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By I. DANYLCHUK, U. F. GIANOLA, and J. T. SIBILIA 

(Manuscript received February 5, 1968) 

A rate of 0.3 failures per billion hours or less is desirable for memory 
components in large integrated arrays. This unusually stringent require­
ment complicates the determination of lifetime from accelerated aging 
studies. The value and limitations of step stress aging techniques are dis­
cussed in terms of experimental results obtained using plated wire memory 
arrays designed to withstand the high ambient temperatures required for 
accelerated aging. Step stress aging measurements alone are insufficient 
for confident lifetime prediction. Therefore, longer term measurements at 
lower temperatures must also be made to establish the validity of the lifetime 
extrapolations. It is essential to protect the plated wires against corrosion. 
Given proper protection a shelf life in the hundreds of years is forecast. 
The importance of duty cycle on lifetime in exercising the memory is 
discussed and the results of aging under extreme pulsed magnetic field 
stress conditions are reported. Criteria for wire selection, with long term 
stability in mind, are discussed. 

"And in short measures life may perfect be"-Ben Jonson 

1. INTRODUCTION 

In spite of their advanced state of development, there is still un­
certainty concerning the long term stability of magnetic film mem­
ories. As early as 1958 E. N. Mitchell showed that the anisotropy of 
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permalloy thin films could be modified by a magnetic anneal at 
moderate temperatures.1 Chang, Gianola, and Sagal subsequently 
pointed out that such a phenomenon could be detrimental to the life­
time of a magnetic film memory element, and that in the case of 
plated wire intolerable changes in magnetic anisotropy and coercivity 
occur in freshly plated films.2 These changes result in an increased 
minimum digit current for reliable writing along with a serious de­
crease in the digit disturb level. The result is a monotonic reduction 
in operating margins that, in time, can lead to a complete loss of 
range. 

It was, however, also shown that the magnitude of the rate of 
change of magnetic properties could be substantially reduced by 
following electrodeposition with a stabilization anneal in an easy 
direction field. 2, 3 From a practical standpoint, a stabilization anneal 
has been found essential and is now in general use in plated wire 
fabrication. It is worth noticing that a post-deposition anneal is au­
tomatically provided in vacuum deposited magnetic films, since the 
latter are deposited on a hot substrate which is allowed to cool in 
the vacuum system. 

From a simple physical viewpoint the effectiveness of the stabiliza­
tion anneal should increase with annealing temperature and anneal­
ing time. However, Chang, Von Neida, and Calbick have shown that 
detrimental changes can also occur in electro-deposited films even 
when annealed in an easy direction field, thereby setting effective 
limits on the maximum annealing temperature for a given annealing 
time.3 These limits were shown to correlate with discontinuous grain 
growth in the film. Grain growth, however, may have been comple­
mentary rather than causative to the increased dispersion in magnetic 
anisotropy noted. Copper diffusion from the substrate wire into the 
permalloy film has been shown not to be a primary contributor to 
the aging mechanism.4 

These early studies showed that the post-deposition anneal ex­
tended the mean lifetime of the plated wire memory element to years 
or decades. Subsequent studies, however, have shown that a clear 
prediction of lifetime is complicated by a distribution of aging rates 
between individual bit elements in a large capacity memory, reflect­
ing both nonuniformity in initial element properties as well as the 
distribution expected of a stochastic process. Since in a highly inte­
grated large memory system the time to occurrence of the first few 
failures is of greater interest than the mean time before failure that 
is commonly used to define the lifetime of discrete components, the 
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distribution of failures is of prime importance. The aging phenomenon 
in magnetic films is also field dependent, being accelerated by hard 
direction fields (word fields) and retarded by easy direction fields 
(digit fields).2 Therefore, since hard and easy direction fields are ap­
plied intermittently in an operating memory system, an added com­
plication to useful lifetime prediction is the need to establish the 
average field environment that a memory element experiences over 
years or decades of use. 

Earlier work has primarily been concerned with changes in disper­
sion and skew produced by a magnetic anneal, thereby delineating 
the magnitude of the aging phenomenon, but falling short in that a 
clear relation between skew and dispersion and the functional memory 
parameters of interest was not simultaneously established. Rabinovici 
and Renton subsequently examined the effect of aging on the func­
tional parameters directly/ but, while a step in the right direction, 
the sample population used was insufficiently large to permit lifetime 
predictions at low failure levels. 

To estimate the problem, consider some of the current thinking 
about high speed memories for which the plated wire is well suited. 
To achieve an economical system, a compact construction with a 
minimum number of interconnections, is desirable. "'\Ve estimate that 
a suitable module size is about 4 X 105 bits; for example, 4096 words 
X 100 bits. Such a store operating as part of the central processor in 
an electronic switching office would be unacceptable if it were neces­
sary to rework a single spare word or digit line once a year. On this 
basis then, if each bit in the memory is considered an independent 
device (not a fully justified assumption since failures are often 
grouped), an accelerated aging technique capable of predicting with 
some accuracy one failure in greater than 3.5 X 109 device hours 
(0.3 FIT) is needed.~~ 

Clearly, it is impractical to build, age, and test large stores for the 
extended periods needed to derive statistically significant aging data 
under normal operating conditions. To overcome this difficulty, we 
have examined the possibility of adapting step stress accelerated 
aging techniques to magnetic memories in order to estimate lifetime 
at normal operating temperature. Such techniques are commonly 
used, particularly for determining the reliability of semiconductor 
components,6 but have not been applied previously to memory arrays. 
~his paper attempts to define the value and limitations of the tech-

* 1 FIT = one failure in 109 device hours. 
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nique based on exploratory step stress aging studies of typical plated 
wire memory arrays. 

II. STEP STRESS AGING 

It is well established that the aging process in thin magnetic films 
is thermally activated, and a reasonable starting assumption is that 
the aging process can be described by a characteristic time constant 
T, which is governed by the Arrhenius rate equation. More specifically, 
it is assumed that the average behavior of a device parameter of in­
terest P(t) can be adequately represented by P(t) = Po + F (tiT), 
where Po is the average initial value. For the present purposes F (tiT) 
need not be defined, the only assumption necessary is that it be a 
continuous monotonic function, albeit a complicated one. In addition, 
although a number of different rate mechanisms enter into the aging 
process we postulate a single time constant only. That condition, in 
fact, must be satisfied if the lifetime extrapolation is to be valid as 
discussed later. 

The Arrhenius rate equation relates the aging time constant to 
the aging temperature, as follows: 

T = To exp qlkT. 

Where TO is a characteristic time constant, q = activation energy, k 
= Boltzmann constant, and T = absolute temperature. This equa­
tion describes many of the mechanisms responsible for device degrada­
tion; for example, interatomic diffusion, chemical reactions, and 
crystallite growth. 

The procedure followed in step stress aging is first to define a pass­
fail criterion, defined by limits on one selected device parameter. In 
testing memory arrays a convenient device parameter is the output 
signal, which may be required to exceed a set discrimination level 
for a given set of operational write, disturb, and read current levels. 
All bits which give outputs exceeding the discrimination threshold 
pass, all others fail. 

Such a pass-failure criterion is equivalent to setting P (t,) equal 
to a predetermined constant P, at the time of failure t,. Consequently, 
the value of F (tt!T) = P, - Po and therefore t,lT are in turn pre­
determined constants and the Arrhenius rate equation can be used to 
relate the time of failure to the temperature at which aging is being 
carried out as follows: 
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In t f = k~ + In To + In p-l(Pf - PO)' 

In other words, In tf is inversely proportional to T. 
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The first step in a step stress aging measurement is to stress (that 
is, anneal) the sample population at an elevated temperature Tl for 
a prescribed time t1 , and then retesting at ambient temperature to 
determine the number of failures produced, if any. The sample is 
then once more stressed for the same period (tl) as before but at a 
higher temperature (T1 + A). The temperature increment A is such 
that any failures produced are large compared to those accumulated 
at the lower stress temperature. 

Experiment has shown the aging process to have an activation en­
ergy of about one electron volt. Therefore, a 20°C increment is ap­
propriate. After aging, the sample is retested to determine the cumula­
tive number of failures. This procedure is continued at successively 
higher temperatures using approximately the same temperature in­
crement each time until the entire population has failed according to 
the original test specifications. This series of measurements provides 
a distribution of failures as a function of temperature for a given 
exposure time. Figure 1 shows a hypothetical distribution plotted as 
a function of inverse stress temperature. For the particular exposure 
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Fig. 1-Hypothetical step stress aging data. 
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time chosen, no failures are observed to temperatures up to 200°C, 
and 1, 10, 70, and 100 percent cumulativel~ failures are obtained after 
stressing at 200, 220, 240, and 260°C, respectively. 

The distribution of failures in temperature will depend upon both 
the initial distribution of Po's and the statistical variations expected 
of a thermally activated process. If these were random, a gaussian 
distribution of failures after aging might be expected as suggested in 
Fig. 1. However, such a distribution is virtually precluded by an ini­
tial selection criterion that truncates the distribution of Po's. If that 
were not the case, the initial sample population would contain that 
percentage of bad bits expected of an initially random distribution. 
This complicates the extrapolation of aging measurements based upon 
a small sample population. To reduce the uncertainty, the predictions 
of a step stress aging experiment must ultimately be confirmed on 
larger sample populations. 

The distribution of failures in temperature may be converted to a 
distribution of failures in time. To do this, a second set of step stress 
measurements are obtained using a second sample population as identical 
to the first as possible, but in this case stressed at an exposure time t2 
that is approximately an order of magnitude larger than tl . The failure 
distribution in this case will be centered at a lower temperature as 
illustrated in Fig. 2, which plots the logarithm of time to a given per­
centile failure versus the inverse stress temperature. A straight line 
extrapolation through points of equal failure in Fig. 2 provides an 
estimate of the time required to reach that level of failure at normal 
operating temperatures, for example, ~ 50°C. The slope of the linear 
relationship is determined by the activation energy (q). 

Figure 3 illustrates the difficulties encountered if aging is not the 
result of a simple thermally activated process. If it is assumed, for 
example, that two distinct and independent processes exist, then, 
depending upon the relationship between the TO'S and q's, a lifetime 
extrapolation from an accelerated aging measurement mayor may 
not be valid. If the TO for the high q process is larger than that of the 
low q at all temperatures then the extrapolation will be valid. If, 
however, the high q process has the shorter TO, it may dominate at 
the temperatures used in step stress aging, thereby leading to an in­
valid life prediction because at the operating temperature the low q 

* Averaging of the number of failures would provide an improved fit at the 
lower and upper ends of the distribution, but is not justified by the small statis­
tics in the measurements reported here. 
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Fig. 2 - Translation of distribution of failures in temperature to distribution 
in times at lower temperatures. 

process will be dominant and will produce earlier failures. It follows 
that there will always be some uncertainty regarding the validity of 
such extrapolations unless it can be positively established that a sin­
gle aging mechanism is dominant up to and including the tempera­
tures used in accelerated aging. In order to reduce this uncertainty 
as far as practicable, the results of the step stress aging measure­
ments should be confirmed by longer term aging experiments at 
lower temperatures. 

III. AGING PLATED WIRE MEMORY ARRAYS 

The essential structure of the conventional plated wire memory 
consists of plated wire pairs used as digit lines intersected by orthog­
onal word solenoids to form a regular memory array.7 The sample 
populations used for the step stress aging experiments described in 
this paper each consisted of a 32 word X 31 bit array (992 bits). The 
test planes used had word solenoids on 50 mil centers with plated 
wires on 25 mil centers. A 2 mil thick permalloy overlay was used to 
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provide shielding, enhance the word field, and limit word to word 
interaction. 

In order to withstand the high temperatures used in the aging ex­
periments the memory substrate was made of a slotted ceramic block 
and the word solenoids were Teflon insulated as illustrated in Fig. 4. 
Normal substrate materials and insulators are unsatisfactory at the 
higher aging temperatures. As shown, the plated wire is used in the 
shape of a hairpin. This construction has two important advantages; 
first, any uniform skew existing in the plated wire is nullified, second, 
since one end of the digit structure is free to move, the plated wires 
are not stressed by differential thermal expansion between the wire 
and memory plane. For most of the experiments the plated wire con­
sisted of a 3500 angstrom thick, nominally nonmagnetostrictive, per­
malloy film on a 5 mil diameter conducting wire substrate preplated 
with a micron of copper. The wires had passed a functional on-line, 



STEP STRESS AGING 

TEFLON 
INSULATED 

WORD 
SOLENOID 

LAVITE 
BLOCK 
// 

WIRE 
PAIR 

1547 

Fig. 4 - Structure of memory planes used for accelerated aging measurements 
at high temperatures. 

destructive readout memory test and had received a stabilization an­
neal at 350°C for approximately one minute. During the course of 
these experiments wires from other sources were examined also; but, 
apart from differences reflecting different operating points and uni­
formity resulting from different processing details, no substantial 
difference in aging characteristics was found. 

A functional test of normal destructive readout operation with 
adj acent word interaction using the following program was used to 
evaluate test planes. (i) Write zero in the test location using nominal 
word current and maximum digit current. Repeat 250 times. (ii) Write 
one in the test location using nominal word current and minimum 
digit current. (iii) Write zero in one adjacent address using nominal 
word current and maximum digit current. Repeat 105 times. (iv) 
Write zero in the other adjacent address as in step iii. Repeat 105 

times. (v) Read the test bit and determine whether it has passed or 
failed. This program provides a worst case memory history that biases 
the test location towards minimum outputs. 

A ±20 percent operating range on digit current was used to ensure 
a worst case test. It is assumed that a ±10 percent range will be more 
representative in actual system operation. The center values of currents 
used varied with the source of available wire. However, the following 
was typical for the wire used in most of the measurements: word cur-
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rent equal to 800 rna with 40 ns rise time and 200 ns duration; digit 
current equal to 25 rna with 10 ns rise time and 200 ns duration. The 
word and digit pulses were overlapped by approximately 100 ns. The 
threshold level for pass was set at 2.5 m V corresponding to approximately 
one half the nominal output. 

Test results were recorded using an xy plotter to show the failure 
locations in the array. Figure 5 is a typical map for a plane that 
has been aged to a 22 percent failure level. It clearly illustrates the 
tendency for failures to cluster in particular locations along the digit 
line, and demonstrates a marked variability in number of failures 
from wire to wire. By mapping failures for both digit senses (that is, 
O's and l's) the cause of failure can often be diagnosed. A negative 
correlation between failures for the two senses at corresponding loca­
tions indicates skew induced failures, while a positive correlation in­
dicates either failure to write adequately or a low disturb threshold. 
Further diagnoses can be obtained by noting correlations produced 
under modified test programs. 

Aging measurements were performed using several different ambi­
ences: (i) air atmosphere, zero applied field; (ii) hydrogen reducing 
atmosphere, zero applied field; and (iii) hydrogen reducing atmos­
phere, pulsed hard direction field. 
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IV. AGING UNPROTECTED WIRES IN AIR 

Figures 6 and 7 show the result of step stress aging of unprotected 
plated wires in air for exposure time of 2, 20, and 200 hours at tem­
peratures up to 320°C. In this experiment the onset of failures was 
so abrupt that the earliest failures were not observed in using a 20° 
stress temperature increment. Instead, Fig. 6 shows the last tem­
perature at which no failures were obtained as 0.1 percent failure 
points for each of the exposure times. The 0.1 percentile represents 
the first measurable point in the test population of 1,000 bits. Notice 
that the percentage cumulative failures are plotted on a logarithmic 
scale. As pointed out previously there is no reason to expect a normal 
distribution of failures in temperatures, nor is one obtained. 

Equal percentage failure points interpolated from the data of Fig. 
6 are plotted in Fig. 7 on a liT vs 10glO t graph. A good approxima­
tion to the linear relationship called for by the simple thermal activa­
tion model is obtained, and leads to extrapolated lifetimes for 0.1 per­
cent failure at 50 and 25°C of 2 and 20 years, respectively. This 
extrapolation is additionally supported by a constant temperature 
aging experiment run at 80°C for several thousand hours using an­
other similar 1,000 bit plane. The results of that experiment are also 
plotted in Fig. 7 and show excellent agreement with the step stress 
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prediction for the 1 percent failure point. The agreement with the 0.1 
percent failure point is not unreasonable in view of the large experi­
mental inaccuracy in determining the first failure in a population of 
1,000 bits. These results lead to extrapolated lifetimes at normal 
operating temperatures that are marginal for large memory systems. 

Physical examination of failed wires in these studies showed that 
corrosion of the substrate wire with a resulting eruption of the mag­
netic film at pinholes appeared to be a primary cause of failure. In­
deed, the activation energy of O.84e V derived from the slope of the 
liT vs log t relation is consistent with the value for the oxidation of 
copper (0.87 eV).8 These observations, together with the results of 
the following experiment, lead to the conclusion that chemical pas­
sivation or protective encapsulation of the plated wire is essential if 
adequate lifetimes are to be obtained. 

v. AGING PROTECTED WIRES 

A dramatic reduction in failure rates is obtained if the wires are 
protected either by chemica) pa~si,:~tion or through the use_of an 
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inert or reducing atmosphere. Figures 8 and 9 show the result of step 
stress aging protected wires. The distribution of cumulative failures 
versus inverse absolute temperature is seen in Fig. 8 to be better 
behaved than when corrosion occurs. The 0.1 and 0.2 percent data 
points in this experiment were obtained experimentally, so that ex­
trapolation to 0.01 percent failure is reasonably justified. The extrap­
olation of equal percentile failure points on a liT vs loglo t rela­
tionship in this case yields lifetimes to early failures in the many 
thousands of years at normal operating temperatures. 

The validity of the step stress extrapolations is well confirmed by 
a constant temperature aging experiment carried out at 140°C that 
has been in progress for 5600 hours with no failures observed in a 
population of 1,000 bits as indicated in Fig. 9. The slope of the liT 
vs loglo t relationship in this case yields an activation energy of 1.3 
electron volts in reasonable agreement with the value 1.25 electron 
volts that we estimate from the grain growth data of Chang, Von 
Neida, and Calbick.3 Therefore, it appears that crystallite growth, 
or a common causative phenomenon, is responsible for the aging ob­
served in protected wires in the absence of applied magnetic fields. 
Complementary measurements indicated that the prime functional 
cause of failure was a reduction in the digit disturb threshold as 
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would be expected from the monotonic reduction in coercivity that 
occurs in permalloy as a result of a strain relief anneal. 

The results of this experiment show that properly stabilized wires 
protected from corrosion should have an adequate shelf life. 

VI. EFFECTS OF MAGNETIC FIELDS ON AGING 

Hard direction fields produce a rotation of the uniaxial anisotropy 
in a magnetic film memory element. This result is a natural con­
sequence of the well known magnetic annealing properties of the 
permalloys. () The sensitivity to hard direction fields is substantially 
reduced by the stabilization anneal discussed previously. In a memory 
environment the individual magnetic film memory elements are sub­
ject to aperiodic pulsed magnetic fields so that measurements of the 
effect of dc hard direction fields are not simply applicable. 

To further complicate matters, the magnetic anisotropy is not uni­
formly affected by an applied field, but in first approximation it ap­
pears to have a relatively stable component in addition to an easily 
rotatable component. The magnitude of the latter is considerably 
reduced by the stabilization anneal. This situation can be described 
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in terms of a simple model that assumes that the rotatable component 
of anisotropy experiences a torque proportional to a function of the 
angle between the anisotropy and the direction of magnetization, and 
that the rotatable component relaxes towards the direction of mag­
netization under a characteristic time constant. Under these circum­
stances, the rotatable anisotropy component relaxes back towards the 
easy axis direction established by the stable anisotropy component in 
the interval between word field pulses. 

An analysis based upon this simple model is given in the Appendix. 
It shows that the worst case effect of hard direction field pulses ap­
plied at low duty cycles is to induce a skew that is approximately 
proportional to both the duty cycle and the ratio of the rotatable to 
stable anisotropy components. Such a growth in skew with a depend­
ence on duty cycle has been verified experimentally, although there 
is as yet insufficient data to provide the exact form of the dependence 
over a wide range of duty cycles. 

One problem, then, in designing a meaningful field aging experiment 
is to decide upon a representative duty cycle. In a 4,000 word memory 
with a ratio of cycle time to word pulse duration of 5, no one memory 
element would be subject to hard direction fields for more than 0.005 
percent of the time if the memory were exercised in a completely 
random fashion. On the other hand, it would not be out of the ques­
tion for anyone memory word to be interrogated once every 10 in­
structions over substantial periods. In that caie some memory words 
will be subject to hard direction fields 2 percent of the time. On the 
other hand those same memory words would be unlikely to be ex­
ercised continuously over many years of operation. In the absence 
of any definitive data, it is suggested that a representative worst case 
duty cycle will be about 0.1 percent. 

Figures 10 and 11 give the results of an exploratory step stress 
aging measurement under pulsed field stress. In this experiment every 
bit in the test population was subject to hard direction fields under a 
1 percent duty cycle to determine the effect of extreme aging condi­
tions. It will be clear from the previous arguments that this is an 
unrealistically severe test which, however, serves to illustrate the 
problem of making extrapolations from aging measurements under 
pulsed magnetic field stress. 

The test program used was the same as described previously, except 
that a ±14 percent digit current range was used. Unsatisfactory ex­
trapolated lifetimes were obtained for the ±20 percent margin used in 
the previous experiments. This was not surprising since a ±20 percent 
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criterion was used for initial selection of wires. During step stress 
aging, all word solenoids and the test planes were connected in series 
and pulsed with 400 rnA amplitude word current pulses at a 1 percent 
duty cycle. Thus, all bits in the test population were subjected to field 
stress during aging. 

The 400 mA word current level was chosen for nondestructive read­
out during aging. This is a necessary condition since each bit must 
remain in an approximated single domain state during accelerated 
aging if anisotropy "recovery" during the interpulse interval is to 
take place. This procedure provides a not unreasonable simulation of 
the actual state of the memory sites in operation and avoids the com­
plications that would be introduced, both in instrumentation and in­
terpretation, if the memory were exercised in the destructive readout 
mode during aging. 

In contrast to the situation for "no-field" aging, failures were ob­
served to result primarily from increased skew as evidenced by an 
increase of the minimum digit write current and an asymmetry in 
bit failures for opposite polarities of digit write currents. In addition, 
the sense of skew correlated with the direction of the hard direction 
field pulses applied during aging. 

The results of these experiments are given in Figs. 10 and 11. In 
Fig. 10 the 0.1 percent failure points represent the last stress tem­
perature at which no failures were observed. An approximately log­
arithmic failure distribution is again found, in Fig. 10, although this 
relationship is not as well obeyed as the case for no-field aging, sug­
gesting that the plated wires used were not homogeneous in field aging 
property. Once again, early failures tended to cluster on particular 
digit lines, but no obvious correlations to initial physical properties 
have as yet been established. 

As already mentioned, no simple distribution could be obtained for 
a ±20 percent range of digit current indicating the severity of the 
additional aging induced under field stress. In addition, Fig. 11 shows 
that the extrapolated lifetime for 0.1 percent failures and a ±14 percent 
digit current range is substantially less than for "no-field" aging (Fig. 9), 
with a ±20 percent margin. Furthermore, the step stress data pojnts 
do not as satisfactorily fit a linear 1/ T vs log t relationship, suggesting 
the possibility of even lower lifetimes as discussed in connection with 
Fig. 3. 

On the other hand, the extrapolation shown in Fig. 11 is consistent 
with the results of a constant temperature aging experiment, which 
has been under way for 6500 hours at 140°C with no failures using the 



1556 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

same ±14 percent digit margin criterion. However, a different batch 
of wires was used for the constant temperature aging experiment. Thus 
there is a residual uncertainty regarding the validity of the lifetime 
extrapolation, and more comprehensive measurements will be needed 
before lifetime predictions can be made with reasonable confidence. 
Assuming that the data of Fig. 11 is representative it can be concluded 
that the plated wire memory has an adequate lifetime for many ap­
plications even under pulsed magnetic field stress, provided that proper 
attention is paid to duty cycle and choice of operating range. 

VII. DISCUSSION 

As stated at the beginning, this paper's prime purpose is to describe 
the procedures that have been developed for accelerated aging of 
memory arrays using functional test criteria, and to illustrate the 
pitfalls that must be taken into account. It is not intended to provide 
definitive answers to the plated wire lifetime question. The limited 
data presented is encouraging and suggests that, given proper selec­
tion and use, reasonable lifetimes can be ensured. 'Ve caution, though, 
that a much more comprehensive study is needed before confident 
predictions can be made. Measurements using larger sample popula­
tions will reduce the statistical uncertainty in extrapolating failure 
distributions, and longer term measurements at lower temperatures 
will reduce the uncertainty in extrapolation to long periods. 

Because a memory is a large integrated entity, and because in 
present day usage only small numbers of failures can be tolerated 
over years or decades of operation for economical reasons, the prob­
lem of determining reliability is difficult. It has not arisen in the case 
of ferrite core memories since no short term degradation in properties 
has been reported. The time scale of degradation in the properties of 
anisotropic magnetic alloy films, however, is such that the possibility 
of a lifetime limitation needs to be considered seriously. The physical 
mechanisms responsible for aging deserve as much attention as the 
origins of the induced anisotropy. The step stress aging technique 
used in this study followed those in common use for determining the 
reliability of semiconductor devices. With the increasingly large num­
ber of functional cells being integrated into semiconductor circuits, 
similar attention will need to be given to the limitations of the tech­
nique. This will be especially true should large semiconductor mem­
ories be realized. 

It has been established that the aging mechanisms in magnetic films 
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are thermally activated. Indeed, physical reasoning leads to that ex­
pectation. There is no evidence for a temperature threshold, which 
might only occur should a cooperative mechanism be responsible for 
aging. The activation energy is such that at normal temperatures, a 
20°C temperature increment produces approximately one order of 
magnitude increment in predicted lifetime. Thus, if the long term 
reliability proves to be marginal for more extreme applications, 
improved heat sinking should be used. Magnetic film memory ele­
ments are unique in the small energy dissipated in the cell itself. 
Normally, the main cause of temperature rise above ambient is dis­
sipation in peripheral circuits. It is also worth noticing that magnetic 
film elements are relatively unaffected by reduced temperatures. P. 1. 
Bonyhard, in unpublished work, has shown that the plated wire can 
be operated to at least -70°C with no significant changes in operat­
ing margins. 

Since we first drew attention to the potential severity of aging in 
plated wire memories, industry wide practice has followed the post­
deposition stabilization anneal that we recommended. This practice 
has reduced aging from a first order to a less significant problem 
and, accordingly, has made reliable long term lifetime predictions 
more difficult. The measurement problem is also increased by the 
wide distribution of failure rates found. The step stress aging tech­
nique described in this paper reduces the measurement problem to 
experiments of reasonably short duration. Furthermore, the comple­
mentary longer term aging experiments at lower temperatures have 
provided reasonable confirmation of the extrapolations from the short 
term step stress measurements, although further corroborative studies 
are desirable. 

The necessity for corrosion protection has been established by this 
study. In turn, it has been established that protected wires have 
adequate shelf life. Furthermore, this study also focusses attention 
on the importance of word pulse duty cycle in an operational memory. 
The desirability for adequate magnetic shielding against static en­
vironmental magnetic field follows implicitly. 

The prime functional result of aging has been shown to be an 
erosion of both upper and lower limits of digit current. It is axiomatic, 
therefore, that for high reliability plated wire should be selected to 
have wider digit current margins than required operationally. Since 
an increase of the lower limit on digit current is likely more severe 
than the decrease of the upper limit, the center of the selection margin 
should be offset with respect to the nominal operational value. It also 
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follows that correlations of aging with manufacturing process should 
best be performed, at least initially, with attention to the rate of 
change of the lower limit on digit current as determined by short 
term step-stress aging. 

APPENDIX 

Analysis Based on Magnetic Model 

Let 

Kl = "stable" component of anisotropy 
K2 = "rotatable" component of anisotropy. 

Assume that the rotation of K2 is reversible. Hard direction field 
pulses (applied normal to K1) rotate K2 through an angle {3 with respect 
to Kl . Relaxation of K2 towards Kl takes place during the zero field 
interval between hard direction field pulses. 

Of interest is the steady state situation under repetitive pulsing. 
Steady state is achieved when {3 = {3l such that the incremental rotation 
!1{3 produced by each successive field pulse of duration i l equals the 
relaxation -!1{3 during each interpulse interval i2 . 

We postulate that the rotation of Kl results from a torque exerted 
by the magnetization M upon Kl . We further postulate that this torque 
has the same sin 20 dependence as the torque exerted by K upon M 
in a uniaxial material, where e is the angle between K and M. These 
are physically reasonable assumptions, but are presented without 
experimental confirmation. 

The dynamics of the rotation is assumed to be governed by some 
characteristic relaxation time constant T. Its exact form is unimportant 
for the present discussion, but we do assume T » i l or iz in which case 
!1{3 « {3l • In that case for the steady state solution it is sufficient to 
consider the conditions required for a time averaged balance of the 
torques applicable during intervals tl and tz • This condition can be 
expressed: 

(1) 

where 0" is the angle between M and Kl during interval tl when the 
hard direction field pulse is applied, and eo the angle between M and 
Kl during the interpulse interval tz . eo is related to Kl and Kz through 
minimization of the energy relation for zero applied field and negligible 
magnetostatic field. In this case: 

(2) 
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Thus, substituting for (00 - (31) from equation (2) in equation (1) 

sin 200 ~ [K2 t 1 sin 2(Oh - (31)J!K1 t2 • 

For cases of interest, (low duty cycle and stabilized material), we may 
assume small 00 and Oh » {31 • Under these circumstances the steady 
state skew produced by repetitive field pulsing is 

00 ~ [K2tl sin 20h J!2K1t2. 
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The Transmission Performance of 
Bell System Intertoll Trunl(s 

By I. NASELL, C. R. ELLISON, Jr., and R. HOLMSTROM 

(Manuscript received February 28. 1968) 

A systemwide survey of the transmission performance of Bell System 
intertoll trunks was undertaken in 1964. The sample design used for the 
survey is described briefly. The main purpose of the paper is to present 
survey results. Thus, the physical composition and some physical attributes 
of the trunks are given. The transmission measurement procedures are 
summarized, and measurement results are presented in distributional form 
for 1 OOO-H z loss, frequency response, background noise, impulse noise, 
and relative envelope delay. Among the results noted are an increase in 
average noise level and a decrease in noise level standard deviation as the 
trunk length is increased. The frequency response of long trunks is superior 
to that of short trunks. Measurement results are presented separately for 
major transmission facilities. 

I. INTRODUCTION 

The Bell System toll network consists of a hierarchy of toll offices 
interconnected by transmission paths called intertoll trunks. A toll 
call between two subscribers is built up of a tandem connection of 
several transmission paths which are joined by switching. 

At each end of such a connection is a loop that connects the sub­
scriber's telephone set with a local telephone office. The local tele­
phone offices connect with toll offices by toll connecting trunks. These 
toll offices are connected by either a single intertoll runk or by several 
intertoll trunks through intermediate toll offices. The transmission per­
formance of a toll connection between subscribers is thus influenced 
by the performance of each trunk and loop in the connection. 

Systemwide improvement in transmission performance by a cate­
gory of trunks is directly measured by the corresponding improve­
ment in built-up connections. Systems engineering on transmission 
objectives, therefore, requires information about the relation between 
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transmission performance on trunks and the corresponding transmis­
sion performance that results on built-up connections. Such informa­
tion is meaningful only if it is based on accurate information about 
the transmission performance of the various entities of importance; 
that is, the intertoll trunks separated into mileage categories, the 
maj or transmission facilities used in the toll plant, the toll connect­
ing trunks, the loops, and the built-up connections. This need for in­
formation constitutes the basic reason for undertaking the intertoll 
trunk survey discussed in this article. 

The introduction of data transmission over the switched telephone 
network has brought with it the need for information about trans­
mission parameters that are of only minor importance for the trans­
mission of spoken messages. The discussions of impulse noise and 
envelope delay in Sections VII and VIII both deal with this category 
of parameters. 

Each intertoll trunk consists of trunk facility and office equipment 
in tandem. The trunk facility supplies a transmission path between 
the two toll offices connected by the trunk. The office equipment con­
tains signaling devices and attenuators, and sometimes echo sup­
pressors and hybrid transformers. There are several different trans­
mission facilities in the Bell System toll network. The most important 
are voice-frequency facilities, compandored short-haul cable carrier, 
coaxial cable carrier, and microwave radio. 

Survey results are presented both for various trunk lengths and 
for selected transmission facilities. The results for trunks take a 
slightly different form than for facilities. The frequency response for 
facilities gives the difference between the loss at a certain frequency and 
at 1000 Hz, while the frequency response for trunks gives the actual 
switch-to-switch loss at each frequency. Thus the trunk results depend 
on facility mixture, loss design, and loss maintenance of trunks, while 
none of these factors influence the facility results. Background noise 
levels for facilities are referred to a standard zero transmission level 
point, while those for trunks are referred to the receive switch of each 
trunk. Facility mixture, loss design, and loss maintenance of trunks 
affect the trunk results but not the facility results. 

There is not such a separation of results for impUlse noise; both 
facility results and trunk results are referred to the receive switch. The 
reason for this is the expectation that the switching equipment con­
tributes to the impulse noise level on an intertoll trunk. Relative en­
velope delay is given separately for facilities and trunks; varying 
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facility mixture and various types of office equipment influence the 
trunk results in different mileage categories. 

The facility composition of intertoll trunks considerably influences 
their transmission performance. Facility composition is continuously 
changing; the most important change in recent years is the introduc­
tion of new short-haul carrier systems with improved transmission 
characteristics. 

II. SAMPLING CONSIDERATIONS 

2.1 Definition of Population 

A sampling plan tailored to the structure of the Bell System inter­
toll network was established and followed carefully. The objective 
was to design the survey so that the sample data could be used to 
make estimates of characteristics associated with the entire popula­
tion. An important preliminary step is to give a precise definition of 
the population so that the extent and limitation of the survey results 
are known. 

An intertoll trunk is defined as a trunk between two toll offices, 
that is, between two separate toll switching units that both have one 
of the long distance switching plan classifications: regional center 
(class 1), sectional center (class 2), primary center (class 3), or toll 
center or toll point (class 4). In case one toll office building (or 
complex of buildings) contains only one toll switching machine, it is 
counted as one toll office. This means that a manual switchboard 
in the same building as a switching machine is not counted as a 
separate toll office, and trunks between such a switchboard and the 
switching machine do not qualify as intertoll trunks. If a building 
contains two or more switching machines that are separately identi­
fied and that have access to different groups of trunks and where the 
trunks between the machines are designed as intertoll trunks, then 
these switching machines are considered as separate toll offices. So­
called tandem offices that can connect with the long distance net­
work are classified as toll offices. Trunks between tandem offices are 
regarded as intertoll trunks if they can carry traffic to or from the 
long distance network. 

Every intertoll trunk allows transmission in two directions, but 
measurements in the survey and hence characterization of perform­
ance are made only in the receive direction. Therefore, it is clear 
that the trunks themselves do not constitute the population elements. 
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Rather, a population element is identified with each direction of 
transmission of an intertoll trunk. One requirement for inclusion in 
the population is that the trunk have both of its terminations within 
the USA (excluding Alaska and Hawaii) or Canada. A further re­
quirement is dictated by the administrative necessity of confining the 
measurements to Bell System toll offices. This further requirement 
states that the receive termination of a particular direction of trans­
mission of an intertoll trunk should be located in a Bell System toll 
office. This implies that those intertoll trunks that have both end­
points in Bell System toll offices give rise to two population elements, 
while those that have one termination in a Bell System toll office and 
the other in an independent office are counted just once. 

2.2 Sampling Plan 

The sampling plan used in the survey is a two-stage plan with 
substratification which is self-weighting within each substratum and 
where the first-stage sample is selected with probabilities propor­
tional to measures of size. (See Hansen, Hurwitz and Madow1 for a 
general discussion of this type of sampling plan.) The primary units 
were Bell System toll offices as defined in the preceding section. A 
substratification is a stratification of the population elements in each 
sampled primary unit. The substrata were defined in the same way 
for all primary units; they are identified with length-categories of 
intertoll trunks as shown in Table I. 

The first step in the sampling plan was to establish a frame for 
the first-stage selection. The frame listed all Bell System toll offices 
and gave for each the number of intertoll trunks terminating in the 
office. The number of trunks per office was used to form probabilities 
for the first-stage selection of primary units. Such a probability was 
computed for each office as the quotient of the number of intertoll 

TABLE I-DEFINITION OF SUBSTRATA 

Trunk length l 
Substratum \---------,------­

number 

1 
2 
3 
4 
5 
6 
7 

Miles 

o < l < 62.5 
62.5 < l =< 125 

125 < l <: 250 
250 < l =< 500 
500 < l =< 1000 

1000 < l =< 2000 
2000 < l ~ 4000 

km (approx.) 

o < l < 100 
100 < l <: 200 
200 < l <: 400 
400 < l <: 800 
800 < l <: 1600 

1600 < l =< 3200 
3200 < l ~ 6400 
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trunks terminating in that office to the total number of trunk termina­
tions found in all Bell System toll offices. 

After the sample size had been determined, as discussed in the 
next section, this frame was used for selecting a first-stage sample of 
48 primary units. Randomness was assured by using lists of random 
numbers. The selection was made with replacement. As a result, three 
toll offices were selected twice. The first-stage sample therefore con­
tains 45 different toll offices representing 48 primary units. The sam­
pling was done with replacement in order to correspond with the 
specific assumptions made in the derivation of the estimation form­
ulas.1 More efficient sampling without replacement is being considered 
for future surveys. 

The next step of the sampling plan was to acquire detailed in­
formation about the selected offices. This consisted of lists of all inter­
toll trunks terminating in the selected offices, giving for each the trunk 
number, the distant termination, and the actual trunk length in miles. 
These lists were used to establish frames for the second-stage sampling 
in each substratum of each toll office. 

The final step in the sampling plan was to select sample elements 
from these frames. In this selection, all population elements in a given 
substratum of a sampled toll office were given the same probabilities 
of inclusion. The selection was made with tables of random numbers, 
without replacement. It resulted in lists of specific trunks to be meas­
ured in the survey. To these lists were appended lists of "spare" 
trunks which were resorted to only when a trunk in the original list 
was not available for testing when the measurements were taking 
place. 

2.3 Determination of Sample Size 

The size of a survey sample ideally should be determined to give 
maximum precision for fixed cost, or to minimize the cost while 
achieving a required precision. Many transmission parameters were 
measured for each trunk in the intertoll trunk survey. An ideal sam­
ple size would, therefore, recognize precision requirements for each 
of these parameters; but for most of them it was far from obvious 
how the precision requirements should be stated. The sample size 
therefore was determined to maximize the precision of estimates of 
background noise levels (measured with the 3A noise level meter2), 
combined with some basic cost constraints. This parameter was chosen 
as the crucial one in determining sample size because meaningful 
precision requirements could easily be stated. 
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To estimate the precision expected from a survey requires estima­
tion of variance components. There had been no systemwide survey 
of Bell System intertoll trunk transmission performance before 1964, 
so direct variance estimates based on previous survey results were 
not available. Variance estimates were therefore derived, based partly 
on a small pilot survey and partly on an indirect approach that used 
data available for some selected transmission facilities. 

Experience has indicated that many transmission parameters show 
a dependence on trunk length. It is therefore of interest to present 
survey results by mileage categories. This in turn carries with it the 
desirability of making precision estimates within the same mileage 
categories. 

Table II lists the widths of the 90 percent confidence intervals for 
the mean 3A noise level that were expected in each of the seven mile­
age categories of Table 1. These expectations are based on the above­
mentioned variance estimates combined with a sample size of 151 
trunks in each mileage category. This sample size was acceptable 
from a cost standpoint, and the expected confidence interval widths 
were in line with precision requirements. The increased precision with 
longer trunks results from the smaller noise variance for long trunks, 
discussed in Section VI. Since the longest trunks have the highest av­
erage noise level, it was deemed desirable to require greater precision 
for these trunks. The final sample contained a total of 1069 trunks. 

The last column in Table II gives the precision that was actually 
achieved in the survey. A higher variability than expected was found 
in the first two substrata; hence the achieved precision was some­
what poorer than expected. Otherwise the precision achieved was uni­
formly better than expected. This is a reflection of using unnecessarily 
pessimistic variance estimates in substrata 3 to 7. 

TABLE II-WIDTH OF 90 PER CENT CONFIDENCE INTERVALS 

FOR MEAN OF DISTRIBUTION OF 3A NOISE LEVELS 

90 percent confidence interval 
r Substratum (dB) 

Expected Achieved 

1 ±1.3 ±1.7 
2 ±1.3 ±1.4 
3 ±1.2 ±1.0 
4 ±1.1 ±O.6 
5 ±1.0 ±O.5 
6 ±O.S ±O.4 
7 ±O.9 ±O.4 



TOLL TRUNK PERFORMANCE 1567 

2.4 Data Analysis 

All estimation formulas associated with the sample design de­
scribed above are based on so-called ratio estimators.l Such estima­
tors have the undesirable feature that in general they are biased. 
However, the bias decreases with sample size and can be ignored for 
large enough samples. Furthermore, ratio estimators have the desir­
able property that their sampling variance is small and that they 
allow a large amount of flexibility in the data analysis. The most 
important aspect of this flexibility is related to the analysis of sub­
classes of the population. Examples of this usage of the ratio esti­
mator appear in most of the sections that follow where results are 
presented for specific transmission facilities. 

All of the results presented here refer to the population defined 
above. In many cases where means, standard deviations, and propor­
tions are discussed, these are estimates of population parameters 
based on the sample data. Because of the structuring of the sample, 
the estimate of the population mean, for example, is often weighted 
and therefore not identical with the unweighted sample mean. 

The amount of data treated here is large and the data analysis 
formulas are complicated. Therefore, digital computer programming 
has been used extensively in all of the data analysis work. 

Much effort was put into "data cleaning," that is, in scrutinizing 
the data collected in the field for errors, omissions, and inconsisten­
cies. Several errors were unveiled and corrected. Most important among 
these were erroneous readings of the measurement instrument, errors 
in the facility classification, and errors in transcribing the data onto 
IBM cards. 

III. PHYSICAL CHARACTERISTICS OF INTERTOLL TRUNKS 

The results reported here are based on various record data dis­
tinct from the transmission measurement results discussed in Sections 
IV through VIII. 

3.1 Trunk Lengths and Airline Distances 

Trunk length information was included for each trunk listed in the 
frame from which the second stage sample was selected. For each of 
these trunks it was also possible to compute the airline distance be­
tween toll offices. This information was used to estimate the distribu­
tion of trunk lengths and the distribution of the ratio of trunk length 
to airline distance. The sampling plan used--toachieve this was a one-
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stage cluster sampling plan where the selection of clusters ~oincided 
with the selection of primary units discussed in Section II. 

Table III gives the distributions of both trunk length and trunk 
mileage. It shows that although only 3 percent of the intertoll trunks 
are longer than 2000 miles, no less than 25 percent of the total inter­
toll trunk mileage is accounted for by trunks longer than 2000 miles. 

The distribution of the ratio of trunk length to airline distance 
shows some small variations with the airline distance between toll 
offices. Thus, ratios up to five were found on a small proportion of the 
trunks that connect toll offices separated by less than 180 airline miles. 
On the other hand, the distribution was confined to ratio-values less 
than two when the airline distance exceeded 1450 miles. The average 
ratio over all trunk lengths was found to be 1.40. 

The distribution of the ratio is quite naturally truncated by one 
at the lower end, and it has a strong positive skewness. The trans­
formed variable y = loglo (r - 1), where r is the ratio of trunk length 
to airline distance, is, however, close to normal in its distribution. 
Computed over all trunk lengths, y has a mean of -0.53 and a 
standard deviation of 0.64. The mean of y corresponds to a trunk 
length to airline distance ratio of 1.29, which is close to the median 
of the ratio. The fact that the median of r is lower than the mean 
reflects the positive skewness of the distribution of the ratio. 

3.2 Toll Office Characteristics 

At the time the first-stage sample was selected in early 1964 there 
were 1544 Bell System toll offices in the USA and Canada that quali­
fied under the toll office definition in Section II. It was estimated that 
the same geographical area contained more than 600 additional toll 
offices that were independently owned and therefore excluded from 
selection as primary units in the sample. 

TABLE III - DISTRIBUTIONS OF TRUNK LENGTH 

Trunk length Percentage Percentage of 
(miles) of trunks trunk mileage 

0- 62.5 35 3 
62.5- 125 21 6 

125 - 250 14 8 
250 - 500 11 12 
500 -1000 9 19 

1000 -2000 7 27 
2000 -4000 3 25 
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Fig. 1-Distributions of sizes of toll offices. 

The sizes of Bell System toll offices are represented by distribution 
curves in Fig. 1. Office size is measured by the number of intertoll 
trunks terminated in the toll switching machine. The figure demon­
strates that office size increases with office class, and that the office 
size distribution is approximately log-normal within each of the four 
classes of offices. The number of Bell System toll offices belonging to 
each class is also given in the figure. 

Table IV is another way to demonstrate the high concentration of 
intertoll trunks in large toll offices. This table gives the estimated 
percentage of intertoll trunks within each of seven mileage categories 
and over-all trunk lengths that interconnect toll offices of indicated 
classes. Notice that an estimated 50 percent of all intertoll trunks in­
terconnect toll offices of class 1, 2, or 3. From Fig. 1 we find that toll 
offices of these classes constitute only 16 percent of all Bell System 
toll offices. Table IV also shows that 94 percent of the intertoll trunks 
have at least one of their end-points in a toll office of class 1, 2, or 3. 
The table further indicates that the concentration of trunks to high 
level toll offices is even more pronounced if attention is restricted to 
mileage categories that contain trunks longer than 125 miles. 

The combined percentage estimates for all intertoll trunks terminat-
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TABLE IV - PERCENT OF INTERTOLL TRUNKS INTERCONNECTING 

TOLL OFFICES 

Office class Per cent of intertoll trunks within mileage category Percent 
--------------------- of all ~ 

------ 0- 62.5- 125- 250- 500- 1000- 2000- intertoll 
From To 62.5 125 250 500 1000 2000 4000 trunks 
------------------------------

1,2 1,2 8 6 20 38 66 66 89 24 
------------------------------
1,2,3 1,2,3 23 35 58 79 96 97 100 50 
11 21 3 4 63 60 40 21 4 3 - 44 

4 4 14 5 2 - - - - 6 
------------------------------
Percent of all 
intertoll 35 21 14 11 9 7 3 100 
trunks 

ing on at least one end in each of the four classes of toll offices are: 

Regional centers 
Sectional centers 
Primary centers 
Toll centers or toll points 

21 percent 
58 percent 
47 percent 
50 percent 

Closely associated with office rank is the type of switching machine 
used in the office. From the standpoint of transmission performance 
the major distinction in toll switching equipment arises from the use 
of 4-wire versus 2-wire switching, since the latter will ordinarily 
require additional equipment (a hybrid transformer and impedance 
matching network) to convert a 4-wire transmission path to a 2-wire 
path for switching. 

Table V lists the estimated percentages of intertoll trunks within 
each mileage category that interconnect two 4-wire machines, two 

TABLE V -PERCENT OF INTERTOLL TRUNKS INTERCONNECTING 

SWITCHING MACHINES 

Percent of intertoll trunks within mileage category Percent 
Switch type --------------------- of all 

0- 62.5- 125- 250- 500- 1000- 2000- intertoll 
62.5 125 250 500 1000 2000 4000 trunks 

---------------------
From To 

4-wire 4-wire 9 6 25 44 70 77 91 26 
2-wire 4-wire 41 54 60 47 29 23 9 44 
2-wire 2-wire 50 40 15 9 1 - - 30 

---------------------
Percent of all 
in tertoll trunks 35 21 14 11 9 7 3 100 
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2-wire machines and a 2-wire with a 4-wire machine. In 1964 there 
were 73 4-wire toll switching machines (types 4A or 4M crossbar) in 
service in the Bell System; the table shows that 26 percent of all 
intertoll trunks interconnect these toll offices and that 70 percent 
touch at least one of them. 

The combined percentage estimates for all intertoll trunks termi­
nating on at least one end in one of the four major types of Bell Sys­
tem toll switching machines are: 

4A or 4M crossbar 
Crossbar tandem 
Number 5 crossbar 
Step-by-step 

3.3 Facility Composition 

(4-wire) 
(2-wire) 
(2-wire) 
(2-wire) 

70 percent 
40 percent 
19 percent 
29 percent 

More important than toll offices in terms of transmission per­
formance is the facility makeup of intertoll trunks. Percentage esti­
mates of intertoll trunks within each mileage category and over-all 
trunk lengths are listed according to line facility makeup in Table VI. 

TABLE VI-FACILITY COMPOSITION OF INTERTOLL TRUNKS 

Percent of intertoll trunks within mileage category Percent 
Facility -------------- of all 

0- 62.5- 125- 250- 500- 1000- 2000- intertoll 
62.5 125 250 500 1000 2000 4000 trunks 

-------------
Voice frequency 29 3 1 11 
N1-carrier 42 11 9 19 
ON-carrier 22 47 17 1 20 

---------------
C or J carrier 6 3 1 2 
K-carrier 1 5 8 5 2 1 3 
L-carrier 2 5 14 15 15 4 4 7 

---------------
Microwave radio 3 16 25 51 42 33 55 21 
L-carrier and 

radio 1 6 9 28 53 37 9 
N1 and ON 

carrier 1 5 2 2 
---------------

N oncompandored 
carrier combi-
nations 4 4 8 7 4 3 

Compandored and 
noncompandored 
carrier combi-
nations 1 11 14 5 2 3 

---------------
All in tertoll 
trunks 35 21 14 11 9 7 3 100 
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The table partitions all intertoll trunks into eleven facility categories. 
(For detailed descriptions of the commonly found telephone carrier 
systems see Refs. 3 through 7.) The microwave radio category in­
cludes all the commercial telephone carrier systems using line-of­
sight radio as the transmission medium. A maj ority of the trunks in 
this category used the TD-2 radio system. Four specific single facility 
categories include the two short haul cable carrier systems, Nl and 
ON, the long-haul K-carrier system, and coaxial cable carrier, des­
ignated L-carrier. (Most intertoll trunks in this category used L3-
carrier.) Trunks made up entirely of the older C or J open wire car­
rier systems were combined into one category because they represent 
such a minor contribution to the toll network. The most widely used 
combination of the two long-haul line facilities, coaxial cable car­
rier and microwave radio, and the two short-haul facilities, Nl­
carrier and ON-carrier, are listed separately for emphasis. Intertoll 
trunks made up of all other combinations of carrier facilities are 
divided into two categories on the basis of whether any compandored 
carrier (Nl-, ON- or a-carrier) was used in their makeup. 

The voice frequency category in Table VI includes only those 
intertoll trunks made up entirely of voice frequency facilities. Eleven 
percent of the intertoll trunks fall into this category but 80 percent 

TABLE VII - CHANNEL BANK MAKEUP OF INTERTOLL TRUNKS 

Channel banks Percent of intertoll trunks within mileage category Percent 
-------------- of all 

------- 0- 62.5- 125- 250- 500- 1000- 2000- intertoll 
Number Type 62.5 125 250 500 1000 2000 4000 trunks 

---------------
0 Voice 29 3 1 11 

Fre-
quency 

2 N1 41 10 9 18 
4 N1 1 1 ] 

2 0 22 47 13 1 19 
4 0 4 1 

---------------
2 C 5 1 1 1 
2 A 6 27 56 74 76 66 52 37 
4 A 1 3 9 17 26 37 6 
6 A 1 2 6 10 1 
8 A 1 0 

-------------
>4 AandN1 4 3 2 1 1 
>4 AandO 1 7 11 3 1 2 
~4 NandO 1 5 2 2 

-----------
All intertoll trunks 35 21 14 11 9 7 3 100 
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of these are shorter than 15 miles and 93 percent shorter than 62.5 
miles. Trunk records revealed that about 1 percent of all intertoll 
trunks contain a section of voice frequency facilities in tandem with 
carrier facilities. These trunks were classified by their carrier facility 
makeup for Table VI. Using this rule for facility classification, 83 
percent of all intertoll trunks have a homogeneous line facility com­
position and more than half of the remainder are made up of the long­
haul combination of coaxial cable carrier and microwave radio. 

