
THE BEL L SYSTEM 

echnfcaI ournal 
DEVOTED TO THE SCIENTIFIC AND ENGINEERING 

ASPECTS OF ELECTRICAL COMMUNICATION 

VOI~UME XLV OCT 0 B E R 1966 NUMBER 8 

Information Rate of a Coaxial Cable with Various Modulation 
Systems J. R. PIERCE 1197 

Design of an Electro-Optic Polarization Switch for a High-Capac-
ity High-Speed Digital Light Deflection System s. K. KURTZ 1~09 

On the Optimality of the Regular Simplex Code 
H. J. LANDAU AND D. SLEPIAN 1~47 

On the Use and Performance of Error-Voiding and Error-Mark-
ing Codes E. O. ELLIOTT 1~73 

Duration of Fades Associated with Radar Clutter A. J. RAINAL 1~85 

A Geometric Interpretation of Diagnostic Data from a Digital 
Machine: Based on a Study of the Morris, Illinois Electronic 
Central Office .T. B. KRUSKAL AND R. E. HART 1~99 

Comparison Between A Gas Lens and Its Equivalent Thin Lens 
D. lVIARCUSE 1339 

Dcforma tion of Fields Propagating Through Gas Lenses 
D. lVIARCUSE 1345 

-
Contributors to This Issue 1369 

COPYRIGHT © 1966 AMERICAN TELEPHONE AND TELEGRAPH COMPANY 



THE BELL SYSTEM TECHNICAL JOURN AL 

ADVISORY BOARD 

P. A. GORMAN, President, Western Electric Company 

.1. B. F I S K, President, Bell Telephone Laboratories 

B. S. GIL MER, Executive Vice President, 
American Telephone and Telegraph Company 

EDITORIAL COMMITTEE 

W. E. DANIELSON, Chairman 

F. T. ANDREWS, JR. 

E.E.DAVID 

C. W. HOOVER, JR. 

D.H. LOONEY 

E. C. READ 

EDITORIAL STAFF 

G. E. SCHINDLER, JR., Editor 

E. D.REED 

1\I. TANENBAUM 

S. H. WASHBURN 

Q. W. WIEST 

C. R. WILLIAMSON 

L. A. HOWARD, JR., Assistant Editor 

H.1\1. PURVIANCE, Production and Illustrations 

F. J. SCHWETJE, Circulation 

THE BELL SYSTEM TECHNICAL JOURNAL is published ten times a year 
by the American Telephone and Telegraph Company, H. I. Romnes, President, 
C. E. Wampler, Vice President and Secretary, J. J. Scanlon, Vice President 
and Treasurer. Checks for subscriptions should be made payable to American 
Telephone and Telegraph Company and should be addressed to the Treasury De­
partment, Room 2312C, 195 Broadway, New York, N. Y. lO007. Subscriptions 
$5.00 per year; single copies $1.25 each. Foreign postage $1.08 per year; 18 cents 
per copy. Printed in U.S.A. 



THE BELL SYSTEM 

TECHNICAL JOURNAL 

VOLUME XLV OCTOBER 1966 NUMBER 8 

Copyright © 1966, American Telephone and Telegraph Company 

Information Rate of a Coaxial Cable with 
Various Modulation Systems 

By J. R. PIERCE 

(Manuscript received May 16, 1966) 

In contrast to inherently broadband media, such as radio, TEol wave­
guide, or guided coherent light, the attenuation of a coaxial cable increases 
rapidly with frequency. Thus, while for broadband media broadband trans~ 
mission schemes (FM or PCM, for example) decrease the power required 
for a given channel capacity, they would seem to be ill-suited to coaxial cable. 

Idealized comparisons are made among digital systems which transmit 
pulses of various numbers of amplitudes or levels. These show multilevel 
digital pulse transmission or analog transmission to have greater channel 
capacity (in the sense of information theory) than digital pulse transmis­
sion. Practical difficulties or cost of instrumentation may, in particular in­
stances, dictate the use of single-sideband frequency-division multiplex for 
efficient voice transmission or binary pulse transmission for efficient digital 
transmission. Multilevel pulse transmission is a possible alternative if 
problems of instrumentation can be overcome. 

1. INTRODUCTION 

In the very early days of information theory, it was proposed that 
broadband signals might be sent over a narrow-band medium by using 
more power. Most media (such as radio) are inherently broadband, and 
it has turned out that for broadband media the advantage lies in the 
other direction. Broadband modulation systems, such as F1V[ or PCM 
transmitted by means of binary pulses, increase the signal-to-noise ratio 
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for a given power and help to guard against distortion and interference. 
Indeed, there are strong arguments for the advantage of broadband 
modulation systems for any broadband medium, including radio, TEoI 
waveguide and guided optical transmission. With the rising importance 
of digital transmission, there are of course very strong arguments for 
digital forms of modulation, such as binary pulse transmission. 

Coaxial cable (and other transmission lines) are unique in that the 
attenuation arises extremely rapidly with increasing frequency. Quali­
tatively, this suggests that broadband modulation systems may be 
unsuited to coaxial cable. What do the numbers show? 

The purpose of this paper is to illustrate strong effects, not to make 
exhaustive comparisons or optimizations or to take the practical mat­
ters of details of circuit use and limitations of circuit art into account. 
To this end, a simple, particular case will be considered - a system 
using standard i-inch coaxial cable, with a repeater spacing of two 
miles. Over most of the useful frequency range the received power P 2 

will be related to the transmitted power PI by* 

P 2 = PI exp [- (f/0.30 X 106)!]. 

Here f is the frequency in hertz. An average transmitter output power of 
a tenth of a watt will be assumed, and a repeater noise power density of 
1.67 X 10-19 watts/hertz, corresponding to a receiver noise temperature 
of 12,100oK and a noise figure of 16.2 dB. The calculations would equally 
apply for a tenth the average power and a tenth the noise. 

II. COMPARISONS FOR PERFECT INSTRUMENTATION 

In this section we will compare channel capacities, in the sense of in­
formation theory, for various signal spectra and, in the case of digital 
transmission, for various encodings. It is assumed that there is no degra­
dation due to imperfect amplification, imperfect regeneration, imperfect 
equalization or imperfect timing. The pulse rate of digital pulse systems 
is taken as 2B, where B is a sharply limited bandwidth. 

As a standard of comparison we will use the channel capacity for the 
best possible frequency distribution of transmitter power density. This 
results in a frequency distribution of signal-to-noise ratio which seems 
unsuited to any useful analog signal, multiplex voice or video. Further, 
we do not know a practical digital encoding which will realize or even 
closely approximate this ideal channel capacity. 

* This assumes that the loss is due to skin resistance in the conductors. If this 
is so, there is an unavoidable nonlinear phase lag of (!) (f/0.30 X lOG)! radians, 
which amounts to 13 radians or 740 degrees at 200 MHz. 
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We will also consider the rate or channel capacity for binary and multi­
level digital pulse transmission with regeneration. and for analog trans­
mission with a flat signal-to-noise ratio. Details are given in Appendices 
A through D. 

In Fig. 1, rate or channel capacity in megabits/second is plotted 
against bandwidth B in megahertz. The cross is the optimal channel 
capacity; the dashed line indicates this rate (1581 megabits/second). 

The optimal power density is nearly constant .over the band, so that 
the received power is concentrated at low frequencies for which the cable 
attenuation is low. If we make the transmitted power density increase 
with frequency so that the received power density and the signal-to-noise 
ratio at the receiver are constant, the transmitter power is mostly used 
at high frequencies where the attenuation pi the, cable is high. This 
causes a degradation of performance. 

The upper solid curve of Fig. 1 applies to this case of constant signal­
to-noise at the receiver. This curve shows the channel capacity, subject 
to this restriction of signal, as a function of bandwidth B. The channel 
capacity is given by the formula 

R = B logz (1 + (S/N)). (1 ) 

The maximum capacity is about 989 megabits/second at a bandwidth of 
80 MHz. This is lower than the 1581 megabits/second for opbmal 
transmitter power distribution, because the power has been concentrated 
at high frequencies where the attenuation of the cable is large. 

We cannot transmit a digitalized signal with the rate given by the 
upper curve of Fig. 1 because we don't know any practical means of en­
coding which will give a bit rate very close to the channel capacity. In 
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Fig. 1- Information rate vs frequency for various forms of transmission. 
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practice, we can transmit digital pulses - either binary or multilevel. 
The lower curve of Fig. 1 is for pulse transmission with an error rate of 
one error per repeater in 1012 Nyquist intervals (one error in 108 for 
10,000 repeaters). The optimum rate is about 701 megabits/second at 
a band width of 60 megahertz. This would call for 52 levels, an im­
practically large number. The performance for 2, 4, and 16 levels is 
indicated on the curve. 

One can do a little better with pulse transmission by equalizing dif­
ferently (see Appendix E). 

One can compare these bit rates with the channel capacity for analog 
transmission in an unquantized transmission system. This is done in 
Appendix D. Equalization for flat signal-to-noise is assumed. A 4000-
mile system with 2000 repeaters is assumed, so that the signal-to-noise 
ratio is only 1/2000 that for a single two-mile link. The bandwidth is 
taken as 20 l\1Hz - about that of the L4 system, which transmits voice 
channels by single-sideband frequency-division multiplex.1 The channel 
capacity is found to be 286 megabits/second. 

I t is of some interest to ask what the ideal bit rate would be for digital 
pulse transmission over such a 4000-mile analog system, with one error 
in 108• This is also computed in Appendix D; the bit rate is found to be 
216 megabits/second and the optimum number of levels 42, which is of 
course impractically large. 

These various results are displayed in Table 1. We should remember 
that there is little received power in the upper part of the "148-mega­
hertz" band of the optimal system. 

We see that an analog system with a 20-megahertz bandwidth has a 
somewhat greater channel capacity than a binary digital system, but a 
smaller channel capacity than a digital system with four or more levels. 
As we might expect, the ideal bit rate for multilevel quantized trans­
mission over the analog system is less than the ideal bit rate for binary 
digital transmission with regeneration. HO\vever, the difference is small. 

TABLE I 

System Number of Levels Bandwidth (MHz) Rate or Channel Capacity 
(Mb/s) 

Optimal - 148 1581 
Digital 2 129 258 
Digital 4 111 444 
Digital 16 82 656 
Digital 52 60 701 
Analog - 20 286 
Digital OIl Analog 42 20 216 
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III. SOME PRACTICAL CONSIDERATIONS 

All the comparisons in Section II are made in terms of average power. 
This is chiefly because Shannon's simple formula for channel capacity2 

R = B log2 (1 + (SIN)) 

holds only for average signal power (and additive Gaussian noise). In 
practice, the limitation on transmitter power is more likely to be a limi.,. 
tation on peak power than a limitation on average power. I do not believe 
that a comparison based on peak power would give results substantially 
different from those of Section II. 

The comparisons of Section II are made assuming perfect instrumenta­
tion. An actual analog system will be inferior to an ideal system chiefly 
because of nonlinearity. An actual digital system can be inferior to an 
ideal system because of imperfect equalization in amplitude and phase, 
imperfect level control, imperfect timing, and imperfect regeneration. 

In present practice, well-instrumented analog systems (such as L4) 
come closer to ideal performance than well-instrumented digital systems. 
There are good reasons for this. In digital transmission, equalization, 
level control, and recovery of timing are not easy. They are usually im­
perfect and sometimes substantially impair performance. lVloreover, the 
complexity of a regenerative repeater increases as the number of levels 
is increased. Thus, in practice the comparison of digital and an analog 
system will be less favorable to digital than the comparison for ideal in­
strumentation, which is given in Table I. 

Nonetheless, comparisons of various coaxial cable systems are not 
easy. For a given repeater spacing an analog system appears to be some­
what better than a binary digital system for speech transmission, but if 
we have to transmit digital signals over it the analog system will be con­
siderably inferior to a binary digital system for this purpose. A multi­
level digital system might be very considerably superior to either an 
analog system or a binary digital system for either speech or data trans­
mISSIOn. 

D. G. Holloway:> and E. D. Sunde (in unpublished work4) have pointed 
out the advantages of multilevel digital transmission. 
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APPENDIX A 

Optimum Regenerative System 

Raisbeck5 found the optimal power distribution and channel capacity 
(in the sense of information theory2) for a channel for which the average 
output power density p' (f) is related to the average input power density 
p(f) by 

p'(f) = p(f) exp [- (fIfo)!] (2 ) 

and in which the white noise power density at the output is N. He found 
that 

p(f) = k - N exp [(fIfo)!]' 

p(f) = 0, 

He defines the parameter u as 

u = kiN. 

f ~ B 

f '?; B. 
(3) 

(4) 

The total power Po, the channel capacity C, which is the maximum 
possible value of the bit rate R for the power and the medium, and the 
bandwidth utilized in transmission, B, are given by 

Po = Nfo(u In2 u - 2u In u + 2u - 2) 

C = fo(! log2 e) In3 u 

B = fo In2 u. 

The transmitter power density p(f) in watts per cycle is 

p(f) = N{u - exp [(fIfo)!]). 

(5 ) 

(6) 

(7 ) 

(8) 

This is nearly constant over most of the band, and falls rapidly to zero 
at the top of the band. 

We will assume 

Po = 0.1 watt 

fo = 0.30 X 106 

N = 1.67 X 10-19 

P olNfo = 2 X 1012
, 

The value of N chosen corresponds to a noise temperature of 12,100 
degrees Kelvin, or to a noise figure of about 16.2 dB. 
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For these figures, 

APPENDIX B 

u = 4.435 X 109 

C = 1581 X 106 bits/second 

B = 148.0 X 106• 

Constant Signal-to-N oise Ratio at the Receiver 

1203 

We assume that for a transmitted power Po of frequency f the received 
power PI is 

PI = Po exp [- (f/fo)!]. (9) 

Suppose that we deliberately make the received power density constant 
with frequency. To do this we must make the transmitted power density 
po(f) 

(10) 

Here Po is the total transmitted power and B is the highest frequency 
at which power is transmitted - the bandwidth. 

If the receiver noise power density has a constant value N, the signal­
to-noise ratio (S/N) at the receiver will be 

(SIN) 
2N fo {exp [( B / fo)!][ B / fo )! - 1] + I} . 

( 11) 

APPENDIX C 

The Penalty for Digital Pulse Transmission 

The bit rates computed in Appendices A and B are the limiting rates 
for the specified average power and noise densities. To approach them 
closely in digital transmission would require elaborate, error-correcting 
encoding. Suppose that instead of this we simply transmit digital pulses, 
with a signal-to-noise ratio great enough to insure a very low error rate, 
and without resorting to error correction. 

Let us first consider binary transmission in which the pulse voltage is 
± V /2, where V is the voltage difference between levels. If V /2 is the 
peak pulse voltage of a sin x/x pulse, the average signal power is V 2/4. 
If the ratio of this average signal power to the average power of Gauss-
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ian noise is 50, there will be an error rate of one in 1012 for one repeater 
or 1 in 108 for 10,000 repeaters; this seems a reasonable rate. 

For multilevel pulse transmission we say that the error rate will be 
nearly constant if we keep the ratio of the square of the level spacing, 
V2, to the mean square noise voltage constant. This is nearly true for 
the number of errors in level when the error rate is low. The corre­
sponding number of errors in the binary stream depends on how multi­
level-to-binary encoding is done. For a Gray code an error of one level 
in the multilevel code will cause an error of only one bit in the correspond­
ing binary code. 

In computing the average power in the multilevel case we will assume 
that all levels are equally likely. Then for the same level spacing V the 
ratio of P n , the power for n levels to P 2 , the power for two levels, is 

(12) 

The ratio of average signal power to average noise power, (SIN), will 
be 

(13) 

The rate r in bits per Nyquist interval will be 

r = log2 n bitslN yquist interval. (14) 

The theoretical limiting rate for a flat signal-to-noise ratio is, in bits per 
Nyquist interval,2 

c = (!) log2 (1 + (SIN)) bitslNyquist interval. (15) 

In Table II, (SIN), r, c and (c - r) are given for several values of n. 

TABLE II 

n (SIN) r c c - r 

2 50 1 2.83 1.83 
3 133.3 1.59 3.54 1.95 
4 250 2 3.98 1.98 
8 1050 3 5.01 2.01 

16 4250 4 6.03 2.03 

For larger values of n, (c - r) is 2.03. 
Thus, for a flat signal-to-noise ratio, the penalty for using digital pulse 

instead of optimum encoding is about two bits per Nyquist interval. If 
the bandwidth is B, this means a reduction of rate below optimum of 
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about 

4B bits/second. 

The penalty for using digital pulse transmission is a shade less than this 
for binary, and a shade more for large numbers of levels. 

The lowest curve in Fig. 1 shows the rate for digital pulse transmission 
as a function of frequency. The curve is, of course, meaningful only for 
integer values of n - it has been drawn as a continuous curve merely 
for sake of appearance. This digital pulse transmission curve falls below 
the middle curve (ideal rate for flat signal to noise) because of the digital 
pulse transmission penalty. 

The maximum rate for multilevel digital pulse transmission is about 
700 bits/second for a bandwidth of 60 MHz. This requires a number of 
levels (52) which seems impractically large. Rates and bandwidths for 
various numbers of levels are given in Table III. 

APPENDIX D 

Binary Digital Transmission Compared with a 20-M egahertz Channel 

I t is of some interest to try to compare binary digital pulse transmis­
sion with a 20-MHz analog channel (the approximate bandwidth of 
L4).1 

According to (11) of Appendix B, for (P /Nfo) = 2 X 1012, the signal­
to-noise ratio of a 20-megahertz channel is 3.96 X 107

• This is, however, 
for one two-mile link. If we do not use a regenerative system, noise will 
accumulate. For a 4000-mile system the noise will be 2000 times as great 
and the signal-to-noise ratio will be 1.98 X 104• The corresponding chan­
nel capacity will be 286 megabits/second. This is slightly larger than the 
258-megabit rate for binary digital transmission for the same value of 
(P/Nfo). 

The conclusion must be that for the repeater spacing, attenuation, 
power and noise assumed, for transmission of analog signals, the cost of 
going to the large bandwidth needed for binary transmission, together 

TABLE III 

n, number of levels B, bandwidth (MHz) Mb/s 

2 129 258 
4 111 444 

16 82 656 
52 60 701 
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with the digital pulse transmission penalty, a little more than outweighs 
the accumulation of noise in a nonregenerative system. As an example, for 
voice transmission, single-sideband frequency-division transmission will 
give more voice channels than binary digital transmission for the same 
repeater spacing. 

It is of interest to compute the ideal rate at which we could transmit 
multilevel digital pulses over this analog system with an error of one in 
108• For binary transmission and an error rate of one in 108 the required 
signal-to-noise ratio is 32. The signal-to-noise ratio for the 4000-mile, 
20-l\1Hz analog system is 1.98 X 104, or 620 times as great. According to 
(12) of Appendix C, this should allow the number of levels n to be 
n = 42, and log2 42 = 5.4. Hence, for a 20-l\1Hz bandwidth the ideal 
transmission rate is (2) (20) (5.4) = 216 megabits/second. 

Transmission of 42 levels is impractical; transmission of 16 levels 
might be practical, and for 40 million pulses a second this would mean 
160 megabits/second. 

APPENDIX E 

Optimum" Power Density for Digital Pulse Transmission 

A channel so equalized as to give a flat signal-to-noise ratio in the re­
ceived pulse train is not quite optimum for digital pulse transmission. 
The optimum power distribution is that which will give the greatest sig­
nal-to-noise ratio when the received signal is finally equalized to give a 
flat transmission band of some width B. It can be shown that if the ratio 
of received power PI to transmitted power Po is 

PI = Po exp [- (fIfo)!], 

the optimum transmitter power density p(f) is 

(16) 

Po exp [(j14fo)!] 
p(j) = 8fo{ exp [(B/4fo)!][(B/4fo)! - 1] + I} . (17) 

At the receiver, equalization of the signal for flat overall frequency re­
sponse will result in a noise density which rises with frequency. The over­
all signal-to-noise ratio SIN will be 

(SIN) = Po (BI4fo) (18) 
16Nfo{exp [(B/4fo)!][(B/4fo)! - 1] + 1}2' 
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Design of an Electro-Optic Polarization 
Switch for a High-Capacity High-Speed 

Digital Light Deflection System 
BY S. K. KURTZ 

(Manuscript received April 26, 1966) 

Modulator requirel1wnts for an active electro-optic polarization switch 
to operate in a digital light deflector (DLD) are derived. It is shown that a 
simple capacity-speed product of the fonn (capacity)! X (address rate) ~ 
(constant) X (driver power) can be derived for both linear and bwsed 
quadratic electro-optic modulator materials. The usefulness of this relat-ion 
is demonstrated by applying it to a biased quadratic electro-optic material 
(KTN) and two linear electro-optic materials (LiNb0 3 and ZnTe). 

The results indicate that KTN will operate a DLD at a rate of 106 

random addresses/sec and a capacity of 106 addresses with a reactive power of 
2.6 watts, a bias voltage of 1200 volts, and a driver voltage of 42 volts, pro­
vided, 

(i) fluctuations in the Curie temperature and ambient operating tem­
perature are held to less than o.orc, 

(ii) some form of ac bias is used to circumvent space charge effects, and 
(iii) strain and defect-free material meeting these requirements can be 

grown to a size of at least 1 X 1 X 2 cm. 
A linear electro-optic material such as ZnTe with a reduced half-wave 
voltage (unity aspect ratio) in the 2 to 3-k V range (2.5 k V at 6000 A) will 
provide 3.6 X 106 addresses at a rate of 106 addresses/sec with a reactive 
driver power of 10 waits, delivered at a drive voltage of 1250 volts. 

Experimental results obtained using KTN as a high-speed pulsed light 
modulator are also presented. 

I. INTRODUCTION 

In this paper we examine the design of a high-speed optical polariza­
tion switch utilizing the electro-optic properties of certain crystalline 
solids. Primary emphasis has been placed on potassium tantalate-nio­
bate, but linear electro-optic materials are also considered. The design 

1209 
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equations are applied to a switch for a 106 addresses/sec digital light 
deflector (DLD) described by Nelson! and Tabor.2 

In Section II a derivation of the capacity-speed equation is given. 
Sections III and IV discuss the reactive power limitations due to heating 
of a KTN modulator, and typical operating characteristics for a high­
speed modulator are tabulated. Section V discusses additional limitations 
on the capacity-speed product of KTN due to composition inhomoge­
neities and ambient temperature fluctuations. Space charge effects and 
ac biasing are treated in Section VI. In Section VII the advantages of a 
rectangular aperture are considered and a comparison is made of the 
capacity speed product of KTN with those of the linear electro-optic 
materials ZnTe and LiNb03 • Finally, in Section VIII some experimental 
results are presented for pulse modulation of light using KTN. 

II. DERIVATION OF THE CAPACITY-SPEED RELATION 

A polarization switch in the DLD performs the function of "rotating" 
the plane of polarization of a light beam rapidly through 90°. The plane 
of polarization thus selected determines whether the beam traverses a 
Wollaston prism2 as an ordinary or extraordinary ray (i.e., determines 
in which direction it is deflected). This is illustrated in Fig. 1 for one 
module (deflection unit) of the DLD. It is well known that such a 90° 
change in the direction of polarization of a light beam is produced by 
inserting a half-wave plate into a linearly polarized light beam with the 
preferred axes of the plate at a 45° angle with respect to the direction of 
polarization of the incoming light beam. 

By substituting a crystal whose refractive indices can be varied 
electro-optically in place of the half-wave plate, we have an electrically 
variable phase retardation "plate." The desired "rotation" of 90° is 
achieved by applying an electric field to the crystal of the correct magni­
tude to produce a half-wave of phase retardation between the ordinary 
and extraordinary ray. This is illustrated in Fig. 2. It is obvious that for 
a given aperture A the total length of the DLD must be restricted for 
some upper limit in order to prevent the optical beam from "walking 
off" the aperture with consequent loss of intensity in the outermost 
positions of the beam. This, in turn, places an upper limit on the length 
of the individual modulation and deflection elements. 

As originally described by Nelson! the DLD consists of an X deflec­
'tion bank and an orthogonal Y deflection bank in series. Each bank 
consists of n modular units of varying length In , each module containing 
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Fig. 1-Operation of polarization switch in one deflection module of a DLD 
system. 

an active polarization switch (modulator) and a passive birefringent 
deflector. The deflector thickness is predetermined to give a transverse 
linear displacement of the beam by distances which increase as multiples 
of 2, e.g., 2°t, 21to, 22to ,23to ... 2nto . An improved version of the DLD 
described by Tabor2 utilizes Wollaston prisms which give angular rather 
than linear transverse displacements. The thickness of the prisms is 
predetermined to give angular displacements ±2°00 , ±2100 , ±2200 , 
±2300 ... ±2nOo , resulting in a total of 2 n == R angular positions in 
each dimension. In order that each of these angular positions be re­
solvable the basic angular unit of deflection 200 is chosen to be somewhat 
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greater than the diffraction angle (JD, 

A 
(JD = d 

where d is the width of the aperture. 

( 1) 

It is convenient to define {3 = (2(Jo/(JD) > 1. Assuming that the DLD 
consists of 2n modules of equal* length lm , we order the modules serially 
in terms of increasing angular deflection. 

(2) 

This ordering minimizes walk-off since it puts the largest deflections 
closest to the exit part of the assembly. For this configuration the maxi­
mum cumulative walk-off (displacement at the exit part transverse to 
the axis of the DLD) is given by, 

3 
~x = 2y2 {3lm(JDR 

(3lm(JDR 
~y = Y2 

where the linear capacity R is defined as 

2" = R. 

The deviation of (3) and (4) is given in Appendix A. 

(3) 

(4) 

(5) 

If we restrict the loss of intensity in the extreme positions to be less 
than 20 percent (i.e., ~x, ~y ~ 0.14d) then from (3) and (4) we obtain 
the following restriction on the length to aperture ratio for the modula­
tor, 

£< 3 

A = 20/lAR [ 1 + em l~ l) ] 
(6) 

where A = d2 and l ~ lm. 
The next step in the derivation is to show that for both linear trans­

verse electro-optic materials and biased quadratic electro-optic materials 
the reactive power is proportional to the cross-sectional area divided by 
the modulator length. 

When an electric field is applied along a crystallographic {100} axis 
the principaJ refractive indices of KTN become3

•
4 

* While in principal the prism length varies. as 2", in practice each prism unit 
is the same length, being made up of an optically isotropic support section and 
a thin birefringent section which varies in the prescribed fashion. 
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3 
r"'V n p2 no = n - 2" g12 Z 

3 
(7) 

r"'V n p2 
ne = n - 2" gn z 

hence, 
3 

An = no - ne = ~ (gn - g12)Pz2 (8) 

where Pz is the induced lattice polarization in the {100} direction pro­
duced by the electric field. Here n is the isotropic refractive index in 
zero field and the gij are the quadratic electro-optic coefficients. The 
phase retardation can thus be expressed as 

271" 2 
Acp = - aP l 

A 
(9) 

w here a == n 3 /2 (gn - g12), l is the length of the KTN crystal in the 
light direction, and the z subscript on P has been dropped for simplifica­
tion. From (9) the polarization required to give the first half-wave of 
phase retardation (Acp = 71") is 

P, = (2~S (10) 

The quadratic dependence of phase retardation on lattice polariza­
tion leads to a successively closer spacing of half-wave points (Acp = m7l", 
m a positive integer) as shown in Fig. 3. If we define the dielectric per­
mittivity at a bias polarization P = Pb as 

(BP) 
Eb = -

BE P=Pb' 
(11) 

then the incremental voltage A V 7rb which will produce a change in re­
tardation of one half-wave at this bias point Pb can be written 

(12) 

For a material which exhibits a linear transverse electro-optic effect5
,6,7 

the induced birefringence can be expressed, 

3V 
An = nr-

d 
(13) 

where V is the voltage applied perpendicular to the light path, d is the 
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Fig. 3 - Light transmitted by KTN polarization switch as function of applied 
voltage. 

electrode separation, and r is a function of the linear electro-optic co­
efficient (s) determined by the orientation of the crystallographic axes 
relative to the electric field and light directions.4 The half-wave voltage 
V 7r and reduced half-wave voltage V7r (for unity aspect ratio) can thus 
be defined from (13) as, 

LlV. = 2~3r (~) = Vr m· (14) 

The reactive power delivered by the RF driver can be expressed* as 

CP, = !C(Ll V.)'p, = a et)v, ( 15) 

where 

( 16) 

for linear transverse electro-optic materials, and 

1 ( A )2 
a = 2Eb 4aPb 

( 17) 

for biased quadratic electro-optic materials. An expression for a similar 
to (16) but valid for biased quadratic electro-optic materials is given in 

* This is the case of a pulse train of the form 1,1,1,1,1, .... A more complete 
discussion of the power is given in Appendix D. 
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Section VII (66). Substitution of (I5) (b = d) into (6) yields the desired 
capacity-speed product for a square aperture modulator. 

(18) 

where 

A = 3 

20ai31\ [1 + em I~ I) ] 
and a is given in (16) and (17) for the linear transverse and biased 
quadratic cases, respectively, and we have assumed the term (n + l)/R 
is small compared to unity (for n = 10, R = 1024). The total capacity 
is of course R2 and not R. The capacity-speed product is easily general­
ized to rectangular aperture (see Appendix B) with the results 

(19) 

where 

Ax'y' (20) 

Let us consider the implications of the capacity-speed relation for a 
system with a square aperture. If the dielectric constant and reduced 
half-wave voltage of a linear electro-optic material are fixed constants, 
and the address rate 1Ir is also fixed by the application to be made of the 
DLD, then the total capacity RxRy varies directly as the square of power 
available to drive the modulator. Conversely, if the capacity is fixed, the 
address rate varies linearly with the available power. The constant of 
proportionality A can be calculated for a given electro-optic material and 
hence the capacity-speed product becomes an important design equation 
for determining which materials can meet the capacity-speed product 
required in a specific application of the DLD. It also provides a signifi­
cant comparison between linear and biased quadratic electro-optic 
performance. The remaining sections of this paper are concerned with 
evaluating the optimum capacity-speed product which can be obtained 
using KTN, and comparing this with the capacity-speed product ob­
tainable using known linear transverse electro-optic materials. It is 
clear from the form of the capacity-speed product that the question 
which must be answered in both cases is: What are the limitations on 
the power with which the modulator can be driven? 
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III. DRIVER POWER LIMITATIONS FOR KTN 

The purpose of a bias polarization Pb is to reduce the half-wave 
voltage V 7f" required to produce the 90° rotation of the light polarization. 
This is evident if we compare the unbiased half-wave voltage, 

V. = [(;J ~J (;) (21) 

with the biased half-wave voltage in (12), and substitute P 7f" from (10) 
to obtain the following relation between biased and unbiased half-wave 
voltage, 

LlV" = K~:)v .. (22) 

The biased half-wave voltage therefore, decreases as the inverse of the 
bias polarization. It is helpful conceptually to express the bias polariza­
tion Pb in terms of the equivalent number of half-waves of retardation 
m it produces. Since the phase retardation (see (9)) varies as the square 
of polarization we can write 

(23) 

hence, 

(24) 

The introduction of a bias polarization Pb can thus be used to reduce 
the drive voltage needed for the switch. Because of saturation effects 
in the induced polarization it is necessary at this point to differentiate 
between the low field permittivity € and the small signal permittivity 
€b about the bias point Pb • Saturation behavior of KTN is describable 
in terms of the Devonshire free energy formalism.8 Writing the free 
energy, as, 

(25) 

we obtain, 

E = aG = (T - To) p + ~p3 + rp5 . .. . (26) 
ap €oG . 

Some useful relations which follow from (25) and (26) are given in 
Appendix C. 

