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Influence of Bull( alld Surface Properties on 
Illlage Sellsing Silicoll Diode Arrays 

By T. M. BUCK, H. C. CASEY, Jr., J. V. DALTON, and M. YAMIN 

(Manuscript received March 7, 1068) 

Silicon diode arrays for use as the electron-beam, accessed target in (,(llIIem 

tubes for the Picturephone® visual telephone set have been fabricated a/ld 
their properties evaluated. These targets offer significant advantages vnN the 
antinwny trisulfide target corn17wnly used in vidicon-type tubes. Bul there 
are certain potential lim,itations which must be dealt with in devc/o/Jill(J 
a silicon target. Three of its critical requirel11ents are adequate sellsitivity 
to visible light, low dark current, and junction unifonnity and /r(,l'doln 
fro11t defects across at least 300,000 diodes per square centi111,eter. Se/lsitivity 
tv visible light is expressed here by the efficiency for conversion of 1·/lcidellt 
photons to electrons in the read-out circuit. Conversion efficiencies eXl'eedillg 
50 percent in the visible region have been achieved by oxidizing or by d,:t}'llsillU 
phosphorus into the light-receiving surface to reduce the surface-recoIIIIJilla
tion velocity. Diode leakage currents of ~1 X 10-13 A per diode are re
quired, and are obtained for target voltages up to about (j to 7 V. SlIrfacc 
generated current d07ninates in the 8-fJ.. dianwter diodes of the arm!!, hilt 
this component of current can be reduced substantiall!! by 'llse of (100) 
surfaces or by hydrogen annealing. Visible defects ,in a picture call l'I'slill 

from leaky diodes or oxide pinholes which cause bri(Jht spots, amI diodes 
covered by oxide which cause dark spots. O'llr be!)t laryets show fl video 
display with only a few defects; processing 1nust be improved to ('I illl illole 
defects c07npletely. 

1827 
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I. INTRODUCTION 

A television camera tube with a silicon diode array target has been 
reported recently by Crowell, Gordon and their co-workers.1-3 A target 
of the general type used in this tube was first proposed in 1951 by 
Reynolds/later discussed by Heijne,5 and recently analyzed by Wend
land.s It is similar, but not identical in operation, to the evaporated
film photoconductive target, typically antimony trisulfide, which is 
commonly used in vidicon TV camera tubes.7 

A vidicon-type tube is of interest for use in the Picturephone@ 
visual telephone station set because it is the least expensive and 
smallest camera tube that has the required sensitivity and resolution. 
The silicon target has certain potential advantages over the evap
orated-film photoconductive target. 

This paper describes the effect of bulk and surface properties on 
the performance of the silicon target. The properties that dominate 
the conversion of incident photons to electrons in the external circuit 
and the diode leakage current are analyzed in detail. These analyses, 
together with the relevant processing techniques and resulting be
havior, have been combined into a description of silicon diode arrays 
for image sensing. 

The operation of the silicon target is illustrated in Fig. 1. A scan
ning electron beam charges the diode-array side of the silicon target 
down to cathode (ground) potential while the n-region is held a few 
volts above ground. This puts reverse bias on the diodes. Light shin
ing on the other side of the target and absorbed in the n-region gen
erates holes, some of which diffuse to the diodes and reduce the nega
tive charge on the p-regions. This reduction establishes a stored 
charge pattern. The scanning electron beam returning to the site of 
the diode deposits more negative charge, an amount proportional to 
the light intensity. The recharging current constitutes the video signal. 
Leakage of the charge pattern established by the light is prevented by 
the rectifying p-n junction rather than by high bulk resistivity as in 
the case of antimony trisulfide. The usual time between scans of the 
electron beam at a given diode site is 1/30 second. 

The silicon target has several advantages over evaporated-film 
photoconductive targets such as antimony trisulfide: 

(i) It does not show aging effects (burn-in) by intense light to which 
it might be exposed accidentally, or by the electron beam. The absence 
of burn-in by the electron beam permits electronic zooming. 

(ii) Its photoconductive lag is negligible. 
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Fig. 1-Schematic diagrams of silicon target, illustrating principle of operation. 

(iii) It does not deteriorate on heating to temperatures sufficiently 
high (~350°C) for good tube processing required for long life. 

There are, however, certain potential problems and limitations 
which must be considered in developing a successful silicon diode 
array target for a camera tube. Three of these, related to materials 
and process factors, are: 

(i) The target must have adequate sensitivity to visible light. We 
express sensitivity as conversion efficiency 'Y]v which is defined as the 
ratio of electrons that flow in the external circuit to the number of 
incident photons. For photons in the 0.45 to 0.8-p. wavelength range, 
a value of 'Y]v > 20 percent would be satisfactory. 

(ii) The total dark current should be less than 50 X 10-9 A, which 
means diode leakage current for each of the approximately 1/2 million 
diodes must be ~ 1 X 10-13 A, so that only a negligible amount of 
charge will leak off between scans of the electron beam. For camera 
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tube applications total diode capacitance is restricted to a rather narrow 
range. Preliminary results indicate that a substrate resistivity of 10 
ohm-cm, which yields 2000 pF /cm2 at 10 V reverse bias, is close to 
the optimum.2 

(iii) The whole array must have uniform properties and be free of 
defects which can cause bright spots or dark spots in the display-tube 
picture. 

Tube performance is, of course, the ultimate test of a good target, 
but for studies of efficiency and diode leakage it was convenient to 
make measurements outside the tube. 'Ve demonstrate the relationship 
between these measurements and the actual tube performance. 

II. TARGET STRUCTURE 

The target, as illustrated in Fig. 2, is a thin disk of n-type silicon 
with an array of p-n diodes on one side. These are the sensing ele-
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Fig 2 - Details of target structure (660 X 660 array). 
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ments. Silicon dioxide covcrs thc n-type silicon between the diodes to 
keep the clectron beam from landing thcrc. Thc oxide also protects 
the junction edges and reduces surface leakage. In a typical design 
the target is 0.850 inch in diameter, 0.5 to 1 mil thick in the light 
sensing region, and has a 4-mil-thick rim for support. The diodes are 
8 ft in diameter and are on 20ft centers in an array of 660 X 660. 

Outside the main array are 5 mil p-n diodes which can be probed 
for measurements at various stages of processing. There are also gold 
dots over the oxide for }vIOS measurements and gold dots over test 
arrays of 8 ft diodes for reversc current measurements which simulate 
dark current measurements in the tube. Ohmic contact to the n-region 
is made through an annular n + region which is in the thick ring on 
thc light-receiving side of thc target. The dimensions just given are 
representative of many targets which have been made, although larger 
and denser arrays are also being studied. 

Planar technology is used in the fabrication with the following 
deviations from typical device processing: 

(i) One-step diffusions are used, with no drive-in. 
(ii) There is no postdiffusion reoxidation and therefore no second 

photoresist step or reregistration. 
(iii) The phosphorus diffusion for ohmic contact is the last high 

temperature step, for reasons discussed near the end of Section 3.3. 

An additional processing step, the deposition of a semi-insulating 
film over the diode side, is usually performed before the target is 
mounted in a tube. The purpose of this film is to dissipate charge, 
deposited by the electron beam, from the target area between the 
diodes. Several films have been developed for this purpose by Crowell 
and Labuda.:! Targets described in this paper did not have such films 
except in cases where tube measurements are mentioned. 

III. CONVERSION EFFICIENCY 

3.1 Calculation of Conversion Efficiency 

If a silicon diode array target is to replace the antimony trisulfidc 
target in a vidicon-type camera tube, its sensitivity should approxi
mate or exceed that of antimony trisulfide targets. vVe describe sensi
tivity in terms of the conversion efficiency 1]0 which is defined as the 
ratio of the number of electrons that flow in the external circuit to 
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the number of incident photons. Efficiency of antimony trisulfide tar
gets is typically 20 percent at 5500 A. and falls off toward both ends 
of the visible region. For silicon targets the conversion efficiency will 
depend on the sample thickness, the wavelength of the light and 
several properties of the semiconductor. In order to identify the im
portant parameters and their effects on the conversion efficiency, the 
steady-state, short-circuit current in a one-dimensional model of a 
single p-n junction has been calculated. 

The most important relation governing distribution of the optically 
generated carriers in the semiconductor is the continuity equation. 
The continuity equation formulation for the transport of carriers has 
been rigorously treated by van Roosbroeck.8 From that treatment the 
steady-state, small-signal differential equation for the minority car
rier density in excess of the equilibrium concentration at zero total 
current and electric field in the one dimension x is 

D d
2

p(x) _ p(x) = _ G(x) 
p dx2 

Tp , 
(1) 

where p (x) is the excess minority carrier density, Dp the hole diffu
sion coefficient, Tp the hole lifetime, and G (x) the net carrier genera
tion rate. 

At one boundary, the surface at x = 0, the hole flux as determined 
by the surface-recombination velocity S must equal the diffusive flux: 

itO) = qSp(O) = q D. ': 1,-0 . (2) 

The other boundary condition refers to the edge of the junction 
space-charge region located at depth x = d from the illuminated sur
face. For the short-circuit condition, the excess hole density at the 
junction edge is zero, 

p(d) = 0, 

and the short-circuit current density isc is 

. D dp I 
~8C = - q p dx Ix~d • 

(3) 

(4) 

When the generation rate for carriers is governed by Lambert's law 
of photon absorption, the net generation rate may be written as 

(1 - R)N 
G(x) = A a exp (-ax), (5) 
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where R is the reflectivity, N the number of incident photons per 
unit time, A the cross-sectional area, and a the optical absorption 
coefficient. The conversion efficiency, neglecting absorption in the 
junction space-charge region, becomes 

-D dp I 
P dx x=d 

NjA 
(6) 

The conversion efficiency may be obtained from equation (1) with 
the conditions expressed by equations (2) through (5) and the defini
tion of equation (6). Since the generation rate G (x) has a dependence 
on wavelength through both the reflectivity and absorption coef
ficient, YJc will depend on wavelength. As Section 3.3 describes in detail, 
difficulty has been encountered in reconciling the experimental and 
calculated YJc for illuminated surfaces that have been etched and aged 
in air. The experimental YJc for the etched surface is always signifi
cantly less than the calculated YJc, even with very high S, when a sig
nificant portion of the carriers are generated near the illuminated 
surface. 

This situation is similar to "\Vittry and Kyser's9. 10 experiences with 
cathodoluminescence in GaAs. Their cathodoluminescence intensity 
was less than could be explained by a high surface recombination 
alone. They assumed that minority carriers generated between the 
surface and a depthS are not effective in producing recombination 
radiation. Similarly, in the present work it was found necessary to 
modify the generation rate given by equation (5) to account for a 
"dead layer" at the surface in order to obtain agreement between the 
calculated and experimental YJc. 

The effect of a "dead layer" on the conversion efficiency has been 
introduced into the analysis by assuming that the carriers generated 
within a distance S of the illuminated surface cannot diffuse to the 
junction and be collected. For a solid in which all the incident pho
tons, less those lost by reflection, are absorbed in creating hole
electron pairs, the number of carriers per unit area generated be
tween the surface and x = S is found by integrating G (x) dx between 
the limits 0 and S. Thus, there will be (1-R) N [1 - exp ( -as)] car
riers generated within a distanceS of the surface. The number of 
holes that may be collected in the absence of a "dead layer" or sur
face and bulk recombination is equal to the number of absorbed pho
tons and is simply (I-R)N. If the carriers generated between x = 0 
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andS are lost and not available for collection, then the carriers 
available for collection in the absence of other losses is simply the 
difference of these two quantities, (1-R)N exp(-aS). Therefore, a 
generation rate of 

G'( , [0 - R'lN (\ ] ' ) X) = 11 0' exp -aX} exp (-era, (7) 

when integrated from 0 to 00, will give the same number of collectable 
carriers as [(1-R) N / A] a exp (-aX) integrated from S to 00: that is, 

100 

G'(x) dx = 100 

G(x) dx. 

This formalism, which has been found useful in representing the effect 
of the surface space-charge region on optically generated carriers, 
permits retaining the field-free continuity equation and the represen
tation of surface recombination by S. The conversion efficiency for 
the generation rate given by equation (7) is 

'Ylc = exp (-~0\(1 - R)O'L1' {[(S + O'L!/ Tr)) sech (d/ L1') ] 
0' L1' - 1 (S tanh (d/Lp) + LrjT1') 

[ L h (d 'L ) S sech
2 

(d/ L1') ] ( )} 
0' p + tan / p + (8 tanh (d/ Lp) + Lp/ T p) exp -ad , 

(8) 

where the minority carrier diffusion length Lp is given by Lp = 
(DpTp) %. The efficiency YJc will be expressed in percent. To further 
describe the "dead layer" and delineate the role of bulk and surface 
recombination on the target sensitivity, it is necessary to compare the 
experimental YJc variation as a function of wavelength with YJc calcu
lated from equation (8). 

3.2 Experimental Procedure for Efficiency 111 easurements 

To evaluate the properties of the silicon diode arrays, it was con
venient to make measurements outside the tube. Targets for this 
purpose had large diodes and had received the same processing as 
the 8-,p.. diode arrays except that the semi-insulating film was omitted. 
Figure 3 illustrates the structure used. The pattern with diodes from 
5 to 40 mils in diameter was used so that the effect of diode diameter 
on YJc for a given light-spot size could be determined. Because equa
tion (1) applies only to a one-dimensional problem, one-dimensional 
experimental conditions must be achieved. These conditions were 
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Fig. 3 - Array of large diodes for studies of conversion efficiency and diode 
leakage. 

taken to apply whenever further increase in diode diameter did not 
increase the conversion efficiency, which occurred for diameters 
greater than 30 mils. The 'Yjc measurements reported here were taken 
with the 40-mil diameter diodes. 

The experimental arrangement for measuring the conversion efficiency 
is illustrated in Fig. 4. Emission from the tungsten 250 W quartz-iodine 
lamp was filtered by a Corning filter C. S. 1-69 (heat-absorbing glass) 
to reduce the infrared intensity. Plane mirror lV11 and spherical mirror 
1\12 focused the light onto the entrance slit of the Perkin-Elmer model 
99 single-prism spectrometer. The light was chopped at the spectrometer 
entrance at 37.5 Hz. An Optics Technology band-pass filter was used 
at each measurement wavelength to prevent light of undesired wave
lengths from being transmitted through the spectrometer. The light 
from the spectrometer exit slit could be directed to the sample or to a 
calibrated thermocouple by the movable mirror. The spherical mirror 
1\,13 focused the radiation onto the thermocouple whose output was 
measured with the Princeton Applied Research model HR-8 lock-in 
amplifier. 