The estimated percentages of all intertoll trunks containing any 
of the eight major carrier facility types in their facility makeup, in 
descending order of facility occurrence, are: 

Facility 

1\1icrowave radio 
ON-carrier 
Nl-carrier 
L-carrier 
K-carrier 
C-, J -, or a-carrier 

Percent 

33 
24 
22 
18 
6 
4 

The estimates given in Table VI do not differentiate between car­
rier facility combinations connected at voiceband frequencies and 
those connected at group, supergroup, or mastergroup frequencies, 
nor do they distinguish tandem combinations of the same facility 
type connected at voice frequency from single facility trunks. 

Information about the number of voice frequency modulators and 
channel bank filters used in intertoll trunks is, however, given by 
Table VII. This table lists percentage estimates of intertoll trunks 
within each mileage category and over-all trunk lengths classified by 
the types and number of voiceband channel banks in their makeup. 
The 13 categories listed identify all carrier trunks with five types of 
channel bank, but not with a specific equipment configuration, for 
several generations of a particular type of channel bank are found in 
service. A-type channel banks8 are used on the long haul carrier 
facilities, J, K, L, and microwave radio; Nl-type is used on Nl­
carrier; a-type on 0- and ON-carrier; and C-type on C-carrier. 
Note that when intertoll trunks made up entirely of voice frequency 
facilities are included, 86 percent of all intertoll trunks encounter no 
more than one pair of channel banks and only 5 percent are equipped 
with combinations of dissimilar channel banks. 

The degree of interconnection of various facilities to form a trunk 
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is only party exposed by Tables VI and VII. It is common to com­
bine facilities that use A-type channel banks without demodulating 
to voice frequency. This is done by the use of group, supergroup, and 
mastergroup connectors. 

Table VIII shows the use of such high frequency connectors in Bell 
System intertoll trunks. Notice that this table is only concerned with 
those trunks that contain at least one pair of A-type channel banks. 
Furthermore, any portion of such a trunk that contains channel banks 
different from the A-type is disregarded. The table indicates a strong 
trend toward a larger number of connectors for the longer trunks. Thus, 
the average number of group connectors increases monotonically 
from 0 for short trunks to 1.8 for trunks longer than 2000 miles. Like­
wise, the average number of supergroup connectors increases from 0 
for short trunks to 2.3 for trunks in the 2000-4000 mile category. 

The average number of high frequency connectors, that is, of con­
nectors at group, supergroup, or mastergroup frequencies on trunks 
with A-type channel banks can be found in each mileage category 
by addition of the corresponding averages for each of the three cate­
gories of connectors. Thus, the average number of high frequency 
connectors on trunks with A-type channel banks in the 2000-4000 mile 
category equals 4.2. No trunks in the sample shorter than 1000 miles 
contained more than 5 high frequency connectors. Among the trunks 
in the 1000-2000 mile category, 2 percent contain 8 or more high 
frequency connectors, while 3 percent of the trunks longer than 2000 
miles contain 8 or more high frequency connectors. 

3.4 The Number of FM Terminals per Radio Facility 

The intertoll trunks in the sample that used microwave radio as a 
transmission facility were analyzed to determine the number of FM 
terminals per radio facility. Frequency modulation and demodula-

TABLE VIII-AvERAGE NUMBER OF PAIRS OF A-TYPE CHANNEL 
BANKS AND HIGH FREQUENCY CONNECTORS ON INTERTOLL 

TRUNKS WITH A-TYPE CHANNEL BANKS 

Miles 0- 62.5- 125- 250- 500- 1000- 2000- All 
62.5 125 250 500 1000 2000 4000 Trunks 

---------------
Pairs of A-banks 1.0 1.0 1.0 1.1 1.2 1.4 1.6 1.2 
Group connectors 0.0 0.1 0.2 0.5 1.1 1.7 1.8 0.7 
Supergroup connectors 0.0 0.1 0.2 0.5 0.8 1.4 2.3 0.7 
Mastergroup connectors . 0.0 0.0 0.0 0.1 0.1 0.3 0.1 0.1 
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tion is resorted to when groups, supergroups, or mastergroups of voice 
frequency channels are dropped from a radio system at an inter­
mediate point. The number of pairs of FM terminals in a radio facility 
is important from a design standpoint because of its effect on the 
resulting noise level. 

Table IX lists the average radio facility length, the average num­
ber of pairs of FM terminals per radio facility, and the average length 
between FM terminals for seven different mileage categories. The 
length of a radio facility is the sum of the lengths of all sections of 
radio facility used on a given trunk. This rule of computation is used 
even when the radio facility sections of a trunk are not all adjacent 
to each other. The most important result indicated by Table IX is 
that the length between FM terminals is strongly correlated with the 
radio facility length. 

The average length between FM terminals computed over all radio 
facilities is 240 miles, while the average length between FM terminals 
for radio facilities longer than 2000 miles is 495 miles. The average 
length between FM terminals is approximately proportional to the 
square root of the radio facility length. For a radio facility length of 
4000 miles, the average length between FM terminals is estimated at 
620 miles. Correspondingly, the average number of pairs of FM 
terminals for a 4000 mile long radio facility is approximately 6.5. The 
distribution of the number of pairs of FM terminals for radio facilities 
longer than 2000 miles shows that only one percent contain 9 or more 
pairs of FM terminals in tandem. 

IV. 1000-HZ LOSS 

The switch-to-switch loss of intertoll trunks at 1000 Hz have been 
analyzed. The term switch-to-switch loss is used to refer to the total 
loss between outgoing switch appearances at the originating and ter­
minating ends of a trunk. It equals the loss inserted into a connection 
by switching the trunk into an operating condition. 

The loss at 1000 Hz can be studied from three different viewpoints: 
design, performance, and maintenance. The switch-to-switch loss at 
which each trunk in the sample was designed to operate was ex­
tracted from trunk records in each of the toll offices visited. The 
actual switch-to-switch loss was found by measurement. The main­
tenance effect is measured by the difference between measured loss 
and design loss, if it is assumed that all trunks met the design value 
exactly when they were first put into service. 
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TABLE IX-RADIO SYSTEM COMPOSITION VERSUS RADIO 

SYSTEM LENGTH 

Average radio Average number of Average length 
Radio facility facility length pairs of FM terminals between FM 
length (miles) (miles) per radio facility terminals (miles) 

0-62.5 39 1.0 39 
62.5-125 SO 1.3 64 
125-250 173 1.5 120 
250-500 341 2.1 16S 
500-1000 70S 2.S 255 

1000-2000 1264 3.S 337 
2000-4000 2565 5.2 495 

4.1 Design Loss 

The scatter diagram of Fig. 2 shows how the design losses of inter­
toll trunks vary with trunk length. Intertoll trunks are designed ac­
cording to the via net loss concept discussed by H. R. Hunt1ey.9 Ac­
cording to this concept, the design loss for carrier trunks increases 
linearly with trunk length from 0.5 dB to 2.6 dB, from 165 to 1565 
miles; this is shown as an exponential trend in Fig. 2 because of the 
logarithmic mileage scale. Trunks longer than 1565 miles and trunks 
between regional centers are designed to have a loss of 0 dB and to be 
equipped with echo suppressors. Fig. 2 shows that in 1964, such trunks 
had generally a design loss of 0.5 dB. The deviations from these rules 
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Fig. 2 - Scatter diagram of switch-to-switch design loss versus trunk length. 
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are given by trunks on noncarrier facilities and trunks in "unbalanced" 
toll offices, that is, 2-wire toll offices of class 1,2, or 3, that do not meet 
certain objectives for uniformity in office cabling impedance. The scat­
ter diagram indicates that the design loss distributions are non-normal; 
definite modes exist at loss values given by the via net loss computa­
tion. The scatter diagram also shows that the adherence to a uniform 
loss design improves as the trunk length increases. 

A summary of the results of the data analysis for design loss is 
given in columns 2 and 3 of Table X. As in most tables in Sections IV 
to VIII, estimates are given of the mean and the standard deviation 
of the population distribution, and the mean is equipped with its esti­
mated 90 percent confidence interval. The first seven mileage cate­
gories in this table correspond to the seven substrata defined earlier. 
A further breakdown has been made of the sixth substratum, which 
contains trunks between 1000 and 2000 miles long. The reason for 
this additional breakdown is the design rule already mentioned that 
prescribes the use of echo suppressors and a switch-to-switch loss 
of 0 dB for all trunks longer than 1565 miles as well as on trunks be­
tween regional centers. 

The break in the sixth mileage category is at 1465 miles rather than 
at 1565 miles because all trunks in the sample between 1465 and 1565 
miles long were equipped with echo suppressors and had a design loss 
of 0.5 dB. None of these trunks interconnected two regional centers, 
and according to present design practices only 17 percent of them 

TABLE X - INTERTOLL TRUNK SWITCH-TO-SWITCH LOSSES 
AT 1000 Hz 

Measured loss minus 
Trunk length 

(miles) 
Design loss (dB) Measured loss (dB) design loss (dB) 

Standard Standard Standard 
Mean deviation Mean deviation Mean deviation 

0 - 62.5 0.9 ± 0.2 1.0 1.2 ± 0.2 1.4 0.3 ± 0.2 1.0 
62.5- 125 1.0 ± 0.3 0.9 1.2 ± 0.3 1.3 0.1 ± 0.2 1.1 

125 - 250 O.S ± 0.1 0.4 1.1 ± 0.2 1.2 0.3 ± 0.2 1.2 
250 - 500 1.0 ± 0.1 0.3 1.4 ± 0.2 1.1 0.4 ± 0.2 1.1 

500 -1000 1.5 ± 0.1 0.3 1.9 ± 0.2 1.1 0.4 ± 0.2 1.0 
1000 -2000 1.6 ± 0.2 0.9 2.1 ± 0.2 1.3 0.4 ± 0.2 1.1 
2000 -4000 0.6 ± 0.1 0.2 0.9 ± 0.1 1.2 0.3 ± 0.1 1.2 

1000 -1465 1.9 ± 0.2 0.7 2.3 ± 0.3 1.2 0.3 ± 0.2 1.1 
1465 -2000 0.6 ± 0.1 0.4 1.3 ± 0.3 1.2 O.S ± 0.3 1.2 

-
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would be equipped with echo suppressors and have a design loss of 0 
dB, while the remaining 83 percent would be without echo suppressors 
and have a design loss of 2.6 dB. This difference does not mean that 
the 1964 trunks were incorrectly designed; rather, it reflects a small 
change in design rules that has been introduced after 1964. 

Table X shows the same trend in mean design loss observed from 
the scatter diagram. The improved adherence to a uniform loss design 
with increasing trunk length is seen from the decrease in standard de­
viation with trunk length. The only notable exception is found in the 
1000 to 1465-mile category. The higher standard deviation here is 
caused by the fact that 14 percent of the trunks in this category inter­
connect regional centers. These trunks would, by present design prac­
tices, be equipped with echo suppressors and have a design loss of 0 
dB, while in 1964 their design loss was 0.5 dB. An additional one per­
cent of the trunks in this mileage band are estimated to have been 
equipped with echo suppressors and accordingly have a design loss of 
0.5 dB. According to present design rules, these trunks would not con­
tain echo suppressors, and their design loss would be 2.6 dB. 

4.2 Measured Loss 

All survey measurements of intertoll trunks were made so as to 
describe as closely as possible the transmission characteristics from 
switch through switch as they appear when the trunk is being used 
in a built-up connection between subscribers. The maintenance and 
testing facilities provided in each toll office, such as toll testboards 
and code test lines, are geared toward the same objectives and were 
therefore used extensively in the survey. 

The loss measurements were made with the far end of the trunk 
connected to a 1000 Hz one-milliwatt testing power source. This con­
nection was either supplied by a dialable test termination or it was 
made manually at the far-end test board. The received level was then 
measured at the near-end toll office. 

Figure 3 is a scatter diagram of measured loss versus trunk length. 
The fourth and fifth columns of Table X list the corresponding means 
with 90 percent confidence intervals and standard deviations in each 
of the mileage categories already discussed. The distributions are es­
sentially normal with a slight positive skewness in some length cate­
gories. It is quite remarkable that no trace remains in the distribu­
tions of measured loss of the very pronounced non-normality of the 
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Fig. 3 - Scatter diagram of switch-to-switch measured loss versus trunk length. 

distributions of design loss. The reason for this is that the variability 
resulting from maintenance overshadows the design variability. 

Table X shows that the average measured loss follows the same 
pattern as the average design loss as a function of trunk length. The 
standard deviations of measured loss decrease as trunk length in­
creases over the first four mileage categories, similar to what was 
observed for design loss in the previous section. After this, however, 
the standard deviation remains generally constant and it can be noted 
that it is substantially larger than the standard deviation of the cor­
responding design loss distributions. 

4.3 Loss Maintenance 

The loss maintenance of intertoll trunks can be studied by consider­
ing the difference between measured loss and design loss. The last two 
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columns of Table X summarize the results. The distributions of these 
loss differences within mileage categories are all close to normal. 

The table shows that the measured losses are on the average some­
what larger than the design losses. Comparison of the third and 
seventh columns shows that the standard deviation of the loss differ­
ence is larger than the standard deviation of the design loss, as stated 
in the previous section. 

Finally, we notice that the standard deviation shows a small but 
statistically significant increase with trunk length over the mileage 
categories that contain short-haul trunks (up to 250 miles), and that 
it also increases (again significantly) with trunk length over the 
mileage categories to which long-haul trunks belong (longer than 500 
miles). This indicates that within each of these two broad classes of 
trunks, the longer trunks are somewhat more difficult to maintain 
at the loss value at which they have been designed to operate. This is 
to be expected since the longer trunks contain more sources for loss 
variation and more points where loss adjustment can be applied. 

V. FREQUENCY RESPONSE 

5.1 Measurement Procedure 

Frequency response was measured by noting the loss at each of 9 
frequencies throughout the voiceband. Tones were sent from a variable 
frequency oscillator located at the far end toll testboard and the re­
ceived level was noted at the near end toll testboard. The frequency 
of each tone was verified by a frequency counter at the receive end 
and received levels were measured using the meter available at the 
toll testboard. The frequencies of measurement were 200, 300, 400, 
1000, 1700, 2300, 3000, 3200, and 3400 Hz. The frequency response of 
the office meter was also noted and measured loss values were arith­
metically corrected for any roll-off in the meter. 

Since the range of the office meters was generally limited to switch­
to-switch losses less than 31 dB, it was not always possible to meas­
ure loss at all nine frequencies. This was the case for trunks with 
compandored carrier systems where the loss at 3400 Hz was almost 
always beyond the range of the meter. In this situation a value of 31 
dB was arbitrarily assigned as the switch-to-switch loss. Such a pro­
cedure is necessary to provide a realistic, albeit conservative, estimate 
of the mean loss at 3400 Hz for groups of trunks with varying facility 
composition. 
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5.2 Frequency Response oj Facilities and oj Office Equipment 

As we mentioned, all frequency response measurements in the sur­
vey were made from test board to test board, that is, they included 
the sum of the effects of the facility and the office equipment at each 
end. In order to isolate these separate contributions, the assumption 
was made that the frequency response of office equipment and facility 
are independent random variables which add to produce the overall 
switch-to-switch frequency response of a trunk. 

Each major facility category was divided into three different sub­
classes: those in which the trunk has 2-wire switching at both ends, 
those with 2-wire at one end and 4-wire at the other, and those with 
4-wire at both ends. For the largest categories, that is, those contain­
ing one and two pair of A-channel banks, the largest proportion of 
the sample was found in the category with 4-wire switching at each 
end. The two subclasses consisting of trunks with one pair of A-chan­
nel banks and 4-wire switching at each end and trunks with two pair 
of A-channel banks and 4-wire switching at each end were used to 
estimate the frequency response of A-channel banks and of 4-wire 
office equipment. 

The difference between the estimated frequency response character­
istics for these two subclasses of trunks was taken as the frequency 
response of facilities with one pair of A-channel banks. An estimate 
of twice the frequency response of office equipment for 4-wire offices 
was obtained by subtracting the above estimate for facilities with one 
pair of A-channel banks from the frequency response for trunks with 
one pair of A-channel banks and 4-wire switching at each end. 

The frequency response of two sets of 2-wire office equipment was 
estimated in an analogous manner, using results for trunks with one 
pair of A-channel banks and 2-wire switching at each end in con­
junction with the facility estimates. The separate estimates for the 
frequency response of the facility and the two types of office equip­
ment were combined and found in excellent agreement with observed 
frequency response for trunks with 2-wire switching at one end and 
4-wire at the other. 

The estimates for office equipment thus obtained were then used to 
obtain estimates of frequency response for the other types of facilities. 
Table XI shows the estimates of mean, standard deviation, and 90 
percent confidence interval for the mean of facility loss differences 
relative to 1000-Hz loss. The loss estimates omitted from the table 
correspond to switch-to-switch losses in excess of 31 dB. 



TABLE XI-FACILITY Loss DIFFERENCES IN dB RELATIVE TO 1000 Hz Loss 

Frequency A channel banks o channel filters Nl channel filters VF cable 
(Hz) Standard Standard Standard Standard 

Mean deviation Mean deviation Mean deviation Mean deviation 

200 1.2 ± 0.6 1.2 13.1 ± 1.5 5.2 4.4 ± 1.4 2.7 2.0 ± 1.5 2.7 
300 0.1 ± 0.3 0.5 2.9 ± 0.7 1.8 0.7 ± 0.5 0 0.1 ± 0.7 1.4 
400 0.3 ± 0.2 0.5 0.4 ± 0.3 1.0 0.3 ± 0.3 0.7 o ± 0.4 1.1 

1700 -0.2 ± 0.2 0.4 0.3 ± 0.3 0.8 0.3 ± 0.2 0.6 -0.1 ± 0.2 0.3 
2300 -0.3 ± 0.2 0.2 0.2 ± 0.4 1.6 0.4 ± 0.4 0.8 -0.1 ± 0.3 0.2 
3000 0.3 ± 0.3 0.7 2.9 ± 0.5 2.0 4.5 ± 0.6 1.6 2.0 ± 0.7 1.4 
3200 0.7 ± 0.4 0.8 8.9 ± 0.6 2.1 17.4 ± 1.2 4.3 4.2 ± 1.0 2.3 
3400 2.3 ± 0.4 0.7 .. . . .. ... . .. 8.9 ± 2.0 4.6 
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Notice that the bandwidth of a facility with A-channel banks is 
superior to that of the short haul facilities with O-carrier or N1-
carrier channel filters. In fact, a facility with three pair of A-channel 
banks in tandem will have greater bandwidth than either of the 
short-haul carrier facilities. It may also be noticed that between the 
short-haul carrier facilities, N1-carrier has the superior frequency 
response characteristic at low frequencies while facilities with 0-
carrier terminals are superior at the high frequencies. 

The loss differences for office equipment are given in Table XII. 
Comparison with Table XI shows that office equipment may con­
tribute more to switch-to-switch loss at low frequencies than a pair 
of A-channel banks. This is especially true when both offices use 
2-wire switching, in which case the mean loss difference of office 
equipment at low frequencies exceeds even that of two pair of A­
channel bank facilities in tandem. 

5.3 Frequency Response of Trunks 

The loss data were also analyzed within the mileage categories 
defined previously. The results of this analysis are presented in Ta­
ble XIII. A general trend toward smaller values of mean loss and 
standard deviation with increasing trunk length is evident at both 
the lower and higher frequencies of the voice band. Hence the longer 
trunks are seen to have a frequency response characteristic that is 
superior to that of the shorter ones. This reflects the transition from 
compandored carrier on short-haul trunks to A-channel banks for 
long-haul trunks and is consistent with the superior performance of 
long-haul carrier noted previously. The high percentage of voice 
frequency cable and N1-carrier in the shortest category accounts for 

TABLE XII-Loss DIFFERENCES IN dB RELATIVE TO 1000 Hz 
Loss FOR OFFICE TRUNKING EQUIPMENT 

4-Wire office 2-Wire office 
Frequency (Hz) 

Standard Standard 
Mean deviation Mean deviation 

200 0.7 ± 0.8 0.4 1.4 ± 0.9 1.3 
300 0.3 ± 0.5 0.4 0.7 ± 0.5 0.8 
400 0.3 ± 0.4 0.3 0.3 ± 0.2 0.1 

1700 0.1 ± 0.3 0.2 0.2 ± 0.2 0.2 
2300 0.2 ± 0.3 0.3 0.4 ± 0.3 0.5 
3000 0.3 ± 0.5 0.1 0.4 ± 0.4 0.4 
3200 0.3 ± 0.5 0 0.4 ± 0.4 0.4 
3400 0.6 ± 0.7 0.5 0.5 ± 0.6 0.9 



TABLE XIII -SWITCH-TO-SWITCH Loss IN dB ON INTERTOLL TRUNKS 

Miles 

0-62.5 62.5-125 125-250 250-500 

Frequency Standard Standard Standard Standard 
(Hz) Mean Deviation Mean Deviation Mean Deviation Mean Deviation 

200 8.9 ± 1.5 6.0 12.6±2.0 7.9 8.8±1.3 7.5 7.0 ± 1.1 6.1 
300 3.4±0.5 2.4 4.1±0.7 2.4 3.5±0.4 3.0 3.2 ±0.4 2.6 
400 2.1±0.3 1.8 2.2±0.3 1.5 2.2±0.2 1.7 2.5 ± 0.3 1.7 

1000 1.2 ± 0.2 1.4 1.2 ±0.3 1.2 1.1 ± 0.2 1.2 1.4 ±0.2 1.1 
1700 1.6 ± 0.3 1.6 1.6 ± 0.3 1.5 1.5 ± 0.2 1.6 1.5 ± 0.2 1.3 
2300 2.1±0.3 1.9 1.8 ±0.3 1.8 1.7 ±0.2 1.8 1.8 ± 0.2 1.6 
3000 5.1±0.6 3.2 5.3 ± 1.3 6.2 4.2 ± 0.7 4.2 3.5±0.5 3.2 
3200 12.4 ± 1.6 8.2 1O.0±1.6 7.3 8.2 ± 1.9 7.8 5.1 ± 0.9 5.7 
3400 22.8 ± 2.6 11.4 22.5 ± 2.8 12.4 16.4±3.3 12.8 9.6±1.6 9.7 

- --

Miles 

500-1000 1000-2000 2000-4000 

Frequency Standard Standard Standard 
(Hz) Mean Deviation Mean Deviation Mean Deviation 

200 5.7 ± 0.4 3.4 5.3±0.3 2.6 4.2 ±0.4 2.4 
300 2.9±0.2 1.4 3.0 ± 0.2 1.5 1.9 ±0.3 1.5 
400 2.8±0.2 1.4 3.0±0.3 1.5 1.9 ±0.2 1.4 

1000 1.9 ±0.2 1.1 2.1±0.2 1.3 0.9 ± 0.1 1.2 
1700 1.8 ± 0.2 1.3 1.9 ±0.2 1.4 0.9 ± 0.2 1.4 
2300 2.0±0.2 1.3 2.1 ±0.2 1.5 1.1 ±0.2 1.4 
3000 3.2±0.4 2.9 3.2±0.3 1.7 2.3 ± 0.2 1.6 
3200 4.2 ±0.5 3.9 3.8±O.3 2.2 2.9±0.2 1.7 
3400 7.2±0.8 6.1 7.3±0.6 4.5 6.1±0.5 2.7 
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the superior low frequency performance of trunks in that category 
compared with trunks from 62.5 to 125 miles long where O-carrier ter­
minals predominate (see Table VII). 

In the first two mileage categories notice that the estimated mean 
loss at 3400 Hz is above 20 dB. Included in these estimates are a 
high percentage of assigned values of 31 dB for loss too high to be 
measured. Hence these estimates are best interpreted as indicating a 
mean loss in excess of 20 dB rather than as true estimates of mean 
loss. A similar statement holds for the estimated mean loss at 3400 
Hz in the 125 to 250 miles category; that is, the estimate of 16.4 dB 
indicates mean loss exceeding 16 dB. With these exceptions the ef­
fect of assigned values is to provide more realistic estimates rather 
than to alter the interpretation of the estimates. 

A comparison between frequency responses for short and long in­
tertoll trunks is made in Fig. 4. It contains plots of the median 
switch-to-switch losses as a function of frequency for trunks in the 
first and last of the seven mileage categories. Notice that these are 
not median curves in the sense that 50 percent of all frequency 
response curves lie on or below these curves; rather, they connect such 
points at each frequency that 50 percent of the trunks have a lower 
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Fig. 4 - Median switch-to-switch loss for (a) short (0 to 62.5 miles) and (b) 
long (2000 to 4000 miles) intertoll trunks. 
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loss at that frequency. Fig. 4 shows clearly the larger bandwidth for 
the longer trunks. 

VI. BACKGROUND NOISE 

The noise on a telephone communication channel affects the trans­
mission of both spoken messages and data signals. From a practical 
standpoint, the noise is important only when it is interfering with or 
disturbing to the transmission of a signal. Hence the noise evaluation 
of a telephone communication channel seeks to quantify the inter­
fering or disturbing effect of the noise in relation to particular types 
of information bearing signals. The character of this evaluation takes 
different forms for different types of signals. The disturbing or annoy­
ing effect of noise for spoken messages is related to the time-average 
noise power, while the most interfering effect of the noise on a data 
signal is related to the peaks of the noise voltage. Thus, although 
we are dealing with the same noise in either case, different aspects of 
that noise are important for different types of signals. In presenting 
survey results, we refer to "background noise" when dealing with 
those noise aspects that basically affect the transmission of spoken 
messages, while we use "impulse noise" to describe those aspects that 
most seriously affect data transmission. 

6.1 Measurement Procedure 

All measurements of background noise in the survey were made 
with the far end of the trunk connected to a quiet termination, sup­
plied either by a dialed test termination or by a manually established 
connection. Noise levels were then measured at the near end with the 
3A noise measuring set used both with C-message weighting and with 
3-kHz flat weighting. All noise measurements were made during the 
busy period of an ordinary business day. 

6.2 Results of 3A Noise Level M easuremenis 

A scatter diagram of 3A noise levels with C-message weighting 
versus trunk length is shown in Fig. 5. All noise levels here are given 
"as measured," that is, referred to the receive switch of each measured 
intertoll trunk. The scatter diagram exhibits clearly the important 
facts that the mean noise level increases with the length of the trunk, 
while the variability decreases. 

The regression line in Fig. 5 gives an estimate of the mean noise 
level under the assumption that the mean noise level is linearly 
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Fig. 5 - Scatter diagram of 3A noise level at receive switch versus trunk length. 

related to the logarithm of the trunk length. The equation for the 
regression line is 

N = 3.7 + 3.1 log2l 

where l is the trunk length in miles and N is the average 3A noise 
level in dBrnC. This equation shows that the average noise level in­
creases by 3.1 dB for each doubling of length of trunk and that the 
average noise level at 4000 miles is 40.8 dBrnC. 

The fact that the variance is not constant with the trunk length 
affected this regression analysis; the least squares fit to the noise 
levels as a function of the logarithm of the trunk length was weighted 
in inverse proportion to the variance about the regression line. This 
means that higher weight was given to those observations that show 
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a small spread about their mean. The variance about the regression 
line was in each case computed as the variance in a mileage category 
minus the contribution to that variance that occurred because the 
mean noise level varies with the trunk length. 

The means and standard deviations of the noise distributions in 
each of the mileage categories discussed earlier are listed in the second 
and third columns of Table XIV. As before, the mean is given with 
its 90 percent confidence interval. The strong dependence of both 
mean and standard deviation on the trunk length is again clearly ex­
hibited. The discontinuity in loss design rules around 1500 miles is 
seen to result in a noticeable extra increase in the average noise level, 
since the rise of 3.1 dB from 34.4 to 37.5 dBrne occurs for an in­
crease in trunk length that is approximately half of what corresponds 
to a double length. The noise distributions in each of the mileage 
categories are all close to normal with only a small tendency 'toward 
positive skewness in some of the categories. 

Compandored carrier facilities are used extensively on short-haul 
trunks as shown in Section III. These facilities have the property 
that the noise level during quiet intervals is lower than the noise 
level during periods when speech or some other signal is transmitted 
over the facility. Tests have shown that the subjective reaction to this 
noise behavior is approximately accounted for by adding 5 dB to the 
noise level measured in a quiet interval. The resulting noise level is 
commonly referred to as an "effective" noise level. The distributions 

TABLE XIV -3A NOISE LEVEL AT RECEIVE SWITCH 

Noise level 

Trunk length Measured Effective* 
(miles) -----

Standard Standard 
Mean deviation Mean deviation 

(dBmC) (dB) (dBmC) (dB) 
-----

0 - 62.5 18.1 ± 1.7 7.5 21.6 8.6 
62.5- 125 22.0 ± 1.3 6.2 25.2 5.8 

125 - 250 26.4 ± 1.0 5.3 28.0 4.8 
250 - 500 30.6 ± 0.6 4.4 30.9 4.2 

-----
500 -1000 33.1 ± 0.5 2.9 

1000 -2000 35.1 ± 0.4 3.0 
2000 -4000 39.4 ± 0.4 2.6 

1000 -1465 34.4 ± 0.4 2.8 
1465 -2000 37.5 ± 0.7 2.5 

* Including subjective compandor penalty. 
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of effective noise levels for various length categories of trunks are 
obviously influenced by the proportion of trunks in the category that 
contain compandored carrier. 

The fourth and fifth columns of Table XIV give means and stand­
ard deviations of distributions of effective noise levels in those mile­
age categories where there is a noticeable difference between the 
average effective noise level and the average measured noise level. 
These results have been derived by adding 5 dB to the measured noise 
level on each trunk composed entirely of compandored facilities, and 
adding a correspondingly lower value to the measured noise level on 
the trunks made up of a tandem connection of compandored carrier 
facilities and noncompandored facilities. Comparison of the second 
and fourth columns shows that the average difference between effec­
tive and measured noise levels ranges from 3.5 dB for trunks shorter 
than 62.5 miles to 0.3 dB for trunks from 250 to 500 miles long. 

The noise performance of the most important transmission facilities 
used in the intertoll trunk plant was estimated from the survey data 
by subclass analysis. The results are summarized in Table XV. Notice 
that noise distribution estimates are not given for all mileage cate­
gories of each transmission facility. The short-haul carrier facilities 
Nl and ON are restricted to the first three mileage categories by their 
capabilities (compare with Table VI). Results for these as well as 
for other facilities are presented only in those cases where the sample 

TABLE XV - MEASURED 3A NOISE LEVEL REFERRED TO 0 TLP 

Trunk 
Voice frequency facility Nl carrier ON-carrier 

length Standard Standard Standard 
(miles) Mean deviation Mean deviation Mean deviation 

(dBrnCO) (dB) (dBrnCO) (dB) (dBrnCO) (dB) 

0-62.5 16.6 ± 3.1 8.6 25.1 ± 2.0 5.7 18.9 ± 1.5 4.6 
62.5-125 ... . .. 29.0 ± 1.9 4.3 21.8 ± 2.0 5.5 
125-250 ... . .. 29.3 ± 1.5 3.0 23.0 ± 1.5 4.0 

Coaxial cable carrier Microwave radio carrier 
Trunk 
length Standard Standard 
(miles) Mean deviation Mean deviation 

(dBrnCO) (dB) (dBrnCO) (dB) 

62.5-125 ... ... 29.8 ± 1.9 4.1 
125-250 31.1 ± 1.9 3.0 31.2 ± 2.1 4.7 
250-500 34.5 ± 1.4 4.0 34.0 ± 0.9 3.9 
50D-1000 36.0 ± 1.1 2.9 37.2 ± 0.6 2.5 

1000-2000 ... .. , 39.1 ± 0.7 2.4 
2000-4000 .. . ... 42.8 ± 0.6 2.3 
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contained at least 10 trunks. The noise levels have here been referred 
to a conventional reference point called the zero transmission level 
point (0 tIp). Intertoll trunks operate with the transmitting switch at 
a transmission level of -2 dB relative to 0 tIp, and with the receiving 
switch at a transmission level of - (2+design loss) dB. The mean 
noise level at 0 tIp was computed by adding 2 plus the mean measured 
loss to the mean measured noise level. The variance was calculated 
by subtracting the variance of measured losses from the variance of 
measured noise levels. In this way, it is seen that the noise level com­
puted at 0 tIp does not include effects resulting from the loss varia­
bility of trunks. Thus the random variables representing noise level 
at 0 tIp and measured loss can be regarded as independent. 

Table XV shows that voice frequency facilities have a lower av­
erage noise level than the compandored short-haul carrier systems 
N1 and ON, while the standard deviation is higher. The average noise 
level on N1-carrier, which is a double-sideband system, is more than 
6 dB higher than the average noise level on the single-sideband ON­
carrier system. 

Microwave radio facilities are used for a wide range of trunk mile­
ages. The trend with increasing mean and decreasing standard devia­
tion as trunk length is increased is clearly visible from the table. 
This trend is in line with the results already mentioned for 3A noise 
levels on trunks. The trend can be explained theoretically by regard­
ing a transmission facility as a tandem connection of a number of 
noise sources n, with n being directly proportional to the facility 

TABLE XVI-MEASURED FLAT-WEIGHTED 3A NOISE LEVEL AT 

RECEIVE SWITCH 

Noise level 
Trunk 
Length Mean Standard 
(Miles) (dBrn fiat) deviation 

(dB) 

0-62.5 29.4 ± 2.0 9.0 
62.5-125 30.2 ± 1.4 7.3 

125-250 31.9 ± 0.8 4.9 
250-500 34.9 ± 0.7 4.8 

500-1000 36.3 ± 0.5 3.3 
1000-2000 37.7 ± 0.6 2.9 
2000-4000 41.3 ± 0.5 2.4 

1000-1465 37.2 ± 0.7 2.7 
1465-2000 39.6 ± 0.9 2.9 
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length. The resulting noise level on the facility is then the power sum 
of n components. Recent work by Marlow10 and Nasellll has shown 
that the mean of a power sum increases while the standard deviation 
decreases as the number of component variables n is increased. 

Table XVI summarizes the results of 3A noise readings with 3-
kHz flat weighting. Trends similar to those for 3A noise levels with 
C-message weighting are indicated; the mean increases with trunk 
length while the standard deviation decreases. Noise level readings 
taken with a 3-kHz flat weighting network are mainly used to in­
dicate the presence of low-frequency noise components on a measured 
channel. Such noise levels do not in general propagate along tele­
phone trunks since their main frequencies fall below the lower cut-off 
frequency of most telephone channels. 

VII. IMPULSE NOISE 

One of the major sources of impairment to the successful trans­
mission of digital data over telephone circuits is the appearance of 
short-term, high-level peaks of noise 12 to 50 dB above the back­
ground noise. These peaks are called "impulse noise" because they 
frequently resemble the impulse response of a bandpass filter when 
viewed on an oscilloscope. 

ImpUlse noise and its interfering effects on various voice-band data 
signals have been studied extensively in recent years by Fennick and 
others.12, 13, 14 It has been characterized in terms of peak amplitude 
distributions, burst durations, frequency spectra, distributions of the 
intervals between impulses and conditional probability of receiving 
a second impulse within tit" units of time from an initial impulse. 
Among these, the distribution of peak amplitudes above selected 
threshold levels provides an adequate and useful description of the 
impulse noise process with instrumentation of minimum complexity.15 
It is not the object of this section, therefore, to expand or improve 
upon the methods of characterizing impulse noise now used, but rather 
to use one of these methods to describe the impulse noise performance 
as measured during the 1964 intertoll trunk survey and to identify 
some factors that significantly influence its character. 

7.1 Impulse Noise Description 

The impulse noise on anyone transmission channel can be described 
by the time-average of the number of noise bursts that' exceed a 
threshold level as a function of threshold level. This functional rela-
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tion is referred to as the peak amplitude distribution. Experience has 
shown that the relation between the logarithm of the average count­
ing rate and the threshold level is in many cases approximately linear, 
that is, 

L = L1 - K loglo c. (1) 

Here, L is the threshold level in dBrn at which the average counting 
rate is C counts per minute, as observed on a 6A impulse noise 
counter,15 L1 is the impulse noise level that corresponds to an average 
counting rate of one count per minute, and K is the slope of the peak 
amplitude distribution. It expresses the dB decrease in threshold level 
that increases the average counting rate by a factor of ten. 

7 .2 Measurement Procedure 

During the field measurement phase of the survey, a 15 minute 
magnetic tape recording was made of the trunk noise for each inter­
toll trunk in the sample. Trunks containing no compandored carrier 
facilities in their makeup were terminated at the distant end either 
in a dialed quiet termination or, in the case of one-way incoming 
trunks, in a termination supplied manually at the transmitting end 
of the trunk. 

If a trunk contained any compandored carrier, a low-frequency 
tone (325-350 Hz) was transmitted at -13 dBm from the distant 
toll testboard in order to operate the compandors with a simulated, 
fixed-power data signal. This tone was removed by filtering before 
the noise was recorded. To ensure that all impulse noise data were 
collected during a period of peak channel loading and switching ac­
tivity at both ends of the trunk, it was required that noise be recorded 
only when the local time at both ends of the trunk fell between 9: 15 
and 11 :45 a.m. or 1: 15 and 4: 15 p.m. 

After the field measurement phase of the survey was completed, 
each tape recording was played back in the laboratory and monitored 
simultaneously by eight 6A impulse counters with threshold levels 
spaced 3 dB apart. Each 6A counter was equipped with a voiceband 
weighting network.15 The playback gain was adjusted so that the 6A 
counts covered the range from 4 to 45 counts during the 15 minute 
observation period for each sample trunk. Using relation (1), the 
levels corresponding to 45, 15, and 4.5 counts, respectively, were de­
termined by interpolation between the levels that in each case gave 
a count higher and lower than the count for which the corresponding 
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Fig. 6 - Scatter diagram of impulse noise level versus trunk length. v = voice­
frequency trunks; * = trunks containing only compandored carrier; 0 = trunks 
containing both compandored and noncompandored carrier; . = trunks contain­
ing only noncompandored carrier. 

level was sought. The slope of the peak amplitude distribution was 
computed for each trunk as the difference between the interpolated 
4,5 and 45 count levels. 

7.3 Results oj Impulse Noise Measurements 

The 1963 survey of impulse noise on Bell System carrier facilities 
revealed that mean threshold levels corresponding to a 6A counting 
rate of 3 counts per minute were significantly higher on the short haul 
compandored carrier facilities, Nl and ON, than on long haul carrier 
facilities.16 In recognition of this, the scatter diagram of impulse noise 
levels versus trunk length, shown in Fig. 6, reflects the following par­
tition of intertoll trunks: 
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(i) Trunks made up entirely of compandored carrier facilities (Nl, 
ON, or 0), 

(ii) Trunks made up of any combination of compandored carrier 
with noncompandored carrier facilities (part Nl, ON or 0), 

(iii) Trunks made up entirely of noncompandored carrier facilities 
(C, J, K, L and microwave radio), and 

(iv) Trunks made up entirely of voice frequency facilities. 
Trunks in the first three categories that include a short section of 
voice frequency facilities in tandem with carrier facilities were classi­
fied by their carrier facility makeup. 

Fig. 6 suggests the following trends: 

(i) Impulse noise levels measured on trunks containing any com­
pandored carrier are distinctly higher than on noncompandored 
trunks. 

(ii) Impulse noise levels measured on mixed facility trunks con­
taining any compandored carrier are dominated by the compandored 
carrier impulse noise. 

(iii) Impulse noise levels measured on noncompandored trunks are 
correlated with trunk length. 

These trends are described quantitatively by the results shown 
in the figures and tables that follow. Tables XVII and XVIII sum­
marize estimates of the mean, standard deviation, and 90 percent 
confidence interval for the mean for the impulse noise level (cor­
responding to an average of 1 count per minute) and the slope. All 
noise measurements were made on trunks and therefore are referred 
to the level of the receive switch. 

In Table XVII estimates are presented for all intertoll trunks and 
for nine subclasses defined by transmission facility. These subclasses 
include trunks made up entirely of the five major Bell System carrier 
facilities, voice frequency facilities, and the common long haul com­
bination of coaxial cable carrier and microwave radio. The remain­
ing categories partition all carrier intertoll trunks whether single 
facility or mixed, into those using only noncompandored carrier 
facilities and those using any compandored carrier facilities. Table 
XVIII summarizes estimates for the latter two trunk categories within 
seven mileage categories. Voice frequency trunks are eliminated from 
Table XVIII because 93 percent of them are shorter than 62.5 miles; 
impulse noise on these trunks is therefore adequately characterized 
by Table XVII. 
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TABLE XVII-SUMMARY OF IMPULSE NOISE RESULTS, AT RECEIVE 

SWITCH, OVER ALL TRUNK LENGTHS 

Impulse noise level 
(1 count per minute) Slope 

Facility type 
Standard Mean Standard 

Mean deviation (dB per deviation 
(dBrn VB) (dB) decade) (dB) 

Voice frequency 51.4 ± 2.5 8.4 8.2 ± 0.8 3.4 
N1 carrier 68.7 ± 1.8 7.9 6.9 ± 1.2 4.3 
ON-carrier 66.7 ± 1.8 7.3 5.5 ± 0.8 3.2 
K-carrier 58.3 ± 2.5 9.8 9.2 ± 1.3 6.3 
L-carrier 54.9 ± 2.2 7.6 6.6 ± 0.7 3.5 
Microwave radio 57.3 ± 1.4 7.0 7.9 ± 0.7 4.1 

L-carrier and 
microwave radio 59.9 ± 1.7 6.3 7.3 ± 0.5 3.7 

Any c?mpandored 
67.8 ± 1.3 7.6 6.2 ± 0.7 3.9 carner 

N oncompandored 
carrier 57.8 ± 1.0 7.6 7.7 ± 0.4 4.1 

All intertoll 
trunks 61.6 ± 1.2 9.7 7.1 ± 0.4 4.0 

TABLE XVIII-SUMMARY OF IMPULSE NOISE RESULTS, AT 

RECEIVE SWITCH, FOR CARRIER INTERTOLL TRUNKS 

Impulse noise level 
(1 count per minute) Slope 

Mileage Compandored 
stratum carrier Standard Mean Standard 

Mean deviation (dB per deviation 
(dBrn VB) (dB) decade) (dB) 

0-62.5 ANY 67.1 ± 1.8 8.0 6.3 ± 1.1 4.3 
NONE 52.5 ± 2.8 5.5 7.2 ± 1.8 3.1 

62.5-125 ANY 69.4 ± 1.8 7.2 6.3 ± 0.9 3.4 
NONE 55.1 ± 3.3 9.2 9.2 ± 1.3 5.0 

125-250 ANY 67.0 ± 1.5 6.3 6.0 ± 0.9 3.4 
NONE 56.7 ± 1.6 7.6 8.2 ± 0.8 4.6 

250-500 ANY 67.8 ± 2.4 6.6 5.0 ± 0.5 1.9 
NONE 58.4 ± 1.6 7.3 7.7 ± 0.6 4.0 

500-1000 ANY 66.4 ± 3.6 5.9 4.3 ± 1.9 2.6 
NONE 58.8 ± 1.5 6.4 6.9 ± 0.6 3.6 

1000-2000 NONE 59.9 ± 1.1 6.1 7.2 ± 0.5 3.5 
2000-4000 NONE 63.2 ± 1.3 5.0 7.1 ± 0.3 2.8 
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Table XVII supports the observation made from the scatter plot: 
the average impulse noise level is 10 dB higher on trunks containing 
any compandored carrier than on trunks using no compandored car­
rier. On the other hand, the average slope is 1.5 dB higher for non­
compandored carrier trunks. The differences between mean impulse 
noise levels observed for the three facility categories L-carrier, micro­
wave radio, and the combination of L-carrier and microwave radio 
is not a reflection of different impulse noise performance of these 
facilities. If a comparison between the three is made within mileage 
categories, one finds no significant differences. The differences ob­
served in Table XVII depend on the varying length distribution of 
the three facilities combined with the fact that the average impulse 
noise level increases with trunk length for trunks on noncompandored 
carrier facilities. 

Some of the results of Table XVII are depicted graphically in Fig. 
7. The intertoll trunks are partitioned into three major facility cate­
gories, voice frequency trunks, trunks made up of noncompandored 
carrier facilities, and trunks containing any compandored carrier. 
For each facility category, a peak amplitude distribution is given by 
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with 90 percent confidence intervals. 

the curve that connects the mean impulse noise levels at which an 
average of 3, 1, and 0.3 counts occur per minute. 

Table XVIII demonstrates how the average impulse noise level on 
noncompandored carrier trunks increases with increasing trunk length, 
while the average impulse noise level on trunks containing any com­
pandored carrier shows no significant change. The table also indicates 
a tendency for the slope to decrease with trunk length within each of 
these two facility categories. Furthermore, standard deviations of 
both impulse noise level and slope tend to decrease with trunk length 
for each of the two facility categories. 

Fig. 8 clearly portrays the relationship between average impulse 
noise level and trunk length. Abscissa values for points plotted in this 
figure are the mean trunk lengths within each mileage-facility cate­
gory. 

For each of the categories given in Tables XVII and XVIII the 
distribution function was estimated for both the impulse noise level 
and the slope. Distributions of the impulse noise levels in all these 
categories are very nearly normal and therefore are adequately de­
fined by the distribution parameters given for them. The distributions 
of the slope show a positive skewness, however, and so Fig. 9 is in­
cluded to show the amount of this skewness for the two major trunk 
facility categories referred to throughout this section. . 

Estimation of the slope of peak amplitude distributions is mean-
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ingful only to the extent that relation (1) is a good approximation to 
the relation between counting rate and threshold level. Fig. 7 indicates 
a high degree of linearity in the functional dependence between the 
logarithm of the average counting rate and the average threshold level 
in dBrn. However, this does not guarantee linearity of individual peak 
amplitude distributions. Some insight into the latter can be gained by 
studying the difference, 6., between the level at which 15 counts occur 
in 15 minutes and that level at which 15 counts in 15 minutes would be 
predicted on the basis of the levels at which 45 and 4.5 counts occur 
in 15 minutes and using the linearity assumption in (1). 

The 90 percent confidence interval for A includes zero for all subclasses 
of trunks listed in Table XVII, except K carrier. Excluding this category, 
the mean A values range from 0.3 to 0.7 dB, and the standard deviations 
of A range from 0.8 dB for L carrier to 1.5 dB for microwave radio. 
The mean A for K carrier trunks is 1.2 dB with a 90 percent confidence 
interval of ±0.5 dB. This indicates a nonlinear peak amplitude dis­
tribution for trunks made up entirely of K carrier. The standard devia­
tion of A is 2.7 dB for these trunks. 

Fig. 8 demonstrates that the impulse noise level for noncompan­
dored carrier trunks is correlated with length, but Fig. 5 shows that 
background noise level is also correlated with length. In an effort to 
assess the relative significance of these two factors on impulse noise, 
a weighted multiple linear regression analysis was performed on the 
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impulse noise level corresponding to 3 counts per minute for noncom­
pandored trunks versus the logarithm of trunk length in miles and 
the background noise level as measured with the 3A noise measuring 
set. The least squares fit was weighted in inverse proportion to the 
variance of impulse noise levels about the regression plane. 

This regression analysis gave the following result: 

L3 = 33.2 + 0.08 log2 l + 0.65 N, (2) 

where L3 is the average impulse noise level in dBrn (VB) correspond­
ing to an average 6A counting rate of 3 counts per minute, l is the 
trunk length in miles, and N is the background noise level in dBrnC. 
As with all results reported in this section, both L3 and N refer to 
noise levels measured at the receive switch of an intertoll trunk. Re­
lation (2) shows that the correlation between impulse noise level and 
trunk length is very low if the background noise level measurement is 
included as an independent variable in the regression analysis. 

A weighted linear regression analysis of the impulse noise levels as 
a function of trunk length alone gave the result: 

L3 = 37.9 + 1.9 log2 l. (3) 

Thus the average impulse noise level L3 on noncompandored carrier 
trunks increases by 1.9 dB for each doubling of the trunk length. 
Such a strong correlation between these two variables was to be ex­
pected because of (2) and the dependence of average background 
noise level on trunk length discussed in Section VI. 

VIII. RELATIVE ENVELOPE DELAY 

Relative envelope delay can be used to characterize nonlinearity 
of the phase characteristic. It is the delay of the envelope of an ampli­
tude modulated carrier relative to the envelope delay at a reference 
carrier frequency. As such it provides an approximation to the deriva­
tive of the phase characteristic. Hence linear phase corresponds to 
constant delay, or zero relative envelope delay. The reference fre­
quency chosen for all measurements in the survey was 1800 Hz. 
That is, the envelope delay of each trunk in the sample is given rela­
tive to the envelope delay of the same trunk at 1800 Hz. 

8.1 Measurement Procedure 

Envelope delay was measured with a loop-around technique. When­
ev~r possibl~ a trun~ w.as l<?oped back onto itself at a 4-wire 'point 
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in the distant office, thus ensuring the same facility composition in 
each direction of transmission. Delay was then measured from a 
4-wire point in the near-end office. Since voice frequency patch bays 
are standard 4-wire points for most carrier systems, they were used 
both for point of measurement and point of loop back when available. 
For facilities not appearing at a voice frequency patch bay, an alter­
nate point of measurement and loop-back was selected. In offices where 
compandored carrier systems terminated only at the circuit patch 
bay this point was used; and for voice frequency facilities, the re­
peater jacks were used. For 2-wire voice facilities the trunk to be 
measured was looped back onto its cable quad pair, thus assuring 
similarity of loading, repeater type, and spacing. The loop-around 
measurements were converted arithmetically to one-way values in a 
manner described later. 

In order to characterize each trunk as completely as possible, meas­
urements were also made on the office trunking equipment between 
the toll test board and the voice frequency patch bay (or similar 
points where the facility measurements had been made). Measure­
ments between the toll testboard and the voice frequency patch bay 
in 4-wire switching offices were made from the test board with a 
loop-back at the voice frequency patch bay. In offices with 2-wire 
switching, two separate measurements were made on the office equip­
ment: one from the toll test board to the voice frequency patch bay 
and a second from the voice frequency patch bay to the toll test 
board. 

8.2 Loop-Around to One-Way Conversion 

As already mentioned, relative envelope delay on facilities was 
measured with a loop-back technique. The requirement to charac­
terize the transmission performance by one-way data, therefore, 
makes it necessary to find a method for converting the loop-around 
data to one-way delay. This conversion presents a problem, since a 
direct division by two of each two-way delay reading would lead to 
an underestimation of the standard deviation of the distribution of 
one-way delay readings, even though the mean of the same distribu­
tion would be correctly estimated. 

The classification of trunks into homogeneous facility categories 
is of importance here, since it allows us to view the delay in the two 
directions of transmission of the trunk as independent, identically 
distributed random variables. Within each such facility category,the 
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following conversion formula was used at each frequency: 

d - (12 + d2 - (12 
1 - 2 (2)! (4) 

where d1 is the desired one-way delay for a given sample trunk, d2 is 
the measured loop-around delay for the same trunk and (12 is the esti­
mated mean loop-around delay for all trunks in the category. 