A plot of (26) illustrating saturation effects along with some experi­
mentally measured points is shown in Fig. 4. In Fig. 5 we have plotted 
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a typical low field dielectric constant K == E/ Eo versus temperature curve. 
Fig. 6 shows a plot of the saturation parameter ~ as a function of com­
position for KTN. Fig. 7 shows an analogous plot of the phase transition 
temperature To for KTN. Using the information given above we can 
continue the discussion of biasing and derive conditions for optimizing 
the bias polarization. 
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we see that as the bias polarization is increased, the incremental half­
wave voltage has a minimum at, 

where Po is the spontaneous polarization at Tc (see (77)) and Tc - To 
is the difference between the transition temperature and Curie tempera­
ture (see (78)). This minimum in incremental half -wave voltage is not 
necessarily the desired optimum bias point, since it does not correspond 
to minimum reactive power. The average power dissipated in the sample 
CPa, assuming it is driven by a square wave of repetitive frequency !Pr , 

zero-to-peak amplitude A V 1rb and rise time r-.J (1/5Pr ) is 

If) ~ (7rCb(A V 1rb)2P7.) 
U-d _ 'Y Q (29) 

where'Y is approximately 1.2. This expression is derived in Appendix C. 
Each half cycle of the drive voltage is capable of rotating the plane of 
polarization by 90°. This is done so that there will be no dc component 
in the drive signal. The necessity of this restriction is discussed in Sec­
tion VI. 

The reactive power defined in the manner of (15) is given by 

~,= C~7r) ~d (30) 

Substitution of this result in (18) gives a capacity-speed product, 

(31) 

w here A is given by, 

A = 3 

20afJA [1 + lm ~ lJ 
(32) 

and 

1 ( A )2 
a = 2€b 4aPb 

(33) 

If the upper limit on the dissipated power CPd is independent of bias 
polarization then the capacity-speed product has its maximum as a 
function of bias polarization at 

(34) 
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The reason we have derived an expression for the capacity-speed product 
in terms of the dissipated power is that the primary limitation on the 
reactive driver power for a KTN polarization modulator can be directly 
related to heating caused by power dissipation within the modulator. 
Since we are dealing with pulse modulation the drive signal contains 
frequency components substantially higher than the pulse repetition 
rate Vr • The Fourier series expansion of a square wave contains all odd 
harmonics of the fundamental (vr/2). In order to obtain an adequate 
rise time, the system driver plus modulator should encompass as many 
harmonics as possible (see (92)). If the Fourier series is terminated on 
the third or fifth harmonic the waveform will be that shown in Fig. 8. 
This places a restriction on the driver impedance if a flat response is 
desired. If we assume that the 3-dB power point occurs at a frequency 
Vu (which we take to be an odd integer multiple of vr ) then the generator 
impedance is given by 

1 
Il g = -2 C· 

7l"Vu b 
(35) 

Up to this point we have not set any upper limit on the power <Pd 
dissipated within the modulator crystal. The heating caused by this 
dissipated power is not negligible. Even in the presence of large heat 
sinks the finite thermal conductivity of the modulator crystal gives rise 
to thermal gradients which affect the device performance because we are 

v 
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Fig. 8- Waveshapes of a "square" wave with varying harmonic content. 
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operating close to the Curie point. These thermal gradients form the 
basic limitation on the intensity ratio which the modulator can maintain 
between the two senses of polarization accepted by the Wollaston 
prisms. Present estimates9 of the minimum required intensity ratio for 
the DLD are around 20 dB.* This extinction ratio thus becomes an 
important design parameter which we shall now introduce into the 
analysis. 

From (9) we can express the phase retardation t1cp for two light rays 
traveling along paths of slightly different temperature T and T + dT, 

( 
at1cp 

t1cp T + dT) = t1cp( T) + aT dT (36) 

where 

at1cp 47ralPb2 

aT = ACT - To) . 

For light polarized at 45° with respect to principal axes of the modulator 
the transmission functions for the two orthogonal polarization states of 
the Wollaston deflectors are, 

If we define t1 as 

L = I. sin' (,~;) 

2 (t1CP) III = 10 cos 2 . 

t1! == 27ralpb
2
dT 

A(T - To) 

(37) 

(38) 

and take t1cp (T) = m7r where m is an even integer then it is readily seen 
that the extinction ratio has changed from 

to 

I.L(T) = 0 
In(T) 

I.L(T + t1T) ~ t1 
III(T+t1T)-

where t1 « 1. (39) 

In order to find t1 as a function of position across the aperture of the 
modulator, we must solve the heat transfer equation. Assuming that 

* A nonlinear optical absorber might reduce this to 10 dB. 
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the power <Pd given in (29) is dissipated uniformly in the modulator 
crystal the heat transfer equation can be written, 

'V.k'VT = _ <Pd - - u (40) 

where U = bdl is the volume of the modulator crystal, k is the thermal 
conductivity and T = T (xyz) is the temperature function. If cooling is 
provided primarily at two opposite faces of the modulator (40) reduces 
to, 

iT <Pd 
8x2 = - kU (41) 

where x is directed along the cooling surface normal. The solution to 
(41) is 

<Pd (d2 2) T = Ts + 2kU 4" - x (42) 

where Ts is the surface temperature and x varies from -d12 to +d12 
if cooling is at the electroded faces. Putting this result in (38) and 
integrating over the aperture bd we find 

<Pd = V36 Xk(Ts - To)(f5.)! (~) 
7raPb2 d 

(43) 

where Li is the average extinction ratio over the aperture of the modula­
tor. Substitution of this result in (31) gives the capacity-speed product, 

(RxRy)ly, ~ {125::A:r(~I(~)r} £. (44) 

This expression is independent of bias polarization and to first approxi­
mation independent of temperature. The latter statement rests on the 
condition that at the operating point (Ts - To, Pb ) dielectric saturation 
is negligible, (i.e., Eb r-.J E = C I (Ts - To) where C is the Curie constant). 
For unity aspect ratio (bid) the capacity speed product is thus pri­
marily determined by material parameters such as thermal conductivity 
k, electrical quality factor Q, Curie constant C, etc. The only adjustable 
parameters are the extinction ratio (Li), wavelength X, and resolution 
limit {3. In many instances these will be determined by the choice of 
memory plane in a particular application. The short wavelength limit 
of the modulator above is determined by the width of the forbidden 
energy gap (in KTN 3.45 eV), which restricts use of KTN to wave-
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lengths longer than 4000 A. The advantage of using a rectangular aper­
ture is also evident from (44). For a specific operating speed the total 
capacity increases linearly with the aspect ratio. Even a modest 3: 1 
ratio give a factor of 6 improvement in capacity. The optical image of 
the source is of course distended by roughly the same ratio (b/d) but 
for many applications this might not be a limitation. 

An expression for the generator impedance Ro can be derived if we 

let Vu = ~ Vr in (35) and substitute (12), (29), and (43), 

(45) 

IV. APPLICATION OF THE DESIGN EQUATIONS TO A 106 ADDRESSES/SEC 

DLD SYSTEM UTILIZING KTN MODULATORS 

In order to obtain a better idea of the implications of the various 
relations derived in the preceding sections it is necessary at this point to 
substitute some of the physical constants. Taking the values of the 
constants listed in Table I, we can evaluate the capacity-speed product 
from (44), 

I 7~50(~)i (b) 
(RxRy) Y, ~ 1 + em l~ I) Ii addresses MHz. ( 46 ) 

The choice of {3 = 4 is based on an extrapolated improvement of 2 in 
the value of 8 obtained by Tabor9 in a DLD using passive modulators. 

Taking an extinction ratio of 20 dB (~ = 0.01) and a speed of 10-6 

sec/address we obtain from (46) the maximum capacity, 

i 795 (b) 
(RxRy) = 1 + (z..l~ I) d addresses. (47) 

It is therefore, advantageous to make (lm - l)/lm as small as possible. 
The Wollaston prisms, plus support sections, plus clearance (i.e., 

Thermal conductivity k 
Electrical quality factor Q 
Electro-optic parameter a 
Curie constant 
Light wavelength 
Resolution factor {3 

TABLE I 

50 mW/cm °C 
1000 (at 1 11IIz) 
1.13 m4/coulomb 2 (at 5000 A) 
1.4 X o105 °K-l 
5000 A 
4 
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lm - l) can be conservatively set at a lower limit of 2 mm. Let us first 
consider the case of a square aperture (i.e., b = d). For this case, (6) 
becomes 

(48) 

where 

Rx = Ry = R. 

Taking lm = 1 cm (l = 0.8 cm) we arrive at the modulator and DLD 
characteristics shown in Table II. Increasing lm beyond 1 cm (e.g., to 
2 cm) would only increase the capacity by 20 percent. The operation 
of a 106 bit/sec DLD system with a square aperture using KTN modu­
lators is thus limited to a capacity of about 0.5 X 106 addresses. How­
ever, several factors which have been neglected serve to further limit 
this capacity. These factors are discussed in the next two sections, as is 
the rectangular aperture which enables the capacity to be increased to 
106 addresses. 

V. EFFECTS OF COMPOSITIONAL INHOMOGENEITIES AND AMBIENT TEM­
PERATURE FLUCTUATIONS ON KTN MODULATOR PERFORMANCE 

Compositional inhomogeneities occur during the growth of KTN 
crystalslO which give rise to fluctuations in the Curie temperature 
throughout the crystal. The exact nature of the inhomogeneities and 
their elimination is beyond the scope of this paper. The relevant point 
in this discussion is that Curie temperature variations do exist and should 
be included in the modulator analysis. Examination of (38) shows that 
we can extend the interpretation of dT as 

dT = d(T - To) = dT(x,y) + dTs - dTo(x,y). (49) 

TABLE II -PERFORMANCE CHARACTERISTICS OF DLD USING 
KTN MODULATOR 

Modulator dimensions 

DLD capacity 
DLD speed 
Dissipated power 
Reactive power 
Generator impedance 
Bias polarization 
Bias voltage 
Driver voltage 
Number of half-waves bias 
Capacitance of modulator 

b = d = 0.92 cm 
l = 0.8 em 
0.4 X 106 addresses 
10-6 seconds/address 
9.7mW 
1.3 W 
65 n 
2 f..l coulombs/cm2 

1500 V 
51 V 
15 
1000 pF 
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In the previous treatment of Sections III and IV we neglected dTs and 
dTo • From (42) we can calculate dT(x = 0) for a dissipated power of 
10 m W, a volume of 0.65 cm3 and d = 0.92 cm corresponding to the 
modu1ator discussed in Section IV, and find 

dT (x = 0) = 0.03°C. (50) 

The previous analysis is thus valid for dTs and dTo much less than 0.03°C. 
This corresponds to temperature regulation in the thousandths of a 
degree region which is within capabilities of present technology but 
requires some sophistication and cost. 

Curie temperature variations occurring during growth are presentlyll 
in the range 1°C to 10°C for samples several mm's on a side. To hold 
variations of O.Ol°C requires a control of the solid-solution to within 
roughly 20 ppm of the 65/35 mixture. Let us for the sake of discussion 
see what effect a constant variation 0 == ATs - ATo of O.Ol°C would 
have on the derivation of (43). The result of this calculation is the 
following equation, 

For 0 ~ 0, {Pd of course reduces to the expression given in (43). For 
o ~ 0 the negative sign in the radical, combined with the requirement 
that {Pd be a real positive quantity, indicates that there is a lower limit 
to the quantity [(A (Ts - To) 127rapb

2l]. The previous ana1ysis did not 
place any limit on Ts - To and Pb ; and lm could be made larger if A was 
increased. The additional restriction coming from (51) leads to a modi­
fied capacity-speed product, 

(52) 

Remembering that lm - lilm < 1 it can be shown that the capacity-speed 
product has a maximum, as a function of Pb

2l at 

(53) 

and goes to zero at, 
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Pb2Z = (LS)!A( Ts - To) . 
27ra5 

(54) 

Putting the values A = 5000 A, (Ts - To) = 10°0, a = 1.13 m4/cou­
lomb2, and 5 = 0.01 °0 into (53) and (54) we find RVr has a maximum at 

P
b
2Z = 3.6 (p, coul~mb)2 (55) 

cm 

and zero at 

P
b
2Z = 7 (p, coulomb)2 

cm3 
(56) 

In the earlier calculation of Section III where 5 0 we arrived at 
the values P b = 2 p, coulombs/cm2 and Z = 8 mm giving Pb

2Z = 3.2 
wpich is only slightly smaller than the optimum above. Using the 
parameters in Table I and taking Ts - To = 10°0 we can write (52) as 

2 [5 1 { 2 61~ }!] < 2010Pb Z - 2 5 + 2 - 955 + (P1i)2 

Rv, = . [1 + em l~ l)] (57) 

b . d address-MHz. 

Putting p b2Z = 3.6 p, coulomb 2/cm3, LS = 0.01 and 5 = 0.01°0, Vr = 1 
MHz, and Z = 8 mm into (57) we find the maximum capacity is 0.18 X 
106 addresses. This is 35 percent lower linear capacity (418) than the 
maximum linear capacity (635) obtained when 5 was assumed to be 
negligible. It can in fact be shown that if p b2Z is chosen to satisfy (53) 
then the capacity-speed products in (44) and (52) are related by a 
constant multiplier, 

(58) 

Thus, the primary effect of introducing compositional nonuniformities 
and ambient temperature fluctuations has been to decrease the capacity­
speed product by 35 percent, and also to prescribe an optimum value 
for Pb

2Z given by (53). It is interesting to note that for Z > 2 mm the 
value of Pb obtained in this fashion is substantially less than the value 
required to minimize the power or drive voltage (see (28) and (34)). 
Since Pb

2l from (53) is proportional to 1/5 an increase in 5 beyond 
0.01 °0 would reduce Pb

2Z to less than 3.6 p, coulombs2/cm3
• A substantial 
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increase in 0 beyond O.Ol°C is not desirable, however, since l must be 
greater than 2 mm to prevent the denominator in the capacity-speed 
product from becoming large, and secondly Pb cannot be reduced much 
below 2.0 J..I. coulombs/ cm2 as the drive voltages become excessive. Thus, 
it is clear that close temperature regulation to several hundredths of a 
degree, and precise control of chemical composition to tens of ppm are 
both essential. In the next section, an ac biasing scheme is discussed 
which relaxes these requirements. 

Table III lists the new operating characteristics for a square aperture 
system which result from the modified design equations derived in this 
section. 

VI. SPACE CHARGE EFFECTS AND AC BIASING 

In this section, we shall consider the adverse effects of finite electrical 
conductivity in the presence of a dc bias, and discuss the ac biasing 
scheme proposed by WarterI2 for overcoming these effects. We shall also 
consider the advantages of a rectangular aperture and the problems 
associated with finding other materials than KTN for use as the active 
electro-optic medium. 

The static electrical conductivity of KTN in the vicinity of 300 0 K 
falls in the range 10-1l to 10-12 mhos/em. This conduction has been 
demonstrated to be extrinsic and due to holes having a very low trap 
controlled mobility of 10-6 cm2/V sec. The filled acceptor level density 
is less than 10Is/cms and is peaked around 0.6 to 0.8 eV above the valence 
band. 

This small but finite conductivity gives rise to several types13 of non­
uniform electric polarization distribution within the sample when a dc 
electric field is applied. The type of nonuniformity and the associated 
time constant depend on the nature of the electrical contact (e.g., ohmic 

TABLE III - PERFORl\IANCE CHARACTERISTICS OF D LD USING KTN 

l\10DULATOR IF 0 0.01 °C 

Modulator dimensions 

DLD capacity 
DLD capacity-speed product 
Dissipated power 
Reactive power 
Generator impedance 
Bias polarization 
DC bias voltage 
Driver voltage 
Number of half-waves bias 
Capacitance of modulator 

b = d = 0.75 cm 
l = 0.8 cm 
0.18 X 10 6 addresses 
0.42 X 109 sec-1 

6.4 mW 
0.86 W 
43 n 
2}l coulombs/cm2 

1200 V 
42 V 
15 
1000 pF 
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or blocking). In the case of blocking contacts14 two phenomena occur 
with different time constants. The first effect is the build-up of a space 
charge in the vicinity of nonuniform conductivity and/or nonuniform 
dielectric constant. It can be shown from l\1axwells equations that the 
time constant for this build-up is approximately given by the dielectric 
relaxation time, 

Tr = PK€o (59) 

where p is the average resistivity and K the average dielectric constant. 
For a dielectric constant of 104 and a resistivity of 1012 n-cm, Tr is of 
the order of 103 seconds. The second effect is the formation of a depletion 
layer14 in the vicinity of the blocking (positive for p-type conduction) 
electrode. The time constant for depletion layer formation is given by, 

Tsh = d( 00 )L (60) 
2/leff V 

where d ( 00 ) is the final depletion layer width 

d( (0) = • /2€ V 
11 NTe 

and L is the electrode separation, NTis the density of filled trapping 
levels, and /lcff is the trap-controlled or "effective" mobility. For KTN 
having a resistivity of 1012 ohm-cm this depletion layer buildup time is 
between 103 and 104 seconds. 

In the case of ohmic contactsl4 •15 space charge buildup can occur due to 
nonuniformities in the conductivity, as in the case of blocking contacts, 
or a space charge may also occur which is associated with operation in 
range of space charge limited current flow. It can be shown that the 
transition from ohmic current flow to space charge limited current flow 
occurs when 

V>HN~L} (61) 

The large dielectric constant of KTN causes this transition to occur at 
much lower current levels than in other materials. 

The nonuniformities in polarization caused by each of these effects 
exceeds that which the system can tolerate by several orders of magni­
tude. While the possibility of a direct solution to the dc bias problem 
cannot be ruled out, two alternatives exist which eliminate the need for 
a dc bias. The first of these involves operation of the modulator in the 
ferroelectric regionl6

•
17 with the spontaneous polarization acting as the 
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bias polarization. The previous analysis of Sections II to V is applicable 
to this case except that the dielectric constant no longer obeys a Curie­
Weiss law but varies in the fashion described by (S2) in Appendix C. 
The temperature dependence of the spontaneous polarization is also 
different, which changes the derivation of (43). 

A comparison of (SO) and (Sl) shows that the dielectric constant 
drops discontinuously to 1/4 of its peak value at the phase transition. 
For KTN with a transition temperature of 10°C this means a drop from 
36,000 to 9,000. Thereafter, it drops to below 2,000 within a temperature 
range of less than 10°C. If one modifies the analysis of the preceding 
sections to take these facts into account, one finds that ferroelectric 
biasing further reduces the maximum capacity by a factor of at least 4. 
The further assumption is made here that large samples will remain 
single domain when operated within 5 to 10°C of the Curie point. 

A second biasing scheme which does not appear to have this liability 
has been proposed by P. J. Warter, Jr.12 The basic idea in Warter's 
scheme is to use two modulator crystals in series (1 and 2). An ac 
bias source provides separate current drives in quadrature to the two 
sections, as indicated in Fig. 9 for one of the two modulators, 

60 CPS INPUT 

(62) 

/-CRYSTAL 
NO.1 

Fig. 9 - Block diagram of driver circuit for modulator 1 in Warter's ac bias 
scheme. 
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The charge on the electrodes of the two samples produces an electric 
polarization in the sections which varies as 

PI = Po cos wot 

P2 = Po sin wot 
(63) 

where Po = io/woA, A being the electrode area. The phase retardation 
through the two sections is the sum of retardations in each section and 
hence, 

(64) 

with Po being the bias polarization. Since the bias signal on each section 
contains no dc component the previously discussed conduction phenome­
non does not occur if the contacts are electrically blocking and the 
period r 0 = 27r / Wo is short compared to the dielectric relaxation period r r • 

In addition the use of a current drive rather than a voltage drive 
insures a constant polarization along a path normal to the electrodes 
(x direction) even if the temperature changes slightly. This also holds 
for nonunjform temperature variations along the same path within the 
sample. The electric fields adjust internally for regions of varying di­
electric constant such as to maintain uniform polarization along the x 
direction. This relaxes the stringent requirements on ambient tempera­
ture control and chemical homogeneity. A detailed analysis of the limi­
tations of the ac bias is needed before any reliable statements can be 
made as whether it will allow a significant increase in the capacity speed 
products calculated in the previous sections. Such an analysis depends 
critically on distortions in the drive signal from a pure sinusoidal be­
havior which are not known at present. It should be noted that each 
modulator in this scheme must be the same length l as a single modulator 
in the previous analysis, giving a reduction of 4 (see (20» in the capac­
ity R2 if the cross-sectional area A is held constant. 

Another adverse optical effect which has been observed in dc biased 
KTN polarization switches occurs when the diameter of the optical 
beam (of several m W power) is reduced to around 0.2 mm. Under these 
conditions a severe distortion of the optical transmission function from 
its expected form (see (37) and Fig. 3) was observed as shown in Fig. 10. 
If the light was switched on rapidly (in <0.1 sec.) the initial transmission 
function was that shown in Fig. 3, but went over into that shown in 
Fig. 10 after several seconds of illumination. If the light beam was moved 
rapidly to a different region the same sequence was observed. A return 
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to the original spot gave the pattern in Fig. 10 without any buildup time, 
indicating that the cause of the refractive index distortion was still 
present, and had not decayed after many seconds. Insertion of 30 dB of 
optical attenuation in the input beam was found to completely eliminate 
the occurrence of distortion. Further measurementsI8 suggest that the 
distortion is being produced by an internal bias field acting in opposition 
to the applied field but nonuniformly distributed in the immediate 
vicinity of the affected area. Since no distortion was observed in the 
absence of a dc bias field one is tempted to postulate that the intense 
light beam is generating some sort of charged centers or charge carriers 
which drift under the influence of the external field and are then trapped 
near the edge of beam. ChenI8 and BoydI9 have made further optical 
measurements of the distortion of the refractive index ellipsoid of KTN 
in the vicinity of beam which indicate that the effect being described 
here may be related to "optical damage" effects observed recently in 
LiNb03 and LiTa03 . 

Since no satisfactory explanation of either effect is available at the 
present time we shall conclude this discussion by noting that this prob­
lem is not one of concern for the DLD polarization switch since optical 
levels will probably be somewhat less than 0.1 W /cm2, and for KTN the 
ac bias scheme of Waters would circumvent the problem even at high 
light levels. 

o 
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Fig. 10 - Light transmitted by optically "damaged" region of KTN polariza­
tion switch. 
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VII. RECTANGULAR APERTURE AND COMPARISON OF LINEAR ELECTRO­
OPTIC MATERIALS WITH KTN 

7.1 Rectangular Aperture 

It was shown in Section II that the capacity speed product depended 
primarily on the amount of power one can use to drive the modulator. 
In Section III we showed that this power for KTN is limited by the 
extinction requirements of the DLD. Holding the extinction constant 
it was shown that one could increase this power hence the capacity­
speed product by using a rectangular aperture (i.e., bid> 1). This 
conclusion was unchanged when Curie temperature variations and am­
bient temperature fluctuations were included (see (52». Let us consider 
the improvement which a modest aspect ratio of 3: 1 (= bid) can make 
in the capacity-speed product of the KTN modulator described in Sec­
tion V. Table IV lists the operating characteristics of a KTN nodulator 
with bid = 3. The capacity can therefore, be brought up to the megabit 
region with only a modest 3/1 aspect ratio, while maintaining reasonable 
driver requirements, well within the capabilities of transistor circuitry. 

7.2 Comparison of Linear Electro-optic 111 aterials with I(TN 

In Section II it was shown that the capacity-speed product for differ­
ent electro-optic modulator materials (e.g., A and B) being driven with 
identical reactive powers differed only in the factor (see (20». 

TABLE IV - PERFORMANCE CHARACTERISTICS OF DLD USING KTN 
AND RECTANGULAR APERTURE 

Modulator dimensions 

DLD capacity 
Rx 
Ry 
DLD capacity-speed product 
Dissipated power 
Reactive power 
Generator impedance 
Bias polarization 
dc bias voltage 
Driver voltage 
Number of half-wave bias 
Capacitance of modulator 
Dielectric constant 
Reduced biased half-wave voltage 

b = 2_24 cm 
d = 0.75 cm 
l = 0.8 cm 
1.0 X 106 addresses 
422 
3700 
1.0 X 109 sec-1 

19mW 
2.6W 
15 Q 

2 Jl coulombs/cm2 

1200 V 
42 V 
15 
3000 pF 
14,000 
45 V 
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(65) 

Since we assumed that lm - ljlm is small, the comparison of different 
modulator materials reduces to a comparison of their a's. To facilitate 
this comparison we put (17) for biased quadratic-electro-optic materials 
in the form, 

Eb ( )2 
a = 2 .6.V1rb (66) 

where ..6.V1rb = .6.V1rb (ljd) is the reduced half-wave voltage for the biased 
material, 

(67) 

For the KTN modulator described in Table IV, aj Eo has the value 
1.4 X 107 (V)2. For a linear electro-optic material with a dielectric 
constant of 10Eo , a reduced half-wave voltage of 1670 volts would be 
required to give the same value of a as the biased KTN. 

In the past the lowest reported5 reduced half-wave voltage for a linear 
transverse effect was 6200 volts for cuprous chloride. Recently both 
lithium niobate20 and zinc telluride6 have been shown to have reduced 
half-wave voltages of less than 5 kV. Lithium niobate has the disadvan­
tages of a somewhat higher dielectric constant and an appreciable 
natural birefringence which would tend to limit the angular aperture. 
Zinc telluride has a relatively small optical band gap (""'-'2 eV) and would 
be restricted to use at wavelengths >6000 A. Nevertheless, it is signifi­
cant that materials with a sufficiently large linear transverse electro-optic 
effect and low dielectric constant do exist. Table V lists the capacity­
speed product and several other operating characteristics of a DLD 
designed using LiNb03 and ZnTe. One of the principal advantages is 
relative insensitivity of these materials to temperature changes. This 
means that larger reactive powers may be used if one can meet the drive 
voltage requirements. The rectangular aperture again offers an advantage 
by allowing a reduction in this drive voltage while maintaining a high 
capacity. This fact has been used in deriving the numbers in Table V. 
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TABLE V - COMPARISON OF KTN WITH LINEAR 

ELECTRO-OPTIC MATERIALS 

LiNbOa* 

Modulator dimensions b 2.64 em 
d 0.5 em 
l 1cm 

Reduced half-wave volt- 400 V 
age v". 

Dielectric constant 40 
Capacity-speed product 1.9 X 108 sec-1 

Capacity 3.6 X 104 add. 
Speed 10-6 sec/add. 
Driver voltage 2000 V 
Reactive power 10 W lOW 
a/Eo 3.2 X 108 (V) 2 
DC bias voltage OV 
Capacitance 19 pF 
Heating tJ.T 0.04°C 

* A = 5000 A, Q = 1000. 
t A = 6000 A, Q "-' 100. 
t A = 5000 A, Q = 1000, de bias. 

VIII. SOME EXPERIMENTAL RESULTS 

ZnTet KTNt 

2.64 em 2.24 em 
0.5 em 0.75 em 

1cm 0.8 em 
2500 V 45 V 

10 14,000 
1.9 X 109 sec-1 1.0 X 109 sec-1 

3.6 X 106 add. 1.0 X 106 add. 
10-6 sec/add. 10-6 sec/add. 

1250 V 42 V 
lOW 2.6W 

3.1 X 107 (V)2 1.4 X 107 (V)2 
OV 1200 V 

4.6 pF 3000 pF 
0.4°C 0.02°0 

Because of the large composition fluctuations in presently available 
KTN mentioned in Section V the experiments described in this section 
were carried out using much smaller samples than those needed for a 106 

address DLD system. Samples were generally several mm on a side. 
Pulse experiments were performed using the circuit shown in Fig. II. 
At slow sweep speeds, around 1 msec/cm, the expected modulation wave­
forms (see Fig. 12) were observed with 100 percent modulation occurring 
when the puls~ height equaled the dc incremental half-wave voltage. 
For faster ·sweep speeds in the 1 ,usec/cm range, a strong ringing of the 

RUTHERFORD 
B7B 

PULSE 
GENERATOR 

ELECTRON 
MULTIPLIER 

2N8428 
PULSE 

AMPLIFIER 

HIGH 
VOLTAGE 
SUPPLY 

t~------77-}~--- ------~ PHOTO­
MULTIPLIER 

EM! 7102 
He - Ne LASER POL ANAL 

A = 6328 A 
SHIELDED 
SAMPLE 
HOUSING 

TEKTRONIX 
661 

SAMPLING 
SCOPE 

Fig. 11 - Experimental apparatus for unbiased pulse measurements. 
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Fig. 12 - Very low frequen,..y light modulation response. 

light intensity following the leading and trailing edges of the pulse was 
observed. The damping of these oscillations was small. Analysis with a 
Rohde Schwartz receiver showed that a number of frequencies were 
being superposed and that these corresponded approximately to the 
low-order mechanical vibration modes21 of the sample. Typical responses 
are shown in Figs. 13 and 14. In Figs. 14(a) and 14(b) the pulse width 

(b) 

(a) 

_ I 20 I _ 
~ ).LSEC ~ TIME ~ 

Fig. 13 - Ringing lD light modulation at intermediate pulse widths (several 
p,sec). 
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TIME~ 

Fig. 14 - Interference effects induced by varying the pulse widths. 

has been adjusted to give, respectively, constructive and destructive 
interference. The dominant frequency excited is that corresponding to 
the fundamental longitudinal thickness mode. A further study with sine 
wave excitation revealed that in the unbiased case, resonant excitation 
of this mode occurred at Vdrive = !Vfundamental corresponding to electro­
strictive excitation. In the presence of a bias field, excitation occurred at 
Vdrive = Vfundamental corresponding to piezoelectric excitation. An effective 
(or induced) piezoelectric coefficient d33 can be calculated for a bias 
polarization P b from the relation 

where Sij are the elastic compliances measured at constant electric 
displacement, and Qii are the electrostrictive constants. 

I t was found possible to partially damp these acoustic resonances by 
two methods. In the first method, the sample and electrodes were im­
bedded in Armstrong epoxy but the faces through which the light passed 
were left unobstructed. In the second technique cold-worked aluminum 
was bonded to the electrodes. An example of the partially damped re­
sponse is shown in Fig. 15. An interesting feature clearly illustrated in 
this figure is the initial primary or high-frequency electro-optic response 
followed by the secondary or elasto-optically induced response having a 
rise time characteristic of the acoustic travel time across the sample. 
The clamping effect on the induced birefringence can be estimated from 
the pulse data to be 25 ± 10 percent for the unbiased crystal. This is in 
agreement with calculations based on thermodynamic arguments.3 Both 
clamping effects and acoustic damping have been neglected in the 
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Fig. 15 - Partial damping of acoustic ringing by imbedding in epoxy. 

previous sections. Clamping will raise the voltage and power require­
ments and thus further restrict the capacity. Acoustic damping may be 
difficult to achieve in practice on large samples without introducing 
strain. It may also have an adverse effect on the electrical Q in the 
frequency region near the acoustic resonances. Electrical Q's of several 
thousand (and up to 10,000) have been measured for KTN up to fre­
quencies of several MHz on undamped samples. 

Pulse response has also been measured in the nano-second range at 
100 per cent modulation levels. A typical sampling scope trace is shown 
in Fig. 16. The modulation voltage pulse was delivered by a Huggins 
nanosecond pulse generator. The signal was detected in an EM! 7102 
photomultiplier terminated in the 50 ohm input impedance of a Tek­
tronix l\1ode1660 Sampling scope. The sample was unbiased with a half­
wave voltage about 25 percent larger than the measured dc value. * 

IX. CONCLUSIONS 

An analysis of the modulator requirements for a high capacity-high 
speed digital light deflection system has been carried out. A principal 
result of this analysis is the derivation of a simple capacity-speed product 

(RxRlI)!Pr ~ APr 

where A is essentially a constant characteristic of a given modulator 
material, and P r is the reactive power with which the modulator is 

jc The triangular shape observed was identical to the input voltage waveform. 
The triangularity was due to current limitations, the driver being unable to pro­
vide 1he current necessary for a sharp leading and trailing edge. 
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Fig. 16 - Clamped electro-optic pulse modulation. 

driven. By examining the limitations on this reactive power one can 
then compare the performance of different modulator materials in terms 
of their respective capacity-speed products. For KTN the capacity­
speed product is limited to 1.25 X 109 sec-l by thc cffects of internal 
heating, assuming ambient temperature fluctuations are held to less 
than O.Ol°C, and compositional nonuniformities affecting the Curie 
temperature are less than 20 ppm. Presently available KTN has com­
positional nonuniformities 100 to 1000 times greater than this. In addi­
tion further complications arise from the dc bias in the form of space­
charge effects. An ac bias scheme proposed by Warter can be used to 
eliminate space-charge effects. It is thus clear from the foregoing analysis 
that the material requirements imposed on the KTN to achieve a 
capacity-speed product of 109 sec-1 (i.e., 106 addresses at a 1 MHz 
rate) are severe. It is therefore, important to look for other materials 
where the requirements might not be as severe. 

