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A Unified View of Synchrollous Data 
Trallsnlission System Desigll 

By JAMES w. SMITH 
(Manuscript received October 5, 1967) 

This paper illustrates the basic equivalence of many of the linear data 
transm1:ssion design techniques. It shows the unifying feature of these 
techniques to be a generalization of Nyquist's original ideas relating time 
samples and frequency d01nain constraints. It examines pulse amplitude 
(with and without constraints on the input data) and pulse shape modula­
tion systems, and shows their relationships. It uses a number of previously­
described systems to illustrate the range of possibilities of the very general 
design approach. This paper presents some new results on noise and channel 
parameter monitoring and on spectrum shifting by constraining the input 
data. 

1. INTRODUCTION 

Over the years, many seemingly different techniques have been 
proposed for synchronous data transmission. Unfortunately, the litera­
ture devoted to these techniques tends to expand the differences be­
tween a specific system and all other systems. It is our purpose to 
show the basic equivalence of the various techniques; hence, to show 
a unified view of the field. In doing this we examine some well known 
and some relatively unknown transmission systems in a new light 
and propose some new techniques. 

The unified design view that we'take here is basically a generaliza­
tion of Nyquist's ideas! which have recently been expanded upon by 
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Gibby and Smith.2 This really is the thread which ties together vir­
tually all of the literature on synchronous data transmission. Section 
II summarizes the basic ideas of these two papers. 

Section III describes the model of the general, linear, data transmis­
sion system to be considered. The system uses M channels and is de­
scribed by means of an input data vector rather than by any state­
ments about the transmitter characteristics. Thus, one type of data 
vector implies a pulse amplitude modulated system (PAM) while an­
other type of data vector implies pulse shape modulation (PSM) such 
as frequency shift keying (fsk) or pulse position modulation (PPM.) 

In Section IV, we use Nyquist's approach to find the design con­
straints for distortionless transmission (no intersymbol or interchannel 
interference). This section shows that the conditions for distortionless 
transmission depend upon the input data vector description; hence, 
different design constraints result from PAM or PSM transmission. 

Section V illustrates the application of the constraints to some 
special cases. These include: 

(i) Linear precoding and decoding for PAM transmission. 
(ii) The use of band-limited orthogonal signals for multichannel 

PAM transmission. 
(iii) Noise monitoring in PAM systems. 
(iv) Binary PSM transmission (including the specific case of 

Sunde's FM model with a linear receiver instead of a phase derivative 
receiver) . 

(v) Parameter monitoring in PSM systems. 
(vi) Zero stuffing techniques for shifting spectrum location. (The 

section shows this to have some promise for voice channel transmis­
sion without carrier modulation.) 

II. THE UNIFYING VIEW 

In designing a data system, one usually starts with a desired time 
response for the total system. Because it is only necessary to examine 
the output signal at fixed times (for example, at T second inter­
vals where liT is the rate at which independent symbols are being 
transmitted), one needs to specify the over-all response at those times 
(for example, t = kT, all k). Since the total response of the transmit­
ting filter, the channel, and the receiving filter is easier to determine 
in the frequency domain than in the time domain, one must relate the 
time response constraints to frequency domain constraints. 
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This briefly is the basic problem attacked by Nyquist. Here IS a 
summary of his results, as expanded by Gibby and Smith. 

Any time function r(t) with Fourier transform R(w) 

1 100 

• , ret) = -2 R(w)e' ''' dw 
7r -00 

(1) 

has sample values at multiples of T seconds which may be written 

1 100 

• T r(qT) = 1'q = - R(w)e' ",q dw 
27r -00 

(2 a) 

1 00 f(2n+l)7r/T 
'"' • T 1'q = - L." R(w)e,,,,q dw. 

27r n=-oo (2n-l) 7r/T 
(2b) 

Or, changing the variable, 

(2 c) 

Assuming that 

L: R(u + 2n7rIT) 
n 

is a uniformly convergent series, one obtains 

1 17r/T 00 

rq = 27r -7r/T n~oo R(u + 2n7rIT)e
iUqT 

duo (2d) 

Noting that rq is just the qth coefficient of an exponential Fourier series 
expansion of 

1 00 

T "~QO R(u + 2n7r IT) 

one obtains 

(3) 
q=-oo 

which is very closely related to the Poisson sum formula. 3 Throughout 
this paper the reader should keep in mind the interval -7rIT ~ u ~ 
7rIT; we will not be repeating it explicitly. 

Equation 3 relates a function of the frequency domain characteristic 
(namely the sum of the values at frequency intervals 27rIT) to the 
time response constraints rq which will be chosen for a particular trans­
mission scheme. Fig. 1 illustrates several frequency characteristics which 
satisfy the time response constraint that 1'q = 0 for q ¢ O. When 1'0 ¢ 0, 
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we have the usual design for PAl\I transmission without intersymbol 
interference. When 1'0 = 0, we have a response which is useful when 
crosstalk between channels is to be eliminated. That is, the output 
of a signaling path whose time response has 1'Q = ° for all q contains no 
information about the input data at the sampling times. For further 
discussion of equation 3 see Ref. 2. 

III. THE GENERALIZED TRANSMISSION MODEL 

The optimum theoretical method (in the sense of minimizing error 
probability) for transmitting data through a Gaussian channel con­
sists of waiting until all data have been accumulated at the transmit­
ter and then sending a single waveform to represent the entire mes­
sage. The optimum receiver (in the presence of white noise) consists 
of filters matched to each message waveform. The disadvantage of 
this form of communication lies in the fact that transmitter and re­
ceiver complexity grows exponentially with message length. 

Thus, system designers usually restrict system complexity by not 
waiting for the entire message before transmitting. Short portions of 
the message can be encoded systematically and transmitted sequen­
tially as they arrive using relatively simple terminal equipment. 

Fig. 2 illustrates the general approach to transmission system de­
sign considered in this paper. The input data samples, am7c, m = 1,2, 
... , j1{ are applied at t = kT to the j1;1 signal generators Am (w) . 
The sequence {allld can be considered to be a random sequence of 
impulses of weight alll 7c (where am 7c is in general multilevel) and spaced 
T seconds apart. Since there are }v1 signal generators, symbols are be-

91 (t) 

M 

L 8 mk r m2 (t - kT) 
m=1 =92(t) 

j8Mk +1 1 ~ ,-------, 
aMk 

9M (t) 

Fig. 2 - General transmission system. 
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ing sent at the rate MIT symbols per second. The receiver consists of 
M linear filters, Cp(C!)) , p = 1,2, ... , M. 

The channel input represents the sum of the transmitter outputs 
and may be written 

11/ 00 

2: 2: amkam (t - kT) 
m~l k=-oo 

where 

Then, using 

rmp(t) = ~7l' f_: Am(w)B(w)Cp(w)e
iwt 

dw (4) 

the output of the pth (p = 1, 2, ... , M) filter may be written 

lof 00 

gp( t) = 2: 2: amkr mp( t - kT). (5a) 
m=l k=-oo 

It will be assumed that any decisions will be made on the basis of the 
output waveform at integral multiples of T seconds. These output sam­
ples at the time t= IT, 

M 00 

gpl = gp(lT) = 2: 2: amkrmp(lT - kT) (5b) 
m=l k=-oo 

may also be written in vector notation as 

00 

gpl = 2: rp(lT - kT)· ak (5c) 
k=-oo 

where 

rp(lT - kT) = [r1P(lT - kT), r2P(lT - kT), .•. ,r},fp(lT - kT)] (6) 

and 

(7) 

aMk 

The model described, then, represents a general pulse amplitude 
modulation system. For example, if the elements of Uk are random 
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multilevel values and the transmitter and receiver are systematically 
chosen to be 

Am(w) = Ao(w - wm) + Ao( -w - wm) 

Cm(w) = Co(w - wm) + Co( -w - wm) 

(Sa) 

(Sb) 

one has a frequency division multiplex PAM system. Likewise, choos­
mg 

[ 
. (m - l)wT] 

Am(w) = A(w) exp - J JY[ (9a) 

[
. (m - l)wT] 

Cm(w) = C(w) exp J JY[ (9b) 

leads to a time division multiplex PAM system. 
For the model to be as general as possible, it should include the 

possibility of using multiple waveshapes to convey information. This 
can be accomplished by restricting the kth data word to be 

1 

o 
o 

o 

o 
1 

o 

o 

o 
o 
1 

o 

o 
o 

or o· 

1 

(10) 

Thus, the system transmits one of M possible waveforms in each time 
slot and includes such modulation techniques as FM, PM, pulse posi­
tion or pulse duration modulation. 

IV. DESIGN CRITERIA FOR THE GENERALIZED MODEL 

The general design constraints for the two different interpretations 
of ak are imposed by the requirement of distortionless transmission 
(that is, no intersymbol or interchannel interference). Each of the two 
cases leads to a different definition of distortionless transmission and 
hence to different design constraints. 

4.1 Pulse Amplitude JJ![ odulation 

(Elements of ak are random and multilevel.) 
The output of the pth regeiver filter at t = IT is 

00 

gpl = L rp(lT - kT) ·ak . 
k=-oo 

(5c) 
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For distortionless transmission it is required that this output depend 
only upon the input value apl ; that is, 

(11) 

where [(p is a constant that depends on the pth channel 
Ap (w) B (w) C P (w). This requirement constrains the time response4 

1'mp(lT - kT) = omp ozkKp (12) 

where 

1n ~ p 

= 1 111, = p. 

Using equations 3, 4, and 12, the time domain constraint becomes 
the frequency domain constraint 

f ni;~ Am(U + 2~7r )B( u + 2~7r )Cp( U + 2~7r) = Omp Kp . (13) 

This is a generalized Nyquist criterion which applies to all linear 
PAM systems. 

Notice that equation 13 represents M2 equations which must be 
sa tisfied by 

jVIT /7T' X positive frequency range of nonzero B (w) 

independent variables. Therefore, B (r») must have a radian band­
width of at least M 7T'/T for M channel distortionless transmission. 

4.2 Pulse Shape 11;[ adulation 

(Uk given by equation 10.) 

The definition of distortionless transmission of the previous part 
(equation 11) could also be applied here. However, it is possible to use 
a different definition with quite interesting results because of the con­
straint upon Uk . Here, distortionless transmission 'will require that the 
output of the pth filter at t = IT be 

(14) 

where ](PI and ](p2 are constants. That is, the output of the pth re­
ceiver takes on one of two values, at t = IT, [(PI + [(p2 or [(P2 depend­
ing upon the value of apl. 

This definition of distortionless transmission eases the constraints 
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upon the various time responses. Examining 

00 

gpl = L rp(lT - kT) 'ak (5c) 
k=-oo 

it is seen that all elements of rp(lT - kT) must be identical but not 
necessarily zero for k ~ l; that is, 

tmp(lT - kT) = rqp(lT - kT) all 111, q. (15) 

With this condition satisfied, gp(lT) is independent of ak for k ~ l 
(that is, the information transmitted at times other than IT). Next it 
is required that all elements of rp(O) be identical except 1'pp(O) (that is, 
r mp(O) = l' qp(O) 111, q ~ p). Thus, gp(lT) will take on one value if apl = 1 
and a different value if any other aql = 1 q ~ p. These statements may 
be summarized by the equation 

(16) 

where Fp > l-k and Gp are constants which depend only on the subscripts 
and are independent of m. 

Using (3), (4), and (16), the time domain constraints become the 
frequency domain constraints 

00 

~ G + ~ p -iu(l-k)T 
U/IlP P L..J l' p, l-kC (17a) 

l.k=-oo 

(17b) 

recogmzmg that the last term is really a Fourier series expansion. 
Notice that there is a good bit of freedom in the design because Fp (u) 
can be chosen arbitrarily. Alternatively, this means that the time 
domain response samples, Fp > l-k, can be arbitrarily chosen but, these 
samples must be the same for the response to each transmitter. Thus, 
because the input data has been restricted, the definition of distortion­
less transmission can be relaxed. 

V. DESIGN CRITERIA APPLICATIONS 

Let us apply the general design criteria derived in the previous sec­
tion to some special cases to illustrate the principles involved. These 
examples include PAM, PSM, and systems in which the data vector is 
partly independent multilevel and partly constrained (that is, where 
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some of the components of the data vector are unconstrained and the 
rest are forced to be zero). The examples clearly bring out the rela­
tionship between transmitting information with amplitude or wave­
form variation. 

5.1 Pulse Amplitude Modulation Systems 

5.1.1 Linear Precoding and Decoding 
Pierce5 has suggested the use of linear pre coding and decoding ma­

trices for data systems to improve performance in the presence of im­
pulse noise. Fig. 3 shows a system using this concept. It differs from 
normal smear-desmear techniques in that there are M channels instead 
of just one (that is, the input data are block-encoded). 

The customer data, now labeled lXnk, n= 1, ... , N, are applied to 
the precoder at t = kT. The transformed data amk are then applied to 
the input of the mth transmitter. In terms of the input data, one has 

(18) 

where P is the N by M (M ~ N) precoder matrix and the input data is 

Similarly, the output data may be written 

7k = Dgk 

LINEAR 
TRANS­
FORM­
ATION 
£ 

LINEAR 
TRANS­

FORM­
ATION 

D 

(19) 

(20) 

Fig. 3 - Transmission system using linear precoding and decoding trans­
formations. 
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where D is the decoding matrix and 

;Yk = 
1'1"1 
'Y2k (21) 

7J 
and 

(22) 

gMk 

It may be noted that the transmitted signal may be written 

lIE 00 

2: 2: amka",(t - kT) 
m=1 k=-oo 

or in terms of the input signal 

lIE N 00 

2: 2: 2: P mi(Xikam(t - kT) 
m=1 i=1 k=-oo 

or 

00 N lIE 

2: 2: (Xik 2: P miam(t - kT) 
k=-oo i=1 m=l 

or 

00 N 

2: 2: (Xika:(t - kT) 
k=-oo i=1 

where 

M 

a:(t) = 2: P miam(t). (23) 
m=1 

Thus, using a linear coder merely corresponds mathematically to us­
ing a different set of signal generators with no coder. It might be de­
sirable in some cases to treat the precoder separ~tely,6 because it could 
be an easily modified device (that is, one consisting only of gain or 
delay variables) which could be used to combat noise, change the data 
rate or shift the spectrum of the signals on the channel. 
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As an example, consider the two precoding matrices 

p. = r~ 
0 0 0 0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 P 2 = 
0 1 0 0 0 0 

l~ 
0 0 1 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 1 

used with time division multiplex transmitters (that is, serial trans-
mission 

[ . (m - l)wT]) Am(w) = A(w) exp -J -~ . 

Matrix PI corresponds to no precoding while matrix P 2 represents 
interleaving which might be effective in combating burst noise if the 
input data is redundant (that is, digitally encoded into blocks of length 
3, in this case. Notice that interleaving is basically a digital technique 
for error control in burst noise. This is amply illustrated by the presence 
of identical values as the single nonzero element in each row and column 
of the matrix. For analog error control (smearing or spreading the 
information over several symbols) in burst noise, the elements of P 
can be any real values. 

The choice of a particular precoding matrix would presumably be 
based upon some knowledge of the noise characteristics. The decoder 
can then be designed for distortionless transmission by solving DP = INN 

if it is assumed that 

(13) 

Similarly, D could be obtained by considering the transformed trans­
mitter and receiver and solving 

f nt~ Ai(U + 2;7r)B(U + ~;7r)C~(u + ~;7r) (24) 

The transformed receiver C~(w) is just 
N 

C~(w) = L DipCp(w). (25) 
i=l 

The two approaches are equivalent. 
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5.1.2 A Two-Channel P A 111 SystemJ 
Fig. 4 shows a two-channel PAlVI system. All of the main features 

of the design constraints can be easily shown by means of this ex­
ample. The four equations which must be satisfied are 

f nt~ Am(U + 2;7r)B(U + 2;7r)Cp(u + 2;7r) = Omp Kp 
m,p = 1,2. (13) 

It is apparent that Am[u + (2rzm-)/T] and Cp[u + (2n7r)/T] must 
have nonzero values for at least two values of n (two intervals of 7r/T 
bandwidth or two intervals of width 27r/T when both positive and 
negative frequencies are considered). Hence, the total bandwidth must 
be 27r/T for distortionless transmission. If the bandwidth is greater 
than 2n/T, an infinite number of designs are possible. 

A clearer idea of the implications of equation 13 can be gained by 
examining the impulse responses in the time domain which are shown 
in Fig. 5. Notice that ru (t) and r22 (t) are the usual pulses required for 
data transmission. The crosstalk waveforms r12 (t) and r21 (t) are re­
quired to be zero at all t = kT so that the output of either channel at 
t = kT does not depend upon the input to the other channel. This does 
not mean, however, that there can be no frequency overlap between 
the transmitter of one channel and the receiver of the other. It does 
mean that the characteristics must be chosen so that 

~ nt~ Am(U + 2;7r)B(U + 2;7r)Cp(U + 2;7r) = 0 1n ~ p. (26) 
Fig. 1 shows one such characteristic and Fig. 6 gives one possible 
design for the two-channel system which anticipates the next example. 

Notice that if A2(W) were zero (that is, a single channel system), 
the second receiver could be used for a noise monitor.7 By taking the 

00 

L ajk rjj (t-kT) 
k=-oo +a2k r 2j(t-kT) 

00 

L ajk r j2 (t-kT) 

T- k=-oo +a2k r 22(t-kT) 

Fig. 4 - Two-channel PAM system. 
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[ I ! 11\ I I [ 

LLULLJ 

-3T -2T -T 0 T 2T 3T 
t-. 

Fig. 5 - Required time domain responses for distortionless transmission. 

output of this filter at kT seconds (when the noiseless component is 
zero), squaring, and averaging, one can get an estimate of the variance 
of the channel noise. 

5.1.3 Band-Limited Orthogonal Signals for Multichannel TransmissionS 

Thus far, we have discussed only general design constraints with­
out regard for the specific choices that a designer must make if he 
has available more than the minimum bandwidth (as he must). In 
other words, if only the minimum bandwidth were available, the de­
signer would have no choice but to match the M2 equations with the 
M2 variables (a slight choice does arise between serial and parallel 
formats). However, arbitrary choices can be made when one has more 
than M2 variables (bandwidth> M7r/T). 

ChangS has considered one such possibility; namely, a frequency 
division multiplex system in which signals at the channel output, 
Am(w)B(w), are orthogonal. In other words, taking B(w) = 1 for 
notational simplicity, Chang's signals are chosen to satisfy the time 
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domain requirement 

In the frequency domain this requirement becomes 

Using the technique of equations 1 through 2d, we obtain 

t 
] 
u 

t 
tolN 0, 

Cl.> 

] 
N 

<:{ 

t..----. 

t 
] 

N 

U 

] 
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<:{ 

t 
~ 
u 
] 
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(27) 

0J~ __ ~ __ ~ __ ~ __ ~ __ ~ 

t t 
tolN 
01' 

Cl.> 

~ 
N 

U 

0 

Fig. 6 - A possible two-channel system assuming B(w) = 1. 
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or 

~ nt:~ Am(U + 2~7r)At(u + 2~7r) = Omp Kp (29a) 

for the frequency domain representation. This equation is identical 
to equation 13 if Cp(w) = A t(w) (which is best in the presence of white 
noise) assuming B (w) = 1. [N onideal B (w) can be considered by as­
suming that Am(w) is the channel output rather than transmitter output]. 
Thus, it is seen that the requirement of orthogonality is a special case 
of the general design criteria with the additional constraint that Cp(w) = 

A~(w). 
In addition to this constraint, Chang chose a frequency division 

multiplex format with overlapping signal spectra such that 

only for 

(m - ~) ~ < I w I < (m + 4) ~. 
One can insert these assumptions into equation 29a and arrive at 

at the design conditions. It is, however, more enlightening to examine 
the system in the light of the previous discussion of a two-channel 
system. Fig. 7a shows the spectra of the three transmitters which af­
fect the output of the mth channel under the assumptions outlined 
above. (For concreteness of the discussion, m is even; odd m would 
proceed similarly.) No intersymbol interference in the mth channel 
requires 

1 ~ ( 2n7r) *( 2n7r) _ T n~~ Am U + T Am U + T - Km . (29b) 

In other words, the characteristic lAm (w) 12 must have vestigial sym­
metry about w = m7r/T and (m - l)7r/T. 

Let us turn now to the crosstalk terms. The equations which must 
be satisfied for distortionless transmission are 

~ ( 2n7r) * ( 2n7r) _ n~~ Am- 1 U + T Am U + T - 0 (30a) 

and 

~ ( 2n7r) * ( 2n7r) _ n~~ Am+l U + T Am U + T - O. (30b) 
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(m-~)f (m-~)f (m-t)f (m+t)f (m+t)f 

(b) 

f\ 

(c) 

(d) 

w~ 

Im Am-1(w)A*(w) 

o 
w~ 

100 
/L Am_1(u+2n'lTiT)Art(u+2n'lTiT) 

/f n=-oo 

r---t--...I....-~--i 'lTiT 

I 

289 

Fig. 7 - (a) Spectra of transmitters which affect mth output. (b) Magnitude 
of Am-l(W)Am*(w). (c) Required Am-l(W)Am*(w). (d) Demonstration that above 
Am-l(W)Am*(w) satisfies constraint for periodic zeros. 

Fig. 7b shows the magnitude of Am_l(W)A;(w) which is symmetric 
about I w I = (m - l)7r'/T. The only way these components can sum 
to zero following equation 30a is if they are imaginary as shown in Fig. 
7c (with the sum given in Fig. 7d). The same argument applies to the 
Am+lCW)A;Cw) product and is illustrated in Fig. 8. In other words, 
A;Cw) must be ±90 degrees out of phase with Am+lCw) and Am-lCw) 
in the regions of overlap of the functions. 

It is seen that the amplitude characteristic design is based upon the 
condition of no intersymbol interference in each channel and is based 
upon the usual Nyquist design. The remaining freedom in choosing 



290 THE BELL SYSTEM 

(a) 

f\ 
(b) 

(c) 
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IIAm+l(Wl A,;'(Wl I 

f\ 
0 (m-t )t (mt~ rf 
w~ 

1m Amt1 (w)Am*(w) 

o 
w~ 

Fig. 8- (a) Magnitude of, and (b) required Am+l(W)Am*(w). (c) Demonstra­
tion that above Am+l(W)Am*(w) satisfies constraint for periodic zeros. 

the phase characteristic is then used to eliminate interchannel inter­
ference with the requirement being 

(31) 

5.1.4 Noise JJ;[ onitoring7 

The noise monitoring feature mentioned previously can be gen­
eralized to the M channel case. The minimum bandwidth of M7r/T 
must be exceeded by the practical system. The bandwidth redundancy 
can be used for noise monitoring by adding another filter CM+dw) at 
the receiver. This receiver must satisfy the equations 

f nt~ Am( u + 2~7r)B( u + 2~7r)CM+l( U + 2~7r) = 0 
for 1 ~ m ~ M (32) 

and a nontrivial solution can result because of the bandwidth redun­
dancy. Then, the impulse responses rmM+dt) go through zero at all t 
= kT and the noiseless output of the M + 1 th filter 
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M co 

L: L: amkrmllI+l(t - kT) 
m=l k=-co 

is zero periodically, independent of the input data. 
The filter output at t = IT can be squared and averaged to obtain 

an estimate of the noise level and hence an estimate of the transmis­
sion performance. If the shape of the noise power spectrum is known, 
one gets a quantitative estimate of the noise power. Timing errors or 
poor knowledge of B (w) can lead to the noiseless output of the M + 1 th 

filter being nonzero at the sample time. The indicated noise variance 
would be greater than the correct value, thus indicating poorer per­
formance than the noise alone. However, timing or channel characteri­
zation errors actually do lead to poor system performance so that the 
monitor indication is in the right direction. Notice that this monitoring 
scheme is not tied to any particular choice of transmitter or receiver 
and is perfectly general. 

5.2 Pulse Shape Modulation Systems 

5.2.1 A Binary PSM System 

Insight into pulse shape modulation system design constraints can, 
perhaps, best be gained by examining a binary system such as that 
shown in Fig. 9a. The equations that must be satisfied are 

~ ntco Am(U + 2;7r)B(U + 2;7r)Cp(u + 2;7r) = omp Gp + Fp(u) 

(17b) 

for m, p = 1, 2. Because it is a binary system, the receiver can be 
just a single filter 

C(w) = C2(w) - Cl(W) (33) 

~ ntco Al(U + 2;7r)B(U + 2;7r)C(U + 2;7r) = -G + F(u) (34a) 

l f A2(U + 2n7r)B(U + 2n7r)C(U + 2n7r) = G + F(u) (34b) 
T n=-co T T T 

where it has been assumed without loss of generality that 
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(a) 

Fig. 9 - (a) Binary PSM system. (b) Modified binary PSM system. (c) Equiv­
alent binary PSM system or PAM system with data constraints. 

and where F ('U) is an arbitrary function of frequency 

00 

F(u) = F 2(u) - Fl(U) = L fae-iuaT. (35) 
0=-00 

This modified system described above is shown in Fig. 9b. 
Fig. 10 shows two possible time domain responses which satisfy 

equations 34a and b. Notice that the responses differ only at t = 0 
and are identical to all other t = kT. This is the time domain implica­
tion of equations 34a and b. This corresponds to the case where two 
signals are chosen to produce the same intersymbol interference which 
was discussed briefly by Simon and Kurz.9 

An alternate way of viewing equations 34a and b is to notice that 
the two transmitters can each be decomposed into two components. 
The information component AI(W) of each satisfies 

G (36) 
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or the usual Nyquist criterion, and is transmitted with an amplitude 
of ±l. The steady component As(w) satisfies 

1 ~ ( '2n7r) ( '2n7r) ( '2n7r) T n~oo As U + T B u + T C 1l + T = F(u) (37) 

and is sent with an amplitude of one regardless of the data stream. 
The transmitted waveform As(w) can be anything because F(1l) is 
arbitrary. Fig. 9c shows this system, which is equivalent to the original. 
The corresponding data vectors are 

---+ [-lJ [1J ak = 1 or 1· (38) 

The basic equivalence of the P ANI and PSM systems is thus made ex­
plicit. The difference in the two systems is basically a noninforma­
tion bearing signal which represents an inefficient (theoretically) use 
of power. This point has been brought out by Bennett and DaveylO in 
discussing the Sundell model of a synchronous F1VI system. 

5.2.2 Sunde's F 111 111 odel With a Linear Receiver 

In Sunde'sll model of a synchronous FM system, one of two phase 
continuous signals 

27rq 
cos T t + e 

27r(q + l)t + e -cos T 

T T -- < t <-2 2 

elsewhere 

-4T -3T -2T o T zT 3T 4T 

Fig. 10 - Possible time domain responses for distortionless PSM system. 
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is sent during each interval. The transmitter output may be written 

,t~ a" cos (w,t - ¥ t + e) - (1 - a,,) cos (w,t + ¥ + e) 
or 

sin f t sin (Wet + 0) + ktoo (2a1k - 1) cos f t cos (Wet + 0) 

where 

(2q + 1)71" 
We = T 

This second form of the output is an explicit example of an informa­
tion-bearing component (second term where a11e = 1, 0) and a steady 
state component. 

To achieve distortionless transmission (with a linear receiver) one 
must choose any linear filter which satisfies 

where 

where 

1 t AJ(u + 2n7l")B(U + 2n7l")C(u + 2n7l") = G (39) 
T n=-oo T T T 

j
T/2 

AJ(w) = cos !..T t cos (wet + O)e- iC4C dt 
-T/2 

= e
iO Sew - We) + e-

iO sew + We) 

(40a) 

(40b) 

2S(w) = sin (w - 7I"/T)T /2 + sin (w + 7I"/T)T /2. (40 c) 
. W - 7I"/T W + 7I"/T 

If one makes the assumption that S (w+wc ) is negligible at positive 
frequencies, then 

(w - wJT [ -7I"/T ] iO 
AJ(w) = cos 2 (w _ We)2 _ 7I"2/T2 e W> O. (40d) 

By substituting equation 40d into 39 the requirements on B (w) C (w) 
can be found. The minimum bandwidth solutions are (neglecting con­
stants) 

B(w)C(w) = (w - We)2 - 7I"2/T2 e-iO 

cos (w - we)T /2 

We + n7l"/T < w < We + (n + 1)7I"/T n = -1,0 (41) 

= 0 elsewhere 
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which are shown in Fig. lla. Solutions in other regions (other values 
of n) are possible but require infinite gain. 

Sunde's solution for the minimum bandwidth filtering before a phase 
derivative (nonlinear) detector is given in Fig. lIb for comparison. 
Notice that the linear receiver requires only half the bandwidth re­
quired by the phase derivative detector for distortionless transmis­
sion. The response of the linear filter to the steady state term is un­
important because it is deterministic and can be removed. 

5.2.3 lllonitoring System Parameters 

If a second filter Cu(w) is added to the system of Fig. 9c, one again 
can monitor some aspect of system performance if the equation 

~ nt~ AI(U + 2;7r)B(U + 2;7r)Cu(u + 2;7r) = 0 (42) 
is satisfied. Thus, the output at the sample times will be independent 
of the input data. However, there will be a constant output value (ex­
cluding noise) of 

a=-~ 

where 

~ nt;~ As(n + 2;7r)B(U + 2;7r)Cg(U + 2;7r) = Fg(u) (43 a) 

I B(w)C(w) I 
n=-1 

1.27-

1.0-
IB(w)C(w)1 

n=o 

(a) 

1.27-

1.0-

~ 

L: fgqe- iuaT (43b) 
a=-~ 

-1.27 

-1.0 

o 

Fig. 11- Minimum bandwidth filtering for FM system with (a) linear re­
ceiver and (b) phase derivative receiver. 
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because of the steady state transmitter. The total output of this 
filter is then a (generally) nonzero constant which depends upon the 
steady state transmitter and channel characteristics and the noise. It 
does not depend upon the data sequence or the receiver's estimate of 
the sequence. A change in this constant reflects a change in the trans­
mitter or channel parameters (for example, phase or gain) and can be 
used to modify the receiver characteristics (such as, phase or threshold 
level). Thus, the noninformation part of the transmitted signal, in 
addition to perhaps simplifying implementation, also can be used to 
provide needed information to the receiver. A simple example is the 
reference tone for carrier recovery which in fact makes the PAM sys­
tem into a PSM system. 

5.3 Pulse Amplitude Modulation System With Zero Constraints on Certain 
Channels 

In section 5.2 we showed that PSM could be considered as PAM 
with constraints on the input to certain channels. In other words, the 
equivalent PSM system shown in Fig. 9c contained one channel whose 
input was constrained to be a one at all times. Now we will discuss a 
system in which certain channel inputs are constrained to be zero. 

Consider a four-channel P Al\1 system and assume it to be serial; 
that is, 

A ( ) [
. (m - 1 )wT] 

w exp -J 4 (9a) 

C ( ) = C( ) [ . (1n - 1 )wT] . 
Tn w w exp J 4 (9b) 

If the input data vector is given by 

(44) 

then a bandwidth of 47r/T is required. Now, under certain circum­
stances it might be desirable to reduce this data rate by inserting 
zeroes for some of the am"k (that is, not transmitting anything at cer­
tain times) . 
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Chang6 has considered this possibility for improving performance 
in the presence of severe noise. In this case, some amk can be made 
zero and the remaining data can be transmitted with increased power 
(maintaining a fixed average power) to improve the noise margin. 