The use of a ratio estimator in the sample survey estimation formulas 
means that (12 is not an unbiased estimator of the mean loop-around 
delay. However, this estimator is asymptotically unbiased. Therefore, 
if the sample size within the facility category is large enough, the bias 
of (12 can be neglected, and its variance can be neglected in comparison 
with the variance of d2 • The covariance of d2 and (12 is likewise neg­
ligible. Under these conditions it is easily shown that: 

(5) 

and 

(6) 

The conversion formula (4) is thus seen to have the desired properties 
for a large enough sample size in the corresponding trunk category. 
It has, however, been used for conversion from two-way to one-way 
delay in all of the facility categories regardless of size. The bias in­
troduced in this way is certainly less serious than the errors that 
would occur through a simple division of each measured loop-around 
delay by two. 

8.3 Delay on Facilities 

The data were analyzed separately for each of the facility cate­
gories. The results include estimates of the mean, standard deviation, 
and 90 percent confidence intervals for the means. These results for 
facilities with one pair of A-type channel banks, one pair of O-carrier 
channel filters, one pair of N1-carrier channel filters are presented in 
Table XIX and in Fig. 10. The curves for facilities with A-channel 
banks and O-carrier channel filters are quite symmetric while the 
curve for N1-carrier channel filters is not. Measurements at high 
frequencies could not always be made on the compandored carrier 
systems because of excessive attenuation, as mentioned previously. 

Delay characteristics are additive. That is, the relative envelope 
delay for two or more facilities in tandem may be obtained by adding 
the individual delay curves for each of the component facilities. For 
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TABLE XIX-RELATIVE ENVELOPE DELAY FOR MAJOR 

FACILITY CATEGORIES 

Delay Cps) 

Frequency (Hz) A Channel banks o Channel Filters Nl Channel Filters 
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Fig. 10 - Mean relative envelope delay for facilities with A-type channel 
banks, O-carrier channel filters, and N1-carrier channel filters. 
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example, the delay characteristic of a trunk facility containing one 
pair of A-channel banks in tandem with an ON system may be ob­
tained by adding the data for a facility with one pair of A-channel 
banks and that for a facility with one pair of O-carrier terminals. 
This follows from the fact that the voiceband channel filters are, with 
two notable exceptions dealt with later, the only significant contribu­
tors to envelope delay on carrier facilities. 

Variance for a tandem facility category is similarly estimated by 
the sum of the variances. Precision in the form of 90 percent con­
fidence intervals for the mean may also be estimated by "addition" 
of confidence intervals in the same manner as standard deviations 
(square root of sum of squares). Estimates of the cumulative distribu­
tion functions have indicated that the assumption of normality is 
justified within facility categories. Hence the percentage points of the 
distribution functions may be estimated from the means and standard 
deviations. 

The property of additivity was directly used in the data analysis. 
That is, delay for facilities with two pair of A-channel banks was 
assumed to be the sum of that for two facilities, each with one pair of 
A-channel banks. Similarly, delay for facilities with three pair of 
A-channel banks was regarded as the sum of three separate A-channel 
bank facilities. The data for facilities with one, two, or three pairs of 
A-channel banks were then pooled to provide the estimates for a facil­
ity with one pair of A-channel banks given in Table XIX and Fig. 
10. This procedure has the advantage of producing greater precision 
than use of only data for facilities with one pair of A-channel banks. 

In addition to channel bank filters, other factors which may con­
tribute to the over-all delay on a facility are group connectors and 
K-carrier modems. The most noticeable effects of these are found on 
edge channels of the basic group (channels 1 and 12). Estimates of 
the additional delay contributed by each of these are given in Ta­
ble XX. The results for group connectors are also shown in Fig. 11 
which presents the delay curves for A-type channel banks with and 
without the effects of group connectors on edge channels. 

The delay contributed by group connectors reflects the specific 
combination of an older and a newer generation of such connectors 
that existed in the plant in 1964. The newer generation gives smaller 
additional delay than the older one. It is therefore expected that the 
additional delay resulting from group connectors will decrease as the 
proportion of new group connectors in the plant increases. Table XX 
shows that the low frequency effect of a K-carrier modem is similar 
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TABLE XX-ADDITIONAL MEAN RELATIVE ENVELOPE DELAY ON 

EDGE CHANNELS FROM K-CARRIER MODEMS AND GROUP 

CONNECTORS 

Delay (MS) 

Frequency (lIz) K-Carrier modem Group connector 

Channell Channell2 Channell Channell2 

400 517 842 455 -138 
600 334 253 314 -121 
800 231 114 233 -109 

1000 164 73 154 -90 
1200 117 32 103 -67 

1400 76 5 65 -47 
1600 37 0 32 -27 
1700 20 -2 16 -13 
1800 0 0 0 0 
2000 -34 -3 -27 39 

2200 -63 0 -50 90 
2300 -80 -8 -63 122 
2400 -93 -17 -68 158 
2600 -120 -28 -84 244 
2800 -147 -27 -99 360 

3000 -170 -38 -115 533 
3200 -238 -121 -127 851 
3300 -296 -59 -133 1058 
3400 -293 217 -141 1349 

to that of a group connector on channel 1. In fact, a K-carrier modem 
contributes more excess delay at 400 Hz than one group connector. 
This is seen to be true for both channels 1 and 12 associated with 
the K-carrier modem. 'Ve may also notice that on channel 12, un­
like channel 1, a K-carrier modem will also add delay to the highest 
frequencies of the voice band. In Fig. 11 we observe that for channel 
12, the effect of a group connector is to produce a shift of the delay 
curve toward the left and an attendant asymmetry. This is seen to 
be opposite to the effect on channell and also somewhat greater in 
magnitude. For a K-carrier modem, the effect on both channels 1 
and 12 will be similar to that of a group connector on channell; 
that is, a shift of the entire delay curve to the right. 

8.4 Office Equipment Delay 

The results for office equipment are presented in Tables XXI and 
XXII for 4-wire and 2-wire offices, respectively. The left part of Ta­
ble XXI shows the results of loop-around measurements, with the 
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measurements being made at the toll test board (ttb) and the loop­
back at the voice frequency patch bay (vfpb). The right part of this 
table indicates that the relative envelope delay is lower if the loop­
back is made at the circuit patch bay (cpb) instead of at the vfpb. 
The difference between these two sets of readings is attributable to 
the single frequency signaling units located between the cpb and the 
vfpb. Voice frequency facilities and older types of compandored car­
rier systems generally do not use in-band single frequency signaling 
units, so the data on the right side of Table XXI apply specifically 
to the delay of office equipment associated with such facilities. 

The results in Table XXII for office equipment in 2-wire offices 
show a small difference between the delays in the two directions of 
transmission. Also, slightly lower values of delay are recorded where 
the transmission path does not contain a signaling unit. The differ­
ence is, however, not as large as in the case of 4-wire offices. This 
could result from the fact that the delay in 2-wire offices shows greater 
variability than the delay in 4-wire offices, as indicated by the esti­
mates of standard deviation. This greater variability and a smaller 
sample size combine to produce less precise estimates, thus masking 
the contribution of the signaling units. 

The existence of 4-wire to 2-wire hybrid transformers in offices 
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Fig. 11- Mean relative envelope delay on edge channels for facilities with 
one group connector and one pair of A-type channel banks. 
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TAllLE XXI - RELATIVE ENVELOPE DELAY OF EQUIPMENT IN 

4-WIRE OFFICES 

Delay (IlS) 

Frequency (Hz) TTB-VFPB-TTB* TTB-CPB-TTB* 

Standard Standard 
Mean deviation Mean deviation 

400 307 ± 9 48 195 ± 6 15 
600 122 ± 3 20 77 ± 2 6 
800 62 ± 2 12 35 ± 1 4 

1000 35 ± 1 8 19 ± 1 3 
1200 20 ± 1 5 11 ± 1 4 

1400 10 ± 1 5 6±1 4 
1600 5 4 2±1 2 
1700 2 2 1 1 
1800 0 0 
2000 -4 2 -2 ± 1 2 

2200 -7 ± 1 8 -3 ± 1 3 
2300 -6 ± 1 5 -4 ± 1 3 
2400 -5 ± 2 8 -5 ± 1 3 
2600 -6 ± 1 6 -6 ± 1 3 
2800 -6 ± 1 9 -7 ± 1 3 

3000 -16 ± 1 7 -8 ± 1 3 
3200 -14 ± 1 5 -8 ± 1 3 
3300 -14 ± 1 5 -8 ± 1 3 
3400 -15 ± 1 4 -9 ± 1 3 

* TTB, toll test board; VFPB, voice frequency patch bay; CPB, circuit patch bay. 

with 2-wire switching is also noteworthy. Observe that the office 
equipment delay in 2-wire offices is approximately twice that in 
4-wire offices. The use of different types of hybrid coils and wiring 
arrangements may also account for the higher variability encountered 
in 2-wire offices. 

The office equipment contribution to the total relative envelope 
delay of intertoll trunks becomes appreciable compared with the 
facility contribution only at low frequencies. Tables XXI and XXII 
show that the average office equipment delay amounts to no more 
than 50 ,p-s per office throughout the frequency range from 1000 to 
3400Hz. 

8.5 Delay on Trunks 

After conversion of the loop-around delay on facilities to one-way 
data the results were combined with the data on office equipment to 
obtain estimates of the total switch-to-switch delay on trunks. The 



TABLE XXII-RELATIVE ENVELOPE DELAY OF EQUIPMENT IN 2-WIRE OFFICES 

Delay (J.ls) 

Frequency TTB-VFPD* VFPB-Tl'D TTD-CPD CPD-TTB 
(Hz) 

Standard Standard Standard I Standard 
Mean deviation Mean deviation Mean deviation Mean deviation 

400 338 ± 24 67 294 ± 50 118 307 ± 28 70 272 ± 41 99 
600 137 ± 10 28 130 ± 22 52 120 ± 10 25 108 ± 16 39 
800 68 ± 6 16 67 ± 12 29 58 ± 4 12 53 ± 8 20 

1000 38 ± 3 10 38 ± 8 18 33 ± 3 10 30 ± 4 12 
1200 21 ± 2 7 22 ± 5 12 17 ± 1 4 16 ± 2 7 

1400 12 ± 2 5 12 ± 2 7 10 ± 1 5 9 ± 1 4 
1600 5 ± 1 3 5±1 4 4±1 3 4±1 2 
1700 2 ± 1 2 2 2 2 ± 1 2 1 2 
1800 0 0 0 0 
2000 -3 2 -4 ± 1 3 -3 ± 1 2 -3 2 

2200 -6 ± 1 3 -6 ± 2 5 -5 ± 1 3 -5 ± 1 3 
2300 -7 ± 1 3 -8 ± 3 6 -6 ± 1 3 -6 ± 1 3 
2400 -8 ± 1 3 -9 ± 3 6 -7 ± 1 3 -7 ± 1 4 
2600 -10 ± 1 5 -11 ± 3 8 -8 ± 1 3 -8 ± 1 4 
2800 -11 ± 1 4 -12 ± 4 8 -10 ± 1 4 -10 ± 1 4 

3000 -12 ± 1 4 -14 ± 5 9 -11 ± 1 4 -10 ± 2 5 
3200 -13 ± 1 4 -15 ± 5 10 -12 ± 1 4 -11 ± 2 5 
3300 -14 ± 1 4 -16 ± 5 11 -13 ± 2 4 -12 ± 2 6 
3400 -14 ± 1 5 -16 ± 5 11 -13 ± 2 4 -12 ± 2 6 

---

* TTB, toll test board; VFPB, voice frequency patch bay; CPB, circuit patch bay. 
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delay for the office equipment at the far end of a trunk was generally 
taken to be the mean delay characteristic for the type of office equip­
ment involved. That is, for each trunk the far-end office equipment 
was identified by whether 2-wire or 4-wire switching was used and 
whether in-band single frequency signaling units were present. The 
appropriate mean delay curve was then taken to represent the delay 
of the far-end equipment. The exception to this rule occurred when 
both near-end and far-end offices had 4-wire switching and both 
used the same type of signaling (that is, both used in-band single 
frequency signaling or neither did). In this case, the delay as meas­
ured for both directions of transmission on the near-end office equip­
ment of a given trunk was taken as representative of the total office 
equipment delay for that specific trunk. In all other cases only the 
receive direction of the near-end office equipment measurement was 
added (the mean delay curves used for far-end office equipment were 
for the transmit direction). When the near-end office equipment was 
measured on a loop-around basis and the far-end was not similar the 
loop-around value was divided by two to represent the receive direc­
tion of the near-end equipment. A loop-around to one-way conversion 
similar to that used on the facility data was not used here because of 
the relatively small variances encountered. 

The resultant data for switch-to-switch delay were grouped into 
mileage categories. The mean, standard deviation, and a 90 percent 
confidence interval for the mean were then estimated for the trunks 
in each mileage category. The results of this analysis are presented 
in Table XXIII. The lower relative envelope delay in the shortest 
mileage category reflects its high percentage of N1-carrier and voice 
frequency cable facilities. 

The data for delay at frequencies above 3200 Hz in this category 
refers mainly to the characteristics of voice frequency cable, since 
high loss generally precluded measurements on Nl and ON systems 
in this frequency range. A gradual increase in delay is also evident 
with increasing trunk length at the higher frequencies. This trend is 
caused by the increased use of tandem facilities and group connec­
tors on longer trunks (compare with Tables VII and VIII). A similar 
increase in delay with trunk length is not observed at the lower fre­
quencies since the transition from mainly 2-wire switching on short 
trunks to 4-wire switching on long trunks produces a decrease in the 
contribution of office equipment to overall delay (compare with Ta­
bles V, XXI, XXII). 
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Figure 12 compares delay characteristics for short and long inter­
toll trunks. It contains plots of the median relative envelope delay 
curves for trunks in the first and last of the seven mileage categories. 
The asymmetry of the curve for short trunks reflects the previously 
noted facts that N1 carrier channel filters dominate in this length 
category and that the delay curves for that facility are not sym­
metrical. 

IX. CONCLUDING REMARKS 

The transmission performance of intertoll trunks has an important 
influence on the transmission performance of built-up connections 
between subscribers. Notice, however, that the latter cannot be 
derived in a simple manner from the former since the relation be­
tween the two is influenced by a number of factors, such as customer 
calling habits, toll network routing patterns, and automatic alternate 
routing probabilities, as well as by the transmission performance of 
toll connecting trunks. 

It should come as no surprise that important differences have been 
noticed between intertoll trunk performance and connection per­
formance. One example illustrates this. The regression analysis re­
ported in Section VI shows the mean 3A noise level with C-message 
weighting to increase by 3.1 dB per double length of intertoll trunk. 
In contrast to this, the 1966 connection survey17 showed the average 
noise level on built-up connections to increase by only 2.0 dB for 
each doubling of the airline distance between end-offices. 

Some earlier survey activities have been directed at establishing 
the transmission performance of selected transmission facilities.16 

The results of such surveys cannot be used to directly estimate the 
performance of trunks. On the other hand, the results discussed in 
this paper show that a survey of intertoll trunks can be used to ar­
rive at performance estimates of both trunks and facilities. This is 
possible since any given facility constitutes a subclass of the popula­
tion of trunks. The powerful technique of subclass analysis on sam­
ple survey data can, therefore, be applied directly. It is seen from 
this that a systemwide trunk survey supplies more information than 
a survey of specific transmission facilities. 

The dynamic growth of the toll plant should be taken into ac­
count in applying the results given here. An important aspect of this 
growth is the introduction in recent years of the new short-haul 
carrier facilities N2, N3, and Tl. Their transmission characteristics 



TABLE XXIII-SWITCH-TO-SWITCH RELATIVE ENVELOPE DELAY OF INTERTOLL TRUNKS 

Delay (p.s) 

Frequency 0-62 .5 miles 62.5-125 miles 125-250 miles 
(Hz) 

Standard Standard Standard 
Mean deviation :l\Iean deviation Mean deviation 

400 1177 ± 137 592 1869 ± 114 529 1877 ± 164 758 
600 448 ± 65 274 815 ± 63 277 838 ± 75 360 
800 199 ± 39 169 425 ± 33 165 446 ± 41 198 

1000 89 ± 27 119 235 ± 18 110 253 ± 26 134 
1200 37 ± 17 76 124 ± 11 77 140 ± 15 85 

1400 7±11 62 58 ± 7 46 71 ± 8 50 
1600 -4 ±6 35 17 ± 4 23 25 ± 4 25 
1700 -5 ±5 34 5 ±2 12 8 ±2 13 
1800 0 0 0 
2000 14 ± 6 38 7 ± 5 28 7 ± 6 40 

2200 51 ± 9 49 48 ± 12 68 49 ± 12 70 
2300 76 ± 11 70 77 ± 16 89 85 ± 19 110 
2400 110 ± 13 71 115 ± 23 120 131 ± 27 155 
2600 186 ± 17 102 224 ± 47 240 224 ± 30 168 
2800 305 ± 27 154 414 ± 100 501 380 ± 50 279 

3000 559 ± 53 273 597 ± 51 362 624 ± 54 300 
3200 712 ± 81 414 980 ± 80 548 1027 ± 76 461 
3300 801 ± 151 648 1248 ± 135 714 1390 ± 116 640 
3400 900 ± 230 861 1856 ± 195 789 1956 ± 182 961 
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Frequency 250-500 miles 
(Hz) 

Standard 
Mean deviation 

400 2020 ± 146 854 
600 929 ± 69 386 
800 514 ± 38 214 

1000 292 ± 24 135 
1200 165 ± 15 87 

1400 85 ± 9 52 
1600 I 31 ± 4 26 

I 1700 i 10 ± 2 15 
1800 0 ! i 

2000 2±4 30 

2200 36 ± 10 71 
2300 70 ± 14 99 
2400 110 ± 19 136 
2600 210 ± 30 206 
2800 365 ± 45 316 

3000 619 ± 68 460 
3200 1066 ± 64 427 
3300 1497 ± 94 531 
3400 2052 ± 119 632 

Delay (Ils) 

500-1000 miles 1000-2000 miles 

Standard Standard 
Mean deviation Mean deviation 

1926 ± 108 783 1978 ± 143 889 
880 ± 50 359 938 ± 70 443 
497 ± 29 213 543 ± 44 285 
277 ± 17 132 308 ± 26 178 
154 ± 11 87 178 ± 17 116 

80 ± 7 55 97 ± 11 72 
29 ± 4 28 36 ± 4 34 
10 ± 2 17 14 ± 3 22 

0 0 
2 ± 3 33 -2 ±3 34 

36 ± 8 76 34 ± 7 75 
70 ± 10 97 67 ± 10 97 

110 ± 14 123 107 ± 12 124 
214 ± 24 201 212 ± 17 185 
378 ± 42 335 377 ± 26 271 

615 ± 53 403 656 ± 48 430 
1129 ± 85 604 1246 ± 84 710 
1635 ± 103 732 ( , 1850 ± 111 926 
2298 ± 136 965 ',' 2600 ± 169 1157 

2000-4000 miles 

Standard 
Mean deviation 

2111 ± 156 958 
1007 ± 77 477 
579 ± 44 286 
337 ± 27 177 
196 ± 16 112 

107 ± 9 69 
37 ± 4 32 
14 ± 2 17 

0 
4 ± 5 36 

53 ± 12 76 
92 ± 16 102 

138 ± 22 131 
257 ± 34 200 
445 ± 53 311 

758 ± 83 463 
1406 ± 133 776 
2094 ± 178 1046 
3033 ± 268 1458 
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Fig. 12 - Median relative envelope delay for (n) short (0 to 62.5 miles) and 
(b) long (2000 to 4000 miles) intertoll trunks. 

are, in practically all aspects, superior to those of the carrier facili­
ties N1 and ON, which dominated the short-haul trunk plant in 1964. 
The trend in trunk performance because of this is expected to be 
toward improved performance. Specifically, the background noise 
levels on short-haul carrier trunks should decrease, and their band­
width should increase to be more nearly comparable with the band­
width of long-haul trunks. 
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Effects Associated witlI the TlIermal 
Response of the TI Telephone Transmitter 

By c. A. FRITSCH 
(Manuscript receIved April 16, 1968) 

The thennal response of the Tl transm,itter, when excited by a bias 
current, is analytically obtained. The thermal expansions which produce 
a decrease in electrical resistance are described. Good agreement with 
experimentally measured temperature rises and displacements is demon­
strated for the early tilne transients during which the resistance change 
occurs. The displace11wnts which produce "thennal packing" are found 
to be a stronger function of the thermal expansion coefficient of the dome 
electrode than of any other part oj the transmitter assentbly. 

I. INTRODUCTION 

The design of an effective telephone transmitter requires that an 
acoustic signal (voice) be efficiently converted to an electrical output. 
One method of performing this function is to use a moving electrode 
(attached to a diaphragm) as one wall of a chamber containing 
granular carbon. Thus, if a dc bias current is impressed on the trans­
mitter the resulting variations can be used to operate remote telephone 
apparatus. 

An important factor in the design of such a transmitter is the con­
trol of thermal effects, not only caused by variations in ambient 
conditions but also arising from the heat generated each time the 
telephone set is connected to the line. These thermal effects result 
in dimensional changes in the transmitter body, resistance change 
resulting from temperature rise of the granular carbon itself, and the 
resistance change caused by thermal expansion of the carbon granules 
when they are heated by the biasing current. The total effect, which 
produces a loss of carbon transmitter efficiency, is referred to as 
"thermal packing." 

To assay the relative importance of the various thermal effects it 
is first useful to ascertain whether the carbon granules should be 

1615 
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treated individually or as a continuum. It has been observed that the 
contact points resulting from the granule asperities cause a "bunch­
ing up" of the current.1 Consequently, for ac heating in the kilohertz 
range, the high local rates of heat generation produce larger tempera­
ture changes at the points of contact with a proportionately large 
drop in electrical resistance.1 However, it can be readily shown (see 
Appendix A) that the carbon particles are small enough and their 
thermal diffusivity is high enough so that any local temperature 
changes are virtually diffused in about one millisecond. Since the 
resistance changes in the Bell System T1 transmitter¥" have been 
observed to take place in about one second,2 then the local heating 
caused by the asperities and the accompanying resistance change can 
be neglected and the granular carbon can be treated as a continuum. 

To determine the effects of thermal expansion in both the micro­
phone body and the granular carbon itself, the temperature distribu­
tion throughout the transmitter must be known. Thus, the work 
reported here consists of a first-approximation type of analysis to 
determine the temperature distribution in the carbon chamber of the 
T1 transmitter. The associated thermal effects are then considered 
with the hope of providing a better insight into what has been ex­
perimentally observed. 

II. ANALYSIS 

2.1 Thermal Analysis of the Carbon Chamber 

The telephone transmitter design of interest here is shown in Fig. 1. 
We wish to describe the transient thermal response of this transmitter 
as the above mentioned dc current is turned on. Geometrically, the 
carbon chamber consists of a dome (moving) electrode connected 
with a conical back electrode by a flexible nonconducting chamber 
closure. If we assume that the surfaces of constant voltage and con­
stant temperature within the carbon aggregate are hemispherical then 
the walls of the carbon chamber can be considered as two concentric 
hemispheres (see Fig. 2) . 

If we also assume for the moment that the relatively heavy back 
electrode is held at the initial and ambient temperature To, then, the 
thermal response of carbon and its chamber can be conveniently 

* Made by Western Electric CD., the manufacturing and supply unit Df the 
Bell System, and available Dnly to' the Bell System. 



TRANSMITTER THERMAL RESPONSE 
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Fig. 1- Cross section of T1 transmitter. 

written in terms of a temperature excess () defined by 

() = T - To. 

1617 

(1) 

If we further assume that the temperature excursions are small 
enough so that no significant variations in the physical properties 
take place then the energy-balance equation is given by 

a{) k 2 
pc at = V () + q''', 

where 

k is the effective thermal conductivity of the carbon 
pc is the heat capacity of the carbon 
q'" is the rate of heat generation per unit volume. 

(2) 

Because of the angular symmetry of the boundary conditions and 
the heat generation, gradients in the directions of the angular co­
ordinates can be neglected. Thus, on dividing through by the thermal 
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Fig. 2 - Coordinate system for carbon chamber analysis. 

conductivity k, equation (2) in spherical coordinates becomes 

(3) 

where K is the thermal diffusivity. 
In general, the heat generation per unit volume is given by the 

product of the square of the current flow per unit area times the 
electrical resistivity. Since here we have only radial flow of current 
I then 

(4) 

It can be readily shown that the resistivity pe is related to a total 
measured resistance R for a cavity formed by two hemispheres of 
inner radius, a, and outer radius, b, by 

P. = 27r[abj(b - a)]R. (5) 

To specify the boundary conditions on our problem we recall that 
the initial and back electrode temperature are taken to be ambient. 
To approximate the heat lost by the dome electrode we specify a 
certain thermal resistance between the dome and some sink at am­
bient temperature and that resistance is represented by a coefficient 
h in the so-called "radiation" boundary condition. Consequently, on 
using (4) and (5) in (3) the following boundary-value problem can 
be stated. 

(J(r,O) = 0 

(J(b, t) = 0 

k a(Jjar(a,~t) = h(J(a, t), 

(6) 

(7) 

(8) 

(9) 
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where 

(10) 

The above nonhomogeneous problem in spherical coordinates can 
be simplified by the following substitutions. If we define the dimen­
sionless variables 

r = Kl/(b - a)2, 

'f} = (b - r)/(b - a), 

and 

( ) = re(r, t) + ~ (1/ ) v 'f}, r {3 b _ a r , 

(11) 

(12) 

(13) 

then the problem specified by (6) through (10) becomes a homo­
geneous transient conduction problem in a slab with an initial tem­
perature distribution: 

where 

av a2v - = -2 (14) 
ar a'f} 

v('f},O) = F/(l - F)(1 _ (11 _ Fh) (15) 

v(O, r) = F /(1 - F) (16) 

(1 - F) 
dV/d'f}(I, r) + F (NBi + l)v(l, r) = (NBi + 2)/F, (17) 

F = a/b 

NBi = ha/k. 

(lSa) 

(ISb) 

N Bi is called the Biot number which characterizes the ratio of the 
rate at which heat is lost at the dome electrode to the rate at which 
heat is conducted to it through the granular carbon. 

The analytical solution of the transformed problem is relatively 
straightforward if the dimensionless temperature v (y],r) is first divided 
into two functions, one representing the steady-state temperature 
rise, the other corresponding to the transient response. Thus, we set 

(19) 
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The steady-state portion, rp (1]), satisfies 

d2cp/d'Y}2 = 0 (20) 

cp(O) = F /(1 - F) (21) 

(1 - F) 
dcp/d'Y}(I) + F (N Bi + l)cp(I) = (N Bi + 2)/F. (22) 

The steady-state solution is then 

[
2 - F + N BlI - F)] 

cp('Y})~= 1 + NBi(1 _ F) 'Y} + F/(I - F). (23) 

The transient portion of the solution results from letting {} (1],T) 
satisfy 

ofJ/or = o2fJ/O'Y}2 (24) 

rJ(~. 0) = F/(l - F)L _ (/ _ F)~] - "'("I) (25) 

fJ(O, r) = 0 (26) 

(1 - F) 
ofJ/o 'Y} (1 , r) + F (NBi + l)fJ(l, T) = o. (27) 

The solution to the problem in {} (1],T) is derived in Appendix Band 
can be stated as follows: 

( ) ~ 2(A~ + ci) ('\ 2) . '\ [1 ( 0) . '\ d fJ 1], r = L..J ,\2 + 2 + exp -l\nT sIn I\n'Y} fJ 'Y}, sIn I\n1] 1], 
n=l I\n C1 Cl 0 

where An are the positive roots of 

An cot An = - C1 , 

and the parameter Cl is defined as 

(1 - F) 
C1 = F (N Bi + 1). 

(28) 

(29) 

(30) 

The series solution given above was found to converge too slowly 
for practical evaluation.;' However, the problem specified by (14) 
through (17) can be readily solved through the use of finite differ­
ences. Once v (1],T) was so determined for various values of N Bi, and 

* The difficulty. resulted from the oscillating nature of the integral in (28). At 
small values of T as many as 350 terms were inadequate for convergence. 
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F, then the temperature rise above ambient (J(r,t) could be found 
using (13). 

2.2 Temperature Distribution in the Conical Diaphragm 

In the analysis of the transient response of the carbon chamber, 
the boundary condition associated with the dome electrode has speci­
fied that the heat loss from every point on the interior surface of 
the dome electrode is proportional to the difference between the elec­
trode temperature T (a,t) and the ambient temperature To. The con­
stant of proportionality has been designated as h, which is a measure 
of the impedance of the conical diaphragm to the flow of heat. Thus, 
the heat flux at the junction between the diaphragm and the dome 
electrode is given bylf 

aT I q" = h[T(a, t) - To]·'Y = -k-
as 8=81 

(31) 

where the coordinate system is shown in Fig. 3. The factor 'Y is defined 

Fig. 3 - Coordinate system for heat flow along the conical diaphragm. 

as the ratio of the surface area of the dome to the cross-sectional area 
of the diaphragm at s = SI. If the thickness of the diaphragm is 0 
then'Y = alo. 

In actuality, the coefficient h as defined by (31) is not a constant 
since the aT lasla- B 1 divided by [T(a, t) - To] is still a function of 

* It can easily be shown that the heat losses for the dome electrode to the air 
in contact with it are negligible. 
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time, somewhat larger at early times than at steady state. This means 
that the thermal impedance increases from some initial value in propor­
tion to the loss of the capacitive effects as the transient dies out. Thus, 
the steady-state value of h will be a minimum value. 

A more exact approach to the problem would require the simul­
taneous determination of the transient response of the diaphragm 
linked to the carbon cavity by a matched heat flux boundary condi­
tion. However, if the capacitance of the diaphragm is small com­
pared with the capacitance of the carbon cavity·:~ then the determina­
tion of h using the steady-state temperature gradient in (31) should 
be at least in the correct order of magnitude. Because of the crude­
ness of other approximations it was felt that the more exact ap­
proach was not warranted. 

When we perform a heat balance for steady state axially symmetric 
heat conduction in the conical diaphragm, the following boundary 
value problem can be stated: 

The solution is 

d/ds(s dT /ds) = 0 

T(s1) = T(a, t) 

T(so) = To . 

T(s) - T(a, t) 
To - T(a, t) 

In (S/Sl) 
In (SO/S1) 

(32) 

(33) 

(34) 

(35) 

Differentiating (35) and using the results in (31), we then have 
for the steady-state approximation 

h = Olc~ cos 12.5° 
a In (so/ S1) , 

(36) 

where 

S1 = a/cos 12.5°. 

2.3 Displacements Resulting from the TherJnal Response 

To calculate the displacements of the dome electrode we have 
chosen some rather simplified models for the geometrical configura­
tions and constraints. 

First, consider the dome electrode itself. If we assume that the 

* The capacitance of the diaphragm is about one tenth the thermal capacitance 
of the carbon chamber for the TI transmitter. 
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edge in contact with the diaphragm is essentially free it can be 
shown from both physical reasoning and the theory of elasticity 
that for an unconstrained hemisphere with a uniform temperature 
change the change in radius is given by 

(37) 

The calculation of the displacements in the conical diaphragm 
are somewhat more involved because of the temperature gradient 
along the diaphragm. vVe first assume that the cone angle is small 
enough so that the conical diaphragm can be approximated by a 
disk. Thus, the displacement in the radial direction is given by3 

u = (1 + v) at f8 [T(s) - To]s ds + C1s + Cz/s, (38) 
s 81 

where 

T(s) is the temperature along the diaphragm as given by (35) 
To is the (ambient) temperature in the stress free condition. 

If we rewrite (35) in the following form: 

In (s/so) 
T(s) - To = [T(a, t) - To] I ( / ) n SI So 

where T (a,t) - To = () (a,t) , then (38) becomes 

u = (1 + v) atfJ(a, t) 
In (Sl/S0) 

(39) 

. [~ In (~) - s~ In (~) - ~ + s~J + C S + C Is. (40) 
2 So 2s So 4 4s 1 2 

The two constants can be determined from the boundary conditions 
on the diaphragm. We will assume that the outer edge of the diaphragm 
is fixed so that 

u = 0, s = So • (41) 

If we also consider that the inner edge is free so that the radial stress 
at the location is zero then3 

du/ds + vu/s - (1 + v)atO(a, t) = 0, 

Applying these conditions to (40) we find that 

u = (1 + v) at O(a, t) [~ln (~) _ s; In (~) - ~ + s~J 
In (SI/S0) 2 So 2s So 4 4s 

(42) 
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- [8(~) + ~J[~ -~ (~)'~ ~ In (~)l' (43) 
1 + v 8 1 + (~)2(~) 

81 1 + v . 

Since we are primarily interested in the displacement of the dome 
electrode which is fastened to the diaphragm at 8 = 81, we first eval­
uate (43) for that location: 

U(8
1
) = 281a t ()(a, t) [i -i (~r + ~ In (~)l' (44) 

In (80/81) 1 + (~)2(1 - v) 
81 1 + v 

There are two methods by which the displacement along the slant 
height of the conical diaphragm can be exhibited as displacement 
of the dome electrode along the axis of symmetry of the Tl type 
transmitter. As shown in Fig. 4a, if the diaphragm is rigidly fastened 
to the dome then the dome displacement resulting from the thermal 
stresses in the diaphragm are given by 

.6hmin = -u sin a, (45) 

so that the axial displacement, ~h, is somewhat less than the dis­
placement along the slant height of the conical diaphragm. Consider­
ing the other extreme, as illustrated in Fig. 4b, if the fastening is 
loose but the dome electrode is rigid then the edge of the diaphragm 
moves as if up a rigid wall and the axial displacement is amplified 

I 

I 
-----s k-__ a-Sf __ / 

/ -- Sa-u_s ------t 
(b) f-- __ -, 

Fig. 4 - Displacement of dome electrode resulting from thermal stresses in 
the diaphragm. 
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by the sine of the angle. When the growth of the dome electrode, 
atfJa, is taken into account we have 

!1h = ext()a -~. 
max tan ex sin ex 

(46) 

In the actual case the true axial displacement will be somewhere 
between these two extremes. 

III. ANALYTICAL RESULTS 

The thermal response of the carbon chamber has been determined 
for various values of N Bi ranging from 0 to 100 and for two values 
of the shape parameter F. As noted earlier, the conical shaped back 
electrode has been approximated by a hemisphere of radius b. The 
choice of the value of b (and hence F) was somewhat arbitrary. 
Thus, two values were taken for comparison. The character of the 
approximation is illustrated in Fig. 5. It was felt that the smaller 
value, b =·0.44 em corresponding to F = 0.636, was the better choice. 

The results in terms of the temperatures in the slab, v (I],T) , were 
transformed back to the temperatures in the carbon chamber using 
(13). Consequently, 

a()(r, t) _ F 
{3 - 1 - (1 _ F)'I] [v('I], r) - v('I], O)J. (47) 

Fig. 5 - Approximation of carbon chamber by hemispherical cavity. Indicated 
radii are in cm. 
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0~---7--~~--~--~----~--~ ____ ~ __ ~ ____ L-~ 
o 2 3 4 5 6 7 B 9 to 

NSi, 

Fig. 6 - Dome electrode maximum temperature rIse vs N Bi. (F=O.635 for 
standard Tl transmitter.) 

Evaluating (47) at TJ 

can be expressed as: 
1, the temperature rise of the dome electrode 

a()(a, t) 
(3 

1.0 0.95 0.90 

[v(l, T) - 1/(1 - F)]. 

0.85 
rib 

O.BO 

(48) 

0.2Br---~-.--.----rr---~----.--r~----rr----,,---.--~ 
0.75 0.70 0.65 

0.24~---+----~----~----+----+----+--~~--~~~=+~~ 

0.20 
--NS L=1 

---NSL= 10 

1='1 0.16 
6c:o. 
~ 

m 0.t2r---_+----~--~~~_T--~~~_+----~----r_~~--~ 

O.OB I----+----:..-;-,..c--~!"___=__'C-f-----_+_--_t----_j_----t__--__t_--~ 

0.041---~~~4-----r---_+----_+_--_t----_j_----t__--__t_--~ 

0.1 0.2 0.3 0.4 0.5 
1) 

0.6 0.7 O.B 0.9 1.0 

Fig. 7 - Temperature distributions at various times for two values of N Bi • 
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From the steady-state solution (23) the maximum value of (}(a,t) 
becomes 

ae(a, (0) 
{3 

(1 - F) 
1 + (1 - F)NBi 

This function is plotted in Fig. 6 for various values of F. 

(49) 

The temperature distributions above ambient for F = 0.636 and 
two values of N Bi (1 and 10) are given in Fig. 7 for various times 
expressed in the non dimensional time variable T. The value of the 
abscissa denoted as YJ = 1 (rib = 0.636) corresponds to the tempera­
ture rise of the dome electrode. As expected, the temperature rise of 
the dome electrode is substantially decreased as the Biot number is 
increased. This fact is also demonstrated in Fig. 6. 

The "early time" transient response of the Tl transmitter to the 
"thermal packing" effect will be shown later to be closely linked to 
the transient temperature changes experienced by the dome electrode. 
This transient response is illustrated in Fig. 8 as the ratio of () (a,t) I 
() (a, 00) versus T. The effect of choosing a smaller value of F is also 
shown for various values of N Bi by the broken lines. It is seen that 
virtually all of the transient temperature change has taken place by 
the time that T = 1. If the thermal time constant To is defined as that 
value of T where the transient has decayed to lie of its value, then 
the ratio (}(a,T)I()(a, 00) = 0.632 at T = To. Taking the values of 
To from Fig. 8 then a curve of To vs N Bi can be drawn for both values 
of F. These are indicated in Fig. 9 by the notation YJ = 1. The thermal 
time constant for a position which roughly characterizes the maximum 
temperature within the carbon chamber, that is, YJ = 0.7, is also shown. 

IV. EXPERIMENTAL OBSERVATIONS AND APPLICATION 

Experimental observations have indicated that the electrical resis­
tance of the Tl transmitter is significantly altered when a bias cur­
rent is imposed. Fischer and Gaudet have attributed the major cause 
of this change to the thermal expansion of transmitter components 
resulting from the joulean heating in the carbon.2 They tested both 
the standard Tl transmitter and a similar transmitter with a invar 
dome, diaphragm, and back electrode. The low expansion coefficient 
of invar reduced the thermal expansions and hence the invar trans­
mitter packed less than the Tl transmitter. However, the reduction 
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Fig. 8 - Transient temperature rise of the dome electrode for various N B! 

and two values of F. 

was not as significant as had been expected because the thermal re­
sistance of the invar parts was greater and consequently higher 
temperatures were experienced on the dome electrode. 

TO 

0.28 

0.24 ~ 

0.20 

0.16 

0.12 

0.08 

0.04 

o 
o 

\~ 
\~ 

\ ~, 
11~~ ............. 
~ 

2 4 

I---
I'--.. 

6 

--~ ---~ r---
8 iO 

NsL 

12 

--F=0.636 

--F=0.611 

14 16 18 20 

Fig. 9 - Thermal time constant at two positions as a function of N lH. 



TRANSl\IITTER THERMAL RESPONSE 1629 

A detailed description of the thermal effects necessitated measure­
ments of the dome electrode displacement and temperature. These 
were undertaken by C. Sandahl and P. E. Prettyman. The report has 
not been published but here is Mr. Sandahl's description of some of 
the instrumentation. 

A flexible silicon semiconductor strain gage, 6 mils square by 50 
mils long, was bonded to the diaphragm with epoxy in the region of 
maximum radial strain. A spherical bead thermistor 5 mils in diameter 
was attached to the underneath side of the dome electrode at the 
centerline with pressure sensitive tape. 

The strain gage and thermistor were connected into Wheatstone 
bridge circuits. Bridge excitation was one volt, in order to minimize 
self-heating of the devices. The thermistor was calibrated in an oil 
bath using a NBS-calibrated thermometer graduated in O.Ol°C. The 
strain gage was calibrated in deflection of the dome by installing a 
small front-surface mirror (weight 0.204 gms) on a balsa wood plug 
in the dome. The transmitter was excited by the JRB circuit (a nearly 
constant current circuit) at various current levels and the steady­
state deflection of the mirror was measured with an optical interfer­
ometer. The strain gage bridge output was measured for each incre­
ment of deflection. 

During each test, thermistor bridge output, strain gage bridge 
output, JRB circuit voltage across the transmitter, and current 
through the transmitter were recorded simultaneously on a four­
channel Sanborn recorder. Results for four typical tests on a par­
ticular transmitter are reproduced in Fig. 10. The test shown in 10d 
was a repeat of 10c changing only the scale factor on the original 
recording equipment. 

In addition, detailed knowledge of the thermal resistance of granu­
lar carbon in a brass container was necessary for the application of 
the analysis presented here. This thermal resistance was found to 
consist of two parts: an effective thermal conductivity for a con­
tinuum representation of the granular carbon and a thermal contact 
resistance at the interface between the medium and the container 
walls. Experimental measurements of these two quantities have been 
recently completed and are reported in Ref. 4. 

In Fig. 10, two types of response are apparent. There is an early 
time transient for which the back electrode temperature can be as­
sumed constant. After a few seconds the back electrode and the whole 
transmitter begins to heat up. The subsequent over-all growth coupled 
with the thermal expansion of the granular carbon itself combines 
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in such a manner that the transmitter resistance (voltage) reaches 
a constant value. No attempt will be made here to describe analyti­
cally this combination of effects at times later than about 6 seconds. 
However, the early time transient, which produces the resistance 
change, can be described. 

We first calculate N Bi for the standard T1 transmitter. Calculating 
the thermal conductance of the diaphragm from (36) 

h = ok~ cos 12.5° = 660 W /(m2 • 0C) 
a In (SO/S1) 

when 

o = 0.0076 cm, 
kd = 140 W/(m'oC), 
a = 0.28 cm, 
So = 2.1 cm, 
S1 = 0.286 cm. 

From Ref. 4 we take the thermal conductivity of the carbon to be 
0.24 VV per (m' °C) and the thermal contact conductance as he = 300 
W per (m2

• °C). Consequently, the total conductance is the sum of the 
contact conductance in parallel with the conductance of the dia­
phragm: 

l/htot 1/660 + 1/300; 

hence, 

htot = 206 W /m2 
• °C). 

Using htot in N Bi we have 

N Bi = ha/k = 2.4. 

Turning to Fig. 6 we see that aO(a, CIJ )/[3 = 0.19 and Fig. 9 gives To 
= 0.18 for this value of N Bi. Now, the thermal diffusivity K = k/ pC = 
0.32 X 10-6 m2 per second for granular carbon where p = 900 kg per 
m3 and c = 840 J per (kg· °C) (for the loose state). Consequently, 

To(b - a)2 
to = = 1.4 seconds, 

K 

where b = 0.44 em from Fig. 5. In the determination of f3 we use the 
average values (IV>av as obtained by a graphical integration of the 
transient portions of the appropriate curves of Fig. 10. Taking the 
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value from Fig. lOb as typical we have 

(3 = (IV)av = 5 17°C 47rk . cm . 

Therefore, () = 0.19~/a = 3.5°C. 
By comparing the time constant of 1.4 seconds to the measured 

values of to in the range of 3 seconds, one could say that this is rea­
sonable agreement especially since the capacitance effects of the 
diaphragm and the electrodes have been neglected in the analysis. 
The capacitance in the real situation would tend to give higher values 
of to as observed. 

The calculated temperature rise of 3.5°C compared with the meas­
ured "steady-state" value of 1.0°C needs some explanation. Of course, 
the capacitance and contact resistance of the thermistor would tend 
to give rise to the lower measured value. But more important is the 
fact that the predicted value is for the granular carbon continuum 
which is linked to the brass dome through a contact resistance. The 
temperature drop across that resistance can be calculated by multi­
plying the temperature rise above ambient (()) by the ratio of the 
contact resistance (l/he) to the total resistance (l/htot); 

..1Tcontinuum to thermistor = (}lj{~~ = 2.4°C. 

Therefore, ATthermistor above ambient = 3.5°C - 2.4°C = 1.1°C; which is 
in remarkably good agreement with the measured value of 1.0°C. The 
other measured values, at the end of the early transient (namely, 
0.33°C, 1.56°C, and 1.61 °C), scale linearly with the input power; 
hence, the agreement with analysis remains good for all the results 
given in Fig. 10. 

Consider briefly a transmitter made of invar. For invar the kd 
value is 18 times smaller than that of aluminum. Consequently, 

l/htot = 1/36.6 + 1/300; 

hence 

htot = 32.6 W / (m2 
• °C) 

and N ni = 0.4. From Fig. 6 we see that the temperature rise would 
be 1.74 times that under corresponding conditions in the Tl trans­
mitter. From Fig. 9 the value of to would be 30 percent longer. This is 
in qualitative agreement with the observations of Fischer and Gaudet.2 
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Turning now to the displacement we first calculate the extension of 
the slant height of the aluminum diaphragm using (43). Taking v = 
1/3 and at = 2304 X 10-6°C-1 we obtain for a temperature rise of 1°C 

U = - 0.029 Jlm. 

The minus sign indicates that the diaphragm grows toward the dome 
electrode. The expansion of the dome electrode is obtained from (37) 
using at = 16.2 X 10-6 °C-1 for brass. For 0 = 1°C, t::..r = 0.04 pm. The 
minimum displacement, given by (45), becomes 0.0064 pm, while the 
maximum displacement given by (46) becomes 

atBa U 
Ilhmax = t-- - -.- = 0.180 + 0.134 = 0.32 Jlm. 

an a sm a 

The upper limit which assumes a perfectly rigid dome electrode com­
pares reasonably well with the measured value of 0.18 pm from Fig. 
lOb. Notice that the top of the dome electrode moves an additional 
0.04 pm. 

The most significant factor arising out of this rather crude model 
for displacements is that the thermal packing appears to be more 
sensitive to the thermal expansion coefficient for the dome electrode 
than any other part. Hence, a simple and inexpensive modification 
of the Tl transmitter would have been to change only the dome elec­
trode to invar. Although the above analysis does not strictly apply 
to the modified transmitter design of Huffstutler/ the same conclu­
sion with regards to an invar dome seems appropriate. 

The thermal expansion of the carbon produces an additional pack­
ing effect. The change in volume caused by the heating could be 
calculated by using the expansion coefficient value5 of lOA X 10-6 °C-1 
and the local temperature as given in Fig. 7. An estimate of such a 
calculation yields a dome displacement equivalent to 0.05 pm in the 
direction opposite the displacements mentioned above for the condi­
tions of Fig. lOb. 

v. CONCLUSIONS 

The resistance change of the Tl transmitter resulting from the 
joulean heating can be associated with the thermal expansion of the 
dome electrode and the aluminum diaphragm. The agreement of the 
model presented here with the measurements of Sandahl and Pretty­
man attests to its validity for the early time transients. The displace­
ments which produce thermal packing are a stronger function of the 
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thermal expansion coefficient of the dome electrode than any other 
part. A simple modification would be to make this part of invar in 
the T1 or any similar transmitter. The model also demonstrates that 
the displacements associated with the temperature rise of the dome 
electrode are affected less by changing the thermal parameters of the 
system than by reducing the thermal expansion coefficient in going 
from aluminum and brass to invar. The thermal contact resistance 
between the granular carbon and the dome electrode reduces the tem­
perature rise significantly. 
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APPENDIX A 

Localized Heating in the Carbon Granules 

Because of the asperities of carbon granules and of the "bunching 
up" of the current flow at the contact areas, the importance of 
localized heating should be checked. It can be assumed that the 
localized effects are virtually all diffused at the values of time for 
which the Fourier modulus Kto/D'!. is approximately unity. Then on 
setting the characteristic dimension of the granule, D equal to 0.2 
mm, and the thermal diffusivity, K, of solid carbon equal to 0.2 X 10-4 

m2 per second, the value of the time constant, to, becomes approxi­
mately 

2 (0.2)2 X 10-6 

to = D /K = 0.28 X 10-4 = 1.4 msec. 

We see that the thermal time constant for the solid carbon granules 
is at least three orders of magnitude less than the thermal time con­
stant of the thermal effects being observed. Consequently, any lo­
calized heating is rapidly diffused and the granular carbon can be 
treated as a continuum. 

APPENDIX B 

Transient Temperature Response of the Carbon Chamber 

Consider the transient portion of the heat conduction problem 
specified by (24) through (27) and repeated below for convenience. 
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a(}/ar = a2(}/ar]2 (50) 

tJ(~, 0) = 1<'/(1 - F{1 _ (11 _ Ph] - 'P(~) (51) 

(}(O, r) = 0 (52) 

(1 - F) 
a(}/ar](l, r) + F (N Bi + 1)(}(1, r) = O. (53) 

Assuming a separable solution of the form 

so that 

x = A sin 'A r] + B cos 'A r] 

T = Ce-).·T. 

But (52) requires that B = 0 and (53) specifies that 

'AA cos 'A + cIA sin 'A = 0 

or, 

'A cot 'A = -C1 

where 

(1 - F) 
C1 = F (NBi + 1). 

To satisfy the nonhomogeneous initial condition we set 

n=I 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

where Xn = sin AnT} and An is the nth positive root of (57). Multiply­
ing both sides of (59) by X m , integrating, and using the orthogonality 
condition we have 

11 Xn(T})(}(r], 0) dr] 
A = 0 • 

n 11 x! dr] 
(60) 

Evaluating the integral in the denominator where the boundary con­
ditions have been used we have 

(61) 
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The transient part of the solution can thus be written as 

( ) ~ 2(A~ + ci) (2)' '\ 11 ( 0) . '\ d tJ '17, T = L...J ,\2 + 2 + exp -AnT sm I\n'17 tJ 'YJ, sm I\n'YJ '17. 
n-1 I\n C1 C1 0 

(62) 

To evaluate the integral in (62) we first notice that (51) can be 
written as 

so that 

The last term which can be expressed in various forms IS the one 
which causes the series to converge very slowly. 
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Gain of Antennas with Random Surface 
Deviations 

By H. ZUCKER 

(Manuscript received March 20, 1968) 

On-axis gain of antennas with rough reflecting surfaces is computed 
as a function of rms surface deviation €, correlation distance c, antenna 
area A and wavelength A. Gaussian stationary surface deviations, Gaussian 
correlat'z"on functions, and uniform illumination are assumed. Antennas 
with rectangular and circular apertures are considered. It is shown that 
a normalized gain can be defined which has the same functional form, for 
both. A principal result of this work is quantitative calculation of the 
on-axis antenna gain when the nonnalized variance (47r€/A)2 of the rough 
surface is larger than 4. The off-axis gain is also considered, and it is 
shown that in the asymptotic limit (as A -7 0), the gain reduces to that 
obtained by using geometrical optics. 

I. INTRODUCTION 

The gain of shallow paraboloid reflector antennas with random 
surface deviations has been derived by Ruze. 1

•
2 The deviation was based 

on scalar Kirchhoff approximation to the radiation from reflector 
antennas. The surface deviations were assumed to be gaussian stationary 
with gaussian correlation functions. On these bases, an approximate 
solution for the antenna gain was obtained in terms of an infinite 
series. The series has been evaluated for relatively small rms surface 
deviations, €, in comparison to the wavelength, A, namely (47r€/A)2 ~ 4. 
Asymptotic limits (as A -7 0) for the gain were also given by Ruze2 

based on a similar analysis by Schemel. On-axis gain measurements 
of large reflector antennas as a function of frequency, exhibit the char­
acteristics as predicted theoretically by Ruze. 

The present work was motivated primarily to determine the gain 
in the intermediate region between very long and very short wave­
lengths and to establish a criterion for applicability of the asymptotic 
limit. Of primary interest was the near axis field distribution in the 
focal plane of a paraboloid reflector antenna illuminated by an inci-

1637 
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dent plane wave. However, since both the far-field radiation pattern 
and the field distribution in the focal plane are Fourier transforms 
of the antenna aperture illumination, the derivations by Ruze are 
applicable for determining both the far-field and focal-plane dis­
tributions. 