The capacity-speed product is very helpful in such a search since it 
shows that a linear electro-optic material such as ZnTe with a dielectric 
constant of 10 and a reduced half-wave voltage of less than 3 kV, has a 
capacity-speed product of 2 X 109 sec-l for 10 watts reactive power. 
The capacity-speed products of all other known linear electro-optic 
materials are less than 2 X 108 sec-I. On the basis of this study there are 
at present* only two electro-optic materials which are potentially capable 

* Note added in proof: Recent work of Denton, Chen, and Ballman (to be pub­
lished) on LiT a 0 3 , Xu = 43, V'll" = 2700 V indicates that this material also has a 
high-capacity speed product. 
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of operating in a high-capacity high-speed DLD, namely: KTN and 
ZnTe. 
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APPENDIX A 

Walk-OfJ' Derivation 

We assume modules of constant length lm consisting of a polarization 
switch of length l and a Wollaston prism of length lm - l. The length 
of the Wollaston is assumed to be small compared to lm so that lm "-' l. 
Starting from the input the modules are arranged in order of increasing 
angular deflection, in x,y pairs; e.g., ±Ox1', ±Oy1', ±Ox2', ±Oy2', ... , etc. 
Consider the transverse displacement of the beam at the output of the 
x1',y1' modules. In the x' direction the beam is displaced by a distance 
lmOxl' and in the y' direction it is undisplaced in the present approxima­
tion. The beam at this same point projected onto the x'-z plane (z is the 
principal axis of the DLD) makes an angle Ox1' with respect to the z 
axis, and projected onto the y' -z plane an angle Oy1' with respect to the 
z axis. At the output of x2',y2' modules the corresponding displacements 
and angles are respectively 5lmOx1' {= lmOx1' + (2lm)ex1' + lmOx2' } , 
2lm()y1' { = 0 + (2lm)ey1} , 30x1 (= Ox1' + OX2'), and 30y1' (= Oy1' + Oy2')' Table 
VI lists these displacements and the succeeding ones. In terms of the 
diffraction On = Ald j , 

APPENDIX B 

, "-' 3 l A 2n 
Llx = 2 fJx m d

x
' (68) 

(69) 

Derivation oj Capacity-Speed Product jor Rectangular Aperture 

Remembering that the modulator axes x,y (parallel respectively to the 
d and b dimensions of the modulator) are rotated 45° with respect to 
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TABLE VI - LINEAR DISPLACEMENT OF BEAM AT OUTPUT OF 
iTH PAIR OF lVloDULES 

i = 1 

2 

3 

4 

dx 

2lmOd(1 + fr) 

2lmOx1,(1 + 3 + i) 

2lmOx1,(1 + 3 + 7 + lli.) 

dY 

o 

2lmOy1 ,(1 + 3) 

2lm01l1 ,(1 + 3 + 7) 

n-l 

n 2lmOy1' L (2 i - 1) 
j=l 

performing the indicated sums 

.£lx =2lmOxl(~ 2n - n - ~) 

For large n (n » 1) 

the deflection axes x',y', and taking b > d, we see from Fig. 17(a) that a 
displacement of the beam ~x' (or ~y') produces a fractional loss of in­
tensity 

~I ~A r-.J 1 (1 1) '( ') T = 11 = V2 b + d ~x or ~y 

giving 

!1x' (or !1Y') ~ -v'2d ( ~) . (70) 

The diffraction angles 0 D for the x' and y' deflections are given by 
ODX' = -yl2X/b and ODy' = X/V2d as shown in Fig. 17(b). Combining 
these expressions with (68) and (69) we obtain, 

, (V2X) _ /0 ~x = {3xlm -b- R x' ~ 0.2 v 2d (71) 

!1y' = (3ylm (,Jzd) Ry' ~ 0.2 V2d (72) 

for a fractional intensity loss of 20 percent. Combining (71) and (72) 
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we find 

! 0.2 (bd)l¥d (R x ,Ry ,)2 ~ ~ /- - -
v {3x{3yA lm b 

(73) 

Substituting for (Pr from (15) we obtain the desired result, 

(74) 

where 

Ax'Y' = (75) 

y' 

ex:: 8 x = Aid --- __ -...-...", 

8;x: A 
ex:: 8 y' = -{2 = -{2d " 

-{2A 
oc 8;x:' = -{28 y = -b- ---

~Umrfl:/·F}fC::L 
ex:: 8 y = Alb -------

(b) 

Fig. 17 - Rectangular aperture: (a) beam displacement, (b) image plane. 
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APPENDIX C 

Dielectric Properties of KTN 

From the Devonshire free energy expansion in (25) we can derive 
expressions for several useful dielectric properties, The spontaneous 
polarization P s is given by 

. /2 [ { 3 (To - T )}!J! P s = V :3 P so 1 + 1 + 4 'Pc _ ToT < To (76) 

where P so is the spontaneous polarization at the phase transition Tc , and 
is given by 

.~ 
P so = V 4r' (77) 

The difference between the Curie Weiss temperature To and phase 
transition temperature Tc in the Devonshire model is, 

3 (~2) Tc - To = 16 EoG f ' (78) 

The low field dielectric permittivity E above the phase transition obeys 
a Curie-Weiss law, 

E 
lim 05-+0 

o ~ 0 

T=1\+o 

E 
lim 05-+0 

o = ~O 

T = Tc + 0, 

More generally below To , the permittivity can be written 

EoG 
E -
T<T c - [ 4 16 20 2J ' 

(Tc - To) - 3 + :3 'Y + 3'Y - (To - T) 

(79) 

(80) 

(81) 

(82) 
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where 

= • / ~ (To - T) 
'Y - 11 1 + 4 Tc - To . (83) 

The small signal permittivity at high fields is given by, 

(84) 

APPENDIX D 

Power Considerations 

Consider the circuit shown in Fig. 18. The current in the RF driver 
arm is given by 

where Qs wCsRs and the following inequalities are satisfied, 

1 1 
Rs,wLB»-C »Ry , -C . 

w 8 W B 

The instantaneous power delivered by the RF driver is, 

. wCs Vr/ wCs Vr/ wCs Vr/ . 
(Pinst (drIVer) = 2Qs + 2Qs cos 2wt - 2 sm 2wt . (86) 

In the same manner, we can obtain the instantaneous power delivered 
by the circuit to the modulator, 

Fig. 18 - Equivalent circuit for biased operation. 
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( d) VB2 (d·) 2VBV rf 
CPinst mo = If; + CPinst rIver + Rs 

(87) 

( Qs.) . cos wt - "2 sm wt . 

The term V B
2/RB is supplied by the bias supply. It can be readily shown 

that the last term is supplied by the dc blocking capacitor and RF 
blocking inductor. The dc blocking capacitor contributes a term 
(V B Vrf / Rs) (cos wt - Q sin wt) and the RF blocking inductor a term 
(V B VrJ!Rs) cos wt. Since Qs is large the instantaneous power delivered 
by the driver is to a good approximation given by, 

(d · ) "" wes Vr/ • 2 
CPinst rIver = 2 SIn wt (88) 

the dissipated power in the modulator « CPinst (mod) )timt» from (87) is 

(89) 

Since the actual modulation waveform is nonsinusoidal, the analysis 
must be extended to include a pulse-type waveform. In addition, since 
we are driving a reactive load we need to characterize the driver power 
requirements. The time average of the reactive power is zero. The peak 
instantaneous power depends on the risetime of the voltage pulse. 
Neither of these factors is a satisfactory measure of the required driver 
power. A more realistic quantity from the point of view of the driver22 

is the energy delivered to the modulator per address pulse times the 
number of address pulses/second. From the foregoing analysis, (88), 
the power defined in this fashion is given by 

(90) 

where Vr = 2v (assuming that each half cycle represents an addressing 
pulse). The dissipated power for the case of pulse modulation can be 
obtained from a simple extension of the foregoing analysis. Expanding 
the pulse waveform in a Fourier series, 

4V "" 1. v = - rf L..J - SIn mwt 
7r m=1,3,5, .• ' m 

it is easily shown23 that the power dissipated in the sample is given by 

(91) 
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If the quality factor Qs is independent of frequency and the series is 
terminated at m = 5, (91) reduces to (29) of the text. The rise time 
of the pulse is approximately the rise time24 associated with the highest 
frequency component mmaxW 

r-..J 0.45 
Trise = ---. 

mmax v 
(92) 

It should be noted that the peak reactive power varies inversely with 
Trise, and can be substantially larger than the reactive power defined in 
(84) if the rise time is much shorter than the period of an address pulse. 

The pulse amplitude has been equated to the half-wave voltage in 
the linear electro-optic modulator and to the incremental half-wave 
voltage in the biased quadratic modulator. This implies that an address­
ing pulse is needed for only one of the two polarization states of the 
light beam (i.e., either the "0" or "1" state but not both). 

An alternative scheme is to set the ambient state of the modulator 
to a point midway between the two desired states (! wave bias) in which 
case each state requires an address pulse of one half the previous ampli­
tude. The average power required is thus cut by a factor of two. We have 
not used this latter scheme since in the case of KTN it introduces a 
possible dc component into the voltage across the modulator. In the 
case of the linear electro-optic materials the presently conceived20 driver 
circuitry does not permit any increase in the available power using this 
bias scheme. 
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On the Optimality of the Regular 
Simplex Code 

By H. J. LANDAU and DAVID SLEPIAN 

(Manuscript received May 25, 1966) 

We prove here the long conjectured fact that the regular simplex is the code 
of minimal error probability for transmission over the infinite-band Gaussian 
channel. The code is actually optimal for a rather uide class of assumed 
channel noises. We also establish the optimality of several other codes for 
the band-limited Gaussian channel. 

1. INTRODUCTION 

Since its introduction by Shannonl and Kotel'nikov2 nearly 20 years 
ago, the geometric representation of signals has played an important 
role in communication theory. * By this scheme, a variety of physically 
different time-continuous communication systems can all be reduced to 
the same geometric model. The problem of finding optimal signals for 
transmission then becomes a geometric one. This paper solves one such 
problem. 

In the model in question, signals to be transmitted are represented as 
points, or vectors from the origin, in a suitable finite dimensional Euclid­
ean signal space 0n • The energy of any signal in 0n is proportional to the 
length of its representative vector; the bandwidth of the communication 
system is proportional to the dimension n of the signal space. Received 
signals are also represented by vectors in 0n and the difference Z = 
Y - X between a transmitted signal X and the corresponding received 
signal Y is a vector random variable representative of the noise en­
countered during transmission. In a model commonly considered, the 
probability density of Z depends only on its magnitude, i.e., 

P (Zl , Z2, ••• , Zn) = f ( I Z I ), (1 ) 

* A detailed description of this viewpoint along with some references to the 
intervening literature can be found in Chapters 4 and 5 of the recent book3 by 
Wozencraft and Jacobs. 

1247 
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and f ( . ) is an integrable nonnegative monotone decreasing function of 
its argument. We shall consider only this case in all that follows. 

Suppose the transmitter has a list of 1JI[ signals, Xl, Xz , ••• , X M 

from which it selects the successive signals to be transmitted. We sup­
pose these choices are made independently with equal probabilities and 
that the code, or list of possible sent signals, is known to the receiver. 
The receiver partitions 0n into M disjoint regions ffil, ffiz , ••• , ffi M 

called decision regions. When the received signal lies in ffii , the receiver 
asserts that Xi was transmitted. With this scheme, the probability of 
correct decoding is 

1 M 1 Q = - L f( I X - Xi I) dXl dX2 ••• dXn , 
1\1" i=l ffii 

(2) 

where X = (Xl, X2 , .•• ,Xn ) is a generic point in 0 n • 

With M and n given, how large can Q be made by proper choice of the 
code and decision regions? For a given code it is well known (see Ref. 3, 
Section 4.2, for example) that Q is maximized by choosing 

ffii = {X I I X - Xi I < I X - X j I, j ~ i}, (3 ) 

i = 1, 2, ... ,M. That is, the ith decision region consists of all points of 
0 n closer to Xi than to any other code word. Decision regions determined 
by (3) are known as maximum-likelihood regions. 

The maximization of Q over the code is more complicated. To obtain 
a meaningful problem it is necessary to put some restriction on the 
length of the code vectors, for without this, Q can be made arbitrarily 
close to unity by choosing large enough vectors in distinct directions. 
Several different energy restrictions have been studied in the literature 
(see Ref. 4). Although optimal codes under these restrictions have not 
been found in general for fixed M and n, much detail is known in the 
Gaussian case 

f(x) = exp (_X2 12(i) , 
V27r(j2 

(4) 

about the asymptotic form of Q for such optimal codes, as n ~ 00 with 
(lin) log M ~ R. These results are usually described in the channel 
capacity and reliability formulae terms of information theory.3,4,5 

In this paper we restrict our attention to the case in which all code 
vectors are the same length. For convenience, we take 

I Xi 1= 1, i = 1,2, ... ,M. (5) 

Such codes are called "equal energy codes". 6 The code optimization 
problem can then be stated as follows. Find M points Xl, X2 , ••• ,XM 
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on the unit sphere* in en such that Q as given by (2) and (3) attains 
its maximum value. 

To our knowledge, the first investigation of particular codes from this 
geometric point of view was carried out in 1948 by L. A. IVlacColl7 who 
investigated codes corresponding to the vertices of the three regular 
polytopes8 in n-space. These are the regular simplex for which M = 
n + 1, the hypercube for which M = 2n and the cross-polytope or 
biorthogonal code for which M = 2n. IVIacColl wrote explicit expressions 
for Q for these codes and evaluated them numerically for the Gaussian 
case (4) for a variety of values of n and cr. Gilbere continued this work 
and made comparisons with a variety of other point configurations. 
Balakrishnan10 established a new expression for Q in the Gaussian case, 
which permitted him to show that the regular simplex code is locally 
optimal (yields a larger Q than nearby equal energy codes with JJ1 = 
n + 1). Later 11 he showed that as cr ~ 00 and as cr ~ 0 the optimal 
code of n + 1 points approached the regular simplex. Weberl2 used 
Balakrishnan's form for Q to show that for n = 2 the (globally) optimal 
code of M points, JJ1 = 3,4, ... , is the regular M-gon. For n = 2,3, ... , 
he also showed the biorthogonal code to be a local optimum among equal 
energy codes with JJ;I = 2n, and described a family of locally optimal 
codes for JJ1 = n + 1, n + 2, ... ,2n. 

In this paper, we at last lay to rest the longstanding conjecture that 
the regular simplex is optimal for JJ1 = n + 1 in the Gaussian case. t 
Specifically, we show that Q as given by (2)- (3) is greater for the regular 
simplex than for any other equal energy code of M = n + 1 points in 
en , n = 3, 4, 5, .... This result is true for any monotone decreasing f. 
The method of proof is based on a generalization to higher dimensions of 
a theorem of Fejes-T6thl3 concerning expressions related to the form 
(2) in 3 dimensions.t Our methods also establish that the optimal equal 
energy codes with parameters M = 6, n = 3, and M = 12, n = 3 are, 
respectively, the biorthogonal code and the code consisting of the mid­
points of the faces of the regular dodecahedron. We conclude with some 
comments about the biorthogonal code and about the reliability of the 
infinite-band Gaussian channel. 

II. AN INEQUALITY FOR Q 

For an equal energy code, the maximum-likelihood region (Ri given by 
(3) can be determined as follows. Let Xii denote the hyperplane that 

* We shall hereafter use the caret A to denote unit vectors. 
t It is incorrectly stated in Ref. 3, pp. 260, 364 that this result has been previ­

ously shown in the literature. 
:j: We are indebted to E. N. Gilbert for calling Fejes-T6th's work to our attention. 
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bisects perpendicularly the line segment joining Xi to Xj • This plane 
passes through the origin and divides en into two half-spaces. We denote 
by 9!ij the half -space containing Xi . It consists of all points of en closer 
to Xi than to Xj . The region (Ri is the intersection of M -1 such half­
spaces, 

ltf 

(Ri = n 9!ij. 
i=l 
i~i 

It is, therefore, a convex region bounded by a certain number of hyper­
plane faces that pass through the origin - a kind of flat-sided cone with 
vertex ~t the origin. We note that the various maximum-likelihood 
regions,(fh, (R2, ... , (Rltf, are disjoint and that together with their 
boundaries they exhaust en . 

Let us now call any convex region of en bounded by k ~ n hyperplanes 
through the origin a "flat-sided cone". We shall establish an upper bound 
for Q as given by (2) when the M decision regions (Ri are any set of 
disjoint flat-sided cones (not necessarily maximum-likelihood regions of 
any code) that together with their boundaries exhaust en. For our 
purposes it suffices to consider only the c~se in which Xi lies in the in­
terior of (Ri, i = 1, 2, ... , M. 

We denote by S the surface of the unit sphere in en with center at the 
origin. We denote by Ri the intersection of (Ri with S. The regions Ri 
are "spherical polygons" that reticulate S into a map or net. We shall 
evaluate Q by first integrating over this net on S and by then performing 
a radial integration. 

Let X be a generic point in en distant r from the origin (see Fig. 1) 

Fig. 1-Reduction to unit sphere. 

and let X be a unit vector in the direction of X, i.e., the terminus of X 
is the radial projection of the generic point onto S. Then 

I Xi - X 12 = 1 + r2 - 2r cos l' 
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and 

2 - 2 cos 'Y 

so that 

/ Xi - X /2 = (1 - r? + r / Xi - X /2. 

We can thus writef( / Xi - X/ ) = gr( / Xi - X / ) where for each fixed 
r the function gr (.) is nonnegative and is monotone decreasing in its 
argument. The expression (2) in these terms becomes 

(6) 

(7) 

where ds is the differential surface- or (n - 1 )-content of S at the 
point X. Note that U ~ o. We proceed to find an upper bound for U. 
By (6) this will provide the desired bound for Q. 

Let the terminus of the unit vector Y determine a point P on S (see 
Fig. 2). The set of all points X on S such X· Y ~ cos cp ~ 0 will be called 
"the spherical cap of S of angle cp about P". Now let X be a hyperplane 
through the origin but not containing P that intersects this spherical 
cap. That is 0 < ft· Y < sin cp where ft is the unit normal to X directed 
positively toward the side on which P lies. X divides the spherical cap 
into two parts. We denote by W the part of the cap not containing P, 
and we denote by w the content of W. 

In what follows, the function 

(8) 

will be of great importance to us. The notation suppresses the dependence 
of h on cp, the angle of the spherical cap, and points out that with the 

¥_- CAP 

Fig. 2 - Cap cut by hyperplane. 
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geometry as described this integral is a function only of 

W = fwdS 
the content of W. We shall suppose cp fixed in all that follows. 

(9) 

Two special properties of hr (w) are of particular concern. First, as 
shown in Appendix B, this function is increasing and convex. That is, if 
W2 > WI , then hr' (W2) > h/ (WI) where hr' (w) = dhr/dw. This, of course, 
implies that 

(10) 

where the Pi are nonnegative weight factors summing to unity. Equality 
holds only when the Wi are all equal. 

The second property of hr (w) is somewhat more complicated to state, 
though in three dimensions it is intuitively obvious. Again let X be a 
hyperplane through the origin but not through P that cuts off a piece W 
of the spherical cap about P. Let Xl, JC2, ... ,JCi be hyperplanes that 
each contain the origin and P . We denote by V the portion of W lying 
on the positive side of JC i , i = 1,2, ... ,j, and we denote the content of 
V by v. It is established in Appendix C that 

f gr(1 Y - XI)ds ~ hr(v), ( 11) 

where as before Y is the vector from the origin to P and X is a generic 
point of V. Equality holds only if X is the sole hyperplane boundary of V 
(i.e., if none of Xl , X 2 , ••• ,Xj form a part of the boundary of V). 

With these two properties of hr (w) we can now establish the desired 
inequality for U (r). We first "triangulate" each of the polygonal regions 
Ri into "spherical pyramids" Rii having boundaries of Ri as bases and 
Xi as a vertex. More accurately described, the regions Rii are found as 
follows. The flat-sided cone (Ri is bounded by pieces of k i (say) hyper­
planes JCI (i), • • • ,Xk , (i) through the origin. We denote by (Bii the portion 
of X/i) that bounds (Ri • Now (Bii is itself bounded by a certain number 
Iii of (n - 2)-flats through the origin. Through each of these (n - 2)-flats 
we pass a hyperplane X k W), le = 1, 2, ... ,lii' that contains Xi. These 
hyperplanes, along with (Bij , determine a new flat-sided cone (Rii having 
(Bii as one face and the line containing Xi as a one-dimensional boundary. 
The interiors of the lei flat-sided cones (Ril, (Ri2, ••• , (Rik, are disjoint. 
Together with their boundaries they exhaust (Ri. The line through Xi 
is common to the boundaries of all lei of these flat-sided cones. The 
spherical pyramid Rii is the intersection of (Rii with S. 

We denote by C i the spherical cap of S of angle cp about Xi (see Fig. 3). 
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Fig. 3 - Cap and triangulated decision region. 

Let T i be the portion of C i exterior to Ri and let Si be the portion of Ri 
exterior to Ci • A typical term of the sum (7) can then be written 

i, g,(1 X. - X /Jds = (fa, + I., - i) g,(1 x, ~ X /Jds. 

Now Ti can be broken up into pieces Tij corresponding to the spherical 
pyramids R ij • To accomplish this, we extend the sides of the pyramid 
beyond its base. Thus, if <Rij is on the positive side of X/i) and X/ij) , 
k = 1, 2, ... ,lij, then Tij is the part of the spherical cap on the nega­
tive side of xl) and the positive side of x k (ij), k = 1, 2, ... , lij. We 
now have 

i, g,ds = ( g,ds + I., g,ds - ~ L;, g,ds. (12) 

Some of the regions Si , T ij can, of course, be void. 
We now sum (12) over the M regions Ri . We write 

1 M 

k = 2" ~ ki 

for the total number of (n - 2)-boundaries in the net on S. (Each 
boundary of Ri is shared with one other spherical polygon.) There results 

MU(r) = t f Ur(1 Xi - X /)ds = M f Ur(1 Xl - X Dds 
i=l Ri 01 

+ t, I., g,(1 X:, - X: /Jds - t, ~ (g,(J X:, - X)ds. 

(13) 

We next use (11) for the regions T ij . 

MU(r) ~ M f Ur(1 Xl - X Dds + t 1 urds - t t hr(tij) 
01 i=lSi i=l j=l 

where tij is the content of T ij • The convexity (10) of h now gives 
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(14) 

Now denote by s, c, and Si, respectively, the content of S, Ci , and Si. 

A division of S analogous to (13) (set g = 1 there) gives 
M M ki 

S = Mc + LSi - L L tij 
1 i=1 ;=1 

M ki 
(15) 

= M c + Sf - L L tij 
i=1 ;=1 

where we write Sf = L Si for the sum of the contents of all of the pieces 
of the polygons Ri that fall outside their respective spherical caps. We 
then have from (14) and (15) 

MUCr) & M £. g,ds + t. i, g,ds - 21ch., (Me -2: + Sy 

1 (MC - s) 
= M 01 grds - 2khr 2k (16) 

where K is the region (see Fig. 4) of the spherical cap about P that lies 
between hyperplanes through the origin that cut from the cap regions of 
content (Mc - S + sf)/2k and (Mc - s)/2k. This latter quantity will 
henceforth be assumed to be nonnegative. The normals to the two hyper­
planes and the vector Y from the origin to P are chosen coplanar. 

Note now that the sum of the last two terms in (16) cannot be posi­
tive, for we have 

5' 
-- 2k 

Fig. 4 - The region K. 



REGULAR SIMPLEX CODE 1255 

and 

2k L Or( I Y - X Dds ~ Or(d)2k L ds = Or(d)s' (18) 

where d = .y2 - 2 cos (() is the distance from the center of the cap to the 
edge. Here we have used the fact that Or is monotone decreasing. Equality 
holds in (17) and (18) only when s' = O. 

In view of the above, the inequality in (16) can be continued by 
omitting the last two terms there and we then obtain our desired in­
equality 

1 A A (MC - s) MU(r) ~ M (J Or(1 y - X Dds - 2khr 2k (19) 

where C is the spherical cap of angle (() about the terminus of Y and we 
require Mc - s ~ O. Retracing all the inequalities used to derive (19), 
we see that the equality sign holds there if and only if 8' = 0, all the 
regions Tij have equal content and each Tii is a region cut off from the 
spherical cap by a single hyperplane. 

In closing this section we note one further fact. From the convexity of 
hr(x) it follows that xhr(a/x) is monotone decreasing in x. For given M 
and c, then, the right side of (19) is monotone increasing in k. 

III. OPTIMALITY OF THE REGULAR SIMPLEX AND CERTAIN OTHER CODES 

Let a code of M unit vectors in en have maximum-likelihood regions (fti 

that reticulate the surface of the unit sphere into a net havingk (n - 2)­
dimensional boundaries. We designate such a code by the symbol 
{n,M,k}. For certain values of the parameters n, ill and k, there may 
exist codes for which a spherical cap angle (() can be found such that the 
conditions for equality hold in (19) .We call such a code a symmetric 
{n,M,k}. By choosing C so that (19) is an equality for such a symmetric 
code, we see that the probability Q of no error for a symmetric {n,M,k} 
is greater than the no-error probability of any nonsymmetric {n,M,k}. 
Indeed, the concluding remark of Section II shows that the no-error 
probability of a symmetric {n,M,k} is greater than the no-error proba­
bility of every {n,M,k'} if k' < k. 

The regular simplex code consists of M = n + 1 unit vectors 
Xl, X2 , ••• ,Xn+1 in en with Xi,X i = - (lin), i ~ j. The maximum­
likelihood region (ft, containing Xi is bounded by n hyperplanes. It is 
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readily verified that the regular simplex is a symmetric {n, n + 1, 
n(n + 1)/2}. Now no code of n + 1 unit vectors in Sn can have more 
than k = n(n + 1)/2 (n-2)-boundaries in its maximum-likelihood net, 
for, by the construction given in the first paragraph of Section II, each 
maximum-likelihood region can be bounded by at most n hyperplanes. 
The regular simplex code then must have a Q strictly greater than any 
other equal energy code of n + 1 vectors in Sn except possibly another 
distinct symmetric {n, n + 1, n (n + 1) /2}, should such exist. But this 
latter eventuality cannot happen. That a symmetric {n, n + 1, 
n (n + 1) /2} must be the regular simplex can be seen as follows. Since 
no (H,i for a code of M = n + 1 points can have more than n hyperplane 
boundaries, then to have k = n (n + 1)/2, every (H,i must have exactly 
n hyperplane boundaries. The n hyperplanes Xl (l), ~ (1), ••• , JCn (1) that 
bound (H,l bisect, respectively, the line segments from Xl to X 2 , from Xl 

to X 3 , ••• , from Xl to Xn+! • Since the code is assumed symmetric, these 
hyperplanes must be equidistant from Xl • Thus, all the other code points 
are equidistant from Xl • But a similar argument holds for each of the 
other regions (H,2, (H,3 , ..• , (H,n+l and so all distances between pairs of 
code points are equal. But this property suffices to define the regular 
simplex. 

The optimality of two other codes in n = 3 dimensions can readily be 
established by using (19). We !lote first that in 3 dimensions the condi­
tions for equality to hold in (19) are such that the maximum-likelihood 
net on the sphere must be composed of congruent regular spherical 
polygons. A symmetric {3,M,k} then must be the radial projection onto 
the unit sphere of a regular three-dimensional polyhedron. The code 
points are the centers of the faces of the polyhedron. 

Consider now the code formed by the midpoints of the faces of a cube 
of edge length 2. This is the three-dimensional biorthogonal code. The 
maximum-likelihood net is given by the radial projection of the cube 
edges onto the inscribed unit sphere. The code is a symmetric {3,6,12}. 
There is no regular polyhedron with 6 faces other than the cube, so that 
we will have shown the three-dimensional biorthogonal code to be opti­
mal if we establish that every {3,6,k} must have k ~ 12. To see this latter 
fact, note that for three-dimensional codes~ at least three edges of the 
maximum-likelihood net must meet at each vertex of the net (since each 
Ri is convex). Thus 3v ~ 2k where v and k are, respectively, the total 
number of vertices and edges for the net. Euler's formula (Ref. 8, p. 9) 
v - k + M = 2 holds for the net, and so 

k ~ 3(M - 2). (20) 
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For the case at hand M = 5, and (20) gives k ~ 12, so that the proof 
is completed. 

Analogous reasoning shows that the centers of the faces of the dodeca­
hedron give the best code with 11;[ = 12 points. The code is a symmetric 
{3,12,30} . 

The regular octahedron in 83 gives rise to a symmetric {3,8,12} whose 
code points are the vertices of a cube. This is not the optimal configura­
tion of 8 points in 83 • By rotating one face of the cube 45 degrees about 
an axis perpendicular to the face and through its center, one obtains a 
{3,8,16}. By translating this face slightly toward the opposite face of the 
cube, and by slightly expanding both faces, one obtains a {3,8,15} with 
minimum distance between code points strictly larger than the minimum 
for the cubic arrangement of points. There are then noise functions 
f ( I z I ) of (1) for which this new code has a larger Q than the cube-code. 

It is not known whether the symmetric {3,20,30} obtained from the 
regular icosahedron is an optimal code of 20 points. 

IV. THE BIORTHOGONAL CODE 

The biorthogonal code is a symmetric {2n,n,n(2n - 2)}. The 2n 
code points can be taken as the points on the coordinate axes unit dis­
tance from the origin. Alternatively, the code points can be described 
as the centers of the (n - I)-dimensional bounding cells of the unit 
n-cube. The radial projection of the cube onto the unit sphere with center 
at the center of the hypercube gives the maximum-likelihood net of the 
code. 

We have seen that for n = 3 the biorthogonal code is optimal among 
codes of 11;[ = 2n = 6 points. It is natural to suspect that for all n the 
biorthogonal code is optimal among codes of 2n points in 8n • However, 
the methods used in this paper, based as they are on (19), will not suffice 
to settle this question, for, as will be shown below, when n ~ 4, there 
exist {2n,n,n (2n - I)} codes; i.e., codes with a larger k value than the 
biorthogonal code. 

It might be thought that this encumbering dependence of (19) on k 
could be avoided - that an inequality for Q independent of k could be 
found which is attainable for optimal codes. The example already treated 
of the octahedron shows, however, that this dependence on k is essential. 

To construct a {2n,n,n (2n - I)} for n ~ 5, choose 2n distinct real 
numbers VI , V2, ••• , V2n • The vectors of the code are given by 

(21 ) 

where 
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i = 1,2, ... ,2n 

has been chosen so that Xi is a unit vector. The code is closely related to 
the cyclic polytope described by Gale14. 

An important property of this code can be derived 14 by considering the 
polynomials 

4 

Fi/"A) == ("A - Vi)2("A - Vj)2 = L Ai/P\p 
p=o 

i,j = 1, 2, ... , 2n 

which are nonnegative. We define the (2n)2 n-vectors 

Bij == (A i/o>, A ij (I), A i/2l, A i/3
), A i/4

), 0, 0). 

We then have 
4 

al L Ai/P)vt = Fij(Vl) 
p=o 

{
o, 
0, 
aijl > 0, 

i 
j 

~ i, l~j 

(22) 

(23) 

where the positivity of the aijl follows from the factored form (22) of 
Fij("A). 