The spot size of approximately 4 X 12 mils on the sample was obtained 
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Fig. 4 - Experimental arrangement for measurements of conversion efficiency. 

by reducing the height of the spectrometer slits and using lVI4 , a 90° 
ellipsoidal mirror with a 6 : 1 reduction. The short-circuit current was 
determined by measuring the voltage across a 100 Kn resistor connected 
between the nand p sides of the diode. To maintain junction short
circuit conditions, the light intensity was kept low enough so that 
the junction voltage was ~ 0.1 kT /q(~ 0.002 V). Linearity with 
light intensity was confirmed with neutral density filters and absence 
of significant leakage currents could be demonstrated by linear varia
tion of junction voltage with load resistance. 

In order to make quantitative comparison of the experimental and 
calculated 7]c the absolute photon flux must be known. For this purpose, 
a silicon solar cell was calibrated by comparison with several calibrated 
thermopiles. Then the calibrated solar cell was placed in the position 
of the sample and the spectrometer thermocouple was calibrated. The 
absolute photon flux can be assigned an uncertainty of ± 10 percent. 

3.3 Experimental and Calculated Conversion Efficiency 
In this section the control of target efficiency by process variations is 

discussed. Experimental efficiency data are compared with calculated 
curves, and this permits determination of the parameters Lp , S, and 
S. Consideration of equation (8) shows that the best discrimina
tion between Lp, S, andS is obtained when d is two to four times Lp. 
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Preliminary measurements indicated that a 4-mil target thickness was 
suitable. The wavelength dependence of the absorption coefficient ex 

was taken from the data of Dash and Newman,Il and the reflectivity 
R for an etched silicon surface was taken from Philipp and Taft's 
data.12 The hole diffusion coefficient Dp was assigned a value of 10 
cm2 per second. Given these experimental dependences of ex and R, 
the wavelength becomes the independent variable for equation (8), 
and the variation of 'l}c with wavelength is determined by the physical 
parameters d, Lp , S, ando. 

Initially, consider the data in Fig. 5 for the etched surface aged in 
air (the dots). The calculated rJc curve for a generation rate expressed 
by equation (5) (no "dead layer") is shown by the dashed line. The 
diffusion length Lp has been assigned a value of 50 J.L to produce agree
ment between the calculated and experimental rJc in the long wave
length region. The use of the generation rate of equation (5) is equiv
alent to D = 0 in equation (8) for rJc • Even with the maximum value 
of surface-recombination velocity Smax = (kT /27rm)! ~ 107 cm per 
second, the calculated rJc does not decrease as rapidly at short wave
lengths as the experimental rJc • The discrepancy between the calculated 
and experimental rJc for wavelengths in the visible region leads to 
the "dead layer" concept. 

Fitting the data in Fig. 5 with a finite 0 in equation (8) does not 
lead to unique values of Sand o. However, their values are limited to 
a reasonably narrow range. For example, by plotting the experimental 
data with the calculated 'l}c (lower curve, Fig. 5) it is not possible to 
discriminate between values of S = 107 cm per second, 0 = 0.8 fL, and 
S = 6 X 104 cm per second, 0 = 1.8 fL. The larger 0 value was obtained 
with a nonlinear least-squares technique described by Marquardt.n 
The high surface-recombination velocity agrees with earlier studies 
of Buck and McKim14 and Harten15 in which it was shown that S 
is normally very high on an etched silicon surface. Harten's15 meas
urement technique was similar to the one described here. To resolve 
this ambiguity in Sand 0, experimental data at wavelengths less than 
0.45 fL are necessary. Because the efficiency of the diode is rapidly 
decreasing and the intensity of the light source is also becoming 
smaller, measurements in this wavelength range are not presently 
possible. The significant point is that the "dead layer" thickness is 
approximately a micron and S is very high. 

In order to gain insight into the significance of the "dead layer," 
the surface potential was determined by surface conductivity meas-
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urements14 on silicon slices from the same 10 ohm-em n-type crystal. 
The surface was found to be in a condition of depletion with the po
tential varying from -0.25 V at about 1/2 h after etching to -0.6 V 
(energy bands bent upward) after several hours of aging in air. The 
variation of potential within the surface depletion region was obtained 
from Poisson's equation16 for a donor concentration of 6.0 X 1014 

cm-3 • Because the electric field in the surface depletion region goes 
to zero very slowly it is difficult to define a depletion-region depth. 
If, however, the potential from Poisson's equation is approximated 
by a simple parabolic potential of the form 

(9) 

where Vs is the surface potential, then the depletion layer thickness may 
be approximated by Xs • The quantity Xs is determined by a reasonable 
fit from x r-../ O. lxs to x r-../ 0.8xs . For a surface potential of -0.25 V, 
XS is 0.8 fl and for -0.60 V, XS is about 1.1 fl. Therefore, the depletion 
layer thickness is about the same as the "dead layer." 

Because the depth of the "dead layer" and the surface depletion 
region are about the same, it is reasonable to attribute the "dead 
layer" to the surface depletion region. This assumption suggests that 
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the "dead layer" results from the built-in field at the surface whose 
direction is such as to oppose the diffusion of holes to the junction. 
To test this hypothesis, reversal of the surface field should eliminate 
the "dead layer" because the field for holes would be in the same 
direction as the diffusion toward the j unction. It has been shown14

, 1" 

that a hydrofluoric acid treatment bends the energy bands downward 
at a silicon surface temporarily. In the present work a surface poten
tial of +0.2 V was determined after such treatment. The upper curve 
in Fig. 5 shows that the experimental data for an HF-treated surface 
may be fitted with the same L p , but no "dead layer" is required. Aging 
in air causes a shift in surface potential back to a depletion condition 
and a response that requires a "dead layer" correction. 

Although a 4-mil target thickness is useful in efficiency studies for 
discriminating among the critical parameters, a target for a camera 
tube should be ~ 1 mil thick for adequate resolution. For a 1 mil thick
ness Fig. 6 shows two sets of experimental data together with calculated 
curves which illustrate the importance of Sand o. Consider first the 
experimental data for the etched surface (the dots). The Lp of 32 J.1. 

was obtained from the Y]c measurement at a thickness of 4 mils before 
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the target was thinned to 1 mil. The values of S = 107 cm per second 
and 0 = 0.8 J1. were previously shown to be representative of an etched 
surface. 

The dashed lines are calculated for S = 107 cm per second and 
o = 0 or 0.8 J1. to illustrate the effect of the "dead layer" at this thick
ness. It may be seen that the efficiency in the visible region drops from 
10 percent at 0.7 J1. to 1 percent for high S and no "dead layer," but 
drops to 0.1 percent for the 0.8 J1. "dead layer." Calculations based 
on equation (8) show that when d ~ L p, further increase in Lp does 
not improve efficiency very much. This also means that efficiency is 
insensitive to small lateral variations in d which may occur during 
etching. However, Sand 0 have a strong influence on efficiency and 
these parameters must be substantially decreased. The HF treatment 
and other chemical treatments14

•
15 on the etched surface which reduce 

Sand 0 are too unstable for long life in a camera tube. 
A more permanent improvement in efficiency can be made by high 

temperature oxidation of the surface. Experimental efficiency data 
taken after a light steam oxidation (900°C for 10 minutes) are also 
shown in Fig. 6 (circles). Oxidation raised efficiency above 10 per
cent at the blue end of the visible region. Values of S = 3 X 104 cm 
per second and ,S = 0 yield a calculated efficiency curve which fits the 
experimental points. Values of S for steam oxide with no further treat
ment have been as low as 103 cm per second which gives an efficiency 
of 50 to 60 percent. The 800 A oxide also serves as an antireflection 
coating which contributes an additional slight increase in efficiency. 

Experimentally determined reflectivity of the oxidized surface was 
used in equation (8) to obtain the solid curves shown in Fig. 6. No 
"dead layer" correction was needed for the oxidized surface. This is 
attributed to the fact that the oxidized surface is more n-type than 
the bulk; the energy bands are bent downward at the surface, elimi
nating the depletion layer. The HF soak eliminated the "dead layer" 
temporarily for the same reason, that is, it bends the bands down at 
the surface. 

It is assumed that oxidation reduces S both by reducing the density 
of recombination centers and by shifting surface potential, although 
the data to confirm this are not complete. Surface potential is shifted 
from about -0.6 V, the previously mentioned depletion-layer con
dition for an etched surface, to +0.2 V (bands bent downward). Fast 
state density is not known for the etched surface but is 3 X 1011 cm-2 

e V-l. for the oxidized surface. The S values of 103 to 3 X 104 agree 
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reasonably well with values for oxidized surfaces reported by Rosier17 

but not with the 5 to 10 cm per second values reported by Grove and 
Fitzgerald.18 However, approximate agreement with the Grove and 
Fitzgerald values is obtained for an oxide which has been through 
boron and phosphorus diffusions, as discussed in Section 4.2. 

Oxidation can thus provide satisfactory efficiency, but there are 
two rather serious objections to oxidation for this application: 

(i) The oxidation must be done after the target is otherwise com
plete, and at this stage it frequently causes an increase in diode leak
age current. 

(ii) Vacuum bake-out of the tube and target at 350°C, which is 
desirable for good tube processing, may increase the interface state 
density and the recombination velocity. 

Although both of these problems could be overcome by improved 
control of the oxide, an alternative procedure was found which ob
viated the final oxidation step for low S. Figure 7 shows the improve
ment in efficiency caused by a phosphorus diffusion on the light
receiving surface of a 4-mil thick target (circles). The phosphorus 
was diffused at 925°C for 10 min in PBr3 vapor, yielding a depth of 
about 0.4 JL. This reduced S to a nominal value of 50 cm per second 
and the diffusion length was increased to 52 JL, yielding an efficiency 
of about 20 percent. The efficiency has been 50 to 60 percent on I-mil 
thick targets. 

Equation (8) is rather insensitive to surface-recombination velocity 
for S ~ 200 cm per second, and 50 cm per second is only given as an 
approximate value. The phosphorus data in Fig. 7 were obtained with 
the phosphate glass on the surface. Removal of the glass did not change 
the response. When the diffused phosphorus layer was removed, the 
efficiency dropped to the original level for an etched surface, except 
for an upward displacement at long wavelengths resulting from the 
improved bulk lifetime. In some cases Lp has been increased to 100 J.l. 

(r = 10 J.l.sec). The effect on S is evidently due to the built-in field of 
the diffused phosphorus layer which repels holes from the surface 
and causes a low recombination velocity. The principle of surface 
doping to reduce S was proposed by Moore and Webster19 but we are 
not aware that a demonstration of it has been published. The slight 
droop in the phosphorus curve at about 0.5 J.l., requiring a "dead layer" 
correction of 0.1 J.l., seems to result from diffusion damage. At present 
the best conditions that have been found to minimize this effect are 
850°C for 30 minutes. 
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Fig. 7 - Effect of phosphorus diffusion on efficiency. Lower curve shows con
dition with etched surface before diffusion. 

These results were all obtained on targets with large diodes, out
side the tube. Results for a silicon target in a tube are shown in Fig. 
8 where it is compared with a standard vidicon, and with the ideal 
case of unity conversion efficiency. Efficiency is expressed in units 
commonly used for vidicons, rnicroamps of output current per micro
watt of incident radiation. The curve for unity efficiency slopes 
upward because at longer wavelengths there are more photons per sec
ond per microwatt of radiation, with each photon capable of excit
ing an electron-hole pair. Efficiency of the silicon target is more than 
twice that of the vidicon in the middle of the visible region, and the 
sensitive range is much broader. The conversion efficiency exceeds 50 
percent at a wavelength of 0.7 fL. 

The diffused layer of phosphorus provides a very stable reduction 
in S which is unaffected by vacuum bake-out or deposition of anti
reflection coatings. Furthermore, the phosphorus treatment does not 
harm the diode characteristics; instead, it improves them as discussed 
in the next section. The phosphate glass must be removed from the 
p-type islands by a brief etch) but this requires no remasking. 
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IV. DARK CURRENT 

4.1 Bulk and Surface Generated Current 

Low dark current is another important requirement for this target. 
Current, in the absence of illumination, should not exceed 1 X 10-13 

A per diode at 5 to 10 V reverse bias, or about 50 X 10-!J A for the 
whole array. Currents slightly above this range reduce the dynamic 
range of the camera tube or the available picture contrast. Currents 
five times greater prevent integration of the incident light flux over a 
full television scan period. The most readily observable effect of ex
cessive dark current (more than 100 X 10-!J A) is "whiting out" of the 
picture on the display tube. 

The dark current required for good performance is considerably 
lower than for most silicon devices. The reverse current in a target 
array can be separated into the two general categories of bulk gen
erated current and surface generated current. An estimate of the bulk 
current can be obtained from the expression by Sah, Noyce, and 
Shockley20 for current generated in the space-charge region: 

{ 
1, [Rt - E', 1 (TP)]}-l I = qilun, 2(TpT,,)- ('osh -~ + "2 In Tn (10) 

In equation (10) w is the depletion width, ni the intrinsic carrier con
centration, Tp and Tn the hole and electron minority carrier lifetimes 
on their respective sides of the junction and E t - Ei the energy dif-
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ference between an assumed single recombination-generation level 
and the intrinsic Fermi level. For an 8 p.. diode at 10 V bias with the 
common simplifying assignment of E t = Ei and Tp = 0.1 ""sec> Tn as 
lifetime values representative of diffused structures, the current would 
be predicted by equation (10) as approximately 3 X 10-12 A. Since 
this estimate of bulk current alone exceeds the permissible dark cur
rent, diode leakage current was regarded as a potential source of dif
ficulty for this device. 

Of several diffusion conditions tried, those which yielded the lowest 
bulk generated reverse currents were 1140°C for 20 minutes with a 
BBr3 source. These conditions gave a sheet resistance of 5 to 6 ohms 
per square and a junction depth of 2 "". A subsequent phosphorus dif
fusion, which is required for ohmic contact and low S on the light
receiving surface, is an important part of the process. As a result of 
this treatment, the diffusion length was typically improved by a factor 
of three, while the reverse current, as measured on the 5-mil test 
diodes on the actual targets, was reduced by an order of magnitude to 
a median value of 10-12 A. In addition, the exponent in I a: vn was 
reduced from ,-,1.0 to ,-,0.5. 

