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An Adaptive Echo Canceller

By M. M. SONDHI
(Manuseript received November 3, 1966)

A novel method ts presented for echo-cancellation in long distance
telephone connections. In contrast with conventional echo suppressors, the
device described achieves echo-cancellation without interrupting the return
path. A replica of the echo is synthesized and subtracted from the return
signal. The replica is synthesized by means of a filter which, under the
control of a feedback loop, adapts to the transmission characteristic of the
echo path and tracks variations of the paih that may occur during a con-
versation.

The adaptive control loop s described by a set of stmultaneous, non-
linear, first-order differential equations. It is shown that under ideal
condrtions, the echo converges to zero. Estimates of the rate of convergence
are obtained. Effects of noise are discussed. The results of computer simula-
tions of vartous alternative configurations of the system are described.

I. INTRODUCTION

In telephone connections that involve both 4-wire and 2-wire links,
an echo is generated at the hybrid that connects a 4- to a 2-wire link.
The situation at one such hybrid is illustrated schematically in Fig. 1.
Here S, and S, are the two speech signals and F is the echo of S; which
is returned along with S, . In practice, £ is an the average about 15 dB
lower than S, , but in extreme cases may be only 6 dB lower.

This echo has a disturbing influence on the conversation, which
appears to increase with increasing round-trip delay.' If no steps were
taken to reduce this echo, conversation would be seriously impaired
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over satellite communication links with round-trip delays of hundreds
of milliseconds. The devices used at the present time to combat echo
are called echo suppressors. A number of different types of echo sup-
pressors have been designed. They are all, basically, voice-operated
switches (albeit ingenious and complex ones) which disconnect the
return path or introduce a large attenuation in it whenever a decision
mechanism indicates that the level of S, is large compared to that
of S; + E. However, since F and S, both share the return path, the
use of such echo suppressors introduces ‘‘chopping” or interruptions
of S, during periods of double talking.* It has been shown that the
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Fig. 1 —Typical situations where an echo canceller could be used.

degrading effect of chopping also increases with inereasing round-trip
delay.! The characteristics, advantages and disadvantages of such echo
suppressors have been described in a number of papers.”****

It appears that improvements in such echo suppressors are not
likely to solve the echo problem satisfactorily. Entirely different ap-
proaches are called for. One such approach was an open loop device
suggested by J. L. Flanagan and D. W. Hagelberger and implemented
by J. de Barbeyrac.® In this approach, E is regarded as a linearly filtered
version of S, . The impulse response of this filter is measured by means
of a transmitted test pulse, and a transversal filter is synthesized to
approximate this impulse response. With S; as an input to the trans-
versal filter, the output approximates I, and may, therefore, be sub-

* In this paper, the term ‘‘double-talking” will be used for the simultaneous
presence, at the echo suppressor, of speech signals of the two speakers.
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tracted from the return signal to cancel the echo. In this manner,
effective echo cancellation (as opposed to suppression) is achieved
without interrupting S, . J. de Barbeyrac demonstrated the feasibility
and effectiveness of such a device on four- to two-wire junctions sim-
ulated in the laboratory.

An actual echo path is, however, not perfectly constant. Besides
obvious step changes such as the connection or disconnection of exten-
sion phones during a conversation, or transfer of calls via key tele-
phones or PBX’s, there may be slow changes in gain and other fluctua-
tions of the transfer function of the echo path. Also, economic con-
sideration would force placement of echo cancellers at switching offices
high in the hierarchical structure rather than at the hybrids where
the echoes are generated. (The number of echo cancellers required in
the latter case would be many thousand times the number required
in the former.) In such a situation, one or more carrier links intervene
between the echo canceller and the hybrid. A large percentage of these
(e.g., the N carrier) use compandors which are nonlinear elements
with memory. Thus, what are available to the echo canceller are not
S, and 8; -+ E but the modified signals S and S; + E’ (see Fig. 1(b)).
I’ is no longer a linearly filtered version of S/, although a linear filter
with an impulse response dependent upon the power level of S{ could
approximately transform 8] to E’. Thus, for the open loop device to
work in practice, it would seem necessary to intermittently adjust the
transversal filter during a conversation. The transmission of test pulses
required for such adjustments might prove quite intolerable to the
customers.

A proposal made by John L. Kelly, Jr. avoids these difficulties. The
speech signal itself is used in place of test pulses and a control loop
continuously adapts the transversal filter to take care of fluctuations
in the echo path.

In this paper, we will describe the system proposed by Kelly. We
will describe various modifications of the system which simplify and
improve it. Finally, we will report the results of tests of these systems
by computer simulation, using artificially created echoes and also using
two-track tape recordings made on an actual N-carrier link.

II. KELLY'S PROPOSAL

The adaptive control loop shown in Fig. 2 is the system proposed
by Kelly, except for the introduction of the nonlinear function F.
This function is chosen to be an odd nondecreasing function with
F(0) = 0. (Kelly’s proposal obtains as a special case when F(e) = e.)
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Fig. 2 —Schematic of the echo canceller using a transversal filter.

The signal é(t) is the input speech signal (corresponding to S, or
S! of IMig. 1). The signal y(¢) is the return signal (correspondlng to
S, + F or 8} 4+ I’ of Fig. 1) and is given by

y(@) = n() + 209,

where 2(¢) is the echo of the input signal and n(f) is a noise which is
assumed statistically independent of z(¢f). The noise may include a
second speech signal besides circuit noise.

The N-tap transversal filter synthesizes an estimate of z(¢) given by

0 = X 0slt — &~ DT

where 7, is the delay of each section of the transversal filter. The
control loop uses the error e(f) = y(f) — 2(¢) to continuously improve
the estimate 2(¢). '

Ideally, the system should drive itself to the condition e(f) = n(f)
(not necessarily e(f) = 0, for as mentioned earlier n(f) may contain
a speech signal which must be left as undistorted as possible). Such
ideal echo cancellation is possible with this system only if n(f) =
and if z(f) is exactly representable by passing z(¢) through an N-tap
transversal filter with constant (or slowly varying) tap gains. In the
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next section we will exhibit a proof that under these conditions the
system does indeed converge monotonically to this echo-less steady
state. In the presence of noise the final state is one in which the tap
gains fluctuate around their settings for perfect echo cancellation.
The response of the system averaged over the noise ensemble will be
shown to converge monotonically to this final state.

The system is a first-order system and is stable for any arbitrary
input. As is the case with most control systems, speed of response can
be traded for immunity to noise. The constant multiplier K of Fig. 2
allows adjustment of this trade-off. (Unfortunately, in the present case
speed of response depends not only upon the feedback factor K but
also upon the level and properties of the signal z(¢). Thus, K can be
adjusted to give a certain speed of response only for some average
level of z(¢).)

For immunity from noise, K should be made as small as possible;
for fast convergence, it should be made as large as possible. We do not
have any theory at present to calculate the optimum setting for K.
This must be done by computer simulation and/or experiments with
hardware implementations of the system.

1II. CONVERGENCE

The proof of convergence given in this section is very similar to
a proof given by Kelly. The introduction of the nonlinear function
F necessitates only minor modifications. However, as we shall show in
Section V, a judicious choice of this nonlinearity can considerably
simplify and improve the performance and implementation of the
system.

To simplify our discussion we introduce the following notation. We
denote the output z{t — (k — 1)T4] of the kth tap of the transversal
filter as z,(t). We will refer to N-tuples as vectors and consider them
as column matrices. Thus, X(#) will be a column matrix with elements
(), x(t), --- , zy(t), and G(¢) the column matrix with elements
0:(), g=(t), -+, gx(). The signal £(f) of Fig. 2 then becomes

i

i) = 3 gt

= G'X.

Here the superscript 7' denotes the transpose of a matrix, and for
brevity the dependence of G and X on ¢ is not explicitly shown. The
echo z(¢) will likewise be represented as
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() = H'X,

where H has elements h,, --- , hy which are assumed fixed (or so
slowly varying that their time derivatives may be neglected). Thus,
we have

y(®) = 2(8) + n()
= H"X + n(l)
e(t) = y(t) — 2()
=R"X + n(b), 1)

where R = H — G.

Before proceeding to the proof of convergence let us give an interesting
heuristic justification for the circuit of Fig. 2. Consider a function
C(e) such that C(e) = C(—e) and d°C/de* = 0. C(e) is then a monoton-
ically nondecreasing function of the magnitude of e. Let us minimize
C(e) by varying the coefficients ¢,(t). If we choose to use the steepest
descent method, we find the gradient of C'(e) with respect to the g,
and make the vector G change in the direction opposite to this gradient.
Now

grad C(e) = grad CR"X + n(2)
= —C'R"X + n()X
= —FR'X + n()X,
where C’'(-) = F(-) is the derivative of C with respect to its argument.
To change G along the negative of the gradient we may set

-(% G = KFR'X + n()X, @)

where K is a positive constant of proportionality.

By inspection, the matrix equation (2) is the equation that governs
the dynamic behavior of the system of Fig. 2. Thus, the system is
a steepest descent control system in the above sense.

The proof of convergence follows easily from (2) in the case when
n{t) = 0. Observe that since

d d

R=H-G, 56=-2R,

premultiplying (2) with —2R” gives
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rd 5o 4o
2R dtR——dtRR

= —2KR"XFR'X). ®3)

By its definition F is a monotonic nondecreasing function and also
an odd function. Thus, the right-hand side of (3) is always negative,
hence R”R is nonincreasing. It is strictly decreasing whenever R“X 5 0,
i.e., whenever there is an uncancelled echo. Now R“R = 17 is the square
of the length of the vector R = H — G. Thus, [, is nonincreasing,
and as long as there is an uncancelled echo the length keeps decreasing,
l.e., G keeps approaching H. To show that the echo goes to zero we
integrate (3) between 0 and some time = and obtain

EQ) — B(r) = K f "RTXFR'X) di. @

As [} is nonincreasing the left-hand side is bounded and =<13(0). Thus,
as 7 — o we note that the integrand on the right must approach zero.
However, the integrand is a monotonic nondecreasing function of the
magnitude of R”X (which is the uncancelled echo). Thus, the echo
power must approach zero.*

If y(t) contains a noise n(t) besides the echo, then proceeding as
before we find that
(%RTR = —KR"XFR'X + n(2)). 4)
From our previous discussion it follows that the right-hand side of
(5) is negative, if and only if R“X + n(f) has the same sign as R'X.
As long as the magnitude of the uncancelled echo is large compared
to n(t), this condition is met for a large percentage of time and conver-
gence proceeds essentially monotonically as before. When the level
of the uncancelled echo becomes of the same order as or lower than
n(t) the convergence clearly cannot be monotonic. There will be intervals
when n(f) is greater than R”X in magnitude and of opposite sign. How-
ever, if the feedback gain constant K is small then G is a slowly varying
function of time (typically K would be adjusted so that R has a “time
constant’”’ on the order of 0.5 sec or so). In such a quasi-stationary
case it is justified to assume that R”X is independent of n(¢) provided

* 1. W. Sandberg has pointed out that, strictly speaking, this argument does not
prove that | R7X | — 0 for certain pathological cases. Although these cases are of no
practical concern, it is interesting that weak conditions suffice to rule these out.

For example, it is sufficient, that: (z) gX | and d/dt (liX | be bounded and (77) the function
F be such that eF(e) and d/de (eF(e)) be bounded for all finite e.
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n(t) is a wideband signal. Then it is not hard to show that the average
of F(R™X + n(t)) over the noise ensemble has the same sign as the
average of R”X provided only that noise has a symmetric distribution
and thus, the system still converges in this average sense.

IV. RATE OF CONVERGENCE

While convergence can be proved by such relatively simple argu-
ments, estimating the convergence rate is an extremely difficult prob-
lem. The convergence rate depends upon the properties of X, upon
the choice of F, and upon K and we do not have a solution to the prob-
lem in the general case. However, we will now derive an estimate of
the mean convergence rate for the noiseless case under the assumption
that (3) can be averaged over the X ensemble (which is assumed sta-
tionary) and the vector R assumed independent of X on the right-hand
side. This assumption is justified if K is small, hence R slowly varying.
Under this assumption, the expectation can be calculated for a variety
of different functions ' and random processes X. We will give the result
when X is a zero mean Gaussian process with (¢) F(z) = z, and (%)
F(x) = sgn (z) (here sgn (x) = 1 forx = 0 and —1 for 2 < 0). In
case ()

gé (R'R)y = —2Ko’(R"2R)., ©)

where o is the standard deviation of w;(f) (assumed identical for all
the x;(¢)) and ® is the normalized NzN correlation matrix of the z;(¢).
The angular bracket denotes ensemble averaging. In case (47)

(%(RTR)M — —9Ko A /7% (R7ER),.. @

These equations follow easily since any linear combination of Gaussian
variables is another Gaussian variable. Equations (6) and (7) give
upper and lower bounds to the convergence rates for the two cases,
when we observe that

MinR'R £ R78R = M...R'R,

where Ay, and A, are the smallest and largest eigenvalues of ®.
If z(t) is white noise, then @ is an identity matrix with Apin = A = 1.
Thus, for case (z)

VRR |1-o &P (—Ko"\axt)
< VR™R £ VRR |i-0 exp (— Ko \nint) 8
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and in case (¢%)
S B
\/RTR |¢=o — \/; I{o’)\émxlf

VR'R £ VR'R |,_, — \E Ko\t (9)

lIA

These upper and lower bounds are close to each other only if & is
nearly diagonal (i.e., when z(¢) is broadband). More elaborate methods
can be used to estimate the convergence rate (e.g., perturbation meth-
ods). However, although these methods would be extremely interesting
from a theoretical point of view, they are not likely to yield much
more insight into the convergence process. This is especially true in
view of the fact that no satisfactory statistical description of a speech
signal is available at present. For Gaussian noise (8) and (9) have been
checked by computer simulation.

V. CHOICE OF NONLINEARITY

In the formulation of the echo suppressor problem discussed in Sec-
tion III, the choice of the nonlinearity /' depends upon the choice of
the function C. This choice has a profound influence upon the behavior
of the resulting system. One could set up the problem of determining
the optimum F which would provide, according to some reasonable
criterion, the fastest convergence and the maximum immunity from
interfering noise. We do not know the solution to such a general op-
timization problem. In any case, since convergence rate depends upon
the statistics of the signal and noise, any such optimization would
be practically impossible for signals as difficult to characterize as speech
signals. We have, however, found that a number of improvements
over the linear case result upon making F an infinite clipper. The use
of an infinite clipper has also been suggested independently by B. F.
Logan.

One of the main drawbacks of making F(e) = ¢ (i.e., Kelly’s proposal)
is the dependence of the time constant of the control system on the
signal level. Equation (6), although approximate, nevertheless indicates
that the time constant (at least for a wide band signal) is proportional
to the signal power. A 20-dB change in signal level thus changes the
time constant by a factor of 100. If, however, an infinite clipper is
used the same change in signal level changes the time constant by a
factor of only 10, which is a considerable improvement.

Another important advantage of using an infinite clipper is the
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considerable simplification of the circuitry. The multipliers My, - - - M,x
can all be replaced by switch modulators, which are far cheaper and
simpler than broadband multipliers.

There is another advantage in using an infinite clipper which may
be described as follows. Suppose the system is near equilibrium and the
echo has been reduced to a very low value. If now there is a sudden
burst of noise (say a spurt of double-talking) then in the linear system
the rate at which the system moves away from equilibrium is propor-
tional to the level of the noise, whereas it is more or less independent
of noise level if an infinite clipper is used. (In Section VI we will give
a detailed example of this effect.) We will argue in Section VII that
during intervals of double-talking the control loop be opened and the
vector G frozen at its last value. However, any decision mechanism
that would make this possible would require a finite time to make
the decision. It is therefore important that the system should not depart
from equilibrium too rapidly upon the introduction of a large noise
in the return signal.

VI. OTHER MODIFICATIONS

It may be noted that although we started out by taking the com-
ponents of the vector X(t) to be delayed versions of the input z(f),
this fact was nowhere of any importance in the proof of convergence.
All that is required is that the vector X(¢) be derived from z(¢) in such
a way that all transformations of «(¢), that may possibly be produced
by the round trip transmission path, should be representable as H'X
with a suitable choice of H. This immediately gives us the possibility
of generalizing the circuit of Fig. 2 to that of Fig. 3. In Fig. 3 the w,(t)
are a set of impulse responses such that linear combinations of them
are good approximations to most practical echo path impulse responses.

Now there is an infinite variety of sequences of functions that are
complete on the semi-infinite interval. One such set is the set of La-
guerre functions which is of particular interest because it can be syn-
thesized as a simple tapped RC ladder network. The impulse response
of the nth Laguerre network is given by

at d" t" —2at
L() =e i (ae ) (10

with the corresponding transfer function

o= (G5 an
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T(t)

M“CX/ f G,® M Mins gN(t) x)MzN ECHO
PATH

3
e(t)=yt)-2(t) N~ yt)=z)+n(t)

Fig. 3 — Generalization of the system of Fig. 2 using an orthonormal set of impulse
responses.

As telephone speech is limited to about 3 kHz the choice of a ap-
propriate in the present case is approximately 2x X 2000 radians
per second, although it is not critical.