Another purpose of this zero stuffing technique might be to shift 
(as well as reduce the bandwidth of) the spectrum of the transmitted 
signals. As a trivial example, the data vector 

(45) 

could be transmitted with a flat spectrum over either the region 

o < I w I < 27r / T or 27r / T < I w I < 47r / T 

and zero elsewhere. As a nontrivial example, consider a generalization 
of a signaling system, invented by Bennett and Feldman,12 to prevent 
intersymbol and interchannel interference in multiplex transmission. 
The original system has been described very briefly by Sunde.13 Here, 
the generalized system can be approached by writing the data vector 

o 
o 

(46) 

where only the outputs of the first two receivers must be examined. 
vVith the assumption (for simplicity) that B (w) = 1 the constraining 
equations become 

(47) 

and 

1 ~ ( 2n7r) (2n7r) .( 2n7r) T T n~oo A u + T C u + T exp ± J U + T 4 = o. (48a) 
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Recognizing that exp (±ju T /4) is a nonzero term which can be re­
moved, 48a becomes 

1 ~ ( 2n7r) (2n7r) . n7r - L...- A u + - C u + - exp ± J - = O. 
T n=-co T T 2 

(48b) 

Fig. 12a illustrates the type of characteristic A (w)C(w) which satisfies 
the constraints. (There are others of larger bandwidth which also will 
satisfy the constraints.) If the characteristic is limited to I w I < 47r/T 
and zero elsewhere, it has symmetry about w = 27r/T and vestigial 
symmetry about I w I = 7r/T and 37r/T. It can easily be verified that 
the equations are satisfied when one uses the value of the multiplying 
factor exp ±jn7r /2 which is shown in each region. 

Notice that a response which is flat from 7r/T < I w I < 37r/T and 
zero elsewhere satisfies the equations and represents the minimum 
bandwidth approach to this scheme. The time response one obtains 
at the receiver using this technique is illustrated in Fig. 12b. It is 
constrained to be zero at all t = kT except k = 0 and ± (4q - 2) for 
all q and can be used for transmission, as explained, without distortion. 

The advantage of this particular scheme is that it represents a base­
band technique for shifting the transmission spectrum without modu­
lation merely by inserting zeros into the data stream. It appears 
particularly attractive for placement within a voice channel (for ex­
ample,200Hz-3KHz) as Fig. 13 shows. Here no modulation has been 
required, the energy is concentrated in the center of the band and 

EXP ± j nz'Tr = - I I + j I 1 I ± j I 

A(w)C(w) n I n 
-3'Tr/T -'7T/T a 

w~ 
'Tr/T 3'7T/T 

-1 

(a) 

Fig. 12 - (a) Frequency characteristic, and (b) time response, for distortion­
less transmission with zero stuffing. 
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A(w)B(w)C(w) 

Fig. 13 - Zero stuffing spectrum for voiceband tran:::mission. 

one could obtain symbol rates of 3200 symbols per second with easily 
realized filtering. The primary disadvantage would be increased sen­
sitivity to timing errors. 

VI. CONCLUDING COMMENTS 

The thesis of this paper has been that all linear data system de­
signs are based on the modified Poisson sum formula 

(3) 

which relates the time domain samples to the frequency domain con­
straints. Various types of systems which a designer may choose re­
quire a variety of constraints on the time samples r q. These values 
of r q, which depend upon the type of system chosen, then specify the 
frequency domain requirements. 

Section 5 gave a sampling of the range of systems which can be 
designed using equation 3. That section certainly does not exhaust 
the possibilities and we hope that it does not limit the reader's im­
agination. Most of the examples (as well as most real systems) as­
sume systematic choice of transmitted signals; usually related by 
integral time or frequency shift. There may, however, be potential 
gain in considering nonsystematic transmitters and receivers. This 
may easily be done using equation 3. The last case examined, that of 
spectrum shifting by adding zeros, is just such a nonsystematic func­
tion when viewed from a serial transmission point of view. 
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Click~ Conlparison of Digital and 
Matched Filter Receivers 

By H. L. SCHNEIDER 

(Manuscript received May 25, 1967) 

We applied the click theory of errors La determine the perfonnance of a 
digital Fill{ receiver. The receiver had binary orthogonal FSI{ modulation 
'in a channel that had a single random-phase echo at the symbol duration. 
We use practical bandwidth assumptions to show that this error performance 
is identical to that calculated for a matched filter receiver. Numerical results 
show, for example, that an increase in signal-to-noise ratio of 10 dB is 
required to maintain a 10-4 error rate when an echo of half the signal power 
is added. 

1. INTRODUCTION 

The concept of clicks in an FM receiver was originally used by 
S. O. Rice1 and J. Cohn2 to explain the effect of noise on analog signal 
demodulation near threshold. Recently, several theoretical investiga­
tions of digital FSK signal demodulation have applied the concept of 
clicks in analyses of low pass filter processing of the discriminator 
output. Klapper,3 and lVlazo and Salz4 modelled the low pass filter 
with an integrate-and-dump function, while Schilling, Hoffman, and 
Nelson considered a gaussian low pass filter.5 In all cases, additive 
gaussian noise was assumed to be the sole source of interference in 
the signal channel. 

In this paper, we consider intersymbol interference that is induced 
by delay dispersion in the signal channel. Analysis is limited to a 
practical single-echo channer' and binary orthogonal modulation. Al­
though the analysis seems to be tractable for only special cases, we 
gain insight into the error mechanism of digital FM reception. 

The relation between clicks and errors is viewed as follows. Since the 
fundamental description of clicks concerns a random angular encircle-

* The single-echo channel was used by Bennett, Curtis, and Rice6 in their 
study of analog angle modulated transmission systems. 

301 
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ment of the origin by the received signal plus noise vector, it is 
convenient to choose the integrate and dump model for the post-dis­
criminator filter. Then the filter output is a measure of the angular 
change of the received vector over a symbol duration. Signal and click 
angular changes are readily compared. The particular signal angular 
modulation considered here is ±7r radians; in this case an error occurs if 
and only if a click occurs, to a good approximation. t Intersymbol inter­
ference is considered as a perturbation of the signal modulation. This 
distortion affects the instantaneous signal-to-noise ratio and the in­
stantaneous frequency which, as shown by Rice, are the controlling 
parameters for the click (error) probabilities. 

After the calculations described above are used to compute the error 
rate for the digital FM receiver, another computation for error rate is 
made using a noncoherent orthogonal matched filter receiver. The error 
performances of the two receivers are the same for this binary signal 
having angular modulation ±7r radians. 

In the following sections, the modulation and the channel param­
eters are first defined. An expression is derived for the distorted out­
put of the channel. The derivations of the FM receiver performance 
and the matched filter receiver performance are explained, then the 
significance of the' work is discussed. Two appendices give detailed 
derivations of the receivers' performances. 

II. FSK MODULATION IN THE SINGLE ECHO CHANNEIJ 

Since the two receivers are applied in turn to the same channel as 
shown in Figure 1, we shall first express the output of this single echo 
channel. The input waveform is either 8dt) or 82(t). 

Re {e i2lr (fc+fdl t } 

8
2
(t) Re {e i2lr (fc-fdl t} 

where 81 (t) = 82 (t) = 0 otherwise 

f c is a center frequency 
fa is the frequency deviation 
T is the symbol duration. 

o ~ t ~ T (1) 

(We shall consider only the deviation: 2faT = 1.) These input wave­
forms are applied in some arbitrary sequence to the channel; the 

t Mazo and Salz4 have considered the approximations involved in some detail, 
and their work relates different angular modulations. 



CLICK COMPARISON OF RECEIVERS 303 

INPUT 
WAVEFORM CHANNEL 

Sl(t) 

OR 

S2(t.) 

DATA 

SY~;~~~~~US ____ O_U-oT 

Fig. 1- Data transmission system model. 

channel input voltage can be described as 
00 

ein(t) = 2: Sin(t - nT) in = 1,2. (2) 
n=-oo 

The output of the channel (receiver input) with noise added is 

eel) = Re {a 1e
i l"'ein(t - 7'1) + a2e

i l"'ein(t - 7'2)} + eN(t) (3) 

where 

aiei<P i (i = 1, 2) are the complex tap gains and we shall consider 
that al > a2 
7' i are the tap delays and we shall consider the case 72 - 7'1 = T 
eN(t) is additive white Gaussian noise. 

In the ensuing work we shall refer to the first term in the braces of 
equation (3) as the signal, and to the second term as the echo. Since 
the echo is displaced by one symbol duration, the receiver input in 
simply a superposition of signal and echo Si, Sj (i, j = 1, 2). Because 
each combination is assumed to be equally probable, and because cor­
responding conditional error probabilities are equal, it is sufficient to 
evaluate the cases S1, S1 and S1, S2. Thus the receiver input is either 

e(t) = Re {[a
1
ei (27rfd t+1"1) + a2ei(27l"fdt+I"')]ei27rfct} + eN(t) 

o ~ t ~ T (4) 

or 

III. FM RECEIVER PERFORMANCE 

The FM receiver model used here includes a predetection filter, 
limiter, discriminator, and a postdetection integrate and dump circuit, 
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as shown in Figure 2. The predetection filter is used to reduce noise 
and is supposed to have negligible effect on the modulation. Then the 
receiver output is proportional to the angular change of the input 
modulation over a symbol duration. 

We proceed by first rewriting the input voltage, represented by 
equation (4) or equation (5), in a form that shows explicitly the 
amplitude and angular variations of the noise-free envelope in the 
form 

e(t) = Re {A(t)ei l'(t)e i2 11"fc!}. 

The envelope which describes the signal-echo pair 81, 81, corresponding 
to equation (4) ,is 

A = [ai + a; + 2al a2 cos (CPl - CP2)]! 

cp(t) = 2n"/d t + CPo 

(6) 

where <po is a constant. The envelope which describes the signal-echo 
pair 81,82, corresponding to equation (5), is 

(7) 

(In these equations, A (t) and <p (t) have been obtained by straight­
forward trigonometric relations from equations (4) and (5).) 

Thus in the absence of noise for signal and echo pairs 81, 81 or 81, 8~, 

the receiver output is proportional to 

Similarly, complementary signal-echo pair 82, 82 or 82, 81 would give 
an output b..<p = -To. 

The noise perturbation is considered an additive errol' angle () (t) , 
illustrated in Fig. 3. Now the FJ\1 receiver output is proportional to 
tf; (t) 

PREOETECTION 
FILTER 

tf;(t) = cp(t) + eCt) 

[------_._----
INTFGf~ATOR 

LIMITER 
01 SCRI M I NATOR _.J~dl 

Fig. 2 - Digital FM receiYer. 
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Fig. 3 - Angular pertmbation caused by noise. 

and the angular change over a symbol duration is 

The decision threshold is placed at Iltf; = 0, midway between ±7r. 
\Vhen the transmitted signal has an angular modulation Ilcp = +7r, an 
error is made if Il() < -7r. 

Fig. 4 illustrates possible loci of the signal plus noise envelope R. 
For signal alone, the locus is simply a semicircle. 'Vith echo and noise 
added, no error is made provided Iltf; > 0. vVe observe that the locus 
encircles the origin in a counterclockwise direction. But when a nega­
tive click occurs, the locus encircles the origin in a clockwise direc­
tion, Iltf; < 0, and an error is made. 

The probability of error is obtained from the probability of a nega­
tive click during a symbol interval. Rice4 defines H _ dt as the proba-

SIGNAL ONLY 
il.p=f:.cp=7T 

\ 
\ 

Fig. 4 - Possible loci of angular change. 
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bility of a negative click: the angle () (t) decreases* through an odd 
multiple of 7r between t and t + dt. H _ dt is a function of signal-to­
noise ratio and the time derivative of the angular modulation, which 
are time- and phase-dependent according to equations (6) or (7). The 
desired probability of error is obtained by integrating H _ over a 
symbol duration and averaging over the random channel phase angle: 

1 1211" iT 
P = 27r 0 dx 0 H_(p, cP) dt 

where 

A2(t). h' t . It' . 
p = -----=- IS t e mstan aneous sIgna - o-nOIse ratlO 

2e~ 
e~ is the noise power passed by the predetection filter 
cP is the time derivative of the modulation angle cp(t) 

(8) 

x = CPi - cpz is the relative echo phase, assumed uniformly distributed 
over (0, 27r). 

As Appendix A shows, the error probability obtained when A (t) 
and If' (t) from equation (6) are substituted in equation (8) is 

P" = ~ Io( a;~,) exp ( - a; 2~: a;). (9) 

The error probability corresponding to equation (7) IS 

P., = Q[(:iJ! ' (~)IJ - ~ Io(a~J') exp ( - a; 2~: a;), (10) 

where Q[ .,.] is the Marcum Q function. The average of Pel and P e2 

is simply 

p. = t(P., + p.,) = ~ QL~)! ' (~)J (11) 

The noise power e~ depends on the predetection filter bandwidth, 
which can be estimated using Carson's rule with the Nyquist criterion 
for video bandwidth. These assumptions give a bandwidth B 

1 2 
B = - (1 + 2/dT) = - Hz T T (12) 

*Decrease means in a direction opposite the time derivative of the modula­
tion f{J (t). It is possible that e (t) can also increase by 7r and thus cancel the 
decrease; the probability of this occurrence is asymptotically negligible for low 
error rates. 
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and thus a noise power 

~: = BN watts (13) 

where N is the noise density in watts/Hz. Substitution of equations 
(12) and (13) into equation (11) gives 

where 

1 [(E)! (E)!] 
P e = 2" Q a N ' N 

a = a2 is the echo/signal voltage ratio 
a l 

E = !aiT is the signal energy/bit. 

IV. MATCHED FILTER RECEIVER PERFORMANCE 

(14) 

We are concerned here with the incoherent matched filter receiver 
shown in Fig. 5. The mark and space filters are matched (except for 
phase) to the waveforms 81(t) and 82 (t) defined by equation (1). As Fig. 
5 indicates, the combined operations of filtering, square law rectifying, 
and time sampling produce Ri and R; which are the squared envelopes 
of the filter outputs at the end of the symbol interval. Assuming mark 
is transmitted, the probability of error is 

P = Prob {R; > Ri} = 100 

dR I foo peRl , R2) dR 2 (15) 
o If. 

where p (R1, R 2 ) is the joint density function of R1 and R 2 • 

As shown in Appendix B, the error probability corresponding to 
equation (4), with the signal-echo pair 81,81 is 

1 (aE) (E + a2E) 
Pel = 2 10 N exp 2N· (16) 

The error probability corresponding to equation (5), with the signal­
echo pair 81, 82 is 

SQUARE 
LAW 

DETECTOR 

R~ 

Fig. 5 - Matched filter receiver. 

COMPARATOR 
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P" = Q[ a(~Y, (~YJ - ~ Io(':) exp (-E ~;'E). (17) 

The average of Pel and P r'2 is 

(18) 

This is identical with the error performance of the Fl\/I receiver, 
specified in efluation (14). 

Y. DISCUSSION OF RESULTS 

The concept of clicks has made possible a unique comparison be­
tween digital FM and matched filter receivers. 'Vhen a suitable pre­
detection filter is chosen for the FM receiver and the assumption made 
that this filter does not significantly process the signal, then the error 
performance of the two receivers is described identically. 

We have gained particular insight into the error mechanism of the 
digital FM receiver under conditions of intersymbolinterference. The 
analysis shows how the rate of occurrence of the noise clicks is criti­
cally dependent on this distortion of the signal waveform. This is in 
direct contrast to the usual AlVI systems where intersymbol inter­
ference manifests itself by a gradual degradation caused by "eye" 
closing. 

Numerical results, illustrated in Fig. 6, show that the receivers' 

10- t .-------.----.---....----.,----,...-r---_--~ 

S --- --
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f-::J s -----+~~~-f\ 
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0:: 
o 
0:: 
0:: 
W 
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10-4 f-----r----l---\--~-+_~-__\__l 

Sl--~-_+_-----l 

5 10 15 20 25 

E/N-dB 

Fig. 6 - Error performance in single echo channel. 
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performance can be summarized in terms of the increase in signal-to­
noise ratio required to maintain a desired error rate when an echo is 
superposed. For example, 10 dB higher signal-to-noise ratio is required 
to maintain a 10-4 error rate when an echo having half the signal 
power is added. It is easy to show that the asymptotic deterioration 
in performance with echo behaves as 20 loglo (I-a) dB. 
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APPENDIX A 

Click Probab1:lities 

This appendix concerns the application of an average click proba­
blity to FlVI receiver performance. The mathematical details are given 
here which relate equations (6), (7), and (8) to equations (9) and 
(10) . 

It has been shown in Refs. 1 and 2 that the probability of a click 
in time dt can be approximated as l

:-

II dt ~ .!L e- P dt 
- - 271" 

(19) 

where q, is the time derivative of the envelope angular variation and 

is the signal-to-noise ratio. Substitution in equation (8) gives the er­
ror probability 

P =12trdxlTdt.( t) [_A2(X,t)] 2 ') 'P x, exp .) 
o 71" 0 ... 71" 2ei{ 

(20) 

where x = 'Pt - 'P2 . Substitution in equation (20) of A(x, t) and the 
time derivative of 'P(x, t), q,(x, t) = 271"jd, from equation (6) gives for 

* This validity of this approximation depends on sufficiently large p for cP =1= O. 
Klapper3 has discussed this in some detail. Although the approximation is not 
as good with intersymbol interference, it appears adequate. 
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the signal-echo pair 81 , 81 

1 1211" iT [1 ] = -2 dx fd exp - 2 (ai + a; + 2a1a2 cos x) dt 
7r 0 0 2eN (21) 

1 I (a1a2) (ai + a;) = 2 0 2 exp 2 
eN 2eN 

where we have used the integral definition of 10 (.) and noted faT = i· 
We now take A(x, t) and SO (x, t) from equation (7) and notice that 

the time derivative of the latter can be expressed as 

(P(t) = 47rfd [ 2 ai t a1a2 cos (47r/dt + <PI - «2) ] - 27rfd . (22) 
a1 + a2 + 2a1a2 cos (47r/d t + <PI - «2) 

When the first term of equation (22) and the expression for A (x, t) 
are substituted into equation (20) the integral can be recognized as a 
Q function representation given by Helstrom: 7 

(1 a ) a{3 cosu 

1 (a2 + (32) 121r - ~ cos u e 
Q(a, (3) = 27r exp - 2 0 (a)2 (a) du 

1 + - - 2 - cos u 
{3 {3 

where a <f3 and we have replaced 4 7T fat + SOl - CP2 + 7T by the vari­
able u. 
We make the identifications 

Substitution of the second term of equation (22) gives an integral 
identical to the right-hand side of equation (21). Thus, for the signal­
echo pair 81, 82 

APPENDIX B 

Matched Filter Receiver 

This appendix concerns the application of the single echo channel 
waveforms to filters which are matched to the waveforms in the 
absence of the echo. The mathematical form is similar to the form 
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illustrated by Helstrom,7 and we give only a brief summary here to 
show the effect of the echo. 

The error probability depends on a comparison of the sampled out­
puts, R1 and R2, of the two matched filters. Helstrom shows 

where 

R~ = X~ + Y~ , i = 1,2 

Xi = iT e(t) cos (21TJit) dt 

Y i = iT e(t) sin (21TJJ) dt 

(23) 

(24) 

(25) 

where e(t) is signal plus echo plus noise defined by equation (4) or (5). 

fi is one of the signal frequencies 
f1 = fe + fa 
f2 = Ie - fd . 

Substitution of e (t) as given in equation (4) for the signal-echo pair 
S1, S1 gives 

(26) 

where I Nl , I N2 , I N3 , IN4 are zero mean independent Gaussian variables 
having equal variances (T2 = NT /4 for noise density N (watts/Hz). 

From these terms, we find that the joint distribution of R1 and R2 is 
p(R1 ,R'2) 

(R R) - R1R2 I (R1C1) (Ri + R; + Ci) p 1, 2 - (J"4 0 (J"2 exp 2(J"2 (27) 

where 



312 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH l!)()8 

The error probability is 

(28) 

A vcraging this value over x = if1 - if'.!. yields 

1 121r 1 (aE) [E + a2EJ Pel = 271" 0 P(x) dx = 2 10 N exp --2N' (29) 

Similarly, substitution of e(t) as given by equation (5) into equations 
(24) and (25) gives, for the signal-echo pair Sl, S2 

Xl alT + I = 2 cos CPI NI 

(30) 

} T2 a2T, + I = -2 SIn CP2 N4 ' 

Now the joint distribution of R1 and R'.!. is found to be 

where 

CI 
_ at'£ 
- 2 

C2 

a2 T 
=2' 

The error probability in this casc is found via the following steps. 

P e2 = 100 

dR I foo dR2 peRl , R2) 
o R, (32) 

= lOO dR l ~~ Io(R;fl)Q(:2 , ~l) exp ( 
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where we have substituterl p (R1 , R:!.) from equation (31) and used the 
Q function definition: 

Q(ex, {3) ~ f tf,(ext) cxp ( ex' t t') dt. 

'Ve see, by this manipulation, that equation (32) is integrable; for 
example, as shown by Stein.s Thus 

P Q( C2 C1 ) 1 (C 1C2) (C~ + c;) 
02 = (J"V2 '(J"V2 - 2 1

0 2(J"2- exp -~~. (33) 

Appropriate substitutions of the terms from equations (31) and (14) 
give equation (17). 
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Eliminating Broadband Distortion in 
Transistor Amplifiers 

By LEE C. THOMAS 
(Manuscript received July 6, 1967) 

This paper presents the results of a study directed toward understanding 
the basic distortion mechanisms in transistors. (i) We develop an analytic 
model for the transistor which describes small signal linear performance 
and nonlinear effects. The linear model is matched to the measured h­
parameters of the device over a wide range of frequency and bias current. 
We superimpose three distinct nonlinear effects on this linear skeleton 
model, all approximated to third order terms. (ii) We show experimental 
confirmation that, for some bias-load conditions, the second order distor­
tion can be minimized and we show that it is possible to simultaneously 
minimize both second- and third-order distortion under the same bias-load 
condition. This result also is co~firmed experimentally . (iii) We derive 
and discuss in detail an analytic expression for the optimum load. Based on 
this expression, we present detailed procedures for finding this optimum 
condition for any transistor, and give experimental corroboration. (iv) We 
give a qualitative description of the interaction among these three nonlinear 
effects based on an analog computer simulation of the model. This description 
makes it easier to visualize the distortion cancellation phenomena derived in 
this paper, and indicates a technique for extending the effect to a broad band 
of frequencies. lVe conclude that proper use of the distortion cancellation 
effect can greatly improve intermodulation performance in existing tran­
sistors. 

I. INTRODUCTION 

System studies have indicated that very broad band (greater than 
20 mHz) AM coaxial cable systems will be modulation-limited. Inten­
sive investigations to understand and characterize the inherent modu­
lation properties of devices and repeater circuits have been called for. 
We made one such study directed toward understanding the basic 
distortion mechanisms in transistors. 

315 
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The history of transistor distortion literature can be characterized 
as an erosion process in which highly restricted parts of the total 
problem are attacked leaving fresh complexities exposed for future 
work. In early work by Akgun and Strutt, the analysis is restricted 
to nonlinearities in the emitter resistance assuming an ac short at 
the input and output.1 Observed nulls in second and third order 
distortion do not correlate with the theory, which does, however, 
include frequency effects. Using many of the same assumptions, Mal­
linckrodt and Gardner extended this earlier work to account for a 
third order null at low frequencies when the nonlinear emitter resis­
tance is dominant. 2 

1\1Tore recently Riva, Beneteau, and Dalla Volta considered all 
important sources of distortion by breaking the problem into three 
distinct operating regions with expressions for minimizing second 
order distortion in each.3 They do not treat of third order minimiza­
tion, and they use a dc model. Reynolds analyzes third order mini­
mization at particular nonzero frequencies for dominance of the 
emitter resistance nonlinearity.4 

There are two reasons for the specialized nature of these efforts. 
First, transistors, as contrasted with vacuum tubes, have at least three 
dominant nonlinearities. It would be difficult to consider all of these 
in a general expression for second and third order distortion. Second, 
frequency effects can be important in many applications. In general, 
the analysis of nonlinear effects as a function of frequency requires 
the use of extremely powerful and, as a result, cumbersome analytic 
techniques. In the special case of an exponential input v-i relation 
it is possible to avoid a general analysis, which explains why analyses 
which include frequency effects have been limited to emitter non­
linearities. Even in this exponential case, however, the third order 
null predicted by Reynolds is a narrowband effect, applicable only 
at a particular frequency. 

This paper extends these earlier efforts in four important respects. 
(i) Vie conclude that the distortion measured at the terminals 

results from algebraic cancellation between distortion components 
produced by nonlinear effects within the transistor: This conclusion 
originated from empirical observations made on an analog computer 
simulation' of a transistor. An analytic argument reinforces this con­
clusion by comparing plots of algebraic cancellation to measured dis­
tortion curves. Also, we give experimental support of the cancellation 
phenomenon. 
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(ii) We present a low-frequency analysis of a complete extrinsic 
model including three nonlineari ties: emitter resistance, nonlinear 
current gain, and avalanche multiplication, all approximated by a 
third order polynominal. vVe avoid considerable complexity by direct­
ing the analysis strictly to the question of minimizing distortion and 
by not developing a general distortion expression. This analysis is 
independent of any assumptions concerning distortion cancellation, 
but yields the same results. 

(iii) From this analysis we show that it is possible to simultaneously 
null both second and third order distortion under the same bias-load 
condition. The analytic technique we use to determine a null is 
linearization of the input-output relation up to and including third 
order, thus implying a minimum in harmonic distortion, intermodula­
tion, or any other specialized figure of merit. The existence of this 
simultaneous null is verified in the laboratory. 

(iv) Extension of the cancellation effect to a broad band of fre­
quencies can be accomplished by external reactive compensation. 
This compensation maintains a 180 0 phase shift between the collector­
base voltage and the real component of the emitter current, a relation 
that exists automatically at low frequencies where the rigorous anal­
ysis is performed. This phase shift is the fundamental requirement 
for total cancellation, based on the qualitative insight mentioned in 
item i. 

(3 

fJluax 

PRINCIPAL SYl\IBOLS 

Parameter in the (3(Ic) relation. 
Current dependence of the dependent current source. 
Taylor series coefficients in the expansion of aCle) around 
leo. 
lVlaximum value of a with respect to I~ . 
Common emitter ac gain. 
l\1aximum value of {3 with respect to Ie. 
Total collector current. 
Collector current where {3max. occurs. 
Small signal collector current. 
Total emitter current. 
Emitter current bias level. 
Small signal emitter current. 
Collector current bias level. 
Current in the load resistor. 
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M(VCb) Voltage dependence of the dependent current source. 
Ml , M2 , Ma Taylor series coefficients in the expansion of M(Vcb) 

around Vo. 
f e Emitter resistance. 
fl , f2 , fa 

RL 
R(2loPt 

R. 
Vcb 
Vcb 

Ve 

Vo 
VOllt 

Taylor series coefficients relating Ve to ie . 
Load resistance. 
Load which minimizes second order distortion when third 
order distortion is negligible. 
Source resistance. 
Total collector-to-base voltage. 
Small signal collector-to-base voltage. 
Small signal voltage across f e • 

Collector-to-base bias level. 
Voltage across the load resistor. 

II. A QUALITATIVE MODEL FOR THE DISTORTION MECHANISM 

Let us describe the qualitative insight (i) to get a broad look at the 
cancellation phenomenon before rigorous analysis obscures a simple 
concept. 

An analog computer simulation of the model of Fig. 1 allows us to 
examine the interaction of the three nonlinearities by examining their 
effects one at a time. Thus, for example, we may allow only a(Ie) to 
be nonlinear and observe the second harmonic distortion components 
of the output voltage. If we then make a constant and allow M(Vcb) 
to vary, we observe that the resulting waveform is 1800 out of phase 
with the first waveform as shown in Fig. 2. This is plausible since 
Vcb and Ie are inherently 1800 out of phase at low frequencies. Thus any 
cancellation that we obtain between current dependent nonlinearities 

c 

t IOUT 

Fig. 1-High frequency nonlinear model. 
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and voltage dependent nonlinearities will not require phasing Ie and 
Vcb properly, but will result from properly adjusting the relative 
magnitudes of Vcb and I •. 

Since I e ~ lout, the most direct way to adjust the magnitude of 
Vcb ~ Vout relative to I. is to change the load resistance. Hence the 
strong dependence of distortion on RL as shown in Fig. 3 for a fixed 
bias level of Vcb = Vo and lout = 10 . To obtain cancellation in second 
and third order distortion at the same time, not only the relative 
magnitudes are important but the absolute level must be correct. 
This cancellation model explains the sharpness of the null: since the 
net distortion is a small difference between large distortion components, 
a small percentage change in the ratio of the larger components will 
yield a large percentage change in the difference. Experimentally, as a 
null is passed the output distortion waveform changes phase by 1800 

as we would expect from one component's becoming dominant over 
the other. 

It is important to notice that this cancellation effect is not some 
artificial phenomenon that we are forcing to occur. According to the 
model presented here, some degree of cancellation always occurs in 
any transistor at any level of distortion. We give a more quantitative 
argument supporting this exact cancellation model for visualizing the 
transistor distortion mechanism in Appendix C. 

It has been the author's experience that a disturbingly large per­
centage of published technical material is exclusively concerned with 
presenting conclusions. In most cases, these conclusions were arrived 
at by the rigorous manipulation of symbols long after the original 
insight which prompted the investigation. The purpose of this section 
is to describe the insights first in the belief that the reader will have 
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Fig. 3 - Experimental null in second harmonic distortion as a function of RL, 
using a Western Electric 20J transistor with Yo = 30 volts, Io = 100 milliam­
peres, and R. = 500 ohms. 

at least one less handicap if he is allowed to see the simple ideas 
on which the rather interesting conclusions of this paper are based. 
These ideas are: 

(i) The nonlinearities of the transistor (including some, such as 
the base spreading resistance and the diffusion capacitance, which 
arc not considered in this paper) are dependent on the emitter cur­
rent, Ie, and the collector-base voltage, 11cb • At low frequencies Ie 
and 11eb are 1800 out of phase. 

(ii) As a result of this phase difference, distortion components 
resulting from these independent variables will subtract at low fre­
quencies. 

(iii) On an analog computer simulation, we observe the ability to 
extend this subtraction effect to the extent of total cancellation by 
manipulating external circuit parameters. Thus it should be possible 
to analyze a low frequency model by imposing the condition of zero 
distortion and solve for the required circuit parameters. 'Ve would 
expect the load resistance to be an important parameter in this anal­
ysis since it determines the ratio of 11eb to Ie. 

(iv) Considering the low frequency phase difference between Ie and 
Veb as the most important factor in achieving total cancellation, we 
suggest a tQchnique for extending the low frequency results to a broad 
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band of frequencies. This extension is achieved by the simple expedient 
of compensating the load to achieve a constant real part, RL , and still 
maintain the proper phase between l' cb and leas frequency increases. 

The following sections develop the rigorous analysis (most of which 
is relegated to Appendix A) and examine in some detail the analytic 
conditions for a null and the implications of these conditions in the 
area of circuit and device design. 