The improvement in both the diffusion length and dark current by 
the phosphorus diffusion is presumably caused by a gettering action 
by the phosphate glass on impurities, such as gold and copper. A get
tering effect has been suggested in several reports in which phosphorus 
treatments have improved silicon diode reverse characteristics21

-
23 or 

minority carrier lifetime.24, 25 The improvements in reverse current 
already described are quite similar to those reported by Ing and his co
workers about p+n diodes of O.gO-cm material.22 In our work, neutron
activation analysis showed that a boron diffusion increased the gold 
concentration from approximately 4 X 1012 cm-3 to about 2 X 1013 

cm-3
, while the phosphorus diffusion reduced it again to 4 X 1012 cm-3

• 

Insufficient sensitivity obscured any similar effect on copper if it was 
present. Cleaning the substrate with nitric acid or aqua regia before 
diffusion gave better post-boron I-V characteristics than did cleaning 
treatments without a strong oxidizing acid. The phosphorus treat
ment then caused further improvement. 

The above process was developed using as control information the 
results of efficiency and dark current measurements on 5-mil test 
diodes available on target arrays, and also on the graduated-diameter 
diodes shown in Fig. 3. In addition to their function as control speci
mens, the graduated-diameter diodes were used to establish the rela-
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tive importance of bulk and surface currents. This designation is made 
by assuming the total current to be a linear combination of an area 
and perimeter component: 

(11) 

where D is the diode diameter. It was possible to estimate a and (P 

graphically from a plot of Ir/D vs D for the diodes of graduated diameter, 
and then calculate the I (l and I (J' components for a diode of a particular 
diameter. In a typical case for a 5 mil diode, I (l was 4 X 10-13 A and 
I (J' was 8 X 10-13 A. This corresponds to a bulle current density of 
3.15 X 10-9 A per cm2

, and a perimeter current density of 2 X 10-11 

A per cm. The relative importance of I (J' becomes greater as the diode 
size decreases. Extrapolating to an 8 J.L diode, I (l = 1.5 X 10-15 A 
and I (J' = 5 X 10-14 A. Total dark currents of targets in tubes have 
been 5 to 50 X 10-9 A at 5 to 10 V or 2 to 20 X 10-14 A per diode, 
thus falling closer to the perimeter dependent limit. 

The larger area diodes, which minimize the contribution of the 
surface current, permit assignment of E t - Ei in equation (10). In 
Fig. 9 the I-V characteristic of a typical 25 mil diode is shown with 
curves predicted by the Sah-Noyce-Shockley theory for different 
values of E t - E i • The reverse current density at 10 V for this diode 
was 6 X 10-9 A per cm2

• The lifetime Tp of 5 !,-sec was obtained from 
conversion efficiency measurements. Also, Tp was taken as much 
greater than Tn and the argument of the cosh was greater than unity. 
The depletion-region width in equation (10) was obtained from ex
perimental capacitance-voltage data and the expression w = € A/C. 
It may be seen in Fig. 9 that the reverse current calculated for the 
given 5 !,-sec lifetime and the single recombination center at about 
an E t - Ei of 0.08 to 0.1 eV matches the experimental I-V charac
teristic. 

A quantity called the effective lifetime Teff, which is the lifetime 
obtained from equation (10) on the assumptions that E t = Ei and Teff 

= Tp = Tn, may be used as a figure of merit to compare low leakage 
diodes of different resistivities. For our diodes, typical values of Teff = 
100 !,-sec were obtained. Ing and his co-workers obtained Teff between 
10 and 40 !,-sec for their gettered diodes just described,22 and Sah cited 
a Teff of 28!,-sec for a high lifetime diode.26 

Other measurements on our large area diodes also suggest the re
verse current is dominated by bulk generation current within the 
space-charge region. Inversion layer surface leakage is not observed 
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in these diodes, nor is it expected, since charge at the interface is 
positive and induces an n-type accumulation layer. The activation 
energy of reverse leakage current has been measured as 0.5 to 0.6 e V 
in the range 0 to 30°C. Such an activation energy is compatible with 
recombination-generation current rather than inversion layer (chan
nel) leakage or with bulk diffusion current.27 In addition, the for
ward I-V measurements are characterized by 1 < m < 1.3 in the ex
pression I = 10 exp (qV/1nkT). Sah has found such a value of m for 
recombination-generation current.26 

The foregoing observations ,,,ere on relatively large diodes measured 
with no field applied across the passivating oxide. These results are 
all reasonably consistent with a model of reverse leakage current 
dominated by generation in the space-charge region of the metallurgi
cal junction, and the currents are satisfactorily low when proper dif
fusion conditions are used. 

4.2 Leakage Induced by Electron-Beam Charging of the Oxide 
The satisfactory behavior observed for large diodes is a necessary 

condition if good arrays of small diodes are to be obtained. How-
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ever, it may not be sufficient if the field induced by electron beam 
charging of the oxide leads to high surface-generated currents. In fact, 
the reverse characteristics of 8 fJ. diodes in target arrays, with a field 
across the oxide, are more complicated, although currents are still low 
enough at 5 to 7 V. 

This section shows how surface generation current is influenced by 
a field across the oxide on the junction side of the array. At present, 
the problem of achieving low dark current in silicon target arrays is 
to reduce this type of leakage current. However, if improvement ten 
times better than present results is achieved, bulk generated reverse 
current ,viII again become a problem. 

The electron beam charging of the oxide can be simulated outside 
the tube by evaporating gold dots over both the oxide and p-regions 
and applying a negative bias. This gold dot structure then represents, 
in most respects, the situation in the camera tube, where the electron 
beam falls on both the diodes and the oxide. In Fig. 10 the experimen
tal I-V curves are compared with the maximum allowable current of 
50 X IO-() A and the characteristic obtained for bulk generated current 
only. The bulk generated current curve is based on the assumption 
that the entire 1 X IO-I::! A of reyerse current for a 5-mil test diode is 
bulk current. 

The top curye (data points given by .6) of Fig. 10 is a reverse 
characteristic measured by applying a negative bias to a 25-mil gold 
dot which covered 790 of the 8 fJ. diodes in a test array as illustrated 
in Fig. 2. The current was scaled up to 435,600 diodes. 

The curve shown by the circles is a dark current characteristic 
measured in a tube. This curve shows behavior similar to the gold 
dot characteristic. However, the tube characteristics sometimes do 
not flatten out, for reasons not yet fully understood, although a few 
leaky diodes in the array are responsible in some cases. It may be 
seen that for these two curves the current rises steeply with increasing 
voltage and then changes slope abruptly between 6 and 10 V. Follow
ing the model of Grove and Fitzgerald/8 this behavior can be de
scribed as current generated by interface states. This current in
creases, and finally saturates as a depletion layer is induced under 
the oxide. In specimens with resistivity more than about 8 n-cm, this 
depletion layer may result from the merging under the oxide of the 
space-charge regions of the 8 fJ. diodes, which are less than 12 fJ. apart 
edge to edge. 

However, curves like those of Fig. 10 are also observed on targets 
with substrate resistivity as low as O.In-cm. In this case, the deple-
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tion is induced by a field normal to the semiconductor surface result
ing from the negative bias on the gold dot, as in the gate controlled 
diodes of Grove and Fitzgerald.18 In either case, the entire silicon sur
face between diodes is in a depleted condition. Every surface recom
bination-generation center on that part of the target surface not ac
tually occupied by a diode contributes to the reverse current. 

After depletion is established, the subsequent slower increase in 
reverse current beyond the discontinuity in Fig. 10 is caused by deep
ening of the space-charge regions under the oxide and around the 
metallurgical junctions. No decrease in current occurs at higher volt
age across the oxide, as observed by Grove and Fitzgerald/8 since in 
our case the potential on the oxide equals that on the p-region. Under 
these circumstances, inversion cannot occur to isolate the surface 
states from the depletion region.18 Grove and Fitzgerald relate sur
face generation current to the surface-recombination velocity So by 
the equation: 

(12) 
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Using the current at the discontinuity So is estimated as 24 cm per 
second. 

The density Dss and electron capture cross section O"s of interface 
states on a similar oxide, which had been through the same diffusion 
process, were measured by the MIS conductance technique of Nicol
lian and Goetzberger.28 Dss was 1011 cm-2 eV-l near the center of the 
energy gap and O"s was 2 X 10-1G cm2. Using Grove and Fitzgerald's18 
definition of surface-recombination velocity for a depleted surface: 

(13) 

So is 16 cm per second with Vth as 107 cm per second. This value is in 
reasonable agreement with the value obtained from the generation 
current. In addition, conversion-efficiency measurements on a similar 
oxide, that is, one exposed to diffusion conditions, yielded surface
recombination values of about 50 cm per second. Notice, however, 
that the diode leakage and efficiency pertain to different values of 
surface potential. 

The current at the discontinuity in gold dot I-V curves has been 
reduced by two methods. The upper curve in Fig. 10 for a (111) sur
face can be lowered to the solid triangle curve by hydrogen annealing 
at 500°C. The decrease in current by an order of magnitude at the 
discontinuity is assumed to result from a reduction in fast state den
sity expected from this treatment.29-31 A (100) silicon surface with
out hydrogen anneal produced the curve shown by squares. The cur
rent at the discontinuity has been lowered to 5.5 X 10-9 A at 2.5 V, 
presumably because of a reduction in interface state density.29.32 This 
current corresponds to an So of 1.6 cm per second. Thus, significant 
decreases in the leakage current have been made by these simple 
changes in processing and further improvement can reasonably be 
expected. 

v. DEFECTS 

A third very important requirement of any camera-tube target is 
freedom from defects. For the silicon target this means near perfec
tion in an array of nearly 112 million diodes and the demands on 
planar technology are obviously severe. Leaky diodes, for example, 
can cause bright spot defects, while diodes which are covered and 
cannot be contacted by the electron beam, cause dark spot defects. 
Pinholes in the passivating oxide may cause bright spots by allowing 
the electron beam to contact the substrate directly. Certain dark 
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features have been identified with dislocation arrays revealed by etch 
pits in a neighboring slice of the crystal. 

Not all defects can be explained at present. Figure 11 shows some 
which have been identified. They were intentionally introduced dur
ing the target processing. The picture at the top was taken with the 
camera tube viewing a transparency illuminated by tungsten light. 
Below it are photomicrographs taken of small areas of the target after 
it was removed from the tube. The dark area in the display corre
sponds to a spot in the array where oxide holes are missing because 
high spots in the oxide lifted the mask and allowed exposure of the 
photoresist over that area. The bright spot on the left corresponds to 
a large hole, revealed in the photomicrographs, which was etched in 
the oxide because contamination on the mask prevented exposure of 
the photoresist and, therefore, a hole was etched in the oxide. Boron 
diffused into that entire area and produced a large leaky diode. In ad-

Fig. 11- Example of gross defects in target. Top: picture from TV monitor. 
Lower right: photomicrograph of target showing spot where oxide holes are miss
ing, corresponding to dark spot in display. Lower left: photomicrograph showing 
large hole in oxide which corresponds to bright spot in picture. 
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Fig. 12 - Picture taken with relatively defect-free target. 

dition to defects associated with planar technology steps of target 
fabrication, bright spots can also be introduced by the deposition of 
the semi-insulating film for dissipating charge from the area between 

diodes. 
The defects of Fig. 11 were introduced deliberately. Figure 12 

shows a picture with only a few small, unintentional, defects visible. 
'Ve have not yet made a target entirely free of defects. Substantially 
greater improvement in the defect situation has been made by the 
group at Bell Telephone Laboratories, Reading, Pa.33 

VI. SUl\Il\IARY AND COXCLUSIOKS 

The status of the three important factors efficiency, diode leakage 
current, and defects in the array may be summarized as follows. 

(i) Satisfactory conversion efficiency has been achieved. Surface 
recombination velocity (8) at the illuminated surface is the dominant 
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parameter controlling efficiency, and it should be ~ 103 cm per second. 
Sufficiently low S can be obtained by wet chemical treatments or by 
oxidation in steam, but the most reliable treatment has been a phos
phorus diffusion. This provides a built-in field which repels minority 
holes from the surface. S values of ~50 cm per second, and efficiency 
of 40 to 60 percent throughout the visible region, have been obtained 
with this treatment. Adequate diffusion length, 30 to 100 P, (7 = 1 to 
10 p,sec) has also been obtained. 

(ii) Diode leakage current is low enough (~1 X 10-13 A per diode 
or ~ 50 X 10-9 A total dark current) for satisfactory operation at low 
target voltage (~7 V). Bulk generated current of < 1 X 10-8 A 
per cm2 at 10 V is observed in large diodes (5 to 40 mil diameter). 
This would yield 4 X 10-15 A for an 8 p, diode. However, surface genera
tion complicates the behavior when a field is applied across the pas
sivating oxide as under a gold dot or in electron beam scanning. This 
causes an initial steep rise in current followed, usually, by an abrupt 
decrease in slope at 6 to 10 V. The current at which this occurs has 
been lowered substantially by use of (100) instead of (111) silicon slices 
and by hydrogen annealing. 

(iii) Present technology produces targets which are reasonably 
defect-free but processing must be improved to eliminate defects com
pletely. Leaky diodes or groups of diodes and oxide pinholes cause 
bright spots, while diodes which are covered and cannot be contacted 
by the electron beam cause dark spots. A decrease in average dark 
current should reduce the ability to observe fluctuations from diode 
to diode. 

The emphasis on these three factors is not intended to imply that 
they are the only critical problems. Two others, discharging of the 
passivating oxide and resolution, have been studied by Crowell and 
Labuda. 2 
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A Cl1arge Storage Target for ElectroI1 
IIllage Sellsillg 

By EUGENE 1. GORDON and :MERTON H. CROWELL 

(Manuscript received April 12, 1968) 

A charge storage target consisting of a dense array of silicon photodiodes 
has been described as the il1wge-sensing element in a vidicon type of camera 
tube for the Picturephone ® station set. The target stores a spatially distrib
uted charge pattern corresponding to an optical inwge in the fonn of a 
partial discharge of the reverse-bias voltage of the diodes. The discharge 
results front leakage current associated with hole-electron pairs created in the 
silicon substrate by incident photons during the 1"aster interval. Recharging 
of the diodes to the full reverse-bias voltage along a prescribed raster by the 
scanning, low energy, electron beam creates the desired video signal. 

This paper describes creation of the hole-electron pairs in the silicon 
substrate by intpinging high energy electrons. Since these electrons, incident 
from the side opposite the diode array, create a multiplicity of pairs, charge 
gain results. As in photon sensing, the discreteness of the array allows 
preservation of detail in the spatial distribution of impinging electrons. 
J.lf easuJ"ements of charge gain as a function of electron energy and target 
resolution are presented. 

Applications in scan conversion, low light level TV, X-ray image 
intensification, and electron 1nicroscopy are indicated. 

I. INTRODUCTION 

The subject of this paper is the use and properties of a self-sup
porting silicon wafer containing an array of about one-half million 
diodes in an area of 12.5 millimeters on a side. See Fig. 1. The thick
lless of the substrate under the diode array is in the range 10-25 microns 
depending on the application. The wafer perimeter which is consider
ably thicker, provides increased physical strength. As an image sensing 
target in a vidicon type of camera tube/ developed for the Picture
phone® station set,:! it converts incoming photons that are absorbed 
in the n-type conductivity substrate into hole-electron pairs. 