Tests by computer simulation, to be described in the next section,
indicate that Laguerre networks are at least as satisfactory as a tapped
delay line for the simulation of the echo path. However, a cascade
of RC sections would be much cheaper than a delay line. The properties
and synthesis of Laguerre networks is described in the literature.®

VII. COMPUTER SIMULATION

For a computer simulation of the system described by (2), it was
converted to a difference equation. Thus, if a subscript » on a quantity
is used to denote its value at the nth sampling instant, then the equation
simulated on the computer is

Gn+1 = Gn + KF(RTan + nn)xn-

In one class of simulations we used filtered Gaussian noise as the
signal and computer-simulated echo paths. Equations (8) and (9)
appear to be very good approximations if the time constant of the
convergence (which we may define as the time taken for I = R'R
to become, say 30 percent of its initial value) is large compared. to the
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reciprocal of the bandwidth of the input signal. If uncorrelated white
noise is added to the echo before the system has converged then no
convergence takes place if the noise level is about 15 dB above the echo.
If the same noise is introduced after the system has converged, however,
the balance is only slightly disturbed. A typical example will illustrate
the orders of magnitude of these effects. The nonlinearity F' was chosen
to be an infinite clipper, and the level of the signal (which was a white
gaussian noise) and the constant K were such that in the absence of
noise R“R converged to about 55 dB below its initial value in 0.7 sec.
The following two tests were performed:

(7) The same input signal, initial conditions, etc. were used as be-
fore, but an uncorrelated noise was added to the return signal
at a level 18 dB above the echo.

(47) Same as (¢) except the noise was added after the system had
converged for 0.6 sec so that I (hence, the echo power) was
about 23 dB below its initial value.

In case (7) no convergence took place and I; hovered around its
initial value. In case (¢7), after the onset of noise, I increased slowly
by about 3 dB in 1.5 seconds.

For comparison the same simulations were repeated with F replaced
by a linear function and the constant K adjusted to give a time constant
of the exponential decay of about 0.3 sec. The noiseless case and test (7)
gave about the same results, except, of course, that the decay was
exponential. In test (47) the noise was introduced after 1.1 sec instead
of 0.6, to allow I; to converge to about 30 dB. However, in this case,
after the introduction of the noise I; rose by about 20 dB within 0.2
seconds. Thereafter it stayed at about this level.

The same kind of behavior was obtained when speech signals were
used both as input and as interfering noise and when the echos were
generated by the computer. Of course, it is much more difficult to
estimate time constants of the convergence when speech signals are used.

We also used as inputs, digitized tape recordings of sentences spoken
over an N2 carrier system. Two-track tapes were made of the input
signal and the echo. Double-talking situations were also recorded and
tested. For tests with these tapes, 40 to 50 delay line taps spaced 0.1 ms
apart were used.

With very strong echos (0-dB return loss) the system provided a
reduction of about 20 to 25 dB as measured on a VU meter. This
reduction took place in 0.5 to 5 seconds depending on signal level
as discussed in Section IV. The larger variation of convergence rate
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with signal level when the clipper is removed, was apparent in these
tests also.

When a typical hybrid and a return loss of 6 dB were used the echo
was reduced to the point of being unintelligible and almost inaudible
even under quiet conditions. As in the case of tests with noise signals,
the introduction of double-talking at a very high level after convergence
had taken place produced little change in the balance.

The fact that in the case of these recordings over the N-carrier sys-
tem the echo could not be reduced by more than about 20 dB or so
is undoubtedly due to the compandors used in the N-system. The echo
canceller can provide only a linear approximation to the transmission
path of the echo, which in the case of the N-system has nonlinearities.

We have also simulated the echo canceller using the Laguerre expan-
sion. In this case, the digital equivalent of the Laguerre impulse re-
sponses were used. In terms of the delay parameter, z™' = exp (—jwT,)
where 7', is the sampling interval, these are

-1 _ n
L6 = = (),

1 —az " \1 — az”

where ¢ = 2 — al,)/(2 + &T,), a being as defined in Section V.
As mentioned earlier « is chosen so that the cut off frequency of the
Laguerre function is about 2 or 2.3 kHz.

VIII. DISCUSSION AND CONCLUSIONS

We have described a new method of cancelling echos in telephone
connections. From our theoretical discussion and simulations it appears
that the method is feasible and can yield echo cancellation of about
20 dB or so with a convergence time of about 0.2 to 0.5 second for
average speech levels. This convergence time increases to 10 times
its value for a 20-dB decrease in signal level. Convergence much faster
than this is not possible, as then the system becomes too sensitive to
noise and behaves erratically with normal noise level to be expected
on a telephone connection.

We have shown that the system would not appreciably depart from
equilibrium even upon the incidence of double-talking. However, it
needs, initially, a period of time in which only the echo is present in
the return signal (of course low-level noise may be present also, but
there should be no double-talking in this period). This initial interval
can be as small as 0.5 seconds if the input signal is loud, but would have
to be proportionately longer for weaker input signals.
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It would be advisable to break the control loop during bursts of
loud double-talking. This need not be done by very sophisticated
means. The following simple method should be satisfactory. Assume
that the maximum level of an echo is 6 dB below the input signal.
Clearly if the return signal is much larger than this it indicates double-
talking. Rectification and integration with a time constant of about
0.5 second gives a reasonably good estimate of the levels of the input
and return signals. A switch could then be adjusted to open the feed-
back path in Fig. 3 immediately following the nonlinearity F, whenever
the input level is less than, say, 3 dB above that of the return signal.
It is important to note that this merely prevents the gain setting
G from changing. It does not interrupt the return path.

We have tested our system only on an N2 carrier system (besides
on artificially generated echos). This is a double-sideband modulation
system in which compandors are used. There are also in use single-
sideband carrier systems, in which no compandors are used but in
which carrier frequency variation (during the round-trip transmission
time) would introduce a time-varying nonlinearity. The degree to which
this type of variation exists and its effect require further investigation.

The delay between the input signal and its echo must be compensated
for. This delay may be as large as 60 ms. The problem of automatically
determining this delay and compensating for it is a challenging problem
and is being investigated by a systems group at Bell Telephone Lab-
oratories. They are also collecting a large sample of impulse responses
of various connections. This information would be very useful in the
final design of the system. For example, this will enable us to decide
upon the optimum number of taps. Also, a fixed weighting of the gain
vector G depending upon the statistical distribution of the impulse
responses would improve the average performance of the system.

The ultimate test of the system’s performance and usefulness is its
actual use during normal long distance telephone conversations. For
this, actual hardware must be built. Two, rather different, instrumenta-
tions have been recently completed, one by A. J. Presti’ and the other
by F. K. Becker and H. R. Rudin,® and it should be soon possible to
carry out such tests.
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Temperature Dependence of Inversion—
Layer Frequency Response in Silicon

By A. GOETZBERGER and E. H. NICOLLIAN
(Manuscript received October 28, 1966)

Conductance-voltage and capacitance-voltage curves of metal-oxide semi-
conductor (MOS) capacitors on n-type silicon were tnvestigated in the
temperature range between room temperature and 200°C. Plots of theinversion-
layer conductance versus reciprocal temperature show a sequence of two
activation energies: one corresponding to the temperature dependence of the
intrinsic carrier density n; , the other to that of n2 . The low-temperature
range 1is characterized by recombination-generation in the space-charge
region, the high-temperature range by diffuston current from the bulk. The
technique permits measurement of bulk lifetime for the two regimes and
determination of room temperature cuioff frequency for the channel.

I. INTRODUCTION

Theoretical calculations of metal-oxide semiconductor (MOS) capac-
itance show a total capacitance approaching oxide capacitance in strong
accumulation and strong inversion.! Experimentally, it has been found
that response time of the inversion layer can be very long.” The re-
sponse time can be drastically shortened, however, by lateral ac current
flow in an extended inversion layer.*®* The lateral current flow mode
requires equilibrium surface inversion beyond the metal contact. This
condition is usually found in p-type silicon because of the preponderance
of positive surface charge in thermally oxidized silicon. Channel cutoff
frequencies are then typically in the MHz range.

In n-type silicon, charge in the inversion layer can communicate
with the bulk under steady-state conditions only by means of genera-
tion-recombination processes.” Inversion-layer cutoff frequencies in
n-type silicon are normally below 100 Hz, sometimes below 1 Haz.
These low frequencies make it difficult to measure cutoff frequencies
and to determine the mechanism of generation of minority carriers.
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In this study, measurements with n-type silicon were carried out at
elevated temperature where generation is more rapid. It is thus possible
to study the generation mechanisms and confirm the theory for cal-
culating response time. This theory was derived by Hofstein and
Warfield.”> They consider three different generation mechanisms for
minority carriers. These are: bulk diffusion current, space-charge gen-
eration, and surface-state generation. Fig. 1 shows a simplified equiv-
alent circuit proposed by Hofstein and Warfield for strong inversion.
The inversion capacitance is fed by three parallel conductances cor-
responding to the three generation mechanisms. Because inversion
capacitance is large compared to oxide capacitance with which it is
in series, it can be neglected as done in Fig. 1.

The conductances are given for n-type bulk material by the following
relations.”

For surface-state response

Gv.e = qBN,NDeaW'O'pU,, ’ (1)

where q = electronic charge in coulombs, N, = surface-state density/cm?,
N, = donor density in the bulk in em™, 8 = ¢/kT, o, = capture
cross section for holes in em® », = average thermal velocity of holes
in cm/sec, and ¢, = surface potential in volts. Relation (1) was orig-
inally derived for a single level close to midgap. Because only levels in
this range contribute to recombination, it is also valid for a continuum
of surface states as is generally encountered in oxidized surfaces.

L,

CD:F éGg,s Gg,D §Gd

[e]

Fig. 1—Equivalent circuit of MIS ecapacitor in strong inversion proposed in
Ref. 2. C, is the oxide layer capacitance per cm?, Cj, is the depletion layer capacitance
per cm? G, , is the conductance arising from generation-recombination through
surface states, mhos/cm?, G, p is the conductance arising from generation-recombina-
tion through states in the silicon space-charge region, mhos/ecm?, and G; is the
conductance due to the diffusion of minority carriers from the quasi neutral region in
the silicon to its surface, mhos/cm?
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Space-charge generation response:

qn; d

GV'D = i (2)
T0¢s

where n; = intrinsic carrier density in em™, 7, = bulk lifetime in

seconds, and d = space-charge layer thickness in em.
Diffusion response
2
/U
Gd LpND ’ (3)
where u, = hole mobility in em?®/volt-sec, and L, = diffusion length
for holes in cm. We have further

L, = (ram/B)". @)

By measuring temperature dependence of the inversion-layer response,
it is possible to determine which mechanism is dominant. Surface-state
generation should go with an activation energy of ¢, . It has to be
considered here that ¢, is itself a function of temperature. Space-charge
generation has the activation energy of n;, and diffusion current that
of n. In the present investigation, surface-state density was made
very small, so that only @, , and G; had to be considered. This was
also done because surface-state density can reach high values close
to the band edges.® This, in turn, causes considerable uncertainty
of the value of surface potential. In the absence of surface-state effects,
the experiments reported here showed that at low temperature space-
charge generation dominates while at higher temperature diffusion
current takes over.

II. EXPERIMENTAL TECHNIQUE

Samples used for the measurements consisted of expitaxial layers
of 1.5 X 10" em™ doping, 10 u thick, on low-resistivity substrates of
[100} orientation. Use of epitaxial samples was advantageous because
the measurements were not affected by series resistance in the substrate.
Because epitaxial layers are not as perfect as regular crystals, rather
low lifetimes were encountered. Samples were thermally oxidized in
steam to a thickness of 1000 A. The previously described bias oxidation
technique’® was used. In order to reduce surface-state density, the
samples were subjected to a 30-minute annealing treatment in N, at
350°C after an aluminum film had been evaporated.”® After annealing,
circular areas of 3.75 X 1072 cm diameter were etched out for MOS meas-
urements. Capacitance and conductance were measured versus voltage
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at 100 KHz and 6 KHz at various temperatures. For this purpose,
the entire wafer was placed on a heated stage and contact was made
to one capacitor with a wire probe. Temperature was controlled to
+2°C. Next, depletion-layer capacitance and inversion-layer conduct-
ance were extracted from the raw data by correcting for oxide capac-
itance as described in Ref. 5 and 3.

III. RESULTS

A family of capacitance versus voltage curves and conductance
versus voltage curves at 6 KXHz are shown in Figs. 2 and 3. Figs. 4 and
5 contain 100-KHz curves for the same sample. It is seen that both
capacitance and conductance saturate in the inversion range at negative
voltage. Due to the influence of the residual surface-state density
small bumps appear in the depletion region. In Figs. 6 and 7, Arrhenius
plots of the computed inversion conductance ; are presented. These

curves were obtained from the conductance curves of Figs. 3 and 5
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Fig. 2 —Capacitance vs field plate bias measured at 6 kHz with temperature in °C
as parameter. Sample is n-type silicon oriented in the [100] direction. Field plate
diameter is 370 y, donor density is 1.17 X 101 em™3, and oxide layer capacitance is
2.84 X 1077 farads/cm?.
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Fig. 3 —TEquivalent parallel conductance vs field plate bias measured at 6 kHz
with temperature in °C as parameter. Sample is the same as in Fig. 2. Conductance
is peaked at 120°C. Dotted lines are on high and solid lines on low-temperature side
of peak.

at high negative voltage. The fact that both plots agree within the
accuracy of the measurement indicates that the equivalent circuit of
Fig. 1 is valid. The values of the activation energies also prove that
in the surface studied here there is no noticeable influence from surface
states. Fig. 8 contains room temperature capacitance-voltage curves
at various frequencies.

IV. DISCUSSION

Hofstein and Warfield® showed that the dominant effect is most
likely space-charge recombination (2). Surface recombination may also
be important at relatively high surface-state densities. Because the
sample investigated here contained very few surface states, it can be
expected that space-charge recombination dominates. From Fig. 6
it is seen that this is the case up to temperatures around 140°C. In
this range, the activation energy is 0.56 eV for Fig. 6, curve (a), and
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0.620 eV for Fig. 7, curve (a). The expected activation energy’ for
n; is 0.605 eV. Equation (2) can now be used to calculate bulk lifetime,
7., under certain simplifying assumptions given in Ref. 2. We obtain
ro = 4.19 X 107° seconds. This rather low lifetime is explained by the
fact that it refers to an epitaxial layer.

Above 140°C a new process dominates as shown by the break in
the 1/T curves. This process could be either surface-state generation
or diffusion current from the neutral part of the bulk. It can be shown
that surface-state generation is very unlikely in this case. Surface-state
density as determined by the conductance technique® is varying be-
tween 6.1 X 10" and 3.3 X 10" states per cm® and eV. This density
would, according to (1), give a conductance orders of magnitude lower
than the measured G;. It is also expected that the activation energy
of surface-state processes should decrease because surface potential
at constant voltage decreases considerably with increasing temperature.

If the high-temperature points in Figs. 6 and 7 are connected by a
straight line, they give an activation energy of 0.908 eV for 6 KHz
and 0.935 €V for 100 KHz. This energy is lower than the expected
energy of 1.21 eV. The discrepancy can be resolved by correcting the



INVERSION-LAYER RESPONSE IN SILICON 519

high temperature points by subtracting the influence of space-charge
generation as indicated in Fig. 6, curve (c). If this is done, the high-
temperature activation energy in Fig. 6, curve (c), is 1.17 ¢V which
is very close to the expected value. Fig. 7 did not contain sufficient
experimental points to carry out the correction.

Using (3) and (4), the high-temperature lifetime and diffusion length
can be calculated. We find, L, = 20.1 u and r, = 1.8 X 1077 seconds.
Because the calculated diffusion length is of the order of the epitaxial
layer thickness, it is possible that the actual diffusion length might
be longer. In calculating the above values, a temperature dependence
of the mobility u, of T% was used as is necessary for highly-doped
samples.
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Fig. 5 —Equivalent parallel conductance vs field plate bias measured at 100 kHz
with temperature in °C as parameter. Sample is same as in Fig. 2. Conductance is
pfake(]i{ at 180°C. Dotted lines are on high and solid lines are on low-temperature side
of peak.
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The two lifetimes calculated from the two temperature ranges are
actually expected to be equal. The linearity of the plots in curve (b)
of Iigs. 6 and 7 indicates that there is no great temperature dependence
of 7,. A possible explanation for the discrepancy of lifetimes is that
they are measured in different parts of the crystal. Space-charge re-
combination occurs within 0.5 x from the surface, while diffusion life-
time is determined in the entire epitaxial layer. It is likely that a thin
surface layer contains a higher concentration of recombination centers.

An alternative explanation is that electron and hole lifetime are
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Fig. 6— Equivalent parallel conductance measured at 6 kHz and a bias of —15
volts as a function of reciprocal degrees Kelvin. The experimental points indicated
by the circles were obtained from Fig. 3. Multiple circles at a given temperature re-
present several runs. The solid lines are the best fit to the experimental points.
Curve (c) is obtained by subtracting the values of Gy in curve (b) from the extrap-
olation of curve (a) at each temperature.
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Fig. 7—Equivalent parallel conductance measured at 100 kHz and a bias of —15
volts as a function of reciprocal degrees Kelvin. The experimental points indicated
by the circles were obtained from Fig. 5. Multiple circles at a given temperature
represent several runs. The solid lines are the best fit to these points.

significantly different. In this case, 7, = (r..7,,)! would have to be
used in (2) and 7, = 7,, in (3). Under this assumption ,, is calculated
to be 107*° second.

By taking inversion conductance from the curves in Fig. 6 at room
temperature, inversion-layer time constant can be accurately calculated.
This time constant® is r; = Cp/G; = 2.25 X 107 second leading to
a cutoff frequency of 71 Hz. Fig. 8 demonstrates that a cutoff frequency
in this neighborhood is indeed observed.