To show that the points (21) determine a {2n,n,n(2n - I)} we 
note first that· they span en . Indeed every choice of n vectors Xi from 
(21) yields an independent set, as can be seen by forming the determinant 
whose rows are the components of the vectors. These determinants are 
proportional to Vandermonde determinants and do not vanish. To show 
that k = n (2n - 1) for the code, consider the maximum likelihood 
region CRi containing Xi. By the construction described in the first 
paragraph of Section II, CRi is the intersection of the half-spaces 

(') A A A 

Xj ~ (X) = (Xi - Xj)·X ~ ° j = 1,2, ... ,2n; j ~ i. (24) 

We assert that each of the 2n - 1 hyperplanes X/i), j = 1,2, ... , 2n 
with j ~ i, is indeed an (n - I)-dimensional boundary of CRi. It will 
then follow that k = !2n (2n - 1) since there are 2n maximum likeli­
hood regions. That X/i) is an (n - 1 )-boundary of CRi results from the 
fact that there exists a point Xo contained in CRi that lies in X/i) but not 
in Xk(i), k = 1, 2, '" ,2n with k ~ i and k ~ j. From (23) we can 
choose Xo = Bi j since 

X/i) (Bii) = ° 
k ~ i, k ~ j. 



REGULAR SIMPLEX CODE 1259 

For n = 4, the configuration of eight points given by 

A 1 ( 7r 7r 7r 7r) 
Xk = V2 cos k "4' sin k 4 ' cos k "2 ' sin k "2 k = 1,2, ... ,8 

is a {4,8,28}. The proof is similar to that just given for the case n ~ 5 
with the role of the polynomial F ii(A) being replaced here by the expres­
sion 

We omit the details. 
We close this section by noting that although we cannot show that the 

biorthogonal code has a largest Q value for codes of 2n points, it does 
have largest nearest neighbor distance, 90° in angular terms. Indeed no 
collection of more than n + 1 vectors in en can have minimum angular 
distance between points greater than 90°. For consider* Fig. 5. Without 

+ 
0+-

o 0 + 

000 + -

Fig. 5 - Table of component signs. 

loss of generality the positive xl-axis of a rectangular coordinate system 
can be chosen to lie along the first vector. The first column of the figure 
shows the sign of the components of this vector. The coordinate axes can 
be oriented so that X2 lies in the Xl - X2 plane and the direction of the 
x2-axis can be chosen so that the X2-component of X2 is positive. The 
second column of Fig. 5 shows the sign of the components of X2 . The first 
component must be negative since if the minimum distance is to be 
greater than 90° we must have Xl· X2 < o. Continuing in this manner we 
are forced to choose the components of the Xl, X2, ... , Xn+l as shown. 
But now it is impossible to find an (n + 2)nd vector having a negative 
scalar product with these n + 1 vectors, for if the nonzero components 
of Xn +2 are all negative, it has a positive scalar product with Xn+l , 
whereas if the first positive component of Xn+2 is the Jth, Xi" Xn+2 is 
positive. 

* This elegant proof was suggested by J. H. van Lint. 
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V. THE INFINITE-BAND GAUSSIAN CHANNEL 

When 11;[ = n + 1 and f(x) is given by (4), the model discussed here 
describes the transmission of M equally likely signals Si(t) , i = 1,2, . " , 
n + 1, of duration T in white Gaussian noise of spectral power density 
N /2. Here the signals are constrained by 

iT s/(t)dt = PT. 

'Vhen these signals are transmitted, the probability of no error using the 
best possible detection scheme is given by (2), where the Xi must be 
chosen so that 

the (Jli are the maximum-likelihood regions (3), and 

2 N 
(J = 2PT' 

See Ref. 3, Sections 4.2 and 4.3 or Ref. 15 for a more detailed description 
of the correspondence between the geometric model and the physical one. 

Our result that the simplex code is optimal means that in communicat­
ing in infinite-band white Gaussian noise by means of M equally likely 
equal-energy signals of duration T (no bandwidth restrictions imposed) 
the error probability is minimized by choosing signals with normalized 
cross-correlation 

1 iT 1 
PT 0 sJt)sj(t)dt = - M - 1 ' (25) 

this being the value of Xi' Xj for the regular simplex. 
The error probability with a best set of signals of form (25) is readily 

determined to be 

where f (x) is the Gaussian density (4) and <I> the cumulative 

cp(y) = L: f(x)dx. 

When the transmission rate 
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R = log M 
T 

1261 

is kept constant, along with Nand P, (26) becomes for large T (and 
hence large M) 

Pc = exp [-E(R)T + oCT)], (27) 

where 

{

c --R 
E(R) = 2 ' 

(Ve - VR)2, 

R ~ C/4 
(28) 

R ~ Cf4 

and C = PIN is the capacity of the channel. That the minimal asymp­
totic error probability for this channel must have the form (27)- (28) 
was first proved by Wyner.I5 

APPENDIX A 

A Lemma 

The following lemma will be useful in establishing the main results of 
Appendices Band C. 

Lemma: Let Wl(X) and W2(X) be integrable functions that satisfy 

lb wl(x)dx = lb w2(x)dx. (29) 
a a 

Further, suppose there exists an x', a ~ x' ~ b, such that 

W2(X) ~ Wl(X), 

W2(X) ~ Wl(X), 

a ~ x ~ x' 

x' ~ x ~ b. 

Then, if m (x) is a nonnegative monotone increasing function, 

lb m(x)wl(x)dx ~ Ib m(x)w2(x)dx. 
a a 

If m (x) is a nonnegative monotone decreasing function, 

Ib m(x)wI(x)dx ~ Ib m(x)w2(x)dx. 
a a 

(30) 

(31) 

(32) 

Equality holds in (31) and (32) only if WI (x) = W2 (x) for almost all x. 

Proof: If m (x) is nonnegative and monotone increasing, then 
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Ib m(X)[WI(X) - w2(x)]dx 
a 

;;; m(x') [' [w.(x) - w2(x)]dx + m(x') £: [W.(X) - w2(x)]dx 

~ m(x') [t w.(x)dx - ( w2(x)dx ] ~ o. 

If m(x) is nonnegative and monotone decreasing, the steps are the same 
with the inequalities reversed. 

APPENDIX B 

Convexity of hr(w) 

Let Xl , X2, ... ,Xn be the rectangular coordinates of a point in en . 
The surface S of the unit sphere centered at the origin can be given 
parametrically by 

Xl = cos 01 

X2 = sin 01 cos O2 

Xi = sin 01 sin O2 ••• sin 0 j-l cos 0 i 

Xn-l = sin 01 sin O2 ••• sin On-2 cos On-l 

Xn = sin 01 sin O2 . .. sin On-2 sin On-l 

'" = 1,2, ... ,n - 2 

° ~ On-l < 27r 

and the element of surface content is 

(33) 

ds = sin n-2 01 sin n-3 O2 ••• sin 8n- 2 dOl d02 ••• dOn-I. (34) 

We shall only be concerned with the case n ~ 3. 
The spherical cap of angle cp about P, the end point of 

Y = (1,0,0, ... ,0), 

is given by 01 ~ cpo A hyperplane JC that intersects this spherical cap is 
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X2 = Xl tan a with 0 ~ a < cp and the intersection of X with the spherical 
cap is from (33) 

cos O2 = tan a cot 01 . 

vVe then have from the definition (8) 

hr( w) = fIP dOl IV d02 sinn
-

2 01 sinn
-

3 020r(-V2 - 2 cos 01) 
a J.I 

where II = arccos (tan a cot 01) and J.1, = - II if n = 3 but J.1, = 0 if n ~ 4. 
In either event, we can write 

while for the content of the piece of the cap cut off by X we have 

w = len lIP d(h i V 

d02 sinn
-

2 01 sinn
-

3 O2 

with len > 0 and independent of a. 

Straightforward differentiation of (35) yields 

dh __ kn sec2 a fIP dOl sin 01 cos 01 
da a 

Now introduce 
2 a = cos cp, b = 

and 

2 cos a 

(36) 

We have 0 ~ a < b ~ 1. Note that g(x) > 0 is monotone increasing in 
:r. In these terms 

and 

dw 
da 

- ~ dx 1 - :: g (x) 
dh le Ib [ ] (n-4)f2 

da - 2b a b 

- - dx 1 - -
len Ib [ X]C

n
-4)/2 

2b a b 
I~n 1 a 7 ( )(n-2)/2 

-n-2 -lj 
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Combining these results we find 

dhr(w) dh/da 
-----a;;;- - (dw/da) 

Ib lb(X)g(x)dx > 0, 
a 

(37) 

where 

( 
X)<n-4)/2 

1 - -
b 

a ~ x ~ b. (38) 
2b ( a)<n-2)/2 ' -- 1--

n - 2 b 

Note that 

(39) 

When n > 4, the convexity of hr(w) can be established from (37)­
(39) as follows. Consider two different w values, say W2 > WI with cor­
responding parameters b2 = cos2 

a2 and bl = cos2 
al • We have 

From (38) one readily finds that there is a unique real root x' for which 
lb2 (x') = lbi (x'), a < x' < bl • For a ~ x ~ x' we have lbl (x) ~ lb2 (x). 
If we now define lb (x) = 0 for x > b, we can also write lb2 (x) ~ lbl (x) 
for x ~ x'. From (39) we have 

The conditions of the lemma of Appendix A hold and we conclude from 
(37) that 

which is the desired convexity. 
When n = 4, (38) becomes lb(X) = (b - a)-l for a ~ x ~ b. As be­

fore, we define lb (x) = 0 for x > b. It is readily seen that the lemma 
again applies with x' chosen as bl . Convexity is then established in this 
case as well. 

For n = 3, (37) and (38) give 
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dhr(w) _lb g(x)dx 
dUJ - a 2vr;-=-avz;-=x 

= - 2Vb - X2J~x~ ai: + t I~ =: d§(x) 

= §(a) + t I~ = : d§(x), 

on integrating by parts. However, since g is increasing in x, it follows 
that the last integral is increasing in b and hence also in w. The convexity 
proof is thus completed. 

APPENDIX C 

Proof of Equation (11) 

We shall be concerned here with two different regions, V and W, cut 
off from the spherical cap of angle cp about the point P which we take as 
the terminus of the unit vector Y in 8n (see Fig. 6). The region V is the 
intersection of the spherical cap with a convex cone 'D having the origin 
as a vertex. It is assumed that'D does not contain P. We denote by Q a 
point of V closest to P. The second region, W, is cut off from the cap by 
a single hyperplane ,2 through the origin but not through P. ,2 is chosen 
so that Wand V have the same content, wand v, respectively, and for 
purposes of our proof we restrict the normal to ,2 to lie in the 2-plane 
through the origin, P and Q. We wish to show that 

Iv == 1 gr(!Y - X!)ds ~ Iw == 1 gr(!Y - X!)ds (40) 
v w 

with equality holding only if V is cut off from the cap by a single hyper­
plane. Here, as in (11), gr is nonnegative and monotone decreasing and 
X is a generic unit vector in 8n • In the applications made of (40) in the 
main text, 'D is specialized to a type of flat-sided cone. 

Fig. 6 - Regions involved in proof of (11). 



12GG THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER H}GG 

Let us again adopt the spherical coordinates (33) with the pole 
P of the cap located on the xl-axis so that Y = (1,0,0, ... ,0). We sup­
pose the axes are oriented so that Q lies in the XI-X2 plane. Then from 
(33) and (34) 

(41) 

where 

V(Ol) = sinn
-

2 
01 J d0 2 ••• J dOn- l sinn

-
3 

O2 ••• , sin On-l (42) 

B V(Ol) 

is the (n - 2)-dimensional content of the intersection BV(Ol) of V with 
the hyperplane Xl = cos 01 • Similarly, 

Iw = 1'" dOlgr ( y2 - 2 cos 01 ) W(Ol) (43) 

where w (01) is the (n - 2)-dimensional content of the intersection B w (01 ) 

of W with the hyperplane Xl = cos 01 • By hypothesis we have 

v = 1'" dOlv(Ol) = W = 1'" dOlw(fh). (44) 

Since gr (y2 - 2 cos 01) is a nonnegative monotone decreasing function 
of 01 , all the hypotheses of the lemma of Appendix A will hold if we can 
show the existence of a cp' such that 

V(Ol) ~ W(Ol), 
w (01 ) ~ v (01), 

° ~ 01 ~ cp' 
cp' ~ 01 ~ cpo 

The conclusion (32) of the lemma then is (40). 

(45) 

Our goal now, therefore, is to show that v (0) and w (0) cross only once 
as indicated in (45). Let lX = L POQ. If Q* is the nearest point in W to 
P and {3 = L POQ*, then {3 > lX. For ° ~ 0 ~ lX, both v (0) and w (0) 
are zero. For lX < 0 ~ (3, v (0) > w (0) = 0. From (44) it then follows 
that there is a first point in (O,cp) where w(O) crosses up through v(O), 
that is, where v (0) = w (0) and w' (0) > v' (0) where the prime denotes 
differentiation with respect to o. If there were a second crossing, at that 
point we would have w' < v' . We prove that there is only one crossing 
by demonstrating that 

(46) 

for ° ~ 01 ~ cpo 
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Let w be such that v (w) = W (w), 0 ~ w ~ cpo Consider now the spheri­
cal pyramid r y having Q as vertex and as base the set By (w) defined 
below (42). r y is the set of all points X of the form 

X ~ ~XQ + 'l]XB' 

'l] ~ 0, 
A ~ 

XQ = OQ, 
(47) 

where, in order for (47) to be a unit vector, we have the additional re­
striction 

(48) 

Note that since 1) is convex and since Q and By (w) are contained in 1), 

it follows from (47) that r y is contained in 1) and S, hence r y is con­
tained also in V. 

Now let D (81) denote the (n - 2) -dimensional con ten t of the in ter­
section of r y with the hyperplane Xl = cos 81 , where a ~ 81 ~w. We 
have 

D(w) = v(w) 

D (w - 0) ~ v (w - 0) 
(49) 

where this last follows from the fact that r is contained in V. One has 
then 

so that 

v(w) - v(w - 0) < D(w) - D(w - 0) 
0=0 

(50) 

Consider next the spherical pyramid r w (Q) having Q as vertex and 
as base the set B TV (w) defined below (43) . We denote by w (81 ) the 
(n - 2)-dimensional content of the intersection of r TV with the hyper­
plane Xl = cos 81 • As before, let Q* be the nearest point in TV to P . We 
denote by w* (8d the (n - 2)-dimensional content of the intersection 
of the spherical pyramid r w(Q*) with the hyperplane Xl = cos 81 • 

Since Q* is contained in rw (Q), r TV (Q*) is also contained in r w(Q) and 
we have 

w(w) = w*(w) 

w(w - 0) ~ w*(w - 0). 
(51) 

From this it follows that 
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dW(Ol) [ < dw*(rh) [ 
----ae;- 91 =W = ----a:e;- 81 =w • 

However, since Q* lies in the hyperplane, 

w*(w) = w(w) (52) 

for all w, hence 

(53) 

In the remaining paragraphs of this appendix we shall show that 

_( ) __ () dV(Ol) [ < dw(fh) [ vw -WW ===?-- ---
dOl /l1=W - dOl 81=W 

(54) 

which will establish (46) and complete our proof, for the hypothesis 
of (46) follows from that of (54) by (49), (51), and (52) and the con­
clusion of (46) follows from the conclusion of (54) by (50) and (53). 

Let the spherical coordinates of a point X in r v be denoted by the 
angles (lPl, ... ,lPn-I) (see Fig. 7). We employ the angles (01 , ••• , On-I) 
to describe a point Xn in BV(Ol). The content v(J.L) of the intersection 
J(J.L) of rv with the hyperplane Xl = cos J.L, a ~ J.L ~ w is given by 

ii (J.L) = sin n-2 J.L J dlP2 sin n-3 lP2 J dlP3 sin n-4 lP3 . .. J dlPn-l. ( 55 ) 

J(J.L) 

Fig. 7 - The mapping from X to XB. 
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The relationships (47)- (48), however, serve to define a one-one trans­
formation between the coordinates (p" CP2 , •.• ,CPn-l) of a point in J (p,) 

and the coordinates (w, O2 , ... , On-I) of a point in B v (w ), so that v (p,) 

can be expressed as an integration over B v (w) as well. Taking compo­
nents of (47), we find successively 

cos p, = ~ cos ex + 7] cos w 

sin p, cos CP2 = ~ sin ex + 7] sin w cos O2 

sin p, sin CP2 cos CP3 = 7] sin w sin O2 cos 03 

sin p, sin CP2 . .. sin cP i-I cos cP i = 7] sin w sin CP2 . . . sin cP j-l cos cP j (56 ) 

sin p, sin CP2 . . • sin cpn-2 sin CPn-l 

= 7] sin w sin CP2 . . . sin CPn-2 sin CPn-l 

j = 3, 4, ... , n - 1. 

Dividing the nth equation by the (n - 1 )st yields cpn-l = On-I. Dividing 
the (n - l)st equation by the (n - 2 )nd then yields cpn-2 = On-2. 

Proceeding in this manner, one finds cPj = OJ, j = 3, 4, ... , n - l. 
The first two equations of (56) can be solved for ~ and 7]. By substituting 
these expressions into (48) which now reads 

~2 + 7]2 + 2~7] (cos ex cos w + sin ex sin w cos O2 ) = 1, (57) 

we obtain a single relationship connecting CP2 and O2 which we suppose 
solved in the form 

CP2 = CP2 (02 , p,). (58) 

Equation (55) now becomes in the new variables 

() . n-2 f d dCP2 . n-3 f d . 11-2 f d v p, = sIn p, O2 d0
2 

sIn CP2 03 sm 03 , • • On-l 

Bv(w) (59) 

= sinn
-

2 
w f d02G(02, p,)h(02) 

with 

[s~n p,]n-2 dCP2 [s~n CP2]n-3 

sm w d02 sm O2 
(60) 

and 
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h () . n-3 J d . n-4 J d (}2 = SIn (}2 03 sm (}3· • . . On-I, (61) 
Bv(w) 

where if n = 3 this latter expression is to be interpreted as unity. It is 
convenient now to define h (02 ) to be zero if O2 is not the second angle 
coordinate of a point in B v (w). In this notation, then, we have for 
n~4 

v(w) = sinn
-

2 w i7r d02h(02). (63) 

If n = 3, the lower limits of integration here should be replaced by -7r. 

It will be shown later that aG / a}.L I~=w is a nonnegative monotone de­
creasing function of O2 • 

We next seek to determine the nature of the set B v (w) of given con­
tent v (w) that will maximize (62). We note first from (61) that for n ~ 4 

(64) 

where (J (02 ) is the surface content of a sphere of radius sin (}2 in 8n-2 

since (J is given by the integrals of (61) with the integration variables 
running through their maximum allowable range. Now let B* (w) be the 
set of points defined by 01 = w, 0 ~ O2 ~ oz' where oz' is given by 

For B* (w) we have 

so that 

We also have 

h * ( (
2

) = {u ( (2 ) , 

0, 

h * ( (2 ) ~ h ( (2 ) , 

h* (02 ) ~ h (02 ), 

from (64) and (65). 

o ~ (}2 ~ O2' 

O2' < O2 

o ~ (}2 ~ O2' 

oz' ~ O2 ~ 7r 

(65) 

(66) 

(67) 
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The hypotheses of the lemma of Appendix A are thus met from (63), 
(66), (67), and the monotonicity of aGlap.. We conclude that among 
sets of equal content, dvldp.ll'=W is a maximum for the set B*(w). The 
set Bw(w), however, coincides with B*(w). Equation (54) then follows 
for n ~ 4. The modification necessary to treat the case n = 3 is trivial. 

There remains only the demonstration that aG lap. 11'='" is nonnegative 
monotone decreasing in O2 • Equation (57) and the first two equations 
of (56) are identical with the equations that would hold for the three 

~ A A 

3-vectors OQ, X and X B of Fig. 7 constrained to satisfy (47). The rela-
tionship (58) between CP2 and O2 can most easily be written down by con­
sulting this figure. The condition that the three points be coplanar with 
the origin is 

x Y Z 

XQ YQ ZQ =0 (68) 

XB YB ZB 

where 

X= sin p. cos CP2 Y= sin p. sin CP2 Z= cos P. 

XQ = sm a YQ = 0 ZQ = cos a (69) 

XB = sin w cos 02 Y B = sin w sin 02 ZB = cos W 

which serves to determine (58). Routine implicit differentiation of (68) 
and (69) and evaluation at p. = W, CP2 = 82 yields 

dCP2 i-I 
d02 1'='" -

acp2 I 
Op. I'=w 

sin a sin O2 

sin w( cos a sin w - sin a cos w cos O2) 

sin a[cos a sin w cos O2 - sin a cos w] 
sin w[cos a sin w - sin a cos w cos O2)2 • 

(70) 

(71) 

(72) 

The denominators of (71) and (72) are positive since w > a implies 
tan w cot a > 1 ~ cos O2 which is the same as 

cos a sin w > sin a cos w cos O2 • 

The numerator of (72) is nonnegative for points XB of interest to us 
since we are concerned only with points in the portion of the cap cut off 
by the hyperplane that passes through Q and through the origin 0 and 



1272 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1966 

has its normal lying in the plane POQ; i.e., points for which X2 ~ Xl tan a. 
For points in this region on the sphere and in the hyperplane Xl = cos W 

this inequality is 

sin W cos 82 ~ cos w tan a 

or 

cos a sin w cos 82 sin a cos w ~ o. 
Now from (60) and (70) 

8G I = (n - 2) C?S w + ~ dCP2j + (n _ 3) C?S 82 8CP21 . 
8p. !l=W sm w 8p. d82 !l=W sm 82 8p. !l=W 

Using (71) and (72), it is readily seen that this expression is nonnegative 
and monotone decreasing in 82 • 
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On the Use and Performance of Error­
Voiding and Error-Marking Codes 

By E. O. ELLIOTT 

(Manuscript received May 25, 1966) 

In contrast to payroll or inventory data, which must reach the recipient 
in its entirety, there is another class of data that includes radar-tracking 
data, remote-sensory data or control data, etc., for which the requirement of 
completeness is not so stringent. Error control for this class of data may be 
accomplished by forward-acting error-correcting codes which void or mark 
any detected errors that they do not correct. In order to evaluate these error­
voiding methods, the error rates for such codes are estimated in this paper 
using the error statistics of the Alexander-Gryb-N ast study. 

A class of 18 (about 50 percent redundant) cyclic codes capable of 
correcting from one to five errors and having block lengths from 15 to 47 
bits is examined. Only bounded-distance decoding is evaluated, but each 
code is assigned each possiblp decoding radius up to the maximum per~ 
missible radius determined by the capability of the code. Since interleaving 
generally reduces error rates, the error rates for this class of codes are esti­
mated for interleaving constants from 50 to 300 in steps of 50. 

It is concluded that: 
(i) If voids are permissible (at a rate of about 10-4) then low undetected­

error rates may be achieved by a code capable of correcting many errors but 
used to correct only two or three errors. Such a code might be about 50 per­
cent redundant and have a block length between 25 and 50 bits. 

(ii) It is impractical to obtain low void rates. If voids are not tolerable, 
then retransmission is required to obta'in low error rates. 

(iii) Interleaving is more effective with codes correcting three (or more) 
errors than with those correcting only single or double errors. 

1. INTRODUCTION 

In contrast to payroll or inventory data, which must reach the recipient 
in its entirety, there is another class of data that includes radar-tracking 
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data, remote-sensory data or control data, etc., for which the require­
ment of completeness is not so stringent. The distinction between these 
two classes of data is fundamental in the classification of customer re­
quirements in data transmission and the selection of appropriate error­
control methods. 

If the complete data message is required at the receiving station 
then error control must either be carried out by error detection and 
retransmission or by forward-acting error correction. Of these two 
methods the former is the more economical to achieve low error rates. 
However, if completeness of the transmitted message is not essential 
and receipt of say 99.9 percent would be satisfactory, then very in­
expensive error-voiding techniques may be employed to achieve the 
desired low error rates. With these techniques an error-detecting code 
is used to detect and then void (or mark) all detectable errors. If lower 
void rates are desired some error correction may be introduced and the 
remaining error-detection capability of the code used to void or mark 
errors. In order to evaluate these error-voiding methods, the error rates 
for such codes are estimated in this paper using the error statistics of 
the Alexander-Gryb-N ast study.l 

Data for which completeness is an important requirement would 
include payrolls, inventories, orders, sales and banking records, etc. 
Since accuracy is a very important factor for this type of data, an 
automatic retransmission error-control system would probably be re­
quired. However, one can imagine cases in which manual retransmission 
would suffice. Errors could be marked or voided by the error-detecting 
code and when errors are so indicated in a message the recipient could 
initiate steps to obtain the missing data. This might be tolerable in 
some situations if only a small fraction of the messages required this 
special handling. 

At the other extreme are messages which need not be received in their 
entirety to be effective. Among these we might list radar tracking data, 
remote sensory data, and remote control data. Again detected errors 
would be marked or voided. In some cases, the discarded data might be 
restored by some extrapolation or interpolation with neighboring blocks 
of the presumed error-free data. In other cases, it might suffice to operate 
with just the nonvoided blocks of data. For these procedures to work it 
is of course necessary that the void rate be low enough. The void rate 
itself however is not the sole factor determining the feasibility of the 
system. The time distribution of voids may also be very important. 
For example, with radar-tracking data a void rate of 10-4 (words/word) 
might be tolerable in itself but if it were realized on a channel on which 
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the voids tended to occur in runs or bunches it might not be tolerable 
since the tracking system cannot operate if too long a stretch of data 
is missing. This paper is concerned only with void rates and does not 
treat the time distribution of voids. 

The splitting of a code's function to achieve both error correction 
and detection is accomplished by noting the distance of the received 
word from the nearest code word. If this distance is less than or equal 
to a given number which is called the employed correction radius then 
the received word is decoded as that nearest code word, otherwise it is 
not decoded and a detected error is announced. This is the method of 
bounded-distance decoding. Although there are other methods of com­
bining error correction and detection, this one is considered here because 
several practical decoding algorithms conform to it. 

The codes are also evaluated over a range of degrees of interleaving, 
because, if a given code is interleaved on a burst channel its performance 
improves. Interleaving may be thought of as though it were accom­
plished by reading the encoded data into a rectangular array row by 
row and then sending it on line column by column. The length of a row 
is the block length of the code. The number of rows is the interleaving 
constant t; two adjacent bits of an originally encoded block would be 
sent on line with t - L other bits between them. 

This memorandum examines the effect that block length, redundancy, 
correction radius, and interleaving have on undetected error rates and 
void rates over the switched telephone network. Specifically, a class of 
18 cyclic codes with block lengths ranging from 15 to 47 bits is examined. 
Among these are codes capable of correcting from one to five errors. 
Although a variety of redundancies is represented, codes with about 50 
percent redundancy predominate. Using data from the Alexander-Gryb­
N ast study, the error rates for this class of codes are estimated for each 
permissible correction radius with no interleaving and with interleaving 
with constants from 50 to 300 in steps of 50. A number of practical 
means for implementing many of these error-control systems are avail­
able. For this reason, the present investigation aims at giving a useful 
qualitative insight into the role of bounded-distance decoding for error 
control on the switched telephone network. 

For a more complete understanding of error control, it would be 
necessary to consider alternative methods of decoding such as burst 
decoding, threshold decoding, etc. Also error statistics for other channels 
and modes of communication should be considered. This awaits further 
development of analytical techniques and the availability of additional 
error data. 
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II. ESTIMATING ERROR RATES FOR BOUNDED-DISTANCE DECODING 

A group code is commonly specified by the pair (n,k) where n is the 
block length of the code and k is the number of information bits in a 
code word. When bounded-distance decoding is employed, the correction 
radius a is added to this pair and the code is specified by the triplet 
(n,k,a). Of course, a is less than or equal to the maximum error-correcting 
capability e of the code. Thus, if x is the transmitted word and y is the 
received word then if y is at distance less than or equal to a from some 
code word z, y is decoded as z. If z ~ x then an undetected error results, 
and if y is not within distance a from any code word a detected error re­
sults. To estimate the probabilities P E and P D of these two events (unde­
tected error and detected error) the method of Ref. 2 is employed as it 
was in Ref. 3 to study permutation decoding which is a special case of 
bounded distance decoding. 

Because of the perfect distance symmetries between the words of a 
group code, the probabilities P E and P D do not depend on which code 
word is transmitted. Therefore, to calculate P E and P D and simplify 
matters we assume the all zero word () is transmitted. Let CaCm) be 
the total number of words of weight m which are at a distance less than 
or equal to a from some code word. As in Ref. 2 let P(m,n) be the total 
probability that m errors occur in a transmitted block of n bits so that 

p(m,n)/(~) is an approximation to the probability that a particular 

pattern of m errors occur. Then, assuming () is transmitted we see that, 
as an approximation, 

n P(m,n) 
PE t'./ L CaCm) ( ) . 

m=a+l n 
m 

(1) 

Similarly, if DaCm) is the total number of words of weight m at a distance 
greater than a from any code word then 

n P(m,n) 
P D ~ L Da(m) ( ) . 

m=a+l n 
m 

(2) 

Clearly D.(m) ~ (~) - C.(m) and now the problem is to obtain C.(m). 

In Ref. 3 a formula is given for C(m,j), the number of words of weight 
m which are at a distance j (j ~ e) from some code word, and since 

CaCm) = L:i=o C(m,j) 
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the desired numbers are thus obtainable. Unfortunately, the formula in 
Ref. 3 involves a summation with terms of alternating sign which re­
quires triple precision programming to obtain satisfactory accuracy 
on the computer. As a consequence of this requirement, the following 
alternate and more direct formula for C(m,j) was derived. With it, 
double precision FORTRAN programming suffices. 

C(m,j) = t w(m + 2i _ j) (m + ~i - j) (n - ~ - ~i + j) (3) 
i=O 1, J - 1, 

where w(r) represents the number of code words of weight T. It is ob­
tained from simple combinatorial considerations as follows. 

Suppose x is a code word of weight rand y is a word of weight m and 
let i be the number of bit positions in which x is 1 and y is 0, and l be 
the number of bit positions in which x is ° and y is 1. Let j = i + l 
so j is the distance between x and y. Then m = (1' - i) + l = l' + j - 2i 
and i = (1' + j - m)/2. The total number of possible y's of weight m 
is then given by 

Considering that each code word of weight m + 2i - j (= 1') there­
fore has 

distinct words of weight m at distance j (j ~ e) from it and clearly 
m - j ~ r ~ m-+ j, i.e., ° ~ i ~ j, (3) then follows. 

III. ERROR RATES FOR A SAMPLE COLLECTION OF CODES 

Cyclic codes or shortened cyclic codes have received a great deal of 
attention in the field of error control because of the ease in their imple­
mentation. For this reason a collection of 18 cyclic codes for which the 
spectral functions w(r) were readily available was chosen for this study. 
Most of these codes and spectra are given in Ref. 3. Those which were 
not in Ref. 3 were included so that a wider range of redundancies would 
be represented. The codes are listed in Table I which gives their block 
length n, dimension k, minimum distance d, and maximum error­
correcting capability e. 

Using (1) and (2) and the P(m,n) values from the Alexander-Gryb­
Nast study, the probabilities PE and P D were estimated for each of these 
codes. Samples of the results are shown in Figs. 1, 2, and 3. 
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TABLE I-LIST OF CYCLIC CODES 

n k d 

I 
e 

15 11 3 1 
15 10 4 1 
15 7 5 2 
15 G G 2 
15 5 7 3 
15 4 8 3 
15 2 10 4 
17 9 5 2 
17 8 6 2 
21 12 5 2 
21 11 6 2 
23 12 7 3 
23 11 8 3 
31 21 5 2 
31 20 6 2 
31 16 7 3 
31 15 8 3 
47 24 11 5 

Fig. 1 shows the effect which the correction radius has on error rates 
for two of the codes. The undetected error rate is noted to decrease 
about one order of magnitude for each unit decrease in correction radius. 
Also, the detected error rate, which is about 10-4, is rather insensitive 
to the correction radius. 