The series solution for the antenna gain obtained by Ruze does 
not seem to be suitable for numerical computations for large argu­
ments. This is because some of the terms in the series will assume 
large values before the terms begin to decrease. However, the series 
for the on-axis gain is related to an exponential integral. The expo­
nential integral also has an asymptotic series representation, which 
is particularly suitable for numerical computation for large argu­
ments. On this basis, the on-axis gain has been computed as a func­
tion of the rms surface deviation to the wavelength ratio and for a 
range of correlation parameters. The asymptotic limit for the gain 
is evident from these computations. 

The off-axis gain is also considered. Asymptotic representations of 
the series which may facilitate the off-axis gain computations are dis­
cussed. The limiting value (A ~ 0) for the off-axis gain is obtained, 
and it is shown that in this limit, the gain reduces to that obtained 
from geometrical optics.4 

The gain of antennas with rectangular apertures and gaussian 
stationary surface deviations is presented by assuming uniform il­
lumination. A generalization to include certain types of nonuniform 
illuminations is discussed. The on-axis gain for antennas with cir­
cular apertures also is given. It is shown that the on-axis gain for 
antennas with rectangular and circular apertures can be normalized, 
such that the normalized gain is the same for both. The off-axis gain 
is expressed in terms of series with known asymptotic expansions. 

II. ANTENNA GAIN 

The far field gain, G (e,<f?) , in the vicinity of the axis of a shallow 
paraboloid reflector antenna with surface deviations, Z (x,y) is, using 
the scalar Kirchhoff a pproxima tion 5 

47r 
G(O, cfJ) = }..2 

If If. Ea(x, y)E~(Xl , Yl) exp (j{,Bxu +,Byv+2k[z(x, Y) -Z(X1 , Yl)]}) ds dS1 

If Ea(X, y)E~(x, y) ds (1) 
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where Ea is the projected electric field on the antenna aperture and s 
is the aperture area. 

k = 27r = free space propogation constant 
A 

A = wavelength 

{3:z; = k sin e cos <P 

{311 = k sin e sin <P 

o and cI> are the spherical coordinates indicated in Fig. 1. 

u = x - Xl 

v = Y - YI 

(2) 

(3) 

(4) 

(5) 

The Kirchhoff approximation is based on the assumption that the 
surface is locally plane, and hence equation (1) is applicable to sur­
faces for which the curvatures are small. 

Equation (1) can also be used to determine the power distribution 
in the focal plane of shallow paraboloid reflector antennas in the 
vicinity of the focal point, in which case (referring to Fig. 1) 

{3:z; = kxdf 

{3y = kydf 

(6) 

(7) 

where XI and YI are the coordinates in the focal plane and f is the 
focal length. 

If z (x,y) is a Gaussian stationary random variable with zero mean 
it has been shown!,6 that by performing the statistical averaging, the 
expectation value for the gain, (G (0, <I> »av is: 

(G(e, <p»av = ~: exp (- r/) 

Ii If Ea(x, y)E!(XI , YI) exp [j({3xu + (3yV)] exp [o2r(u, v)] ds dS I 

If Ea(X, y)E*a(x, y) ds 

where 

(8) 

(9) 
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Fig. 1- Antenna coordinates. 

€ = rms surface deviation 

02r(u, v) = correlation function. 

To evaluate equation (8), four integrations have to be performed. 
It is shown in Appendix A that for antennas with rectangular aper­
tures two integrations can be readily eliminated for certain types 
of illuminations, truncated cosine illuminations, for example. 

In particular for uniform illuminations, Ea (x, Y) = 1, and for a 
gaussian correlation function with 

( 2 + 2) r(u, v) = exp - u c2 V (10) 

where c is the correlation length, it is shown in Appendix A that the 
expectation value of the gain is: 

(G(e, cp)IlV = exp (- c/)Go(e, <1» 

(
2 )2 00 02n [ ( (32 2) ] + ~ exp (_0 2

) L -,- exp - _c - Lln A n=l n. n 4n 
(11) 

where Go (0, <I» is the antenna gain in the absence of surface devia-
tions. 
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For an antenna with a rectangular aperture 

where A = 4ab is the aperture area. 

and 

27r . 
(3 = - sm e 

A 

~" < 2(;')1 [~ + ~J 
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(12) 

(13) 

(14) 

Equation (11) agrees with the gain derived by Ruze for antennas 
with circular apertures except for the term ~n. This term is small, if 
the correlation distance c is small compared with the linear dimen­
sions of the antenna. This assumption is made in the subsequent 
computations. 

For antennas with circular apertures the exact evaluation of equa­
tion (8) is in general more difficult. However, for uniform illumination, 
the on-axis gain (G(O, 0) )av is evaluated exactly in Appendix B with 
the aid of Q functions. The gain has the same functional form as equa­
tion (11) with (3 = O. In particular for n/2(D/c)2» 1 

(15) 

where D is the antenna aperture diameter. 

III. ON-AXIS GAIN 

Equation (11) can be readily computed for small values of 02
• For 

large values of 02 the terms 02n/n !n will become very large; therefore, 
the series is not suitable for direct computation if 02 is large. Never­
theless, the gain on-axis can be readily computed by noticing that 
the series in equation (11) for f3 = 0 is related to an exponential 
integral, which also has an asymptotic representation. 

The exponential integral, E i , can be written7 

Ei(X) = 'Y + In x + f ~n 
n=l n. n 

(16) 

where y IS Euler's constant, The asymptotic series (x ~ 00) for 
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(17) 

Though the asymptotic series diverges for all finite values of x it can 
be used to evaluate Ei(x) for large x by using up to N terms,S where 
N is an integer nearest to the value of x. 

In terms of the exponential integral, the on-axis gain for both 
rectangular and circular aperture antennas is 

(DO)2 
(G(O, O)av = 4;-

. { 0' cxp (- 0') + (~J 0' cxp (- 0') [E.(o') - In 0' - 'Yl} (18) 

where Do is related to the antenna area, A, by 

A = 7r D~. 
4 

(19) 

One parameter in (18) is readily eliminated by defining a normal­
ized on-axis gain, (g (0,0) ):1V, by 

( (0 0) 
(G(O, O)av 

g, flV = (Do/4e)2 

~ 0' exp (- o'){ 1 + [~J [E;(o') - In 0' - 'Yl}' (20) 

The normalized gain thus depends only on two parameters, 02 and 
(c/Do) 2. 

Equation (20) has been computed by using a SHARE program for 
the computation of the exponential integral*. This program computes 
Ei(X) with at least four-decimal accuracy. 

Computations have been performed for 10-4 ~ 02 ~ 80 and for 
10-3 ~ c/Do ~ 0.1. The computed normalized gain is shown in Fig. 2. 

The computations show the normalized antenna gain has three 
distinct regions which are characterized by the normalized rms surface 
deviation to wavelength ratio, o. 

In the region ° ~ 02 ~ 1 the normalized antenna gain is nearly 
independent of the correlation length c, and increases almost linearly 
with 02

• In the region 1 ~ 02 ~ 20 the gain is dependent on both fl 

* Contributed by D. S. Villars. 
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and c. In the region f/ > 20 the gain is almost independent of 02 and 
is a function of c/Do only. This region is the asymptotic region. For 
the range of parameters used in the computation, the gain in the 
asymptotic region, for a given c/Do , deviates by less than 5 percent 
from the asymptotic value. 

The curves shown in Fig. 2 seem to confirm the general charac­
teristics of the measured gain as a function of frequency of large 
reflector antennas presented by Ruze. 2 The presented measurements 
extend only slightly from the first into the second region but not 
sufficiently far to determine qualitative agreement between the theory 
and experiment in much of the intermediate and all of the asymptotic 
regions. A detailed comparison of the measured and computed gain 
can not be made since uniform illumination has been assumed in the 
computation. 

IV. ASYMPTOTIC VALUES FOR THE OFF-AXIS GAIN 

Computation of the off-axis gain directly from equation (11) can 
only be readily performed for relatively small values of 82• An 
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alternate representation for the off-axis gain for large values of a 
is obtained by expanding the exponential in the second term of equa­
tion (11) in a power series. By using this expansion and neglecting 
L\n, (11) can be rewritten as follows: 

2 (C)2 co m Am( (
2

) (f3c)2m 
(G(e, cp))av = exp (- 8 )Go(e, cp) + 2E r~ (-1) ~ 28 (21) 

where 

(22) 

The series for Am (82
) are special cases of functions considered by 

Barnes!) who obtained their asymptotic expansions. These functions 
were also studied by Ford1o who also presented a recurrence relation 
for the coefficients of the asymptotic series. The above functions 
designated by G{3(x,®) are: 

f xn . 
n=O n! (n + 8)i3 

(23) 

The functions Am(82
) can be written as: 

(24) 

Only the asymptotic limit for the off-axis gain is considered. For 
x ~ 00 

G,(x, El) = ex:,(x) [1 + om] 
hence for 82 ~ 00 

(25) 

The off-axis asymptotic gain will be designated by G (0, <I» co and is 
given by: 

G(O, "')~ = (;J exp [ - (:. sin on (26) 

The corresponding normalized gain is found as 

g(O,"')~ = (~J exp[ -(:.SinO)'} (27) 
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The asymptotic value for the gain, equation (26), is in agreement 
with the gain obtained, based on an approximation to the gaussian 
correlation functions,3 and also with results obtained by using geome­
trical optics.4 Equation (24) is independent of frequency but strongly 
dependent on the ratio f./C. This ratio has been interpreted as an 
average surface slope.2 The range of S over which the above off-axis 
approximation applies has not been determined precisely, however, 
it is reasonable to assume that this range will correspond to the asymp­
totic region for the on-axis gain. 

V. CONCLUSIONS 

The on-axis gain of antennas with gaussian stationary random 
surface deviations and gaussian correlation functions has been deter­
mined for antennas with rectangular and circular apertures by assum­
ing uniform illumination. For both types a normalized expression for 
the gain was derived which depends only on the normalized rms sur­
face deviation E, to wavelength A ratio,S (=47TE/A), and the ratio of 
the correlation length C to a defined linear antenna dimension Do. 
For circular antennas, Do is the diameter. 

The antenna gain as a function of 0 exhibits three distinct regions: 
(i) 0 ~ 02 ~ 1, (ii) 1 ~ 02 ~ 20, and (iii) 02 > 20. The last is called 
the asymptotic region. In this region the gain is nearly independent of 
wavelength. 

The computed gain exhibits in general the characteristics of the 
measured gain as a function of frequency of large reflector antennas 
reported in the literature. These measurements extend only partially 
into the second region and have not been obtained in the third 
(asymptotic) region. 

For large values of 82 the off-axis gain can be expressed in terms 
of series with known asymptotic expansions. The limiting value for 
the off-axis gain has been obtained and reduces to that obtained by 
geometrical optics. 

VI. ACKNOWLEDGMENTS 

The author wishes to thank B. H. Bharucha for the valuable dis­
cussions on the properties of the Q functions, and H. G. Cooper for 
helpful comments. J. A. Arnaud brought Ref. 4 to the author's 
attention. 



1646 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

APPENDIX A 

Gain of Antennas with Rectangular Apertures 

To evaluate equation (8) for antennas with rectangular apertures, 
consider the following integral 

(I).,v = exp (- (2) ia

a 
i: [bb [bb Ea(X, y)Ea(Xl , YI) 

with 

. exp [02r(u, v)] exp [j(,sxu + ,syv)] dx dXI dy dYI (28) 

u = x - Xl 

v = y - YI' 

(29) 

(30) 

Since equation (28) contains the correlation function in terms of 
u and v, it is preferable to introduce the u,v coordinate system. 

In the X,XI coordinate system the integrations are over the square 
region shown in Fig. 3a. In the y, YI system the region is similar. With 

:X:t 

(-a,a) a (a,a) 
(a,-a) U=:X;-X 1 

a 
:x: U 

(-a,-a) (a,-a) (-a"'", ---:a:-:")------" (-a,a ) 

(a) (b) 

Fig. 3 - Coordinate transfonnation. 

the coordinate transformation equation (29), the transformed region 
in the Xl,U coordinate system is also shown in Fig. 3b. 

In the Xl,U plane the integration with respect to Xl is readily per­
formed for certain types of illumination functions.~~ In particular, let 

(31) 

* A similar method has been used by Hoffman in his treatment of scattering 
of electromagnetic waves from a random surface.6 
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where 

N 

EaX(Xl + U) = L gn(X1)fn(U) (32) 
n=l 

with a similar equation for Eay (YI + v). An example of such illumina­
tions are truncated cosine illuminations, where equation (32) will 
consist of two terms. 

It is sufficient to consider the following integral 

(I1)av = i
a

a 
iaa~Xxll g(xl)f(u, v) du dXl . (33) 

Referring to Fig. 3, equation (33) can be written as 

(I1)av = 12a 
iaa-

u 
g(xl)f(u, v) dXl du 

+ i02a iaa_u g(xl)f(u, v) dX1 du (34) 

let 

then 

(I1\v = 12a 
{[G(a - u) - G( -a)]f(u, v) 

+ [G(a) - G( -a + u)]f( -u, v)} duo (35) 

Using equation (35) and assuming uniform illumination, Ea(x,y) = 1, 
two integrations are readily eliminated and equation (28) reduces to 

(I\v = 4 exp (- 02
) 12a 12b 

(2a - u)(2b - v) 

. exp [02r(u, v)] cos {3xu cos {3y v du dv. (36) 

By expanding the exponential function in a power series, equation 
(36) can be divided into two parts corresponding to the coherent and 
incoherent parts of gain, as follows 

(37) 

where 

(38) 
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and 

00 12a 12b 
r 02r(u, v) r I inc = 4A L ,cos {3xu COS {3yV dv du - tJ.I inc 

n=l 0 0 n. 
(39) 

where 

00 12a 12b 

r 0" ( ) r !J.linc = 4 exp (- 0
2

) ~ U 0 [2(bu + av) - UV] r ~; v 

• COS {3xu COS (3yV du dv (40) 
and A = 4ab is the aperture area. 

The coherent part of the gain is the same as the antenna gain in 
the absence of surface deviations but multiplied by exp (-82

). This 
follows from equation (28) by expanding the exponential function 
which contains the correlation function in a power series. 

To obtain an estimate for the on-axis gain, equation (39) is eval­
uated for j3x = j3y = 0, and for a gaussian correlation function with 

r(u, v) = exp ( _ u
2 
~ V2) 

where c is the correlation distance. 
On-axis 

2 00 (o?)" [ c (1 ]) c
2 

] 
Iinc(O,O) = 7rAc L ,- 1 - 2( )~ - + -b + -A- . 

n=ln.n 7rn a 7r n 

(41) 

(42) 

In equation (42) terms of order exp[ -n(2a/c)2] and exp[ -n(2b/c)2] 
were neglected. 

By extending the limits of integrations in equation (39) to 00, the 
integration of the first part of this equation can be performed and 
gives equation (11). 

APPENDIX B 

On-Axis Gain for Circular Aperture Antennas 

For circular aperture antennas the on-axis gain for uniform il­
lumination and a gaussian correlation function is obtained from 
equation (8) by expanding the exponential function and performing 
the integrations for the n = 0 term, and the integration with respect 
to the azimuthal coordinates for the remaining terms, resulting in 

(43) 
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where D is aperture diameter, and 

(44) 

10 = Modified Bessel function of order zero. 
The two integrations in equation (44) can be performed either with 

the aid of the Q (71, a/I) function defined byll 

100 (X2 + 12) 
Q(y, an) = exp - 2.1 lo(xy)x dx 

an 

(45) 

or by means of recently evaluated integrals of products of Bessel 
functions.12 Let us use the former method. Let 

x = (2n)!p/c 

y = (2n)!pdc 

an = D/c(n/2)!. 

(46) 

(47) 

(48) 

'Vith equations (45) through (48), equation (44) can be written 

len = (~~r ian [1 - Q(y, an)]y dy. (49) 

Integrating by parts results in 

I,. = (~~){~ [1 - Q(a • • a.l] + f"~' ~~ dY}. (50) 

The derivative in equation (50) can be expressed as 

(51) 

Equation (51) is readily derived from (45) and the following integraP3 

where J~ is a Bessel function of order v. Substituting equation 
into (50) and integrating by parts yields the result 

len = ~~r{~~ [1 - Q(an , an) - exp (-a~)ll(a~)] 

+ ~. t exp [-Ha; + Y'l]! [yI,(a,.yl] dY}. 

(52) 

(51) 

(53) 
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Using the relation 

d 
dy [yl1(any)] = anY Io(any) (54) 

and the definition of the Q function, equation (45), yields 

1<. = (;J{a;[! - Q(an ,a.)] - ~ cxp (-a;)I,(a;)}. (55) 

To evaluate Q (an,an) , the following relation, readily derived from 
(45) and (52), is used. 

Q(a, (3) + Q(ft, a) = 2 + f exp (-!t'){:t [Jo(at)Jo(f3t)]} dt. (56) 

Integrating (56) by parts and using (52), gives the known relation 

Q(y, x) + Q(x, y) = 1 + exp ( x
2 t y2)Io(xY). (57) 

With equations (55), (57), and (48), (44) is given by 

The gain on axis (43) can therefore be written by using equation 
(58) as: 

G(O, 0) = (~r[ 02 
exp (- 0

2
) + (~y 02 

exp (- 0
2

) ~ :~: [1 - L\n] ] 

(59) 

with 

For n/2(D/c)2 » 1, when the modified Bessel functions can be 
approximated by the first terms of the asymptotic series, L\,. is then 
given by equation (15). 
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Injection -Locl~ed -Oscillator 
FM Receiver Analysis 

By c. L. RUTHROFF 

(Manuscript received April 18, 1968) 

The 1najor components of an injection-locked-oscillator FM receiver 
are a linear mixer and a van der Pol type of negative resistance oscillator 
in a phase-locked configuration. In this paper the nonlinear differential 
equation describing the receiver output is solved and explicit expressions 
obtained for the output signal, noise, and controlling second and third 
order distortions. The input signal carrier is both amplitude and frequency 
modulated. Signal-to-distortion ratios have been computed and are presented 
for the case of a noise modulated Fl'.1 input signal. The results indicate 
that excellent performance may be expected of such a receiver. 

1. INTRODUCTION 

It is well known that a conventional phase-locked loop can be 
used as a frequency modulation receiver.1

-
3 It is perhaps less well 

known that the locking performance of the phase-locked loop and 
the injection-locked oscillator are described by the same differential 
equation. 4 These two facts suggest that an FM receiver using an 
injection-locked oscillator is possible. It is. And such a receiver is 
described here. 

The principle of operation of the two receivers is the same but 
there are important practical differences. The baseband bandwidth 
of the phase-locked-loop receiver is limited by delay in the feedback 
loop to frequencies of about 1 MHz. The baseband bandwidth of the 
injection-locked-oscillator FM receiver can be as large as half the 
locking bandwidth of the injection-locked oscillator. With existing 
solid state oscillators such as the tunnel diode, locking has been 
achieved with bandwidths in excess of 200 MHz,5 indicating that 
operation with basebands of about 100 MHz is possible. 

This type of receiver is not used in present day systems and there 
has been little or no interest in it for about 20 years.6

-
10 Woodyard7 

1653 
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is credited by Edson1o with the first explicit receiver operating on the 
locking principle but the beginnings go back to Appleton in 1922.6 
Beerss and Bradley9 reported excellent measured performance in con­
figurations using vacuum tube oscillators; in the light of these results 
it is surprising that interest has flagged in recent years. 

The existence of solid state oscillating devices such as the tunnel 
diode, the avalanche diode, and the Gunn diode is sufficient cause 
for renewed interest in injection-locked-oscillator FM receivers. They 
are especially attractive at the higher microwave and millimeter 
wave frequencies, where conventional receivers are difficult to build. 
This paper describes the principle of operation of a receiver configura­
tion suitable for dominant mode transmission lines. Applications at 
optical frequencies are also of interest. 

The distortion analysis which follows requires a mathematical 
description of the locking behavior of an oscillator. For this purpose 
the van der Pol sine wave oscillator model is used; there is abundant 
evidence in the literature that all oscillators which have nearly 
sinusoidal outputs are adequately described by the van der Pol model. 
The receiver output is derived in the form of a nonlinear differential 
equation. The solution of the equation gives the output signal and 
distortions explicitly in terms of the frequency and amplitude modula­
tion on the receiver input carrier. 

An example of receiver performance is computed in some detail 
for the case of a carrier modulated with a band of gaussian noise. 
Such a modulation signal is often used to simulate the output of a 
multichannel telephone multiplex terminal. The receiver input signal 
is corrupted by additive noise and the distortions resulting from the 
effects of envelope noise are computed in addition to those caused 
by signal-sensitive nonlinearities inherent in the demodulation process. 

II. DESCRIPTION AND ANALYSIS 

The receiver is shown in block form in Fig. 1. This circuit configura­
tion is convenient for description and is suitable for the microwave 
frequency range. Many other configurations are, of course, possible. 

Let the input signal be a carrier, modulated in amplitude and 
frequency: 

il(t) = J(t) sin [pt + O(t)]. (1) 

The frequency modulation is dO(t)/dt; the envelope J(t) is usually 
nearly constant with a small variable part representing noise or other 
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Fig. 1- Injection-lacked-oscillator FM receiver. 

undesired amplitude modulation. Let 

If)55 

(2) 

The function of the directional coupler in Fig. 1 is to divide the 
signal into two parts which are 90° out of phase. Letting the amplitudes 
be equal, the output of port 1 is given by (1), and the output of 
port 2 is 

i2 (t) = let) cos [pt + O(t)]. (3) 

The output of the injection-locked oscillator is 

ia(t) = 13(t) cos [pt + O(t) - cp(t)], (4) 

where cp(t) is the phase tracking error. The receiver output is contained 
in cp(t) and is discussed in detail later. The envelope variations in (3) are 
reduced in the passage of i2(t) through the oscillator. The output of the 
oscillator is used as the local oscillator for the linear mixer of Fig. 1, and 
since small envelope variations on the local oscillator port do not appear 
in the output, the envelope of (4) can be regarded constant, that is, 

i3(t) = 13 cos [pt + O(t) - cp(t)]. (5) 

The envelope variations on the input to the linear mixer signal 
port are not suppressed however, and the low frequency output of the 
mixer, from (1) and (5), is 

io(t) = Ml(t) sin cp(t), (6) 
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where M includes the linear mixer conversion constant. The receiver 
FM output is contained in the term sin <p(t). 

The differential equation describing the locking behavior of the 
van der Pol sine wave oscillator has been derived in many places.11

•
12 

With the input signal of (3) it has the following form. 

<p' (t) = (J' (t) + (p - wo) - 1l(t) sin <p(t) , (7) 

where: the prime indicates differentiation with respect to the argument, 

let) 
ll(t) = 13<P' (wo) , 

Wo is the natural resonant frequency of the oscillator, 

I p - Wo I « Wo , and 

<p' (wo) is the phase slope of the passive oscillator circuit at the 
resonant frequency. 

Now, the injection-locked oscillator locking bandwidth is 21lo where 
llo = lo/[13<p/(wo)], so the expression for ll(t) becomes 

ll(t) = ~oo l(t). (8) 

A solution of (7) has been found by an iteration procedure and 
substituted into (6) to obtain the receiver output. 

MI { (J"(t) 
io(t) = llo 

0 
[O'(t) + p - wo] - ll(t) 

+ 
[e"'(t) + ll'(t)(e'(t) + p - wo)] 

1l(t)2 

[ll"(t)(e'(t) + p - wo) + e"(t)(e'(t) + p - wn)2/2] 
1l(t)3 

[e"II(t) + 3e"(t) ll'(t)] } + 1l(t)3 + ... . (9) 

When the locking bandwidth 21lo is much larger than the baseband 
bandwidth, that is, when llo » e' (t)max , the distortion will be small 
and the series (9) will converge rapidly. For this case the first few distor­
tion terms will dominate. Expression (9) can be rearranged to identify 
these terms. Let p = Wo, and let 

(10) 
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From (2) and (8) it follows that Al (t) « Ao . The following relations 
will also be used. 

1/ A(t) 
1 - AI(t)/ Ao + (AI(t)/ Ao? + ... 

Llo 
(11) 

O'(t - I/A) = O'(t) _ O"(t) + O"'(t) _ O""(t) + ... (12) 
o Ao 2! A~ 3! A~ . 

Substitution of (10), (11), and (12) into (9) transforms the re­
ceiver output to 

. (t) = 1111 /A {O'(t _ ~) + O"'(t) _ 50""(t) + ... 
~o 0 0 Ao 2 A~ 6 A~ 

+ [A 1(t)O;(t)]' + ... _ [O'3(t~]' + ... }. (13) 
Ao 6 Ao 

The first term is the frequency modulation on the input signal, 
delayed by 1/ Ao seconds. The second and third terms are linear 
distortion and correspond to video roll-off. The fourth and fifth terms 
are second and third order nonlinear distortions, respectively. Notice 
that the second order distortion requires both amplitude and fre­
quency modulation-if there is no AM there is no second order dis­
tortion. The third order distortion is independent of any AM on the 
input signal. 

III. EXAMPLE-NOISE MODULATION 

Let the modulating signal, O~(t), be a flat band of gaussian noise of 
bandwidth 0 - W with a two-sided spectral density 

So's(f) = <T
2/2W watts per cycle of bandwidth. 

- W ~ f ~ W. (14) 

Assuming an F1VI transmitter sensitivity of 1 Hz per volt, the param­
eter <T is also the rms frequency deviation. The notation Sh(f) is used 
to indicate spectral density of h(t) and is, of course, a function of 
frequency. 

Normally the input signal to a receiver is contaminated by noise. 
Let this noise have a constant spectral density of no watts per cycle 
of bandwidth. The input signal is (2)! iJ (t) where 

il (t) = (2C)! sin [wo t+ Oa(t)] + n(t), (15) 

and C is the input carrier power. The additive noise, n(t), is narrow-
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band gaussian noise and can be represented as follows.13 

net) = xc(t) sin [wot + e.(t)] - x.(t) cos [wot + ea(t)] (16) 

where xc(t) and x.(t) are gaussian random variables with zero mean 
and variances equal to the variance of net). Using (16) and assuming 
a large carrier-to-noise ratio, that is, (2C)! » n(t), (15) becomes 

i(t) == [(2C)! + xc(t)] sin [wo t+ e.(t) - x 8 (t)/(2C)']. (17) 

From (1), (2), and (8) we have 

e'(t) = e~(t) - x~(t)/(2C)!, (18) 

and 

(19) 

Expression (18) contains the desired output signal e~(t) and a noise 
term which represents the frequency modulation caused by the additive 
noise. The signal-to-noise relationships of FM receivers have been 
discussed widely in the literature;14 since the noise is small relative 
to the signal, that is, x~(t)/(2C)' « e:(t), it will have a negligible effect 
on the distortion and need not be considered further. 

The quantity of interest in broadband radio systems is the ratio 
of signal spectral density to distortion spectral density. From (13) 
the second and third order distortions are 

(20) 

and 

D (t) = [e:
3

(t)r. 
3 6 .1~ (21) 

The distortion spectra are 

(22) 

and 

(23) 

To evaluate 8 D .(f) notice that xc(t) and e~(t) are statistically inde­
pendent. The spectrum of the product can then be written 

8zce ,.C/) = 8%«/) * 8e,,(/), 
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where the asterisk means convolution. Performing the convolution, 
and letting B > 4TV, where B is the RF bandwidth of the FM signal, 
the output distortion spectral density in the baseband is 

r(/no 
= 2 .1~C ' 

and the signal-to-distortion ratio is 

So,.(t) (C )(.10)2 
SDJf) = no TV T ' 

o ~ f ~ TV, (24) 

o ~ f ~ TV. (25) 

The evaluation of SD.(f) requires an expression for So," where e:(l) 
is the input signal (14). From Hatch,15 

9,r' [ 1 (i )'] So,.·(f) = 4TV 1 - 3 W ' o ~ f ~ W, (26) 

t'~' [ 1 (' n SD.(f) = 16TV.1g 1 - 3 W ' o ~ f ~ W, (27) 

and 

So' .(f) = 8 .1g o ~ f ~ W. (28) 
SD.(f) ~'t'[1 - ~ (~n ' 

For a locking bandwidth 2Ao = 200 MHz, a baseband W = 5 l\1Hz, 
and an rms frequency deviation a = 15 MHz, the signal-to-distortion 
ratios in the worst message channel, that is, at f = Ware: 

So' .(f) I = 52.2 Db 
SD.(f) f=lV 

So.,(f) I = 69.7 Db. 
SD.(f) f=lV 

(29) 

(30) 

In computing (29), the carrier-to-noise ratio in the RF band B 
was assumed to be near threshold, that is, C / (noB) = 16 (12 dB) 
where 

(31) 

is the Carson bandwidth and 4a is the peak frequency deviation. If 
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this receiver were used in a radio system with a fading margin of 
30 dB the signal-to-distortion ratio for second order distortion would 
be 82.2 dB during periods of normal propagation and the performance 
would be limited by the third order distortion. 

IV. AUTOl\IATIC FREQUENCY CONTROL 

If the natural resonant frequency of the oscillator, Wo , is not equal 
to the input signal carrier frequency p, the receiver output contains 
a direct current component. From (9), 

. MIo ( ) 
~DC = To p - Wo • (32) 

This current gives the direction and magnitude of the frequency 
difference and, by using it to control a suitable oscillator parameter, 
the oscillator can be kept tuned automatically to the input carrier 
frequency. 

V. DISCUSSION 

One may question whether cp'(w) is really constant in the band of 
interest. If the oscillator circuit is a single resonance then the locking 
bandwidth is equal to the 3 dB bandwidth of the passive circuit divided 
by the current gain of the locked oscillator. For a 20 dB gain the circuit 
phase changes ±4.5° over the locking band, therefore cP' (w) is reasonably 
constant over bandwidths less than the locking bandwidth. Since 
<I>'(w) is the slope of a passive circuit, it can be made arbitrarily close 
to constant over the necessary frequency range by increasing the com­
plexity of the circuit. 

It would be nice to compare the theoretical performance of the 
injection-lacked-oscillator receiver with the conventional FM receiver 
consisting of a limiter and a balanced discriminator. There is, how­
ever, no theoretical analysis of the conventional receiver comparable 
with the analysis presented here. Such an analysis can probably be 
done with the aid of recent work by Bedrosian and Rice,16 although 
it would be difficult to describe analytically the amplitude-to-phase 
conversion in a real limiter and to take into account the nonlinearity 
of the envelope detectors which are used in the discriminator. 

The situation with the injection-locked-oscillator receiver is dif­
ferent. The amplitude-to-phase conversion has been accounted for 
in the present analysis and practical linear mixers are certainly linear. 
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A most important question about the practical realization of the 
receiver is the extent to which real oscillators can be described by 
the van der Pol model. The evidence in the literature5 answers the 
question favorably in that the locking equation (7) does indeed 
describe the locking behavior of tunnel diode and avalanche diode 
oscilla tors. 
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Hybrid Digital Translllission Systems 
Part I: J Oillt Optimization of 
Analog and Digital Repeaters 

By ROBERT W. CHANG and S. L. FREENY 
(Manuscript received March 11, 1968) 

A hybrid digital transmission system consists of analog repeaters placed 
between digital repeaters. J oint optimization of the analog and digital 
repeaters is considered in this paper, using minimum mean-square error 
between the transmitted and received symbols as the performance criterion. 
A general hybrid system is considered. The joint optimization problem is 
solved in closed form for deterministic sampling under two usually satisfied 
conditions. Fr01n the results the minimum mean-square error and the 
optimum repeater characteristics can be computed for given system pa­
rameters. Tim'£ng error is also considered. From a general result, it is 
concluded that in many practical systems it is not only economical, but 
also optimum, to use identical analog repeaters, and that hybrid systems 
can be used for either digital or voice transmission with no compromise in 
theoretical performance. 

r. INTRODUCTION 

It is customary in long-haul digital transmission systems to regen­
erate the digital signal at each point that gain is introduced into the 
system. This is not necessary, however, and in fact there are circum­
stances in which it is advantageous to do otherwise. One such cir­
cumstance occurs when multilevel pulses are being transmitted and 
the associated digital repeater* is too complicated and costly to be 
placed at every gain point. In this case there is merit in interspersing 
a number of analog repeaters between digital repeaters, even though 
the digital device must usually be complicated further by the intro­
duction of automatic equalization to compensate for the misalign­
ment which accrues over several analog links in tandem. 

* A digital repeater is also called a regenerative repeater,1 a reconstructive 
repeater, or a regenerator. 

1663 
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Part I of this study addresses itself to the problem of jointly op­
timizing the various filters contained in a combination analog-digital 
or "hybrid" multilevel transmission system. The criterion used is 
minimizing the mean-square error between transmitted and received 
symbols. The system studied is general in that: (i) the repeater spac­
ing may be nonuniform and the transfer functions of the transmission 
media may be different, (ii) the noises introduced by the repeaters 
may not be white and each may have a different spectral density 
(iii) the analog repeaters are not constrained to be identical, and 
(iv) the repeater output power levels are not constrained to be the 
same. 

The mathematical model is formed in Section II. Results are sum­
marized in the concluding section. Interesting characteristics and 
potentialities of hybrid cable systems are explored in Part II.2 

II. MATHEMATICAL MODEL 

Figure 1 illustrates a general hybrid digital transmission system. 
Information symbols {ad are transmitted from one digital repeater 
to the next through L analog repeaters. The output network of the 
sending digital repeater is referred to as the transmitting filter with 
transfer function Eo (f). The input network of the receiving digital 
repeater is referred to as the receiving filter with transfer function 

SENDING 
DIGITAL 
REPEATER 

TRANS­
MITTING 
FILTER 

TRANS­
MISSION 
MEDIUM 

LTH 
ANALOG 

REPEATER 

NOISE 

Nf(f) 

FIRST 
ANALOG 

REPEATER 

TRANS­
MISSION 
MEDIUM 

TRANS­
MISSION 
MEDIUM 

SECOND 
ANALOG 

REPEATER 

RECEIVING DIGITAL REPEATER 

TO 
{bk} DECISION 

CIRCUIT 

Fig. 1-A general hybrid digital transmission system. 



HYBRID DIGITAL SYSTEMS 1665 

BL +l (f). The transfer function of the ith analog repeater is denoted 
Bi (f), i = 1, ... , L. In this paper the analog repeaters are not con­
strained to be identical; hence, the ratio Bd!) IBj(f) may be a function 
of frequency. The noise at the input of the ith analog repeater has a 
spectral density Ni(f) , i = 1, ... , L. The noise at the digital repeater 
input has a spectral density NL+l(f). Notice that NtC!), ... , NL+l(f) 
may be all different and each may be a function of frequency. 

As shown in Fig. 1, the transfer functions of the transmission 
media between the repeaters are denoted by Ao (f), Al (f), ... , and 
AL (f). These transfer functions may be all different; hence, the 
repeater spacings may be nonuniform, and the transmission media 
may be different. 

The average output signal power of the transmitting filter is con­
strained to be Po. The average output signal power of the ith analog 
repeater is constrained to be Pi, i = 1, ... ,L. 

The information symbols {ad are multilevel digits or real num­
bers. It is assumed that {ale} is stationary in the wide sense. The 
autocorrelation function is denoted by 

l, k = - 00, 00. 

Pulse amplitude modulation is considered. Let liT be the baud 
rate. The transmitting filter output is then 

where s (t) is the impulse response of the transmitting filter. 
As is well known, in linear PAM systems the receiving filter output, 

X (t) in Fig. 1, is sampled sequentially at T-second intervals, and 
the kth time sample ble is used as an estimate of ale. For analytical 
purposes, a constant time delay in the system may be neglected, and 
it may be assumed that b1c is taken at 

where Ole is the timing jitter.3 
The system from the output of Bo (f) to the input of BL+ l (f) may 

be considered as a channel. For a given channel, Berger, Tufts, and 
Smith4,5 have considered methods for designing the transmitting and 
receiving filters for minimizing the mean-square error E [(ble - ale) 2]. 
By these methods the digital repeaters can be specified if the analog 
repeaters were given, and their output powers were not constrained. 
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In this paper, the analog repeaters are to be designed, and their 
output powers are constrained. We consider joint optimization of the 
analog and digital repeaters. For given L, Ni(f) , i = 1, ... , L + 1, 
Aj(f) , j = 0, ... , L, {mk}, and T, we wish to design Blc(t) , k = 0, 
1, ... , L + 1, jointly to minimize the mean-square error 

(1) 

subject to the constraints of fixed repeater output signal power P;, 
i = 0, ... ,L. 

The letter E in (1) denotes the ensemble average taken over {ad, 
Ok, and the noise. The Fourier transform of the probability density 
function of Ok is denoted by P(f). The notation "*,, denotes a complex 
conjugate and "1'1" denotes a magnitude. 

By a well known method/ the mean-square error in (1) can be 
expressed as 

(2) 

where 

00 

M(f) = mo + 2 L mk cos 271'fkT 
k=l 

is the spectral density of the stationary, random message sequence 
{ak}. 

By introducing the dummy variable A-df) = 1 for all j, we can 
write the repeater average output signal powers all in the same form as 

l = 0, 1 , . .. ,L. (3) 

III. NECESSARY AND SUFFICIENT CONDITIONS 

Necessary and sufficient conditions for Bn(f), n = 0, 1, ... , L + 1, 
to minimize the mean-square error e can be derived by using the 
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standard techniques of the calculus of variations. These conditions 
are rather lengthy. In order to conserve space and to facilitate the fol­
lowing manipulations, we write these conditions in the same form. 
To do so we use the dummy variables 

A_I (f) = 1 for all f 

AL+I(f) = 1 for all f 

Then it can be shown that the necessary and sufficient condition for 
Bn(f) , n = 0, 1, ... , L + 1, to minimize the mean-square error 8 
subject to the power constraints in (3) is 

[
L+I J[L+I ] 1 

M(f) n At(f) g Br(f) T 

[
L+I J[L+l ] 

- M(f) Po AtCf) g BrCf) PCf) 
i"'n 

+ ~ {x. ~ M(f) 1 ,IT. A,(f)· n B;(f) \' B.(f)} = 0 for all f (4) 
i"'n 

where AI, l = 0, ... , L, are Lagrange multipliers. The definition 

is used in (4). 

I iI BiCf) 12 = 1 
1=k 
i"'k 

In the following sections, we consider the problem of determining 
the optimum Bn (f), n = 0, 1, ... , L + 1, from equations (2) to (4). 

We can eliminate a trivial case first. In some correlation schemes 
(such as duobinary) M(f) may be zero at some frequencies. It can 
be shown that BL+1 Cf) must be zero at the frequencies where M(f) = 0. 
Furthermore, B,.(f), n = 0, 1, ... , L, can be arbitrarily chosen at these 
frequencies without affecting the mean-square error 8. In practice, they 
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may be chosen so that their amplitude and phases are continuous at 
these frequencies. 

In the following sections M (f) ~ ° is assumed. Furthermore, as is 
always the case in practice, N i (f), A i (f), PI, and T are assumed to be 
nonzero, finite quantities. 

IV. GENERAIJ RESULTS 

By multiplying equation (4) by B~(f) one obtains 

~ {Nl(f) 1 g A,(f) 1'1 g B,(f) n 
+ ~ {AI ~ M(f) 1 JX A,(f) 1'1 11 B,(f) n ~ ,(f) 

n = 0, 1, ... ,L + 1 (5) 

where 

,(f) = M(f)[n M(f) J[n BNf) J 
.{P(f) - l t p(~)[Yi Ai(t - ~)Bi(t - ~)J} 

T k=-~ T .=0 T T 

is not a function of n. It can be shown that we may use equation (5) 
instead of (4) without changing the solutions. 

Letting n = m and m + 1 by turns in equation (5), one obtains two 
equations. Subtracting the latter from the former gives 

m = 0, 1, ... ,L. (6) 

Since the right-hand side of equation (6) cannot be zero for all j, one 
has Am > 0, m = 0, ... , L. From equation (6) 

~h+l 1 Ah(f) 12 1 B h+1(f) 12 _ N h+2(f) 
~h - N h+1(f) 1 A h+1(t) 12 1 Bh +1(f) 12 

h = 0, 1, ... ,L - 1. (7) 

Equation (7) is equivalent to 
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1 
B (f) 12 [A.i-1 N i+1 (f)J! 1 

i = >::. Ni(f) 1 A i- 1 (f) 1 1 Ai(f) 1 

J = 1, 2, ... ,L. (8) 

It can be shown that, regardless of the values of m in equation (6), 
substituting equation (8) into equation (6) gives 

~ M(1l I A,(1l I [;'Cil T I BoW I' 

= 1 AL(f) 1 [N L;:(f) J! 1 B L+ 1(f) 12. (9) 

From equations (8) and (9) one gets 

I 
L+l I [A.oM(f)J! 2 ITa Ai(f)Bi(f) = TN

1
(f) 1 Ao(f) I I Bo(f) I . (10) 

Let us define O(f) to be the phase of [II~~~ Ai(f)Bi(f)], that is, 

g A,(f)B,(f) ~ I g A,(IlB,(1l I e-"(f) (11) 

Substituting equations (8), (10), and (11) into equation (5) and 
setting n = 0, one obtains after a few steps 

[~~~mT I Ao(1l II Bo(f) I' e,8(11 

1
1 t p(1£)[il Ai(f - 1£)Bi(f - 1£)J - P(f)fl 

. T k~-r:tJ T 0=0 T T = o. 
+ ± [A.INz+l(f)J! 1 e-iO(f) 

Z - 0 T 111 (f) I A I (f) 1 

(12) 

We have shown that the optimum digital and analog repeaters 
must satisfy the L + 2 equations in (8), (9), and (12). Some dis­
cussion is in order. 

Let us refer to the frequencies at which Bo(f) ¢ 0 as the transmission 
band. There is no signal transmitted outside this band. Clearly, the 
analog repeaters may have arbitrary amplitude characteristics outside 
the transmission band. Furthermore, the analog repeaters may have 
arbitrary phase characteristics at all frequencies.* Therefore, it is only 

* It is seen from equation (2) that the mean-square error depends on the 
over-all phase characteristic of the system, but not on how the over-all phase is 
distributed among the repeaters. Thus, the analog repeaters may have arbitrary 
phases. The over-all phase can be adjusted at the digital repeaters. 
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necessary to specify their amplitude characteristics in the transmission 
band. Equation (8) shows that, in the transmission band, the jth 
analog repeater (j = 1, ... , L) should have an amplitude characteristic 
proportional to the function 

[
N i+l(f)Ji[ 1 J~ 
Ni(f) I A i - 1Cf)A i Cf) I . 

This simple specification holds regardless of the distribution of timing 
jitter and the spectral density M (I) of the message sequence. Since 
the above function is in general well behaved, and since the phases 
can be arbitrary, the optimum analog repeaters can be closely realized. 

For brevity, we say that several functions are similar when they 
differ only by multiplicative constants. In practice, the repeater noise 
spectral densities may be similar, and the transmission media may 
have similar transfer functions. In such cases, equation (8) shows 
that the amplitude characteristics of the analog repeaters are also 
similar. A rather important physical meaning of this is: 

The use of similar analog repeaters is not only an economical 
choice, but also an optimum one, for systems where the repeater 
noise spectral densities are similar and the transfer functions of 
the transmission media are similar. 

It remains to determine the digital repeaters, the gain constants 
of the analog repeaters (the L + 1 LaGrange multipliers), and the 
transmission band. They must satisfy the L + 2 equations in (8), 
(9), and (12), and the L + 1 power constraints in (3). Furthermore, 
as will be shown, they must also satisfy some validity conditions 
because the repeater amplitude characteristics must be nonnegative. 
Since the solution depends on the distribution of timing jitter and 
since it is difficult to cover all cases in one paper, we shall consider 
only the important case of deterministic sampling (that is, the case 
in which timing jitter can be neglected) in the remainder of this 
paper. 

V. DETERMINISTIC SAMPLING 

From now on we consider deterministic sampling, that is, timing 
error 8k = 0, or 

pet) = 1, for all f. (13) 

Substituting (13) into (12) and noting that ~, M(f), T, Nl (f), and 
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lAo (f) I are nonzero, finite quantities (we consider M (f) = 0 in 
Section III), one can see that joint optimization requires either 

I Bo(f) I = 0 (14) 

or 

1 00 [L + 1 ( k) ( k) ] T k"foo n Ai f - T Bi f - T - 1 

+ ± [A1Nl+l(f)]! 1 e-iO(f) = 0 (15) 
1=0 TM(f) I Al(f) I . 

The first term in (15) is a periodic function in f with period liT, that 
is, it has the same value at the frequencies f and f - kiT, where k is 
any integer. Hence, a necessary condition for (15) to be satisfied at 
both f and f - kiT is that 

± [A1Nl+l(f)]! 1 e-iO(f) 

1=0 TM(f) I Al(f) I 

L A1N l + 1 f - -T I 

[ 
( k)l! 

~ t; TM(t _ ~) J I A,(t 1_ ~) I e-""-kl
T

,. (16) 

Since M (f) is a periodic function in f with period liT, (16) is equiv­
alent to the set of conditions 

a cos O(t) = (3 cos O(f - ¥) (17) 

and 

a sin O(f) = (3 sin O(f - ¥) , (18) 

where 

a= (19) 

{3= (20) 

Noting that a and {3 are positive, one can show that (17) and (18) 
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hold only if 

a={J 
and 

o(t - ~) = O(f) + V7r, 

where 

v = any even integer, including zero. 

Thus, (15) can be satisfied at both f and f - kiT only if 
(22) are satisfied. 

From (11), (10) , and (22), one obtains 

Substituting (23) into (15), one can show that 

e- i8 (f) = 1. 

Substituting (24) and (23) into (15) gives 

w I A 0 (f - ~) II ( k) 12 

JIf(f) ,~w [ Nl(f _ ~) J Bo f - T 

(21) 

(22) 

(21) and 

(23) 

(24) 

= T[T1l1(f)Jt _ T ± ['AINI+l(f)J-
t 

1 (25a) 
'AD I =0 'AD I A I (f) I 

The optimum jitter-free system must satisfy either (14) or (25a). 
For convenience, we assume that for each t, (25a) is satisfied at t - ml T 
for m £ CR, , where CR, is a set of integers to be determined. The subscript 
t indicates that CR, may vary with t. Clearly (14) must be satisfied at 
t - miT for m 1/ CR" that is, 

I Bo(f - ;) I ~ 0, (26a) 

If CR, is an empty set, I Bo(t - ml T) I must be zero for all m (including 
m = 0). 
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Let us define a frequency set £1 as 

S = {f : - 2~ ::;;; f ::;;; ~ and ill, is not an empty set}. 

Clearly, (25a) is satisfied in the frequency set 

5= = {f: f = g - ml T, g £ £1 and m £ CR g }, 

and (14) must be satisfied for f ¢ 5=, that is, 

I Boct) I = 0 for f ¢ 5=. 
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(26b) 

Notice that 5= is the transmission band. Clearly, the transmission band 
can be determined from £1 and CR! • 

Substituting (13) into (5), letting n = L + 1, and integratjng the 
resulting equation, one obtains 

100 [L+l ] 
-00 11;[(f) g A1(f)B1(f) 

.{l f [Ii Ai(f - !)Bi(f - !)] - I} df 
T k=-oo .=0 T T 

Combining (2), (13), and (27), one gets 

(, = mo - L: M(f{ It A ~(f)B~(f) ] df· 

Substituting (11), (10), and (24) into (28) yields 

100 [AoJJ;[(f)]! 2 
8 = mo - -co JJ1(f) .TN

1
(f) I Ao(f) I I Bo(f) I df· 

(27) 

(28) 

(29a) 

Using (26b) and the definitions of 5= and £1, and noting that M(f) is a 
periodic function in f with period II T, one can cast (29a) in the form 

I Ao(f - ~) II ( i) 12] 
. M(f) .L [( . )J! Bo f - T· df· (29b) 

Hill! N f - ~ I 
1 T ~ 
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Since (25a) is satisfied at f - m/ T for m t CRr , one has from (25a) 

1 
(25b) 

By changing the index m + k to i, using the periodicity of M (f), and 
then using (26a) , one can rewrite (25b) as 

(25 c) 

Now we may substitute (25c) into (29b) to obtain 

(30) 

Equation (30) is the expression of 8 for the case of deterministic sam­
pling. 

VI. DETERMINATION OF THE TRANSMISSION BAND 

Let us consider the determination of the frequency set 9 and the 
integer sets CRr . The ratios 
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[N l+l(f)]! 
I Al(f) I ' l = 0, ... ,L 

have appeared in the previous equations, such as in (30). It is obvious 
from Fig. 1 that [N1(f) Pll/IAo(f) I may be interpreted as the noise­
to-signal ratio of the first analog link, [N2 (f)] % IIAl (f) I as the 
noise-to-signal ratio of the second analog link, and so on. A similar 
noise-to-signal ratio has4, 5 appeared in optimizing the transmitting 
and receiving filters for a given channel (see Section II). Since such 
noise-to-signal ratios are usually not periodic functions in j, it is 
customary to assume that for any j and k we have either 

(31) 

or 

(32) 

This assumption is valid for most practical cases. 
In the following we assume that (31) or (32) holds simultaneously 

for l = 0, 1, ... , L. Physically, this means that the pass and attenua­
tion bands (valleys and peaks of the noise-to-signal ratios) of the 
analog links coincide. Important applications where this assumption 
is valid are considered in Part II of this study.2 It should be em­
phasized that this assumption is usually valid because carrier modula­
tion can and should be used at the analog repeaters to shift the fre­
quencies so that the pass and attenuation bands of the analog links 
coincide and the transmission media are best used. 

From the above assumption, it is easily seen that 

(33) 

for any f and Ie ~ 0, regardless of the values of the Az's. Comparing 
(33) with (19) to (21), we see that (21) is not satisfied. Therefore, 
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from Section V, (15) and (25a) cannot be satisfied at both f and f -
kl T for any f and k ~ 0. Consequently, the set of integers ffi, defined 
after (25a) cannot contain more than one element, and (26a) becomes 

I Bo(J - m i k) I ~ 0, for m dill, Ie ~ 0. (34) 

Substituting (34) into (25b) gives 

M(f) I Ao(t)J I B (t) 12 
[N1(f)J! a 

= T[Tltl(J2]! _ T ± [AINI+l(t)]! 1 f 
Ao 1=0 Ao I A I (f) I ' I: g:. 

From this the transmitting filter is determined as 

(35) 

For the solution of the optimization problem to be valid, the solu­
tions of IBz (f) I must satisfy the conditions 

l = 0, 1, ... ,L + 1. 

These conditions can be used· to determine the appropriate signs of 
(AI)!' l =0, ... , L. Consider first the possibility that (Ao)! < 0. It 
can be seen from (8) that (Ao)! < 0 and I Bl(f) 12 ~ 0, l = 1, ... , L, 
together require 

(AI)! < 0, 

But, from (35), the conditions 

(AI)! <0, 
would imply that 

l = 1, ... ,L. 

l = 0, 1, ... , L, 

I Bo(f) \2 ~ 0, 

which is not a valid solution. Therefore, (Ao)! cannot be negative and 
must be positive. It can be shown from (35), (8), and (9) that (Ao)! > ° 
and \ Bz(f) 12 ~ 0, l = 0, ... , L + 1, together require that* 

* D(j) defined in (36) is an abbreviation used later. 
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D(i) 

(36) 

and that (AI) % > 0, l = 1, ... , L. From these and the fact that 
(Ao) % must be positive, it is concluded that the solution is valid only 
when (36) is satisfied and 

l = 0, ... ,L. (37) 

The necessary conditions in (36) and (37) are used later in determining 
fJ and dlf • 

By substituting (26b), (35), and (8) into (3), together with some 
algebraic manipulation, it can be shown that the power constraints 
in (3) can be expressed as: 

L 

"iPl = Bl - L ,,~ahl , l = 0, 1, ... ,L (38) 
h=O 

where 

(39) 

m £ dlf • (40) 

Clearly, if fJ and dlf are known, {3z , ahZ , and (Az)! can be computed, 
the validity conditions in (36) and (37) can be checked, and the filter 
characteristics can be computed from (35), (8), and (9). Thus, the 
optimization problem is reduced to that of determining the fJ and dlf 
which minimize the mean-square error 8 in (30), subject to the power 
constraints in (38) to (40) and the validity conditions in (36) and (37). 