V. CONCLUSIONS

By measuring inversion conductance, it could be shown that the
equivalent circuit and theory by Hofstein and Warfield is valid. The
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Fig. 8 —Capacitance vs field plate bias measured at 27°C with frequency as
parameter. Sample is the same as in Fig. 2.

technique applied here permits an estimate of the room-temperature
time constant of an inversion layer by extrapolating the high-tempera-
ture curves. This way, even very long time constants may be estimated.
In samples having low surface-state density, like the one described here,
only bulk generation processes are important. The temperature range
up to 140°C is characterized by space-charge generation, above this
range diffusion current which has a higher activation energy becomes
more important.
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The Charge-Control Concept in the Form
of Equivalent Circuits, Representing a
Link Between the Classic Large Signal

Diode and Transistor Models

By DANKWART KOEHLER
(Manuscript received November 2, 1966)

It is shown in this paper that the charge-control concept can be conceived
as a spectal form of the Linwvill model for semiconductors. Instead of
mathematical tools, charge-control models become equivalent circuils amen-
able to ordinary network analysis techniques. In the stmplest form, the
charge-control equivalent circuit for the junction iransistor is fully equiv-
alent to the Linvill and the Beaufoy-Sparkes model. For all practical
purposes, it s also equivalent to the Ebers-M oll model.

The charge-conirol junction transistor equivalent circuit combines those
features of the other models that are important for elecirical engineering
applications. It also permits the conversion between the three basic types
of models. Because of its close relationship to the physical processes governing
a device, it can readily be extended to higher-order phenomena. This s
usually done by expressing a Linvill-type lumped model in terms of charge
parameters. The charge-control equivalent circuit can be useful for modeling
a variety of semsconductor devices.

I. INTRODUCTION

Three basic approaches are generally used to obtain descriptive large-
signal models for transistors and diodes, the Ebers-Moll model," the
Linvill model® and the charge-control concept’® after Beaufoy and
Sparkes.

The Ebers-Moll transistor model''* is based on the idea of super-
imposing a “normal” and an “inverse’” transistor. Semiconductor
junctions are represented by means of diodes and capacitors, whereas
the properties of the transistor base are represented by frequency-
dependent current sources. The Ebers-Moll transistor model is the

523
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most popular of all transistor models since it lends itself most readily
to simple ‘“rule-of-thumb calculations.” The current relations are
described in the frequency domain, whereas the junction voltages are
described as functions of current in the time domain, or, as in the
original paper, only at de. The model simulates only the effect which
minority carrier storage exercises on the relations among the various
device currents, but not the effect on current-voltage relations. Since
the diode is a one-port device, no diode model of the Ebers-Moll type
exists that could simulate carrier storage.*

The Linvill model®®™"* is almost a direct representation of the con-
tinuity and diffusion equations for semiconductor materials. It uses
physical rather than circuit parameters and is superior to any other
model when it comes to incorporating second-order physical effects
or symbolizing new structures.

The charge-control concept’'*™* stands about halfway between
physics and circuit considerations. It has proven in the past to be
very useful for studying storage effects in diodes and transistors, but
appeared to be entirely a mathematical tool. Certain equivalent circuits
have been presented'*''® to illustrate charge control, but, as Linvill
phrased it, “they have little more meaning than a symbolic model
useful for the purposes of visualizing only.”

Hamilton, Lindholm and Narud compared the three models for the
transistor in a well-written tutorial paper.”'” They discussed the
approximations used in deriving each model from the same physical
background. [See also Ref. 34] In contrast to this parallel treatment
of the three models, the following study dwells on the interrelations
and conversions between the various models. This is illustrated sym-
bolically in Fig. 1.

We may call the Linvill model a physical model, the Beaufoy-Sparkes
charge-control model a mathematical model, and the Ebers-Moll model
an electrical model. The link between the three models is accomplished
through a modified approach to charge-control theory: instead of
deriving, from device physics by means of integration, mathematical
charge-control expressions, the charge-control concept can be treated
entirely as an equivalent circuit tool.”” The transistor model, for ex-
ample, is in such a form readily comparable with, and convertible
into the Linvill and the Ebers-Moll model, provided all of these models
are at the same level of approximation. In its simplest form, the charge-

_* Diode models that simulate storage and use neither the charge control nor the
Linvill concept are usually extensions of small-signal models towards incorporating
certain nonlinear properties.
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Fig. 1 — Principle of derivation of transistor models and their interrelations (heavy
lines indicate main aspect of this paper; numbers refer to conversion equations in
the text).

control equivalent circuit model is fully equivalent with the standard
form of the Beaufoy-Sparkes charge-control model. But equivalency
is usually lost, as extensions to higher-order approximations are made
in each model.

In this paper, we shall review the derivation of the above-mentioned
types of models for diodes and transistors. This will be done with the
help of a differential transmission line model. The equivalent circuit
type charge-control concept will then be derived for diodes and tran-
sistors. This will be followed by a discussion of higher-order approxi-
mations, the inclusion of drift fields, and possible applications to
other semiconductor devices.

II. DIODE MODELS

2.1 Mathematical Description

As a starting point for our discussion it is assumed that the reader
is familiar with the continuity and transport equations, describing
current flow and carrier density in a semiconductor material.
Continuity equations
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—div () = ¢ 20 4 20 — (1a)

v ) = o 200 4 (MO T, (1b)
Transport equations

Jo(t) = e, Ep(t) — eD, grad p(f) (22)

§n(?) = ep.En(t) + eD, grad n(?). (2b)

j» and j, are the hole and electron current densities, respectively.
p and n are the hole and electron carrier densities with p, and n, being
their equilibrium values at a given temperature. E is the electric field
intensity. D, and D, are the hole and electron diffusion constants,
and u, and g, are the respective carrier mobilities. ¢ = +/| e | is the
value of the electronic charge.

2.1.1 p-n Junction

A p-n junction is described in a first~order approximation by the
transport equation (2). The well-justified assumption is made that
both j, and j, are numerically small compared with the mutually
opposing diffusion and drift currents. With the help of the Einstein
relations

D, = kT o (3a)
[
D, =, (3b)

(4

and the appropriate boundary conditions one obtains the Boltzmann
equations that express carrier densities as functions of the applied
junction voltage v, :

Px(0, £) = p.o exp [ﬁ vm(t)} (4a)

n,(0, §) = n, exp l:% vm(t)]- (4b)

Here, p.(0,t) and n,(0,f) are the carrier densities on both sides of the
junctions; p,, and n,, are the densities for v.., = 0 or, in other words,
at points away from the junction, previously called p, and n, in (1).
The definitions of these notations are illustrated in Fig. 2.
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Fig. 2 — Carrier density distributions in the vicinity of a p-n junction and explan-
ation of notations used.

In terms of excess carrier densities, (4) transform into the following
expressions

Poxcess(D) = Da(0,0) — Puo = pno[exp {é vem(t)} - 1] (5a)

n,,o[exp {ﬁ vmw} — 1]- (5b)

Together with the reasonable approximation that the hole and electron
currents pass through the junction unchanged,* (5) uniquely char-
acterizes the junction.

It

nexcess(t) = np(O»t) — MNpo

2.1.2 p and n Regions

The following assumptions are implied in the analysis presented
for a p-n diode:

(2) The p-region is so heavily doped that the electron current can be
neglected and appreciable carrier injection occurs only in the n-region.
(72) The problem is reduced to one-dimensional variations along the
x axis.
(4%7) Drift fields are neglected. (Their inclusion will be briefly dis-
cussed later in Section 7.3.4.)
(iv) Space charge neutrality is assumed.

* This is not quite true for silicon diodes at low forward currents and in the
reverse direction where recombination in the space charge layer cannot be neglected.
With respect to some of the diode properties, especially the current-versus-voltage
relationship, the discrepancy can be accounted for by changing the exponent to
eV /2kT .1 ’
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With these assumptions the continuity and transport equations reduce
to

_9h@,t) _opa@,h) | palr,t) — puo .
w e T T ©)
. ap.(x,!
]p(xvt) = _C‘DP —?La(i’l (7)

We shall now express (6) and (7) in terms of the excess carrier den-
sities Pr,so... Which we shall denote for simplicity as p, i.e.,

p(xrt) = pnexoess(xlt) = pn(xrt) = Dno -
Multiplying by the cross section 4 we obtain

_0u(,t) _  9p@,d) p(,t)
9 eA Y, +eA . 8)
B(@,h) = —eADp@%’—t)' ©)

These are the two equations deseribing the n-region.

2.2 Differential Diode equivalent circuits

IEquations (8) and (9) become transmission line equations if 7, and
p are taken as currents and voltages, respectively. (Mathematically,
one may think of p as an analog voltage representing carrier density.)
I'ig. 8 illustrates the resulting r-g-¢ transmission line.

The currents in the network branches are true currents but the
voltages associated with the nodes are analog voltages. As a reminder,
we have labeled the nodes with encircled ‘“p’s”. The series and shunt
elements are accordingly analog resistors, conductors and capacitors
per unit length.

If the diode is forward biased, the junction injects carriers into the
n-region. They diffuse across the n-region gradually recombining until,
at £ — o, all hole current is converted into electron current. Fig. 4
shows the carrier distribution across the n-region which is equal to
the voltage distribution along the infinitely long r-g-¢ line. It can
be derived easily from (8) and (9) that, under steady-state conditions,
the shape of the charge distribution is proportional to

exp (—CIJ/L,, ’

where

L,= VD,r,. (10)
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JUNCTION N —REGION
tplo,t Lplo,t) Lp(x,t) Fdx { lp+di ip=0
o plo,t) plo) iLpl /P\p( p p P,\N\r p
i
\J cAP p
\\\
2 1 gdx cdx
\ e
= \
vit) =flp] \ dip dip
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\
—-— 0
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\_/ *—eo0
z=0 dipi=-gdxp |g=%
U -1
vit)= & 1af1+ RO ) dlp=-Tde gy | c=eh
e Pno dp=-1‘d1‘ Lp P=eAle

Fig. 3— Analog differential transmission line representation of diode model. (The
bars indicate dimension per unit length.)

L, is called the diffusion length. 7, is the hole recombination time
constant, or hole “lifetime’”.

Since the analog voltage distribution on the capacitors of the r-g-c
transmission line is identical with the physical charge density distribu-
tion, and since many engineers have a much better feel for the charging
and discharging processes of such a line than for the physical process,
the r-g-¢ line representation may be quite helpful as an illustration
of the carrier injection process. In early semiconductor work, such
r-g-c transmission lines were frequently used.”®'******” No attempt was
made, however, to attribute the physical meaning of carrier density
to the network nodes; the junctions were represented by so-called
K-amplifiers. These amplifiers transform the internal voltage at z = 0

p(x)

—=p(©)

<

Fig, 4 —Excess carrier distribution in diode n-region.
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to the external voltage with the appropriate exponential relationship,
while not transforming current at all. ‘

Linvill>*****" has introduced new symbols for the network elements
which relate current to carrier density. These new notations avoid
possible confusion between analog and physical circuit parameters,
especially voltages, and hence enable us to combine current/carrier-
density with current/voltage networks. Fig. 5 shows such a Linvill
model in differential form. Again we have added bars over the letters
as it was done with the 7, §, and ¢ in Fig. 3 to denote their dimensions
as being “units per length”.

The symbols in the models are defined as follows:

diy(x,t) = —H, dzx p(z,b) (11a)
dipp(e,l) = —8 do "—”%ﬁ (11b)
dp(z,t) = —(1/H,) dz 1,(z,1), (11c)
where
H, = combinance per length = ed /7, (12a)
S = storance per length = e4 (12b)
(1/H;) = — per length = 1/edD, . (12¢)
diffusance
N-REGION JS—
JUNCTION ('—d)dx
plo,t) iLplx,t) 11l plx,t) |

N ( — | {[fmmmoo

\ ~

\ dp

\ *l dip, dip,
\ .
\\ de
Cnix, U T
X Lnlx,
N
kT p(o,t))

vit) = ?Ln(w + B

Fig. 5— Differential Linvill diode model. Note that, in consistency with common
transmission line notations, the reciprocal of diffusance must be used.
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This model can be extended to include majority carriers, drift fields
etc. The reader is referred to the literature.”*™**

2.3 Integrated Diode Models

2.3.1 Mathematical Integration

In order to arrive at an expression for the external diode current
from the continuity equation (8) we can integrate this expression with
respect to z. Choosing = 0 and z = <« as the limits of integration,
we obtain

[P [T @) Lf”
fo B8) gy = fo ed Pl de + - [ eap@p de. (13)

The third integral represents the total charge in the bulk material.
With the appropriate boundary conditions 7,(0) = ¢, 7,(0) = 0,
i,(0) = 0, i,(») = 34, the well-known charge-control equation® can
readily be obtained as

i) = 440 4 40, “

To obtain (14) from (13) the assumption must be made that 4 and
T, are constant. Note that no approximations or restrictions to specific
charge distributions are implied in (14). (They must be made, however,
when relating the current to the junction voltage.)

2.3.2 Lumped Linvill Diode M odel

The crudest approximation to the distributed Linvill model of Fig. 5
is to replace the “line’’ by just one storance and one combinance®"’
as shown in Fig. 6. These two elements are obtained by summing, i.e.,

pt)=p(o,t)
\CwW = HJS €T pt) ~ Tp
)/éx ) ) Lg(t)
\\\ bhg ls =dp__w =eAlp
-0 dt
v(t) 2

v(t)= R—TLn (1 +——p (O’t))
e Pno

Fig, 6—Lumped Linvill diode model showing single-pole approximation for
minority carrier storage. Chosen values: Az = Ly, p(t) = p(0,t).



532 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

integrating, all differential storances and combinances from x = 0
to some value Az. The value of Az is usually chosen to equal the diffusion
length L, . This may seem arbitrary,'” but has no effect on the terminal
properties of the first-order model, as long as p(¢) is chosen such as
to maintain the same amount of total charge.

The values of the circuit elements follow from (11), (12), and (5a) as

H, = H, v = AL, = ‘i%]ﬂ (15a)
S =8 Az = SL, = eAL, (15b)
_1 p(O,t)> -
u(t) = N In (1 + o ) (15¢)
where \ is an abbreviated notation, used hereafter for
e
M= (16)

The meaning of such lumping with respect to the carrier distribution
is illustrated in Figs. 7 and 8. The solid lines in Fig. 7 present the
actual carrier distribution in a switching example in which a current
pulse is assumed. As required by the transport equation, the slope
at # = 0 is, at any time, proportional to the current. Under steady-
state conditions, an exponential distribution is obtained. To assume
such exponential distributions at any instant of time (dashed lines
in Fig. 7) represents a simplifying assumption. The corresponding

pP(xt) p(xyt)

o/ Lp
RESIDUAL
CHARGE

@ (b)

Fig. 7—Illustration of the (a) charging and (b) discharging process in the neutral
bulk material. The applied signals are assumed to be forward and reverse current
pulses. The solid lines represent the actual shape for current pulse drive; the dashed
lines represent exponential model approximations.
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p(z) p(E,L)
_ LUMPED WITH m =1
/
p(o) ——k _LUMPED WITH - pty=p(o,t)
Vd m>t
__________ _¥ NN LUMPED WITH
p(o)/m A % _— LUMPED |
| ~ ¥
| NN
~ N
| S O™ EXPONENTIAL
| EXPONENTIAL SN -~
! / N ~ \\\: R
I R
! === -
x x

TOTAL CHARGE =q (t}=eALpp(o,t)
(a)

Fig. 8 —Exponential and corresponding lumped distribution of excess minority
carriers in the bulk material of a diode. (a) Illustration of the choice of lumping
length. (b) Time variation for m = 1; m = 1 is generally preferred in the Linvill
model, and is irrelevant in charge models or circuit applications of the Linvill model.

errors are negligible in all those applications where the switching times
are large compared with the carrier redistribution times (= diffusion
times 7, and 7, in Fig. 12). ’

In the lumped Linvill model, it is assumed that the carrier density is,
at any instant of time, constant from x = 0 to x = L, , and that it is
0 for all z > L,. Any information on the distribution of the charge,
especially of the slope at = 0, as expressed in the transport equation,
has been lost since all series elements (diffusances) are neglected. The
only parameter of importance left is the total number of minority
carriers and hence, the total charge. The approximation used is therefore
equivalent to the dashed line exponential distribution in Fig. 7.

As mentioned above and illustrated in Fig. 8(a), the length Az over
which p is nonzero, is most conveniently chosen to equal L, . But it
is permissible to choose Az 5 L, if the constant value p(z) is recognized
to be different from p(0,) ; for Az = mL, , we must choose p(t) = p(0,£)/m
such as to yield the same total charge

q = eAL,p(0,1). 17)

Fig. 8(b) shows, for m = 1, the time variation of the carrier distribu-
tions for the lumped model (solid lines) and the exponential distribution
(dashed lines).

As the external voltage »(t) varies, the carrier density p(0,t) changes
accordingly. The relation between v(f) and p(0,f) has been given above
in (15¢). We shall see below that the approximation made in the lumping
process, as discussed above, effects only () but not the current. Little
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or no error is made whenever, and as long as the external driving
source impedance is large.

Since, in this and any other lumped Linvill model, all circuit param-
eters are functions of total charges in the various sections of the semi-
conductor we can transform the model of Iig. 6 into a charge-controlled
model, in which all carrier densities are replaced by charges. This will
be shown in Section 2.4.1.