III. TRANSISTOR MODEL 

The model in Fig. 1 has been matched closely to the h parameters 
of the vVestern Electric type 46A transistor over a wide range of 
frequency (5 to 100 mHz) and bias current (50 to 150 mA). Figs. 
4 and 5 show a typical match, obtained from a general purpose 
optimization program. Three distinct nonlinear effects were then 
superimposed on this small signal linear skeleton model. The current 
dependence of the dependent current source is changed from ale to 
the expansion around the emitter current bias point, leo, 

aUe) = 10 + a)(Ir - leo) 

+ !a2(Je - 1'0)2 + ia3(Ie - leo)3 + ... (1) 

where 10 is the quiescent collector current. The voltage dependence 
of the dependent current source is changed from the constant, M, to 
the expansion around the collector-to-base bias voltage, 1'0, 

ill(1'cb) = 1 + ill1(Vcb - 1'0) 

+ !ilI2(1'cb - 1'0)2 + iilf3(TTcb - 1'0)3 + ... (2a) 

50n 

Fig. 4 - Linear model for Ie = 150 rnA, Vcb = lOV. With the indicated ele­
ment values, this model matches the measured h-parameters shown in Fig. 5. The 
quality of the match at this bias point (Ie = 150 rnA, Vob = lOV) is typical. 
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So that the total dependent current source relationship is 

(2b) 

And finally the emitter resistance, r e, is replaced by the expansion 
around leo 

v. = rl(l. - 1.0) + !r2(I. - 1,0)2 + lr3(1. - 1,0)3 + (3) 

where the coefficients in equations 1, 2, and 3 are the corresponding 
derivatives of the Taylor series expansion. Define the small signal 
quantities as 

Using these relations, equations 1,2, and 3 become 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Substituting equations 7 and 8 into 2b, and retaining third order terms 

At this point we have developed a model for the transistor, indicating 
the nature and form of the particular nonlinearities considered in both 
the analog computer simulation of the complete, frequency-dependent 
model of Fig. 1 and the analysis of the dc model of Fig. 6. 

IV. THE ANALYSIS 

4.1 Optimization Equations 

An analog computer simulation of the complete, frequency-depend­
ent model just discussed suggests that a simpler model is sufficient 
to describe the distortion characteristics of the transistor at low 
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c 

Fig. 6 - Low frequency nonlinear model. 

frequencies. Fig. 6 shows this simplified dc model. The following 
analysis of this model is detailed in Appendix A. 

(i) The incremental output voltage, Vout, is related to the input 
voltage, V s, retaining third order terms as in equation II. 

(ii) This input-output relation is constrained to be linear, thus 
forcing both second and third order distortion to zero . 

. (iii) This constraint requires certain coefficients in the nonlinear 
Vout (V s) relation to be zero. These coefficients are, of course, func­
tions of the linear and nonlinear parameters of the system. Thus, 
when these functions are made zero, Vout is a linear function of V s 
(to third order), and the derivation of the optimization equations is 
complete. These equations are: 

where 

and 

-Ri(IoM2) + R L (2et 1M 1) + 0 - et2 = 0 

Rt(IoM3) - Ri(3et1M 2) + ~ - et3 = 0 

o = rd(R. + rD < 0, since r2 < 0, (equation 19), 

(12) 

(13) 

(14) 

~ = r3/(R. + rD > 0, SInce r3 > ° (equation 20). (15) 

For the simpler case where the amplitude of third order distortion 
is sufficiently low so that third order terms are negligible, equation 
13 is satisfied identically and only equation f2 remains, which is 
easily solved to yield 

R(2) opt = etlMd1oM2 + [(etlMl/loJJ;J2)2 - (et2 - o)/IoM2]!. (16) 

Thus R(2)opt is the value of load resistance which causes second 
order distortion to be zero for the case where third order terms are 
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negligible. Notice that the analytic technique used to determine a 
distortion null here is linearization of the input-output relation, and 
thus implies a minimum in harmonic distortion, intermodulation dis­
tortion, or any other specialized figure of merit. Of course, R (2)opt is a 
function of bias current and voltage because of the dependence of 
11.11 and 11.12 on voltage and r2, £xl and £x2 on current. The implications 
of equations 12, 13, and 16 become more clear when the dependence 
of these parameters on bias is considered. 

4.2 Relating Parmneters to More Directly Measurable Quantities 

It is revealing to express the parameters of equations 12 and 13 
in terms of the bias variables and other directly measurable param­
eters of the transistor. 

Assuming the standard exponential 1,'-v relation at the emitter-base 
junction we can immediately derive from 

Ie = Is[exp (XqV./kT) - 1] 

the following relations: 

1'1 = kT /XqIo = ro/Io , 

1"2 = -kT/XqI~ = -ro/I~ , 

1"3 = 2kT /XqI! = 2r 0/ I! . 

(17) 

(18) 

(19) 

(20) 

Similarly, if we assume that the avalanche effect in the common­
emitter mode is described by an equation of the same form as Miller's5 

(21) 

where V A is the common-emitter breakdown voltage as shown in Fig. 
7. Then, at VCb = Vo: 

t 
U 

H 

Ic MIN t====;;;;;;;;;;;;===:;;;::::;:::b:=======::::.._L. ____ .--J 
Vs VA VCE -.. 

aM (Vs )= I ~,(VA)=OO 

Fig. 7 -- Avalanche characteristics. 
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Ml = n(Vo/VAt/Vo , 

1Y12 = n(n - 1)(Vo/VAt/V~ , 

M3 = n(n - 1)(n - 2)(Vo/VAt/V! . 

(22) 

(23) 

(24) 

The avalanche voltage, V A, can be determined on a curve tracer 
oscilloscope by leaving the emitter open-circuited in a grounded base 
configuration and sweeping the collector-base voltage. The sustaining 
voltage, V s, shown in Fig. 7, is obtaining with the transistor in the 
common-emitter mode and at least enough base current flowing to 
produce IGmin at the output. At Vs the avalanche factor M(Vob ) has 
increased above unity sufficiently so that a (l G) M (V s) = 1. As a result 
the common-emitter current gain (f3) at this voltage is infinite. Choos­
ing the smallest a at which this occurs (amin) allows us to determine 
the exponent, n, in equation 21: 

(25) 

Therefore 

(26) 

where f3min corresponds to CXmin and may be determined from equation 
27 using 10 = IGmin. Notice that equation 21 constitutes an empirical 
relationship in this study and is not intended to be rigorously tied to 
anyone of the various avalanche mechanisms. It is apparent, too, 
that the measurements determining equations 25 and 26 will be influ­
enced by other voltage-dependent mechanisms (for example, the 
Early effect); hence they are not strictly related to the avalanche 
multiplication effect alone. Equation 21 has the virtue of mathematical 
tractability; equation 25 allows the parameters of 21 to be determined 
conveniently; and, finally, the excellent experimental agreement with 
the theory described in Section V provides adequate justification of 
the original assumptions. In any case, the derivation of equations 
12 and 13 is based on a general power series expansion for Ai (V ob) 

around Yo; hence it remains valid for any M I , M 2 , and M 3 • 

Finally we require az and a3. We show in Appendix B that f3 can 
be empirically related to collector bias by 

(27) 

where /3max is the ma~imum f3 which occurs at 10 = lop, as shown in 
Fig. 8, and A is a p'arameter of the equation. Determination of a2, 
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Fig. 8 - Current gain nonlinearity as a function of the bias current, Ie. 

a3, and A is derived in Appendix B. They can be expressed as 

a2 I"'V - (4Aa~ax) In (~) 
f3max1o Icp 
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(28) 

(29) 

(30) 

SO that A may be determined by finding Icp and measuring f3 at that 
current and at 1/ e times that current. Thus equations 18 through 30 
give the functional relations for the various parameters in equations 
12 and 13 and indicate the method of measuring the more funda­
mental parameters such as nand A. In the next section we use these 
relations in existence conditions for a simultaneous null, in order to 
guide an experimental search for this condition. 

4.3 Existence Conditions for Realizability 

vVhile the simultaneous solution of equations 12 and 13 has not 
been accomplished in closed form, it is possible to derive the condi­
tions under which a solution exists. Expressed in terms of the bias 
variables, such conditions can then be used as a guide in an experi­
mental search for simultaneous nulling of second and third order 
distortion. 

Basically we require RL to be real and positive. For the second 
order equation, solved in equation 16, this simply requires that 

(31) 
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The condition for the existence of a positive, real solution to a cubic 
of the form 

where 

p = 30'.11112/10111 3 

l' = (~ - 0'.3)/101113 

x = R[, 

is easily derived. Basically require 

(32) 

(33) 

(34) 

(35) 

x3 = px2 
- 1'. (36) 

Now, from equations 34 and 29, l' > 0 for 10 < e1cp. Thus, at x = 0, 
the parabola on the right side of equation 36 will be below the cubic 
on the left. There will be a positive intersection only if the equation 
is satisfied before the cubic term begins increasing more rapidly 
(larger slope) than the parabola. The slopes are equal at 

(37) 

Therefore require 

x~ ~ px~ - r (38) 

or 

(39) 

Expressing this existence condition in terms of the problem variables 
and rearranging terms gives 

(40) 

Substituting in equations 31 and 40 with 18 through 29 and arranging 
terms we obtain 

(41) 

where 

Ql = (1 - .!)[1'o (Rs + 1'0 - (4AO'.~ax) In (~)J (42) 
n 10 (3max lcp 

Q2 = [1'0 (Rs + TO - (3AO'.!lax) In (~)J en - 2)2 . (43) 
10 (3max e1Cl' 2n(n - 1) 

For most ranges of parameters and bias variables Ql > Q2, thus, we 
will examine the condition 
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( Vo)n > (1 - .!)[~ (Ra + 1'0 - (4Aa!ax) In (~)J (44) 
VA n 10 f3max Icp 

in greater detail. This distinction between Ql and Q2 is not critical, 
however, because they are similar in form. Thus, many of the qualita­
tive considerations to be developed in the next section are the same 
for Ql or Q2. 

4.4 Searching for a Simultaneous Null 

A careful examination of the existence condition (44) is useful 
in guiding an experimental search for a simultaneous null. Starting 
at the left side of the inequality, it is obvious that the bias voltage, 
Va, must be as large as possible relative to F.1. Since, in any case, 
Va < V A, the exponent, n, should be as small as possible. The value 
of n, according to Rogers,5 depends on whether the collector or base 
has the higher resistivity, and whether the high resistivity side is n 
or p type. 

'Vhere the collector has the higher resistivity, the lowest values of 
n are for npn silicon, and for pnp germanium. A second, less impor­
tant, advantage of small n is that the multiplier on the right side of 
the inequality is reduced. The first term in the brackets tends to be 
the major contributor to the right side of the inequality and is there­
fore the term which is most desirable to reduce. This term, which 
represents input distortion resulting from a nonlinear emitter resis­
tance, can be reduced by increasing the bias, 10, and by increasing 
Rs to approximate a current source drive, thereby reducing input 
distortion. 

The second term in the brackets will favorably' reduce the right 
side of the inequality only if the logarithm is positive. This will be 
true if the bias current, 10, is greater than lcp, which is consistent 
with the earlier requirement for a larger 10 , Finally, the multiplier 
A, in equation 18 should be small in order to reduce r o. 

Thus, it appears that the most likely candidate for a simultaneous 
null is a silicon power transistor to allow large values of 10 and F o. 

The structure should be either pnp or npn, depending on which type 
gives the smaller n. 

V. EXPERIMENTAL PROCEDURE AND RESULTS 

Let us illustrate the application of these existence conditions in an 
experimental determination of R (2)opt as well as a simultaneous null 
in second and third order distortion. 
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As a fundamental check on the theoretical results, we decided to 
determine the accuracy of equation 16 with 19, 22, 23, and 28 sub­
stituted for the Taylor series coefficients. Also, it was desirable to 
verify the existence of a simultaneous null using the existence condi­
tions of the previous section. Because of the low frequencies involved 
(input frequency of 1 kHz), the simplest approach was to simulate 
the measurement apparatus on the analog computer, using the same 
oscillator and bandpass filters already available on the original simula­
tion.6 The transistor used was the Western Electric 20J, and npn 
power transistor. 

Using this equipment, the parameters of the (3 (Ie) characteristic 
curve of the transistor were measured: 

f3max = 78 

lop = 15mA 

f3(Icp/e) = 73. 

From a curve tracer oscilloscope, the avalanche parameters were 
determined: 

VA = 60V 

Vs = 35V 

f3min = 45. 

These measurements yield the information to compute 

n=7 

A = .064 

from equations 26 and 30. From the manufacturer's data, To = 50 m V 
and r~ = 50 n. The output power was maintained at one watt. 

These parameters give all the information required by equation 16 
to compute the function R(2) oPt(Io) for various values of Vo. The 
curves in Figs. 9 and 10 show this computation compared to the plotted 
points which were measured. The agreement here is quite adequate. The 
quality of the match is further emphasized by comparing the computed 
values of R(2) opt indicated in Fig. 3 and Fig. 11 to the measured nulls. 
The computed value shown in Fig. 11 is based on a solution to equation 
16 only. 

A typical simultaneous null obtained in the laboratory is shown in 
Fig. 11. This data indicates the high voltages (to emphasize avalanche 
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Fig. 9 - Measured (plotted points) and computed values (curve) of R(2)OPt as 
a function of bias current, 10 , using a Western Electric 20J transistor with R. 
500 ohms and Vo = 29 volts. 
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Fig. 10 - Measured (plotted points) and computed values (curve) of R(2)OPt as 
a function of bias current, 10 , using a Western Electric 20J transistor with 
R. = 500 ohms and Vo = 25 volts. 
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Fig. 11- Simultaneolls null in s~('ond and third harmonics as a function of 
load, R L , with the same transistor and R. as in Figs. 9 and 10. Here Vo = 29 
yolts and 10 = 240 mAo 

distortion) and currents (to mmmuze input distortion) required for 
a simultaneous null. Conditions for a simultaneous null exist on an 
(RL,Io, Fo,Rs) surface, giving some redundant control to achieve 
desired power and impedance levels as well as minimum second and 
third harmonic distortion. It is apparent that a transistor manufac­
tured with a lower value of n would allow a broader range of control 
over the bias voltage and current level required. Measurements on 
different units of the 'VE20J show a maximum spread of ±10 pel' 
cent in measured values of the optimum load for a simultaneous null. 

Experimentally, as R 1J is varied, the second harmonic displayed on 
the oscilloscope decreases in amplitude, goes to zero, and begins to 
increase in amplitude. As it goes through a null, the second harmonic 
changes sign, giving additional 'weight to the qualitative distortion 
model discussed in Section II. 

VI. EXTENSION OF CANCELLATION TO A BAND OF FREQUENCIES 

Up to this point, our discussion has been limited to low frequency 
effects. Now let us consider why the above results do not apply at 
high frequencies and look at a straightforward approach to extend 
the validity of all previous results to a broad band of frequencies. 
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If we accept the qualitative picture given in Section II, it is obvious 
that we should not expect to maintain exact cancellation as fre­
quency increases, since the phase of Veb relative to Ie will change. A 
small change in phase will have an effect similar to changing the 
relative magnitudes of the current and voltage-dependent distortion 
components: the amplitude of their difference (the net distortion) 
will change by a large percentage near a null. In fact, at higher fre­
quencies (on the order of iT/IOO) , the null of Fig. 2 vanishes alto­
gether. It is apparent, then, that a solution to this problem is to apply 
external reactive compensation in such a way as to keep Feb and Ie 
180 0 out of phase as frequency increases. In the model shown by 
Fig. 6 if we consider a capacitor, C f), in parallel with 1'e , it is straight­
forward to derive the relation, 

- 1',.11, ~ Re {Z": + i(:: + 1m (ZdJ ' (4.5) 

where 

1 
WT = --. 

CDre 
(46) 

Ideally, we would desire ZL = RL - jwrUwT but this would require 
a negative inductor. A simple first order approximation to this function 
would be to parallel RL with a capacitor, C. Then· 

RL . R~C 
ZL = 1 + w2R~C2 - JW 1 + w2R~C2' (47) 

From equation 47 choose 

(48) 

Now 

(49) 

For small angles the phase is given by 

cp(w) = w\rURLwT)3. (50) 

Thus the phase is reduced below the uncompensated case up to the 
frequency 
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At which point the cubic dependence of equation 50 intersects the 
linear phase of the uncompensated transistor. 

Obviously additional compensating elements can be used to cause 
higher derivatives of cp(w) to be zero. A complication may arise if 
Copt is less than the parasitic CCF) of the transistor. In this case we 
extend the required low-pass structure of the compensating network 
to include an inductor in series with R L. In this case the required 
inductance is given by 

whieh is greater than zero for CCE > rURiwT Copt. 

VII. CONCLUSION 

Our conclusions are based on simulation of the transistor on an 
analog computer, analysis, and experimental results. The rigorous 
analysis predicts the existence of a simultaneous null in second and 
third harmonic distortion under the same bias-load conditions. This 
null has been observed in the laboratory. In addition, experiments 
on the simulation provide qualitative insight into the nature of the 
distortion mechanism. 

We conclude that this mechanism consists of the algebraic sub­
traction, at low frequencies, of distortion components from various 
sources within the transistor such as the nonlinear emitter resistance, 
current gain, and avalanche multiplication effect. This interaction 
between distortion components yields a net distortion which is the 
difference between the contributing components, and can be made 
zero by a proper choice of the bias and load. 

With this mechanism in mind we developed a technique for ex­
tending the cancellation phenomenon to a broad band of frequencies. 
This technique consists of external reactive compensation which 
maintains 1800 phase shift between the distortion components, a 
condition which exists inherently at low frequencies. 

We have obtained experimental confirmation of the theoretical 
dependence of the optimum load for second order distortion on bias 
variables. The theory predicting a simultaneous null in second and 
third order distortion has been confirmed. 'Ve have also obtained 
experimental support for the distortion cancellation phenomenon. We 
discussed methods to aid future measurement efforts in implementing 
this distortion reduction phenomenon. These methods are based on 
interpretation of the theoretical expressions developed in the paper 



ELIMIN A'rING DISTORTION 335 

which reveal the necessity for high levels of bias voltage and current 
to obtain a simultaneous null. 

This study opens several fruitful areas for future work, both in 
device and circuit areas. Primarily, the phenomenon described uses 
circuit techniques to minimize distortion (optimizing the bias-load 
point). Additional effort in the circuit aspects of minimizing distor­
tion should be directed toward desensitizing the null condition to 
variations in the bias-load point. For example, if the bias current is 
forced to change with RL as shown in Fig. 9, optimum conditions 
could be maintained over a range of changes in the load. 

In the realm of device design, effort should be directed toward 
adjusting device parameters to allow nulling in useful regions of the 
bias-load space. For example, a softer avalanche characteristic (lower 
value of n) would allow the use of lower bias voltages. 
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APPENDIX A 

Derivation of the Optimization Equations 

In Fig. 6 the following relations hold 

Let 

1,,, = (V. - ve)/(R. + 1'~) 

1'sl(R. + r£) = I 

r1/(R s + r{,) = 'Y 

r2 /(R s + r{,) = 0 

ra/(Rs + r{,) = ~. 

Substituting (9) and (54) through (57) in (52) 

Combining (51) and (58) 

ic = i e (1 + 'Y) + !Oi; + i~i! - I. 

Now ic is given by equation 11. Therefore 

Substituting (51) and (53) into (60) and gathering terms: 

i~[ilo1l1aRi + !a2M IRL - !aI1l12R~ - iaa + i~] 
+ i;[! 0 - !a2 - !Iol.112Ri + all.liIR j , 

+ ib(!~ - !a1M2Ri - !a2MIRL - !aa)] 

+ i c [l + 'Y - al + I o1l1lRL + ib(O - a2 + alJ.1IIRL ) 

+ i:(!~ - !aa + !a21lfIR L)] + i b[l + 'Y - al] 

+ i:[! 0 - !a2] + i~[ - H - iaa] - I = 0 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(61) 
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The only approximation that we have made up to this point is that 
Vout ~ Vcb, the collector-to-base voltage, assuming that VB is small. 
N ow we would like to express the variables of (61) in terms of the 
independent driving voltage, V., and the output current, ie, which 
is linearly related to the output voltage. To accomplish this, we start 
with (58) and make the approximation 

(62) 

where we have ignored the high order terms in (58) and used the linear 
relation ic ~ i" . 

Notice that (62) certainly does not imply that we have fixed a linear 
relationship between ib , I, and ic . We are simply using this new ap­
proximate variable in the highly nonlinear (61) for convenience. The 
approximation is justified by the fact that second order and higher terms 
ignored in (62) would appear as fourth order and higher terms in (61). 

Substituting (62) into (61) we have 

i~ {lIoM3R~ - la3(1 - ')')3 

+ lHI - ')')3 + !a2ilI1R L(1 - ')')2 - !a1M 2Ri(1 - ')')} 

+ i; {! 0(1 - ')')2 + a1ill1R L(1 - ')') - !I ull12Ri - !a2(1 - ')')2 

+ I[a2i111R L(1 - ')') + !Hl - ')')2 - !a3(1 - ')')2 - !a)vI2Rf]} 

+ ic {(I - ')'2) - a(1 - ')') + IoNIlRL 

+ 1[0(1 - ')') - a2(1 - ')') + a1M1R1J 

+ r[!Hl - ')') - !a3(1 - ')') + !a2M1RL]} 

+ I[-y - a 1] + r[! 0 - !a2] + r[l~ - la3] = O. (63) 

At the 100 rnA bias levels where we are assumed to be operating, 
r 1 ~ 0.5 Q. Also r' ~ 10-20 Q and Rs can only increase the R. + r' 
sum in (55). Hence,), « 1 and will be ignored in (63). Thus we have 
effectively substituted I for ib in (61) to obtain (63). This substitution 
is not justified by requiring the assumption I » ')'ic in (62) (that is, 
a current source drive); but is justified on the grounds that the sub­
stitution of (62) into (63) did not generate new terms in (63) for,), « 1. 
Equation (63) is of the form 

ai~ + i;(b + cI) + ic(d + eI + fr) + gI + hr + jr = O. (64) 

N ow to force linearity we would like to require 

Vout = kV. , where k is a constant. (65) 
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But from (53) and (54), (65) can be expressed in terms of the 
variables of (64) as 

ic = _k(RR~ 1'~) I = BI. 

Substituting (66) into (64) and gathering terms 

r[aB3 + CB2 + fB + 11 

(66) 

+ r[bB2 + eB + h] + l[dB + g] = O. (67) 

Now I is an independent variable so that this equation can hold only 
if each coefficient is simultaneously zero. In the linear term 

dB + g = 0 

B = _fl. 
d 

Ignoring terms in y and noticing that loM1RL « 1 in (63) 

(68) 

B ~ al (69) 
1 - al + I o1J1lRL 

The constant B should be easy to identify. For small 1111 (low levels 
of Vo), B = (31, However, at the higher values of 10 and Vo, loM1RL 
can be on the order of (1 - .(Xl)' Thus, roughly speaking 

B ~ !(3)> 1. (70) 

Substituting (69) into (67) our final coefficients to be equated to zero 
in (67) become 

aB3 + CB2 + fB + j = 0 

bB2 + eB + h = O. 

(71) 

(72) 

Substituting for a, c, j, j in (71) by comparison between (64) and 
(63) ; ignoring terms in y: 

B3[il oM3Ri - i a3 + i~ + !a2M IRL - !aIM2R~] 

+ B2[a2MIRL + !~ - !a3 - !aIM2R~] 

+ B[!~ - !a3 + !a2M IRL] + [i~ - ia3] = O. (73) 

Gathering terms in R L : 

RU1oM3][iB3] + RiC -aIM2][B
3 + B2] 

+ R~[a2MI][!B3 + B2 + B] + ~[iB3 + !B + i] 
- a3 [iB3 + !B2 + !B + i] = 0 (74) 
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Using (70) we can ignore lower powers of B, and G:2lVIl, being the prod­
uct of second order terms, is very small compared to the other coef­
ficients in (74). Thus (74) becomes 

(75) 

Now substituting for b, e, and h in (72) by comparison between (63) 
and (64) ; ignoring terms in y: 

B2[! a - !a2 + allVIIRL - !IolI12Ri] 

+ B[a - a2 + alill lRL ] + [! a - !a2] = o. 
Gathering terms in R L : 

Ri[ -1 0 M 2] [!B2] + RL [allVII][B
2 + B] 

+ a[!B2 + !B] - a2[!B2 + !B] = O. (76) 

Using (71), (76) becomes 

- (IoM 2)Ri + (2aIM I)RL + a - a2 = o. (77) 

Equations (75) and (77) are the relations that must be satisfied to 
satisfy (67), which in turn results from the requirement of a linear 
input-output relation, (65). 

APPENDIX B 

Relating Current Gain N onlinearities to the Bias Current 

Riva3 has shown that the small signal gain of a transistor can be 
closely matched to an expression of the form 

f3 = hfemax[a logio (Icllcmax) + 2a loglo e loglo (Icllcmax) + 1rl. (78) 

Where 

hfema" = maximum dc current gain 
I c mnx = collector current bias where hfema" occurs 

a = a constant characteristic of the transistor. 

Differentiating the denominator of (78) reveals that the maximum ac 
current gain ({3max) occurs for Ie = Iemax/e. Call this current lep. Then 

f3 = hfemax[a logio (Icllcp) - a logio e + 1rl. (79) 

At the peak in the (3 (Ie) curve, Ie = lop, and 

f3max = hfemax/(l - a logio e). (80) 
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Subst.ituting for hfemax in (79) 

f3 = f3max[l + a(l - a log~o e) -1 log~o (lei lep)rl. (81) 

Then, for 

'\There 

Thus 

and 

A = a(1 - a 10g;o e)-l log~o c 

f3 = f3mnx/[1 + A In2 (lellcp)] 

f3 am ax a=--= 
1 + f3 1 + Aamax In2 (~) 

f3max Icp 

. (ria 1 (fa .2) 
Ille = a Ill. = a1 + Jl. Ill, + 2" dI; Ill p Ille 

ria 2 1 d
2a r 

Ille = al Ill. + dl. Ill. + 2" dl; Il e 

= al Ill. + !a2 Ill; + ia3 Ill; . 

da 
a2 = 2 dl. 

d2
a da2 

a3 = 3 dl~ = 1.5 dl.· 

Now, taking Ie ~ Ie , from (84) 

4Aa~ax In (l 0/ I ep) 

- 10f3mnx [1 + Aam~ In2 (1,!-)]2 
f3max lep 

a2 = 

at Ie = 10 • In essentially all cases 

0.04 < ~ < 25 
Iep 

f3max > 30 

Aamax < 0.15. 

Thus, to within 10 per cent in the most extreme case 

a2 rv - (4Aa!ax/ f3maxl 0) In (l 0/ I ep) . 
Then, from (86) 

(82) 

(8~) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 
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Now to solve for A, notice that, from (78) 

fJ( I ~~ax) = hfemax[a logia e2 
- 2a logla e logla e2 + 1 r 1 (90) 

= hfemnx 

But from (82) and (90) 

hfemax = fJmtlxj (1 + A). 

Therefore, 

A = (fJmax - hfemax) jhfemnx 

where hfemnx may be measured at 

APPENDIX C 

The Qualitative Distortion J.1Iodel 

(91) 

(92) 

(93) 

The purpose of this appendix is to support the qualitative picture 
of algebraic distortion cancellation given in the text. The development 
here is not intended to be rigorous, but rather to strengthen the reader's 
ability to share the author's insight into the cancellation mechanism. 
We have argued that the net distortion current, D, is the algebraic 
difference between positive and negative distortion current compo­
nents, A and B, dependent on output voltage and current, respectively. 
Express this relation as 

D = A-B. (94) 

But, for A and B monotonic in voltage and current, the ratio AjB is 
a measure of the load. Define this measure as 

Now 

On a dB basis 

D 

A 
R = B' 

B(R - 1). 

D 
20 log B = 20 log \ R - 1 \. 

(95) 

(96) 

(97) 

Fig. 12 is a plot of 20 log !R-11 as a function of R. Compare this plot 
with that of Fig. 2, which was measured in the laboratory. The simi-
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Fig. 12 - Decibel measure of the small difference between large numbers. 

larity between the nature of these two minima adds additional weight 
to the idea that exact algebraic cancellation is involved in producing 
the net distortion frequencies. Thus any dependence of distortion on 
frequency should be compensated at distortion frequencies and not at 
input frequencies, since it is at the distortion frequency that cancella­
tion takes place. 
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This paper considers the identification and synthesis of linear sequential 
machines from their state transition tables. Necessary and sufficient con­
ditions for linearity are derived which form the basis of identification tests. 
A sufficient condition leads to a method for coding the system's state vectors 
in a fashion consistent with linearity but which does not entail trial and 
error. The coding process is analytic in nature and allows the coding of 
state vectors independently of the coding or linearity of the output table. 
Both the Moore and Mealy models are considered in deriving coding pro­
cedures for the input and output vectors. 

I. INTRODUCTION 

This paper develops a method for identifying and synthesizing 
linear sequential machines using their state transition table representa­
tion. The basic objective is to construct a procedure which can be 
efficiently implemented by a digital computer. Towards that end, we 
develop simple and easily used preliminary tests which reject non­
linear systems to precede the time consuming synthesis, or state cod­
ing' process. The method for the coding of states is completely analytic, 
with the result that trial and error processes are not required. 

Consider the symbolic state transition table, Table I. 
The input vectors, u, have m components (2 ~ JJ1 ~ 2m

), * and the 
next state vectors, Six, and present state vectors, Si , have n unspecified 
components (N ~ 2n). The vector components are defined over a 
modular field, and here this field is taken as GF(2). Most of the results 
obtained below can be easily extended to other prime fields. 

In terms of the state transition table, a linear sequential machine 

* This paper considers tables which have at least two distinct columns of next 
states (nonautonomous systems). 

343 
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is defined as a system which changes state according to the equation 

(1) 

A and Bare n X nand n X m matrices, respectively.~· A linear se­
quential machine is called fully linear when its symbolic output vector, 
Zix, obeys 

(2) 

where C and D are matrices of proper size. 
When D is the null matrix, the last two equations represent a Moore 

model of the linear system. Otherwise, the equations describe a Mealy 
model. Cohn and Even have given a method for model conversion in 
linear systems.1 

TABLE I 

U1 U2 UI U,,[ 

SI SI1 Sl2 SIx Sl,lf 

8 2 S21 S:n S2.x .'i'2,lf 

Si,l[ 

In recent years linear sequential machines have been studied ex­
tensively. The motivation for this activity stems from two sources. 
Not only do linear sequential machines exhibit interesting mathemati­
cal and theoretical properties, but they have found a wide range of 
practical applications; for example, memory addressing circuits, com­
puting over finite fields, counting and timing circuits, error correct­
ing codes, encoding and decoding circuits, and generating pseudo­
random and minimum-time test sequences. 

As persistent research led to greater understanding, several investi­
gators developed synthesis procedures for linear sequential machines. 
Davis and BrzozowskiZ have reported a method for the synthesis of 
nonsingular systems (systems in which, under each input, every pre-

* The addition and multiplication operations are modulo 2. Also, the entries 
in all matrices are from GF(2). 
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sent state goes into a unique next state). Their technique is based 
upon an iterative search over partitions of the system states. 

In a mathematically elegant treatment, Cohn and Even1 have 
derived a synthesis procedure which is free of trial-and-error processes. 
Coded output vectors are used to generate the state vector codes. Not 
only is it necessary that the system have a linear output, but the 
more severe restriction that the output vectors have been given, a 
priori, a linear coding is also required. 