6.1. Mean-Square Error versus dlf 

Before a design procedure can be proposed, it is necessary to under­
stand the relationships among 8, fJ, and dlf • Such are the subjects of 
this section and the next, and Section 6.3 gives a simple design procedure 
based on the results. 
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From (30) and (39), the mean-square error can be written as 

o = mo - i TM(f) df + t, AI/3z . 

From the definition of M(f) in (2), it is easily shown that 

j
l/2T 

TM(f) df = mo . 
-1/2T 

From (41) and (42), we may decompose 0 into 

o = 01 + 02 

where 

j 1l2T 1 
01 = -1/2T TM(f) df - if TlIl(f) df 

and 
L 

02 = L At/3z . 
z-o 

(41) 

(42) 

(43) 

(44) 

(45) 

Since T and M (f) are given, 01 depends on ff, but not on the integer 
in ffiJ • Therefore, for any ff, the integer in ffiJ must be chosen to minimize 
02 subject to the power constraints in (38) and (40) and the validity 
conditions in (36) and (37), 

If we define 

A~ /30 

A= At 
~ = 

/31 (46) 

At L 

Po + aoo alO aLO 

l Q= aOl PI + au aLl (47) 

aOL alL P L + aLLJ 

then the power constraints in (38) take the compact form 

QA = ~ (48) 

and (45) becomes 

02 = A'~ = A'QA. (49) 
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It can be shown that Q is positive definite; hence, Q-l exists and 
we may combine (48) and (49) to obtain 

82 = ~'A = ~'Q-l~. 

For each j, one may choose m to minimize the ratios 

[N1+1(f - mIT)]!/\ AI(f - 1n1T) \ . 

(50) 

When this is done, {3z and Cihl decrease-see (39) and (40)-and the 
elements of ~ and Q decrease-see (46) and (47). However, it is difficult 
to see from (50) whether 82 would decrease or increase (the elements 
of ~ and Q decrease, but the elements of Q-l may increase). 

We resolve this difficulty by first considering the increment in 82 

resulting from arbitrary changes in the ratios 

[ N,.,(f - 'f) T 
I A,(f - ;) I ' 

l = 0, ... ,L. 

For brevity, we use the abbreviations 

[ NI+l(f - !J}) J! 
I A,(f - ;) I ' 

l = 0, ... ,L; (51) 

Let r z (j) denote the increment in C z (f), l = 0, ... , L. The resulting 
increments in At , 82 , A, ~, and Q are denoted, respectively, by ~l , 

d, A, ~, and Q. 
Notice that the increments rz(!), l = 0, ... , L, are not necessarily 

small. 
Replacing Q, A, ~, and 82 , by (Q + Q), (A + A), (~ + ~), and 

82 + d, respectively, one has from (48) and (49) 

(Q + Q)(A + A) = ~ + ~ 
82 + d = (A + A)/(~ + ~). 

From (52) and (48) 

QA = ~ - QA - QA. 

From (53) and (49) 

(52) 

(53) 

(54) 

(55) 
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Multiplying (48) by A', transposing A'QA in the resulting equation, 
noting that Q is symmetric, and using (54), one obtains 

A'~ = A'~ - A'QA - A'QA. (56) 

Substituting (56) into (55) gives 

d = A'~ + ~'(A + A) - A'Q(A + A). (57) 

By the definitions of f3z and .aM in (39) and (40), and by the defini­
tions of the increments, one can show after some manipulation that 

A'Q(A + A) = ~ [Ai + A,] 1, [~ )-1c,(f) },(f) dt 

+ ~ Al 1, {~ [AI + A,][C,(f) + r,(f)]}r,(f) dt (58) 

:S'(A + A) = ~ [At + Ll l] 1 [TM(f)]!rl(f) df (59) 

A'~ = ~ At 1 [TM(f)]!rl(f) df· (60) 

We are looking for a condition to determine the sign of d. We must 
decompose or combine the terms in such a way that the condition, if 
it exists, can be detected. This is done by substituting (58) to (60) 
into (57) and casting the resulting equation in the following form: 

d = 1;, [Ai + A,] 1, {[TM(f)]1 - ~ Atc,(f) }r,(f) dt 

+ 1;, At 1, {[TM(f)]1 - ~ [Aj + A,][C,(f) + r,(f)]}r,(f) dl· (61) 

From (61) we can prove a theorem about the selection of CR., for any 
given §. 

It has been shown after (35) that the solution of the optimization 
problem is valid only when (36) and (37) are satisfied. From the defini­
tion of Cl (1) in (51), (36) can be written as 

L 

D(f) = [TlIl(f)]! - L Atel(f) ~ 0, for fE §. (36) 
1=0 

For any given §, let us define: 

{ CR.,} d = the set of all the choices of CR., 
which, together with the given §, 

satjsfy (36) and (37). (62) 
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We have assumed that (31) or (32) holds for anl; therefore, there is a 
choice of ffi l in {ffi l 1 tI which simultaneously minimizes C l (f), l = 0, ... ,L. 
For later use, let us define: 

cR/.d = the ffi l in {ffi/l d which minimizes Cz(f), l = 0, ... ,L. (63) 

If we change ffi I from cR/ . d to cR/. d , which is also in {ffi l 1 d, C Z (f) will 
be increased, say, from Cl(f) to Cz(f) + rl(f), where 

l = 0, ... ,L. 

We have shown that if Cz(f) is increased to Cl(f) + rz(f), l = 0, .... , L, 
82 is changed to 82 + d, where d is given in (61). Since cR/.d is in {ffi/l d , 

(36) and (37) are satisfied. Since cR/.d is also in {ffi / } d, (36) and (37) 
are again satisfied, but in the form 

L 

[T1I1(f)]! - L [At + .1z][C lCf) + rlCf)] ~ 0, for f t 9 
z=o 

and 

At + .1 z > 0, l = 0, ... ,L 

because Cz(f) is increased to [Cz(f) + rz(f)] and (Az)! is changed to 
[(Az)! + .1zl. Substituting (36), (37), and the two inequalities above 
into (61) shows that 

d> 0. 

Therefore, 82 and 8 increase when cR/.;! is chosen instead ofcR/ .iI (81 

is fixed for a given 9). This proves: 

Theorem 1: For any given 9, the mean-square error 8 is minimized by 
selecting cR/. iI in {ffi I 1 iI • 

Clearly, cR/.iI is the optimum ffi l for the given 9 because it minimizes 
the mean-square 8, subject to the power constraints in (38) to (40) 
and the validity conditions in (36) and (37). 

6.2 111 ean-Square Error versus 9 

We now consider the variation in the mean-square error when a set 
of frequencies is deleted from a given 9. Let us define a frequency set 
JJ as 

g = {f : - 2~ ;'i f ;'i 2~ and (Ilf is an empty set}. 

Clearly,9 n JJ is an empty set and 9 U JJ is the frequency set -1/2T ~ 
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f ~ 1/2T. Equation (43) can be written as 

8 = ~ TlIICf) df + A'~. (64) 

Let n be a set of frequencies in 9. By deleting n from 9 we mean that 
ffi.1 is changed to an empty set for f £ n, but remains unchanged for 
f 1/ n. When n is deleted from 9 (that is, when 9 is changed to 9 - n), 
gI, Q, A, ~, (AI)l, and 8 are changed to (gI + n), (Q - Q), (A - A), 
(~ - ~), [(AI)l - AI], and (8 + e), respectively. Equation (64) is 
changed to the form 

~. \ 

8 + e = f TlIl(f) df + (A - A)'(~ - ~). (65) 
g+o 

Since n C 9 and 9 n gI is an empty set, n n gI is an empty set. From this 
we may subtract (64) from (65) and obtain 

e = In TlIl(f) df - A'~ - A'~ + A'~. 
It is seen from (48) that 

A'~ = A'QA. 

When 9 is changed to 9 - n, (48) is changed to 

(Q - Q)(A - A) = ~ - ~. 

(66) 

(67) 

(68) 

Subtracting (48) from (68) and combining the resulting equation with 
(67) yields 

A'~ = A'~ - A'QA + A'QA. (69) 

Substituting (69) into (66) gives 

e = In TM(f) df - A'~ - (A - A)'~ + A'Q(A - A). (70) 

The ith element of the vector ~ is 

The ith element of the vector A is Ai - 1 • The element in the ith row 
and the jth column of Q is 
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Using these element values, it can be shown from (70) that 

e = I, {[TM(1ll1 - t, (AI - /l,le,(!) }{[TM(1ll1 - t. Ale,(!)} dt· 

(71) 

We have shown in Theorem 1 that Cl(f) should be minimized. Thus, 
CR, should be selected to avoid those frequencies where Cl(f) = 00 

(for instance, where discrete tone interferences exist). Furthermore, 
the validity conditions in (36) and (37) cannot be satisfied at such 
frequencies. Therefore, we may assume, without loss of generality, 
that Cz (f) ¢ 00 for the given ill,. The variation in (Az)\ Az, then 
approaches zero when the variation in £I, [2, approaches zero. There­
fore, if [2 is replaced by an infinitesimal frequency set 0, Az becomes 
negligible and (71) becomes 

e = J, {[TM(tl]1 - t. Ale,(f)Y dt· (72) 

We have defined in (36) the abbreviation 
L 

D(f) = [TA{(f)]! - L AtCz(f). (73) 
z=o 

It is seen from (71) that if 

D(f) = 0, for all f t [2, (74) 

then e is zero and 8 is unchanged when [2 is deleted from £f. 
If D(f) ¢ 0 for some f t [2, there is, in [2, an infinitesimal frequency 

set 0 in which D(f) ¢ O. If 0 is deleted from £I, e is given by (72). The 
integrand of (72) is [D(f)]2 and is positive; therefore, when 0 is deleted 
from £I, e > 0, and 8 increases. Repeating the deleting process we see 
that 8 can only increase when any frequency set [2 is deleted from £I 
and D(f) ¢ 0 for some f t [2. 

The above proves the theorem: 

Theorem 2: For any given £I and ill, which mayor may not satisfy the 
validity conditions in (36) and (37), and for any [2 C £I, deleting [2 from 
£I will not change the mean-square error 8 if D(f) = 0 for all f t [2, and 
will increase 8 if D(f) ¢ 0 for some f t [2. 

6.3 A Design Procedure 

The ambiguity in (50) is resolved in Section 6.1. It is proven in 
Theorem 1 that, for any given £I, the CR, which minimizes Cl(f), l = 
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0, ... , L, is the optimum choice among all the solutions of (R, which 
satisfy the validity conditions and power constraints. Theorem 2 shows 
that deleting a frequency set n from a given g will increase or not change 
the mean-square error (never decrease). It is clear from these results 
that, in searching for the optimum g and (R" one should begin with 
the largest possible g and with the (R, which minimizes Cz(f), l = 0, 
. .. , L. From the definition of g in (27), the largest possible g is seen 
to be 

_ {. -.L < < -.L}. g max - f· - 2T = f = 2T (75) 

Thus, we can propose the following simple design procedure: 

Choose g = gmax. For each f in g max, choose the (R, which minimizes 
Cz(f), l = 0, ... , L. Compute {3z , (Xhl , and (~l)t from (39), (40), and 
(48), respectively. If the resulting values of (~z)! satisfy the validity 
conditions in (36) and (37), the above choice of g and (R, is optimum. 
The power constraints are satisfied by computing (~z)! from (48). 
The mean-square error & is minimized. 

Increasing Cz (f) or deleting some frequencies from gmax will increase &. 

See Theorems 1 and 2. 
The optimum filter amplitude characteristics are given by (35), 

(8), and (9). The over-all phase of the system, (J(f), is given by (24) 
(the system may have an additional time delay). As discussed previously, 
(J(f) may be distributed arbitrarily among the repeaters. The minimum 
mean-square error is given by 

L 

8 = L ~t{31 
1=0 

Thus closed form results are obtained if the choices of g and (R, in 
the above design procedure satisfies the validity conditions in (36) 
and (37). As illustrated by the applications in Part II, such validity 
conditions are usually satisfied under normal operating conditions.2 

VII. CONCLUSION 

The joint optimization problem is solved in closed form for deter­
ministic sampling under two conditions: 

(i) The pass and attenuation bands of the transmission media must 
coincide: (31) or (32) holds for all l. This is usually the case, because 
similar transmission media are usually used. Moreover, carrier modu­
lation can and should be used at the repeaters to shift the frequencies 
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so that the pass and attenuation bands coincide and the transmission 
media are best used. 

(ii) The validity conditions in (36) and (37) must be satisfied (see 
Section 6.3). As illustrated in applications in Part II, such conditions 
are usually satisfied.2 

The closed-form expressions for the optimum repeater character­
istics and the minimum mean-square error can be computed using the 
procedure in Section 6.3. 

Two theorems are proven in Section VI for resolving the ambiguity 
in the selection of the transmission band. These theorems hold regard­
less of the second condition above. 

Timing error is also considered. It is shown that in the transmission 
band, the jth analog repeater (j = 1, ... ,L) should have an ampli­
tude characteristic proportional to the given function (see Fig. 1). 

This simple specification holds regardless of the timing jitter distri­
bution, the message sequence spectral density, and the two conditions 
above. These conclusions are deduced from this result: 

(i) Since the above given function is in general well-behaved, and 
since the analog repeaters may have arbitrary phases, the optimum 
analog repeaters can be closely realized. 

(ii) It is not only economical, but also optimum, to use identical 
analog repeaters (which may have different gain factors) in many 
systems where the repeater noise spectral densities differ only by 
multiplicative constants (but are not necessarily flat with frequency), 
and the amplitude characteristics of the transmission media differ 
only by gain constants. 

(iii) If the repeater noise spectral densities differ only by multipli­
cative constants (and are not necessarily white), each analog repeater 
will be required to provide amplitude equalization for its adj acent 
transmission media (with arbitrary phase equalization). This specifi­
cation for digital transmission is the same as the requirement for 
analog repeaters in a voice system.1 Thus, by installing a digital as 
well as an analog repeater at the (L+ 1) th repeater location, a hybrid 
system can be used for either digital or voice transmission without 
changing the L analog repeaters between. 
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Hybrid Digital Transmission Systems 
Part II: Information Rate of 

Hybrid Coaxial Cable Systems 

By S. L. FREENY and ROBERT W. CHANG 

(Manuscript received March 11, 1968) 

The information rate of a hybrid coaxial cable transmission system using 
multilevel pulse amplitude modulation is studied, assuming that the additive 
repeater noise has a flat spectral density and that statistically independent 
message symbols are transmitted. Questions considered theoretically are: 
(i) Reduction in information rate when some repeaters in an "all digital 
repeater" system are Teplaced by analog Tepeaters, (ii) Number of digital 
repeaters required for converting an analog system to digital service, (iii) 
Information rate versus number of added analog Tepeaters in a fixed digital 
repeater section, (iv) System sensitivity to repeater output power and noise 
spectral density t'ariations, and (v) Bit rate versus baud rate and achieving 
the greatest bit rate. Curves and tables answer these questions. 

I t is economical and theoretically optimum to use identical analog 
Tepeaters and uniform repeater spacing for the coaxial cable systems con­
sidered. The optimum gain-frequency characteristic for the analog repeaters 
is the same for both analog and digital transmission. Analog cable systems 
can be adapted directly to hybrid digital service with no compromise in 
theoretical performance. 

1. INTRODUCTION 

In Part I,t the general problem of optimizing the parameters in a 
hybrid (combination digital and analog) transmission system was 
considered. Closed form expressions were obtained for the transmit­
ting, receiving, and analog repeater filters which would minimize the 
total mean square error at each digital regenerator. In this part these 
formulas are applied to the important special case where the transmis­
sion medium is coaxial cable, under the assumption that the additive 
repeater noise has a flat spectral density and that statistically in-

1687 
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dependent message symbols are transmitted. No attempt was made 
to include practical details of circuit and filter design. 

II. A COAXIAL CABLE HYBRID DIGITAL TRANSMISSION SYSTEM 

A hybrid digital transmission system is illustrated in Fig. 1. In­
formation symbols {ak} are transmitted from one digital repeater to 
the next through L analog repeaters. Multilevel pulse amplitude 
modulation is considered. Each symbol ak can assume anyone of v 

equally spaced levels with probability Ill'. The spacing between two 
adj acent levels is denoted by d. The levels are assumed symmetrically 
spaced about zero; hence, 

E[ak] = 0 

E[a~] = d
2

(l - 1). 
12 

(1) 

Notice that v can be an odd as well as an even integer. As usual, the 
ak's are assumed to be statistically independent. 

The ak's are transmitted sequentially at T second intervals. The 
baud rate of the system is liT, and the bit rate is 

R = (1/ T) log2 v bps. (2) 

It is assumed that the input amplifiers of the analog and digital 

No 

NOISE 

No 

FIRST 
ANALOG 

REPEATER 

No 

SECOND 
ANALOG 

REPEATER 

RECEIVING 
DIGITAL 

REPEATER 

Fig. 1- A hybrid coaxial cable digital transmission system. 

TO 
DECISION 
CIRCUIT 
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repeaters introduce zero mean thermal noise of constant spectral den­
sity No watts per hertz over the frequency band of interest. The av­
erage signal powers at the analog and digital repeater outputs are 
constrained to be P. 

As in all linear pulse amplitude modulation systems, the signal at 
the decision circuit input-X (t) in Fig. I-is sampled sequentially 
at T second intervals, and the kth time sample bk is used as an esti­
mate of ak. The system's performance is measured by the familiar 
criterion of mean square error between bk and ak, that is, by the 
quantity 

(3) 

The system is said to be optimum if 8 is minimized by jointly designing 
the analog and digital repeater characteristics. 

It is shown in Appendix A that for the coaxial cable systems con­
sidered the mean square error 8 is further minimized if the analog 
repeaters are equally spaced along the cable. Therefore, uniform repeater 
spacing is henceforth considered. The transfer function of the coaxial 
cable between each two repeaters is denoted by A (f) (see Fig. 1). Over 
most of the useful frequency range one may assume2 

I ACt) I = e-S(lfllfo)! (4) 

where 

S = cable length in miles 

fo = frequency at which one mile of cable has attenuation of one 
neper (a cable constant). 

The analog and digital repeater characteristics that minimize 8 
can be determined using the general results in Part I (see Appendix B). 
The main purpose of this part is to explore the interesting characteristics 
and potentialities of hybrid cable systems. Let us define 

N = (L + I)No 

8 = The minimum value of 8 that can be attained by jointly de­
signing the analog and digital repeater characteristics. 

S 
J.L = (2Tfo)~' (5) 

Notice that }J. is the cable attenuation in nepers measured at a fre­
quency equal to one half the symbol rate. Using results in Part I, it 
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is shown in Appendix C that if 

(6) 

then the bit rate of the optimum system can be related to all other 
system parameters by 

1 f fj;- + (21' - l)e" + 1 &1 
R = - IOg211 + .2f· 

2T 3~2 [(JL - l)e lL + 1]2 d 
(7) 

The condition in equation (6) requires that the signal-to-noise ratio 
of the system be larger than a certain value. This condition is satis­
fied under normal operating conditions for the following reason. It 
can be shown that the quantity 

~ [2JLe 21L 
- 3e2

J.1 + 4eJ.l - 1] 
p. 

in equation (6) is zero when p. is zero, and increases with p.. There­
fore, the right side of equation (6) increases with the number of 
analog repeaters, the symbol rate liT, the repeater spacing S, and 
the attenuation in the cable (that is, lifo). It can be shown that if 
L, liT, S, and lifo are made so large that equation (6) is not satis­
fied, the optimum system will be forced to use a bandwidth less than 
the Nyquist bandwidth 1/2T to reduce thermal noise. A system should 
not be designed to operate under such an extreme condition since 
intersymbol interference increases rapidly as the bandwidth is reduced 
to less than the Nyquist bandwidth 1/2T. 

For equation (7) to be useful one must assume something about the 
probability distribution of the total interference (intersymbol plus 
noise). This allows one to relate the ratio S/d2 to the average probability 
of error. In the remainder of this paper the natural and useful assump­
tion will be made that the total interference is normally distributed. 
Evidence to date indicates that this assumption is actually conservative 
and that average error probabilities even less than those stated would 
actually be obtained in most cases.3 

III. SELECTION OF SYMBOL RATE 

To faciJitate comparing bit rates of systems which have different 
values, we ignore the variation of error probability with number of 
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levels, which can be at most a factor of two (for details see Ref. 4, 
pp. 114-118), and assume that it depends only on 8/d2

• Specifically, 
a value of d2

/ 8 = 126 gives an error rate of 10-8 for binary transmission. 
Unless stated otherwise, this value for the ratio will be used throughout. 

Consider now the system parameters. The cable constant fo is usually 
a given parameter. Values which the thermal noise spectral density No 
and the power constraint P may assume are restricted in most cases. 
As already discussed, if the error rate is specified, the ratio d2

/ 8 is also 
approximately fixed. Thus, the factors over which the system designer 
may exercise the most control are the symbol rate 1/ T, the number of 
levels v, the number of analog repeaters L, and the repeater spacing S. 

Let us consider the selection of 1/ T. 

R = (1/ T) log2 v bps (2) 

where log2v is the number of bits per symbol. It is proven in Appendix 
D that under the normal operating condition represented by equation 
(6), log2v decreases when liT increases. Thus, usually there exists a 
symbol rate which maximizes the bit rate R. To illustrate this and the 
significance of selecting the symbol rate, we consider a typical sys­
tem in the following. 

Consider a system using standard %-inch coaxial cable which has 

fo = 5 X 106 hertz. (8) 

The analog or digital repeater output power is constrained to be 

P = 0.1 watt. (9) 

The thermal noise spectral density depends on the noise figure of the 
amplifiers. A reasonable assumption;(- is that 

No = 1 X 10-19 watts/hertz 

corresponding to a noise figure of 13.8 dB. 

(10) 

Let us assume a repeater spacing S of 1.25 miles. (11) 

Consider the case L = 9, that is, nine analog repeaters are used 
between each two digital repeaters. The ratio d2

/ 8 is fixed to 126, 
corresponding to an error rate of approximately 10-8 per 12.5 miles. 

If we vary the baud rate l/T, we obtain the results in Fig. 2. When 
the baud rate 1/ T increases from zero, the bit rate R first increases 
and then decreases. There is a peak of R at l/T t'J 2.8 X 108

• Also 

* A thermal noise spectral density of 1.67 X 10-19 watts per hertz was used 
in Ref. 2 based on a noise figure of about 1>6.2 dB. 
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Fig. 2 - Bit rate and number of levels vs symbol rate liT. 

shown in Fig. 2 is the quantity "bits per symbol" (that is, log2 v) which, 
as proven in theory, decreases when the baud rate increases. Notice 
that the results are meaningful only when v is an integer. Therefore, 
one should consider only those points where v is an integer, or commonly 
used integers such as 2, 3, 4, 8, and 16. 

Two observations are made from Fig. 2: 

(i) If a low symbol rate such as 1/ T t'J 107 is selected, not only is 
the resulting bit rate too low (about 1/10 of the maximum R), the num­
ber of levels must also be extremely large (approximately 214 levels) 
in order to attain this very low bit rate. 

(ii) At the maximum bit rate v is approximately 32, an impractically 
large number. However, reducing v to 16, 8, or 4 levels only reduces 
R from 1.38 X 109 to 1.35 X 109

, 1.21 X 109
, or 0.96 X 109

, respectively. 

These observations clearly show the significance of selecting the 
baud rate and how a baud rate can be chosen for best use of a given 
system. 

Notice that the above results are computed from equations (7) 
and (2) and that equation (7) is valid if equation (6) holds. By re­
arranging the terms of equation (6) together with some algebraic 
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manipulation, it can be shown that equation (7) is valid if the R 
computed from equation (7) satisfies the inequality 

> 1 [ 6,u2 8J R = 2T log2 1 + - -d2 
~ ,u-l+el" 

(6a) 

of if v computed from equations (7) and (2) satisfies the inequality 

log2 v ~ ! log2 [1 + 6,u2 -I" -d~J· 
,u-l+e 

(6b) 

Notice that equations (6a) and (6b) represent lower bounds on bit 
rate and bits per baud, respectively. The lower bound on bits per 
symbol is plotted in Fig. 2. It is seen that, as discussed in Section II, 
equation (6) is easily satisfied in practice. 

IV. REPLACEMENT OF DIGITAL REPEATERS 

vVhat happens if some of the repeaters in an all-digital repeater 
system are replaced by analog repeaters? Because in multilevel trans­
mission analog repeaters might be less expensive than digital repeat­
ers, this may reduce the cost of the system. 

Since analog repeaters introduce thermal noise, replacing digital 
repeaters with analog repeaters decreases the bit rate of the system 
(assuming a fixed error rate), but the reduction might not be much. 

Let us consider the same system specifications (8), (9), (10), and 
(11), as in Section III, and let us consider three cases: 

(i) The repeaters in the system are all digital. 
(ii) 90 percent of the digital repeaters are replaced by analog 

repeaters (10 percent digital). 
(iii) 99 percent of the digital repeaters are replaced by analog 

repeaters (1 percent digital). 

The ratio d2/8 is set to 144, 126, and 108, for cases i, ii, and iii, 
respectively. As discussed in Appendix E, this gives an error rate of 
approximately 10-7 over a distance of 125 miles for all three cases. 

Under the above conditions, the bit rates of the three cases are 
computed using equations (7) and (2). The results are compared in 
Table I and plotted in Fig. 3. 

In comparing cases i and ii, we see that the bit rate decreases only 
18 to 28 percent when 90 percent of the digital repeaters are replaced 
by analog ones. From cases i and iii, we see that the bit rate de-
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TABLE 1- COMPARISON OF BIT RATES 

Bits per second (X 109) 

Type of Transmission Case i Case ii Case iii 

Binary 0.71 0.58 0.46 
Ternary 1.02 0.82 0.63 
4-level 1.21 0.96 0.74 
8-level 1.56 1.21 0.91 

I6-level 1. 77 1.35 0.98 
32-level 1.86 1.38 0.98 
64-level 1.85 1.33 0.91 

creases 35 to 50 percent when 99 percent of the digital repeaters are 
replaced by analog ones. The reductions in bit rate are moderate 
compared with the amount of replacement. 

It is important to observe that the bit rate of case i is best at 32-
level transmission, but it is difficult, if not impossible, to realize a 
32-level transmission system. Therefore, one is forced to consider a 
reduced bit rate. If one uses only digital repeaters, there is only one 
choice, reducing bits per symbol. However, hybrid systems give an­
other degree of freedom: one may consider various combinations of 
transmission levels and numbers of analog repeaters. 
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Fig. 3 - Comparison of bit rates of three arrangements. 
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For example, consider the two choices from Table I: 

(i) Repeaters all digital, ternary transmission used, bit rate reduced 
to 1.02 X 109 bits per second. 

(ii) 90 percent of the repeaters are analog, 4-1evel transmission, 
bit rate reduced to 0.96 X 109 bits per second. 
Since the bit rates are very close, the selection depends largely on 
the cost of the repeaters, installation, maintenance, and so on. 

V. HYBRID SYSTEM FLEXIBILITIES 

We have considered a digital system and computed the reductions 
in bit rate when digital repeaters are replaced by analog repeaters. 
But in other applications, the system may be originally built for voice 
communication with all analog repeaters. As is well known, the 
analog repeater gain-frequency characteristic for voice communica­
tion is shaped to match the loss-frequency characteristic of the coaxial 
cable.5 Appendix B shows that such shaping is also optimum for multi­
level digital transmission. Thus, an analog system is basically suited 
for digital transmission provided that digital repeaters are inserted; 
the question is how many. 

Tables such as Table I can be helpful in making such decisions. 
Case ii in Table I corresponds to inserting one digital repeater after 
every nine analog repeaters, and case iii corresponds to inserting a 
a digital repeater after every ninety-nine analog repeaters. Bit rate 
can be easily computed for other values of L, v, S, fo, P, No, and er­
ror rate using equations (7) and (2). The results reveal the capacities 
of various systems. 

A hybrid system can be used for either digital or voice communica­
tion by installing a digital as well as an analog repeater at the (L + 
1) st repeater location. The L analog repeaters between can be used 
for both services without sacrificing the system performance because 
of common gain-frequency shaping requirements. 

VI. INSERTION OF ANALOG REPEATERS 

Replacing digital repeaters with analog ones or inserting digital 
repeaters into an analog system amount to changing the parameter 
L of a hybrid system. The repeater spacing S is unchanged. 

In certain cases, one might wish to fix the distance between two 
digital repeaters, and vary the number of analog repeaters between. 
In these cases S varies with L. 
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Let the distance between two digital repeaters be YJ miles. Then 
S = YJ/L + 1. Thermal noise spectral density at the input of the re­
ceiving digital repeater is N = (L + l)No. vVhen L increases, ther­
mal noise increases, but S and cable loss decrease. Hence, the bit rate 
may increaiile or decrease depending on thermal noise and cable loss. 
For instance, if No and to are both very small, increasing L will in­
crease the bit rate; if No and to are large, increasing L will decrease 
bit rate. The following shows that for typical values of No and to, in­
creasing L increases bit rate. 

Let to = 5 X 106
, P = 0.1 and No = 10-19 as considered earlier, and 

assume a distance YJ of 100 miles. Table II shows L for each of the 
following: 

(II T) m = The baud rate that maximjzes the bit rate 
Rmax = lVlaximum bit rate in bits per second at (lIT)m 
(logz V)m = bits per symbol baud at (lIT)m . 

For all L, d2 18 is set to 126 (error rate r-.J 10-8 for each digital repeater 
section). Notice that the table contains values of L which are both 
impractically small and impractically large, which are included only 
for completeness. 

From Table II, we see that when L increases from 1 to 10, 100, and 
1000, Rmax increases 17, 550, and 12,700 times, respectively. Similarly 
rapid increases in bit rate are also obtained for YJ as small as 10 miles 
or as large as 200 miles. It is concluded that, for the typical values 
of No and to considered, the insertion of analog repeaters increases 
the theoretical bit rate rapidly. The number of analog repeaters, how-

TABLE II - BIT RATE VERSUS L FOR rJ = 100 MILES 

Bits per second 

L (l/T)m Rmax (log2 V)m 

1 3.68 X 105 2.58 X 106 7.00 
2 7.60 X 105 5.10 X 106 6.71 
5 2.60 X 106 1.62 X 107 6.22 

10 7.53 X 106 4.37 X 107 5.80 
20 2.32 X 107 1.24 X 108 5.35 

50 1.06 X 108 4.99 X 108 4.73 
100 3.31 X 108 1.41 X 109 4.25 
200 1.02 X 109 3.85 X 109 3.77 
500 4.30 X 109 1.36 X 1010 3.16 

1000 1.22 X 1010 3.27 X 1010 2.68 
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ever, is limited by such practical considerations as misalignment, 
equalization, and economy. 

VII. BIT RATE, POWER, AND NOISE 

We have assumed a repeater output power, P, of 0.1 watt and a 
thermal noise spectral density, No , of 10-19 watts per hertz. Although 
these are conservative figures, it is nevertheless interesting to ask how 
sensitive the system is to variations in P and No . 

Let us consider the coaxial cable system specified by (8), (11), and 
d2 18 = 126. Notice from (7) that we need to consider only the ratio 
P INo , not P and No separately. 

:0 = l~=h = 10
18

• 

It is very unlikely that PINo will vary by a factor of 101, but let us 
consider such a range. 

Since N = (L + 1) No and since L appears only in the ratio PIN 
in (7), we may vary PIN instead of P INo so that the results can be 
used for all L. For instance, when L = 9, varying PIN from 1018 to 
1011 corresponds to varying P INo from 1019 to 1012

• 

In Fig. 4, PIN is varied from 1018 to 1011. For each PIN, bit rate 
is shown versus bits per symbol (that is, versus the logarithm of the 
number of levels of transmission). vVe see that the reduction in bit 
rate is moderate compared with variation in P IJ.V. For instance, when 
PIN reduces from 1018 to 1016 (by a factor of 102

), bit rate reduces 
only 37 percent at binary transmission, or 40 percent at 4-level trans­
mission. Thus, the system can tolerate a reasonable amount of varia­
tion in PIN. However, as one should expect, an extremely severe re­
duction in PIN is not tolerable. For example, if PIN reduces from 
1018 to 1011, the maximum bit rate would be reduced to 6 X 101. 

Figure 4 shows that binary transmission is the least sensitive to 
variation in PIN. As PIN decreases, the peak of the curve shifts to 
the left, reducing the theoretical advantage of multilevel transmis­
sion over binary. 

VIII. CONCLUSIONS 

The information rate of a hybrid coaxial cable digital transmission 
system has been evaluated theoretically. Because of the assumptions 
made, the various curves involving information rate are to be inter-



1698 'l'HE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

2 

109 

a 

0 
z 
0 
U 4 
UJ 
(f) 

n:: 
UJ 
0... 

(f) 2 

!::: 

P 
1018 -

~ N 

~ 
1017 

./' ~ 

t--/~ ............... r- 1016 

V/~ 1015 _ 

~~ ~ 

~ 
!--- ---- 1014 

..--r- -r-. 
V --- 1013 

(J) 

z 
~ lOa 

~ a 
n:: 

,....-- r---
l- I:---...... 
I- ............... 1012 

f-
CD 

4 

2 

~ ----~ 
I-

~ 

~ 
....... 1011 

2 3 4 5 6 

BITS PER SYMBOL 

Fig. 4 - Bit rate vs bits per symbol for PIN from 1018 to 1011
• 

preted more in the nature of upper bounds than actual performance 
curves to be attained in practice. Taken as such, the curves never­
theless illustrate the interesting characteristics and potentialities of 
hybrid cable systems. Among the more important results of the study 
are: 

(i) In general it is not only economical but also optimum to use 
uniform repeater spacing and identical analog repeaters. Moreover, 
the optimum gain-frequency characteristic for the analog repeaters 
is the same for both analog and digital transmission. Therefore, an 
analog system can be adapted directly to hybrid digital service with 
no compromise in theoretical performance over the frequency band 
that the analog repeaters were originally designed for. 

(ii) In general, hybrid systems give system designers an additional 
degree of freedom. For example, the curves of Fig. 3 show that, for 
the particular system illustrated, the sacrifice in theoretical informa­
tion capacity for binary transmission between a system using all 
digital repeaters and one in which only one in ten repeaters is digital 
is about 20 percent. In order to remove low frequency energy from 
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the transmitted pulse spectrum, it is customary in present binary 
PCM systems to actually use some form of 3-level transmission, thus 
incurring a sacrifice of 37 percent of the information capacity. There­
fore, another method of solving this dc problem (for example, some 
form of amplitude modulation) which is too expensive for use in each 
repeater might profitably be used here where it would appear in only 
every tenth repeater. 

(iii) System parameters which have a first order effect on informa­
tion capacity are the symbol rate, repeater spacing, and cable diam­
eter. On the other hand, the hybrid cable system is relatively insensi­
tive to variations in repeater output power, repeater noise figure and 
average probability of error. 

APPENDIX A 

Best Uniform Repeater Spacing 

8 denotes the minimum value of e attained by jointly designing the 
analog and digital repeater characteristics as pointed out in Part 1.1 

Some terms in 8 are extremely small for the coaxial cable systems con­
sidered. With such terms neglected, 8 can be further minimized by using 
uniform repeater spacing. 

Minimum notations are used in the text for clarity, but it is necessary 
to add a rather large number in the appendices. 

Part I showed that under two conditions we have 

(12) 

where 

Q 

aLO l 
aLl , 

PLiaJ 

J
l / 2T 

-1/27' 

l = 0, .,. ,L 

J
1/ 2T 

-1/2T 

h, l = 0, ... ,L. 
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In the above, m is the integer that minimizes the ratios [NZ+l (f 
miT) ] 1h I I Az (f - miT) I (notice that m may vary with f), liT is 
the symbol rate, and M (f) is the spectral density of the stationary 
random message sequence {ad. Furthermore, as illustrated in Fig. 1 
of Part I, N z (f) is the spectral density Of the noise at the input of the 
lth analog repeater Bz(f), N L+ 1 (f) is the spectral density of the noise 
at the input of the receiving filter B L+ 1 (f), Az (f) is the transfer func­
tion of the transmission medium between B z (f) and B z+ 1 (f), and P z 
is the average output power of Bz(f). 

Equation (12) is valid under the two conditions: 

(i) For any frequency f and integer 1(, and for l = 0, ... , L, we 
have either 

for all l (13) 

or 

for all l. (14) 

(ii) Let 

A= (15) 

then we must have 

[T 111 (f)]~ -
1 1 

~ 0, for - 2T ~ f ~ 2T (16) 

and 

l = 0, ... ,L (17) 
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where m, as defined previously, is the integer that minimizes the ratios 
[NZ+l (f - miT)] %/IAz(f - miT) I· 

Notice that condition 1~ guarantees that In does not vary with l. 
Now we consider the coaxial cable systems. vVe assume in Section 

II for the coaxial cable systems that 

E[aiai+i] = 0, j ~ 0, 

Nz(f) = No , l = 1, ... ,L + 1, 

and 

P z = P, l = 0, ... ,L. 

By definition l 

00 

Af(f) = E[a~] + 2 L E[aiai+;] cos 27rfjT. 
;=1 

Substituting (19) and (20) into (23) gives 

M(f) = d
2
(p2 - 1). 

12 

In order to consider repeater spacing, let us define 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

Sz = length of the cable (in miles) between the repeaters Bz (f) 
and BZ+l (f), l = 0, ... , L. Over most of the useful fre­
quency range one may assume2 

1 A z (f) I = e - S I (J J I 1 J 0) l , 

where 10 is a cable constant. 
From (21) and (25), 

[NZ+1(f)]! = (N)t Sz(llIl!o'· 

I Az(f) I 0 e , 

l = 0, ... ,L (25) 

l = 0, ... ,L. (26) 

Since the right side of (26) increases monotonically with I, condition 
i is satisfied (that is, for any I and K either (13) holds for all l, or 
(14) holds for alll). 

Notice from (26) that, in general, the ratios [NI+dj)] %/1 A1(f) 1 

will increase monotonically with I even if the repeater noises are not 
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white (the variation in the exponent usually outweighs possible varia­
tions in the noise spectral densities). Thus, condition i will usually be 
satisfied even if white noises are not assumed. 

The second condition in (16) and (17) serves as a final check. It is 
not used in any computation, and we only have to show that our re­
sults satisfy it. This is done at the end of this appendix. 

As already discussed, for each f in -1/2 T ~ f ~ 1/2 T, we should 
choose the integer min (3z and iXhZ to minimize the ratios 

[N,+,(t - ¥)T 
I A,(t - ;) I ' 

l = 0, ... ,L. 

It is clear from (26) that these ratios are minimized by choosing 

m = 0, f 11 f . ~ < f < ~. or a III - 2T = = 2T (27) 

Substituting (24), (21), (25), and (27) into the definition of f3l gives 

{31 = tf;.12 [1 + (I-'- Z - 1) ell I ], l = 0, ... ,L (28) 
I-'-z 

where 

8 z 
I-'-z = [2Tfo]!' 

Substituting (21), (25), and (27) into the definition of Cl!hl gives 

Substituting (22) into (12) gives 

8 = ~/[PI + arl~ 
where I is the identity matrix and 

a= 

h, l = 0, ... ,L. 

(29) 

(30) 
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The total distance between the two digital repeaters Bo (j) and 
B L +1 (j) is 

(31) 

Clearly, we should regard 1] as fixed when varying the repeater spacings 
So to 8 L to minimize S. 

It is customary to use uniform repeater spacing, that is, 

1] 

Sl = L + 1 = 8, l = 0, ... ,L (32) 

where S is the common repeater spacing. It is shown in the following 
that: 

(i) Uniform repeater spacing minimizes the mean square error S 
if 0: is negligible in (30). 

(ii) 0: is indeed negligible for the coaxial cable systems considered. 
(Therefore, uniform repeater spacing is considered in the text.) 

Let us prove the first statement. When 0: is negligible in (30), we have 

(33) 

where 80 is an abbreviation. 
Substituting (28) into (33) yields 

1 2 L 1 
80 = p- if; L: 4 [1 + (Ill - 1)eIl1

]2. 

1=0 III 
(34) 

We now determine the repeater spacings 8 0 to S L which minimize 
80 in (34), subject to the constraint in (31). Since there is a one-to-one 
correspondence between Sl and III , the problem is equivalent to deter­
mining the values of Ilo to ilL which minimize 80 in (34), subject to the 
constraint 

Ilo + III + ... + ilL = Iltotal (35) 

where Iltotal is a fixed constant. 
A necessary condition for III to minimize 80 subject to the constraint 

in (35) is 

Xl = A = 0, l = 0, ... ,L (36) 

where A is a Lagrange multiplier and 

2 4 
Xl = 3" [1 + (Ill - 1)e Il1 ]e Il1 

- 5 [1 + (Ill - 1)eIl1
]2. (37) 

III III 
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Clearly (36) requires that 

Xi = Xj, i, j = 0, ... , L; i ~ j. (38) 

\Ve may solve (35) and the L equations in (38) for fJJo to fLL. Clearly, 

f.Ltota I 

f.L1 = L + 1 ' l = 0, ... ,L (39) 

is a solution. It is also the only solution because since repeater spac­
ing Sl > 0, we havefLl > 0. It can be shown for aUl = 0, ... , L that 

Xl = i when III = 0, 

and that Xl increases montonicaUy with III when III > 0. From this it 
is clear that Xl'S cannot be all equal as required by (38) if Ill'S are not 
all equal. Therefore, (39) is the unique solution of the constraint (35) 
and the necessary conditions (38). It can be easily established that 
80 is a minimum, not a maximum, at (39). Therefore, (39) minimizes 
80 , or, uniform repeater spacing minimizes 80 • 

N ext we must show that a is so small that for all practical purposes 
minimizing 80 minimizes 8. Notice that it is not necessary to show this 
for all possible repeater spacings. Clearly we do not have to show this 
for classes of nonuniform repeater spacings which we know will produce 
8 larger than the 8 of uniform repeater spacing. One such class is that 
which calls for 

Sl> YS, for at least one l, 

or equivalently 

for at least one l, 

where 

S 
Il = (2Tfo)! , (40) 

and Y is given by the equality 

Td
2

(/ - 1) [(Y _ 1) YJL + 1]2 
3(Y f.LtT2 f.L e 

(41) 
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The right side of (41) is the 8 of uniform repeater spacing (see Ap­
pendix C). The left side can be easily shown to be a lower bound of 8 
for the class of nonuniform repeater spacings which calls for Sz > y S 
for at least one l. Hence, this class produces an 8 larger than that of 
uniform repeater spacing, and should be ruled out. Consequently, 
it is only necessary to show that a is negligible when 

Sz ~ YS, for all l = 0, ... , L. (42) 

This can be easily shown for the coaxial cable systems considered. For 
example, consider the typical system parameter values (Section III); 
fo = 5 X 106 hertz, P = 0.1 watt, No = 10-19 watts per hertz, S = 
1.25 miles, L = 9, and 1/ T = 2.8 X 108

• Substituting these values into 
(41) gives 

y = 1.2. 

Notice that it is not necessary to specify d and v because they cancel 
out in (41). Furthermore, it can be shown that the left side of (41) 
increases monotonically with Y under the conditions in (16) and (17). 
Hence, the solution of Y is unique. Substituting the above values into 
(42) and (29), one can show that the largest element in a cannot exceed 
0.00003, which is extremely small compared with 0.1 for the diagonal 
elements of PI. Thus, a is negligible in (30), and, for all practical 
purposes, minimizing 00 minimizes 8. 

Finally, before adopting uniform repeater spacing, we must show 
that it satisfies (16) and (17) in condition ii. As shown in Appendix C, 
for uniform repeater spacing, (17) is automatically satisfied and (16) 
is equivalent to (6). As discussed in Section II and demonstrated in 
Section III, (6) is easily satisfied. Therefore, uniform repeater spacing 
easily satisfies (16) and (17) in condition ii. 

APPENDIX B 

Optimum Repeater Characteristics 

Part I showed that,1 under the same conditions-(13) to (17) in 
Appendix A-the analog and digital repeater characteristics which 
minimize the mean square error 0 are: 

1 Ba(t) 12 

T[N] (f)]! {[ . (~ ~ ~ [N I +1(f) ]!} f 
= 111(f) I Ao(f) I "t TJJI f)]> - ~ "I I A l(f) I or f F ~, 

= 0, for t ¢ ~ (43) 
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= arbitrary, for t 1/ ;J, j=I,2,···,L (44) 

(45) 

and the repeater phases need only satisfy the condition 

e-iO(f) = 1, for tl:;J, 
= arbitrary, for t?;J (46) 

where O(f) is the over-all phase of the system that is defined by 

Xt A Jt)B;(f) ~ I g A;(f)BJf) I e-f8(f). 

A time delay may always be added to (J(f). Furthermore, (J(t) may be 
distributed arbitrarily among the repeaters. The notations above are 
al1 defined in Appendix A after (12) except if which is the frequency set 

-{t.t- m ~< <~} ( ) ;J - . - g - T ' - 2T = g = 2T 47 

where m is also defined after (12). 
Now apply these general equations to the coaxial cable systems 

considered. Substituting m in (27) into (47) gives 

:J ~ {t : -~ ;;:; t ;;:; 2~}' (48) . 

The best uniform repeater spacing has been discussed in Appendix 
A. In this and the following appendices, we adopt uniform repeater 
spacing. Therefore, 

Sl = S, l = 0, ... ,L (49) 
and 

l = 0, ... , L. (50) 

Substituting (49) into (28) and (29) gives 

(3 I = 1/; 12 [1 + (p, - 1) ell], l = 0, ... , L (51) 
P, 

O'hl = 2~T [1 + (2p, - 1)e21l L h, l = 0, .,. ,L (52) 
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where 

s 
p, = [2'Tfa]!' 

Notice that now f3l and CXhl do not vary with hand l. Substituting 
(51), (52), and (22) into (15), one obtains 

if; \ [1 + (p, - l)ell
] 

[Azl! = p, 

P + (L + 1) 2~~ [1 + (2p, - 1)e
21l

] 

l = 0, ... ,L. (53) 

Now AZ does not vary with l. 
Substituting (21), (24), (48), (50), and (53) into (43) to (45) 

gives the repeater amplitude characteristics which minimize the mean 
square error as: 

for o < f < 1 = = 2T' 

= 0, for 
1 

f> 2T (54) 

[AO d'(v' - 1) T 
IBL + 1Cf) 1 = 12TNa 1 Ba(f) I, for all f (55) 

and 

1 BiCf) 1 
= eS (fIfo) t , o < f < 1 = = 2T' 

= arbitrary, 
1 1,2, ... ,L. (56) f > 2T J = 

Several observations are made from (54) to (56). First, I Bo (f) I 
and I BL +1 (f) I differ only by a multiplicative constant. Therefore, 
identical filters may be used for the transmitting and receiving filters 
in the digital repeaters. [As discussed after (46), an all-pass network 
may be used at any point of the system to adjust overall phase of 
the system.] 

Second, the IBj (f) I, j = 1, ... , L, do not vary with j; hence, iden­
tical analog repeaters may be used. Furthermore, IBj(f) I in (56) is 
just the reciprocal of IAz (f) I in (50); therefore the analog repeater 
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gain-frequency characteristic is shaped to match the loss-frequency 
characteristic of the coaxial cable. 

Third, it is much more difficult to realize the transmitting and 
receiving filters in the digital repeaters than it is the analog repeater 
filters. This is because IBo(f) I and IBL+df) I must be zero for f > 1/2T 
(usually requiring a vertical cutoff, or discontinuity, at f = 1/2T) , 
while the analog repeater filters Bdf) to BL (f) may have arbitrary 
amplitudes for f > 1/2T (no discontinuity is required at f = 1/2T 
and the filters may cut off in any convenient manner). 

APPENDIX C 

Information Rate 

Substituting f3l in (51), CXhl in (52), and (22) into (12) yields 

.. T d
2

(v
2

3
- 1) *' [(JL - l)el' + 1]2 

8 = P 1 
N + 2lT [(2JL - l)e

2
1' + 1] 

(57) 

where 

N = (L + I)No • 

Solving (57) for v2
, yields 

2 f:k + (2JL - l)e
2

1' + 1 8 
jJ = 1 + 2 ·d2 • 

3l [(JL - l)e" + 1] 
(58) 

The bit rate R is therefore given by 

1 
R = T log2 V 

1 J f[; + (21' - l)e'" + 1 S 1 
~ 21' IOg'r + 3~' [(I' - 1)e" + 1]' . a']' 

which is (7) in Section II. 
Equation (12) and hence (7) are valid under the conditions stated 

in (13), (14), (16), and (17). Appendix A showed that the condition 
in (13) and (14) is satisfied. Furthermore, it can be easily shown 
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from (53) that (17) is satisfied. Hence, the only condition remaining 
is (16) ~ From (21), (24), (27), and (50), it is clear that now (16) 
is satisfied if and only if it is satisfied at f = 1/2T, or (rearranging 
the terms) if and only if 

~ > L + 1 [2 2iJ. _ 3 2iJ. + 4 Il - 1] No = 2TJ,L2 J,Le e e 

which is condition (6). 

APPENDIX D 

Symbol and Bit Rates 

This appendix proves that under the normal operating condition 
in (6), the number of bits per symbol, 10g2 v, decreases monotonically 
when the baud rate increases. 

Clearly, 10g2 v decreases if v2 in (58) decreases. For a given system, 
the quantities S, fa , P, L, and No do not vary with the baud rate l/T. 
The quantity S/ d2 is fixed to obtain an approximately constant error 
rate. The quantity J,L, however, is a function of 1/ T. Therefore, we have 

aev2
) _ aep2) aJ,L 

aT - aJ,L aT 

S a J~ + (21-' - l)e" + 11 a S 

= d' a!, 1 3:' [(I' - l)e" + I]' J aT (2Tto)! 

.. 2 

8 J,L (Il JJ + 1)-3 -2- J,Le - e 'al 
d 2T 

(59) 

where 

(60) 

a2 = 3J,L2e31l + 6J,L2e2JJ 
- 3leiJ. 

- 9J,te3 iJ. + 6J,te2 iJ. + 3J,teiJ. + 3e31l 
- 3i ll 

- 3eiJ. + 3. (61) 

Clearly, I'- = S/ (2Tfo) 1h > O. It can be shown that 

J,te ll 
- eiJ. + 1 > 0 for J,L > O. 

Therefore, from (59), if CYl < 0 forI'- > 0, then av2/aT > 0 and log2v 
decreases when baud rate l/T increases. 



1710 'rHE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

We now prove that, under the normal operating condition in (6), 
at < 0 for J1. > O. It can be shown that 

-3le" + 3J.Le" - 3e" + 3 < 0 

for J1. > O. The condition in (6) can be written as 

S2p > 2 2" _ 3 2" + 4-P - 1 foN = J.Le C fJ • 

From (62) and (63) 

S2P 
foN [-3J.L2e" + 3J.Le" - 3e" + 3] + lX3 ~ 0 

where 

lX3 = [2J.Le2" - 3e2" + 4e" - 1][3ie" - 3J.Le" + 3e" - 3]. 

I t can be shown that 

Therefore, from (60), (65), and (64) 

S2p 
(Xl = [-3J.L2C" + 3}.Le" - 3e" + 3] foN + (X2 

(62) 

(63) 

(64) 

(65) 

S2p 
< [-3}.L2e" + 3}.Le" - 3e" + 3] foN + lX3 ~ 0 for }.L > O. (66) 

Inequality (66) shows that at < 0 for J1. > O. From previous discus­
sion, this implies that the number of bits per symbol, log2v, decreases 
monotonically when symbol rate liT increases. The proof is complete. 