2.4 Charge-Control Diode M odel

Without invoking any of the approximations introduced in Section
2.3.2 and illustrated in Figs. 7 and 8, the diode is completely described
by (14) and (5a). These two equations are the basis for the classic
charge-control theory after Beaufoy-Sparkes as applied to diodes.
Throughout the charge-control literature, only the current appears as
a function of the total charge but not the voltage. If we want to relate
the junction voltage to the charge rather than to p,(0,t) as it was
done in (5a), we must make some approximation: The simplest possible
approximation is the assumption that p(0,t) is proportional to ¢{f).
This is, for example, satisfied if the shape f(z) of the carrier distribution
never changes, i.e., if the carriers redistribute themselves instanta-
neously. p(x,t) is then of the form

p@,t) = 1(x)g().

The shape of f(z) does not matter as long as the integral [ f(z) dx
yields the proper proportionality constant. Examples of this are the
exponential distribution or the lumped distribution (with any arbitrary
value of m) in Fig. 8(a). This shows the equivalency between the
postulate of instantaneous carrier redistribution in classic charge-
control theory and carrier density lumping in the first order Linvill
model.

If we now want to establish an equivalent charge-control circuit
we must first represent (14) by corresponding circuit symbols. This is
done in the n-region part of Fig. 9. S is the store originally introduced
by Beaufoy and Sparkes.""''* To account for directionality, we have
added a vertical bar to the store symbol in the manner of the standard
diode symbol. The properties of S, as defined in this paper, are:

(z) charge stored = ¢(¢) ]
(@) current in direction indicated by arrow —— F——

. _ dg®)
ST
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JUNCTION l N—REGION

AL ; —s(a9—

o e

e .
kT qt)
vt)="g1n (|+ Tols )
dq)
PROPERTIES OF S: (D L(t)= at

oRr I(s)=sQ(s)~-Q(o*)

(@ VOLTAGE =0

Fig. 9—Complete first-order charge-control equivalent circuit (this circuit is a
charge representation of Fig. 6).

(#12) voltage across store = 0.

S is often interpreted as an infinite capacitor for which 7 = dg/dt =
d(Cv)/dt = finite, but C — « and » — 0.

It follows from (15¢) and (17) that the junction voltage is of the form
o) = S 1n 11+ K],

where K is a proportionality factor. If we denote the steady-state
reverse current (flowing through the diode when v(t) is very large
and negative) by 75 we can evaluate the constant: For » — — » we
obtain

K-Q = —1
and from Fig. 9

_IS = Q/Tp .
Hence,

1
K = Tor,
and thus,
_1 1@}
o(t) = N In [1 + Tor, (18)
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Under steady-state conditions where @/r, = I, this equation becomes
the well-known diode equation.

For the possibilities of incorporating the junction capacitances see
the discussion in Section 7.3.2.

2.4.1 Dertvation of the Charge-Control Model from the Lumped Linvill
Model

It represents not merely an additional proof of equivalency but also
a good preparation for the derivation of more complex models, if we
show®” that we can derive the charge-control model from the Linvill
model. A somewhat related modification of the Linvill model was more
recently proposed by Beddoes.'? To this end we calculate the currents
through the elements H, and S in Fig. 6

ir(t) = Hp(0,1) (19a)
is() = 5 200, (19b)

Substitution of the values for H,, S, and p(0,t) from (15a), (15b),
and (17) yields

eAL,,

indt) = ey, - 40 (208)

dp(O 1 _ dq(h)
15(t) = eAL, T e (20b)
This result shows that the current source in the charge-control
model of Tig. 9 represents the current 7y, through the combinance,
and that the store S represents the current 75 through the storance.
To find the expression for the junction, we can express p(0,) in
terms of ¢(¢f) by means of (17). p,, can again be obtained from the case,

where V' — — o and where p(0,f) = P(0) = — pno:
AL ) AL,
IjYvow = —1Is = e—T—”P(O)JV = - —"pno .

Thus, we find

p(O, t) — Q(t) ISTp _ Q(t) (21)
De eAL,/ eAL, Is‘r,,

With this we can make the transition from (15¢) to (18).

2.4.2 Evaluation of the Charge-Control M odel

The charge-control model is completely equivalent with the lumped
Linvill model in Fig. 6; in fact, it may be considered a circuit oriented
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form of the Linvill model. In almost all instances™'* where the Linvill
model is being used for circuit applications the conversion of carrier
density into charge must be made anyhow. The charge-control equiva-
lent circuit in Fig. 9 uses current and voltage sources plus one lesser
known circuit element described by the simple relations

(i) =0 (222)
i) = d%T(f) (22b)

or, in Laplace notation
I(s) = sQ( — Q7). (22¢)

Ordinary circuit analysis techniques can be used in working with
the model. No restriction exists with respect to the external waveforms.
@ appears as an additional circuit parameter with additional com-
plexity comparable to that of an additional branch current. From a
topological viewpoint it is a branch current. This is the price to be
paid for inclusion of the first-order dynamic storage properties.

Junction and n-region are clearly separated in the model. Thus, little
difficulty should arise in adding junction capacitors (dashed in Fig. 9),
series path resistors, and leakage resistors, provided, physical knowledge
of such effects exist.

2.4.3 Charge-Control Model for Short-Base Diodes

Diodes with extremely short bases do not show the exponential
minority carrier distribution represented in I'ig. 4, but rather a prac-
tically linear fall-off (like in a transistor base except that the collector
is now a nonrectifying contact). With reference to Figs. 3 or 5, this
means that the distributed “transmission line” is so short that the
effect of the series diffusances H, dominates over that of the shunt
combinances H,. The metallic contact behaves like a short circuit
at the end of the line.

The analogy with the r-g-c line of Fig. 3 may help the reader visualize
the difference between the long base and the short base diode: The
first-order approximation for the infinitely long line with respect to
currents and input voltage is the parallel connection of the shunt
resistor and the shunt capacitor; the first-order approximation for a
very short line is the parallel connection of the series resistor and the
shunt capacitor. In terms of the Linvill model, the short base diode
model is obtained by replacing H,. in Fig. 6 by H; = eAD,/L and
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L, by L. (Note that H, increases as L becomes small.) In the charge
control model, of Fig. 9, the term 7, which represents the recombination
time constant for the long base diode, now becomes the diffusion time
constant. The new value 7/ can be derived most easily from the Linvill
model as follows:

;9 Q ip(QedW _ W*

™ Gu.  p(OH W ~ p(0)eAD,/W ~ 2D,

(23)

Apart from this numerical change, the model in Iig. 9 for the normal
diode is equally valid for the short base diode.

2.4.4 Piecewise Linear Charge-Control Diode M odel

For many practical purposes the logarithmic voltage source relation
can be approximated by a switch as illustrated in Fig. 10. The switch
opens when ¢ becomes negative and closes when ¢ is able to charge
up to ¢ > 0. A threshold voltage V,, is connected in series with the
forward path. If desired, the slope of the logarithmic curve

a = A/ = N Mo Maw ™ Mo @4
v=£(Q v=f (@
SLOF’E-_—'Lq-
Vih —
. .
7 T j’ o
D
o/
Is
- oo i
|
— l
O T T
v="e “‘('*n—) th g | I
L__(:>_..._I

(a) (b)

Fig. 10 —Piecewise linear approximation for the semiconductor junction. (a)
Theoretical logarithmic curve. (b) Approximated curve (the dashed lines indicate the
completion of the diode model).
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can be added as a resistor, where I,, is an average current, which may,
in long hand calculations, be assumed to be 3[.... The saturation
current I must now be represented by an external current source.

2.4.5 Application of the Model

The above discussion of diode models serves two purposes: First,
they form a basic understanding for deriving transistor models. Secondly,
the diode models can be very useful in simulating dynamic effects due
to carrier storage in diodes.

With the piecewise linear junction approximation of Fig. 10 applied
to the charge-control model in Fig. 9, storage time equations can be
derived easily using Laplace transform concepts. The model has proven
to be very useful in the analysis of step-recovery diode circuits. In the
piecewise linear form, it can be handled without a computer, whereas,
for the more complex models with various parasitics added, computers
soon become mandatory.

Switching times for step-recovery diodes are derived in Appendix A.1
as an example of the use of the charge-control model. The equations
obtained have been found by many authors to agree well with actual
measurements. The normalized storage time for recovery from an
infinite ON-pulse according to (97) is plotted in curve a of Fig. 11 as
a function of the reverse-to-forward current ratio according to the
relation

T = 7ln (1 + ﬁ_,;) (25)

When applying this result to an ordinary diode with homogeneous
doping profile, one must be aware of the implied approximations:
(2) The single-section approximation in the model does not affect any
mutual relationships between currents and charges, but represents
approximations with respect to the junction voltage. As the amount
of stored charge is reduced considerably in the diode, the junction
voltage decreases noticeably. (#7) As the carrier density near the junction
becomes extremely small, the voltage reverses sign and the diode
impedance, at some point, becomes comparable with the external
source impedance. The ideal current source assumed in (97) ceases
to exist, and instead of the step-recovery, as given by the model, a
long tail in the current response results.

From either one of the two differential models in Figs. 3 or 5, we can
calculate the time in which the carrier density at £ = 0, and hence
the junction voltage, reaches zero. Such a calculation yields the relation
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Fig. 11— Comparison of diode storage times as functions of the driving ratios.
(a) Single lump model; 7 = time when charge is fully depleted. (b) Difterential
model; 7 = time when excess carrier density at £ = 0 reaches zero.

originally derived by Lax and Neustadter'
r_ 1 |
T - I R
1 —_=

+ 1,

erf (26)

This relationship is illustrated in Fig. 11(b). Since curve (b) represents
only the storage phase but not the very long tail of the recovery, the
values are much smaller than those in curve (a) in which some sort
of “effective total recovery”’ is represented. The difference is most
remarkable at strong relative reverse drives where the carrier distribu-
tions on the lines differ most from the steady-state distributions.

If it becomes necessary to incorporate the tail of the recovery into
a lumped diode model, the double m-extension described below may
prove adequate for most applications.
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2.4.6 Higher-Order Approximations

Bearing in mind how the model originated as an approximation to
the differential transmission line or as just another form of the lumped
Linvill model we can now understand how higher-order approximations
are to be obtained.

Fig. 12 shows the example of a m-approximation for a diode. The

ps alp
7~ N\
pi(t)=p(O,t)
bL,
N
4 Pa(t)
eA N
4>
eA I ————
f T T
| S —
p
clp=2t01p
(a)

1O

El"_(_t‘) q(t) Q) qa(t)
' " T
T 3
WHERE ig (t) = ‘hit) ) = Q;(t) _ qi(t)
acLp /Dp bchz/Dp a b
_ KT a,(t)
vit)= ?ln (H- Tolo

T T2
T (§-1)+72
CHARGE CONSERVATION CONSTRAINT ON a,b,c:
cb (1-a) L2

(a+b-1)DpT,

Ty (FROM DC CONSIDERATIONS) =

WHERE C IS MOST APPROPRIATELY CHOSEN TO BE t':=ﬂ

2
(b)

Fig. 12—Higher-order, w-Approximation of diode charge-control model. (a)
Charge approximation. (b) Corresponding model.
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charge is broken up into two parts ¢, and g, . The diffusance between
the two stores controls the redistribution of the charge. Such a structure
provides a better representation of the junction at the higher frequencies
or at higher speeds than the model of Fig. 9, since the junction voltage
is now a function of only that part of the total charge which is close
to the junction. The model simulates recovery tails. It also permits
the simulation of variations in recombination time along the z-axis.
Fig. 12 assumes two different recombination times 7, and 7.. The
7 = f(g) relation then becomes

At ) o, ¢
v= di +'r+'r 27)

1 2

[which reduces to (14), if one assumes 7, = 7).

Three additional time constants 7,, 7, and =, appear in Fig. 12.
They depend on the choice of the sections aL, and bL, over which the
shunt elements are integrated and on the choice of the section cL, over
which the diffusances are integrated. The three degrees of freedom
reduce to one, however, if one considers that (z) the total charge must
be conserved by the lumped approximation, and (i2) in a multisec-
tional approximation the diffusances are most appropriately lumped
over sections ¢L, which extend between the centers of the charge
sections. The corresponding relations are given in Fig. 12; derivations
have been omitted.

III. LARGE-SIGNAL TRANSISTOR MODELS

In complete analogy to the diode models, we shall now compare
the various junction transistor models and establish the charge-control
model in the form of equivalent circuits. The Ebers-Moll concept,
which was found not to be applicable to dynamic diode description,
will now enter the “competition’.

In order to dwell on the philosophies underlying each concept we
shall, at first, limit ourselves to diffusion type junction transistors,
neglecting again drift currents and secondary effects such as base-width
modulation. All derivations will be carried out for pnp transistors;
but, of course, everything will be correspondingly valid for npn tran-
sistors.

3.1 Differential Transistor Model

The most rigorous of all the equivalent circuits describing a junction
transistor, as defined by (5), (8), and (9), is the differential model shown
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Fig. 13— Differential Linvill model for the transistor with drift fields neglected,
pnp version shown.

in Fig. 13. Linvill notations comparable to the diode model in Fig. 5
were chosen. (If so wanted, the model could also be drawn with the
notations used in Fig. 3 resulting in an r-g-¢ line and two K-amplifiers
at both ends.)

The base section of the transistor model is only a very short ‘“trans-
mission” line when compared with the “infinitely long’’ diode n-region
of the normal diode. Instead of 100 percent recombination, as found
in the diode, the transistor must have as little recombination as possible
in order to achieve high gain. Fig. 14(a) shows a steady-state charge
distribution under normal forward operation, and Fig. 14(b) shows
the distribution for the case where both junctions are emitting, i.e.,

po.t)
p(o,t)

pxt)

0 W Y W

(@) (b)

Fig. 14 —Excess minority carrier distribution in the transistor base under (a)
normal and (b) saturated operation.
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in saturation. Under normal operation the collector acts as a ‘‘charge
short circuit” for the line. For high-gain units, the slope is almost
a straight line; at £ = 0 it is proportional to Iz and at x = W propor-
tional to I .

The general case is that of Fig. 14(b) where both junctions are
emitting and p(W) = 0. Any section of the base region can be de-
scribed analogously to a four-pole using the definitions given in Fig. 15.
Note that there are no nonlinearities in the base section.

Ip(s) = ALPi(s) 4+ APo(s) (28a)
Io(s) = AnPi(s) + A5Ps(s). (28b)

By using complete analogy to standard transmission line theory, it
can be shown that with the use of (10) and (11) one obtains for a
homogeneous section Az

Te(s) = 7( 9 coth v 1122(3—) cosech v Az (29a)
Ie(s) = —Z(— cosech v Az — PZZ(S) (29b)

where
7 1 , T f 1
T ed _D; 1+ st (30)

V1 + sr. (31)

v = D,r

In the general case, the base is not homogeneous, which means that
Z and v will vary along the line.
The junctions are described by the time relations

P1(0,8) = puolexp (Mo, (f)} — 1] (32a)
p2(W,8) = prolexp (\e()} — 1]. (32b)
o—I—E—-‘ A“ A'2 —I-E—o
P1T sz
O Az Azo —o0

Fig. 15—Symbols and polarity conventions defining the four-pole description of
the transistor base.
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Fig. 16 — First-order lumped Linvill transistor model.

IV. THE LUMPED LINVILL 7-MODEL

In the literature, any lumped approximation to the transmission
line model presented in Fig. 13 is referred to as a “lumped Linvill
model” or simply ‘“lumped model”. The most common form is the
w-model. With respect to its current properties and steady-state voltages,
this form will prove to be equivalent to the commonly known “Ebers-
Moll model”, if both models are taken to be in the form of first-order
approximations.

By integrating all differential diffusances over a length Az = W,
all emitter sided differential combinances and storances over a length
Az = W, , and all collector sided differential combinances and storances
over a length Ax = W,(= W — W,) one obtains the circuit shown
in Fig. 16. Nonsymmetry has been taken into account by using different
recombination times 7, and 7, and different cross-sectional areas A,
and 4, on the two sides. Note that the latter represents an extension
from the one-dimensional carrier flow and as such an example for the
reduction of multidimensional effects to a one-dimensional model.
Area A is some average cross section effective for the diffusion process.
H, is the diffusance, the H,s are the combinances, and the S’s are
the two storances.
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The four-pole equations describing the transistor base are obtained as

19 = A2 po[ 14 AT 1 4 5ry | - ADe g
= H,P, (s)l: (1 15 —)] — H.P.(9 (332)
1o = 42 p) ~ ALepo| 1 4 Ay g oy |
= H,Pi(s) — Hsz(s)[ }IIJ:Z (1 + s Hij):' (33b)
The junctions are described as
pi(t) = p(0,8) = puolexp Mo, ()} — 1] (34a)
po(t) = p(W,1) = puolexp {No(9)} — 1]. (34b)

A constraint has to be satisfied: Under equilibrium conditions, the
total charge in the base must equal that in the two sections, i.e.,

w
eA, TP, + eA, TP, = cA f P() de ~ 1 AWIP©) + POV)]. (35)

The approximation holds for high-gain units. For this case the base
volume sections are equal, i.e.,, 4, W, = 4,W, = 2AW. For low-gain
units (34) must be modified: The terms p,(t) or p.(t), or both, must
be replaced by p,()/m, and p.(t)/m., respectively, whereby the m’s
are constants > 1, similar to m in Fig. 8.

Equation (33) represents one of several possible approximations to
(29) with the additional property of nonsymmetry being added.

Higher-order approximations of a lumped linear model are obtained
by representing the base of width W by more than the two sections
W, and W,.

