strictly less than
ﬁ; fo " ar(z) <fl> (1 — %) =1, for each j, QED.
Equations (5) and (6) may be solved, in some cases, by means of
generating functions.

Let

U°(k,Rw) = > U°(k,R,N)w"
N=1

V(b Rw) = 2 V(RN )w"
N=1
Note that it follows from (10) that
o0 M
YD P(EEN)w = >, (—1)%* <R>U°(IC,R,w). (21)
N=1 R=K K
From (5) and (6) we obtain

0" g0) = wf (f JraR) + X R Gfew)
jce (22)
+ Vo(th - I,W)]}.

We illustrate the use of (22) by a simple example.
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Ezample 1:

If the first-choice group is full-access (the only element of @ is m),
then U°(k,R,N) and V°(k,R,N) vanish except for k = m. For sim-
plicity, we assume that ¢ = m; then the only relevant element of the
matrix v* is y.m(R), and (22) becomes:

U*(m,Rav) = wv<R>[(§) U mBe) + Vo mfe— 1) |
whence

U°(m, R, w) = % [(é) FVm R~ 1, w):l. (23)
Ymm(s) is the Laplace-Stieltjes transform of the interoverflow-time
distribution, i.e., it is just the function y(s) given by (1). Thus (23)
is exactly equivalent to (T32), and merely serves to illustrate our remark
(Section 1.1) that if the first-choice group is full-access, we can use the
methods of Ref. 2 to describe the behaviour of the sequence {Z y°}.

2.2 The Limiting Distribution P°(k,K)
Theorem 2: The quantilies P°(k,K) = lim P°(k,K,N) exist, are

N-»t0
strictly positive, form a probability distribution independent of the initial
state, and are uniquely delermined by the binomial moments U°(k,R) =

M
Z(Ilg)Pa(lc,K ); the latter are determined by
K=R

Uo<k’R) = Gk %“ik(R)Vo(ij - 1) (R = 17 2: T M) (24)
and

U°(k, 0) = q—kpb(k) (25)

where

& (K
V°(k,R) = Z( >GKP"(Ic,K).
i=r \R

Proof: We first show the existence of the limiting distribution.

In this section, we use theorems given in Feller,” chapter 15, sections
5 and 6.

The Markov chain {£+°, Zy°} is evidently irreducible (sinece p; > 0
for k < m) and aperiodic. Therefore lim P°(k,K,N) exists. Since it is

Now
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irreducible, the chain has either all transient, all recurrent null, or all
recurrent non-null states.
If a state (k,K) is transient or recurrent null, thenlim P(%,K,N) = 0.
N—>w
Therefore, to show that all states are recurrent non-null it will suffice
to show that for some state (k,K), lim P°(k,K,N) > 0. It will then
N—>»

follow that this is so for all states, and that > P°(k,K) = 1. We look

kea
at the state (0,0):
To see that lim P°(0,0,N) > 0, we compare our system (with arbi-

N->x
trary balking probabilities) to the special system for which m = 0,
M = o, Hy = 0 (always assuming the same input process). Ior this
special system, write P{Ey’ = K} = P°(K,N), and take as initial
condition: Z(0+) = 7 + I.
It is clear that for any system with M = oo, and with the same
initial condition,

P°(0,0,N) = P°(0,N),
for each N, whence

lim P°(0,0,N) = lim P°(0,N).

N->x N—>o00
But it is known® that lim P°(0,N) > 0; thus
N->
lim P°(0,0,N) = P°(0,0) > 0
N>

and all states are recurrent non-null. Hence, since the chain is also irre-
ductble and aperiodic, it is ergodic.

We now know also that a unique stationary distribution exists and
that it coincides with the limiting distribution. From (6), we must
have

U'(k,R) = GZ vi(R)U°(G,R) + V°(4,R — 1)]. (26)

Denote by U°'® the row-vector with components U°(k,R),0 < k < m.
Then (26) may be written

Uo.R — (Ua,R + VO'R_I)'YR-
Thus, from (18),
Uo,R = VO'R-I}LO'R. (27)
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Writing out (27) in components, and using (12), we obtain (24).
We now prove (25). Denote by C™ the event that the nth arrival
overflows. Thus,

b = lim P{C'"}.
Now,
P°(k,K) = lim P{&y" = k, Ev° = K} = lim P{¢, =k, 5, = K | C™)}
N->® n->c0
— . " — (n) — g —
i Pl =85, = K} PAC™ | & =k, B, = K}
f— P{C™}
But
P{C™ |t =k B =K} = P{C™ | & =k} = .
Therefore
Pk, K) = 1’15%@ (28)
and

M
@ > P(k,K)

M
U°(k,0) = P(k,K) = =2
K=0 b

= 9’“_1;@ , Q.E.D.

To complete the proof of Theorem 2, it remains to show that the
binomial moments U°’(k,R) uniquely determine the probabilities
P°(k,K). This proof will be easier after we have discussed the stationary
distribution at arrival moments, £ (k,K), and we therefore defer it

until then.
It is sometimes convenient to work with the double binomial moments

B(r,R) = > <T> U°(k, R)

k=1

C(rR) = > <’:> V(i R).

k=r

In terms of these, (24) and (25) of Theorem 2 become
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B'(r,R) = i (R) — g (R)ICGR — 1)
(R=1,2-,M)

B0 =15 (’) o P(E). (30)

p=r \T

(29)

Here we have used the following definitions: f;.(s) and g;.(s) are the
lth differences of ®,,.(s) and ¥y, (s):

1
) = 2 (=0 (1) 00 (31)
l i1
gn(s) = 3 (=1) () ¥, (s) (32)
7=0 J
where ®,,(s) and ¥ ;,(s) are defined, following Takdes [(T59), (T60)], by
®i(s) = é (f) i (s) (33)
w) = 3= () puns(s) (34)
and must satisfy [(T61) and (T62)]
__o(s) -
@;—o(s) = 1—_;@ (30)
and
B (s) _ 1 J . .
o) = o | () + 9o (36)
as well as the relations in r implied by their definitions [see (T25)],
w9) = 35 (1) @paato) (37)

Examples of the application of the methods of this section will be
found in Section V.

III. THE STATE OF THE SYSTEM AT ARRIVAL INSTANTS

3.1 Transient Behaviour

The sequence {£,, E,} is clearly a homogeneous Markov chain. We
assume initial conditions £(0+) = ¢, E(0+) = I, and seek the dis-
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tribution P(k,K,n). We no longer restrict our attention to states (k,K)
for which ¢ > 0, but consider all states (£,K), 0 £ &k £ m £ o,
0ZEK=EMEZE w.

We shall prove the following:

Theorem 3: The distribution P(k,K,n) is uniquely determined by the
double binomial moments

B(r,Rn) _iZ ()( >P(chn)

k=r K=R

the latter are determined by

pot) = s () (2) (38)
(r=01,:---,mR=0,1,---,M)
B(r,Rm + 1) = e.B(r,Rn) + D(r — 1,Rn)
+ C(r,R — 1,n) — E(r,R — 1,n)] (39)
(r=0,1,--+ ,m;R=0,1,--+ , My;n =12 ---).
Here

C(rRn) = ‘2 f:) <’> (g) GeP (kK )
D(r,Rn) = i i ( )( >ka(lc,K,n)

o = £ 3 () () minrtssn

and all these quantities are defined to be zero if r < O or R < 0.

Proof: If the arrival at 7, finds the system in the state (j,J), it may
either get on the first-choice group, with probability p;, or balk on the
first-choice group with probability ¢, ; in the latter case, it may get on
the overflow group, with probability G, or balk there too, with prob-
ability H,. Thus the transition probabilities are given by

p(.??")k)K) = P{En+1 = k; En+1 =K | En = j7 En = J}

v o (4 )t s (D) - oy
+ g (Jk) 1 — 6 [GJ (" ;{“ 1) (L — gy (40)

+ H; (}2) e E (1 — e"’)J-K:I}.
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Now

m M
P(kKn+1) = 25 2, p(j,Jk,K) P(j,Jn). (41)

Jj=0 J=0

Substituting (40) in (41) and taking binomial moments with respect
to both the first-choice and overflow groups, we obtain:

B(rRn 4+ 1) = ora i > {p; (j N 1) <£>

=0 J=0 r

)0 5 1 )] e

Note that the quantity in braces in (42) is

O@)+2(2)@)+e () (1)) @

Substituting (43) in (42), we obtain (39).
Forn = 1, we have

(42)

P(kK,1) = fo " ar(x) <;c> (L — ) (II{> (L — ¢)TE,

taking binomial moments with respect to both trunk groups, we obtain
(38).

From the double binomial moments, one obtains the probabilities
P(k,K,n) by using:

Uk = 3~ () B (4)
and
P(kKn) = };{ (—1)* % G’;) U(k,R,n). (45)

Clearly P(k,Kn) = 0fork + K = ¢+ + I + n; it follows that the
sums in (44) and (45) contain a finite number of terms for finite =,
even if M = «, and there are no problems about convergence.

Equations (38) and (39) may be solved, in some cases, by means of
generating functions; we give an example.

Ezxample 2:

We consider the simplest possible case, in which

qk:o (k=0:1:“"m_1)

m =1
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M= o
Heg =0 (K=0,1,2,---).
In this case,
C(r,Rm) = B(r,Rn),
E(r,Rn) = D(r,Rn),

and

D(r,Rn) = B(r,Rn) — (’f) B(m,Rn).

Substituting (46), (47), and (48) in (39), we get
B(T:R’n + 1) = (pH-R[B(T;Ryn) + B(T - I,R,n)

(2, et (o -

Let
B(r,Rw) = ni:lB(r,R,n)w”.

From (38) and (49):

B(rRw) = —2fre__ [(’)( >+ B(r — 1,Rw)

]- — Woryr r

(2, otutn + (o -
<

The solution of (50) is
2

= j=r (?) FH-R(w) . - (1
B(r,Rw) = Trr(w) (= m Z <S> % (J)
Z .7) J+R(w)

8=0 j=0

7=0

i (?) rm_l(w) I\ s~ (i
2y = R

| 1
(£ ko)

1,m)].

I,w)].

1

Djys1(w)

1

Tjyg-1(w)

(46)

(47)

(48)

(49)

(50)
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where we have defined

r

I(w) = [ —2% | (r=0,1,2,---)

i=0 1 — wop;

T (w) = 1.

3.2 The Limiting Distribution P(k,K)
Theorem 4: The quantities P (k) = lim P(k,K ,n) exist, are strictly

positive, form a probability distribution independent of the initial stale,
and are uniquely determined by the double binomial moments B(r,R) =

n

) (ff) ULR), where ULR) = 3 <K>P(ICK) the B(r,R) are given

k=r =R
by
< B°(j,R) — C°(j,R — 1)]
B(r.R) = bC. (J, AL = 1)
(7‘, ) e I:z=: +R JZT;H Citr1 (51)

(r=01---,mR=0,1,---, M).
Here

C(R) = > <k> <K> GeP* (k).
b=r \I R

Proof: That the limits P(k,K) exist and are independent of the initial
state again follows from the fact that the Markov chain {£,, 5.} (n =
1, 2, --+) is irreducible and aperiodic. To show that the P(k,K) are
strictly positive and form a probability distribution, we must show that
there exists some state (k,K) such that P(k,K) > 0. This can be done
by a method similar to that used in the proof of Theorem 2; we omit the
argument. It follows that a unique stationary distribution exists and
that it coincides with the limiting distribution. We express this stationary
distribution in terms of the stationary distribution P°(k,K) in the
following way:

Consider the arrival which occurs at 7, (under equilibrium conditions).

It either overflows, with probability b, or does not, with probability
(1 — b).

If it overflows, the probability that it encountered the state (7,J) is
P°(4,J).

If it does not overflow, let us denote the probability that it encountered
the state (5,J) by P?(5,J).

We note that

P(G,J) = bP°(j,J) + (1 — b)PP(G,J). (52)
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Suppose that 8,11 = =.
If the arrival at 7, encountered the state (j,J) and overflowed, the
probability that the arrival at 7,1 encounters the state (k,K) is:

(k> —xlc(l _ C_I)j—k[G_’<J;{- ].)e—zK(l _ e—z)J-l-l-—K

7 (53)
+ H,<K>e_“<(1 — )’ = a(z), say.

If the arrival at 7, encountered the state (j,J) and did not overflow,
the probability that the arrival at 7,4, encounters the state (k,K) is:

(j 1 1)(”“(1 - e—x)f“—k(}é)e*“‘(l — FYE = B(a), say. (54)

Taking account of both these possibilities, and removing the condition
on .y,

P(K) = i 5 [ ar@brGate) + (0 = DPGHEE

=0 J=0

Using (52),

PUE) = 323 [ dr @) P (GDlale) — 8)] 4+ PUDBG)).

j=0 J=0

Taking binomial moments with respect to both trunk groups, and
using (53) and (54),

56 = e 5 35 i [(0) (e 1) 10 (3)
0@ (@)

= ¢rir{B(r,R) + B(r — 1,R)
+ b[C°(r,R — 1) — B°(r — 1,R)]}.
The solution of (55) is
BR) Bt o [SEG0 5 CUR= D)

j=r Cj+R F=r41 Cj+R—1

Crir Conir
Now note that, from (28),
bB°(m,R) = B(m,R). (57)
Substituting (57) in (56), we obtain (51).
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To complete the proof of Theorem 4, it remains to show that the
double binomial moments B(r,R) uniquely determine the probabilities
P(k,K). It is clear that the B(r,R) uniquely determine the U(k,R)
through the equation

U(kR) = ZL (—1)* (12) B(r,R) (58)
because m is finite. Thus we must show that
M
P = 3 (=) (B v @) (59)
=k K

when M is infinite; it will suffice to show that the series on the right
converges absolutely.
From (39) we have

B(OR) =5 ‘”"¢ [C(O,R — 1) — E(0,R — 1)]. (60)
- R
Now, ,
2 EL (K (K
C(O,R) — E(O,R) = kZ > ) (g ) #G<P(LK) = B(O,R). (61)
=r K=R
Therefore,
B(O,R) £ —2* _B(O,R — 1). (62)
1 - ¥R
Now '
lim g = lim ¢(s) = F(0+) = 0
R $-»00
whence
lim —%% = o.
R->» ]. — @R
Thus
X B(O,R)
iy (N DA (83)

Equation (63) is sufficient to insure that

> (F)som

R=K

converges.
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Consider for simplicity the case m = 1. Then we have
B(O,R) = U(O,R) + U(1,R). (64)

At least one of the statements

. U(OR)
im Tor -1y = ° (65)
. UR)
Imsar-1 " (66)

must be true, for if both failed to be true, then for some ¢ > 0 there
would be terms for which

U(O,R)
UWOR —1)

U(1,R)
ULE — 1)

for arbitrarily large R; it would follow that for arbitrarily large R

B(OR) U(O,R) + U(1,R)
BOOOR—-1) UWOR-—-1)+U®QR-1)

which contradicts (63).
Say (65) is true. Then the series

> (f{) U(0,R)

> €

> €

> €

converges; thus

> (Bvam = 2 (§)son - % (Fvomw

R=K

converges, and this proves (59) for m = 1. The generalization to
arbitrary m is straightforward.

Corollary: We can now easily complete the proof of Theorem 2 by
remarking that [using (28)]

bU°(kR) = sz: (‘é) P(,J)

_ i <}{E> @wPUed) < i (‘é) P(kJ) = U(kR)

so that the series
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M
PUK) = 3 (—1)% (R) U°(k,R)
R=K K
converges absolutely, Q.E.D.
We again defer examples to Section V.

IV. THE STATE OF THE SYSTEM AT ANY TIME

4.1 Transtent Behaviour

Let

BOURY =3 3 ( )( )P(lc,K,t)

k=r K=R

with Laplace transform
:3 (T,R,S) = f e_”B(r,R,t) dt.
0

Let M 4™ (t) be the expected number of arrivals in (0,{] to encounter k
trunks busy on the first-choice group and K on the overflow group, on
the condition that £(0+) = ¢, E(04+) = I, with Laplace-Stieltjes
transform

I-l'ikIK(s) ='/; e—sz dMikIK(x)-

We also define several kinds of double binomial moments:

5) = 3 Y < V(s ) a0

IR 2 & K IK ('
X, (s) = ; 1; (7‘) (R) Grpa, (8)
w6 = 35 5 (1) () poa(o)

(
Vi (s) = i ZM: (f

K
R) kaKﬂikIK(S) .

Theorem 5:

IR _ €0(3+7‘+R)
B e ey

K«) (fg) e 6) + X — ¥ .

(67)
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Proof: Consider a certain set of r first-choice trunks and a certain set
of R overflow trunks. We shall call the union of these two sets an (r,R)-
tuple of trunks, and if the r first-choice trunks and the R overflow trunks
are all busy at time ¢, we shall say that this particular (r,R)-tuple of
trunks is busy at time ¢. Thus, when the system is in the state (k,K),

the number of busy (r,R)-tuples is (ﬁ) <II§) Let us make the conven-

tion that there is always one busy (0,0)-tuple. The expected number of
busy (r,R)-tuples at time ¢ is evidently B(r,R,t).

Let us now calculate the expected total number of encounters between
arriving calls and busy (r,R)-tuples in the interval (0,t]. Denote this
expectation by E; %(1).

If the nth arrival oceurs in (0,f], and if (¢, = k, E, = K), then the

nth arrival encounters Cf) (Ilg) busy (r,R)-tuples. Thus

M k K o0 o
”; (7‘) (R)fo dP{r. S u, b0 =k, B = K}.

M3

EirIR(t) = Z=:

n=1k

Il

But

0

P{Tn é U, Eﬂ = k: En = K} = ]llier(u)' (68)
=1

n

Therefore
m M
B (1) = E Z (k) (K) Ma (1)
k=r k=R \T R

with Laplace-Stieltjes transform
eirlﬂ(s) = q’irlR(S)- (69)

But e;,"%(s) can be found in another way. If (¢, = k, =, = K), then
at time 7,4+, the system is in the state (k¥ 4+ 1,K) with probability p. ,
the state (k,K + 1) with probability ¢.Gx, or the state (k,K) with
probability ¢.H . Thus the expected number of busy (r,R)-tuples at
time 7,4+, under the stated condition, is

(1) @) o () o () e (2)
- () @)+ 20) (&) oo () (e 2),

and the expected number of busy (r,R)-tuples created by the nth arrival,
under the stated condition, is
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w20 () + 0= mae () (2 55)

Now the probability that the life of a busy (r,R)-tuple will be longer
than z is exp (—(r + R)x). Thus the expected number of encounters
between arriving calls and created (r,R)-tuples in the interval (0,f] is:

n=1 k=r—1

M t
) fdP{T,,gu,snzlc,En=K}
K=R—1 Y0

()@ ra-me()( )]

t—u
: f T G (1)
0

where M () is the expected number of arrivals in an interval of length
z, when there was an arrival at the start of the interval. M (z) has
Laplace-Stieltjes transform

Equation (70) is a convolution. Recalling (68), we see that (70) has
Laplace-Stieltjes transform,

kﬁ:r_l K:{zR:—I l:pk (r -k— 1> (§>

+ (1 — pu)Cx (f) (R If 1)] pa' " ()u(s +r 4+ R).

We must not forget the (r,R)-tuples which were busy initially; the
expected number of encounters between arriving calls and these is

(:) <Z§> 21 /: AP{r, < u}e TP = (i) (é) fot AM (1) e~ CHD

with Laplace-Stieltjes transform

(j) (1{3) u(s + 1 + R). (72)
Adding (71) and (72) we get

E‘IR(S) — 90(8 + r + R)
v 1 —o(s+r+ R)

[(ﬁ) <{E> + Wi (s) + X" () = Y,-,’-’H(s)].
Now comparing (69) and (73), we obtain (67).

(71)

(73)
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Theorem 6: The distribution P(I,K,t) (t > 0) is determined by

_1—¢(8+T+R). 1 IR
ﬂ(riR:S) = ¢(S+7’+R) S+7‘+Rq>" (3)- (74:)

Proof: We have
Pl = (3) 0 = o () 0 - 8 - ro)

0 m M ¢
> 2y [arte —qm = 7,m

n=1 j=0 J=0

+
{ < 1) TR Uy (i{)

.e—(t—u)K(l . e—(t—u))J—K + 4 <.;C> e—(t—u)k (75)

(1 - e—(t-—u))j—k I:GJ (Jz 1> e—(l-u)K

'(1 _ e—(t—u)>J+1—K + .HJ <tI]<>c—(t—u)K

IA

u}

(1 - e‘“"“)“‘]} 1= F(t—w)l.

This may be seen as follows: either no calls arrive in the interval (0],
or the last call to arrive in that interval is the nth (n = 1,2, ---), ie.
the nth call arrives at time u and no calls arrive in the interval (u,t]. If
this call encounters the state (j,J) it may get on the first-choice group
(probability p;), the overflow group (probability ¢;G;), or neither
(probability ¢;Hs). Then enough calls must end in the interval (u,t] so
that the state at time ¢ is (k,K).

From (75), and keeping in mind (68),

B(r,Rjt) = (;) @) ¢RI — ()] + i i aM " (u)

X
i (Y (D (1) (5) + 6. ()
.<R£ 1)} L — F(t — w)l,

and taking the Laplace transform,
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) =L 20T LI (1) 1,76 + i)

(76)
+ X (s) — Yi,""-1<s)].

From (76) and (67) we obtain (74).

It remains to show that the double binomial moments uniquely de-
termine the probabilities P(k,K,t). As in the proof of Theorem 4, it will
suffice to show that for allz > 0

B(0,R,t)

m o — 159 = " (77

From (67), for B > 1,

IR <P(3 -+ R) 1,R—1
Py (s) = ﬁm Do (s). (78)

But, for all s > 0,

: o(s + B)
m vy =
Therefore
IR
lim P (8)__ (79)

R—>% ‘I’io"R_l(S) N
Now from (74),

BORs) 1 —9(s+R) o(s+ R —1)
B(O)R - 1)8) 90(3 + R) 1 - §9(8 + R — 1)
s+ R -1 B (s)
s+ R ‘I)ioI’R_l(S)

and so
: BORs) .. ®xp"(s) _
fim BOOR — 15) lim BT E(s) 0, (80)
since
lim —28)
s>00 (D(S — 1)

From (80), and the inversion formula for the Laplace transform, the
result (77) follows.
Lxample 3:



74 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

Consider the case

@ =0 (k=0,1, -, m—1)
gm =1
M=«

HK=H;GK=G(G+H=1> (K:071y2,”')‘

This example may be of some practical interest. It represents a situa-
tion in which some equipment, other than a free trunk, is needed to set
up a connection on the overflow group. If this equipment is serving a
large number of trunk groups, the chance of its being idle may be sub-
stantially independent of the situation on the particular overflow group
being considered here, and may be represented by a constant, G.

In this case we have

Xi'"(s) = G&;,""(s)
YirIR(S) — G\I’«[TIR(S)

and

Vi, " (s) =y "(s) — <m> Do " ().

r

Equation (67) becomes

00 = L (0)(0)

= (™) et + o) autni).

The solution of (81) is:

N P (e FOE()

i(m> L NS\ Glirsals)
=0 \J/ G*Cir(s)

(?)m”z“ <I> : (z) 1

<m) 1 =5 \S/ = \J/ G5Ciysa(s)
J J/ GPCiyra(s)

-(2) %.0) —U}

(81)

(82)

m

D
r+1
0

J=
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The expression for 3(r,R,s) can now be obtained from (82), using (74).
4.2 The Limiting Distribution P*(k,K)

Theorem 7: The quantities P*(5,K) exist, are strictly positive, form a
probability distribution, are independent of the initial state, and are uniquely
determined by the double binomial moments

) GBS) P*(k,K);

BYrR) =3 3 (’,f

k=r K=R

the latter satisfy

% — a 1 - PLr+R
B*(r,R) TR one B(r,R), for r+R >0 (83)

B*0,0) = 1.

Proof: To prove the existence, we consider the limit of (75) as { — .
Clearly the first term goes to zero, and we have

M

t
P*(k,K) =lim Y, [
0

t>00 J=0

dM.;,-”(u)

m
7=0

{ .
A (T —e-wr oy —e—w itk (S
A E R e

_e—(t—u)K (1 _ e—(t—u))J——K + 4 <‘;3>

(i—u (=) \ j— 1
e ey [, (7 1)

(84)

—(t—u —(t—u - J
e (t—uw)K (1 — e (¢ ))J—I-l K + HJ <I{)

IR () e—(t_"))J—K]} [1 — F(t — )l

It follows from Smith’s “fundamental theorem,”™ the assumption
that F(z) is not a lattice distribution, and the fact that P(7,J) > 0 for
all  and J, that the limit in (84) exists and is given by
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m M

Pk = 3 5 PG [T aun - pu)

=0 J=0

.{p]. (0t 1) L — gy
G{) (L — )T+ g (J,) ¢ "F(1 — ¢ )" (85)

'[GJ (J ; 1>‘6_MK(1 _ e—u)J+1—K

e G{) L e_u),_x]}'

Tt is clear from (85) that P*(k,K) > 0 for all (k,K), since the integrands
are all strictly positive. (Note also that we have assumed « > 0.) The
dependence on (¢,I) has disappeared, and it is easy to show from (85)
that

m M

>3 PHEK) = 1.
k=0 K=0
Thus B*(0,0) = 1. To show (83), we take a different tack:
Consider any state (k,K). Transitions into the state (k,K) are of four

types:

(k — 1L,K) — (k,K) (type a)
(k,K — 1) — (k,K) (type b)
(k 4+ 1,K) — (k,K) (type ¢)
(k,K 4+ 1) — (k,K) (type d).

Transitions out of the state (k,K) are also of four types:

(k,K) — (k — 1,K)  (type a’)
(k,K) — (kK — 1) (type b)
(k,K) — (k + 1,K) (type ¢’)
(k,K) = (k,K + 1) (type d’).

Denote by N,(t) the expected number of transitions of type ¥ in the
interval (0,t].

If we consider the process only at times when the state (k,K) exists,
transitions of type (a’) form a Poisson process of density &, and transi-
tions of type (b’) form a Poisson process of density K. Thus,

N.(t) =k fot P(k, K, t)dt (86a’)
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No(l) = K f P(k, K, 1)dL. (861')
0
Similarly,
N = (b + 1)f Pk + 1, K, )dl (86¢)
0
Nt = (K + 1)[ Pk, K + 1, 1)dt. (86d)
0

Now {¢ = k, &, = K} is a recurrent event, with mean recurrence

time [o/P(k,K)] > 0. Thus, from the “elementary renewal theorem,”"’
IK

lim Mu"(t) _ P(k,K) _

t—>0 t 62

But clearly,
Nd/(t) = QkGKMikIK(t):

so that
lim Nar() _ @GxP(RK) _ bGP (1K) (86d")
>0 ¢ « @
Similarly,
i Vo) _ GrsbP?(k, K — 1) (86b)
too 1 «
fim Ne (@) _ pP(RK) _ P(REK) — bD'(RK)  (gq ry
>0 t a «
lim Nat(t) _ P(]g —_ 1, I{) — bP (]C — 1, K) . (86(1)
t>o0 «

We now notice that in any interval (0,t], the number of transitions out
of the state (k,K) can differ from the number of transitions into the
state (k,K) by at most 1. FFrom this remark, and all the equations (86),
it follows that

(k + K)P*(k,K) + aP(k,K) — abHxP°(k,K)
= ab[Gx P’ (k,K — 1) — P°(k — 1,K)] + aP(k — 1,K) (87)
+ (k + 1)P*(k + 1,LK) + (K + 1)P*(k,K + 1).

Taking the double binomial moment of (87), one obtains
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(r + RYB*(r,R) = a {B(r LR — <m N 1) B(m,R)
(88)
+ b [C"(r,R — 1) = B(r — 1,R) + (’” + 1) B"(m,R)]}.

r

We now note that, according to (51),
a [B(r _1,R) — (’" + 1) B(m,R)]

r

- abCr+R—1l: > BUR) g(JR—"l)] (89)

i=r—1 Ciyr i=r Citr
—ab <’" j ]> B'(m,R).

Putting (89) into (88), we obtain (83).
It is now easy to see that the B*(r,R) determine the P*(k K). For
from (83)

i BYOR) . v+ R =l B(OR)
R+ B*(O, R — 1) R-> r + R ©r B(O, R — ].)

o BOR)
“mBorR-1 "

Corollary: For Poisson input, P*(k,K) = P(kK).
Proof: For Poisson input, F(z) =1 — ¢ ™, 0 < a < ®;a = 1/a
Thus

a a
)

o(s) =a+s %:a——l——r
" e r+R _
B*(r,R) = TR o B(r,R) = B(r,R),

and since the double binomial moments determine the probabilities
uniquely, the result follows.
Examples will be found in the next section.

V. EXAMPLES FOR THE STATIONARY PROCESS

5.1 Categories of Examples

In this section we will try to find the stationary binomial moments
B°(r,R), B(r,R), and B*(r,R) for certain special cases, or categories
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of cases. In the easiest cases we will succeed in finding explicit expressions
for all these moments; in a harder case we will find explicit expressions
only when B = 1 or R = 2; in the most complicated example (the ran-
dom slip with overflow group, mentioned in Section I), the treatment is
numerical, and only the results for the over-all blocking, B, are reported.

If the first-choice group is full-access, the situation is particularly
simple, since overflow can only occur if & = m; the vector equations

(24) for U°(k,R) then become scalar, and B°(r,R) = (T) U’(m,R).

If the balking on the first-choice group is arbitrary, but the overflow
group is infinite with no balking, or with constant balking probability,
as in Example 3 above, some simplification occurs. For then,

V(k,R) = GU°(Lk,R)
and hence (24) becomes a recurrence relation, although the quantities
it relates are vectors. In such a case it is straightforward to find the first
few moments of the distribution on the overflow group.

In cases in which neither of the above simplifications occur, the form
of the balking probabilities may still be such as to facilitate calculation;
an example of this is the random slip with overflow group.

5.2 Full-Access First-Choice Group
We suppose
qk:o (k=0}17"')m_1)
qm = 1.
Equations (24) reduce to the single equation
U (m,R) = pun(R)V°(m, R — 1) (90)
and from (13),

v(R)

1 — v(R)
v(R) is given by (1); it easily follows that

tmm(R) = (R =1,2,---).

pmn(R) = %—-< ) Cin(R) (91)
az=t:)( )CJ(R)
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Noting that, from the definitions,

CiR) = g, (92)
(91) becomes
= (m 1
pmn(R) = Z;,;,g—];?—cﬂf—‘l (93)
;} (J) Cirr
We also know [from (25)] that
U’(m0) = f-(bﬂ) = 1. (94)

Ezxample 4:
We now consider a slight generalization of the system considered by
Brockmeyer (see Section I). Namely, let

g =0 (k=0,1,--+,m — 1)
qm =1
Hy=H (K=0,1,---,M — 1)
Hy = 1.

In this case we have
V°(mR) = @ I:U"(m,R) — (%) U"(m,M)].
Thus, from (90),

U = wentBG [ Une = 1) = () vman ]

(R=12,---, M).
The solution of (95) is

(96)

. > (e @[
Uo(m,E) = [GRH umm(Q)]gé{é))[[(y I‘}i‘:mm(j)::lL.

Q=1
J=0

Now, from (93),
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T ton(@ = ,,,—gﬁé (B=12-). (o7
j;o<j>cj+n

Thus,

s
L~
3
~
Qf =
Mk

<

[
il

&

) o (99)
e £ Qe
N 2 as

B*(r,R) follows from (83).

When G = 1, (99) is the generalization to recurrent input of Brock-
meyer’s result, (4). It can indeed be verified that (99), for Poisson input
and for G = 1, agrees with (4).

For infinite full-access overflow group (M = «, G = 1), (99) becomes

B(r,R) = Coiz [ﬁ:r (3”) Ciue _ j%—l <?;l> C:R_1 . (100)
>

1:;) <J> Citr 520 <J> Cisr

Iquation (100) is the generalization to recurrent input of Kosten’s
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result, (2). Again it can be verified that (100), for Poisson input, agrees
with (2).

5.3 Constani-Balking Overflow Group
We suppose that M = «
Gk = @ (K=0,1,2,---).
Then (24) becomes
U(k,R) = q:@ j%ipjk(R)U"(j,R -1 (R=1,273, ---). (101)

Lzxample 5
Suppose further that

a = q (k=0;1)"'7m—1)
QM':]..

This might describe a system in which some auxiliary equipment is
needed to set up a connection on the first-choice group, some other
auxiliary equipment is needed to set up a connection on the overflow
group, and the probability that the auxiliary equipment is idle is con-
stant, but this probability is different for the two groups. This is a rather
plausible system, except that the overflow group is infinite.

We note that the blocking for such a system is

m  ®

B = k}_jo ngkHKP(lc,K) = Hlg + pP(m)].
It is easy to show by the methods of Ref. 2 that in this example

& 1
= (5o
B(r0) = p'C, =L PG (102)

m 1

P(m) = B(m,0) =

so that in particular

Thus,
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Instead of (101), we use (29), which in our case becomes
B'(r,R) = G z; Jir(B) — ¢;:(R)IB°(j,R — 1)
g

(R= 1a2) )‘

(103)

In this case we have, from (37),

w35) = o[ @) = () @)

We can solve (35), (36), and (104) to obtain

|
Bls) = %‘(;A(— (£ Q) seewl £ () weiw]
1 1C1(s)
B0 w2 05kl

It follows from (31) that

> (™) L
flr(s) = prcr(s) k:’ (A/) P Ck(S) . 1

(104)

m 1 pCia(s)
k;, (k) P*Ci(s) (105)
1 : |
— plCl—1(3) > ‘
0 if IZr

From (105), fi.(s) — gi-(s) can easily be calculated by observing
that in this example

flr(s) - glr(s) = qflr(s) + y4 <7:L) flm(s)-
Then, from (103) one obtains

B(r,R) = @ ( > T a'C(R) ,; (17? pk_Ci(T)

% (1) s ;o

- B°(7,R — 1) , B(j,R — 1)
i piCia(R) @ C(R) sz p'Ci1(R)
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Noting that, from (30) and (102),

qB(r0) + p( )B(m0>
q + pB(m0) (107)

“[we Gt (OB () rm+e]

we can use (106) to find B°(r,1), B°(r,2), ete., and in particular, the
first and second moments of the distribution on the overflow group only,
at overflow instants, B°(0,1), B°(0,2). The formulas are long; we quote
only:

B(r0) =

y st (7)o

P*Ch

m 1 1
;;( >p0k+1 p+qk§< ) P*Ci

B°(0,1) = G<qCy +

(108)

5.4 Other Cases

Once B°(r,R) is known, it is straightforward to determine B(r,R)
and B*(r,R), using (51) and (83) respectively. [If B°(r,R) is known,
C°(r,R) can be determined, for use in (51), from the relation, which
follows from their definitions:

M
C(r,R) = 2 (‘ZQ) (A GR) B (r,J); (109)
J=R
see (T45).] The problem is thus to determine B°(r,R), from (29) and
(30), or equivalently to determine U°(k,R) from (24) and (25). We
consider the latter method.

To use (24) and (25), one must first of all determine u;(R) for all
relevant 7, k, and R [say, from (T70)], as well as P(k) [say, from (T44)
and (T45)]. Then the V°(k,R) must be expressed in terms of the
U°(k,R); in general V°(k,R) can be expressed in terms of the U°(k,J),
with J = R, by a relation analogous to (109):

M
Vo(k,R) = JZ G}:) (ARG U (K, J). (110)

=R
When (110) is substituted in (24), one obtains a set of simultaneous
equations for the U°(k,R). Equation (25) serves as a boundary condi-
tion. If M 1is finite, (24) can be used to express U’(k,M — 1),
U(k,M — 2), ---, U’(k0) successively in terms of U°(k,M), and

(25) can then be used to determine U°(k,M).
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When the U°(k,R) are known, one finds the B°(r,R) by taking bi-
nomial moments, and then the B(r,R) from (51). The probabilities
P(k,K) then follow by inverting the binomial moments, and the over-all
blocking is determined by '

m

M

B =22 g:HxP(kK).
k=0 K=0

Example 6

We consider the system described in Section I

e-()/Q) warm

He=0 (K=0,1,-+,M — 1)
H1|1=1

The IBM 7090 computer at Murray Hill was programmed to find the
blocking probability B for certain values of the parameters, namely:

m—+ M =10
v+ M = 6.

The calculations were carried out for two kinds of input:

(z) Poisson

(4t) That sort of recurrent input which is itself the overflow from a
group of mg trunks to which a Poisson stream of calls (with negative-
exponential holding times) of mean intensity a, is submitted. Note that,
since Poisson traffic is completely characterized by one parameter (its
mean, in our case a), this sort of recurrent input is completely charac-
terized by two parameters (ao and mo).

Note also that this program allows one to calculate B for certain more
complicated trunking arrangements, in the case of Poisson input, e.g.,
2 common trunks overflowing to a random slip of 3 on 7 which in turn
overflows to 1 common trunk. (This arrangement also involves a total
of 10 trunks and 6 crosspoints per line.)

The results (blocking probability B as a function of input traffic a)
are shown in Tables I and IT and Fig. 1. The cases treated were my = 0
(Poisson input, @ = ag) and my = 2, in which case, of course,

2

3
=% <1+ao+%)>§

v was given the values 2,3,4,5,6. (Note that if v = 6, then M = 0; there
is no overflow group.)
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P S
4 /78/
2 W%
//
1072
8 -4
6 A7/
) JASF
NENy/7a
1/
Z -3
6 10 > 7 — i
9 1-6/0 L0 2o
a ° 2-4/a+2} °
‘ 2:3?30&} Me=0 (POISSON INPUT)
/offof
2| [ /,
1074
a1 1 [
7
L/
d
-5
10 y 2 3 4 5 5 7

SUBMITTED TRAFFIC, 8, IN CALL-HOURS
Fig. 1 — Blocking, B, vs submitted traffic, a.

Before commenting on the results, we mention parenthetically several
special features introduced into the calculation by the special form of the
balking probabilities and by the kind of input process considered in this
example. First, as to finding the P(k): (T44) and (T45) read, in our
notation

B(r0) = 5 f’% D(r — 10) (111)
D60 = 3 (7) (" p)BG0). (112)

In the present example,
_er  _ 4 C"(a) (r=1,2 ) (113)

1 —o 7 Crp1™(ao)
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and

()
A, = =N TV (G=r+1,r+2 ). (114)
m
()
Also, since the overflow group is full-access (although finite), the
relation (110) becomes

Vo(k,R) = U°(k,R) — G;I) U(k,M). (115)

In Tables I and II and Fig. 1, we have used the notation v/m + M
to deseribe a random-slip configuration in which each line has access to
v out of the m first-choice trunks and all the overflow trunks, except that
the ecase v = 6, m = 10, M = 0 is referred to as 6/10. The curves in
Tig. 1 have been drawn, to avoid crowding, only for 4/8 - 2 and 6/10.

The following conclusions can be drawn from these results:

(#) The blocking is higher, for the same mean traffic, when mo = 2
than when my = 0. This is consistent with the intuitive notion that
overflow traffic is “peaky”.

(#7) In a practical range of blocking (B = 0.001 or 0.01), 4/8 + 2
is the “best” arrangement and 6/10 is the “worst” of those considered,
from the point of view of the traffic capacity of the system for a fixed
blocking probability. It can be seen from the eurves that if one wanted
an arrangement using 6 crosspoints per line and 10 trunks, one would
gain about 8 per cent (for my = 2) or 6 per cent (for me = 0) in traffic
capacity at B = 0.01, by using the arrangement 4/8 -4 2 instead of
6/10. At a blocking probability B = 0.001, these gains would be about
16 and 11 per cent respectively. Such increases in traffic capacity are
not negligible; they seem to be larger for peaky traffic than for Poisson
traffic.

(727) For higher blockings (“‘overload” conditions), the advantage of
4/8 + 2 relative to 6/10 diminishes.

A study for a practical case would involve calculations of the block-
ing for other values of v + M, a knowledge of the relative costs of trunks
and crosspoints, and of course many other considerations, such as the
relative costs of building and controlling 4/8 + 2 and 6/10 switches.
Also, in such a study, one would want to keep in mind the approxima-
tions implicit in the model used in this paper. For example:

(7) In reality, blocked calls may wait or be resubmitted.

(#7) In reality, the number of traffic sources (lines) is finite, so that



OVERFLOW TRAFFIC 89

the arrival process after any instant is dependent on the number of
trunks busy at that instant; thus the input is not, in reality, recurrent.
(727) As a further result of the finiteness of the number of lines, the

complete set of (:") access patterns required for a perfect random slip

probably could not be used, and even if it could, equal traffic would not
be submitted to cach access pattern (so that the blocking experienced
by different subsecribers would be different).
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On the Properties of Some Systems
that Distort Signals — 1I

By 1. W. SANDBERG
(Manuseript received April 19, 1963)

In this paper we study the recoverability of square-integrable bandlimiled
signals (with arbitrary frequency bands) that are distorted by a frequency-
selective time-variable nonlinear operator and subsequently are bandlimited
to the original bands. The distortion operator characterizes a very general
class of systems contatning linear time-invariant elements and a single
ttme-variable nonlinear element. The subsequent bandlimiting of the sys-
tem’s output signals can be thought of as being due to transmission through
a channel that performs filtering.

Our principal result asserts that, under certain conditions that are satis-
Jied by many realistic systems, it is posstble to uniquely determine the band-
limited input to the system from a knowledge of the bandlimited version of
the output, in spite of the intermediate distortion which generally produces
stgnals that are not bandlimited to the original frequency bands. We show
that the input signal can be determined by a stable iteration procedure in
which the approximating functions converge to their limit at a rate that s
at least geometric.

I. INTRODUCTION

In this paper we study the recoverability of square-integrable band-
limited signals (with arbitrary frequency bands) that are distorted by a
frequency-selective time-variable nonlinear operator and subsequently
are bandlimited to the original bands. The distortion operator character-
izes a very general class of systems containing linear time-invariant
elements and a single time-variable nonlinear element. The subsequent
bandlimiting of the system’s output signals can be thought of as being
due to transmission through a channel that performs filtering.

Our principal result asserts that, under certain conditions that are
satisfied by many realistic systems, it is possible to uniquely determine
the bandlimited input to the system from a knowledge of the band-
limited version of the output, in spite of the intermediate distortion

91
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which generally produces signals that are not bandlimited to the original
frequency bands. Of course the distortion operator is assumed to be
known. We show that the input signal can be determined by a stable
iteration procedure in which the approximating functions converge to
their limit at a rate that is at least geometric. When the physical sys-
tem consists of only a single nonlinear element, our result reduces to
that of Landau and Miranker,! and Zames.?

In the electronic circuitry of a communication system, it is often the
case that an ideally linear amplifier is supplied with an approximately
bandlimited input signal and that the circuitry subsequent to the ampli-
fier introduces approximate bandlimiting. Under the assumption that
the bandlimiting is ideal, our results imply that in many cases it is possi-
ble to completely reverse the effect of nonlinear distortion that may be
introduced by such an amplifier due to the malfunctioning of, for ex-
ample, a transistor or its bias supply, even though, as is typically the
case, the transistor may be in a feedback loop. Of course it is necessary
to know the properties of the distorting circuit. Results of this type may
be useful in situations in which received signals are recorded and the
time delay introduced by the recovery scheme is not important. For
example, it is conceivable that this type of result may be useful in im-
proving the quality of distorted signals obtained from a transmitter in
a space vehicle containing a television camera, in which the distortion
is due to a faulty video amplifier.

Section II considers some mathematical preliminaries. In Seetion I1I
we state our principal results after discussing in detail a mathematical
model of the physical system to be considered which focuses attention
on the influence of the time-variable nonlinear element. Sections IV
and V are concerned with the proof of the results. In particular, Section
V considers the rate of convergence and stability of the recovery proce-
dure. Section VI is concerned with some results that relate to the neces-
sity of the conditions introduced earlier.

II. PRELIMINARIES

It is assumed that the reader is familiar with the contraction-mapping
fixed-point theorem stated in Part 1.3:4

As in Part I, £; denotes the Hilbert space of complex-valued square-
integrable functions with inner product

(f9) = [:,fg dt
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in which ¢ is the complex conjugate of g. The norm of f [i.e., (f,f) is
denoted by || f||. The intersection of the space £; with the set of real-
valued functions is denoted by Loy .

We take as the definition of the Fourier transform of f(¢) in £, :

Flo) = f_ : 78 ™ &y

and consequently

1 ° Twl
(1) = z_f_w Flw) ¢ do.

™

With this definition, the Plancherel identity reads:

o [ 090 at = [ F(a)g(0) do.

As the notation above suggests, lower and upper case versions of a letter
are used to denote, respectively, a function and its Fourier transform.
We shall be concerned with the following subspace of Loz :

B(Q) = {f(&) |f(t) e Lor; Flow) =0,we

where Q is a union of disjoint intervals. The measure of Q is denoted by
©(2), which, unless stated otherwise, is not assumed to be finite. In par-
ticular, @ may be the entire real line.

The operator that projects an arbitrary element of £oz onto B(Q) is
denoted by P. In electrical engineering terms, P is an ideal filtering
operation.

The symbols I and O denote, respectively, the identity operator and
the null operator (i.e., Of = 0 for all f ¢ £2).

III. MATHEMATICAL DESCRIPTION OF THE PHYSICAL SYSTEM AND STATE-
MENT OF PRINCIPAL RESULTS

Consider a nonlinear time-variable element imbedded in a linear phys-
ical system. Let s; and ss, respectively, denote the system’s input and
output signals, and let » and w, respectively denote the input and output
signals associated with the nonlinear device, which is assumed to be
characterized by the equation

w = qo(?),t) = ‘P[D]a (1)

where ¢(v,t) is a real-valued function of the real variables » and ¢.
It is assumed that v, w, s2 € L2, $1 € B(Q), and that there exist well-
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defined linear operators I' and A, with domain ®(Q) X £z, such thatt
v = T[s1,w] and s, = Afs;, w].

We shall be concerned throughout with the four linear operators A,
B, C, and D derived from I" and A in the following manner:

v = I'[s1,w] = sy, 0] + F0,w]
= As; + Cw (2)
s2 = Alsy,w] = Als;, 0] + A[0w]
= Ds; + Bw. (3)

3.1 Representation of the Operators A, B, C and D
We assume throughout that

Af = [:a(t — 7) f(z)dr, Bf = [: b(t — 7) f(r)dr

cf = [ et =) fir, Df= [ att—n s

where each of the real symbolic functions a(t), b(t), c(t), and d(t) is
most generally the sum of an element of £2; and a delta function. It
is assumed throughout that | C(w) | and | B(w) | are uniformly bounded
for all w and that | A(w) | and | D{w) | are uniformly bounded for all
w £ Q. It follows that C and B are bounded mappings of £ into itself
and that A and D are bounded mappings of G(2) into itself.

3.2 The Projection Operation and the Basic Flow Graph

We shall suppose that s, , the system’s output signal, is the input to a
device that projects signals in £2z onto the subspace ®(2). This device
may be thought of as representing an ideal transmission channel of the
low-pass, bandpass, or multiband type. If the output of the device is
denoted by s;, then clearly

s3 = Psy = T 'PTs, (4)
where
P=Plw) =1, wel
= 0, weQ

and Ts, denotes S., the Fourier transform of s, .