APPENDIX E 

Error Rates 

The system from one digital repeater to the next (including L analog 
repeaters-see Fig. 1) is referred to as a "digital repeater section" in 
the following. 

In case i of Section IV, L = 0 and each digital repeater section covers 
a distance of 1.25 miles. There are 100 digital repeater sections in 125 
miles. If d2 jS is set to 144, error rate is approximately 10-9 for each 
digital repeater section, or approximately 10-7 over a distance of 125 
miles. 

In case ii, L = 9 and each digital repeater section covers 12.5 miles. 
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If d2 j 8 is set to 126, error rate is about 10-8 for each digital repeater 
section, or approximately 10-7 over a distance of 125 miles. 

In case iii, L = 99 and each digital repeater section covers 125 miles. 
If d2 j 8 is set to 108, error rate is approximately 10-7 for each digital 
repeater section, that is, a distance of 125 miles. 

The bit rates in Table I are not sensitive to variations in d2 j S. For 
instance, if one sets d2j S to 126 for all three cases (comparing the three 
cases with the same mean square error at decision circuit inputs), the 
bit rate of case i increases only about 1.5 percent from that in Table I, 
the bit rate of case ii is unchanged, and the bit rate of case iii decreases 
only about 2 percent. 
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TIle Binary Regenerative Channel* 

By RICHARD II. McCULLOUGH 

The nature of the errors in a regenerative digital transmission system 
is such that a mel1wryless channel is a poor model for predicting the error 
phenomena. In this paper we present a model which provides a reasonable 
approximation to observed error phenomena. The mel1wry of the channel is 
represented by a JJ1 arkov model. This model is similar to the model de­
veloped by E. N. Gilbert, but several important modifications greatly 
simplify the estimation of parameters, and make the model correspond 
more closely to the physical phenomena involved. 

Bounds for the channel capacity of the binary regenerative channel are 
obtained. Error separation, block error, and burst statistics are derived. 

Error model parameters are derived from available experimental data 
on the Tl digital transmission line and the switched telephone network. 
The JJ1 arlwv model is shown to provide a good representation of the observed 
error phenomena. 

I. INTRODUCTION 

The Gilbert burst-noise channel introduced the idea of error states.1 

The error states represent different error processes, each of which 
generates independent errors. Gilbert's model yields a "renewal er­
ror process," that is, an error process for which the gaps between 
successive errors are independent random variables with the same 
probability distribution. Elliott2 introduced a generalization which 
yields what we shall call a "Markov error process," that is, an error 
process for which the gaps between errors are dependent random 
variables with probability distributions which depend only on the 
last gap between errors. More recently, Elliott used a renewal error 
process, with component error processes which do not generate in­
dependent errors. 3 In order to match experimental data for block 

* This paper is based on material taken from a dissertation submitted to the 
Polytechnic Institute of Brooklyn in partial fulfillment of the requirements for 
the degree of Doctor of Philosophy in 1967. 
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error distributions, he found it necessary to introduce three empiri­
cally derived error separation distributions. 

Berger and Mandelbrot proposed a renewal error process in which 
the error separation follows a Pareto distribution.4 Sussman has used 
the Pareto distribution to model the switched telephone network. 5 

Gilbert's model and Elliott's model both assume that the transition 
probabilities for the error states are independent of the occurrence of 
errors. In this paper we drop that assumption to define a general 
l\1arkov error process. We then consider a particular Markov error 
process in which transitions between error states are allowed only 
when an error occurs. We associate this error process with the 
"binary regenerative channel." Error separation, block error, and 
burst statistics are derived for this latter process. Error model param­
eters are calculated from available data for the T1 digital transmis­
sion line, and for the switched telephone network. We discuss briefly 
the possible usefulness of the Pareto distribution for approximating 
a many-state Markov error process, or for approximating a non­
stationary error process. 

This author extends this model to apply to a ternary channe1.6 

II. ERROR MODEl, 

An error model must be able to reproduce the burst error phe­
nomena which are known to occur in digital channels. Real channels 
seldom appear to be memoryless, and it is common for a large frac­
tion of the errors to be burst errors. To reproduce the burst phe­
nomena, we have chosen to use a Markov model similar to Gilbert's.l 
Our model differs from his in two important aspects. l~irst, we have 
attempted to make the model correspond more closely to the physical 
phenomena involved by introducing several error-producing states, 
each with different error rates. Second, transitions between states are 
allowed only immediately following an error. This assumption greatly 
simplifies estimation of the parameters of the model, since the num­
ber of digits between adj acent errors is determined by a single error 
state. 

The similarities and differences between these models are most 
easily understood by examining the transitions between error states. 
We shall restrict our present discussion to two-state error processes. 
We define: 

~n = error state for the nth error digit 
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Zn = nth error digit = 1 for error and 0 for no error 
Pii Prob {~n = j I ~n-l = i, Zn-l = O} 
qii = Prob {~n = j I ~n-l = i, Zn-l = 1} 

1715 

Pi = Prob {Zn = 1 I ~n = i} = average error probability (for the 
binary symmetric channel) of state i. 

The state diagram of the general Markov model is shown in Fig. 1. 
A renewal error process is obtained if qij is independent of i (so that 
the next error state is independent of the state which produces the 
error), or if P 1 or P2 is zero (so that only one state produces errors). 

The Gilbert burst-error processl assumes that Pii = qii and P2 = O. 
The assumption that P2 = 0 makes this process a renewal error process. 
Elliott's generalization2 assumes Pi; = qij but P2 ~ O. This process is 
a renewal error process only if qu = q2t (and q12 = q22)' Our model, the 
"binary regenerative channel," assumes that PH = Oii' the Kronecker 
delta. This process is a renewal error process only if qn = q21 (and 
ql2 = q22)' 

Our assumption that state transitions can occur only after errors 
(Pij = Oij) seems reasonable for two reasons. First we hold the opera­
tional viewpoint that all our information comes from the occurrence 
of errors, and we might as well assume that nothing changes between 
errors. This also provides a practical technique for estimating transi­
tion probabilities from error separation data. Furthermore, this model 
seems to be quite "stable" in that extremely small transition proba­
bilities are not encountered in practice, so that statistical estimates 
are relatively easy to obtain. 

Fig. 1-State diagram of general Markov model. 
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Second, this is exactly the model we would choose for an error process 
consisting of random errors plus signal-correlated errors, where a certain 
fraction of the random errors produce a wake of closely spaced errors. 
In the case of bursts which are not correlated with random errors, our 
physical intuition suggests something like Pll = 1, P12 = 0 and P21 ~ 

q21 « 1 would be more appropriate. Operationally, however, it really 
does not matter if the first error in a burst is "incorrectly" identified 
as a random error. 

Although the mathematical descriptions of the Gilbert model, the 
Elliott model, and our new model are different, we suspect that the er­
ror separation, block error, and burst statistics obtained from the 
three models will be quite similar. (We show that the form of the 
error separation statistics is identical for the Gilbert model and our 
new model.) We contend, however, that the new model is more use­
ful because the parameters of the model are easily determined from 
experimental data and are easier to interpret in terms of physical 
noise processes. 

In the above discussion we have considered the two error states to 
correspond to different physical error processes in a single channel. How­
ever, this single channel is clearly equivalent to a two channel trans­
mission system where the "error" state indicates which channel is 
being used. We use this latter interpretation in the next section. Notice 
that the two channels are simply binary symmetric channels with 
different error rates. In practice we have P2 « P 1 ~ 1/2; therefore, 
we refer to state (channel) 1 as the burst error state (channel) and state 
(channel) 2 as the random error state (channel). 

III. CHANNEL CAPACITY 

Closed form expressions for the capacity of the l\,farkov channel have 
not yet been found* so that we are limited to determining the capacity 
for specific numerical values of the parameters. On the other hand, we 
can find reasonably simple and tight bounds on the capacity which 
are quite useful. Therefore we consider only bounds on the channel 
capacity. 

Let the sequences of input, output, and error digits be denoted by 
Xi' Y i , and Zi , respectively, with Y i == (Xi + Zi) mod 2 and i = 
1, 2, .... Since the noise sequence is independent of the input sequence, 

* Note that the method used by Gilbert! is valid only for a renewal error 
process, and did not yield a closed form solution. 
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the channel capacity is given by 

C = max [H(X) - H(XI Y)] 
p(X) 

= max [H(X) - H(Z)] = 1 - H(Z) 
p(X) 

where H denotes the entropy of the sequence and p (X) is the prob­
ability of the sequence X. Following Ash' we define the entropy of 
the noise sequence by 

H(Z) = lim H(Zn I Zn-l , ... , Zl)' 
n-->oo 

'Ve shall find bounds on the channel capacity by bounding the en­
tropy of the noise, using the steady state probabilities of the Markov 
noise sequence. 

Consider the state diagram in Fig. 1. There are really only four 
states which we shall designate by Si = 11, 10, 21, or 20, i = 1, 2, ... , 
where the first digit indicates which of the two binary symmetric 
channels is being used (~i = 1 or 2) and the second digit gives the 
value of the error digit (Zi = 1 or 0) . Thus the state diagram may be 
redrawn as shown in Fig. 2 (using Pij = Oij). The steady state proba­
bilities 1'ij are the solutions of the equations 

q11P I q11(1 - PI) q12P2 q12(1 - P 2) 

[r111'101'211'20J = [1'111'101'211'20J 
PI 1 - PI 0 0 

q2IP l q21(1 - PI) q22P2 q22(1 - P 2) 

0 0 P2 1 - P 2 

I t can be shown that 

where 

RI = P e ~: Ql = q21 
q12 + q21 

R2 = P e ~: Q2 = qI2 
q12 + q2I 
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Fig. 2 - State diagram of binary regenerative channel. 

1 
P 6 Q Q = RIP 1 + R2P 2 • 

-..-!+~ 
PI P 2 

We notice that Rl and R2 are the steady state probabilities of li' Ql 
and Q2 are the steady state probabilities of li given that Zir-l =, 1, and 
Pe is the steady state probability that Zi = 1 (that is, Pe is the av­
erage error rate). 

We are now ready to compute upper and lower bounds on H (Z) . 
An upper bound is 

H(Z) ~ lim H(Zn I Zn-l) 

~ P,h(Q,P, + Q,P,) + (1 - P,)lt ~. P, (1 - Q,P, - Q,P,) ] 

where h(P) = -P log P - (l-P) log (l-P). A simpler (and looser) 
upper bound is 

n--+oo n--+oo 

Since Sn is determined by a first order Markov process, a lower 
bound is 

n--+oo 
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n-+OO 

= R1P1h(ql1P l + q12P2) + R1(1 - P1)h(P1) 

+ R2P2h(q21P l + Q22P2) + R2(1 - P2)h(P2). 

Using the fact that h (P) is a convex function we obtain a simpler 
(and looser) lower bound 

+ R2P2[Q21h(P1) + Q22h(P2)] + R2(1 - P2)h(P2) 

= R1h(P 1) + R2h(P 2) 

= lim H(Zn I ~n)' 
n-+oo 

From the loose bounds we see that the capacity of the binary regen­
erative channel is greater than the capacity C = 1-h(Pe) of a binary 
symmetric channel with the same average error rate, and is less than 
the capacity C = Rd1-h(P1 )] + R2 [1-h(P2 )] which could be 
achieved if we always knew which component channel was being used. 

A convenient way to describe the channel capacity is to give the 
probability Po of the binary symmetric channel with capacity C, that 
is, H (Z) = h (Pc), From the bounds given above it follows that 

n-+oo 

n--+oo 

For the practical case where P 2 « P 1 ~ 1/2 and Ql ~ Q2 ~ 1/2 the 
above inequalities are approximately 

P2 ::S P2 ::S Pc ::S (1 - Q1P1)Ps ::S Pe 

or 

Q2P e ::S Pc ::S (1 - QI Pl)Pe . 

The loose bounds given above can be generalized to apply to any 
finite number of memoryless, nonsymmetric channels in the form 

where R, is the steady state probability of using channel i and R(P,) 
is the capacity of channel i. 
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Digital transmission systems may use many digital links, with 
regeneration of the transmitted signal at the end of each link. For a 
system of N identical links where N P 2 « P 1 , we can approximate the 
over-all system by a single digital regenerative link with the same qii 

and P 1 but with P 2 replaced by P~ = N P 2 • This substitution yields 

which agrees with one's intuitive notion of how the over-all system 
should behave. That is, the number of random errors and burst errors 
both increase by a factor of N, and the length of the bursts remains 
the same. 

IV. ERROR STATISTICS 

We shall now derive error separation, block error, and burst statis­
tics for the two-state Markov error process. 'Ve assume two com­
ponent error processes which generate independent errors with dif­
ferent average error rates, Pi, i = 1, 2. Transitions between error 
states are allowed only after errors, with the probabilities given by 

qii = Prob {state i --7 state jllast digit was an error}. 

For the error separation statistics we shall make use of several re­
sults for independent errors. We begin by deriving the basic equations 
for an independent error process. Let P be the probability that any 
digit is in error. The error sequence then contains a 1 with probability 
P and 0 with probability I-P. Given an error, the probability that 
the next error occurs on the kth digit is 

p(k) = Prob {0"-1111} = Prob {0"-11} = P(l _ P)"-l. 

The average error separation is 

~ ~ 1 
k = L kp(k) = P L k(l - p)k-l = P-' 

k D l k=1 

The probability that the number of good digits between errors is 
greater than or equal to n (that is, the error separation is n+ 1 digits 
or greater) is given by the cumulative distribution 

n 

Q(n) = Prob {k > n} = 1 - L p(7c) 
k=1 

n 

= 1 - P L (1 - p)k-l = (1 - Pt. 
k=1 
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For P « 1 the following approximation is quite useful 

The probability of getting m errors in n digits is 

P(m, n) = , (n~ ) , pm(1 - Pt-m. 
m. n m. 

The probability that a block of n digits contains an error is 

1 
P(~ 1, n) = 1 - pea, n) = 1 - (1 - Pt ~ nP for P «1, n« p' 

Let Qj, j = 1, 2, be the unconditional probability of being in state 
j at the first digit following an error. Making use of the results for 
the independent error process, we have 

p(k) = QlP l (1 - Pl)k-l + Q2P 2(1 - P2)k-l 

k = Ql + Q2 == l 
P l P 2 p. 

where P e is the average error rate. 
The expression for P (m, n) for the Markov error process is a very 

complicated function of the parameters of the process. However, the 
form of the dependence upon n is easily found through an appropriate 
set of recurrence relations. The recurrence relations are also useful 
for computing numerical values on a digital computer. 

Let Ai(m, n) be the probability that m errors have occurred (that 
is, m occurrences of state 11 or 21) in n digits and that channel i is 
used for the n+ 1st digit (that is, ~n+l = i). Then 

P(m, n) = Al(m, n) + A 2 (m, n). 

Considering all possible events which may occur at the nth digit we 
obtain the following pair of recurrence relations. 

At(m, n) = Al(m, n - 1)· (1 - Pl) + Al(m - 1, n - 1) ·P1ql1 

+ .A-2(m - 1, n - 1)· P 2 Q21 

A 2 (m, n) = A 2 (m, n - 1)· (1 - P 2) + A 2(m - 1, n - 1)· P 2Q22 

+ Al(m - 1, n - 1) ·P1Q12 • 

Solving the equations for successive values of m we find that the 
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general solution has the form ll 

P(m, n) = Gm (n)(1 - Plr-m + G!(n)(l - P 2r- m 

where Gm (n) is a polynomial of degree m in the variable n, and the 
asterisk denotes a cyclic permutation of the parameter subscripts, 
that is, 1 ~ 2 and 2 ~ 1. Assuming that the Markov process is in the 
steady state at digit "zero," the first two polynomials are 

Go(n) = Rl 

Gl(n) = 2(~2 __ ~)RlPlq12 + [R lP1Q11]n. 

It is possible to determine the functional dependence of P (m, n) upon 
n because we assumed that the error state changes only after an er­
ror occurs. This effectively decouples the set of recurrence relations 
so that Al (m, n) and A2 (m, n) can be determined separately. For 
larger m the explicit expressions for the coefficients of Gm (n) become 
so complicated that they are of little use. Thus one can only hope to 
gain some insight into the behavior of P (m, n) as a function of m by 
numerical evaluation for a typical case. 

The average number of digit errors in a block of n digits is 

n 

iii = L iP(i, n) = nPe • 

i-O 

Given that the block contains one or more errors, the average number 
of digit errors is 

_ iii n 
e = P(~ 1, n) = Ql[1 - (1 - PlfllPl + Q2[1 - (1 - P2f]/P2' 

In practice we usually have P 2 « P 1 ~ 1/2 and Rl « R2 ~ 1. There­
fore, we have 

P(m, n) ~ G!(n)e-<n-m)P. for n - m » 1/ PI . 

Specifically, we find that 

pea, n) ~ e-nP• 

P(~l, n) ~ 1 - e-nP• 

- 1 nP2 f I e "-' -. or n» 1 Pl' "-' Q2 1- e -nP. 

The burst error behavior of the channel is indicated by the num-
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ber of successive occurrences of state 1, the burst error state. Let 

pCb) = Prob {leave state 1 after b errorslnow in state I} 

b = 1,2, .... 

Notice that b occurrences of state 1 implies b + 1 "closely spaced" 
errors. 

In the next section we calculate error model parameters from avail­
able data on transmission of binary information over the Tl digital 
transmission line, and over the switched telephone network. A three­
state model is required to provide a reasonable match in some cases. 
Therefore, we digress briefly to generalize our results to apply to a 
three-state model. (Actually, we give the results in a form which is 
suitable for any finite number of states.) 

vVe assume three component error processes which generate inde­
pendent errors with different average error rates, Pi, i = 1, 2, 3. 
Transitions between error states are allowed only after errors, with 
the probabilities given by 

qij = Prob {state i ---7 state jjlast digit was an error}. 

Let Qj, j = 1, 2, 3, be the unconditional probability of being in state 
j at the first digit following an error. The Qj are the solutions of the 
following set of equations: 

Ql = Qlqll + Q2q21 + Q3q31 

Q2 = Qlq12 + Q2q22 + Q3q32 

Q3 = Qlq13 + Q2q23 + Q3q33 . 

Corresponding to the previous results we now have 

p(lc) = Q1P 1(1 - P 1)k-1 + Q2P2(1 - P2)k-1 + Q3P3(1 - P3)k-1 

k = Q1 + Q2 + Q3 == l 
PI P 2 P 2 P e 

Q(n) = Q1(1 - PIt + Q2(1 - P2t + Q3(1 - P3t 

where P e is the average error rate. The recurrence relations become 

A 1(m, n) = (1 - P1)A1(m, n - 1) + Plq1lAl(m - 1, n - 1) 

+ P 2q21A 2(m - 1, n - 1) + P3q31A3(m - 1, n - 1) 

(1 - P 2)A2(m, n - 1) + P2q22A2(m - I, n - 1) 
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+ P3q32A 3(m - 1, n - 1) + P1Q12Al(m - 1, n - 1) 

(1 - P 3 )A3(m, n - 1) + P3Q33A3(m - 1, n - 1) 

+ P1Q13A 1(m - 1, n - 1) + P2Q23A 2(m - 1, n - 1) 

where Ai(m, n) is the probability that m errors have occurred and the 
error process is in state i after n digits. The solution of the recurrence 
relations gives 

P(m, n) = A1(m, n) + A 2(m, n) + A 3(m, n) 

= Gm (n)(l - P1r-m + G!(n)(l - P2r-m + G!*(n)(l - P3r-m 

where Gm(n) is a polynomial of degree m in the variable n. The coeffi­
cients of Gm(n) are complicated functions of the model parameters. 
G!(n) is Gm(n) with the parameter subscripts cyclically permuted, 
that is, 1 ~ 2, 2 ~ 3, 3 ~ 1. G!*(n) is G~(n) with the same cyclic 
permutation. We again have Go(n) = Rl so that 

P(O, n) = R I (l - Pir + R 2 (1 - P 2r + R 3 (1 - P3r 
P(~l, n) 

= 1 - P(O, n) 

= p,[ Q, 1 - (~,: P,), +Q, 1 - (~,- P')'+Q, 1 - (~: P,)"]-

The probability of being in state i at any digit is 

V. EXPERIMENTAL PARAMETERS 

5.1 Tl Digital Transmission Line 

For the T1 digital transmission line~' (see Refs. 8 and 9), the error 
data was obtained by measurementslO on three different lines, each 
looped to obtain an equivalent system length of about 24 miles. In 
total, there were five runs of approximately one hour duration, that 
is, about 5 X 109 digits each. The transmitted pattern was 10000000 
repeated. Each run produced about 100 errors. The data were proc-

* Manufactured for Bell System use only, by Western Electric Co./ manufac­
turing and supply unit of the Bell System. 
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essed in real time with an IBM 7094 computer equipped with a 
direct data device. The results (a sequence of numbers aI, a2, 
where aj is the number of good digits between the jth and [j + 1] st 
errors) were recorded on a magnetic tape. 

To determine the parameters of the Markov error process model, 
we processed the experimental results as follows. 

(i) Add 1 to each a to get k, the error separation. 
(ii) Classify each k as state 

1 = "burst error state" 1 ~ k < 10 
2 = "intermediate error state" 10 ~ k < 103 

3 = "random error state" 103 ~ k. 
(iii) For each state i, find the average error separation, ki = l/Pi' 
(iv) From the sequence of states find the relative frequency of 

occurrence of state i, Qi , and the relative frequency of occurrence of a 
transition from state i to state j, qij • 

Steps iii and iv were carried out for each run individually, and 
with all runs together (considered as one big sample). Table I lists 
the parameters (rounded to two significant digits) which were ob­
tained by the above procedure. Notice that the conditions qll = q21 = 

TABLE I - MARKOV lVloDEL FOR T1 

Run qij Qi Pi P. 

.35 .00 .65 .23 .46 
1 .43 .07 .50 .19 3.2 X 10-3 1.5 X 10-8 

.12 .31 .57 .58 .86 X 10-8 

.35 .26 .39 .36 .46 
2 .67 .08 .25 .19 4.0 X 10-3 1.4 X 10-8 

.24 .17 .59 .45 .61 X 10-8 

.29 .33 .38 .35 .37 
3 .62 .19 .19 .23 4.9 X 10-3 1.0 X 10-8 

.24 .17 .59 .42 .44 X 10-8 

.53 .22 .25 .38 .53 
4 .50 .15 .35 .20 3.6 X 10-3 2.4 X 10-8 

.19 .20 .61 .42 1.0 X 10-8 

.47 .13 .40 .19 .26 
5 .31 .31 .38 .17 3.7 X 10-3 1.6 X 10-8 

.08 .14 .78 .64 1.0 X 10-8 

.42 .21 .37 .31 .43 
All runs together .51 .16 .33 .20 3.7 X 10-3 1.6 X 10-8 

.16 .20 .64 .49 .77 X 10-8 
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q31 and q12 = q22 = q32 and q13 = q23 = q33 are not satisfied. Hence, 
the T1 error process does not appear to be a renewal error process. 
(This does not mean that we should discard the renewal error process. 
In essence, it is a first approximation to a real error process, the 
Markov error process is a second approximation, and higher order 
Markov processes are higher order approximations. The first approxi­
mation may be satisfactory in some applications.) Using the param­
eters of Table I, the validity of the model was checked in three ways. 

First, the theoretical cumulative distribution of the error separation, 

Q(n) = QJ (1 - P1t + Qz(l - Pzt + Q3(1 - P3t 

was plotted for each run. The theoretical and experimental curves 
matched within approximately ±O.05, for all five runs. Typical curves 
are shown in Fig. 3a (semilog plot) and 3b (log-log plot). Notice that 
we could have derived rough values for the Qi and Pi by inspection 
of the experimental Q(n) curve. 
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Second, to check the burst error behavior of the channel, we compared 
the experimental and theoretical probability densities, p (b), of suc­
cessive occurrences of the burst error state 

The agreement is excellent as illustrated in Fig. 4. (Since our sample 
size is only 49, we should not expect the experimental points to follow 
the theoretical curve for probabilities of about 1/49 ~ 0.02.) The ex­
perimental and theoretical curves matched within approximately 0.02 
in all five runs. Notice that the procedure for calculating q11 simply 
provides an exact match at b = 1. 

Third, to check the adequacy of the model for predicting block error 
statistics, we compared the theoretical and experimental (averaged 
over all possible phases) curves for P(m, n). Figures 5 and 6 show 
P(m, n) versus nand m, respectively. The agreement is excellent for 
m ~ 4. For m ~ 5 the experimental curves are somewhat erratic owing 
to the small sample (the quantum of probability is approximately 
2 X 10-10 in this case), which happened to contain two unusual error 
patterns. 

The excellent match between the experimental data and the model 
indicates that a three-state Markov error process with independent 
transitions is a good representation of the T1 error process. Since 
this is the case, it is useful to consider a physical interpretation of 
the mathematical model. The three different error states correspond 
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to different sources of error, of which only one is controlling at any 
given time. Allowing state transitions only at error digits corresponds 
with the fact that we cannot identify the controlling error process 
except by the error (and error separation) which it produces. 

As for the sources of error, we can make several speculations. Fur-
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ther experimental data will be required to determine which of the 
suggested possibilities is correct. "Burst errors" may result from signal 
correlated errors (generated in successive regenerators) following a 
random error, or from burst-like interferences such as impulse noise 
(all errors of the burst generated at the same regenerator). "Inter­
mediate errors" may be caused by looping effects (outgoing and 
incoming regenerators are packaged together and are thus subject to 
the same interference), or by slowly propagating interferences such 

TABLE II-SIGNAL DEPENDENCE OF T1ERRORs 

Run Number of errors for each signal digit Total ------------------
1 0 0 0 0 0 0 0 

-------------
I 0 31 13 6 8 5 4 7 74 
2 1 19 8 12 6 7 6 6 65 
3 1 26 13 7 5 9 7 2 70 

-------------------
4 2 63 15 11 10 11 8 10 130 
5 1 54 7 3 4 4 1 4 78 

All runs 5 193 56 39 33 36 26 29 417 
----------------

Percent all 
runs 1.2 46.3 13.4 9.4 7.9 8.6 6.2 7.0 100.0 



1730 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

as teletype or other dc signaling. "Random errors" are assumed to 
come from thermal noise. 

We have thus far ignored the question of whether the error sequence 
is really independent of the transmitted signal sequence. Table II 
summarizes the available experimental data concerning this point. 
We observe that the average probability of error is roughly 5 to 40 
times greater when the signal digit Xi = 0, depending on the number 
of digits since the last 1. (Notice, however, that Table II does not 
really tell us the number of digits since the last 1 because errors 
cause the "signal" to be different in successive regenerators.) Over 
all, the average probability of error is roughly 10 times greater when 
~=Q . 

What does this imply about our model? First, since there are so 
few errors when Xi = 1, our component channels are nonsymmetric 
and the model parameters derived above essentially apply only when 
Xi = O. In fact, it is possible that the error rate for Xi = 1 is the same 
in all three component channels, so that no burst phenomena occurs 
if Xi = 1 for all i. Second, the dependence of the error rate on the 
number of digits since the last 1 probably results from intersymbol 
interference. This suggests that bursts might very well be signal cor­
related errors which are generated in successive regenerators, in which 
case the average length of a burst should increase with the number of 
regenerators. Unfortunately, the available data are not sufficient to 
verify or disprove these conj ectures. 

How do we correct our model to take into account the data presented 
in Table II? As a first approximation we would replace the three com­
ponent binary symmetric channels with memory less nonsymmetric 
binary channels with error probabilities PI , P 2 , and P 3 for Xi = 0, 
and Pf , P~ , and P~ for X. = 1. With the limited data available the 
best we can do is to use the previously calculated values for PI , P 2 , and 
P 3 , and let (using the figures for all runs) 

Pi = P~ = p~ = -d-7(1.6 X 10-8
) = 1.9 X 10-10

• 

The computation of channel capacity and error statistics now becomes 
more difficult because we must consider the joint probability densities 
of the source and channel. However, we can still use the bounds for 
channel capacity given at the end of Section III. 

To get any better approximation we must replace the three channels 
with three nonsymmetric binary channels with memory. The memory 
would contain d, the number of digits since the last 1, and could probably 
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be limited to three states: d = 1, d = 2, and d ~ 3. (As already dis­
cussed this memory would also generate burst phenomena so that we 
might possibly require only two channels for this model.) This approach 
is intuitively appealing for modeling the effects of intersymbol inter­
ference, but we should use ternary channels with memory because the 
T1 digital transmission line actually transmits ternary signals. 

The fact that the average error probability is always greater for 
Xi = 0 (that is, even for d ~ 3) probably is because of long term 
intersymbol interference, which in the case of T1 may persist for 
hundreds of digits. This interference is approximately proportional to 
the running sum of the digits lVi = Xl + X2 + ... + Xi. The Bipolar 
Code used in the T1 digital transmission system guarantees that Wi 
can assume only the values 0 or -1 in the absence of errors::!- We 
assume that the output of each regenerator is recoded into Bipolar 
so that the Wi satisfy the same constraint in successive links, and 
the channel can be described using a finite memory. Recoding allows 
one to localize errors to a particular digital link and reduces the 
error rate in successive links. If the output is not recoded, the Wi 
are theoretically unbounded which requires an infinite memory to 
describe the channel. 

To summarize our thoughts on the Tl error process, we may say 
the following. The Markov model analyzed in the preceding sections 
of this paper provides a good representation of the signal-independent 
errOr phenomena, and reproduces all the gross error statistics. The 
extension of the model suggested in this section shows promise of 
providing a good representation of the signal-dependent error phe­
nomena, and should reproduce the fine grain error statistics; addi­
tional data are required to determine the parameters and validity of 
the suggested extension. Notice that the signal-dependent memory is 
realized as a simple Markov process when the source digits are inde­
pendent random variables. 

5.2 Switched Telephone Network 

We now consider the error model for the switched telephone net­
work. Gilbert1 has shown that a two-state Markov model provides a 
good approximation to the cumulative error separation distribution 
for an individual digital channel. Although Gilbert used a different 
model, his theoretical results for error separation are identical in 

* McCullough6 treats the general class of ternary restricted sum codes for 
which the digit sum is bounded (-a ~ lV i ~ b) for every code sequence. 
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form to the results of Section IV, that is, 

Q(n) = Ql(l - Plr + Q2(1 - P2r. 
We notice, however, that if we choose Q i and Pi so that the error 
separation distributions are identical, the "equivalent" binary regenera­
tive channel will have a higher average error rate. When P « hq Gilbert's 
equation (14) becomes 

Q(n) ~ (1 - Q ~ hq)(hq)" + (Q ~ hq)(l - P)" 

so that 

Q r-...I P 
2 r-...I Q _ hq 

or 

and 

P( ) 1 - Q2 P 2 1 - Q2 
1 ~ 1 - Q2P 1 Q~ ~ 1 - Q2P I P e • 

In our notation, the parameters for his examples (see Gilbert's Fig. 
3) are 

Channel 1146: QI = 0 

Q2 = 1, 

Channel 1296: Ql = 0.816 

Q2 = 0.184 

P 1 arbitrary 
P 2 = 5.4 X 10-3 

PI = 0.190 
P 2 = 2.57 X 10-3

• 

For an average of many digital channels, a three-state Markov 
model can provide a reasonable numerical fit. Q" and Pi were deter­
mined for samples of the Alexander-Gryb-Nast,ll Townsend-Watts,1-2 
and Kelly13 data on the error performance of the switched telephone 
network. Table III lists the parameters, which were determined by 
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TABLE III - MARKOV MODEL FOR SWITCHED TELEPHONE NETWORK 

Alexander-Gryb-Nast Townsend-Watts Kelly 

Ql 0.46 0.58 0.75 
Q2 0.22 0.10 0.10 
Q3 0.32 0.32 0.15 

Pl 0.544 0.567 0.56 
P2 10-2 10-2 10-3 

P a 10-4 «10-3 5 X 10-6 

trial and error matching of the Q (n) curves. It should be obvious 
that the Qi and Pi were quantized rather coarsely. Figure 7 shows 
that the maximum difference between the experimental and theore­
tical curves is about ±O.05. 

Although the numerical fit is reasonably good, it is evident that 
the sharp transition of a single independent-error process is not a 
good match to the gradual slope of the experimental curves at larger 
error separations. However, the experimental curves represent an 
average over many different channels. The parameters of the model 
will vary from channel to channel, resulting in an over-all error process 
which contains many states. Each state will have a small probability 
of occurrence (Qi) and a slightly different average error probability 
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(Pi). Q (n) for such an error process will exhibit a gradual slope at 
larger error separations. 

It is obvious that we could use a larger number of states in the 
Markov model, and match the experimental Q (n,) curves to any 
desired degree of accuracy. At this point we should consider whether 
it is an individual channel or an average of many channels that we 
wish to match. Usually it will be the former, in which case a three­
state (or perhaps even a two-state) Markov model will be satisfac­
tory. If it is the latter, it makes sense to seek a single (noninde­
pendent) error process which provides a better match for the gradual 
slope observed at larger error separations. A likely candidate is the 
Pareto distribution proposed by Berger and Mandelbrot.4 They also 
give statistical evidence which supports the renewal error process 
hypothesis. Sussman5 has shown that the Pareto distribution pro­
vides a good fit to the Alexander-Gryb-Nast data. It is interesting 
that Sussman hypothesized that the Pareto distribution may be the 
limiting form of "the superposition of many unrelated error-causing 
events," which is exactly what our model suggests. 

To incorporate the Pareto distribution into our model, we would 
represent the cumulative distribution of error separation as 

where a is a parameter which would be chosen so as to give the best 
match to the experimental data. It should be recognized that the 
above distribution will not be a good approximation for the Markov 
error process for very large values of n. As n -7 00 the Markov dis­
tribution approaches 

where Q<Xl and P <Xl describe the channel with the smallest average 
random error rate. 

In some situations the Pareto distribution may also be a good 
representation of an individual channel. We have implicitly assumed 
stationary channels. A nonstationary channel whose parameters vary 
rapidly with time is essentially equivalent to the average of a large 
number of stationary channels, each with different parameters. Such 
a model may be appropriate for digital communication systems using 
radio links. On the other hand, a slowly varying nonstationary chan­
nel is essentially equivalent to a single stationary channel, since the 
parameters will not change appreciably during any message of rea-
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sonable length. This kind of model appears to be appropriate for 
digital communication systems using paired cable or coaxial cable. 

To summarize, we feel that the Markov model is a good representa­
tion for the error process of an individual digital channel. The Markov 
model also explains the observed measurements for the average of a 
large number of digital channels, and leads naturally to the idea of 
using the Pareto distribution to approximate the behavior of a 
Markov error process with many states. 
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Quantizing Noise al1d Data 
Transmission 

By JAMES E. MAZO 

(Manuscript received February 20, 1968) 

Methods for calculating the power in the quantizing noise on digital 
transmission facilities have been known for some time. A more difficult 
but unavoidable problem is the effect that this noise has on data signals 
intended for analog transmission. This paper demonstrates that to assume 
that the noise will behave as a white Gaussian noise process will always 
(except for a simple factor) yield an upper bound on the probability of 
error when no companding is present. We assume that linear detection will 
be used, as for a P AM system, and the result is true whether or not filtering 
or demodulation is involved. Results are illustrated by applying them 
to a model of an existing V SB modem whereby the additional degradations 
resulting from data set imperfections are included as added baseband noise. 

A modem operating perfectly would make no errors at all at the higher 
transmission levels. For example, with no companding, a set with an eight­
level eye closed by even 30 percent would not yield errors for input powers 
down to -15 dBm. Thus quantizing noise is not a basic limiting factor in the 
error rate for all input levels. A similar rigorous theory is not available for 
compandored systems, but for special situations reasonable estimates can 
be made. For logarithmic companding and eight-level V SB transmission, 
worst case estimates indicate error rates about 10-6 for one link of T1 
carrier. 

1. INTRODUCTION AND SUMMARY 

The T1 carrier system is a digital transmission scheme for analog 
signals. 1 Even though the digits in the coded bit stream might be 
transmitted without error, when the analog signal (which may in 
fact be a data signal designed for analog facilities) is reconstructed 
at the receiving terminal, quantizing noise is inevitably added and 
can be large enough to cause errors in the customer's data. 

1737 
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We show that, under some simple constraints between sampling 
rates and bandwidths which are satisfied in practice, and independent 
of the particular data signal used, an upper bound on error rates is 
obtained if the quantizing noise is assumed to be a white Gaussian 
process of power ~2/12 and bandwidth 1/2Tl:~' We assume that linear 
detection will be used, and the result is true even if additional filter­
ing is done (as one might do with a receiving filter). And it is true 
whether or not a demodulation process takes place. Using the model 
in Fig. 1 for the digital transmission scheme, results are specialized 
to obtain error rates for eight-level VSB transmission (Fig. 2). 
Imperfections of the data set are included as added baseband noise. 
If it were not for these imperfections, error free transmission would 
result over an appreciable range of power levels (see Table I). For 
a logarithmic compandor and VSB data, even using worst case esti­
mates, the error rate for one link is quite low, about 10-6

• 

II. QUANTIZED TRANSMISSION SCHEME 

Let us consider a transmission scheme for a single channel that, 
for our purposes, typifies the T1 carrier system. As suggested in Fig. 
1, the signal to be transmitted is assumed not to have any power 
beyond B Hz. The signal is sampled at the Nyquist rate Tl = II (2B) 
and these samples are passed through an instantaneous nonlinear 
device with characteristic VOl1t = F (Vin). The compressed samples are 
then quantized by a uniform quantizer of step size ~, and coded into 
binary sequences. The binary sequences are assumed to be trans­
mitted without error and the process is reversed: sequences are de­
coded into pulses, expanded according to the inverse function F-l (x) 
and the impulses are used to excite an ideal filter of bandwidth B 
and amplitude Tl.t A receiving filter G generally follows the ideal 
filter and we include this in our description, although it would not 
be part of a T1 transmission system. If the bandwidth of G is en­
tirely contained in B then one may consider the impulses to excite 
T 1 G directly. 

To be more specific, we are concerned with two particular com­
pandor characteristics F (x). One is F (x) = x, that is, quantizing 

* Here Ll is the quantizer step size and 1fT! is the sampling rate. Also this 
statement is true only modulo a simple factor given in the text. 

t The amplitude gain of the ideal output filter for the carrier system is chosen 
to be Tl in order that the signal component will undergo no gain relative to 
its sampled values at the transmitter. 
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Fig. 2 - Model of back-to-back transmission of VSB modem. The noise added 
at baseband represents imperfections of the modem. 
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TABLE I-QUANTIZING NOISE* 

Mean 
squar~ 

P(dBm) nmax 

- 5 0.221 
-10 0.394 
-15 0.698 

-20 1.245 
-25 2.21 
-30 3.94 

-35 6.98 
-40 12.45 
-45 22.1 

* Peak values of quantizing noise as a function of input power P. The noise scale is 
such that a perfect receiver would make no errors for nmax < 1. The power scale is 
such that the quantizer overloads at an instantaneous power of +6 dBm. 

without compandoring. The other case is (in normalized units) 

F(x) -F( -x) 

In (1 + fJ,x) 
In (1 + fJ,) , 

F(x) (1) 

= 1 x > 1, 

where p., the degree of compandoring, is large. Typically, p. = 100 
for a good approximation to existing devices. 

Finally, when specific values are required, we assume 7 bit coding 
to be used for the quantized samples and use ~ = 1/63. 

We hasten to add that quantizing noise is not the only degrading 
factor for the existing T 1 facilities. Apparently mismatch and mis­
tracking of compressor and expandor cause nonlinearities which are 
responsible for peculiar behaviors of error rate versus signal power 
curves.2 

III. GENERAL THEORY 

Let us represent the signal l(t) which is to be sampled and quan­
tized by 

let) = x(t) cos wet - yet) sin wet, 

and the sampling wave as 

L oCt - kTl - r), 
k 

(2) 

(3) 
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where the random timing phase is uniformly distributed over the interval 
o ~ T ~ T 1. The pulse trains representing (2) immediately after 
sampling, compression, and quantization are given by expressions (4), 
(5), and (6), respectively. 

~l(kTl + r)o(t - kTl - r); (4) 

~lcomp(kTl + r) oCt - kTl - r); (5) 

~tomp(kTl + r)o(t - kTl - r), (6) 

where 

lcomp(kTl + r) = F[l(kTl + r)] 
is the compressed sample value and tomp(t) is the particular one of the 
(2N - 1) levels that the quantizer output gives as the value for lcomp(t). 
If we let the subscript "exp" stand for the result of operation of the 
expandor at the receiving terminal, then the impulse associated with 
time (kTl + T) has area 

[tomp(kTl + r)]exp = l(kTl + r) + e(kTl + r). (7) 

Because the expandor has as its input an estimate of the compressed 
pulse area, the error term e(kTl + T) is not zero but may take any 
value in an interval, that is, 

€(tle [ -~(t) • Il~t) 1 (8) 

The spread ~ (t) that the quantizing error may take is not neces­
sarily equal to the quantizer step size ~ when companding is present, 
but is given by the formula (see Appendix A) 

d 
d(t) = I F'[l(t)] I (9) 

In (9), F'[l(t)] is the derivative of the compressor characteristic 
evaluated at that input amplitude of the signal at the time of the 
sampling. The error signal generated at the output of the receiving 
filter is obtained by convolving the impulse train 

(10) 

with the impulse response T1g (t) of the receiving filter.* Denoting 

* Again, (J(t) is associated with the receiving filter of the data set and the 
constant Tl is the gain of the ideal output filter of the carrier system. 
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this noise by nz (t) we have 

(11) 

To proceed further we make the assumption that the quantizing 
error eel) of the output sample in (10) is uniformly distributed over 
the interval 

[ 
- !J (t) b ( t) J 

2 '2 ' 

thus having mean zero and variance ~2 (t) /12, and that different sam­
ple errors are independent. Notice that the latter assumption is not 
the same as assuming that different sample values are independent. 

IV. SUMS OF UNIFORM VARIATES 

As (11) illustrates, a basic problem which must be dealt with is 
the probability distribution of sums of independent and uniformly 
distributed random variables. We will obtain an upper bound on the 
tail probabilities of interest by applying the technique of the Chernoff 
bound.3,4 This bounding technique states that if a probability den­
sity p (x) has a moment generating function (mgf) M (s), where 

M(s) = i: [exp (sx)]p(x) dx, (12) 

then 

Q = Prob [x ~ a] ~ M(s) exp (-sa), s ~ o. (13) 

Thus to obtain an upper bound one simply multiplies the moment 
generating function by an exponential, both evaluated at an arbi­
trary positive s. Actually it is known that there is a best s to choose, 
and it is that one, if it exists, which satisfies the equation 

d 
ds In M(s) = a. (14) 

Equation (14) assures a stationary value for the right side of (13) 
and it can be shown that such an s in fact minimizes M(s)e- Ba

• 

For example, for a Gaussian variate of mean m and variance ci, 
the moment generating function is well known to be given by 

[ 
S2 2J 

M(s) = exp ms + -f . (15) 
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Thus the best s to choose is, using (14), 

(a - m) 
s = 2 • (16) 

U 

Notice that only if a ~ m is this s ~ o. Thus, as long as a is greater 
than the mean, we have for the Gaussian case 

< [(a - m)2] 
Q = exp - 2u2 , (17) 

where (17) results from using (15) and (16) in (13). For the Gaus­
sian variate under discussion the exact answer is also well known to 
be given by 

1 (a - m) 
Q = "2 erfc (2)!u ' (18) 

where erfc x is the coerror function. 5 In addition, equation (7.1.13) 
of Ref. 5 states that 

(19) 

and hence the difference between the Chernoff answer (17) and the 
exact answer (18) for the Gaussian case is no more than the multiplicative 
factor (7r)![(p)! + (p + 2)!] where (p)! = (a - m)/[(2)iu]. 

We modify this procedure for our problem with the following obvious 
lemma. 

Lemma 1: If G(s) is an upper bound for the moment generating function, 
that is, M(s) ~ G(s) for all s, then 

Q ~ e-saG(s), s ~ O. (20) 

In particular, a positive s = So which satisfies 

:Sln G(s) 1._,. ~ a (21) 

is legitimate. 
Next consider a random variable x which is uniformly distributed 

over [-6../2, 6../2]. The variance of this variable is 6..2/12, and it has a 
moment generating function M (s) un if 

Jl;[ (S )uni f 

. h S.:1 
sm 2 

8.:1 
2 

t (S.:1)2n 1 
n=O 2 (2n+l)! 

(22) 
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Now the nth term of the sum in (22) is positive and upper bounded by 

Hence 

00 [(S.1)2 1 In 1 [.12 S2J 
M(S)uni f ~ ~ 2 6 n! = exp 12"2 . (23) 

Thus we have shown that the moment generating function of a zero­
mean uniform density is upper bounded by that of a zero-mean Gaussian 
having the same variance.* If the uniform variable has mean m the 
theorem is still true if we use instead the moment generating function 
of a Gaussian with mean m. 

Weare now ready to write down a whole class of random variables 
which have moment generating functions upper bounded by those of a 
Gaussian of the same variance. Suppose the result is true for two inde­
pendent random variables, x and y, of variances u; and u!, namely 

M,(8) ~ exp [s';:J 
JJf,(8) ~ cxp [8';1 

(24) 

Then using the theorem that the moment generating function of a 
sum of two independent random variables is the product of their 
individual moment generating functions, we have 

M,+,(8) = M,(8)M,(8) ~ exp [8;:J exp [8;;J 
S 2 2 S u x + y [ 2 J [22 J = exp 2" (u x + uy ) = exp -2 - , 

where 

is the variance of (x + y). Thus the moment generating function of 
a sum of any number of independent uniforms of arbitrary means 
and variances is upper bounded by the appropriate Gaussian one 
(same mean and variance as the sum), and thus use of (17) through 
(21) provides a rigorous upper bound for tail probabilities of the sum. 

* A similar theorem was discussed by, Saltzberg for the case of equally spaced 
delta functions.6 We have followed his method of proof here. 
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V. FURTHER ANALYSIS WITHOUT COMPANDING 

When no companding is present, the independent random variables 
e(leTl + r) have variance .6.2/12 and the variance of the noise (11) is 

..12 00 

cr; == (n;(t) = Ti '12' k~OO g2(t - leTl - r). (25) 

We evaluate the infinite sum in (25) by using the Poisson sum for­
mula, namely 

t g2(t - leTl - r) = 1.... t exp [27rim(t - r)JG2(m 27r), (26) 
k=-oo Tl m=-OO Tl Tl 

where O2 (w) is the Fourier transform of g2 (t). Now since the band­
width of the filter G is assumed not to exceed 1/2Tl Hz, only the 
m = 0 term of (26) contributes and we obtain 

2 ..1
2 

crl = Tl '12' G2(0). (27) 

Equation (27) implies that the noise power measured before the 
receiving filter is ~2 /12. This result has been obtained by Bennett1 

who also showed that the spectrum of this noise is flat across the 
band. Further, equation (27) is consistent with filtering white noise 
since 

100 2 1 100 

2 

G2(0) = -00 9 (t) dt = 27r -00 I G(w) I dw. (28) 

An important fact about (27) is that the received passband noise 
power without companding is independent of many properties of the 
signal. Thus it is independent of signal power and multilevel struc­
ture. It is not independent of rate, however, since this enters implicitly 
into the factor G2 (0), and likewise it is not independent of roll-off. 
By halving the speed and doubling the number of levels, one decreases 
the noise by 3 dB, but loses 6 dB in noise margin, thus leaving one 
with a net loss of 3 dB in noise margin. Thus it is best to use as few 
levels as possible consistent with given speed objectives, at least if 
the quantizing noise behaves anything like Gaussian noise. 

Let us discuss further some statistical aspects of the quantizing 
noise at baseband. The "line" signal must be demodulated as in VSB 
transmission by multipling the (filtered) received signal by cos wet 

and eliminating double frequency components. We represent the 
impulse response 9 (t) of the passband receiving filter G by 

g(t) = gx(t) cos wet - gy(t) sin wet. (29) 
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Further we specialize to the practical constraints;~ We > Bi and 271" /T 1 

> 2 (we + Bi). The demodulated noise is 

nb(l) = ;1 !'e(kTI + T) {gx(t - kTl - T) cos (wekTl + WeT) 

+ guCl - 'f,T1 - T) sin [wekTI + WeT]}. (30) 

The general expression (29) can be simplified for a VSB receiving 
filter which is symmetric about midband frequency WI, and linear 
phase characteristic, by writing 

(31) 

where l/T is the symbol repetition frequency. Of course a gx and a gy 
may be immediately written down from (31). 

From (30) we derive in Appendix B, equation (32) for the baseband 
variance CT~ (t): 

(32) 

where G2i (W) is the Fourier transform of g;(t). We now will show that 
this result is identical to the baseband noise power that would appear 
if flat Gaussian noise of power ~2/12 were on the line. We do not regard 
this as obvious; in fact it is not true that the signal power at baseband 
is the same as if one had Gaussian noise of the same power and spectrum 
on the line that the signal has. The proof depends on a few simple 
observations. If passband Gaussian noise is represented by 

(33) 

then 

(34) 

and so baseband noise power is CT!/4. Next we notice that white Gaussian 
noise, having same total power as quantizing noise over the band 
(-1/2Tl' 1/2T1) Hz, has two sided spectral density 

~2 
N(w) = N o/2 = 12 ·T1 watts per cycle. (35) 

* B, is the bandwidth of g,(t), i = x, y. 
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Thus the Gaussian noise power out of the receiving, filter G would be 

2 tJ. 
2 100 

dw 1 G( ) 12 
O"n = 12· Tl -00 27r \w 

tJ.2 100 

2 = 12 Tl -00 get) dt 

= tJ.2 Tl[l°O g~(t) + g~(t) dt + 100 g~(t) - g;(t) cos 2wct dt 
12 -00 2 -00 2 

+ L: g.(t)g,(t) sin 2""t dt 1 (36) 

Since neither gx(t) nor gy(t) are assumed to have any frequencies as 
high as We the last two integrals above vanish. The final remark that 
completes the proof is 

Thus noncompandored quantizing noise behaves, at least concerning, 
its power, as zero mean white Gaussian noise, flat over the band 
(-1/2Tl' 1/2T1 ) Hz, and total power ~2/12. This statement is true 
with or without demodulation. 

One would like to go further and treat the baseband noise as zero 
mean Gaussian of variance given by (32). There is a justification 
for making this additional step. Recall the result of Section IV, which 
stated that if 

(37) 

is a sum of independent and uniformly distributed variates tJ., , then 
(provided 0"2 = 1/12~tJ.~ < (0) for all A such that A > ~<tJ.i)' 

Prob (z > A) ~ (7r)![(p)! + (p + 2)!]P yeA). (38) 

In (38), (p)% = A/[(2)%a], and Pg(A) is the probability that a 
Gaussian variate of the same mean and variance as z is greater than 
A. Since Pg (A) depends exponentially on p, the coefficient structure 
in (38) is not nearly as important as P g (A) . We would like to argue 
(but not prove) that ignoring the coefficient in (38), that is, simply 
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assuming Gaussian behavior, is quite accurate for the baseband noise 
(30) for the error rates of practical interest. 

Thus consider eight-level, 50 percent roll off, transmission over 
our hypothetical "noncompandored T1" transmission facility. From 
(30) and (31) 

nb(t) = ;1 ~ e(kTl + r)hl(t - kTI - r) 

. cos [(We - Wl)(t - kTl - r) + we(kTl + r)], (39) 

where, according to an appropriate normalization, 

7rt 
4 cos T 

hl(t) = ~ ----:--
7rT 1 - (~r 

(40) 

Notice that since hI ~ lie, t large, the sum in (39) is bounded. 
A computer study of (39) for various values of t and r shows this bound 
to be not too sensitive (about 5 percent variations) to choices of t and T. 