In Fig. 2 the undetected error rate is plotted as a function of the 
efficiency of a 15-bit code. Each order of magnitude improvement in the 
error rate requires an increase of three redundant bits (which is 20 per­
cent of the block length). An examination of the error rates for the codes 
with block length 31 (not shown here) reveals that the same change of 
three redundant bits is required to achieve an order of magnitude im. 
provement with this longer block length code. 

Error rates of double-error-correcting codes of about 50 percent 
redundancy are presented in Fig. 3 as a function of block length. Again 
the detected error rate is not a very sensitive parameter while the un­
detected error rate ranges over many orders of magnitude. Quite ac­
ceptable error rates are attainable with block lengths not much greater 
than 25 bits. 

IV. THE EFFECT OF INTERLEAVING ON ERROR RATES 

Through interleaving (with constant t), the bits of a code word are 
separated when transmitted on line so each pair of adjacent bits have 
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Fig. 1- Error rates vs correction radius (no interleaving). 

t - 1 bits from other code words between them. The effect of this is to 
decrease the error vulnerability dependence between the bits of a code 
word so that the interleaved channel is less of a burst channel and more 
like a memoryless channel. To examine the effect interleaving has on 
error control with random error-correcting codes, the Pt(m,n) probabili­
ties were approximated for interleaving constants t = 50, 100, 150, 200, 
250, and 300, and the error rates for the 18 codes were estimated as in 
the previous section. To approximate the Pt(m,n) values first the error 
autocorrelation function at(k) of the interleaved channels is obtained 
from a smoothed version of the autocorrelation function a(s) of the 
Alexander-Gryb-Nast data through the relation 
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at(s) = a(t·s). 

Then the interleaved channels are assumed to have the property that 
the lengths of the error-free gaps before and after an error are inde­
pendently distributed - i.e., the errors form a renewal process. (This 
seems to be a reasonable assumption since interleaving breaks down 
the memory in the error process. Its accuracy will be discussed below.) 
From the autocorrelation functions atCs) the gap-length distributions 
Pt(s) may then be calculated by the relations between them which are 
given in Ref. 4, and finally the Pt(m,n) values are obtained from the 
Pt(s) by the recursive methods of Ref. 4. 

The undetected error rates of some codes used for forward acting 
error correction only are shown in Fig. 4 as a function of the interleaving 
constant t. There it is seen that interleaving is most effective on codes 
correcting four and five errors and is of only modest value on the codes 
correcting two or three errors. In fact, for the (31, 21) code it would 
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Fig. 4 - Error rate vs interleaving constant. 
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appear that the error rate increases in the range t = 1 - 50. This may 
result from the fact that the mathematical methods for obtaining 
Pt(m,n) were different for t = 1 and t = 50 since the renewal assumption 
was not made in the case of no interleaving (t = 1). The renewal assump­
tion would appear to be more appropriate the larger 'the interleaving 
constant t becomes so our estimates of error rates would be more accurate 
for the larger values of t. 

The conclusion to be drawn from Fig. 4 is that it takes a powerful 
code interleaved extensively to provide a low error rate. The price, in 
redundancy, interleaving or decoding complexity, paid to do this is 
high and it would take special circumstances to justify it. 

In Fig. 5, block-error rates are plotted against block length to further 
show the effect of interleaving. The relationship between error rates and 
block length is linear and the slope is determined by the amount of 
interleaving. The equivalent memoryless channel is also shown for 
comparison. It appears that a very considerable amount of interleaving 

. would be required to approach the memoryless channel. 
Although it is not shown here, the detected error rates for codes 
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correcting several errors decrease a few orders of magnitude as the 
interleaving increases over the range considered here. 

We have considered only random error-correcting codes. In Ref. 5, a 
burst-correcting code was studied at two levels of interleaving as part 
of an error-control experiment. 

V. CONCLUSIONS 

Bounded-distance decoding has been examined as a means of utilizing 
codes to do both error-correction and detection on the switched telephone 
network with existing data sets. Data containing detected errors would 
be either voided or marked. 

If voids in the received data are permissible (at a rate of about 10-4) 

then low undetected-error rates may be achieved by a code capable of 
correcting many errors but used to correct only two or three errors. 
Such a code might be about 50 percent redundant and have a block 
length between 25 and 50 bits. 

The void rate is rather insensitive to correction radius, block length, 
and to a lesser extent, interleaving. It decreases with increasing correc­
tion radius, increases with increasing block length and decreases with 
increasing interleaving (for multi-error-correcting codes). 

Interleaving is more effective with codes correcting three (or more) 
errors than those correcting only single or double errors. 

If voids are not tolerable then retransmission is indicated as the 
means to obtain low error rates. A powerful interleaved and highly 
redundant error-correcting code is required to obtain low error rates. 
It would probably be called for in only very special cases. 

Further work should be undertaken to investigate other methods of 
decoding codes, such as threshold or burst decoding, in order to gain 
a more complete insight in the realm of practical error control systems. 
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Duration of Fades Associated with 
Radar Clutter 

By A. J. RAINAL 

(Manuscript received June 2, 1966) 

The fluctuating envelope of the pulse-to-pulse radar echoes from a range 
cell consisting of a stationary target along with many independent, randomly 
moving scatterers is assumed to behave like a stationary Rayleigh process. 
In radar terminology this fluctuating or fading envelope of the pulse-to­
pulse radar echoes is called signal plus clutter. The envelope of the pulse-to­
pulse radar echoes may fade below some critical threshold level for a dura­
tion such that the performance of the radar becomes unsatisfactory. Theoret­
ical approximations for the probability densities of both the duration of fades 
and the interval between fades of the underlying Rayleigh process are pre­
sented in graphs for various threshold levels and various signal-to-clutter 
power ratios. The corresponding exact results are at present unknown. The 
results of this paper apply to all other fields of science and technology for 
which a stationary Rayleigh process characterizes a fading phenomenon. 

r. INTRODUCTION 

Consider a pulsed radar system "viewing" a range cell consisting of a 
stationary target along with many independent, randomly moving 
scatterers as shown in Fig. 1. Each received echo consists of the vector 
sum of all the elementary echoes originating from within the range cell. 
The contributions from the randomly moving scatterers arrive at the 
radar receiver with random phases. As a result, each received echo will 
consist of a steady signal, from the stationary target, plus a Gaussian 
perturbation. Accordingly, samples of the envelope of the pulse-to-pulse 
radar echoes can be considered as sam pIes of an underlying Ray leigh 
process. Thus, the effect of the randomly moving scatterers is to cause 
the envelope of the pulse-to-pulse radar echoes to fluctuate or fade in an 
irregular manner. The envelope of the pulse-to-pulse radar echoes may 
fade below some critical threshold level for a duration such that the 
performance of the radar becomes unsatisfactory. 
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Fig. 1 - A model for studying the duration of fades associated with signal 
plus clutter. R(t,a) represents the envelope of the pulse-to-pulse radar echoes 
from the range cell. At the level R, cf> and cf> + () represent the duration of a fade 
and the interval between fades, respectively. 

In radar terminology the fluctuating or fading envelope of these pulse­
to-pulse radar echoes is called signal plus clutter. Classical discussions 
of signal plus clutter were given by H. Goldstein and A. J. F. Siegert 
and can be found in Refs. 1 and 2. A well-known example of signal plus 
clutter is the envelope of the pulse-to-pulse radar echoes from a target 
surrounded by a great deal of "chaff". Some other examples may be the 
envelope of the pulse-to-pulse radar echoes from the aurora, the iono­
sphere, the sea, the ground, meterological precipitation, and a hyper­
sonic object during reentry of the earths atmosphere. 

A natural assumption for studying the duration of fades associated 
with signal plus clutter is that the random process underlying the fading 
is a Rayleigh process. However, only a few theoretical results are avail­
able concerning the duration of fades associated with Rayleigh processes. 
Thus, one is often unable to determine how well a Rayleigh process 
actually characterizes the duration of fades observed experimentally. 

The purpose of this paper is to present some additional theoretical 
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results which characterize approximately the duration of fades one would 
expect when the random process underlying the fading is indeed a Ray­
leigh process. We shall assume that the envelope of the pulse-to-pulse 
radar echoes behaves like the Rayleigh process R(t,a) sketched in Fig. 1. 
R(t,a) represents the envelope of a stationary random process consist­
ing of a sinusoidal signal of amplitude V2a and frequency 10 plus a 
Gaussian process of unit variance having a narrowband power spectral 
density Wb(f - 10) which is symmetrical about 10 . We assume that the 
radar pulse repetition frequency is several times greater than the band­
width of the Rayleigh process R(t,a) in order that an adequate number 
of radar echoes are used to form R(t,a). Also, we shall assume that the 
variance of the receiver noise is negligible in comparison with the vari­
ance of the clutter. 

Using notation consistent with Refs. 3, 4, and 5 we shall present 
theoretical approximations for the following probability functions for 
arbitrary signal-to-clutter power ratio "a": 

(i) Po- (r,R,a), the probability density of the duration of a fade of 
the Rayleigh process below the level R. 

(ii) PI (r,R,a), the probability density of the interval between fades 
of the Rayleigh process below the level R. 

(iii) Fo-(r,R,a), the probability that the duration of a fade of the 
Rayleigh process below the level R lasts longer than r. 

(iv) F I (r,R,a), the probability that the interval between fades of the 
Rayleigh process below the level R lasts longer than r. 

The model c-onsidered in this paper also has application in the study 
of the duration of fades in radio transmission. In fact Rice6,7led the way 
by analyzing the duration of fades in radio transmission assuming that 
the underlying random process was R(t,O). 

II. INTEGRAL EQUATIONS AND EXPECTATIONS 

Let us define the following auxiliary probability functions for arbi­
trary level R and arbitrary signal-to-clutter power ratio "a": 

(i) Q-(r,R,a) dr, the conditional probability that an upward level­
crossing occurs between t + rand t + r + dr given a downward 
level-crossing at t. 

(ii) [U (r,R,a) - Q (r,R,a)] dr, the conditional probability that an 
upward level-crossing occurs between t + rand t + r + dr 
given an upward level-crossing at t. 
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Explicit expressions for these auxiliary probability functions were 
presented in Ref. 5. 

Approximate theoretical results for Po- (r,R,a) and PI (r,R,a) are 
given by the following integral equations: 

Po-(r,R,a) = Q-(r,R,a) - Po-(r,R,a) * [U(r,R,a) - Q(r,R,a)] 

PI(r,R,a) = [U(r,R,a) - Q(r,R,a)] 

- PI (r,R,a) * [U(r,R,a) - Q(r,R,a)] 

where * denotes the convolution operator, that is, 

f * g == L: fCt)g( r - t)dt. 

(1 ) 

(2) 

Equations (1) and (2) were derived in Ref. 3 by applying McFadden's8 
"quasi-independence" idea to the Rayleigh process R (t,a). Also, by 
definition we have that 

(3) 

and 

(4) 

The exact expectations Eo-(r,R,a) and EI(r,R,a) associated with the 
respective densities Po-(r,R,a) and PI(r,R,a) can be computed from 
the following equations: 

E -( R ) = Pr{R(t,a) < R} 
o r, ,a - NR 

00 

L (R2n 12nnl)IFI (n + !; 2n + 1; -2Ry2a) 
(5) 

n=l 

v(f3/27r) RIFI(!; 1; -2Ry2a) 

exp [(R - y2a)2/2] 
(6) 

where 

Wb(f - fo) = narrowband power spectral density of the Gaussian 
process involved in the definition of R (t,a) 
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average signal power 
a = ----~~~~----

average clutter power 

IFI (a;(3;x) = the confluent hypergeometric function 

= 1 + ~ x + a(a + 1) ~ + .... 
(3 (3((3 + 1) 2! 

Pr f } = probability of the event inside the brace 
N R = average number of upward (or downward) crossings of 

the level R per second. 

Equations (5) and (6) were developed in Ref. 4, and they follow direct1y 
from some well-known results reported by Rice and Bennett. Each 
IFI function appearing in (5) and (6) can be expressed in terms of a 
Bessel function of imaginary argument. 

Thus, with the aid of a digital computer one can compute theoretical 
approximations for the probability functions of interest in this paper 
along with the exact theoretical expectations given by (5) and (6). 

III. RESULTS FOR A GAUSSIAN AUTOCORRELATION FUNCTION 

In order to define the Rayleigh process R (t,a) underlying the fading 
phenomenon we need to specify both Wb(f - fa) and the signal-to­
clutter ratio "a". The normalized autocorrelation function m (T) asso­
ciated with Wb (f - fa) is given by 

m( T) = 1a~ Wb(J - fa) cos 27r(J - fohdf· (7) 

Thus, m(T), rather than Wb(f - fa), can be used to define the Rayleigh 
process R (t,a) underlying the fading phenomenon. Notice that (3 appear­
ing in (5) and (6) is merely -mil (0). The primes denote differentiations 
with respect to T. 

Ref. 1 points out that it is convenient to measure the normalized 
autocorrelation function of the fluctuating low frequency power P (t) = 
R2 (t,a) and denotes this normalized autocorrelation function by p (P, T ). 

In explicit terms p (P,T) is defined as 

(P 1") = E{ [pet + 1") - EP(t)][P(t) - EP(t)]} 
p , Var pet) 

where 

EP(t + T )P(t) - E 2p(t) 
Var pet) 

(8) 
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E = Expectation 

Var = Variance. 

Refs. 1 and 2 relate m (r) and p (P,r) as follows: 

mer) = va2 + (I + 2a)p(P,r) - a. (9) 

Ref. 1 also points out that the appropriate value of "a" can be estimated 
by measuring the probability density of P (t) and comparing the result 
with the theoretical probability density of P (t). Thus, (9) indicates 
that the Rayleigh process R (t,a) underlying the fading phenomenon can 
also be defined from measurements of the normalized autocorrelation 
function p(P,r) and the value of "a." 

For purposes of computation we shall take lVb (f - fo) and m (r) as 

0.50 

( 
a=o a = 1 a=4 

~ 
EC;(Ub,ko,a) 2.386 2.949 3.071 

--t- ko =1 

m (r) = EXP [- UfJ 
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\ 
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Fig. 2 - PO-CUb , ko , a) is the probability density of the duration of a fade of 
the Rayleigh process below the normalized level ko . The autocorrelation function 
of the Gaussian process involved in the definition of the Rayleigh process is meT) 
and the signal-to-clutter power ratio equals "a." 
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a=o a = 1 a=4 

EI(Ub,ko,a) 4.386 5.626 6.091 

ko = I 
m (T) = EXP [- U~2J 

U(Ub, ko,o) - Q(Ub, ko I 0) 

/ ~ 

I '" U(Ub, k o ,ll-Q(Ub,ko ,I) 

,,.:-:-=.. ts::-- ---- ----r----r---l------, 
~; ..... 

~ 

/ /// ~ :~ 
........ 

'-U(Ub, k o ,4) - Q(Ub ,ko ,4) 
,,~~ 

PI(Ub, ko,~) 

"'" 
,. 

/,0 v· PI(Ub'k~ 1'. 
-~~ 

~-~ r-...... 

~/ PI (Ub I ko ,0)'--r-----~ ... 
I ---2 3 4 6 7 8 9 10 

Fig. 3 - P l CUb, ko , a) is the probability density of the interval between fades 
of the Rayleigh process below the normalized level ko . The autocorrelation func­
tion of the Gaussian process involved in the definition of the Rayleigh process is 
mer) and the signal-to-clutter power ratio equals "a." 

follows: 

(10) 

and 

( ) _ [- (27rCTbT )2J m T - exp 2 . (11) 

This particular choice tends to characterize the radar clutter fluctua­
tions observed experimentally.l,2 From (11) we see that it is convenient 
to define normalized time as Ub = 27rCTbT. 

For the experimenter it is convenient to normalize the threshold level 
with respect to the average value, ER (t,a), of the Rayleigh process. We 
shall consider three such normalized levels ko 

R . /2" 1 
ER(t,a) == ko = 1, V :;' Y27r· ( 12) 

The expectation ER (t,a) was derived by Rice9 and is given by 
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ER(t,a) ~ vi ,F, ( -~; 1; -a). ( 13) 

When a = 0 we have that R = V (7r/2), 1, !. These latter two values 
of R were also considered by Rice7 for the case a = O. 

Figs. 2 through 10 present the computed results for a = 0, 1, 4, and 
ko = 1, -v2J;, 1/V27r. The numerical evaluation of Q-(T,R,a) and 
U (T ,R,a) - Q (T ,R,a) was carried out by using Simpson's rule. Integral 
equations (I) and (2) were solved numerically by using the trapezoidal 
rule. All results are plotted with respect to normalized time Ub. The cor­
responding experimental results for ko = 1 and a = 0, 1,4 were presented 
in Ref. 4, and they agree well with the approximate theoretical results 
presented in Figs. 2, 3, and 4. 
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Fig. 4 - F O-(Ub , ko , a) is the probability that the duration of a fade of the 
Rayleigh process below the normalized level ko lasts longer than Ub • F 1 (Ub , ko , a) 
is the probability that the interval between fades of the Rayleigh process below 
the normalized level ko lasts longer than Ub • 
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the Rayleigh process below the normalized level ko . The autocorrelation function 
of the Gaussian process involved in the definition of the Rayleigh process is mer) 
and the signal-to-clutter power ratio equals "a". 
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Fig. 6 - PI (Ub , ko , a) is the probability density of the interval between fades 
of the Rayleigh process below the normalized level ko • The autocorrelation func­
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mer) and the signal-to-clutter power ratio equals "a". 

1293 



1294 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1966 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0040 

0.30 

0.20 

0.10 

o 
o 

\ 
\ 
\\ 
\ 

~; ~'" 
ko = -If = 0.7979 

\ ", , [ Ub
2

] , "', m(T)=EXP --y 

\ \ 

-\ \ "-" 
~. ---

\ [\. \ 

'\ \ 

~. "" \ 
\ 

'1 

\\ \ 
, 

",>< 
, , 

~ F1(Ub,k o ,r) \. 

\\ Fl(Ub,k;:~ 
\ / 

"-..... ..f-/ /F1 (Ub,k O,4) 
..... '< ''" 

\ \ 
..... 

"'", \ ..... 

'\ 
1', 

" i'-,. , 
\\ '\ " '--.. 1', 

i'--.. ........... \ ~'<'f-F;(Ub,ko, I) "" , 
" 

~~ ~~- '" ' ..... 
.... , 

~ 
', ..... 

F;(Ub,kO'O) .~ ).-F~(Ub,kO,4) .......... 
" 'J.<' 

...... 
~ ~ I'--.......... ----- r--~..:: ---

2 3 4 6 7 8 9 10 

Fig. 7 - F O-(Ub , ko , a) is the probability that the duration of a fade of the 
Rayleigh process below the normalized level ko lasts longer than Ub • Fl (Ub , ko , a) 
is the probability that the interval between fades of the Rayleigh process below 
the normalized level ko lasts longer than Ub • 

For deep fades and large signal-to-clutter power ratio "a", one would 
expect Po- (T,R,a) to approach a Rayleigh probability density. For as 
"a" gets large the Rayleigh process R (t,a) tends to behave much like a 
Gaussian process, see (3.6) of Rice,9 and the durations of deep fades of 
Gaussian processes are known to be characterized by a Rayleigh proba­
bility density.7.10 Figs. 8 and 10 show that this is, approximately, the 
case when ko = 1/y27r and a = 4. Thus, for ko ~ 1/y27r and a ~ 4 we 
have the following approximate results: 

and 
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F,-(T,R,a) = cxp [ - ~ C;:-),l (15 ) 

The value of Eo- appearing in (14) and (15) is given by (5) with 
R = koER (t,a). 

Equations (14) and (15) are useful approximations when ko is small 
and "a" is large for an arbitrary normalized autocorrelation function 
m (T) such that mil' (0+) = 0, although we have been treating the re­
strictive Gaussian autocorrelation function defined by (11). The condi­
tion mil' (0+) = 0 leads to Q- (O+,R,a) = 0, and thus the approximation 
given by (14) is exact at T = 0+. As a partial check on this gener­
alization we also verified that (14) and (I5) begin to be useful approxi­
mations when ko = I/V27r, a = 4 for the normalized autocorrelation 
functions 

m(T) ( 16) 
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Fig. 8 - PO-CUb, ko , a) is the probability density of the duration of a fade of 
the Rayleigh process below the normalized level ko • The autocorrelation func­
tion of the Gaussian process involved in the definition of the Rayleigh process is 
mCT) and the signal-to-clutter power ratio equals "a." 
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and 

Equation (16) corresponds to an ideal bandpass power spectral density 
Wb (f - fo) given by 

{

(2fe)-1 for fo - fe ~ f ~ fo + fe 
lVb(f - fo) = 

o otherwise. 
(18 ) 

Equation (17) corresponds to a power spectral density TVb(f - fo) 
given by 

(19) 

where 

0.40 

a=o a=1 a=4 
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Fig. 9 - PI (Ub , ko , a) is the probability density of the interval between fades 
of the Rayleigh process below the normalized level ko . The autocorrelation func­
tion of the Gaussian process involved in the definition of the Rayleigh process is 
m(r) and the signal-to-clutter power ratio equals "a". 
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Fig. 10 - Fo-Cub , ko , a) is the probability that the duration of a fade of the 
Rayleigh process below the normalized level ko lasts longer than Ub . F1(Ub , ko , a) 
is the probability that the interval between fades of the Rayleigh process below 
the normalized level ko lasts longer than Ub . 

For a given mer) with m'" (0+) = 0 along with a ~ 4, ko = 1, the 
duration of fades and the interval between fades of the Rayleigh process 
R (t,a) behave as if they were generated at the mean value level of a 
Gaussian process having a normalized autocorrelation function of m (r ). 
For example, compare Po- (Ub , ko ,4) of Fig. 2 with the experimental 
points plotted in Fig. 2 of Ref. 3. Also compare P l (Ub , ko ,4) of Fig. 3 
with the experimental points plotted in Fig. 3 of Ref. 3. 

IV. CONCL USlONS 

Assuming that the random process underlying a fading phenomenon 
is a stationary Rayleigh process, one can compute useful theoretical 
approximations for the probability functions which characterize the 
duration of fades and the interval between fades. The corresponding 
exact results are at present unknown. 
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For deep fades and large signal-to-clutter power ratio the duration of 
fades is characterized, approximately, by a Rayleigh probability density. 

For large signal-to-clutter power ratio the duration of fades and the 
interval between fades of the Rayleigh process below the mean value 
level behave as if they were generated at the mean value level of a 
certain Gaussian process. 

The results of this paper apply to all fields of science and technology 
for which a stationary Rayleigh process characterizes a fading phe­
nomenon. 
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A Geometric Interpretation of Diagnostic 
Data from a Digital Machine: Based on a 
Study of the Morris, Illinois Electronic 
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Using the diagnostic data collected for the Morris Central Control mal­
function dict'ionary, we devise a natural concept of "distances" between 
malfunctions. Ten thousand malfunctions were placed as points in six­
dimensional space in such a way that the Euclidean interpoint distances 
approximately equaled the diagnostic "distances". The remarkable fact that 
this is possible has many implications. 

By finding circuit characteristics common to a cluster of neighboring 
malfunctions, we are able to associate these characteristics with the region 
of the six-dimensional space which holds these malfunctions. By this means, 
we characterize various regions of space according to functional troubles. 
This suggests a technique for locating malfunctions and also suggests some 
longer-range possibilities. 
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I. INTRODUCTION 

To identify a malfunction is always difficult. The great size, com­
plexity, and speed of modern digital machines render this difficulty 
severe. An age-old method is to observe the symptoms and deduce their 
cause. For larger machines, this is exceedingly impractical. 

A familiar aid is the use of tests. The record of tests passed and tests 
failed provides many more clues to the trouble. However, even the use 

1299 
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of tests does not avoid time consuming analysis by a highly trained 
expert, which is slow and expensive. 

One very successful and ingenious approach to alleviating this diffi­
culty (proposed by Werner Ulrich) is to make a large dictionary listing 
many malfunctions with corresponding test results. For each of many 
known malfunctions, we obtain a pattern of O's and 1 's which indicate 
the test results. For example: 

Test Number 
Result 

1 2 345 678 
o 0 101 100 

A 0 indicates a correct result and a 1 an incorrect result. These patterns 
are then arranged in some systematic order. Together with each pattern 
we include identification of the malfunction. When we wish to find a 
malfunction, we simply locate the pattern of test results in the diction­
ary. If a sufficiently comprehensive set of tests is used and a sufficiently 
comprehensive set of known malfunctions is included, such a dictionary 
can achieve a high degree of success. vVe note that to collect the test 
patterns for the dictionary, the only practical procedure may be actually 
to insert the malfunctions in a real model of the machine. 

Not all malfunctions can be found by using such a dictionary. Some 
conceivable malfunctions will not be listed in the dictionary, and other 
malfunctions produce different test results on different occasions (in­
consistent results). However, it is not necessary to use a dictionary only 
for exact pattern matching. If a malfunction produces different patterns 
on different occasions, we may expect these different patterns to be 
"similar" to each other and, indeed, this has been found to be true of the 
data from the Morris, Illinois electronic central office. Broadly speaking, 
we feel that patterns are similar if they differ in only a few places. We 
call the number of places in which two patterns differ the "Hamming 
distance" between the patterns. This is a rough measure of dissimilarity 
between patterns. 

However, some tests are more important than others. Therefore, we 
have refined the idea of Hamming distance by weighting the various 
tests and using weighted Hamming distance (WHD). We have found 
that the WHD between two patterns is a good and meaningful measure 
of dissimilarity between the malfunctions which yield those patterns. 

"Distances" suggest a geometric model. Is it possible, for example, 
to represent each malfunction by a point in a plane, in such a way that 
the (ordinary Euclidean) distance between two malfunctions is approxi­
mately equal to the WHD between the corresponding patterns? If 
true, it would be tremendously significant. For it would mean that the 
patterns and hence the malfunctions somehow form a two-dimensional 
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set, that each malfunction can be represented by two coordinates in a 
way that contains the information in the patterns. 

It would be equally significant if we could represent the malfunctions 
by points, not in the two-dimensional plane, but rather in three-dimen­
sional space, or even by points in n-dimensional space, as long as n is 
reasonably small. 

In fact, the lVlorris data can be represented by such a geometric model. 
For these data, six dimensions were found to be appropriate. In six 
dimensions the typical deviation for our data between WHD and Eu­
clidean distance (ED) is reasonably small (about 7 percent). 

We emphasize the fact that the small number of dimensions is not 
something that would happen with just any data, nor could it happen 
by chance. Random data might have fitted into 100 dimensions by 
chance. But the smaller the number of dimensions needed, the more 
significant the result. Six dimensions are remarkably few to represent 
10,000 patterns of 657 bits each. 

It should also be understood that the number 6 is approximate, and 
that 5 or 7 are also reasonable values. Fewer dimensions can be used 
at the cost of larger deviations between WHD and ED, while more 
dimensions can be used to further reduce these deviations. However, 
the value 6.was chosen by following the principle of parsimony, which 
recommends that data be represented by as few numbers as are needed 
to fit the data satisfactorily. 

Not only the malfunctions have a geometrical interpretation (as 
points in six-dimensional space): it appears that a test can be represented 
as a "hyperplane" (that is, a flat cut of all space) that separates the 
malfunctions that fail from the malfunctions that pass the test. 

A convincing demonstration of the meaningfulness of the geometric 
interpretation of malfunctions as points in space lies in the way mal­
functions with some common characteristic cluster together in space. 
For example, malfunctions internal to a single register may cluster 
together in a small region; malfunctions which often affect the logical 
state of a single lead may cluster together; and malfunctions which 
affect the common function of a group of related operations may cluster 
together. In this paper, we discuss several such clusters of malfunctions 
in the Morris data. It is not easy to predict in advance how the malfunc­
tions will cluster together, but by examining the geometric model we may 
observe which characteristics describe clusters of malfunctions. It 
should be obvious that since closeness in the geometric model is based 
on WHD, malfunctions which cluster together are those which affect 
the functioning of the machine in similar ways. 

It should be noted that to predict how a particular malfunction affects 
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the functioning of the machine is exceedingly difficult. Thus, while two 
malfunctions in the same circuit might be thought to have similar effects, 
and in many cases do, it also happens that two malfunctions which 
might be expected to react similarly turn out to be quite different. 
Detailed analysis of such cases reveals unexpected facts about how the 
machine reacts to malfunctions. Such analysis has given us new insights 
into the nature of malfunctions. 

The WHD has a definite utility in locating a malfunction if we are 
not able to locate it by exact pattern match in the dictionary. For given 
the pattern of the unknown malfunction, and some pattern in the dic­
tionary, we may judge the likelihood of the unknown malfunction being 
the dictionary malfunction by the WHD between the two patterns. 
The smaller the WHD, the greater the likelihood of the two malfunctions 
being the same. 

The utility of the geometric model lies partly in the fact that it gives 
a more compact (or parsimonious) way of representing much of the 
information which is contained in the patterns and WHD's. For exam­
ple, to provide a way of locating those patterns which lie within some 
small WHD of the pattern of the unknown fault is very difficult without 
the geometric model. But with the geometric model we can simply cut 
(six-dimensional) space into cells, and list the faults within each cell; 
this serves the same purpose. 

Another potential utility of the geometric model is the possibility 
that it may reveal some underlying truths about malfunctions. Since 
each malfunction can be represented by six coordinates, it is natural to 
ask whether each malfunction is characterized by the degree to which 
it possesses each of six hypothetical underlying characteristics. If we 
could find such underlying characteristics, there would surely be many 
benefits. However, we have not isolated such characteristics. 

II. BACKGROUND 

2.1 The Electronic Central Office at JJ![ orris, Illinois 

All the data and illustrations in this paper are associated with the 
electronic central office which was in commercial use for over a year at 
Morris, Illinois, between 1960 and 1962. A duplicate system was built 
and tested during the same period at Whippany, New Jersey, and the 
dictionary data we shall describe were actually collected on the Whip­
pany laboratory model. We shall give an extremely brief description of 
these systems. We hope that readers already familiar with the system 
will excuse the omissions and extreme simplification necessary in such a 
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brief account. For a good general description of the system, see Ref. 1. 
For more detail, see Refs. 2 and 3. The final report (Ref. 4) gives a good 
account of the results of the whole experiment. 

The electronic central office (ECO) contains the central control (CC), 
the flying spot store (FSS), the barrier grid store (BGS), as well as the 
subscriber lines, trunk circuits, the switching network itself, and other 
important units. Our attention is focused on the CC, which controls 
all the other units (see Fig. 1). The CC is a stored program machine. 
One memory device for it is the FSS, which provides semipermanent 
memory for the stored program and for large tables of "translation" 
information. The other memory device is the BGS, which provides 
changeable memory in which the CC records calls in progress, numbers 
being dialed, etc. The CC communicates directly with the switching 
network. 

To assure continuous operation of the central office, certain subsystems 
are provided in duplicate. At any given moment, one unit of each dupli­
cate pair of units has "active" (controlling) status, while the other unit 
has either "standby" (ready to take control) or "out-of-service" (mal­
functioning) status. The system is so organized that either unit of a 
duplicate pair can be made active, independently of the status of the 
other pairs. To insure that the standby units will be ready to assume 
active status when needed, they are continuously exercised. Even in 
the absence of any malfunction, the roles of active and standby are 
exchanged periodically. 

To prevent machine malfunctions from propagating large amounts 
of wrong information in the changeable memory, malfunctions must be 
detected quickly and the processing of telephone traffic interrupted 
until the faulty unit is taken out of service and replaced by its standby. 
To achieve very rapid detection of machine malfunctions, the outputs 

FSS cc BGS 

Fig. 1-Simplified block diagram of the electronic switching system at Morris, 
Illinois. 
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of the active and standby units of each duplicate pair are continually 
compared. In the case of units other than the CC, it is the CC which 
does the comparing and which takes the proper action. This includes 
checking to determine whether the trouble symptoms will recur, and if 
so which unit is responsible (for example, one particular BGS or one 
particular FSS). The CC then performs diagnostic tests on the unit and 
reports the results to the maintenance craftsman for corrective action. 