1 This assumption is almost invariably satisfied in mathematical models of
physical systems of interest.
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Fig. 1 — Signal-flow graph characterization of the relation between s, sz, 83,
v, and w.

The equations we have introduced give rise to the signal-flow graph
shown in Ifig. 1 which summarizes the basic situation.

Our primary interest is in (¢) obtaining conditions under which s;
uniquely determines s; , when s; is known to lie in the same subspace as
s3 [i.e., in ®(Q)], and (#) obtaining a technique for recovering s; .

3.3 The Time-Variable Nonlinear Element

We shall denote by ¢(w,t) the inverse nonlinear characteristic; that
is, ¥(o[v],t) = v for all v and {. It is assumed throughout that ¢(0,t) = 0
for all ¢, that  [w(£)] is a measurable function of { whenever w is measur-
able, and that there exist two positive constants « and g with the
properties that (e + 8) = 1 and

a(wy — we) £ Y(wy, t) — P(we, 1) £ Bwr — w2) (5)

for all ¢ and all wy = w. . Of course no loss of generality is introduced by

the normalization 3(« + 8) = 1, which happens to be convenient for our
purposes. Observe that 0 < a = 1.
It follows from (5) that

87 (s — ) o, t) —e(n,t) £ a (v — )

for all £ and all »; = v.. Observe that w & £q¢ if and only if v € Lo .

3.4 Assumplions Regarding | A(w) |, | B(w) |, and | D(w) |

In addition to the uniform boundedness of | A () |, | B(w) |, | C(w) |,
and | D(w) | mentioned earlier, it is assumed, unless stated otherwise,
that there exists a union of disjoint intervals @5 such that Qp € Q,

|D(w)] = 0
| Blw) | = kipweQp,
|A(¢°)|§k2
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and
| D(w) | = ks, we (Q— Q)

where k; , k2, and k; are positive constants. In most cases of engineering
interest either Q, = Q or Qp is the null set.t

3.5 Statement of Principal Results

Our main result is
Theorem I: Let A, B, C, D, «, and ¥ be as defined in Sections 3.1, 3.3, and
3.4. Let
inf |C—AD7B —1|>1—a

we(Q—=Qp)

wmf|C—1]>1—a
Wi

Then to each s; € B(Q) there correspond unique funclions s; ¢ ®(Q) and
w, v, S2 & Lag such that

s3 = Ps,
s = Ds; + Bw
v = As; + Cw
v = Y[u]
[i.e., such that (1), (2), (3), and (4) are satisfied]. Furthermore if
53 = Ps,
5. = D& + Bw
7= As + Cw
7 = Y[u]

where ,.7, § € Lop and 31, § £ B(Q),
o1 — &l = kallss — &
where ky is a positive constant that depends only on A, B, C, D and .
Suppose that ¢[w] = Cw -+ As; {i.e., (2) with v = Y[w]} possesses a
unique solution w & £z for any s; ¢ B(Q) and that if Y[w] = Cw + A5
1 The assumptions in this section facilitate a common treatment of these two
important cases. Observe that, with the exception of these cases, it is assumed

here that | D(w) | is discontinuous on @. However, as indicated in the Appendix
this is by no means a necessary condition for the recoverability of s .
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in which § ¢ ®&(Q) and b € Lo, |w — D || £ ks || st — 51|, where ks
is a constant that does not depend on s; or § . [A direct application of
Theorem II (in Section IV) shows that this is the case if inf |C' — 1| >

(1 — @).] It follows directly from the properties of ¥ and the assump-
tions regarding A, B, C, and D that if s; ¢ ®(Q), there exist unique
functions v, sz, 83 € L2z such that (1) (2), (3), and (4) are satisfied.
Let @ denote the operator that associates with each s; ¢ B(Q) the corre-
sponding s; . The assumptions regarding ¢[w] = Cw + As; together with
the boundedness of B and D imply that @® is a bounded mapping of B(Q)
into itself. Under the conditions stated in Theorem I, ® possesses a
bounded inverse.

The invertibility conditions are established in Section IV and the
boundedness of ® " is considered in Section V.

The method used to establish the invertibility conditions is construc-
tive. In particular, ® 's; can be computed in accordance with a stable
iteration procedure for which the successive approximations converge
in the £2z norm at a rate that is at least geometric. The approximations
converge also in the supremum norm at a rate that is geometric or
greater if u(Q) is finite.

As indicated earlier, in most cases of engineering interest either
Qp = Q (the single-loop feedback system case), or @, is the null set
(i.e., the magnitude of the ‘“direct transmission” D(w) is uniformly
bounded away from zero on Q). The invertibility conditions stated
above are satisfied in many cases of practical interest.

The situation considered by Landau and Miranker,' and Zames® cor-
responds to one inwhichA = B =1 D = C = O, and Qp = Q. The
inequalities are obviously satisfied in this case. In fact they are satisfied
when Qp = Qand C(w) = 0, w £ 2. More generally, observe that the in-
equalities are met if and only if (C — AD™'B), forall w ¢ (2 — @), and
C, for all w £ Q, are bounded away from the disk centered in the complex
plane at [1,0] and having radius 1 — o where 0 < « £ 1.

IV. DERIVATION OF INVERTIBILITY CONDITIONS

In the following discussion we shall denote by P, the operator that
projects elements of £:; onto ®(2p). That is,

Pof = T'PoTf, fé& Lo (6)
where
PD = PD(OJ> -

=0, wzQD

—

s weQD
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and, as before, Tf denotes the Fourier transform of f. Recall that D is
an invertible mapping of B(Q — Q) into itself, that A and B are in-
vertible mappings of B(2p) into itself, and that D annihilates ®(2p).
We shall denote by D™ the inverse of the restriction of D to (2 — Qp),
and by A~ and B, respectively, the inverses of the restrictions of A
and B to ®(2p).

TFrom (3) and (4)

s3 = Ds; + PBuw, s1 € B(Q) (7
and from (2) and Y[w] = v
Yw] = Cw + As; . (8)

Our objective is to determine w in order to find s; from (7) and (8).
The corresponding functions s; and v can of course be computed from (3)
and v = Y[w].

Since D annihilates B(25), Pps; = PpBw and, since P, and B com-
mute,

Pow = B7'Pus;. (9)

The problem therefore reduces to the determination of (I — Pp)w.
Before proceeding it is convenient to sct w, = Ppw and w, = (I — Pp)w,
and to introduce

Definition I: Let

n(x) =B — w, r =1
=2 — a x =1
From (8),
(I — Pp)¢fw, + w] = Cwy, + A(P — Pp)si, (10)

since C and A commute with (I — Pp). From (7),
(P — Pp)s; = D(P — Pp)s; + (P — Pp)Buw,
and
(P — Pp)si = DY(P — Pp)ss — D(P — Pp)Bw.  (11)
Thus,
(I — Pp)Ywe + we] = Cw, — AD(P — Pp)Bw, + AD™(P — Pp)ss

from which
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(I — Po) {Ywa + ws] — yown}
= [C — AD™(P — P,)B — yljws + ADH(P — Pp)s;

where y, is a real constant to be chosen subsequently.

Thus, regarding [C — AD™(P — P,)B — ] as a mapping of the
orthogonal complement of ®B(Qp) into itself, and assuming that it pos-
sesses a bounded inverse [C — AD™(P — P,)B — yd] ™,

Rw, = wp
where
Ruw, = [C — AD™H(P — Pp)B — ¢l "I — Pp){¢[wa + ws] — wows}
— [C — ADH(P — P5)B — %I "AD (P — Pp)s;.

The operator R is a mapping of a complete metric space into itself.
We next establish a condition under which R is a contraction. Let H =
[C — AD7Y(P — P,)B — ], and let f and g belong to the orthogonal
complement of &(Qp). Then

| Rf — Rg [l = | HT — Pp) [ [| ¥lwa + f]1 — ¢lwa + g] — $o(f — ) |l
= 1HT = Po) | n(¥o) 17 — g I,

since
lp['wa'l—f] —‘l/[wa'i_g] __1# < ﬂ(lpo)-
f—q -
Thus R is a contraction for some v, if
r = i?f | H( — Pp) || n(¥s) < 1. (12)

It turns out that the optimal choice of ¥y is unity, the median of « and
8. Consequently we could have simply set Yo = 1 at the outset. However,
we prefer to establish the significance of this choice.

4.1 Evaluation of || H(I — Pp) ||

Let H = [ — AD™'(P — Pp)B — |™" with the understanding that
D(P — Pp) =0,0 g (2 — Q). Our result ist

Lemma I:

1HIX - Py) || = €8s sup | H(w) |.

1 The notation ess sup Q(w) denotes mf sup Q(w) where 91 is an arbitrary zero-

measure subset of the real line.
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Proof:

The norm of H(I — Pp) is sup{| z||; |f] = 1} where z = H(I —
Py)f and f € L2z . An application of the Plancherel identity yields, in
terms of the frequency domain representation of H,

Iz = 2-1; o H@ [P [ do.

Hence
sup{llz[l; [Ifll =1} = ess sup | H(w) |.
wiQp

However if ess sup | H(w) | < <, for any e > 0 there exists a set of
wglp

nonzero measure & which is disjoint from Qp and such that | H(w) | 2
esssup | H(w) | — ¢ o € &. Since | F(w) | is permitted to be nonzero only
wEdp

on &, it follows that
sup{fl 2 [l; [| 7] = 1} 2 ess sup [H(w) | — .
wW§MND
" Thus if ess sup | H(w) | < o,
widp

IHI — Py) || = ess¢gup | H(w) |. (13)

It is clear that (13) remains valid if ess sup | H(w) | = . This proves
wElp

the lemma.
It follows from (12) and Lemma I that

r = infesssup | [C — AD™(P — Pp)B — ol ' | n(¥0). (14)

Yo wilp

4.2 Determination of ¥, and Statement of Theorem IT
The following lemma indicates that the optimal choice of ¥y is inde-
pendent of [ — AD™(P — Pp)B].

Lemma II: Let £ be a complex number and suppose that

| & — %o [Ta(¥) < 1.
Then
&€ — o |7n(¥o) = | & — 1[9(1).

Proof:
Suppose first that ¢ < 1 and that

[E— | > k(B — ), k>1.
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Then, since | £ — | S |- 1|+ |1 — o],
[E =11+ 11 =vo| = k(1 =¥o) > k(B —1),
and hence | £ — 1] > k(8 — 1). Suppose now that ¢, = 1 and that
&€= $o| > k(¥ — a), k> 1.
Then,
[ — 1]+ |o— 1] — k(o — 1) > k(1 — @),

and hence | £ — 1| > k(1 — «).
It follows from (14) and Lemma II that if r < 1,

r=esssup | [C — AD™(P — P,)B — 117 |n(1)

wEQp

=esssup | [C — AD™(P — Pp)B — 17| (1 — a).

wilp

At this point we are in a position to state

Theorem II: Let A, B, C, and D be the bounded linear operators defined in
Section 8.1. Let D, but not necessartly A and B, have the properties stated
in Section 8.4. Let D™ denote the inverse of the restriction of D to ®(2p),
and let Py denote the operator that projects elements of L2 onto &(Qp). Sup-
pose that

r=maxlr,r) <1,
where

rn=esssup | [C — ADT'B — 1]7'| (1 — @)

we(R—80p)

r = esssup | [C — 17| (1 — a).
wil

Then for any w, and g, respectively elements of ®(2p) and its orthogonal
complement with respect 1o Lor , there exists a unigue wy in the orthogonal
complement of ®(Qp) such that

(I — Pp)¢ws + wy] = [C — ADT(P — Pp)Blus + ¢.

In fact, w, = lim wy; where

Wysn = [C — AD™H(P — Pp)B — II'(I — Pu){¥[we + woi] — W)
—[C—AD (P - Pp)B -1y

and we 1s an arbitrary element in the orthogonal complement of &(Qp).
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If s, 7s a solution corresponding to w, and §,
r r
— D < — D + L —all.
”wb wb” =1 T”wa Wa ” (I—T)(l-—a) ”g g”

Proof:

With the exception of the last inequality, the proof follows from the
fact that if < 1, R (with ¢ = 1) is a contraction mapping of a complete
metric space into itself.f The inequality is obtained as follows. Let
J=[C — AD(P — P,)B — I|" (i.e., let J be H with y, = 1). Then,
since

wy = J(I — Pp){¢fwa + w] — we} — Jg,
wy — Wy = J(I — Po){Yfws + wi] — ¥[a + W] — (wa + ws)
+ (Do + W)} — J(g — 7).
Therefore
w, — @ || = [ JX = Po) || 9(1) [ wa = e + wp — B |
+ 1 JX=Po) [I-lg—3l,
and since r = || J(I — Pp) || n(1), #(1) = (1 — a), and

we = e 4+ wo — @ || < [ we — e || + | we — @ ),

T r
- 0 S 3 a — —a —d .

lon = | < o e = @0 |+ =ty = 9 = 7
With regard to the “essential supremum” notation used in the state-

ments of Lemma I and Theorem II, it is of course true that

esssup | H(w) | = sup | H(w) |
wiQp wilp
in at least almost all cases of engineering interest.

4.3 The Complete Recovery Scheme

Let us now consider our over-all objective, the recovery of s; . From
(8) and (11), using the definition of A,

(P — Py)s; = DY(P — Pp)s; — DY (P — Pp)Bw
Pps; = A7'Po{y[w] — Cuw}.

Ir

I

t In particular, our assumption regarding the inverse of [C — AD-! (P - Pp) —
B — I]is satisfied, since | C — AD™!(P — Pp) — 1| is bounded away from zero
for all w in the complement of Qp, .
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Therefore,
ss = (P — Pp)s; 4 Ppsy = [D'(P — Pp) — A'CB'Pyss
+ ATPo{Y[B ' Pps; + wy]} — DT(P — Pp)Bws

where we have used (9), the fact that (P — Pp)Bw, = 0, and the
identity A'P,CB'Pps; = A7"CB'Pps; . This proves the first part of
Theorem I. The second part, which is concerned with the boundedness
of @', is considered in Section 5.1.

We define si, , the nth approximation to s, by

Sin = [ﬁ_l(P —_ PD) - §—1C§—1PD]S3 + K_lpp{tp[ﬁ_lpp&; + wbn]}
— D7(P - P»)Bun.

(15)

(16)
where ws, is the nth approximation to ws as defined in Theorem II. Ob-
serve that
s — 81 = ATPo{Y[B 7 Pos; + win] — ¢[BPos; + wil}

— D7Y(P — Pp)B(win — wy),
from which, using the right inequality of (5) satisfied by ¢,
Fsw—sill S CIATPo | g+ [ DR = Po)B I} [ wen — wi |l (17)

An argument very similar to that used in the proof of Lemma I suffices
to show that

| APy || = esssup | A7 | (18)
wellp
|ID™(P — Pp)B|| = esssup | DT'B|. (19)
we(2—0p)

Our assumptions regarding A and B imply that the right-hand side of
(18) and the right-hand side of (19) are bounded. Therefore, since wy =
lim wp, , (17) implies that s; = lim sy, .

The convergence of s1, to s; established in the last paragraph is in
the mean-square sense. If u(Q) < oo, it is also true that s, converges
to s; pointwise uniformly in ¢, that is

lim sup | sy, — 1] = 0.

n—>0 i

This result follows from the inequality :t

t This inequality is proved in Ref. 1 for the case in which Q is a single interval
centered at the origin. The extension to arbitrary sets of finite measure is trivial.
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[57'(P-R,) -A~' cB~ P,

Ln Wpn ~D7'(P-P,) B
S3 Sin

Fig. 2 — Idealized recovery scheme.

s 1701 = (B2) 71, vea@

and the fact that s, , 81 € ®(Q).

-AD™'(I-P,)

Fig. 3 — The iterative operation L, .

4.4 Signal-Flow Graph for a Complete Recovery Scheme

One complete idealized scheme for obtaining the nth approximation to
s1, based on (16) and the solution for ws given in Theorem II with ¢ =
AD™ (P — Pp)s; and wy = 0, is summarized in Fig. 2. The iterative
operationt L, is shown in detail in Fig. 3 in which, as defined earlier,

1 In the special case in which Qp is the null set and ¢ — AD-'PB = Oidentically

in w, w = ¢[AD™ s3] and hence the iteration stage is not required. The condition
that C — AD-'PB vanish identically in «, under which @ is by no means a trivial
mapping of &(2) into ®(Q), is equivalent in engineering terms to requiring that
the feedback transmission, for w # Q, and the null feedback transmission, for w ¢
Q, both vanish.
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J=[C—AD™(P — P,)B — I|"". Tig. 4 shows a flow-graph representa-
tion of J in terms of [C — AD™ (P — P,)B] and elementary operations.
The flow graphs in Figs. 2 and 3 simplify in obvious ways in the impor-
tant special cases in which D = O on ®B(2) or D possesses a bounded
inverse on B(Q).

The analog implementation of the scheme presented in Fig. 2 requires
consideration of the time delay inherent in the approximation of the
impulse response functions corresponding to the nonrealizable operatorsf
P and Pp, as well as the time delay that might be required in the ap-
proximation of J. These considerations imply that time delay sections
must be inserted at various points in the recovery system and that the
time variation of the nonlinear elements must be staggered. Of course
the output of the recovery system will be a delayed version of an ap-
proximation of s;(¢).

[c-AD™'(P-PR,)B]
Fig. 4 — Flow-graph representation of the operator J.

There are many variations possible in the implementation of the re-
covery system. For example, the iteration can be performed with a
recording device and a single typical stage of the type used in Fig. 3.

V. RATE OF CONVERGENCE AND STABILITY OF THE RECOVERY SCHEME

The key element in the recovery scheme is of course the iteration pro-
cedure. We show first that the approximating functions wy; conyerge to
their limit w; at a rate that is at least geometric. This type of convergence
is a direct consequence of the fact that ws; = R'wy where R is a con-
traction mapping.

Since

wyi = wo + [wer — weo] + [woe — wal + -+ + s — Weew,

| lwscizn — wod] + Woisny — Woan] + -+ |l

| wes — wy ||

I\

| wocivy — wes || + || wogirny — Wo (1) |+ -
Repeated applications of the inequality:

1 Of course we are ignoring the cases in which P = I or P, = O.
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” Wy — Wh(t—1) H l| Rwsq1y — Rws—s ||

< 7l wany — woa—p |, !

1\
o

lead to

| wes — wy || < l_f__r | wer — wio |- (20)

If weo = 0, wer = J(I — Pp)¢[B'Ppsy] — JAD™ (P — Py)s;, and
hence

e = wn || = 2 1 T = B) (W1 Pusi] — B Pus

— ADH(P — Pp)ss}|

r

I = Po) | (1) [ BRs |

IIA

1
+ [ ADTH(P — Py) ||} | ss |l
i+l ” A]Aj‘l(P —_ PD) ”} ” 83 ”

T
l—«

IIA

(] N
where, in accordance with the arguments used in the proof of Lemma I,
| B7'Py || = esssup | B™|
welp
| AD™(P — Py) || = esssup | AD™"|.
)

we(—Lp

5.1 Stability of the Recovery Scheme

We consider here the degree of immunity of the recovery scheme to
two important types of errors.

It is assumed first that the input to the recovery system, which we
shall denote by §;, differsf from s;. Let overbarred symbols denote signals
due to the input 5. We have from (15)

&1 — &l = | D(P — Pp) — A7'CB7'P,l(ss — &)
+ AP {Y[B ' Pos; + wy) — YBPos; + )
— [D7(P — Pp)Bl(ws — @) |

[D(P — Pp) — A7'CB7'P, ||| 85 — 5|
+ |A7Py || B B7'Po |-l ss — & || + [l ws — s ||}
+ | D(P — Po)B || ws — s ||.

T The departure of §; from s; might be due to the presence of noise in either
the transmission channel or the initial stages of the receiver.

(21)

A
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However, from Theorem II with ¢ = AD'(P — Py)s;,

r
1—r

we — s || = IB7Po [Illss — 5|
(22)

+ L AD' (P — Py |l s — 5 |-

T
1-r1 -«

In view of our earlier assumptions which imply the boundedness of all of
the norms in (21) and (22), it is evident that there exists a positive
constant k4 such that

st — &l = ksl ss— 8 (23)

for all s;, § & ®(Q). In other words, our assumptions imply that &~
is bounded. This means that the error in the recovered signal is at most
proportional to the error in the input to the recovery system. In par-
ticular, the recovered signal depends continuously on the input to the
recovery system.

We show next that the recovery scheme is not critically dependent
upon either an exact knowledge of the operator J or the projection prop-
erty of Pp. Specifically, we shall compare the functions w, and @,
defined by

wy = Rws, Rwy = J(I — Pp){lws + ws] — wp}
_ — JAD(P — Py)s;
Wy = Riby, Ribp = Qfgfw. + @) — w} — SAD™(P — Pp)s; (25)

(24) .

where Q and S are bounded linear mappings of £ into itself. We assume
that » < 1 and that

#=1Qln(1) <L (26)

Hence R is assumed to be a contraction mapping of £. into itself. Note
that inequality (26) is satisfied if » = || J(I — Pp) || 7(1) < 1 and
IJ@ — Pp) — Q|| is sufficiently small. A comparison of w; and W,
yields an estimate of the error, due to the departure of Q from J(I — Pp)
and to the departure of S from J, in the limit function approached by
the iteration procedure in the recovery system.

From (24) and (25),

wy — Wy = (S — J)AD (P — Pp)ss + J(I — Pp){¢[wa + ws] — wy)
— Qiywa + ws] — w} + Q¥ wa 4+ we] — we} — Q{Ylwa + W] — W},

from which
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w, — || < (S — DAD™P — Po)s; || + [[JA — P») — Q]
{Wlw] — ws} || + 11 Q [l (1) || ws — s |],

and

[l we — s ||

IIA

1 Bt
7= (S = DADT(P — Po)s |

+ % I = Po) — Ql{glw] — wi} |-

Therefore, if the departure of Q from J(I — P,) is not too large (i.e.,
if # < 1), the error in the limit function approached by the iteration
technique is, for fixed s; (and hence fixed w), at most a linear combina-
tion of two terms, one that approaches zero as | S — J || approaches
zero, and another that approaches zero as || J(I — Pp) — Q || approaches
7€10.". :

VI. SOME NEGATIVE RESULTS

In this final section we consider some results that relate to the neces-
sity of the conditions introduced earlier.

The equation ¢[w] = Cw -+ Asi, in which s; ¢ (), plays a central
role in defining the mapping @. As stated in Section 3.5, Theorem I
implies that this equation possesses a unique solution w & £yp if

inf|C—1]>1—a (27)

It is of interest to note that there exists a function ¢ such that the
equation ¢[w] = Cw + As; possesses no solution w & L2z for any non-
identically zero As,; if (27) is not satisfied, @ is a bounded set, and C =
cI where c is a real constant. This follows directly from the fact that if
(27) is violated, @« £ ¢ £ (2 — a) = B. Specifically, throughout a
neighborhood of the origin let ¢ be independent of ¢ and linear in w with
slope ¢. Then clearly, ¢[w] — cw = 0 whenever | w | < ¢ where ¢ is some
positive constant. Since As; is assumed to be nonzero almost everywhere,
the validity of our assertion is evident,.

Let U denote the mapping of the orthogonal complement of ®G(2p)
into itself defined by Uw, = (I — Pp)yfw, + w] — Ew, , where w, ¢
®(2) and E = C — AD™(P — P,)B. Theorem II asserts that U
possesses a bounded inverse if E(w) = C — AD™(P — Pp)B, for all w
contained in the complement of Qp , is bounded away from the disk in
the complex plane centered at [0,1] and having radius (1 — «).
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Theorem III: Let v be a real constant and let E; denole an open interval
contained in the complement of Qp such that E(w) s continuous on E; and

mf|E(w) —y|=0.

weFy

Let ¢ be independent of t and continuously differentiable with respect:to
on an tnierval Ey where

dy(z) _
dx

Then U does not possess a bounded inverse.

nf 'y‘ = 0.

zedy

Remark: Note that the hypotheses regarding y are satisfied if ¢ is inde-
pendent of ¢, continuously differentiable with respect to z, and v is any
point on the real-axis diameter of the disk mentioned above. Of course
we assume that

edy(x) dy(z)
1r:f Faal and sgp o 8. i
Proof of Theorem II1:

We need the following lemma. j

Lemma III: Let A, denote the real interval [—T,T], let e and e be<real
positive constants, and let h(t) be a continuous real function defined on: A, .
Then there exists a function g(t) in the orthogonal complement of B(Qp)
(assuming that Qp is a proper subset of the real line) such that

[W(®) =g | S e, te(A—A)

where Ay s a set of points contained in disjoint intervals of fotal measure
not exceeding e .

Proof:

If the complement of Qp contains an interval centered at the origin,
the result is known and in fact is true with A, the null set. The following
very direct argument makes use of the known result to treat the case in
which the complement of @, does not contain an interval centered at the
origin. : -

Let w1 and w; be real positive constants such that the interval [w, — w2,
w1 + ws], where w; > ws, is contained in the complement of Q. Let Q'
be an interval of length 2w, centered at the origin. Let €’ be an interval
of length 2ws centered at the origin. Let {t1, 2, --- , &t} = {t |t € A1
cos wit = 0}. Let I; denote an interval of length e/n centered at ¢; . For
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any e > 0, there exists a function I(?) ¢ ®&(Q’) such that
h(t)

cos wil

(L) —

< e

= )

te (A — Ay)

n
where A, = U I,;. Choose € such that e = e inf  cos wel. It is
j=1 te(A1—A9)

evident that I({) cos wit possesses the properties of ¢g(¢) stated in the
lemma.

To prove Theorem III it suffices to show that for any e > 0, there exist
two functions wy, and ws , belonging to the orthogonal complement of
®(Qp), such that || wy — wy || = 1 and || Ylw. + wi) — Y[w, + was] —
E(wu, - ’l,UQb) ” < €

Let e, e, and ¢ be arbitrary positive constants. Since inf | E(w) —

wedy
v| = 0 and E(—w) is equal to the complex conjugate of E(w), there
exists an w; € = such that | E(Zw;) — v | £ }e. Let I and II; denote
two finite intervals of equal length u(II,) contained in =, and centered,
respectively, at —w; and +w;. Let (wp — wn) & &(1; U Iy) with || wy —
wa || = 1. Choose p(II;) and T such that

sup | E(w) — 7| £ a, | we — wa [[jt1>7 < e
welly tedg

where A; is any subset of A; = [—T,T] with measure not exceeding ks ,
a sufficiently small positive constant. The second inequality can always
be satisfied since, in accordance with the inequality stated in Section
4.3, sxi.p | we — we] £ [‘n'_lu(Hl)]%.

Since inf | [d¢(x)/dz] — v | = 0, there exists a real constant zy ¢ =,
zeZy
such that
Ylws + wpl — Ylws + wal vl < e

< 2
wp — W - (28)

whenever |w. + wip — 2o | and | wp — wx | are sufficiently small. We
may assume that p(II;) is so small that the condition on | wyp — wa | is
satisfied. Choose wy, in accordance with Lemma IIT so that (28) is
satisfied on (A; — A;) where A, is a set of measure not exceeding ks .
Let (A; — Ax)™ denote the complement of (A; — A;). Observe that

| Ylwa + wi] — Ywe + wa] — E(wn — wa) ||
< || ¥wa + wp] — Ylwa + wn] — v(wn — wa) ||
+ | (B = 7)) (wip — wa) ||
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I\

e || wi — wa || 4+ [| Wlwa + wi] — Ylwe +wn] — v — w4, a0
+ | (E — +I)(wy — wa) ||

e+ B+ [v])e+ || (E— D) (wp — wa) |

a+t B+v)e+ a.

This completes the proof.

IIA

IIA

APPENDIX

The purpose of this appendix is to briefly indicate an alternative
technique for determining sufficient conditions for the recoverability of
Sy .

Instead of the assumptions stated in Section 3.4 suppose that for some
real constant ¥y :

inf|D —B(yo— C)A| >0

weld

[ (Wl — C)7" || () = ess sup | (%o = C)7 [ m(do) = ¢ < L.

These inequalities imply that {PD + PB(yI — C)'A} possesses a
bounded inverse on ®&(Q) and that for any g ¢ £sz the equation y[w] =
Cw + ¢ possesses a unique solution w ¢ Loz .

From

Yw] = Cw + Asp, s3 = PBw + Ds;, (29)
and Y{w] = Yow + Plw] we have
s; = {PD + PB(¢ — C)7'A}si — PB(%I — C)7W[w]. (30)
Equation (30) can be written as
s1 = Ms; + {PD + PB(yI — C)'A} s
where
Ms; = {PD + PB(¢l — C) A} 7'PB(¥d — C) Y[u).

Of course the dependence of the right-hand side on s; is through w.
Let w be the solution of Y[w] = Cw -+ As; corresponding to s; = §; .
Then by arguments similar to those leading to Theorem II,

Jo=o] < ;2 Il = O AP [l[|ss = 5 .



112 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

Thus M is a contraction mapping of ®&(Q) into itself if
p = [[{PD + PB(yl — C)"A}"PB(yl — C)' |
7o) /(1 = )] | (Wl — C)TAP| < 1.

Hence if the received signal s; is known to be related to the transmitted
signal s; ¢ ®&(Q) by (29), s; can be recovered if our assumptions are
satisfied and if p < 1. Using arguments similar to those leading to
Lemma I,

P = €S8 sup

B (o) 1 ess sup
wea = |D(¢o — C) + BA 1—gq

weld

l
‘p[j C
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Existence of Eigenvalues of a Class
of Integral Equations Arising
in Laser Theory

By D. J. NEWMAN and S. P. MORGAN
(Manuscript received March 19, 1963)

It is proved that the tntegral equation

[ 6@rapHGIW) @y = N

has at least one nonzero eigenvalue iof F is any integral function of finite
order, G and H are any bounded functions on [—1,1], and the trace of the
kernel G(z)F(xy)H (y) does not vanish. In particular, this theorem furnishes
the first rigorous proof that the kernel exp [th(x — y)?], which arises in the
theory of the gas laser, has an eigenvalue for arbitrary complex k.

I. INTRODUCTION AND SUMMARY

In an idealized model of the gas laser or optical maser, as studied by
Fox and Li'? and others, electromagnetic radiation is reflected back and
forth between two infinitely long metal strips which are mirror images of
each other. A typical field quantity, such as the current density, at the
surface of each reflector satisfies the integral equation

f_ll explilk(z — y)* — h(z) — (]} fly) dy = A f(z), (1)

where k is a dimensionless real parameter which depends on the width
and spacing of the reflectors and the wavelength, and 2(z) is a real func-
tion specifying the departure of the reflecting surfaces from parallel
planes.

The eigenfunctions of (1) represent the field distributions at the re-
flectors of the possible modes of oscillation of the laser, and the eigen-
value A corresponding to a particular mode represents the complex factor
by which the field strength is multiplied as a result of one reflection and
transit between the reflectors. From the magnitude of X one can deduce

113
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the amount of amplification which would have to be provided by an ac-
tive medium between the reflectors in order just to sustain oscillations
in the given mode, while the phase of A determines admissible reflector
spacings for oscillations at a particular frequency.

The mathematical interest of (1) centers around the fact that its
kernel K(z,y) is complex symmetric but not Hermitian;* that is,

K(zy) = K(y,x) but  K(zu) # K(yz). (2)

The ordinary theory of Hermitian kernels does not even suffice to prove
the existence of eigenvalues of complex symmetric kernels. Fox and Li?
have made extensive calculations of the eigenvalues and eigenfunections
of (1) for h(x) = 0 by iterative numerical techniques up to about k = 60
(in applications & may be as large as a few hundred) ; but heretofore there
has been no formal mathematical proof of the existence of solutions
exceptt for | & | < 1, which is not a case of physical interest.

This paper contains a proof of the following

Theorem: Let G(x) and H(x) be any bounded functions on the interval
—1 = 2z £ 1, and let F(2) be any inlegral function of finite order such that

1
[ ¢@FeHE) @ = o. (3)
Then the integral equation

[ 6@ Hww) dy = i) (@)

has at least one nonzero eigenvalue.
As a corollary, it follows that the integral equation (1) has at least one
eigenvalue for arbitrary complex %, provided only that

1
f @ gy 5 0. (5)

—1

Furthermore if A(z) is an even function of z, then (1) has at least two
eigenvalues for all but certain exceptional values of k, a particular excep-
tional value being & = 0.

The idea of the proof is quite simple. The assumption that F(zy) in
(4) is an integral function of finite order means that ultimately the coeffi-
cients of its Taylor series in powers of zy fall off with extreme rapidity.

* The kernel is normal in the special case h(z) = kz?. The eigenfunctions of
exp (—2ikzy) are prolate spheroidal wave functions, as pointed out in connection
with lasers by Boyd and Gordon.?

1 If | k | < 1then exp [{k(z — y)?] is nearly unity, and the existence of at least
one eigenvalue follows from perturbation theory; see Sz.-Nagy .4
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If we truncate the Taylor series after a finite number of terms, (4) is
replaced by an integral equation with a kernel of finite rank. The eigen-
values of such a kernel are merely the latent roots of a finite matrix, and
these are not all zero if their sum, which is the trace of the matrix, does
not vanish. The limiting value of the trace is just the left side of (3),
and does not vanish by hypothesis. By taking more and more terms of
the series for Fixy), we obtain a sequence of larger and larger matrices,
whose elements ultimately vanish very rapidly with distance from the
upper left corner. We show that it is possible to pick one eigenvalue from
the set of eigenvalues of each succeeding matrix in such a way that the
resulting sequence of numbers has a nonzero limit point. This limit point
is an eigenvalue of the infinite matrix, and hence an eigenvalue of the orig-
inal integral equation.

Details of the argument just sketched are given in a series of lemmas
in the next section, followed by the proof of the main theorem. Since the
existence proof makes heavy use of asymptotic inequalities, it does not
generally provide a practical technique for obtaining numerical results.
The important practical question of finding approximate expressions,
valid for large k, for the eigenfunctions and eigenvalues of equations such
as (1) is a separate problem, as is also the question whether any particular
equation has a finite or infinite number of eigenvalues.

For a gas laser with finite (not strip) mirrors of arbitrary, dissimilar
shape and size, the integral equation still has a complex symmetric
kernel,? although the domain of integration is two-dimensional and the
kernel is more complicated than that of (1). The existence of eigenvalues
in the most general case still remains to be settled.

II. MATHEMATICAL DETAILS

We shall use the following notation referring to an n X n matrix:

A(") = (aii)y 1= 1: 2: T, My .7 = 17 2: L,y
A(n)(i) = Zl | Qi |7 i = 1; 2, .- » 15 (6)
=

S(A™) = AP = 3 3 i),

i=1 i=1 j=1

If the superseript is omitted, » is understood to be infinite.
Lemma 1:

|det A | < éA‘"’(i). (7)
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Proof: Using Hadamard’s inequality,
n n 1/2
ot 4 [ < TT[ 35 fas |
=1 |_j=1
n 271/2 n
<H[(Z1e)] =Tavw.
j= i=

=1

(8)

Lemma 2:

| det(A™ 4 B™) — det A™ |

< TT11A90) + BO(@) — [14%@.

i=1 i=1

Proof: Thelemma is obviously true for n = 1. To proceed by induction,
assume it is true for all determinants of order n — 1, and expand the
determinants in (9) by minors of the first row. Let Cy; be the algebraic
complement of a;; 4 by;in A™ + B™, and let A4, be the algebraic com-
plement of a;; in A™. Then

det(A”” + B™) = Z; (a1; + b1;)Cy;
o

n n (10)
= det A™ + Zlau(cu' — Ay;) + Z;lbucu'-
j= i=
By Lemma 1,
| Oy | = IIZ|:k | an + bik']
1= =1
(11)

n

< [T1A™G) + B™ @)1

=2

By the inductive hypothesis,

n

€= Al £ TTA® @) + BY@1 = [T4%@.  2)

1=

where we have used the fact that the right-hand side is increasing as a
function of the A () and B'™ (z). Hence (10) gives
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Idet(A(”) _I_‘B(n)) — det A(n) I

< A(n)(l) {ﬁ [A(n)(i) + B(n)(’b)] _ IlA(n)O)}

=2

+ B TTA™ () + B™(0)] (13)
i=2

=TT o + 826 - 14”6,

1=1

and the induction is complete.
Now let ® be the Banach space™ whose elements are all bounded se-
quences of complex numbers, e.g.,

x=(1’1,9€2,"',1'¢,"‘) (14)
with norm

2]l = sup | 2] (15)
Let A be a linear matrix operator on the space ®, defined by
(ACE), = Za“xj, 7 = 1, 2, tee . (16)
j=1
Az will be an element of & provided that sup A (¢) is finite. The norm of
A is defined by '
Al =sup{|lAz]; ] =1}, (17)
and it is easy to show that
| 4 ]| = sup A(3). (18)

Henceforth we shall restrict our attention to matrix operators for
which

S(A) = ﬁ:A(i) < . (19)

Such operators are completely continuous, because they can be ap-
proximated by the sequence {A™} of completely continuous operators
which converges in norm to A. Here A is a matrix whose elements co-

* The standard definitions and theorems which we shall require from functional
analysis may be found in Kolmogorov and Fomin.?
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incide with those of A for1 £ 7 £ nand 1 £ j £ n, and are zero other-
wise.

A complex number A is said to be in the spectrum of an operator 4 if
the operator A — A has no inverse. An eigenvalue of A is any value of
A for which there exists a nonzero z satisfying the homogeneous equation

Az — xz = 0. (20)

If A is completely continuous and if X (# 0) lies in the spectrum of A,
then X is an eigenvalue of A. In finite-dimensional space the eigenvalues
are the latent roots of the matrix A'™; that is, they are the roots of the
characteristic equation

det (A™ — AI™) = 0. (21)

Lemma 3: If A™ has \ as an eigenvalue, then A™ 4+ B™ has N,
where

lx—wléﬁimwuw+EWo+|u]

n 1/n (22)
~QMWO+M@.
Proof: Denote the eigenvalues of A + B™ by A1, A2, *++, An.
Then
OV =)A= N) - (A = \a) | (23)
= |det (4™ + B™ — N™) — det (4™ —A[") |,

the second determinant being equal to zero because A is an eigenvalue of
A", Let

D™ = A — ™, (24)
so that
DY) = 2 |ay — Noi; | £ AW(@E) + |\ ]. (25)
j=1

Then, using Lemma 2,
IIix=n| =T ™G + B76E)] - [ID76)
k=1 =1 i=1

< TTIA @) + B™G) + |2 ] (26)

i=1

—Qm%o+nm
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since the right side of the first line is an increasing function of D™ (3).
It follows from (26) that for at least one of the factors [N — \¢ | the
inequality (22) holds.

Lemma, 4: Let A be an infinite matriz with S(A) < «. Suppose that
from the eigenvalues of the sequence of finite matrices {A(")} we can pick a
sequence {\"} such that \'™ does not approach zero asn — «. Then A has
a nonzero eigenvalue.

Proof: The A are bounded, since in fact

NP = [A” || = max AP () £ S(4). (27)

Also for sufficiently large n we can pick a subsequence which is bounded
away from zero, and which therefore has at least one nonzero limit point.
Suppose that the subsequence A'” converges to the limit point X # 0,
as p runs through some increasing sequence of integers. We assert that
X is an eigenvalue of A. If it were not so, then (4 — )™ would exist
and therefore be bounded. Suppose (A — M)~ were bounded, and let
2 be the characteristic vector of A corresponding to A”. Then we
would have

2P = (A — NN (A — N)z®
= (A — )\1)—1[‘4(:0)%(11) — @
+ (A — A(p))x(p) _ (}\ _ }\(p))x(p)]
= (A — A4 — A(m)x(m - (- )\(w)x(p)]’

(28)

where in the last equation A® represents an infinite matrix which coin-
cides with A in a square of side p in the upper left corner, and has zeros
elsewhere. Taking norms, we have

12 | S A =D IIA = A7) = (1= 2P)a |
S A =D IIA = AP+ =27 =2, (29)
or

- 1
— L =
But since both || A — A® | and | A — A”’ | go to zero as p — o, we
derive a contradiction.
Theorem: Let A be an infinite matriz with S(A) < oo and with Tr(A)

= 0. If

S(4) — S(A™) < (¢/n*)™, (31)

Jor some ¢, € > 0, then A has a nonzero eigenvalue.
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Proof: Since Tr(A) 5 0 and Tr(4™) — Tr(4), it follows that for
n = m; (say) and some §.> 0, we have | Tr(A)| = &. Since the trace
is the sum of the elgenvalues A™ must have at least one eigenvalue
A" such that

AP = o/n. (32)

We shall in fact show that if ny is a sufficiently large fixed integer, and if

nyj=2"n;, =123, - (33)

then for each j there exists an eigenvalue which is uniformly bounded
away from zero, i.e..

A = 5/2my . (34)

Then by Lemma 4 the theorem will be proved.
We substitute into Lemma 3 as follows:

n = N,
= ] =
A(n) — A(ni) (35)

(n) (njp1) (n)
B™ = A0 _ g0

where it is understood that A'"? now represents the original matrix
A" augmented below and to the right with enough zeros to give it
dimensions 711 X 741 . Then (22) becomes

! )\(n]-) _ )\(nj.H) l

T ey + g — e Tt a6 +a) "
| 1 (36)

=1

IIA

nit1 nj Unjyr
= { [A@) + 0 — e A6 + tl} '

| i=1
Since

I)\(nj) _ )\("i+1) I g f— I)\(ni+1) l’ (37)
we can rearrange (36) to get

’IL

e 1z 0= {1 ue +a - e ffueo +a) " 69

Hence



EXISTENCE OF EIGENVALUES 121

D] —{nﬁl [1 + Agi)] H[l 447 )( )]}”"w

| )\(n’) l - i=1

{10 [

=1

since we already know that ¢t = §/n; .
Now consider

11 [1 -+ "’A(’)] =< I:I [r%(z)] < exp [’%A)] (40)

7=1

Also
Tl n,A(z)
i=lf;f[+1 |:1 T ] =e [ i ;ﬂ A(l)]
< exp %f [S(4) — S(A™?)] (41)

A

o[ 3(5) =15 ()"
7 J

provided that n; and hence n; are sufficiently large; where in the next
to last step we have used (31) and in the last step we have used &*
1+ 2zxfor 0 £ 2 = 1, say. Finally,

[1 + an‘"f’m]

~ 124 -2 a0 - 4]

=13 i — a1+ "J‘Aj“]} (42)
> I_I[l +”’A(”]

nf nj t n,A(z)
— 5 18(4) — S(A° ))]II[1+ : ]

=1

SO
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Substituting (40), (41), and (42) into (39) yields

I>\(ni+1)| — n1(2 + nj) _ﬁ_ nj oxp n,S(A) Unjy
e = 5 e 5

(43)

I

1 _[nj(Q + nf)]m"" o1

0 n;e2’

where in the last step we have used the fact that n;.; = 2n, and have
set

¢ = ¢ exp [S(4)/26]. (44)
If we assume in advance that
§ <2, n = max (2,4/¢), (45)
then
I:nj(2 "I“ nj) 1/2n; o 2nJ2 1/2n; n&
) n;el? = 5 n;¢l?
) (46)
C1 C2 - 1
= dnA  2G-Deli e,
where
2¢ —c
c = 6n1‘1/4’ r=2"" <1, 47)
Hence (43) and (46) imply
A2 |
TW— =1 — ¢y’ ) (48)
and by induction
[ A | 1
)\(nl) I = H [1 _ 627' . (4:9)

But if ¢; £ 14, say, then

]

IT (1 = es”™) = exp [2 log (1 — 02rj_1):|

i=1
= —1 2ce
gexp[—2262r :|=exp[—1 ]>A,
i=1
where the last step requires

e <141 —r)log2 =141 — 27) log 2, (51)

(50)
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and by (47) this inequality can always be satisfied for large enough =, .
But (49) and (50) imply

A" 2 1" 2 5/(2m) > 0 (52)

for all 7, and so the theorem follows from Lemma 4. Q.E.D.

An integral function of finite order p is a function F(z) which has no
singularities in any finite region of the z-plane, and whose maximum
modulus M (r) on the circle | z| = r satisfies

log M(r) < 1* (53)

for all sufficiently large » when & > p, but not when £ < p. Such a func-
tion may be expanded in a Taylor series,

FG) = X (54)

which converges for all z, and whose coefficients satisfy®
lan| < 1/n™ (55)

for all sufficiently large n, where e is any fixed number less than 1/p.
Alternatively, for any fixed ¢ < 1/p, there exists a constant ¢ such that
foralln > 0

la. | < [ﬁ]ﬂ (56)

We are now ready to prove the result stated in Section I.
Theorem: Let G(x) and H(z) be any bounded functions on the inierval
—1 £ z £1, and let F(z) be any integral function of finite order such that

f_ 1 G(2)F () H (z)dz 5 0. (57)
Then the inlegral equation
[ G@raprws@y = e (58)
has at least one nonzero eigenvalue.

Proof: Expand F(zy) in a Taylor series, so that the integral equation
becomes

[ 2 o6 Yon "By i)y = M (2). (59)

Let
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1@) = 6@) X o, (60)

where {f.} is a bounded sequence of complex numbers; the a,’s tend to
zero fast enough so that f(2)/G(z) will be an integral function of finite
order.

Since the powers of x are linearly independent, (59) is equivalent to
the matrix equation

Af = ), (61)

where
1
aii = aje = (aiaa;)™ [ GOH@H (62)
—1

’1;:12-... j 1

2,
Sinee G(z) and H(x) are bounded in —1 £ = £ 1 and the Taylor co-
efficients of F'(z) satisfy (56), it is clear that

I

In preparation for an application of the preceding theorem, consider

8(4) — 8(A™) =2 Z F - + 1 (c)"’2 <£>j/2

t=n+1 j=1 .7‘

Z-o: ¢ 2 i 1 ¢ il2
=2M i=n+1 I:(_‘> j=1 7 + J -1 (;) ]

is bounded as j — «, and

: T |:2i - 1]
e e RN =

which is bounded for 7 = n 4+ 1 = 2. Hence with a new bounding con-
stant we have

(64)

Jl2 .

Now (¢/7°)

© 1/2\ %
S(4) — S(A™) = M, Z+ (%2) . (66)

t=n+1

Choose log n = (2 + log ¢)/e, so that n* = ¢e’; then
0 1/2\ % 00 1/2\ z 1/2\ =

c
2 s [ G o= () e

Ll (e
(logc — elogn)/2 = \n2) ’

IIA

(67)
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and so from (66)

€1

S(4) — S(A™) < (-5-) (68)

where ¢; is a new bounding constant and ¢ = ¢/2.
Finally we have

Tr(4) = 3 o = 3 0t [ GOHO d
1=11 1=1 —1 (69)
- f GOHWOPE) dt

and this does not vanish by hypothesis. Hence all the conditions of the
previous theorem are satisfied, and the integral equation has a nonzero
eigenvalue. Q.E.D.