Yau and vVang3 have disclosed a synthesis technique which does 
not require a linear and coded output. The construction of the A 
matrix by examination of a transition graph, which describes the state 
transitions owing to a given input, leads to the coding of the state 
vectors. The method requires the system to have 21t states. When N < 
2'\ a sufficient number of "don't care" states are introduced to com­
plete the state transition table; however, no suitable procedure is 
given for the specification or coding of the "don't care" states. The 
lack of complete freedom from trial-and-error routines is another dis­
advantage of the method. 

In this paper, necessary and sufficient conditions for linearity of the 
state transition table are derived which lead to the development of 
the procedure for coding the state vectors. The method accommodates 
linear systems in general (both singular and nonsingular). The syn­
thesis procedure is analytic and, therefore, no trial-and-error routines 
are necessary. Also, the state vectors are coded independently of the 
output table so that the coding process is able to treat systems that 
have linear or nonlinear, coded or uncoded, output vectors. Both the 
Moore and Mealy models are considered in deriving coding procedures 
for the input and output vectors. 

II. NECESSARY CONDITIONS FOR LINEARITY 

Forming the sum of two next states, say Six and Siy, under the same 
present state, Si, yields 

Six + Sill = B(ux + u y ), 

since A (Si + Si) = AO = 0, mod (2). Since the sum is independent 
of the present state, it follows that 

Six + Sly = S2x + S2y = ... = Six + Siy = ... = SNx+ SNII 

for each x and y. Let the equality of these sums, for a particular x 
and y, be denoted by the term state sum, and call the individual sums 
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of pairs of next states component sums. For example, the state sum, 
811 + 812 = 821 + 822 = 831 + 832, consists of the component sums 811 

+ 812, S21 + S22 and S31 + S32. 

As a direct consequence of the state sum: if a present state has two 
identical next states, under two different inputs, then the columns 
which correspond to the inputs in question are identical, or the table 
represents a nonlinear machine. * 

The state sums of a linear system must be consistent over all pairs 
of inputs. For example, assume that a state sum contains component 
sums (written in terms of present state symbols) Sl + S2 and Sl + S3. 

The state sum is consistent only if S2 = S3; however, if the output ta­
ble does not allow the reduction of the state transition table by merg­
ing S2 and S3, then the state sum is inconsistent and the system is 
nonlinear. 

In order to check state sums over the entire table only M - 1 state 
sums are required. Taking the input U1 as a reference, the state sums 

Sl1 + Sly = ... = Si1 + Siy = ... = SNl + 8Ny 

for y = 2, 3, ... , M cover the table. Since, if Sjl + Sill = Si1 + 8iy for 
all y of interest, then for any x 

8ix + 8iv = 8ix + 8il + Siv + 8il 

= 8ix + 8il + 8iv + 8il 

Therefore, it is not necessary to form state sums for all possible pairs 
of inputs. For example, consider Table II. 

TABLE II 

U1 U 2 U 3 U 4 

81 82 8 1 83 84 

82 84 83 8 1 8 2 

83 83 84 82 8 1 

84 81 82 84 8 3 

From inputs U1 and U2, 81 + 82 = 83 + 84 (redundant components sums 
have been deleted) is consistent in the first two columns. From U1 and 

* A similar result has been obtained by Davis and Brozozowski2 using a different 
approach. 
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U3, S2 + S3 = Sl + S4 and from U1 and U4, S2 + S4 = Sl + S3. The last 
two state sums are rearrangements of the first and therefore, the state 
sums are consistent over the entire table. 

Another symmetry feature appears in singular linear machines 
(those characterized by a singular A matrix>'<-). If A is singular, then 
for some present states the rows of next states are identicaP This 
follows since a singular A has rank r < n, and therefore, the null space 
of A has dimension n - r, so that ASi + Bux = Six has more than one 
solution for Si given Six and U2. 

The reduced state transition table of a linear sequential machine 
has additional interesting properties. In what follows only reduced 
state transition tables are considered unless stated otherwise. 

As a preliminary, consider 

Theorem 1: If A is nonsingular, then the reduced table of a linear 
system has an even number of states. 

Proof: If A is nonsingular, under each input, each state will appear 
once, and only once as a next state. Thus, the next state columns are 
permutations of the present state column. As a consequence, each of 
the state sums involves all of the system's states. If the number of 
states, N, were odd, then the same state must appear in two distinct 
component sums of the same state sum. That is, the state sum con­
tains an equality Si + Sj = Se + Si which implies Sj = See But this 
contradicts the statement that the state table is reduced. 

Next, a starting result which connects the number of system states 
to the number of distinct inputst is described by 

Theorem 2: For a reduced, nonsingular, linear sequential machine 
which has N states, the number of distinct inputs cannot exceed 2, if 
N /2 is odd, or 

t 

2 + N L 2 1
-

i 

i=2 

where t is the smallest integer for which N /2t is odd. 

Proof: Consider the state sums associated with the first two dis­
tinct inputs, Ul and U2. 

Sll + 8 12 = S21 + S22 = ... = Sil + Si2 = ... = SNI + SN2 • (3) 
* Common terms from linear and abstract algebra which appear in this paper 

are treated in several texts; for example, see Birkhoff and MacLane.' 
t u", is said to be distinct from U lI if and only if the columns of next states 

under u'" and U lI are distinct. 
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Taking Ul with U x , a third distinct input, the following state sum is 
obtained: 

S11 + SIx = S21 + S2x = ... = Sil + Six = ... = SNI + SNx • (4) 

\Vriting segments of equations 3 and 4 in terms of present state sym­
bols as Si + Sj = Sc + S,,: = S," + S1I = ... , and Si + Sc = Sj1 + Sjx = 
... , respectively, leads to the conclusion that state sum consistency 
requires that equation 4 contain a sum Sj + Sk. For if it did not, 
then locating the terms of equation 4, which contains Sk, say Sk + Sz, 

leads to Si + Sc + Sk + Sl = O. From equation 3 Si + Sj + Sk + Sc = O. 
For compatibility, Sj = Sz; so that equation 4 must contain Sk + Sj or 
contradict the reduction of the table. It then follows that the state 
sums over distinct pairs of inputs must be mutually derivable via 
component sums. 

Let the component sums obtained from the first state sum from 
Ul and U2 be denoted as follows: 

Since there are N /2 distinct sums, let the symbols 81 , 82 , ••• , 8NI2 

denote the distinct component sums. Then equation 3 can be repre­
sented by 81 = 82 = ... = 8NI2 • 

In view of the foregoing, a necessary condition for linearity is that 
all other state sums must be derived from the sums 81 , ••• , 8N12 • 

In generating new state sums the 8 i s are paired and the component 
sums which are consistent with equation 3 are formed by transposing 
terms in the resulting equation. For example, pairing 8 i and 8 j can 
yield either of the two equations which do not appear in 3: 

or 

Sit + Sj2 = Sjl + Si2 • 

Then it is clear that each pairing of the 8s yields two possible state 
sums. Therefore, the number of unique pairings of the 8s, where each 
pairing occurs only once (this insures that no component sum will appear 
in two distinct state sums), is equal to half the maximum number of 
distinct inputs in excess of the first two . 

. Separating the 8 i according to subscript parity gives: 

81 8 3 
... 8N12 - 1 

8 2 8 4 
... 8NI2 
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If N /2 is odd, then one S cannot be paired. Therefore, one sum will 
occur in more than one state sum. Since this is inconsistent with a 
reduced linear table, a system for which N /2 is odd can have only two 
distinct inputs. If N /2 is even, then the number of unique odd to even 
subscript pairings is N /4. The odd-to-odd and even-to-even pairings 
can be enumerated by considering a single row. It is advantageous to 
transform the subscripts as follows: 

Then, separating the new symbols by subscript parity gives: 

Sf S~ 

S~ S~ 

When N /4 is odd, no pairing is possible. If N /4 is even, the odd-even 
subscript pairings number N /8. Clearly, the odd-to-even pairings of 
the S' can be treated by reapplying the same transformation to the 
sUbscripts. Therefore, the number of allowed pairings is 

where t is the smallest integer for which N /2t is odd, if N /2 is even. 
Since each pairing provides for the generation of two distinct columns, 
in addition to the first two columns, the number of distinct inputs is 
2, if N /2 is odd or not greater than 

! 

2 + N L 21
-

i
, otherwise. 

i=2 

This completes the proof. {:-
Theorem 1 leads to a very simple test for the identification of non­

linear tables. The number of states in the table is used to determine 
the maximum number of distinct inputs. Then, the table is rejected 
as nonlinear if the number of its distinct inputs, or, equivalently, the 
number of distinct columns, exceeds the maximum. Table III illus­
trates the restriction which linearity imposes upon the form of the 
state transition table. 

There are similar, but weaker restrictions associated with the state 
transition tables of singular linear machines. Consider a system which 
has N states such that each next state column contains d( <N) distinct 
states. (The singularity of the A matrix requires that some rows of 

* A smaller upper bound can be obtained when N ~ 2n. See the Appendix. 



350 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1968 

TABLE III 

Maximum Number of 
N Distinct Columns or Inputs 

4 4 
6 2 
8 8 

10 2 
12 8 
14 2 
16 16 
70 2 
72 56 
74 2 
76 40 

526 2 
528 464 
530 2 

2086 2 
2088 1568 
2090 2 
2092 1048 
2094 2 
2096 1836 

state transition table to be identical.) If the singular matrix A has rank 
r, then the maximum number of present states which yields the same 
next state (that is, the maximum number of times a row can be re­
peated) cannot exceed 2ft

-
T

• Since there are N(~2n) states, N2r-n ~ 
d ~ 2T. r ~ n implies that each column cannot contain all of the system's 
states so that the reasoning of the last theorem cannot be applied. 
In order to gain some insight into how linearity limits the form of the 
state transition table, consider the case where N = 2ft. That is, the set 
of state vectors form a complete set of n-dimensional vectors with 
components over GF(2). Let B denote the set of present states, 
(SI , 82, •.• , 8N), Biz is defined as the set of distinct next states, (SIz , 

S2z, ••• , 8dz) under the input uz , and it is assumed that Ul = o. 
Consider the following 

Theorem 3: A linear system which is associated with a singular A 
matrix of rank r, a null input vector, and which has all states appearing as 
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next states must have at least 2n
-

r distinct input vectors, and 8 iz and 8 ill are 
either identical or disjoint for all x and y. 

Proof: First, it will be shown that the 81:1; are cosets of the group 
{8, +}. Since 8 is a vector space, 0, s, + Sj are members of 8 for any 
Si , Sj which belong to 8. If U 1 = 0, then the vectors of 8 11 are a subspace 
of 8 because: 

(i) A(O) = 0 E 8 11 and 
(ii) As" AS j t 8 11 implies A(si + s;) t 8 11 

(This follows since Si + Sj = Sk t 8 and ASk t 8 11 .) 

The nonuli input, U x , generates cosets of the group {8, +}, because 
Bux is an n-component vector which must belong to 8 and therefore, 
811 + Buz = 8 1z ' 

It is well known that cosets are either disjoint or identical. Since 
o t 8 11 , Bux ¢ 8 11 implies that 8 11 and 81:1; are disjoint. Therefore, no 
member of 8 11 can be used as Bux if the table is to have a column which 
contains states not found in column 1. If 8 11 and 81:1; are to be disjoint, 
then Buz t (8 - 8 11); that is, Buz can be selected from a set of 2n 

- d 
vectors. Continuing, the next distinct coset is associated with an input, 
U y , such that Buy has not appeared in any of the preceding cosets. 
(If it has, then 0 t 8 11 + Bu" .) Then, Buy is among 2n 

- 2d vectors. 
The last unique cosets is generated from a set of d vectors, or 2n 

-

kd = d. So that there are k + 1 = 2n 
/ d unique cosets of next states in the 

table. If each present state is to appear as a next state, the table which 
contains the minimum number of distinct columns must be comprised 
of one column from each unique coset. Since A has rank r, d = 2r; 
consequently, there must be 2n

-
r distinct inputs. 

Also, since each unique coset can form 2r distinct columns, the num­
ber of distinct inputs is not greater than 2n , as expected. 

This section has derived several properties that must be exhibited 
by the state transition table of a linear sequential machine. The con­
sistent state sum requirement will play a central role in the code 
assignment pro blem. 

III. SYNTHESIS: THE ASSIGNMENT OF LINEAR STATE CODES 

To each symbolic state, s, it is necessary to assign a p-dimensional* 
vector, v, with components over GF (2). That is, Six ~ Via:. 

The vector assignment must preserve linearity; 

Vix = AVi + BUT' 
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Linear systems must give rise to consistent state sums; therefore, 
the vectors must obey the same sums. Since state sums are only neces­
sary conditions for linearity, a nonlinear state transition function may 
exhibit consistent state sums. 

For any sequential machine the general state transition equation 
can be written as 

Vix = Av, + Bux + fix, (5) 

where fiaJ is a p-dimensional vector which is a nonlinear function of 
the present state and input vectors. When the symbolic states obey 
the state sums, (equation 3), the vectors must be assigned such that 

Vlx + V11I = V2.x + V2u = ... = Vix + Viy = '" = VNx + VNy , (6, 

for each x and y. Therefore, from equation 5 it is clear that the non­
linear function obeys the same restriction, 

fIX + flY = f21: + f2Y = ... = fix + fiY = ... = fNx + fNy • (7) 

The selection of the A and B matrices exerts some control over the 
nonlinear function. 'Vhen Ul = 0, 

A[v1 I V2 I 
where 

[VI I V2 I ... I vp] 

is a p X P matrix whose columns are p linearly independent vectors.* 
Then, 

° (8) 

can be achieved by 

A = [Vll I V21 I ... I V1i1 ][V I I V2 I ... I v1,r1 

Similarly, 

A [VI I VI I ... I VI] + B[u2 I u3 I ... I U m+ l ] 

+ [f 12 I f 13 I ... 1ft. m + 1] = [VI 2 I V 13 I ... I V 1. m + 1] , 

where 1l2, ••• , 1Lm+ 1 are 'In linearly independent input vectors, yields 

f12 = f13 = ... = !l.m+l = ° (9) 

* In cases where the system is singular the matrix of next states (the matrix 
on the right side of the last equality) must be selected so that A has the required 
rank. The rank of A can be determined directly from the repetition of rows in 
the transition table. 
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when 

B = [V12 + Vll I V13 + Vll I ... I Vl,m+l + Vll ][U2 I U 3 I ... I um+lr
1

• 

Additional constraints on the nonlinear function become clear when 
equation 7 is examined in light of equations 8 and 9. For x = 1, a 
sample equality in equation 7 is 

fil + fiy = fil + fjy • 

When i, j ~ p, fil = fil = 0 (by equation 8); so that fjy = fiy. Equa­
tion 9 indicates that fill = 0 for y ~ m + 1, j = 1. Therefore, f,y vanishes 
when i ~ p and y ~ m + 1. Equation 7 implies hI: = fiY = 0 and fix = 
fiY for x, y ~ m + 1, i ~ p < j. Finally, fiY = fix + fiY when x ~ m + 
1 < y, and j ~ p < i. Table IV below summarizes the restrictions on 
the nonlinear function for systems which exhibit consistent state sums. 

TABLE IV 

U l U 2 U m + l 1(,,,,+2 UJ[ 

VI 0 0 0 /1,m+2 /IJ[ 

v2 0 0 0 constant constant 

t t 
v P 0 0 0 Il,m+2 JIM 

Vp+ 1 jp+ 1.1 ~~~ 11)+1,1 jp+1.1 + jl.",+2 Ip+1.1 + 11M 

/Nl + 11,m+2 

A particular code assignment can be verified by comparing state 
transitions along segments of one row and one column with the transi­
tions predicted by the linear equation. If fil and fIX are found to vanish 
for p < j ~ Nand 1n + 1 < x ~ JJ1, respectively, then the code as­
signment is acceptable. The necessary state transition checks number 
JJ1 + N - m - p - 1 (compared with MN - p - m - 1 checks if 
state sum consistency is not verified before a code assignment is at­
tempted). The implication is that sufficiently large values of m and p 
will force the nonlinear function to vanish over the entire table. While 
it is undesirable to increase 111., and p (since this requires more memory 
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elements) it is certainly possible to do so in principle. * However, in 
computing the A matrix it was convenient to construct a nonsingular 
matrix of p linearly independent vectors. The state sums (equation 6) 
which contain no more than N /2 component sums imply that at most 
N /2 + 1 states can be assigned vectors independently. 

Therefore, not more than N /2 + 1 of the coded state vectors are 
linearly independent with the consequence that it is impossible to 
form a nonsingular matrix of coded state vectors when p > N /2 + l. 
Where p exceeds this limit it is possible, in some cases, to express some 
elements of the A matrix in terms of the remaining elements. This 
method for finding A is far less attractive than forming a nonsingular 
matrix of coded state vectors; accordingly, the bound p ~ N /2 + 1 
will be enforced. The development which follows demonstrates that 
the limitation on p does not obscure a system's linearity. Similar con­
siderations lead to m ~ M. 

Turning to the state coding problem, the state sum will play an im­
portant role in the generation of equations which lead to the linear 
coding of states. First, attention will be concentrated on nonsingular 
systems, then a later section will treat singular systems. 

3.1 N onsingular Systems 

Consider the sum of two component sums 

it is true that 

A(Vix + ViII + Vix + ViII) 

= Vix1 + VillI + Vix1 + ViY1 + fix1 + fiY1 + fix1 + fill! 

= o. 
(The additional subscript indicates that Vix is the present state which 
goes into Vixl under the null input, Ul.) Taking Vix, Viy, and Vj.1J among 
the p independent vectors implies fixl = fiYl = fixl = O. Furthermore, 
assigning vectors such that 

Vix! + Viy! + Vjxl + Viy! = 0 (10) 

forces fjYl to vanish. The sum (10) must be consistent with the state 
sums (that is, no state sum can contain an equality of component 
sums which contradicts equation 10). 

* When the input vectors are given as coded it is possible to increase their 
dimension by a translation. 
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By similar treatment of all component sums of a state sum, the 
nonlinear function can be made to vanish in the first column (and 
therefore, over the first m + 1 columns) provided that the attendant 
increase in the value of p (owing to the designation of independent 
vectors) does not cause it to exceed its bound. 

If all component sums are treated, it is possible to generate an 
equation of the type 10 in which all four of the vectors have been 
previously designated linearly independent. Clearly, the equation con­
tradicts the independence of one of the vectors; then, anyone of the 
vectors must be deleted from the set of linearly-independent vectors. 
The nonlinear function corresponding to the deleted vector can be 
made to vanish by satisfying the type 10 equation which is obtained 
when the A matrix operates on the generated equation in question. 
Consider the following process for treating a single state sum. 

(i) Select a component sum as a reference sum. Add another com­
ponent sum to the reference sum. 

(ii) Operate on the resulting sum with the A matrix to obtain an 
equation of the type in equation 10. Designate linearly-independent 
vectors as required and mark the vectors for which the associated 
nonlinear function has been forced to vanish. 

(iii) Verify that the equation obtained in step ii is consistent with 
the state sum and the other equations obtained in ii. If all vectors 
in the equation generated in ii are linearly-independent, delete one 
of the vectors from the set of linearly-independent vectors and repeat 
step ii using the generated equation as the sum upon which A operates. 

(iv) If one of the type 10 equations has three linearly-independent 
vectors, use it as the sum in repeating step ii. Otherwise, add another 
component sum to the reference sum and repeat step ii. Repeat ii and 
iii until an inconsistent equation is generated (the system is no­
linear), or until all vectors have been used (the system is linear). 

The first time the process passes through step ii, three linearly­
independent vectors are required; in subsequent passes at most one 
additional independent vector is needed. After the first pass through 
the process N/2 - 2 unused component sums remain. Therefore, not 
more than N /2 + 1 independent vectors are required for the process, 
precisely the upper bound on p. If the state vectors were coded using 
this process, the system would have an undesirably large number of 
memory elements. Therefore, this process is not an efficient design 
procedure. However, completion of the process implies linearity of the 
first m + 1 columns with the result that the A and B matrices can be 
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determined. Linearity of the table over the remaining columns is 
dependent upon the coding of the input vectors. 

As previously indicated, linearity over all of the columns can be 
attained, in the worst case, by increasing the dimension of the input 
vectors. In this case, m = M - 1 would yield a linear system. If it 
is assumed that the input vectors are uncoded, or can be recoded, 
then it follows that completion of the process is a sufficient indication 
that the system is linear. (The problem of coding input vectors is 
treated in a later section.) The process will be referred to as the 
maximum memory process. 

In order to illustrate the maximum memory process consider the 
reduced table, Table V. 

TABLE V 

o 1 

8 1 8 1 86 

82 87 8s 

83 85 8 3 

84 82 84 

8 5 8s 8 7 

8(l 84 S2 

87 S6 SI 

.'Is Sa .'15 

In terms of the coded vectors the state sum is 

(11) 

(which is consistent over the table). Using VI + V(l as the reference 
sum, 

A (VI + V6 + V7 + Vs) 

= !l,O + !G,O + !7,O + !s,o + VI + V4 + VG + V3 = O. 

Designating VI, VG, and Vj as linearly-independent vectors and satisfy­
ing the equation 

(12) 
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yields 

/1.0 = /6.0 = /7.0 = /8.0 = O. 

However, vectors Vi, V6, and V4 appear in two component sums of 
equation 11, the first and last; this implies 

VI + V6 + V2 + V4 = O. 

Adding this to equation 12 leads to V:! = Va. This contradicts the re­
duction of the table; therefore, equation 12 is inconsistent with the 
state sum. The system is nonlinear. 

As pointed out, the, maximum memory process is not a suitable 
vehicle for the economical design of linear sequential machines. The 
process extracts a limited amount of information from the state 
transition table. This can be improved by considering all of the unique 
state sums (that is, from the lv! - 1 state sums by pairing the first 
input with every other input), and using such equations as 10, which 
the process generates, to better advantage. 

Consider the following procedure: 

(i) Form the N! - 1 unique state sums. 
(ii) Select a reference sum from one of the state sums. Add another 

component sum (from the same state sum) to the reference sum. 
(iii) Operate on the sum with the A matrix. Designate linearly-in­

dependent vectors as required. Obtain an equation like equation 10 
and verify that it is consistent with the state sums. Mark the vectors 
in all state sums and equations of this type which have been guaran­
teed a linear state transition under the null input by this step. If all 
vectors in the equation obtained have been designated linearly in­
dependent, delete anyone of these vectors from the set of linearly­
independent vectors and repeat this step using the equation as the sum 
upon which A operates. 

(iv) In the state sums where at least one component sum has had 
both vectors marked in step iii, search for a component sum which has 
one vector marked or, search over the type 10 equations for one 
which has three terms marked. If such a component sum or equation 
is found, use it in repeating step iii. (Since three of the vectors make 
a linear transition, the nonlinear function which is associated with 
the fourth vector can be made to vanish in step iii without designating 
another linearly-independent vector.) Otherwise, 

(v) If the sum of the type 10 equation is unique and has two vec­
tors marked, then use it in repeating step iii. Otherwise, 
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(vi) Form a new sum for use in step iii by adding the reference sum 
to another component sum (from the same state sum). Repeat step iii. 

The process is repeated until all of the vectors have been marked 
in step iii (the system is linear) or until an inconsistent equation is 
generated in step iii (the system is nonlinear). The coding process for 
the state vectors is initiated by assigning arbitrary, but linearly in­
dependent, vectors to the state vectors so designated by passes through 
step iii. The remaining state vectors are coded using the type 10 equa­
tions which were generated in step iii in conjunction with the state 
sums. 

The application of this synthesis procedure is more straightforward 
than its description would indicate. This is best illustrated by an 
example. Consider Table VI. 

TABLE VI 

(~) (~) (~) 
81 86 84 82 

82 81 8a 88 

8a 82 87 86 

84 8a 81 85 

85 84 86 87 

86 85 88 8 a 

87 88 85 81 

88 87 82 84 

89 811 8 12 89 

810 89 8 10 8 11 

8 11 810 89 812 

812 812 8 11 810 

In terms of the coded vectors, the state sums are: from inputs (~) and 

(~) , 
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from inputs (~) and (~) , 
V6 + V2 = VI + Vs = Va + V5 = V4 + V7 = V11 + Vg = V1 0 + V12 • (14) 

Equations 13 and 14 are mutually consistent, and both are consistent 
over the table. 

The observation that AV12 =. V12 leads to the assignment of the null 
vector" to V12 (therefore, 112,0 =, 0). Then in step ii of the synthesis 
process, take V11 + V12 of equation 13 as the reference sum, and add 
it to V5 + Vs of equation 13. In step iii form 

A(VI2 + V11 + V5 + Vs) 

= 112.0 + 111,0 + 15,0 + Is.o + V12 + VlO + V4 + V7 • 

Since 112,0 = 0, taking V11 and V5 among the linearly-independent vec­
tors and the satisfying equation 

(15) 

leads to 111,0 = 15,0 = 1s,o = 0. Also, the set of vectors for which the 
nonlinear function vanishes, denoted by L, is 

L = {V12 , V11 , Vs , V5}' 

Equation 15 is the sum of two component sums of equation 14. There­
fore, equation 15 is automatically satisfied. 

At this point, component sums do not satisfy the conditions of step 
iv. In step v equation 15 is not unique. In step vi taking V2 + V7 with 
the reference sum yields 

A(V12 + V11 + V2 + V7) 

= 112.0 + 111.0 + 12,0 + 17.0 + V12 + V10 + VI + Vs • 

Since 112.0 = 111,0 = 0, designate V2 as a linearly-independent vector. 
Then, 

if 

V12 + V10 + VI + Vs = 0. 

The last equation is a rearrangement of terms in state sum (14) and 
therefore it is automatically satisfied. 

* The assignment of the null vector is somewhat arbitrary. It has been shown 
(Yau and Wang3

) that the null vector can be assigned to any state which is 
mapped into itself under the null input. 
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Updating the set L, 

L = {V12 , vll , Vs , v7 , V5 , V2}' 

The conditions of steps iv and v are not satisfied; in step vi, adding 
VI + Va and the reference sum yields 

A(V I2 + Vll + VI + v3) 

= i12,0 + fll,O + il,O + i3,0 + V12 + VIO + V6 + V2 • 

Since 112,0 and 111,0 have been shown to vanish, including VI among 
the linearly-independent vectors leads to 

11,0 = 13,0 = 0 

if 

V 12 + VIO + V6 + V2 = o. 
The last equation is the sum of two component sums of equation 14. 
The set L becomes 

In equation 14, VI + Vs, and Va + Vii have both vectors marked in 
step iii while V6 + V2, V4 + V7, Vll + V9 and VIO + V12 each have one 
vector marked. 

In step iv, forming 

A(VI + Vs + V(l + V2) = /1,0 + /s,o + /6,0 + /2,0 + Vr; + V7 + V5 + VI 

Since 11,0, 12,0, and 18,0 have been shown to vanish, 16,0 = 0 if 

Vr; + V7 + V5 + VI = O. (16) 

Equation 16 is unique and consistent with the state sums. 

Proceeding more quickly, A operating on VI + Vs + V4 + V7 (from 
step iv) yields 14,0 = 0 and 

(17) 

The last equation is unique and consistent with the state sums. Up­
date the set L; let A operate on VI + Vs + Vll + V9 (from step iv) to 
obtain 19,0 = 0 and 

(18) 
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Equation 18 is unique and consistent and also has three vectors in the 
set L. Update the set L. 

From step iv, A (V6 + V7 + VIO + Vll) yields f10,0 = 0 and V5 + Vs 

+ V9 + VlO = 0 (which is the sum of two component sums of equation 
14) . Update the set L. Step iv gives Vll + VI2 + V9 + VIO which, when 
operated on by A, yields 

f10,0 = 0 and VlO + VI2 + Vll + Vg = 0 

(which is the sum of two component sums). L contains all of the 
state vectors; therefore, the system can be coded. 

There are four linearly-independent vectors (p = n = 4). Make 
the following assignment of the linearly-independent vectors: 

v" = ~l 
Since V12 

o 
o o ' all of the component sums in equation 13 equal 

o 

Then, from equation 13 it follows that 

1 

Vs = Us + 0 
0 
0 

1 

Vi = U2 + 0 
0 
0 

and 

f1 

V3 = VI + l~ 

1 
o 
o 
o 

[~l 
1 
0 
1 ' 
0 

[H 
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Similarly, the component sums in equation 14 are each equal to Vg + 
1 

1 with the result o 
1 

v, = v, + ~l [il 
v, = v, + [~ 

0 
1 
1 
1 

1 0 

v() = V l1 + 1 1 
0 0 
1 1 

v'" = v" + [~l 
1 
1 
0 
1 

To calculate A consider 

A [vll I V5 I V2 I VlJ = [VlO I V4 I Vl I V6J 

1 0 0 0 

= A = r~ 
0 0 

A 
0 1 0 0 1 0 

0 0 1 0 1 0 

0 0 0 1 Ll 1 1 

The matrix B satisfies 

B[~ ~J = [v, + v, I v, + v,l, 

1 

1 

1 



with the result 
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1 1 

B = 0 1 

o 0 

o 1 

363 

Since equation 16 and 18 are consistent with the state sums and 
since they were not used in the coding process, they are redundant. 
It is easy to verify that the equations are satisfied by the code 
assignment. 

The process produced a code assignment for which the coded state 
vectors had the minimum number of components. This will not be 
true for all tables. Considering the way the process extracts infor­
mation from the table leads to the conclusion that the attainment 
of the minimum component coding vector depends upon the con­
nectivity of the sequential machine. In a case where the machine is 
not strongly connected there is a possibility the process will require 
p > n. * (The last example involved a machine which was not 
strongly connected.) In order to illustrate this consider Table VII. 

TABLE VII 

0 1 0 1 

81 86 84 89 811 8 12 

82 81 83 8 10 89 810 

83 82 87 8 11 8 10 89 

84 83 81 812 812 811 

8s 84 86 8 13 814 8 1S 

86 8s 8s 814 81S 814 

87 8s 8s 8 1S 8 13 8 16 

8s 87 82 816 816 8 13 

The coded vectors obey the state sum: 

V4 + V6 = VI + V3 = V2 + V7 = Vs + Vs 

= V11 + V12 = V9 + VlO = V13 + V16 = V14 + VIS • (19) 

* A seq~ential machine is said to be strongly connected if it is possible to reach 
any state of the system starting in any initial state. 
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Taking VIG = 0 leads to the seection of Vl1~ + V 1(. as the reference 
sum since it is an advantage to exploit the fact that f16,0 = O. For 
brevity, the results obtained from step iii of the synthesis process are 
shown in Table VIII. 

TABLE VIn 
Addi tions to 

The Sum A Operates 
Upon 

The Equation 
Obtained 

The Set 
L 

Linearly 
Inde­

pendent 

V5 + VI3 + Vs + VI 6 VI6 + V7 + V14 + V4 = 0 V16, VI3 , Vs ,V5 V5 , V l3 

VI 6 + V7 + V14 + V4 Vl 6 + Vs + V3 + VI5 = 0 V14 , V7 , V4 V7 , V14 

V l 6 + Vl3 + V7 + V2 V l 6 + V14 + VI + Vs = 0 V2 

V I 6 + V14 + VI + Vs VIG + VI5 + VG + V7 = 0 VI 

V1G + V13 + VI + V3 Vl 6 + V14 + V6 + V2 = 0 V3 

At this point it is observed that V9, VIO, Vn, and V12 are not in L, 
and more importantly, it is not possible to involve these vectors in a 
relationship by application of step iii without introducing another 
linearly-independent vector. By continuing the process it can be 
demonstrated that the system is linear. 

when 

Vl6 + V14 + VIO + V12 = o. (20) 

Then, A (V16 + V14 + VlO + V12) leads to flO,O = j12,0 

when 

V16 + VIi. + V12 + Vg = o. (21) 

A, operating on the last equation, gives j9,0 = jl'2,O 

when 

VI 6 + V I3 + VI2 + Vll = 0 (automatically satisfied). (22) 
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The system is linear since designating V12 as a linearly-independent 
vector leads to 

112,0 = 19,0 = 110,0 = 111,0 = o. 
It is also of interest that the set L which was obtained by the process 
can be coded using the four linearly-independent vectors. This will 
be true in general. 