Numerically we find 

I nb(t) I ~ ;1 .~. (!~)(5.31). (41) 

From the sum formula (26) the variance of (39) is obtained. We 
calculate 

(42) 

Thus a peak-to-mean square ratio of the baseband noise power may 
easily be shown to be 15 dB. To obtain some insight from this value, 
consider the question of how many (N) identical independent, zero­
mean uniform densities one would have to convolve to get a peak to 
rms value of 15 dB; the answer is N = 10. Ten uniforms generate, 
we feel, a reasonable approximation to a Gaussian curve. As a check, 
consider that our ten uniform densities each have range [-0.5, 0.5]. 
To check (not prove) the approximation on the tails we calculate 

Prob [sum ~ 4.5] = 1~! = 2.75 X 10-7
• 

The Gaussian assumption gives 4.46 X 10-7• Thus we will assume 
that for error rates > 10-7 the Gaussian assumption will yield rea­
sonably accurate answers, not just being a bound in the sense dis­
cussed above. 



QUANTIZING NOISE 1749 

The above theory showing that noncompandored quantizing noise 
may be considered to be additive white Gaussian noise with zero 
mean, variance 6,.2/12, of 4 kHz bandwidth has been compared with 
the experimental results of Gustafson on the performance of the VSB 
(203) data set which operates at 5400 bits per second. Fortunately 
an experimental curve is available for error rate versus signal-to­
noise ratio without companding and this is shown in Fig. 3 along 

10-2.-------,-------.. .n-----.-------. 

w 10- 4 f--------'f------II---I-t ------+-----j 

f-­
<{ 
a: 
a: 
o 
a: 
a: 

THEORY 
GAUSSIAN 
/ 

w 10 - 5 1------+-----+ 

10-7L-______ L-______ ~------~------~ 
o -10 -20 -30 -40 

AVERAGE INPUT POWER IN dBm 

Fig. 3 - Comparison of experimental and theoretical error rates for one link 
of noncompandored transmission. Theory neglects overload distortion. Instan­
taneous input power of +6 dBm is the onset of overload. 

with the results of present theory'* (for one link of Tl.) The rise in 
the experimental curve at high input signal power results from over­
load distortion of the quantizer which has been neglected for the 
present analysis. Overload occurs at a peak power of +6 dBm on the 
scale used in Fig. 3, and thus the peak power to average power for 
the eight-level VSB set (including pilot tones) appears to be around 
11 dB. In general the observed error rate is higher than the theoret-

* To model the performance of the actual 203 receiver, an additional noise 
source is included at baseband, as suggested by Saltzberg8 and shown in Fig. 2. 
The baseband SIN for this noise is chosen to be 28.08 dB. This noise alone 
would yield an error rate of 2.5 X 10-9

• 
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ical prediction, and for low P e is even higher than the theoretical 
upper bound. Perhaps this is caused by other distortions in the system 
not considered here. 

For multiple links of transmission one should take the quantizing 
noise to have the same properties as above, but the total noise power 
i'l N . A2/12, where N is the number of links. 

We wish to emphasize that the curve drawn in Fig. 3 does not 
represent any theoretical ideal; we have tried to understand the 
performance of an existing data set and its imperfections. Actually, 
if the data set were functioning perfectly, there is a range of input 
power where no errors would be made. We have normalized units so 
that no errors can be made if the baseband noise is less than unity 
in magnitude. Table I shows the peak value of quantizing noise cal­
culated from equation (41) as a function of input power measured 
in the same units as in Fig. 3. An input power of -15 dB would be 
near typical operating levels. If the data set were imperfect but the 
eight-level eye were no more than 30 percent closed (but one had 
perfect timing), then one would still not make errors down to -15 
dBm. In general we see that quantizing noise is not a basic limiting 
factor on the error rate for all input power levels. 

VI. ANALYSIS WITH COMPANDING 

Equation (9) indicates that the derivative of the compressor char­
acteristic is an important quantity. For the logarithmic curve given 
in equation (1), 

F'(x) = In (I
JL 
+ JL) 1 + ~ I x I 

The average of A2 (t) now is not A2/12 but is 

,,;v ~ (l>'(t» ~ ~~. (I P'tx) I') 

(43) 

~ ~~ [In (11'+ 1') J (1 + 21'(1 x I) + I"P). (44) 

where the average power P = (X2). Now (Ixl) cannot be less than zero 
nor more than (P) 1h. Hence 

K(l + JL2P) ~ <T:v ~ K[l + JL(P)!]2 (45) 
where 

(46) 
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The lower and upper bounds in (45) indicate that for large J.I.(P)! 
the average noise power is not a sensitive function of the probability 
density of the input signal. The knowledge of u;v cannot be used here 
to obtain a strict upper bound for the probability of error as was done 
in the uncompandored case, for the "instantaneous" noise variance is 
correlated with signal values. Thus large input signals "see" bigger 
step sizes, in effect, than smaller inputs would. One concludes from this 
that for multilevel transmission the outermost levels would have the 
greatest noise associated with them. 

To make exact calculations on this matter is a difficult task, and we 
confine ourselves to some estimates of the effects. Estimates can be 
obtained by restricting attention to special sequences. Thus for an 
eight-level P A1VI system let an arbitrary sequence consisting only of 
the outer levels (± 7) be transmitted, and compare this with another 
sequence consisting of (±5) transmitted in place of (± 7). Then the 
quantizing noise will be-considering the l term in (44) to be of prin­
cipal importance-in the ratio 72/52

• Thus the outer level will have, 
in this circumstance, 3 dB more noise than the next inner level. The 
contrast between these levels will be somewhat lessened in a random 
sequence using all levels, but it is clear that the 3 dB number quoted 
here provides an upper bound to the difference. 

Worst case estimates of error rate in the compandored case may be 
made by replacing ~2/12 in (42) by the upper bound for u;v given in 
(45), and finally using peak power instead of average power in (45). 

For the eight-level VSB system considered previously, operating 
on T1 facilities, this procedure yields error rates of 10-5 

- 10-6 over 
one transmission link (for the interesting ranges of input power). 
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APPENDIX A 

Derivation of Quantization Error 

Equation (9) of the text relating the output sample error A (t) to 
step size A, compressor characteristic F (x), and signal amplitude 
l (t) at time of sampling is easy to derive if the chain rule is used 
to differentiate the relation 

(47) 
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to obtain 

dF~,}) I dP(v) I = 1 
du u~F(x) dv v=x • 

(48) 

Now clearly, if the error made when lcomp is quantized is small, that is, 
if A is small, then 

output = P-l(l ) + L\ dP-
1 I (49) 

sample comp du u=/comp' 

or 

output = l + -$-
sample P (l) , 

(50) 

where (48) has been applied to (49) to obtain (50). 

APPENDIX B 

Derivation of CTb 

Squaring (30) and averaging over {E} gives 

CT~(t) = ~;.~~. L {g;(t - kTl - T) 

. cos2 [wekTl + WeT] + g!(t - kTl - T) 

·sin2 [wekTl + WeT] + 2gx(t - kTl - T)gy(t - kTl - T) 

(51) 

or, 

2( ) 1 (T; L\ 2) " [ 2 2] CTb t = 2 4 12 L..J gx + gil 

+ ~ (~; ~~) { L (g; - g!) cos [2wekTl + 2WcT] 

+ 2 L gxgll sin [2wckTl + 2WeT]}. (52) 

All the sums in (52) may be evaluated using the Poisson sum formula 
quoted in equation (26). The first term on the right of (52) is simplest 
to handle. Since g. has no frequencies higher than 1/2Tl , the Fourier 
transform G2i (W) of g2(t) has support contained in [-27r/T t , 27r/T1], 

and further, since it is a convolution, G2.(±27r/Tt ) = O. Thus 

(53) 
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The other sums in (52) are all zero, for a typical sum is (where 0 = 

2wcTl) 

L f(t - nT - r) cos [nO + ~] 

== cos [t : , + 'P - ~~ ] I: f( t - nT - T) cos (t - nl', - T) : , 

+ sin [t ~ + ~ - ~J L f(t - nT - r) sin (t - nT l - r) ~. 
Tl Tl Tl 

(54) 

The sum formula is now directly applicable to the functions 
t(t) cos 2wct and f(t) sin 2wct. The functions have Fourier transforms 
which, according to the discussion following equation (29), vanish at 
6) = ±27r / T 1 • k, where k is any integer, including zero. The results 
claimed follow. 
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On the Solutions of Equations for 
Nonlinear Resistive Netwol'll{.s 

By A. N. WILLSON, JR. 

(Manuscript received December 13, 1967) 

Several theorems are proved concerning the solutions of equations that 
arise in the study of resistive nonlinear electrical networks. The first, an 
existence and uniqueness theorem, applies to equations describing an 
interesting class of networks which includes certain active and nonreciprocal 
networks for which the existence and uniqueness of solutions has not 
previously been established. A method of computing bounds on the location 
of the solutions is given, and two iterative techniques are presented for 
computing the solutions. It is proved that the iterative techniques converge 
for a subclass of the equations which also includes equations describing 
certain active and nonreciprocal networks. Finally, the rate of convergence 
of the iterative techniques is compared with that of another well-known 
iterative technique and some practical computational aspects are pointed 
out. Computations for two example problems, not reported here, were carried 
out to show the practicality of applying these iterative techniques to the 
equations of specific networks. 

I. INTRODUCTION 

In this paper we consider the solution of the equation 

F(x) + Ax = B (1) 

where x - ::J is a point in the n-dimensional Euclidean space E", 

[

fl(Xl)] 
F(x) - : is a nonlinear function mapping En into En, A is an 

fn(xn) 

1755 
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n X n matrix of real numbers, and B == [IJ is an arbitrary point 

in En. We prove (Theorem 1) that there is a unique solution of (1) if: 
(i) Each fi is a strictly monotone increasing function mapping 

E1 onto E1 , 
and 

(ii) The elements ai; of the matrix A satisfy the inequality 
n 

au ~ 2: I aij I, for i = 1, ... ,n. 
;=1 
ir'i 

We then demonstrate a straightforward method of computing bounds 
on the location of this solution. Finally, we present two iterative tech­
niques for computing the solution; and prove (Theorem 3) that the 
two additional assumptions: 

(iii) Either all of the functions fi are convex, or else all fi are concave, 
and 

(iv) aij ~ 0 if i ~ j, 
are sufficient to guarantee that the iterations converge to the solution. 

Equations of type (1) occur often in the study of nonlinear electrical 
networks. For example, if a linear n-port containing resistors, inde­
pendent sources, and dependent sources has a two-terminal device 
whose V vs I curve is specified by Ii = fi(Vi), for i = 1, ... , n, con­
nected across each port, then the port voltages may often be expressed 
as the solution of an equation of type (1). In this case the matrix A 
will be the y-parameter matrix of the n-port, the constant vector B 
will account for the presence of the independent sources, and the com­
ponents of the vector x will be the desired port voltages. 

II. ACTIVE AND NONRECIPROCAL n-PORTS 

In case the n-port of the above example contains no dependent 
sources and the functions fi satisfy condition (i) above, the existence 
and uniqueness of a solution of (1) follows immediately from the 
well-known result of R. J. Duffin.l In fact, with the additional as­
sumption that the slope of each fi is bounded by positive constants 
the computational technique of J. Katzenelson and L. H. Seitelman 
may be used to compute the solution.2 This computational technique 
is based upon a theorem of I. W. Sandberg which relies upon the 
contraction-mapping fixed point theorem. 3 
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Sandberg's theorem may, in fact, be used to prove the existence 
and uniqueness of a solution of (1), and to construct a convergent 
iteration process for computing this solution, whenever the matrix 
A is positive semidefinitei~ and the slope of each Ii is bounded by 
positive constants. Other theorems which do not require that the 
slopes of each strictly monotone increasing Ii be bounded by positive 
constants also exist. (For example, see Ref. 4.) These theorems guar­
antee existence and uniqueness of a solution of (1) whenever A is 
positive semidefinite but do not specify a procedure for computing it. 

Suppose, however, that the matrix A is not positive semidefinite; 
that is, suppose the n-port in the above example is active. Then the 
above results no longer apply. It may often happen that the matrix 
A is not positive semidefinite but still satisfies condition (ii) above. 
The matrix 

A ~ G ~J. 
for example, has this property. It is interesting to notice that in this 
case the matrix A will necessarily also be nonsymmetric (the corre­
sponding n-port will be nonreciprocal). This follows from the fact 
that for symmetric matries A, condition (ii) implies that A is a 
dominant matrix5 which, in turn, implies that A is positive semi­
definite. It is for this class of active nonreciprocal n-ports that our 
work provides entirely new results. Even for the passive case, how­
ever, notice that our computational techniques do not require that 
the slopes of the functions Ii be bounded. Also, there is reason to 
believe that for certain problems our iteration schemes may converge 
more rapidly than the ones based upon the contraction mapping 
theorem. More is said about this in Section VII. 

III. EXISTENCE AND UNIQUENESS 

Before proving the existence and uniqueness theorem we first prove 
a lemma which is used many times in this and the following section. 

Lemma 1: Let the n X n matrix A of real numbers satisfy condition 
(ii) of Section I. For j = 1, ... , n let Pi denote the jth component of 
P £ En. Let k £ {1, "', n} be chosen such that \Pk\ = max UPi\ : j = 
1, ... , n}. Then, 

* The n X n matrix A is said to be positive semidefinite if (x, Ax) ~ 0 for 
all x in En. 
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n 

Pk > 0 =:} L akjpj ~ 0, 
j~1 

and 
n 

Pk < 0 =:} L akjPi ~ O. 
j~1 

Proof: 

a" 1 p, 1 ~ t, 1 aM I· 1 p, 1 ~ t, 1 a"p, 1 ~ 1 1;, a"p, I· 

Thus, 

;¢k j¢k ;¢k 

n 

akk I Pk I ~ ± L akiPj . 
j=1 
jr<k 

But then, 
n n 

Pk > 0 =:} akkPk ~ - L akjpj =:} L akjp; ~ 0, 
j=1 j=l 
jr<k 

and, 
n n 

Pk < 0 =:} -akkPk ~ L akjpj =:} L akjpj ~ O. D 
;=1 ;=1 
;r<k 

Theorem 1: There exists a unique solution of (1) whenever conditions 
(i) and (ii) of Section I are satisfied. 

Proof: We first prove that if a solution exists it is unique. Let Xl 

and X2 be solutions of (1). Then, 

F(x2
) - F(xl

) = A(xl 
- x2

). 

For j = 1, ... , n let x~ and x~ denote the jth components of Xl and x2
, 

respectively, and choose k E {I, ... , n} such that 

I xi - x~ I = max {I x~ - x~ I : j = 1, ... ,n}. 

If x! > x~ then, by Lemma 1, 
n 

fk(X~) - fk(X!) = L ak;(x~ - xD ~ O. 
;=1 

If x! < x~ then, by Lemma 1, 
n 

L aki(x~ - x~) ~ O. 
j=1 
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Both of these conclusions contradict the fact that tk is strictly monotone 
increasing. Thus, xi = x~ and hence x~ = x~ for j = 1, ... , n. That is, 
the solution of (1) is unique, if it exists. 

We prove existence of a solution by induction. For k = 1, ... , n let 

[

fl(XI)] 

Fk(X) == : ' 
fk(xk) 

Clearly, the matrix Ak satisfies condition (ii) of Section 1. Also, it is 
clear that there exists a unique solution* of FI(x) + Alx = BI for 
every strictly monotone increasing function I I mapping EI onto EI. 

Assume that there exists a solution of Fk(x) + Akx = Bk for arbi­
trary strictly monotone increasing functions Ii' i = 1, ... , k mapping 
EI onto EI. Then, for every real number Xk+l, the equation 

[

a
l

•
k

+
l

] 

Fk(x) + Akx + : Xk+l = Bk 

ak.k+l 

has a (unique) solution; since for i = 1, ... , k the function Ii (Xi) + 
ai.k+IXk+1 is strictly monotone increasing from El onto El. Let the 
components of this solution be denoted by Xi = mi(xk+l) fori = 1, ... ,k. 
We have thus defined k functions mi on EI. 

We now prove that for every Xi+l , X~+l t Et, 

I X~+l - Xi+l I ~ Imj(x~+l) - mj(x!+l) I, for J = 1, ... ,k. (2) 

This inequality, incidentally, implies that each m, is continuous. 
Let Xi+l , X~+l t El and choose l t {I, ... , k} such that 

ImZ(x~+I) - mZ(xi+l) I 

= max {Imj(x~+l) - mj(xi+l) I : j = 1, ... ,k}. 

Assume that ImZ(x~+I) - mZ(x!+I) I > I X~+l - XiH I . Clearly, then, 
mz (X~+l) - mz (X!+l) ~ o. If mz (X~+l) - mz (X!+l) > 0 then, 

* We take the liberty of using the same symbol x to denote points in any of the 
spaces Ek, 1 ::; k ::; n. No confusion should arise since the subscripts on F and A 
will make our choice clear. 
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Also, since the matrix Ak +1 satisfies condition (ii) of Section I, letting 

we have, by Lemma 1, 

Thus, 

k 

L: a'j[mi(x~+l) - mi(x!+l)] + aZ,k+1(x~+1 - X!+l) ~ o. 
j=l 

k 

fz[mZ(x~+l)] + L: aZimi(x~+l) + aZ.k+1x~+1 
i=1 

k 

> fz(m ,(X!+l)] + L: aZimi(x!+I) + a',k+lx!+l , (3) 
i=1 

which is a contradiction since the quantity on each side of this inequality 
is equal to bz • If mZ(x~+I) - m,(x!+l) < 0 then, 

fZ[m,(xi+l)] - fz(m,(X!+I)] < o. 
By applying Lemma 1 again, as above, one arrives again at (3) with 
> replaced by <. This is also a contradiction. Thus, we must have 

\ X~+1 - X!+l \ ~ \ mZ(x~+I) - mZ(x!+I) \, 

and hence (2) is proved 
Now, consider the function 

implies 

k 

L: ak+l,jmi(Xk+l) + ak+l,k+lXk+l 
i-I 

k 

ak+l,k+l ~ L: \ ak+l,i \ 
i=1 

k 

(4) 

= ak+l,k+l \ X!+1 - X~+1 \ ~ L: (\ ak+l,i \.\ X~+1 - X~+1 \). 
i-I 

But, using (2), 

k 

ak+l'~+I(X~+1 - X!+I) ~ L: \ ak+l,j[mi(x;+I) - mi(x!+I)] I 
i-I 
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k 

~ - L ak+l.j[m;(X~+l) - mj(X!+l)], 
j=1 

which implies 
k k 

L ak+l.i m i(X!+l) + ak+l.k+lX~+l ~ L ak+1.im i(X;+I) + ak+l.k+lXi+l 
i~1 i=1 

That is, the function (4) is monotone increasing. Clearly (4) is con­
tinuous. It follows, therefore, that if fk+l is a strictly monotone In­

creasing function mapping El onto El, then so is the function 

k 

fk+l(Xk+l) + L ak+l.i m i(Xk+l) + ak+l.k+1Xk+l 
i=1 

Thus, there exists a unique solution of the equation 

k 

fk+l(Xk+1) + L ak+l.i m i(Xk+l) + ak+l.k+1Xk+1 
j=1 

If X~+l denotes this solution then 

is the (unique) solution of 

Thus, we have proved that there exists a unique solution of (1). 0 

IV. BOUNDS ON THE SOLUTION 

Having established the existence and uniqueness of a solution of 
(1) a natural question to arise is: What can one say about the loca­
tion of this solution? It turns out that we can say quite a bit (again 
assuming that conditions (i) and (ii) of Section I are satisfied). One can, 
in fact, with little effort (compared with the effort required, in general, 
to actually compute the solution) determine a finite region R in En, 
in which the solution must lie. This region 'is the cartesian product of 
finite intervals lie Et, for i = I, ... , n, each of which has the property 
that if 
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x" = [] 

is the solution of (1) then x~ (: I. and, as 
n 
L I aij I --70, 
j=1 
i,ei 

the length of Ii, l(Ii) --7 o. Thus, when the off-diagonal elements of 
A are small, the region R will also be small. 

In many applications it may be sufficient to know only that there 
exists a unique solution of (1) and to know the region R in which it 
must lie. If, however, one actually does want to compute the solution 
by some iterative technique, the knowledge of R should be useful in 
determining a starting point for the iteration. In fact, it will be 
shown that if the point x{} is the solution of 

F(x) + diag [all' ... , ann] X = B, (5) 

then x* is also in R and thus might be a reasonable starting point 
for an iterative computation of xo. 

The computation of bounds for the solution of (1) proceeds in two 
steps. First, one solves each of the equations 

h(x.) = bi , for i = 1, ... , n. 

Letting (Xi denote the solutions of (6), and defining 

a = max {I ai I : i = 1, ... ,n}, 

B' = 

n 

L I ali I 
j=1 
j,e1 

n 

L I anj I 
j=1 
j,en 

one then solves each of the equations 

F(x) + diag [all' ... , ann] X = B - aB', 

F(x) + diag [all' .•. , ann] X = B + aB'. 

(6) 

(7a) 

(7b) 
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Denoting the solutions of (7a) and (7b) by 

respectively, one has R = II X ... X In, where 

Ii = ['lJi '~i], for i = 1, ... , n. 

It is clear from the fact that each component of the vector aB' is a 
nonnegative number and from the monotone nature of the left-hand 
sides of (7) that x*, the solution of (5), is (as claimed) always in R. 
It is also clear that, for i = 1, ... , n, as 

11 

L I aij I ~ 0, 
i=1 
ir"i 

the ith components of both B - aB' and B + aB' approach b, , and 
hence 'YJi ~ x~ and ~i ~ x~ . Thus, l(Ii) ~ 0. We now prove that the 
solution of (1) is in R. 

Theorem 2: If R is constructed as described above, then the solution of 
(1) is contained in R whenever conditions (i) and (ii) of Section I are 
satisfied. 

Proof: Let XO be the solution of (1) and let k £ {I, ... , n} be chosen 
such that 1 x~ 1 = max{\ x~ I: i = 1, ... , n}. Then, by Lemma 1, if 

11 

x~ > 0, L akix~ ~ ° and hence, 
i=1 

11 ° = fk(X~) + L akix~ - bk ~ fk(X~) - bk 
j=l 

o .., 
or fk(XkL ~ bk . 

Thus, because of the monotonicity of jk, 

and hence 1 x~ 1 ~ a for i = 1, ... , n. Similarly, by Lemma 1, if x~ < 0, 
11 

L akix~ ~ ° and hence, 
;-1 
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and thus 

and hence 1 X~ 1 ~ a, for i = 1, ... , n. Thus, in any case, 1 x~ 1 ~ a, 
for i = 1, ... , n. 

Now, for all x with 1 Xi 1 ~ a for j = 1, ... , n, and for each 
i £ {I, ... , n} we have, 

which implies 

and 

Thus, 

i=! 
i~i 

n 

n 

n 

L (I aii \ a) 
i=! 
i~' 

n 

n 

~ L \ aiixi \, 
i=! 
iF'; 

a L \ aii \ 
i=! 
i,,<i 

~ L aiixi , 
i=! 
i,,<i 

n n 

-a L \ aij \ ~ L aijXj . 
j=! i=! 
j,,<i i,,<i 

n n 

aUXi - aLI aiiil 
j=! 

~ L aijXj ~ aiiXi + aLI a,i I· 
i=1 i=1 

ir<i i,,<i 

In particular, for x = xo, we have 
n n 

fi(X~) + aiiX~ - aLI aij \ ~ bi ~ fi(X~) + aiiX~ + aLI aij \. 
j=1 j=1 
j,,<i i,,<i 

Comparing this result with (7) we have, as a consequence of the 
monotonicity of the functions on the left-hand sides of (7), 

YJ. ~ x~ ~ ~i' for i = 1, ... , n. 

Hence, XO £ R. 0 
Since in the above proof it was shown that 1 x~ 1 ~ a for i = 1, ... , n 

it might seem to some readers that the intervals Ii might be reduced 
in length if we simply define them to be: Ii = [-a, a] (\ [YJ; , ~i]. This, 
however, is unnecessary since it is easily shown that - a ~ YJi ~ ~i ~ a, 
for i = 1, ... , n. 

v. EXAMPLE 

We now give an example of the use of the above method for the 
computation of solution bounds. Consider the equation 
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~:~::~J + [-: :J [::J [~:] 
where 11 and 12 are defined by 

and 

-3 < X2 < 3 

Figure 1 shows the graphs of 11 and 12 . Since we know that the region 
R will be small if the off-diagonal terms of A are small enough, we have 
intentionally chosen an example in which these terms are rather large. 

The computation of a by solving (6) may be done by inspection for 
this example. One finds that 4 a1 = 17 implies that a1 is slightly greater 
than 2, and since a2 = 4 we have a = 4. Using this result in (7) one 
readily computes 

~ ~ [2.23]. 
3.2 

Fig. 1-The nonlinear functions 11 and 12 for the example. 
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Actually, it is easily verified that the solution of this example is XO = (~). 
VI. COMPUTATION OF THE SOLUTION 

For i = 1, ... ,n we denote by i~(Xi) the right-hand derivative of ii at 
the point Xi EEl. For each x E En we denote by F' (x) the following matrix: 

F'(x) = diag [f~(XI)' ... , I~(xn)]. 

It is easy to prove that if F satisfies condition (i) of Section I then 
F'(x) exists for all x t En. Also, it is clear that each element of the main 
diagonal of F'(x) is nonnegative for all x t En. (Each element is in 
fact positive if, in addition, F satisfies condition (iii) of Section 1.) 
Finally, we note that 

is defined for all y t En, assuming again that F satisfies condition (i) of 
Section I. 

The following two iteration schemes are proposed for the computation 
of the solution of (1): 
Scheme 1: For given Xl t E the sequence Xl, x2

, X
3

, ••• of points in En is 
constructed by use of the formula 

Xk
+
l = [F'(xk) + Arl(B - F(xk) + F'(Xk)Xk). (8) 

Scheme 2: For given Xl t En the sequence x\ x2
, x3

, ••• of points in En is 
constructed by use of the formula 

Xk+l = [F'(F-I(yk)) + Arl(B _ yk + F'(F-I(yk))F-I(yk)), (9) 

where yk = -Axk + B. 
In order to explain the origin of (8) and (9) we make the following 

observations: If for i = 1, ... , n (x~ , y~) is a given point in E2, and 
if we draw the graph of each of the functions ii , then each of the points 
in the sets {(x~, ii(X~)): i = 1, ... , n} and {(f~l(y~), y~): i = 1, ... ,n} 
lies on the graph of the corresponding function Ii . Suppose we now 
replace (approximate) each ii by the straight line which is tangent to 
it at the corresponding point in one of the above sets. * Choosing the 

* Our definition of tangent coincides with the usual one, except that the right­
hand derivative is used at those points where the derivative fails to exist. 
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first set of points we approximate F by 

F(x) == F'(xk)x + F(xk) - F'(Xk)Xk. 

Choosing the second set gives 

F(x) == F'(F- 1(yk»X + yk _ F'(F- 1(yk»F- 1(yk). 

If we now define yk = - Axk + B and compute the solution of the 
equation 

F(x) + Ax = B 

and call it X k +1 , we obtain (8). Calling Xk+l the solution of 

F(x) + Ax = B, 

yields (9). 
The above remarks have a very meaningful interpretation for problems 

arising from nonlinear electrical networks of the type described in 
Section 1. Iteration Scheme 1 implements the following procedure: 
Given the vector Xk of port voltages for the linear n-port, replace each 
two-terminal nonlinear device with a linear Thevenin's "equivalent" 
circuit whose V vs I curve is a straight line, tangent to the given curve 
at the point (x~, fi(X~». Compute the port voltages in the resulting 
linear network to obtain Xk+l. 

Iteration Scheme 2 has a similar interpretation; this time, how­
ever, the vector of port currents, yk = -Axle + B, is used to determine 
the linear equivalent circuit replacing the nonlinear devices at each 
step. 

In view of the above remarks it is apparent that if one has some 
facility for solving linear network problems (a computer program, for 
example) then it might easily be adapted to solve many nonlinear 
problems as well. 

We finally remark that the use of the first iteration scheme is, in 
essence, the same as using the Newton-Raphson technique to compute 
the root of (1). 

We now prove a theorem which specifies conditions which are suf­
ficient to ensure convergence of each of the above iteration schemes. 
We emphasize, however, that these iteration schemes will converge 
for many problems in which the conditions of the theorem are not 
satisfied-especially if a good enough starting point is provided. 

In the following we denote the origin in En by (J and, for the points 
x, y £ En, the notation x ~ y means Xi ~ Yi for i = 1, ... , n. The 
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relations x < y, x ~ y, x > yare defined similarly. We also make use 
of the concept of a matrix of monotone kind. 6 The matrix A is said to 
be of monotone kind if x l: En, Ax ~ 0 ==> X ~ o. It is easy to show that A 
is of monotone kind if and only if A-I contains only nonnegative 
elements. It is also easy to show that if A is of monotone kind and 
x, y l: En with Ax ~ y, then x ~ A -ly. Ref. 6 shows that if the strict 
inequality> holds in condition (ii) of Section I, then conditions (ii) and 
(iv) are sufficient to ensure that A is of monotone kind. 

Theorem 3: For an arbitrary starting point xl, both of the above 
iteration schemes will converge to the solution of (1) if conditions 
(i) through (iv) of Section I are satisfied. 

Proof: We give here only the proof for the second iteration scheme, 
assuming that all of the functions fi are convex. The other three 
cases are quite similar and it will be apparent to the reader how 
this proof may easily be modified to take care of them. ~< 

We first remark that the iteration scheme is well defined. The fact 
that for every yk l: En, F'(F-1(yk» is a diagonal matrix containing all 
positive numbers on the main diagonal, and the fact that A satisfies 
conditions (ii) and (iv) of Section I, assures us that the matrix 
[F'(F- 1(yk») + A] is nonsingular (it is, in fact, of monotone kind-see 
Ref. 6, p. 376). 

Let Xl be an arbitrary point in En. Then, since for i = 1, ... , n 
and k = 2, 3, 4, ... each of the points (x~ , y~) lies on some straight 
line, tangent to the corresponding function fi , and since each Ii is strictly 
monotone increasing and convex, we have that F- 1 (yk) ~ Xk for k = 
2, 3, 4, .... We now show that F- 1 (yk) ~ Xk implies that Xk

+
l ~ Xk. 

Obviously, 

F'(F-1(yk»(Xk _ F-1(yk) ~ o. 

But, by definition, Ax" + y7" - B = (); hence, 

F'(F-1(yk»(Xk _ F-1(yk» + Axk + yk - B ~ 0, 

which implies 

[F'(F-1(yk» + A]xk ~ B _ yk + F'(F-1(yk»F-1(yk). 

But then, since [F' (F-I (yk)) + A] is a matrix of monotone kind, 

* After this manuscript had been completed, the author became aware of 
J. S. Vandergraft's paper (Ref. 7). With a certain amount of reformulation, the 
(monotone) convergence of the first iteration scheme, when all j, are convex, 
can be shown to follow, in essence, from his Theorem 5.1. 



RESISTIVE NETWORKS 1769 

Xk ~ [F'(F-I(yk» + Arl(B _ yk + F'(F-I(yk»F-I(yk», 

or, Xk ~ Xk+l. Thus, the sequence x2
, x3

, X4, ... has the property 

x2 ~ x3 ~ X4 ~ ... . 

We now show that for k = 2, 3, 4, ... , Xk ~ xo, where Xo is the solu-
tion of (1). For each x\ k = 2, 3, 4, ... , there is some point pEEn 
(p == F-I(yk-l» such that 

AXk - B = F'(p)p - F'(p)xk - F(p). (10) 

Furthermore, from the convexity of each fi' it is clear that for every 
pair of points ql, q2 E En, 

In particular, 

F(xO) ~ F(p) + F'(p)(xO - p). 

Hence, 

F'(p)p - F(p) + F(xO) ~ F'(p)xO 

which implies 

F'(p)(p - Xk) - F(p) + F(xO) ~ F'(p)(xO - Xk). 

Using (10) we have, therefore, 

AXk - B + F(xO) ~ F'(p)(xO - Xk). 

But, F (X O
) = - Axo + B, hence 

A(xk - XO) ~ F'(p)(xO _ Xk) 

or, 

[F'(p) + A](xk 
- Xo) ~ e. 

But then, since [F'(p) + A] is of monotone kind, Xk - XO ~ 0, or Xk ~ xo. 
Thus, we have shown that each sequence x~ , x~ , x~, ... is a bounded 
monotone sequence and hence the sequence x2

, x3
, x\ ... converges 

to some point x* in En. We now prove that x* = xo; that is, we show 
that x* satisfies (1). 

Let y* = -Ax* + B. Then, as k -7 cx:l, Xk -7 x* and yk -7 y*. Thus, 
F- I (yk) -7 F- I (y*) and each element of the matrixF' (F- I (yk» approaches 
the corresponding element of F'(F- 1(y*». Now, from (9), we have 

AXk+l + F'(F- 1(yk»Xk+1 = AXk + F'(F- 1(yk»F-\yk) 
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which implies 

F'(F- 1(yk»(F- 1(yk) _ Xk+ 1
) = A(Xk+ 1 

_ Xk) 

and hence 

F'(F- 1 (yk»(F- 1(yk) _ x* = A(Xk+ 1 
--.-: Xk) _ F'(F- 1(yk»(X* _ Xk+ 1

). 

But as k ~ co, (Xk
+

1 
- Xk) ~ f) and hence A(Xk

+
1 

- Xk) ~ f); also, 
(x* - Xk

+
1

) ~ f) and hence F'(F- 1 (yk»(X* - Xk
+

1
) ~ F'(F- 1 (y*»f) = f). 

Thus, as k ~ co, 

which implies 

or 

and therefore 

yk ~ F(x*). 

Hence, y~. = F (x~'<) , and thus, 

F(x*) + Ax* = B. 

Thus, the iteration converges to the solution of (1). D 
Although Theorem 3 states that both of our iteration schemes will 

converge for the same class of problems, only one of the schemes 
might converge for some problems for which all of the conditions 
(i) through (iv) of Section I are not satisfied. Also, for some problems 
a prior knowledge of the region in which the solution lies might dictate 
the choice of one iteration scheme over the other. For example, if it 
is known that some of the functions Ii are quite steep in the neighbor­
hood of the solution then perhaps F-l may be evaluated in this region 
more accurately than F. In this case Scheme 2 might be preferred 
to Scheme 1. 

VII. SPEED OF CONVERGENCE 

Section II mentions that in certain situations our iteration schemes 
may converge to the solution of (1) more rapidly than those based 
upon the contraction-mapping fixed point theorem. To illustrate this 
property we have chosen to compare the rate of convergence of 
Sandberg's iteration scheme to that of our schemes.3 
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If we define the operator G mapping En into En by 

G(x) == F(x) + Ax, 

then, as a special case of Sandberg's Theorem I, we have the result: 
If there are positive constants kl and k2 such that 

(G(x) - G(y), x - y) ~ kl II x - y W, (11) 

and 

II G(x) - G(y) W ~ k2 II x - y W, (12) 

for all x, y (: En, then there is a unique solution of (1) and the solution 
is given by lim x\ where Xl is an arbitrary point in En, and 

X
k

+
l = ~: [B - G(xk

)] + Xk, 

for k = 1, 2, 3, .... The proof of this theorem consists of showing 
that the mapping 

H(x) == ~: [B - G(x)] + x 

is a contraction. 
It is interesting to observe that if the inequalities (11) and (12) 

are satisfied then positive constants ks and k4 exist, such that 

(G(x) - G(y), x - y) ~ ka II x - y W, (13) 

and 

II G(x) - G(y) W ~ k4 II x - y W, (14) 

for all x, y (: En. In fact, a simple application of the Schwarz inequality 
to (11) and (12) yields (13) and (14) with ka = (k2)i and k4 = ki. 
Now (13) and (14) are of the same form as (11) and (12), except that 
the inequalities are reversed. Thus, if one uses (13) and (14) in the 
proof of Sandberg's theorem, reversing all inequalities, one obtains: 

II H (x) - H (y) W ~ K II x - y W, 
where, 

K = 1 - 2(kUk2)! + (k~/k2)2. 
It is readily seen that if 4ki < k2 , then K is positive. If we let XO denote 
the solution of (1), and hence H(xO) = xO, we have, for k = 1, 2, ... , 

II Xk+l - XO W = II H(xk
) - H(xO) W ~ K II Xk - XO W· 
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Thus, (K)! represents, in this case, a lower bound on the rate of con­
vergence of the iteration scheme. It is true that (K)! is always in the 
interval (0,1), for indeed Sandberg has proved that the sequence 
Xk does converge toxo. However, as kl becomes small, and as k2 becomes 
large, K approaches 1 and the sequence converges quite slowly. For 
(1) the largest value that may be used for kl and the smallest value that 
may be used for k2 will many times be dictated by the positive constants 
which are bounds on the slopes of the functions ti . If, for example, 
the slopes of the t i become so large for large Xi , and so small for large 
negative Xi that one must choose kl = 10-1 and k2 = 102

, then one 
easily computes (K)! ~ 0.99. Thus, no matter how close any iterate 
is to the solution, the next iterate will be no more than about one per­
cent closer. 

It is of course true that Sandberg's iteration scheme is applicable 
to a much more general class of problems than we consider in this 
paper. If, however, for any problem to which it is applied, the con­
stants kI and lC2 must be restricted such that kdk2 is quite small, 
then the rate of convergence will always be adversely affected. In 
the Katzenelson-Seitelman application of Sandberg's iteration scheme, 
their "heuristic refinement" (see Ref. 2) attempts to overcome this 
difficulty. 

Although the classes of equations to which our iteration schemes 
and the Katzenelson-Seitelman algorithm may be applied are not 
identical, in those cases where both techniques may be used the ad­
vantage that our schemes offer is now clear. From (8) and (9) one 
easily obtains 

Xk+l _ XO = [F'(xk) + ArI(F(xO) - F(xk) - F'(xk)(xO _ Xk», 

and 

k+l ° X - X = 

[F'(F-\yk» + Ar 1 (F(xO) _ yk _ F'(F- 1 (yk»(XO _ F-\yk)), 

respectively. These equations show that II Xk+l - XO II will be small 
(even if II Xk - XO II is rather large) so long as for i = 1, ... , n, 

for Scheme 1, or 

fi(X~) - fi(X~) r-.J f'( k) ° k r-.J i Xi , Xi - Xi 

fi(X~) - y~ r-.J f'(f-I( k) 
o f-I( k) r-v i i Yi , 

Xi - i Yi 



RESISTIVE NETWORKS 1773 

for Scheme 2. That is, as soon as the kth iterate comes close enough to 
the solution that each of the functions fi is approximately linear, the 
rate of convergence of our iterations becomes quite rapid. In fact, the 
rate of convergence increases without bound as the iterates approach 
the solution. It is also clear that if each of the functions fi is piece­
wise linear then our iterations will converge in a finite number of 
steps. 

From the standpoint of computational efficiency it is, of course, 
the amount of time required to compute an approximate solution 
that is the major concern. For those problems to which both our 
iteration schemes and the Katzenelson-Seitelman algorithm may be 
applied, it can happen that our methods might still be slower than 
theirs even in the case when the convergence rate of our methods is 
faster. This can happen because, for some problems, the equation 
with which we are concerned may be of a higher order than theirs, 
and also because we must compute the inverse of a matrix at each 
iteration step. On the other hand, it is clear that for many problems, 
even from the standpoint of total computation time, our techniques 
will be more efficient. 
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Convergence Criteria for Transversal 
Equalizers 

By D. W. LYTLE* 
(Manuscript received March 22, 1968) 

Two basic problems in the equalization of data channels using pulse­
amplitude modulation are considered. The first of these is to determine just 
what pulses can be equalized and what the general equalization solution is 
when using a transversal filter. The second problem is to determine if a 
simple iterative search routine will converge to a solution if its exists. 

The unequalized channel impulse response is represented by a polynomial 
whose coefficients are the sample values of the impulse response. If no 
roots of this polynomial lie on the unit circle, the channel can be equalized. 
The transversal filter which equalizes the pulse has tapweight values given 
by weighted sums of powers of the polynomial roots. 

Various necessary and sufficient conditions for iterative convergence 
are developed. Iterative convergence can be guaranteed if the proper linear 
weighting of the output sample errors is used in adjusting the tap-weights. 

1. INTRODUCTION 

This paper is concerned with certain aspects of the automatic equal­
ization of low-noise, linear channels which are to be used for multi­
level pulse-amplitude modulated (PAM) signals. The purpose of the 
equalizer is to compensate for the channel transfer characteristics in 
such a way that the over-all impulse response of the channel is a 
Nyquist-I type of pulse/' 2, 3 that is, as is illustrated in Fig. 1, a pulse 
with a central peak and uniformly spaced zeros with period T. If 
such an impulse response is achieved, a sequence of amplitude modu­
lated impulses with period T can be transmitted and the sequence of 
amplitudes can be recovered at the receiver by simply sampling in 
synchronism with period T. 

Certain obvious questions such as how to achieve synchronism and 

* University of Washington, Seattle. 
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~--- CENTRAL SAMPLE VALUE 

t t t SAMPLE TIMES WITH SPACING T t t t 

Fig. 1-A Nyquist-I pulse with central sample and zeros at periodic sample 
times. 

the effects of sampling jitter, nonlinear distortion, and additive noise, 
although of great importance, are neglected in this presentation in 
order to concentrate on the methods of adjusting the equalizer. Thus, 
we assume a perfectly synchronized, noiseless, linear channel with 
an ideal sampler. Some further constraints which should simplify and 
clarify the presentation are as follows. We specify that the equalizer 
is to be a transversal (tapped delay-line) filter with tap weights {aT,J 
which can be adjusted. If the input to this filter, illustrated in Fig. 2, 
is f3 (t), then the output, y (t) , is 

N 

'Y(t) = 2: a;(3(t + jT). (1) 
i--n 

Notice the tap-weight numbering convention and the treatment of 
the delay-line as being composed of negative as well as positive delay. 
These conventions will simplify the notation in future derivations. 

Although the equalizer may be placed at many points within the 
communication system, for convenience we will consider it to be the 
final component other than the final sampler. Thus, the objective is 

f3 (t) 

">--~'Y(t) 

Fig. 2 - A transversal filter with input p(t), tap weights a;, and output 'Y(t). 
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to adjust the tap weights so that the output, y (t), is a Nyquist-I 
pulse when the input, f3 (t), is the impulse response of the system be­
fore equalization. 

As a final simplification we assume that the tap-weight adjust­
ment is to be carried out when the impulse response is available at 
the input. This "training period" assumption avoids the added com­
plexities of extracting channel characteristics when data are being 
transmitted. 4 However, the properties to be developed can be readily 
extended to continuously adaptive equalization. 

II. TIMING AND THE ROOTS OF THE IMPULSE RESPONSE 

Since the output of the equalizer is to be sampled, we need con­
sider only its effect on the output sample values {Yle}. Ideally, with 
an impulse applied to the channel input, one of the output samples, 
say Yo, should have unit amplitude while all the others are zero. The 
tap weights are to be adjusted in order to approach this goal. An ad­
ditional parameter which will affect the equalization is the timing. 

Let the sample values of the impulse response at the equalizer 
input be the set {f3j} where 

(3i = (3(jT) (2) 

and 

(3(t) = h(t + r). (3) 

Equation (3) is to indicate that the sampling times are arbitrary. 
This is, if h (t) is the channel response to an impulse applied at t = 
0, then the sample set {f3j} is a function of the factor r. Notice that 
our assumption of perfect synchronization means that the periodicity 
factor, T, in equation (2) is the proper value. But it does not imply 
that T is prescribed. vVe shall see that the operation of the equalizer 
depends very strongly upon the value of T. 

This impulse response is to be equalized by the transversal filter 
with tap weights {ale}. The transversal filter output sample set is 
{Yle} where 

(4) 

The sample set {f3j} will be considered finite in extent, that is, 

{3j = 0 for j < -1n and j > M. (5) 

This is a reasonable approximation for any actual channel. 
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This sample set may be treated as the coefficients of a polynomial 
B (z). 

B(z) = f3MZ M
+m + f3M_ 1Z

M
+

m
-

1 + ... 
+ f30zm + ... + f3-m+lZ + f3-m . (6) 

In factored form B (z) may be written as 

B(z) = {3l1f(z - ( 1)(z - ( 2) ••• (z - (1)(z - <Pl)(Z - <P2) ... (z - <Po) (7) 

where the roots inside the unit-circle are denoted by the () values and 
the roots outside by the <p values. 

\O\<1<\<p\ 
I+n=M+m. 

(8) 

(9) 

As we have noted, the sample set {Pj} is a function of the factor T. 

Thus, for any particular channel, the roots of equation (7) will 
wander as T is varied. Each root will wander on some cyclic path 
which has a period T. That is 

(10) 

This is illustrated in Fig. 3 where a pulse shape is shown and in Fig. 4 
where the root loci are shown for variations in T. Notice that as T in­
creases from 0 to T, at least one of the roots, regardless of the pulse 
shape, will cross the unit circle. 

Perhaps the periodicity of the roots can be better understood if 
the sampling is thought of as multiplication by a comb of impulses 
with spacing T. Each impulse has associated with it a power of z. For 
example, in equation (6), we see that the impulse yielding the earliest 
nonzero sample (P-m) is associated with the zero power of z, the next 
impulse yielding P-m+l is associated with the first power, and so on. 
As the comb is moved relative to the pulse, P (t), the impulses produce 
different samples and when moved a whole period T, the comb will 
reproduce the original samples again. However, each sample would 
be paired with a one-higher or one-lower power of z than previously. 
Thus, for example, if the comb were shifted by T so that the powers 
of z were one higher, the factorization of equation (7) would be ob­
tained with the same roots except for an additional root at z = 0 
since the original polynomial is multiplied by the first power of z. 
As the comb is shifted along, the additional root, which must even­
tually go to z = 0, comes in from z = 00 and at some particular shift 
crosses the unit circle. 



EQUALIZER CONVERGENCE 1779 

--~~~--------~L-------------------------~------~------~t 

t 
7.0 

• I 
I 
I 

Z 4 

Fig. 3 - A pulse and four nonzero sample positions which yield a polynomial 
with roots marked 1 in Fig. 4. Nine additional sets of roots are obtained by mov­
ing the positions above to the right in increments of T /10. 

llMAGINARY AXIS 

...... --UNIT CIRCLE 

4 

REAL AXIS-

z PLANE 

Fig. 4 - Root loci for pulse of Fig. 3. Scale inside circle is magnified four times. 



1780 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

III. IDEAL TAP-WEIGHT ADJUSTMENT 

Let us now consider the problem of forcing the "'/k to zero. The 
desired conditions are 

1'0 = L ad3 i = 1 (11) 
and i 

I'k = L aJ3 i +k = 0 k ~ O. (12) 
i 

Equations (11) and (12) in the form of a matrix array is as follows. 
We shall assume temporarily that the number of taps is infinite. 

o 0 {311f •.. ••. {32 {31 {3o {3-1 {3-2 ... ..• {3-m 0 1 
o 0 {311f •.• {33 {32 {31 {3o {3-1 {3-2 ••• • .• {3-m 0 

o {311f ••. {33 {32 {31 {3o {3-1 {3-2 ... • •• {3-m 0 ... j 
o f3 M ... f30 f3, ~' f30 f3-1 f3-, •.. ... f3-m .. . 

a2 0 

al 0 

ao 1 
(13) 

a-l 0 

a-2 0 

(X-3 0 

Now let us consider a typical equation of the form, 

M-k 

L (Xi{3k+i = 0 (14) 
i=-m-k 

where we will take either the case where k < -m or k > M. If these 
conditions on k are satisfied, then equation (14) involves a values with 
only positive subscripts or only negative subscripts. Equation (14) is 
a linear homogeneous difference equation in the variable aJ. Such 
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equations have solutions of the form 

Substitution of equation (15) into equation (14) yields 

{3MzM-k + {3M_IZM-k-l + ... + {3lZl-k 

+ {3oZ-k + {3_lZ-l-k + ... + {3_mz-m-k 

= Z-m-k[{3MZ M+m + {3M_1ZM+m-1 + ... + {3ozm + (3-m] 

= z-m-kB(z) = O. 

1781 

(15) 

(16) 

Equation (16), and hence equation (14), will be satisfied for z 
equal to one of the roots of the impulse response polynomial B (z) . 
And since we have a linear homogeneous equation, any linear com­
bination of solutions is a solution. Thus, the general solution is 

ai = Cler + C2e~ + ... + C1e~ + Dl¢r + ... + Dn¢~ (17) 

The constants, C 1, C 2, .•• , C I, D 1 , D 2 , ••• , D!l, are arbitrary and 
will be adjusted to meet the boundary conditions. One boundary con­
dition which should be imposed is the following. Eventually, we must 
approximate this infinite delay line with one of finite extent. This 
truncation should throwaway only taps of small magnitude, and thus 
the tap weights should decrease in magnitude away from the center 
tap. Consequently, we demand that (Xj ~ 0 as Ijl ~ 00. Thus, 

= C1 = 0 for j negative. 

Dl = D2 = = Do = 0 for j positive. (18) 

In effect, we have two solutions; one for taps with negative sub­
scripts and one for taps with positive subscripts. 

(19) 
ai = D 1¢r + D2¢~ + + Dn¢~ for j < o. 

The region of overlap in equation (13), that is, the region where 
the equations involve tap weights with both positive and negative 
subscripts, will determine the arbitrary constants. To illustrate this, 
let us consider the impulse response of Fig. 2. For one set (No.8) of 
samples, the samples are -2, 3, 11, -6 and the roots are 0.5, 3, -2. 
Thus 

ai = C1(0.5/ for j > 0 
(20) 

ai = D1(3)i + D 2 ( _2)i for j < o. 
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Now, C1 , D1 , and D2 may be found by using equation (20) in equa­
tion (13). However, first we must assign an origin in our pulse. That 
is, we must decide whether -2, or 3, or 11, or -6 is to be called /30, 
Solutions exist for each of these possibilities, but only one of these has 
certain desirable properties which we will discuss later. In this case, 
f30 should be the sample of magnitude 11. With this assignment, equa­
tion (13) may be written 

-2[CJ (.5t] + 3[C1(.5)3] + 11[C1(.5)2] - 6[C1(.5)] = 0 (21a) 

-2[C1(.5)3] + 3[C1(.5)2] + lllC1()5)] - 6ao = 0 (21b) 

-2[C1(.5)2] + 3[C1(.5)] + 11ao - 6[DJ(3)-1 + Dl-2)-1] = 1 (21c) 

-2[C\(.5)] + 3ao + 11 [D1(3)-J + D2(-2)-I] 

- 6rD1(3)-2 + D 2 ( -2f2] = 0 (21d) 

-2ao + 3[D1(3)-1 + D 2(-2)-1] + II[D1(3)-2 + D 2(-2f2] 

- 6[DJ(3)-3 + D 2 ( _2)-3] = 0 (21 e) 

-2[D1(3)-1 + D2 ( _2)-1] + 3[D 1(3)-2 + D 2 ( _2)-2] 

+ 11 [DJ(3)-3 + D 2 ( _2)-3] - 6[DJ(3)-4 + Dl-2f4] = 0 (21£) 

Equations (21a) and (21£) and all others above and below these two 
are automatically satisfied for any choice of C1 , D1 , D2 • Consider 
equation (21b). In order for it to be satisfied, ao must be equal to C1 

(0.5)°. Similarly, for equation (21e) to be satisfied, £Yo must equal 
Dd3)0 + D 2 (-2)0, 

(22) 

and equation (21) yields the following values for the C and D con­
stants. 

D1 = 2/951 

D2 = 5/9~ff3o = 11. 