Since exp (—2¢k2) is an integral function of finite order 1, it is an obvi-
ous corollary that the kernel exp i[k(x — y)2— h(z) — h(y)] has a non-
zero eigenvalue for arbitrary complex %, provided only that h(z) is
bounded and that

1
f D gy 52 ), (70)
-1

Furthermore if A(z) is an even function of x and if f(x) is an even fune-
tion which satisfies

1
fo exp (ilk(a’ + y*) — h(z) — h(y)]} cos (2kay)f(y)dy = 1M (z), (71)
then f(x) also satisfies (1). But the theorem just proved obviously holds
for arbitrary finite limits of integration and applies to the kernel of (71),
so (71) has at least one nonzero eigenvalue if
1
f exp {2k’ — h(z)]} cos (2kz’)dz # 0. (72)
0
Similarly if h(z) is even and if f(z) is an odd function which satisfies

[ exp k(" + 47) — (@) = W)} sin (k)i = 3G, (78)

then f(x) also satisfies (1), and (73) has at least one nonzero eigenvalue
if

fc 1exp {2i[ka’ — h(x)]} sin (2ka®)dx = 0. (74)
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At least one of (72) and (74) will be satisfied whenever (70) holds. Except
for certain particular values of k, one of which is evidently & = 0, both
(72) and (74) will be satisfied, and (1) will have at least two distinct
eigenfunctions corresponding to nonzero eigenvalues.
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Deposition of Tantalum Films with
an Open-Ended Vacuum System

By J. W. BALDE, S. S. CHARSCHAN, and J. J. DINEEN
(Manuscript received July 19, 1963)

New devices using vacuum-deposited metal films require a high-speed,
low-cost method of vacuum deposition. The capability of the open-ended
multiple-chamber deposition equipment has been tnvestigated to determine its
suttability for depositing tantalum nitride thin films. This was accomplished
by examining the measurable electrical properties of the deposited film and
by determining the stability of resistors made from these films.

Tantalum films produced by the open-ended deposition system were found
comparable to those produced by many bell-jar systems. It was posstble to
control the addition of nitrogen to the films, and tantalum nitride films of
satisfactory stability were obtained. Because the open-ended deposition
method can produce large quantities of suitable thin films, it is expected
that this will be an tmportant process in the manufacture of future products.

I. INTRODUCTION

Tantalum thin film circuit techniques developed at Bell Telephone
Laboratories! can produce resistor and capacitor circuit elements and
associated interconnections. Such tantalum film circuits have high sta-
bility and good reliability, superior to that of discrete components with
their multiple interconnections.?

The Western Electric Company has developed a continuous open-
ended vacuum system for deposition of these tantalum films. This sys-
tem provides for the passage of substrates through a sequence of cham-
bers which vary in pressure from atmospheric pressure to high vacuum
and then back to atmospheric pressure. The design of this system and the
details of its operation have been previously reported.?

This open-ended system has advantages for quantity deposition of
thin films. All vacuum chambers remain at their operating pressures; no
time is lost pumping down prior to deposition. Work chambers need not
be exposed to room atmosphere and possible contamination. Degassing

127
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and preheating operations can be restricted to the substrates and asso-
ciated carriers; repeated degassing of the system is unnecessary. Sub-
strate motion is continuous through the system; no operator handling
or manipulation is required.

The open-ended deposition process differs in a number of ways from
earlier work with batch processes using bell-jar vacuum chambers.
Chamber materials and hardware are very different from those devel-
oped for round bell-jar enclosures. Substrates move through the sputter-
ing glow zone, continuously passing the cathode. This motion pro-
duces thermal gradients which result from the dynamic equilibrium con-
ditions for a given substrate speed. Deposited films are the result of an
integration of the cffect of each part of the cathode, rather than the re-
sult of a static pattern of deposition. Film thickness can be controlled
by the length of chamber and the speed of substrate motion as well as
by deposition rate.

II. TEST PROCEDURE

To investigate the effects of these changed deposition conditions, the
product of the open-ended machine was examined to ascertain whether
the films have satisfactory properties, and also to determine that there
was no adverse effect on the subsequent processing operations. The evalu-
ation of the quality of film deposition in the open-ended system consisted
of the following parts:

First, examination was made of the tantalum film deposited without
any intentional nitrogen addition. The properties of tantalum film could
be strongly altered by contaminant gases from atmospheric leaks or by
outgassing of material in the sputtering chamber. Examination of this
tantalum film quality should reveal any inadequate cleaning or adverse
effect from the deposition method.

Second, the properties of the films werc examined as a function of the
amount of nitrogen added to the sputtering atmosphere. This establishes
the ability to add sufficient nitrogen to produce useful resistor films, as
demonstrated by stability, resistivity, and temperature coefficient meas-
urements.

Third, the reproducibility and control of the tantalum nitride deposi-
tion process were examined by repeat depositions at the same operating
point, and by the examination of many depositions which deviated
only slightly from the operating point for most suitable film properties.

Fourth, an examination was made of uniformity of deposition over the
width and length of the substrate.
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III. MEASUREMENT PROCEDURE

Satisfactory film quality is judged initially by measuring three film
properties: thickness (10&), specific resistivity (p), and the temperature
coefficient of resistance (). In order to insure that the variability of film
properties is due to the machine processing system and not to errors in
the measurement of the properties, the test details and procedures were
evaluated.

A test pattern was developed to insure that all films would have their
properties measured on the same effective area and at the same position
on the substrate. The zigzag test pattern for a 1.5-inch by 3-inch substrate
is shown in Fig. 1. It consists of 20 resistors with a nominal line width of
0.015 inch, each having a path length of 144 squares. The resistors are
interconnected by a center stripe and have separate terminal tabs for
each resistor. The test resistors are defined by using silk-screen techniques
to apply a resist to a tantalum-coated substrate. The unwanted film is
removed by etching.

3.1 Film Thickness Measurement

In preparing films for thickness measurements, hot sodium hydroxide
is used to remove the unwanted tantalum film without appreciable etch

Fig. 1 — Resistor pattern for film property evaluation.
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of the glass substrate surface beneath the deposited film. After the resist
has been removed, the films are measured using a Talysurf instrument.*
For thickness measurements of the 1200-A films depositedoin this open-
ended vacuum system, the 1o error of measurement is 56 A.

3.2 Specific Resistivity
The specific resistivity is computed as follows
p =R, A X 10~ microohm-cm

where R, is sheet resistance in ohms per square and A is thickness in
angstroms.

The sheet resistance of an unetched film is determined by a four-point
probe measurement in ohms per square. For convenience, these measure-
ments are made using a simplified direct-reading meter of 1 per cent ac-
curacy.

3.3 Temperature Coefficient of Resistance Measurement

After the test resistor pattern has been defined by etching, connections
are made to the center stripe and the appropriate tab areas. The resist-
ance is measured at 30°C and at 60°C. The temperature coefficient of
resistance is then computed as follows:

Re — R

TCR(a) = —_RagAT

X 10° ppm/°C
where R3o and Rgo are in ohms and AT is in degrees centigrade. Error of
measurement studies indicate a 1¢ error of 3 ppm/°C.

IV. ANALYSIS OF UNDOPED TANTALUM FILM

In order to show that the machine process is reproducible at a useful
quality level, a series of experiments were run. For this experimental
work, one 1.5-inch by 3-inch coated lime glass slide was produced per
minute. A carrier 5 inches in length was used to bring the substrate
through the chambers. The chamber lengths were such that the carrier
and substrate remained in the first four chambers for a total of 15 minutes
of high temperature preheating at four decreasing pressure levels. The
pressure levels used for this experiment are shown in Fig. 2. Table I gives
the preheating power and the sputtering conditions used.

The results of these experiments, shown in Fig. 3, indicate that films
deposited in this manner have a specific resistivity of 240 microohm-cm
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TABLE I — ExPERIMENTAL OPERATING CONDITIONS

Preheat Stations ] #¥1

| #2 #3 #4
Preheat lamp input, watts I 300 300 300 220
|
Sputtering potential, vde 4500
Sputtering current, ma 500
Sputtering pressure, microns (gauge) 32
Cathode-anode spacing, inches 2.0
Experimental cathode area, in? 158
Deposition rate, A/min 300

and a temperature coefficient of resistivity of +56 ppm/°C at a nominal
thickness of 1190 A. The quality of these films is comparable to that ob-
tained by batch processes using bell-jar systems.

4.1 Process Conlrollability

The process controllability for these films was estimated from control
charts to have a standard deviation of 11 microohm-cm in specific re-
sistivity and 27 ppm/°C in temperature coefficient of resistance. Film
thickness was shown to be controllable, with a standard deviation of 50
A about a mean of 1190 A. Based on these results, the process was deemed
to be controllable and reproducible for tantalum films.

V. NITROGEN DOPING

Tantalum films without intentional additives are used primarily to
make capacitors. Work done by Gerstenberg and Mayer® has established
that the resistors with the best stability were made when one to five per
cent, of nitrogen is added to the sputtering atmosphere, the amount de-
pending on the pumping and geometry characteristics of the particular
system. This nitrogen reacts with the tantalum, and the resulting film
contains appreciable tantalum nitride. Having established that the open-
ended vacuum deposition system could produce satisfactory tantalum
films, it was next necessary to investigate the ability of the system to
produce nitrided tantalum resistors with suitable component properties.

The properties of the films of tantalum nitride depend on the environ-
ment in the sputtering chamber. Geometry, voltage, current, pressure,
gas composition, and gas thru-put all affect the film properties. Slight
differences in chamber materials, glow region, gas flow paths, or thermal
gradients can also have a major effect on the amount of nitrogen needed
to produce film with satisfactory properties. It is customary, therefore,
to investigate the relationships between film properties and nitrogen
quantity in any new deposition system. This is done by experimentally
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determining the characteristic curve for each of the important nitrogen-
film property relationships. These characteristic curves must be deter-
mined for each vacuum system, and the proper operating point chosen
for each. The influence of trace impurities of nitrogen in the open-ended
vacuum system was therefore explored by a series of characterization
experiments in the machine processing system. The experimental pro-
cedure did not materially differ from that used in the earlier undoped
experiments. The operating conditions previously stated in Table I
were again held in all cases. The only additive was the controlled flow
of nitrogen gas, which was mixed with the argon prior to entering the
sputtering chamber. ‘

A single experiment, of the series used for this purpose, consisted of
establishing an operating point by adjusting the flow of nitrogen gas
until the sheet resistivity was some desired value, and holding it at that
value to within #4=1 ohm/square. Sample slides were sent through the
machine at 10-minute intervals to determine that the sheet resistivity
was in contiol, thus assuring that drifts were removed from the system.
Then 20 consecutive slides were given a film deposition in the machine.

Each experimental lot was sampled as follows: four consecutive slides
in the center of the lot were processed into resistors; four slides were used
to determine the initial film characteristics; and four more were used to
examine such physical properties as adhesion, visual defects, and the
anodizability of these films. The remaining slides were held as spares for
future exploratory studies.

5.1 Nitrogen-Doped Film Characteristics

The influence of nitrogen on the characteristics of these resistors after
processing is shown by the curves in Fig. 4. The data presented here show
that doped films from this machine processing system exhibit a charac-
teristic form similar to that previously reported for tantalum nitride films
produced in bell-jar systems.® Films with low resistivity and high posi-
tive temperature coefficient are formed in the vicinity of 0.30 to 0.40
per cent nitrogen.

5.2 Accelerated Life Test Data

The ultimate criteria for satisfactory films are the observed qualities
of the circuit elements made from the films. Resistors made of tantalum
and tantalum nitride should have a stability characteristic of less than 1
per cent drift in resistance in a 20-year lifetime. Accelerated aging tests,
used by J. S. Fisher,” permit relative judgments to be made much
earlier than 20 years —in fact, tests of standard pattern resistors at
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twice rated load can differentiate between performances of resistors in
about 3 months.

The resistor pattern used for accelerated life testing consists of 24 re-
sistors, each rated at 0.5 watt. This resistor pattern is shown in Fig. 5.
Twelve resistors are arranged on each side of a ecommon center strip on
the 1.5-inch by 3-inch alkali-free glass substrate (Corning Code 7059).
Each resistor is formed by a zig-zag pattern of lines 0.008 inch wide, con-
taining 364 squares. The components are defined by using a conventional
photo-resist (KMER)* and etched in a hydrofluoric-nitric acid mixture.

Fig. 5 — Product stability test pattern.

Nichrome and gold are evaporated in turn onto the terminal areas. The
films are bath-anodized to 30 volts in citric acid.? Oven baking at 250°C
in air for five hours is used to stabilize the films. Resistors are then sepa-
rated into individual units and trim anodized to 15,000 ohms =1
per cent wherever possible. For initial sheet resistance of greater than
40 ohms/square, it is necessary to trim anodize to a maximum of 20,000
ohms =1 per cent.

The stability of resistors, for the range of nitrogen additive from 0.0
to 1.84 per cent, was studied by placing eight resistors under double-

* Kodak Metal Etch Resist, Eastman Kodak Company.



OPEN-SYSTEM TANTALUM DEPOSITION 137

rated power life test, four from each of two slides in the center of the lot.
This life test consists of a de power load of one watt in ambient air at
30°C =+ 5°C, and corresponds to 40 watts/in? of tantalum film.

The performance of these films under such conditions can be seen in
Tig. 6. The stability characteristics change rapidly with slight varia-
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tions in amounts of nitrogen doping. The data shown here for resistance
change (AR/R) were obtained on the same films whose nitrogen doped
characteristics prior to life tests were shown in Fig. 4.

The 0.0 per cent nitrogen lot shows almost 9 per cent increase in 1000
hours. The 0.2 per cent nitrogen film appears to be more stable. The 0.44
per cent nitrogen film, at the bottom of the figure, exhibits a decrease in
resistance in the first 1000 hours. However, as more nitrogen is added,
the decrease in resistance is reduced until it has almost disappeared in
the vicinity of 1.56 per cent nitrogen.

These data can be analyzed in a different manner by plotting time
cross sections of the data against per cent nitrogen. Iig. 7 shows that
this data-display technique produces a curve with the same charac-
teristic form as the tantalum properties previously plotted. The dip in
the curve occurs at the same per cent nitrogen for AR/R as it does for
the other film properties. This minimum in each property has been previ-
ously observed in product produced in bell jars. It is believed that in the
vicinity of the dip the product possessed greater metallic purity than at
other nitrogen levels.

The films that were made with about 1 per cent nitrogen added to the
sputtering atmosphere seem to provide the least total resistance change
on this plot. Re-examination of Fig. 6 shows, however, that these films
went through a large negative change in resistance before returning to
original value. If films with consistent behavior are chosen instead, those
with a nitrogen additive of about 1.48 per cent are to be preferred.

When changes in resistor films having 1.44 to 1.56 per cent nitrogen
are examined on a log-log plot (as in Fig. 6), the drift behavior isfound to
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be quite linear, with a trend line that can be defined by the equation:
logio AR/R = —3.74 + 0.63 logio ¢.

This drift rate produces resistance changes at 1000 hours that are com-
parable to those reported from batch process bell-jar-deposited films.
Many research workers are expending considerable experimental work
to cstablish equivalency of accelerated power aging rates to the aging
rate of resistors when used at the more normal power dissipation of 20
watts/in%. Such work indicates that the 1.48 per cent nitrogen resistors
should have an average change of 0.4 per cent in 20 years under normal
load. With allowance for the variability of film from run to run, this
group of films should be processable into resistors with maximum aging
change of less than 1 per cent. Of course, considerably more time must
elapse and more correlations must be established before the exact equiva-
lency of normal aging to such accelerated aging can be determined.

VI. NITROGEN DOPED FILM REPRODUCIBILITY

Since nitrogen doping adds a new and major variable to the operating
conditions of the machine processing system, experimental runs were
made to demonstrate the reproducibility of the doped film properties.
Over a typical five-month period, for example, six runs were made at a
particular nitrogen level of 1.28 per cent. The machine processing system
was adjusted to the standard operating conditions previously mentioned.
The average values of the three resistor characteristics «, p, and R, for
each run are shown in Table II.

6.1 Reproducibility of Life Performance

The stability of tantalum resistors was discussed previously in connec-
tion with the characterization curves of Fig. 6. To evaluate the ability

TaABLE IT — N1TROGEN-DOPED FiLM REPRODUCIBILITY

Sputtering Date ’Il‘{eer:il:s)gg?;rz I()Zg;f;.egf Speciﬁcﬂgf:csristivity p Sheek:}ze/séstance
10-2 —-79 300 25.2
10-25 —81 375 26.6
11-1 A.M. —82 334 26.5
11-1 P.M. —87 374 27.9
1-23 —78 392 27.6
2-15 —73 318 28.1

Average —80 349 27.0
Std. dev. +5.5 +33 +1.1

(These standard deviations were estimated from the range of the data.)
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Fig. 8 — Accelerated life test of resistors with 1.40 to 1.56% nitrogen.

of this system to produce films of consistent stability, the aging charac-
teristics of tantalum films with 148 + 0.08 per cent nitrogen were
examined. Resistors were processed from 8 separate runs of film having
the previously mentioned nitrogen levels. The results of accelerated
aging tests of these resistors are shown in Fig. 8. Sufficient power was
applied to each resistor to produce a power dissipation of 40 watts per
squarc inch of tantalum area. While there is some spread of resistance
change due to the variation in nitrogen content, these resistors do con-
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sistently exhibit closely similar aging rates. The difference between
films shows up as changes in resistance at the 20-hour measurement.

VII. FILM UNIFORMITY

Post-deposition processing of tantalum films requires that the resistor
film be anodized to achieve stability and to adjust the resistance of the
film to a required value.? Using etch techniques, multiple networks can
be produced from a single substrate. Economical processing should be
performed on the full substrate area, rather than on an individual re-
sister or network. Economie production of large volumes of stable thin
film cireuits, then, requires not only that the deposition process produce a
high output of film-coated substrates at a low cost, but also that the
properties of the deposited films be uniform over the area of the sub-
strate.

The resistance of the tantalum-nitride film produced in the open-
ended system has a variation of 5 per cent over an effective length of
2.8 inches (see Fig. 9). This variation is comparable to that of bell-jar
product, and makes possible production of resistor networks with a toler-
ance of +3.0 per cent on the individual resistors. The resistance variation
is not random, but has a definite pattern of higher resistance near the
ends of the substrate. Since the substrate moves through the deposition
zone at a constant speed, this suggests some effect of the substrate
carrier on the film uniformity.

Typical tantalum-nitride film properties from a single open-ended
system, under controlled production conditions, may vary 50 microohm-
cm in resistivity, 100 A in thickness, and 20 ppm/°C in temperature
coeflicient. This variability in film properties does not contribute signifi-
cantly to the complexity of subsequent processes. However, if film deposi-
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tion is accomplished by using the larger number of bell-jar systems which
would be required to meet the same production demand, the film prop-
erties would be influenced not only by the variability of a single chamber,
but also by the chamber-to-chamber variability of the associated bell-
jar systems. Compensation for this total variability will significantly
influence the complexity and even the design of some of the subsequent
process equipment and hence the over-all manufacturing cost of thin
film resistor networks. The use of the open-end system to deposit tan-
talum should simplify quantity manufacture and reduce costs signifi-
cantly.

VIII. CONCLUSION

At the present stage of the developmental work, it can be concluded
that the open-ended in-line vacuum concept can be used to deposit large
quantities of tantalum for thin film resistors. Each machine can coat
two 5-inch by 5-inch substrates per minute. One such machine, on one-
shift operation, can therefore produce approximately 4,000,000 square
inches of metal film per year. Such films have exhibited the required
stability, uniformity and reproducibility. Further work is in progress to
optimize film characteristics. The work to date has established the feasi-
bility of manufacturing production using this new deposition concept.
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Digital Troposcatter Transmission

and Modulation Theory

By E. D. SUNDE
(Manuscript received May 20, 1963)

In tropospheric scatter transmission beyond the horizon, the amplitude,
phase and frequency of a received sine wave exhibit random fluctuations
owing to variable multipath transmisston and noise. The probability of
errors in digital transmission over such random multipath media has been
dealt with in the literature on the premise of flat Rayleigh fading over the
band occupied by the specirum of transmaitted pulses. This is a legitvmate
approzimation at low transmission rates, such that the pulse spectrum is
adequately narrow, but not ot high digital transmission rates. The proba-
bility of errors is determined here also for high transmission rates, such that
selective fading over the pulse spectrum band must be considered. Such
selective fading gives rise to pulse distortion and resultant intersymbol
interference that may cause errors even in the absence of noise.

Troposcalter transmission can be approximated by an idealized multi-
path model in which the amplitudes of signal wave components received
over different paths vary at random and in which there is a linear variation
in transmission delay with a mazximum departure A from the mean
delay. Various statistical transmission parameters are determined on this
premise, among them the probability distribution of amplitude and phase
Sluctuations and of derivatives thereof with respect to time and with respect
to frequency. The probability of errors in the absence of noise owing to such
Sluctuations is determined together with the probability of errors owing to
notise, for digital transmission by binary PM and FM. Charts are pre-
sented, from which can be determined the combined probability of errors from
various sources, as related to the transmission rate and certain basic param-
eters of troposcatter links.
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INTRODUCTION

In tropospheric transmission beyond the horizon, narrow-beam
transmitting and receiving antennas are used in a frequency range from
about 400 to 10,000 megacycles. The received wave can be considered
the sum of a large number of components of varying amplitudes, re-
sulting from a multiplicity of reflections within the common volume at
the intersection of the antenna beams. These various components arrive
with different transmission delays owing to path-length differences,
and each will exhibit a variation in amplitude owing to structural
changes within the common volume, caused largely by winds. When a
steady-state sine wave is transmitted, the received wave will conse-
quently exhibit variations in its envelope and phase, commonly referred
to as fading. When a signal wave is transmitted, its various frequency
components will suffer unwanted amplitude and phase variations with
resultant transmission impairments that depend on the particular
carrier modulation method. These impairments are discussed herein
for digital transmission by carrier phase and frequency modulation.

Various properties of the transmittance of troposcatter channels
have been dealt with in several publications.!?34 These properties
include the expected average path loss and systematic seasonal varia-
tions from the average, together with the probability distributions of
slow and rapid fading or fluctuations from the mean. Other important
properties from the standpoint of systems design and performance are
the distribution of duration of fades and the fading rapidity or rate.

The above various properties relate to transmittance variations with
time at a particular frequency. Of basic importance is also the variation
in transmittance with frequency at any instant, i.e., the amplitude and
phase characteristics of trophospheric channels. These will be highly
variable quantities, as illustrated in Fig. 1. At a fixed instant the
characteristics may be as indicated in Fig. 1(a) and at a later instant
as in Fig. 1(b). Such fluctuations will give rise to a distortion of the
spectrum of received signals, with resultant transmission impairments
of various kinds, depending on the modulation method. In addition,
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random noise at the receiver input must be considered as in conventional
stable channels. Owing to the above random fluctuations, diversity
transmission is ordinarily required to insure adequate performance.

At present, frequency modulation is used for transmission of multi-
plexed voice channels over troposcatter links. With this method, pro-
nounced intermodulation noise is encountered®-® owing to the types of
transmittance variations with frequency indicated in Iig. 1. With digi-
tal transmission, these variations will give rise to pulse distortion and
resultant intersymbol interference that may severely limit the trans-
mission rate.

In evaluation of error probabilities in digital transmission, it is neces-
sary to consider variations in the average path loss over a convenient
period, such as an hour, relative to the average over a much longer
period, say a month. These slow fluctuations in loss are closely approxi-
mated by the log-normal law; i.e., the loss in db follows the normal
law.! In addition, consideration must be given to rapid fluctuations in
loss relative to the above hourly averages. These are closely approxi-
mated by the Rayleigh law, which also applies for the envelope of
narrow-band random noise. They are ordinarily more important than
slow fluctuations, particularly in digital transmission, in that they cannot
be fully compensated for by automatic gain control. Nearly all theoreti-
cal analyses of error probabilities in digital transmission over fading
channels are based on a Rayleigh distribution together with various
other simplifying assumptions, as outlined below.

The simplest assumption is flat or nonselective Rayleigh fading over
the channel band, in conjunction with a sufficiently slow fading rate
such that changes over a few pulse intervals can be disregarded. These
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Fig. 1 — Illustrative variations in attenuation and phase characteristics with
frequency at two instants ¢ and ¢, .
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are legitimate premises in transmission over line-of-sight radio links,
where fading is much slower than on tropospheric links and is virtually
nonselective over rather wide bands. With these simplifying assumptions
Turin” has determined error probabilities in binary transmission over
noisy channels with ideal synchronous (coherent) detection and envelope
(noncoherent) detection. His analysis includes the effect of correlation
between successive pulses and also postulates a nonfading signal com-
ponent, such that the results in one limit also apply for nonfading chan-
nels.

On the same premise of slow, flat Rayleigh fading, Pierce® has deter-
mined the optimum theoretical diversity improvement for frequency
shift keying with dual filter reception employing coherent and non-
coherent detection of the filter outputs. Dual filter detection is ordi-
narily assumed in place of the usual method of frequency discriminator
detection that does not lend itself as readily to theoretical analysis.

The error probability with two-phase and four-phase modulation
with differential phase detection has been determined by Voelcker? on
the premise of flat Rayleigh fading at such a rate that the change in
phase over a pulse interval must be considered. Moreover, he considers
the probability of both single and double digital errors, with both single
and dual diversity transmission.

Voelcker’s analysis is applicable to transmission at a sufficiently slow
rate such that amplitude and phase distortion can be ignored over the
relatively narrow band of the pulse spectra. However, it does not apply
to high-speed digital transmission that requires sufficiently wide pulse
spectra such that the amplitude and phase distortion indicated in Fig.
1 must be considered. For this case the duration of pulses will be so
short that the phase changes considered by Voelcker can be disregarded.
Instead, it now becomes necessary to take into account pulse distortion
and resultant intersymbol interference caused by the erratic variations
with frequency in the amplitude and phase characteristics illustrated
in Fig. 1. An evaluation is made herein of error probabilities on the
latter account, which has not been considered in previous publications.*

TFrom the solutions for the above two limiting cases of low and high
transmission rates, it is possible by simple graphical methods to esti-
mate the error probability for the general case in which both time and
frequency variations in the amplitude and phase characteristics must
be considered. Charts are presented of error probabilities in digital
transmission by binary PM and FM as related to various basic param-
eters of tropospheric scatter links and of the signals. Among these

* For reference to a recent related paper, see Section 8.9.
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parameters are the average signal-to-noise ratio, the bandwidth of the
pulse spectrum, the fading bandwidth of the troposcatter link, and the
maximum departure from the mean transmission delay, which is re-
lated to the length of the link and the antenna beam angles.

The analysis shows that a principal source of pulse distortion and
resultant transmission impairments is a component of quadratic phase
distortion. On this premise, an evaluation has been made in a companion
paper® of intermodulation distortion in analog transmission by FM and
PM, that conforms well with the results of measurements.5:

I. CHANNEL TRANSMISSION CHARACTERISTICS

1.1 General

Transmission performance with any modulation method depends on
the statistical properties of the signals and of channel noise, together
with various properties of the channel transmittance or transmission-
frequency characteristic. When the latter varies with time, the usual
methods of determining network response to specified input waves must
be modified in various respects, that result in appreciable complications
in the analytical methods!® and in certain conceptual difficulties. How-
ever, when the time variations in transmittance are slow in relation to
those in the input waves, it is legitimate to assume that the trans-
mittances are constant over an appreciable number of pulse intervals.
With relatively slow random fluctuations as encountered in troposcatter
systems at representative transmission rates, it is thus permissible to
determine the responses for various essentially time invariant transmit-
tances that can be encountered. In evaluating transmission performance,
the various transmittances that can be encountered must be weighted
or averaged statistically in a manner that depends on the signal prop-
erties and the modulation method.

Among the statistical properties of troposcatter transmittances are
the probability distribution of the envelope of received carrier waves
together with the autocorrelation function of the envelope with re-
spect to time and with respect to frequency. These are discussed here,
while other statistical properties will be considered in later sections.

1.2 Tropospheric Scatter Waves

To determine an appropriate model for the random process in trop-
ospheric scatter transmission, it is necessary to consider the physics

* See part 2 of this issue of the B.S.T.J., to appear.
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of this phenomenon, as dealt with in various publications. Though these
may differ in their assumptions regarding the exact mechanism of the
reflections, they appear to agree that they occur as a result of hetero-
geneities within the common antenna volume indicated in Fig. 2. If the
transmission medium were uniform, no reception would be possible.
Owing to the numerous heterogeneities in the common volume, a very
large number of reflections will occur, and the received wave can be
considered the sum of a large number of components of different ampli-
tudes and different transmission delays. Over any short interval, the
envelope of a received sine wave will depend on the frequency, as will
the phase. Because of variations in the heterogeneities caused largely
by winds, the envelope and phase of a received carrier will vary with
time.

Fig. 2 — Illustrative antenna beams and common antenna volume.

The transmittance of troposcatter channels is dealt with here, based
on an idealized model discussed further in the Appendix, and certain
statistical parameters obtained from experimental data are discussed.
Two limiting cases that permit simplified analysis are considered. In
one case the transmission band is assumed sufficiently narrow, such that
the attenuation characteristic can be considered constant and the phase
characteristic linear over the narrow band. There will then be fluctua-
tions with time in the attenuation accompanied by independent varia-
tions in the slope of the phase characteristic, a condition referred to
as nonselective flat fading and ordinarily assumed in random multipath
digital transmission theory. The other limiting case is that of digital
transmission at a sufficiently high rate so that time variations in the
transmittance can be disregarded over an appreciable number of pulse
intervals. In this case it is necessary to consider erratic variations with
frequency in both the attenuation and phase characteristics.
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Fig. 3 — Illustrative dependence of envelope and phase of transmittance with
frequency u from a reference frequency wo at a specified time ¢; .

1.3 Troposcatter Transmittance

Let a sine wave of frequency w be transmitted, and let w = w0 + u,
as indicated in Fig. 3, where wy is a conveniently chosen reference fre-
quency. In complex notation the received wave is then of the general
form

e(ut) = r(ut) exp[—ip(u,t)] exp(iwt) (1)

where r(u,t) and ¢(u,t) are random variables of the time ¢ for a fixed
w or %, and of « for a fixed time ¢, The channel transmittance is then

T(ut) = r(ut) exp[—ip(u,t)]. (2)
The following general relations apply

r(uwt) = [U(wt) + V()] (3)

o(u,t) = tan™" [V (u,t)/U(u,t)]. (4)

As shown in the Appendix, in the case of idealized tropospheric
channels the functions U and V can be represented in the following form

0

Ulut) = 3 () Slim — va) (5)

= Jm — ulA
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uA)

V() = 3 (o) ST ) (®)

uA
where

A = maximum departure from mean transmission delay
owing to path length differences.

In (5) and (6) the coefficients a;(t) and b;(¢) vary at random with
time ¢ and for a given ¢ vary at random with j. Owing to the latter
variation with 7, there will be a random variation in U and V with the
frequency « taken in relation to the reference frequency wo .

Equations for an idealized troposcatter channel, as given in the
Appendix, show that a;(¢) is related to the sum A(x,) + A(—=x,t) of
two random processes and b;(¢) to the difference A(x,t) — A(—ux,t).
The two random processes 4 (z,t) and A(—=z,t) will have equal rms
amplitudes, in which case a;(¢) and b,;(¢) will have zero correlation
coefficient. They will then also be independent random variables, pro-
vided A(x,t) and A(—a,t) have a Gaussian probability distribution,
which appears to be a legitimate approximation since each will be the
sum of waves from a large number of reflections.

A further assumption underlying (5) and (6) is that there is an in-
finite number of transmission paths. An additional approximation that
will be made in the following analysis is that there will be independent
random fluctuations in the signal components received over the various
paths. Actually there will be some correlation between the fluctuations,
particularly for paths with small separation. In effect, there will be a
limited number of essentially independently fading paths.

The above assumptions entail certain statistical properties of tropo-
scatter channels, as outlined below for time and frequency variations.

1.4 Transmassion Loss Fluctuations

On troposcatter links there is a certain average transmission loss over
a year, which depends on the length of the link, on the properties of the
terrain and on climatic conditions. Experimental data indicate that
there will be systematic monthly and seasonal departures from this
yearly average, owing principally to slow temperature changes. The
average loss during a winter month may thus be up to 20 db greater
than the average during a summer month. That is, the departure in
transmission loss from the yearly mean may be 4210 db.

During each month there will be a more or less random fluctuation
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in the hourly average loss from the mean of the month. This fluctuation
has been found to be almost independent of frequency and seems to be
associated with the variations in average refraction of the atmosphere
and resultant variation in the bending of beams. This fluctuation in
the hourly average loss relative to the monthly average has been found
to follow closely the log-normal law. That is to say, let the monthly
median loss be

m = —In 7o (7)
and the hourly average loss be
a=—In# (8)

where In = log., 7, is the monthly rms amplitude of the envelope
r(u,t), and 7 the rms amplitude over an hour. (Other reference times
could have been chosen, as will appear below.)

The probability that the average hourly loss exceeds a specified value
o1 = In 7’ is then given by

Pla = o) = —;—[1 — erf al\/§ajm:| (9)
where erf is the error function and o, the standard deviation in trans-
mission loss expressed in nepers, when « and a., are expressed in nepers
as above. For links 100 to 200 miles in length, a representative value of
o, appears to be about 0.9 neper (8 db).

In addition to the above slow variations in the average hourly loss,
there will be more rapid fluctuations in the envelope r(u,t), owing to
changes in the multipath transmission structure caused principally by
winds. This type of fluctuation follows a Rayleigh distribution law.
According to this law the probability that the instantaneous value r
of the envelope exceeds a specified value 7, is

Plr>n) = exp(—rlz/r‘2) (10)

where 7 is the hourly rms value referred to above.

It may be noted that while the log-normal law for slow variation has
been determined solely by measurements, the Rayleigh law for rapid
fluctuations follows by theory when the received wave is the sum of a
large number of variable components.

The probability distribution (10) can be related to the monthly rms
value of 7(u,t) with the aid of (9) by

P(r>nmn) = f: p(7) exp(—ri/F) dF (11)
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where p(7) is the probability density function corresponding to (9),
which is

p(F) = \/T_l;raa—f exp{ —[In 7/ral’/204’}. (12)

It will be recognized that (11) will yield the same result regardless
of the period over which the rms value 7 is taken, since 7 simply plays
the role of an intermediate parameter that disappears after integration.

The above probability functions relating to average loss or the dis-
tribution of the instantaneous values of r(u,t), are independent of the
frequency. In addition to the above distribution there are others which
are important from the standpoint of transmission systems design and
performance, as discussed in the following section.

1.5 Time Autocorrelation Functions of Transmittance

Expressions for the probabilities of rapid changes in the amplitude
and phase of the transmittance with time will be considered in Section
I1. These involve the autocorrelation funections of the components U
and V defined by (5) and (6), or the corresponding power spectra. Both
have the same autocorrelation function and power spectrum, so that
only U(w,t) needs to be considered.

The time autocorrelation function of U(u,t) depends on the variation
in a;(t) with time. These are related to changes in the physical structure
of the common volume and to resultant variations in the heterogeneities
that are responsible for tropospheric transmission. The rate at which
these occur depends on the velocity and directions of winds and on
temperature changes. Under these conditions the autocorrelation func-
tion will vary with time, and it becomes necessary to consider a certain
median autocorrelation function and corresponding power spectrum,
as discussed in Section 1.6.

Let ¥(7) be the autocorrelation function of variations in U(u,t) with
t. The corresponding one-sided power spectrum is then

Wiy) = ?rf:xpm cos yr dr (13)

where vy is used to designate the radian frequency of spectral compo-
nents to avoid confusion with the frequency w of the transmitted wave.

The autocorrelation function ¥(7) or the corresponding power spec-
trum W (y) of the components U and V cannot be determined as readily
by measurements as the autocorrelation function ¥,(7) of the envelope.
The latter is related to () by™
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¥, (r) = ¥(0){2E[k(7)] — [1 — ¥(7)]Kx(7)]} (14)
where
k(r) = ¥(7)/¥(0) (15)
E = complete elliptic integral of second kind
K = complete elliptic integral of first kind.

TFor 7 = 0, ¥,(0) = 2¥(0). Hence the autocorrelation coefficient of
the envelope can be written

k(1) = Ele(7)] = 3[1 — &(7)]K[x(7)]. (16)

With the aid of (16), the autocorrelation coefficient x(7) of each

quadrature component can be determined from measurements of «.(7).
1.6 Observed Time Autocorrelation

Observations of the autocorrelation function of rapid fluctuations
indicate that the autocorrelation function ¥(7) of the components U
and V is nearly Gaussian and is given by

Y(r) = ¥(0) exp(—o'7/2). (17)
The corresponding power spectrum obtained from (13) is
W(y) = ¥(0)(2/70")* exp(—~"/20") (18)

where ¥(0) is the average power in each component as obtained with
r = 0in (17) .

The equivalent bandwidth of a flat power spectrum W(y) = W(0)
is given by

3 = \/m c & 1.250. (19)

As noted in Section 1.5, there will be a certain median autocorrelation
function and corresponding median values of the power spectrum, of
o and of v. Measurements® indicate that these median values depend on
the antenna beamwidths and that the fading rate is not quite propor-
tional to frequency. Furthermore, there can be appreciable departure
from the median values. From measurements of the median number of
fades per minute, the median value of ¢ can be determined, with the aid
of equation (26) in Ref. 2. These measurements indicate that for a
particular antenna arrangement ¢ =~ 0.1 cps at 460 mec and about 1.3
cps at 4110 me. The corresponding equivalent bandwidths of a flat
power spectrum are thus ¥ & 0.125 eps, or 0.8 radian/sec. at 460 mc,
and & = 1.6 cps, or about 10 radians/sec. at 4110 mc. The measurements
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further indicate that there is a probability of about 0.01 that the fading
rate exceeds the median value by a factor of about 7 at 460 mc and a
factor of about 3.5 at 4110 me.

1.7 Frequency Correlation Function of Transmitiance

Returning to (5) and (6), let the time ¢ be fixed, and consider varia-
tions in U and V with w. The coeflicients a; and b; will then have certain
values that vary with j, and there will be a certain variation in U and
V with u. At a different time there will be another set of coefficients
and a different variation with . The form of (5) and (6) indicates that
if u is regarded as a time variable and A as a frequency, U(u) would
be the variation in time owing to impulses of amplitudes a; and b;
impinging at time intervals = on a flat low-pass filter of bandwidth A.
That is to say, the autocorrelation function of components U and V
for a difference v = ws — w; in frequency is

¥(v) = ¥(0)(sin vA/vA). (20)

The corresponding power spectrum of the variation in U and V' with
frequency 6 is

W) = %[: T(r) cos v dv (21)

= ¥(0) for 0<o<A
=0 for A <@,

(22)

When ¥(v) is given, it is possible to determine the autocorrelation
function ¥,(») for variations in r(w,t) with u. Expression (14) applies
with » in place of 7, for the autocorrelation function of time variation
with frequency.

For an autocorrelation function (20), the corresponding correlation
coefficient is

k(v) = (sin vA/vA). (23)

The corresponding autocorrelation coefficient of the envelope, as ob-
tained from (16), is

o ofis) AR,

For various values of »A the correlation function of the envelope is
given in Table I and is shown in Fig. 4.
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TABLE I — AUTOCORRELATION FUNCTION OF ENVELOPE

vA =0 ‘ /2 T 3r/2 ’ ©

k () =1 ’ 0.9 /4 0.78 ‘ /4

The autocorrelation functions (23) and (24) apply for certain idealized
conditions outlined in the Appendix and in Section 1.3. For one thing,
the average power received over each elementary path is assumed the
same. For another, a linear variation in the transmission delay with
angular deviation from the mean paths is assumed, with maximum
departures £ A from the mean delay. Furthermore, an infinity of trans-
mission paths is assumed, with independent random fluctuations in the
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Fig. 4 — Frequency autocorrelation coefficient «,(») of envelope for autocorre-
lation coeflicient «(») of components U and V.

signal components received over the various paths, though there will
be some correlation between the fluctuations in the signal components
received over various paths.

In spite of the various approximations, it appears possible to obtain
a reasonably satisfactory conformance with the results of measure-
ments of the autocorrelation functions of the envelope, as shown in
Section 1.9.
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1.8 Differential Transmission Delay A

Exact determination of the equivalent maximum departure from the
mean transmission delay requires consideration of the beam patterns
as affected by scattering. On the approximate basis of equivalent beam
angles «, the following relation applies, with notation as indicated in
Fig. 5

Az£“+6<o+“+ﬁ> (25)
v 2 2
where 8 = «, v is the velocity of propagation in free space, L is the
length of the link, and

L L

0:_.:

2R 2RK (26)

where R, is the radius of the earth and the factor K is ordinarily taken
as 4/3.

The equivalent beam angle « from midbeam to the 3-db loss point
depends on the free-space antenna beam angle oy and on the effect of
scatter, which is related in a complex manner to o and the length L,
or alternately 6. Narrow-beam antennas as now used in actual systems
are loosely defined by e = 26/3. For these @ & ao on shorter links,
while on longer links « > a owing to beam-broadening by scatter.
Analytical determination of « for longer links appears difficult, and only

"E\ o o GoF BEAM
Homzo\N@é\\ e s HgIZON
~ - -

— .

Tig. 5 — Definition of antenna beam angles «, take-off angle 8 and chord angle
0 to midbeam. With different angles at the two ends, the mean angles are used in
expressions for A. In applications to actual beams, @ would be the angle to the
3-db loss point.
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limited experimental data are available at present. For broad-beam
antennas, o > 26/3 and beam-broadening by scatter is in theory in-
appreciable.

By way of numerical example, let L = 170 miles and K = 4/3, in
which case 6 = 0.016 radian. Since oo = 0.004 radian << 26/3, it is
permissible to take a« = ay. With 8 & ay, (25) gives A = 0.08 X 10™°
second.

1.9 Observed Frequency Variations in Transmittance

In Fig. 6 is indicated the shapes of the envelope vs frequency varia-
tions that can be obtained from (3) when the components U and V
are given by (5) and (6). These fluctuations will vary with time but
will have the characteristic shapes indicated in Fig. 6, which resemble
shapes obtained in sweep-frequency measurements on a link of the
length for which the above value of A applies.”

A Dbetter indication of the adequacy of the present idealized tropo-
scatter model is obtained by comparing the autocorrelation coefficient
of the envelope as given by (24) with the correlation coefficient derived
from observations. In Fig. 7 is shown the theoretical coefficient for
A = 0.08 X 107° second together with coefficients obtained from three
experimental runs considered representative.”

The bandwidth capability can be defined as the maximum baseband
signal spectrum that can be received with some coherence between
spectral components at the maximum and minimum frequencies. This

a d
| | | |
| |
| |

I Ca (N l Cs
-277/8 -77/A o] 7/ 277/A 37/4 a77/A s77/A

Fig. 6 — Illustrative rectified envelope vs frequency characteristic r(u) ob-
tained with expressions (5) and (6) in (3). The amplitudes ¢; at the radian fre-
quencies u; = jx/A from the carrier are ¢; = (a2 + b;2)} The amplitude of the
envelope at any intermediate frequency u depends on the amplitudes and phases
of all ¢; between j = —» and j = «. In sweep-frequency measurements with a
radian frequency sweep from —x/A to =/A from the carrier, the envelope varia-
tions might be like that in any of the intervals a-b, b-c, c-d, etc.
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Fig. 7 — Theoretical vs observed envelope autocorrelation functions. Above:
autocorrelation coefficient obtained from (24) with A = 0.08 X 107¢ second. Be-
low: autocorrelation coefficients given in Fig. 70 of Ref. 2 and derived from meas-
urements of envelope variations with narrow-beam antennas on four days: 1.
Sept. 13, 1957; 2. Sept. 30, 1957 (considered very unusual); 3. Oct. 15, 1957, and
4. Nov 8, 1957. The value of A derived from (25) for the experimental link is A =
0.08 X 10~¢ second.

bandwidth is equal to the separation between c¢; and ¢;4: in Fig. 6, which
corresponds to the separation between null points in (23), for which
k(v) = 0 and k(») = w/4. It is given by 1/2A cps and for A =
0.08 X 107° second is 6.3 me/second.

With a smaller spectral bandwidth, distortion will be reduced and
transmission performance improved. A more realistic appraisal might
be half the above maximum bandwidth, or 3.15 me/second, for which
«(») = 0.9. In Ref. 2 the criterion k*(») = 0.6 corresponding to «.(») =
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0.904 has been selected, and twice this spectrum bandwidth as required
in double sideband transmission is quoted in Table VII of the reference.

The mathematical model represented by (3) to (6) is based on certain
idealizations outlined in Section 1.7 and in the Appendix. It appears
from the above that certain theoretical transmittance variations based
on this model conform sufficiently well with observed variations for the
model to be acceptable.* In order to determine expected performance
with digital transmission, it is necessary to consider certain other sta-
tistical properties of tropospheric channels based on the above model,
as discussed in sections that follow.

II. TRANSMITTANCE VARIATIONS WITH TIME

2.1 General

As discussed in Seetion 1.2, the transmission vs frequency charac-
teristic of a tropospheric scatter channel is a highly variable quantity,
as indicated in Fig. 1. One way of avoiding transmission impairments
owing to variations in transmittance with frequency is to transmit by
narrow-band modulation of a number of different carriers. The amplitude
vs frequency characteristic can then be regarded as virtually constant
over each narrow band, and the phase characteristic as linear, as indi-
cated in Tig. 1. With this method, it is permissible to assume flat fading
within each narrow band, but the various narrow channels will not fade
independently. In addition to such flat fading there will be variations in
the phase and frequency of each received carrier with time. Owing to
the narrow bandwidth of each channel, the duration T of a signal or
sampling interval may be relatively long, and it becomes necessary to
consider the above amplitude, phase and frequency variations over this
interval 7. The probability distribution of these variations are basic
to later considerations of various digital transmission methods and are
discussed here. They can be obtained from expressions given by Rice
for narrow-band random noise.1?

2.2 Amplitude and Phase Distributions

Let the frequency « and thus 4 = w — wo be fixed, and consider only
time variations in 7 and ¢. The probability density of ¢ is simply p(p) =
1/2m, since each phase is equally probable. Since the components U and
V are the sum of a very large number of independent random variables,
in accordance with (5) and (6), each component U and V will have a

* This conclusion appears to be supported by the results of recent measure-
ments of «(») for a 100-mile path.¢
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normal law or Gaussian probability density. The probability density
of the envelope in this case follows the Rayleigh law, and the probability
that the envelope r exceeds a specified value r; is given by

P(rz ) = exp(—r’/F) (27)

where 7 is the rms amplitude of the envelope or the transmittance taken
over an appropriately long time.

The average received envelope power is in this case # = S = 28,
where S is the average carrier power, i.e., the average power within
the envelope. The probability that the received envelope power at any
instant exceeds a specified value S; = 28; is

P(S > S1) = exp(—R81/8) = exp(—8,/9). (28)

The median value S, of S is obtained from P(S = §,,) = 3, which
gives S, = S In 2. Hence, in terms of the median value

P(S =z S1) = exp[—(S/Sx) In 2]. (29)

The distribution represented by (28) or (29) is shown in Fig. 8.