In order to insure realization of the transition table with the least 
number of memory elements, it is important to develop a means for 
keeping p at its minimum value, n. First, a general method for the 
reduction of the number of vector components will be developed. Then, 
the method will be applied to the problem at hand. 

Let the set Ln denote the largest set L generated by the synthesis 
process using n linearly independent vectors; let Ln denote the set of 
vectors which require additional linearly independent vectors in order 
to become members of L. The n-component vectors yare members of 
L n, and the n-component vectors yare in Ln . 

The members of Ln can be coded. Taking the first n vectors of Ln as 
linearly independent (since order is unimportant), the calculation of A, 
after the coding, leads to 

A[Y1 I Y2 I ... I Yn] = [YlO I Y20 I ... I Yno]. 

This can be simplified by coding the linearly-independent vectors such 
that [Yl I Y2 I ... I Yn] = In (the n X n identity matrix). Then, 

A = [YlO I Y20 I ... I YnO]' 

Suppose the set L,,+1 is tentatively formed by designating another 
linearly-independent vector. It is clear that the vectors in Ln+l (and 
Ln+1) have n + 1 components. In order to preserve the coding of Ln 

take (6) E Ln+l where Y E Ln. That is, the vectors which have been 

coded over n linearly-independent vectors are increased by one com­
ponent (which is taken as zero. lVlembers of Ln which become members 

of Ln+l will be denoted as (i). Let (Yi+l) denote the (n + 1) th linearly­

independent vector where Yn+l is any coded vector not in Ln. The 
(11, + 1) X (n + 1) matrix A is given by 

A[~ I ~ I I ~ I Y~+lJ [y~O I y~O I I y~O I Y·~"l 
* If Yn+1 and Yn+1,O are in different sets (Ln or Ln), the!.l the known A matrix can be 

used to determine the coding of the vector which is in Ln . 
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From the previous coding of Ln , it follows that the left side of the last 
equation can be written as 

Therefore, it can be verified that 

A = [~ I Ay,., t y'+LO} (23) 

Observe that if A has the form 

(24) 

then A operating on any vector which has the form (i) will yield a 

vector of the same form. Similarly, all vectors (~) are mapped into 

another vector where the last component is zero. Since all of the n 
component vectors y (of Ln) and all n component y vectors have different 
codes, then the last component of the vectors in Ln+l can be deleted. 
Also, the matrix A (in equation 23) is the required matrix. 

In view of the foregoing, a code transformation, acting on the coded 
fj, must be found such that A has the form of equation 24. It is well 
known (for example, Cohn and Even l

) that the code transformation 
y' = Ry, where R is a nonsingular matrix, cannot alter the linearity 
of a system. From the state transition equation 1 it is easy to show that 
this type of code transformation produces a new matrix of the form 
RAR- l

• 

It is required to find an R such that 

RAW' = [~ I n (25) 

Comparison of equations 23 and 24 indicates that R must have the form 

(26) 

Using equation 26 in equation 25 leads to the following restriction 
on the vector T: 

(27) 
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Also, applying the coding transformation yields 

and 

y + T cannot be a member of Ln if the (n + 1) th component is to be 
deleted. 

Therefore, the process of reducing the vector components by one is: 

(i) Determine the vectors T which satisfy (27). 
(ii) Of the vectors obtained in i, select one which preserves the 

identity of L" . 

Returning to the example, it can be verified that the following is an 
acceptable code for all of the states except V g , VlO , Vll , and V12 : 

1 0 

v, = [~ fl ' ~l 1 1 
VI o ' V2 

1 ' 
V4 = V5 = 

1 0 

V6 = [r ' V7 = !l ' v, = [~ , v" = [~ 
0 

v" = ~ 1, and v" = [n 0 
VII = o ' 

1 

The corresponding A matrix is 

0 0 1 0 

A 
0 0 1 1 

1 0 0 0 

1 1 0 1 

The set L4 is {V9' VIO , Vll , V12}' Set Vg equal to any vector not in L4 , 
for example 
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From the table V9, 0 

22. The result is 
Vl1. To determine Vl1, add equations 21 and 

Then, 

0 0 1 

~~I 
1 1 0 

AVg + V9.0 = 
0 0 1 0 + 0 

1 0 0 1 0 

1 1 0 0 0 

and 

11 0 1 0 

A + I. = l~ 1 1 1 

0 1 0 

1 0 0 

Substituting in equation 27 yields 

1 0 1 0 0 

0 1 1 1 T= 1 

1 0 1 0 0 

1 1 0 0 0 

An acceptable solution is 

T = [~l 



SEQUENTIAL MACHINES 369 

since the new Vg , 
[00

111 + ~~I t I ' is not a member of L.. From 

equations 20 through 22, 

/I" = [tl ' I',"~= [t, u" = [!I and V12 

[11· 
It can be verified that this is an acceptable coding. 

3.2 Singular Systems 

The synthesis procedure which was developed in the last section 
can be readily extended to treat the coding of singular systems. 

Consider a state transition table that has d (d < N) distinct rows. 
For linear systems, tables of this type have columns of next states 
comprised of sets of d distinct entries. Therefore, the state sums 
(with respect to the first column) have the form 

for x = 2, 3, ... , M. (28) 

In general a given table can have columns that are disjoint sets of 
states. Also, when 2d < N, these columns can generate state sums such 
that the only state vectors two state sums may have in common are 
from the first column. State sums of this type will be called distinct 
state sums. 

An attempt to apply the synthesis algorithm of the last section 
to a table which has distinct state sums can lead to undesirable 
results. Since the equations determined in step iii of the algorithm 
can contain only the d distinct vectors of the first column, and since 
all state vectors must be guaranteed a linear transition to column 
one, it is clear that in step iv at least one linearly-independent vector 
must be designated for each distinct state sum. As a consequence, a 
system coding that requires a large number of components may re­
sult. In order to avoid this situation it is useful to introduce the 
concept of independent inputs. 

The set of independent inputs is the set of input vectors that spans 
all of the input vectors. That is, if U2, .•. , U m+l are the independent 
inputs (the set of linearly-independent input vectors), then any other 
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vector, say u y , can be written as 
m+l 

U ll = L ayxUX , 
x=2 

where the aya; are constants which can be arbitrarily assigned when 
the inputs are uncoded, or they can be determined by inspection of 
U y when the inputs are coded. 

Recall that Buy = Viy + Vii, for any i; allowing B to operate on 
the expansion for U y yields 

m+l 

L ayx(vj(X)x + Vj(X)1), (29) 
x=2 

where each j (x) can assume any row index. 
The state vector Viy can be forced to make a linear transition under 

the null input if all vectors in column one and all of the Vj(a;)X have 
been guaranteed a linear transition in step iii, and if (29) holds. To 
demonstrate this, use the A matrix to operate on the sum of Viy + Vii 

and another component sum; then, compare the result to that obtained 
by repeating the operation after Viy + Vii has been replaced by its 
expansion. The equations of the type (10) which are generated are 
required to meet the conditions of step iii. Since each distinct state 
sum not associated with an independent input can be treated in this 
way, these state sums meet the conditions of step iv without the desig­
nation of a linearly-independent state vector. Also, since all vectors 
in column one make linear transitions, all other vectors in the state 
sum can be treated via step iv. 

After the independent inputs have been identified (for coded inputs), 
or designated (for uncoded inputs) the synthesis procedure of the last 
section i

} can be applied over the state sums associated with inde­
pendent inputs. The remaining vectors could be treated by employing 
equations of the type (29) and entering the synthesis process at 
step iv. 

A modified synthesis procedure of this nature would require con­
sideration of the equations of the type (29) in the coding process. 
The modifications are compatible with nonsingular systems. 

The remainder of this section develops an alternative synthesis 
procedure that is better suited to capitalize on the redundancies found 
in transition tables of singular systems. 

* It is necessary to provide for the selection of another distinct state sum 
after all component sums of the state sum under consideration have been ex­
hausted. This can be accomplished by selecting the reference sum in step vi from 
another state sum. 
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When, for example, columns 1 and 2 are disjoint sets of states, 
(28) contains 2d distinct vectors. It is asserted that the 2d vectors 
of this distinct state sum can be coded over the r + 1 components 
(where r is the rank of the A matrix) by a modified form of syn­
thesis procedure of the last section and that the remaining vectors 
can be coded by a simple relationship. Since only one distinct state 
sum is to be considered, the information concerning the designation 
and deletion of linearly-independent vectors (in step iii) which is 
implicit in the other state sums must be incorporated. This is readily 
accomplished by generating equations of the type (10) over the re­
maining state sums and equations like (29). Then, the unique equa­
tions, which must be compatible with state sums, are used to augment 
the state sum; that is, these equations, as well as the state sum, are 
used as state sums in coding over r + 1 components. (Notice that the 
equations in question contain only vectors from column one.) 

Partition the vectors such that the upper partition contains r + 1 
components. That is, 

Then, using the augmenting equations, 

and the state sums formed by columns which may appear in the table 
that are permutations of the first or second columns in the synthesis 
process, will yield a coding of these vectors and an (1"+ 1) X (r+ 1) A 
matrix. Let A' denote this matrix of rank r. The relations 

(from Section II) and 

imply 

(30) 

which verifies that 1" + 1 components are required to code the vectors 
in the first two columns. 

Before continuing, it is convenient to separate the present states 
into sets such that all members of a particular set give rise to identical 
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rows of next states. Let Vi denote the set of present states which are 
associated with the jth row. If one or more members of the set has been 
coded over r + 1 components, then select one such r + 1 component 
vector as the characteristic vector of the set. Denote it by the symbol 
cv~ . If no vector in Vi has been coded over,. + 1 components, the 
characteristic vector can be determined from 

This last equation has at least one solution for cvj since the columns of A' 
must span all of the v' vectors of the first column. Also, the cv~ so deter­
mined is not a characteristic vector of any other set. Then, taking the 
system A matrix (n X n) as 

will make the linearity of the transitions in the first column depend­
ent only upon the coding over v'. For the vectors which have been 
coded over v', set the remaining components, the v", equal to the 
n-r-1 component null vector. (This is necessary, if U1 = 0.) That is, 

v~i = v~~ = 0 for i = 1,2, ... ,d. 

Thus, all vectors in the first two columns are completely coded. 
The remaining vectors can be coded by the following process. Con­

sider the column of uncoded vectors under an independent input U y • 

From the state sum of 1t1 and U1/, it follows that 

V'II = Vll + VllI + Vil' for j = 2, 3, ... , d. (31) 

Since Vn and Vjl are known, once V1y is coded, the coding of all other 
vectors in the column is determined by equation 31. viII can be set equal 
to the characteristic vector of the set V in which Vly (as present state) 
belongs. This will insure that the present state Vly makes a linear transi­
tion under input U l . vi~ can be set equal to any n - r - 1 component 
vector that has not been previously used as a v" vector. When U II is 
not an independent input, VlII can be obtained from equation 29 after 
the independent inputs have been treated; then equation 31 gives the 
the coding of the remaining vectors in column y. 

To illustrate the process consider Table IX. 
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TABLE IX 

[~J [~J ~J !j ~J 
8 1 8 1 83 85 87 8D 

8 2 8 2 8 4 80 Ss 8 10 

S3 SI S3 85 87 89 

84 82 84 86 8s 810 

85 8 1 83 85 87 89 

80 82 84 8 tl 8s 810 

87 8 1 83 85 87 89 

88 8 2 8-1 86 88 810 

89 8 1 83 8.,} 87 8D 

810 82 84 86 88 810 

The sia te sums are 

VI + V3 = V2 + V4 , 

VI + V5 = V2 + V6 , 

VI + V7 = V2 + Vs , 

VI + Vn = V2 + VlO • 

The state sums are consistent over the table. Take the second, third, 
and fourth inputs as independent. All state sums and equations like 
(29) generate augmenting equations identical to the null vector. To 
determine 1', note d = 2; therefore, from equation 30, r = 1. The vec­
tors in the first state sum are coded over two components using the 
synthesis process. The result is 

v: = (~) , v~ = (~) , (~) , (~) , 
and 

A' [~:J 
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The sets V are: 

The characteristic vectors are taken as vi and v~ , respectively; that is, 

cvf = (~) and cv~ = (~). 
The vectors in the first two columns are fully coded by setting the 
last two components of each vector to zero: 

and 

11 0 0 

~l A 

= l~ 0 0 

0 0 ~J 0 0 

From the second state sum, 

Vs = v] + V2 + V6 • 

Take 

V~' = (~). 
Since VG € V:!, 

V~ = cv~ = (~) 
therefore, 



and 

Similarly, taking 

and observing that 

lead to 

SEQUENTIAL MACHINES 

v, = [~l + il [!j. 

Vs = 

1 
a 
1 
1 

V~' = (~) 

and 

375 

respectively. Since the last input is the sum of the third and fourth 
inputs, VI + Vg = VI + V5 + VI + V7. Then, 

Finally, 

B = r: 
a a 
a a 
1 a 

La a 1 

IV. CODING THE OUTPUT VECTORS 

4.1 The 111 ealy 1'I1odel 

Let Ziz denote the symbolic output vector for input U x and present 
state Si • Let the output table contain L distinct vectors; then, z,z is an 
l-component vector (L ~ 21) over GF(2). A k-dimensional vector 
(l ~ k), Wiz , is to be assigned to each symbolic output vector. 
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If the output is linear, 

(32) 

This equation implies that all of the equations obtained in terms 
of the coded state vectors (state sums and equations derived in the 
coding process) can be converted directly into reI a tionships involving 
the coded output vectors. For example, if Vl+V2 = V3+V4, then from 
the output table, for any 7ly , 

Let the equations obtained in this way be referred to as state derived 
equations. 

From equation 32 it follows (by the same reasoning leading up 
to equation 6) that 

Such equalities will be denoted by the term output sum. 
Clearly, output sums, and state derived equations must be con­

sistent if the output is linear. 
It is known that N = 2n for a reduced table of a fully linear sys­

tem.* Therefore, if N < 2n for a reduced table, the output is non­
linear. On .the other hand, where N = 2n , the set of coded state vectors 
forms a complete set of n component vectors. Then, when l > nand 
there is a null input, say 1h, it is easy to show that the output vectors 
in column 1 are a subspace of the space of all output vectors. This sug­
gests that the output vectors in column 1 can be coded over n compo­
nents setting the remaining l - n components to zero (that is, code 
over the subspace only). 

The upper submatrix of the partitioned C matrix, 

[~~nJ(Cn is an n X n matrix) 

can be determined by considering the outputs associated with the 
independent coded state vectors. Then, 

Cn[V l I ... I vn] = [wil I ... I W~l] 
where the w' are n component vectors. Recalling that [Vl I ... I vn ] 

= In (for convenience in the state coding process) leads to 

* Cohn and Even1 
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C = [w' I ... I w' ] n 11 nl • 

Since the subspace property of the first column must be preserved, 
it is true that CZ- n is the n X l - n null matrix. Furthermore, Cn and 
the code assignment over n components can be determined by designat­
ing n independent output vectors in conjunction with the state derived 
equations and outputs sums. 

For all columns which are premutations of the first column, the 
corresponding Dux must have zero as components l - n through l 
(again, to preserve the subspace property). More generally, the 
entries in the first n components of Dux generate permutations of the 
first column, while the entries in the remaining l - n components force 
the output vector out of the n dimension subspace.* 

In order to code the output vectors which are not members of the 
first column, notice that an output sum which involves such a column 
and the first column has N distinct sums and 2N vectors. N of these 
vectors have been coded (the members of the first column) and one 
of these vectors appears in each sum of vectors in the output sum. 
Therefore, if a linearly-independent vector is designated, by assigning 
a nonzero entry in l - n components, then all of the remaining N - 1 
vector codes are determined. 

For example, if, in equation 33, x = 1, then Wi,x, for i = 1, 2, ... , 
N are vectors in the subspace (and can be coded), then setting Wl y 

equal to a linearly-independent vector or any vector not in the sub­
space gives the code assignment for all other vectors in column y 
since Wiy = Wl y + Wl y + Wi,x for any i. The procedure is basically the 
same as in coding state vectors of a singular system. 

The case where L ~ N can be treated as an obvious special case of 
the above. 

4.2 The Moore Model 

In the Moore model of a sequential machine the output is a func­
tion of the system's state alone. That is, D =, O. It is then obvious 
from equation 32 that the number of distinct output vectors cannot 
exceed the number of state vectors. Therefore, the method for coding 
over the n-dimensional subspace introduced in Section 4.1 can be 
applied directly, using the state-derived equations. 

* This property is the identity or disjointness of sets of vectors which can be 
rigorously proven by an argument parallel to the proof of theorem 3. 
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V. CODING THE INPUT VECTORS 

5.1 The Mealy Model 

In the Mealy model of a sequential machine it is possible to have 
inputs which do not generate distinct columns in the state transition 
table and yet give rise to distinct output columns. Such cases require 
an interaction in the determination of the Band D matrices. 

Let there be M different inputs, and K (K ~ 2k) distinct columns 
in the state transition table. Take one input as the null input, say .. 
U 1 = o. Considering one component sum from each state sum, it follows 
that 

for each Ua; that generates a distinct column. For convenience number 
such inputs Ul through UK. Similar to the approach of Section 4.1, 
code the input vectors over the first k components. That is, from 

(where Bk has k columns) 

select 

Bk = [vll + V12 I ... I Vll + Vl,k+lJ[U~ I ... I U~+lr\ (34) 

where the u' are linearly independent vectors formed by the first k 
components of the input vectors, and where Vll + V12, ••• , Vll + 
Vl,k+l are the k vectors that span the set of the K distinct sums 
of the form Vll + Vla;. Since it is only the first k components of the 
input vectors that'influence the state transitions, it must be true that 
B m - k is the n X (m - k) null matrix. The remaining k component in­
put vectors can be obtained by solving the set of linear equationsiC

• (in 
matrix form) 

At this point k components of all input vectors have been coded. 
Considering the output table, the D matrix can be determined from 

D[ua I ... I u r] = [wu + W 1a I!.Wll + W1b I ... I Wu + WIr] (35) 

where the columns of the matrix on the right side span all sums of 
the form Wll + Wlll , and where U a , • • • , U r are m inputs which are 
assigned as linearity independent vectors. 

* These linear equations must be consistent since the columns of Bk span all 
vectors of the form Vll + Vll/. (See equation 34.) 
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Consider the example in Table X. 

TABLE X 

U 1 U2 u3 U4 u5 U6 U7 Us 

Sl Sl/Zl Sl/Z2 Sl/Z5 Sl/Z6 S2/Z7 S2/ZS S2/Z9 S2/Z10 

S2 S3/Z2 S3/Z1 S3/Z6 S3/Z5 S4/ZS S4/Z7 S4/Z10 S4/Z9 

S3 S4/Z3 S4/Z4 S4/Z11 S4/Z12 S3/Z13 S3/Z14 S3/Z15 S3/ZUl 

S4 S2/Z4 S2/Z3 S2/Z12 S2/Z11 Sl/Z14 Sl/Z13 Sl/Z16 Sl/Z15 

In order to code the system states, consider Ul and Us which generate 
the only distinct columns. Take Ul = O. It can be verified that an 
acceptable coding is 

giving 

A = G ~J 
For the output table, L = 16, l = 4. Calculating the upper partition 
of the C matrix, C'2, 

or 

Take 

w~ 

then, C2 = 12 or 

[w~ I w~J, 

(~) , w~ 

1 0 

C = 0 1 

o 0 

o 0 

(~) 
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From the state sum, w~ = (~), and since VI = 0, it follows that wi = (~). 
Clearly, WI , W;.! , 103 , and W4 are given by including two additional zero 
components. In order to code column 3 consider the output sum 

o 
Taking Ws = 0 leads to 

1 
o 

WI) = WI + W,5 + W 2 = 

Similarly, 

1 
0 

W 11 1 
, 

0 

By taking 

0 
0 

W7 = 
0 
1 

0 0 
0 + 0 
0 1 
0 0 

W 12 = 

and W(}= 

the remaining output vectors can be coded. 

0 

+ 1 
0 
0 

1 
1 
1 
0 

0 
0 
1 
1 

Coding the first component of the input leads to 

With the results 

and 

11J Bl = I • 
LO 

B i 1 0 Ol =, 
LO 0 0_] 

u~ = u~ = u~ = u~ = 0, 

u~ = u~ = u~ = u~ = 1. 

o 
1 
1 
o 

(36) 

(37) 
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The output vectors W 2 , Ws , and W7 span all sums of the form W] + Ws 

(notice WI = 0) X = 2, 5, 6, 7, 8, 9, 10. Then, 

000 

100 

010 

001 

Considering equations 36 and 37, make a linearly-independent assign­
ment of U 2 , Ua, and Us • Say 

which leads to 

000 

D = 0 0 1 

010 

o 0 

To determine 'U4, for example, set up the linear equations 

D'U4 = WI) (recall 'U~ = 0) 

r~ 
0 0 01 
0 1 

U 4 = 
:0 1 0 

Ll 0 0 0 

or 

Similarly, 
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5.2 The Moore Model 
For the Moore model all columns of the state transition table are 

distinct; therefore, the method for coding over k components of 1(" 

introduced in the last section, can be applied directly. 

VI. LINEARITY AND INCOMPLETELY SPECIFIED SYSTEMS 

This section considers the problem of specifying "don't care" entries 
in the state transition table in a way consistent with linearity; the 
results can be extended to the output table. 

It is obvious that if an incompletely specified table is to have a 
linear realization, then the entries in the table must obey the same 
relationships which were developed in the preceding sections. For 
example, the table must exhibit consistent state sums, and allow 
completion of the maximum memory process. The resulting restric­
tions on the unspecified entries may be used to deduce their appro­
priate assignments. 

Consider Table XI in which the "don't care" next states are de­
noted by the symbol t. 

TABLE XI 

0 1 

8 1 t1 82 

82 84 8 6 

83 8s t4 

84 86 84 

85 83 8 1 

86 81 83 

87 t2 8s 

8s t3 85 

The state sum is 

V2 + t1 = V4 + V6 = t4 + Vs = VI + V3 = t2 + Vs = t3 + Vs • (38) 

From the third and fifth terms, it follows that t4 = t2 • Forming 

A (VI + V3 + V4 + V6) 
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leads to 

(39) 

Also, 

yields 

Va + VI + V4 + t1 = 0, 

where t1 = At1 • Locating V6 , VI , and V4 in the state sum leads to the 
conclusion tl = Va. The present state which gives 8a as its next state 
under zero input is 85 • So that, t1 = V5 • The first and last terms of the 
state sum imply that t3 = V2 • From A (V4 + V6 + Vs + t 2 ) obtain 

V6 + VI + t3 + t2 = V6 + VI + V2 + t2 = o. 
Adding the last equation to equation 39 gives 

Vs + t1 + V2 + t2 = Vs + V5 + V2 + t2 = o. 
However, equation 38 indicates t2 + Vs = V2 + V5 ; so that t2 = t2 • From 
the table, t2 = V7 • Table XII shows the fully specified table. 

TABLE XII 

0 1 

8 1 85 82 

82 84 86 

83 8s 87 

84 86 84 

85 83 8 1 

86 8 1 83 

87 87 8s 

8s 82 85 

APPENDIX 

An Addition to Theorem 2 

For N not equal to 2n there is a set of 2n - iV vectors that cannot 
be used as state vectors. However, when the system is linear operat-
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ing on any unused vector with the A matrix, and adding Bllz must 
produce a vector which is also an unused vector. If this were not 
the case, there would exist a state vector which would give rise to 
one of the unused vectors as a next state for some input. It follows 
that a transition table can be constructed containing only the 2n - N 
unused vectors. Let this system be called a virtual system. From the 
foregoing, it is clear that the states of the virtual system must obey 
the restriction of Theorem 2; that is, the number of distinct inputs 
cannot exceed 

t 

2 + (2n - N) L 21
-

i
, 

i=2 

where t is as before. Since the virtual and original systems must re­
main disjoint, the original system must observe the bound. This is a 
smaller upper bound than obtained in Theorem 2. 
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Laser Machining of Thin Films 
and Integrated Circuits 

By M. I. COHEN, B. A. UNGER, and J. F. MILKOSKY 

(Manuscript received September 5, 1967) 

The feasibility of uSl~ng the Y AG laser as a tool to thermally machine 
integrated circuits has been studied. Results suggest that defining the resistor 
geometry, trimming the resistors to value, fabricating gap capacitors, 
and defining interconnecting circuitry might be performed by such a laser. 

Pattern generation by laser machining has been demonstrated on various 
thin and electroplated films. Vaporized lines (gaps) are readily attainable 
as fine as 0.25 mil in thin films and 0.4 mil in plated films. Much thinner 
lines may be obtained under particularly well-controlled conditions. These 
films may be removed with minimum effect to the substrate surface. The 
heat-affected region of the substrate may be confined to less than one film 
thickness. Better laser output control and shorter pulse widths will diminish 
this thickness. 

Gap capacitors have been made on sapphire substrates with capacitance 
approaching 20 pf in 0.04 square inches, and experiments suggest im­
provements. 

Tantalum films may be shaped to resistor geometries and trimmed to 
tolerance by removing metal or by oxidizing the resistive film with the 
laser. Resistors usually can be trimmed to tolerances of less than ± 0.1 
per cent. 

With further development it might be possible to combine these laser 
machining processes into a single-step, automated fabricating procedure 
for certain types of integrated circuits. We review some of the technical 
aspects of this and discuss using Q-spoiled Y AG lasers to directly machine 
masks for photoetching. 

1. INTRODUCTION 

The steps to fabricate thin film passive elements and interconnecting 
circuitry on hard substrates are well documented.1 , 2 These procedures, 
defining resistor geometry and interconnecting circuitry, resistor trim-

385 
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ming to value, and capacitor fabrication, are the essential steps for 
producing precise integrated circuits. It is our intention to show that 
a laser can be used to vaporize, in a controlled manner, thin film 
structures, and that it therefore might be capable of supplementing or 
performing these four processes; or it might be used to supplement 
photolithography by directly machining thin film masks for making 
circuits by photochemical methods. 

We studied methods for performing these steps with a continuous 
neodymium doped yttrium-aluminum-garnet (YA.eG:Nd or YAG) 
laser. Laboratory work has demonstrated the feasibility of fabricating 
circuit building blocks and eliminating many steps for film structures 
which are common to tantalum integrated circuits; that is, circuits 
in which the resistive films are compounds of tantalum. Similar 
techniques will be applicable to other types of circuits. 

Tantalum thin film resistors have been shaped and trimmed to 
value with a laser beam. A controlled laser has removed various 
combinations of thin films from substrates without adverse effects 
to the substrates. Tantalum films have been thermally oxidized with 
the YAG laser as the heat source. Controlled parasitic or gap capaci­
tors have been made with specific capacitance up to 4.5 X 10-4 pf per 
square mil by laser machining narrow lines across thin films. 

The YAG laser has demonstrated considerable potential as a thin 
film machining tool. The simplicity of operating and controlling the 
device, and the characteristics of its output beam render it particu­
larly well suited to this application. 

II. GENERAL CONSIDERATIONS 

2.1 Characteristics of Lasers as Fabricating Tools 

The utility of a laser as a tool for fabricating thin film circuits 
results primarily from the spectral purity and degree of collimation 
of the laser light. These characteristics allow the beam to be focused 
to a very fine and intense spot. The high heat flux which occurs when 
the light is absorbed by the target material, and the sharp definition 
and localized nature of the working region allow heating, melting, or 
vaporizing minute amounts of material, with minimum effect to ad­
jacent material or components. 

Among other useful characteristics of light as a working tool is 
its small absorption depth in metallic materials. This property renders 
the laser particularly applicable to operating on thin materials such 
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as films without damaging the substrate or material beneath the film. 
In addition, energy may be transferred to the workpiece through an 
optically transparent material or atmosphere, and without physical 
contact with the workpiece. Encapsulated or otherwise inaccessible 
parts may be machined, and working regions may be kept free of 
contamination which might result from contact with a tool. Refer­
ences 3 and 4 give more detailed discussion of the suitability of lasers 
for fabrication. 

Many types of lasers have been shown to be applicable in processes 
related to thin-film circuit fabrication. Pulsed lasers have been used 
to vaporize slots and lines in metallic targets5 and have been included 
in an experimental automated procedure for trimming thin-film 
resistors.6 Pulse-pumped He-Ne gas lasers have been used to scribe 
lines on metals. 7 Reported linewidths are 12.5 microns. Ionized argon 
lasers operating at one-half watt cw output have been used to scribe 
lines as fine as 10 microns in iron-nickel films deposited on glass.8 

The neodymium-doped yttrium-aluminum garnet (Y AG) laser dis­
cussed by Geusic and others,9-11 is particularly well suited to thin­
film fabrication because of its good combination of such character­
istics as the adequate intensity, stability, and optical quality of the 
output beam, and its simple and compact design. Such Y AG lasers 
may be operated continuously at about 1 watt output, or may be 
repetitively Q-switched by rotating the rear reflector. The Q-switched 
output is a continuous train of pulses with peak power exceeding 
1 kw, and pulse duration about 200 ns when the repetition rate is 
400 cps. Both types of operation may be obtained by using as a 
pump source an inexpensive lamp powered directly from line current. 
In both cases the laser may be adj usted to oscillate in a sufficiently 
low order mode that the output beam may be focused conveniently 
to the fine spot needed for precise thin-film machining. 

2.2 Machining Thin Films 

The processes that we studied, except thermal oxidation, use the 
laser's ability to vaporize material. It is desirable, therefore, to dis­
cuss briefly a few of the parameters and phenomena of material re­
moval by laser. Cohen and Epperson give more detail.3 

We notice first that it is the optical power density in the focused 
spot rather than the laser power output, itself, that determines the 
suitability of a laser for removing material. Greater power densities 
often may be obtained from a laser that oscillates in a low order 
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mode, than from a higher-powered multimoded device. For the useful 
case of a laser oscillating in the fundamental Gaussian mode, the 
minimum focal spot radius, WI, may be determined from the relation­
ship. (See Ref. 3.) 

l = l (1 _ (zo + d)) + _1 _ 
w; w~ t (fO)2 

(1) 

where, f is the focal length of a lens with sufficiently great aperture 
to admit the entire beam, w'o and Zo are parameters which depend 
upon laser cavity configuration, d represents the distance of the focus­
ing lens from the cavity, and () is the far-field beam divergence angle. 
In many metal-working applications, including the one we are dis­
cussing, the lens is sufficiently far removed from the laser output 
reflector that equation 1 becomes 

At lim Wf = -
Ifl(Zo+d) )-->0 7rW 

(2) 

where W is the radius of the beam as it enters the lens. Equation 2 
predicts, therefore, that spot sizes of the order of wavelength, A, may 
be obtained with lenses having small f numbers (that is, small ratios 
of focal length to aperture). 