The treatment of malfunctions occurring in a CC is necessarily differ­
ent. Since the CC is the "doctor" who decides which unit has the mal­
function, trouble in the CC leads to a situation in which the "doctor" 
must diagnose himself. This is a complex situation and one that re­
quires special precautions and handling. Briefly, the procedure is this. 
Under normal circumstances, the two CC's are performing identical 
operations at the same time. Through a limited number of inter­
connections between them, each CC receives the results of certain opera­
tions in the other CC. These are compared, by means of matching cir­
cuits in each CC, with its own results. In the event of a disagreement, 
the active CC proceeds to check itself by programmed tests. These same 
tests are ll1n in the standby CC at the same time. If the active CC de­
cides that it is functioning correctly, then the match circuits are inter­
rogated to determine whether the standby CC had the same test results. 
Ordinarily, when the active CC decides it is sick, it will turn control over 
to the other CC. To guard against a CC which is so sick that it cannot 
do this, a timer is provided in each CC which must be reset periodically. 
If it is not reset, it will turn control of the system over to the other CC 
regardless of any CC operations that may be going on at the time. 

Once the malfunctioning CC has "out of service" status, the active CC 
requests corrective action by the maintenance craftsman on the system 
teletypewriter. The active CC then proceeds (in the free intervals be­
tween taking care of normal telephone traffic) to perform a diagnostic 
program which provides information to help the maintenance crafts­
man locate the trouble. 

2.2 The Diagnostic Program for the Central Control 

Each CC consists of several thousand small pluggable circuit cards. 
Each card contains an assembly of diodes, transistors, resistors, etc. 
to form a digital "building block". One card may contain up to 5 AND 
gates, or 5 OR gates, or one flip-flop, or up to two amplifiers, etc. Prac­
tically every malfunction which occurs during normal use is due either 
to failure of a component on a card, or to a bad connection between a 
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card and its connector. Thus, the primary problem of maintenance is to 
isolate a malfunction to the card involved. 

To aid the maintenance craftsman in this very difficult task, the ee is 
provided with a large diagnostic program containing nearly a thousand 
tests. A typical test consists of a short sequence of operations (performed 
in parallel by both ee's). The matching circuits are turned on only at 
certain critical points during the sequence. Since the active ee has 
previously been found to be good, it is the standard by which we test 
the standby ee. Therefore, any (unintended) mismatch of information 
between ec's is assumed to be due to a malfunction in the standby ee. 
Any test whose result in the standby ee matches that of the active ee 
is recorded as passed, otherwise it is recorded as failed. A 0 denotes a 
test passed, and a 1 denotes a test failed. 

The diagnostic tests are divided into eight logical phases (A. through 
H). Within each phase the tests are numbered (in octal) from 0 to a 
maximum (in some phases) of 177. Phases D and H each require more 
than 177 tests and therefore, each is divided into two physical phases. 
The additional phases in D and H are denoted DP and HP (for D 
Partial and H Partial). 

The tests of the diagnosis were organized as much as possible so that 
phase A tests the most basic equipment and phase B tests the next 
most basic equipment. The remaining phases test the remainder of the 
ee. In normal operation, test failures during phases A or B cause all 
the remaining phases to be omitted. However, it should be realized that 
many malfunctions in the basic equipment exercised by phases A and 
B do not cause test failures during phases A and B. Also many mal­
functions outside the basic equipment do cause test failures during phases 
A and B. 

Although the test results were actually presented on the system tele­
typewriter in a quite different manner, it is best for theoretical purposes 
to visualize the test results from a single pass of the diagnostic program 
as a long row of O's and l's. The first digit represents the result of the 
first test in phase A; the remaining digits represent the rest of the phase 
A tests, followed by the phase B tests, etc. In this paper, we shall some­
times refer to the results of a single run-through of the diagnostic pro­
gram as "the test pattern" or "the pattern of test results". 

2.3 The Central Control Maintenance Dictionary 

The dictionary described here was constructed under the supervision 
of S. H. Tsiang, and was completed prior to our use of the data in it. 
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The whole dictionary project is very well described by Tsiang and Ul­
rich (Ref. 5). 

The large size and complexity of the ee made it necessary to find a 
better technique than direct reasoning for using the diagnostic test 
results to locate the malfunctioning circuit card. It was decided to make 
a dictionary which shows the actual test results for a large number of 
possible malfunctions that may occur in the system during normal use. 
The only practical method of compiling such a dictionary was actually 
to insert the malfunctions in an operating machine and perform the 
diagnostic tests. 

The dictionary was prepared on the Whippany Laboratories model, 
which was a duplicate of the system at Morris, Illinois. Approximately 
50,000 malfunctions were inserted in the ee including such troubles as 
a shorted diode, an open diode, an open resistor, a flip-flop permanently 
set or reset, etc. These malfunctions were introduced into every card 
in the ee. 

For each malfunction introduced, the results of the diagnostic tests 
together with the identification of the malfunction were punched on 
paper tape by the system. This information, which represents the raw 
data from which the dictionary was constructed, was transferred to a 
magnetic tape and sorted on an IBM 704 computer. 

The data that we have just described can be visualized as a large 
matrix with about 50,000 rows and nearly 1,000 columns. Each row 
corresponds to a malfunction from which the test pattern was obtained. 
Each column corresponds to a particular diagnostic test. An entry of 0, 
for example, indicates that the malfunction on that row passed the diag­
nostic test for that column, while an entry of 1 indicates the malfunction 
failed for that test. 

To facilitate looking up a particular pattern of test results, it is neces­
sary that the rows of the matrix be sorted into some systematic order. 
Basically, the dictionary consists of the sorted matrix (each row repre­
sented in a condensed form) with the malfunction identification per­
taining to each row. In many cases the same test pattern appeared in 
more than one row, that is, different malfunctions produced the same 
test pattern. In such cases the test pattern was listed only once for all 
the rows, but with all the corresponding malfunctions, so that each test 
pattern appeared only once in the dictionary. The dictionary, listing 
about 30,000 malfunctions, required 1300 pages. 

The dictionary just described is a good measure of the effectiveness 
of the diagnostic tests. The diagnostic program was designed with two 
basic objectives: (i) to contain tests sensitive to virtually every mal-
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function that might occur spontaneously in the CC and (ii) to produce 
distinct test failure patterns that identify each malfunction and dis­
tinguish it from all others. The data collected yielded the startling fact 
that the diagnostic programs fell quite short of the first objective. Of 
the 50,000 malfunctions inserted, approximately 20,000 of them resulted 
in the all O's test pattern (all tests passing). 

There are a variety of causes for these undetected malfunctions. Some 
are due to components which serve only a protective purpose, so that 
their malfunction is observable only in the presence of the trouble being 
protected against. Others were due to auxiliary equipment which was 
installed but was neither used, tested, nor covered by the diagnostic 
programs. Other undetected malfunctions in the CC could have been 
detected with more diagnostic program or more hardware. No doubt 
other causes operated as well. 

However, we view the problem of undetected malfunctions as a 
solvable problem which is outside our scope of interest. We presume 
that in other digital machines to which our ideas might apply, this 
problem will have been solved. We restrict our attention to the 30,000 
detected malfunctions. 

The second objective was met fairly satisfactorily (for the detected 
malfunctions). The extent to which it was met is measured by how many 
circuit cards are listed in the dictionary for each pattern. The average 
number was less than 3, which is quite satisfactory but a few patterns 
had hundreds of associated circuit cards, which is unfortunate. 

2.4 An Evaluation of the CC Dictionary 

The CC dictionary was intended to be used by finding in the dictionary 
the exact test failure pattern obtained in the field. The dictionary entry 
indicates the list of circuit packages to replace. When this works, it is 
an easy method of locating malfunctions. Unfortunately, two facts 
complicate this technique. Many malfunctions yield different test pat­
terns on different occasions. Other malfunctions, though always yielding 
the same test pattern in the field, yield a pattern that does not appear 
in the dictionary. 

The major reason that test patterns differ from one test run to the 
next is that the test runs start with the machine in different configura­
tions. Most notably, various flip-flops may have different states. Al­
though the test program attempts to place the machine in a uniform 
initial state before each test sequence, the malfunction may prevent 
this being done. One reason that field test patterns may consistently 
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differ from the dictionary pattern are the intermachine differences, 
both in electrical parameter values due to manufacturing variability 
and in logic due to the inevitable program and hardware modification 
required for dictionary construction. 

After the dictionary was prepared, many informal experiments were 
performed to test its efficiency. Much practical knowledge was gained 
as to the detailed manner in which test results might differ from the 
dictionary test results for the same malfunction. This information was 
partly formalized by S. H. Tsiang (in an unpublished memorandum) 
who developed "empirical rules" for use with the dictionary. When 
the test pattern was found in the dictionary but replacement of the 
listed circuit cards failed to correct the malfunction, or when the pattern 
was not found in the dictionary at all, these rules were used to alter the 
pattern to a likely candidate. Use of these rules significantly improved 
the use of the dictionary. 

One formal experiment to evaluate the CC dictionary was performed 
on the Morris, Illinois model by R. N. Breed and described in an un­
published memorandum. Approximately 600 faults were selected for 
this evaluation. Malfunctions of various types were chosen in propor­
tion to their frequency of occurrence in certain failure records, and so as 
to represent all parts of the CC. However, malfunctions known to pro­
duce no test failures were avoided. 

Of the 600 malfunctions, 30 were eliminated (for unstated reasons) 
at the time the data was collected, 47 more were eliminated from the 
summary figures in the memorandum because they "probably could 
have been found by diagnosis of some unit other than the central con­
trol". These 47 malfunctions would have belonged to the last two cate­
gories below. The remaining 523 malfunctions were divided into cate­
gories as shown: 

47 % findable with perfect match to dictionary results, 
13 % findable using the empirical rules, 
21 % not findable because all the tests were passed, 
19 % not findable, even with the aid of the empirical rules. 

The third category is of interest to logic circuit designers and diagnos­
tic programmers. Our interest is primarily with the fourth and second 
categories. Our methods offer real possibilities for identifying the mal­
functions responsible for otherwise mysterious test patterns, and for 
more easily identifying malfunctions which would otherwise require the 
use of complex empirical rules. 
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III. DATA 

3.1 The Data Used in our Study 

Of the 30,000 malfunctions with test patterns not all 0, about 10,000 
malfunctions failed one or more tests in phase A and/or phase B. When 
the dictionary was originally prepared, it was observed that malfunc­
tions of this sort, besides consistently failing tests in phase A and/or B, 
generally failed a great many tests in the other phases, and did so in an 
inconsistent way. For this reason the CC dictionary suppresses the test 
results of the other phases for this group of test patterns. 

As we wished to reduce the scope of our study (to cut down computa­
tion time and cut down the bulk of printed results), we removed these 
10,000 malfunctions (failing phase A and/or B) from the data. 

However, we were eager to reduce the bulk of the data still further. 
We realized that for test patterns with few test failures, our methods 
offer less potential advantage than for patterns with many failures. This 
is true for several reasons. The direct deductive method tends to work 
well for test patterns with few test failures. Furthermore, so very many 
other malfunctions yield test patterns within a very small WHD of the 
observed pattern that it may not be practical to use the dictionary for 
nonexact matching in the way we shall discuss. 

We found that the patterns with 3 or less test failures constituted 
about half of the remaining 20,000 malfunctions. Certain of our calcula­
tions would have been distorted by 2800 malfunctions which all gave 
exactly the same pattern of 3 test failures (namely, phase H tests 100, 
101, and 102). (These malfunctions caused the standby CC to "lock 
up", that is, stopped its master-clock; the tests are part of a special 
set of tests comprising the "CC lockup diagnosis.") To avoid this dis­
tortion and to reduce the data to a reasonable quantity, it seemed natural 
to restrict ourselves to patterns with 4 or more test failures. 

Thus, we finally used a matrix with 10,937 rows (malfunctions). As 
we have eliminated test failures in phases A and B, the only columns 
with l's in them can be those for phases C through H. Of these, just 
657 columns actually contained l's. 

A few facts about this matrix may be of interest. Fig. 2 shows graphi­
cally the number of rows with exactly k l's in them, as a function of k. 
The few rows with the greatest number of l's in them have, respectively, 
more than 511, exactly 466, 441, 325, 310, 252, and 247 1'8 in them. 
Fig. 3 shows the number of columns with k l's in them as a function of 
k. The few columns with the most l's in them have, respectively, 4335, 
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Fig. 2 - Number of malfunctions which fail exactly k tests, that is, the number 
of rows of the matrix with exactly k l's. For larger k, the data have been grouped. 

2978;' 2711, 2653, 2383, 1933, and 1744 l's in them. The column with 
4335 l's in it corresponds to test HP 61; thus, this test was failed by 
about 40 percent of the malfunctions in the matrix. 

3.2 The Test Weights 

We now restrict attention to the data we used in our study. It consists 
of a matrix with 10,937 rows and 657 columns, whose entries are 0 or 1. 
In the introduction we referred to weights Wi which we associated with 
the diagnostic tests, or in other words, with the columns of the matrix. 
These weights are all positive, and the largest possible value is 1. 
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Before describing the meaning of these weights and the formulas 
used to obtain them, we shall mention a few facts about the weights 
actually obtained from the data. Just one weight is greater than 0.999. 
There are 35 weights greater than 0.95. The weights in the interval 
from 0.25 up to 0.95 are very sparse, while below 0.25 the weights are 
densely but erratically distributed. A graph of the density of weights 
versus w is shown in Fig. 4. The brief table below summarizes the same 
information. 

Dividing points 0.05 0.10 0.15 0.20 0.25 0.95 
Number of weights 272 73 119 72 34 52 35 

The smallest weight is 0.0097. 
The weights are intended to reflect the extent to which the information 

given by the entries in one column of the matrix is independent of the 
information given by other columns. Thus, a column which does not 
at all resemble any of the other columns would have a full weight of 1, 
while a column which is almost the same as a great many other columns 
would have a very small weight. 

For example, suppose 10 columns are identical. Then they all contain 
the same information, so it is natural to give each one a weight of 1/10 
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to reduce the importance of that information to its proper value. How­
ever, it is not enough to consider columns which are exactly identical; 
in our data there are a great many columns which are almost the same 
and which must be taken into account. 

Suppose we have a way to measure how much alike two columns are. 
In particular, suppose Lij is the amount of likeness or similarity be­
tween columns i and j. We suppose that Lij lies between 0 and 1, with 
Lij = 1 if the two columns are identical, and Lij = 0 if the two columns 
are not at all alike. Of course Lij = L ji • Then a natural formula for the 
weights is 

1 1 
L L ij ' 

i 

For example, if columns 1 through 10 are identical to each other but 
do not resemble the other columns at all, then the weight of each of 
these columns is 1/10. (In more detail, consider say, column 7. Then 
L7j = 1 for 10 values of j, and L7j = 0 for all other values of j, so the 
denominator is 10.) 

As another example, suppose there are just three columns (instead 
of 657) and that the values of Lij are those given below: 
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j 
1 2 3 

1 1.0 0.5 0.1 

i 2 0.5 1.0 0.7 

3 0.1 0.7 1.0 

1 1 
WI = ------ = 1.6 = 0.625, 

1.0 + 0.5 + 0.1 

1 1 
W2 = 0.5 + 1.0 + 0.7 = 2.2 = 0.455, 

1 1 
Wa = 0.1 + 0.7 + 1.0 = 1.8 = 0.555. 

1313 

How shall we measure the likeness of columns? One practical answer, 
which we used, is the square of the correlation coefficient between the 
columns. For readers who are not familiar with this widely used statisti­
cal quantity, we tell a little about it. The correlation coefficient itself 
lies between -1 and + 1. It is + 1 for two identical columns, -1 for 
two columns which are exact opposites, and 0 if the l's are arranged 
as if they had been sprinkled randomly and independently in the two 
columns. The correlation coefficient has intermediate values in inter­
mediate situations. To be very concrete, suppose the matrix has 12 
rows (so each column has 12 entries). Suppose one column has three l's 
and the other column has four l's. Then the correlation coefficient de­
pends on the number of rows in which both columns have l's at the 
same time. The following table gives the actual values. 

Number of l's in common 
Correlation coefficient 
Likeness value 

o 
-0.408 
+0.167 

1 
o 
o 

2 
+0.408 
+0.167 

3 
+0.816 
+0.667 

The formula for the correlation coefficient which applies to the present 
circumstances involves 

N = the number of rows in the matrix, 
ni = the number of l's in column i, 
nj = the number of l's in column j, 
nij = the number of l's in common to columns i and j. 
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Then we have 

correlation coefficient between columns i and J. 

Nnij - ntnj 

= Vni(N - ni) ·Vnj(N - nj) . 

The suitability of this way of measuring likeness is established by its 
successful application to this data. However, we may justify it in part 
by appealing to intuition and numerical experimentation. 

The correlation coefficient is +1 if and only if the two columns are 
identical. It is clearly appropriate that the likeness should be 1 in this 
case. 

The correlation coefficient is -1 if and only if two columns are com­
plementary, that is, if one column has l's precisely where the other col­
umn has O's. In this case, we may say that the two columns carry the 
same information even though their entries are opposite. For this situa­
tion means that one test fails just when the other passes. Clearly if we 
know this, it is enough to perform just one of the tests; we can predict 
the result of the other. Thus, it is reasonable to assign a likeness of + 1 
to this situation, as our likeness measure does. 

If the l's in the two columns appear as if they are independently lo­
cated (in the statistical sense), so that knowledge of the entry in one 
column has no predictive power at all for the entry in the other column, 
then it is reasonable to assign likeness o. This situation occurs if and only 
if 

nij _ ni nj 
N - NN' 

also if and only if the correlation coefficient is o. Thus, we assign likeness 
o in this case. 

This pins down the value of our likeness value for two extreme situa­
tions and one intermediate situation. If we are considering the correla­
tion coefficient as the basis for measuring likeness, this still leaves many 
possibilities. For example, the likeness can be the absolute value of the 
correlation coefficient, the square of the correlation coefficient, any 
positive power of the absolute value of the correlation coefficient, to 
mention only a few possibilities. We experimented with various possi­
bilities including the absolute value, the square and three functions of 
the correlation coefficient whose graphs are made up of straight-line 
segments. 

Some tests are so individualistic that they surely deserve weights of 
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almost 1. On the other hand, there is a large cluster of perhaps 100 
tests (that is, columns) which are so nearly alike that at least the most 
typical of them deserve weights as small as 0.01. As the absolute value 
formula yielded weights ranging from about 0.1 to 0.01, it was clearly 
inappropriate. The reason was equally clear; the effect of statistical 
fluctuations on the many small likenesses is cumulative and noncancel­
ling and leads to unduly large denominators. Since there appears to be 
no way to arrange for cancellation, it is desirable to reduce the effect 
of small likenesses. 

Two of the segmented-straight-line functions did this very success­
fully, and yielded weights ranging from virtually 1 to slightly under 
0.01. Then Colin Mallows pointed out that the squared correlation 
coefficient lies very neatly between these two functions. When tried, 
the square yielded very similar weights, with the smallest one even a 
trifle smaller. 

IV. GEOMETRY 

4.1 Weighted Hmnming Distance 

Ordinary Hamming distance between two test patterns (two rows 
in the matrix) is just the number of places in which they differ, in other 
words, the number of tests for which they have different results. To 
calculate this, we accumulate 1 for each position in which the test pat­
terns differ. 

Weighted Hamming distance is similar except that instead of ac­
cumulating l's we accumulate the weight associated with that position. 
For example, if two test patterns differ only in the results of tests 3, 5, 
and 17, then the WHD (weighted Hamming distance) between them 
is given by 

WHD = W3 + W5 + W17. 

We note that this a true distance in the mathematical sense of the 
word. In particular, WHD satisfies the triangle inequality: the WHD 
between patterns 1 and 2, plus the WHD between patterns 2 and 3, is 
always greater than or equal to the WHD between patterns 1 and 3. 

We measure the dissimilarity between malfunctions by the WHD 
between their test patterns. If two malfunctions yield test patterns 
between which the WHD is small, we consider the malfunctions similar, 
but if the WHD is large we consider them dissimilar. With this in mind, 
let us consider the intuitive meaning of the test weights. Suppose that 
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tests 1 through 100 are all very much like each other; that is, these 
tests generally fail together or pass together. This means that a test 
pattern will generally fail almost all or pass almost all these tests: it 
is unlikely that a test pattern will fail approximately half these tests. 
Thus, in comparing the dissimilarity of two test patterns with regard 
to this group of tests, the main information we get is whether they are 
the same or opposite. If we used ordinary Hamming distance, then test 
patterns which are opposite would have a distance of at least 100 just 
from these tests alone. Yet "same" or "opposite" on this group of tests 
may be no more significant than same or opposite on a single test which 
is an "individualist". By down-weighting like tests and using WHD, 
we prevent large groups of like tests from swamping the information 
contained in tests which are very "individualistic". 

N ow it is true that for test patterns which are the same for most of the 
tests in this large group, the few tests in the group which yield different 
results may be very significant. We view this as fine-grain information, 
however, in contrast to the broadbrush information contained in the 
group as a whole. We do not know of any practical way to have the 
WHD based on a single set of weights reflect both kinds of information. 

Nevertheless, there is a way within our general scheme to make use 
of this fine-grain information, though it is not an idea which we have 
actually attempted. The technique is this. We would collect together 
some group of test patterns in our matrix which are fairly similar to 
each other; for example, we might arbitrarily pick some test pattern as 
the "center", then form the group of all test patterns in the matrix which 
are within some fixed WHD of the center. Presumably we would arrange 
things so as to get a group of several hundred test patterns. Using this 
group of test patterns we would have a new data matrix (actually a 
submatrix of the original, with all the columns but only a selected set of 
rows). Using this submatrix we would calculate new weights, using the 
same formulas but applying them to this new smaller matrix. We could 
call these "local" weights as they apply only to this one local group of 
test patterns when compared with each other. 

These local weights could differ very greatly from the original "global" 
test weights. The global weight of the test could be high or low, inde­
pendently of the local weight. Furthermore, the local weights for this 
local group of test patterns might be entirely different from the local 
weights we would derive from some other local group of test patterns. 

Using the local WHD (based on local weights) to measure dissimilarity 
between test patterns in some group is probably a good way to make use 
of the fine-grain information. 
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4.2 The Geometric Model 

Once a meaningful concept of distance between test patterns exists 
(such as WHD), it is natural to ask whether these distances can be 
realized in a geometric model. For example, can we represent each pat­
tern by a single point in the plane, in such a way that the ordinary 
Euclidean distance (ED) between the points is equal to the WHD be­
tween the corresponding patterns? 

First, we remark that there is nothing inherent in the concept of 
distance which will force this to happen. Thus, if this happens it tells us 
something about the data. It tells us that in some sense or other the test 
patterns form a two-dimensional set. What this means is not clear. 
But, that it means something important is indicated by the tremendous 
information compression which is achieved. 

To understand this, let us suppose that we have 10,000 test patterns. 
Between these test patterns there are 

(10,000)(9,999)/2 == 50,000,000 

WHD's. If we can represent each test pattern in the plane, that requires 
two coordinates per pattern, so that we require 20,000 numbers to 
represent the patterns. Since the ED's are of course computable from 
these 20,000 coordinates (by the usual formula learned in high school), 
and since the ED's equal the WHD's, we have compressed the informa­
tion from 50,000,000 numbers into 20,000 numbers. In other words, 
from the 20,000 numbers required to represent the patterns, we can 
recover by simple arithmetic all the 50,000,000 WHD's. 

Any model which achieves such compression is bound to be useful, 
for it permits us to handle information in a much more concentrated 
manner. Beyond its direct utility, however, any model which achieves 
such compression is trying to tell us something about the data. 

(The classic example of this are the 20 years worth of extremely ac­
curate astronomical observations made by Tycho Brahe in the sixteenth 
century. Kepler found a model consisting of his three famous laws from 
which it was possible to explain these observations. Basically, his 
model represented each planet's motion by an ellipse. Thus, using his 
model it was possible to explain all of Tycho's observations of one planet 
from 12 numbers - 6 for the planet's motion and 6 for the earth's 
motion. It is clear that the enormous compression of information in 
itself was useful in this situation. It is also clear that the model was 
trying to say something, however, even if it took Newton to hear it.) 

Without trying to compare ourselves to Kepler, we feel that the in-
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formation compression of our model is a striking phenomenon which 
demands investigation, and must produce something of value. 

We do not get a representation by points in the plane, nor by points 
in three-dimensional space, but only by points in six-dimensional space. 
We can represent each pattern by six coordinates in such a way that the 
ED's are approximately equal to the WHD's. This applies to not quite 
all the 10,937 patterns in our matrix - there were three exceptions that 
did not fit. (These three exceptions probably result from malfunctions 
which in fact cause A or B phase test failures, but were not excluded 
from our data due to some recording failure which dropped the A and B 
phase results.) 

We notice first that the compression of information goes down as 
the number of dimensions goes up. For 10,000 patterns represented in 6 
dimensions, the same 50,000,000 WHD's are recoverable not from 20,000 
coordinates but from 60,000 coordinates. The compression is slightly 
less. 

We notice second that the value of the compression depends on how 
good the approximation is. The more accurately the ED's represent the 
WHD's, the more valuable the compression is. In our case the typical 
difference between matching ED and WHD is about 7 percent. More 
exactly, 

vI: (ED - WHD)2 II: WHD2 

is in the neighborhood of 7 percent. Though not striking, it seems en­
tirely adequate when matched with the compression we have. 

A scatter diagram of WHD's against ED's is shown in Fig. 5. Each 
point displays the WHD and ED between one pair of malfunctions. 
The figure contains almost 5000 points, corresponding to all possible 
pairs from among the list of 100 malfunctions referred to in the next 
section, and is impressive testimony to how well the ED's match the 
WHD's. 

4.3 How to Compute the GeOJnetric lYJ odel 

In this section, we describe the necessary computation very briefly, 
just enough to take the mystery out of it. Suppose then that we wish to 
place 10,000 points in some space - we will use the plane to make it 
easier to visualize, though exactly the same procedure works in three­
dimensional space or six-dimensional space. The information we have 
consists of the approximately 50,000,000 WHD's between these points. 

We start by placing the 10,000 points in the plane in any arbitrary 
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Fig. 5 - Scatter diagram of weighted Hamming distance (WHD) against 
Euclidean distance (ED). Each point represents one pair of malfunctions. All 
pairs from among 100 malfunctions are displayed. 

configuration, and pinning them down so that they cannot slide about. 
N ext, we buy 50,000,000 ideal springs. These springs are massless and 
all have the same restoring force ratio (Young's modulus) - let us 
suppose the common value is 1. However, the springs are all of different 
lengths. In fact, each spring has a length equal to one of the WHD's. 
N ow we fasten each spring between the two appropriate points. Thus, 
between points i and j we attach the spring whose unstretched length 
is the WHD between patterns i and j. Of course it is necessary to stretch 
or compress the springs, and we do so as required. Naturally these ideal 
springs do not buckle when compressed, and furthermore several of these 
springs can occupy the same space at the same time, so that we do not 
need to worry about how they cross each other. 

After all the springs are attached, we suddenly pull out all 10,000 
pins, permitting the points to slide about (but only on the plane - we 
do not permit them to fly up in the third dimension). If there is some 
dissipative force, such as air resistance or friction, the springs and points 
will eventually come to rest. By the laws of physics, they will come to 
rest at a minimum energy configuration, that is, a configuration at which 
the potential energy stored in the springs is a minimum. 
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What can we say about this configuration? The potential energy in 
each spring, according to our assumptions, is (ED - WHD)2. The total 
energy is the sum of all these. Thus, the final resting configuration is one 
which minimizes this sum, or almost the same which minimizes 

Our computation is basically an imitation of the spring motion. We 
also start with an arbitrary configuration. Then we figure the net force 
on each point exerted by the springs, and move all the points where 
they would be a short time later. We again figure the net forces, and 
again move the points. After enough repetitions, the net forces reach 0, 
and we know that we have reached the minimum energy configuration. 

This is a good intuitive description of what we do, but we would not 
like to leave the impression that our computation is in any way unrigor­
ous. In the language of numerical computation, we are seeking to mini­
mize the expression given above. To do so, we perform an iterative 
process known as the method of gradients (or the method of steepest 
descent). Thus, we start with an arbitrary configuration, and compute 
the (negative) gradient, which is just the same thing in this case as the 
net forces on all the points. We move a little in the direction of the 
(negative) gradient - that is, just the motion along the force vectors. 
Then we again calculate the gradient and again move. When the gradient 
is zero, we have reached a minimum. 

Of course, we cannot really perform this computation as described 
on all 10,000 points at once. To perform one single movement would 
require nearly 30 hours (on the IB1VI 7090), even if we could manage to 
keep all the numbers required in the internal memory. 

To get around this difficulty we hoisted ourselves by our own boot 
straps. We started with 33 points, and performed the computation 
exactly as described. Then we "pinned down" these 33 points, and in­
troduced 67 more points, and 33 X 67 "springs." During this computa­
tion only the 67 new points were allowed to move. Thus, we had 100 
points located, though not quite perfectly. We then performed the origi­
nal computation on these 100 points, starting with the configuration we 
had already achieved. This just moved the 100 points a little - it 
was a "polishing" operation. We then picked a set of 20 from these 100 
points, in such a way that these 20 are well spaced over the region of 
space covered by the 100 points, with no pair of the 20 points too close 
together. We "pinned down" these 20 points very firmly, and intro­
duced 20 X ] 0,000 "springs". During this computation only the 10,000 
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new points were allowed to move. This located all 10,000 points, though 
not quite perfectly. We simply tolerate this imperfection (though there 
are practical ways to reduce it if it should seem intolerable). 

The reason this computational scheme is practical is that when we pin 
down the 20 points and introduce 10,000 new points, we can handle them 
one by one. Thus, at any time we only need to deal with 20 fixed points, 
one movable point, and 20 springs from the movable point to the fixed 
points. After the one movable point comes to rest, we remove it before 
introducing the next. 

4.4 lVhy Six Dimensions? 

As we have noted, we do not achieve perfect equality between the 
ED's and WHD's. The typical difference is about 7 percent. Obviously 
in seven dimensions we can reduce this figure while in five dimensions 
it would be larger. The more dimensions, the better we can make the 
ED's match the WHD's. 

It would be possible to draw a curve of the typical error versus the 
dimension. (vVe would put dimension on the horizontal scale and error 
on the vertical scale.) We would then get a descending curve. On this 
basis, the more dimensions the better. On the other hand, from the point 
of view of information compression, the more dimensions the worse. 
Thus, we wish to strike a balance. 

The principle of parsimony advocates obtaining the highest compres­
sion possible while retaining "satisfactory fit". In other words, use as 
few dimensions as possible with the typical error satisfactorily small. 

Actually, we did not draw such a curve with the complete data. We 
did draw such a curve, however, with a small sample of the data (using 
a similar but more complicated model than the one we have described). 
For this sample, we computed the typical error for 2, 4, 6, and 8 dimen­
sions. The typical error in 4 dimensions seemed too large, while in 6 
dimensions it was tolerable. Going to 8 dimensions produced little reduc­
tion. Thus, we decided to use 6 dimensions. 

Another reason for using 6 dimensions was the fact that when W. 
Thomis used a different scheme for coordinatizing faults, he needed 6 
coordinates, which seemed to point to 6 dimensionality also. It is clear 
from this discussion, however, that 5 or 7 dimensions would also be 
satisfactory, but 4 or 8 would probably not be. Though it is difficult to 
say which is best, we see that 6 dimensions represents a reasonable com­
promise value for these data. 
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4.5 Tests and Hyperplanes:_ 

-The geometric model 'may have considerabfy more meaning than' ,~e 
have indicated so far. It may be possible to represent tests as ,veIl as 
malfunctions. We do not represent tests by points, however, but by 
"hyperplanes" . 

In general, a hyperplane is an infinite flat cut which divides space into 
two parts. In three-dimensional space a hyperplane is an ordinary flat 
plane. 