The above distribution of rapid fades is to be distinguished from the
distribution of slow variations in the envelope, or in attenuation, dis-
cussed in Section 1.4.

2.3 Distribution of Envelope Slopes (r")

One measure of the rapidity of the above amplitude variations is the
fading bandwidth discussed in Section 1.6. From this fading bandwidth
can be derived the probability distribution of the slope ' = dr(t)/dt
in the envelope.

The rapidity of changes in the envelope and phase depends on the
time rate of change in the heterogeneities in the common volume — that
is to say, the variations with respect to time of the coefficients a;(1)
and b;(t) in (5) and (6). These changes are characterized by the auto-
correlation function of U(¢) and V (i), or by the corresponding power
spectrum. When the power spectra of U and V are the same, and are
specified, the probability distribution of ' = dr(t)/dt and ¢’ = de(t)/dt
can be determined. These distributions are the same as for random noise
of specified power spectrum. The probability that | r’ | exceeds a speci-
fied value | 1" | follows the normal law"

PO | = |r|) = erfe (k/2%) (30)
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in which
k =nr'/F
7 = rms amplitude of '
= [3(b2 — b))} (31)
where
b, = /:o W(y)v" dy. (32)

The above result (30) follows from equation (4.6) in Ref. 12 for @ = 0,
by integration with respect to 2 = r between 0 and <, and in turn
with respect to R’ = r’ between r,” and .

Expression (30) can alternatively be written

PL|#"| = k7] = erfe (k/2%). - (33)

In the particular case of flat power spectrum W(y) = W of band-
width 4, (32) gives

bo= W9 b= WE/2 b= W4/3
and (31) becomes
7 = 74/6" ~ 0.4057. (34)

The fading bandwidth in the above case is 4 radians/second.
With a Gaussian spectrum (17) expression (32) gives

bo = ¥(0); by = o(2/7)W(0); b, = ¥(0)

and (31) becomes
7o (L 1)
g 2 p

= 04270 =2 0.3475 (35)
where # is the equivalent bandwidth given by (19).

2.4 Distribution of Phase Derivative (o)

In considering a small phase change Ag, and over a small interval
A7, it is legitimate to use the probability distribution of the phase
derivative ¢’ = Agp/Ar, which is given by [Section 5 of Ref. 12]

el 216 ) =1 - s (36)



164 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964
in which

k= (bo/bs)’er’ = (Do/b2)}(A¢r/AT) (37)

where bo and b, are given by (32).
Expression (36) can alternatively be written

P(l¢'| = k(b/bo)}) = 1 — ﬁ——]@ (38)
= Q%z' for k> 1.
For a flat power spectrum W(y) = W of bandwidth 4
(bo/bo)* = 4/3% = 0.589. (39)
For a Gaussian spectrum (17)
(bo/bo)* = ¢ A2 0.87 (40)

where ¥ is the equivalent bandwidth given by (19).

2.5 Distribution of Frequency Derivative (o”)

The probability of exceeding a small variation Aw in frequency over
a brief interval Ar can be determined from the probability distribution
of o” = Aw/Ar.

The probability that ¢” exceeds a specified value ¢,” is given by

PA1 2 Lof) = Pl 2 H/o)

-1 — 2k dz

7 Jo [g(z) + Kg(=z) (41)

2[ tan”" (k/g'(x)) (%)) 4

(1 + x22)t
where

k = bopi” /bs (42)
g(z) = (a — 14 42")(1 + ") (43)
a = bob4/b22. (44)

Expression (41) is obtained from relation (6.10) of Ref. 12 for
p(re0@”) for @ = 0, by integration with respect to r, ¢ and ¢’, be-
tween 0 and «, 0 and 27 and — « and + =, respectively, and in turn
by integration Wlth respect to ¢” between qol' and c. Considerable

simplification is required to obtain (41).
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For very large values of & the following approximation applies

P(|¢” | = kbo/bo) ~ 7_35 [1 +n (g + 1>] (45)

where In = log,. .
For a flat spectrum W(y) = W of bandwidth 4

a=9/5 and  Dby/by = 4%/3. (46)
For a Gaussian power spectrum (18)
a=3 and  by/b = o’ (47)

The quantity (bs/bo)? is the rms frequency of the power spectrum
and b./by is the “variance.”

The probability distribution (41) as obtained by numerical integra-
tion is shown in Tables IT and ITI for flat and Gaussian power spectra.
Tor large values of k, approximation (45) is shown in parentheses.
These probability distributions are shown in Fig. 9. .

ITI. TRANSMITTANCE VARIATIONS WITH FREQUENCY

3.1 General

In the previous section a sufficiently narrow signal band spectrum
was assumed such that amplitude and phase distortion over the narrow
band could be neglected. In this case it was necessary to consider time
fluctuations in the transmittance over a pulse duration 7' that would be
relatively long owing to the narrow spectrum bandwidth.

The other extreme of wideband transmission will now be considered,
in which the duration of a pulse would be short enough for fluctuations
in transmittance over a pulse interval to be disregarded. In this case
it becomes necessary to consider variations in the transmittance with
frequency over the much greater signal spectrum band. The variations
in the amplitude and phase characteristics with frequency will fluctuate
with time, so that it becomes necessary to determine the resultant

TaBLE IT — ProBasiuiTy DistriBUTION P(|0” | > k42/3)
FOR FLAT POWER SPECTRUM

k=0 J 1 2 ‘ 3 ' 4 5 10 20 l 50 100

1 | .538 | .381 ‘ .321 ) .269 | .238 | .158 .100‘ .051 1.031(.03)
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TaBLE IIT — ProBaBiLITy DistriBuTioN P(|e¢” | > ke?)
FOR GAUSSIAN POWER SPECTRUM

k=0 1

2

3|4

S | 10

20
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1 ‘ .595

.447

.369 ’ 317 | .280 , .182

.113

.057

.033(.03)

transmission impairments on the basis of certain probability distribu-

tions.

In a first approximation the departure from a constant amplitude vs
frequency characteristic will be a characteristic with a linear slope, as
indicated in Fig. 10, that will vary with time. Similarly the departure
from a constant transmission delay over the channel band can be approxi-
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Fig. 9 — Probability that ¢ exceeds “variance’ of fading power spectrum by
factor k for flat power spectrum with bandwidth 4 and “variance’ 4%2/3 and for
Gaussian power spectrum with “variance’ o2
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Fig. 10 — First approximations to random departures from constant amplitude
and delay characteristics are represented by linear variations with frequency.

mated by a linear variation in transmission delay. The probability
distributions of the slopes of these linear variations in the amplitude
and delay characteristics are the same as for corresponding variations
with time, with appropriate modification of the basic parameters, as
discussed in the following.

3.2 Amplitude and Phase Distributions

Let the time ¢ be fixed, and consider only variations in 7 and ¢ with
the frequency w of a number of transmitted sine waves.

Each sine wave could be regarded as a spectral component of a carrier
pulse of very short duration with an essentially flat and continuous
spectrum about the carrier frequency. In this case w rather than f is
changed in expressions (5) and (6) for the two components U(u,t) and
V(u,t). There will in this case be a particular variation with u for each
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time f. When observations are made for a sufficiently large number
of specified times, the resultant probability distribution of the amplitude
and phase will be the same as discussed in Section 2.2 for variation in
time for a given frequency w.

3.3 Slope in Amplitude Characteristic ()

At a particular time, the envelopes r(u,t) of the received sine waves
will vary with frequency . The slope of the envelope will be designated
dr(u,t)/du = 7. It will have a probability distribution as given by (30)
for the time rate of change in 7(u,t). This probability distribution is

P(|#| > |#]|) = P(|#] = kf) = erfe (k/2) (48)
where erfe is the error function complement and
k= ~/F
7 = rms value of 7
= [$(by — b2/bo)]’ (49)

except that now
b= [ W) as (50)
0
where W(3) is the power spectrum given by (21). When W (3) is given

by (22), (50) gives by = ¥(0)/A; by = ¥(0)A*/2; by = ¥(0)A’/3 and
(49) yields

e

F = 7A/6 (51)

where 7 = \I/(O)% is the rms amplitude of the envelope.

3.4 Envelope Delay Distribution
The envelope delay at a particular time ¢ and frequency u is given
by ¢ = dp(u,t)/du. The probability distribution of this delay ¢ is given
by (36) or (38). Thus
P(l¢]> 1o1]) = Pl1é| 2 k(ba/bo)’]
k (52)

=l -Vit e

where as before
k= (bo/bs)’n (53)
where by and b; are given by (50).
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For a flat power spectrum (22)
(be/bo)t = A/3% = 0.58A. (54)

3.5 Distribution of Linear Delay Distortion

The slope ¢ = dg/du at a particular time represents linear delay
distortion. The probability that ¢ exceeds a specified value &, is given
by (41), or

P(lé| > |a]) = F(l¢| = kby/bo)

=1 — Q_kfw dw
T o (g(z) + F)g(z) (55)

2 [* tan”! 4

[ o,
For very large values of & (45) applies, or
(16| 2 Bou/bo) ~ 2 [1 +In (g + 1)] (56)
where now

k= bo1/ba (57)
g(x) = (e — 1 + 42°)(1 + 2°) (58)
a = boby/b’ (59)

and b, is given by (50).
For a flat power spectrum (22)

bo/bo = A%/3. (60)

The probability distribution (55) as a function of k is given previously
in Table II for a flat power spectrum and is shown in Fig. 9.

IV. ERRORS FROM TRANSMITTANCE VARIATIONS WITH FREQUENCY

4.1 (General

As discussed later, the error probability in digital transmission over
noisy channels with selective Rayleigh fading can be approximated by
combining the probability of errors from three basic sources. One of
these is errors from random noise determined in the presence of flat
Rayleigh fading. The second source is errors from time variations in the
transmittance, which is important at low transmission rates. The third
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source is errors from transmittance variations with frequency, which
becomes important at high transmission rates and puts an upper bound
on the transmission rate for a specified error probability. In this section
an approximate evaluation is made of errors on the latter account.

As a first approximation, the statistical properties of transmittance
variations with frequency, ordinarily referred to as selective fading, can
be represented by the probability distribution (48) of # and (55) of (&).
The first of these represents a linear slope on the amplitude vs frequency
characteristics, and the second represents a linear variation in trans-
mission delay. Errors will occur even in the absence of noise, when #
or ¢ exceeds certain maximum values. These maxima will depend on
the spectrum of pulses in the absence of distortion, on the pattern of
transmitted pulses and on the carrier modulation method. After these
maximum values are determined, it is possible to determine the proba-
bility of encountering them with the aid of the probability distributions
of 7 and & given in Section III.

4.2 Carrier Pulse Transmission Characteristics

It will be assumed that a carrier pulse of rectangular or other suitable
envelope is applied at the transmitting end of a bandpass channel. The
received pulse with carrier frequency wo can then be written in the
general form"

Po(t) = cos (wot — $o)Ro(t) + sin (wit — ¢o)Qo(?) (61)
= c0s [wol — Yo — ¢o()]Po(2), (62)
where
Pot) = [R() + QD] (63)
eo(t) = tan™" [Qo(2)/Ro(1)], (64)
Ro(t) = Po(t) cos eo(t), (65)
Qu(t) = Po(t) sin po(t). (66)

In the above relations R, and @, are the in-phase and quadrature
components of the received carrier pulse and Py(t) the resultant enve-
lope. The time ¢ is taken with respeet to a conveniently chosen origin,
for example the midpoint of a pulse interval or the instant at which
Ro(t) or Py(t) reaches a maximum value.

Let So(w) be the spectrum of received pulses at the output of the
receiving filter, i.e., at the detector input, and yo(u) the phase function
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of the spectrum, as illustrated in Fig. 11. The functions Ro(¢) and
Qo(t) are then given by™

Ry = Ry + Ro', Q= Qi — Q"

R =L [ Si(~u) cos [t + %o (—u)] (67)
Ro* =L [ ) cos [t — wo(u)] (68)
Q = }rf:osu(—u) sin [ut + Wo( —10)] du, (69)
o = 2 [ 8w sinfut — wow)]d. (70)

The upper limit wo can ordinarily be replaced by o, since So{ —wo) = 0.

Let S(w) be the spectrum in the absence of amplitude distortion,
and A(w) the amplitude characteristic of the channel. The received
spectrum is then, for a time invariant channel

So(u) = S(u)A(u). (71)

4.3 Ideal Pulse Spectra and Pulse Shapes

In carrier pulse transmission over an ideal channel the sideband
spectrum of carrier pulses at the detector input will be symmetrical

AMPLITUDE _ CARRIER
CHARACTERISTIC OF -~ FREQUENCY
SPECTRUM AT CHANNEL ¥

OUTPUT | >~

IACY

|

o —u—]
|
|

~_PHASE CHARACTERISTIC OF
SPECTRUM AT CHANNEL
| OUTPUT

“o
FREQUENCY, W ——>

Fig. 11 — Amplitude and phase functions of pulse spectrum at channel output,
i.e., detector input.
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about the carrier frequency. As discussed elsewhere,™ it is possible to
realize optimum performance in binary transmission by AM, PM and
TM with an infinite variety of pulse spectra at the detector input, with
the general properties illustrated in Fig. 12. With all of these spectra,
pulses can be transmitted without intersymbol interference at intervals

T=x/Q=1/2B (72)

where B is the mean bandwidth in cps to each side of the carrier fre-
quency, as indicated in Fig. 12.

A desirable pulse spectrum in various respects is a raised cosine
spectrum as illustrated in Fig. 13, given by

S(u) = S(—u) = % cos%%. (73)
|
Sy (u)
-u u
l«e—— N =277B ) — >

Wo+)

/ Sa(W)
~

So(-w)=-S,(w)

/
|
|
~ |
Vai o |

w

e}
g
=]
8

Fig. 12 — General properties of ideal spectra of carrier pulses at channel out-
put (detector input) that permit pulse transmission without intersymbol inter-
ference at intervals I' = =/ = 1/2B.
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(b)

WN'

|
L—M—T:i———»L————»—T~»—»—-~—»>« ————— T————»—»l

Fig. 13 — (a) Raised cosine bandpass pulse spectrum and (b) carrier pulse
transmission characteristic, i.e., envelope of a carrier pulse.

The corresponding carrier pulse at the detector input as shown in
TFig. 13 is given by
Po(t) = Po(t) cos (wit — ¢o) (74)

where

sin Qf cos Qf (75)

Polt) = Bo(h) = =g~ 7= (Qt/m)E

4.4 Linear Variation in Amplitude Characleristic
Let ¢o(u) = 0 and
Alw) =14 cu (76)
where ¢ is a constant. In this case (71) becomes

So(u) = S(u)(1 + cu). (77)
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When the received spectrum in the absence of distortion has even
symmetry about the carrier frequency wo, such that S(—u) = S(u),
(77) in (67) to (70) gives

Ro(t) =2 | " () cos wt du (78)
Qo(t) = —52 fw wS(u) sin ut du 79)
™ Yo
d '
= c(ﬁRo(t) = cRy (1). (80)

In the case of a raised cosine spectrum, Ro(t) is given by (75) and
(80) yields

cos 20 sin 2Q¢t
D) = 250 oarg ~ 2 Gay = e OV

=0 for t=0. (82)

At the first sampling points before and after ¢ = 0, t = £T =
+ (7/2) and(81) yields

Q(£T) = £cQ/3m. (83)
At the next sampling points { = £27 = +27/Q
Qo(£2T) = =c/30x. (84)

From (83) and (84) it appears that only the first sampling points
t = =T need to be considered in determining the effect of linear am-
plitude distortion.

4.5 Probability of Errors from Linear Amplitude Distortion
The rms amplitude of the component Qy(4=7") is given by
Qo(£T) = /37 = ¢B/3 (85)
where B = 20/27 and ¢ is the rms amplitude of # as given by (51) or

(86)

o

¢ =7 = FA/6.
Thus (85) becomes
Qo(£T) = #(Ba/3-6%). (87)
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The rms amplitude of R(0) is 7. Hence

Q(T) &
Ro(0)  3-6" (88)

;,:

This is the ratio of rms intersymbol interference at the first sampling
points to the rms value of the peak pulse amplitude.

The probability of exceeding the above ratio by a factor £ is, in ac-
cordance with (48)

P(q = ki) = erfe (k/2Y). (89)

The probability of error will depend on the carrier modulation method.
In general, however, the approximate allowable peak value of 5 in the
absence of noise is

A
~

UGS (90)

The probability of exceeding this value, -corresponding to
k= 3-6°/2BA is

P, = erfe (3-3'/2BA) ~ erfe (2.6/BA). (91)
This probability is much smaller than that resulting from a linear
variation in delay over t}Ale transmission band. For example, if B = 10°
epsand A = 107" see, 1/BA = 10~ and P, = erfc (26), which is negligi-
ble.
4.6 Linear Varialion in Envelope Delay
It will be assumed that the phase distortion component is given by
Wo(u) = cu, (92)
which corresponds to a linear delay distortion given by
o' (u) = 2cu. (93)

In this case expressions (67) to (70) give for a raised cosine spectrum

Ro(—1)

Il

T2
Ro(t) = ; fo cos”  cos oz cos bz’ dz (94)

i

/2
Qo(—1t) = Qo(t) = %_ / cos’ x cos o sin bz’ dx, (95)
0

where
a=4/T), b= (4/n) @T); T=1/B)
in which the delay d is defined as in Fig. 14.
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—~—PULSE SPECTRUM

=

< B=2B=1/T———>

“—LINEAR DELAY
DISTORTION

Fig. 14 — Raised cosine pulse spectrum with linear delay distortion.

The above integrals have been evaluated by numerical integration
and are tabulated elsewhere.” The functions Ro(t) and Qo(t) are shown
in Fig. 15, as a function of ¢/T = tB for various values of d/T = dB.
The phase has been adjusted to 0 at { = 0, hence the notation Ry and
Qoo -

4.7 Maximum Tolerable Linear Delay Distortion

Intersymbol interference at sampling points owing to linear delay
distortion is significantly greater than that resulting from a linear slope
in the amplitude characteristic. Moreover, pulse patterns that cause
maximum intersymbol interference with linear delay distortion will not
give rise to intersymbol interference from a linear slope in the am-
plitude characteristic, and conversely. For this reason it suffices to
consider the more important component, i.e., linear delay distortion.

The reduction in tolerable noise power owing to linear delay distor-
tion has been determined elsewhere™ for binary AM with envelope
detection, binary PM with synchronous detection, and binary FM with
frequency discriminator detection. For these methods the reduction
in noise margin is shown in Fig. 16 as a function of the parameter
A = d/T = d-B. In the same figure is shown the reduction in noise
margin for two-phase and four-phase modulation, with differential
phase detection as determined by methods similar to those for the other
modulation methods in the above reference. These methods essentially
consist in determining the maximum intersymbol interference that can
be encountered, considering the pulse shapes shown in Fig. 15 and all
possible pulse patterns over the number of pulse intervals that contribute
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Fig. 15 — Carrier pulse transmission characteristics for raised cosine pulse
spectrum and linear delay distortion. For negative values of {/7 = {-B the char-
acteristics are the same as shown for positive values.

significantly to intersymbol interference. Exact analytic determination
of the maximum impairments does not appear feasible, and it becomes
necessary to resort to trials for selection of the worst condition. It should
be noted that with binary PM with differential phase detection the
optimum threshold level differs from zero owing to a bias component
in the demodulator output.® The curve in Fig. 16 and the analysis that
follows assume automatic adjustment to the optimum threshold level,
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Fig. 16 — Maximum reduction in noise margin owing to linear delay distor-
tion: 1, binary AM with envelope detection; 2, binary FM with frequency dis-
criminator detection; 3, binary PM with differential phase detection; 4, binary
PM with synchronous detection; 5, four-phase modulation with synchronous
detection; 6, four-phase modulation with differential phase detection.

and a significantly greater error probability would be encountered with
zero threshold level.

It will be noted that the noise margin is reduced to zero for certain
values Ao of \. These values apply for certain combinations of baseband
pulses in about four pulse positions. The probability of this and other

pulse patterns must be considered in evaluating error probability as
discussed below.

4.8 Probability of Errors from Linear Delay Distortion

As ) is increased slightly above the value Ay mentioned above, inter-
symbol interference increases rapidly. Thus errors will occur for a value
Ae of A only slightly greater than Ao, for certain combinations of two
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pulses, occurring at times —7" and +7 relative to the sampling instant
t = 0. There are four possible combinations of these two pulses. For
one of these (say 1, 1), an error will occur if A = .. For another (say
—1, —1), an error will occur if A = —A\,. For the other combinations
(—1,1) and (1, —1), intersymbol interference will cancel so that the
probability of error is zero. The probability of error is thus

Po= 33+ HPCIN 2 [N ])
= IP(IN] = N ])

where P( A | = |A.|) is the probability that the absolute value of
\ is greater than A, .

Tor a given value A, = d.B the corresponding slope ¢ of the linear
delay distortion is

(96)

¢o = d./27B
_ (97)
= A\/27B".
The following relation applies
PNz [N]) =P(le]z [&]). (98)

The probability distribution represented by the right-hand side of
(98) is given by (55) with ¢ = &. . For small probabilities (56) applies,
so that in view of (96) and (98) the error probability is

Po=1P(le| = 1¢ 1)

1 ke (99)
where
k, = 3¢,/ A"
b (100)
= 3\/27AB".
With (100) in (99)
AR [ ’ 3N, >:|
P, = 1+ In{1 4+ —=)|.
LT n( T e (101)

From TFig. 16 it will be noted that for binary AM and FM, and for
binary PM with differential phase detection, Ao = 1.8. For these cases
it appears a legitimate approximation to take N\, = 2. On this premise
the error probabilities given in Table IV are obtained for various values
of the parameter AB.
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TaBLE IV — ProBaBIiLITY OF ERRORS IN A Dicit OwING TO LINEAR
DELAY DIsTORTION IN ABSENCE OF NOISE FOR BINARY AM, M
AND PM (wrtH DIFFERENTIAL PHASE DETECTION)

AB = 107¢ 1073 1072 10-1

3.1 X 1078 2.4 X 10°¢ 1.6 X 10~* 8 X 1073

The above error probabilities are shown in IMig. 17 as a function of
AB. If, for example, A = 107" second and B = 10° ¢ps, then AB = 107°
and P, = 1.6 X 107% Pulses could in this case be transmitted at a
rate of 100,000 per second with a minimum error probability P, = 1.6 X
10", In the presence of noise the error probability will be greater, as
discussed in a later section.

1072

PULSE SPECTRUM
: , //
]
|
<6 /
1072

PROBABILITY OF ERROR IN A DIGIT

2 /
107%

2

1076
1074

5 2 5

AB

2 5

1073 107"

Fig. 17 — Error probability in binary AM, FM and PM owing to linear delay
distortion for maximum departure A (seconds) from mean transmission delay.
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The error probability with four-phase modulation and differential
phase detection can be determined in a similar way. In this case Ao =~ 0.9
and A\, & 1in (101).

V. ERRORS FROM TRANSMITTANCE VARIATIONS WITH TIME

5.1 General

As mentioned in Section 4.1, transmittance variations with time is a
second basic source of error in digital transmission. In transmission at
low rates the bandwidth B of the pulse spectra will be narrow, so that
fading can be regarded as constant over the spectrum band. Errors
from selective fading, as considered in Section IV, can then be disre-
garded. On the other hand, the duration of a signal interval T' may then
be sufficiently long so that consideration must be given to random
fluctuations in the amplitude, phase and frequency of the carrier between
one signal interval and the next. Errors may occur owing to such fluctua-
tions even in the absence of noise. The probability of errors in this
account is evaluated here.

5.2 Amplitude Variations

The amplitude of a received wave will fluctuate with a Rayleigh
distribution (10). Because of the great range of fluctuation, it is essential
to provide automatic gain control at the receiver to prevent overloading
and resultant adverse effects. Such gain control is activated by circuitry
that integrates the received wave over a number of signal intervals 7.
With FM and PM only a few pulse intervals are required, for the reason
that the received carrier wave is essentially independent of the pulse
patterns. It is thus possible to provide effective gain control against rapid
variations in the received carrier wave that occurs over a few signal
intervals. Moreover, with FM and PM the distinction between marks
and spaces is made by positive and negative deviations from zero thresh-
old level in the detection process. This permits the use of limiters at
the input to the detectors, to prevent the adverse effect of rapid fluctua-
tions in the amplitude of the received carrier wave owing to fading. These
advantages in applications to fading channels are not shared by AM,
for reasons outlined below.

In binary AM or on-off carrier transmission, the received wave may
be absent over a large number of consecutive signal intervals T'. Hence
automatic gain control must be activated by circuitry that integrates
the received pulse train over a very large number of signal intervals T';
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otherwise gain would be increased during long spaces, regardless of the
fading condition. For this reason automatic gain control is inherently
slow, in relation to the duration of a signal interval. It may thus be
ineffective as applied to transmission at slow rates. With transmission
at high rates, however, such that variations in the received wave owing
to fading are inappreciable even over a large number of signal intervals,
it may be possible to implement effective gain control.

At low transmission rates, such that fading is virtually constant over
the band of the pulse spectrum, intersymbol interference can be made
inappreciable. In this case it is possible to employ limiting prior to
detection, and this method may then be more effective than automatic
gain control, or could be used in conjunction with it. The limiter would
slice the received wave at an appropriately selected level L. In the
choice of the optimum slicing level it is necessary to consider the proba-
bility of errors during a mark owing to fading such that the received
wave is less than L. In accordance with (10) this probability is

P(r £ L) =1—exp (=L/#)
~ L’/

A second consideration in the choice of L is the probability of errors

owing to noise during a space, which is increased as L is reduced. The
*optimum threshold level considering both effects is determined in Sec-
tion 6.9.

Owing to even small intersymbol interference, the use of a limiter as
postulated above may be precluded in actual systems. For example,
let L be 10 per cent of the rms signal amplitude 7, and let intersymbol
interference be 5 per cent of L when the received signal is just equal to
L. When the received signal is increased by a factor 20, intersymbol
interference would be increased correspondingly and would be equal to
L. Hence errors would occur even in the absence of noise. This is the
inherent reason why limiting is generally ineffective as applied to binary
AM. However, even if intersymbol interference could be disregarded,
the error probability in the presence of noise will be greater than with
binary PM or FM, as shown in Section 6.9.

(102)

5.3 Carrier Frequency Variations

In transmission over troposcatter links, random fluctuations will
occur in the carrier frequency, which may be important from the stand-
point of receiver implementation with any modulation method. Such
fluctuations can be limited at the input to the IF filter with the aid of
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signal-tracking oscillators for demodulation of the received radio fre-
quency wave. The frequency of such oscillators may be controlled by
feedback from the mixer output or from the detector output. The follow-
ing expressions apply for the probability distribution of carrier fre-
quency fluctuations without such frequency control at the receiver.

The probability distribution of frequency variations is given by
(38). For a Gaussian fading power spectrum, the probability that the
frequency variation ¢’ = Aw exceeds ke is thus

P(|Aw| = ko) =~ (1/2F°). (103)

The equivalent fading bandwidth is in accordance with (19) ¥ & 1.250.
The probability that Aw exceeds k¥ is thus

P(|Aw]| = ky) ~ (1/3K). (104)

Since ¢ and ¥ are nearly proportional to the carrier frequency, it
follows that the frequency fluctuations encountered with a specified
probability will be nearly proportional to the carrier frequency. By
way of example let ¥ =~ 2 radians/second or about 0.3 cps. The proba-
bility that the frequency fluctuation exceeds 30 cps is in this case ob-
tained from (104) with & = 100 and is 3 X 107°. It appears that for
bandwidths of the pulse spectra in excess of about 5000 cps, frequency
fluctuations will not be important. However, for narrow band spectra
the random frequency excursions may become excessive and give rise
to errors, particularly with frequency modulation, as discussed below.

5.4 Frequency Variations over a Stgnal Interval

It will be assumed that the carrier frequency excursion is limited with
the aid of a signal-tracking oscillator, or that a demodulation process is
used in binary FM in which the change from mark to space is based on
comparison of the frequencies in adjacent signal intervals of duration
T. If the separation between mark and space frequencies is 2Q0, an
error will oceur if the frequency is changed by —+Qqu for a space and
by —Qa for a mark.

From (41) it is possible to determine the probability of errors owing
to frequency changes Q¢ over a signal interval of duration 7. The
maximum permissible value of ¢” is determined from

Pmax” I = £Qn (105)

where the positive sign applies for a space and the negative sign for a
mark.



184 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

With an ideal pulse spectrum the pulse interval is given by T = /9,
so that (105) can be written

(0” max — :f:9019/7l'~ (106)

5.5 Lirror Probability in Binary FM
The error probability is in this case
Pe= %P(lﬂo”l ; [ﬁamax”l) (107)
1

where the factor 3 occurs when the probability functions is defined in
terms of the absolute values as in (41).
The parameter k defined by (42) in this case becomes

2
kmax = (omax”/o'

108
= Qu / o ( )

With frequency discriminator detection, Qn = Q. For a raised cosine
spectrum, B = 2B = Q/7 and

Emax = wB°/d". (109)
Employing (45), the probability (107) of an error becomes

P, = <7_r%>2 [1 + In <1 + %;:):l (110)

In the above relation, ¢ is in radians/second while B is in cps. The
equivalent fading bandwidth is, in a0901'dance with (19), ¥ &~ 1.25¢.
The ratio of the maximum bandwidth B in ¢ps to 7 in cps is thus

B 2rB _ 5B

=527 " 12507 & -

The probability of error (110) is given in Table V for various ratios p.
These error probabilities are shown in Fig. 18.

(111)

TABLE V — ERROR PROBABILITIES WITH BINARY FM FROM
TLaT RAYLEIGH TFADING IN ABSENCE OF NOISE

uo=10 100 1000 10000

Blo =2 20 200 2000

6 X 1073 9.3 X 1073 1.4 X 10°¢ 1.8 X 1078
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Tig. 18 — Error probability in binary FM in absence of noise, owing to fre-
quency variations over a pulse interval 7 resulting from flat Rayleigh fading.

5.6 Phase Variations over a Signal Interval

The probability density of the carrier phase is 1/2x, such that any
phase may be encountered unless the carrier phase wander is limited
by phase tracking oscillators in the demodulation process. In a digital
phase modulation system where appreciable phase wander may be
expected, the preferable demodulation method is differential phase
detection. With this method the phase error will be limited to that
encountered over a signal interval 7.

From (36) it is possible to determine the probability of an error for
a given maximum tolerable phase change 6 over an interval 7. For
Ik >> 1 the following relation applies
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1
P(lw’lz|¢1’|)=§k—2 (112)
by T*

=2_lfoﬁ' (113)

With a Gaussian fading power spectrum (40) applies and
Pl¢ | 2 (e)] = ("T"/20). (114)

5.7 Error Probabilities in PM

With two-phase modulation 6§ = =(=x/2), while with four-phase
modulation § = =4 (=x/4). Hence the probability of error with these
methods as obtained from (114) is, for two-phase modulation

P.x (2/7)d’T" = 0.2°T" (115)
and for four-phase modulation
P, = (8/n°)d"T" ~ 0.824°T". (116)

These expressions apply provided the signal duration is sufficiently
short so that the change in phase is small and can be considered linear
over the interval. More accurate expressions that do not involve this
assumption have been derived by Voelcker’ for the error probability.
Thus, with two-phase modulation the error probability is actually

Po =3[l = «(T)] (117)

and with four-phase modulation

1 2 9 1. o k(T
D T e — 1 —— 2 P —
P, 5 - (T2 — «(T)]* tan B = 2T} (118)
where «(T) = «(r) for =+ = T, i.e., the autocorrelation function for

each quadrature component as defined by (15).
For a Gaussian fading spectrum, «(7') as obtained from (17) is

«(T) = exp (—d"T%/2). (119)
Tor o7 K 1:
(T) ~1— T2 (120)

With the latter approximation in (117) and (118), the error proba-
bility with two-phase modulation becomes

P, x~ 1"T" = 0.250°T" (121)
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and with four-phase modulation

P, = (l + l) T 2 0.825°T (122)
2 7
which are to be compared with (115) and (116), respectively. The
somewhat greater inaccuracy with two-phase than with four-phase
modulation comes about since the phase change =(x/2) cannot be
considered small as required for (114) to apply.
In the above relations T is the interval between phase changes, which
is related to the bandwidth of the baseband pulse spectrum. With
idealized spectra of the type shown in Fig. 12, the interval is

T = 1/2B (two-phase) (123)
= 1/4B (four-phase) (124)

where B is the equivalent mean bandwidth.
In the particular case of pulses with a raised cosine spectrum, the
maximum bandwidth is

B =2B (125)
so that
T = 1/B (two-phase)
= 1/2B (four-phase).

In terms of the above bandwidth the error probabilities (115) and
(116) are thus the same for both two-phase and four-phase modula-
tion and are given by

(126)

P, ~ 0.05(¢c/B)* (127)
~ 0.2(s/B)~. (128)

The above relations apply for any number of phases. For this reason
the capacity of a noiseless channel could be increased indefinitely by
increasing the number of phases. There will, however, be certain limita-
tions in this respect owing to intersymbol interference, as in stable
channels.

The above error probability is shown in Table VI for various values
of B/o and p = 53/0, where u is the ratio defined by (111). It will be
noted that these error probabilities are somewhat smaller than with
binary FM as given in Table V.

The above probabilities of an error in a single digit are shown in Fig.
19, as a function of u.
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TABLE VI — ERROR PROBABILITIES WITH DIFFERENTIAL PM
FROM I'LaT RAYLEIGH FADING IN ABSENCE OF NOISE

u=10 100 1000 10000
Blo =2 20 200 2000
2 X 103 2 X 10°% 2 X 1077 2 X 107

As noted in Section 1.6, there will be a certain median value of ¥ and
thus a certain median value of u and corresponding median error proba-
bility. During certain intervals, the error probabilities will be signifi-
cantly smaller or significantly greater than the median error proba-
bilities.
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Fig. 19 — Error probability in binary PM with differential phase detection
in absence of noise, owing to phase variations over pulse interval T resulting from
flat Rayleigh fading.
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VI. ERRORS FROM NOISE WITH FLAT RAYLEIGH FADING

6.1 General

As mentioned in Section 4.1, a third basic source of errors in tropo-
scatter transmission is random noise. The probability of errors from
noise depends on the modulation and detection methods and on their
implementation. For optimum performance it is in the first place neces-
sary to have appropriate pulse spectra such that intersymbol inter-
ference is avoided in transmission over ideal channels. Moreover, the
error probability depends on the division of spectrum shaping between
transmitting and receiving filters. The minimum error probabilities
with various modulation and detection” methods as quoted here are
based on optimum design in the above and various other respects, such
as accurate sampling of pulse trains. The probability of errors from
noise in actual systems will be greater owing to various imperfections in
implementation.

6.2 Stgnal-to-Noise Ratios

In carrier pulse transmission over an ideal channel, the sideband
spectrum of the carrier pulses at the detector input will be symmetrical
about the carrier frequency. As discussed elsewhere,* it is possible to
realize optimum performance in binary transmission by AM, PM and
M with an infinite variety of pulse spectra at the detector input with
the general properties discussed in Section 4.3.

The error probability in digital transmission over noisy channe]s is
ordinarily specified in terms of the average signal-to-noise ratio at the
input to the receiving filter that ordinarily precedes the detector. This
signal-to-noise ratio is ordinarily taken as

p=S/N
average carrier power at detector input

S
N

It

average noise power in a flat band B = 1/2T at
input-to-receiving filter.

When S represents the average signal power in a fading channel, the
designation 5 = S/N will be used in place of p.

The above reference band B is the minimum possible bandwidth in
baseband pulse transmission without intersymbol interference. The
minimum possible bandwidth in double sideband transmission as used
in binary AM, PM and FM is 2B.

The error probability as related to p will depend on the division of
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spectrum shaping between transmitting filters and the receiving filter
at the detector input. With optimum division, the error probability is
the same as for transmission over a flat band B to each side of the carrier
frequency. Such a flat channel band is ordinarily assumed or implied
in theoretical analyses, though not feasible in actual systems.

6.3 Error Probabilities with Flat Rayleigh Fading

Let 7 be the signal amplitude and P,°(r) the error probability of errors
owing to random noise in transmission over a stable channel with signal
amplitude r. In the presence of fading, let the probability density of
various signal amplitudes be p(r). The error probability in transmis-
sion over fading channels is then

P, = f: Pl (r)p(r) dr. (129)

With Rayleigh fading the probability density p(r) is the derivative
of (27) with respect to r; . With 7 in place of r; the probability density is

p(r) = (2r/7) exp (—1"/7) (130)
(r/8) exp (r*/28) (131)

where S = #/2 is the average signal power.

6.4 Binary PM with Synchronous Detection

In binary PM, marks and spaces are transmitted by phase reversals.
With ideal coherent or synchronous detection the error probability
in transmission over a stable channel is

P = terfe (p/2)% (132)
The error probability with Rayleigh fading as obtained from (129)
is, in this case”’
Y PR AN IRV PO
roegli-GR) 1% e

where 3 = S/N = ratio of average received signal power with Rayleigh
fading to average noise power as previously defined.
6.5 Binary PM with Differential Phase Dection

With binary PM and differential phase detection the error proba-
bility in transmission over a stable channel is"

P = 1. (134)
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The error probability with Rayleigh fading is, in this case®
P, =1/2(p + 1). (135)

6.6 Binary FM with Dual Filter Detection

With this method two receiving filters are used, centered on the space
and mark frequencies w; and ws, as indicated in Fig. 20, with sufficient
separation to avoid mutual interference between the space and mark
channels. Complementary binary amplitude modulation is used at the
two carrier frequencies, and the two baseband filter outputs are com-
bined with reversal in the polarity of one.

The error probability in transmission over stable channels with co-
herent detection is'®

P = Lerfe (p/2) (136)
and with noncoherent detection is'®
P = Lexp (—p/2). (137)

—————4B=4/T —————>
i

MARK SPACE

(b)

Fig. 20 — Comparison of channel bandwidth requirements in binary FM with
(a) frequency discriminator detection and (b) dual filter detection.
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Comparison of (136) with (132) shows that the error probability
P, with Rayleigh fading is obtained by replacing in (133) p with p/2.
This yields for coherent detection

(2N L
Pe_i[l <ﬁ/2>:|’”2ﬁ' (138)

Comparison of (137) with (134) shows that P. is obtained by re-
placing in (135) 5 with /2, in which case, for noncoherent detection

P, =1/(p + 2). (139)

6.7 Binary FM with Frequency Discriminator Delection

With this method a single receiving filter is used, with space and mark
frequencies as indicated in I'ig. 20. Pulse transmission without inter-
symbol interference over a channel of the same bandwidth as required
for double-sideband AM is in this case possible for certain ideal ampli-
tude and phase characteristics of the channels, as shown elsewhere.™"

The error probabilities in the absence of fading depends on the charac-
teristics of the bandpass channel filters and the post-detection low-pass
filter, and are difficult to determine exactly. Approximate evaluations™
indicate that for a given error probability, about 4 db greater signal-
to-noise ratio would be required than for binary PM with coherent
detection, when no post-detection low-pass filter is used. Recent exact
evaluations by Bennett and Salz,'” indicate 3 to 4 db increase in the
required signal-to-noise ratio over a variety of filter shapes. With an
optimum post-detection low-pass filter, a small improvement may be
realized, such that about 3 db increase over binary PM with coherent
detection would be expected. On this basis it appears that the error
probability will be virtually the same as for binary FM with dual filter
coherent detection, such that the principal advantage over the latter
method is a two-fold reduction in bandwidth.

6.8 Binary AM with Ideal Gain Control

It will be assumed that the receiver can be implemented with ideal
automatic gain control, such that the output in the presence of a mark
would have a fixed level [ and in the presence of a space would be zero.
This condition can be approached at sufficiently high transmission rates,
such that the received wave prior to gain control changes insignifi-
cantly over a large number of pulse intervals of duration 7'. Under this
condition the fading bandwidth is negligible relative to the bandwidth
of the baseband pulse spectrum.
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On the above premise and with ideal coherent (or synchronous)
detection, the optimum threshold level for decision between marks and
spaces would be I/2. The tolerable peak noise amplitude before an error
occurs would be [/2, as compared with [ for binary PM, resulting in
6 db reduction in noise margin. On the other hand, the average trans-
mitter power is 3 db less than with binary PM. Hence this method
would have a 3 db disadvantage compared to binary PM with synchro-
nous detection.

Accordingly, (132) would be replaced by

P, = Lerfe (p/4)%
and (133) would be replaced by

G}

The above relations are the same as (136) and (138) for binary FM
with dual filter coherent detection, and (141) is virtually the same as
(135) for binary PM with differential phase detection. Hence binary
AM offers no advantage in signal-to-noise ratio even at sufficiently
high transmission rates such that ideal gain control could be imple-
mented.

(140)

6.9 Binary AM with Optimum Fixed Threshold Detection

At low transmission rates, such that the received wave can change
appreciably over a few pulse intervals owing to fading, gain control
cannot be effectively implemented, as discussed in Section 5.2. Without
effective gain control, there will be a certain optimum threshold for
distinction between marks and spaces. This optimum level and the cor-
responding signal-to-noise ratio is determined here on the premise that
no gain control is used. This threshold level could be implemented by
either a predetection or a postdetection limiter. Assume a probability
3 of a mark being present; in the absence of noise, the probability of
errors in marks is, in view of (102)

P(r £ L) = i1 — exp (—L*/28)] (142)

where L is the threshold level. In the presence of noise the error proba-
bility will be only slightly greater than (142).

A second consideration in the choice of L is the probability of errors
during a space. This error probability is obtained from (137) with
p = L*/N and is

PJ(n =z L) = % exp (—L*/2N) (143)
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where n is the instantaneous noise amplitude and N the average noise
power.
The combined error probability is

P, = 3[1 — exp (—p/2) + exp (—pu/2)] (144)
where
vw=1L/S; 5= S/N. (145)

The optimum L or g is obtained from the condition dP./du = 0. This
yields the following relation for the optimum value uo

exp (—uo/2) = pexp (— puo/2) (146)

or

_2Inp _ 4.606 logw s

= i o (147)

Ho

In practicable systems p >> 1, in the order of 100 or more, and g < 1.
With (147) in (144), the following approximation is obtained for the
minimum error probability

Po i A & [_ln P+ exp (—In p)] ) (148)
215 —1

The above error probability is significantly greater than with binary
PM or FM. The error probability (148) is thus greater than for binary
FM with dual filter coherent detection by a factor of at least In p.
TFor 5 = 1000 (30 db) this factor is about In 5 = 7. Hence about 10
logiw 7 = 8.5 db greater average signal power would be required than
with binary M. This assumes that excessive intersymbol interference
is avoided, which may not be feasible for reasons mentioned in Section
5.2. Since it is evident that binary AM is at a considerable disadvantage
in signal-to-noise ratio as compared to binary PM and FM, it will not
be considered further herein.

6.10 Combined Rayleigh and Slow Log-Normal Fading

In the previous determination of error probabilities, rapid Rayleigh
fading was assumed, with a fixed mean signal-to-noise ratio g over the
interval under consideration. It will now be assumed that in this interval
there is a slow log-normal variation in path loss and thus in signal-to-
noise ratio at the receiver, in conjunction with rapid Rayleigh fading.

Let P, be the error probability with Rayleigh fading as previously
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related to the mean signal-to-noise ratio p = §/7°, where §is the rms
signal amplitude and 7% the rms noise amplitude. If p(5) is the proba-
bility density of the rms amplitudes with slow fading, the probability
of error in an interval during which the rms amplitude exceeds 3 is

Pur = [ PUo)p(s) ds. (149)
For p > 1, the expression for P.(3) is of the general form
P35 ~efp = ——. (150)

For binary PM with differential phase detection and for binary PM
with coherent dual filter detection, ¢ = 1.
The probability density p(3§) is given by (12), or in the present

notation
p(3) = :/—: Sl exp [— (In §/50)%/26%] (151)

where §; is the median rms amplitude and ¢ is the standard deviation

of the fluctuation in 3.
With (150) and (151) in (144)

1 1f* 11 2o 2] 7
P, = \/27r o My ¥ Zexp [—(In §/5)"/2¢7] d3 (152)
=< \/I_W f 1 1exp [— (3 In p/p0)%/26%] dp (153)

where po = 5 /A" on py = § /7.
Solution of (153) yields the relation

P.1 = P, (o, k) (154)
where
k= pi/po (155)
and
1
7(o, k) = 3 exp (24%) erfe {\/go [46° + In K]} . (156)
TFor py = 0,In k = — o and erfec (— ) = 2. Hence for this case

7 = exp (202). (157)
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This is the factor by which the error probability taken over a long inter-
val is greater than without a log-normal variation in signal-to-noise
ratio and only rapid Rayleigh fading.

Instead of modifying the error probability as above, an alternative
method is to use an equivalent mean signal-to-noise ratio p. that is
smaller than 5 by the factor exp(—2¢°). Thus

p. = pexp (—2¢°). (158)

When 5., 5 and ¢ are all expressed in db, expression (158) can alterna-
tively be written

Peav = P — cav/8.69. (159)

For example, with a representative value o4, = 8 db, the last term
in (159) is 7.4 db. Thus the charts in the later FFigs. 21 and 22 apply
when p is taken 7.4 db less than the median signal-to-noise ratios with
log-normal fading.

VII. COMBINED ERROR PROBABILITY

7.1 General

In Sections IV to VI, three basic sources of errors in digital transmis-
sion over troposcatter links were discussed, and expressions were given
for the probability of error from each of these sources in the absence
of the others. In a first approximation, the error probability considering
all three sources can be evaluated by taking the sum of the three error
probabilities. Approximate expressions are given here for the resultant
error probabilities, together with charts that facilitate determination
of error probability as a function of the binary pulse transmission rate,
when the basic system parameters are known. These are the average
signal-to-noise ratio p, the mean fading bandwidth ¥, and the maximum
departure A from the mean transmission delay. The error probability
for a given transmission rate can be reduced by various means that may
or may not entail an increase in total transmitter power or bandwidth
or both. For a given total transmitter power and bandwidth, the most
effective means to this end is diversity transmission over independently
fading paths, as discussed briefly herein.

7.2 Combined Error Probability

As a first approximation, the error probability is given by
P~ P + P.® + P, (160)
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where

PP = probability of errors in the absence of noise owing to inter-
symbol interference caused by frequency selective Rayleigh
fading (Section IV)

P.? = probability of errors in the absence of noise owing to random
variations in carrier phase or frequency (Section V)

P, = probability or error owing to random noise with nonselective
Rayleigh fading (Section VI).

As will be evident from the preceding discussion, and from charts
that follow, P, can be disregarded when P, must be considered, and
conversely, for error probabilities P, in the range of practical interest.
Hence in actual applications (160) will take one of the following forms

P.~pPY» +p® (161)
P.,~P® + P%, (162)

In addition, there are intermediate cases in which P, ~ P,?.