The size of the affected zone in the target material will depend 
on the thermal properties of that material as well as the optical spot 
size and the intensity distribution across the spot. Edge definition 
of the affected zone depends primarily on thermal properties of the 
target and the duration of exposure. Metals with high thermal dif­
fusivity and a large difference between melting and vaporizing tem­
peratures, such as gold and copper, tend to develop a lip formed by 
molten metal around the region from which material was removed. 
The lip may be minimized by using a very short exposure such as that 
which might result from operating the laser in the Q'-switched mode. 

The use of Q-switched output also is desirable to minimize thermal 
damage to the substrate. Damage results both from heat conducted 
from the film into the substrate, and from direct impingement of the 
focused laser light on the substrate after the film has been removed. 
Using laser pulses of high peak power and short duration substantially 
decreases both effects.3 

Many metals reflect an appreciable portion of the incident laser 
light. Such metals might need much higher laser output levels than 
nonreflecting materials. In most laser micrometalworking processes, 
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the surface remains solid and reflecting for only a small portion of 
the laser pulse duration. The reflectance of the surface may decrease 
abruptly when it melts or reacts with its atmosphere, and subsequent 
absorption will occur with greater efficiency. The initial laser output, 
however, must be sufficient to break down the surface. 

2.3 Experimental Apparatus 

Figs. 1 and 2 show the apparatus used in our experiments. The YAG 
laser was Q-switched by rotating the rear reflector at 400 hertz. The 
output pulse parameters at the rated voltage of the pump lamp (120 
V) were about 1 kvV peak power and 200ns duration at the half 
power point. Output, at 1.06 micron wavelength, was monitored by 
means of a photomultiplier tube behind the cavity, and the photo­
multplier frequently was used in conjunction with a thermopile which 
measured the mean power of the output beam, so that the peak power 
could be calculated. The laser output was attenuated by neutral den­
sity filters. Laser mode pattern was observed by means of an image 
converter tube, and the laser cavity was adjusted periodically so 
that most of the output was contained in the fundamental mode. 

An x-y-z micropositioner was used to focus and move the workpiece. 
For applications such as line scribing, in which the work is moved 
across the beam, one of the micrometer barrels is rotated by means 
of an hydraulic drive coupled to a gear and belt mechanism. A wide 
range of continuously-variable speed was available. The maximum 
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Fig. 1- Schematic diagram of laser machining apparatus. 
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permissible sweep speed, however, was dependent upon the diameter 
of the focal spot and the stability of the laser output. With excessive 
sweep speed, successive laser pulses did not overlap, causing scallop­
ing at the edge of the line. Speeds of 0.1 inch per second were per­
missible with 0.0002-inch gaps, and correspondingly lower speeds were 
required with smaller gaps. Working atmosphere generally was air, 
although limited tests suggested that somewhat better edge definition 
is possible in oxygen-rich environment. 

The viewing and focusing device consisted of two partial mirrors 
and an eyepiece mounted on a traverse mechanism, and a separately­
mounted microscope objective. Objectives with 23 mm focal length 
(lOX) were used for most of the applications studies associated with 
direct machining of tantalum integrated circuits, and lenses with 
focal length as short as 4 mm (approximately 70X) were studied for 
thin-film mask-making application. 

The 23 mm objective was a particularly good lens for general­
purpose work. Its depth of focus was sufficiently great (approxi­
mately ±0.001 inch) that fine lines of appreciable length (greater 
than 0.5 inch) usually could be scribed with good uniformity on 
nonuniform surfaces such as that of a glazed alumina substrate with­
out elaborate alignment of the workpiece. The spot diameter, 2 WI, 

calculated from equation 1 and the parameters appearing in Fig. 1, 
was about 8 microns (about 0.0003 inch) for this lens. Increasing 
the strength of the objective to about 40X will decrease the cal­
culated spot size to about 2 microns, but the severe loss of depth of 
focus restricts use of such lenses to very flat and well-aligned targets. 
Such lenses with short working distances also necessitate careful at­
tention to laser output intensity in order to prevent lens damage due 
to the laser plume of vaporized material. 

The apparatus described has been used to vaporize spots and scribe 
lines in a wide variety of thin-film structures. Figs. 3 through 5 
show some of the general characteristics of such lines. 

Figure 3 indicates the effect of laser beam intensity and stage sweep 
speed on width and definition of lines vaporized in a gold thin film 
(approximately 3000 A) on sapphire substrate and a nichrome film 
(2000 A.) on quartz. An 8 mm lens was used to scribe the gold film 
and a 4 mm lens was used for the nichrome. The finest lines were 
about 0.00025 inch wide for the gold and 0.0001 inch for the ni­
chrome. Such gaps generally contain no metallic debris, as evidenced 
by the very low electrical conductance that is measured across them.s 
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Fig. 3 - Effect of machining parameters on lines machined in 3000 A gold 
film on sapphire and 2000 A nichrome film on quartz. 

Lines as fine as 0.00004 inch (1.0 micron) have been scribed in tan­
talum nitride, titanium, and nichrome films. 

It has been shown that for thin film samples similar to those shown 
in Fig. 3, the extent of damage to the sapphire substrate may be 
minimized by proper control of power density and sweep speed.3 Fig. 
4, representing a typical cross section through such a sample, indicates 
that the extent of the affected zone may be limited to a depth ap­
proximately equal to the film thickness. Recent results have shown 
that some metal films may be removed with no substrate damage 
observable by optical means. 

Fig. 4 also suggests the presence of a small gold lip bounding the 
laser-machined gap. The size and nonuniformity of the lip, and the 
depth of the thermally affected zone in the substrate increase as the 
film thickness is increased. Fig. 5 shows typical depth of penetration 
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into the sapphire when the gold thin film is plated with approximately 
0.3 mil of copper and then 0.01 of gold. Although gaps as narrow as 
0.00020 inch have been machined in such films with a 23 mm lens, 
gaps smaller than the film thickness require precise control of laser 
and stage parameters. The lateral extent of the heat-affected zone 
resulting from thermal conduction in YAG laser-machined thick 
films often is the same as the film thickness. 

Results similar to these have been obtained when the substrate 
material is glazed alumina, quartz, or silicon rather than sapphire, 
although the body of data for these materials is not nearly so large 
as it is for sapphire. Damage to the surface, apparently caused by 
melting, is confined to a depth less than the film thickness. Cracking 
of the glaze in the vicinity of the working zone has not been observed 
when laser parameters have been adjusted properly. 

III. DIRECT MACHINING OF TANTALUM INTEGRATED CIRCUITS 

3.1 Gap Capacitors 

3.1.1 Characteristics 
Interelectrode effects normally are present in miniaturized or high 

density integrated circuits. However, these parasitic or stray capaci-

0.0004" GAP 

EPOXY POTTING 
MEDIUM 

THIN FILM 

Fig. 4 - Cross section through gap machined in 3000 A gold film showing the 
affected zone in the sapphire substrate. 
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tances usually are minimized by judicious spacing or isolating the 
components. These parasitics, gap capacitors as we call them in this 
article, can be produced with values high enough for use as discrete 
circuit elements by varying the spacing and length of the coupling 
electrodes, and the dielectric constant of the surrounding media. 

Kaiser and Castro have calculated the interelectrode effects be­
tween two thin film conductors deposited on a substrate,12 The cal­
culations were directed at predicting parasitic capacitances between 
parallel conductors on substrates of various dielectric constants. The 
analysis was based on a model of two parallel conductors a distance 
d apart, of equal width l, on the same side of a substrate with dielec­
tric constant k, of finite substrate thickness t, and of infinite extent. 
It has been assumed that the dielectric constant of the environment 
is negligible compared with that of the substrate. Fig. 6 presents, for 
various djt and ljt ratios, calculations based upon this analysis. 

Fig. 6 shows experimental data for some gap capacitors fabricated 
in the laboratory by means of a Q-switched YAG laser. Gap width 
was varied from 0.0005 to 0.025 inch for thin chrome-gold films on 
0.025 inch thick barium titanate substrates (dielectric constant ap­
proximately 500), and 0.0003 to 0.015 inch for tantalum-chrome-gold 
thin film composite on 0.03 inch sapphire. In the case of the high 
dielectric substrate, agreement with numerical calculations is best for 
the larger gaps. Behavior for the fine gaps probably is affected by the 
granular and nonuniform nature of the substrate, and further study 

~ EPOXY POTTING 
MEDIUM 

L PLATED FILM 

T 
~ SAPPHIRE 

Fig. 5 - Cross section through gap machined in plated thin film showing the 
ilffected zone in the sapphire substrate. 
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Fig. 6 - Capacitance of gap capacitors as a function of gap width. Comparison 
of analytical and experimental results. 

is necessary. The shape of the curve for sapphire is similar to that 
predicted by the analytical model. The displacement between the 
curves may be explained by considering the fringing capacitance 
through the environment. 

3.1.2 Laser Fabrication 

A Q-switched YAG laser was used to machine fine lines in thin 
film conductors to form the gap capacitors. The effects of gap width, 
line length and geometry have been investigated. Most of the data 
were obtained with gap capacitors on single crystal polished sapphire 
substrates. Limited data also have been obtained for other substrate 
materials. 

Fig. 7 demonstrates the linear relationship that has been observed 
between capacitance and gap length. There is no observed effect of 
bending the cut into a serpentine configuration until, as will be 
shown later, the parallel legs become sufficiently closely spaced. These 
results suggest that there is no significant contribution due to the 
field concentration at the corners, since such an effect would cause 
a deviation from linearity. 

Most of the data in Fig. 7 were taken on tantalum-chrome-gold 
thin film composites on sapphire. Some data also are included for gaps 
machined in 0.3 mil thick copper-plated conductors. Gap width in 
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Fig. 7 - Capacitance of gap capacitors as a function of gap length. 

1.6 

both cases was 0.5 mil. The plated films appear to produce capacitance 
values similar to those for unplated thin films. 

The response of gap capacitors to frequency was determined by 
measuring a gap capacitor at frequencies to 4 GHz. A plated 0.5 mil 
wide gap capacitor cut in a plated 50 ohm transmission line on an 
alumina substrate (Fig. 8) was measured with the following results: 

Fig. 8 - Gap capacitor laser machined in plated 50 ohm transmission line on 
glazed alumina substrate. 
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At frequencies of 465 kHz, 1 lVIHz, 3 GHz, and 4 GHz, the meas­
ured capacitance was 2.49, 2.48, 2.65, and 2.49 pf, respectively. The 
response of a laser machined gap capacitor appears relatively fiat 
up to 4 GHz. 

A further study was made of the effect of gap width on capacitance 
value. Fig. 9 shows the results of a tantalum-chrome-gold composite 
film on a polished sapphire substrate, and of a chrome and gold 
composite on an unglazed barium titanate substrate. Calculated points 
from Fig. 6 are indicated to show the agreement with the analytical 
model. The data indicates that the gap capacitors are insensitive to 
changes in gap dimensions when the gap is a few mils wide, but very 
sensitive when the gap is made less than a mil across. These results 
suggest that in order to achieve the highest possible specific capaci­
tance it is desirable to achieve the smallest possible gap width. On 
a normalized plot, such as Fig. 9, the elements are also insensitive 
to substrate dielectric constant and the dielectric properties of the 
test environment. Gap capacitance therefore can be presented on a 
normalized basis with some constant as a dielectric scaling factor. 

'Ve show in Fig. 7 that capacitance varies linearly with length for 
straight-line gaps. To achieve a high capacitance per given area, 
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however, the gap may be fabricated in a serpentine geometry. Fig. 
10 shows a portion of a serpentine capacitor with 0.5 mil gap and 
5 mil spacing. Fig. 11 shows the results of capacitance as a function 
of total line length for serpentine gap capacitors of equal heights 
on a conductor 0.225 inch wide. The curve is linear down to about 
a 50 mil spacing between the parallel legs. As this dimension de­
creases, the relationship between capacitance and line length becomes 
nonlinear. These results suggest the interaction of fields remote from 
the gap edges that significantly affects the value of the element. 

Specific capacitance is one means of comparing different thin film 
capacitors. A specific capacitance can be given for gap capacitors 
provided the substrate dielectric constant and gap width are stated~ 
Laser machined gaps 0.5 mil wide have been made in films on 200 
mils-square sapphire substrates (K '"'"" 10) in a serpentine fashion 
with values up to 18 pf. This corresponds to a specific capacitance of 
4.5 X 10-4 pf per, square mil. It is estimated that this value can be 
increased to about 1 X 10-2 pf per square mil by adjusting the ser­
pentine geometry and decreasing the gap width to 0.2 mil. Such gap 
widths have been machined in thin films with the YAG laser when 
the optical alignment and beam control have been precise. 'Vith care­
ful control of techniques and equipment, repeatable gap widths of a 
few microns or less are practical. 

Fig. 10 - Serpentine gap capacitor on sapphire substrate. Gap width 0.5 mil, 
separation between legs 5.0 mils. 
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Fig. 11- Capacitance of serpentine gap capacitors as a function of total 
length of gap. 

Leakage currents less than 10-9 amperes at 40 V are normal for 
these units. These values indicate that there is very little debris 
remaining in the gap. 

3.2 Trimming Thin Film Resistors 

Two techniques for increasing the resistance of tantalum nitride 
resistors with the YAG laser have been explored. Initial studies have 
established the feasibility of trimming to value by removing material 
and by thermal oxidation. 

Trimming by removing material may be accomplished either by 
changing the dimensions of the resistor or by vaporizing small spots 
in the interior of the resistor. Fig. 12 shows a resistor whose value 
has been increased 19 per cent by means of a series of internal spots, 
each vaporized with a 1/50-second exposure to the Q-switched beam. 
Included in Fig. 12 are the results of resistance measurements taken 
on this resistor. 

Changes in resistance from less than 0.01 to over 0.1 per cent per 
spot have been demonstrated by varying the size and location of the 
spot on the resistor. Fig. 13 demonstrates typical resistance changes 
for a resistor, one of whose edges has been removed progressively in 
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O.OOOI-inch steps. With proper instrumentation and control, either 
the spot or edge laser vaporization method could provide a rapid 
means of trimming resistors to better than 0.1 per cent. We notice 
that resistors trimmed by material removal change less than 0.1 per 
cent in resistance after such resistors are exposed to the laboratory 
environment for several months. These results suggest the temporal 
stability of laser trimmed resistors. A definitive measure of stability, 
however, will necessitate a power aging test under controlled condi­
tions. 

Our studies of thermal oxidation were exploratory because a proper 
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quantitative investigation will require a laser with sufficiently high 
output to achieve the required power density over a spot large enough 
to completely expose the entire resistor. In the present study, a spot 
about 0.001 inch across was used and the resistor surface (0.005 inch 
square) was swept past the beam. A uniform brown color resulted, 
accompanied by a change in resistance from 16.96 to 17.98 ohms. The 
same color and increase in resistance may be obtained by wet anodiza­
tion to a potential of about 20 V. 

A much greater increase in resistance (for example, 16.29 to 38.26 
ohms) was obtained by further exposure. The surface, however, ap-
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Fig. 13 - Resistor trimming by edge material removal. 
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pears nonuniform in color, indicating the varying degrees of oxida­
tion. As treatment progressed, the process appeared to lose stability 
in the sense that it required greater attention to laser output and 
stage sweep speed to prevent the resistor from burning through locally. 
The indication is, however, that both uniformity and stability will 
improve when larger laser spots are used. 

We noticed that oxidation of tantalum areas adjacent to gold con­
ductors is possible without damage to the gold. The high reflectivity 
of the gold raises the damage threshold of gold well above the power 
required for converting the tantalum to oxide. 

3.3 Miscellaneous Applications 

The YAG laser may be used to remove metal films in order to de­
fine interconnecting circuitry. Such pattern generation requires no 
considerations other than those already discussed. With the present 
laser the small spot size necessitates many passes by means of an 
index-and-repeat method, in order to remove large areas of film. Such 
a method would be more economical if the present YAG laser were 
Q-switched at great speeds so as to allow correspondingly greater 
sweep speeds. An alternative would be to use a higher powered laser 
to define roughly the circuit dimensions, and then to trim precisely 
with the present laser. 

The initial results suggest the possibility of fabricating, in one step, 
a complete integrated circuit with all the passive elements. Such a 
process would start with a metallized substrate and would use a 
programmable laser and work stage. Complete laser fabrication of 
hybrid circuits will require a process in which a metal film is removed 
selectively, exposing a different film. For example such a process may 
be necessary in order to remove the conductor and expose the resistor 
film. 

In the present tantalum-chrome-gold technology such a selective 
removal of the gold presents substantial difficulties because the reflec­
tivity of the gold is much greater than that of the tantalum nitride. 
It is quite probable, however, that some combination of films will be 
found for which the upper film can be removed from the resistor with­
out damaging it. 

IV. MACHINING THIN-FILM MASKS 

The machining of masks involves considerations similar to those 
for pattern generation. Experience has indicated that a variety of 
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sputtered and deposited films (1000-3000 X) on quartz, glass, and 
sapphire may be machined conveniently. Patterns machined in tita­
nium and nichrome films, however, appear to have- superior edge 
definition and uniformity of transmitted illumination compared with 
patterns produced in other films. Mechanisms governing the behavior 
of the metal film during laser machining have not yet been defined, 
but appear to depend upon the surface tension and bonding charac­
teristics of the film as well as the thermal properties of both film and 
substrate. 

V. SUMMARY 

The feasibility of machining resistive and capacitive components 
directly on thin film metallized substrates with a laser has been demon­
strated. Tantalum films can be shaped into resistor geometries and 
trimmed to tolerance by removing metal. These films also can be 
oxidized to value using the laser beam as the heat source. Resistors can 
be made with tolerances in value of less than ±0.1 per cent. 

Gap capacitors have been made on sapphire substrates with capaci­
tance measuring up to 20 pf in an area of 0.04 square inch with 0.5 
mil gap spacing. Limited studies have indicated that these elements 
are stable with time, have leakage currents at 40 V of less than 10-9 

amperes and do not change significantly with frequency up to 4 
GHz. Variation of capacitance with gap width has been studied and 
experimental results show good agreement with numerical results 
based on an analytical model for determining parasitic capacitance. 

Pattern generation by laser machining has been demonstrated on 
various thin films as well as on electroplated films. Vaporized lines 
as fine as 0.25 mil are readily attainable in thin films, as are 0.4 mil 
lines in plated films. Much narrower lines may be obtained under 
particularly well-controlled conditions. Uniform lines as fine as 1 
micron have been scribed in thin films on sufficiently flat substrates. 
These films have been removed with minimum effect to the substrate 
surface. 

The present work has been accomplished with a Q-switched YAG 
laser operating with a repetitive output, at 400 hertz, of 1 kw peak 
power and 200 ns pulse duration. Advantages of such a laser as a 
machining tool include the optical quality of the output, and simplicity 
and economy in both design and operation. Maximum machining speed 
presently approaches 0.1 inch per second for 0.2 mil gaps, and a further 
increase of one to two orders of magnitude may be expected as the 
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repetition rate of the laser is increased. Continued development of the 
YAG laser, particularly with regard to decreasing the width of the 
pulse, is expected to provide for increased definition of the working 
zone, improved selectivity in removing films of various metals, and a 
further decrease in the already small damage to the substrate. 

Our study has been exploratory and has served only to establish 
the feasibility of machining thin film circuits with existing lasers. 
Further attention to the details of the specific machining processes as 
well as to the combination of these processes into an automated pro­
cedure is necessary in order to evaluate their practicality. It is neces­
sary, also, to better define the mechanisms governing laser material 
removal processes in order to realize fully the potential applicability 
of laser machining of thin film circuits. 
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Performance Degradation 
by Postdetector Nonlinearities 

By GEORGE H. ROBERTSON 
(Manuscript received October 17, 1967)* 

This article gives the performance degradation found by using a computer 
program to calculate the effects of various processing techniques applied 
after envelope detection of narrowband Gaussian noise plus a CW signal. 
Nonlinear processes that we studied are: suppression of low output levels, 
hard limiting of high output levels, restricted dynamic range of output 
level, and quantizing the detector output. 

By modifying the program, we produced performance curves for systems 
in which a steady CW component was present in addition to possible 
signals. We also adapted the program to generate performance curves for 
systems using a square-law detector so that a comparison could be made 
with the results obtained for an envelope detector. We found that the presence 
of a CW component, and all the nonlinear processes applied after envelope 
detection, caused a loss of sensitivity in detecting small CW signals. Quan­
tizing even in as few as 8 levels, however, caused very little additional 
degradation. 

1. INTRODUCTION 

A computer program was developed that would draw receiver op­
erating characteristic curves for a system using an envelope detector 

. to search for C'V signals in narrowband Gaussian noise.1 The pro­
gram computed the probability that the detector output would exceed 
a chosen threshold under two circumstances: 

(i) No signals were present; this result gives the probability of 
false alarm, PFA • 

(ii) Signals at various SIN were present; this result gives the prob­
ability of detection, Pn . 

SIN is the ratio of the CW signal power to the noise power ac­

* The U. S. Navy supported this work under contract N600(63133)64940. 
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companying it in the specified narrow band. These probabilities were 
calculated using formulas which described the appropriate distribu­
tions of the detector output. 

The program also averaged independent samples of the detector 
output, and produced appropriate receiver operating characteristic 
curves by deriving a Gram-Charlier A series for the distribution of 
the sample average. 

When the program was adapted to take into account the modifica­
tions of the detector output caused by various subsequent nonlinear 
processes, receiver operating characteristic curves were produced for 
systems in which such processes occurred. The performance degrada­
tion was determined as the change in SIN that would be required to 
make the detectability of a signal, for given probability of false alarm, 
the same as without the nonlinear process. 

II. DISCUSSION 

Since some types of nonlinear processing greatly reduce the labor 
of handling large amounts of data, and others are unavoidable, or 
their effects are costly to minimize, it is useful to know the penalties 
on performance that are incurred by their presence. 

The types of nonlinear process studied are: suppressing low output 
levels, hard limiting of high output levels, restricting dynamic range 
of the output level, and quantizing the output of the detector. 

Suppressing low output levels occurs in some kinds of recording 
equipment where the output must reach a minimum level before a 
record can be made. High output limiting always occurs because the 
power handling capacity of physical equipment is limited. Dynamic 
range is restricted when the first two processes occur together; this 
also represents a commonly used technique in which a fluctuating out­
put is converted to a -binary waveform with respect to a chosen 
threshold. Quantizing is particularly useful when a digital computer­
is used to implement the statistical analysis. With this application in 
mind quantizing was evaluated in combination with restricted dynamic 
range 

For simplicity in programming, we assumed that the unit used to 
process the output of the envelope detector had an appropriate trans­
fer characteristic from the set shown in Fig. 1. It can be seen that over 
part of its operating range this unit has a linear characteristic. Quan­
tizing would cause the slope of the linear region in Fig. 1 (c) to be 
replaced by a staircase. 

In· addition to the changes needed to allow investigation of the 
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Fig. 1-Transfer characteristics of post detector processor. (a) Suppression of 
low levels, (b) hard limiting of high levels, (c) restricted dynamic range. 

above processing techniques, we made alterations in the program so 
that it would produce receiver operating characteristic curves for sys­
tems using a square-law detector, and for systems in which an un­
wanted CW component occurred in the specified narrow band in ad­
dition to the one representing a signal. 

The latter case is typical of situations where a large, relatively 
stable, CW component tends to mask the presence of a smaller stable 
signal in the resolved band of a spectrum analyser. The results show 
how effective in such cases is a decision process similar to that de­
scribed in Ref. 1, for detecting a small signal. 

The distortions produced by some of these processes on the detector 
output distributions are so radical that many samples must be aver­
aged to get an adequate Gram-Charlier representation even using up 
to 31 moments, the limit available in the program. Consequently a 
large number (8192) of samples were averaged before deriving the 
Gram-Charlier series from which the receiver operating characteristic 
curves could be produced. We made some checks where it was pos­
sible to produce curves for fewer samples averaged. We marked these 
on the figures; they show only slight deviations from the results ob­
tained by averaging 8192 samples. 

Since the normal distribution becomes a satisfactory approxima­
tion as the number of samples averaged grows large it may be in­
ferred that the degradation caused by nonlinear processes could be 
estimated by averaging enough samples and using the normal ap­
proximation. For some of the processes described here the receiver 
operating characteristic curves for averaging 8192 samples showed 
perceptible variation from the results obtained by a normal approxi­
mation at P FA values' less than 10-4

• Thus, to ensure the validity of 
a normal approximation it might be necessary to average a very large 
number of samples indeed. 

When the results for one of the simulated nonlinear processes were 
plotted on the appropriate chart of Ref. 1, the variation of the degra-
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dation from the average was never found greater than 10 per cent and 
usually within a few per cent. Consequently the average degradation 
shown in the accompanying figures represents a good approximation 
within the range covered by the appropriate chart of Ref. 1. 

Fig. 2 shows the degradation in performance when low output levels 
are suppressed, and when high levels are hard-limited. The position 
at which the levels are truncated is given along the abscissa as a 
multiple of the mean value of the ideal detector output when only 
noise is present (Rayleigh mean). The ordinate gives the change in 
SIN required with the distorting process to give the same performance 
as can be achieved without it. 

Fig. 3 shows the degradation sustained when the dynamic range 
factor of the detector output is 10 (solid line) and 2 (broken line). 
The dynamic range factor is the ratio of the high end of the linear 
range to the low end for a transfer characteristic like that in Fig. 1 (c). 
Fig. 3 also gives the degradation sustained when the output is vir­
tually converted to a binary signal by limiting the dynamic range 
factor to 1.001 (dotted line). The lower truncation point is shown 
on the abscissa and the ordinate gives the degradation in dB. 

III. QUANTIZING 

When a digital computer is used to implement the statistical anal­
ysis of the detector output, it is important to know the maximum 
number of bits that need to be used to encode the output level. Three 
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Fig. 2 - Degradation caused by (a) suppressing low output levels and (b) hard 
limiting high output levels. 
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A=8192, 0=32, INDEPENDENT SAMPLES AVERAGED 
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-- HIGH END/LOW END= 2 

---- HIGH END/ LOW END = 1.00l 

Fig. 3 - Degradation rei"uIting from limited dynamic range. 

bits allows coding into 8 levels, and four bits allows coding into 16 
levels, and so on. If three bits are used, for example, the range of 
possible detector outputs must be divided into 8 regions. The highest 
region will include all levels that would equal or exceed the high end 
of a characteristic such as that in Fig. Ie, and the lowest region will 
include all levels below the low end. The remaining six regions will 
be between the two truncation points. The computer simulation was 
carried out by dividing the detector output in this way and assigning 
the value of the lower limit of any region to all the values in it less 
than the upper limit. 

From Fig. 3 it can be seen that if a dynamic range factor of 10 is 
used and the low end is placed at three tenths of the Rayleigh mean, 
very little degradation in performance is suffered. When this range 
was quantized into 6 equal steps it was found that the total degrada­
tion was only about 0.01 dB more than the value shown in Fig. 3. 

Two other ways of dividing the range into 6 unequal steps were 
tried, but the results were poorer than that for equal steps. In the first 
of these the range between the low end and high end was divided into 
6 intervals in such a way that the change in probability density was 
the same between each. The degradation in performance was about 
0.1 dB greater than that using 6 equal steps. The other way of quan­
tizing the range divided it into 6 intervals of constant change in 
cumulative probability. The degradation in this case was 0.39' dB 
greater than that using 6 equal steps. 

IV. CW INTRUDER 

Fig. 4 shows that the system performance falls off rapidly owing 
to the presence of a OW component as the level of such a component 
increases from -10 dB with respect to the noise in the narrow band. 
The distribution curves corresponding to the no-signal hypothesis in 
this case were those for Gaussian noise plus a OW component at the 
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Fig. 4 - Degradation resulting from added CW signal. 

SIN specified on the abscissa. The curves corresponding to the hypoth­
esis that a signal was present were those for Gaussian noise plus 
a resultant· sine wave component. The power of the resultant equalled 
the power of· the small signal plus the power of a large CW compo­
nent at the level specified on the abscissa. The results thus represent 
the average for all possible phase relationships between the CW 
component and small signal assuming that all phase values are equally 
likely, and many samples of the detector output are averaged. 

V.SQUARE-LA'VDETECTOR 

It was found that satisfactory Gram-Charlier series approxima­
tions to the output distribution of a square-law detector could be 
produced only when a few hundred or more samples were averaged. 
Consequently subprograms were written to compute values for Chi­
square and noncentral Chi-square distributions over the desired ranges 

. of SIN and samples averaged. Using these and the results reported in 
Ref. 1 it was possible to produce the curves shown in Figs. 5, 6, and 7. 
which enable the receivet operating characteristic curves of Ref. 1 
to be used to estimate the performance for a square-law detector 
with quite good accuracy. Fig. 5· compares the performance of linear 
and square-law detectors at· a false:.alarm probability of 10-6 and 
three different detection probabilities 'when the number of samples 
averaged ranges from 1 to 8192. The approximate SIN corresponding 
to a PD , PFA pair is also given over the range of samples averaged. 
Curve 1 in Figs. 6 and 7 compares the detector performance for the 
same SIN as curve 1 in Fig. 5, but when the PFA is 5 X 10-4, and 0.09, 
respectively, and curve 2 in Figs. 6 and 7 do the same for the SIN 
that applies to curve 2 in Fig. 5. 
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Fig. 5 - Comparison of linear and square-law, detectors. SIN (dB) in filter 
bandwidth, for PD = (*), PFA = 10-6

• 

VI. CONCLUSION 

vVe have given curves which show that the sensitivity for detecting 
small signals using an envelope detector is degraded when any of 
several common kinds of nonlinear processes occur between the detec­
tor output and the averager used prior to the decision threshold. 
When only one sample of the detector output is used to form a deci­
sion, the system will be oblivious to the presence of the nonlinear 
process as long as the decision threshold lies within the linear range. 
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Fig. 7 - Comparison of linear and square-law detectors, PFA = 0.09. 

The system performance in such a case is thus restricted to threshold 
variations within this range. 

It is interesting that J. V. Harrington has analyzed the detection 
of repeated signals in noise using binary integration.2 The system he 
assumed corresponds closely to the one discussed here for which Fig. 
3 shows the results. Harrington deduced that the optimum position 
for the quantizing threshold was about 1.44 times the Rayleigh mean, 
in which case binary integration would give results 0.77 dB poorer 
than if ideal processing with a linear detector had been used. These 
numbers are in excellent agreement with the minimum degradation 
condition shown in Fig. 3. 

We have shown that the presence of an unwanted CW signal, even 
-10 dB with respect to the narrow-band noise, causes some degrada­
tion of the sensitivity for detecting small CW signals, and the degrada­
tion increases rapidly as the level of the unwanted component rises 
from there. 

Computation shows that there is little performance difference to 
be expected from the use of envelope or square-law detectors. Envelope 
detectors would thus seem preferable in view of their greater simpli­
city, especially when a considerable dynamic range is to be covered. 
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Phase Principle for Measuring 
Location or Spectral Shape of 

a Discrete Radio Source 
By A. J. RAINAL 

(Manuscript received May 19, 1967) 

This paper describes a phase principle for measuring the location or 
the spectral shape of a discrete radio source. The phase principle is relatively 
simple to implement and leads to a measurement of location or spectral 
shape which is insensitive to receiver gain fluctuations. For measuring 
the location of a weak, discrete radio source, the theoretical accuracy is 
slightly better than the theoretical accuracy resulting from the Ryle inter­
ferometer. For measuring the spectral shape of a weak, discrete radio 
source, the theoretical accuracy is slightly better than the theoretical ac­
curacy resulting from either the Ryle interferometer or the Dicke radiometer. 
Furthermore, the implementation of the phase principle doesn't require 
input switching. Also, the calibration curve associated with the phase 
principle is independent of changes in the average receiver gains of the 
two receivers. 