1855 
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Fig. 1- Cross section of active target area illustrating the substrate, diodes, 
oxide mask, resistive sea, and scanning electron beam. 

Except for those holes created within a surface layer, a few thou
sand angstroms thick opposite the diodes, there is virtually unity 
probability that any minority carrier hole can diffuse to the deple
tion region of one of the normally reverse-biased diodes. The hole is 
swept across the depletion region to the diode p-type conductivity 
region and contributes to the total leakage current of the diode. The 
totality of holes reaching the diode during a raster interval, partially 
discharging the diode, constitute a stored charge proportional to the 
integrated local intensity of the photon flux. Recharging of the diode 
by a scanning, low energy electron beam creates a current in an ex
ternal circuit which constitutes the desired video signal. The re
charged diode is primed for integration of the hole flux during the 
next interval by the same process. Figure 2 illustrates the performance 
on one such target illuminated by a conventional TV test pattern and 
scanned in a 525-line raster with a frame interval of 1/30 second. 
Other forms of radiation will create hole-electron pairs in a silicon 
substrate. Figure 2 therefore indicates the potential performance for 
imaging these as well. 

In this paper the radiation of interest is energetic electrons. An 
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energetic electron, impinging on silicon will create 286 hole-electron 
pairs per kilo electron volt of kinetic energy.3 When the holes can dif
fuse to the nearest diodes with high probability, the resulting charge 
exceeds the charge incident on the target and amplification results. 
Thus the target, in conjunction with scanning, video processing, and 
display is an electron image transducer. It has the potential of being 
useful in anyone of a large number of systems or devices in which it 
is desired to convert spatial intensity variations in incident radiation 
into a visible image. For example, image intensifiers transduce an 
optical image into an equivalent electron image by absorbing the in
cident light on a large area photocathode. The resulting low energy 
electron image is refocused at high energy onto a second plane by an 
appropriate electron-optical system. A phosphor screen transducer 
placed in this plane produces an intensified optical image. The elec
tron image in an electron microscope similarly is viewed by a phosphor 
screen transducer. The addition of a transducer for X-rays to light 

Fig. 2 - Monitor display illustrating performance of diode array target in 
a camera tube. 
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at the front end of an image intensifier allows X-ray image intensifica
tion. The transducer would be a phosphor screen photon-coupled to 
the photo-cathode of the image intensifier. 

In all of these applications it is becoming common practice to view 
the output phosphor screen with a closed circuit TV system. This 
allows observation of a magnified, bright image with the ability to 
perform video processing and to produce a permanent record on video 
tape. In these cases, especially when a direct visual output is not 
really necessary, a single stage electron-to-video transducer with 
charge amplification replacing the output phosphor screen, lens, and 
pickup tube would effect a considerable simplification in the system 
with savings in volume and cost and would afford the possibility of 
better performance. 

Indeed in a class of pickup tubes exemplified by the secondary 
election conduction (SEC) camera tube,4 the fundamental image 
sensor is a photocathode, and the electron image is focused at high 
energy onto a charge storage target with charge gain. The target is 
scanned in a vidicon fashion to produce the video output. In this case 
the target is an insulator, KC1, evaporated onto a thin metallic back
plate. The charge in this case is created in a region of high electric 
field, and the resulting electrons are swept out. The remaining posi
tive charge is immobile and constitutes the storage mechanism. Such 
a target is similarly an electron-to-video transducer with charge gain 
and has been used in the applications suggested above. , 

In a second class of applications exemplified by double beam 
storage tubes, Fig. 3, the input electrons are produced by a writing 
gun and form an amplified, stored charge pattern. The stored pattern 
could represent, for example, a video display, as in a scan conversion 
device/, an oscilloscope trace for highspeed, nonrepetitive eventsG or 
a closed, nonintersecting path for variable delay of analog or digital 
signals.7 

The double-beam device of Fig. 3 has been chosen as the vehicle for 
study of the target imaging characteristics under electron bombard
ment. The target has also been studied under conditions which allow 
multiple readout of the stored charge. In what follows the double
beam device will be referred to as a scan converter. 

II. THE SCAN CONVERTER 

By way of introduction and for comparison, it is worthwhile to 
review some aspects of the target optimized for use in a camera tube. 
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Fig. 3 - Scan converter. Notice back-to-back gun structure. 

The array of reverse-biased diodes stores positive charge, created in 
the form of minority carrier holes by photons incident on the n-type 
silicon substrate from the side opposite the diode array. The holes 
diffuse to the diode depletion region and are swept across to the p
region or island of the diode. The stored charge is manifest as a partial 
discharging of the diodes from their full reverse-bias voltage, which 
equals the fixed potential of the target substrate, V T, relative to the 
potential of the electron beam cathode. The scanning, low energy 
electron beam, landing on the exposed p-islands, periodically charges 
them toward cathode potential. Full recharging brings the potential 
of the p-islands down to cathode potential at which point the elec
trons can no longer land on the surface. This reestablishes the full 
reverse bias across the diodes. 

Since the substrate potential is held fixed, the p-islands of partially 
discharged diodes exhibit a positive potential variation on the sur
face facing the electron beam. These islands are charged back to 
cathode potential on the next pass of the scanning electron beam. 
The recharging current constitutes the desired video signal and is 
proportional to the number of holes collected by the diodes at the posi
tion of the scanning beam. Since the number of holes stored by these 
diodes is proportional to the number of photons incident during the 
preceding frame period, the video current measures the integrated 
light intensity at the position of the diodes. The use of a discrete diode 
array preserves the spatial integrity of the incident light pattern to 
the extent that lateral diffusion of the holes is negligible and spatial 
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frequencies with periods comparable to or smaller than the diode 
spacing are not important. 

In the design of the camera tube target the proper choice of diode 
capacity is important as can be seen by the following example. Sup
pose that the peak video signal is set at 200 nanoamperes and the 
scanned area has 670,000 diodes. The scan time is approximately 
1/30 second. The maximum charge restored to the diodes during 
scanning is 2 X 10-7 amperes X 1/30 second = 6.7 X 10-9 coulombs 
or 10-14 coulombs per diode. The voltage swing of a p-island should 
never be more than about 5 volts since the beam may be pulled, 
producing landing errors for greater values. Thus the minimum re
quired diode capacity is approximately 10-14 coulombs/5 volts = 
2 X 10-15 farads. 

Under the conditions specified, the scanning beam current required 
to recharge the diode to a major fraction of the full reverse-bias 
voltage (during the submicrosecond interval the beam is incident on 
the diode) is 1 to 2 ,uamperes. Beam currents below this value lead 
to image lag resulting from incomplete recharging of the diode and 
reduced video signal levels. If the diode capacity is doubled relative 
to the minimum value, keeping everything else fixed and neglecting 
the dependence of capacitance upon reverse-bias voltage, the voltage 
swing of the diode is halved. 

The beam current required to recharge the diode to the same ex
tent as in the previous case is increased significantly, possibly more 
than a factor of two, because the beam landing efficiency is a strong 
function of the landing energy and is significantly reduced if smaller 
voltage swings are used. (The beam landing efficiency is defined as 
the ratio of the surface charging current to the incident current. It 
is less than unity because of secondary emission and elastic reflection 
of electrons.) Large beam currents are not desirable and in general 
not practical; hence the diode capacity must be critically controlled. 

For the diode geometry used in the camera tube the silicon resis
tivity to achieve the appropriate capacitance range is about 10 O-cm. 
The optimum capacity may be achieved by adjusting the potential 
of the target substrate which varies the full reverse-bias voltage. 

A maj or requirement on the diode performance is the ability to 
sustain the reverse bias for an interval that is long compared with 
the scanning interval. With a diode dark current of 10-13 amperes, 
the time for the diode reverse bias to decay to less than half its 
original value without recharging is about one second, which is sig-
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nificantly greater than the usual 1/30 second recharging interval. The 
ability to hold the diode leakage current well below 10-13 amperes at 
room temperature over the necessary range of target voltage represents 
one of the major accomplishments of the target development pro
gram for the camera tube. Leakage current for the full array is usually 
well below 50 nanoamperes. A maj or requirement on the substrate is 
that volume and surface recombination rates of minority carrier holes 
be reduced to the point that a large fraction of the holes created by 
incident radiation can reach the diode depletion region. 

The scan converter device is based on the charge storage and elec
tron beam readout properties of the target. The ability to create 
hole-electron pairs in the target substrate by bombardment with 
energetic electrons forms the basis of the writing function. Writing is 
accomplished with a CRT type of electron beam, current modulated 
with the incoming video signal and incident on the side opposite the 
diode array (Fig. 3). Each incident electron creates a multiplicity 
of hole-electron pairs, some of which discharge the diodes, creating a 
pattern of stored charge just as in the camera tube. The charge stored 
in the diode array actually can be greater than the charge deposited 
by the incident writing beam, requiring however that the number 
of hole-electron pairs created per incident electron times the proba
bility of collection for the hole, be greater than unity. The ratio of 
stored charge to incident charge will be called the charge gain. 

Despite a possible difference in scanning rates, in equilibrium the 
current level of the video signal generated by the reading beam will 
be larger than the current in the writing beam by just the charge 
gain factor. (Application of the concept of charge conservation will 
indicate the validity of the statement.) On the other hand,. the reading 
beam current is required to be greater than the video signal because 
the beam landing efficiency is substantially less than unity. Hence 
the writing beam will usually have much lower currents than the 
reading beam. In addition, the writing beam electrons will land with 
energies in the kiloelectron-volt range while the reading beam elec
trons will land with energies in the range 0-5 electron-volts. The 
result is that the writing beam may be much more finely focused 
than the reading beam. Since the penetration range of the writing 
beam electrons in the silicon substrate is normally under one micron, 
the resolution of the scan converter should be essential identical 
to that of the camera tube for very short wavelength light which 
is absorbed close to the surface. 
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Figure 3 indicates that some of the writing beam current could 
return to the writing beam cathode through the target resistor, 
creating an undesirable video signal. In actual fact, the potential 
of the mesh immediately preceding the target is adjusted to such 
a value that the effective secondary emission coefficient of the sur
face is almost exactly unity. This balance is achieved almost instan
taneously so there is virtually no net writing beam current to the 
target (but rather the current is to the mesh) and virtually no cross
talk. In case the precise secondary emission balance cannot be achieved 
uniformly over the target, the secondary emission reduction in writ
ing beam current to the target coupled with the charge gain for the 
desired video signal brings the crosstalk signal down to a tolerably 
low value. 

The writing beam is scanned at a rate appropriate to the incoming 
video signal. On the other hand, the reading beam may be scanned 
at any rate desirable. Scanning the reading beam more rapidly than 
the writing beam produces a multiplicity of time-compressed frames 
as would be required for slow scan TV. 

There is a technique for achieving multiple readouts while preserv
ing the full gray scale. During the early stages of the development 
of the camera tube, it became clear that it was difficult, if not im
possible, to obtain a stable video response unless the silicon dioxide 
(which covers the area between diodes and prevents beam electrons 
from landing on the substrate as well as protecting the diode junc
tions) was provided with a charge leakage path of some kind. With
out the charge leakage path it was not possible to control the surface 
potential of the oxide and a great many deleterious effects resulted. 

The scheme adopted to provide the leakage path has come to be 
known as "the resistive sea" and is simply the formation of a thin 
resistive film over the entire array. The sheet resistance of the film 
is chosen to allow surface leakage with a charging time constant· 
of order one second which allows control without causing loss of 
resolution through lateral spreading. Additional constraints on the 
dielectric relaxation time and thickness of the film are required to 
allow complete charging of the diodes to avoid lag. These same 
parameters can be optimized to allow multiple readout. 

Consider Fig. 4 which illustrates the target with a resistive sea 
and some lumped circuit equivalents for the various parameters of 
interest. The diode has a capacity Ca. A pulsed current source ia 
accounts for the partial discharging of the diode when the writing 



ELECTRON 
BEAM 

RESISTANCE 

~ 

CHARGE STORAGE TARGET 1863 

FILM DIODE 

Fig. 4 - Schematic of lumped circuit equivalent for diode and resistive sea. RFCF = 
pE < TF = 1/30; Cd/CF « 1 low lag; Cd/CF » 1 for multiple readouts. 

beam is incident on the substrate adj acent to the diode. Assuming a 
frame compression ratio of N is desired, the video signal must be 
created N times for each scan of the writing beam. To maintain 
adequate signal-to-noise ratio the video output current must be at 
a level comparable with that achieved in the camera tube. This re
quires N times as much charge storage; hence the diode capacity 
must be about N times larger than the equivalent capacity of the 
diode in the camera tube. The most direct way of achieving the 
increased capacity without changing the diode geometry is the use 
of N2 times higher conductivity in the n-type silicon substrate than 
might be desirable for conventional camera use. 

The thickness and resistivity of the resistive sea is arranged to 
allow negligible leakage from one diode to the next during the 1/30 
second between scans of the reading beam. Thus the lateral or spread
ing resistance of the film will be ignored as well as the shunt capacity. 
This considerably simplifies the discussion. The leakage resistance 
R, and film capacity Cf must have an RC time constant much less 
than the 1/30 second between successive scans of the beam, yet long 
compared with the approximately 10-7 second or less that the reading 
beam is incident on the diode. For this particular geometry the RC 
time constant is about equal to the dielectric relaxation time constant, 
pEEo, of the film material (p is the resistivity, E the dielectric constant 
and Eo the permeability of free space). Assuming E ~ 10 and choosing 
P€€o ~ 5 X 10-3 second yields p ~ 6 X 109 U-cm. 

The ratio of diode capacity to film capacity Cd/C, should be about 
equal to N - 1, for reasons which will become clear shortly. Thus 
the film capacity should be about the same as that of the camera 
tube diode, 2 X 10-15 farads, requiring a film thickness of about 2 
microns over the 8 micron diameter diodes. The sheet resistance of 
the film is about 3 X 10-13 ohms per square which for a 1/30 second 
frame is adequate to control surface charging without reducing 
resolution. 
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The substrate potential is held at V T , the target bias supply voltage. 
In the absence of stored signal the reverse-bias voltage of the diode 
equals V T , the voltage across the film is zero, and the surface potential 
of the film equals the cathode potential, that is, zero. Reading beam 
electrons incident on the surface have a landing efficiency of essentially 
zero and no further negative charging of the surface can occur. 