In an exact determination of the error probability (161) it is neces-
sary to consider the net effect of random intersymbol interference on
the probability of errors owing to random noise, and similarly an exact
determination of the error probability (162) the probability distribution
of random phase deviations is involved. Intersymbol interference at a
particular sampling instant may reduce or increase the tolerance to
noise, and the net effect considering all pulse patterns may be such that
(161) is a legitimate approximation. Similarly, random fluctuations
in the slope of the phase characteristic may decrease or increase the
tolerance to noise at a particular sampling instant, and the net effect
considering all sampling instants may be such that (162) is a valid
approximation. This is evidenced by the following exact relation derived
by Voelcker® in place of (162) for binary PM with differential phase
detection

P, = [p/(5 + 1)IP.? + P,®. (163)

Since p would ordinarily exceed 100 (20 db), it follows that in this case
(162) is a very good approximation to (163).

The exact error probability (161) depends on the probability distribu-
tion of phase distortion in conjunction with the probability distribution
of intersymbol interference, which involves consideration of all pulse
patterns. The combined probability distribution, and in turn the exact
error probability, would be very difficult to determine, and hence the
inaceuracy involved in (161) cannot readily be assessed. However, if
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the probability distribution of intersymbol interference were the same
as that of the reduction in tolerance to noise owing to random fluctua-
tions in the slope of the phase characteristic, the inaceuracy in (161)
would be no greater than that indicated by (162) versus (163). In
most engineering applications, substantially greater inaccuracy would
be permissible in the estimation of error probability, such that (161)
and hence (160) can be considered permissible approximations in the
present context.

The above expression (160) is applied below to binary PM and FM.

7.3 Binary PM with Differential Phase Detection
Tor binary PM with differential phase detection P, is given by
(101) with A, = 2 or
A’B? 3
P === [1 1 <1 ——>] 164
3 + {1+ AR (164)

This error probability is given in Table IV as a function of AB.
The error probability P, is obtained from (117), or approximation
(121)

P2 = 41 — «(T)] (165)
~ 0.25(oT)* =~ 0.06(c/B)’ (166)
~ 0.039(3/B)%. (167)

The error probability P, is given by (135) or
PP =1/2(5 + 1). (168)

7.4 Error Probability Charts for Binary PM

In Fig. 21 are shown the error probabilities P.”, P,® and P.® as
a function of the transmission rate, for a raised cosine spectrum. The
error probability P, depends on the maximum deviation A from the
mean transmission delay, and curves are shown for a number of values
of A. The probability P, depends on the mean fading bandwidth 7,
and curves applying for several values of ¥ are shown. Finally, the error
probability P, depends on 5, and is shown for a number of different
values of p.

By way of illustration, the combined error probability obtained from
(170) is shown by the dashed line in Fig. 20 for the particular case in
which A = 107" second, ¥ = 2 cps and 5 = 10* (40 db).

The error probability as a function of transmission rate shown by
this dashed line could apply to a variety of tropospheric scatter links,
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Fig. 21 — Probabilities of errors in binary PM with differential phase detec-
tion: 1, curves for various departures from mean delay show error probabilities
in absence of noise owing to pulse distortion from selective fading; 2, curves for
various mean fading bandwidths ¥ show error probabilities in absence of noise
owing to random phase variations caused by flat fading; 3, curves for various
mean signal-to-noise ratios p show error probabilities owing to noise for flat Ray-
leigh fading; 4, dashed curve shows approximate combined error probability for
p = 40 db, A = 1077 second, and ¥ = 2 cps.

since A depends on the length of the link and on the antenna beam
angles. Moreover, 5 depends on the transmitter power, the length of
the link, and the antenna beam angles. Hence, given values of A and p
can be realized for a great variety of conditions.

7.5 Binary FM with Frequency Discriminator Detection

With frequency discriminator detection, the minimum required band-
width for a given pulse transmission rate is the same as for binary PM,
and half as great as that required with dual filter detection.
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The error probability P, is in a first approximation the same as
(161) for binary PM with differential phase detection. For the error
probability P.®, approximation (110) applies, or

P® = <i>2[1 + In (1 + 7£2>] (169)
’ B 20° '

This error probability is given in Table V as a function of B/o.

The probability of error owing to noise is, in a first approximation,
the same as given by (139) for dual filter detection with coherent detec-
tion, or

PP ~1/2p. (170)

7.6 Error Probability Charts for Binary FM

In Tig. 22 are shown the error probability P, P,” and P,* for
binary FM as a function of the transmission rate. The curves apply for
a raised cosine pulse spectrum, and the same basic parameters o, ¥ and
p as shown in Fig. 21 for binary PM. The error probability for the partic-
ular set of parameters previously assumed in Section 7.4 is shown by
the dashed curve.

Comparison of the curves in Figs. 21 and 22 shows that the error
probabilities are the same with both methods except at very low trans-
mission rates. This applies only as a first approximation and with ideal
implementation of both methods.

7.7 Diversity Transmission Methods

In diversity transmission, either space, frequency or time diversity
can be used. The performance would be the same with these methods,
and is an optimum when there is no correlation between the diversity
paths. This entails adequate separation of receiving antennas in space
diversity, adequate frequency separation in frequency diversity, or
adequate time intervals between repetition of signals in time diversity.

With any one of the above three methods, different combining or
decision procedures can be used at the receiver, as discussed in considera-
ble detail by Brennan.'” The optimum method from the standpoint of
minimum required signal power for a specified error probability is known
as “maximal ratio combining,” in which the gain of the receiver in each
path is made proportional to the input signal-to-noise ratio. This method
is difficult to implement, and a simpler but somewhat less efficient
method is “equal gain combining,” in which the various receivers have
equal gain and the demodulator baseband output are combined linearly.
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Fig. 22 — Probabilities of errors in binary FM with frequency discriminator
detection: 1, curves for various departures A from mean delay show error proba-
bilities in absence of noise owing to pulse distortion from selective fading; 2,
curves for various mean fading bandwidths ¥ show error probabilities in absence
of noise owing to random frequency variations caused by flat fading; 3, curves
for various mean signal-to-noise ratios 5 at detector input show error probabili-
ties owing to noise for flat Rayleigh fading; 4, dashed curve shows approximate
combined error probability for 5 = 40 db, A = 1077 second and ¥ = 2 ¢cps.

This entails a demodulator in each diversity channel and common gain
control of the various channels. The need for a demodulator in each
diversity channel and common gain control is avoided with “selection
diversity,” in which the receiver having the largest signal is selected.
Though this method is somewhat less efficient than equal gain combin-
ing, it has greater flexibility in that it can be used in conjunction with
both linear and nonlinear modulation and detection methods, with path
selection on the basis of predetection as well as post detection signals.
The principal diversity techniques would thus be space, frequency
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or time diversity, in conjunction with “‘equal gain combining” or “selec-
tion diversity.” The error reduction afforded by the two latter methods
is discussed below.

7.8 Error Probabilities with Equal Gain Diversity

The error reduction afforded by equal gain diversity transmission has
been determined by Pierce® for binary FM with coherent and nonco-
herent dual filter detection, on the premise of sufficiently slow flat
Rayleigh fading, such that errors from noise alone need to be considered.
For binary PM with differential phase detection, the error probability
with equal gain diversity transmission has been determined by Voelcker,®
considering both errors from noise [P.”] and errors from time variations
in the transmittance [P,®]. Voelcker has also determined the error
probability with dual diversity transmission for four-phase modulation
with differential phase detection, considering errors from transmittance
variations with time alone. For all of the above cases, the following
approximation applies for the probability of single digit errors with
dual diversity transmission over independently fading paths

Pe,? ~ 3Pe,12 (171)

where P, is the error probability for transmission over a single path
(no diversity). For four-phase modulation, Voelcker’s more exact
expression, when reduced to small error probabilities, gives a factor
47(8 + 7)/(2 + 7)* &~ 3.13 in place of 3 in (171).

The mechanism responsible for error reduction by diversity trans-
mission in the above cases also applies to transmission over channels
with selective fading when the errors are caused principally by inter-
symbol interference. With independently fading transmission paths
there will be no correlation between intersymbol interference in the
various channels, even though the signals are the same. Hence relation
(171) would also be expected to apply for the combined error probability
P, given by (160).

For small error probabilities, the following approximate expression
is given by Pierce® for the error probability owing to noise with flat
Rayleigh fading for binary FM and multidiversity transmission

. (@2m — 1) m
Pe,m ~ m Pe,l (172)
P..~ 3P,/ (173)
Pe,3 =~ 101)e,13 (174)

P.s~ 35P, " (175)
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The optimum number of diversity paths will depend on a variety of
considerations, among them the available bandwidth and transmitter
power, system complexity, and the source of errors. When the errors
are caused by noise it is possible to realize a certain minimum total
average signal power for a specified error probability P, ., by appro-
priate choice of m. As shown by Pierce’™ and Harris," the minimum
total average signal power is attained for any specified error probability
when m is so chosen that in each diversity channel 5 &~ 3, or about 5
db, for binary FM with dual filter noncoherent detection. The number
of diversity paths required to realize the minimum total average signal
power is rather large, and the signal power reduction that can be realized
with more than four paths is fairly small. For example, Pierce' shows
that for an error probability P, = 107, the minimum average signal
power is realized with m = 16, for which the total signal-to-noise ratio is
16.7 db, corresponding to a signal-to-noise ratio per channel of 4.7 db
(7 = 2.95). With m = 1 the average signal-to-noise ratio is 40 db and
with m = 4 is 19.4 db. Hence only a small additional reduction in signal
power is realized when the number of diversity paths is increased from
m = 4 tom = 16.

7.9 Error Probabilities with Selection Diversity

Equal gain diversity as considered above entails a linear addition
of the baseband outputs of the various demodulators, and would be less
effective in conjunction with nonlinear demodulation methods, such
as binary FM with frequency discriminator detection. With the latter
method, switch or selection diversity reception would probably be pref-
erable, in which only the receiver having the largest signal is selected.
With this method the following relations apply for m-diversity transmis-
sion when the errors are caused by noise and when receiver selection is
based on the largest carrier signal at the detector input®

P 2" 'mP, " (176)
P, ~ 4P, (177)
P.s 24P, (178)
P.. ~ 192P,," (179)

For equal error probability, the average signal power with selection
diversity must be greater than with optimum diversity by a factor
equal to the mth root of the ratio of the factors in (176) and (172). The
power must thus be increased by 0.62, 1.27 and 1.85 db for m = 2, 3
and 4, respectively.
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7.10 Multiband Digital Transmission

The curves in Figs. 21 and 22 suggest that for a given total transmitter
power and channel bandwidth, the error probability can be reduced by
transmitting at a slower rate over each of a number of narrower channels
in parallel. An approximate optimum bandwidth for each channel would
be such that P,"” + P,® is minimized. This can be accomplished with
separate transmitters and receivers for each channel, such that mutual
interference between channels is avoided. Hence the adverse effects of
selective fading can be overcome with the aid of more complicated
terminal equipment, without the need for increased signal power or
channel bandwidth.

An alternative method that is simpler in implementation is to trans-
mit the combined digital wave from the parallel channels by frequency
or phase modulation of a common carrier, as ordinarily used for trans-
mission of voice channels in frequency division multiplex. This method
entails some mutual interference between channels, as well as greater
channel bandwidth and carrier power than with direct digital carrier
modulation, as discussed below.

With the above method, the spectrum of the modulated carrier wave
will have greater bandwidth than with direet digital carrier modulation.
To avoid excessive transmission distortion of the combined wave, the
bandwidth between transmitter and receiver must be at least twice
that with digital carrier modulation. Hence, at least 3 db greater average
carrier power is required in order that the noise threshold level of the
common channel be comparable with that of direct digital carrier modu-
lation.

With such multiband transmission, intersymbol interference owing
to selective fading is avoided, in exchange for mutual interference be-
tween the various channels owing to intermodulation distortion caused
by selective fading. Such intermodulation distortion is dealt with else-
where (this issue, part 2) for a modulating wave with the properties of
random noise, which is approximated with a large number of binary
channels in frequency division multiplex. The results indicate that
under this condition intermodulation distortion will cause less trans-
mission impairment than does intersymbol interference in direct digital
transmission. Hence multiband transmission by common carrier modula-
tion permits a reduction in error probability in exchange for at least a
twofold increase in bandwidth and carrier power. However, this reduc-
tion in error probability may be less than can be realized with direct
digital carrier modulation in conjunction with a twofold increase in
bandwidth and signal power with dual diversity.
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Error probabilities in binary multiband transmission by frequency
modulation of a common carrier are dealt with by Barrow?! on the premise
of slow flat fading over the combined band, so that only errors owing to
noise need be considered and intermodulation distortion can be dis-
regarded.

VIII. SUMMARY

The objective of this analysis has been to develop a transmission and
modulation theory for troposcatter systems, applicable to digital trans-
mission by AM, FM and PM at any speed and based on a realistic
idealization of troposcatter transmittance properties. The basic model,
together with the analytical procedure and certain basic assumptions,
are reviewed here.

8.1 Troposcalier Transmitlance

Based on certain physical considerations, an idealized multipath
transmittance model is developed in which the received component
waves vary at random in amplitude and phase and have transmission
delays owing to path length differences which vary linearly with angular
deviation from the mean path with maximum deviations A from the
mean delay. With this type of model, a Rayleigh probability distribu-
tion is obtained for the envelope of a received carrier wave in conform-
ance with observations.

To facilitate determination of transmission performance, two basic
statistical parameters are required aside from the signal-to-noise ratio
at the receiver. One of these is the autocorrelation funetion of envelope
variations with time at a given frequency. The other is the autocorrela-
tion function with respect to frequency at a fixed time.

The first of these, the time autocorrelation function, depends on the
rapidity of changes in the atmospheric structure within the common
antenna volume. It has been determined by a number of observations
with some theoretical support, as given in certain publications.

The second basic parameter, the autocorrelation function with respect
to frequency, has been determined by observation on a particular link.
These observations conform well with the autocorrelation function
determined analytically herein on the premise that the maximum delay
deviation A noted above is given by the path length differences
based on the beam angles between the 3-db loss points.*

With the aid of this idealized model, endowed with the above basie
parameters, as determined by observation or theory, it is possible in

* This conclusion appears to be supported by the results of recent measure-
ments on a 100-mile path.2
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principle to determine analytically the associated idealized transmission
performance with any modulation method. Though an exact solution is
possible in principle, it appears intractable and is not essential for
engineering purposes. An approximate solution for transmission at
any digital rate is derived herein. To this end certain basic statistical
parameters are determined from the above two autocorrelation func-
tions.

8.2 Vartations in Transmittance with Time

In Section II, distributions are given for the time rate of change in
the envelope and for the first and second derivatives of the phase func-
tion. These probability distributions permit approximate evaluation of
changes in the envelope, phase and frequency over a signal or pulse
interval for narrow-band signal spectra.

8.3 Vartations in Transmittance with Frequency

The corresponding probability distributions with respect to varia-
tions in transmittance with frequency are given in Section 11T and permit
approximate determination of random attenuation and phase distortion
over the band of the signal spectra owing to the selectivity of fading.
From these random variations it is possible to determine the correspond-
ing pulse distortion together with resultant intersymbol interference in
carrier pulse trains and error probability in the absence of noise.

8.4 Errors from Selective Fading

As a next step in the determination of error probability, an approxi-
mate evaluation is made in Section IV of the probability of errors from
intersymbol interference with selective Rayleigh fading in the absence
of noise. In a first approximation it turns out that attenuation distortion
can be neglected in comparison with phase distortion. Furthermore, the
latter can be approximated by a component of quadratic phase distor-
tion, or corresponding linear delay distortion. Intersymbol interference
owing to quadratic phase distortion is determined for various carrier
modulation methods, and an approximate relation is derived for the
resultant error probability in the absence of noise.

8.5 Errors from Nonselective Rayleigh Fading

With transmission at sufficiently slow rates, errors.can occur in the
absence of noise, owing to changes in amplitude, phase or frequency over
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a pulse interval, caused by nonselective Rayleigh fading. The proba-
bility of errors on this account is determined in Section V on the approxi-
mate basis that changes over a pulse interval are proportional to the
time derivatives of the amplitude, phase or frequency, depending on the
modulation method. Comparison with available exact solutions for
phase modulation shows that the inaceuracy resulting from this approxi-
mation is inappreciable.

8.6 Errors from Random Noise

In Section VI expressions are given for the probability of errors from
random noise with flat Rayleigh fading, as derived in various publica-
tions for different digital carrier modulation methods. In addition, an
expression is derived for error probability with rapid Rayleigh fading
in conjunction with slow log-normal fading, as encountered on tropo-
scatter links.

8.7 Combined Error Probability

In the final Section VII the combined error probability is determined
on the approximate basis that it is the sum of the error probabilities for
the three basic sources assumed above. Charts are presented from
which can be determined the approximate combined error probabilities
for binary phase and frequency modulation over a single path, and
approximate expressions are given for the error probability with diversity
transmission over independently fading paths.

8.8 Basic Approximations

The idealized model of troposcatter transmission assumed herein is of
course an approximation, as are the idealizations regarding the per-
formance of the carrier modulation methods. Even with exact mathe-
matical analysis based on this model, the predicted performance would
not, conform entirely with that observed on actual systems.

In determining error probability from the idealized model, two basic
approximations were used to obtain numerical results. One is that the
maximum departures A from the mean transmission delay can be
determined from the beam angles taken between 3-db loss points. On
short links with narrow-beam antennas, these are virtually equal to the
free-space antenna beam angles, but for long links are greater owing to
beam broadening by scatter. The second approximation is that errors
from distortion owing to selective fading are caused principally by a
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quadratic component of phase distortion. This is the first component
that gives rise to distortion in a power series expansion of a nonlinear
phase characteristic as a function of the frequency from the carrier.

The same two basic approximations have been used in a companion
paper (this issue, part 2) in a determination of intermodulation noise in
analog transmission by FM of signals with the properties of random
noise. Theoretical predictions based on free-space beam angles are in
this case in reasonable agreement with measurements on two tropo-
scatter links 185 and 194 miles in length, with narrow-beam antennas.
Measurements on links 340 and 440 miles long give intermodulation
noise that would correspond to beam angles and maximum delay differ-
ences =A that are greater than for free space by factors of about 1.35
and 2.15, respectively.

The above measurements also show that as the bandwidth increases,
actual intermodulation noise will be progressively smaller than predicted
on the premise of quadratic phase distortion. Translated to digital
transmission, the error probabilities P, owing to selective fading as
determined here on the premise of quadratic phase distortion would
represent an upper bound, that should conform well with actual error
probabilities when the latter do not exceed about 1072 in Figs. 21 and 22,

8.9 Comparison with Recent Related Publications

Since the completion of the galley proof of this paper an article by
Bello and Nelin?? has appeared, dealing with errors in binary transmis-
sion owing to frequency selective fading by a different analytical pro-
cedure than used here. Numerical results are presented for error prob-
abilities in dual and quadruple diversity transmission by binary FM
with dual filter incoherent detection and binary PM with differential
phase coherent detection. These results are based on an assumed Gaus-
sian correlation function, or power spectrum, of the selectivity of fading
with frequency. A comparison is made below of the above numerical
results with those obtained on similar premises from relations presented
here.

For a Gaussian power spectrum of correlation bandwidth B, as used
in the above paper, the corresponding value of ¢% in (18) is ¢® = 2(xB,)2
Expression (55) applies with b,/by = ¢2 in place of A?/3. With this sub-
stitution and with 7 = B!, expression (101) and Fig. 17 apply, with
A-B =0.79 (B.T)7', where (B.,T)~" is the parameter appearing in Figs. 5
and 9 of the above paper for the irreducible error probabilities.

Binary FM with dual filter detection as assumed in the above paper
can be considered equivalent to ideal complementary binary AM over
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each of two channels. When the frequency selectivity of fading is suffi-
cient to cause errors in one or the other of these channels, the above
method is essentially equivalent to dual diversity transmission by AM
over two independently fading channels. On this basis, binary I'M with
dual diversity and dual filter noncoherent detection is approximately
equivalent to binary AM with quadruple diversity. The error probabil-
ities determined on the latter premise with A-B = 0.79(B,T)~! in (101),
or in Fig. 17, in conjunction with (172) for m = 4, conform reasonably
well with those given in Fig. 5 for dual diversity with ¢ = 0 and n = 1.
Complete agreement is not possible for the reason that the results in
TFig. 5 assume a rectangular shape of undistorted pulses, whereas the
present analysis is based on a more realistic pulse shape with a raised
cosine spectrum, as indicated in I'ig. 13.

In the case of binary PM with differential phase detection, the rela-
tions presented here with A-B = 0.79(B.T)~! yield error probabilities
that are significantly smaller than those given in Fig. 9 of the above
paper. This is to be expected, since the present relations are based on
detection with an optimum threshold level, whereas those in the above
paper assume zero threshold, which is not the optimum owing to the
presence of a substantial bias component in the demodulator output,
when pulse distortion is pronounced.’* Moreover, the shapes of the un-
distorted pulses are different, as noted above.

It is evident from the above considerations that apparently unrelated
and possibly misleading results can be obtained unless comparisons are
made of binary modulation methods of equal bandwidths with optimum
implementation of each, as was done in Fig. 17.

The above article called attention to another paper® by the same
writers that refines Voelcker’s original analysis?® of errors in transmission
over narrow-band channels owing to transmittance variations with time.
Their results show that for a Gaussian power spectrum of the fading
rate as assumed herein, Voelcker’s analysis is exact, though this is not
true for all forms of power spectra.
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APPENDIX

Transmattance of Troposcatter Channels

Owing to the differences in path length from transmitter to receiver
via the various heterogeneities in the common volume, the various
components of the received wave arrive with different delays. For
analytical purposes it is convenient to assume a certain mean reference
path with delay 7o and to express the transmission delay via other
paths relative to the delay 7. Actually there will be a large number
of paths with the same delay T as the mean path and a large number
of paths for each other delay. In the present analysis the approximate
model indicated below is assumed, with a single vertical scatter plane
midway between transmitter and receiver.

The amplitude of the wave component arriving over a path at the
distance x above the mean path is taken as A(x,t) and the delay over
this path as

T(z) = Ty + 6(x).
The wave component arriving via this path is then
ex(wt) = A(x,t) cos w[t — Th — 8(x)]. (180)

Let L be the distance between transmitter and receiver and H the
height of the mean path. In this case

é(z) = s(z)/v (181)
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where v is the velocity of propagation and s(z) the path length difference
given by

s(z) = [é:— + (H + x)2], — (LZ + H2> (182)

In actual systems H < L. Furthermore, the maximum value £ of z is
ordinarily much smaller than H. On these premises the following ap-
proximation applies

8(xz) = (2H/Lv)xz = z/c (183)

where ¢ = vL/2H.
It will further be assumed that there is an infinite number of paths,
in which case the received wave becomes

o) = [ Alap) cos alt — To — w/c) da (184)
= cos w(t — To) fox [A(zt) + A(—=zt)] cos (wx/c) dx
4 (185)
+ sinw(t — Ty) fo [A(zt) — A(—2,t)]sin (wx/c) du.
It will now be assumed that
ff [Ae)) + A(—z)] dw = . (186)

This appears to be an appropriate physical requirement, for the reason
that reflections occur as a result of variations in the electrical properties
of an elementary volume, relative to that of the common volume. No
reflections occur with a uniform common volume. In a heterogeneous
common volume, each positive reflection must be accompanied by an
equal negative reflection, which is reflected in condition (186). More-
over, under this condition there is no reflection along the mean path of
the transmitted beam. That is, with = 0in (185), e(¢) = 0 provided
(186) applies. '

Condition (186) can be insured if the following Fourier series repre-

A

sentations are used for z < £

o0

Azt) + A(=zt) = D a(mt) cos max/d (187)

m=1

and

A(zt) — A(—=x,t)

Il

> b(myt) sin mra/z. (188)
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With m = 1, 2, 3, ete., as above, the area under each harmonic com-
ponent vanishes, such that condition (186) is satisfied.
With (187) and (188) in (185), the following relation is obtained

e(w,t) = cos w(t — TYU(wit) + sin w(t — T)V(w,t) (189)

where

0

£
Ulwl) = 2 almg) '/; cos mrx/% cos wx/c dx (190)

m=1
d Z

V(od) = 2 b(mp) [ sinmms/ésines/ods  (191)
m=1 0

Evaluation of the integrals yields the following expressions

o sin (mr — wA) |, sin (mr + wA)
Ulat) = mZ=:1 EA(m) I: mr —h ' + wA ] (192)
R sin (mr — wA) _ sin (mr + wA)]
Viet) = mZ=1 BB(m) l: mr — wA mr + wA (193)
where

A(m,t) = fa(m,t)
B(mzt) = £b(m,t) (194)
A = t/e.

It will be noted that A is the maximum departure from the mean
delay 7.

In evaluation of (192) and (193) it is convenient to introduce a new
reference frequency wo in place of 0, and to choose this reference fre-
quency such that

wod = nm. (195)
Thus
wA = nr -+ uA (196)

where —7 < uA < m, and u is the deviation in frequency from wg .
The functions (192) and (193) are then replaced by
S 1 sin [(m — n)m — uA]
U(uyt) Z ZA(m:t) { (m — ’n)ﬂ' — uA

m=1

(197)

sin [((m + n)m + uA]}
sin (m + n)r + uA
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2 sin [(m — n)7r — ual
V(ut) = m2=:1 $B(m,t) { (m — n)w — uA

(198)

_sin [(m + n)r + uA]}
sin (m + n)r + uA |’

In troposcatter transmission it turns out that m is of the order of
100 to 1000. For this reason the second terms in the above series, in
(m 4+ n)w, can be neglected. With this simplification and with m —
n = 7, expressions (5) and (6) are obtained.

Expression (189) can then be written in the form

e(w,t) = r(u,t) cos [w(t — T) — o(u,t)] (199)

where r and ¢ are given by (3) and (4).
The channel transmittance is accordingly given by (2).
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Au-n-Type GaAs Schottky Barrier and
Its Varactor Application

By D. KAHNG
(Manuseript received July 19, 1963)

Evidence is presented to show that Au-n-type Gads rectifying contacts
are magority carrier rectifiers of the Schottky type. These diodes may be
characterized by a Richardson constant of 20-60 amp/ em’deg” and barrier
heights of 1.03,0.97 and 0.91 volts, corresponding to the (111), (111) and
(110) orientations of Gads substrate.

GaAs Schottky barrier varactor diodes constructed on epztaxzal films may
be designed to yield a high culoff frequency. Performance calculations in a
practical case yield a “dynamic quality factor” of 50 at 6 gc under favor-
able conditions. A “dynamic quality factor” of about 20 at 6 gc should te
obtainable with present fabrication technology.

I. INTRODUCTION

It has been demonstrated that under suitable conditions a metal-to-
semiconductor rectifying contact may exhibit characteristics predictable
from the simple theories advanced by Schottky! and Bethe.? An example
of this type of system is the Au-n-type Si Schottky barrier which was
reported earlier.? In the present paper evidence is presented to show
that Au-n-type GaAs is also such a case.

The main features of a metal-to-semiconductor contact are that it
may be designed as a majority carrier rectifier, i.e., noninjecting recti-
fying junction, and that the junction is aceurately describable in terms
of an ideal step junction. The first feature implies that the frequency
response of the diode is limited only by RC charging time or transit
time rather than by minority carrier lifetime. High cutoff frequency
can be achieved through the use of an epitaxial structure. Such diodes
may find application in high-speed switching, mierowave detection and
mixing, harmonic generation, or parametric amplification using the
diode as a varactor. The first of these applications, fast switching, has
been discussed elsewhere.*

215
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The second feature, the ideal step junction, makes the Schottky bar-
rier highly promising as a varactor. The step junction configuration
when combined with epitaxy yields advantageous varactor performance
in that its capacitive sensitivity with voltage is much higher than that
of a graded junction; yet no loss in ¢ and breakdown voltage results
from the high capacitive sensitivity. The case of a retrograded junction®
is less favorable.

The choice of GaAs as the semiconductor part of the Schottky bar-
rier varactor is based on two facts. First, its electron mobility is the
highest among the common semiconductors available, thus allowing
realization of minimum RC product while maintaining the capacitance
of the unit small to facilitate diode broadband coupling to a microwave
circuit. Secondly, doping close to degeneracy permits its operation at a
low temperature without detérioration in performance due to carrier
freeze-out. ‘

In the following, the physical properties of the Au-n-type GaAs
Schottky barrier are examined and a simple theory of a varactor design
on the basis of the barrier properties is presented. The theory is used
to calculate the expected performance of the varactor subject to prac-
tical considerations such as the thickness of the epitaxial layer, parasitic
resistances arising from the wafer and the contact, and available pump
power.

II. PHYSICAL PROPERTIES OF Au-n-TYPE GaAs SCHOTTKY BARRIER

Vacuum deposition of gold 1000 A thick confined to a circular area
of 2 X 10~% cm? on suitably etched n-type GaAs surfaces results in
diodes whose typical forward characteristics are as shown in Ifig. 1.
Notice that the characteristics follow the equation

I; = I, exp [(¢/kT)V] (1)

very closely, indicating nearly ideal Schottky barrier behavior. Here I,
is the forward current, I, the saturation current, ¢ the electronic charge,
k the Boltzmann constant, T the absolute temperature, and V the for-
ward voltage.”

Note also that I, depends on the substrate orientation. I is smallest
for a (111)-directed* substrate and increases for the (111) and (110)
directions in that order. This suggests that the barrier height is sensitive
to GaAs orientation.

* The (111) direction is defined to be perpendicular to the surface which gives
a smoother appearance after an etch.
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Fig. 1 — Semilog plot of typical forward characteristics for three substrate
orientations; n is the slope parameter, namely,
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For a uniformly doped substrate, the barrier capacity depends on the
reverse voltage in accordance with the well-known equation

- &)

where C' is the capacity, A the junction area, e the permittivity, N the
donor concentration, and Vr the total voltage across the junction in-
cluding the built-in voltage, V. This is demonstrated when 1/C* vs
V= (applied voltage, reverse direction positive) plots are made as shown
in Fig. 2. Such plots should be linear if (2) is closely followed, and they
yield information on the diffusion voltage (built-in voltage) of the barrier
as well as on the ionized donor density. Table I shows data for the three
orientations mentioned earlier. Two “separate evaporation runs were
made for each orientation. Each set of N and V), corresponds to a single
diode. For the narrow range of donor concentrations measured, the
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Fig. 2 —1/C* vs applied voltage for diodes constructed on (111)-oriented GaAs
surface.

equilibrium Fermi level of the substrate is about 2 k7T below the con-
duction band edge. The energy difference of these two levels is denoted
by Erc . The barrier height, ¢, is determined from

¢ = VD + EF‘C (3)

where Vp = Viny + kT/q (Vine is the measured voltage intercept from
Fig. 2. For details of this procedure see Ref. 3). Since I, in (1) can be
written as

I, = AT exp — (go/kT) (4)

one may proceed to calculate Ar, the Richardson constant, to check
the validity of the model which led to (1) and (2). I, can be determined
from the forward characteristics by plotting [In I; — (qV/kT)] vs I, .
The resulting calculated Az’s are shown in the last column of Table I.
The expected Ar is of the order of 100 amp/cm’deg”. Since the caleula-
tion of A is very sensitive to ¢ values, the results may be deemed to
be in satisfactory agreement with this expectation.

It is of interest here to calculate the minority carrier contribution to
thg; forward conduction. The hole injection efficiency, v, can be written
as

8

1A= % (Dy/7p)} (5)
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where j, is the hole current density, j; the electron saturation current
density, p. the equilibrium minority carrier density of the substrate,
D, the diffusion constant of holes and 7, the hole lifetime. The upper
limit of v estimated, using D, = 20 em’sec ', 7, = 107 sec, and j, =
2 X 107" amp/em® for n-type GaAs of 10" carrier concentration, is
5 X 107*. Indeed, the assumption of 7, = 10~ sec implies that the holes
do not diffuse any appreciable distance. If one makes an assumption of
longer hole lifetime, ¥ then would be even lower than the value above.
The v calculated above applies, strictly speaking, only at the origin of
the V-I curve. For high forward current range, the calculation ought to
be modified to include hole drift as well as diffusion.”

The Au-n-type GaAs Schottky barrier then can be characterized by
the set of physical parameters ¢ and Ax as given in Table I for the
various substrate orientations. It can also be treated as a noninjecting
rectifier, at least for small forward currents.

III. EPITAXIAL SURFACE BARRIER VARACTOR PERFORMANCE

Assume that the surface barrier diode is constructed on an epitaxial
film of thickness d grown on a substrate material of a resistivity ps .
For the sake of simplicity assume that for the maximum applied reverse
voltage V,, , the space charge just extends through the entire thickness
d of the epitaxial n region so that

d = [(2¢/gN)Valt = [(2¢/gN) (Vo — VDI (6)
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Here Vy is the de bias voltage including the built-in voltage Vp , and
V, is the pump amplitude.
The series resistance, R, at a voltage V < V,, is given by

— pe(d - S)
A

where p, is the resistivity of the epitaxial film, A is the junction area,
R, is the contribution from the substrate and contacts, and s is the
space charge width corresponding to V given by

s = [(2¢/¢N) V1% (8)

R, +m=ﬂ%m%ﬁ—ﬁ+msw>

The assumption used in arriving at (6) does not lead to loss of generality,
since the series resistance due to unswept-out epitaxial region may be
incorporated into R, in (7). The performance may now be calculated
in terms of the “dynamic quality factor,” @, of the diode as defined by
Kurokawa and Uenohara.® This formulation is based on the assump-
tion that the undesired sidebands are open-circuited. Experimental re-
sults are in closer agreement with the open-circuit assumption than with
the closed-circuit assumption.’
The figure of merit Q as defined in Ref. 8 may be modified to include

the variation of the resistance, (7), to give

~ 1D

Q= % o (9)
where D, is the Fourier coefficient of the first harmonic of the elastance,
1/C, w is the operating frequency, and R, is the zero-order term of the
Fourier expansion of R, [ef. (7)]. Equation (9) may be rewritten in
combination with (2) and (7) as

T @e/aN)5(7)

Q= (10)

1
20Jpe
A

where the symbols F and F; are used to indicate the zero- and first-
order terms of the Fourier expansion of the expression inside the brackets
following the symbols. Since

V = Vo+ Vicos wpt (11)

(QG/QN)%EFO(Vm% - V%) + Rss

and
V= Voe+ V1 (12)
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where w, is the angular frequency of the pump, (10) can be expressed

L= (1/(1 4+ &)'Fo(\/1 + a cos wyt)
[1/(1 + &)I'F1(\/1 F cos w,t)
n 20AR, (egN/2V )}
[1/(1 + P51 + « cos wyt)

(13)

where
a=Vi/Vo. (14)

The first term of (13) is the @ associated~\vith the average loss in the
epitaxial film region, and the second is the () associated with the external
loss. We have

== 15
5 Q1+Qe (15)

Fig. 3 shows the pertinent values for $, and F; of /1 + « cos w,t as
functions of «. Since these quantities show weak variations with «, one
may take the values at « = 1. (By definition « is never greater than
unity.) Then

~ . 058
Qi

IR

(16)

1
€pe

w
~ 02 ;021 1
@ = wAR,s Q@Vn/eaN)* = == 5

—go1fm

Rl = 0.21 7 17)
where C,, is the minimum capacity corresponding to V.., f. is the cut-
off frequency corresponding to C,, , and f is the operating frequency.

More accurate calculation of §; and @, is possible whenever the pump-
ing condition is specified. Namely, when Vi, the sum of the built-in
voltage and the dc bias, and the pump amplitude are specified, the value
of « is fixed. Now, corresponding to this «, more accurate numerical fac-
tors in (16) and (17) can be obtained from Fig. 3.

It is interesting to note that § is a function of & but not of V, or V;
separately, provided the change in R, due to changes in V, or Vy is
taken into account. Nonuniform epitaxial film doping would not allow
the use of Iig. 3 for the numerical values in (16) and (17). However, the
essential form of these equations is retained and the appropriate values
of the numerical factors are calculable once the doping profile is specified.

The optimum §; is determined by smallest p, one can practically use
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Fig. 3 — Pertinent Fourier coefficients.

subject to the maximum static capacity for circuit matching require-
ment. We now define the static capacity of the unit as

1 1
C —WNZSC,”O:W. (18)
Equation (18) indicates that V., should be made as large as possible for
this purpose. The extent to which V,, can be made large depends on two
quantities, the breakdown voltage corresponding to a given doping level,
N, and the pump amplitude. Let us examine the case where the maxi-
mum conductivity usable is limited by the breakdown voltage and the
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epitaxial film thickness. The relationship between the breakdown field,
E, , assumed here to be a constant for simplicity, and the maximum space
charge thickness, (or the epitaxial layer thickness), d, is

Ey =z (g/€)Nd. (19)
If d.. is the smallest thickness of epitaxial film practically attainable, then
1/pe = pgN = (peEr/dn) (20)

where u is the electron mobility. For Ep-e =~ 5 X 1077 volt-fd/em’
and d,, = 107" cm, (20) yields an optimum doping level of 3 X 10"
em™, which corresponds to p. &~ 0.04 chm-cm, assuming x = 5000 em?’/
volt-sec. These figures will lead to §; ~ 390 at 6 ge.

Now let us calculate §,, using the doping level obtained above for
A = 2 X 107° em’® (0.002-inch diameter circle). Also assume that
R. =~ 0.5 ohm. Then (17) yields §, &~ 57, and (15) gives a  of 50.

The above calculation of dynamic quality factor was made assuming
no limitations on the pump amplitudes and ideal breakdown voltage of
about 25 volts. If one now assumes that only one-half of the epitaxial
layer is penetrable, due to high leakage current, then @, becomes 24 and
Q = 22. If one is able to reduce the epitaxial thickness to 5 X 107° cm,
the improvement is not very significant, in that ¢, becomes 29 and @ = 27.
In addition, if R, = 0.8 ohm this would affect ¢ drastically, yielding §
of only 17. These figures for § would undoubtedly deteriorate in actual
cases because the package capacity is not taken into account, although
the additional external circuit loss (for instance, the cavity loss) may be
incorporated in R, .

Clearly, the ultimate value of @ attainable is more heavily dependent
on §, than on §; . Q. is determined by R,, and C,, . In a low-noise ampli-
fier V,, may be advantageously made small, say about 10 volts or less.
V.. should also be such that no appreciable reverse current flows. This
means that the epitaxial layer thickness should be slightly larger than
that dictated by (20), although @, is somewhat sacrificed. The relaxation
on V,, leads to a higher optimum epitaxial layer doping than that previ-
ously calculated. This is compatible with the necessity of having the
layer thickness in excess of that dictated by V, . Equation (20) gives
optimum doping of 8 X 10'® em™ or 0.02 ohm-cm for V,, = 10 volts
and a corresponding layer thickness of 0.4u. If the total layer thickness
is 1u (compatible with present technology), then there is a contribution
to R, from the 0.6 p thick unswept-out layer. This could be partially
compensated for by reducing the capacitance through use of a smaller
junction area. The smallest junction area usable is, in turn, limited by the
package capacity. Choice of an 0.001-inch diameter circular area leads
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to an unswept-out layer resistance of 0.2 ohm and C,, , corresponding to
Vo, of 0.13 pf. The total R, then is‘approximately 0.8 ohm, which
leads to §, of 52 at 6 ge. @; is increased to 780 by virtue of lowered epi-
taxial resistivity, yielding an over-all § of 50 at 6 gc. These figures are
optimistie, since the influence of package capacitance is again neglected.

IV. CONCLUSIONS

The Au-n-type GaAs Schottky barrier can be characterized by the
physieal parameters, barrier height ¢, and Richardson’s constant A .
The values of these parameters were found to be A, = 20-60 amp/cm’
deg’ and ¢ of 1.03, 0.97 and 0.91 volts, corresponding to (111), (111) and
(110) orientation. It was shown that the barrier is essentially noninject-
ing for small forward currents.

The combination of the surface barrier rectifying junction with a GaAs
epitaxial structure may lead to a dynamic quality factor, @, of 20 at 6 ge
with the presently available technology. In fact, one may look forward
to achieving @ of as much as 50 at 6 ge, either for low-voltage varactors
(V.. £ 10 volts) or high-voltage units (V. ~ 25 volts). The latter may
be useful for high-power applications such as harmonic generation, as
opposed to low-noise operation, for which the former is more suitable.
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Gold-Epitaxial Silicon High-
Frequency Diodes

By D. KAHNG and L. A. D’ASARO
(Manuscript received July 19, 1963)

A diode based on the properties of an evaporated gold contact on n-typé
epitaxial silicon has speed comparable to point contact diodes. The space
charge region at zero bias can be designed to penetrate up to the impurily
tail at the interface, thus reducing series resistance. An encapsulated diode
was made with a 1-mil diameter gold contact on an epitaxial layer 1.6 mi-
crons thick having a surface doping of 1 X 10" donors per cm?®. The zero-
bias RC product of this diode s less than 1 X 1072 second. Under forward
bias the electron transit time through the epitaxial layer is less than 2 X
107 second. The breakdown voltage of experimental diodes is greater than
10 volts. Siress aging experiments in an inert atmosphere show no deteriora-
tion of electrical properties at temperatures up to the gold-silicon eutectic
(870°C). This diode was used as a harmonic generator at 11 ge with an
efficiency comparable lo that of a gallium arsenide point contact diode.

I. INTRODUCTION

The metal-semiconductor rectifying contact in a variety of configura-
tions called “point contact’ has long been used for microwave rectifica-
tion and amplification. This investigation shows that metal-semicon-
ductor diodes can be designed and fabricated by large-area techniques
with speeds adequate for application as fractional nanosecond switches
or microwave mixers. In particular, a gold n-type silicon contact will be
considered here. An estimate of the response time can be obtained from
a calculation of the transit time of electrons through the space charge
region and the RC time. The series resistance and capacitance of the
diode are made small by using an epitaxial structure. Since the hole in-
jection in these diodes at low currents is negligibly small, the response
time can be independent of hole lifetime. In what follows, design of these
diodes will be discussed, and the predictions of the preliminary design
will be compared with experiment.

225
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II. DIODE STRUCTURE AND FABRICATION

The structure of the diode is shown in Fig. 1. An epitaxial layer of
n-type silicon is grown on an nt substrate. A layer of gold is evaporated
in a small dot over the epitaxial layer. The metal-semiconductor con-
tact formed in this way has an internal potential which results in a space
charge region in the silicon near the gold. The doping and thickness of
the silicon is chosen so that at zero bias the space charge region of thick-
ness w occupies most of the epitaxial layer. The remaining portion, s, is
a region of high doping due to diffusion of impurities from the substrate.!:2

Experimental diodes were fabricated as follows. Silicon wafers of re-
sistivity 4 X 102 ohm-cm with faces perpendicular to the (111) direc-
tion were deposited with epitaxial layers of silicon by the hydrogen re-
duction of silicon tetrachloride.!'* The film thickness in a typical diode
is 1.5 microns. The surface doping of the n-type layers is 2 X 10" to
1 X 105 donors per em?. The undeposited side of the wafers was provided
with gold-antimony evaporated and alloyed ohmic contacts. These
wafers were then subjected to cleaning consisting of oxidation and oxide
removal steps. The wafers were cleaned immediately prior to gold evap-
oration. Gold evaporation was carried out in a vacuum of less than 2 X
10—¢ mm Hg. Gold was evaporated through a molybdenum mask, con-
fining the gold to a circular area 1 mil in diameter. After evaporation
some of the diodes were etched, using the gold dots as masks. The etch-
ing removes the epitaxial region outside of the gold dots, thus prevent-
ing formation of large-area channels near the gold dots.

III. RESPONSE TIME

The low-current response time is determined by the transit time of
electrons through the space charge region and the RC charging time. The
transit time is given approximately by =, = w/v, , where w is the space
charge width and v, is the average scattering limited velocity in the space
charge region. The RC charging time can be estimated from the resist-

n-TYPE
I S JE } EPITAXIAL LAYER

Fig. 1 — Structure of a gold-silicon epitaxial barrier diode.
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ance of the unswept-out region of the epitaxial layer plus the spreading
resistance in the substrate and the capacitance of the contact

_ Cupsd
RC=C0 [ pods+ E20 (1)

region
8

where C, is the capacitance per unit area of the diode, p. is the resistiv-
ity of the epitaxial layer in region s, p, is the resistivity of the substrate
and d is the diameter of the contact.

Calculation of the response time can be made for a case where the
donor distribution in the epitaxial layer is known. In layers a few mi-
crons thick, the effect of diffusion from the substrate and the effect of
the process of epitaxial growth on the distribution of impurities' need
to be considered. The doping profile (concentration N versus distance )
may be approximately characterized by the form'?

x

___Ns —oz _ —dx
N—-?erfczm—l—No*e + A(1 — &%) (2)

where the first term is due to diffusion from the substrate of doping
N, with an effective diffusion coéfficient D for a time ¢ (an approxima-
tion), the second term is the substrate contribution to the film doping
through the exchange of dopant between the solid and gas phase with
parameters No* and ¢, and the last term is the gas phase contribution
to the film doping with an asymptotic value A for thick films. An exam-
ple of an impurity distribution obtained in the fabrication of experi-
mental gold-silicon epitaxial diodes is given in Fig. 2. The diffusion
and exchange contributions to the doping are much larger than the gas
phase contribution in the thicknesses used here. Within the lower doped
region, one may approximate by a uniform doping for estimates of per-
formance, since the film thickness is smaller than 1/¢.

The width of the space charge region at equilibrium in a uniformly

doped material is given by
_ 2EVD 4
v ( gN ) )

where e is the dielectric constant, V, is the diffusion potential (shown
in Fig. 3), ¢ is the electron charge, and N is the donor concentration.
In a typical case for these diodes the donor concentration in the region
in which the exchange contribution dominates may be 1 X 10%. The
barrier potential for the gold-silicon contact (V, in Fig. 3) is known
from measurements of the forward and reverse characteristics and the
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Fig. 2 — Impurity profile components for an epitaxial silicon film.

capacitance-voltage relation,’ and is 0.79 & 0.02 ev for silicon dopings
from 0.1 to 10 ohm-cm. At N; = 1 X 10", the Fermi level is 0.25 volt
below the conduction band, leading to V, = 0.54 volt, and w = 0.67
micron. Since the edge of the space charge region falls in the diffusion
tail, the series resistance of the diode is due to the doping in this tail.
Integration over the doping distribution in Fig. 2 yields a zero-bias
series resistance of 4.0 ohms.

T— e
|
} i
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I
i
|
| v
| FERMI LEVEL ZERO BIAS

Fig. 3 — Shape of the potential barrier under zero and forward bias.
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The zero-bias capacitance can be found from
C = (¢/w)d (4)

where A is the diode area. For a 1-mil diameter diode, the expected zero-
bias capacitance is about 0.05 pf. The capacitance of the encapsulation
raises the total to about 0.3 pf, making the zero-bias RC product equal
to 1.2 X 1072 second for the diodes with a series resistance of 4 ohms.

The transit time of majority carriers through the space charge region
at zero bias leads to an upper limit on the response time. For the case
given above under zero bias, the transit time obtained from an assumed
scattering limited velocity of 5 X 108 em/sec is 2 X 107! second. Under
forward bias the width of the space charge region decreases, and hence
the response time may be shorter than this estimate.