In two-dimensional space, that is, in the plane, a hyperplane is a 
straight line. In one-dimensional space, that is, in the line, a hyperplane 
consists of a single point. In n-dimensional space, a hyperplane is an 
(n - I)-dimensional flat subspace. (Hyperspace is an old-fashioned 
name for a higher dimensional space, and the hyperplane is the analogue 
in these spaces of the plane in three dimensions.) 

In the following geometric discussion it would be well to have a mental 
picture of either two or three-dimensional space. Each hyperplane is 
then visualized as a line or a plane. 

Thus, suppose we have space (actually six dimensional but visualized 
as two or three-dimensional). In it are 10,000 points representing mal­
functions. Now pick some particular test. Every malfunction which fails 
this test we color red; there are relatively few of them. Every malfunc­
tion which passes this test we color black; these are the majority of 
malfunctions. How are the red points situated? Are they scattered among 
the black ones? 

There is reason to believe that in most cases the red points and the 
black points may be separated by a hyperplane. That is, the red points 
and the black points are not all mixed up. If space is two-dimensional, 
this means that a straight line can be drawn with the red points on one 
side and the black points on the other. If space is three dimensional, 
then a plane exists with the red points all on one side and the black all 
on the other. 

In a sample from the lVlorris data involving 27 malfunctions and about 
200 tests placed in 6 dimensions, we found this to be true. In some cases, 
the hyperplane did not quite perfectly separate the two kinds of points; 
a few points would be slightly on the wrong side, but the amount by 
which the points were on the wrong side was extremely small. 

We believe that most of the tests would be representable as hyper­
planes in the main body of data analyzed. If a few tests are not represent­
able, that would probably say something interesting about these tests. 
Among other things, it might suggest reducing their weight. 
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If we suppose that the tests can, in fact, be represented by hyperplanes, 
then we can calculate the information compression of the model in a 
different way. The original data consists of about 

10,000 X 650 == 6,500,000 

bits. To represent both the malfunctions and the tests in 6 dimensions 
requires about 

(10,000 + (50) X 6 == 64,000 

numbers. From these numbers we can reconstruct the original data 
(though not perfectly), for to find whether a particular bit is 0 or 1 we 
merely need to check which side of some hyperplane some point lies on. 
The imperfections result from the fact that the hyperplanes from some 
tests do not perfectly separate the malfunctions which pass from those 
which fail. 

From this viewpoint, the information compression consists of repre­
senting 6,500,000 bits by 64,000 numbers. This viewpoint probably 
provides a more meaningful measure than the simpler one presented 
before. 

4.6 Utility of the Geometric Model 

There are several kinds of utility for the geometric model. One kind 
is theoretical and long range. By examining the data in the model, we 
hope to learn something about the structure of the data. It is basic 
procedure in data analysis to look at the data with one's common sense 
on the alert. Where the data can be represented in compact form, this is 
much more useful. 

Another utility of the geometric model is very immediate. To have the 
malfunctions represented by coordinates simplifies the process of finding 
nearby malfunctions. To illustrate this most clearly, let us suppose for 
the moment that the malfunctions could be represented in two dimen­
sions instead of six. Imagine the malfunctions placed on a "map". 
This would resemble a photograph of the starry night-sky. Now suppose 
a new malfunction is to be identified. We would calculate its coordinates, 
plot its position on the map, and look for the nearest few points. Suppose 
on the other hand that we wished to find the nearest few points without 
the aid of the representation in two dimensions. In principle this is easy 
enough. It is only necessary to run through every malfunction in the 
dictionary one by one, and compute its WHD from the unknown mal­
function, and finally pick out the smallest few WHD's. Oomputationally, 
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however, this is very much more difficult than use of the map. We see 
from this that the map very much simplifies the computation necessary 
to pick out the nearest few malfunctions. 

Unfortunately we cannot use the map in six dimensions. Other tech­
niques relying on the coordinates, however, are available. For example, 
we can cut space up into small cells, and list the malfunctions which 
occur in each cell. Then to find the nearest malfunctions to an unknown 
one, we look in the same cell and the neighboring cells. 

We may summarize this value of the geometric model as reducing the 
computation required to select nearby malfunctions. 

v. CLUSTERS 

5.1 The Region Containing all Malfunctions 

It will be helpful to know something about the "galaxy" of malfunc­
tions, that is, the region of 6-dimensional space in which the 10,937 
malfunctions lie. The "healthy machine" (no malfunction, or a malfunc­
tion which yields the test pattern of no failures) corresponds to a point 
with coordinates approximately 

1.0, 0.0, 0.7, 0.1, -0.8, 1.3. 

Rounded off to the nearest integer, these are 

1 0 1 0 -1 1. 

This appears to be fairly near the edge of the "galaxy". The center of 
the galaxy is approximately at 

2 0 2 0 -1 1. 

(By center, we mean the center of gravity, or average position.) If we 
exclude seven outlying malfunctions from consideration, then the ex­
treme values of each coordinate are 

mInIma -3 -9 
maXIma 11 5 

-4 -8 -8 
10 9 5 

-4; 
8. 

Thus, the range of each coordinate is roughly 14. Of course, the mal­
functions are not at all evenly scattered. A tremendously heavy con­
centration exists near the "healthy machine". Other dense spots also 
exist. 

To further study the distribution of the malfunctions in six-dimen­
sional space, we split space up into cells of uniform size and shape. (We 
avoided cubic cells because in six dimensions the corners of the cube 
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"stick out" rather far. Instead, we used the so-called "Voronoi regions" 
associated with the "body-centered cubic lattice". Each cell can be 
thought of as a six-dimensional cube with the corners chopped off.) 
There are 417 cells which contain malfunctions. Thus, the average "pop­
ulated" cell contains about 24 malfunctions. The cell containing the 
healthy machine, however, contains 1883 malfunctions. Altogether three 
cells contain more than a 1000 malfunctions each, while 162 cells contain 
only a single malfunction each. The median number of malfunctions per 
populated cell is 2. 

The Euclidean distance of a malfunction from the healthy machine is 
a measure of how severe the malfunction is. It is interesting to compare 
this measure with the more primitive measure consisting simply of the 
number of tests failed. In Fig. 6 there is a little circle for each cell. 
The horizontal coordinate is the Euclidean distance of the cell center 
from the healthy machine. The vertical coordinate is the average number 
of tests failed for the malfunctions in the cell. The dense region displays 
a definite relationship, even though the great scatter shows that it is a 
loose one. 

5.2 Clusters of Malfunctions 

Suppose you had a map of a city, and a list of the people who live 
there, together with various census information - address, income, na­
tional origin, age, education, etc. Suppose you wished to understand 
the social structure of the city. One obvious approach would be to 
identify different neighborhoods. You might find that one neighborhood 
had mostly high income residents, another might contain people mostly 
of one national origin, near a university you might find many people 
with higher education, and so forth. You would be seeking to identify 
clusters of people who live near each other and who share some common 
characteristic. 

We face exactly this situation. We have a six-dimensional "map", 
and we have a list of malfunctions. Ahout each malfunction we know 
whether it is a diode, amplifier, or flip-flop trouble, etc. Also, we know 
the specific nature of the trouble: what circuit it is in, how it operates 
there, and so forth. It is natural to look for clusters of malfunctions 
which are near each other in space (that is, which have similar test 
patterns) and which share some circuit characteristic. 

One reason for seeking clusters of malfunctions is to learn how mal­
functions affect the operation of the system. We may find that apparently 
similar malfunctions (for example, flip-flops in a single register which 
are stuck in the 1 position) do not form a cluster, that they produce 
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Fig, 6 - Each circle represents one of the 417 populated cells in 6-dimensional 
space. 

very different test patterns. When we inquire into why this happens, 
we learn something about the nature of the system (and of the diagnostic 
test program). On the other hand, we may find that apparently rather 
different malfunctions produce very similar results. For example, a 
flip-flop stuck in the 1 position may yield very much the same test pat­
tern that the same flip-flop stuck in the 0 position does (or it may not 
- we have observed both situations frequently). If these two malfunc­
tions are near each other, then we learn that the significant aspect of 
these malfunctions is merely that this particular flip-flop is out of order, 
and that the precise nature of its failure is not important. 
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Of course, whether a malfunction is in a diode or in a resistor (say) 
has no direct bearing on its position in space, because its position results 
solely from the diagnostic test data, which, in turn, reflect its effect 
on the overall operation of the machine. 

A cluster generally occupies a region of space without sharp bound­
aries. The malfunctions of the cluster are heavily concentrated at the 
center of the region, more lightly spread further out, and may sprinkle 
themselves out to a considerable distance. Thus, the boundaries of the 
region cannot be precisely located. It often makes sense to talk about 
the center of the cluster, however, which means the point of high con­
centration. 

In a city, different clusters of people may overlap. For this reason, 
one neighborhood may contain, say, two nationality groups together 
with a sprinkling of artists. In the same way, different clusters of mal­
functions often overlap, so the one small region may contain a mixture 
of malfunctions from several clusters. Occasionally, a cluster may totally 
dominate the region it occupies, so that practically every malfunction 
in its region belongs to it. 

In the most common case, when clusters overlap, there should be some 
explainable reason. We discuss some cases of this sort. 

Sometimes a very narrowly defined cluster may be a subcluster to a 
more broadly defined one. For example, we might have a small cluster 
of malfunctions whose common circuit characteristic is that they hold 
a particular wire down to a low voltage (prevent the lead from carrying 
the digit 1) under certain logical conditions (not necessarily identical 
among the malfunctions of the cluster). If this wire is one of a related 
group of wires, we may be dealing with a subcluster of a larger cluster 
of siinilar malfunctions involving any wire in the group. 

5.3 How Clusters are Found 

We wish to emphasize that clusters are not to be found by following 
preconceived notions as to which malfunctions resemble which other 
malfunctions. Instead one must try to look at the data with an open 
mind, or listen to what the data is trying to say. 

Concretely, the procedure used was to~xamine a small region of 
space which contains not too many malfun9tions. (When the data was 
still unfamiliar, we chose to examine region~ with only 5 or 10 malfunc­
tions, though later when our procedures improved we could handle many 
more.) We analyzed in detail the effects on the circuitry of every mal­
function in this region. We then asked ourselves what common element 
there was to all or most of the malfunctions involved. If we found what 
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appeared to be a common element, we then traced out by means of the 
circuit diagrams all of the malfunctions which shared this common ele­
ment, and noted their locations. If we found these to lie in a single com­
pact region, we considered that we had indeed identified a cluster of 
malfunctions. Of course the region involved would include the smaller 
region from which we started. On the other hand, if we found the mal­
functions with these characteristics to lie in several distinct regions, 
only one of which contained the original region, we knew that the mal­
functions formed not one but several clusters. In this case, it was neces­
sary to ask what characteristics differentiated the malfunctions in differ­
ent regions. 

Having identified a cluster as above, we did not always rest content 
with its description. We examined other malfunctions which lie in its 
region and asked whether a broader definition of the common charac­
teristics would include some of these (without including malfunctions 
in other regions). Thus, by a process of referring back and forth between 
spatial locations and circuit effects, we arrived at brief meaningful de­
scriptions for clusters. 

5.4 The Clusters We Found 

We have identified and described 23 clusters. It would require too 
much space to discuss them all, so we justillustrate our results briefly 
by a few examples. (Although specific circuits are named to avoid 
vagueness, readers unacquainted with the circuits of the CC should have 
no difficulty following the discussion.) A few more clusters are described 
in the appendix to illustrate some other aspects. 

The 23 clusters each contain from 6 up to about 350 malfunctions. The 
median number of malfunctions is 65, and the quartiles are 27 and 220. 

One cluster of 58 malfunctions is associated with two intertwined 
circuits which are called "Add 1 C" and "Add 1 D". (These circuits are 
used to add 1 to the C and D addresses in an instruction.) In Fig. 7 we 
show this cluster geometrically. As coordinates 3 and 6 vary most within 
this particular cluster, we use them to display the 57 points. 

In six dimensions, the center of this cluster is approximately at (It 
-1,2,!, -1,2). Extracting coordinates 3 and 6, we see that the center 
of the displayed set of points should be at (2, 2), which indeed it is. In 
the figure, we see that the points lie along a straight line of slope about 
1. (Experienced statisticians will cover up the 3 or 4 most deviant points 
to strengthen the visual impression, knowing that this aids the eye in 
forming a more valid impression of the goodness of fit. This is because 
the eye weights isolated points more heavily than points in a dense re-



INTERPRETATION OF DIAGNOSTIC DATA 1329 

3.0 

~ 
0 

2.51-
0 0 

0 
0 @ 00 88 0 0 

0 0 0 0 
<0 2.0r- 0 

UJ 88 Q, o () 

~ 0 ~<JP 
~ 
0 0 0 a: 

00 0 1.51-0 
U 

u.. 0 Q) 

0 0 0 

(/) 

x .« 1.01-
0 

0 

0.51-

a I I I I I I 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

AXIS OF COORDINATE 3 

Fig. 7 - The 57 malfunctions of the "Add Ie Add ID" cluster, displayed in the 
plane of coordinates 3 and 6. 

gion, whereas equal weight should be attached to all points.) In fact, 
in six dimensions, the points lie more or less along a straight line. While 
we do not know the significance of this, it tends to indicate that the 
cluster has some internal structure. 

The clusters are generally associated with "actions" rather than with 
circuits. By this we mean that the malfunctions in a cluster are often 
spread over many circuits which are considered as quite separate func­
tional components by the circuit designers. The malfunctions in the 
cluster, however, always have their major disruptive effect on what 
circuit designers would consider as a specific action. The cluster above 
is unusual in this respect because it can be interpreted either way. The 
following examples are more typical. 

One action consists of reading one or two bits from the BGS (outside 
the CC) and placing them in one or two flip-flops of the access register 
(in the CC). A cluster of about 230 malfunctions is associated with this 
action. The most typical malfunctions in this cluster cause the bits to be 
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placed in extra flip-flops of the register, or to be placed in the wrong 
flip-flops, or not to be placed in any flip-flops at all, under various condi­
tions. The malfunctions in this cluster are often in one circuit (the CD 
memory), but occur in several other circuits as well. 

Another action consists of reading one or two bits from the BGS 
and making a decision which depends on their values. A different cluster 
of about 220 malfunctions is associated with this .action. The malfunc­
tions in this cluster are scattered over many circuits and are of diverse 
types. Within this cluster we could pick out three subclusters, associated 
with much more specific actions. One such action consists of reading a 0 
from the physical BGS tube numbered 0; the associated cluster has about 
33 malfunctions. Another action consists of placing a bit from the BGS 
into a flip-flop (in the CC) called BGO, which holds it temporarily; 
the associated cluster has about 27 malfunctions. Another action con­
sists of pulsing a lead called D06 from the D translator; the associated 
cluster has about 23 malfunctions. (The reason that this subcluster 
belongs in this cluster is too complex to explain here.) 

VI. BY -PRODUCTS 

6.1 The 111 ain Reason jor Inconsistent Diagnostic Patterns 

During the cluster analysis we discovered several interesting by­
products. The most significant one is the main reason for inconsistent 
diagnostic results. 

It was discovered very early by those making the dictionary that the 
same malfunction could produce quite different diagnostic results on 
different occasions, that is, the diagnostic results are inconsistent from 
one occasion to another. There is great variability among malfunctions 
in this respect. Some are very badly inconsistent, and were never ob­
served to produce precisely the same diagnostic pattern twice. Other 
malfunctions are very stable, and are never known to produce any in­
consistencies at all. Also, there is great variability among the diagnostic 
tests. Some participate in many inconsistencies, others in none. 

There has been much speculation as to the cause of these incon­
sistencies, and many possible explanations have been offered. However, 
it has been difficult to decide which explanations actually are correct. 

We analyzed large numbers of recorded inconsistencies in detail. 
We believe that we have established the dominant reason for the actual 
observed inconsistencies. It is the differences in the state of the CC at 
the time the diagnostic test is performed. One source of such differences 
is externally controlled flip-flops which signal the state of external 
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circuits (for example, whether the ringing signal is on or off). Still 
another source consists of flip-flops which the CO attempts to initialize 
to a certain state before diagnosis but which are not actually initialized 
due to the malfunction. Since diagnosis is interspersed with the normal 
processing of telephone traffic, failure to initialize a flip-flop means that 
its value at the start of the diagnostic sequence will vary in an unpredict­
able manner from one diagnostic run-through to another. 

During construction of the dictionary, the CO had no telephone traffic 
to process. Moreover, the dictionary making program was present. These 
two factors, operating through the sources of inconsistency just men­
tioned, caused some fairly regular differences between the dictionary 
patterns and the field test patterns. For example, during dictionary 
construction many externally controlled flip-flops did not ever change 
state because the corresponding circuits were not used. 

These observations do not solve the program of how to handle in­
consistent diagnostic patterns, but they do perhaps provide a framework 
within which it is easier to attack the problem. 

6.2 Three Incidental Discoveries 

We have suggested that browsing through the dictionary data can 
reveal unexpected conclusions, if the browsing is facilitated by methods 
which permit this enormous body of data to be examined incisively. 
Our geometric model is one such method. We briefly mention three 
easily describable discoveries by way of example. 

One incidental discovery was that the relay point which simulated a 
particular shorted diode in a particular AND gate (malfunction 24 in 
package F52618) developed a high resistance during much of the time 
that the dictionary data was being taken. Thus, the malfunction closely 
resembled an open diode, rather than a closed diode. 

A second discovery was an error in the test program by which the data 
was developed. In particular, the three instructions which constitute 
test HPll were misarranged. 

A third discovery was that one of the (hardware) malfunction simula­
tors stepped through the malfunctions in the wrong order. This particu­
lar simulator could be substituted for anyone of the current-supplying 
OR gate cards. It had the capability of acting as a properly functioning 
card, an unplugged card, or a card with either a shorted diode, an open 
diode, or an open resistor on anyone input lead. 

For example, for card type F52626, which consists of 3 two-input gates 
and has 6 input leads, Table I shows both the intended order and the 
actual order in which the 19 malfunctions were stepped through. 
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TABLE I 

Input Nature of malfunction Should have been But was actually 
lead malfunction number malfunction number 

unplugged card 1 1 

shorted diode 2 4 
1 open diode 3 2 or 3 

open resistor 4 2 or 3 

shorted diode 5 6 
2 open diode 6 5 or 7 

open resistor 7 5 or 7 

shorted diode 8 10 
3 open diode 9 8 or 9 

open resistor 10 8 or 9 

shorted diode 11 14 
4 open diode 12 11 or 12 

open resistor 13 11 or 12 

shorted diode 14 18 
5 open diode 15 13 or 15 

open resistor 16 13 or 15 

shorted diode 17 19 
6 open diode 18 16 or 17 

open resistor 19 16 or 17 

6.3 "Forward" and "Backward" Acting Malfunctions 

It seems worthwhile here to emphasize the important difference be­
tween "forward" and "backward" acting malfunctions. While this 
distinction is not original with us, its importance was made abundantly 
clear by the great complexity of test results for backward acting mal­
functions versus the relative simplicity for forward acting malfunctions. 

Suppose information flows between circuits A, B, C, and X as shown: 

/' X ~B. 
A ~ '\. 

C 

Suppose circuit X has a malfunction. If this malfunction causes B to 
misoperate, we say that the malfunction acts "forward"; if it causes A 
or C to misoperate, we say that it acts "backward". For example, in 
the Morris CC circuitry, an open diode in an AND gate was forward­
acting, as it only altered the output of the AND gate. However, a shorted 
diode in an AND gate was often backward-acting (as well as forward­
acting) depending on the circuit configuration, as it could prevent the 
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input lead voltage from rising, thereby preventing other branches of the 
input lead from performing their intended functions. 

It hardly seems possible to design a circuit which avoids forward­
acting malfunctions. For if the information which flows along normal 
paths is wrong, the recipient circuit cannot be expected to act as in­
tended. 

On the other hand, one might hope to build a circuit in which back­
ward-acting malfunctions are kept to a minimum. (Though, of course, 
this feature might have to be balanced against other desirable features.) 
Avoidance of backward-acting malfunctions would surely simplify the 
diagnostic problem greatly, not only during normal maintenance, but 
also during the process of debugging the first model of the machine. 

VII. CONCLUSIONS 

We list several conclusions which are surely true for the data described 
in this paper, and which might well hold for similar diagnostic data from 
other digital machines. 

(i) If different diagnostic tests are weighted suitably, then the 
weighted Hamming distance between test patterns is a meaningful 
measure of dissimilarity between malfunctions. 

(ii) It is possible to represent the malfunctions geometrically as 
points in a space of low dimensions in such a way that the Euclidean 
distances between the points approximate the weighted Hamming 
distances between the corresponding patterns. 

(iii) There may also be a geometric representation of the diagnostic 
tests as hyperplanes (flat cuts) in the same low dimensional space, such 
that each hyperplane separates most of the malfunctions which fail 
from the malfunctions which pass the corresponding test. 

(iv) Representation of diagnostic patterns as points in low dimen­
sional space offers immediate possibilities as a tool for locating mal­
functions. 

(v) This representation and the concurrent representation of tests 
as hyperplanes offer longer range possibilities for selecting good diag­
nostic tests, for eliminating redundant or useless tests, for improving 
diagnostic procedures, and for generally studying the relationship of 
malfunctions to diagnostic tests. The possible value of these representa­
tions results both from the data compression they yield and from their 
possible validity as models of nature. 

(vi) Studying the diagnostic results in detail,· which is made much 
easier by the techniques discussed in this paper, can reveal weaknesses 
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in the diagnostic programs and in the malfunction-simulation hardware. 
Such study also leads to insight and understanding which is not easily 
acquired by other means. 

APPENDIX 

A.l "Repeat Order" Cluster 

There is a special circuit for repeating certain orders up to a maximum 
of 32 times, with the address in the order being incremented by 1 each 
time. In some cases, a second part of the instruction which specifies 
a flip-flop in one of the access registers is also incremented by 1 each 
time. The major use of this repeat facility is in writing or reading a whole 
word between the BGS (which has single bit readout) and an access 
register. 

One cluster consists of about 200 malfunctions in the repeat counter, 
which counts the repetitions. Stuck flip-flops in the counter, bad carries, 
and bad input are typical. 

The center of gravity of this cluster is about at 

2, -1, 2!, 1, -1, 1. 

As this center is quite close to the center of the first cluster in Section 
5.4, a great deal of overlapping might be expected. On examination 
this turns out to be correct. 

The intimate connection between these two clusters of malfunctions 
is natural because both circuits involved are used only during repeat 
orders. In fact, it might be more natural to treat the two clusters as a 
single cluster of malfunctions whose common element is that they disturb 
the functioning of repeat orders. 

A.2 "Zero Flip-Flop Read~·ng" Cluster 

There are about 80 "miscellaneous flip-flops" which can be explicitly 
read by the "read flip-flop" order. This cluster consists of 311 malfunc­
tions whose common characteristic is that when any flip-flop whose 
value is 0 is read in this way, the answer is frequently 1. 

The "read flip-flop" order operates through a large "flip-flop reading" 
circuit which is shown in Fig. 8. The action of this circuit is to transfer 
the value of the selected miscellaneous flip-flop into a control flip-flop 
known as FF, and to use the value from there. There are about 230 
so-called "isolation" diodes through which the various miscellaneous 
flip-flop values are funnelled into FF. The circuit is so arranged that 
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Fig. 8 - Simplified block diagram for flip-flop reading circuit. 

open-circuiting anyone of these diodes causes trouble when reading a 
o value from any miscellaneous flip-flop (though a 1 value is read 
correctly). For half these diodes, an open circuit causes the value read 
to be the value left in FF from before. For the other half of these diodes, 
an open circuit causes both the "set" and "reset" leads of FF to be 
pulsed simultaneously; we do not know what effect this has, but we 
believe that it usually leaves FF unchanged. 

Besides open-circuited isolation diodes, removal of a package which 
contains several of these diodes, or removal of a gate package which 
feeds into these diodes, has the effect of causing a 0 value always to be 
read as a 1. IVlalfunctions of this sort also belong to this cluster. 

There are a variety of other malfunctions which belong to this cluster. 
For example, there is an amplifier which feeds the "set" input to FF 
during the "read flip-flop" operation. If its output is stuck in the high 
voltage state, or if it is removed (which has almost identical circuit 
results), or if the diode through which it feeds is open-circuited, we 
should and do obtain malfunctions in the cluster. If the amplifier which 
feeds the "reset" input to FF during "read flip-flop" operation is stuck 
at low voltage output, we obtain a malfunction in the cluster. If the 
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gating lead (called RFFT), which gates the "set" and "reset" impulses 
into FF during "read flip-flop" operation, is prevented from operating 
by a short-circuited diode just on those occasions when a ° value is 
being read, we again obtain a malfunction in the cluster. 

A few of the malfunctions which belong to the cluster require deeper 
explanations. For example, if the RFFT lead (referred to above) never 
operates, because the amplifier feeding it is stuck at low voltage output, 
we again obtain a malfunction in the cluster. The effect of this malfunc­
tion is that FF always retains its previous value during a "read flip-flop" 
operation, regardless of whether the value being read is ° or 1. It is not 
immediately clear why this malfunction should give test patterns closely 
resembling others in the cluster. However, by analyzing the diagnostic 
test program, we find that FF (which is also used by other operations) 
is most often left with a 1 in it upon entering the critical diagnostic 
test operations. Thus, this malfunction most often causes errors in 
reading the value 0. 

This cluster has relatively sharp boundaries. Also, it is a "pure" 
cluster, that is, all the malfunctions in the region of space it occupies 
belong to it; other clusters do not overlap. The center of gravity of the 
cluster is approximately at 

2!, 1, 1, 0, 2, 0. 

The extreme values of the various coordinates are as shown: 

mInIma 1, 0, 0, -2, 0, -1, 
restricted minima 1, 0, 0, -1, 1, 0, 
restricted maxima 4, 2, 2, 1, 2, 1, 
maxima 6, 4, 2, 2, 3, 4. 

By "restricted maxima" we mean the maximum values for the 291 most 
centrally located of the 311 malfunctions; the other 20 are rather thinly 
sprinkled. 

No two malfunctions in this cluster have identical test patterns. This 
may seem strange, for those package removals which cause a ° value 
always to be read as a 1 have identical circuit effects. Also, those isola­
tion-diode open-circuits that cause a ° value to be read as whatever 
was left in FF from before have identical circuit effects. Why should 
the malfunctions within one of these groups produce diverse test pat­
terns? 

In the case of the package removals, almost all the variations in the 
test patterns result from reading flip-flops whose value is controlled 
from outside the CC and varies from time to time. Some examples are 
flip-flops RTA ("ringing tone active"), BSYT ("busy tone"), RNGS 
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("ringing scan") and 10lVISCK ("10 millisecond clock"). When the 
value happens to be 1 the value is read correctly and the corresponding 
diagnostic tests are passed; when the value is 0, it is read incorrectly, 
and the contrary happens. Several of these flip-flops are read (in effect) 
four times during the diagnostic program, and we are able to follow 
any changes which take place. The slower changing ones like RTA 
are indeed observed to change either not at all or only once during the 
course of a single diagnostic run-through, while a faster changing one 
like RNGS is sometimes observed to change more often. 

In the case of the isolation-diode open-circuits whose effect is to 
leave in FF its previous value, the test results are subject to the same 
source of variability. However, they are also subject to the additional 
variability of depending on the previous contents of FF. While this is 
more often 1 than 0, it is 0 significantly often. Thus, a test which the 
previous group fails may be passed by this group, and vice versa. All 
the tests ever failed by this group, however, include all the tests ever 
failed by the previous group, and more as well. 

An interesting sidelight concerns the difference between even-num­
bered and odd-numbered tests. The diagnostic tests are conducted in 
pairs, with nondiagnostic work intervening between pairs. For this 
reason, each even-numbered test is entered from within the diagnostic 
program; analysis reveals that in this case FF contains a 1 when the 
individual test sequence is entered. As the relevant program was not 
available, we were unable to determine the situation for odd-numbered 
tests, but we infer indirectly that FF could have either value depending 
on unknown circumstances. As a consequence, certain tests on different 
flip-flops which are exactly similar to each other (including the fact 
that the flip-flop normally has value 0 at the time) fail or pass depending 
on whether the test is even or odd-numbered. There are several examples 
of this sort. 

The reader may suspect that our circuit analysis is incomplete, and 
may suspect that the pattern differences for different malfunctions 
actually reflect different circuit effects. Fortunately we have at least 
three cases in which the same identical malfunction in this cluster was 
diagnosed twice. The differences between the test patterns for the self­
same malfunction were quite as great as between test patterns for differ­
ent malfunctions of one type in the cluster. 

A.3 Two Clusters Affecting the BGS Address Register 

These two clusters give a useful insight into the process of cluster 
analysis. It is probably true that they should be merged into one larger 
cluster which includes them both. 
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One consists of about 60 malfunctions affecting ,the EPa (execute 
program order) gating pulse which comes through a transformer into 
the BGS address circuit. This transformer serves only the .BGS address 
circuit and an associated circuit. Almost all the malfunctions in this 
cluster are shorted diodes which short circuit this EPa lead. One or two 
are malfunctions in the transformer which prevent the pulse from 
appearing. 

The second cluster consists of about 65 malfunctions which cause 
one or both of the gating leads BSBGX or BSBGY to operate or fail 
to operate. These leads are the leads which enable input to the X and 
Y halves of the BGS address register. 

The centers of these two clusters are approximately at 

3~, -1, 2~, 

and 

4, -1, 2, -!, 0, 2. 

Thus, they are fairly close together by comparison with the sizes of 
the clusters, which suggests that the clusters may overlap a good deal. 
Closer examination reveals that they do overlap a great deal. 

This suggests that we do not have two distinct clusters but two types 
of malfunctions in one cluster. The next natural step would be to specu­
late that the common element to both clusters is a serious input diffi­
culty to the BGS address register. To carry the analysis further we 
would then examine the other malfunctions in the region of space which 
these two clusters occupy, and see if many of them fit this new descrip­
tion. If so, we would systematically trace out (from the circuit diagrams) 
all like malfunctions. If essentially all of them should lie in this same 
region, then we would consider that we had arrived at a satisfactory 
cluster. 
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Corn parison Between a Gas Lens and Its 
Equivalent Thin Lens 

By D. MARCUSE 

(Manuscript received June 23, 1966) 

Gas lenses can be replaced by equivalent thin lenses. This paper shows a 
comparison between ray traiectories through 100 gas lenses and 100 equiva­
lent thin lenses. The agreement is good enough to warrant the use of equiva­
lent thin lenses for the study of the transmission properties of beam wave­
guides made of gas lenses. 

1. INTRODUCTION 

Gas lenses have been studied for their potential use as focusing ele­
ments in beam waveguides.1 •2 •3 •4 Two earlier papers2 •3 were concerned 
with the study of the optical properties of a particular gas lens (see 
Fig. 1) and came to the conclusion that certain types of gas lenses be­
have as optically thin lenses. The equivalent thin lens approximating the 
optical properties of the gas lens is not flat but deformed to fit the shape 
of the principal surface of the gas lens. 

The definition of the equivalent thin lens is based on the optical 
properties of the gas lens for input rays parallel to the optical axis. For 
those rays the two lenses are optically equivalent by definition. This 
equivalence need not necessarily hold true for arbitrary input rays. To 
show that the equivalent lens can replace the gas lens for arbitrary in­
put rays is the purpose of this paper. For the purpose of optical wave­
guides a gas lens can be replaced by an equivalent thin lens if the ray 
trajectories through many gas lenses coincide reasonably closely with 
the ray trajectories through the equivalent thin lenses. A computer 
simulated experiment was conducted to determine the ray trajectories 
through 100 gas lenses and through 100 equivalent lenses and to compare 
their results. It will be shown in this paper that the two ray trajectories 
are very nearly the same. This result allows us to use the equivalent 
thin lenses to study the light guidance properties of gas lenses. This re­
placement is particularly desirable to examine the wave optics properties 
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Fig. 1- Tubular gas lens. A cool gas is blown into a warm tube. 

of gas lenses since it would be prohibitively complicated to solve the 
problem of wave propagation through the actual gas lens. 