V. THE EBERS-MOLL TRANSISTOR MODEL

The focal point of the Ebers-Moll model is the two-port description
of the base. Such a description has been given in (28) and (29), and
is permissible because of the linearity which exists between currents
and carrier densities in the base. Nonlinearity exists, however, in the
relationship between carrier densities and external voltages according
to (32). Since linearity allows the use of the superposition principle,



CHARGE-CONTROL CONCEPT 547

the total current can be conceived as consisting of the superimposed
contributions of the currents injected by the two junctions.

When put into the form of an equivalent circuit, the Ebers-Moll
model shows the superposition of a normal transistor (subscript N)
and an inverse transistor (subscript I). In Fig. 17(a) the lower diode
and current source represent the normal transistor and the upper
elements represent the inverse transistor. Each junction is represented
by a diode, a fraction of the diode current is collected by the other
electrode. The ratios of collected currents to emitted currents are called
ay and «; for normal and inverse operation, respectively. The general
frequency behavior of the o’s can be calculated for a homogeneous
base from (29), (30), and (31) as

eve(t
arlee (9 'LC,:(t)=ICFO[ExP( ﬁ.(r)—ij]
) e
NN ler
L c c { e
SN, S0 S5 TR S50, A
Ler -
evﬂ(t.) ’ \I-/(S)
Lert)=Igr, [EXP( T —1)} %rb ANTER
B @
—aglc(s) Lc'(t):ICO[ExP (B —«)]
(<) <
o/ Tl
r' H . ’
Eo_/v\e/\/_.l.'E_ ______ _|6__(5.T£_~.-__C_T_C__|é ______ _EE_/\X‘}\,_O(:
e, -
. ' s)
Le't)=1go [EXP(ev;_(l}) —1)] %rb anlel
' B
a
WHERE aN(s)=—-%9~ ap(s)= also (o)
HwaN Wal

Fig. 17—The two forms of the Ebers-Moll transistor model: (a) direct representa-
tion of the idea of superimposing a normal and an inverse transistor, (b) collecting
current sources as functions of the electrode currents. The junction saturation currents
in (b) are identical with the open-electrode diode saturation currents.
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a(s) — Iontput(s):l _ Cosech’y Az _ l
Y ST € I P —— " cothy Az~ cosh y Az
1 2D,r
T A T 2Dy 4 AP + sr AT (36)
1+ 5

But symmetry does not exist in a practical transistor. The constants
in (36) are therefore, different for ay and for o; . Equation (36) can
be rewritten under this consideration in the well-known form

Ano

aN(S) = m (37a)
Qg

O =T s o

The relations between the constants in (37) and the physical param-
eters (corresponding to the constants in (36) modified for the non-
symmetrical case) will be derived in Section 5.1.

On account of their nonlinearity, the junction diodes must be de-
scribed in the time domain. In their original paper, Ebers and Moll
defined only a dc relationship between voltages and currents. This
would restrict the use of their model to piecewise linear analysis.
But the model can be made more general®® by postulating that the
v = f(¢) relation be valid at all times, as indicated in Fig. 17.

In either case, an important property of the semiconductor junction °
is lost: Voltages and currents appear as being directly related instead
of being related indirectly through current density or charge. This can
best be illustrated by an example. If a forward current through a junction
is suddenly replaced by a reverse current the voltage actually does not
reverse sign until the excess carrier density at the junction is reduced
to zero. According to the Ebers-Moll model, voltage and current always
change polarity together. As mentioned before, it is for this reason that
for a diode, no dynamic model of the Ebers-Moll type exists that
would represent charge storage effects. In addition to this shortcoming,
the feature of mixed time and frequency domain characterization is
undersirable if the model is to be used in its nonlinear form, say on
a computer.

The Ebers-Moll model was originally presented in a form, shown
in Fig. 17(b), which differs slightly from that in Fig. 17(a). Both ver-
sions have been used throughout the literature over the past years
and very few authors® *° have clearly pointed out the difference between
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them. In Fig. 17(b) the collecting currents are « times as large as the
total emitter and collector currents, respectively. A simple calculation
shows that the two versions are formally equivalent, if the relations

I%(9)

1= ax)onG) (382)

IEF(S) =

and

1%(s)
1 — ay(s)a;(s)

are satisfied. A glance at the equations for the voltage sources in Fig. 17
reveals that the two versions could not be completely equivalent,
unless either I ;po and I ¢po or I and I, would be considered frequency
dependent. Due to the approximative nature of both models, this is
normally not done.

From both Fig. 17(a) and (b) the respective four-pole equations,
on which the model is based, can readily be derived in terms of elec-
trical parameters:

Iep(s) = (38b)

15(s) — ar(8)1%(s)
1 — ay(s)au(s)

Ig(s) = Igp(s) — ar(®)Lcr(s) = (392)

L) = av®@Tsr®) = Losle) = “PTELTED ooy

After substituting the expressions for the junctions one obtains for
the steady-state case the well-known Ebers-Moll equations

= ,__IL_ v _ _ Otj()I co _

Iy = 77— 4 [exP V) =1 =7 = p— [exp \V,) — 1] (40a)
_ aNnI Eo _ _ I co _

Io =7 poar [exp AWV = 1] = 77— —— [exp (\V2) — 1]. (40b)

5.1 Comparison Between the Ebers-Moll and the Linvill Model
Comparing (40) with (33) and (34) for the steady-state solution
leads to the following relations:

eAD,p,o _ ayol 5o _ arol co . (41)

W 1— Anolro 1 - QNolro

A corresponding comparison for the ac case would yield the same
expression as in (41), except that ay, and «;, would have to be replaced
by their frequency dependent forms. Since the left side term of (41)
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is frequency independent, no rigorous equality exists between the
Linvill model and any of the two versions of the Ebers-Moll model
under ac conditions. In the Ebers-Moll model, the junction voltage
is a function of the total diode current [being different in the two
versions of I'ig. 17(a) and (b)]; in the Linvill model it is only a function
of the resistive component of the diode current in Fig. 17(a); this
component equals the current through the combinance which is propor-
tional to the carrier density p. It can be shown that the correct solution
in which the junction voltage is a function of the carrier density directly
at the junction, lies between these two cases but much closer to the
lumped Linvill simulation. The discrepancy, mentioned here, affects
only the junction voltages and does not appear in many analyses
that use piecewise linearity.

ay(s) and a;(s) can be expressed in terms of the physical parameters
by comparing (39) and (33) separately for the normal operation (I, =0)

and for the inverse operation (Izr = 0). Subsequent conversion of
the o's into B’s yields
. CYN(S) _ 6N0 _ AT‘D,p/A1WW1
Bu(s) = 1 — ax(s) - 1+ s - 1+ sm, (42)
(O35
_ ar(s) _ Bro A D,/AWW,
Bl = T e ~ L4 Them (43)
wer
where
« 1
= T “
and
— _@ar 1_ (45)
er = 14 Bro - T2
By definition we shall call in later sections
Ty = Ty (4:6)
and
Te = Tpr (4:7)

5.2 A Better Approximation for the a Frequency Dependence in the Ebers-
Moll Model

Pritchard** has first suggested that a better approximation for the
3-dB cut-off points of the o’s or §’s are obtained if one inserts a factor
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1.22 into the corresponding equations, i.e.,

1 1 '
ay = ~ - . (48)
cosh v Az 1+ 1.22jw

Weut-of f measured

This can readily be calculated from the fall-off behavior of the cosh
expression while assuming By, > 1.

The same factor 1.22 appears in the corresponding expressions for
ar , By and B; . It is evident from (48) that this problem can be reduced
to a matter of defining w,y . For less ideal transistors the factor is
usually between 1 and 1.22.

Higher-order approximations to the hyperbolic function commonly
use two pole expressions or delay-producing excess phase terms.

VI. THE CHARGE—CONTROL TRANSISTOR MODEL

In analogy to the diode charge-control model we can establish a
charge-control equivalent circuit for the transistor. To that end, we
want to express all parameters in terms of the charge in the base.

Three approaches appear feasible: A lumped Linvill model can be
labeled in such a way that all elements appear as functions of charges
rather than integrated charge densities of the form pAx . The two are
proportional; the proportionality factors are of the form ‘‘electron
charge times area”. Most of the special circuit components of the
Linvill model become current or voltage sources in the charge-control
version, This procedure of converting a Linvill model into a charge
control model can readily be applied to higher-order Linvill models.

A second approach is to use the Ebers-Moll principle of superposition
whereby two charge-control diode models plus the corresponding col-
lecting currents can be joined to form the transistor model. This ap-
proach is essentially limited tothe first order of approximation. Two
seemingly different, but fully equivalent and easily convertible models
result. _

The third and classic approach to charge-control theory, originated
by Beaufoy and Sparkes,® is basically mathematical. Through integra-
tion of the continuity equation the carrier density as a variable is
replaced by the total charge in the base. Certain simplifying assump-
tions have to be made to obtain a relation between currents and charges.
In essence, these assumptions are equivalent to the approximations
implied in the first-order Linvill and Ebers-Moll models as well as in
the first-order charge-control equivalent circuits to be described below.
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Some equivalent circuits have been presented in the literature, but
they were less rigorous than the circuits described below in the sense
that they cannot be used as complete networks. Additional knowledge
of the physics of the device is required to use these models. Extension
to higher-order models in the Beaufoy-Sparkes approach is accom-
plished through increased physical and mathematical complexity and
not through more complex network topology as in the Linvill model
or the charge-control model to be described.

6.1 The w-Version (Base-Controlled Version) of the Charge-Control
Equivalent Circudt

In the lumped Linvill =~-model of Fig. 16, the base charge distribution
is approximated by two levels of carrier density. This is illustrated
in Tig. 18. p,(f) is constant over the length Az = W,, and p,({) is
constant over the length W, , where W, + W, = basewidth W. The
total charge in the two sections follows with (34a) and (34b) as

() = p(OWied, = puWied,[exp (M)} — 1] (49)
() = P(OWoe A, = puoWoeds[exp M.()} — 1]. (50)

Using the definitions of the elements given in Fig. 16, one can calculate
from the Linvill model in Tig. 16 the currents through H.,, H..,
and H,; and obtains

. A i t
o) = Hapu(t) = AWy = 260 _ 4D (51)
. 71 T1 TBN
. : A t
i) = Hapa(9) = 22,0 = 20 < 20 (2
. T2 T2 ThBI
P P p
7 ’ ‘
P(0)—»] o —p;=p(0)
. // %/ !
qN/\\\\ qN \\\
~ p (W) -
AV e =p(w)
P _fP
W W, W W,
@) (b)

Fig.‘ 18 —Excess carrier distribution in the transistor base as used or implied in all
first-order transistor models. (a) General case p; % p(0), p. # p(W). (b) Commonly
used choice p; = p(0), p: = p(W).
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i3(8) = Hylpi(t) — p2(8)]

= 4D ) — pp) = e (D 2B

Using the more familiar Ebers-Moll notations and the relations found
earlier in (42) through (47), 7; can be expressed as

u(l) = q‘v(t) - 91(15) (53b)

Thus, the three current sources in the charge—control model are found
and related to the Linvill model by means of (51) through (53).

The remaining two branch currents 7. and 7, are obtained from
Fig. 16 as

i) = ed,w, 20 ‘(‘) dqgt@ (54)
i) = edoIV, d”éﬁ” —QZ—EQ- (55)

These equations describe two stores Sy and S;, whose properties have
been described in Section 2.4.

The conversion between the two models will be summarized and
further discussed in Section 6.4.

The voltage sources for the junctions follow from (34), (51), and
(52) as

Ao(f) = In (1 + p(g?,,f) ): In (1 + %) (56)
Nl = In (1 + %) —In (1 + pnoqn’,—(;)&)- &7)

With the help of (41) through (47) that link the constants used in
the Ebers-Moll model to those in the Linvill Model, (56) and (57)
can be rewritten as

_ 050 o 148w |
(8 = In l:l + _— X In/d — aNoam)J (58)
N0 = In [1 + 20 s it iNa>] ©9

(The reader may prefer to derive the constants directly from the
steady-state Ebers-Moll model in (40) by considering the limiting
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cases v, = 0 and v, = 0.) With the addition of (58) and (59) the equiv-
alent circuit in Fig. 19(a) is completely defined.

It is customary and useful in charge-control work to define additional
parameters texy, Ten , Trr, Ter - We define their relationship as follows:

Ty _ TEN _
Bao aNo Ten (60)
Ter _ Ter _ _
Bro 254 TEl (61)
Since, as usual,
_ _ Bwo
= T4 b ©)
and
_ B
Qro = 1+ Bm y (63)
it also follows that
1 1
e e (64)
TEN TBN Ten
and
Lo L L (65)
Tcr TBI TEI

(The classic definition of these time constants after Beaufoy-Sparkes
will be discussed in Section 6.5.) The subscripts B, E, and C stand
for base, emitter, and collector, respectively. The subscripts N and I
on the time constants and on the charges have been chosen to indicate
the normal and inverse transistor operation. Many authors’'®'** use
F (forward) and R(reverse) instead of N and I. Since F and R are
commonly reserved for diode forward and reverse currents, and since
such currents can flow in each of the two junctions, the different nota-
tions N and I, as proposed by Ebers and Moll, appear more appropriate.

In Appendix B, the notations for the stored charges and the time
constants used in this paper are related to those used in a recent book
published by the Semiconductor Electronics Education Committee;"
they are also compared with the notations and definitions used by
Beaufoy and Sparkes.

The additional time constants do not add any additional degree
of freedom. But it is advantageous to use ‘‘base’” notations when
controlling base current, i.e., in common-emitter or common-collector
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Fig. 19— Charge-control equivalent circuit for transistor in first-order approxi-
mation, shown in two equivalent and convertible forms: (a) w-version, Linvill type,
(b) T-version, Ebers-Moll type.
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connection, and to use ‘“emitter” and ‘‘collector’” notations when
emitter and collector forward currents are injected, such as in common-
base connection.

The model obtained in Fig. 19(a) maintains the most valuable
property found in the Linvill model, namely the close relationship
between the physical processes and the circuit elements. For example,
7px and 75, are the recombination times on the emitter and collector
side, respectively, and 7¢y and 74, are the diffusion time constants
for the charges injected from the two junctions. Junctions and base
are represented by individual sections within the equivalent circuit.
This separation makes it easy to expand the model and to take other
effects into account.

6.2 The T-Version (Emiiter-Collector Controlled Version) of the Charge-
Control Equivalent Circust

In complete analogy with the derivation of the Ebers-Moll model
in Fig. 17(a) we can take two diode charge-control models back to
back and add current sources on the collector and emitter side, which
are ayo, and aj, times the diode currents.

For the simulation of the junctions, we are left with two alternatives:
One is to convert the corresponding expressions in the Ebers-Moll
model in Fig. 17(a) into charge functions; the other is to use the expres-
sions in the charge-control m-model (which are equivalent to the Linvill
model), but replace the g-notations by a-notations according to (60)
through (63). The first-mentioned alternative for simulating the voltage
sources would amount to simply substituting the diodes from Fig. 17(a)
for the voltage sources in Fig. 19(b). The property of charge control
would not be simulated. The second procedure is therefore chosen;
it yields

v.(t) = % In (1 + TENIEO/EZ{VG—) Ol.rvoam)> (66)
Uc(t) - %\ln (1 + TCIICO/(QII(t—) CYNOOZIO))‘ (67)

Thus, the equivalent circuit in Fig. 19(b) is obtained.

As far as the current relations in the models are concerned, the
main difference between the charge-control T-model and the Ebers-Moll
model is that the frequency dependence is simulated by a mathematical
expression in the Ebers-Moll model, and by an additional network
branch in the charge-control model. This is analogous to the option
existing in small signal models where one can represent the frequency
dependence either with an appropriate RC circuit, holding «, frequency
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independent, or alternatively, with a frequency dependent « in the
collecting current source.

The equivalency of the charge-control model with the Ebers-Moll
model exists only for the relations between the currents. It can be
shown readily that the following relations must be satisfied to establish
equivalency:

O e (68)
@ e = (69)
BN Wan
81 War

All o’s must be replaced in these equations by the corresponding
w/1.22 if the w’s correspond to the measured 3-dB gain fall-off points,
and if the better approximation mentioned in Section 5.2 is to be
included in the Ebers-Moll model, provided the particular transistor
follows the underlying theory well enough.

6.3 Conversion Between the Two Proposed Charge-Control Models

The identity between the two charge-control models, presented in
Irigs. 19(a) and (b) can best be proven by converting one model into
the other.

To convert the w-model into the 7-model one first adds a branch
current 7, both into and out of the base point B’ and splits 7, up into
its two components. The resulting circuit diagram is shown in Fig. 20.
The two parallel current sources proportional to qy(f) on the left side
can then be combined into one current source. Likewise, the two current
sources proportional to ¢;(f) on the right side can be combined. If
with the help of (60) through (63), one now relabels all current sources
in terms of ay and «; instead of 8y and B; and extends the upper current
sources beyond the voltage sources, one obtains the model in Fig. 19(b).

6.4 Summary of the Conversion Equations between the Linvill and the
Charge-Control Model

6.4.1 Conversion Equations for the First-Order Transistor M odel

In (49) through (59), the charge-control m-model was derived from
the Linvill model. With the help of the defining equations for the
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az(t) ap(t)
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Fig. 20 —Intermediate step used in the conversion from the = to the 7 charge-
control model, demonstrating equivalency between these two models.