I. INTRODUCTION 

In many branches of science and technology observations of a dis­
crete radio source provide fundamental knowledge. In the field of 
radar the illuminated target serves as the discrete radio source. In the 
field of space exploration the radio transmitter on-board the space 
vehicle serves as the discrete radio source. In the field of radio astro­
nomy the "radio star" serves as the discrete radio source. 

The "radio star" is a remarkable example of a discrete radio source. 
In the past twenty years radio astronomers have discovered that na­
ture provided many discrete radio sources or radio stars at certain 
locations in the sky. What are the locations of these radio stars? What 
is the power spectrum of the observed radiation from a particular 
radio star? Answers to such questions are of fundamental importance 
in the field of radio astronomy.1 

415 
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In order to measure relatively small values of radiated power from 
a discrete radio source, one must compete with the inevitable back­
ground noise and the inevitable radio receiver noise. It is well known 
that one requires a method of measurement which is relatively in­
sensitive to receiver gain fluctuations. The papers by Dicke2 and 
Ryle3 discuss this important point in more detail. In fact, the present 
day method for measuring relatively small values of radiated power 
from a discrete radio source makes use of some form of the Dicke2 

radiometer or the Ryle3 interferometer. 
The purpose of this paper is to describe a phase principle for meas­

uring the location or the spectral shape of a discrete radio source. We 
shall see that the phase principle is relatively simple to implement 
and leads to a measurement of location or spectral shape which is 
insensitive to receiver gain fluctuations. For measuring the location 
or spectral shape of a weak, discrete radio source, we shall see that the 
theoretical accuracy associated with the phase principle is slightly 
better than the theoretical accuracy associated with the Dicke radi­
ometer or the Ryle interferometer. We shall also see that for measur­
ing the location or spectral shape of a weak, discrete radio source 
using only phase information, the accuracy associated with the phase 
principle is essentially equal to the accuracy associated with the maxi­
mum likelihood principle. 

II. MEASUREMENTS BASED ON THE PHASE PRINCIPLE 

2.1 Implementation 

Fig. 1 illustrates a simplified implementation of the phase principle 
for measuring the location or spectral shape of a discrete radio source. 
Set), N1(t), and N 2 (t) represent zero mean, independent, narrow-band, 
stationary Gaussian processes. N1(t) and N 2 (t) each represent the sum 
of background noise plus receiver noise. N1(t) and N 2 (t) are assumed 
to have equal variances. The spacing, d, between the two antennas is 
many wavelengths in order that N 1 (t) and N 2 (t)' can be considered as 
independent processes. Set - llt) and Set + llt) are due to the presence 
of a discrete radio source located at a small angle e with respect to 
boresight. We assume that the receivers preserve the phase difference 
between the antenna excitations. 

Set - llt) + N1(t) and Set + llt) + N 2 (t) represent the outputs 
of the two receivers. 'YJi represents the ith independent sample of the 
phase difference between S (t - llt) + N 1 (t) and S (t + llt) + N 2 (t) . 
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Fig. 1-Simplified implementation of a phase principle for measuring location 
or spectral shape of a discrete radio source. 'When source is located at d sin (J = 
Aj4, 'l]t == O. When source is located at (J = 0, receivers scan in frequency and 'l]t 
traces out a measure of spectral shape. 

'YJi is taken to be in the primary interval (-7r, 7r). After n such samples 
the output 1Jt is given by 

where 

1 n 
'YI t = - ~ cos 'YI; , '/ n6 'I. 

n = Br 
B = IF bandwidth 
r = observation time. 

(1) 

We shall assume that n is relatively large like n ~ 10\ since we are 
primarily interested in observing relatively weak, discrete radio sources. 

Fig. 2 illustrates a relatively simple method for generating 1Jt from 
the inputs Set - !J.t) + N1(t) and Set + !J.t) + N 2(t). Rl , Wo , and ()l 

represent the envelope, IF angular frequency, and phase angle, respec-

/"'12 cos[wot+oJ 
/ 

\ 

' ..... w cos [Wot +82] 

Fig. 2 - A method for generating 'l]t from the inputs S(t-l1t)+Nl(t) and 
S(t+l1t) +N2(t). The band-pass limiters remove all amplitude information. 
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tively, of the narrow-band Gaussian process Set - ~t) + Nl(t). Sim­
ilarly, R 2 , Wo, and 82 represent the envelope, IF angular frequency, 
and phase angle respectively of the narrow-band Gaussian process 
Set + ~t) + N 2 (t). The band-pass limiters shown in Fig. 2 are well­
known devices for removing all amplitude information and preserving 
the phase information as is indicated in Fig. 2. See Davenport and 
Root4 for a discussion of the band-pass limiter. 

As indicated in Fig. 2, if one takes the product of V2 cos (wot + 81) 

and V2 cos (wot + 82) and passes the result through a suitable low­
pass filter the result is cos (82 - 81) == cos f](t). By taking the average 
of this result, one can generate f]t. 

This method of generating f]t can also be used to help implement 
the phase principle described in Ref. 5 in order to detect the presence 
of a discrete radio source located at 8 = O. 

Fig. 2 indicates clearly that f]t is independent of receiver gain fluctua­
tions or changes in the average receiver gain of each receiver. Also, 
the two receivers need not have the same average gain. Thus, an 
unusually long observation time T is advantageous when using the 
phase principle. 

Notice that if the band-pass limiters in Fig. 2 are shorted out, we 
have the well-known correlator configuration.6

•
7

•
8

•
9 

We shall now show that a measurement of f]t leads to a measurement 
of location or spectral shape of the discrete radio source. 

2.2 Statistical Properties of f]i 

In order to simplify the analysis, we shall always assume that the 
discrete radio source is at a small angle 8 with respect to boresight. 
To begin, we shall state some known statistical properties of the angle f]i • 

Equation (34) of Ref. 10 gives the probability density P2(f]) of each 
independent sample f]i as 

p,(~) = L;:. I' (J - I>;)-{I>, sin -, 1>, + "g' + V~ Ii; ] ' (2) 

where 

fJ2 = l cos (f] - f]o) 

l=_a_ 
1 + a 

VarS(t) 
a= Var NI(t) 

Var Set) 
Var N 2(t) 
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Var = Variance 

rJo/2 = ~ d sin () = Wo tlt 

7r . -1 (3 < 7r -2 ~ sm 2 = 2· 

The Fourier series development of (2) follows from Middleton'sll 
equation (9.33) 

1 1 ~ lnr\n/2 + 1) (n n 2) 
P2(rJ) = 2- + - L.J , 2Fl -2 '-2 ; n + 1; l cosn(rJ - rJo), 

7r 7r n=1 n. 
(3) 

where 2Fl is the Gaussian hypergeometric function 

F ( (3. . ) = 1 + a(3 + a(a + 1)(3«(3 + 1) X2 + 
2 1 a, , 'Y, x - 'Y X 'Y('Y + 1) 2! 

and r is the gamma function. 
The expectations E cos rJi and E cos2 rJi follow from (3) 

(4) 

(5) 

We shall see that the phase principle for measuring location or spectral 
shape of a discrete radio source is based on (4). Equation (4) should 
be compared with (4) of Ryle,3 the equation which characterizes the 
output of a Ryle interferometer. Both equations are proportional 
to cos rJo • 

2.3 Measurement of Location 

Let us first consider the problem of measuring the location of a 
discrete radio source whose true location is some small positive angle (J. 

From (4) we see that E cos 1]i = 0 when 1]0 = 7r/2 or d sin (J = )",/4. 
This suggests that we observe 1]t and conclude that d sin (J = )",/4 
when 1]t == O. How accurately can we form an estimate 8 of () in this 
manner? 

For 1]0 near 7r /2 let the estimate ~o of rJo be determined from the 
linear equation 

t 7r l F (1 1 2 -l2) (7r A ) rJ ="4 2 1"2,"2;; 2 - 1]0 • (6) 
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Thus, 

Var ~. = (2"-)'(~)' Varfi = [var ~tJ[ (~I)'F'(!, t; 2; I') r (7) 

or, in a more suitable form, 

( ad)2 V- A 4 ( )2(E 2 ) F-2(1 1.2. l2) n ~ ar e = 7r4 1 + a cos 'YJi 2 i 1 2, 2" , (8) 

where E cos2 
'YJi is given by (5) with 'YJo = 7r /2. Equation (8) char­

acterizes the theoretical accuracy associated with the phase principle 
for measuring the location of a discrete radio source and is plotted in 
Fig. 3. 

2.4 Measurement of Spectral Shape 

Now let us consider the problem of measuring the spectral shape 
of a discrete radio source located at e = o. We shall assume that the 
variances of the background noises and receiver noises are invariant 
over the frequency region of interest. Under these conditions the esti­
mate a of the signal-to-noise power ratio "a" can serve as an estimate 
of spectral shape by using the well-known frequency scan technique 
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Fig. 3 - Theoretical accuracies of Ryle interferometer, phase principle, and 
maximum likelihood principle (using only phase information) for measuring 
the angular location of a discrete radio source. 
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indicated in Fig. 1. How accurately can we form an estimate a of "a" 
in this manner? 

Equation (4) with () = 0 or 1]0 = 0 defines "a" as an implicit func­
tion of E cos 1]i which we shall indicate by 

a = H(E cos 1]i)' (9) 

Equation (9) suggests that we form an estimate a of "a" from the 
equation 

(10) 

A plot of (10) is presented in Fig. 4. This figure can be considered as a 
theoretical calibration curve. Notice that the theoretical calibration 
curve is independent of changes in the average receiver gain of each 
receiver. This is indeed unusual. One measures 1]t and reports the cor­
responding value of a. Assuming that Var N I and Var N 2 are invariant 
with frequency over the frequency range of interest, a will then trace 
out the spectral shape of the discrete radio source as the receivers scan 
in frequency. We shall now characterize the accuracy of the estimate a. 

For large n, the only case of interest in this paper, Cramer'sI2 work 
shows that the estimate a is characterized, approximately, by a Gaus-

~1.2 
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<<0 0.8 

0.4 

0.24 0.32 0.40 0.48 0.56 
1]t 

Fig. 4 - The theoretical calibration curve associated with the phase principle 
for measuring spectral shape of a discrete radio source. The receivers scan in 
frequency and a traces out the spectral shape. 
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sian probability density having the following expectation and variance: 

Ed = H(E cos 1]i) + O(n-l) == a 

Var d = Hi Var 1]t + O(n-i) == Hi Var 1]t, 

where 

HI dd I [dE cos 1Ji I J-I 
= d1] t E cos 'Ii = da 0 

- 4(1 + a)2 [f F (.i!. .;t. 3· l2) + F (.1 1.·2· l2)J-I - 7r 4 2 12,2" 2 1 2, 2, , 

(11) 

(12) 

This last result follows by differentiating (4) with respect to "a", 
setting 1]0 = 0, and then taking its reciprocal. Equation (11) implies 
that the estimate d is essentially unbiased for large n. 

From (12) and (1) we have 

n Var d == Hi(E cos2 1]i - E2 cos 'Y/i), (13) 

where E cos 1]i and E cos2 
1]i are given by (4) and (5) with 1]0 = o. 

Equation (13) characterizes the theoretical accuracy associated with 
the phase principle for measuring the signal-to-noise power ratio "a" 
or the spectral shape of the discrete radio source and is plotted in Fig. 5. 

III. MEASUREMENTS BASED ON THE RYLE INTERFEROMETER OR DICKE 

RADIOMETER 

3.1 Measurement of Location 

When 8 is small and 1]0 = 7r /2 or d sin 8 = A/4, the theoretical ac­
curacy associated with the Ryle interferometer for measuring the 
location of the discrete radio source was derived by Manasse.13 In 
our notation Manasse's13 (60) becomes 

n(~dr Var e = (27r)-2(1 + a)2. (14) 

Equation (14) characterizes the theoretical accuracy associated with 
the Ryle interferometer for measuring the location of the discrete radio 
source and is plotted in Fig. 3. 

3.2 Measurement of Spectral Shape 

One can measure the spectral shape of the discrete radio source 
located at 0 = 0 by using the Ryle3 interferometer or the Dicke2 radi-
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Fig. 5 - Theoretical accuracies of Ryle interferometer, Dicke radiometer, phase 
principle, and maximum likelihood principle (using only phase information) for 
measuring the spectral shape of a discrete radio source. Both the Ryle inter­
ferometer and the Dicke radiometer require some amplitude information. 

ometer. In fact, these methods are at present the accepted methods. 
We shall go on to characterize the accuracy associated with these 
methods of measuring spectral shape. 

In order to simplify the notation of this section, let P, = Var Set) 
and P N = Var N 1(t) = Var N 2 (t). Then, 

p. d a = - an PN 

~ P. a =-. 
PN 

(15) 

P, denotes the unbiased estimate of p. and PN is regarded as a param­
eter. 

The Ryle3 interferometer utilizes a phase reversing switch to produce, 
periodically, the following inputs to a square-law detector 

or 

2S(t) + N 1(t) + N 2(t) 
2 

(16) 

(17) 
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Thus, using some of Rice's14 results, the mean values at the output 
of the square-law detectors are, periodically, 

or 

P N • 

2 

(18) 

(19) 

The difference in the outputs of the square-law detector is taken as 
the unbiased estimate P • . Thus, EP. = p. , and EO, = a. 

Also, using some of Rice's14 results, the variances at the output of 
the square-law detector are, periodically, 

or 

[2P. + P N]2 
4 (n/2) 

[PN ] 
2 

4(n/2) . 

(20) 

(21) 

The factor n/2 appears because the output is in either position only 
one half of the time. Since the difference in the outputs of the square­
law detector is taken as the unbiased estimate P., the variance of 
p. is given by the sum of expressions (20) and (21): 

Var p. = [2P s + P N]2 + [PN]2 (22) 
2n 

or 

n Var a = nP-;/ Var p. = 2a2 + 2a + 1. (23) 

Notice that the Ryle interferometer can be considered as a Dicke2 radi­
ometer switching between the two inputs given by expressions (16) 
and (17). Thus, (23) characterizes the accuracy of both the Ryle 
interferometer and the Dicke radiometer for measuring the spectral 
shape of the discrete radio source. Equation (23) is plotted in Fig. 5. 

IV. MEASUREMENTS BASED ON THE MAXIMUM LIKELIHOOD PRINCIPLE 

USING ONLY PHASE INFORMATION 

4.1 Measurement of Location 

If one uses the maximum likelihood principle12 to process a large 
number n of independent samples of the phase difference 'YJ. in order 
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to estimate the location of the discrete radio source when 1]0 

or d sin () = 'A/4, one finds 

(ad)2 V ~ n 2 A 

n ~ ar () = (27r)2 a Val' rJo 

1 {f" [1 (1 ap2)2J }-l 
= (27r)2 -7r P'2 -;;, arJ8 7r/2 d1] , 

425 

7r/2 

(24) 

where P2 is given by (2) and the integrand of the integral in equation 
(24) is to be evaluated at rJo = 7r 12. For various values of "a", the 
definite integral appearing in (24) was evaluated numerically by using 
a digital computer and Simpson's rule. The resulting curve is plotted 
in Fig. 3. Incidentally, this curve applies for all values of 1]0 • 

As a ~ 0 we find that (8) and (24) both yield 

I· [(ad)2 ~J 2. a~~ n ~ Val' () = 7r4 = 0.02053. (25) 

Thus, as a ~ 0, the phase principle and the maximum likelihood 
principle using only phase information are essentially equivalent. 

4.2 Measurement of Spectral Shape 

If one uses the maximum likelihood principle12 to process a large 
number n of independent samples of the phase difference 1]i in order to 
estimate the signal-to-noise power ratio "a" or the spectral shape of a 
discrete radio source when () = 0, one finds 

{ 1" 1 [a J2 }-l 
n Var a = 2 0 P2 a~2 drJ , (26) 

where P2 is given by equation (2) with 1]0 = o. For various values of 
"a", the definite integral appearing in (26) was evaluated numerically 
by using a digital computer and Simpson's rule. The resulting curve 
is plotted in Fig. 5. This curve also applies for all values of 1]0 • 

As a ~ 0 we find that (13) and (26) both yield 

lim [n Val' a] = 82 == 0.81057. (27) 
a-O 7r 

Thus, as a ~ 0 the phase principle and the maximum likelihood principle 
using only phase information are essentially equivalent. 
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V. COMPARISONS OF THEORETICAL ACCURACIES 

5.1 Measurements of Location 

When using the Ryle interferometer to measure the location of a 
weak, discrete radio source located at d sin (J = A/4, we have, from (14), 

. [(ad)2 A] 1 . IL~ n ~ Var (j = (27r)2 = 0.02533. (28) 

Whereas, when using the phase principle or the maximum likelihood 
principle to measure the location, we have, from (25), 

I· [(ad)2 V A] 2. L~ n T ar (j = 7r4 = 0.02053. (29) 

Thus, the phase principle and the maximum likelihood principle are 
essentially equivalent, and they are both slightly more accurate than 
the Ryle interferometer. 

See Fig. 3 for a comparison of the theoretical accuracies at other 
values of "a". 

5.2 Measurements of Spectral Shape 

When using the Ryle interferometer or the Dicke radiometer to 
measure the signal-to-noise power ratio "a" or the spectral shape of a 
weak, discrete radio source located at () = 0, we have, from (23), 

lim [n Var a] = 1. (30) 

Whereas, when using the phase principle or the maximum likelihood 
principle to measure the signal-to-noise power ratio "a" or the spectral 
shape, we have, from (27), 

lim [nVara] = 82 == 0.81057. (31) 
a~O 7r 

Again, the phase principle and the maximum likelihood principle are 
essentially equivalent, and they are both slightly more accurate than 
either the Ryle interferometer or the Dicke radiometer. 

See Fig. 5 for a comparison of the theoretical accuracies at other 
values of "a". 

For values of "a" away from zero, Fig. 5 shows that the Ryle inter­
ferometer or Dicke radiometer are more accurate than the maximum 
likelihood principle using only phase information. Thus, one must 
conclude that the Ryle interferometer or the Dicke radiometer require 
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some amplitude information. Consequently, their accuracy is subject 
to deterioration by gain variations. 

Notice that (29) divided by (28) equals 8/1r2
, and (31) divided by 

(30) also equals 8/7r2
• Thus, for measuring the location or the spec­

tral shape of a weak, discrete radio source, Var e and Var a associated 
with the phase principle are lower, by the same factor 8/rr2, than the 
corresponding variances associated with the Ryle interferometer. 

VI. CONCLUSIONS 

For measuring the location or the spectral shape of a discrete radio 
source, the phase principle leads to a measurement which is insensitive 
to receiver gain fluctuations. 

For measuring the location or the spectral shape of a weak, discrete 
radio source, the accuracy associated with the phase principle is 
slightly better than the accuracy associated with the Ryle interferom­
eter or the Dicke radiometer. Also, the accuracy associated with the 
phase principle is essentially equal to the accuracy associated with 
the maximum likelihood principle using only phase information. 

The phase principle is relatively simple to implement, and the im­
plementation doesn't require input switching. 

The calibration curve associated with the phase principle is inde­
pendent of changes in the average receiver gain of each receiver. The 
two receivers need not have the same average gain. 

An unusually long observation time is advantageous when using the 
phase principle. 

For measuring spectral shape, both the Ryle interferometer and the 
Dicke radiometer require some amplitude information. Consequently, 
their accuracy is subject to deterioration by gain variations. 
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SOllIe COIIsiderations' 'of Broadband 
Noise Performance of Optical 

Heterodyne Receivers 

By v. K. PRABHU 

(Manuscript received September 8, 1967) 

We derive an explicit expression in this paper for the spot noise factor 
of a perfectly aligned optical heterodyne receiver consisting of a semicon­
ductor photodiode followed by an IF amplifier. We show that this noise 
factor F R , which is a function of the admittance of the diode, varies as a 
function of the modulation frequency. We obtain constraints imposed by 
the photodiode on the broadband noise performance of the optical receiver 
for any arbitrary lossless interstage network. The integral form of the 
constraint shows that the noise factor F R cannot be made equal to its optimum 
value FRo over any nonzero band of frequencies. We give explicit expressions 
for the amount of tolerance of broadband noise performance obtained with 
lossless interstage networks. We show that for certain types of approxima­
tions, and for a certain transistor IF amplifier usually used in practice, 
the interstage network which achieves broadband signal performance for 
the receiver also obtains broadband noise performance. The theory of 
broadband noise performance we present for optical heterodyne receivers 
can also be applied to the study of broadband noise performance of other 
linear systems normally encountered in practice. 

I. INTRODUCTION 

Semiconductor photo diodes like Schottky barrier diodes or con­
ventional p-n or p-i-n diodes are increasingly being used for detec­
tion in optical heterodyne (double detection) receivers.1

-
12 They nor­

mally are fast and efficient, converting up to 70 per cent of the photons 
of the light beam into photoelectric current.ll Because of the intensity 
of the light beam, almost, all photodiodes used in optical detection 
give an output proportional to the intensity of light.l However, this 
output is normally so small that further amplification is required, and 

429 
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so any practical receiver consists of a photodiode followed by a high­
gain low-noise IF amplifier. 

We have already considered in detail the signal performance of such 
receivers.13 In this paper we shall deal only with the noise performance 
of the receiver. The output of the diode is usually corrupted by noise 
generated within the diode and elsewhere in the system. We discuss 
briefly the characteristics of the photodiode in Section II and give its 
equivalent circuit. In Section III we discuss the noise performance of 
the IF amplifier and show that its noise factor is a function of its 
source admittance.14 We show that the noise factor FR of the optical 
receiver is a function of frequency in spite of the fact that the IF 
amplifier has a broadband noise performance characteristic. 

In Section IV we discuss the role of the lossless interstage network 
in achieving broadband noise performance of the optical receiver and 
show that it is impossible to make the noise factor FR equal to its 
optimum value FRO over any nonzero band of frequencies. 

Section V shows that Butterworth and Chebyshev approximations 
to FR are realizable, and we obtain the tolerance of broadband noise 
performance for these approximations. We show that, for the photo­
diodes normally encountered in practice, this tolerance .f.2 is a monoton­
ically increasing function of the complexity of the interstage net­
work but decreasing for Chebyshev approximations. 

We show in Section VI that to obtain broadband signal and noise 
performance characteristics from the optical receiver two separate 
lossless interstage networks are necessary. However, we also show 
that for certain types of approximations and for a certain transistor 
IF amplifier, the interstage network which achieves broadband signal 
performance also obtains broadband noise performance for the opti­
cal receiver. 

The theory of broadband noise performance presented in this paper 
for an optical heterodyne receiver can also be applied to obtain broad­
band noise performance of other linear systems normally encountered 
in practice. 

II. AVAILABLE SIGNAL AND NOISE OUTPUT POWERS 

Fig. 1 shows the optical heterodyne receiver that we discuss. It 
consists of a photodiode followed by a lossless interstage network, and 
an IF amplifier of center frequency no and a semibandwidth W. t The 

t The amplifier may, depending on the frequency of modulation, use vacuum 
tubes, transistors, masers, parametric amplifiers, tunnel diodes, or other active 
devices. 
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Fig. 1-A double detection optical receiver. The input to the photo detector 
is the sum of the local oscillator beam and the incoming signal beam. 

geometrical center frequency Wo of the IF amplifier is defined as 

Wo = {(no - w)(no + w)} 1/2. (1) 

The available gain Go of the IF amplifier and its optimum noise factor 
Fo are assumed to be independent of the frequency w for no - W ~ 
w ~ no + W.t 

In this paper we shall not consider any effects on the noise per­
formance of the optical receiver of beam misalignment, nonuniformity 
of the surface of the diode, or distortion from transmission through 
a nonhomogeneous atmosphere.20 Because background noise has been 
shown to be of almost negligible consideration, we shall assume that 
this noise has no effect on the broadband noise performance of the 
optical receiver.21, 22 

The diode is normally so arranged that the junction or portions 
of it close to the junction are illuminated by the sum of the local 
oscillator beam and the incoming signal beam. The electron-hole 
pairs thus created by the incoming photons give rise to a small signal 
current.1 In operation, a reverse bias Vo is put on the diode, and the 
characteristics of the device12 for small excursions around Vo are that 
of a signal current generator 18 , and a direct current generator 10 , in 
parallel with a capacitance C (Vo), and this combination in series with 
a parasitic series resistance R (Vo). 

The time-average current 10 is caused both by the time-average 
illumination and by the electrons and holes that are generated at or 
near the junction. The signal current 18 is caused by that portion of 
the illumination at or near the signal frequency of interest. In general, 
C (Vo) and R (Vo) are functions of the bias voltage. Assuming that, 
in practical cases, the excursions around the bias point are small, we 
shall henceforth assume that C(Vo) is a constant capacitance C, and 
the series resistance R (Vo) is a constant resistance R. 

t Since Go and Fo are real and even functions of w, we shall only consider w ~ O. 
The case in which Gal and Bol are functions of frequency w is very complicated and 
will not be discussed in this paper. 
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To account for any thermal noise generated in the photodiode, we 
use an equivalent noise-voltage generator en with mean-squared valuet 

M = 4kTdR !:of, (2) 

where Td is the temperature of the diode, k is Boltzmann's constant, 
and Ai is the spot frequency band about which we are concerned. In 
addition, there is another source of noise, shot noise, present in the 
photodiode. This can be accounted for12 by placing in parallel with Is 
and 10 a shot noise current generator in with mean-squared value 

(3) 

where q is the electronic charge, and f(wr) is a transit time reduction 
factor, r being some effective transit time. We assume in this paper 
that f(wr) which always satisfies the inequality 

I f(wr) I ~ 1, (4) 

can be considered independent of w in Qo - TV ~ w ~ Qo + W, and that 

I f(wr) I = 1. (5) 

The equivalent circuit of the photo diode which describes its terminal 
signal and noise characteristics is shown in Fig. 2. This equivalent 

R en 

fc~ 
Y(p) 

Fig. 2-Equivalent circuit of photodiode. The physical sources of noise that are 
present in the diode are also shown. The conductance Gp which appears in parallel 
with C is usually so small (around 10-7 mho) that it can be neglected for all practical 
purposes if w » o. 

circuit very well describes the behavior of the diode provided the lowest 
frequency of the signal occurring in the system is very far from zero, 
or w» o. 

The peak photoelectric current 1. , and dc current 10 for a double 
detection optical receiver can be shown to be given by23,24 

21}q _ r;:;n-
13 = Tv v pop. , 

t The horizontal bar denotes an average. 

(6) 
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and 

10 = ,'Y]q (Po + p.), 
lV 

(7) 

where TJ is the quantum efficiency of the photodiode,t h is Planck's 
constant, v is the optical frequency, Ps is the signal power, and Po is 
the local oscillator power.t 

The available signal and noise powers are easily determined from 
Fig. 2. The signal available power S~d and noise available power N pd 
can be written as§ 

(8) 

and 

N 1 en 12 + 1 in 12 . 
pd = 4R 4w2C2R (9) 

An important quantity that characterizes the noise performance of 
the photo diode is its signal-to-noise ratio Spd/Np(l. According to equa.:. 
tions 2,3, and 5 through 9, this is given byIT 

where 

1 
We = RC· 

(10) 

(11) 

The signal-to-noise ratio at the input to the diode will be defined 
as the best possible signal-to-noise ratio which an ideal detector could 

t A quantum efficiency of greater than 70% has been obtained [11] for Schottky 
barrier photo diodes. 

t In practice, a fraction k ~ 1 of incident photons are absorbed in the active 
region of the diode. To account for this effect, I. and 10 are usually multiplied by a 
factor k. We assume that k = 1. 18 is also usually multiplied by a reduction factor 
similar to the shot-noise function, !(WT), determined by the signalJrequency, optical 
wavelength, and device construction. We assume that this factor is unity. 

To account for any mismatch between the local oscillator beam and signal beam, 
18 and 10 are also multiplied by a beam matching factor ~ where ~ ~ 1. We assume 
that ~ = 1. 

§ We can argue from the physics of the diode that the shot noise source and 
thermal noise source shown in Fig. Z are uncorrelated. 

~ We can assume that Po» p. , so that Po + P. ~ Po. 
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achieve. This can be shown to be given byt 

(12) 

III. IF AMPLIFIER NOISE FACTOR 

The terminal characteristics of any IF amplifier used in the optical 
receiver (see Figs. 3 and 4) can normally be described by 

[I,] = [Yn Y'IV'J + [n;,] (13) 
12 Y21 Y22 V2 ni2 

I, 12 
+ + 

V, n· t SOURCE-FREE tn. V2 1.1 TWO PORT 1.2 

Fig. 3 - Separation of twoport with internal noise sources into a source-free 
twoport. 

or 

[
VI
J 

[A Bl[:2 J + [n.] 
11 C DJ 12 n i 

(14) 

where nil and 'ni2, or nv and ni characterize all physical sources of 
noise present in the IF amplifier.14 we assume that the IF amplifier 
has ideal broadband signal and noise performance characteristics and 
that the amplifier remains stable for all linear passive input and out­
put terminations.26- 28 

By definition, the spot noise factor at a specified frequency of any 
linear twoport network (such as an IF amplifier) is given by the ratio 
of the total output noise power per unit bandwidth exchangeable* at 
the output port to that portion of that power which is engendered by 
the input termination at the standard temperature To.H To derive 

t Ref. 25 shows that it is impossible to measure amplitude and phase of an 
incoming optical signal with a better signal-to-noise ratio than given by equa­
tion 12. 

:j: Exchangeable power, exchangeable gain, etc. coincide29 with available power 
and available gain when the output impedance of the amplifier is positive-real. 
They are the logical generalizations of the available power and available gain 
when the output impedance has a negative-real part. Since the amplifier is 
assumed to be absolutely stable, we may substitute the word "available" for the 
word "exchangeable" wherever it appears in this paper. 
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the noise factor of the IF amplifier we are considering, let us connect 
the amplifier to a statistical source comprising an internal admittance 
Y s , and a noise current generator Ins (see Fig. 5). It can be shown 
easily that the noise factor F is given by 

F = 1 + Ini +n~Y.12. 
1 In. 12 

(15) 

We notice that the mean-square source noise current is related to the 
source conductance Gs by the Nyquist formula 

T"J:1 = 4kT oG 8 Llf· (16) 

Also, we can express the noise voltage fluctuation 1 n. 12 in terms of 
an equivalent noise resistance Rn as 

(17) 

+ C?-_I ... 1_..:..{+ 

Fig. 4 - The Rothe-Dahlke noise model for a linear twoport network. 

and the noise current fluctuation 1 ni 12 can be expressed in terms of 
an equivalent noise conductance Gil, where 

Let us also write 

n.nr = 4kTopVRnGu Llf, 
where p is a complex number. It can be shown that 

1 P 1 ~ 1. 

(18) 

(19) 

(20) 

From equations 15 through 19, the formula for the noise factor be­
comes§ 

F = 1 + Gil, + 2VRJI,. {G. Re p - B. 1m p} + (G; + B;)Rn. (21) 
G. 