IV. HOLE INJECTION CONSIDERATIONS

The hole injection ratio is defined as

v = Jv/ (Gp + ) (5)

where j, is the hole current and j, is the electron current crossing the
junction. Diffusion theory® allows this expression to be written as

Y = qDpPn/Lipjns (6)

where D, is the diffusion constant for holes, p, is the equilibrium con-
centration of holes in n-type material, L, is the diffusion distance for
holes, and j,, is the saturation value of the electron current, which can
be obtained in terms of “diode” theory® as

Jus = AT P70, (7)

For Ny = 1 X 10 and the experimental values of A (=40) and V,
(=0.79 ev) from Ref. 4 one obtains vy & 1 X 10~7. Under low-current
conditions the hole injection will not have a significant effect on the re-
sponse time.

With increasing forward bias, the series resistance increases as the
space charge region moves towards the gold-silicon junction. In the case
of an extreme forward bias, the assumptions used earlier are not valid,
and the hole current increases.” The series resistance may then be con-
ductivity modulated and falls with continuously increasing current.

V. BREAKDOWN VOLTAGE

The avalanche breakdown voltage can be roughly estimated from the
published ionization rate of electrons.® One may obtain the breakdown
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voltage in terms of empirically derived constants a and b as
Vs = bw/ln aw (8)

which gives V5 = 36 volts with w = 0.9 micron. Experimental diodes
show breakdown voltages which occasionally approach this value. Newer
data based on microplasma free junctions would predict higher values.?

VI. ELECTRICAL MEASUREMENTS

Experimental diodes in encapsulations typically show the following
properties: breakdown voltage at 10 namps, 25 volts; series resistance
at 100 ma, 3 ohms; zero-bias capacitance, 0.35 pf. These diodes have
a forward V-I characteristic given in Fig. 4. The forward characteristic
can be described by the empirical relation

I =1, exp nTzT (V-IR) (9)

in which n is an empirical quantity and R is a series resistance. The
“diode” theory® predicts the forward characteristics of the form of (9)
with n = 1. The departure of n from unity may be attributable to cur-
rents generated at traps within the space charge region.* Experiments on
diodes of larger diameter suggest that these traps are located around the
periphery of the diode, at the gold-silicon interface. In general, n is a
continuously varying quantity with the current. The series resistance
may decrease in the high current density region due to increased minority
carrier injection.” Characteristics of other diodes normalized to 1-mil
diameter mesas are given for comparison in Fig. 4.

VII. RESPONSE TIME MEASUREMENTS

The response time of the experimental diodes was examined by a pulse
recovery measurement. No storage time as large as the resolving time
of the equipment, which is 1 nanosecond, was found.

A further measurement of an expcrimental diode was made by A. F.
Dietrich using a method previously described for generating carrier
pulses at a frequency of 11 ge.'® In this method the RF pulses are gener-
ated directly from the harmonics of the envelope frequency that is found
at the beginning or the end of the pulse transient of the diode. The power
output at 11 ge was comparable to that previously obtained with a siii-
con snap-back diode (FD-100) or a GaAs point contact diode. These
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Fig. 4 — Forward bias voltage-current characteristics of a gold-epitaxial sili-
con diode, in comparison with other diodes. Diode diameters are 1 mil, except for
the GaAs point contact. The dotted line has a slope of n = 1.2,

results indicate that the response time of the diode under forward bias of
60 ma is roughly 0.1 nanosecond.

VIII. STRESS AGING EXPERIMENT

A group of eight diodes was subjected to stress aging in an effort to
establish the expected reliability of the gold-silicon contact. These diodes
were all mounted on the same header in order to provide an equal stress
condition. Heating them in an inert atmosphere for one-hour periods at
increasing temperatures up to the gold-silicon eutectic temperature
(370°C) produced no significant degradation in their forward or reverse
characteristics. Another group of eight diodes was heated at 360°C for
64 hours. These diodes also showed no significant degradation in their
V-I characteristics. In another experiment, diodes heated in air showed
rapid degradation above 200°C. These experiments indicate that the
gold-silicon contact can probably be made adequately stable for device
use.



232 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

IX. CONCLUSIONS

The design deseribed above has been found to yield experimental de-

vices which are sufficiently fast and stable to be useful as computer di-
odes or as microwave mixer diodes. Another design in which the space
charge region penetrates part way through the epitaxial layer may also
be of interest as a varactor. One may expect that the large-area tech-
niques used in the design and fabrication of these diodes will lead to more
reproducible and stable devices than point contact diodes with similar
frequency response.
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On the Discrete Spectral Densities
of Markov Pulse Trains

By R. D. BARNARD
(Manuscript received August 12, 1963)

General formulae and existence criteria are derived for the discrete power
spectral densities of first-order Markov pulse lrains, viz., infinite pulse
trains in which each pulse corresponds to one member of a finite set of speci-
Jied waveforms and depends statistically on the previous pulse alone. These
resulls are oblained through a distribution (heoretic decomposition of the
spectral formulation given for such pulse trains by Huggins and Zadeh.

I. INTRODUCTION

An important problem related to first-order Markov pulse trains is
that of calculating the discrete and continuous power spectral densities
of such processes. The spectral formulation first given by Huggins! and
later extended by Zadeh? is perhaps the most appropriate and straight-
forward solution of this problem, the results being conveniently expressed
in terms of the customary flow diagrams and recurrent event relations
associated with Markov systems. As regards discrete spectra, however,
their formulation lacks complete generality in two respects: (z) the limit
notions of distribution theory, although essential for discrete components,
are not incorporated; (72) discrete components do not appear explicitly.
In this paper we reformulate the Huggins-Zadeh result on a distribution
theoretic basis, and derive both explicit relations and existence criteria
for the discrete spectral densities. It is intended also that the analysis
illustrate the distribution theoretic techniques required in cases involv-
ing more general spectral formulations.

II. BACKGROUND

The infinite pulse trains under discussion are treated as first-order
Markov processes in that each pulse is assumed to correspond in wave-
shape to one member of a finite set (alphabet) of real time functions

233



234 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

g:(t), and to depend statistically on the previous pulse alone. More
precisely, we consider random processes of the form

2(t) = Lt — ), te(—w, ) (1)
tn < tn+1 (2)

where
dn(t)S{gi(t)lgiSLl(—w,00);’[=1,2,"',M} (3)

P{d, = gqldn_1 = gi;dne=gr; '} = Pld, = gi|dn—1:gf} (4a)
P{(thsr — ta) S 7ldu = gi;dnpn = g;;7 2 0} =ci5(7) (4b)

with ¢, signifying the nth occurrence time, and ¢;; the cumulative transi-
tion distributions.* For fixed ¢ and j, ¢;; gives independently of n (i.e.,
the pulse position) the conditional probability of a direct transition from
pulse g; to pulse g; within 7 seconds after the occurrence of the former.
As in related studies, the statistical and combinatorial structure of (1)
is represented by the usual flow diagram of Fig. 1 in which nodes, or
“states,” symbolize pulses g;, and directed links indicate possible
transitions.

The flow diagram in conjunction with signal flow graph techniques
yields directly the more complex probability functions of general inter-
est.] Most important to the development here are the cumulative dis-
tributions for first occurrences or recurrences, viz.

P{(thom — t,) < 7iorsome m = 1| duim = ¢;; dn = ¢s;

(5)
dn-l—r"'n 7= gJ(m = 1) e, M — 1)7 TZ O} = qij(T)‘

As indicated, ¢:; denotes the conditional probability of a first occur-
rence (recurrence if 7 = j) of state § within = seconds after an occurrence
of state 7. Although less basic than ¢;;, functions ¢;; are entirely suffi-
cient for the caleulation of speetral densities; consequently, in this paper
the set {g;;} is regarded as initially specifying the Markov process in

* As applied here, the terms ‘“‘cumulative distribution’’ and ‘‘distribution”
pertain to probability theory and distribution theory, respectively.

+ Zadeh?identifies the occurrence of state 7 with the generation of a unit impulse
at node 7, the impulse in turn functioning as the input to a linear filter with im-
pulse response g; ; the corresponding responses due to all the nodes of the system
are added directly to give the original pulse train,

1 The expositions by Huggins! and Aaron? illustrate in detail the various flow
diagram methods by which transition and recurrent event probabilities of higher
order are calculated.
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CiJ

Fig. 1 — Flow diagram.

accordance with the following constraints:
(2) To comply with the usual probability conventions, we assume ¢;
to be monotonically increasing, sectionally continuous, and such that

0= qu(r) = 1: TE [07 00)

gi;(7) =0, re(—x,0).

Under these conditions both ¢;; and the probability densities f;;(7) =
¢;i/ (1) exist as distributions, or generalized functions.* (Earlier in-
vestigations have used f;; exclusive of ¢;,.)!?

(#7) For pulses to occur with certainty and at distinet times (f, <
tnt1), 1t is required that

(6)

gis(7) > 1 (11— ) (7)
2:7(0) = ¢:;(07) = 0. (8)

Condition (7) merely asserts that every state is accessible from every
other state, i.e., that the system is irreducible.

Assuming the specification of pulse trains z(¢) by either g;; or f;; and
denoting the spectral density of x(¢) by S..(f), we prove below that

* Briefly, an ordinary function f(¢) is an element of the space of distributions, or
generalized functions, provided [1 + #2]7¥f(¢) € Li(— «»,») for some N = 0; more-

over, for such functions as f(¢) there exist distribution derivatives of all orders
and generalized Fourier transforms.4%.¢
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50) = im® {2 T 606560 [ (12540 1)

+o(25m))

Gi(s) = [ gu(n)dr = 2,

(9)*

where

i

Fii(s) = fo e " dgi(r) /0 e fii(r) dr = &-fy

s = a -+ 2mif, § = a — 2mif, i=—=1, f = frequency

= rdqixr)]_l - lim [?—F—m] 7o

(1 (=3
0 (¢s])
and lim® {.} signifies a distribution limit (cf. Ref. 4, p. 107, and Ref.
5, p. 183). The presence of lim™ and the conjugated variable § in rela-
tion (9) is especially significant, both features constituting the essential
modification of the spectral density expression given by Zadeh (ef. Ref.
2, Eq. 9, and Ref. 1, Eq. 10b). These two formulations prove equivalent,
however, relative to continuous spectra. Specifically, if f is such that
Fi(2xif) s 1, then the distribution limit reduces to an ordinary limit,
and 8. represents the same point value of the continuous spectral
density as results from Zadeh’s expression. On the other hand, analyzing
discrete spectrat requires a proper interpretation of functions

1
1 — Fﬁ(s)

in the vieinity of points s = 2#if for which F;;(2xif) = 1; hence, the
notion of distribution limits is in general necessary. Another item to be
noted in (9) is the functional form of g, . Although it is assumed that
g: € Ly, one can relax this restriction in certain cases by first considering
an infinite sequence of functions ¢;™ e L; such that ¢;™ — g¢; £ L,
(m — ), and then performing a second limit operation on the corre-

5,‘,' =

* The quantity (Fi;(1 — F;;)7' + 8;;] = Us;(s) in (9) corresponds to the Laplace
transform of what Huggins terms the ‘‘expectation density’’ [cf. Ref. 1, Eq. (10b),

p. 80].

T The term ‘“discrete’’ relates to both the discrete power spectrum and the line
spectral density composed of Dirac delta functions.
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sponding density functions S,,™. An example illustrating this approach
appears in Appendix A.

The following development deals primarily with the distribution
theoretic formulation of (9) and its decomposition into discrete and
continuous components. A detailed proof of this formulation and an
analysis of the two types of components are given in Sections IIT and IV,
respectively. Discrete spectral density expressions for the basic classes
of first-order Markov pulse trains are derived in Sections 4.3, 4.4, 4.5,
and 4.6 (cf. Theorems II-VI).

III. THE HUGGINS-ZADEH SPECTRAL DENSITY FORMULATION

In deriving S.., we find it convenient first to decompose z(t) into M
separate pulse trains which consist individually of identical pulses; i.e.,
we set

(1) =n§wd,,(t 1) = ;x,~(t) (10)
where

2ilt) = Zm:gi(t )

1”& {ta|dn = g3}

1n® < b

t'? <0 (m <0)

tn? 20 (mz0).
Therefore, by standard spectral theory” S,, can be written as

Sexlf) = 220 Seery (1) (11)
where

S, (f) = 1i1;1‘:’ 2iT E([F - 2]l5-2;r]}

zin(t) = fgi(t L)

m=M;
Ni=sup {m|t,"” e [T, T]}
M; = inf {m|t,” e [T, T]}

F- fdte—“"f‘ (z = vV —=1).
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It is noted here that S..,, the cross-spectral density of x; and z;,
holds for both stationary and nonstationary processes.
Combined with the relation

F x50 = Gi(27f) ﬁ‘: exp (—2miftn”) (12)
(11) reduces to
See(f) = 2222 Gil —2mif) G5(2mif) Si(f) (13)

Y

where

Ni Nj )
S:u(f) = um —B {Z Zexp[ 2mif (1,9 — tm‘”)]}. (14)
To transform the summation indices in (14), we let

where integer k¥ = 1 indicates the number of occurrences of state j in
the interval ({n'”, t,'”]; further, to eliminate the variation of summation

indices across the ensemble, we define a weighting factor 7, such
that
. 1; tn® and 1,9 e[—T,T], tnl? < 1,9
= S %) o) o (16)
0; b or &, g [—T,T], b < ba.

These definitions along with condition (8) relating to distinet occurrence
times yield

Ni Nj had ki ; .
oexp [=2mf (1. — ta™)] =22 D pmi’™ exp (—2mif i)
n; M k=1 m=——oo
(17)
+ Z’. Z Nm, 7\ eXp (27T’Lf7‘m k(] )) + 61]N1T

with N;r equal to the number of occurrences of state ¢ in the interval
[=T1,T].

As random variables for the time difference between occurrences,
rmi” are characterized statistically by the cumulative distributions
¢i; . In particular, (15) and (5) imply that

P{Tm'l(ij) =< T} = qij(f). (18)

Moreover, since the quantity

gi;(7 — )g;i(7" + Ar) — ¢;;(7")]
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gives the approximate probability of two specific occurrences of state
J within 7 seconds after that of state ¢, it follows that the total probability
of all such mutually exclusive events is expressed as

P{T”‘“(ﬁ) = } = f gii(r — )dgii(7) = ¢:;® (). (19)

Generally
P{T (24 < } fq”(lc-—l)(T I) dej(T') = Qij(k)('r) (]C > 2)

Qij(l)(T) = (7).

At this point we introduce a basic device with which to simplify the
summations in (17) as well as justify the interchange of various limit
operations employed below. If functions ¢;; are specified so as to vanish
not only for = £ 0 [ef. (6)] but also in an arbitrarily small neighborhood
(—e¢, €), then there can be only a finite number of states in any finite
time interval (ie., P{—T =< . < T} = 0 for all | m | sufficiently
large), and the summations in (17) remain finite. Despite this initial
restriction on ¢;;, the spectral density proves continuous in ¢; conse-
quently, the resultant spectral formulation is viewed as having a final,
nonexplicit limit corresponding to ¢ — 0. Such a limiting procedure is
entirely sufficient for physical pulse trains.

For evaluating the expectation in (14), we first define

(20)

P,1) = P{t,"? £t} (21)
(1 (xz20)

p(z) = (22)
0 (x < 0)

5(z) = d*;(x”. (23)

Hence, for any state ¢

T—r1

lim®™ o 1 Zf_T AP (1)
in® 3 [ = = )~ w(=T — D1 aPalt)
lim“” 1 {Z fT_ 8(t — tm )dt} = hm_l__E'{ Nir}

2T
= [E’{tm(i) _ tm_l(i)}]—l = l:v/;°° qu;;(?')]_ B

(24)
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On the other hand, since

—8T

1 —¢

- T (s—0)
S

—8T

1—e
s

S'r (Re‘sia\g 0)

the dominated convergence theorem? yields
N . " « poo l_e—Sf‘ —1
Sy el {‘m =) dq““)}
a>

=U:°qu,.,.(r)]l hm2—TE{N o}

Thus, again by the convergence theorem, there results

pi jo" e—21r'ifr inj(k)(T)

(25)

1im ® 1 [ Z =T —omifr *)
in® o [ |2 [ apa( | dgs ) (26)

T

= hn;l 57 2 Z f I:fT_Tde(t)] o2 dq;j(k)(‘r).

Fundamental to the analysis of (26) is the following distribution the-
oretic identity, a detailed proof of which appears in Appendix B:

. (D) —orifr (k) 1;(8)
111{’1100 l;f dq‘lJ (T) - 11 >0+ ]. - r]]( ) (27)

From (26) and (27) it is found that
. N L] .
IiIﬁ(D) Z Di f 6_2”'& dqii(k)(T)

N
2T T—
hm(D) Z llm(D) 1 Z f I: f de(t)] ¢ dgi® ()

k=1 T m=—00

0 ) 27 T—1
= lim"™® 1 > -/0 [f_ de(t):I e dg, P (1) (28)

T

= lim™ Lg IZ 2 il exp (—21rifrm,k(ij))}
T 2T l k m

Hence, (13), (14), (17), (25), and (28) combine to give
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Se(f) = lim(+D) {Z > G(5)G(s)
a—>0 T J

[ Zm o)+ » (2) )

IV. DISCRETE AND CONTINUOUS SPECTRA

(29)

The evaluation of the distribution limit in relation (9), as shown be-
low, centers mainly on analyzing the asymptotic behavior of functions

Ffj(S)

1 — Fj;(s)
as the variable s approaches singular points along the frequency axis,
viz., points s = 2aif for which F;;/2xif) = 1; the results of this analysis
together with certain general properties of F;; serve to resolve S;, into
discrete and continuous components.

Considering singularities of (30) first, one notes that

(Res = a = 0) (30)

I'i;(0) = fo dqi(7) = 1132 ¢;i(7) — ¢;;(0) =1 (31)
| Fji(s) | éfo e Ydq;;(r) = afo e “q;i(r)dr
" (32)
<a f e Tdr =1 (Res > 0)
Fi(=2mif) = F;(2wif). (33)

Consequently, for all processes point s = 0 is singular, points in the open
half plane Re s > 0 are nonsingular, and the existing singularities on the
frequeney axis occur in conjugate pairs. In establishing notation, we
define

S;m € 8| Fii(s) = 1; Re s = 0}]

S',n = 2 i i.n = §‘,*n

o= B fim = 5i (34)

fom < fimt1 .

Jio=10 ‘ )

@ —1 1

Dim = I:fo 7exp (—8jn 7) dej(T)] T T s

- 35
Pim = Pjn )

Pio = Pj
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Then, as in (25)

1+F’,-j(s) = [f: exp (—sj..7) dgji(7) — f: o dqﬁ(r)]—l

T s ——1 Sjn {f: I:l - exps[:(;;'.n_ Sf'")T]:I

-exp (—s8j,n7) dq:ij("')}

(36)

-1

~

Din (s = sjn,Res > 0)
§ — Sjn

On the basis of this asymptotic result it is found convenient to rearrange
(30) as

Fiy(s)  _

j:m = Qi;(s) + Ri;(s) (37)

where

Qﬁ(s)=F""2(s);pj,n[ LI } (38)

5+ Sjn 8 — S,

Ri(s) = Si(s) — ; PinTa™ () (39)
_ Fii(s) 7. Din
Sij(vS‘) = -1——_—m5 F“(S) ; S — S;m (40)
ij . F;,-(s) 1 _ 1
1) = = [5 + Sim 8 — sj.n]' (1)

The summations in (37) are considered for the moment to be finite and
to involve only those singularities present in a frequency interval

(=Jfa, fa).

4.1 Functions Q;; and R;;

It is shown next that for f € (—f4, f4) functions @;; and R;; can be
identified as contributing respectively to the discrete and continuous
spectra:

() That functions @;; give rise to only discrete components follows
immediately from the relation
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Lin}ff) Gi(5)G5(5)Qii(s)
a

$1G:(—2m1f) G (2if ) F i (2mif)]

. . < (D) 200
2 pio ™ e Fim)
= 3G:GF ), Zp,n m™ F-exp [—(a | t]|) + 2mif; ] (42)

= UGG Fij); 2 piwF-Um® -exp [—(a | t]) + 2mif;al]
= GG, Fijl; 2. pinT-exp (2mif;at)
= GGl 2, Pimd(f — fim)-

(72) Asregards functions ;; , we first determine the behavior of func-
tions S;; in the neighborhood of points s; , . Substituting definition (35)
into (40) yields

1 in
s5;(8) ~ Fy; [1 ol f;,s. ]
. 33 7,n
_ Dinky f“’ [T 1 —expl—(s— sj,n)-r]]
1 — Fj (Yo S — Sjn

-exp (—8j,a7) dei(T)}

(43)

p] - F”(SJ ) f 7 exp (—S] nT) dQJJ(T)

(s — 8, Re s > 0)

which implies that functions S;; are both bounded and integrable in
(=fa,fa), and that points s;, correspond to simple poles with residues
p;2Fij(8;n). Since functions S,; are integrable, they can contribute to
only the continuous portion of the power spectrum. Regarding functions
T,.“” next, we note that
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1im<f’ G:(8)G5(s) T, ¥ (s)
a—0

= LGGF ] im® [a2 j:gr{ = if) )2]

= 3G.G;T ), ligl(m'if-[(#(—t) — u(?))

-exp (—a|t]| + 2wifiat)]
= 3[G.GiF )5 [(u(—1) — u(t)) exp (2if;at)]

1

i — fj.;o] oo Ui
Hence, in a deleted neighborhood of s;,, , functions 7" appear to pre-
dominate all other terms of S,.. For showing that functions 7%, in
fact sum so as to remain bounded, we set all pulses equal to zero except
one, viz., g; . If under this condition S.. becomes unbounded as f — f; . ,
then (44) and (9) give

(44)

= GGl I:

(i)

Sex(f) ~ pill Gi [[pinFsi — Dinliiil}s I:Q_ﬂﬁ]’
(f—fin)

However, since the factor in braces is continuous at f; ., the sign re-
versal of the unbounded factor indicates that S.. assumes, contrary to
definition, arbitrarily large negative values; therefore,

Pinl ;27 50) — Pinl 55(—2wif0) = 0
which by (34) becomes

(45)

Pim = Dim = Dj—n ‘ (46)
[The trivial case p; » = 0 need not be considered inasmuch as the associ-

ated terms in (37)—(41) vanish identically under this condition]. Condi-
tion (46) is sufficient as well as necessary for the ratio

Fi(2mif) — Fi(=2mif) _ toovr N omoron .
21T’L(f — fj'") = [Pn (sj,n) F“ (S]_,,)] + O(f f].n)

_ i1 . /
[pi.n pim] + O(f f]'n) \47)

= 0(f — fim) (f = fim)

to be bounded in a neighborhood of point f; , . Similarly, allowing two
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pulses to be nonzero and arbitrary yields
= ~ -1
Tz ~ Pi 'nGiG'Fi" - GGth a - 1 ~
S (f) Dibj, [ FLAET] 7 1]/[2m(f_fj'"):|

) (48)
+ P, Dim G'GiF'i - G-iG'F_"i] [—_——] (f— ',n)
Pi » DilGiGiF ; iy 237 (f — Jim) F—= 1
where the second term is present provided f; . = fi,m . It is evident that
with the second term absent and both g¢; and g; arbitrary the first term
cannot be made to vanish identically at f; . ; thus

Sjinm = Sim = Sin = S (49)
and
(GG ilpipinFsi — pipinlii
+ GiGippinF ;i — ppinalilly, = 0. (50)
Again because of arbitrary g; and g; there results
PPl i;(2wifn) = p;pink i( —27ifa). (51)

As in (47), this is a necessary and sufficient condition that (48) be
bounded in a neighborhood of point f = f;,, = fa ; thus, forf e (—f4,f4)
functions 7,”, S;;, and sums R;; contribute to only the continuous
spectrum. It is important to note that although the use of R;; is neces-
sary for an appropriate decomposition of S, , the complete continuous
spectrum can be obtained directly from relation (9) with f £ f. [cf.
(9) et seq.]. Nevertheless, from a computational standpomnt functions
R;; might be more suitable.

4.2 General Formulation for Discrete Spectra

At this point we consider in detail both formulae and existence criteria
for the discrete spectral density. With respect to the complete spectral
density, the substitution of definition (37) into (9) gives at once the
decomposition

Sz(f) = ligl;f) {ZI:EJ_: Gi(8)G(s)[pQi;(s) + p]’Qﬁ(S)]}
+im® (591 GiGo) [+ X ials) + p:Rs(0)]] (52)

where according to the properties of functions Q.; and R;; [ef., (42),
(51) et seq.] the first term in braces consists of discrete components only,
and the second is bounded for f ¢ (—f4, f1). Consequently, on letting
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S..?(f) denote the discrete spectral density in the interval (—fa, fa),
we obtain

S (f) = lim® {ZZ Gi(5)G(s5)IpiQis(s) + p]-QJ-,(s)} (53)
which by (42), (46), (49), and (51) becomes
80(f) = 3 22 GG s 2 pind(f = Ja)
+ pil5: ; pind(f + fn)]
22 GG pdlss 2 pind(f = )
+pills 2 poad(f + -] (54)
2.2 GGy 2 ppind(f = fa)

2 [ZZ D0 3.1G( — 2nif)

Nl

I

G2 oy (2mi) ]a(f — 5.

Since the interval (—f4, f4) is arbitrary, the sum over » in (54) can be
extended as a distribution limit to include all the singular points along
the frequency axis; hence, this expression represents the general formula
for the discrete spectral density. In the sections immediately following,
formula (54) is applied to the two fundamental classes of first-order
Markov pulse trains: entirely random and stochastically uniform pulse
trains.

4.3 Discrete Spectra of Entirely Random Pulse Trains

We define the processes under discussion to be entirely random if for
at least one state ¢

Qii(T) = Qi;(‘r) + kE ak(ii)#(‘r _ T};(ﬁ>)
fu(r) = qi’(7) = ¢/ (+7) + Zkak(ii)a(f _ Tk(ii)) (55)
0= ak(ii) é 1

Q“(w> + kzak(ii) =1
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where §i; is either continuous and strictly increasing in some interval
(TA , TB), i.e.

G’ () >0 7€(74, 7T5) (56)

or . vanishes identically and the set of parameters 7" consists of two
or more incommensurate elements. Processes of this class are character-
ized more completely by the following theorem:

Theorem I: A pulse train is entirely random if and only if for any state 1

Fo(2mif) = 1 (f #0)

57
Fi:(0) = 1. (57)

For such processes all first recurrence distributions q;; have the same form.
Proof: The second condition of (57) is merely a restatement of the gen-
eral result given by (31). To establish the sufficiency of the first condi-
tion, we consider the only possible form for ¢.; not representable by (55),
viz.

0

gii(7) = 2, au(r — kTY)

k—1

fu(r) = kZak(“)B('r — kT.). (58)
This yields
Fii(2mif) = ; arPe( —2miflT;) (59)
whence
Fi <2m' %) =1 (n=0,=%l,--). (60)

Therefore, any g¢.; satisfying (57) must be representable by (55), and the
process entirely random. To establish necessity, we consider (55) to be
satisfied for at least one state 7. Under condition (56)

TR '/' TB /
—211, a —2mifra 1
f e ’ dq,-i(r) f e Tq,-i dr
T

A T4

B, B
< [Tadar = [Tdistn (= 0)
TA

TA

whence

| Fiu(2mif) | <f dgi(r) + 22 a'? =f dgi() = 1 (f # 0).
0 k 0
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On the other hand; with ¢;; = 0 and 7.” incommensurate

| Fo(2nif) | = | kEak“"’ exp (—2rifr?) | <1 (f # 0).

Thus, (57) is necessary for state 7. Finally, since F;;(27if:») = 1 and
fin = fuforall ¢ [ef., (31), (34), and (49)], the realization of (57) for
any ¢;; necessarily implies the same realization and consequently the
same form for all ¢.; .

Theorem I, although essential to the treatment of discrete spectra, is
not the only test for identifying entirely random processes; a somewhat
more direct test is afforded by the cumulative distributions ¢;; . In par-
ticular, functions ¢;; have form (55) provided at least one of the functions
¢:; does also. This fact follows from a basic property of irreducible
processes, viz., the property that each density. fi; = ¢.;;/(+) equals a
specific csombination of positive sums and convolutions of all the densities
eif (1)1

As regards singular points s, and discrete spectra, it is clear from The-
orem I and (34) that the point s = s, = 0 constitutes the only singularity
of entirely random processes; therefore, the formulation given by (54)
becomes

S = [;XJZ ?’ipi,OGi(O)GJ'(O)FU(O)]B(f) (61)
[;le piij'f(O)Gj(O)]a(f)'

This expression leads immediately to the following result:
Theorem I1: The discrete speclral density of entirely random pulse trains s
given by

8P(f) = { [ : [Z pigi(t)] dt}2 8(f) (62)

which vanishes if and only if

[ [Z p,.g,-a)] at = 0. (63)

Comparing (62) with (54), we note that Theorem II applies to the
8(f), or de, component of all the processes treated in this paper.
4.4 Discrete Spectra of Stochastically Uniform Pulse Trains

Processes not classified as entirely random are defined here to be
stochastically uniform. It is evident that the only first recurrence dis-
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tributions representing the uniform process, i.e., satisfying neither defini-
tion (55) nor the criteria of Theorem I, must be of the form

q«;i(‘l') = kZ; Olk(mp,(‘r — kT,)

02’ =1 (64)

Z ak(ii) = 1

k

where parameters 7T'; are assumed to have the largest values possible.
Under this specification

F.(2mif) = ];il ar"™ exp (—2wifkT;) (65)
Hence, on letting 7, denote the state for which
T, =Ty (G=1,---,M) (66)
we find that all the singular valueé fn satisfying
Fioio(27r7:fn> =1 (67)
are given by
ho=g  (n=0,%1, ). (68)
%
Furthermore, since
Fu(2mify) = 1 (69)
for all states [ef. (34) and (49)], then
T,=T,=T (e=1,---, M) (70)

which in turn implies that all F,; are periodie over an interval of length
77, and all functions g;; have the basic form

qii(7) = ;ak“%(r — k7). (71)
Considering also relations (65), (68), and (35) it is seen that
Pin = [% Tak(m:l_l = Pio = Pi. (72)

Finally, results (68), (70), and (72) combine with (54) to give the
following theorem:
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Theorem II11: The discrete spectral density of stochastically uniferm pulse
trains s given by

Sz (f)
= [ ST pabu—2rinasninpuenin) | 36 - /1) (79)
T = n/fa
Fi(2nifn) = 1

which vanishes if and only if

I:Zz:%: PinGiGjFU:In/T =0 (n=0,=*l1--) (74)
or if

I:Zz:; piijiGjFif:If =0 (- <f< o). (75)

At this point we consider a special but very important subclass of uni-
form pulse trains, namely, that of uniformly positioned pulses.
4.5. Discrete Spectra of Uniformly Positioned Pulse Trains

Pulse trains are defined to be uniformly positioned over a reference
interval of length Ty if the time intervals between successive pulses can
assume only the discrete values kTo(k = 1, 2, ---), i.e., if function ¢,;
take the form

gii(7) = ;amu - kTo) (4,j=1,---,M)

0< ak(ii) é 1 - (76)

3 = 1

k

where T constitutes the maximum value for which this representation
is valid. With ¢;; so specified there results

Fii(2mif) = > o™ exp (—2mifkTo) (77)

Consequently, for a particular state ¢ the condition

ager'™ 20 (K =12 )
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o' =0 (k = KE') (78)

holds for some maximum K = 1, the corresponding function F,; is
periodic over an interval of length (KT,)™", and the singular values f,
satisfying (69) are given by

n n
o= = (79)

In addition, as values f, are independent of 7, condition (78) must for all
states hold for the same value of K, the specific value in any particular
case being determined either from one set of coefficients o “”, from (79),
or from the recurrence pattern associated with one node of the flow
graph. For all K = 1, relations (77) and (79) yield the general condi-
tions

F;; (271-1 T0> 1
Fi <27r, KT> = F“(men) =1 n — O :l:l ) (80)

n+ K\ - . n
F <27T7, I{TO )—F” <2m1(—7'0>

Combining these conditions with (79) and Theorem III, we obtain

8=“(f) = [Z 2 pp,GiGiT ff]f s 5( KTo)

n=—00

= [; Zj pip, GG F ii:lf KZ_)I i 6 <f - % B KkT )

k=0 n=—cw 0,

= [Z Zj piij_,-G:l Z 5 (f - —) (81)

Nn=—0

+ ; {[; ; pip,Gi( =270 f)G5(2nif)

n k
. F’g'j (27”/ KT()):' n;w [ ( - T@ - m)} .

The following theorem is based on this last expression:
Theorem IV: The discrete spectral densily of pulse trains uniformly posi-
tioned over a reference interval of length T\ is given by
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[Bracenl £~

+ 2 {[Z 2. PG = 2w [)Gi(2wif) P (2” Klfr)]
123@‘1 %@}
n

T (K 215 dg= 1, e, My m=0, 1, 00) (82)
Fiu(2mifa) = 1

sz(d)(f) = } Z p:G:(2mif) |

which vanishes if

;mmw=o (83)

Z Z Pipils; <27"7f KT) [: gi(r)gi(r + 1) dr =0

(k=1,--+,K — 1).

A special case of Theorem IV is noted as follows:
Theorem V: The discrete spectral density of uniformly positioned pulse
trains corresponding to K = 1 is given by
20~ 7)

(84)

S P (f) =

Xi) PG (2nif) [

(85)
n

=7

which vanishes if
2 pigi(t) = 0. (86)

Titsworth and Welch® have proved Theorem V for special pulse trains
in which pulses are nonoverlapping and transitions occur every T,
seconds. This theorem is also implicit in the classic work of Bennett on
synchronous pulse trains [cf. Ref. 10, Eq. (35), p. 1509].

4.6. Aaron’s Discrete Spectral Formulation for Special Classes of Pulse
Trains

The analysis in Sections 4.3 and 4.5 yields the following theorem, a
result first obtained by M. R. Aaron:?

Theorem VI: The discrete spectral density of entirely random pulse trains
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and uniformly positioned pulse trains for which K = 1 [¢f. (78) et seq.] s
given by

SN = X {1§es [; Gi(s) Uﬁ(s)]} o(f =f) (81

where
Ujs = Fill — Ful™ + 65 (88)
and Res [+] denotes the residue of the quantity in brackets at s = s, =

2mif, .
Proof: From relations (36), (72) and Theorem I we find that

Res [%] = p:G:(2mifn) Fi:(2wifn) (89)

for either the entirely random or K = 1 case. On the other hand
Fju(2mifa) =1 (4,5 =1,---,M) (90)
in both cases [ef., (79) and (80)]; thus,

Res |: Z G,U“:I = Z p¢G¢(2wif,L). (91)
Inserting this expression into either (61) or (85) gives formula (87).

V. SUMMARY

Theorems I through VI, which constitute the principal results of the
preceding sections, give explicitly the discrete spectra of first-order
Markov pulse trains. As presented, these theorems provide fundamental
existence criteria for not only the analysis but also the synthesis of such
processes. It is important to emphasize again that the distribution the-
oretic techniques employed in extracting discrete components from the
Huggins-Zadeh formulation are applicable also to more general spectral
formulations.
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* Huggins has shown that the sum Y ; G;U ;; represents the Laplace transform

of Ithe average signal following the occurrence of state j [cf., Ref. 1, Eq. (23a), p.
82].



254 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

APPENDIX A

Entirely Random Square Waves

For illustrating the techniques that often apply to cases in which
g: £ L1, we consider a random square wave process of the form

z(t) = a ; (=)t = tam) — p(t — t)] (92)
z'(t) = y(t) = 2a ; (=1)"s(t — tn) (93)

where y represents a two-state pulse train with pulses related by
g1 = —gs = 2aé(t) g In

(94)
a = constant > 0

and an entirely random statistical structure (cf. Section 4.3) specified
by ¢i2, €21, and

cu = ¢ = 0. (95)

(Note that states 1 and 2 can be identified with the 4+a and —a portions
of the square wave z.) Thus, in accordance with definitions (4b) and (5)

Qiz = C12,  Qu = Ca
m = fow co(r — )dea (7') = g (%)
whence
Fu = Fy = FioF'n
1 . (97)

= d = —m—= =
1 ‘/0‘ T Qn("’) Fn'(O) D2 P

We next construct a set of “smooth” approximations to z; i.e., we
smooth out the corners and discontinuities of each of the pulse trains
into a sequence {x.(t)} of continuous waveforms such that

Seo(f) = Wm® 8, .. (f)  (m=1,2--+)

m—>o0

98
Ym(t) = ; (—1)"g“")(z — ) (98)

T (2)

where
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(m)

g e Iy
lim® ¢ = 2a5(t) (99)
g(m) — gl(m) — _gQ("”-

Since pulse trains y, and y have the same transition properties and
therefore the same statistical specification ¢;;, the former process is
classified as entirely random; it then follows from the condition

> pgi™ = p(e™ + g.") = 0

and from Theorem IT [ef. (62)] relating to entirely random pulse trains
that S,,,, has no discrete components. Consequently, relations (9),
(97), (98), and (99) yield

47178 (f) = Iim™® [47°f*S., 2, ()] = im™ S,,,..(f)

= Him® {2p | G (27if) |

e[

(100)

— 2 (1 _F12)(1 ~F’21)]
= 8pa Re|: T PP B

The most general funetion S,, satisfying this last expression is given by
21’02 Re [(] — Fy)(1 — Fa)
w2 f? 1 — FpFy

where the first term on the right represents a continuous component, and
constants K, and K, are to be determined. As spectral densities must be
even functions, K; = 0. Regarding the discrete term, constant K; is the
square of the de, or average, component of z; hence, with

af 7 dew(r) — afo 7 dear(7)
0
fo TdQu(T)

Suul(f) = l+mm=mm(m>

ave [x(¢)] =

(102)
= ap {j; T d[QH(T) - Q21(T)]}
= ap [le'(o) - Fm'(O)]
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(101) becomes
2pa (1 = Fp)(1 — le)]
Af) =
&()2ﬁe[1—mm ;
+ &’p'lFn'(0) — Fr'(0)F'8(f).
It is important to note here that the discrete component in (103) arises
from the pulse structure of 2 and not from the singularities of [1 — F;,]™

A more extensive treatment of this particular pulse train has been given
by Aaron."

(103)

APPENDIX B

A Distribulion Identily

Essential to the formulation of the spectral density is the relationship
between functions F;; and the limit of

kzzl%j(k)(ﬂ = yn(7) (104)

as N — o« [ef. (11) and (18)]. It is convenient to consider initially the
integral

[%mmsam. (105)

Inasmuch as functions ¢;;* and, consequently, yx are sectionally con-
tinuous, then

2y’ (1) = yn(7) (106)
almost everywhere in the classical sense or identically in the distribu-
tion sensc. Also, with ¢;;* = 0 [ef. (20)] function yx = 0, and

0 = 2x(7) S 2x(7 + AT) (A7 > 0)
0 = zy(7) = zyn(7). (108)

Considering the limit conditions on sequence {zy}, we note first from
definition (20) and the properties of Stieltjes convolution' that

[emanty =2 [ea| [[a®)ar]

N

= Z— w(s)Fnk—ql(s) (109)

k=18

N _ N
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Therefore, the inverse Stieltjes transform™ yields

a+zoo
s i ST
ZN(T) - a—i%o 32 [1 - F“] ds
tio | (110)
_ 1 fa i [F“F“ ]esf ds
27I'l a—ico 32 1 — F“ ’
Finally, since (6), (8) and (9) imply
1759) |5 [ dasn) = o [ ) ar
- (111)
<ozf ¢ dr =1 (a>0; 4,7=1,--+, M)
0
then
L fa-f—ioo 1_,: ] ' <5 F“(s)
27t Va—ie 21 — F“ = 1 — F“(s) (112)
fwa -|-47r2f2<Oo (> 0)
atioo o N 7. L «©
L/ L[Pwpu :Ien ds| < s Fii()F;i" (s) f af )
2midaio §* 1 — F_,-]' 1 — Fj,-(s) —wa2+47r2f“ (113)
— 0 (e > 0)
N — =

and, hence, the limit

lim zx(r) = — fa+m [ Fij ]es’ ds = z(r) (a >0) (114)

N—->x 100 82 1 - F]J

exists. Relative to the asymptotic properties of function z we obtain
from (25), (114), and (107) the conditions

® —sT _ 1 Fij(S) P;

2(r) £ 2(r + Ar) (Ar > 0) (116)

which by Karamata’s Tauberian Theorem" give
2(7) N%jrz (r— o). (117)

This asymptotic result together with (112) and (114) implies that
[+ 77%(7) € Li(— o, ). (118)
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Thus, function z is a proper distribution, or generalized function (ef.
footnote, Section II and Ref. 6, pp. 21-23). In addition, since

IA

0 = zy(7) = 2wqa(7r) £ 2(7) (119)
then

Hm® zy(7) = 2(7). (120)

N->0

The functional properties of z as given by (112) and (117) imply also
that

im™ ¢ “2(7) = 2(7) (a > 0). (121)

a0

In combining (104), (105), (106), and (120), there results

§-2"(r) = im®-5-2y"(r) = im™-5-y,'
N N
_ lim(D) i fﬁo 6-21”./1_ dQ'(k)<1') (]22)
N k=1 Y0 N ’
On the other hand, (114) and (121) give
d2
§-2"(r) = §-=5-Im® [¢7%()]
d’l’ o

2
= §.lim® {(j—z -+ Zadi + a2) [e_‘"z(f)]}
T T

o

im™ {[(2mif® + 2a(2nif) + 15 [ 2(r)]} (123)
= lim® {’F-[e™2(r)]}

. Fii(s)
= lim™® 2927
« 1 —Fj(s)

We finally obtain from (122) and (123) the following identity

N 0 . ._N .
lim™ > f ¢ dg; ¥ (7) = lim® F,-j(21rif)|:———————1 I (2nif )]
Now k=170 N 1 — Fy;(2nif
Fu(s) (124)
i (D) ij\8
_ali?i 1 — Fi(s)”
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APPENDIX C

Definitions of symbols

x(l)  —ecf. equation (1) S () — (53)
a(l)  — (10) P, —(9)
d.(t) — (1) Pim — (35)
o —(1) 5 — (11)
tn'? — (10) £ —(9)
() —(3) u(2) —(22)
Gi(s) —(9) 8(z) = () —(23)
8,8 —(9) 8i; —(9)
Sim = 8$u»— (34), (49) Qii(s) — (38)
o —(9) R (s) — (39)
f —(9) Sw((s)) — (40)
Fim = fa — (34), (49) T."(s) — (41)
cii(r)  — (4b) T — (73)
QMSI) —(5) To — (76)
4" (r) — (20) K — (78), (82)
Fii(s) —(9) Uij(s) — (88).
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Imperfections in Active
Transmission Lines

By H. E. ROWE
(Manuscript received July 30, 1963)

The effect of discrete tmperfections on the behavior of aclive transmission
lines (i.e., lines with distribuled gain) is considered. Two cases are studied:

1. Lines with identical, equally spaced reflectors. The transmission and
reflection gains versus frequency are studied as functions of the magnitude
of the reflectors. Limils on the magnitude of the reflectors to guarantee sta-
bility are investigaled.

2. Lines with random refleclors, having random position and/or magni-
tude. The statistics of the transmission are studied; in particular, the average
value and the variance and covariance of the transmission are determined for
small reflections. If the reflections become large enough, instability may oc-
cur, and these calculations may become tnvalid. Stability of active distributed
systems s studied in a companion paper.

I. INTRODUCTION

In the present paper we consider the theory of active transmission
lines (i.e., lines with gain) with discrete imperfections. Both equally
spaced, identical imperfections and random imperfections will be con-
sidered. This study was suggested by R. Kompfner as a rough mathe-
matical model for the effects of imperfections in certain types of optical
maser amplifiers, in which the optical signal is reflected back and forth
through the active medium on essentially nonoverlapping paths by an
array of mirrors. A. G. Fox has suggested that this mathematical model
will also provide a description of a one-dimensional active medium (e.g.,
maser) with (one-dimensional) random inhomogeneities.

Consider an active transmission line that provides exponential gain to
both forward and backward waves, and further provides distortionless
amplification. The voltage (and current) then vary as

T
¢ ° — forward wave,

(1
e — backward wave, )

261
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I'= —a+ 76 (2)
Since the line has gain,
a > 0. (3)

Since we assume distortionless transmission, the propagation constant
B is related to the angular frequency « by

B =w/v (4)

where the velocity of propagation v is a constant independent of the
frequency w. Further, the gain constant a is independent of w. We
may thus interpret @ either as the propagation constant or as the
normalized frequency.

Consider a line with N discrete reflectors, as illustrated in Fig. 1.
The wave traveling to the right at a distance z is denoted by Wy(z2),
the wave traveling to the left by Wi(z), as indicated in this figure.
We take Wo(Lr+) and Wi(Lx+) as the right- and left-traveling waves
just to the right of the kth reflector ¢, Wo(Lr—) and Wi(Ly—) as
the right- and left-traveling waves just to the left of the kth reflector.

Tach reflector is characterized by a scattering matrix relating inei-
dent and reflected waves. Thus for the typical reflector illustrated in
Trig. 2 we have

Wi(Ly— Wo(Ly—
sl o
Wo(Lit) Wi(Let+)

_ | Su S

S = [312 822] ) (6)
LN—— =
A——— ﬂ,
e FO e SO
| | T
Cy C2 C3 Ck-1 Ck CN-1 CN
R A
Wo (0) WolLi) == WolLy#)->]
|

i“‘“Wl(O) k lE(_W|(Lk+) E‘__W;(LN+)

Fig. 1 — Line with N discrete reflectors.
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Wo (Lk-) Wo (Lk+)

Ck

Wy (Lk-) W, (Lkt)

Fig. 2 — Typical reflector.

The incident and reflected wave amplitudes are assumed normalized
so that the power in any wave is simply the square of its absolute
magnitude. For example, if the reflected wave is absent at the left of
the obstacle in Fig. 2 the power in the incident wave is | Wo(Li—)|*;
similarly, if the incident wave is absent the power in the reflected wave
is | Wi(Ly—)[|*. We make the following assumptions:

1. The powers in the forward and backward waves are additive;
for example, the total power P flowing in the 4z direction at the left
of Fig. 2 is given by

P = | Wo(Li—)[" — | Wi(Li—) [~ (7

2. The reflectors are lossless, and consequently have unitary scat-
tering matrices.” For a reflector of a given magnitude there is a single
arbitrary phase parameter in the scattering matrix; this phase has
been chosen in such a way as to yield a scattering matrix for the obstacle
of the following form:

S—I: je \/1—02:|
B V1=¢ Jje ’ (8)

0= el =1

¢ is a measure of the magnitude of the reflection; for ¢ = 0 the reflec-
tion is zero and the guide is perfect. ¢ is assumed to be independent of
frequency, although this assumption is not compatible with physical
realizability. We note that the matrix of (8) is correct only for w (or 8)
> 0. For w (or 8) < O the signs of the diagonal terms of the matrix
must be changed, so that the various responses will be real, even though
unrealizable; alternately, we may change the sign of ¢ for negative w
(or B).