Linvill model elements, the constants in the charge-control model can
be calculated as a function of the Linvill combinances, storances, and
diffusances. For the relation between the Linvill m-model of Tig. 16
and the charge-control r-model of Fig. 19(a), such calculations yield

TN = [_1_1 (72)
S
Tpr = sz . (73)
S,
Texn = E (74)
S")
Tgr = H.d (75)
H,H., H,, H.,)H
Too = pyo Hetle T+ Bl (76)
Hc Hc2 }Icl HCQ H
co = Pno : -;If x Ijli_d ) <. (77)

Note that (72) through (75) reveal that the five parameters in
the Linvill model lead to only four parameters in the charge-control
model. The one degree of freedom that is lost in the charge-control
model is the conversion factor from current to carrier density; con-
version of the charge-control model into a Linvill model is only possible,
if one of the five Linvill parameters is known. This is tantamount to
saying that one needs some information on the geometry of the device
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such as the value of one, or in low-gain units, both of the two base
volume sections 4,W, and A, W, .

6.4.2 Conversion Between the Linvill and the Charge-Control Model for
an Arbitrary Number of Base Sections
In higher-order approximations for diodes or transistors, the param-
eters of the Linvill and the charge-control models, as defined in Fig. 21,
are related by the equations

S S, S,
At L @
S 8,
e Ha e = M @)
S 8,
iz = Hdl? Ty = Hdpv (80)
Q10 = SiPno (81)
Qmo = Sm'Pno . (82)
-1 Py -4 Pm
v )i(” pno) Hara H v= XLnG+Pno
Py L. P2 _ Pp. Pv  _|I__ Pm L oc

. v W
Tiza —~Ti2b Tuva __ Tuvb
E v — — —F——— Q = c
N /L o/
+-— = -+
q Q2 Qu Ny N
=) @ 7?_(&) % = 10) e, 7)) Qv ) am
=L IR l ' 1 4m
v=in(va) B v=gw (o

Fig. 21 —A Linvill and a charge-control equivalent circuit for a junction and part
of a multisectional n-region, with indication of the notations used in converting one

model into the other.
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6.5 The Transistor in Saturation

In all lumped transistor models (Linvill, Ebers-Moll, or charge-
control type) the charge in the base is explicitly or implicitly broken
up into the charge gy injected from the emitter under normal operation
and the charge q; injected from the colleetor under inverse operation, e.g.,
in saturation. This was illustrated in Fig, 18.

When the transistor is overdriven into saturation with a base current
larger than I ¢ ,../Bx0 , the two stores gy and g; do not change by exactly
equal amounts, i.e.,

qu qu
diB excess 7 diB excess
where, by definition,
. . -I 8a
1B excess = g — *.;;;.!, (83)

This is illustrated in Fig. 22. It can be calculated from any of the two
models of Fig. 19 that, under steady-state conditions, the excess charges
in the two stores are related to the excess base current by the expressions

AQI = Ql = T% IB excess (84)
AQy = Ty g (85
N = B excess - 5)

1 — ayoer

p(x) p(x
,AdN, Ten
/

Qy saT/TBN 4 ’,T Bl
%/}QWT}M/ / / f
_ x [
[0} w o w
(a) (b)

Fig, 22—The transistor in saturation. (a) Actual distribution of excess minority
carriers. (b) Lumped approximation. The = and the T' models use gy and ¢y with
lifetimes 7y and 7p7; the Beaufoy-Sparkes model uses Qy g4 and qps = Agy + qr
with lifetimes 75y and g, where 7g is as defined in (88).
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From this it follows that

AQv _ Tev  _ Tex _ _ @ar = 1. (86)

QI AnoTer QroTET AyoWan

Since a7, < 1, the charge-up ratio is somewhat larger than the ratio
of the diffusion times of the normal and inverse transistor.

The rate at which the two stores charge and discharge in saturation
because of external step disturbances is described by the eigenfunction
of the system

82+s[1+6N0+1+6m]+1+6m+6m

TBN TBI

= 0. (87)
TBNTBI

If Byotsr/7T8x > 1, the two poles are far apart in frequency. Further-
more, the high frequency pole contributes in most nonoscillatory cases
little to the overall response. The higher pole or, alternatively, the s*
term can then be neglected and a single time constant results deseribed
by

o = (1 + BNO)TBI + (1 + BIO)TBN _ Texy + 7or .
# 1 4 Byo + Bro 1 — ayoan

Using w-notation, one obtains the expression given by Ebers and Moll

(88a)

roe o oo (38h)

wal\'wal(l - OlNo(Xm)

For large By and small 8;, 75 is approximately equal to

Ty RS TBI(]. + T—E[!> (88¢)
Tcr

If 7o < 7¢1, le., if the carriers diffuse more easily from the emitter

to the collector than vice versa, then the recombination rate 75, on

the collector side is mainly responsible for the overall decay of the

excess base charge.

6.5.1 Storage Time Calculations

For first-order storage time calculations with the transistor driven
into a steady-state saturation condition by means of an excess base
current Iz oxeess , One can simplify the charge-control model to the one
shown in Fig. 23. Storage time is the time it takes to deplete the store
which is charged to a value of

QBS = QI + AQN = IB excessTS = IB excess I.EM (89)

1 — ayoarn



562 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

ICSAT
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~Csat =Bs des (=Aqy+a
BNO J Ts N, ( N I)
i"B EXCESS

tYig
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Fig. 23 —Single-pole equivalent circuit for saturated transistor after Beaufoy-
Sparkes.

while, at the same time, this charge is exposed to an effective recombina-
tion time of 75 as given in (88). In this form the model is identical
with the classic Beaufoy-Sparkes model for the saturated transistor.

In the general case one must refer to the complete model.

6.6 The Beaufoy-Sparkes Charge-Control M odel

In the classic approach to charge-control theory, the starting point
is, like in the diode case, the integration of the continuity equation (8).
In comparison with the integration performed for the diode in Section
2.3.1, the upper limit of integration has to be changed to x = W. The ex-
pression

7,00, ) — o,(W, 1) = qu(t) + qN(t)

obtained from the integration becomes that for the base current under
normal, nonsaturated operation:

dQN(t) (0

BN

is(l) = + 28 ©0)
gw(t) is the total charge in the base. The next step being made is again
the approximative assumption that the carriers redistribute themselves
so quickly, that we can always assume steady-state distribution.
(See also Section 2.4.) Mathematically, this means that in normal
transistor operation both p(0,) and 7,(¢) are proportional to the base

charge gy(¢). It can be seen from TFig. 19 that the same assumption
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is implied in the two charge-control models presented there, despite
the fact that they were derived through entirely different procedures.
(Instantaneous redistribution is, however, not implied in models that
use more than one 7 or 7 section for representing the base.)

The time constants are defined in the classic charge-control theory
on the basis of the above-mentioned assumption of instantaneous
carrier redistribution, i.e., in steady state

TN = % ) Ten = %):—/ ) TEN = IQTJZI (91&)
and dynamically
. d : ; ; ;
dpy = 2L HE gy = N iy = ey b dow . (O1)
TN 14 Ten

The remaining three time constants can be defined likewise for the
inverse transistor. Narud, et al’ have used such definitions in an equiv-
alent circuit for the charge-to-current relations in the transistor. Beaufoy
and Sparkes discussed this possibility in their original paper® but chose
to present two separate charge-control models, one for the normal
active operation and one for saturation. In normal operation, the
charge gy called “q;” is bounded by the value reached at the edge
of saturation:

ICs&t

95 = Queae, where Quuo = _—
Bao

In their saturated model, all excess charge which exceeds Qx sar 18
Iumped into one store rather than two; this charge “gzs”” has a lifetime
Ts = Qps/TB excess Which is identical with 75 as defined in (88).

By lumping Agqy = gy — Qy sar and ¢; into ¢zs, the Beaufoy and
Sparkes arrangement provides only a minor short cut for calculating
storage time, while sacrificing not only some of the physical under-
standing, but also the possibility of mutual conversion with the other
models. No relations have been given that would express the junction
voltages in terms of the charges in the stores, and recourse must be
taken to the Boltzmann equation to find expressions for the voltages.

Throughout the literature the charge-control concept has been used
primarily as a mathematical-physical tool. Extensions to higher-order
effects are usually made by improving the simple continuity and
transport equations stated in (8) and (9) and then carrying out the
corresponding integration for the specific application.
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VII. SOME REMARKS ABOUT THE EQUIVALENT CIRCUIT TYPE CHARGE—
CONTROL APPROACH

7.1 Use of the Charge-Conirol Models

It is believed that the first-order approximation to a charge-control
model in the form presented for the transistor in Fig. 19, combines
the main advantages of the three basic approaches to modeling. The =
and the T-models are as easy to handle from an equivalent circuit
point of view as the Ebers-Moll model. Instead of frequency dependent
o’s and B’s, one additional current branch exists for each side of the
transistor. Circuit problems are solved in the usual way by means
of loop and node equations. The charges gy and ¢; appear as circuit
parameters which can either be calculated, if so desired, or else, elim-
inated in the algebraic process. The store elements in the circuit are
clearly defined by the circuit properties given in (22).

The model provides all the features that have made the charge-
control concept attractive in the past: quick estimates of switching
times by integrating the base current and equating with the charges
needed to fill and deplete the stores. The general base current equations
of charge control are directly read from I'ig. 19(a) as

oo Oy doy  qr  dgr , Crp o
=Lty T T a T a

C'pg dUc i

T ar

(92)

Of course, there is no restriction to step inputs. The chore of cal-
culating responses to a nonstep input is transformed through the model
into a circuit problem. In complex cases the help of a computer will
be required.

Due to its direct relationship to the Linvill model, the charge-control
model lends itself quite readily to extensions based on the physics
of the device. This will be discussed in Section 7.3.

7.2 Piecewise Linear Approximation of the Logarithmic Voltage Function

The logarithmic voltage functions for the junctions are of the form

o= n [1 T z/:moam)]' (93)

Tor most practical cases, this can be approximated by piecewise linear
functions, like in the diode case of Fig. 10. Except for small values
of ¢/7, i.e., ¢/7 not >I,/(1 — ayoase) , One obtains

(94)
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Thus, the slope can be represented by a resistor r/Ag, which may,
like in Section 2.4.4, be taken as the average value

dv T T 1 N
(o) T8 B T (95)
’

where I, is the maximum forward junction current.

It can be shown that in models which use the exponential relation-
ship, the expressions of the form In(1 4+ z) can be replaced by just
In z if one simulates the majority carrier currents by special current
sources as follows:

L=an g co (=Iy) from internal base to collector
1 — ayoaro
and
1 - 23

® Iz (=0) from internal base to emitter.

1 — ayar

This transformation is rigorous only at dc. However, in a piecewise

linear analysis, as discussed above, the addition of one current source,

namely I¢,, becomes mandatory if the model is to be valid at very
small collector currents.

7.3 Lxtensions of the Model

7.3.1 Path I'mpedances, Leakage Resistors

Like in the Linvill model, junctions and base material are clearly
separated in the charge-control model. Therefore, it is a straight-
forward procedure to add series path resistors, series inductances, or
leakage resistances to models like the ones in Figs. 9 or 19.

7.3.2 Junction Capacitors

It has been indicated by the dashed lines in Figs. 9 and 19 how the
junction capacitances are to be incorporated into the model. They are
properties of the junction, but their currents flow as majority carrier
currents through the bulk material. Hence, in Fig. 9, for example, they
must be connected across the whole n-region. (Connecting directly
across the voltage source would have no effect on the external prop-
erties.) In Fig. 19 they lead to the internal base point.

7.3.3 Higher Order than m-Transistor Models

Another desirable expansion may be to replace the = structure of
Fig. 19(a) by a double = or by some other higher-order approximation
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to the original differential “transmission line”’. This is of special im-
portance, if emphasis is to be placed on charge redistributions in the
base. By extending the model in such a way, the restricting assumption
of instantaneous carrier redistribution is no longer implied. A qualitative
example of an elaborate planar or mesa transistor model is given in
Frig. 24.

Cec
¢
A
L DRIFT=F {V,d,+032) U DRIFT =f (V,Q,+d3)
ve=+(qs) ,
- ¢ c
~ —0
<) A%
fb\ Cre
s ZTe
I"b QK/T3
" ’_qu - —+
Tb vk="f (k)
Il
"\
Crk
I it
Cge (LB Cae

Fig. 24—Example of an elaborate high-frequency planar or mesa transistor
equivalent circuit.

7.3.4 Drift Fields

If the charge-control model under consideration is being developed
on the basis of physical phenomena such as in the model of Fig. 19(a),
the contribution from drift effects may be represented in the same way
as has been proposed by Linvill [Ref. 7, Sections 2, 3]. As a direct con-
sequence of the transport equation (2), drift can be represented by a
current source added in parallel to the diffusion current source. In terms
of the r-g-c transmission line representation, discussed earlier, drift con-
sideration amounts to a resistor in parallel with the series diffusance
resistor r. This was used in a recent paper by Bloodworth.*

Alternative methods of representing drift effects in conjunction with



CHARGE-CONTROL CONCEPT 567

conductivity modulation are presently being investigated; results will
be published later.

7.3.5 Base Width Modulation

Base width modulation can be taken into account by replacing the
basewidth, especially the collector section W,, by an expression
Wy(1 + A), where A is some function of the junction voltage. Equa-
tions (52) and (53) show the dependence of the branch currents on W, ,
from which we can readily derive the required modification of the
charge-control model in Fig. 19(a).

7.3.6 Multiple-Layer Devices, Multiple Storage

In accordance with Linvill’s proposal, storage in more than one
region can be simulated by considering that the minority carrier cur-
rent on one side of a junction becomes the majority carrier current
in the adjacent region. An example is shown in Fig. 25. This figure
represents the charge-control model for an npnp device. Avalanche

Jit JziJa

—— N|P|N|P I

|

L ELECTRON

vy,=f(qpn) L=F(qpn,qpr,M) Vi, =f(qpI) \\ TGATE
D—K@__@ O L
F [ /
N A8 A/
qpr1 qn1
9pN M—— Mqpr M— M <
GRS s L (D // D)
> ~ [ (0
tHoLe \_/ T\
GATE vy,=f(qn) 1=F(qnN,qnM) Vi,=F(qnn)
_ /\ / \ / \ /
JUNCTION J; P-REGION JUNCTION J N-REGION JUNCTION J3

Fig. 25 — Charge-control model for npnp device. The model for an npn-transistor
with storage in the collector can be obtained from this model by omitting the part
to the right of the dashed or the dotted line.
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multiplication may be considered by adding a multiplication factor
to all hole and electron currents flowing through the junction of interest
(usually the center junction J,), as indicated in Fig. 25. M is a function
of the voltage across the junction.

By omitting the last electrode, an npn transistor with charge storage
in the collector is obtained.

7.4 Iistablishment of a Large-Signal M odel

The question naturally arises as to how one arrives at a numerical
model. There is no clear-cut answer to this question, since the procedure
to be taken depends on whether the informations available are pre-
dominantly physical or electrical in nature, whether a computer is
available or not, etc. The following outline can, therefore, only be
considered as a typical example.

(7) Obtain de measurements which yield information on junction
characteristics and electrode resistances. All measurements must be
made under widely differing drive and load conditions.

(#7) Add information from device manufacturer to establish first-
order dc model. (If necessary, convert to Linvill model.)

(727) Add dynamic parameters, such as capacitances, as far as they
are known and establish first-order dynamic model.

(7v) Use computer to improve numerical parameter values by
matching frequency response curves or switching data in the active
region with the model.

(v) Use computer to match large-signal nonlinear switching data.

(v7) Check model with switching measurements under different con-
ditions, such as extremely low, extremely high and medium input and
output impedance levels for various drive conditions. Improve model
basically and numerically as necessary.

For purposes of device design, more emphasis is generally placed on
the simulation of higher-order effects than in model building for circuit
design where, especially in the case of integrated circuits, it is necessary
to trade accuracy for simplicity.

VIII. CONCLUSIONS

The differential Linvill model stands out among all models as the
most perfect one. Whereas the lumped Linvill model is the most suitable
model for the device physicist, the circuit engineer usually prefers a
more circuit oriented approach. It is felt that the charge-control equiv-
alent circuit approach is well suited to combine the main advantages
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of the various models: It is as easy to handle as the Ebers-Moll model,
yet bears the close relationship to the physical phenomena of the
device inherent in the Linvill model. It can also be extended easily
to include higher-order physical phenomena.

Despite the difference in basic philosophy underlying the creation
of each of the three classic modeling concepts (such as lumping, super-
position, and integration), they are equivalent with respect to their
current relations and to all de properties. When compared at the same
level of complexity, equivalency with respect to time dependency of
the junction voltages exists between the two charge-control models
and the Linvill model, but not between these models and the Ebers-
Moll model. '

In the Ebers-Moll model the effect which storage exercises on voltage
cannot be included. The hydrib use of both time and frequency domains
in the model may also be felt as a disadvantage in some applications.

At the first-order level of approximation, the charge-control equiv-
alent circuit can be converted into the IEbers-Moll model, the Beaufoy-
Sparkes model, and into the Linvill model (in the latter case the base
volume is a constant which must also be known). Thus, the charge-
control model serves as a bridge between the various models. This can
be very useful in establishing a model, since both physical and electrical
information can be incorporated easily into the model.

The diode charge-control model has been found very useful for
analyzing storage effects in diodes.

Because of the close relationship to the physical phenomena in the
deviee, extensions to larger complexity can readily be accomplished.
We may interpret the charge control equivalent circuit as simply a
circuit-oriented form of the Linvill model. The basic ideas and pro-
cedures that are used in converting diode and transistor linear models
into equivalent charge-control models can be applied to many other
semiconductor devices.