Suppose now that writing beam electrons are incident on the substrate, 
producing hole-electron pairs and that a fixed fraction of these with total 
charge Q 0 diffuse to the diode, discharging the diode by a voltage 
il Vo ~ QolCd . The charge Qo will be referred to as the signal charge and 
il V 0 as the signal voltage. It is assumed for the purpose of discussion 
that il V o « V T so that the diode capacity Cd is constant and has a value 
appropriate to V T • In practice the film surface has negligible capacitance 
to ground so that no displacement current need flow through the film 
capacitance when the interface potential rises and the voltage across the 
film therefore remains at zero. Thus the film surface is brought to a 
potential il V 0 • The maximum value of il V 0 is about 5 volts to avoid 
beam bending as in the camera tube. 

When the reading beam comes to the diode, the surface of the film is 
charged down essentially to cathode potential. Thus the series combina
tion of capacitors C, and Cd is recharged by an amount il Vo , requiring 
that the reading electron beam place a charge on the film surface 

ilQl = il Vo/(l/Cd + l/C,) 

= Qo/(l + CdlC ,). 

(The reading beam current is set at a value high enough to provide 
the charge, dQ1, during the short reading time interval. During this 
interval, conduction current through the film is negligible compared 
with the displacement current.) The charge dQ1 flows through the 
target resistor RL producing an output voltage proportional to the 
signal charge Qo. The signal charge stored in the diode capacitance, 
originally Qo, is reduced by the amount dQ1 to a value 

The voltage across the diode, originally V T - d Vo , is now V T -

dVo/(l + Ct/Ca). The voltage across the film is dVo/(l + Ct/Ca) 
which, because of the short RC time constant of the film, decays to 
zero before the next return of the reading beam. The surface poten
tial therefore achieves the value 
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~ VI = ~ V o/(l + CI/Cd ) 

as compared with to the original value ~ Vo immediately preceding the 
first read. The process is then repeated. At the nth reading after the 
original signal charge Qo was established by the writing beam, the 
output voltage is proportional to 

and the film surface potential at the instant preceding the nth read is 

Since by design Ct/Cd is uniform over the target, the relative gray 
scale is preserved, the output signal is linearly proportional to the 
input signal and the output signal decays from one read to the next 
in a well-defined exponential fashion. The exponential time constant is 

7 = 7,(1 + Cd/C,) 

in which 7, is the reading frame time. Thus for a compression ratio of N 
an appropriate value might be Cd/C, = N - 1 which implies that the 
signal decays to l/e in one writing frame time. For this case ~Ql = QoIN 
which establishes that the signal level is the same as that in the camera 
tube. Since ~Ql/ ~ V 0 = C,(N - l)/N this establishes the correctness 
of the choice of C, about equal to the capacity of the camera tube diode 
(at least for N » 1). 

Incidentally, in the camera tube and in many other applications, 
it is desirable to read virtually all of the signal stored in the diode 
on the first read (that is, one wants N = 1). This is accomplished 
by making Cd/C, as small as possible. Thus the film thickness in a 
low lag target should always be under 0.1 micron as compared with 
2 microns in the scan converter example above. 

III. EXPERIMENTAL RESULTS 

Figure 5 shows the scan converter. The tube is two one-inch vidicon
type guns facing opposite sides of the diode array target. The read
ing gun has a close-spaced decelerating mesh, as required for good 
resolution, while the writing gun mesh has been spaced back about 
one inch. This space permits light to be directed onto the target for 
measurement of the collection efficiency for holes generated by photons 
as in a Camera tube. 



1866 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968 

Fig. 5 - Scan converter. The diameter of the glass envelope is one inch. The 
large spacing allows optical measurements to be made on the target. 

Most of the targets used to date are identical to those used in 
the camera tube; hence they have not been used for multiple readout. 
However, the validity of the capacitive subdivision of the available 
signal and the multiple read capability has been established with at 
least one target. 

The resolution of the scan converter target is measured as follows. 
Both the writing gun and the reading gun are normally operated 
with magnetic deflection and focus. The writing beam current is 
modulated sinusoidally in time at frequencies locked to the horizontal 
scan rate producing a fixed sinusoidal charge pattern on the array. 
Feed-through is eliminated by adjusting the potential of the writing 
beam mesh as described earlier. The reading beam scanning rate is 
locked to that of the writing beam to avoid fluctuations in the rela
tive number of reads per write. The reading beam scans over the 
fixed charge pattern producing a sinusoidal output signal. The meas
ured peak-to-peak amplitude of the signal normalized to the value 
measured at low spatial frequencies is called the contrast ratio or 
modulation transfer function (MTF). 

The MTF as a function of spatial frequency in cycles per inch 
of target is shown in Fig. 6 for a target with a substrate thickness 
of 20 microns and a diode spacing of 20 microns. Notice that the 
MTF is 55 per cent at 300 cycles per inch or 12 lines pairs per mm. 
The falloff may be attributed to four sources: (i) writing beam size, 
(ii) reading beam size, (iii) finite number of diodes, and (iv) lateral 
diffusion of holes. For the particular target the first two are least 
significant since under magnetic focus the reading beam is capable 
of resolving individual diodes and the writing beam has even greater 
resolving power. The third source of falloff may be appreciated by 
noticing that the linear diode density is 50 per mm, which means 
that there are about four diodes per spatial period at 12 cycles per 
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Fig. 6 - Measured modulation transfer function for the scan converter target. 

mm. This is barely enough and a part of the falloff may be attrib
uted to this fact. 

Most of the falloff results from lateral diffusion of the holes which 
under the conditions of the measurement are produced within 1/10 
micron of the substrate surface. Therefore, those that are collected 
must diffuse a distance of about 15-20 microns perpendicular to the 
surface. Since the lateral diffusion distance can be of the same order 
or greater, any detail requiring a spatial frequency of greater than 25 
cycles per mm is effectively destroyed. The precise nature of the MTF 
falloff for the target depends on the target thickness, the diode geom" 
etry, and the volume recombination length and surface recombination 
velocity for holes. vVe plan a detailed discussion for a future paper. 

The MTF at high spatial frequencies can be increased considerably 
by using thinner targets and increasing the diode density. Figure 2 
illustrates a target with a substrate thickness of 10 microns and diode 
spacing of 15 microns corresponding to 67 diodes per mm. For this 
target the MTF is 100 per cent out to 280 cycles per inch and falls to 
50 per cent at well over 400 cycles per inch. For this target the read
ing beam contributes substantially to the falloff in resolution. 

The effective charge gain, of course, is a function of spatial fre
quency and its relative dependence on spatial frequency is the MTF 
shown in Fig. 6. However, the absolute charge gain for uniform storage 
patterns is a parameter of importance. Large values of gain are not 
really required or desirable for the scan converter; values of order 10 
are useful. Values of order 103 or greater are desirable for some of 
the other applications. 
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The charge gain is measured in the following way. The unmodulated 
writing beam is scanned over some small area of the substrate at a 
current level sufficiently low that the resulting holes do not completely 
discharge the diodes. This can be checked by varying the writing beam 
current. The writing beam mesh is held negative relative to the sub
strate to suppress true low energy secondary electrons but not elasti
cally reflected primaries. The redistributed secondary electrons, which 
land at much reduced energies compared with the primary beam, pro
duce few, if any, hole-electron pairs. With the reading beam turned 
off, the current in the target lead measures the incident current in the 
writing beam that penetrates into the target. The charge gain in this 
case is effectively zero since the diodes are discharged and the hole
electron pairs are forced to recombine. The reading beam is turned on 
and scanned over an area which includes the area scanned by the writ~ 
ing beam. The increase in time average current measured in the target 
lead measures the arrival rate at the scanned diodes of all the holes 
generated in the substrate. The thermal part of the hole generation 
(the diode dark current) is determined by turning off the writing beam. 
The net current divided by the writing beam current penetrating the 
target is called the charge gain. A preliminary discussion of the ex
pected results is appropriate at this point. 

The charge gain should be describable by the expression 

G(V) = 1L 7](x) dP(x, V) dx 
o dx 

(1) 

in which 7J (x) is the probability that the hole, created at a distance x 
from the surface upon which the electrons are incident, will reach the 
diode space charge region and be collected, dx (dP /dx) is the number 
of hole electron pairs created between x and x + dx for an electron 
incident normally with kinetic energy V electron volts, and L is the 
substrate thickness. The function 

P( V) = 100 

dP(x, V) dx 
o dx 

(2) 

which defines the total pair production per incident electron is given by 

P(V) ~ V13.5 (3) 

(corresponding to the fact that it takes on the average 3.5 eV to create 
one hole-electron pair). Writing 
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G(V) = P(V{t ~(x) dP~~ V) dx / f dP~~ V) dxJ 

= P(V)n(V) 
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(4) 

combines the effects of a variety of different phenomena into the function 
n(V) which will be called the effective collection efficiency. 

A number of different target fabrication procedures have been studied 
to optimize the effective collection efficiency. The best to date is similar 
to that used for optimizing the sensitivity of the target for visible light 
and consists of a thin n + layer formed on the writing beam side of the 
target. The n + layer is formed by a shallow phosphorous diffusion into 
the n-type conductivity substrate. The effect of this layer is discussed a 
few paragraphs further on. The measured collection efficiency n(V) = 
3.5G(V)/V as a function of electron energy is shown in Fig. 7. The 
collection efficiency approaches 0.5 for electron energies of order 10 Ke V 
but falls well below 0.01 for energies below 2 KeV. Indeed in the energy 
range under 2 Ke V the measured effective collection efficiency of a target 
for which the phosphorous diffusion was eliminated (the surface was 
merely etched) was higher at a constant value of 0.016. 

An understanding of the measurements requires a knowledge of 1](x). 
However, a theoretical evaluation of n(V) is complicated by the fact that 
dP(x, V)/dx is not negligible very close to the surface and 1](x) near the 
surface is strongly dependent on the surface properties of the silicon 
crystal. Aside from the surface complication 1](x) may be accurately 
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evaluated on the basis of a model in which only the bulk recombination 
lifetime T, the surface recombination velocity S at x = 0, the diffusion 
coefficient D, all for the minority carrier hole, and the substrate thickness 
L are relevant, 

sinh (xll) + (DIlS) cosh (xlz) 
TJ(x) = sinh (LIZ) + (DIlS) cosh (LIZ) 

Z = (Dr)!, 
(5) 

which follows from a one-dimensional Green's function solution of the 
diffusion equation for excess holes. In fact (1) might be considered to be 
the normalized Green's function solution for hole current through the 
plane at x = L. 

Quite generally TJ(x) increases with increasing recombination length l 
and the target fabrication is optimized to make l as large as possible. 
Typically l» L and it is appropriate to make this assumption. Thus (5) 
becomes 

1 + SxlD 
TJ(x) ~ 1 + SLID' (6) 

For an etched silicon surface S ~ 106cm per second while D = 10 cm2 

per second. Thus for L = 10 microns, which represents a minimum 
practical value, SLI D ~ 102

• It can be appreciated that TJ(x) will be 
quite small for x « L unless S is substantially reduced. Thus for low 
beam energies corresponding to small penetration depths n(V) ~ TJ(O) = 
(1 + SL/D)-l ~ 10-2 which is consistent with measurements on etched 
targets. As mentioned above, the most relevant technique among those 
that have been tried to reduce S for this application is a shallow phos
phorous diffusion into the surface upon which the electrons are incident. 
This produces an n + layer ,vhich repels holes diffusing toward the surface 
resulting in an effective value of S ~ 103cm per second. As a result the 
x-dependence in (6) is relatively small. Unfortunately the phosphorous 
diffusion drastically increases the recombination rate of holes in the n + 

layer and the layer can be characterized as dead. As a result TJ(x) is not 
well known for very small x. 

The uncertainty in interpretation of the experimental results intro
duced by the dead layer makes it desirable to study also the collection 
efficiency for holes produced by incident photons. For this case the initial 
distribution of holes created by the photons is accurately known. A corre
sponding effective collection efficiency function n(A) can be defined for 
pair production by photons of wavelength A, 
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iL 

rJ(x)exe- ax dx 

i oo 

exe - ax dx 
n(A) 

(7) 

i L 

rJ(x)exe- ax dx 

in which ex(A) is the absorption coefficient for photons of wavelength A. 
This formulation is not strictly correct for (XL < 1 since light penetrating 
to the surface at x = L may be reflected back into the substrate. Also 
the distance L is not well defined because of the diodes. If it is assumed 
that 'within the dead layer of thickness 0, rJ(x) = 0 and beyond the 
dead layer rJ(x) is given by the equation in (6) with x measured from 
the edge of the dead layer, then for exL » 1 

n(A) ~ 100 

rJ(X - o)exe- ax dx 

nCAl ~ D ! ff~/~J exp - a •. (8) 

The measured collection efficiency as a function of wavelength (for 
the same target used for obtaining the data of Fig. 7) is shown in Fig. 8. 
The data were obtained by admitting light onto the target through the 
glass wall of the tube envelope. The data are corrected for Fresnel 
reflection losses at the glass surfaces and from the silicon. Curves of (8) 
with S = 1.1 X 104 cm per second, D = 10 cm2 per second, L = 20 
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microns and 0 = 0 and 0.21 microns are also shown. The calculation is 
not carried beyond "A = 0.65 microns since for Jonger wavelengths the 
target does not absorb all of the light transmitted past the surface. In 
fact, the slight falloff in collection efficiency above 0.7 microns may be 
attributed to this. Notice the good agreement with the curve correspond
ing to 0 = 0.21 microns indicating the approximate validity of the 
simple model of the dead layer. The dead layer thickness corresponds 
roughly to the phosphorous diffusion depth. 

In the range 0.4 < "A < 0.65 microns the absorption depth for photons8 

corresponds very roughly to the penetration depth for electrons in the 
energy range 4 < V < 10 KeV. The penetration depth increases 
monotonically with "A or V to a maximum value of a few microns. 
Although the distribution of created holes for any value of "A is not the 
same as the distribution for any value of V, it is not surprising that the 
range of measured values of n("A) and n(V) are quite similar. In either 
case a reduction of S to 103 em per second, which is the more typical 
value observed in camera tubes, would increase the collection efficiency 
to close to unity over most of the range. A shallower phosphorous 
diffusion would also improve matters for low V or "A. 