Next consider the cascade connection of reflectors and ideal guide
sections shown in Fig. 1. We require the wave matrix 4 corresponding
to the scattering matrix of (8) for an obstacle. Referring to Fig. 2,
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Wo(Lyr— o Lk
[ (r )}Ak[”f”’ +>] o
Wi(Lr—) Wi (Le+)
A, = —L_;[ 1 _jck} (10)
FUAT —edl g 1]

The wave matrix for the kth line section of length I; between reflectors
ce—1 and ¢, is given by

[W0<Lk_1+>] [ 0 [W()(Lk—) (11)
WL+ ) 0 ™ LWir—) ]

Thus the matrix X, for the cascade connection of the kth line section
of length {; and the kth reflector is given by

|:Wo(Lk_1+):| - x |:H/0(Lk+):|,
Wi(Lga+) Wi(Lg+)
Xo= 1 [ o —J‘cke””‘]
V1 — ¢ Fjcee ¢ T .

The over-all wave matrix X for the line consisting of N sections in
Fig. 1is

We(0) [ Wo(Ly+) - i

=X , X =XX,-- Xy=I]Xs. (13)
W1(0) Wi(Ly+) k

Setting

(12)

X = |:$11 xlz] (14)
To1  Xao
and referring to Fig. 1, the (complex) transmission and reflection

losses Lz and Ly or corresponding (complex) gains G, and Gy are given
as follows:

LT=——=——=x11 (15)

Ly = & = ool = —. (16)

Wo(0), W1(0) and Wo(Ly-+), the incident, reflected, and transmitted
waves for the entire structure, are illustrated in Fig. 1.
It has been necessary to state the above analysis in terms of wave
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matrices that give the input as a function of the output (instead of
vice versa) because the boundary conditions are known at the output.
The output is assumed to be matched, so that in Fig. 1

Wi(Ly+) = 0. (17)

In contrast, the reflection coeflicient at the input is not known in ad-
Wo(Ly+ )]
W1(Ly+)

vance, and so it is not convenient to express the output l:

as a matrix product times the input [{g‘;ggg] .

We consider below two cases of interest:
(a) Identical, equally spaced reflectors,
(b) Independent reflectors with random magnitude and/or position.

II. IDENTICAL, EQUALLY SPACED REFLECTORS

We now assume that all reflectors have identical magnitude and equal
spacing. Setting

C; = C, lkr—'l

in (12), from (13) and (14) the over-all wave matrix becomes

o o T ) T —je T )
R (1 =" rjee™ &

By the usual methods we find:

_ 1 N N
T = (1 — (,’2)N/2(K+ — I{_) (K+O£+ K_a_ ), (19)
- 1 N__ N
Lo1 = (1 — 62)N/2(K+ — K_) (05+ o ), (20)
oy = cosh Tl & v/sinh? TT + ¢, (21)
. 4TI —T1
_Jce _ap — e
Ky = T — oy - ijc Tl (22)

With the help of (15) and (16) the transmission and reflection gains or
losses may be determined.

Consider the various z;; of (18), and in particular x;; and x5 of (19)
and (20), to be functions of jBl, where we recall from (4) that 8 is
proportional to the angular frequency . We recall from the discussion
following (8) that these results are valid only for positive frequencies,
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B > 0. The z;; have certain general properties of interest. First, we have:

el (B + m)] = (—1)",{j8l], B =0, (23)

vifi(r = D] = (=) e pgl), 0 =gl =w (24)
Further,

xy[—JBl = x:*[561). (25)

Equation (23) shows that z; is periodic in the normalized frequency g,
of period 27/l. Equation (25) guarantees that the over-all response
to a real input is real. Taken together, (23) and (24) show that the
magnitudes of the losses | Ly | and | Lg | of (15) and (16) are periodic
in B of period #/I, and are symmetric about the points g = 0, /2,
m, 3w/2, ---. Consequently in studying the magnitudes of these losses
at real frequencies we need consider only the range 0 £ gl £ /2.

Next, from (19)—(22) it might appear that the various functions
x;; have branch points in the complex frequency plane because of the
radicals in these equations. This is not true, however; a little study of
these equations shows that the radicals really disappear for all (integral)
N. Alternately, by considering the matrix multiplication of (18) it
becomes clear that all the z;; are single-valued functions of T', and that
no branch points can appear.

We may thus determine the exact expression for the transmission
or reflection gain via either (19)-(22) or direct matrix multiplica-
tion in (18). However, we shall most often be interested in cases where
the reflection parameter ¢ is small in some suitable sense; application of
perturbation theory to (19)—-(22) greatly simplifies these relations
and permits a useful interpretation of these results.

Consider the radical in (21). If

| ¢| < |sinh T | (26)

then we may expand the radical in a power series and retain only the
first correction term. Since

| sinh T1|* = sinh® ol + sin® 8 = sinh”® o, (27)
(26) will be satisfied for all 8 if
| ¢ | < sinh of. (28)

Therefore
2

V/sinh? Tl + ¢? & sinh T7 + ¢ (29)

2 sinh T'°
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Then (21) and (22) become:

2

o AT c
or N E o E T (30)
Ky~ —j ot S I (31a)
K ~ji S . (31b)
- ¥ ginh T

Substituting (30) and (31) into (19) and (20) and negleeting various
small quantities, we obtain the following approximate results:

1

rn = (]__—.—E)T/? eNI‘l [1 + F], (32&)
2

F = (2S—ilfh—rl> (e~2NI‘l ad 1), (32b)

_— Jje —r sinh NTV (33)

(1 — ¢2)nin ¢ SnhTl

We make one further assumption, often used below, that the total gain
in the absence of reflectors (¢ = 0) is large; i.e., referring to (2) and (3),

> 1. (34)
Then (32b) becomes

2
F = (m) e—?NI‘l , eNal >1 (35)

So far we have ignored the question of stability; it is clear that such
an active device can oscillate under some conditions. If the device does
oscillate, our present results for loss (or gain) lack physical significance,
for reasons discussed below. Instability can occur only if the gain func-
tions of (15) and (16) have poles in the right-half complex frequency
plane; if all poles of Gr and G are in the left-half plane the device
will be stable. Since from (15-16) the poles of the G’s are the zeros of
11, we investigate the zeros of x;; as given by the approximate expres-
sions of (32a) and (35).

For ¢ = 0, i.e., with reflections absent, the device will be stable, and
consequently the zeros of x;; lie in the left-half plane: It seems obvious
on physical grounds that the device remains stable for small enough
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values of | ¢ |, and will oscillate only when |c | exceeds some critical
value. Assuming this to be true, we determine the conditions for stabil-
ity by finding the minimum value of | ¢ | for which a zero of x;; appears
on the real frequency axis, i.e., for some value of 3.

From (32a) the zeros of x1 occur when

"= —1. (36)
Equivalently,

|F| =1; (37a)

LF = &7, £3m, - . (37b)

Noting that
sinh® Il = sinh® (= « + 78)l = (sinh® of + sin® ) ¢, (38a)

_ 1 tan g8l
¢ = tan ol (38b)
where the principal value of tan™ is implied, we have from (35)—(37)
the following approximate relation for a zero of 2y lying on the real
frequency axis.

2

7 Cc INal —j@2NBI-2¢) - a(
P = e a ey ¢ ¢ Lo @9
Thus
NBl = ¢ + (x/2) + mm;  m =0, £1, £2 -+ (40a)
2
i ANl = . (40b)

4(sinh? ol 4 sin? BI)

¢ is given by (38b). We now fix «f and find the smallest value of | ¢ |
for which (40) has a solution. Equation (40a), together with (38b),
can be readily seen to have 2(N — 1) roots (8l); for 0 < Bl < 2.
For each of these roots there is a corresponding solution ¢ = =+ |¢; |
for (40b). It is obvious that the smallest of these |c; | corresponds to
the smallest (Bl);, which is that root lying closest to 8l = 0 and which
we denote (B81); .

For convenience we summarize the approximate results derived above
in the present section.
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|

= g LT (41a)
S c P om
= (zsn—hrz> ‘
_ 62 ezzval —Jj(2NBl-2¢)
4(sinh? al 4 sin? Bl) ’
o = tan™! t::;l@cfl' (41b)
Conditions:

| ¢| < V/sinh? ol + sin? Bl (41c)
N> 1. (41d)

The results of (41a) and (41b) will be valid for all g8 if the condition of
(41¢) is replaced by the more restrictive condition of (42):

|| < sinh al. (42)

The maximum value of the reflection coefficient magnitude |c¢| that
yields a stable amplifier is given as follows, subject to the conditions of
(41d) and (42)

3 tan (Bl)1 T

e T

(principal value of tan™")  (43a)

l c lmax = 23_Nal \/sinh2 ol + sin? (6l)1 . (43b)

In deriving (43) we required that the results of (4la) and (41b) be
valid for all 8. Consequently the more restrictive condition of (42)
must hold; however, it is not obvious in advance that (42) will end up
being satisfied in all cases. However, it is easy to show that this is in-
deed so, so that the approximate limits on | ¢ | imposed by the require-
ment of stability are indeed given by (43), so long as (41d) is satisfied
(i.e., the high-gain case). From (43a) we have

(81 < w/N. (44)
From (41d) and (44)

(B K al (45)
and consequently

sin® (B81); < sinh® of. (46)
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Equation (43b) thus guarantees that the more restrictive bound of
(42) will always be satisfied in the high-gain case.

The general behavior of the gain-vs-frequency (or 8I) curve is readily
seen from (41a) and (41b). In the second line of (41a) the first factor
and ¢ vary slowly with 8I, while the factor ¢ varies rapidly. The
angle of I increases steadily as gl increases from 0 to 2#; the magnitude
of F is largest at Bl = 0, 7, 2=, -+ -, and decreases rapidly away from
these points. Therefore the gain Gy of (15) plotted vs 8l (or frequency)
will have an oscillatory behavior, with the magnitude of oscillation
greatest near 8l = 0, m, 27, -- -, and quite small elsewhere. The larger
N, the more rapid will be the rate of oscillation.

It is instructive to consider a few numerical examples. We consider
the following two cases:

20 logy eV = 20 logy ™™
= 30 db, total gain in (¢) and (éZ) below
(7) 20 logy e** = 1 db, gain per section
N = 30, number of sections
(180/7) - (Bl)1 = 4.05° phase shift per section at osecillation
| € |max = 0.00860, maximum value of reflection coefficient
for stability
(1) 20 logy ¢*' = 0.1 db, gain per section
N = 300, number of sections
(180/7) - (Bl); = 0.405° phase shift per section at oscillation
| € [max = 0.000860, maximum value of reflection co-
efficient for stability.

The total gain in both cases is large, and hence | ¢ | max has been com-
puted by (43). The transmission gain Gr plotted versus the normalized
frequency @l for these two cases is shown in Figs. 3 and 4 respectively
for several values of ¢. These results are computed by direct matrix
multiplication [see (18)] rather than via (19)-(22) or via the approxi-
mate results of (41). Figs. 3(a) and 4(a) show the gain vs normal-
ized frequency for three values of | ¢ | less than | ¢ |max as well as for
¢ = |c¢|max [computed via the approximate results of (43)], which
corresponds to the limiting case of stability. It is readily seen how the
device approaches instability as ¢ approaches | ¢ |max . Figs. 3(b) and
4(b) show computed curves of the “gain’’ versus frequency for a value
of ¢ greater than | ¢ |max . Under these conditions the device is unstable,
so that these curves have little direct physical significance; however,
these curves do not look too different from the stable ones of Figs. 3(a)
and 4(a). This should provide explicit warning against taking any such
computed curve seriously without first investigating stability.
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Fig. 3 — Transmission gain vs normalized frequency for one-dimensional ac-
tive medium with identical, equally-spaced reflectors. N = 30, number of sections;
20logioe** = 1 db, gain per section; total gain = 30 db; ¢ = magnitude of reflectors,
parameter indicated on curves.

A detailed picture of the behavior of these devices could be worked
out in terms of the poles of the gain function in the complex plane. For
small | ¢ | the poles lie in the left-half plane. As |c¢| is increased the
poles move toward the j-axis, causing greater oscillation in the gain-
frequency curve. As | ¢ | — | ¢ |max the closest pole touches the j-axis,
causing the gain to approach infinity at one frequency. Finally, as
| ¢ | becomes greater than | ¢ |max this pole moves to the right-half plane
and the “gain’’-frequency curve becomes finite. As | ¢ | increases further
the first peak decreases, but the next pole approaches the j-axis, so that
the second peak increases, approaches infinity, and eventually decreases.
The different peaks in the gain-frequency curve behave in a similar
manner as the various poles cross the j-axis in succession.

Figs. 5 and 6 show similar curves for the reflection gain Gr. Gz
approaches infinity for the same values of | ¢ | and Bl as does G ; this
must be so, since for the limiting case of stability, power must emerge
from both ends of the device in the absence of any incident wave. As in
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tive medium with identical, equally-spaced reflectors. N = 300, number of sec-
tions; 20 logie e*! = 0.1 db, gain per section; total gain = 30 db; ¢ = magnitude
of reflectors, parameter indicated on curves.

Figs. 3(b) and 4(b), the curves of Figs. 5(b) and 6(b) correspond to
instability and hence lack direct physical significance.

If the total gain in the absence of reflectors is not large, then the
above results of (43) are not valid, and the approximate results of (41)
are not valid over the entire range of permissible values of ¢. It is in-
teresting to examine the exact computer solutions for one such case.

(75) 20 logp e** = 0.1 db, gain per section
N = 50, number of sections
20 logy €¥* = 20 logy, ™™~
= 5 db, total gain
(180/7) - (Bl)1 = 5° phase shift per section at oscillation
| ¢ |max = 0.065, maximum value of reflection coefficient for

stability.

Gain-frequency curves for several values of ¢ are shown in Figs. 7 and
8. The values of (Bl); and | ¢ |max given above have been determined
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Fig. 5 — Reflection gain vs normalized frequency for one-dimensional active
medium with identical, equally-spaced reflectors. N = 30, number of sections;
20 logio e*! = 1 db, gain per section; total gain = 30 db; ¢ = magnitude of reflec-
tors, parameter indicated on curves.

from these curves. As above; Figs. 7(a) and 8(a) show the transmission
and reflection gains for the stable case, | ¢ | = | ¢ |max , While Figs. 7(b)
and 8(b) show the “gains” for an unstable case. The general comments
given above for examples (¢) and (#) apply also to this case. The
approximation of (43), which was valid in examples (z) and (4z) above,
would have predicted (81);1 = 3.37° | ¢ |max = 0.0135 for the oscilla-
tion conditions; this approximation is quite inaccurate in the present
low-gain case, particularly for | ¢ [max .

Straightforward calculation based on (18) or (19)-(22) in the peri-
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medium with identical, equally-spaced reflectors. N = 300, number of sections;
20 logio e*! = 0.1 db, gain per section; total gain = 30 db; ¢ = magnitude of re-
flectors, parameter indicated on curve.

odic case, or (12) and (13) inthe general case, will of course always lead
to some definite result for z1; as a function of frequency, whether or not
the device is stable. However, only if we are assured that the device is
stable will 2y; have the desired physical significance of the steady-state
loss function L, . If the device is unstable it will of course oscillate, and
ultimately the linear behavior assumed here must break down. However,
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20 logioe** = 0.1 db, gain persection; total gain = 5 db;c = magnitude of reflectors,
parameter indicated on curves.

by demanding that the device be at rest at { = 0 and examining the
initial build-up of oscillation, the mathematical significance of z;; may
be examined in the unstable case. Suppose the device is initially at rest,
and a sinusoidal input is applied at ¢ = 0. The total response may be
divided into a steady-state response, whose envelope is constant with
time, and a transient response, whose envelope ultimately grows or
decays exponentially with time in the unstable and stable cases re-
spectively. The steady-state response is given by m;; in both cases. In
the stable case, since the transients ultimately decay with time, only
the steady-state response remains. In the unstable case the steady-state
response retains the same mathematical meaning, but since the tran-
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20 logio ¢! = 0.1 db, gain per section; total gain = 5 db; ¢ = magnitude of re-
flectors, parameter indicated on curves.

sient response grows exponentially with time, the steady-state response
loses much of its physical significance.

III. RANDOM REFLECTORS

In the present section we consider active devices with reflectors having
random position and/or magnitude; different reflectors are assumed
statistically independent. Since the imperfections are random, the loss
(or gain) is also a random variable, and we seek various statistics of the
loss-frequency curve. The loss Ly is determined from (12)-(15) ; we study
the average loss and the second-order statistics of the fluctuations about
the average, i.e., the variance and covariance of the loss fluctuations. The
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form of (12)-(15) requires us to study the loss statistics rather than the
gain statistics, which are of more direct interest. However, if the loss
fluctuations about the average are small, then the loss and gain fluctua-
tions will be almost identical (except for a change in sign), and their
statistics will thus also be approximately identical.

As discussed above, (12)-(15) yield the transmission loss Ly only if the
device is stable. If the device is unstable so that oscillation occurs, then
the steady-state response L given by (12)-(15) loses much of its physi-
cal significance, as discussed in the previous section. The statistics of
L, computed below are effectively averaged over all cases, so that these
results will not be meaningful unless the probability of oscillation is so
small that for practical purposes it may be ignored. Thus the results be-
low are valid in the limit of very small reflections, in analogy to the per-
turbation case of the previous section. In a companion paper! useful
sufficient conditions guaranteeing stability are obtained; these stability
conditions extend the range of validity of the present calculations to finite
reflections.

Three different statistical models of an active device with random
reflectors are considered in the present paper:

(7) random magnitude and spacing
(#7) equal magnitude, random spacing

(177) random magnitude, equal spacing.

Thus for case () in (12)—(15), ¢, and I will be random variables with
appropriate distributions; we assume that the different ¢, and [, are
independent random variables. In case (7¢) the ¢, are all equal to the
same constant co , the I; are independent random variables. In case (iz)
the ¢, are independent random variables, the /; equal to the same con-
stant [, . Case (77) has been suggested by R. Kompfner as being appli-
cable to certain optical maser amplifiers.

In cases (¢) and (7i7) we will assume that ¢, is symmetrically dis-
tributed about 0, with a distribution narrow compared to 1.

We assume in the present paper that [; is always a large number of
wavelengths, so that

Bl >> 2. (47)

We further assume in cases () and (#7) that the distribution of /, about
its mean is very narrow with respect to the mean, but wide compared
to 2m/B. These assumptions are compatible with conditions existing in
certain optical amplifiers to which these results might be applied. For
certain calculations we need assume in addition only a smooth, sym-
metrical distribution for I, about its mean. However, for certain other
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calculations we must be more specific; here we will assume a Gaussian
distribution for I, , as follows:

1
p(lk) = \/2_1rtf; e—(lk—lo)/2¢l2) ()

where Iy is the expected value and o, the variance of I ,
b = (lk> )
012 (lk2) - <lk>2'

In accord with (47) and the discussion immediately following, we assume
that

(49)

It

2r/B <K oy KLy ; cases () and (7). (50)

Note that in case (2i7) Iy = L, as stated above, and ¢; = 0.

In the following work we make use of the Kronecker matrix product.’
For convenience we define this product and summarize some of its
properties.

Consider two matrices 4 and B with elements a;; and b,; . The ma-
trices A and B need not be square, have the same dimensions, or be
conformable; their dimensions are completely arbitrary, so that the
ordinary matrix products AB or BA may not exist. The Kronecker
product, written as 4 X B, (as opposed to the ordinary matrix product,
written as AB) is defined as follows:®

auB apB aB .-
A X B = 0213 (IzzB (Z23B LRI (51)

A X B has been written in (51) in partitioned form, with each sub-
matrix consisting of a scalar element of 4, a,; , multiplied by the entire
matrix B.

Kronecker products have the following useful properties:’

AXBXC=(AXB)XC=A4X(BXC) (52)
(A+B)X (C+D)=AXC+AXD+BXC+BXD  (53)
(A X B) (C X D) = (AC) X (BD). (54)

As stated above, products without X’s in (52) indicate ordinary matrix
products, and the two matrices to be so multiplied must be conformable.
Equation (54) may be extended to yield

(41 X By) (As X By) --- (Ax X By)

(55)
= (AlAz t AN) X (B1B2 T BN).
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We now return to the results of Section I for the transmission of a
general active device. I'rom (13) we have (see Fig. 1)

Wo(0) Wo(Ln+)
= X1X2 cre XN . (56)
w1(0) Wi(Ly+)
The output is assumed matched [see (17)], so that

In computing the loss Lz of (15) we might as well set
Wo(Ly+) = 1, (58)

so that by (15) Lr = Wy(0); (56) then becomes

] - wnen ] @

Now, in determining the average loss and the loss fluctuations about
the average we are not particularly interested in the phase variations
caused by the variation in total length, which may be large compared
to the optical wavelength but is small compared to the average total
length. Further, the variations in gain per section will also be small
compared to the average gain per section. These considerations suggest
the following transformations of (59), which remove these more or less
irrelevant contributions to the loss and phase variations. From Fig. 1,
the total length Ly is

N
m=;m (60)
Next define £, and ® as follows:
LT = 6+FLN'£T, cC'T = e_rLN-LT (61)
Wi(0) = ™™g, ®R = ¢ TN W4(0). (62)

From (12) we definc a new matrix Y in terms of X as follows:
Xk = e+rlk'yk) (63)

where

. = 1 1 —Jcx
FTANT = 2 tjoy ¢ g : (64)
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Then from (60)—(64), (59) may be written

o TN I}z{] = LYY, L TNy, [(1)]

e+I‘LN. Y.V, --- Yy [(l):l . (65)

Cancelling out the ¢ factor on both sides of (65),

[f}ﬂ VY, - YN[(I)], (66)

where £ is defined in (61), Y, in (64).

Equation (66) is suitable for studying the statistics of the normalized
loss £, which contains the essential information regarding the loss
fluctuations of the device. The quantity ® has to do with the reflected
wave at the input corresponding to a unit output wave, and will not be
of further interest here. The factor e™¥ = ¢ **¢**¥ removed from
the unnormalized loss Lz in (61) is of course a random variable, but
for a given amplifier it has eonstant magnitude and delay.

We now compute {£r), the expected value of the normalized loss £ .
Sinee the ¢, and [, are assumed independent random variables, the
different Y, of (66) are independent random matrices in all three cases
discussed above. Taking the expected value of both sides of (66), and
noting that the different Y, have the same distribution, we have

] o]

where (Y) is obtained from (64) as

(A=) I

V1—¢/ W1 — ¢/

Yy = ;e N\ 1 . (68)

. —2T1 —2T'1

ti\Vize) Y \\/1 Vioa/ )

Note that the independence :of ¢, and I; for a given k has been used in

obtaining (68); the subscript & has been omitted in the above relations,

since the statistics of the different ¢;’s and of the different Ii’s are iden-

tical. Finally, since we neglect the small variations in the gain per

section, we may set

<6—2I‘l> ~ eZalg(g-]‘ZBl) , (69)
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where [ is given in (49) as the average length of the sections. Then (68)
becomes

[— L1 _\ il C \
¥y = W1 = ¢/ J V1= ¢/ (70)
4 el <ﬁ> @ gl < \ <e——12ﬁl J

Now in cases (2) and (7iz) above we have

4

[—C N\ _
Wiza/ =0 (1)

since the distribution of ¢ is assumed symmetric about 0. In cases (7)
and (¢7) we have

(@) =0, (72)

in view of the assumptions about the distribution of . Consequently
(70) becomes in the three cases:

10
\\/11— C2> [O 0] case (1)
) = VII_T—C_&’[; _;c"], case (i) (13)

/1 N\ 1 0
\M/ 0 e?aloe_ﬂﬂlo ’ case (Z‘LZ) .
From (67) and (73) we have the following final results:

<:/—11T ?>N, cases (¢) and (#4z)
(5 = (74)

(\—/Ti———c?yv’ case (17).

The result for case (#¢) in (74) may be regarded simply as a special case
of the results for cases (7) and (7%7). Since in cases (7) and (77Z) the
distribution of ¢ is assumed narrow compared to 1, we may in some
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calculations make the following approximation in (74):

<—1\/—1_:c2> ~14+ 3, (75)

where {(¢’) is the mean square value of the magnitude of the reflection
coefficient.

Equation (74) shows that in all three cases the presence of random
reflections has increased the expected value of the loss; further, the
average loss is independent of 8 and hence of frequency. Since (£7) = 0,
if the deviations of £, from its expected value are very small (as they
must be in useful amplifiers), then we will have approximately

[{(en) |~ (] Lr]) (76)

This approximate relation permits us to estimate the variance of the
magnitude of the loss, as discussed below. We note that

[(er) | = (| Lr]) (77)

Next consider the mean square value of the loss, (| £r ) = (£r£,%).
First note from (51) that

LrLr* |&r

L1 X | LR || £.®R*

[m] X [m*] T ek | eS| (78)
RR* |®

From (66), (55), and (78) we have

&2 [1
*

= (X YT X 7)o Ty X T | | a9)
T

| f* 0

where Yy is given in (64). Taking the expected value of both sides of
(79), again making use of the independence of the different ¥ matrices
and the fact that they have the same distribution, we have

gl Lr I;) [(1)
(RE*) =(Y XY ) y
(laf) '.0

where (Y X Y*) is obtained from (64) and (51) as shown in (81).

(80)
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We again omit the subscript k in the above, since the statistics of the
different c¢;’s and of the different /;’s are assumed identical.
We now apply the same assumptions used above to (81). Asin (69),
neglecting the small variations in gain per section leads to
<6——2I‘l> ~ e2alg<e—j2ﬂl>
<e—21‘*l> ~ e?alo<e+j2ﬁl> (82)
daly ‘

<e4al> ~e ,

where [y as before is the average length of the sections [see (49)]. Further,
we make use of (71) for cases (¢) and (¢i2), and (72) for cases (7)
and (7). The resulting forms for (¥ X Y*) differ in the three cases,
but after some simplification the final quantity of interest, (| £r]?) =
(£rL7%), is given by the following single relation in all three cases:

|'<’ Lr 'ﬂ <1 —1 c2> <1 - 02> 1
= , ) (83)
td ® |2>_| alo / ¢\ Galo / \ OJ

\1 = ¢/ \T = ¢/
In case (4¢), we have in (83)
/1 N\ _ 1 / ¢ \ o’ (84)

\NT— ¢/  T—-¢ M-/ 1—c

Equation (83) gives the desired result (| £r[*) in terms of the nth
power of a real matrix. The matrix power may of course be written out
explicitly in the usual way, but for the sake of simplicity this will not
be done here. Some numerical examples are worked out in the next
section. The variance of the loss, denoted o¢,’, is given by

oer = (| &r — (€)%

(85)
= (|er ) = [{Ler) ]
The variance of the magnitude of the loss is given by
nier’ =l &rl = (e D)) = (L&) = Clen )

R ([ &r ) = [{&n) [' = ogy,
where the approximation of (86a) follows from (76). From (77) we have
Ol &r I2 = ‘7437'2 . (86b)

In these results ( | £7 [°) is given by (83), (£r) by (74); the approxima-
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tion of (86a) should be good when ¢|¢,/{(Lr) << 1. We see that for all
three cases (| £r[") and og,” are independent of 8 and hence of fre-
quency.

Finally we study the covariance of the loss £+, denoted Rg,(7), de-
fined by

Rep(1) = (£2(8 + 7)L:%(8)) = Re,*(—1). (87)

It will appear below that the expected value in (87) is indeed dependent
only on 7, and not on 3, within the approximations of the present treat-
ment. If we regard the loss £4(8) as a random process, then the Fourier
transform of Rg¢,(7) yields the power spectrum of the random processes
£r(B). Re (1) thus gives information about both the de and ac com-
ponents of £(8); of particular interest are the mean square magnitude
and the rate of fluctuation of the ac component of the loss. The total
“power” (de plus ac) Pr of the random process £(8) is

Pr = R:GT(O) = <I£T(B) |2> (88)
The de “power” Py, of £4(8) is
Poe = Rgp (0) = Rep(— ), (89)

where the limits as 7 — 2=« exist. Both ac and de¢ “powers’’ are neces-
sarily pure real, and are of course independent of 8, since Rg,(7) is
independent of 3 in general. Let us define the de component of a given
£7(B) curve as

1 M
Cr = &) = lim o1 [ 22(8) a5, (90)

M-

where the bar indicates an average over 8. Then it is easy to show that
the de power of (89) is also equal to

Py, = R£T(°°) = RST(_w) = (I”erc |2>? (91)

where £r,, is given by (90). Let us now define the ac component of a
given £7(8) curve by

Lr1,,(B) = L£:(B) — L1y, - (92)

Then the covariance Rg Tac(") of the ac component £r,.(8) and the ac
“power” P,. of the normalized loss £7(8) are given as follows:

Rer (1) = (£2,(8 + 1)£:°*()) = Rey(r) — Reg(),  (93a)
Pue = ([ £1,,(8) [) = Reg(0) — Reg() = Rayp (0). (93b)
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For convenience we define the covariance of ®(8) as an auxiliary
quantity, although this quantity is not of present interest to us:

Rg(r) = (R(B + 7)®R*(B)). (94)
We have
8+ 7) BN\ <<R£T(>T)(>>
/1 Lr(8 4+ 7 L*(B LB+ T)R*(B
\[ ®(8 + r)] X [(R*(ﬁ) ]/ = @@+ ner@) | 9
Rg(7) _
From (66), (55), and (95)
(@ RM)(T)( ) 1
aBT B + T (R* ﬂ _ % N 0
@8 + n)erg)) | = FE+ ) XTHE)T) (96)
R(R(T) 0_

where we again make use of the independence of the different Y, and
the fact that they have the same distribution. Using the various assump-
tions given above in (69), (71), (72), and (82), and making appropriate
simplifications in the different cases, we obtain the following final
common result for cases (7), (#), and (4):

Rex(?) = 2 ]

) . (97)
R(ﬂ(‘l’) 44110 / C 62> < —J‘Zrl 4alq < \ < —j2rl J J J

In addition to the usual approximations, we have used
<e—j2(ﬂ+‘r)l> ~0 (98)

in cases (7) and (77) in obtaining the result of (97). This approximation
implies that | 7| << g; i.e., we examine the covariance and hence the
loss over only a relatively narrow (electrical) band. In the analysis we
often use the quantity Rg,( ), which gives the de “power” [see (91)];
this is justified because the covariance computed from (97) will approach
its asymptotic value Rg,( ) for values of 7 satisfying the requirement
| 7| < 8. We assume the distribution of  is the Gaussian distribution of
(48), and note that (¢~*"") is simply related to the corresponding charac-
teristic function.’ Thus
<e—ﬂrl> - 6—397106—2(7471)2.1. (99)
t Note that this result justifies the approximations of (72) and (98) [subject to

the condition of (50)]. A similar result for {e'%), where I is complex, may be readily
derived, and justifies the approximation of (69) and (82).
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In case (#7) we have o; = 0in (99). Thus we have as our final result:

o]
Rg(7)

(100)
/1 \ < ¢ > v 1
\1 — ¢/ 1 —¢
e4alo <1 iz cz> e-j2rloe»2(rn)2 e4alo <1 —]-. Cz> 6—]21106—2(1“)2 0
/1 > _ 1 / &\ _ . .
U/ i\ i/ " T sl (101)
g = 0; case (717).

Certain general properties of Rg,(7) are readily deduced from (100).
Tirst, Rg,(7) is independent of 8 and dependent only on r, as assumed
above in (87). Second, for = 0, (100) becomes identical to (83), as
it must. Finally, for r — o, we have in cases () and (¢) from (100) and
(101)

/1 \" case (¢)
\l — ¢/ [also case (777) — see below]
Re,p() = (102)

1 N
<i——002> 5 case (’l:i).

Rg, (o) is real, as stated above. We recall from (91) that Eg, (=) is
the de “power” of £7(8). The ac “power” is given by (93).

Now, in case (i) the covariance Rg¢,(7) is periodie, which implies
that the random process £7(8) is periodic;' however, this is obvious
from the original formulation of the problem. B¢, () no longer exists
in the strict sense; the de “power” is now the average value (over )
of Re (7). It turns out that we may approach case (#i7) by considering
case () and allowing ¢, to approach 0 in (100). [This violates the con-
dition imposed by (50) and used in the approximations of (72) and (98)
and so the limiting process ¢, — 0 is forbidden in some of the above
results; careful examination shows that it 4s valid to allow ¢; — 0 in
(100).] Then Rg,(7) does approach the limit of (102) as 7 — «; and
so we take the first result of (102) as the de¢ “power” in case (¥it), as
well as in case (7).
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In general
(€r(B))" # Pac = (| £2(8) [*), (103)
oep # Poe = (| £r,,(8) ). (104)

However, in case (¢7) only — ie., reflectors of identical magnitude and
random spacing — (103) and (104) are true with the > replaced
by =, as seen from (74) and (102).

The matrix power of (100) is easily written explicitly in the usual way,
but the results would be rather complicated. Numerical examples are
worked out in the next section.

1V. NUMERICAL EXAMPLE — RANDOM REFLECTORS

Consider an optical amplifier with random reflectors of the type given
in case (¢7) of Section III: i.e., the reflectors have identical magnitude but
random spacing. Assume:

20 logye e =1 db, nominal gain per section
N = 30, number of sections

20 logy €7 = 30 db, nominal total gain.

Fig. 9 shows the average normalized loss and the rms fluctuation of the
normalized loss about its average value, plotted versus ¢, the magni-
tude of the reflectors. As seen from example (7), Section II, instability
is possible if | ¢ | > 0.00860. Therefore the curves of Fig. 9 are solid
for ¢o <0.00860, dotted for ¢, > 0.00860. However, this is intended only
as a symbolic reminder of the question of stability. We do not know
whether or not instability can occur for |c¢,| < 0.00860. Even though
we know that instability can occur for | ¢o | > 0.00860, the probability
of instability might remain so small for some greater range of ¢, that
these curves would provide a useful approximation. In Ref. 1, Section
VI, equations (122)—(131) we show that stability is guaranteed for
| eo] < 0.00590, assuming that the maximum fractional variation in
spacing of the reflectors [» in (124) of Ref. 1] is small compared to 1.
This is indicated in Fig. 9.

All of the above results have been independent of the precise distribu-
tion of the I, , the spacing between reflectors, except that the conditions
of (47) and the following sentence must be satisfied. However, the
covariance of the loss depends explicitly on the probability distribution
of the I . For our present example we therefore assume that the differ-
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Fig. 9 — Average normalized loss and rms fluctuation about the average for
one-dimensional active medium with randomly spaced reflectors of identical mag-
nitude. N = 30, number of sections; 20 logio ¢ = 1 db, nominal gain per scction;
nominal total gain = 30 db.

ent [ are independent, with the Gaussian probability density given in
(48)—(50). We further assume the following numerical values:

(o1/l) = 0.01, ¢ = 0.005. (105)

Thus, the spacing between successive reflectors is accurate to about 1
per cent, and the magnitude of the reflectors would guarantee stability
in the equally spaced case of Section II, Of course a practical device
would probably be built much more aceurately, but the values in (105)
are suitable for illustrating the general behavior. Fig. 10 shows the
(complex) covariance Rg, (7) of the ac component £r,(8) of the
normalized loss for this case as a function of the normalized variable
(lo/m)r, for 0 < (lo/m)r < 4. Fig. 10(a) shows the magnitude
| Rer, (7) | and Fig. 10(b) the phase ZRg, (7) + 58 lor; note that
the linear component of phase has been removed in the plot of Tig.
10(b). The covariance is seen to be approximately a damped periodic
function of r; Fig. 11 shows a plot of the magnitude of the covari-
ance at the points r = n(x/ly), which correspond closely to the max-
ima of | Rg, (7)].
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Fig. 10 — Covariance of ac component of normalized loss for one-dimensional
active medium with randomly spaced reflectors. o;/lo = 0.01; ¢y = 0.005, magni-

tude of reflectors; N = 30, number of sections; 20 logio e2% = 1 db, nominal gain
per section; nominal total gain = 30 db.

We would expect some resemblance between the covariance of Figs.
10 and 11, for reflectors with identical magnitude but random spacing,
and the (nonrandom) case of Section II for reflectors with identical
magnitude and spacing. For the nonrandom case we have seen that
the loss is periodic; consequently the covariance will also be periodic,
and will look something like that of Figs. 10 and 11 for the random case
except that it will not be damped. Note that the large linear component
—58 lpr that has been removed from the phase curve of Fig. 10(b)
implies that the power spectrum of the random process £7,,(8) is con-
centrated around the angular “frequency” —58 Iy ; this angular “fre-
quency”’ corresponds to the rate of variation of the loss for two reflectors
whose separation is equal to the nominal spacing of the two end re-
flectors in the random case.
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Fig. 11 — Approximate maxima of covariance of ac component of normalized
loss for one-dimensional active medium with randomly spaced refiectors (see Fig.
10). a;/lo = 0.01; ¢, = 0.005, magnitude of reflectors; N = 30, number of sections;
20 logie 2% = 1 db, nominal gain per section; nominal total gain = 30 db.

V. DISCUSSION

The question of stability has been discussed for the periodic case at
the end of Section II. There it is pointed out that these calculations are
valid only if the device is stable, i.e., does not oscillate. The same is true
in the random case. In the periodic case we can determine by calculation
the limits of stability, and this has been done in the examples of Section
I1. Stability in the random case is studied in Ref. 1.

Various higher-order transmission statistics may be calculated by
methods similar to those used above, but the complexity of the calcu-
Iations increases with the order of the statistics. In addition, statisties of
the real and imaginary parts of the normalized loss £ may be readily
determined by similar methods.
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Stability of Active Transmission Lines
with Arbitrary Imperfections

By H. E. ROWE
(Manuscript received August 23, 1963)

Two sufficient conditions for the stability of one-dimensional aclive
transmission lines with arbitrary imperfections (.e., discrele or continuous
reflections) are derived. The first stability condilion guarantees slabilily
for any arbitrary distribution of reflection. The second stability condition is
restricted to a special case of interest that includes discrete reflectors with
nominally equal magnitude and spacing; the stability condition for this re-
stricted class is greatly tmproved over the general stability condition de-
scribed above.

These results, aside from their own interest, provide rigorous justifica-
tion for previous calculations for the gain statislics of such a device wilh
random discrete reflectors. They may also be used to find an wpper bound
on the probability of instability of such a device with random reflectors.

Certain types of optical maser amplifiers and traveling-wave tubes pro-
vide examples of practical devices with distributed gain to which these re-
sults, or stmilar ones, might be applied.

I. INTRODUCTION

The preceding paper! has considered the theory of active transmis-
sion lines with discrete imperfections. First, lines with equally-spaced
identical reflectors were studied; in particular, gain-frequency curves
were determined as functions of the various parameters; and the sta-
bility of the device was studied under these special conditions. It was
pointed out that the mathematical expression for gain would yield a
perfectly definite result for any values of the parameters, but that this
mathematical result would have physical significance only if the device
is stable, i.e., does not oscillate.

Next, the case of random imperfections was studied.! Here the statis-
tics of the transmission were determined in terms of the statistics of the
discrete reflectors, which were assumed to have random position and

293
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magnitude. Again, these results have physical significance only if the de-
vice is stable (or if the probability of instability is negligible). However,
in the random case no precise information about stability was given;
the computed statistics of the transmission were felt to be valid if the
rms magnitude of the discrete reflectors was sufficiently small, but only
intuitive feelings of what was ‘“‘small enough’ were available.

In the present paper we derive a sufficient condition for stability of an
active transmission line with arbitrary reflectors; we further show (by
one example) that this sufficient condition cannot be greatly improved
(if at all) in the general case. This result gives useful information re-
garding the range of validity of the calculations of the preceding paper!
for the transmission statistics of active transmission lines with random
reflectors. This general bound on stability may be improved if additional
information is known about the distribution of reflectors; one such case
of interest is treated.

The mathematical model chosen for this problem is discussed in detail
in Ref. 1. A line with N discrete reflectors is shown in Fig. 1 (which is
identical to Ifig. 1 of Ref. 1). The wave traveling to the right at distance
z is denoted by Wy(z), the wave traveling to the left by Wi(z); Wo(Li+)
and Wy(Li+) are the right- and left-traveling waves just to the right
of the kth reflector, as indicated in this figure, while Wo(L;—) and
Wi(L—) are the right- and left-traveling waves just to the left of the
Ith reflector.

In the absence of reflections the forward and backward waves vary as

Wo(2) « ¢ — forward wave ()
Wi(z) = ™ — backward wave
__________________ Ly——————
r ————————————— Lk——"——————— )!
~lo- L 1

et I e A
| L T
c c,  C3 Cke1  Ck CN-1 CN
R N A A |
w.,(o)—»i Wo(LiH)=— Wo(Lnt)—
i I

Fig. 1 — Line with N discrete reflectors.
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where
= —a + j8, a > 0. (2)

The line has gain, so that @ > 0. From (12) of Ref. 1, the wave matrix
for the cascade connection of the kth line section of length I and the
kth reflector is

T - Tl
1 et —joe™
X, =

V1 = ¢ +j0k€_rlk Tl ]’ lckl =1, (3)

I/Vo(Lk—l'f‘) WvO(Lk"I")
- X, (4)
Wi(Lxa+) Wi(Li+)
where | ¢ | is the magnitude of the reflection coefficient for the kth re-

flector. The over-all transmission matrix for the entire line of Fig. 1,
denoted by X, is given by the matrix product of (13) of Ref. 1:

l:Wo(O)j' _ X-,:WO(LN_i_)] 6)
W1(0) Wi(Ly+)

For convenience, denote the elements of the over-all transmission
matrix X asin (14) of Ref. 1.

T - l:xn fvmjl‘ )
Tor  To2
X is given by (3) and (5). Assume the device is operated as an amplifier
with matched input and output; setting Wi(Ly+) = 0, the complex
transmission gain Gy is given by

_ Wollwt) _ 1

Gr = (8)

Wo(O) T '
Now 2y, is a function of T' and of all of the l’s and ¢;’s. We may concep-
tually investigate stability in the following way. Imagine that c; is re-
placed by ec. throughout this analysis; e is a variable parameter that
scales the magnitudes of all of the coupling coefficients. Let € be increased
from 0, and for each value of e examine zy; [which in (8) is the reciprocal
of the transmission gain, and so may be regarded as the transmission
loss] as a function of frequency w (or of the phase constant 8, which is
assumed proportional to frequency, since the line is distortionless)" over
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the entire range —« < w < 4. We determine in this way the mini-
mum value of | zy; | for each value of e. As e increases, this minimum value
of |21 | will eventually just drop to zero, for a critical value of e which
we denote by e . Thus, as € — ¢ the gain | G| — « for a particular
value of w, and the device oscillates. e is the dividing line between sta-
bility and instability; if ¢, > 1, the original deviee, with the parameters
cr and [ , is stable.

Such calculations have actually been carried out in Ref. 1 for devices
with identical, equally-spaced reflectors. In this case the gain Gy is a
periodic function of frequency w, so that only a finite portion of the fre-
quency axis (i.e., one period) must be investigated. In general, however,
Gr is not periodic; since we cannot investigate numerically the entire
w-axis, it is not obvious how to investigate stability for the general case.

In the remainder of this paper we determine a sufficient condition
that guarantees the stability of a general active line with arbitrary dis-
crete imperfections. In particular, consider such a device, illustrated in
Fig. 1, characterized by (3), (5), and (6), with arbitrary «, ¢, and Ii .
We show below that any such device satisfying the condition

—al
e N

V2
must be stable. Many practical devices will have large gain, and hence
must have small reflections. In such cases ¢ ““¥ << 1 and | ¢; | < 1; under

these conditions a slightly poorer stability condition derived from (9)
is useful.

(9)

N
D> tanh™|e¢;| < 2 sinh™*
7=1

N —aLpy
¢:| < tanh I:Q sinh ™ ] . (10)
2 el G
In the high-gain case the right-hand side of (10) may be made simpler
still by further degrading this stability condition. We may show, for
example, that
Pt
V2

Thus a slightly poorer version of (10) is

tanh [2 sinh™* ] > 0932 V/2¢ ¥, 8.686aLy = 10db. (11)

N
Dlei] £09322¢,  8.686 aly = 10 db. (12)
=1

The stability condition of (12) is valid when the one-way gain of the
active medium exceeds 10 db. As the lower bound on the one-way gain
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of the active medium increases beyond 10 db, the numerical factor 0.932
on the right-hand side of (12) increases, approaching 1 as the lower bound
on the gain approaches infinity. This is readily seen from (10); as
aLy — ©, ¢ %™ — 0, so that the sinh ™ and tanh functions in (10) may
be approximately replaced by their arguments for sufficiently large aLy .
However, direct calculation with (10) is straightforward; the result of
(12) (or similar equations) is intended principally to illustrate the gen-
eral behavior.

Thus (9) or the successively poorer versions of (10) and (12) guaran-
tee that the device will be stable, even for the worst possible choice of
the ¢, and I, . Equations (9), (10), and (12) are each sufficient, but
not necessary, conditions for stability. These results are derived in
Sections II, ITI, and IV. In addition, a better bound is obtained for a
special case in which the reflection coefficient is distributed more or less
uniformly with distance z along the active line, in a certain sense to be
described more precisely in Section V below; these results inelude many
cases of interest. Finally, some numerical examples illustrating the use
of these two different types of bounds are given in Section VI.

II. DIFFERENTIAL EQUATIONS EQUIVALENT TO MATRIX RELATIONS
Consider the following differential equations:
Wi (2) = —TWo(z) + jr(z)Wi(z),

(13)
Wy (z) —jr(2)Wo(z) + TWi(z).

These relations have the form of the coupled line equations with a gen-
eral continuous coupling coefficient. In the present case, Wy(z) and W,(2)
are the right- and left-directed traveling-wave complex amplitudes, and
r(2z) is the continuous reflection that couples the two waves to each other.
Equation 13 is readily obtained as a limiting form of the matrix relations
of (3), (5), and (6) by assuming very small, closely spaced discrete re-
flectors whose magnitude varies slowly with distance. Thus in the matrix
relations of Section I above set

ly = Az. (14)
Assume that ¢, varies slowly with k. Then we set
e = r(kAz) - Az, (15)

where r(z) is a continuous function. We now let Az — 0 so that the num-
ber of discrete reflectors — oo ; during this process the continuous func-
tion r(z) is fixed and the ¢, determined by (15), so that the magnitudes
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of the individual reflectors — 0 as Az — 0, Then the matrix relations of
(3), (5), and (6) will yield the continuous differential equations of (13).
The analysis is straightforward and quite similar to that of Ref. 2 for a
similar problem, and so will not be given here. The above discussion of
(13) as an appropriate limiting continuous form of the matrix relations
of Section I is given only to provide some physical motivation for con-
sidering (13), and plays no part in the mathematical analysis to follow.

The case of isolated, discrete reflectors, characterized by (3), (5), and
(6), may conversely be regarded as a special case of continuous reflection
in (13), in which the continuous reflection r(z) becomes a sum of suit-
able §-functions, one located at each discrete reflector. Thus we show
that if 7(z) in (13) is given by

r(z) = ziv: tanh™ ¢;-6(z — L), (16)

where in Fig. 1 L; is the total distance from the input of the line to the
ith reflector, then the solutions to (13) at the output of the line, i.e.,
Wo(Ly+) and Wi(Ly+), are given in terms of the input conditions
Wo(0) and W1(0) by (3), (5), and (6).