APPENDIX A
Switching Time Calculations for Ideal Charge-Siorage-Step-Recovery
Diodes

(Example for use of charge-control model)

A.1 Equivalent Circuit (See Fig. 26)

A.2 Generator Source Current (See Iig. 27)

A.3 Diode Model (See Fig. 28)
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Fig. 26 —Equivalent circuit for charge-control model.
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Fig. 27 — Generator source current.
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Fig. 28 — Diode model.
A4 Forward Operation
1
16 = 42 1 s = L.

From this follows
Ir

e +3)
q(t) = 1Ir[1 — exp (—t/7)]
Q(tp) = TIF[l — €xp (_ D/T>]
A.5 Reverse Operation

Q) =

For simplicity of writing, ¢ = ¢, will now be referred to as ¢ = 0:
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19 = %9 1 500 - uy = 2.

8

From this follows

Q(S) — SQ(tp) - IR

£+

o(t) = Q(t,) exp (=#/7) — 7Ix[l — exp (=1/7)].
Step recovery occurs at ¢t = T, , when g = 0

exp (=T./1)[Q() + 7Iz] = 7lx
T.,=r1ln I:I—I-Q(IL”)] =7l <1+%[1 — exp (— z,/fr)]). (96)
TLRr R
A.6 Graphical Representation (See Fig. 29)

q(t)

———
I
-

Q(tp) -

Fig. 29 — Graphical representation.

A.7 Special Cases
@) t,— o Q) = Ipr

T,=rln (1 + %) (97)
@ Ip>Ip: T.= Q}i") (98)
@r) Ipn>Ip and t,— w: T, = L (99)
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APPENDIX B

Comparison of Notations

Table I lists comparisons of the notations used in this article. The
first column lists the notations used in this article while column A
lists those used by Beaufoy and Sparkes.’> Column B lists the notations
used in Physical Electronics and Circuit Models by P. E. Gray, et al;"
SEEC Series, 2.

TABLE I—CoMPARISON OF NOTATIONS

A B
This paper Beaufoy-Sparkes SEEC
v ga(for gy < Qusar only) qr
ar qr
{ Agy + qr }
qBs
where Aqy = gv — Qusar
TBN Tp TBF
TCN Tc TF
1 1
TEN Ty 1 / (—— + —-)
TBF TF
TBI TBR
1 1
/(A + 1)
TBR TR
TEI TR
T8 Ts TSL

LIST OF SYMBOLS

Lower-case letters are used for time variables, capital letters are used
for steady-state values or Laplace transforms of values.

4,A,, 4, cross-sectional areas

Ay, A, Az, Ase four-pole parameters

a, b, c, K constants

¢; € analog capacitance; same per unit length

Cr., Cr. emitter and collector junction capacitance,
respectively

D, hole diffusion constant

D, electron diffusion constant

e magnitude of electronic charge

E electric field intensity

analog shunt conductance; same per unit
length

<
<
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w

CHARGE-CONTROL CONCEPT

H.,,H.,, H, lumped combinances

H, combinance per unit length

H, lumped diffusance

1/H, reciprocal of diffusance, per unit length

Ty, T2, 03, Ly, L5 network branch currents

i base current

Lp excess s LB excoss excess base current in saturation

te, Ie collector current

ig, Ig emitter current

Ip, Ig forward and reverse diode switching current,
respectively

1, electron current

1, hole current

Ig diode saturation current

t5, 14, 2), I} }network branch currents as defined in

ter, Low, tep, Inr Figs. 17(a) and 17(b)

Io,Ico, Ino, Icro, Iero  de junction saturation currents

Io st collector current in saturation

tie s Ly, s currents through combinance, diffusance
and storance, respectively

Ty Len s Lon base, emitter, and collector current in normal
transistor operation

In electron current density

In hole current density

o Boltzmann constant

L, diffusion Iength for holes

m, my , Mg constants relating lumped carrier density
to carrier density at junction boundary

n electron density; excess electron density

n, excess electron density in p-region

Ny 5 Mo values of n and n, in thermal equilibrium

p, P(s) hole density or excess hole density

Dn excess hole density in n-region

Do 5 Do value of p and p, in thermal equilibrium

q, Q charge

Q15 92, Qn lumped charges in base region

Oy, Qn charge in normal store

qr, Qr charge in inverse store

Aqy , AQy, Aq;, AQ;, Qps additional charges stored due to saturation

Qx sar limiting value of @y, reached at edge of

saturation
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@10 ; Imo

Ty F

Te

s

8, 81, 8s, S
S

tt,, T

T

v, V

vex t

Ve, Ve
Wi, W
w
T
VA

ay, Qp

Qno y Oro

BN}ﬁI

ﬁNﬂ H ABIO

Y
A

Hn oy Mp
Ty Tp

’
Tpy Tay Toy T12

Te

T, = TN
T2 = Tpr
Teny TEI
Ten,y Tcr
Wan y War
Wpn y Wet

total minority carrier charge in equilibrium
analog resistor, same per unit length

small signal junction resistance

Laplace operator

stores = storances

storance per unit length

time

absolute temperature

voltage

externally applied junction voltage (ex-
cluding resistive drops)

collector and emitter junction voltages
lengths denoting sections in neutral region
base width

neutral region length variable
characteristic impedance

normal and inverse ac current gain in
common-base connection

dc values of ay and o,

normal and inverse ac current gain in
common-emitter connection

de values of 8y and 3;

transmission line propagation constant
short for ¢/kT

electron and hole mobility, respectively
recombination time constant in p-region
diffusion time constants

approximative effective recombination time
constant for excess charge in saturation
recombination time in base under normal
operation

recombination time in base under inverse
operation

normal collector and inverse emitter diffu-
sion time constants, respectively

normal emitter time constant (=1/w,y) and
inverse collector time constant (= 1/wa.;),
respectively

common-base angular cut-off frequencies
common-emitter angular cut-off frequencies
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Generalized Optimum Receivers of
Gaussian Signals

By T. T. KADOTA
(Manuseript received October 28, 1966)

Optimum reception of two zero-mean Gaussian stgnals ts accomplished
by comparing a quadratic form [[ x(s)H (s,t)x({) ds di in the observable
waveform x(t) with a predetermined threshold, if the symmetric kernel
H(s,t) can be given as a square-integrable solution of

f Ra(s ) Hu)Ro, 1) du do = Rafs,f) — Rals,f),

where R,(s,t) and R,(s,t) are the covariances of the two signals. In this
paper, we generalize this result so that Y ;.. [ =V (s)H,,.(s,0)a (t) ds di
1s the quadratic form to be used and {H,,(s,t)} is given as a formal solu-
tion of

9* "
g f f WRI(s,u)H,m(u,v) av—mRz(v,t) du dv = Ru(s,t) — Ry(s,t).

In other words, the generalized quadratic form is in the derivatives of x(t)
as well as x(t) itself and the kernels H,,(s,t) consist of two-dimensional
d-functions in addition lo square-integrable functions. This resull is ex-
tended to the case of two nonzero-mean signals and then to the case of M
Gaussian signals tn noise.

I. INTRODUCTION

Consider the problem of discriminating between two zero-mean
Gaussian signals by observing the sample function z{¢), 0 < ¢ < 1.
We assume that their covariances R,(s,t) and R,(s,t) are continuous
and positive-definite on [0,1] X [0,1]. According to previous results,'*:?
if the integral equation

f 1 f R Hup R, duds = Ro(s.t) — Ra), 0<st=<1, (1)

577
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has a symmetric and square-integrable solution H(s,t), then the fol-
lowing decision scheme minimizes the error probability:

1 1
choose Rist) if [ [ =@HE0a() ds dt <, ®
1] 0
choose R,(s,t) otherwise,
where
c = 2loga¢— > log A:, 3)
[e2) i=0

in which «; and «, are the a priori probabilities associated with the
two signals, and \; > 0,¢ = 0, 1, 2, --- | are the eigenvalues of an
operator RIR,R.*

Unfortunately, existence of a square-integrable solution of (1) is
too restrictive a condition. Thus, relaxation of the condition, which
amounts to generalization of the quadratic form of (2), is desirable.
In this paper, we accomplish this in two ways: one is to allow H(s,t)
to contain s-functions as well as square-integrable functions, resulting
in the generalization of the structure of the quadratic form; the other
is to consider the derivatives of z(f) as well as z(¢) itself, thus generalizing
the elements of the quadratic form. The result is extended to the case
where the means of the two signals are nonzero, and is further extended
to the case of M Gaussian signals in noise.

II. GENERALIZED OPTIMUM RECEIVER OF TWO ZERO-MEAN GAUSSIAN
SIGNALS

Consider the following generalization of the quadratic form of (2):
T 1 1
0w = 3 f f 2P Q) Hunls,)2™ (8) ds dt, @)
l,m=0 YO 0
where 2V (¢) is the Ith derivative of z(), and

Hy(s,0) = .kzl Girim 8(s — 8;) 8(t — 80)

* More precisely, A;, ¢ = 0,1,2,..., are the eigenvalues of the extension
of R7*R,R1 ¥ to the whole of £,, where R, and R denote the integral operators with
the kernels R(s,t) and Rs(s,t), and £, the space of all square-integrable funections on
[0,1]. We recall that existence of a symmetric, square-integrable solution of (1)
implies that R7#R.RT* has a unique bounded extension to the whole of £; having
eigenvalues {\;} such that 0 < IIf.o A < =,
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-+2w®—mm¢»+mﬂgw—nn
+ illm(s) 6(8 - t) + glm(s7t)y (5)

in which @;,;,, are real constants, and 0=s, ,{; =1, and h;;,,(t), h;1.(t) and
huin(t) are square-integrable functions on [0, 1] while ,,,(s, f) are square-
integrable functions on [0, 1] X [0, 1]. In writing (4), we have assumed
that almost all sample functions of both signals have rth derivatives.*
Note that the nonsquare-integrable part of H,,(s,t) consists of three
types of two-dimensional é-functions: (¢) those at points and their
mirror images with respect to the diagonal s = {, (¢) those along
horizontal lines (! = constant) and their mirror images (s = constant),
and (#21) those along the diagonal. By formally substituting (5) into (4),
we obtain an explicit form of @(z), namely,

Q(x) E [Z a:klmx(l)(sl)x(m)(sk)

l,m=0 7. k=1

+ i x(”(li) _/: [hiim(® + ﬁ”m(t)]x(m)(t) dt

i=1

+ f O (D™ (8) di + fo 1 fo LSO H s 2™ (0) ds dtil- ©)

As the corresponding generalization of the integral equation (1),
we consider the following:

r 1 1 al am
= fo fo O B ) Hunw0) s Ralo,f) du o

= Ru(s,t) — Ri(s,8), 0 =st= L. @)
Again, through formal substitution of (5), (7) becomes

r ni al am ng 1
Z {i,kz=l QAirim ('Ml Rl(s)t)lt=8i 6um R2<s!t)|8=8k + ; ‘/;

l,m=0

P7R@muum@ = Ra(u,t)

_I‘ l R (S u)h:lm(u) RZ(‘S t)ls l,]

*A 1 ple sufficient condition for this is existence of (92r+2/ds™+19i™*1) R(s,t),
=1,2
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+ f 3 Ry(s, u)h,,,,(u) Rz(u t) du + f f Fw Ri(su)H 1(u )

:7182(1),1!) du dv} = R,(s,t) — Ri(s,t), 0=st=1, (8)

where we have assumed that (9°7/9s"0t")R.(s,t) and (9°"/3s 0t ) R.(s,t)
exist and are continuous on [0,1] X [0,1].

Unlike H(s,t) of (2), which is uniquely given as the symmetric,
square-integrable solution of (1),* the defining elements of Q(z) (i.e.,
{@in)s {85}, (6], (hia®), (Ria(D), {illm(t)}r {Hin(s,t)}) cannot be
uniquely determined by (8) in general for a given pair of covariances
R,(s,t) and R,(s,t). Nevertheless, we can establish the following:

If (2) R,(s,t) and R.(s,t) are positive-definite,

(#3) (8°7/8s"0t")R,(s,t) and (8% /3s"9t") R.(s,t) are continuous,

(¢47) for almost all sample functions both signals have rthderivatives,
and

(v) there exist some set of finite sequences {@;iin}, {s;}, {t;}, {hin@)},
{him®}, b))} and {H,,,(s,)} which satisfy (8), then the decision
scheme (2) with 5[ x(s)H(s,t)x(f)dsdt replaced by Q(x) of (6) is
optimum.

The proof is based on two measure theoretical facts: (¢) two prob-
ability measures P, and P, corresponding to two Gaussian signals are
either equivalent or singular,{®® and (¢7) if they are equivalent then
there is a special random variable called the Radon-Nikodym derivative
(dP,/dP,){(x), in terms of which the optimum decision scheme is
specified as follows:"

i 4D, o
choose R,(s,t) if aP, () < o

choose R,(s,f) otherwise.

Hence, in the Appendix, we first prove that existence of {@;ui.}, {8},
{tils him@®}, {hun@®}, thin(®} and {H,,(s,t) satisfying (8) implies
equivalence of P, and P, . Then, it follows that the eigenvalues \; , z =

* The uniqueness of H(s,t) follows from positive-definiteness of Ri(s,t), 7 = 1,2,
and square integrability of H(s,t).

1 Continuity of (627/ds7at™) Ri(s,t), 7 = 1, 2, and existence of z(")(¢) for almost all
2(t) may be replaced by a snnpler but stronger condition that (927+2/9s™+1gt7+1)
Ri(st), © = 1, 2, exist.

1 From the communication theoretlcal point of view, singularity corresponds_to
the case of ‘“perfect reception” where error probability vanishes. For the mathe-
matical definition, see Ref. 7.



GENERALIZED OPTIMUM RECEIVERS 581

0,1,2, ---, exist.®”® Next, we explicitly obtain \; from (8) and show that
0<J]2, A< . Thus, the threshold ¢ of (3) is well defined. Lastly,
we prove that

D@ = (ITn) ew liow) Q

for almost all z(¢) of both signals. Then, by substituting (9) into the
above decision scheme and taking the logarithm of both sides, the
assertion is immediately proved.

III. EXTENSION TO TWO NONZERO—MEAN GAUSSIAN SIGNALS

The preceding result can be extended to the case where the means
of the two Gaussian signals are no longer zero.* Let P,, and P,, be
two probability measures corresponding to two Gaussian signals with
means m,(t), m,(#), 0 = ¢ = 1, and covariances R,(s,t), R.(s,t). m,(1)
and m,(f) are assumed square-integrable while the assumptions on
R,(s,t) and R(s,t) remain the same. Introduce a third measure P,
corresponding to a Gaussian signal with mean m.(f) and covariance
R.(s,t). Then, P,; and P,, are equivalent and

Py , . _ Py, dPy,
dPll (x) - de (m) dPll (x)

for almost all z(¢) of all three signals, if and only if P,, is equivalent
to P,,, which in turn is equivalent to P; . According to a previous
result,’ if there exist finite sequences of real numbers {d;;}, and {f;},
0 = {; £ 1, and square-integrable functions {#,} which satisfy

r na al 1 al
Z [E dil @Rl(syt)[s=fj + ‘/; QR],(SJ)&[(S) ds]

=0 i=1

=m(f) —m(t), O0=1=1, (10)

for almost all z(t) of the two signals, then P,, and P,; are equivalent
and (dP,,/dP,,)(x) = exp [L(z)] for almost all z(f) of the two signals,
where

16 = S35 & [t — 0% 0]

1=0 t=i;

+f0 - [x(t) = M]m(ﬁ dt}- (11t

* This extension follows the development in Ref. 3, pp. 1628-1629 and pp. 1636-
1637.

t This is the ‘“sure signals-in-noise” counterpart of the result in Section II,
namely, the generalized optimum receiver of two sure signals in Gaussian noise.
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The remaining half of showing the equivalence of P,, and P,, and
obtaining (dP,./dP,,)(x) is accomplished simply by replacing z(¢) with
z(t) — my(t) in the result in Section II. Thus, upon combination, we
conclude that, if there exist a set of finite sequences {d;;}, {f;}, {7:()}
satisfying (10) and another set of sequences {a;uin}, {si}, {{;}, {Pia(D)},
{hitm®}, {hin(®)}, {Hin(s,t)} satisfying (8), then the optimum decision
scheme for this case is specified as follows:

choose m,(t), R.(s,t) if 2L(z) 4+ Q@ — m,) < ¢,

choose m(t), R.(s,t) otherwise.

IV. EXTENSION TO M GAUSSIAN SIGNALS IN NOISE

The above result can be further extended to the problem of dis-
criminating among M Gaussian signals in Gaussian noise.* Let m;(f),
R.(s,) and @; ,2 = 1,2, -+ , M, be the means, covariances and a prior:
probabilities of the signals, and R,(s,t) the noise covariance where
the noise mean is assumed zero. The assumptions concerning m.(f),
R;(s,t) and R,(s,t) are the same as in Section III.¥ Denote by P;,; the
probability measure corresponding to the ¢th signal plus the noise,
and by P, the measure corresponding to the noise alone. Then, according
to the theory of the generalized maximum likelihood test,’* if each
P;; is equivalent to P, ,} then the optimum decision is to choose that
m;(t) and R.(s,t) for which «;(dP;;/dP,)(x) is maximum as a function
of 2.§ Observe that, if the 7th signal plus the noise and the noise alone
are interpreted as the two Gaussian signals of Section IIT with means
m;(f) and zero, and covariances E,(s,t) + Ri(st) and R,(st), then
the condition for equivalence of P;; and P, and the expression for
(dP;;/dP,)(x) are obtained simply by the following changes: m; (¢} — 0,
mo(t) — m:(t), Ri(s;t) — R,(s,t), Ra(s,t) — R,(s,t) + R.i(s,t). Thus,
we conclude that, if for each 7 there exist a set of finite sequences
{d:;}, (&) and {§.(d)} satisfying

r nis i al 1 al 5
é I:’zl it —(:FRo(sst)[s=lii + j; QRO(srt)gil(s) ds:l = mi(t)r

0=¢

IA
liA

1,

* This extension follows the development in Ref. 10, pp. 2192-2194.