II. RAY TRACING THROUGH GAS LENSES AND THIN LENSES 

The details of determining the principal surface and focal length of a 
gas lens are discussed in Ref. 3. Typical results of the principal surface 
and the dependence of the focal length on ray position are shown in Figs. 
2 and 3,. Strictly speaking there are two principal surfaces. Since they 
coincide rather closely, however, only one will be considered. 

The equivalent thin lens is assumed to have the shape of the principal 
surface of the gas lens, as shown in Fig. 2, and is assigned the focal length 
f of the gas lens with its dependence on radius as shown in Fig. 3. 

Ray tracing through the gas lens is accomplished by numerical inte­
gration of the ray equation. Since rays are being traced through 100 gas 
lenses in succession, high accuracy is required. For that reason I used 
the exact ray equation instead of the approximation which was sufficient 
for the purpose of Ref. 3. The ray trajectory in the gas lens is obtained 
by numerical integration of the ray equation. This trajectory, however, 

Fig. 2 - The principal surface of the tubular gas lens. The angles used for ray 
tracing are indicated. 
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Fig. 3 - Focal length dependence on radius for the tubular gas lens under 
typical operating conditions. 

cannot be used for comparison with the ray trajectory through the equiv­
alent lenses. To compare the two trajectories, the ray entering each gas 
lens was extended in a straight line into the lens to find the point at 
which it intercepted the principal surface. This point was used for com­
parison with the ray trajectory through the thin lenses. 

Ray tracing through warped thin lenses has to be done with care since 
it is easy to violate laws of nature. One might be tempted to use the usual 
procedure for straight thin lenses and simply break each ray entering 
the lens at a distance r from the optical axis by an angle {3, which is 
independent of the input angle, according to 

r 
tan {3 = - J' (1) 

It was pointed out in Ref. 5 that (1) violates Liouville's theorem of 
statistical mechanics and that one has to use the equation 

sin "{I = sin "(2 + F (r) . (2) 

The angle "{I is formed between the input ray and the direction normal to 
the lens surface and "{2 is the angle between the normal direction and the 
output ray, Fig. 2. To compute the ray trajectory through the thin lens 
we have to determine the angle "{I from the input angle al of the ray with 
respect to the optical axis and the angle 0 of the lens normal with respect 
to the optical axis, 

(3) 
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Then we determine 1'2 from (2) and obtain a2 from the equation 

The function F (r) in (2) is determined from the known focal length of 
the lens. If a1 = 0, we obtain from (3) 1'/ = - o. The angle a2 for an 
input ray parallel to the optical axis is known from the focal length of 
the lens 

tan a/ r 

J' 
so that 

The function F (r) is therefore, determined from 

F (r) = sin 1'1' - sin 1'2', (5) 

This complicated procedure does not lend itself easily to the formulation 
of a difference equation to determine the ray trajectories. An analytical 
solution for the ray trajectories through warped thin lenses cannot be 
obtained as easily as for thin straight lenses. 6 However, numerical ray 
tracing with the help of an electronic computer is only slightly more in­
volved and time consuming as for thin straight lenses. 

The results of ray tracings through gas lenses and equivalent thin 
lenses are shown in Figs. 4 and 5. The solid curve is the gas lens ray 
trajectory, the broken curve is the corresponding ray trajectory through 
the equivalent thin lenses. The points entered in these curves are the 
points of intersection of the (extended) rays with the principal surface 
of the gas lens or with the equivalent thin lens. These points were con­
nected by straight lines. This procedure represents the ray trajectory 
through the thin lenses exactly. For the gas lenses it gives the exact 
ray trajectory only outside of the lenses. The two figures show the ray 
trajectories only from lens 62 to 100, the agreement is better at the be­
ginning of the trajectory. 

The two trajectories agree very well in Fig. 4. If the radius of the gas 
lens tubes is assumed as a = 3 mm the ratio of lens spacing D to lens 
radius a (D/a = 1200 for Fig. 4) corresponds to lenses spaced 3.6 m 
apart. Fig. 5 was computed with a ration D / a = 330 so that with a = 3 
mm the lens spacing would be D = 0.99 m. Even for lenses spaced that 
close the concept of equivalent thin lenses works quite well. 

These results show that the gas lenses can be replaced by equivalent 



EQUIVALENT THIN LENS 1343 

0.5 

0.4 

0.3 

0.2 

O.t 

~ 0 a 
-O.t 

-0.2 

-0.3 

-0.4 

-0.5L-~ __ ~~ __ ~_L __ ~~ __ ~_L __ ~_L __ L__L __ L__L~~_L~ __ ~ 

62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 tOO 
N 

Fig. 4 - Comparison of ray trajectories through gas lenses and equivalent 
thin lenses. n = lens number, a = radius of gas lens, D = lens spacing, fo = focal 
length of rays close to the optical axis, L = length of gas lens. D/a = 1200, D/fo = 
2.16, L/a = 50. 

thin lenses. This replacement does not simplify the problem of ray trac­
ing or of tracing wave field through the gas lenses sufficiently to make it 
accessible to an analytic treatment but it simplifies the numerical treat­
ment greatly and reduces the time of numerical calculations to an eco­
nomically acceptable level. 
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Deformation of Fields Propagating 
Through Gas Lenses 

By D. MARCUSE 

(Manuscript received June 23, 1966) 

The concept of a thin lens equivalent to a gas lens is used to calculate 
distortions of off-axis Gaussian fields in beam waveguides composed of gas 
lenses. A computational method for the numerical solution of this problem 
based on the Kirchoff-Huygens diffraction integral is developed. It is shown 
that off-axis Gaussian fields deform considerably as they travel through a 
sequence of gas lenses. These deformations are substantial even though the 
lens distortions may be sl1wll. If the light beam deforms it is hard, if not 
impossible, to steer it back on-axis. This problem can be avoided if smne 
means of beam redirection are used to keep the field on-axis, thus preventing 
the occurrence of significant beam deformation. 

1. INTRODUCTION 

Interest in optical communications has stimulated research to find a 
suitable optical transmission medium. The beam waveguide first sug­
gested by Goubau1 appears to be an efficient optical waveguide. It is 
composed of lenses which periodically refocus the light beam, counter­
acting its tendency to spread apart by diffraction. 

Gas lenses have been suggested as focusing elements of beam wave­
guides.2 •3 •

4 Of the various types of gas lenses, the tubular gas lens, Fig. 
lea), has been studied in some detaip·4 This gas lens can be represented 
by an equivalent thin lens which is warped to fit the shape of the princi­
pal surface of the gas lens and which is given its focal length with the 
proper dependence on its radius. It was shown in Ref. 5 that ray tra­
jectories through 100 gas lenses coincide closely with ray trajectories 
through the corresponding equivalent lenses. Replacing the complicated 
gas lens with the equivalent thin lens simplifies consider,ably the study 
of beam waveguides composed of gas lenses. 

In this paper, we will make use of the equivalent thin lens concept to 
investigate the propagation of wave fields through a beam waveguide of 
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Fig. 1- (a) Schematic of the gas lens indicating the definition of principal sur­
face and focal length. (b) The equivalent warped, thin lenses representing the 
gas lens beam waveguide. 

gas lenses. The justification for replacing the gas lenses with equivalent 
lenses comes from geom~tric optics.s One might wonder if the argument 
based on geometric optics can be carried over into wave optics. The 
geometric optics description neglects diffraction effects. Inasmuch as 
diffraction effects can be neglected as the field passes through the lens, 
the geometric optics description should give the correct answer. Based 
on this line of reasoning, one may expect the equivalent thin lens to be a 
good approximation, as long as the gas lenses are short compared to their 
spacing. 

The wave optics properties of the beam waveguide composed of gas 
lenses are obtained using a two-dimensional version of the scalar Kirch­
off-Huygens diffraction integral. The problem had to be limited to two 
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dimensions to make it tractable for computer calculations. This simpli­
fication can be visualized as replacing the actual lenses by cylindrical 
lenses. 

We study how off-axis field distributions with a Gaussian intensity 
profile propagate through the beam waveguide. Unfortunately there are 
further limitations on the physical problem we can compute, imposed 
by the limited size of the available computer memory. The calculations 
are accelerated if as much of the integral kernel as possible can be stored 
in the machine without having to recalculate it each time it is needed. 
The IBM 7094 used for these calculations has 24,000 storage locations 
available in its memory. Since we are dealing with a complex kernel, 
100 integration points across the (linear) lens require 20,000 storage 
locations. This means that we can use no more than 100 integration 
points to compute our problem. This limits the ratio of lens aperture to 
field extension across the lens which we can use. Either we use the full 
lens aperture and launch a field which fills an appreciable part of it or 
we use a very narrow field distribution and limit the aperture to a size 
which allows us to approximate the narrow field reasonably well with 
the 100 integration points at our disposal. This limitation forced me to 
calculate the field distribution in the gas lens either at a much lower 
frequency than that of the visible 6328A line of a He-Ne laser or to take 
the actual laser frequency but use only a small fraction of the actual 
lens aperture. 

In spite of all these limitations imposed by computer economics, some 
interesting results can still be obtained. 

In a beam waveguide composed of ideal lenses no field distortion re­
sults as an off-axis Gaussian beam travels through the waveguide. In a 
beam waveguide composed of gas lenses, off-axis Gaussian beams break 
up into double humped shapes and deform so much that it is hard to 
locate the initially well defined field distribution. This result is important 
for beam waveguides using electronic control mechanisms to reposition a 
beam when it has wandered away from the waveguide axis. 6 If the beam 
breaks up into several beams, repositioning becomes impossible. This 
problem can be minimized by using two gas lenses back-to-back close 
together. The resulting combined lens has far less principal plane distor­
tion as the individual lenses and leads to far less field distortion. 

The field distortion observed in these simulated gas lenses can be 
attributed in part to the distortion of the principal plane. A fictitious 
lens with the same focal length aberration as the gas lens but an un­
distorted principal plane shows less field distortion. However, the focal 
length aberration also contributes its share of field distortions. 
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A large part of this paper is taken up with the description of the calcu­
lation procedure. This is justified since the development of a workable 
and logical procedure is perhaps the main contribution of this work. The 
reader who is interested only in the numerical results may skip over the 
following two sections to the section entitled "Discussion of Numerical 
Results." 

II. THE TWO-DIMENSIONAL DIFFRACTION INTEGRAL 

The Kirchoff-Huygens diffraction integral is a solution of the scalar 
wave equation. 

d'lr + {3~ = o. (1 ) 

As explained in the introduction, we are not interested here in the three­
dimensional case usually treated but in its two-dimensional counterpart. 
The two-dimensional Kirchoff-Huygens integral is 

( ) i 1 {a'lr (1) () a (1) ( ) } 'l' X,Y = '4 8 an Ho {3r - 'lr an Ho {3r dS. (2) 

The integral is to be extended over a closed curve S, n indicates the di­
rection of the normal to the curve S which counts positive if it points 
outward of the area enclosed by S. Ho (1) is the Hankel function of zero 
order and first kind. The variable r is the distance between the 0 bserva­
tion point X,Y inside of S and the integration point ~, 1] on S, 

r = Vex - ~)2 + (y - 1])2. (3) 

dS is the line element along the curve S. The constant {3 is related to the 
wavelength A of the radiation field by 

{3 = 27r . 
A 

(4) 

We are dealing with an optical radiation field. The observation point 
X,y will always be far enough from the line S so that 

{3r » 1. 

It is, therefore, possible to replace the Hankel function by its approxima­
tion for large argument and write (2) 

= exp (i~) r {a'lr exp (ij3r) _ 'l'~ (exp (i{3r»)} dS. (5) 
'lr(x,y) ~ 18 an vr an vr 
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Equation (5) relates the values of the field w(~,'1) on S to its values in­
side S. We want to use this expression to calculate the field at lens n + 1 
if the field at lens n is known. Our lenses are the equivalent thin lenses 
of Fig. 1 (b) which represent the gas lens of Fig. 1 (a). The fields have to 
be known over the surface of the lens which is not plane. We assume that 
the lens is apertured by an opaque screen and follow the usual practice 
of setting 

w(~,'1) = 0 and aw = 0 
an (6) 

on the screen. We use as the curve S the line formed by the lens surface. 
the opaque screen which extends from - 00 < '1 < 00, and close it by a 
suitable curve at infinity. The following lens of the beam waveguide lies 
thus inside S, Fig. 1 (b). 

The Kirchoff-Huygens integral presents a problem. It requires us to 
know not only w on S but also aw / an. It is not sufficient, therefore, to 
simply evaluate the integral (5) but also the integral which follows from 
it by differentiation with respect to the normal m to the surface of the 
next lens in the beam waveguide. 

A substantial simplification results if instead of w we use a function <P 
defined by the equation 

(7) 

This transformation serves the following purpose. The field propagating 
in the beam waveguide can be expected to have phase fronts which are 
not too different from that of plane waves. Since we collect the field over 
the curved surface of the lenses we have a substantial phase variation 
simply because the curved surface crosses many phase fronts of the al­
most plane wave. The transformation (7) displays explicitly the plane 
wave part of the phase variation. The remajning phase variation left in 
<P is much less rapid and therefore much easier to calculate. Substituting 
(7) into (5) leads to an equation for <P. We also replace the phase con­
stant {3 by 

(8) 

with 
2 

N=~. 
D"A 

(9) 

N is the Fresnel number which is often used to characterize optical 
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resonators and beam waveguides. D is the distance between lenses and 
"a" the half-width of their apertures. 

Replacing'lF by <I> introduces the term exp [i,B (r + ~ - x)] under the 
integral sign. We make use of the fact that x - ~ is almost as large as 
r and write approximately 

r + ~ _ x = ~ (y - 71) 2 {I _ ~ (Y - 71)2} . 
2 x-~ 4 x-~ 

Using (7), (8), and (10) we can rewrite (5) 

<I>vH(Y) = VND exp(-i~) La {(ar - a~)cpv(71) 
2a 4 -a an an 

. /1 + (d~)2 
+ 1", (~ )} 11 v' r ~ 

.exp [i7rN Q (y - 71)2 {I - ~ (Y - 71)2}]d71' a2 x - ~ 4 x - ~ 

The line element dS was expressed by 

dS = VI + (~~)2 d~ 

(10 ) 

( 11) 

( 12) 

where 71 = 71 (~) or ~ = ~ (71) is the function describing the curved lens. 
The function cpv (71) is defined by 

( 13) 

The subscripts v and v + 1 have been added to underscore the iterative 
nature of the process. 

The iterative equation for the calculation of cpv+1 follows from <I>v+1 
by differentiation. Neglecting certain small terms under the integration 
sign results in 

( 14) 

[ 
. D (y - 71) 2 { 1 (Y - 71)2}] ·exp ~7rN - 1 - - -- dr]. 

a2 x - ~ 4 x - ~ 
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The symbol m was used to designate the normal of the (11 + l)th sur­
face y = y (x). 

For reasons explained later, we also need the derivation of <I> in tan­
gential direction t. Defining 

i a<I> 
X = ~at (15) 

we get the integral expression for X,,+! by replacing a/am by a/at in 
(14), it is unnecessary to write this expression down since it is exactly 
the same as that for cpv+l except for the change just mentioned. 

The three integrals for <I>, cp, and X have a substantial part of their in­
tegrands in common. This similarity facilitates the machine calculations 
of these integrals greatly. 

The power flow through the lenses can be computed from the expres-
• 7 slOn 

PI' = ~ 1 1m('I!~'I!*)dS 
8" 

(16) 

with w being the angular frequency of the radiation field and 1m denoting 
the imaginary part of the expression in parenthesis. Or replacing 'I! by 
<I> and the line element by (12) we get with the help of (13) 

P, = w: 1: {Re (<P#,*) - :~ I <p,I'} 11 + (~!)' d~. (17) 

Equation (17) can be used to compute the power flow through the lenses 
and observe power loss due to diffraction caused by the finite lens aper­
tures. 

The reader who is familiar with the work of Fox and LiS might wonder 
why the present case is so much harder to compute than the resonators 
studied by these authors. Fox and Li used only one integral to describe 
the field distribution over one mirror in terms of the field distribution 
over the other, they did not calculate the integral for a'I! / an simultane­
ously with that for'I!. The reason for the success of the much simpler 
theory in their case was the fact that the surfaces over which they had to 
integrate were either perfectly flat or very nearly plane. The normal 
derivatives occurring in (2) involve the cosines of angles e between the 
normal to the surface of integration and the normal to the phase fronts 
of the wave. As long as this angle is small 

cos e ~ 1 

and the angle can be ignored. For the purpose of the normal derivative 
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the wave can be treated as perfectly plane and the derivative can be 
written as 

a'lr _ .R'lr an - 't jJ • 
(18) 

However, the angle a between the direction normal to the surface of our 
lenses and the optical axis is not small. If e is again the angle between 
the normal to the phase front of the wave and the optical axis then 
a + e is the angle entering the cosine. But even if e is small 

cos (a + e) ~ cos a - e sin a. 

The departure of the phase front from a plane wave can no longer be 
neglected but enters in first order. The expression (18) is no longer a 
valid approximation and the whole calculation becomes much more 
difficult. 

III. FIELD TRANSMISSION THROUGH 'l'HE LENSES 

So far we have considered the transmission of the field from the sur­
face of one lens to that of the next. However, the lenses have so far not 
even entered the picture other than to force us to calculate the field over 
the surface of the lens. The process of calculating the effect of the lens 
on the field is also rather complicated. In the case of plane, thin lenses 
it is sufficient to regard the lens simply as a phase transformer which 
retards the phase of the field differently in different parts of the lens. 
This simple picture is inapplicable in our case of curved lenses. 

Liouville's theorem of statistical mechanics is the guide to the proper 
description of a thin lens. I have shown in two earlier papers5•9 how rays 
pass through thin lenses. The ray gets broken by the lens by an angle 
which depends not only on the part of the lens which the ray intersects, 
but also by the angle between the ray and the normal to the lens surface. 
If 1'1 is this angle for the entering ray and 1'2 that for the ray leaving the 
lens the dependence between these two angles is given by 9 

sin 1'2 = sin 1'1 + F (y) . (19) 

The function F (y) is determined by the lens. The focusing property of 
the lens determines the angle 'Y/ if 1'1' corresponds to a ray incident 
parallel to the optical axis. 'Yt' and 1'2' are known from the desired focal 
length of the lens and its shape. F (y) is determined by substituting 
Y2 = 1'2' and 1'1 = 1'/ into (19). 

These ray optics properties of the lens have to be used to determine its 
influence on the field. The normal directions to the phase fronts coin-
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cide with the rays associated with the field, they have to be determined 
from the derivatives of the field function. Let us assume that we split 
the field function 'l' into its magnitude G and phase angle (NJ 

'l' = G exp (i{3iJ) 

or using cI> rather than 'l' 

cI> = G exp [i{3 (iJ - x)]. (20) 

The function iJ (x,y) is the eikonal of geometric optics and satisfies the 
eikonal equation of free spacelO 

I ViJ I = 1. 

We take the tangential derivative of cI> 

acI> = [i{3 (aiJ _ ax) + aG ~JcI>. 
at at at at G 

The term aiJ / at can be expressed in the following way 

aiJ = ViJ. as = I ViJ Ilasl cos (kt)· 
at at at ' 

(21 ) 

(22) 

as/ at is a unit vector in the tangential direction t, (kt) is the angle be­
tween the direction normal to the phase front of the wave and the 
tangential direction. Using (21) and the property of the unit vector we 
obtain 

aiJ 
at 

cos (kt). 

With the help of (15) and (23) we get from (22) 

cos (kt) = ax _ ~ + ~! aG . 
at cI> {3 G at 

(23) 

The left-hand side of this equation is real by definition and so is G and 
its derivatives. This means that the imaginary parts of the right-hand 
side have to cancel each other and we obtain 

cos (kt) = :: - Re (~) . (24) 

Re designates the real part of the expression in parentheses. The deriva­
tive ax/at is known from the geometry of the lens, and X as well as cI> 
have been computed from their integral expressions. The angle between 
the rays associated with the field and the tangential direction t of the 
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curve describing the lens shape is thus determined. The angle (kt) is 
related to 1'1 , the angle between the ray and the normal to the lens sur­
face, by 

1'1 = ~ - (kt) (25) 

so that 

cos (kt) = sin 1'1 • 

The angle 1'2 between output ray and lens normal is obtained from (19). 
Indicating by a prime the angles and field quantities of the field after 
leaving the lens we have 

cos (kt)' = sin 1'2 

and from (23) 

i/ = ft cos (let)' dt 
tl 

(26) 

or 

M = 1/ - ,J = 1: [cos (k't) - cos (kt)l/l + (~~)' dy. (27) 

The transformed field after it has passed the lens can now be calculated 

(28) 

Finally, we need to know the normal derivative CPv+l' of cI>V+l' before we 
are ready for the next iteration step. Replacing derivatives with respect 
to t by the normal derivatives with respect to m in (22) and multiplying 
by i//3 we obtain 

[
ax afJ i 1 aGJ 

CPv+l = am - am + 13 G am cI>v+l. 

The derivative afJ/at was equal to cos (kt), similarly we can write 

afJ - = cos (km). 
am 

The angle (km) is related to 1'1 by 

(km) = 7r - 1'1 • 

(29) 

(30) 

The reader might wonder why I bothered introducing the angle (kt) 
and the derivative X since afJ / am which is determined by cp gives the 
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angle 'Yl directly. However, afJ/am only determines cos 'Yl . The conver­
sion of cos 'Yl to sin 'Ylleaves the sign of 'Yl ambiguous. No such ambiguity 
arises if (let) is computed. 

The angJe (km)' belonging to the output field can now easily be ob­
tained with the help of (19) and (24) 

afJ' = cos (km)' = - VI - sin2'Y2 . 
am 

(31) 

Substituting (31) into (29) written for the primed quantities we get 

,[ax ()' i 1 aGJ ' 
<Pv+1 = am - cos km + ~ G am CPv+l 

or using (29) once more and keeping in mind (28) 

<Pv+1' = <Pv+l exp (i{3b.fJ) + [cos (km) - cos (km)']<pv+1'. (32) 

The transformed field quantities of (28) and (32) are certain to conform 
with the requirements of ray optics. However, this is not quite sufficient 
to satisfy all the wave optics requirements. Numerical results have shown 
that the fields cP' and <p' substituted into the power formula (17) yield a 
different number for the power flow than the one obtained from using 
(17) with cP and <p. The fields <p' and <p' after having passed the lens should 
carry the same amount of power as the input fields. The transformation 
procedure, outlined so far, takes into account the phase of the field and 
the change in slope of the phase fronts in accordance with physical prin­
ciples but it does not account for any change in field amplitude which the 
physics of the (lossless) lens might also require. In fact, the failure of 
this transformation to obey conservation of energy points to a need to 
readjust the field amplitudes. To correct the amplitudes of the field quan­
tities <p' and <p' locally, I computed the ratio of the integrals of (17) taken 
with the two fields. Letting I be the integrand of (17) calculated with 
the use of cP and <p, and l' the corresponding value obtained using cP' and 
<p', I calculated 

and introduced 

and 

R = ,IT 
V? (33) 

(34) 
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This last transformation does not affect the phase of the field or its slope 
but adjusts the field amplitude so that using <I>I! and cpl! the power is 
conserved in the process of transmitting the field through the infinitely 
thin and lossless lens. This last transformation does not transform away 
diffraction losses, however, since those occur in passing the field from one 
lens to the next. 

This completes the description of the iteration procedure. It is sur­
prising how much the calculation is complicated by the simple fact that 
the lenses are not plane but curved. One might regard the simplicity of 
the plane lenses as a lucky break. The present procedure naturally is 
more time consuming. To pass the field through 100 lenses of the lens 
waveguide with plane lenses using the simple procedure of Fox and Li 
takes 0.023 hours of 7094 computer time. The procedure described above 
takes 0.13 hours for the same number of lenses or 5.65 times as long. 
The present procedure is that much more involved. 

IV. DISCUSSION OF NUMERICAL RESULTS 

The calculation procedure described on the previous pages was used 
to study the fate of an off-axis field distribution as it propagates through 
the beam waveguide. In a beam waveguide composed of ideal, thin 
lenses the field would suffer no distortions as it travels through the lenses 
provided that its shape corresponds to a mode of this structure. A mode, 
even if displaced from the axis, keeps its shape in a perfect beam wave­
guide. The center of gravity of such an off-axis mode follows the ray 
trajectory of geometric optics. The field may look somewhat different as 
it passes different lenses. But whenever its path brings it back to its 
original position on the lens it assumes the original shape. 

This property of ideal lens guides is no longer true for beam wave­
guides composed of distorting lenses. Now the original field distribution 
is changed even if the field returns to its original position. These field 
distortions are best displayed in a motion picture. However, in a paper 
one has to limit oneself to the display of a few representative frames of 
such a motion picture. 

To launch the field into the waveguide I started with an ideal lens 
whose focal length corresponded to twice the on-axis focal length of the 
simulated gas lenses. This procedure was chosen since the modes of the 
ideal beam waveguide have plane phase fronts right on the lens or in 
other words after the field has traversed one-half of the lens. A plane 
phase front and the flat starting lens allow us to take 

i a<po 
CPo = - - = 0 

{3 an 
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so that CPP is known initially and the field can get started. On all the 
following lenses <Pp as well as its derivations are calculated. 

Figs. 2(a) and 2(b) show the shape of the principal surface p and the 
focal length f of the lens as functions of position y/a. The function p 
as well as the focal length f are displayed normalized with respect to the 
length L of the gas tube. The coordinate y is plotted normalized with 
respect to the radius a of the tube. These curves correspond to a gas 
lens operated with a gas velocity which minimizes the focal length at an 
input gas temperature To = 300oK, wall temperature of gas tube 355°K, 
an index of refraction of n = 1 + 4.210-4 and a ratio* of L/a = 50. 

We consider a beam waveguide composed of gas lenses of this type 
spaced so that D/fo = 2, where D is the distance between adjacent 
lenses and fo is the value of the focal length at y = O. Into this beam 
waveguide we launch a field with a Gaussian intensity profile whose 
center of gravity is shifted off the optical axis as shown in Fig. 3(a). 
This field distribution corresponds to a mode of the ideal confocal beam 
waveguide which is shifted off-axis. The position and shape of this field 
on the next two lenses is given in Figs. 3(b) and 3(c). Since the beam 
waveguide is nearly confocal, the center of gravity of the field moves 
like a ray in a confocal waveguide. No field distortion is yet discernible. 
Jumping 100 lenses ahead in the beam waveguide we see in Figs. 4(a), 
4(b), and 4(c) that the field begins to distort from its original shape. 
After having traversed 150 lenses the field shows a distinct break-up 
into two peaks, Fig. 5(a). The appearance of the field on two adjacent 
lenses can be quite different, Fig. 5(b). Finally, we see the wave field on 
the lenses 209 and 210 in Figs. 6(a) and 6(b). The distortion has changed 
somewhat but is not basically different. 

The field of Fig. 3(a) fills one-third of the gas lens between the points 
where it carries more than exp (-2) of its peak power. If we assume a 
tube with a = 0.317 cm (0.125 inch) a waveguide mode of that width 
corresponds to a light wavelength of A = 4.60 X 10-4 em which is 7.26 
times as long as the wavelength of the 63281 line of the ReNe laser. 

I mentioned in the introduction that the width of the field distribu­
tion with respect to the tube radius cannot be made arbitrarily narrow. 
To consider fields which are similar to modes of the beam waveguide at 
A = 6.328 X 10-5 em forces us to reduce the lens aperture. The ratio 
of field extension and waveguide aperture is maintained if we reduce the 
wavelength from A = 4.60 X 10-4 em to A = 6.328 X 10-5 em and 
aperture the lens at a value of y/a = 0.371 of Figs. 3 through 6. Using 
only that part of the waveguide between -0.371 ~ y/a ~ 0.371 and 

* These values correspond to vo/V = 6.45 and C(L/a) = 0.192 with vo/V and 
C(L/a) defined in Ref. 4. 
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renormalizing the v-coordinate so that these boundaries again correspond 
to -1 ~ Yla ~ 1 leads to the shape of principal surface and focal length 
as shown in Figs. 7(a) and 7(b). This is still the same lens, with the 
only difference that we expanded its center portion. The center portion 
of the lens has far less distortion as the whole lens of Fig. 2. Figs. 3(a), 
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3(b), and 3(c) show again the field distribution on the first three lenses 
at the wavelength of A = 6.328 X 10-5 cm and the apertured lens. 
After traversing 120 lenses this field suffered noticeable distortions 
shown in Figs. 8(a) and 8(b), even though it "sees" now only the center 
portion of the lens where the focal length depends only very little on y 
and where the principal surface is much closer to a plane. The dotted 
curves also shown in these and all remaining figures of field configurations 
were obtained by maintaining the focal length of the equivalent gas 
lens, but using a lens with a perfectly flat principal plane. The compari­
son between the solid and dotted curve shows that the field distortion 
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can be attributed mainly to the distorted principal plane of this gas 
lens. The change in width of the field distribution on adj acent lenses as 
seen in Figs. Sea) and S(b) is caused by the departure of the beam wave­
guide from exact confocality. Figs. 9 and 10 show how bad the field 
distortions get after 250 and about 400 lenses. IVlost surprising is the 
fact that the field distortions of Figs. S through 10 are only slightly less 
severe than those of Figs. 4 through 6, in spite of the substantial im­
provement of lens aberrations. 

To study this point further I constructed a gas lens with even less 
principal plane distortion by using two gas lenses back-to-back as shown 
in Fig. 11. The center portion of the principal surface and focal length 
curve is shown in Figs. 12(a) and 12(b). The expansion and renormaliza­
tion of these curves is the same as that of Figs. 7(a) and 7(b). The 
principal surface of this lens, Fig. 11, approximates a plane even better 
than Fig. 7(a) however, there is more focal length distortion apparent 
in Fig. 12(b) than in Fig. 7(b). This lens distorts substantially less than 
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the simple lens of Fig. 1, as a comparison of Figs. 8 through 10 with 
Figs. 13 through 15 indicates. However, even a lens with the charac­
teristics of those shown in Figs. 12(a) and 12(b) causes the field to break 
up into the double-humped shape of Fig. 16 after traversing 295 lenses. 

It is interesting to note the difference between the solid curve and the 
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Fig. 11 - Two gas lenses operated back-to-back minimize principal plane dis­
tortion. 
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dotted curve of Figs. 13 through 15. Both curves show field distortions. 
Those of the solid curves are caused by the combined action of principal 
plane and focal length distortions, while those of the dotted curves are 
due to focal length aberration only. It appears that the two distorting 
influences cancel out to some extent since the solid curves of Figs. 13 (b), 
14(a), and 15(a) show less distortion than the corresponding dotted 
curves. 

Figs. 14(b) and 15(a) show that even the plane lens with only focal 
length aberration (dotted curve) has the tendency to distort the field 
into a multiply-humped shape. Theoretical work by E. A. J. Marcatili 
and further computer simulations have established a periodicity in this 
behavior. Plane lenses with focal length distortion cause an off-axis 
field to break up into a double-humped shape which becomes perfectly 
symmetrical after some distance. After twice this distance the field re-
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curve, P = 1.0000. 
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turns to its original shape, etc. No such periodicity seems to exist for 
distortions caused by a warped principal plane. The periodicity of field 
distortions caused by focal length aberrations gives a clue to the problem 
of why so little lens distortion can lead to such serious field distortions. 
In principle, the field always breaks up into a perfectly symmetric double­
humped shape if it is allowed to travel far enough in the beam waveguide. 
The required distance depends on the amount of focal length aberration 
but the final field distortion does not. Similarly, it is possible that 
arbitrarily small distortions of the principal plane may always lead to 
serious field distortions if given enough length of waveguide. It is still 
surprising, however, that the slight aberration shown in Fig. 12(a) and 
12(b) causes the field to become double humped after only 295 lenses. 
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