C1 = 7/9b 

(23) 
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If we had chosen to let /30 be the sample of magnitude 3, we would 
obtain 

-10/951 
1.5/95Jf3o = 3. 

5/95 

If the sample of magnitude 2 is made /30, then 

D, = 9/251 

D2 = 4/25Jf3o = 

C1 = 1/50 

-2. 

(24) 

(25) 

In these last two examples, the solutions may be considered inferior 
because the tap weights away from the center tap will be larger than 
in the first example. However, stronger objections to the last two 
choices for /30 will be raised shortly. 

A point of considerable interest is apparent in the development 
above. If any of the roots fall on the unit circle, then no solutions 
exist in which the tap weights decay in magnitude in both directions 
away from the center tap. 

IV. TRUNCATION EFFECTS 

In any practical equalizer, the number of taps available is not 
infinite. Thus, we must investigate the effects of limiting the number 
of taps to some reasonable finite value. For example, let us suppose 
that we have N + n + 1 taps. 

(Xi = 0 for {j < -n 
j> N 

(26) 

Let us consider two schemes for setting the truncted tap weights. 
A more or less obvious way is simply to take the infinite solution 
[for example, equation (23)] for all available taps. This can be rep­
resented in matrix form: 

(27) 

The matrix [Boo] is the infinite matrix of /3 values shown in equation 
(13). The truncated tap set is [aT], 
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0 

0 

aN 

aN-I 

al 

[aT] ao (28) 

a-I 

a-n 

0 

0 

and [y] is the matrix of output sample values. Notice that [aT] may 
be written as 

[ad = [a~] - [a ,] (29) 
where [aoo] is the infinite set of tap weights which give us the desired 
output and 

aN+2 

aN+l 

0 

0 

[at] = 0 (30) 

0 

a-n-l 

a- n -2 
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Thus, equation (27) becomes 

(31) 

The desired output [fL], all zero samples except the central one with 
unit magnitude, is given by [Boo] [aoo ] while the error set [e] is given 
by [Boo] [at]. 

It is possible to calculate this error set exactly, but an approxi­
mate bound should suffice. Assume that Nand n are large so that the 
a values in [ad depend only on the roots which are the nearest to the 
unit circle. Let the magnitude of nearest inside and outside roots be 
()u and cpu. Then a pproxima tely 

I"J e~ for j > N 
(Xj= (32) 

cf>~ for j < -n 

Consequently the largest component of any error term in [€] will be 
about 

(33) 

and each error term is the sum of less than N + n + 1 components. 
Thus, an upper bound on the error terms is 

which vanishes as Nand n are made very large. 

v. A SECOND METHOD OF TRUNCATION 

This second method offers no improvement in ultimate equaliza­
tion over the method just discussed. However, it does lend itself to 
iterative adjustment techniques whereas the first method tacitly as­
sumes a computation which provides the proper infinite solution to 
begin with. In this second method we require that all the output sam­
ples (excluding YO) corresponding to the N + n + 1 taps, that is, 
YN, YN-l, •.• ,Y2, Yl, Y-l, Y-2, ... , Y-n+l, Y-n, be zero. This criterion 
may be called the Lucky criterion since it is the one R. 'Y. Lucky 
has used in his work. 5 

What does this criterion mean in terms of the solutions (powers of 
impulse response roots) we discussed for the infinite tap case? Weare 
essentially constraining our system further by another set of boundary 
conditions. We will call these boundaries the positive boundary at aN 

and the negative boundary at a-n, in addition to the central boundary 
around ao where we have already discussed satisfying boundary con-
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ditions (those specifying C1 , C2 , ••• , D 1 , D2 , ••• ). As an example, 
let us consider the equations at the positive boundary. 

130(XN + f3-I(XN-I + ...... + f3-m(XN-m = 'YN 

131(XN + f30(XN-I + ... + 13-m(XN-(m+t) = 'YN-I 

= 0 (35a) 

= 0 (35b) 

13M-I(XN + f3M-2(XN-I + + 13-m(XN-(m+M-t) = 'YN-(M-I) = 0 (35 c) 

f3M(XN + 13M-I(XN-I + ... + 13-m(XN-(m+lIf) = 'YN-M = 0 (35d) 

Equation (35d) can be satisfied with the solutions determined by 
the central boundary, that is 

(Xj = clef + C2e~ + ... + Cre~ . (36) 

However, this solution will not satisfy the M equations above equa­
tion (35d) since the complete set of f3 values is missing in these equa­
tions. The exponentially growing solutions which were discarded 
earlier must be used now. Thus, 

(Xi = Cle~ + ... + Cre; + c1e: + C2e~ + ... + cncf>b for j> 0 
(37) 

(Xi = Dlcf>~ + + D!lcf>~ + dle~ + d2e~ + + dre; for j<O 
(38) 

must be used in order to satisfy all the boundary equations. If 0 = M, 
then the lower case c's in equation (37) provide just enough con­
stants to satisfy the M equations of equations (35a through c). Fur­
thermore, I will equal m and the I lower case d's will provide just 
enough constants to satisfy the m boundary equations at the nega­
tive boundary. 

To illustrate the preceding discussion, let us return to the specific 
example discussed previously. We use the results of equation (23) 
with 

132 = -2, f31 = 3, 130 = 11, 13-1 = -6. (39) 

The positive boundary equations are 

11 [C1(.5)N + cI(3)N + C2( -2t] 

- 6[C1(.5)N-I + cI(3)N-I + c2( _2)N-I] = 0 
(40) 

3[C I (.5)N + cI(3)N + c2( -2t] + 11[CI (.5)N-I + c2 ( -2t- l
] 
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_2
N-1( -22 - 6) J[CIJ 

- 2N
-

2(12 - 22 - 6) CL 

1787 

[ 
.5N(1l - 12)C1 ] (41) 

= .5N (3 + 22 - 24)C
1 

• 

If we assume that N is large enough so that the value of the C 
and D variables are unaffected by inclusion of the other roots, then 
these C and D values may be used to determine the C and d values. 
With 0 1 = 7/95, equation (41) becomes 

[
9 14l[c~J = [- e] 6 -4J c~ e 

(42) 

where 

e = (;5)(.5t. (43) 

Thus, 

C' -1 - ej12 c' -2 - -ej8 

(;5)(·5)N (:~)(.5t (44) 
C1 = 

(3)N 
C2 = 

(_2)N 

Similarly, d1 can be found by the single boundary equation at the 
negative boundary. 

[2(~)(3)-n + 9(~)( _2)-n] 
d = _ 95 95 ( 5)" 

1 12 . . (45) 

The results worked out above can be roughly represented graphi­
cally as in Fig. 5 where the magnitudes of the roots to the tap-number 
power are illustrated. This figure shows what will be called a "good" 
solution. That is, the decaying solutions predominate with the grow­
ing solutions contributing only a small amount at the positive and 
negative boundaries. The residual errors, that is, the "/k values for k > 
Nand k < -n, will be of the same order of magnitude as those of 
the first truncation method. 

In order to have a good solution as demonstrated above, the proper 
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-------==-~----~------------~~~----~j 
-n o N 

Fig. 5 - Solution behavior for truncated equalizer. 

number of arbitrary constants must be available to satisfy the posi­
tive and negative boundary equations. The number of equations at 
the positive boundary is M, and the number of available constants 
(outside roots) is n; similarly, there are I constants (inside roots) 
available for the m equations at the negative boundary. Thus, the 
necessary conditions for a good solution are 

no. outside roots = n = M = no. of samples following (30}. (46) 
no. inside roots = I = m = no. of samples preceding (30 
We may use the same simple pulse to demonstrate a "bad" solu­

tion. If we go back to equation (24), we see that an infinite (non­
truncated) solution exists for the situation in which we decided to let 
(30 = 3. The number of inside and outside roots remain the same in 
this case, but M and m are both changed. Now M = 1 and m = 2, 
and equations (46) are no longer satisfied. All the boundary condi­
tions can still be satisfied, but not in such a simple manner. That is 
to say, in the preceding example, satisfying equations (46), a sepa­
ration of solutions is possible. The central boundary specifies the 
values of the upper-case constants, then the lower-case constants are 
set to compensate for the truncation effect at the positive and nega­
tive boundaries. Since the necessary compensation is small, and since 
the effect of the lower-case constants dies out towards the central 
boundary, only minor or negligible corrections to the upper-case con­
stants are necessary to keep the central boundary conditions satisfied. 

Now let us consider what takes place when this step-by-step solu-
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tion is attempted when equations (46) are not satisfied. Suppose C1, 
D1 , and D2 are set to satisfy the central boundary according to equa­
tion (24). At the positive boundary, only one of the lower-case c's is 
needed so no difficulty arises and the positive tap solutions will, to this 
point, be little different from that illustrated in Fig. 5. However, at 
the negative boundary, the single available arbitrary constant d1 is 
not enough to satisfy the two boundary equations which occur in this 
case. All the upper and lower case d-constants can be adjusted to 
satisfy the negative boundary conditions, but this will destroy the 
equilibrium of the central boundary solution since any change in the 
upper-case D's does effect the central equations. If one of the upper­
case D's is constrained by the negative boundary, then the remaining 
unused lower-case c can be brought in to provide enough arbitrary 
constants to satisfy the central boundary conditions. The net effect of 
all this will generally be that a growing solution must be made to 
have a nonnegligible contribution at the central boundary. Conse­
quently, it will be large at the positive boundary. This is illustrated 
in Fig. 6. 

When the situation discussed above and represented in Fig. 6 oc­
curs, the residual values of Yk outside the equalization region will be 
large and will generally grow larger as the number of taps is increased. 

As an actual example of a bad solution of the type discussed above, 
consider the pulse illustrated on page 563 of Ref. 5. The polynomial 

-----_-nL-~==----oL-----~---------NL-~j 

Fig. 6 - Typical solution behavior when the conditions of equations (46) are 
not satisfied. 



1790 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

which represents this pulse with Po set as the peak value is 

B(z) = 15z8 
- 20z7 + 40l - 60l + OZ4 + 115l 

+ 60z2 + 20z + 10. (47) 

Notice that with this choice for Po, 

M = 5 m = 3. (48) 

The root locations for this polynomial are illustrated in Fig. 7. There 
are four inside roots (I = 4) and four outside roots (0 = 4). Con­
sequently, equations (46) are not satisfied and no good truncated 
solution exists. This is verified by the fact that when Lucky at­
tempted to equalize this particular pulse, the equalizer gave an output 
pulse with large Yk, k > N. This indicates that a solution such as that 
shown in Fig. 6 has been approached. 

Im(z) 

~ 
\ 

\ 

/ 
/ 

Re(z) 

~ , 
UNIT CIRCLE-" 

I 

I 
t 

Fig. 7 - Root locations of pulse page 563 of Ref. 5. B(z) = 15z8 - 20z7 + 40z6 -

60z6 + OZ4 + 115z3 + 60z2 + 20z + 10 (h, (h* = 0.404 L ± 89.8° 02, O2* = 0.652 
L ± 169.9°1/>1,1/>1* = 1.642 L ± 27.7°1/>2,1/>2* = 1.894 L ± 94.4°. 
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If Po were shifted (delayed) one sample so that it would be the 
coefficient of the fourth-degree term of B (z), then equations (46) 
would be satisfied and a good truncated solution would exist. Notice 
however, that in this case Po would be zero which presents a severe 
problem in iteratively searching for this good solution. 

VI. ITERATIVE SEARCH FOR EQUALIZATION 

The discussion has indicated that, except for singular cases where 
one or more roots of B(z) are on the unit circle, equalization solutions 
exist (for the infinite tap case) in which tap weights decrease expo­
nentially in both directions from the center tap. Furthermore, good 
truncated solutions exist which force all 'Yk (-n ~ k ~ N, k ~ 0) 
to zero if f30 is selected to satisfy equations (46), which can always 
be done. The question which now arises is whether a simple iterative 
search routine will lead to a desirable equalization. 

When presented with an impulse response to be equalized using a 
truncated equalizer and the Lucky criterion of forcing output samples 
to zero, a hierarchy of questions must be considered: 

(i) Is the pulse equalizable? That is, are all the roots off the unit 
circle? (If there are roots on or very close to the unit circle, a change 
of timing, that is, varying T in equation (3), will usually move the 
roots off the unit circle.) 

(ii) If the pulse is equalizable, does a good truncated solution exist? 
A shifting of f3 subscripts can always guarantee the existence of a good 
solution by satisfying equations (46), but will sometimes create con­
vergence problems. 

(iii) If the pulse is equalizable and a good truncated solution exists, 
will a simple iterative search find this solution? 

The iterative method of searching for a solution which we consider 
first consists of measuring the value (/'7,;) of the kth output sample, 
then subtracting some part of this from the kth tap weight.* That is 

(49) 

where the superscripts indicate the iteration number and ~ is a posi­
tive number less than one. This iterative process is not identical to 
the method presented in Ref. 5 which increments the tap according 

* This is not the only possible iterative search method, but it is one of the 
simplest. 
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to only the sign of "/k. 

(50) 

However, the two methods are very similar, and convergence of one 
will almost always guarantee convergence of the other. 

In matrix notation, the linear iterative search of equation (49) can 
be written as 

where 

a= 

B= 

o 
o 

o 
J.1. = 1 

o 
o 

o 
f30 f3-1 f3-2 ........... f3-m 0 0 0 0 l 
f31 f30 f3-1 f3-2 ........... f3-m 

f32 f31 f30 f3-1 f3-2 ........... f3-m 

f32 f31 f30 f3-1 f3-2 ........... f3-m 

f30 

f30 

f30 

f30 

(51) 

(52) 

(53) 
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Equation (52) can be modified by using equation (51), 

(I - fl.B)E(r-n 

(I - fl.B),E(O) 

where I is the identity matrix. 
Clearly, the iterative routine will converge if 

lim E(r) = o. 

1793 

(54) 

(55) 

However, it does not quarantee convergence to a good solution as 
illustrated by the pulse of equation (47) and Fig. 7. There, con­
vergence does occur as was illustrated in Ref. 5 and hence, equation 
(55) is satisfied but convergence is to a bad solution. In that case 
no good solution exists to which the routine can converge. 

The necessary and sufficient condition for convergence is that 

lim (I - fl.BY = o. (56) 
r-+oo 

The matrix of equation (56), that is, the matrix I -6.B will converge to 
zero if and only if all its eigenvalues are less than one in magnitude.6 

:This is equivalent to the condition, illustrated in Fig. 8, that the 
eigenvalues of B lie within a circle of radius 1/6. centered at 1/6. on 
the real axis. Assuming that 6. can be made as small as necessary, a 
necessary and sufficient condition for iterative convergence is that all 

U) 

x 
4: 
>-a:: 
4: 
z 
(3 
4: 
;; 

REAL 

0 AXIS 

Fig. 8 - Necessary relation of Ll to location Of eigenvalue in complex plane. 



1794 'l'HE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER In68 

eigenvalues of B should have a positive real part. If this condition is 
not satisfied, (1-AB) r will diverge, and even if the initial error vector 
£(0) is very small, the final error vector will grow without bound. 

The italicized condition above, coupled with the root location con­
dition of equation (46), guarantees convergence to a good solution. 
Certain other more restrictive sufficient (but not necessary) condi­
tions can be derived. These conditions may be easier to check for a 
channel impulse response. 

6.1 Necessary and Sufficient Condition for Monotonic Convergence. 

The convergence of the iterative process will be called monotonic 
if for any starting error vector .£(0), the following inequalities hold (a 
superscript t indicates the transpose of a matrix). 

II e(O) II > II e(l) II > II e(2) II > ... > II e(r) II> II e(r+l) II > 

Since 

it follows that 

(r)' (r) II e(r) II = e e 

(r+l) 
e 

N 

i .... -n 

II e(r+l) II = e(r+l)'e(r+l) = e(r)'(I - tl.B)t(I - tl.B)/r) 

= e(r)'e(r) + tl. 2 [Be(r)]t[Be(r)] _ tl.e(r)'[B t + B]e(r) 

(57) 

(58) 

(59) 

= II e(r) " + tl. 
2 "Be(r) " - tl.e(r)' [B' + B]e(r) . (60) 

Thus, equation (57) will be satisfied for all possible initial error vec­
tors if an only if 

e'[B' + B]e > tl. II Be II = tl.(Be) I (Be). (61) 

Since the right side of the inequality is always positive, the inequality 
can be satisfied for all possible nonzero £ only if [Bt + B] is positive­
definite. If this is true and 

(62) 

then equation (61) will be satisfied for all .£ and the iterative process 
will be monotonically convergent. 
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If [Bt + B] is not positive-definite, convergence can still occur. 
However, stating the conditions for convergence becomes more dif­
ficult. For example, if r Bt+ B] is not positive-definite then for some 
vector, say €(r-I), 

(63) 

and 

II E(r-l) II < II E(r) II . (64) 

But if for € =E(r-l) 

(BE/rB t + B](BE) > d~ 1L'l~ II B2E II + 2L'l2 II BE II 

+ L'l2 II [Bt + B]E \I - 2L'lEt[Bt + B]E} (65) 
then 

\I E(r-I) \I > \I E(r+1 II . (66) 

Very roughly speaking, equations such as (65) which can be developed 
indicate that [Bt+B] should yield a predominantly positive quadratic 
form in order to have convergence. What we mean by this can best 
be illustrated graphically, as in Fig. 9. 

6.2 Further Sufficient Conditions for Monotonic Convergence 

The positive-definiteness of [Bt+ B] is a necessary and sufficient 
condition for monotonic convergence. Being somewhat more restric­
tive will yield other sufficient (but not necessary) conditions. We 
notice that [Bt + B] is a Toeplitz matrix, that is, 

-- - NEGATIVE REGION 

VARIATION IN DIRECTION OF VECTOR £ WITH 
ITS MAGNITUDE 11£11 HELD CONSTANT 

Fig. 9 - Illustrating a predominately positive quadratic form. 
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Thus, it has some of the necessary attributes of a correlation matrix. 
A correlation matrix is positive-definite, so if we can show that 
[Bt+B] is a correlation matrix, then this is sufficient for positive­
definiteness. If [Bt + B] is a correlation matrix then the polynomial 
B(z) + Bt(z) =P(z),where 

B(z) = f3u zM +
m + ... + f3-m 

(68) 

must have no odd order roots on the unit circle. Root locus methods 
may be applied here, that is, the loci of 

B(z) 
Jjt(z) = -k (60) 

must not cross the unit circle. Notice that this is a necessary condi­
tion that [Bt + B] be a correlation matrix and it is sufficient but not 
necessary for [Bt + B] being positive-definite. 

A more restrictive condition leads to another sufficiency condition. 
If (Lucky condition, Ref. 5) 

f30 > L I f3k I, that is, Do < 1 (70) 
kr<O 

then it is easy to see that Bt(z) + B(z) has no roots on the unit 
circle and thus [Bt + B] is a correlation matrix and positive-definite. 
Notice that equation (70) is not a necessary condition for [Bt + B] 
being a correlation matrix. 

The various conditions discussed above are summarized in Fig. 10. 

I 
I 

/' - SPACE OF ALL B MATRICES 
/ 

/-(30 SATISFIES ROOT-LOCATION CRITERION, Eq.(46) 

/ 

"­
"-

- CONVERGENT REGION 
WHERE Re (A) > 0 

- MONOTONIC CONVERGENCE 
WHERE (st+s) IS 
POSITIVE - DEFINITE 

Cst+S) IS CORRELATION 
MATRIX 

'-- -INITIAL ASSOLUTE DISTORTION Do <1 

Fig. 10 - Illustrating the different convergence regions. 
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VII. MODIFIED ITERATION PROCESSES 

In the sample iteration process which has been discussed to this 
point, the change in tap weight (Xj depends only on the output sam­
ple value Yj. Let us generalize so that the change depends on a linear 
combination of output samples. 

Bex (r) (r) 

l =')' 

(r) (r) 
- JL = Bex (r) E; =')' -T (r+l) (r) - Ll VE;(r) ex =ex 

(71) 

That is to say, the (1' + 1) st value of tap j is 

(72) 

Nlanipulation of equations (71) leads to a result similar to equation 
(54) 

(r) 
e [1 - LlBVr /0) . (73) 

Consequently, all the sufficient and necessary conditions which have 
been developed on the previous pages can now be applied to the 
matrix BV. Now, however, we have considerably more latitude since 
we are free to specify V. 

As an example, let us suppose that V is chosen to equal Bt. Then 

BV = BBt = positive-definite (74) 

and monotonic convergence is guaranteed. This is a particularly ap­
pealing way of selecting V since the sample weighting can be deter­
mined directly from the initial channel impulse response. 

Vjk = Vj-k = {3k-i • (75) 

It is very interesting that the weighting suggested above is very 
nearly equivalent to inserting a tapped-delay-line matched filter 
ahead of the equalizer. A matched filter, whose tap weights are equal 
to thef3 values in reverse order, will yield an output whose samples 
will form a B matrix which is a correlation matrix. Thus, the itera­
tive search will be monotonically convergent in this case also. The 
weighting suggested above yields the same matrix except for "edge 
effects." 

This can be illustrated by the following example. Suppose there 
are just three f3 values: f3-1 =1, {3o = 2, f31 = -2. Then, with V set 



1798 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968 

equal to Bt, and assuming a six-tap equalizer so that B is a 6 X 6 
matrix, we obtain 

-2 -2 0 

9 -2 -2 

-2 9-2 

-2 -2 9 

o -2 -2 

o 0-2 

o 
o 

-2 

-2 

9 

-2 

(7G) 

On the other hand, the modified B matrix following a matched 
filter would be 

-2 

9 

-2 

-2 

o 

o 

-2 

-2 

9 

-2 

-2 

o 

o 
-2 

-2 

9 

-2 

-2 

o 
o 

-2 

-2 

9 

-2 

~1 
-2] 
-2 

9 

(77) 

Setting V = Bt will guarantee monotonic convergence. However, 
since in most cases B is such that [Bt + B] is close to being positive­
definite, it is probable that a less extensive V would be sufficient to 
guarantee monotonic convergence. As an example, suppose that V 
is chosen to be a small deviation on the standard iteration of equa­
tion (58) 

v = I + oBt, o > O. (78) 

Now, 

BV = B + oBBt (79) 

will have a quadratic form which is greater for every vector € than 
the quadratic form for the matrix B alone. Thus, if the negative re­
gion such as is illustrated in Fig. 8 is small, then BV can become posi­
tive-definite for relatively small o. 

Perhaps a more reasonable way of selecting a V which approximates 
Bt is to modify equation (75) in the following manner. 
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{~;-' if I (3k-i I ~L (80) Vjk = Vj-k = 0 
if I (3k-i I <L 

Thus, only the more significant values of (3 are used in weighting the 
errors. In general such a V will force B towards positive-definiteness. 
However, there seems to be no general rule for selecting the critical 
value of L, that is the maximum L which will just permit positive­
definiteness. 

VIII. CONCLUDING REMARKS 

Virtually all input pulses are equalizable in the sense that there 
exist tap-weight adjustments which will force the output samples in 
the adjustment interval to zero while the output samples out of the 
adjustment interval remain small. Furthermore, the residual samples 
outside of the adjustment interval will become smaller as the number 
of taps (length of transversal filter) is increased. 

There are just two necessary conditions in order for the preceding 
statement to hold. The first is that the polynomial representing the 
input pulse have no roots on the unit circle. Although the singular 
case where roots are exactly on the unit circle is highly improbable, 
roots very near the unit circle lead to relatively larger residual er­
rors and greater potential for instability. 

The second necessary condition is that the selection of the central 
sample value must be such that equation (46) is satisfied. 

Although a pulse may be equalizable, the simple first-order itera­
tive search for the proper tap weights given by equations (51) and 
(52) may not be convergent. If it is convergent, and assuming the 
two conditions above are satisfied, it will converge to the proper tap­
weight settings. If it is not convergent, it will be divergent with in­
creasing errors in the adjustment interval. The convergence or diver­
gence is independent of the initial tap settings. Thus, even though 
the tap weights might be set to optimum initially, if the system is in 
the iterative search mode and is divergent, it will eventually diverge. 

The necessary and sufficient condition for convergence is given in 
Section VI along with a hierarchy of more stringent sufficient condi­
tions. In general, convergence will be dependent upon the absolute 
timing of the sampling. Consequently, a particular pulse which is 
equalizable for two different timings might be convergent for one 
timing and divergent for the other. 

If the first-order iterative procedure is divergent, a more complex 
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weighting of the output errors in adjusting the tap weights can im­
prove the situation. At least one weighting given by equation (75) 
will guarantee convergence. 
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On SolutiollS for Two Waves with 
Periodic Couplillg 

By s. E. MILLER 
(Manuscript received January 25, 1968) 

An exact solution for the coupling effects between two waves with a 
particular complex periodic coupling function is presented; the particular 
coupling function gives the same wave interactions as constant coupling but 
at a translated value of differential phase constant. A transformation is 
given which permits known theory for constant coupling to be applied to the 
periodic coupling case. 

Approximate solutions are given for periodically reversed coupling 
(sinusoidal or square wave) between two waves, and calculations are pre­
sented which indicate the solutions are valid for arbitrarily long coupling 
regions or arbitrarily large integrated coupling strengths. The region of 
validity for earlier perturbation theory is defined and proved to include the 
cases of interest for multimode circular electric waveguides. 

I. INTRODUCTION 

This paper describes some solutions for two waves with periodic 
coupling. Coupled waves have been important in a wide variety of 
communication devices: transmission lines, directional couplers, am­
plifiers, and in describing mode interchange phenomena generally.l 
lVlultimode transmission lines have been advantageously described 
through coupled wave equations, and a particular situation of im­
portance exists in the circular electric waveguide. 

As first shown by H. E. Rowe and W. D. Warters/ periodic 
straightness variations cause periodically reversed coupling from the 
circular electric wave to several other waves, and this interaction 
results in the most difficult tolerances on the fabrication and instal­
lation of the waveguide itself. Publications by H. E. Rowe and 
W. D. Warters have provided a comprehensive understanding of the 
fundamentals involved and have given explicit expressions based on 
perturbation theory for calculating the loss versus frequency varia-

1801 
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tion resulting from such periodic mode conversion.3 A subsequent 
publication by D. T. Young4 has indicated how the approximate 
solution Df Rowe and Warters may be transformed mathematically 
to show explicitly the way differential attenuation smooths out the 
mode-coupling effects on the loss versus frequency characteristic. 
Young's solution depends upon a valid perturbation solution. A 
discussio~ of the accuracy of the perturbation solution is given by 
H. E. Rowe;5 when the differential attenuation is toO' small the per­
turbation solution breaks down and it is of interest to' know exactly 
where and quantitatively how this occurs. 

We show in this paper that a certain periodic coupling function 
has exactly the same effect on waves of unequal phase constant as 
uniform coupling between waves of identical phase constant. A trans­
formation is given to allow the use of earlier theory for periodically 
coupled waves. 

Also presented here is an approximate solution for the periodic 
coupling distribution sketched in Fig. 2 valid for any value of dif­
ferential attenuation. It is true that known solutions for uniform 
coupling, as in Fig. 1, can be applied to Fig. 2 by simplying solving 
for the output values at x = Am/2 and using these as the input bound­
ary conditions for the transmission region starting at x = Am/2. The 
resulting exact expression representing conditions at X= Am can be 
expressed as a matrix and raised to the nth power to represent the 
solution at x = n'Am . We seek here a simpler form of expression in 
which the functional interrelations can be visualized without exten­
sive numerical calculations. 

II. EXACT SOLUTION FOR TWO PERIODICALLY COUPLED WAVES 

We start with the following equations for twO' coupled waves: 

d 
dz E1(z) = -"IIE I + cz1(z)Ez (1) 

d 
dz Ez(z) = CI2 (Z)E1 - "IzEz (2) 

.. z 

Fig. 1- Constant coupling. 
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c (z) 

+cr----

r-------------------------------------z 
-c 

Fig. 2 - Square-wave coupling. 

in which "/1 and "/2 are the complex propagation constants and C12 

and ~1 are coupling functions. Appendix A shows that the coupling 
functions 

(3) 

and 

C12 = jcp exp (- jkcz) = jcp[cos kcz - j sin kcz] (4) 

give the same solutions previously found 6 for kc 0 provided that 

kc = ({32 - (31) = f)..{3 

where cp is a constant and 

(5) 

(6) 

When (5) holds, complete transfer of power between waves can 
occur. When (5) does not hold, the resulting wave interactions can 
be calculated using previously developed theory for kc = 0 and 
substituting 6.B for 6.{3 in the kc = 0 solutions, where 

(7) 

III. PHYSICAL REALIZATION OF IDEAL PERIODICALLY COUPLED WAVES 

We describe here a physical realization of waves coupled according 
to equations (3) and (4), and cite an advantage in mode selective direc­
tional couplers. 

Figure 3 shows a mode-selective coupler between T E 1~ of rectangular 
guide and T E~l of round guide. The thin dielectric lining is used to break 
the TE~l - TM~l degeneracy. The longitudinal magnetic intensity h~ 
of the TE~l wave is coupled to the longitudinal magnetic intensity h~ 
of TEl~ in the off-axis longitudinal slots and is also coupled to the trans­
verse magnetic intensity h~ of TEl~ in the 45° slots on-axis. In each case 
the magnitude of the coupling is set by the length and width of the slot. 
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t::=~~;;:3l3 
k-------- Am ---------~ \V' 

2 COUPLING 
SECTION A-A SLOTS 

Fig. 3 - TE"lO-TE °01 coupler using unequal phase constants in the rectangular and 
round waveguides. 

The phase reversal of the longitudinal h~ coupling is accomplished 
by reversing the slot position relative to the centerline, and the phase 
reversal of the transverse h ~ coupling is accomplished by reversing the 
slant angle of the slot. One set of slots represents the sine term. It is 
not necessary that any particular fraction of Am be used in a coupler, 
since the coupling is always in the same phase relative to the desired 
waves in the two guides. To accomplish the desired mode selectivity 
the 11(3 between the TEl~ and TE~l waves is made equal to lee = 27r/Am 

as in equation (5). 
An advantage of a coupler of this form, compared with one in which 

constant coupling is used with 11(3 = 0, is that the waveguides can have 
the standard dimensions set by other considerations. 

Other illustrations of useful coupling between waves of unequal phase 
constants will be given in another paper which the author is preparing. 

IV. SQUARE-WAVE OR SINUSOIDAL COUPLING 

We present here the results of Appendices Band C which discuss 
approximate solutions for the cases in which the coupling is a square 
wave as in Fig. 2, or the corresponding sinusoidal 

(8) 

Both solutions are expressed in the form and notation of a previous 
publication6 giving the solution when the coupling is constant, and 
the boundary conditions EdO) = 1.0 and E 2 (0) 0 are impressed: 

(9) 

(10) 
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in which 

(11) 

(12) 

(13)* 

( ila)2 _ i2(il(3*) (ila) 
2c* 2c* 2c* 

(14) 

ill' * = ila + iil(3. 

The wave interactions are described by the above equations provided 
the following values of c* and il(3* given in Table I are used. 

TABLE I - VALUES OF C* AND il(3* 

Coupling function c. A{3. (see Fig. 2) 

Constant = c c t:.~ = (~l - ~2) 

Square-wave of 2 t:.~ _ 27r ~ 1 _ (CAm y magnitude c and - c 
period Am 7r Am 7r 

. (27rZ) C t:.~ _ 27r csm Xm 2 Am 

These solutions, equations (9) and (10), have been obtained in Appen­
dix B by relating the rate of transfer of power (that is, transfer over a 
short length interval) for the periodically reversed coupling to that for 
constant coupling, and noting the effective value of coupling c* and 
effective differential phase constant il(3*. The solutions are correct 
for z equal to an integral multiple of Am/2, and may be in error by less 
than approximately O.2CAm/7r at intermediate values of z. 

There probably should be a correction factor in il(3* for sinusoidal 

* rl corresponds to the + sign and r2 corresponds to the - sign. 
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coupling similar to the radical shown in Table I for the square wave 
coupling; the work done thus far has not defined what it should be, but 
for small CAm the radical is negligible for most purposes. 

The values of Do{3* in Table I bear marked resemblance to equa­
tion (7); however, because the simple sinusoid or square wave cou­
pling phase is two-valued (versus z) instead of continually progressing 
(equations 3 and 4) to provide coupling continuously in step with 
the phase changes of waves 1 and 2, there are local maxima-lCo in 
coupling effects at other values of Do{3 for sinusoidal or square wave 
coupling. Appendix B shows that the wave interaction effects are 
properly described for square wave coupling in the regions near 

(15) 
p = 1,3,5, 

by the transformations 

!1{3. ~ !1{3 - P ~: ~1 - (c;j' (16) 

2c 
(17) 

Because c* drops off rapidly with increasing p the corresponding wave 
interaction effects drop off also. 

4.1 Numerical Comparison of Approximate and Exact Solutions 

A few calculations have been made to find quantitatively the 
error resulting from the approximations made in equations (9) and 
(10) for coupling as in Fig. 2. An "exact" solution is obtained by 
using exact uniform coupling theory on each interval of 0.5 Am, the 
output of one interval being taken as the input to the next interval. 

We take first the simplest case, 

~a = o. 
Then equation (9) becomes 

E, 1.«-0 ~ cxp [i (fl, ~ (3,). ] 

. {cos [ "'- ;cz ] - i]~;) sll[[ "'- ;cz J} (18) 

* Rowe and Warters noted this in their work recorded in Ref. 3. 
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[ 
. ({31 + (32)Z]{ ic . [_;- 2 ]} -exp 2--2-- V-sm V ;CZ (19) 

in which 

~(~{3*)2 + 1 
4c/7r 

(20) 

and ~{3* is as given in Table I for square wave coupling. We notice in 
passing that for ~{3* = 0 

(21) 

(22) 

and the power exchanges completely back and forth between the 
two waves as a function of Z; this is of course identical to the be­
havior in uniformly coupled waves, but with a modified period given 
by the 2/7r factor. 

We take for the first numerical comparison the condition 

so that at ~{3* = 0, El 
numbers used are 

CAm 
-2-

E2 (z) 

------If 
/ I 

/ 
/ 

2 7r -cz =-
7r 2 

o and I E2 I 

CZ 
/ 

/ 

2CZ 
'if 

/ 1 

/ 1/ 
----1--

/ 
/ 

,:: 

1.0. The additional specific 

~ ______ ~ ________ -L ________________ ~Z 

Fig. 4 - Undriven-wave amplitude versus distance for lowest order square­
wave coupling. 
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Am = 2 feet 

z = 1000 feet 

c = 2.46740 X 10-3 ft- 1
• 

Fig. 6 shows a plot of the loss 20 log I El I (labelled I ~a/c I = 0) versus 
.6.{3*Am/2 and Table II shows the comparison of the exact versus approxi­
mate calculations, the latter obtained from equation (9) and associated 
expressions. It may be kept in mind that ~{3 and ~{3* are inversely pro­
portional to frequency in many cases of interest, so that Fig. 6 is a loss 
versus frequency plot associated with a particular periodic coupling 
component. The radical in the expression for ~{3* was ignored in the 
comparison of Table II and this might account for the consistent positive 
difference (approximate-exact) for ~{3Am/2 greater than 7r. Aside from 
the pole at ~{3Am/2 = 7r, the two calculations agree to better than 1 
percent in dB even when the loss is a few tenths of a dB. 

Figs. 6 and 7 and Tables III, IV, and V show similar comparisons 
for ~a = - I c I, ~a = -5 I c I, and ~a = -50 I c I. Excellent agree­
ment is obtained in all cases. 

Table VI shows a comparison of the phase angle on El , computed by 
the two approaches. For the points shown and for the other points 
(not shown) corresponding to the amplitude values of Tables II and V 
the agreement is excellent. Fig. 8 shows a plot of the phase, where odd 
symmetry about ~{3* = 0 is understood. 

A check has also been made on the accuracy of equation (9) in the 
region near ~{3Am = 67r, corresponding to p = 3 in equations (15) through 
(17). The same parameters were used as in the calculations for Figs. 
6 and 7. The results are plotted in Figs. 9 and 10 which represent both 
the approximate calculation from equation (9) and the exact calcula­
tion. The differences are on the same order as given in Table II, and 
are too small to show in the figures. Figures 9 and 10 may be compared 
directly with Figs. 6 and 7 to see the "third harmonic" loss (labelled 
E~ in Figs. 9 and 10) in relation to the "fundamental" loss, Figs. 6 
and 7. 

4.2 Interpretation and Further Simplification 

Consider first the shape of the loss versus ~{3* (equivalent to loss 
versus frequency) curves. In the limit 

(23) 



CAm 
-6-

CZ 
------{ 

.t 

/ 
/ 

/1 
/ 1 

/1 

SOLVING COUPLIN G EFFECTS 1809 

~----~L-----~~----~----------------------~~z 
Am 

Fig. 5 - Undriven-wave amplitude versus distance for "third harmonic" in 
square-wave coupling. 

TABLE II - EXACT AND ApPROXIMATE CALCULATIONS 

OF El FOR I jj.a/c I = 0 

~~(~) 
20 log I El I Approximate 

Approximate Exact -exact 

11" - 0.0157079 - 0.1662db - 0.1680db + 0.0018db 
11" - 0.01413716 - 0.1389 - 0.1403 + 0.0014 
11" - 0.01256637 - 0.0094 - 0.0096 + 0.0002 
7r - 0.01099557 - 0.0951 - 0.0960 + 0.0009 
11" - 0.009424777 - 0.4270 - 0.4300 + 0.0030 
11" - 0.0078539816 - 0.4973 - 0.4999 + 0.0026 

11" - 0.006283185 - 0.1156 - 0.1161 + 0.0005 
11" - 0.0047123889 - 0.1260 - 0.1267 + 0.0007 
11" - 0.00314159264 - 1.6530 - 1.6582 + 0.0052 
11" - 0.0015707963 - 6.4362 - 6.4540 + 0.0178 

11" - 122.73 - 58.54 
11" + 0.0015707963 - 6.4362 - 6.4184 - 0.0178 
11" + 0.00314159264 - 1.6530 - 1.6481 - 0.0049 
11" + 0.0047123889 - 0.1260 - 0.1255 - 0.0005 
11" + 0.006283185 - 0.1156 - 0.1154 - 0.0002 
11" + 0.0078539816 - 0.4973 - 0.4949 - 0.0024 

11" + O. 00942477 - 0.4270 - 0.4243 - 0.0027 
11" + 0.01099557 - 0.0951 - 0.0944 - 0.0007 
11" + 0.01256637 - 0.0094 - 0.00964 + 0.0002 
11" + 0.01413716 - 0.1389 - 0.1378 - 0.0011 
11" + 0.0157079 - 0.1662 - 0.1646 - 0.0016 
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Fig. 6 - Driven-wave loss versus tl.f3. near tl.{JAm 
I tl.a/c I = 0,1,5. 

21T (fundamental) for 

earlier perturbation theory4 has shown that the fractional frequency 
interval between half-height points on the loss curve is 

~f ~ ~:;I ~ 21 ~; I (24) 

or 

(25) 

Table VII shows a comparison between that limiting value and the 
true value for the numerical cases above, including I D.a/C I from one 
to 50. Even at I D.a/C I = 1 there is only- a 30 per centerror.-
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Consider the limiting case ~a = o. Then 

(26) 

and nulls in the loss curve occur when equation (19) representing 
E 2 is zero. This gives 

4c I( 2 )2 
D.{3* Ilossnull = -; '\j ;cz - 1. (27) 

When we also have the perturbation condition, cz « 1, equation (27) 
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Fig. 7 - Driven-wave loss versus A{3* near A{3Am = 27!' (fundamental) for 
I Aalc 1= 1,5,50. 
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becomes 

(28) 

which agrees with previously known perturbation theory.3 For this 

TABLE III-ExACT AND ApPROXIMATE CALCULATIONS 

OFEIFORI~(X/cl =1 

A~(~) 
20 log I EI I Approximate 

Approximate Exact -exact 

7r - 0.0157079 - 0.2898 - 0.2910db + 0.0012db 
7r - 0.01413716 - 0.3438 - 0.3450 + 0.0012 
7r - 0.01256637 - 0.4152 - 0.4164 + 0.0012 
7r - 0.01099557 - 0.5452 - 0.5440 + 0.0012 
7r - 0.009424777 - 0.7300 - 0.7319 + 0.0019 

7r - 0.0078539816 - 0.9601 - 0.9620 + 0.0019 
7r - 0.006283185 - 1.3106 - 1.3126 + 0.0020 
7r - 0.0047123889 - 2.0216 - 2.0243 + 0.0027 
7r - 0.00314159264 - 3.3781 - 3.3823 + 0.0042 
7r - 0.0015707963 - 5.3475 - 5.3523 + 0.0048 

7r - 6.5701 - 6.5705 + 0.0004 
7r + 0.0015707963 - 5.3475 - 5.3434 + 0.0041 
7r + 0.00314159264 - 3.3781 - 3.3746 - 0.0035 
7r + 0.0047123889 - 2.0216 - 2.0194 - 0.0022 
7r + 0.006283185 - 1.3106 - 1.3092 - 0.0014 
7r + 0.0078539816 - 0.9601 - 0.9588 - 0.0013 

7r + O. 00942477 - 0.7300 - 0.7289 - 0.0011 
7r + 0.01099557 - 0.5425 - 0.5416 - 0.0009 
7r + 0.01256637 - 0.4152 - 0.4146 - 0.0006 
7r + 0.01413716 - 0.3438 - 0.3430 - 0.0008 
7r + 0.0157079 - 0.2898 - 0.2892 - 0.0006 

TABLE IV - EXACT AND ApPROXIMATE CALCULATIONS 

OFEIFORI~(X/cl =5 

A~(~) 
20 IOglO I EI I Approximate 

Approximate Exact -exact 

7r - 0.0314159262 - 0.2446db - 0.2452db + 0.0006db 
7r - 0.01884955 - 0.5337 - 0.5344 + 0.0007 

7r - 1.6195 - 1.6197 + 0.0002 

7r + 0.01884955 - 0.5337 - 0.5344 + 0.0007 
7r + 0.0314159 - 0.2446 - 0.2445 + 0.0001 
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TABLE V - EXACT AND ApPROXIMATE CALCULATIONS 

OF El FOR Il1a/c I = 50 

A~(~) 20 logJO I EJ I Approximate 
Approximate Exact -exact 

7r - 0.314159 - 0.0234db - 0.0238db + 0.0004db 
7r - O. 1884955 - 0.0523 - 0.0525 - 0.0002 
7r - 0.1724 - 0.1727 + 0.0003 
7r + O. 1884955 - 0.0523 - 0.0525 + 0.0002 
7r + 0.219911 - 0.0418 - 0.0421 + 0.0003 

case, from (26) 

JSin [ ~(~)' + 1 ;cz Jr 
1 - "1 1(11f3*)' + 1 J 

\j 47T"/c 

1813 

(29) 

and the loss has the form (just as in the case of sinusoidal coupling3) 

which in our terminology has half-peak loss (with 11f3* the variable) at 

I 
1.87T" 

11f3*! /la=O = -z-· (30) 

For the numerical case of this paper, z = 1000 feet and 

TABLE VI-PHASE ANGLE OF El FOR Il1a/c I = 0 

A~(~) 
Angle for El Approximate 

Approximate Exact -exact 

7r + 0.0015707963 - 67.753° - 67.726° - 0.027° 
7r + 0.00314159264 - 47.111 - 47.096 - 0.015° 
7r + 0.00471238891 - 30.086 - 30.092 + 0.006° 

7r + 0.0157079 - 9.085 - 9.104 + 0.019° 
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Fig. 8 - Phase of driven wave versus b.p.Xm/2 near b.pXm = 27r for I b.a/c I = 
0,1,5. 

In Table VII, the calculated value 0.0064 at I !la/ c I = 1 is reasonable, 
since D. T. Young's4 work based on the perturbation theory indicates 
that the true loss peak is the convolution of the shape for I !la/ c I » 1 
with the shape for I !la/ c I = O. 

Consider now the peak loss at !l{3* = O. When I !laic I » 1, and 
eAaz « 1, it can be shown that equation (9) simplifies to 

E 1
- r3Z 

1 - e (31) 

eAa:r « 1 
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where 

r3 = - ~ c I..E.-I· 
7r Aa 

(32) 

In Table VIII we compare the loss computed from (32) with the 
actual loss, and see that even for I Aa/c I = 1 the error is only ~30 
percent. A consideration of the terms of equation (9) indicates that these 
errors would be approximately constant with increasing z. 

A further simplification of the calculation of loss components now 
seems justified. For I Aa/ c I ~ 1 it would appear that (31) and (32) can 
be used to calculate the peak loss due to a single square-wave coupling 
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component. And the shape versus A{3* can be calculated from the work 
of D. T. Young, leading to an over-all attenuation defined by 

(33) 

where 

-~c 1 ~a 11+ (~)' (34) 

in which we require z and Aa/c such that et:.az « 1, I Aa/c I ~ 1. 

TABLE VII-LIMITING AND TRUE VALUES 

(1) (2) (3) 
Ratio of 

I ~ca I Col. (3) 
Limiting value of ~{:J.1/2 Calculated ~{:J.1/2 --

from equation (25) from Figs. 6 and 7 Col. (2) 

1 0.00493 0.0064 1.3 
5 0.0246 0.0265 1.077 

50 0.246 0.250 1.016 
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TABLE VIII - Loss COMPARISON 

tlfJ. = 0 

I :al Loss (dB) from Actual loss (dB) 
equation (32) equation (9) 

1 - 8.68 - 6.57 
5 - 1.74 - 1.62 

50 - 0.1737 - 0.1727 
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APPENDIX A 

Coupling Functions 

We use the following equations to represent two coupled waves of 
amplitude El and E2 : 

d 
dz E 2 (z) = C12(Z)E 1 - 'Y2E 2 

where Yn = an + jf3n = complex propagation constant. Let 

Energy conservation leads to: 

Also let 

Then (35) and (36) become: 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 
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We now see that the solution for kc = 0 holds for kc nonzero provided 
that we make the change 

jj,B = {31 - {32 + kc 

and put AB in place of Af3 ,= f31 - f32 in the solution for kc = o. 
Complete transfer of power between waves can occur when AB = 

o or 

(43) 

APPENDIX B 

Square-Wave Coupling 

We start with equations (1) through (4) representing uniformly 
coupled waves with kc = 0 (see Fig. 1). Equations (9) through (14) with 
c* = c and L).{3* = L).{3 give the amplitude of the output waves at z for 
the conditions El = 1.0 and E2 = 0 at z = o. We apply these equations 
to the coupling distribution of Fig. 2 and find that the output amplitude 
for the undriven wave at z = Am/2 is: 

In the above, the simplification Aa = 0 has been assumed. 
Using the output waves at z = Am/2 as input conditions to the 

following coupling region (Fig. 2), the amplitude of the un driven 
wave at z = Am is found to be: 

E, 1,-,_ ~ (-1) [(~:)' + 1 ] 

. 2 [CAm I (jj,Q)2] [. ({31 + (32) ] ·sm 2 ~1 + f- exp -J --2-- Am . (45) 

The ratio of the undriven wave amplitude at z = Am to the undriven 
wave amplitude at z = Am/2 is [from (44) and (45)] 



SOLVING COUPLING EFFECTS 1819 

2 (!l(3) 
E21>.m = j 2c 
E, 1,-" ~ 1 + ~n:)' 

·sin [C~m ~1 + (~:)'] exp [ -j ({3, ~ {3,) Am J (46) 

By imposing the condition 

CAm 'I + (!l(3)2 = ~ 
2 ~ 2c 2 

(47) 

we notice that the magnitude of (46) approaches two for !l(3)> 2c, that 
is, for very small coupling. Fig. 4 sketches the un driven wave amplitude 
as a function of z during the first two coupling intervals. We will now 
express the approximate or average coupling between the waves by 
using the linear approximation E 2 (z) = 2cz/-lr. We notice that uniform 
coupling without phase reversal would have resulted in the relation 
E 2 (z) = cz. We therefore arrive at the transformation 

c (constant coupling) becomes 

2c/7T' (for periodically reversed coupling). 

(48) 

The associated transformation of the condition for maxmium energy 
transfer, from (47), is 

_ 27T' I (CAm) 2 

!l(3 Imaximum conversion - Am ~ 1 - -;- . (49) 

We might notice here that the departure of the actual amplitude in 
Fig. 4 from the straight-line approximation, shown by E in Fig. 4, has a 
maximum value which can be shown to be 0.21 (cAm )/7T'. Thus the devia­
tion between our straight-line approximation and the actual amplitude 
becomes smaller for diminished values of coupling per unit Am • 

We now specify c* and !l(3* in equations (9) through (14) to represent 
the waves with periodically reversed coupling using the average coupling 
approach. Since the in-phase build-up of power in the undriven wave is 
a maximum for !l(3 specified by equation (49), we define a new dif­
ferential phase parameter to give a departure from this condition: 

27T' I (CA )2 
!l(3 * = !l(3 - Am ~ 1 - 7T' m • (50) 
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By comparison with equation (7), which represents an exact solution 
for complex coupling, this definition of A{3* seems reasonable. Numerical 
checks reported in the text verify this presumption. The value of c* is 
given by (48). 

It has already been noted, near equation (46) that two successive 
Am/2 coupling intervals give twice the undriven line amplitude com­
pared with the first Am/2 interval, which is just what occurs for small 
constant coupling (no reversal) and A{3 = O. We also find that A{3* and 
c* correctly give the wave amplitudes for periodically reversed coupling 
at z equal to integral multiples of Am/2, even when A{3 is not large com­
pared with 2c. For example, letting E2 at z = Am/2 be 0.707 requires 
(A{3/2c) = 1 (see equation 44); we maintain equation (47) and (48) as 
before. Then, from (45), I E2 I becomes unity at z = Am which is also 
predicted by A{3* and c* in (9) through (14) and which is analogous to 
the behavior of two conventional 3 dB directional couplers in cascade. 

The above discussion represents the changes in wave propagation 
introduced by coupling for A{3 in the vicinity of the value given by 
equation (49). 

The perturbation solution3 for sinusoidal periodic coupling is known 
to yield coupling absorption peaks when 

A{3A m = 2np 
(51) 

P = 1,3,5 .... 

Similarly, there are other regions of strong interaction for the square­
wave coupling of Fig. 2. For example, consider Fig. 5, which represents 
the situation when 

kCAm 371" 
-2- = 2' (52) 

There is another region of 6.f3 defined by 

271" I 
A{3 Imaximumconversion = 3'

Am 
,\/1 - (53) 

where there is a local maximum of conversion. As diagramed in Fig. 5, 
the average conversion coefficient is 2c/371". Thus the appropriate values 
of A{3* and c* for equations (9) through (14) are 

2c c =-
* 371" (54) 
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}\i[ore generally there are absorption peaks at 

~(3* = ~(3 - P 271" 'I _ (CAm)2 
Am \j p7l" 

where p = 1, 3, 5, ... 

APPENDIX C 

Sine W ave Coupling 

2c 
p7l" 
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(55) 

(56) 

We start with equations (1) and (2) with the coupling defined 

. . (271"Z) 
C21 = C12 = JC SIn ~ . (57) 

Using perturbation theory3, and letting ~a = 0, 

E ' 1z
• (271"8) -jt.{38 d 

2 = C SIn - e 8 
o Am 

(58) 

which yields 

E, = w:r"- ~il'J {~: - e-;;'{~: cos (~:z) + j~ilsin (~:z)J}. 
(59) 

Evaluating at ~(3 = 27r/Am and Z = nAm/2 yields 

E I .C nAm 
{2 t.{3=2 7r lAm = - J 2 2 (60) 

with n = 1, 2, 3 .... 
It can be verified that ~(3 = 27T:/Am yields the maximum value of 
E2 at Z = nAm/2. 

Thus the equivalent uniform coupling value for sinusoidal coupling is 

(61) 

which appears in Table 1. 
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