1 Ri(s,t) need not be strictly positive-definite.

1 Equivalence of P;; and P, corresponds to the condition that the /th Gaussian
signal cannot be detected perfectly in the presence of this noise.

§ If «i(dP;:/dP,) (x) becomes maximum at more than one value of ¢, choose the
lowest of such 7-values. See Ref. 11.
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and another set of finite sequences {aijuin}, {sii}, {tii}, {Risa(D},
{Risin(®}, (him®} and {H,1.(s,0)} satlsfymg

l;o { n‘Z‘ Qijkim zR (s, If)]t=m Is™ [R ) + RBi(s,D)]smsin

n,,

3 [ |2 Rl nte) o (Rt + Ritu)

i=1

+ a a1 R (S u)ﬁulm(u) m (R (S t) + R (S t))la-lujl
f 2 Ruls (@)

6m 1 1 al -
22 ReD) + Rils.)) du + f fo 2t Bl ) Han(u0)

0
5‘%}; [R.@.0) + Ri@,)] du dz:} — Risf), O0=st=1,
then the optimum decision is to choose that signal (m;(t), R.(s,t)) for
which 2L;(z) + Q.(x — m.) + ¢; is maximum as a function of 7, where
L.(x) and Q;(x) are defined by (11) and (6) with d,;, #;, 4.(t), and
Qjkimy Sis tu htlm(t) E:lm(t) ﬁlm(t)y glm(sit) replaced by diil; i‘ih gil@)) a,l’ld
Qijkims Siu i) nlm(t)) ulm(t) ﬁilm(t): ﬁilm(s)t)> respectively, a'nd

¢ = 2loga; — 2 log AS?,
n=0
where M?, n = 0,1, 2, --- , are the eigenvalues of the extension of
I + R;*R.R;* to the whole of £, .

APPENDIX

Let P, and P, be two Gaussian measures associated with a separable
and measurable process {z(¢), 0 £ ¢t £ 1} with means zero and co-
variances R,(s,t) and R.(s,t).

Theorem: Suppose Ri(sit) and R.(s,t) are (strictly) positive-definite,
(8% /3’0t )Ry (s,t) and (9°/3s"0t)R(s,t), 0 < r < oo, exist and are
continuous on [0,1] X [0,1], and almost all sample functions have the
rth dertvatives with respect to P, and P, . If there exist a set of finile se-
quences* {aiun} {8}, {6} (Ria(®D}, {Bitn(®)} {hn(D} and {Hia(s0)}
which satisfy (8), then

* The definitions of these sequences are given after (5).
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(7) P, and P, are equivalent, 1.e., P, = P,
(%) (10) holds a.s., [P, , P.).*

Proof: For simplicity, we introduce the following notations:

o' a"
Ria’(uvt) = @Ri(syt)|a=u ’ Rit"‘(syv) = gﬁRi(syt)lt=v )

l+m

d .
Ria't”'(uyv) = WRi(s)t)lcmt.tBn y 1= 1, 2r

r ni

I{I(s¥t) = Z Z aiumRu'(sysi)sz(sk ’ f),

L,m=0 7,k=1

Ksl) = 5 5 Rus(sity) Ravwhsin) () + Roefiren) @Raunlly , ],

l,m=0 j=1

r 1
Ki(s,t) = 120[] Rl,x(s,u)ﬁ,m(u)Rzm(u,t) du,

T 1 1

Ksf) = 3 f f Roei(5,0) H i (t.0) Roun0,8) du do.
l,m=0 Y0 0

Note K.(st), ¢ = 1, 2, 3, 4, are square-integrable. Again, we delete

the arguments s and ¢ of the kernels to denote the corresponding integral

operators. Thus, (8) becomes

4
> K.=R,—R,, (12)
i=1
hence,
4
RIRRTY — I = 3 RIK.R:. (13)
i=1

(¢) To establish P, = P, , it suffices to prove that R;*R,R;? is densely
defined on £, and R{!R,R;! — I is of Hilbert-Schmidt type, i.e.,
[|IRTIRR;* — I]| < .%*°f The principal tool to be used for this
proof is the following expansion:'*

Rin(st) = 22 wf"@OF”@®, 0=l m=r, (14)
uniformly on [0,1] X [0,1], where x; > 0 and f;(¥),7 = 0,1, 2 --. |
are the eigenvalues and orthonormalized eigenfunctions of R, .

To prove that R*R,R;? is densely defined on £, , it sufficies to show

* ‘9.8, [Py, Pg)” is the abbreviation of “almost surely with respect to P, and P,”.
1 ]14|| denotes the Hilbert-Schmidt norm of an operator A.
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that R7!R, is bounded since R;? is densely defined. Now, by applying
the formula |[4]|* = tr A*A = >, (f;, A*A{,) to the individual terms
of RTK, first, we obtain

I BVK || = Z Z | @itim |

sm=0 7,

[Z ‘ f (Rf%fi) W) Ry 1(u,s;) ’ fl Ryyn(sy, , w)Royn(u,sy) du]gL

r

> |a,“m||Zu1 [ F265) [P Riamin(se , s) |2

l,m=0 j,k=1

T ny

= Z Z [aiklm | |Rlsl"(siysi)st’"z"'(sk , Sk) [%,

1,m=0 j,k=1

where (14) is used for the last two equalities. Similarly,

” Rz—%[{z H é 12—0 Z_: {[Rls’t’(ti ) tz) (hz‘lm )Rgs’"t"‘hz'lm)]%
+ [(himl ,Rlsltlﬁilm)Rgs”‘t"‘(ti ) ti)]%}’
“ Rl—%I{L’v I] é Z I tr (Rlsltl.m Rgs’"t"‘) l%i

l,m=0
|| R‘I—%I{‘i ” é ZZ ]tr (Rls't',m Rgs'"t'") |%)
ym=0

where Ry,i1,,(s,8) = lem(s)Rl,z,z(s,t)fL,m(t), Riiiw = HuRynH,, .
Hence, from (13), ||[R7*R,|| < .

To prove ||R*R.R;* — I|| < «, we apply the formula |[A|[® =
> |lAf[ to the individual terms of Ry*K,R;* first. Thus, we obtain

H RI_%KIR;% || Z Z | Aikim | I Z ” Ry Rm"‘( VS f(”(s) ” |

»m=0 7,k=

T ny

= Z Z | Aixim | |Rlslz'(3f ) 85) I% H R].—%R%"‘('ysk) ”,

l,m=0 7,k=1

where (14) is used twice, and R;*R,,»(-,s;) denotes the result of R7*
acting on an s-function R, (s,s;). By differentiating both sides of (8)
with respect to ¢, we obtain

R2m(3,3k) = th"‘(sysk) + 120 aikllet’(sysi)Rs””t"'(sk ,Sk)

S 3 Rt Ravmemhiin) ) + Ereryin) @Rarmen(ly 5]

l,m=0 j=1
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f Ry (5,0 (@) Raymym(u,8:) dut
l,m=0

f f Ruui(5,0) Fruu0) Rosmen(0,52) dut do. (15)
l,m=0

Thus,
[| BT Roun(- ) || S | Rusmen(si , s2) |2

+ E Z I Qigim I IRla'(S: ’ 31) I szw(sk , St)

l,m=0 j,k=1

+ Z Z {| Biorasts 1) I | (Ragmimhiim)(se) |

l,m=0 j=1

+ (ﬁilm , Rlxltlhilm)% IRmmm(si ,Sk) I}
+ Z (R2s"'t"'(sk 1] ‘)1 Rls’tl.m RZs”‘t"‘(' isk))%

l,m=0
+ 120 (Ri’x"‘t"‘(sk ’ ')y Rls’t’.m R?s"‘t”‘(' ,Sk))%
< o, (16)
Hence,
[| RUKR? || < o.
Similarly,
|| RUKRY? || = Zo Z [| Risreits , &) |* || BT Roemhiim ||

+ (hilm lea’t’hflm)% ” Rl RZ!"‘( yli) H]‘
From (15),
[| RO R nhiim || S (hitm » Rusmenhisn)?
+ E Z l Qikim l lRls’t’(si vsi) l% I (RZS"‘t"'hilm)(Sk) l

l,m=0 j,k=1

+ Z Z[l Riviolt; o 1) |F] (Bitm » Ragmenbiiim) |

l,m=0 j=1

+ (hy’lm 9y Rlaltlhilm) l (R2s’”t"'hilm)(ti) I]
+ Z (hilm ’ RZ&’"!"'Rlslt’,m RZ;"'!"‘hilm)%

l,m=0

+ Z (hilm ’ R2x"‘l"‘Rlslll,m R2x"‘t""hilm)%

l,m=0

< «,
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and, from (16)
| BTRza(- 1) || < o0
Hence,
|| RUK.RT || < w.
Similarly,
|| BAGR ||

, 1 . 273
= Z [Z M Rl_% f Ryyn(- ,u)h,,,,(u)fﬁ”(u) du :I
1,m=0 i 0
é Z {I tr (Rlalt'.m Rls"‘t"‘) [% + Z Z | aikl'm' I
l,m=0 ', m’'=0 §,k=1

. | ha',z'(si y S,’)(Rz,m"m(sk N ‘), Rlxl‘t’m stm,m'(',sk) ]%

+ Z: Z [[ Rlsl'tl'(ti ’ t:")(R2s"‘t""hil’m’ ) Rlsltl.m R?x"‘t""hil’m’) ]}

1’',m'=0 j=1

+ I(};’il'm’ yRl:"t"iiil’m')(R2s'”'t"‘(ti ] ')les’t’,m RZs’”t’"'<'vti))l%]

T
+ E ltI‘ (Rlal't".m' R2s'"’tmR1s’t’,mR2s"‘t’”’) [%
1

'em'=0

_l_ Z I t'r (Rls"tl',m' RZs""t"‘Rlxxtl,m R2s"‘l"") F}
1

fom’ =0

< o,
Similarly,
|| ROKLRT ||

zz—:o [Z Hi H R;%Rzmﬁmzfs” Hz]’fT

IA

7 r na
= Z {I tr (Rutu,m Rygmyn) I% - Z Z I Qirt'me |
t,m=0 1’7,m’'=0 j,k=1

'lRlsl'zl’(si ysi)(RZs""t"‘(sk y ');Rlsltl.m st"lt""(’,sk)) [%
+ Z Z [I Rla"tl'(ti ) ti)(hil'm’ )RZa""tmféls’t‘.m RZx"'t’”'h:‘l’m’) l%
17 ym’=0 j=1

+ | (ﬁil'm’. ;rRis"t"ﬁil’m’)(RZS""t"'(ti ] '), Rlslt‘,m RZs”'t""('!ti)) I%]

»
r .
+ Z 'l tr (Rls"t".m’ st""tmRnlt‘.m stmm') ]%
1’,m’'=0
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,
+ Z ltr (Rlsl'tl'.m' R?x’"'t"‘Rlxlt’,m R2s"‘l"") l%}
1

ym'=0
< o,
Therefore, from (13),
|RTR.RTY — 1] < .

(77) We have established in (z) that Ry*R,R7? is bounded and densely
defined on £, . Hence, it has a unique extension to the whole of £,
which we denote by M. Since M — I is a Hilbert-Schmidt operator,
M has eigenvalues and orthonormal eigenfunctions, which we denote

by \; and ;(¢),7 = 0,1,2, --- . Note 0 < \; < | M |, where | M | is
the norm of 7. Then"

Rigipn(s,t) = 2 (Rie) V() Rien) ™ (1).

0Il,mZ=r, 17)
Rogrun(s,f) = Z )\i(Ré‘Pi)(l)(s)(Riﬂoi)(M)(t)r

uniformly on [0,1] X [0,1].

Let {¢:,} be sequences of functions in the domain of R;! such that
@; = Lim. ¢,, for each 4. Multiply both sides of (12) by (Ri}¢:.)(s)
and (R7Y¢.)(t), integrate with respect to s and ¢, and let n — oo.
Then, the four terms on the left-hand side become

(Rl_%gain ’ I{IR;%¢zn)

= Z Z aiklm(Rl_%Qpin y Rici(+,8) Raam(Se » *), Rl_%ﬂoin)

l,m=0 §,k=1

r ni

= E Z aiklm Z (ﬁoin ,go,,)(R%gD,.)(l)(S,') ; )‘N(Ri(Pv)(m)(sk)(ﬁor ’ Soin)v

l,m=0 j, k=1

where (17) is used for the second equality. By virtue of (17) again,
we can define an s-function R?,:(s,u) for any u € [0,1] by

Rii(s) = Lim. X ¢, [Rle,) P @).
n—ee v=0
Then
Z (ﬂain ’ QO,)(R?QD,.)(Z)(S,') = (¢in yR?t'(' ,8,’)),

MR ) 0im) = Rn(se , 2, M),
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and
lim (psn , Rlaa(8)) = (oo s Bl 150) = (Rie) " (s9),
11_r£ Rin(si , <), Mei) = (Rlun(se , -), M) = N(Rie) ™ (1)
Hence,

r

lim (Rl_%ﬁoin y K1R;%S0m) =X Z Z ay’klm(R <P)(l)(s;)(R @i )(m)(sk)

n—0 l,m=0 7,k=1

Similarly,
lim (R7e;, , KoRTY0:m)

n—oQ

= lim Z E (Rl Pin yRu’( A Baimhiym , RY %n)

n—w l,m=0 j=

(Rl_z@in ,R1z1hitm)(st'"(ti y '), Rl— Som)]

—h YD Re) PN @)™, hivm + i),

l,m=0 j=1

lim (R;¥¢., , K:Ri*e:,)

n—w

r 1
— lim X f B, Buoic )i Roun(ts,), Bitoss) du

n—w l,m=0

= 3 [ @) ki) Ree) ) du,

l,m=0

llm (Rl—zﬂain ’ I{4R1—2§0in)

n—o

r 1 1
— lim 3 fo fo Rloin , Ruci(c 0)H in(tt,0)(Ram(0, ), Ribor) du dv

n—0 I, m=0

=\ 2 (Ble)”, Hin(Rle) ™).
ym=0
On the other hand, the right-hand side becomes
lim (R , (R: — R)RT¢r) = lim (pon , (M — Dew) = N\ — 1.

n— n—o0

Hence, by equating both sides and dividing by A;,

1= 5\1_, = Zo [ Z @il <p)(l)(s Y(RE ‘P)(m)(sk)

l,m k=1
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+ Zl (R%%)m(ti)((R?%')(m), hitm + E:‘lm)
i=

+j; (Ri%') (l)(u)flzm(u)(R%%) (M)(u) du + ((R%%') o , ﬁzm(R%SOi)(M)):l - (18)

Thus,

2 (1 - i—,) = i [ i QirimBrstn(Si 5 1)

i 1,m=0 Li,k=1

+ éRuum(hizm + Rty + j; Rx,um(u,u)fz,m(u) du + tr (Rh't”‘ﬁml):l

< o,
where (17) is used repeatedly. Hence,*

0< H}\, < o0,
P20

Z_gf (z) = (11 k,)” exp l:% Z (1 - i)nf(x):' , as., [Pi],
where
n:(@) = Lim. @,Ri%e:), [Pi,P)] i=0,1,2,---. (19

n—0

Now, 2”(¢) has the following orthogonal expansion:*
x“)(t) = Lim. Z m(x)(Rigo;)m(t), [PI]v 0=s1l= r,
n—0 i=0

uniformly in f. Hence, there exists a subsequence of the partial sums
> mi(@)(Rio,) P (¢) which converges a.s. [P,] to z‘”(¢), uniformly
in ¢. Therefore, from (18) and (19),

aa’klmx(l)(si)x(m)<sk) + Z x(l)(ti)(x(M); hitm + ﬁilm)
i=1

i k=1
+ f 2 @him@)z™ () du+(x”’,ﬁzmx‘"")], as. [P,
0

which completes the proof of (iz).
* See Ref. 3, pp. 1653-1654.
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Timing Recovery for Synchronous Binary
Data Transmission

By BURTON R.SALTZBERG

(Manuscript received November 15, 1966)

This paper analyzes different methods of adjusting the sampling time
for detecting synchronous binary data, based on properties of the random
data signal itself. The static error and the variance of the jitter of the
resultant sampling instant are calculated where the effects of frequency
offset, additive noise, signal overlap, and jitter of the reference source
are included.

The threshold crossing timing recovery system adjusts the sampling time
in response to the itmes at which the data signal crosses the amplitude
threshold. The sampled-derivative sysiem uses the tvme dertvative of the
signal at the sampling time to adjust sampling phase. It is shown that
both systems lead to approximately the same amount of jilter tn the presence
of noise and signal overlap for a given bandwidth of the control loop.

An tmproved timing recovery system is presented which ts constructed
by adding correction signals to the sampled-derivative system. This system
accounts for intersymbol interference in a manner that tends to set the
sampling time at the point of maximum eye opening, where the error
probability is minvmum for the most adverse message sequence.

I. INTRODUCTIO