Consider the typical kth section of line, of length I , followed by the
kth discrete reflector, as illustrated in Fig. 1. In the line section between
the (kK — 1)th and the kth reflectors r(z) = 0, from (16). Therefore in
this region the solution to (13) has the form of (1); the forward and
backward waves are uncoupled, and have the same propagation constant.
We may thus write the solution between the (kK — 1)th and kth reflectors
in the matrix form

[WO(Lk—1+ )} [6+m 0 jl [WO(Lk_ ):l (17)
Wi(Lia+) 0 ™| LWi(I—) ]

where W (L,—) indicates a wave amplitude evaluated just to the left of
the kth reflector, W(L;+) just to the right.

We next evaluate the transmission matrix for the kth reflector, i.e.,
the kth é-function of (16). This calculation may be performed by setting

-1
M, Ly <z < L+ A
r(z) = A (18)
0, otherwise.

We then determine the matrix 7'(A),

I:Wo(Lk + A) |:W0(Lk)j|

= T(A)- 19
Wi(Ly +A)J @ Wi(Le) (19)
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Then as A — 0, r(z) — tanh™ ¢.-8(z — L), and lim T(A) = T(0)
A~>0

yields a matrix relating the wave amplitudes Wy and W on the two sides
of the kth s-function of r(z) [see (16)]. This analysis is again similar in
motivation, although different in detail, to that of Ref. 2 for a similar
problem. Since r(2) in (18) is constant throughout the region of interest,
(13) becomes a linear differential equation with constant coefficients, and
is readily solved by the usual techniques. The solution for general A may
be written in matrix form, yielding 7(A) of (19), as follows:

T(a) =

1 —K_™V 4+ K. etV FAVT — gTAVT (20)
I(_'_ — K_ _eFA\/— _|_ e_rA\/— I{-).. eI'A\/— _ K_ e—I‘A\/_
=T _
Re=—J tanh—t ¢ ’ KiK- =1 (21)
TA
tanh™ ¢;
1 TA (22)

J
K. —K_ 2~

Vv = 1/ 1+ (t——anll,‘: C">2 (23)

Taking the limit as A — 0, (20)—(23) yield

I:Wn(Lk-}-)j, _ T(O)'[WO(Lk_):I (24)
Wi(Lp+) Wi(Ly—)
where

5 _ 1 1 je

7(0) = {‘1113 T(A) = \/———'—1 — [—jck 1]- (25)

Inverting (24),

,:WO(Lk_)] _ T_I(O)-liWo(Lk-l-):l (26)

Wl(Lk—) Wl(Lk+)

where, from (25)

o) = L | 1 T (27)
V1 =2 4jo 1
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From (17), (26), and (27) we now have

I:WO(Lk—I'l')] _ x,. [Wo(Lk+)il (28)
Wi(Lia+) Wi(Lk+)

where X is as given in (3). Equation (28) is identical to (4). Finally,
the solution to (13), with 7(z) given by (16), is given by (3), (5),
and (6).

The equivalence of (13) and (16) with (3), (5) and (6) is useful be-
cause the original matrix problem may thus be regarded as a special
case of a pair of differential equations. Stability appears to be more
readily studied for the more general continuous case described by the
differential equations; these results may then be applied to the special
discrete case of interest here.

III. SOLUTION BY SUCCESSIVE APPROXIMATIONS {PICARD’S METHOD)

We summarize the solution of (13) by successive approximation, fol-
lowing the same general approach as in Ref. 3 for a similar problem. First,
it is convenient to make the following transformations:

Wo(z) = ¢ -Gy(2)

(29)
Wi(z) = ¢™-Gi(2).
Substituting (29) into (13), we have
G'o(2) = jr(z) e™Cy(2
o(2) Jr(z) 1(2) (30)

G (2) = —jr(2) € Go(2).

Assume that the device is operated as an amplifier with matched input
and output. It proves convenient in the following analysis to take the
input at the right-hand end of the amplifier, i.e., at 2 = Ly, where Ly
is the total length, and the output at the left-hand end, i.e., 2 = 0; this
is just opposite to the choice made in Ref. 1 and in Section I above
[particularly in (8)]. The useful output is then the left-directed traveling
wave at z = 0, i.e., W1(0), corresponding to an input taken to be the
left-directed traveling wave at 2 = Ly, Wi(Ly). Since the device is
matched at both ends, Wo(0) = 0; Wo(Lxy) % 0, since this quantity
corresponds to the reflected wave at the input end (i.e., at z = Ly)
of the amplifier.

Now assume for convenience a unit-amplitude output wave:

W(0) = 1. (31)
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As noted above, since the output is matched,
Wo(0) = 0. (32)

We seek W1(Ly), the input corresponding to the output of (31); since
unit output has been assumed in (31), the complex transmission gain
G will be

1
WLy’

where W(Ly) is the solution to (13) subject to the initial conditions of
(31) and (32).

The transmission gain is readily stated in terms of the solutions to
(30), which were obtained from (13) via the transformation of (29).
Thus, consider (30) subject to the initial conditions

Go(0) = 0,
G(0) =1,

obtained from (31) and (32) via (29). The complex transmission gain
G of the amplifier is then given by

Gr (33)

(34)

_ 1
Gr = ¢ " 35
T e GI(LN) ’ ( )
where (;(Ly) is the solution to (30) subject to the initial conditions of

(34).

We now seek the solution to (30), with the initial conditions of (34),
via Picard’s method of successive approximations.® Assume the
(n — 1)th approximation to the solution is available; let us denote this
approximation by Go,_1)(2) and Gi_1p(2). Then the (n — 1)th
approximation is substituted into the right-hand side of (30) and the
right-hand side integrated to yield the nth approximation.

Go(n)(z) = j]{; 7‘(8) 8+2FSG1(n_1)(cS‘) ds.
. (36)
Gimy(2) =1 — jfo r(s) e_ZFsGO(n—I}(S) ds.
We take the initial (Oth) approximation as simply the initial conditions
of (34):
Gowy(2) = 0,

(37)
Goy(2) = L.
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Writing
Goy(2) — Gom-1(2) = Gom (%),
(38)
Gin)(2) — Gian(2) = Gim(2),
we have
Gom (2) = Z}gou«)(z),
., (39)
Gim(2) = 1 + kZZ:lyum(Z).
From (36) and (38), the ¢g’s of (39) are given as follows:
ooy (2) = jfo r(s) € gicuesy(s) ds, nz 1 (40)
gim (2) = —jﬁ r(s) e gonn(s) ds, n = 1. (41)
g (2) = 0, i (e) = 1. (42)
From (40)-(42)
»(2) = 0, n even.
go(n) (43)

gl(n)(z) = 0, n Odd

Thus only odd terms appear in the top summation of (39), and only
even terms appear in the bottom summation of (39).

We next obtain bounds on the magnitudes of the terms in the series
of (39), thus showing that these series converge as n — oo for all finite
2, so that the solutions to (30) subject to the initial conditions of (34)
are

Go(z) = Zi:ogﬂ(n)(z)y
"~ (44)
Gi(2) = ;gl(n)(z),

with gowy(2) and gi)(2) as given by (40)—(42). The analysis is sug-
gested by that of Ref. 3. We show that:

= 0, 7 even.

| goemy (2) | l:foz [r(s) | dsi'n (45)

= s n odd.
n!
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['/: | r(s) | ds]n 7 even.

é e az nl ) (46)
| g1y (2) ]
=0, n odd.
where from (2)
= —a+j8, a=—Rel >0. (47)

Suppose that (46) is true for some even n. Then from (40)

[[lr(s) as |

[ goniny (2) | = ]: [7(2) | 2 o2 n!

7%! f0t=zl:f0t [ r(s) | ds:lndl:fot | 7(s) | ds] (48)
z n+1

l:fo [r(s) | ds:l

(n 4+ 1)! ’
in agreement with (45). Substituting this result into (41),

[l

g1 (2) | = f:l’(” | et (n + 1)1

(_niﬁl—)l fot:z Uot " ltds:]nﬂ (49)
A [ 1766 1]
_ 4%z [foz [r(s) ] ds]nﬁ

B (n + 2)! ’

in agreement with (46). Noting (42) and (43), the results of (45) and
(46) hold for all n by induction.

The bounds of (45) and (46) guarantee the convergence of the series
solutions of (44) under quite general conditions. It is readily seen that

dt

IA

dt

IIA

[Go(2) | < sinh[f:lr(S) lds:|,
(50)

| Gi(2) | < 6™ cosh [:]: | 7(s) | ds] .
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The series solutions of (44) converge for all finite 2, so long as the con-
tinuous reflection coefficient is absolutely integrable,

f;zlr(s)]ds < o, (51)

In particular, note that r(2) may contain é-functions, as in (16), so that
the above bounds may be applied directly to the discrete case of Sec-
tion L.

The solutions to (30) given by (44) and (40)-(43) thus converge for
all finite z in the case of interest. However these formal mathematical
solutions have physical significance only when the device to which they
apply is stable, i.e., does not oscillate. In the following section we use the
bounds of (45) and (46) to obtain a sufficient condition guaranteeing
stability in the general case.

IV. BOUNDS ON STABILITY — GENERAL CASE

Consider a general amplifier described by (13) or equivalently by
(30). Assume the total length is given by Ly. We may investigate
stability as indicated following (8). Replace the continuous reflection
coefficient r(z) by e-r(z), where e is a numerical parameter. Let ¢ be
increased from 0, and for each value of e determine the maximum value
of the transmission gain | G | as a function of frequency w. From (35)
the maximum value of | Gr| corresponds to the minimum value of
| Gi(Ly) |. As e approaches a critical value, denoted above by e,
| G7 |max — ® and | Gi(Lw) |min — 0; if €. > 1 the original device is
stable.

From (40)—(44),

G(Ly) =1+ "z‘; gimy (L) (52)

n even

Noting that (z) has been temporarily replaced by e-r(2), for sufficiently
small € a lower bound on the magnitude of Gi(Ly) is given by

0

[Gi(Ly) | 21— 3 [giw(Lw) | . (53)

n=2
n even

Both sides of (52) and (53) are functions of frequency w, through their
dependence on the propagation constant 8. Using the result of (46) in

(53),
O . [ 1erer 1ae] e

n=2 n!

n even
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Since the expression on the right-hand side of (54) is independent of
the propagation constant 8 and hence of the frequency w, this expression
is also a lower bound on | Gi(Ly) |min , the minimum value of | Gi(Ly) |

as a function of w.
l:fLN n
" er(s) | dsjl
gtatn LJo I ) (55)

IGL(LN) Imin ; 1 - Z 1
n=2 nt

n even

As e increases from 0, the lower bound on | G1(Ly) |min given by (55)
steadily decreases, and for some particular value of ¢ £ ¢, approaches 0.

Therefore if
Ly n
. U | eor(s) lds:,
Z 0 < oLy (56)

n=2 n!

n even

stability is guaranteed. If (56) is satisfied for ¢ = 1, then stability is
guaranteed for the original amplifier, with reflection coefficient r(z).
Consequently, a sufficient stability condition for an active transmis-
sion line with a general continuous reflection coefficient r(z), described
by either (13) or (30), assuming the device to be matched at both ends,

is given by
i l:fo [r(s) Ids:I e 57

n=2 n!
This may be written
Ly ‘
cosh[[ [ 7(s) fds] — 1 < ity (58)
0
or further
[
[7(s) | ds
sinh?®| =2 3 < % g (59)

Finally, taking the square root of both sides of (59) we obtain

Ly
Smhfo (s [ ds e (60)
2 3
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or equivalently

e Ly

j;LN |7(s) | ds < 2 sinh™! V3 (61)

as sufficient conditions for stability for a general active transmission line
with an arbitrary continuous reflection coefficient r(z).

We may now apply the result of (61) to the discrete case of Section I
above by making use of the results of Section II. As noted in Section II,
if the continuous coupling coefficient r(z) is a series of é-functions of
the form given in (16), then the solution to (13) is identical to that for
the discrete case, given in (3), (5), and (6). Since the stability condition
of (61) holds true in general, it may be applied to the discrete case by
substituting (16) into (61), yielding

—a Ly

N
> tanh™ | ¢;| < 2 sinh™ e\/§ . (62)

i=1

Equation (62) is a sufficient condition for stability for a general active
transmission line with arbitrary diserete reflectors, having reflection co-
efficients c¢; located at arbitrary positions along the line. Equation (62)
is the result stated in Section I as (9). This inequality is a sufficient con-
dition for stability; if the inequality is satisfied, the device must be
stable. This condition is nof necessary for stability; many devices that
violate (62) or (9) are stable.

The weaker bounds of (10) and (12) are readily obtained from the
basic result of (62) or (9) by straightforward use of inequalities. From
(62) or (9) we must have

—alLy

tanh™ | ¢;| < 2 sinh™! e\/ﬁ i=1,2,--- N. (63)

Since the function y = tanh™ z is concave upward for z > 0,

-1
tanh™z < Ea-nh—f'—"-x, 0<z<a,. <l (64)
Therefore, from (63),
e—eLy
2 sinh™!
tanh™ | ¢; | < \/?aLN Jeil. (65)
tanh [2 sinh—1 ¢ 5 :I



TRANSMISSION LINE STABILITY 307

Therefore if the relation

ﬁ || < tanh [2 sinh™* 6;75"] (66)

is satisfied, then the condition of (62) must also be satisfied, so that (66)
is a slightly poorer sufficient condition for stability; this result was given
in (10). Finally, since the function y = tanh [2 sinh™" 2] is concave
downward for z > 0,

tanh [2 sinh™" %) o
Tm

tanh [2 sinh™ 2] = , 0=z = an. (67)

As a particular instance let us choose ., = (1/4/20) = 0.2236; then
(67) becomes

tanh [2sinh ™" 2] = 1.8632, 0=z =< = 0.2236. (68)

ml"‘
Sl

By using (68) to decrease the right-hand side of (66), we obtain the
slightly poorer sufficient condition for stability

e L

L N
< —
Z=j [ei| < 1.863 3

(69)
= 0932 V2e¢ ™, 20logy ¢ = 10 db

given in (12).

V. BOUNDS ON STABILITY — SPECIAL CASE, INCLUDING REFLECTORS OF
NOMINALLY EQUAL MAGNITUDE AND SPACING

The bounds on stability derived in Section IV in the general case
guarantee stability for the worst possible arrangement of reflectors.
Thus in many cases the sum of the magnitudes of the reflectors may far
exceed the bound given by (9), (10), or (12) without causing instability.

These general bounds guarantee stability even if we have no informa-
tion whatever about the distribution of reflectors. If we do have such
additional information, it should be possible to make use of it to find im-
proved bounds. As a trivial example, in the treatment of equally spaced,
identical reflectors in the previous paper! exact stability conditions were
obtained; we will see in Section VI that for this case the sum of the
magnitudes of the reflectors at the boundary of instability may far ex-
ceed that given by (9), (10), or (12).

In the present section we consider a somewhat restricted special case
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in which the reflection coefficient is almost uniformly distributed in a
certain sense. We assume that

R(z—1) < fz|r(s)|d8 < R-(z +9g),
0 (70)
R>O, fgoy gzo?

where R, f, and g are constants. Equation (70) states that the indefinite
integral of the absolute magnitude of the reflection coefficient is con-
strained to lie between two straight lines of the same slope R, separated
by the horizontal distance & given by

h=f+g, hzo, (71)

It turns out that the final bounds of this section are better the smaller
the separation k. This is to be expected, since the smaller the separation
of the two straight lines given by the right- and left-hand sides of (70),
the more constrained is the reflection coefficient r(z).

The presence of sufficient length of perfect (i.e., reflectionless) active
line at either end will needlessly increase f and hence & in (70) and (71),
and hence needlessly degrade the final stability condition given below.
Such a length of perfect line cannot affect the stability, but merely alters
the gain of the device (assuming it is stable). Therefore for purposes of
the present stability analysis sufficient lengths of perfect active line
should be removed from each end so that A is minimized, and hence the
best possible bound is obtained. Removal of any additional lengths of
perfect active line from cither end will do neither good nor harm to the
final stability condition.

A few examples serve to illustrate the general nature of the restriction
of (70). First suppose that r(2) is equal to a (positive) constant,

r(z) = 7o. (72)
Then (70) is true with
R =
f=0, g=20 (73)
h=f+g=0.

The separation & [of (71)] between the straight lines of the two sides of
the inequality of (70) is zero in this case. Equations (13) or (30) are
readily solved exactly for the reflection coefficient of (72) by slight modi-
fication of the results of (18)—(23), in particular by first replacing
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tanh™ ¢, — mA and subsequently replacing any remaining A’s by
A — [, where L is the total length, in these equations. From this exact
solution precise stability conditions may be obtained for the case of
constant (continuous) reflection coefficient; we expect the bounds of the
present section to agree with this exact result when we set f = g = 0.

Similarly, the parameters of (73) apply to the bounds of (70) when
the (continuous) reflection coefficient is a square wave of constant
absolute value 7o, with arbitrary transitions between the --ro and the
—rp sections.

The above two examples utilize a continuous reflection coefficient.
However, our particular present interest lies in some of the discrete cases
of the preceding paper.' First, consider the case of identical, equally-
spaced reflectors of Section II, Ref. 1; the relations of (70) are illustrated
for this case in IFig. 2. A less-restricted case is provided by the case of
reflectors of identical magnitude but random spacing, where the fluctua-
tion in spacing is very small compared to the average spacing, treated in
Section IIT of Ref. 1. The relations of (70) for this case are shown in
Fig. 3; the randomness in spacing has resulted in a slightly wider separa-

NK -~

aK |-
3K

2K~

N
r(z)=K-y, d(z-1-1o)
i=1

r(z)

|

[¢} Lo 21, 3l, 41, N1,
Z —>

PARAMETERS OF EQUATION 70
R=K/1, f=1, g=0

Fig. 2 — Identical, equally spaced reflectors.
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7K

6K~

5K

aK -

3K

[o] L | 1 | | |

N
r(z)=K-3 d(z-Ly)

=1
r(z)

I | ] | ] |
o I Ly le Ls l L4| “—5 Lel
Lo 21»0 3Lo 41,0 SLQ 61.0
7z —>
PARAMETERS OF EQUATION 70
R=K/1l, f=1.251, g=04l,

Fig. 3 — Identical, randomly spaced reflectors.

tion than in Fig. 2 between the dashed lines that enclose the staircase
curve of

f:lr(s) | ds.

Since in this case the magnitudes of the reflectors are strictly constant,
the “risers’ of the staircase have the same size, while the “treads’ vary
in length. It is clear that if the magnitudes as well as the spacings of the
reflectors vary slightly, both the “risers” and the “treads” of the stair-
case will vary slightly, but otherwise the behavior will be much the same
as in Fig. 3, so that the restriction of (70) may be satisfied with small
separation between the straight-line bounds.

While the discrete cases of the preceding paragraph, which have re-
flectors of nominally equal magnitude and spacing, are of principal in-
terest here and supply the motivation for the analysis of the present
section, discrete reflectors having quite different distributions from the
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above may also fall within the restriction of (70) with small separation
of the bounding lines; one such case is illustrated in IFig. 4. (Note that
reflectors of both signs are indicated in the lower drawing of this figure,
by é-functions with both positive and negative magnitudes.)

The above cases, which satisfy the restriction of (70), may be re-
garded as having the absolute magnitude of the reflection coefficient
more or less constant in a certain sense, in that

[ 1r) 1 as

is approximately proportional to z [see (70)]. Thus we seek bounds on
stability in the case of (70) that are similar to those obtained for constant
reflection coefficient [see (72)].

We again use the solution by successive approximation given in Sec-
tion ITT above. The discussion of (29)—(43) remains appropriate for our

r(2) = SUM OF J-FUNCTIONS

r(z) bl 'Lll — l ]J L1 |II..]I

Z —>

Fig. 4 — More general case satisfying the restrictions of (70).
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present purposes. However, greatly improved bounds over those obtained
in (44)—(51) may be obtained because of the additional restriction of
(70) imposed in the present section; in contrast, the boundsof (44)—(47)
of Section III hold true in general, and specifically when the restriction
of (70) is not satisfied.

Consider the series solutions of (44). Irom (42)

go(z) =1,  gm(z) = 0. (74)
Note also (43). We show that:

1 ? s
| gim(2) | < R? (2_ + h) €
(84

N[+ @G- )]

G

n even,n = 2.

(75)
l g1y (2) | = 0, n odd.
\90(n>(z) | =0, n even. (76)
| goey(z) | < R <:‘21Tx + h)
2 1 n — 1 (n—1)/2
)+ 2]
(n - 1) \ ’
5 !
n odd.
In (75) and (76), R and h are the parameters of (70) and (71).
First, from (40), (42) or (74), and (47),
@ | 5 [ e irtas = [T al [1r0 1]
(77)

= e f:lr(t)]dt + 2 f o U:|r(t)|dt] ds,

where we have made use of integration by parts. Using (70) in (77),
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IA

L go(2) | < 62 R(z + ) + 2aRfo (s + g) ds

— e—Zaz'R(z + g)
—20z (78)
+R l:————l T gl - 6_2”)]
20

Ta-c+r<Etru+o,
o (64

where in the final step we have used thefactthat f = 0. Finally, substitut-
ing the definition of A from (71) into (78),

[ oy (2) | < R( + h) (79)

Equation (79) agrees with (76) for n = 1.
Next, from (41), (47), and (79),

Ig1(2>(z)l<R< +h>f e |r(s) | ds

= < +h>f e g [flr(t)ldt:'

(80)
= R <%¥ + h) e+2az‘[0 "I(t) ldt
— R (—2%1 -+ h) %2 £z6+2as[/;s,r(t)ldt]ds
Using (70), (80) becomes
2 1 20z
| i(2) | < R <%‘—|— h)e (z + g)
_R2<2%;+h>2a'/(;ze2aa‘(s_f)ds
- (g )Gt (1)

2az
_ R2 <%x+ h) 1 26:3 + ze2az +f(1 _ eZaz)]
L

<R2(2i+h>em[2i+f+g].
(034 (64
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Finally from (71), (81) becomes

1 2 oz
| iy (2) | < R (2— + h> e, (82)
(s

which agrees with (75) for n = 2.
We now establish the bounds of (75) and (76) by induction. Suppose
that (75) is true for some even n = 2. Then from (40) and (47),

1 (n/2)+1
R (—2—— + h)
< I

(g— 1>!
= /0 [s + <_ - 1) h](nm—ld[[ |r(8) | dt]. (84)

Integrating (84) by parts,

=[G [ wial]
- (g - 1> fn I:s + (g ~ 1) h]mm#2 (85)
UO () | dt]ds

(83)

I Jont (2) | <

where

Using (70) and (71), we have from (85)

T
T
i [ +(5-1)1]" RG+0
B[ -na [8 N (_ _ 1) h]wm_l
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= [Z + (’é - 1) h]("m_lmz +9)
. (=
+r[ [s + <g - 1) h]("’”_‘ 25

— Rh [z + (g - 1) h]‘"/”“ o [(3 B 1) h](nm_l
6T 36T

2
(TZ) {[z + (’% - 1) h]m +5h [z + (g - 1) h](m)_l},

where the last step follows from the preceding one because n = 2 [from
(75)],f = 0 [from (70)], and A = 0 [from (71)]. Using the inequality

(86)

IA

2+ e < [+ (/B 220 and >0, (87)
(86) yields

I<<§)[2+(g—l>h+h]m=

Substituting (88) into (83),

[z + nh]™ (88)

NISI
\_/;U

. n/2
| gomsn(2) | < R (5& + h) [R (51; " h> e nh):l . (89)

Recalling that 7 is some even integer = 2in (89), (89) agrees with (76).
Next, from (41) and (47), using the result of (89)

1 (nf2)+1
Rn+l <—__ + h)
J (90)

,gl(n+2)(z) | <
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where
J = fo ¢ (s 4 k)" d [fo (1) | dt:l. (91)

Integrating (91) by parts,

J = ¢ (z + nh)""* [/: [7(8) | dt:l

— 2a foz e (s + nh)"? [[: [r(t) | dt:l ds (92)

_n : +2as (nf2)—1 :
Qfoe (s 4 nh) I:fo |r(t)|dt]ds.

Using (70) and (71), we have from (92)
J £ &z + nh)"R(z + g¢)

— R2a f e (s + nh)"* (s —f) ds
0

_ph * o (/D=1
RleO e (s + nh) (s — f) ds
= (2 + nh)""R(z + g¢)
“R [ (5= ) d [6*(s + nk)™)
0
= & (z + nh)""R(z + ¢) — R(z — )™ (z + nh)""
— Rf(nk)™* + R fz (s 4+ nh)"* ds (93)
0

Rhe™(z + nh)"® — Rf(nh)"/2

R i n/2 2as
+2—af0 (s + nh)™ d (&)

= Rhe™(z + nh)"* — Rf(nh)""* + 25 e (z + nh)""”

43

_ R ni2 _ Rn z 2as (n/2)—1
5 (nh) %3 ), e*(s + nh) ds.

From (71), h = 0, so that (93) yields
J <R (-21 + h) (2 + nh)""*. (94)
034
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Substituting (94) into (90),

n/2
. ) [R2 (2i + h> (c + nh)]
| 112y (2) | < B (23 + h> ¢ d . (95)

g

Recalling that n is some even integer = 2in (95), (95) agrees with (75).
Noting (79) and (82), the results of (75) and (76) hold for all n by
induction.

We now use the results of (75) together with (74) to obtain bounds
on stability for those cases where the reflection coefficient r(2) is re-
stricted as in (70). This analysis is almost identical to that of Section IV,
(52)—(57), for the general case, modified by replacing the relation of
(46) by that of (75). Thus, making the substitution

DA R

n! a
{R2 (51& + h) [z + <g - 1) h]}(nm_l (96)
. (g - 1)!

throughout (54)—(57), we obtain, corresponding to (57), the following
sufficient condition for stability in the present case, after a minor modi-
fication of the summation index:

. (i N h)z £ ,:R2 (;—a + h) (L + mh)]m J—

m=0 m!

Ly is the total length of the device. The summation of (97) is found in
closed form by the analysis given in the Appendix. Using the final result
of the Appendix (137), the final results of this section may be sum-
marized as follows:

If the reflection coefficient r(2) (continuous, discrete, or a combination
of both) satisfies the condition

ReG=Ds[1r6) lds SR Gte); R>0/20020 g0

h=f+g; h = 0.



318 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

then a sufficient condition for stability of the active line (with reflection)
is

1
b) (1 + ———)
2ah B ory (98b)
T O e"p[ 2L (1 + m)]

where
2 (1 1
65R<——+h>h<— (98¢)
2a e
and 7 is given by

T = 667‘1’ r <e. (98d)

The results of (98) are illustrated in Fig. 5, which shows the maximum
value of R for which stability is guaranteed by (98) versus the nominal
total gain 20 logy €**¥, with 20 logy ¢ as a parameter.

A greatly simplified but slightly poorer version of the stability condi-
tion of (98) may be obtained in the high-gain case. As one example,

suppose the one-way gain of the active line exceeds 10 db,
€ =210, 8686 aLy = 10db, aLy = 1.151.  (99)

If 6 satisfies the sufficient stability condition of (98b), it must also
satisfy the weaker inequality

2ah —2aL N

b < taam (100)
Substituting (99) into (100),
8 < 0.1 (101)
From (98d), =, is a monotonic increasing function of 8. Therefore
rn < 1.118. (102)
Further, since from (98d)
ory = Inry, (103)

6r1 is a monotonic increasing function of 1, so that
ory < 0.1118. (104)
Now writing out the right-hand side of (98b),

0 L
exp [—2aLN (1 + 2—:%)] = exp (—2aLy) exp <_TN 6r1> , (105)
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Fig. 5 — Exact and approximate bounds on R for which stability is guaranteed.

we investigate the exponent of the second factor on the right-hand side
of (105). From (100),

LN 2aLN —2aLy
7 < T oa¢

—2aL )y

1y < 2alye . (106)

h

The right-hand side of (106) is & monotonic decreasing function of 2aLy
for 2aLy > 1. Therefore, substituting from (99) and (102), (106) yields

éh_” ory < 0.2574. (107)

exp [—%’ 67{| > 0.7731. (108)
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Finally, using (104) and (108) in (98b), we obtain the following suf-
ficient condition for stability, subject to (98a);

2a —aly,

R < 0.8287 m (4 ;

8.686aLy = 10 db. (109)
The stability condition of (109) is slightly poorer than the stability con-
dition of (98b), (98c), and (98d), from which it was derived. As the lower
bound on the gain of the active line increases beyond 10 db and ap-
proaches e, the numerical factor 0.8287 in (109) increases and ap-
proaches 1. Equation (109) or a similar result is useful in illustrating the
general behavior; however calculations using the basic result of (98) are
straightforward. The result of (109), with the numerical factor0.8287 — 1,
is also shown as the dashed curves of Fig. 5, illustrating the way in
which this approximate stability condition approaches the exact result
of (98) in the high-gain case.

VI. EXAMPLES AND DISCUSSION

Consider first an active line with two discrete reflectors of equal mag-
nitude ¢ at the ends of the line, z = 0 and z = L. . ¢ is of course real;
for convenience we assume ¢ > 0. In this simple case the exact stability
condition is readily found, and may be compared with the two bounds
derived above. From (8) of Section I, the transmission gain of this de-
vice in the stable region is

1
Gr = —, 110
r Tu ( )

where from (1)—(7)
an = € (1 4 e, (111)

The condition for stability is readily found as described following (8)
[this procedure is similar to that used in Section IV, (52)—(57), and
Section V, (96)—(97), in obtaining bounds on stability]. Replacing ¢
by ec, where € is a numerical parameter greater than 0, and using (2),

an = ¢ 21 + (ec)’e ™2, (112)

For small enough e the minimum value of z1;, and hence the maximum
value of gain G of (110), occurs at

28Ly = +7, 37, - - . (113)
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Hence
| 11 min = € %21 — (ec)’e?**"2). (114)

As e increases from zero, instability will take place at a value of ¢ for
which

lel |min = O;

(115)
(ec)’e™*™ = 1.
Hence the original device (with ¢ = 1) will be stable if
¢ < e (116)

Equation (116) is an exact condition for stabiity for the active line
described above, with two equal reflectors at the ends. We now compare
this exact result with the bounds described above.

Consider first the bound of (9) or (62). This result is a sufficient con-
dition for stability for any arbitrary distribution of discrete reflectors,
and so must apply to the special case above. Setting N = 2, ¢; = ¢, = ¢,
this general bound guarantees stability if

—alg
tanh™' ¢ < sinh™ e\/ﬁ ) (117)
Equation (117) yields
1 ¢
C< ——
VEVI o (18)

as a sufficient condition for stability for an active device with two equal
reflectors of magnitude ¢ at the ends. Comparing the bound of (118)
with the exact stability condition of (116), we see that the general
bound of (9) or (62) is conservative in the present special case; i.e.,
the device with two equal reflectors at the ends remains stable for the
reflector magnitude ¢ larger than that guaranteed by the general bound
of (9) or (62) by a numerical factor that varies from /3 to 1/2 as the
gain al, varies from 0 to «. Therefore the general bound on stability
given in (9) or (62) cannot be improved by a factor greater than /2
[i.e., this factor to multiply the right-hand side of (9) or (62)]; of course
it may be that no improvement at all is possible, and that some distribu-
tion of reflectors can be found for which (9) is satisfied as an equality at
the boundary of instability.

Next, consider the bound of Section V, (98), applied to the above
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special case, i.e., two discrete reflectors of identical magnitude ¢ at the
ends of the active line. In (98) we set b = Ly, R = (tanh™ ¢)/L,,
to yield the following (precise) bound on stability:

1 irlarl 1 iasiLz e (1192)
where
8 = (tanh™ 0)2-—1_2:—?:1}5 (119b)
and 7, is given by
rn =", rn < e. (119¢)

The bound on ¢ for stability is readily determined numerically from
(119) as a function of aL; . However, when the one-way gain of theactive
line is large, aL; >> 1, the bound of (98) takes on the form of (109),
with the numerical factor 0.8287 — 1 since aLs >> 1 (i.e., the gain is
taken to be very large, not simply greater than 10 db). Thus the ap-
proximate bound on stability in the present case becomes

~ 2aL2 —alLg,

tanh_l c < m e ; al: > 1. (120)
The symbol < indicates that the relation of (120) is not a precise bound,
but merely gives a good numerical approximation to the precise bound
if aLs is large enough. Comparison of the (imprecise) bound of (120)
with the exact stability condition of (116) shows that in the high-gain
case, als > 1, where ¢ < 1, the specialized bound of Section V, (98),
yields bounds on the magnitude of the reflection ¢ in the present special
case (two equal reflectors at the ends of the active line) that approach
those of the exact condition for stability. Consequently the bounds of
(98) cannot be further improved (in their present form).

The case of N identical, equally spaced reflectors was studied in Sec-
IT of Ref. 1, where simple expressions for stability were found in the high-
gain case. If the total gain is large and the gain per section small, com-
parison of (169) (with the factor 0.8287 — 1) and (98a) with (43) of
Ref. 1 shows again that the bound on stability of (98) cannot be
further improved. It is of interest to see how close the bounds of (98)
come to the exact value corresponding to instability in a few cases of
interest. For this purpose we consider examples (%), (4%), and (#%) of
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Section II, Ref. 1. In (98) we set

_ tanh ' ¢

h=1 R el

(121)
and compute upper bounds on | ¢ | that guarantee stability. It is also of
interest to compare the general bound of (9) or (62) for this case.
Table I summarizes these results. The bounds of (98) are quite good
when the total gain is high, aLy >> 1, and when the gain corresponding
to the distance / is small, o/ < 1; for these conditions the stability condi-
tion of (98) gives much better results than the more general stability
condition of (9), because in the former we have made use of additional
information regarding the distribution of reflectors.

TaBLE I — IpENTICAL, EQUALLY SPACED REFLECTORS

N = number of reflectors

Gain (db) = 20 logie eV = 20 log;o e*I¥ = one-way gain of active line
in

| ¢ |max = maximum value of | ¢ | for stability, as determined in Section

II, Ref. 1
Bound on | ¢ | — (98) = maximum value of |¢ | for which stability is
guaranteed by (98)
Bound on |¢ | — (9) or (62) = maximum value of |c | for which sta-
bility is guaranteed by (9) or (62).
¢ i max Bound Bound
(See. TL, Ref. 1) N Gain,db | (g, fIl, TR N R B S P
() 30 30 0.00860 0.00590 0.00149
(22) 300 30 0.000860 0.000710 0.000149
(#17) 50 5 0.065071 0.01105 0.0130

t Note that for this case in Ref. 1 the high-gain approximation given there was
inappropriate, so that this result was obtained by use of a computer.

Finally, we consider the application of the above stability conditions
to some of the problems involving random reflectors studied in Ref. 1.
The stability of the various deterministic cases diseussed above in the
present section has been treated exactly here or in Ref. 1 without using
the new results of the present paper; these cases have been discussed in
the present section both to show that any possible improvement in these
general stability conditions must be quite small, and to provide partial
confirmation of these results. However, the application of (9) and (98)
to cases involving random reflectors provides the principal motivation
for the present analysis, since no other information whatever is available
regarding stability in these cases.

Let us consider the example of the first part of Section IV, Ref. 1, in
which the average normalized loss and the rms loss fluctuation were
determined for an amplifier with reflections having identical magnitude
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but random spacing. The following parameters were chosen for this
illustration:

I, = spacing between (k — 1)th and kth reflectors [(3) and Fig. 1]
Iy = (l+), average value of I, , independent of k

¢ = magnitude of kth reflection coefficient [(3) and Fig. 1]

¢ = ¢ ; all reflectors identical, ¢co > 0 (122)
N = 30, number of sections

20 logy €¥*" = 30 db, nominal total gain

20 logy € = 1 db, nominal gain per section.

I

The following assumptions were made in these calculations of Ref. 1:
(a) I is always a large number of wavelengths;

Bl > 2, Blo > 2m. (123)

(b) The distribution of the I, about their mean [, is very narrow with
respect to the mean, but wide compared to 2x/8; further, this
distribution is smooth and symmetrical about [, .

The probability density for l; did not have to be further specified for
the calculation of average loss and rms loss fluctuation in Ref. 1. (Note
however that in the calculations of Ref. 1 for the covariance of the loss,
the specific form of the probability density for I, must be known, and
was assumed to be Gaussian in Ref. 1.) The average loss and the rms
loss fluctuation for the amplifier of (122) were given in Fig. 9 of Ref. 1
versus ¢o, the magnitude of the reflections. These curves were shown
dotted for ¢o > 0.00860, because it was known that instability is possible
in this range, in particular for Iz = [, i.e., equally spaced reflectors [see
Section II, Ref. 1 and case (¢), Table I]. However it was noted that this
was only a symbolic reminder of the unsolved question of stability; these
results are valid for small enough ¢, , but how small was not known from
the results of Ref. 1.

We illustrate the utility of the results of the present paper by applying
them to this problem; these results provide useful information concern-
ing stability in this case, and of course in many similar problems. For
convenience we make one further assumption in addition to those
mentioned following (122):

(¢) The distribution of I, about its mean [y is strictly bounded; in

particular

[l — lo| = vlo; (124)
further, we assume for convenience that

y < 1. (125)
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v is in (124) the upper bound on the fractional deviation in spacing from
its average value; the restriction of (125) requires that I, = 0, and so
prevents the order of the reflectors from being altered. In practical cases
we will be interested in small values of »,

vy <K 1. (126)

We determine upper bounds on the reflector magnitude ¢, that guaran-
tee stability, as a function of », the maximum fractional deviation in
spacing between reflectors. Ifor » = 0 the reflectors are equally spaced;
Ref. 1 or Table I shows that stability is guaranteed if

o < 0.00860, » = 0. (127)

Next, the bound of (9) guarantees stability independently of the par-
ticular distribution of reflectors. fince however the total length may
vary somewhat, we must in (9) set

Ly = L30 = 30[0(1 -+ V), (128)
yielding
o < 0.00149(0.03162)" (129)

as a sufficient stability condition.
TFinally, we apply the bound of (98) to this example. We set

—1

R = m, (130)
lo

ho= (1 + 60)l, (131)

and make use of (128) in (98) to obtain a sufficient stability condition.

The sufficient stability conditions of (127), (129), and (98) are
plotted in Fig. 6; the result of (129) is identified as originating from (9),
and that of (127) from Section II of Ref. 1. The curves of Fig. 6 have
been plotted out to fractional spacing variations » of 10 per cent; over
this region the stability condition of (98) is superior to that of (9).
However the bound of (9) [i.e., (129)] will be superior to that of (98)
for large enough ». Note that the factor (0.03162)” in (129) arises from
the fact that the total length and hence the total gain is subject to
statistical fluctuation [a similar factor occurs in using (98) for the
problem]; in the range of probable interest, i.e., for very small fractional
spacing fluctuations », this numerical factor will be close to 1. The fact
that the limit of the bound of (98) as » — 0 is substantially below the
maximum value of ¢, given by (127) is due to the fact that the nominal
gain per section in the example of (122) is 1 db, which is not too small;
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as the gain per section decreases these two quantities will approach each
other, as indicated above.

These results, plotted on Fig. 6, show that the range of ¢o over which
the calculations of Section I'V of Ref. 1 are guaranteed to be valid. If the
maximum fractional variation in the spacing between reflectors is very
small, then the results plotted on Fig. 9 of Ref. 1 are valid for ¢, up to
approximately 0.00590.

The stability conditions of (9) and (98) may be applied to a variety
of similar problems. In the above example we have found the maximum
value of ¢, for which stability is guaranteed, i.e., for which the probability
of oscillation is zero, as a function of the maximum departure of the
spacing between reflectors from its average value. The results of (9)
and (98) may also be used to determine an upper bound on the proba-
bility of oscillation in similar problems where no absolute guarantee of
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stability can be given, e.g., perhaps in cases where the probability dis-
tribution for the spacing deviations is not strictly bounded.

The main emphasis of the present paper has been on the discrete
case; the continuous case was introduced only as an intermediate step
leading to the desired results. However, it is clear that related problems
with continuous reflection may be studied for stability using the general
results derived above.

Finally, the present calculations have assumed for definiteness a rather
special model; i.e., the forward and backward gains have been assumed
equal and a particular form has been taken for the matrix of the dis-
crete reflectors. These assumptions are not essential to the analysis;
similar results can be derived for many related cases of interest, such as
systems using isolators to partially attenuate the backward waves, ete.
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APPENDIX
Summation of the Series S = Y, £z—"|;'—1}6i)_
n=0 .
The summation of (97) was initially performed by a method suggested
by S. O. Rice, employing contour integration; this method is straight-

forward but lengthy. A much shorter analysis presented by the unknown
referee is given here. It has been shown that®

¢ =1+ é ala — nb)" _n!"b) oy (132)
where
y =a¢® and |yb| < (1/e). (133)
Differentiate (132) with respect to y and then set y = 1 to obtain
@bz w n
le—l— br n2=:0 [Lal;?—!"b]_ (134)
where

bx

z=¢" and |[b]| < (1/e). (135)
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TFinally, set

a=2z—3, b = —j, T =r (136)
to obtain
0 12
2+ on e’
> (z + on) _ 0<s<
n—=0 n! 1 —_— 67’1
where ry is given by (137)
r o=, rn <e
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Quantum Efficiency of the
Green and Red Electroluminescence of GaP

By A. Pfahnl

(Manuseript received November 19, 1963)

Gallium phosphide crystals were grown from polycrystalline material
in a solution of galllum contained in evacuated and sealed-off quartz
tubes.! FFor the regrowth, the tube with the GaP-Ga mixture was heated
to 1250°C and cooled at a rate of 1.5°C per minute. After separation of
the GaP crystals from the adherent Ga, Zn was diffused into the crystals,

Fig. 1 — Red electroluminescent gallium phosphide crystal photographed in its
own light; p-n junction prepared by diffusion of Zn at 800°C for four hours. Length
of the straight side of the crystal about 1.5 mm.

333
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leading to red (7000 10{) electroluminescent junctions. The diffusion was
done in an evacuated and sealed-off quartz tube using as a source® a
Zn + GaP mixture. The efficiency of the emission was determined with
an integrating sphere and a photomultiplier with S-1 response calibrated
in absolute units, and was found at room temperature to be about
1.0 X 10~® photons per electron for the best samples. Red electrolumines-
cence in GaP was previously reported to have efficiencies of about 10—
(see Ref. 3) and 10* — 1073 (see Ref. 4).

If silver contacts are alloyed onto the rough side of the solution-re-
grown GaP crystals, green electroluminescence can frequently be ob-
served at the contact area. The efficiency of the green emission was
found to be 4 X 10~° photons (5550 f&) at 300°K observed outside the
crystal per recombining electron-hole pair for the best samples. This com-
pares with efficiencies of 3 X 10~% measured by Gershenzon et al.® and
efficiencies smaller than 10~ as indicated by Allen et al.?

The figure shows one of the red electroluminescent crystals with a Zn-
diffused junction photographed in its own electroluminescent light.
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G

Matching of Optical Modes

By H. Kogelnik

(Manuseript received November 19, 1963)

In experiments with coherent laser light it is frequently necessary to
transform a given Gaussian beam!? into a Gaussian beam with certain
desired parameters. It is required, for example, to transform the light
beam emerging from a laser oscillating in a fundamental mode in order
to provide for optimum injection into a light transmission line?*:* (con-
sisting of a sequence of lenses), or for optimum coupling into a spherical
mirror interferometer.t In these cases one has to “match’ the incoming
beam to the natural mode of the system in question. Lenses inserted in
the beam perform the matching transformation. The design of a match-
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ing configuration has to take full account of the laws!:?:3 that govern
optical modes. This leads to a somewhat complex analysis.> The results,
however, are quite simple matching formulae which are presented in
this brief. A matching experiment is described for illustration.

The given beam is characterized by its minimum beam radius!-¢ (spot
size) wy and by the location of the beam waist. The problem is to trans-
form this beam into another with a minimum radius w. . The quantities
w; and w: determine a characteristic “matching length” f, given by

W1W2

Jo=m x

(1)

where X is the wavelength. One beam is transformed into the other if a
lens with a focal length f larger than f, is spaced between the two beam
minima as shown in Fig. 1. The distances d, and d. between the lens and
the beam minima have to satisfy the following matching conditions

dx @11‘/ _ e
7 ld:w2 1 = (2)

ds W2 fO2

f b+ w1 /‘/ 2 (3)
where the same sign should be used in both equations. IFrom (2) and (3)
it follows that matching is not possible if f < fy. If one chooses f = fo
then d; = fy and d> = fo ; the beam minima are located in the two focal
planes of the lens.

When one uses more than one lens to achieve the desired beam trans-
formation, the above matching formulae are still applicable. Then f is the
focal length of the lens combination, and d, and d» are measured from
the principal planes. If the modes of two given optical systems are to be
matched, one need not evaluate the beam parameters w; and ws , which
are functions! ¢ of X and the system parameters: the matching parame-

ol = ’(__
s

Fig. 1 — Matching configuration.
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ters fo, Qw—v—l , di, and d, are independent of A and can be expressed in
2

terms of the system parameters alone.

In our experimental study the light beam was taken from a He-Ne
gas laser oscillating in a fundamental mode at A = 0.63 micron. The
laser cavity consisted of a concave mirror of 1 meter focal length and a
flat output mirror. The mirror spacing was 1.7 meters. The (minimum)
beam radius at the flat is computed! as w, = 0.37 mm. This beam was
passed through a matching lens and then injected through a slit into a
mirror system formed by two concave mirrors of 12.5 meters focal length

Fig. 2 — Photographs of beam spots on mirror.

spaced 50 centimeters apart. The injection angle was so chosen that the
beam was reflected back and forth between the mirrors many times be-
fore it was finally intercepted, with the points of beam impact on each
mirror forming a circular pattern. Such a beam configuration was
described and analyzed in Ref. 7. As the beam passes back and forth
between the mirrors its radius is changed in the same way as for trans-
mission through a sequence of lenses??# with corresponding parameters.
The minimum beam radius of a fundamental mode of this sequence is
computed as w, = 0.7 mm.

From the above data one obtains a matching length of fo = 1.3 meters.
A lens of a focal length of f = 1.3 meters was available and was used as
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matching lens. Therefore, spacings di = ds = fo = [ = 1.3 meters were
required for matching.

A mirror of the multiple-pass system was slightly transparent and
Tig. 2 shows photographs of the beam-impact points taken through this
mirror. In Ifig. 2(a) the arrow marks the point where the injected beam
strikes the mirror first. After one return trip the point of impact is the
neighboring point to the right. Subsequent impact points after a cor-
responding number of return trips appear counterclockwise on a circle.
The beam was intercepted after 14 return trips. For illustration we show
Fig. 2(b), where the beam was intercepted after 12 return trips. In both
cases mode-matching conditions were fulfilled and all beam radii at im-
pact are seen to be the same. In Fig. 2(c) one can see how the beam radii
at the mirror vary periodically® if some mismatch is introduced: the
spacing d, was misadjusted by about 25 cm. Fig. 2(d) shows the elliptical
pattern obtained for another injection angle. Here the modes were
matched again and all beam spots are of equal size.
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