To date the only feature of the target which causes some concern 
about its future applicability is a slight burn-in or aging phenomena 
associated with the writing beam. It shows up as a decrease in charge 
gain over very heavily scanned areas. The rate of aging increases with 
writing beam current. It is not yet known whether the aging effect 
saturates, or whether it even occurs at all for low writing beam cur
rents typical of most applications. The aging may account for the 
larger values of S observed in these targets as compared with camera 
tube targets.9 

IV. CONCLUSION 

A charge storage target for low energy scanning beam readout has 
been described with respect to its ability to produce a video represen
tation of an electron image. Measurements of resolution and charge 
gain have been described. The target has general application in devices 
requiring an electron-image-to-video transducer and in scan conver
sion devices. 
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Hologram Heterodyne Scanners 

By L. H. ENLOE, W. C. JAKES, JR., and C. B. RUBINSTEIN 
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Several techniques are proposed in this paper which use a scanning 
coherent light beam to produce an electrical signal which corresponds to a 
scanned hologram. The hologram itself is not formed at the transmitting end 
of the system as a physical entity, rather the modulated electrical carrier 
frequency corresponding to the spatial carrier frequency of the hologram is 
generated by heterodyning. An advantage of the hologram heterodyne scanner 
is that it reduces the spatial resolution required of the camera tube in a 
holographic television system by at least a factor of four. 

r. INTRODUCTION 

In principle, it is possible to conceive of a holographic television 
system, but a practical system hinges on removing' a number of 
formidable roadblocks. Among these is transducing the holographic 
information into a relatively narrowband electrical signal by means 
of a camera that has-limited spatial r~solution. This problem is shared 
by both a three.-dimensional and a two-dimensional holographic sys
tem, but with present technology the 3-D system certainly presents 
many more problems. The two-dimensional system becomes much 
more tractable if the camera resolution problem is overcome. It is to 
this problem and our proposed solution that this paper addresses itself. 

Consideration of this problem is not new, as evidenced by the 
early outline of the bandwidth requirements of a holographic televi
sion system by E. N. Leith and others in 1965.1 There have also been 
reports of experiments involving the transmission via television of a 
Fresnel type of hologram in which the original object was a trans
parency.2.3 The difficulties encountered in these transmissions illus
trate the crux of the problem. 

A hologram consists of low spatial frequency information (dictated 
by the spatial information content of the object) which has been 
modulated onto a high spatial carrier frequency derived from the 

1875 
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interference of the reference and object beams. Conventionally, a 
television camera converts a spatial display, which in this case is a 
hologram, into an electrical signal by scanning it with an electron 
beam. However, the camera has a spatial frequency response that is 
low-pass in nature and limited in extent. Hence, the spatial carrier 
frequency rests out on the skirt of the passband, and the positive and 
negative sidebands are thus treated differently, producing distortion. 
We have so far lacked a feasible technique which would allow the 
effective use of the available bandwidth. That is to say, we need a 
technique which would allow the hologram information to be low
pass in nature until after being processed by the photosensitive sur
face of whatever transducer is used. The method we propose, which 
we call the heterodyne scanner, does exactly this. As a consequence, 
the required spatial resolution is reduced by at least a factor of four 
compared with the transmission of a conventional off-axis reference 
beam hologram. 

The technique we propose envisions a scanning coherent light beam 
to produce an electrical signal which corresponds to a scanned holo
gram. In contrast with conventional methods, the hologram itself is 
not formed at the transmitting end of the system as a physical entity; 
instead the modulated electrical carrier frequency corresponding to 
the spatial carrier frequency of the hologram is generated by hetero
dyning. 

These heterodyne scanners have important potential advantages 
over conventional methods of scanning. First, the nuisance terms 
corresponding to the direct beam in the reconstruction of a conven
tional hologram are not transduced. This halves the scanning beam 
aperture's resolution requirements. Second, the necessity for resolving 
the spatial carrier frequency of the equivalent hologram with the 
scanning beam is circumvented. This halves again the scanning beam 
resolution requirements, thus reducing resolution requirements to a 
quarter of the original requirements. 

Let us briefly review the formation of a conventional hologram in 
order to point out the terms involved in the formation and reconstruc
tion. We will then be in a better position to discuss the desired re
duction and the means for accomplishing it. 

II. CONVENTIONAL HOLOGRAM 

Figure 1 depicts a typical holographic situation, showing an ob
ject beam 
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Fig. 1- Formation of a conventional hologram. Object and reference beams 
impinge on hologram plane P. 

and a reference beam 

impinging upon a hologram plane P. The intensity is given by 

I = A~ + Ao(x, y)2 

+ 2ArA o(x, y) cos [Cwo - wr)t + c!>o(x, y) + ax + c!>rJ. (1) 

For the formation of a conventional hologram the two beams must be 
at the same frequency, that is*, Wr = W O ' so that equation 1 becomes 

During reconstruction, the first two terms of equation 2 form the direct 
beam and are unimportant except that they tend to obscure the recon
structed image which comes from the third term. Notice that the third 
term is a spatial carrier wave which is amplitude and phase modulated. 
If the spatial bandwidth of the wave to be reconstructed, A o(x, y) (/</>o (X,Y), 

is 2 W, then the bandwidth of the direct beam, A; + Ao(x, y)2, and the 
bandwidth of the desired term, ArAo(x, y) cos [c!>o(x, y) + ax + c!>r], will 
each be 4W, as shown in Figure 2. Thus if angular overlap between the 
direct beam and the desired reconstructed wavefront is to be avoided, we 
require that the spatial carrier frequency a of the desired third term in 
equation 2 be at least 3W. This results in a total spatial bandwidth of 8W. 

* There are exceptions. See Ref. 4. 



1878 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968 

,..._-SPECTRUM OF AO(J:,y}ejepO(X,lj} 

If 

-w +W 

.. SPECTRUM OF A O(:r,y)2+ A 2 r I 
r 

SPECTRUM OF \ SPECT RUM OF 
ArAo{ :x:,y) COS [cI>o (X ,y) + ax+cI> rJ \ ArAo (X ,y) COS [cI>O(r ,y} +ax +c/> r] 

/1:// ~ -....: ......... "'" 

--'-------'-,----'- I~I __ I I I 
-a-w -a -a+w -2W -w 0 W 2W a-w a a+w 

Fig. 2 - Spatial spectra of a conventional hologram signal. This representa
tion is only intended to convey the limits of the spatial spectra and not the 
explicit form of the function. 

III. ELIMINATING TERMS CORRESPONDING TO THE DIRECT BEAM 

Since the third term in equation 2 is all that is necessary to recon
struct a hologram, it is desirable to eliminate the generation of the 
direct beam. The spatial carrier frequency a could then be reduced 
from its present minimum value of 3W to W, reducing the minimum 
total spatial bandwidth which must be. transduced from 8W to 4 W. 
We are able to accomplish this rather easily with the heterodyne 
techniques discussed in this paper. 

If equation 2 represents the intensity formed on a television camera 
tube, the camera output current will be proportional to the intensity 
being scanned by the electron beam. For an x-direction scan, the 
amplitude and phase modulated spatial carrier frequency is con
verted to a correspondingly modulated electrical signal. Notice that 
precisely the same electrical signal can be obtained by using a photo
multiplier or other large area photodetector with a pinhole aperture 
placed just in front of the photosurface, the pinhole being scanned 
over the photosurface in a raster-like fashion in the same manner that 
the electron beam scans the photosurface in a camera tube. The out
put current from the photo detector would be proportional to the in
tensity of the light sampled by the pinhole. 

A more desirable transducer is obtained if· one shrinks the refer
ence beam into a small pencil beam of pinhole dimensions which is 
then scanned over the photosurface. The pinhole aperture is now 
superfluous and can be removed, thereby gaining a distinct advantage. 
The intensity of the light on the photosurface contributed by the 
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object beam acting alone and the reference beam acting alone is now 
constant as a function of time. Thus, the nuisance terms correspond
ing to the direct beam in the reconstructed hologram, that is, the 
first two terms of equation 2, are not transduced as time varying 
currents. The only time varying term is produced by the interaction 
of the pencil reference beam with the object beam as it scans out the 
raster. This time varying signal is proportional to the "desired third 
term in equation 2 which represents the useful information. Thus, 
the carrier frequency (dictated by the angle between the reference 
and object beams) can be reduced from 3W to W, which cuts in half 
the resolution requirements of the aperture of the scanning beam. 
(See Fig. 2). 

IV. ELIMINATING THE SPATIAL CARRIER FREQUENCY 

In the situation discussed in the previous section, spectrum over
lap in the electrical signal is prevented by adjusting the angle be
tween the object and reference beams to provide a sufficiently large 
spatial carrier frequency. As a consequence, the aperture of the 
scanning beam must resolve the highest spatial sideband frequency 
associated with this spatial carrier frequency. 

As an alternative to generating the electrical carrier frequency by 
scanning a corresponding spatial carrier frequency, it is possible and 
indeed advantageous to generate the electrical carrier by heterodyning 
the object beam with the reference beam. This can be done in such a 
manner that it is unnecessary for the scanning aperture to resolve an 
equivalent modulated spatial carrier frequency. It must resolve only 
those spatial frequencies present in the complex field of the object 
beam itself, that is, it must resolve only a spatial bandwidth of 2W. 
This realizes a subsequent reduction in the resolution requirements 
of the scanning beam by a factor of two over and above the reduction 
discussed in Section III. 

For convenience, let us rewrite equation 1, 

I = A; + Ao(x, y)2 

+ 2Ar A o(x, y) cos [Cwo - wr)t + ¢o(x, y) + ax + ¢r], (1) 

which represents the intensity of the light incident on the photodetector 
when the object beam and reference beams are at different frequencies 
Wo and Wtj respectively. Conceptually, these two frequencies can be 
sidebands produced by modulation, or can be two phase-locked modes of 
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the same laser, or produced by two phase-locked lasers, to name just a 
few methods. 

In the present situation, the scanning pencil-like reference beam 
has an amplitude which may be written as a delta function, Ar = 
8(x - ut) 8 (y - vt), where u and v are the horizontal and vertical 
scanning velocities, respectively. When this is substituted into equa
tion 1 and integrated over the surface of the photodetector to find the 
output current, we obtain for the time varying component: 

i(t) = 2Ao(ut, vt) cos [Cwo - Wr + au)t + ¢o(ut, vt) + ¢r]. 

We see that the frequency difference Wo - Wr has been added to the 
electrical carrier frequency au produced by scanning the spatial carrier 
frequency a. Thus, we may use a spatial carrier frequency of zero and 
avoid spectrum overlap (which produces beam overlap problems at 
reconstruction) by controlling the frequency difference between the 
reference and object beams. This means that the aperture of the scanning 
beam need resolve only those spatial frequencies present in the complex 
field of the object beam. For example, in Fig. 2 it need resolve only the 
spatial spectrum of Ao(x, y)eicPo(x,V). Thus, the total spatial bandwidth 
required has been reduced by a factor of four. 

V. ADDITIONAL CONSIDERATIONS 

It might be appropriate to speculate on other aspects of the holo
gram heterodyne scanner. One might consider other means of im
plementing this technique. For example, one could replace the large 
area photodetector with a small area or point detector such as a 
photodiode. Rather than deflecting the pencil-like reference beam 
relative to a fixed object beam, the object beam is deflected relative 
to a fixed pencil reference beam. This allows one to reduce the size 
of the photodetector from that equal to the size of the equivalent 
hologram to that equal to a point. The price paid for this simplifica
tion is the difficulty associated with deflecting the information-bear
ing obj ect beam without introducing excessive distortion. This will, 
of course, be more difficult than deflecting a pencil-like reference 
beam. 

Another aspect of the use of the hologram heterodyne scanner is its 
potential sensitivity. Heterodyning is a well known technique for 
converting a weak light signal into an electrical current whose signal
to-noise ratio is determined by the fundamental quantum nature of 
light.5 The heterodyne scanner should have potentially the best sensi-
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tivity obtainable by any technique which does not use charge storage. 
Without reported experimental verification of the hologram hetero

dyne scanner, it would not be especially fruitful to spend much time 
at this point speculating on possible display devices. There are a 
number of possible approaches to this problem but they are admittedly 
speculative. These include the Swiss Eidophor System6 as a direct 
recording medium for the holographic electrical signal, or the use of 
photo chromic materials for recording the output of a laser beam 
modulated by the holographic electrical signal and raster scanned 
over the photo chromic surface. Both these methods have been referred 
to by E. N. Leith and his colleagues. 

VI. COMMENTS AND COMPARISONS 

Let us compare the hologram heterodyne scanner to the method 
proposed by C. B. Burckhardt and E. T. Doherty.7 An extension of 
their technique·x. reduces the spatial resolution required of the camera 
tube by the same factor of four as the hologram heterodyne scanner, 
but even in its improved version it still requires a 50 percent greater 
electrical information rate than the scanner. However, the technique 
can be implemented with present technology. 

A technique has been reported by L. H. Lin which involves spatial 
frequency sampling to reduce the information content of the holo
gram.8 This is accomplished by an iterative Fourier transform tech
nique. It is possible to augment Lin's technique with the hologram 
heterodyne scanner to increase the bandwidth saving. The transla
tion of the hologram peculiar to Lin's technique can be carried out at 
the receiver. K. Haines and D. B. Brumm have also reported on a 
technique which can be used to reduce the information to be trans
duced and is compatible with the hologram heterodyne scanner.9 

The hologram heterodyne scanner is a general technique that would 
apply to three-dimensional objects or two-dimensional transparencies. 
However, this does not mean that the implementation of this technique 
presents the same difficulties in each case. The spot size of the scan
ning reference beam and the speed of scan are directly influenced by 
the type of object to be transduced. The requirements are more 
stringent for the three-dimensional object if reasonable parallax is 
to be observed. Advances are currently being made in laser scanner 
technology which will help alleviate one aspect of the problem. A. B. 

* The technique presented in Ref. 7 has been extended by C. B. Burckhardt 
to apply to TV transmission but this specific aspect is unpublished. 
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Larsen of Bell Telephone Laboratories is conducting experiments 
implementing the hologram heterodyne scanner technique. Many of 
the concepts of this paper have been improved and extended by him 
and will be reported in the near future. 
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Analysis of Thermal and Shot Noise 
in Pumped Resistive Diodes 

By CORRADO DRAGONE 

(Manuscript received April 8, 1968) 

This paper discusses certain important aspects of the noise behavior 
of a pumped resistive diode containing shot and thermal noise sources. 
The derivation of the following J'esult has a central role in the discussion. 
It is shown that the noise behavior of a pumped diode which does not contain 
l/f noise sources can be derived in a very simple way jrom Nyquist's 
theorem. This follows jrom the jact that the small-signal terminal behavior 
oj such a diode can always be represented, in the jrequency range oj practical 
interest, by means oj a connection of two linear and time-invariant net
works of which one is noiseless and the other is dissipative, contains only 
thennal noise sources and is held at a uniform temperature. 

I. INTRODUCTION 

The process of frequency conversion and its applications are well 
known and are extensively treated in the literature.1

-
22 This paper con

siders the special case of a resistive diode frequency converter. An im
portant limitation on the minimum noise figure of such a frequency 
converter is imposed by the noise generated by the diode, and it is the 
main purpose of this paper to study the properties of this noise. 