As we can see from equation 21, the noise factor F is a function of 
the source conductance Gs and also of its susceptance Bs. We can 

§ Re a and 1m a denote the real and imaginary parts, respectively, of the 
complex number a. 
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show that F attains its optimum valuen 

for a certain source admittance Yof = Gof + jEof where 

(23) 

and 

Eo! = VM.r R m p. 
n 

(24) 

en 

Ins 6 C$J ~-lntQ ~ S~~~~~R~EE I : 

Fig. 5 - Network for noise factor computation. 

Using equations 21 through 24 (see Ref. 14), we can show that F can 
be written in the formt 

R 
F = Fo + G: 1 Y. - Yo! 1\ (25) 

where the value of Rn is as given in equation 17. 
Let Y2 (p) be the admittance of the photodiode as seen by the IF 

amplifier (see Fig. 1). We shall now compute the over-all signal-to­
noise ratio for the optical receiver, and its overall noise factor FR. In 
defining F R, we shall use the concept of noise factor as originally in­
traduced by Friis and Franz.31 This noise factor Fn is defined as 

FR = (S/N)in 
(S/N)out ' 

(26) 

where (S/N)in and (S/N)out are the input and output exchangeable 
signal-to-noise power ratios of the optical receiver. From equations 
10, 12, and 26 we can write 

~ It can be shown that Re p + [1-(Im p)2J1!2 is always a nonnegative quantity. 
t It can be shown (see Ref. 30) that equation 25 can also be written in the 

form (G,-Gor )2 + (B.-Bor)2 = F2p where Gar, B or , and Fp can be determined 
from Equations 21-25. 



OPTICAL HErrERODYNE RECEIVERS 437 

(SIN)out 

_ YIP. 1 

- hv b.f 1 + 2kTo 1 (~)2{Fo + _~ 1 Y2 _ yo! 12 + Td ~ To} , 
q10 R We Re Y 2 

(27) 

nnd 

FR = .! [1 + 2kTo 1 (~)2 
YI q10 R We 

.{Fo + R!'y, [ Y, - Yo! [' + T, ~ Ton (28) 

We now note from equations 27 and 28 that (8IN)out and FR are 
functions of the frequency of the detected signal, and for ¥2 = yO!, 
(81 N) out, and F R attain their optimum values (81 N) 0 and FRO where 

(29) 

and 

FRO = .! [1 + 2kTo 1 (~)2{Fo + Td - To}]. (30) 
YI q10 R We To 

If optimum noise performance of the heterodyne receiver at a finite 
number of signal frequencies is desired, it can be shown16 that suitable 
lossless interstage networks can be designed so that (SIN) 0 in equa­
tion 29 and FRo in Equation 30 can be realized at the respective signal 
frequencies. If the band of frequencies of interest is continuous and 
nonzero, it can be shown that we cannot make FR equal to FRo over 
the whole band.15,16 The question arises whether there are any con­
straints to be satisfied by FR , imposed by the diode or any other com­
ponents of the system, and what loss less interstage networks must be 
used to make FR as close to FRo as possible. We shall discuss these two 
topics in the rest of this paper. 

IV. DERIVATION OF INTEGRAL CONSTRAINTSt 

We shall use the results obtained in the theory of broadband match­
ing of linear systemsl3

• 13-19 to derive the expressions which relate 

t The methods of derivation of most of the results in this section are very 
similar to those in Ref. 13. 
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the noise factor of the optical heterodyne receiver to other parameters 
of the system. The integral relation shows that it is impossible to 
make F R equal to FRO over any nonzero band of frequencies. Since 
the IF amplifier is assumed to have ideal broadband signal and 
noise performance characteristics, it follows that Fo and Yo! are inde­
pendent of frequency w for no - W ~ w ~ no + w.t It algo follows 
that Bol = O.§ Without any loss of generality we shall normalize all 
admittances with respect to Go! . 

Let us look at Fig. 6 and define two reflection coefficients PI (p) and 

+ II 

LOSSLESS 
INTERSTAGE 

NETWORK 

Fig. 6 - Lossless interstage network used in equalizing the noise perform­
ance of the optical receiver. Y(p) is the admittance of the photodiode as 
shown in Fig. 2. 

P2(P), and an all-pass function (3(p) where 

Y 1(p) - Y( -p) 
Y 1(p) + yep) , 

Y 2(p) - 1 
Y 2(p) + 1 ' 

lI
m p - a r 

(3(p) = r-l P + a-:- ' 

(31) 

(32) 

(33) 

and p = (j + jw is the complex frequency variable. yep) is the admit­
tance of the photodiode as seen by the lossless interstage network, 
and al , a2, ... , am are the poles of Y( -p) in Re p > O. Since the 
interstage network is 10ssless,33 it can be shown that 

1 PI(jW) 1 = 1 P2(jW) I· 
Also from Equations 25, 32, and 34 

1 1 = 1 + 4RnG 01 • 

1 Pl(jw) 12 = 1 P2(jW) 12 F - Fo 

(34) 

(35) 

:j: The study of the case in which F 0 and Yo! may be functions of frequency 
is very, complicated and beyond the scope of this paper. 

§ For any realizable admittance Yo! I BOf(W) must be an odd function of w. 
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From equations 31 and 33, we can also write 

yep) + Y( -p) 
(1(p) {l - PI(P)} = (1(p) YI(p) + yep) . 
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(36) 

Equation 36 shows that regardless of the lossless interstage net­
work used in the receiver, every zero of y (p) = -~ [1 + Y ( -p) /Y (p) ] 
in Re P ~ 0 must also be a zero of 

r(p) = (1(p) {I - PI (p) }. (37) 

A zero Po of y (p) in Re p ~ 0 of multiplicity k is said to be a zero 
of transmission of the admittance Y (p) of order k. Y oula distinguishes 
four kinds of such zeros.u Class 1 contains all those in the strict right­
half plane. Class 2 contains all those on the real-frequency axis which 
are simultaneously zeros of Y (p ). Class 3 contains all those on the 
real-frequency axis for which 0 < I Y (Po) I < 00, and class 4 contains 
all those for which I Y (Po) I = 00. The restrictions imposed on Pl (p) 
through equation 36 are formulated13 , 15-19 most compactly in terms of 
coefficients of the power series expansions of the following quantities: 

00 

s(p) = (1(P)PI(P) = L: Sk(P - Pot (38) 
k=O 

00 

In s(p) = L: Sk(P - Po)k (39) 
k=O 

00 

(1(p) = L: Bk(p - Po)k (40) 
k=O 

00 

In (1(p) = L: bk(p - Po)'" (41) 
k=O 

00 

F(p) = (1(p)[Y(p) + Y( -p)] = L: Fk(p - Po)k (42) 
k=O 

(43) 

F(p) ~ k 

g(p) = 2{1(p) = f:'o Ok(P - Po) . (44) 

Also, let TJ (p) be a regular all-pass network such that 

( ) rrv P - J.i.l 

TJP= p+ *' /=1 J.I./ 
(45) 
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and 

00 

In 'Y}(p) = I.: 'Y}k(P - Po)k. 
k=O 

ILl'S are a set of points in the right half of the complex plane. 
Let 

(46) 

(47) 

and let So (p) be such that all its zeros and poles are in the left-half 
plane.t It is now cleart that if 

(1(P)PI(P) = s(p) = 'Y}(p)so(p) , (48) 

1 1 1 
1 s(jw) 12 = 1 PI (jw) 12 = 1 So(jw) 12 

= 1 + 4RnGof . 
F - Fo 

(49) 

We may now shOW17
- 19 that Y1 (p) is a positive-real admittance if 

and only if: 

or 

(i) At every class 1 transmission zero Po of order Ie, 

€ = 1, 

o ~ r ~ k - 1; 

if ~ f 1 + 4RnGof} = 0, 
dw l F - Fo 

and 

1~r~k-1. 

t It will be recognized that So (p) is a minimum-phase function.S! 

(50) 

(52) 

t Multiplication of pl(P) by f3(p) is necessary to make it analytic in the right­
half plane. This multiplication makes s(p) a bounded real scattering coefficient.17 
MUltiplication of so(p) by 7](p) introduces right-half plane zeroes. This is some­
times necessary16 and is done so that s(p) can satisfy all the constraints imposed 
by Y(p). 
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(ii) At every class 2 transmission zero jwo of order k, 

o ~ r ~ k - 1, (53) 

and 

(54) 

or 

o ~ r ~ k - 1, (55) 

and§ 

(.56) 

If I Wo I = 0, or 00, equation 56 may be replaced by 

bk - TJk + 100 

tk In {I + :~G~} dw 
o 0 ~ o. 

Ok+l -
(57) 

(iii) At every class 3 transmission zero of order k, 

Sr = Br , 0 ~ r ~ k - 2, (58) 

and 

(59) 

or 

o ~ r ~ k - 1, (60) 

and 

(61) 

with equality if and only if the matching network is nondegenerate. 
If I Wo I = 0 or 00, equation 61 may be replaced by 

b'-l - ~k-1 + r j, In {I + ::...G~ } dU) 
o (h 0 ~ o. (62) 

§ If the interstage network is nondegenerate16 •17, equation 56 becomes an equality. 
If I Y(jwo) I ~ 00, the network is said to be nondegenerate if and only if Y l(jwo) + 
Y(jwo) ¢ O. If I Y(jwo) I = 00, the network is said to be non degenerate if and only if 
I Y l(jwo) I ¢ 00. 
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(iv) At every class 4 zero of order k, 

o ~ r ~ k - 1, 

and 

F k - I S--;:-- Bk ~ a-I 

where a-I is the residue of yep) at Po = jwo ; 
or 

and 

o ~ r ~ k - 1, 

(63) 

(64) 

(65) 

(66) 

with equality if and only if the matching network is nondegonerate. If 
I Wo I = 0 or co, equation 66 may be replaced by 

2fh-l (67) 

If equations 50 through 67 are satisfied, Ydp) is a positive-real 
admittance. If Ydp) is positive-real, the Darlington method can be 
used to obtain the loss less twoport interstage network needed in the 
receiver. 

Let us now use the theory of broadband noise performance that 
we have presented to derive the constraints imposed by the photodiode 
on the noise performance of the optical receiver. The normalized 
admittance Y (p) of the photodiode shown in Fig. 2 can be written ast 

yep) = _1_ --p -. 
RGo1 P + We 

(68) 

From equation 36 we can show that the only transmission zero of 
Y (p) lies at Po = 0, and is of order 1. Also from equation 33, 

f3(p) 
_ p ~ We 

- p + We 

2p 2p2 
= -1 + - - -2- + 

We We 

(69) 

(70) 

t The equivalent circuit shown in Fig. 2 for the photodiode is valid for frequencies 
w »0. Also, without any loss of generality, we normalize all admittances with respect 
to Go! • 
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From equation 42 we can write 

(71) 

(72) 

Since the transmission zero is of class 2, we can write from equations 
53 and 54 that 

So = -1, (73) 

and 

(74) 

where 

s(p) (48) 

and 

1 = 1 + 4RnGof (47) 
so(P)soC-p) F - Fo . 

Also from equations 55 through 57 it follows that 

1100 

12 In {I + 4RnG of } dw ~ ~ - t IL~ {~ + ~} , (75) 
7r 0 W F - Fo We /=1 ILl ILl ILl 

where }Ll'S are a set of points in the right-half plane. Since Re (1/ ILl) 

;;::: 0 for all l, we put 1] (p) = 1. We, therefore, have 

1100 

\ In {I + 4RnGof} dw ~ ~. (76) 
7r 0 w F - Fo We 

Also, from equations 25, 28, and 30, we can write equation 76 as 

1100 

\ In [1 + 8kTo RnGof ~Wc)2 ] dw ~ ~. (77) 
7r 0 w TJql o R F R - FRO We 

We must notice that Rn and Got are completely determined by the 
IF amplifier used in the system, and if we assume that the signal 
power Ps remains constant at all frequencies of interest, equation 77 
shows that FR cannot be made equal to FRO over any nonzero band 
of frequencies in spite of the fact that any arbitrary linear lossless 
interstage network may be used in the receiver. This is one of the 
important results of this paper. We must notice that the equivalent 
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circuit shown in Fig. 2 has been assumed in deriving equation 77. 
This equivalent circuit very well describes the behavior of the diode 
provided that the lowest frequency of the signal occurring in the 
system is very far from zeroP Also we must observe from equation 
77 that FR can be made equal to FRO at a finite number of discrete 
frequencies.16 

V. RATIONAL FUNCTION APPROXIMATIONS 

We have shown that FR cannot be equal to FRO over any nonzero 
interval no - w ~ w ~ no + W of the frequency spectrum. t We shall, 
therefore, make some rational function approximations to a flat noise 
performance characteristic of the optical receiver. If these rational 
function approximations satisfy all the constraints of Section IV, a 
finite linear lumped lossless network can be found which realizes this 
kind of noise factor for the optical receiver.34 A complete treatment 
of this problem is beyond the scope of this paper; but let us consider 
certain kinds of approximations widely used in network theory. 

5.1 Butterworth Approximations 

The problem at hand is to approximate F R as close to FRO as possible 
over the range no - W ~ w ~ no + W. A set of polynomials which can 
be used for this purpose are Butterworth polynomials.34

•
35 Let 

FH = ~ + (FRo - ~){1 + ,,(w~:;:r} , (78) 

where n is the order of complexity of the interstage network to be used 
in obtaining broadband performance from the optical receiver, and n is 
also the order of the Butterworth polynomial. It may be verified that 
FR approximates FRO in a maximally flat manner. The behavior of FR 
as a function of w is shown in Fig. 7. Since it can be shown that F R in 
equation 78 can be made to satisfy equations 73 through 77 by properly 
choosing i for all values of n, the approximation of equation 78 is 
realizable. 

From equation 47, 

1 + 4RnGofM o 

( 

2 2)2n 2 W - Wo 

€ 2wW-

1 
(79) 

t Since the noise factor is a real and even function of W, we shall only consider the 
behavior of F R for w ~ o. 
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Fig. 7 - Butterworth approximations of order n = 1,2. It is assumed that 
Ie = 31.83 GHz, '¥} = 0.70, Td = 290 oK, 10 = 500 flCX, Fo = 2.0833, and e

2 = 1. 

where 

(80) 

It can be shown35 that 
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where 

• 7r 
sm-

2n 

(82) 

We can now expand equation 81 into a Taylor seriest about p O. 
We have 

(83) 

Now 

1J(p) 

= (-lr [1 - p t {~+~} J.L~ + ... J. (84) 
Z=1 J.Lz J.L z J.Lz 

From equations 48, 74,83, and 84, we have 

2W + ~ ~{~ + l} <~. an- 1 2 L..J * * = 
Wo Z=1 J.Lz J.Lz J.L Z We 

(85) 

Since {(II J.Lz) + (II J.L~)} ~ 0 for alll, let us put 1J(p) 1. We can then 
write from equations 82 and 85 that§ 

(86) 

A typical value of fe = we/27r for a photodiode is about 31.83 GHz. ~ 
For this value of fe ,fo = no/27r = 300 MHz, and 2W Ina = 100 percent, 
we have plotted in Fig. 8 €~in/4RnGo,Mo as a function of n. It may be 
seen from the plot that €~in is a monotonically increasing function of n. 
This behavior of €~in can be explained by the fact that Butterworth 
polynomials approximate the ideal broadband noise performance char­
acteristic of the optical receiver in a maximally flat fashion35

• 

Since no useful purpose is served by using higher values of n, we 

:j: We choose negative sign for so(p) to satisfy equation 73. This does not 
entail any loss in generality.17 

§ Equation 86 can also be obtained by using equation 77. 
U Typical values of Rand C for a photodiode are C = 1 Il-pJ , and R = 5 ohms.36 



OPTICAL HETERODYNE RECEIVERS 447 

500 
Ul 
...J 
W 
~ 
V w 
0 

~ 

0 
C ~ 

'f '0 100 
N l') 

\i,l C 
0: 
.;t 

50 
0 2 3 4 5 6 7 8 

n 

Fig. 8 - A typical plot when Butterworth polynomials are used to approximate 
the ideal noise performance characteristic. Even though n is a discrete variable 
the plot is given for all n ?:: 1. 

shall only consider the case n = 1. * For n = 1, 

and 

Now from equations 31, 48, and 88, it can be shown that 

Yl(P) 

2 Wo 
1 We 

=-----2' 
RGoJ + Wo P -

We 

(87) 

(88) 

(89) 

Fig. 9 shows the circuit to realize Y 1 (p), Remember that w~ is the geo­
metric mean of the band of frequencies of interest, and 

1 
L = C(no - W)(no + W) , (90) 

t = VGoJR. (91) 

This circuit agrees very well with our physical intuition. 

* Since we are interested in minipmm value of e2 we have t\sed the equality 
sign in equation 77 
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5.2 Chebyshev Approximations 

Of the various means of approximating a given function, the Cheby­
shev method is one of the most interesting and important. It can be 
shown that given a set of n parameters, a function f(w2) approximates 
g(w2

) in the Chebyshev sense if the parameters are determined in such 
a way that the largest value of I g(w2

) - f(w 2
) I in a given interval is 

minimum. * Since for a given complexity of the structure the maximum 
amount of tolerance for a Chebyshev approximation is the same through 
the band, this type of approximation seems to be the most desirable 
in the broadband noise performance of optical receivers. 

Fig. 9 - Lossless interstage network for a Butterworth approximation of order 
n = 1. The ideal transformer ratio t is given by t = V RGof • 

Let us try to approximate FR by 

1 ( 1)[ 2 2(W2 - w~)J FR = ~ + FRO - ~ 1 + E Tn 2wW ' (92) 

where Tn(x) is an nth degree Chebyshev polynominal given by 34, 35,37 

(93) 

The behavior of F R as a function of w for n = 1, 2 is shown in Fig. 10. 
The equiripple behavior of F R is evident from equation 93. We can also 
show that the approximation of the type given in equation 92 can be 
made to satisfy equations 73 through 77. It can also be shown that 

where 

(p2 + w~r + bn - 2(2p W)2(p2 + w~r-2 + .,. 
(p2 + w~t + an - 1 (2p W)(p2 + w!r 1 + .,. ' 

sin 7r/2n 

(94) 

(95) 

* The Chebyshev approximating function has the equiripple property.34, 35, 37 
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. If we expand So (p) about p = 0, we can show that 

2W 
so(p) = -1 + pan- 1 -2 + ... 

Wo 
(96) 

We again put 1J(p) = 1 to obtain minimum f2. From equations 74 
and 96 

(97) 
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Fig. 10 - Noise factor F R as a function of w for Chebyshev approximations of 
order n = 1,2. It is assumed that Ie = 31.83 GHz, 'Y} = 0.70, To = 290 o K, 10 = 
500 /La, F 0 = 2.0833, and €2 = 1. 
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In practical cases, assuming that wo/we « 1/ V15, (wo/we)(wo/W) sin 
7r/2n « I, for wo/W ~ V15. t We can then write 

2 16RnGorM o 

Emin = 7r2(wo)2(wo)2(sin 7r/2n)2 
We W 7r/2n 

(98) 

A normalized plot of E~in for fo = Qo/27r = 300 MHz, fe = 31.83 GHz, 
and 2W /U o = 100 percent is given in Fig. 11. We notice that 

and 

I/) 
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UJ 
CD 
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o 
~ 
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5 t 
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49 
o 

\ 
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2 3 4 5 6 7 
n 

Fig. 11- A typical plot when Chebyshev polynomials are used to approximate 
the ideal noise performance characteristic. Even though n is a discrete variable 
the plot is given for all n ~ 1. 

§ It can be shown from equation 1 that wo(W ~ v15 for 2W (flo ~ t. 
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From equations 99 and 100 and Fig. 11, we conclude that E~in is a 
monotonically decreasing function of n, but that no great improvement 
in the value of E~in is obtained by using very high values of n. Since the 
complexity of the network increases with n, we shall only consider the 
cases n = 1, 2. For n = 2, E~in attains 1.25 times the minimum possible 
value. For n = 1 the Butterworth and Chebyshev approximations are 
the same. For n = 2, from equation 98 

E~in = 2RnGofl11o(::r(:r, (101) 

and from equations 94, 95, and 101, we can write 

(102) 

Equations 31, 48, and 102 show that 

(103) 

The lossless interstage network realizing Y 1 (p) in equation 103 is 
shown in Fig. 12. 

Similar methods can be used to determine the lossless interstage 
networks when n > 2. We have shown however that no great im­
provement can be obtained by using very high values of n. 

5.3 Approximations with Greater than Optimum Noise Factor 

In the preceding parts of this section we used Butterworth and 
Chebyshev polynomials to approximate the ideal broadband noise 
performance characteristic of the IF amplifier in such a way that the 

~(~/ 
cwo Wo 

c TO IF 
AMPLIFIER 

Fig. 12-Lossless interstage network for a Chebyshev approximation of order 
n = 2. The ideal transformer ratio t is given by t = VRGo1 • 
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minimum passband noise factor is FRo. These polynomials also can 
be used17,18 in a manner in which the minimum passband noise fac­
toris [(FRO where 

K~1. (104) 

Such approximations are given by 

and 

F 1 T?( 1)[ 2 2(W2 - W;)] 
{R = ~ + H. FRO - ~ .1 + e Tn 2wW ' (106) 

where Tn (x) is an nth degree Chebyshev polynomial. 
We can seen from equations 105 and 106 that 

(107) 

If equations 73 through 77 are to be satisfied, it can be shown from 
equation 105 that 

[1 - ~ + 4RnGo fMo]1/2n _ [1 _ ~]1/2n < (wo)(wo) . ~. 
K K [( = We W sm 2n (108) 

Also, if F R in equation 106 is to be realizable, it can be shown that the 
following constraint must be satisfied: 

'nh II . h- 1 (

1 
- ~YJ < (wo)(wo) . 7r (109) - S1 - sm - - - sm-· 

n e - We W 2n 

In general, for arbitrary n, equations 108 and 109 can only be solved 
numerically. The numerical solution of these two equations requires 
that the value of RnGofMo , wo/wc , and wolW be known. For any specific 
IF amplifier, the values of K and e2 can be determined from equations 
108 and 109 and the interstage network can then be synthesized. Since 
we do not propose to go into the characteristics of the IF amplifier, 
we shall not consider these two equations any more in this paper. 

lVIinimum average noise factor approximation, least-squares approxi-
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mation,23 and the like also can be used in the theory of broadband 
noise performance of the optical receiver. If these approximations satisfy 
the restrictions which are imposed by the photo diode, and which are 
given in equations 73 through 77, the methods given in Section IV can 
be used to obtain a positive-real Yl(P)' This Y 1(p) enables us to deter­
mine the lossless interstage network required in the broadband noise 
performance of the optical receiver. 

VI. GAIN AND NOISE FACTOR 

It has been shown for an optical heterodyne receiver13 that the 
available output power Poa must satisfy the constraint given by 

1:. 100 

\ In J1 + (hV)2 8R f Gog (W/wc)
2 1 dw ~ ~ (110) 

7f 0 w I 'Ylq RP oP 8 ~ _ -l-f We 

l p oa p omaX 

wheret 

R - Re Y22 (111) 
f - \ Y21 \2 

GOg ~ ~2Y21 \ VT-=-i (112) 
e Y22 

A. = 2 Re (Yll) Re (Y22) - Re (Y12Y21) (113) 
\ Y12Y21 \ 

Po max = cpoR(:e r (114) 

CPo = !Gamax(~~rPOP8 (115) 

Gamax = I y" I J ' . (116) 
Y12 I A. + A. - 1 

Equation 110 is identical in form to equation 77, and it can be 
shown from Ref. 13 that obtaining the broadband signal and noise 
performance characteristics of the optical receiver are analogous 
problems. It can also be shown from Ref. 13 that if Butterworth and 
Chebyshev approximations of the form given by 

1(' 

P oa = P omax ( 2 2)2n' 1 + W - Wo 

2wW 

o < 1(' ~ 1 (117) 

t For an IF amplifier which is absolutely stable, it can be shownl.'6-28 that A ~ 1. 
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and 

p oa = Po max ( 2 2) , 
1 + 2T2 W - Wo 

€ n 2wW 

K" o < J{" ~ 1 (118) 

are used for the available output power of the optical receivert reali­
zability by lossless inter stage networks requires that 

(119) 

and 

sinh [~SiIlh-' (1 - K" + 4~"RfGO.G. m"")IJ 

. h [1 . h- 1 (1 - K")!J < (wo)(wo) . 7r -sm -sm _ - - sm-· 
n € - We W 2n 

(120) 

We now notice that equation 119 is similar in form to equation 108 
and 120 is similar to 109. However, it can be shown that the element 
values of the lossless interstage network obtained by solving either 
equation 119 or 120 will not be identical to those obtained by solving 
either 108 or 109. This shows that the problem of broadband noise 
performance, in general, requires a network different from that re­
quired for obtaining the broadband signal performance of the optical 
receiver. But for I( = Ie' = I(" = 1, and for GOg = Go!, it can be 
shown~ from equations 108, 109, 119, and 120 that the network which 
achieves broadband signal performance for the optical receiver also 
achieves broadband noise performance. 

For a single stage common emitter transistor IF amplifier (see 
Fig. 13), we can show that the source conductance GO! for minimum 
noise factor is approximately equal to the source conductance GOg for 
maximum available gain.§ We can then say that a common emitter 
transistor IF amplifier can be used with advantage in obtaining si­
multaneously broadband signal and noise performance from the opti­
cal receiver. 

t We can compare equation 117 to equation 105 and equation 118 to equation 
106. 

:!: We have assumed Bog = Bor = 0 for the IF amplifier. 
§ In fact it can be shown (see Ref. 39) that for reasonable transistor parameters 

and frequencies below (1 - Olo)fa , Go! is always within a factor of v'2 of the common 
emitter GOD' Olo is the low frequency alpha of the transistor andfa is the alpha cutoff 
frequency. 
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Fig. 13 - Simplified signal and noise equivalent circuit for the transistor. 

VII. RESULTS AND CONCLUSIONS 

455 

A theory of obtaining broadband noise performance from an optical 
heterodyne receiver is presented in this paper. It is shown that the 
following constraint must be satisfied by any lossless interstage net­
work used for obtaining broadband noise performance from the op­
tical receiver: 

! 100 

\ In {I + 8kTo RnGof (W/We) 
2 

} dw ~ ~. (77) 
7r 0 W 1}qJ 0 R F R - FRO We 

This equation 77 shows that it is impossible to make FR equal to FRo 
for any nonzero band of frequencies and for any realizable lossless 
interstage networks. 

We then consider certain types of rational function approxima­
tions to an ideal noise performance characteristic of the optical re­
ceiver. We show that Butterworth approximations to an ideal char­
acteristic are realizable, but that the broadband noise performance of 
the receiver deteriorates with increasing values of n, the order of com­
plexity of the interstage network. By approximating the ideal char­
acteristic by Chebyshev polynomials, it can be shown that the per­
formance improves with n, but no great improvement can be obtained 
by using very high values of n. We have shown that the performance 
for n = 2 is slightly worse than for n = 00. Realizations of networks 
for n = 1,2 are given. 
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We also consider the problem of obtaining simultaneously both 
signal and noise broadband performance from the optical heterodyne 
receiver and show that, in general, these two problems require two 
separate lossless interstage networks. We then show that for a com­
mon emitter transistor IF amplifier, and for certain types of Butter­
worth and Chebyshev approximations, these two networks turn out 
to be identical. 

We give design methods and equations for any kind of rational 
function approximations to an ideal broadband noise performance 
characteristic of the optical receiver, and explicitly state the con­
straints to be satisfied by these approximations. 

As is evident from Section IV, the theory of broadband noise per­
formance presented in this paper for an optical heterodyne receiver 
can be applied to any other linear twoport network driven by a 
source whose internal admittance is a function of frequency. 
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B. S. T. J. BRIEFS 

Approximate and Exact Results Concerning 
Zeros of Gaussian Noise 

By A. J. RAINAL 

1. INTRODUCTION 

Let T denote the interval between two successive zeros of a station­
ary gaussian process having zero-mean and one-sided power spectral 
density W (f). We shall refer to such an interval as a zero-crossing 
interval. This brief is concerned with these probability functions: 

( i) Po (T) = Pro ba bility density of a zero-crossing interval. 
(ii) Fo(T) = Probability that a zero-crossing interval lasts longer 

than T. 

Thus, Fo (T) and Po (T) are related by 

Fo(T) = foo Po(x) dx = 1 - iT Pix) dx. (1) 

An exact, explicit solution for Po (T) or F 0 (T) in terms of arbitrary 
W(f) is at present unknown. 

In a very interesting paper, E. Wongl presented exact, explicit 
solutions for both Po (T) and F 0 (T) for the special case when 

where w = 2nf. 

16V3/3 
W(f) = (w2 + 3)(w2 + !) 

The corresponding autocorrelation function p (T) is given by 

(2) 

p(T) = 10
00 

W(f) cos 27rfT df = !e- 1T1 /
vSC1 - !e-2ITI/V3). (3) 

Wong's exact, explicit solutions are in terms of complete elliptic 
integrals, and they stemmed from a recent result in the theory of 
Brownian motion. 

The purpose of this brief is to compare Wong's exact results with 
the approximate results of McFadden.2 McFadden's approximate 
results stem from the numerical solution of an integral equation, and 
they are based on the assumption of "quasi-independence" which 
assumes that a given zero-crossing interval is statistically independent 
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of the sum of the previous (2m+2) zero-crossing intervals for all 
non-negative integral m. 

We shall see that McFadden's approximate results compare well 
with Wong's exact results over a significant range of T. 

II. COMPARISON OF APPROXIMATE AND EXACT RESULTS 

Figure 1 compares McFadden's approximate resultPo(T) with Wong's 
exact result PoCT). The exact first moment of poeT) follows from Rice's 
work3 and is indicated in Figure 1 as ECT) = 1r. Thus, the approximate 
and exact results for poeT) compare well over a significant range of T. 

Figure 2 compares McFadden's approximate result Fo(T) with Wong's 
exact result FoCT). From Wong's equation 31 we have that as T ~ co, 

Fo(T) r-.J Ce- T
/(2V3) where C is a known constant. The semilog plot 

in Figure 2 shows this asymptotic exponential decay of Fo(T). 

III. CONCLUSION 

McFadden's approximate results PoeT), Fo(T) compare well with 
Wong's exact results poeT), Fo(T) over a significant range of T. 
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Fig. 2 - Comparison of approximate and exact results for F 0 (T), the probabil­
ity that a zero-crossing interval lasts longer than T. 

IV. ACKNOWLEDGMENTS 

The author wishes to thank S. O. Rice for suggesting the publica­
tion of this information. The author is indebted to Miss A. T. Seery 
for programming a digital computer to produce the figures. 

REFERENCES 

1. Wong, E., "Some Results Concerning the Zero-Crossings of Gaussian Noise," 
SIAM J. Appl. Math., 14, No.6 (November 1966), pp. 1246-1254. 

2. McFadden, J. A., "The Axis-Crossing Intervals of Random Functions-II," 
IRE Trans. Inform. Theory, IT-4 (March 1958), pp. 14-24. 

3. Rice, S. 0., "Distribution of the Duration of Fades in Radio Transmission," 
B.S.T.J.,37 (May 1958), pp. 581-635. 



Erratum 

On page 205 of the February 1968 Bell System Technical J01lrnal, 
the drawings of Figs. 10 and 11 were inadvertently transposed. Fig. 
10 is the drawing with the gate electrode marked -IODV, and Fig. 11 
is the drawing with the gate electrode marked + 100V. 