Until a few years ago, much of the noise generated by the diode was 
1/! noise. Therefore, since very little was known about this type of 
noise, the early theories of frequency converters using positive resis
tance diodes paid little attention to the noise performance, and some
what later theories accounted for noise only in a very approximate 
way. However, as the semiconductor craft has developed, l/f noise 
has been subject to considerable reduction and, even though its exact 
mechanism has not yet been completely established, in present diodes 
it appears to be important only at very low frequencies. 23 Therefore, 
the study of shot and thermal noise in pumped diodes is of great prac
tical importance. 

1883 
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Strutt showed the method of treating shot and thermal noise in a 
pumped diode many years ago.6 Since that time the method has been 
applied to tunnel diode frequency converters by a number of au
thors16-2o However, in the case of a frequency converter using a posi
tive resistance diode, it is normally believed that, in order to calculate 
its noise figure, a detailed analysis of the noise behavior of the diode 
is not necessary.10. 12-14 

Consider a positive resistance diode which does not contain fre
quency dependent noise sources. That is, assume that, for any fixed 
voltage v applied to its terminals, the small-signal terminal behavior 
of the diode is equivalent to that of an ordinary resistor held at a uni
form temperature T. The conductance 9 of this resistor is equal to the 
differential conductance of the diode and T is the so-called equivalent 
noise temperature of the diode. Since in a frequency converter the 
diode is pumped periodically by the pump, v varies with time. There
fore, 9 and T also vary with time, because they both depend upon v, 
and one can write 9 = 9 (t) and T = T (t). 

Normally it is convenient to represent the small-signal terminal be
havior of the diode by means of a linear and time-invariant network 
with several separate terminal pairs, one for each frequency of inter
est. A study of the noise behavior of this equivalent network generally 
requires that the self- and cross-power spectral densities of its short
circuit terminal currents, or of its open-circuit terminal voltages, be 
determined. Normally, however, the difficulty in determining the statis
tics of these noise terms is overcome by making the assumption that 
the equivalent network may be treated as an ordinary time-invariant 
dissipative system which contains only thermal noise sources and is 
held at a uniform temperature Tx. Tx is normally assumed to be equal 
to a certain time average of T (t) . 

Even though no general proof has yet been given for this representa
tion, it is widely used, mainly because it greatly simplifies the treat
ment of the noise performance of a frequency converter. However, it 
is often viewed with reservations for several reasons.15 One very im
portant reason is that it is generally applied to cases, in which one can 
easily show that it is not applicable, such as cases in which significant 
II! noise is generated by the diode. Another reason is that its validity 
is not obvious even in the limiting case where the noise power available 
from the diode is frequency independent and does not vary with the 
applied voltage. In fact, even in this limiting case, it is often considered 
to be not strictly valid. 
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However, in this paper it is shown that, besides being valid under 
certain limiting conditions, such a representation can also be used for 
formulating and interpreting in a very simple way the noise behavior 
of a pumped diode under quite general conditions, including a negative 
resistance diode. 

In the following discussion it is assumed that the diode does not con
tain frequency-dependent noise sources, so that its small-signal term
inal behavior may be completely specified by the two time-varying 
parameters g (t) and T (t). Then it is shown that, in the limiting case 
where T is a constant, the following theorem is true: 

Theorem 1: If a pumped resistive diode is characterized by a time
invariant equivalent noise temperature T, then its small-signal termi
nal behavior can be represented by means of a time-invariant equi
valent network which contains only thermal noise sources and is held 
at a uniform temperature Tx = T. 

From this general theorem, which is already known to be valid un
der certain particular circuit conditions,22 a number of interesting re
sults can be derived. One important result is of course that, in a fre
quency converter which is bilateral and in which the noise temperature 
of the diode has negligible variations with time, the noise figure can be 
readily calculated. In fact, under these limiting conditions the noise 
figure can be related in a very simple way to T and to the dissipation 
characteristics of the circuit.10. 12-14 

Another important result is that, also in the general case where T(t) 
is not a constant, the terminal behavior of the diode can be readily 
derived from theorem 1. This is a consequence of the following gen
eral property, which follows directly from the definition of T (t) and 
is stated as a theorem for emphasis: 

Theorem 2: Consider a pumped diode characterized by the time-vary
ing parameters T (t) and g (t). Its short-circuit noise current an (t) is 
identical to that of a second diode characterized by a time-invariant 
temperature T2 and a differential conductance I g(t) I T(t)/T2 • 

According to theorem 1, this second diode can be represented by an 
equivalent network held at a uniform temperature T2 • Therefore, by 
applying to this equivalent network the generalized form of Nyquist's 
theorem derived by Twiss/4 the correlations between the various fre
quency components of an (t) can be readily determined. One finds that 
these correlations are simply equal to the Fourier coefficients of g (t). 
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This property is already known to be valid under certain particular 
circuit conditions.16-

2o 

Now, consider a linear, reciprocal, passive and time-invariant one
terminal pair network containing different elements held at different 
temperatures. It is well known25 that at a given frequency W1 the effec
tive noise temperature of this network can be expressed as a weighted 
average of the various temperatures of the lossy elements. The weighting 
factors in this weighted average are simply equal_ to the amounts of 
power that are dissipated by the various lossy elements when the net
work is connected, at its two terminals, to a generator delivering a 
unit amount of power at the considered frequency W1 • This result is 
extended, in Section VIII, to a reciprocal and linear network containing 
a time-varying resistance, by introducing the concept of average tem
perature Tav of a pumped resistive diode. The significance of this param
eter is best illustrated by the following example. 

Suppose that one wants to calculate the noise power available from 
the output terminals of a frequency down-converter. It is shown that, 
if the frequency converter is bilateral, this power can be calculated 
by replacing the diode with one having the same i-v characteristic and 
a temperature equal to Tav, where rav is given by the relation 

T = (P(t)T(t)av 
av (P(t) )av ' (1) 

where ( )av indicates the time average and P(t) is the instantaneous 
small-signal power dissipated by the differential conductance of the 
diode when a small-signal generator is applied to the output terminals 
of the frequency converter. It is important to point out that Tav de
pends, in general, both on the characteristics of the diode and on those 
of the circuit connected to it. 

II. SMALL SIGNAL EQUATIONS OF A NOISELESS PUMPED DIODE 

Let the diode current i be a nonlinear function f(v) of the terminal 
voltage v. It is assumed that the diode is pumped by a strong periodic 
source at a frequency Wo and its harmonics. Therefore v and i contain 
large components v~(t) and ic(t) of the type: 

co 

vc(t) = L V k exp jkwot (2) 
k--co 

co 

ic(t) = L Ik exp jkwot. (3) 
k--co 
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It is assumed that v and i contain, in addition, small components 8v (t) 
and Bi(t) and it is desired to derive the relation between8v(t) and 
Si(t), for the limiting caseSv (t) ~ 0 and ,Si(t) ~ o. Thus let 

v = vct) = vc(t) + ov(t) , 

i = i(t) = ic(t) + ai(t). 

(4) 

(5) 

The differential conductance of the diode is equal to the derivative of 
f(v). Let it be denoted by gd,(v) and let 

(6) 

Since vc(t) is periodic, also g(t) is periodic and therefore it can be 
written in the form 

co 

get) = L gk exp jkwot. (7) 
k~-co 

Since i = f(v) and gd,(v) is the derivative of f(v), from equations 4, 5, 
and 6 one has: 

oi(t) = get) ov(t) (8) 

in the limiting caseSv (t) ~ O. This relation completely describes the 
small-signal terminal behavior of the diode, in the absence of internal 
noise sources. 

III. SMALL SIGNAL EQUATIONS OF A NOISELESS DIODE IN THE 

FREQUENCY DOMAIN 

From equations 7 and 8 the relations between the different frequency 
components of ov(t) and oi(t) can be readily derived4

•
7

• In fact, assume 
that both ov(t) and oi(t) contain components at only the pairs of side
frequencies kw o + p and kwo - p (I k 1 = 0, 1, 2, etc.; 2p < wo). Then 
ov(t) and oi(t) can be expressed as follows: 

8v(t) = 2(Re{t, Va' exp j(P + kw,)t + t, Vp, exp j(P - kw,)t] (9) 

M(f) = 2(Re{t. la. exp j(P + kw,)t + t, lp, exp j(P - kw,)t] (10) 

and, on substituting equations 9, 10, and 7 into equation 8, one obtains 
the following relations between the Fourier coefficients of the various 
frequency components ofSv ( t) and Si ( t) : 

co co 

I ar = L Or-k V ak + L Or+k V Pk (r = 0,1, etc.) (11) 
k-O k~l 
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00 00 

I(3r = L gk-r V,'3k + L g-r-k V ak (r = 1,2, etc.) (12) 
k=l k-O 

which can be written in the form: 

[
I a]] = [[Gaa] 

I(3] [G(3a] 

where the matrix notation is defined as follows: 

I aO I(31 

Ia1 I(32 

I a2 
, I(3] = 

IfJ3 
, 

V a2 ' 
V(3] (14) 

and the elements of the matrices [Gaa], [Gaf3], etc., are 

(Gaa)r.k = gr-k (r, k = 0, 1, etc.) (15) 

(G(3fJ)r.k = gk-r (r, k = 1,2, etc.) (16) 

(GafJ)r.k = g .. +k (r, k - 1 = 0, 1, etc.) (17) 

(GfJa) ... k = g- .. -k (r - 1, k = 0, 1, etc.) . (18) 

Equations 13 through 18 completely specify the terminal behavior 
of the diode at the frequencies p ± kwo in the absence of internal noise 
sources. 

IV. SMALL SIGNAL TERMINAL BEHAVIOR OF A NOISY DIODE 

Up to this point the noise generated by the diode has been ignored. 
In the general case of a noisy diode equation 8 has to be modified as 
follows: 

oi(t) = get) ov(t) + on(t) (19) 

where Bn (t) is the equivalent short-circuit noise current of the diode. 
Equation 19 corresponds to the equivalent circuit shown in Fig. 1 in 
which the spontaneous fluctuations of the diode are ascribed to a cur
rent generator of infinite internal impedence, acting in parallel to the 
differential conductance of the diode. 

Now, consider the components of on(t) occurring in an infinitesimal 
frequency range between w - (dw)/2 and w + (dw)/2.It is convenient 
to account for these components by means of a single pseudosinusoid 
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Fig. 1-Equivalent circuit of a time-varying conductance containing noise 
sources. 

with random complex amplitude26
-

28
• Then, let N a.T. and NfJr (k = 

0, 1, 2, etc.; r = 1, 2, etc.) be the complex Fourier amplitudes of the 
pseudosinusoids relative to the frequencies p + kw o and p - kw o , 

respectively. Noise components occurring at frequencies different from 
these will be neglected since they have no effect on the small-signal 
terminal behavior of the diode at the frequencies p ± kwo • Then 

lJn(t) = 2(Re){t, N.k exp j(P + ""',)t + t, N., exp j(P - ""',)t} (20) 

and from equations 13 and 19 one obtains: 

(21) 

where 

and (22) 

Equation 21 completely specifies the small-signal terminal behavior 
of a pumped diode containing noise sources. Its physical interpretation 
is often facilitated by introducing the equivalent circuit of Fig. 2. In 
this equivalent circuit the diode is represented by a linear and time
invariant network in which the terminal voltages and currents occur 
at the same frequency. Their Fourier coefficients are equal to those of 
the various frequency components of 8v (t) and 8i(t). 

The network of Fig. 2 is completely specified with respect to its ter
minal pairs by its admittance matrix 

(23) 
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lao 

VaO t NaO 

t 
Va] I a 1 

I a] --
Val t Nal 

t 
V] 

• • [GJ • 
I]~ I {31 

V{31 t Nf31 

t 
V{3] I {32 

I {3 J --... 
V{32 t N{32 

• 
• NJ • D 

Fig. 2 - Time-invariant equivalent network of a pumped diode. 

and by the noise column matrix 

(24) 

which represents the complex Fourier amplitudes of its short-circuit 
terminal currents. The self- and cross-power spectral densities of these 
noise currents are 

(25) 

where ( ) indicates the statistical average. They are conveniently rep
resented by the matrix 
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1 t 
dt (N]N] ), (26) 

where superscript t denotes the Hermitian conjugate. 
Now let the properties of the equivalent network of Fig. 2 be briefly 

examined. Since gk = g~k (lc = 0, 1, 2, etc.), from equations 15 through 
18 one has that the admittance matrix [G] is Hermitian, that is: 

[G] = [G]t. (27) 

It is interesting to note that this condition is equivalent to the condition 
that 

(IM)(V]t[G]VD = 0 (28) 

for all V], which requires that the total reactive power flowing into the 
nonlinear resistance at the various side frequencies p ± kwo (k = 
0, 1, etc.) be always zero. This property is a direct consequence of the 
general energy relations derived by Manley and Rowe for nonlinear 
resistors.29 Because of equation 27 the average small-signal power dis
sipated in the admittance get) can be expressed as 

(OV(t)2g(t) )av = V]f([G] + [G]t) V] = 2V]t[G]V]. (29) 

Therefore, if 

get) > 0 (30) 

at all times, then [G] is both Hermitian and positive definite and the 
equivalent network is dissipative. 

Now, consider a linear and dissipative network which contains only 
thermal noise sources and is characterized by an admittance matrix 
equal to [G]. If such a network is held at a uniform temperature T, 
then the various spectral densities of its short-circuit terminal currents 
are simply given by the elements of the matrix 

kT([G] + [Glt). 

From this generalized form of Nyquist's Theorem, proved by Twiss/4 

and from equation 27 one has that, if condition 30 is satisfied and the 
matrix 26 satisfies the relation 

(N]N]t) = 2kTdt[G1, (31) 

then the small-signal terminal behavior of the diode can be represented 
by means of an equivalent network which contains only thermal noise 
sources and is held at a uniform temperature T. 
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Of special importance is the particular case in which the circuit con
nected to the diode is resistive at the harmonics 2wo , 3wo , etc., of the 
pump frequency and, at these frequencies, does not contain generators. 
Under these conditions it is always possible to choose the origin of time 
in such a way as to make vc(t), ic(t) and get) even functions of time.7 

In this case, since all of the coefficients gk (k = 0, 1, etc.) become real, 

Ok = O-k' (32) 

and therefore [G] becomes a real symmetric matrix, because of 
equations 15 through 18. If, in addition to equation 32, condition 
30 is satisfied, then the equivalent network of Fig. 2 can be realized 
by means of an ordinary resistive network.2 

Of course, in the general case where the origin of time cannot 
be chosen to make all the coefficients gk real, the diode cannot be 
represented by a reciprocal (bilateral) network. 

Condition 31 is never satisfied if g (t) becomes negative for some 
values of t. In fact in this case [G] is indefinite, while (N]N]f) is 
always a positive definite or semidefinite matrix. On the other hand, if 

get) < 0 (33) 

for all values of t, then [G] is negative definite and of special interest 
becomes the condition 

(N]N]t) = -2kT df[G]. (34) 

In fact, consider a pumped negative resistance diode which satisfies 
this condition. If a frequency converter is made from such a diode 
by imbedding it in a lossless network, then its noise measure, defined 
by Hauss and Adler,so is independent of the characteristics of the 
lossless network and is simply equal to T ITo, where To is standard 
temperature, 290oK. Therefore, if Ge is the exchangeable gain of such 
a frequency converter, its noise figure F is simply equal to 

(35) 

V. SHOT NOISE IN A PUMPED DIODE 

Assume that the diode only contains shot noise sources and that 
in the frequency range of interest transit time effects can be neg
lected.6, 11, 26, 31, 32 

Assume for the moment that the voltage v applied to the diode 
is time-invariant. ThenSn (t) can be treated as white noise over the 
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frequency range of practical interest. Therefore, if S denotes its spec
tral density, it can be expressed as 

(36) 

where x (t) is white noise with unit spectral density. S will in general 
depend upon the voltage v applied to the diode and it is convenient 
to express this voltage dependence in the following form: 

S = Siv) = 2kTa(v) I giv) I (37) 

where kT d (v) /2 represents the exchangeable noise power at the 
diode terminals, per unit bandwidth. In equation 37 the occurrence 
of the factor 2, in place of the usual factor 4, results from the fact 
that here both positive and negative frequencies are considered. 

Now, consider the general case where v is not a constant and let 
the concise notation 

T(t) = Td[vC(t)] 
(38) 

Set) = Sd[Vc(t)] = 2kT(t) I get) I 
be introduced. Then Sn(t) results from the superposition of statis
tically independent random disturbances whose probability of occur
rence is proportional to the deterministic and periodic function 

h(t) = [S(t)].! (39) 

Since it is assumed that the duration of these disturbances is much 
smaller than the reciprocal of the highest significant frequency 
of h (t), equation 36 is still applicable and therefore 

on(t) = h(t)x(t). (40) 

Now let consideration be restricted to the fluctuation components 
occurring in infinitesimal frequency intervals of width df, centered at 
the frequencies p ± kw o • Then, since x(t) is white noise with unit 
spectral density, from equation 40 one has that on(t) can be expressed 
as follows:6

•
26 

co 

on(t) = h(t) L 2(df)! cos [(swo + pt) + 'P8] (41) 

where 'Pa are statistically independent random phase angles distributed 
uniformly over the range (0, 271"). 
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Let h (t) and 8 (t) be represented by the Fourier series 

~ 

set) = L Sk exp jlcwot (42) 
k--"'J 

~ 

h(t) = L Hk exp jlcwot. (43) 
k=-"'J 

From equation 39 one has that 81; and H7~ are related through the 
relations: 

~ 

Sr = L HkHr- k . 
k=-~ 

Introduction of equation 43 in equation 41 gives: 

~ ~ 

on(t) = (dt)! L L H r { exp j[(s + r)wot + pt + CPs] 
.. --co 8--00 

+ cxp j[(r - s)wot - pt - CPs]} 

00 ~ 

= (df)! L L H k - s exp jcp. exp j(kwo + p)t 
3-=--00 k--oo 

+ H s - k exp -jcp. exp -j(lcwo + p)t 

~ 2(Rel{(dfll };~ .t~ Hk-o exp jl'. exp j(kwo + plt}. 

From this last relation and from equation 20 one obtains 

~ 

N ak = (df)! L H k - s exp jcp. 
{p=-oo 

"'J 

N{3k = (df)! L H -k-s exp jcps • 

Hence, since 

( . .) {I, exp Jcps exp - JCPr = 
0, 

r = s 

r~s 

from equations 46 and 47 one obtains: 

(44) 

(45) 

(46) 

(47) 

(48) 
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and 

(NakNtr) - £ H H 
df - 3=-C() k-s r+a 

(49) 
Sk+r • 

Now, consider a time-varying conductance equal to 8(t) and let 
[8] denote its admittance matrix. Then [8] is obtained from equations 
15 through 18, and 23 by formally replacing g7" and G with 87;; and 8 
throughout. Therefore the elements of [8] are equal to the various 
Fourier coefficients 87c and, from equations 48 and 49, one obtains 
the final result 

(N]N]t) = df[8]. (50) 

VI. NOISE BEHAVIOR OF THE DIODE 

The preceding section showed that if a diode contains only shot 
noise sources, then the se1£- and cross-power spectral densities of 
its short-circuit terminal currents are simply equal to the Fourier 
coefficients of 2kT (t) Ig (t) I, over the frequency range of practical 
interest. Let us examine the significance of these relations, which 
are valid even if the diode contains thermal noise sources. 

First, consider the special case of a positive resistance diode char
acterized by an equivalent noise temperature Td(v) which is ap
proximately constant over the range of voltages of interest, so that 
the a pproxima tion 

Tiv) = T = constant 

can be made. In this case since equations 38 give 

one has 

[8] = 2kT[G} 

(51) 

(52) 

(53) 

and therefore from equation 50 it follows that the spectral density 
matrix satisfies condition 31. One concludes that, if Ta (v) is inde
pendent of v and condition 30 is satisfied, then the small-signal 
terminal behavior of the diode can be represented by a time-invariant 
dissipative network held at a uniform temperature T, as stated in 
theorem 1. 

Thus, in the limiting case (51) and under the restriction g(t) > 0, 
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equation 50 can be interpreted as a direct consequence of theorem 
1 and Nyquist's theorem. Now, a little reflection shows why equation 
50 also is valid in the general case where T (t) is not a constant 
and the restriction 9 (t) > 0 is removed. In fact, two diodes having 
the same S (t) have the same short-circuit terminal currents, no 
matter what their differential admittances may be. Notice that from 
this rather obvious property theorem 2 follows at once. That is, the 
short-circuit terminal currents of a diode characterized by an equi
valent noise temperature T (t) and by a differential conductance 
9 (t) are identical to those of a diode characterized by a constant 
temperature T2 and a differential conductance 

\ get) \ [T(t)]!T2' (54) 

where T2 is an arbitrary temperature. It is important to point out 
that, even though the foregoing two diodes have the same short-circuit 
terminal currents, they are not equivalent since they have different 
conductances. On the other hand, the terminal behavior of a diode 
characterized by a voltage-dependent temperature Td(v) and a con
ductance gd(V) is equal to that of the parallel connection of the two 
diodes (see Fig. 3) with voltage-independent temperatures Tl and 
T2 and with the differential conductances gddv) and gd2(V) defined 
by the following equations: 

gdl(V) + gd2(V) = giv) 

gdl(V)T1 + gd2(V)T2 = giv)Tiv) 

where Tl and T2 are subject to the only condition 

(55) 

(56) 

(57) 

which guarantees that gddv) , gd2(V) and gd(V) have all the same 
sign. Notice that the equivalent circuit of Fig. 3 and the original 
diode have the same short-circuit terminal currents because of equa-

T2 I 9d2 (V) 

Fig. 3 - Representation of an arbitrary noisy resistive diode by means of two 
diodes with voltage-independent noise temperatures Tl and T2 • 
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tion 56, and have the same differential conductances because of 
equation 55. An important feature of this equivalent circuit is that 
theorem 1 is applicable to both diodes and it can therefore be studied 
by standard techniques. Particularly interesting is the limiting case 
T 1 = O. In fact in this case one of the two diodes becomes noiseless 
and the other has the time-varying conductance 

(58) 

when the pump voltage Vc (t) is applied to it. Hence, by comparing 
equation 54 with equation 58 one obtains the following result. If 
g (t) > 0 and T2 > T (t) for all values of t, then, by connecting a 
noiseless diode having the conductance 

(59) 

in parallel with the second diode of theorem 2, one obtains a circuit 
completely equivalent to the original diode. 

Now, consider the case where g (t) < 0 for all values of t and 
suppose that condition 51 is satisfied. Then 

[8] = -2kT[G] (60) 

and from equation 50 one has that condition 34 is satisfied. Hence, 
the remarks about this possibility at the end of Section III apply. 
In general, where T (t) is not a constant, equation 35 is not valid. 
However, if Tl and T2 are the minimum and maximum values of 
T (t) , so that 

(61) 

then one can say that the noise performance of the diode will be 
bounded by the two limiting values obtained from equation 35 for 
the two limiting cases T = T 1 and T = T 2. 

VII. TERMINAL BEHAVIOR OF THE DIODE IN THE IMPEDANCE-MATRIX 

REPRESENTATION 

In some cases it is convenient to use the impedance-matrix rep
resentation, rather than the admittance-matrix representation, for 
describing the terminal behavior of the diode. Let 

00 

ret) = 1/ get) = L rk exp jkwot (62) 
k=-oo 

be the differential resistance of the diode. Then the impedance-matrix 
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representation of the small-signal terminal behavior of the diode can 
be written in the form 

V] = [R]J] + N~] (63) 

where the relations between the elements of the impedance-matrix 
[R] and the coefficients rk are identical to those between the elements 
of [G] and gk (see equations 15 through 18). The column matrix 
N v ] consists of the amplitudes of the open-circuit terminal voltages 
of the diode. If 

00 

OCt) = 2kT(t) I ret) I L Ok exp jkwot (64) 
k--oo 

then one has 

(N ~]N ~]t) = dt[O] (65) 

where [0] can be obtained from equations 15 through 18, and 23 
by replacing G and gTc with 0 and Ok throughout. Notice that equa
tion 65, which is analogous to equation 50, follows from theorem 1, 
Nyquist's theorem24 and the fact that two diodes having the same 
O(t) have the same N v ], no matter what their differential resistances 
may be. 

VIII. AVERAGE TEMPERATURE OF A PUMPED DIODE 

Consider a linear, reciprocal, passive and time-invariant one-terminal 
pair network containing different elements held at different tempera
tures. It is well known25 that at a given frequency Wl the effective noise 
temperature of this network can be expressed as a weighted average of 
the various temperatures of the lossy elements. The weighting factors 
in this weighted average are simply equal to the amounts of power that 
are dissipated by the various lossy elements when the network is con
nected, at its two terminals, to a generator delivering a unit amount of 
power at the considered frequency Wl • This result is extended, in this 
section, to a pumped diode. 

The concept of average noise temperature Tav of a pumped diode 
is introduced in this section. Consideration is restricted to the case 
where g(t) ~ 0 and condition 32 is satisfied, so that the equivalent 
circuit of the diode is passive and bilateral. It is shown that Tav de
pends, in general, both on the characteristics of the diode and on those 
of the linear and time-invariant circuit connected to it. However, if 
certain conditions are satisfied, then it only depends on the diode 
characteristics. 
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Consider a one-terminal-pair network N consisting of a pumped 
diode imbedded in a linear, time-invariant and bilateral two-terminal
pairs network N' (Fig. 4). Assume, furthermore, that the network 
N can exchange power at a single frequency (1)1, at its terminals. Then 
the average temperature Tnv of the diode is defined in the following 
way: 

Tav is such that the noise power available from the terminals of 
the network N does not change if the actual temperature-voltage 
characteristic Td(v) of the diode is replaced with a constant tem
perature equal to Tav. 

Now let a small-signal generator of frequency (1)1 be connected to 
the terminals of the network N, and let Si(t) and Sv(t) be the small 
signals produced at the diode terminals. It will be shown that 

Tav = 
i2rlWO Oi(t) ov(t)T(t) dt 

i21rIWO oi(t) ov(t) dt 

Notice that this equation is equivalent to equation 1. 

(66) 

Proof: It is convenient to represent the circuit of Fig. 4 by means of the 
equivalent circuit of Fig. 5, where the network D represents the small
signal terminal behavior of the diode and each terminal pair of D 
exchanges power at only one frequency. Notice that in Fig. 5 the net
work N' has been represented by means of several separate equivalent 
circuits, Nf , N~ , etc., one for each frequency of interest. 

The network D can be decomposed into two separate networks 
Dl and D 2 , each held at a uniform temperature. 

In fact, let the diode of Fig. 4 be replaced by the two diodes shown 
in Fig. 3 and let Si1 (t) and Si2 (t) be the small-signal currents of the 

IN----------I 

I BL: 
.----0-1----/ 

I I 
I N' Bv t I 
I I 

L----0-t----/ T d (V) I 
I 9d(V) I L ____________ ~ 

Fig. 4 - Diode imbedded in a linear, time-invariant and bilateral network N'. 
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• I 
• I 
• I 

I • I L ____________ ----1 

Fig. 5 - Equivalent circuit of the network N of Fig. 4. 

two diodes. Then, from equation 56 one has: 

ov(t) oi(t) T(t) = ov(t) oil (t) Tl + ov(t) oi2 (t) T2 

which gives: 

(ov(t) Oiet)T(t)av (ovet) Oil (t)avTI + (ovet) 0i2(t)\vT2 
(ov(t) oi(t)\v = (ov(t) oi(t)av . 

(67) 

Since theorem 1 is applicable to both diodes of Fig. 3, it is clear 
that the network D of Fig. 5 can be represented by the parallel 
connection of two networks (Dl and D 2 ) of which one is held at a 
uniform temperature Tl and dissipates an average power equal to 
(Sv(t)Sidt)av, and the other is at T2 and dissipates (Sv(t)Si2 (t)av. 

Now, since both Dl and D2 are bilateral, the noise power available 
from the network N of Fig. 5 does not vary25 if the temperatures 
of Dl and D2 are changed so that they become equal to 

(ove t) Oil (t) IavT I + (ov( t) oi2(t) \vT 2 
(ov(t) 0i1(t)av + (OV(t) oi2(t)\v 

which, together with eq. 67 gives eq. 66. 
Equation 66 is of particular interest when ""1 = p, since in this case 

it corresponds to the example considered in the introduction. Notice 
that Tav is not, in general, a function of the diode characteristics alone. 



THERMAL AND SHOT NOISE 1901 

In fact, it also depends both on the particular characteristics of the 
network N' in which the diode is imbedded and on the value of the 
frequency WI at which Tav is defined, unless T(t) is constant. 

Under conditions of practical interest T always varies with time and 
consequently a direct application of theorem 1 is never strictly valid. 
Equation 66 shows, however, that if certain conditions are satisfied, 
then Tav is little affected by the particular choice of WI and N', and 
consequently a direct application of theorem 1 may not introduce 
significant errors. l\1:ore precisely, suppose that either 

or (68) 

for some values of v and that 

Td(V) ~ T' = constant (69) 

over the range of voltages for which conditions· 68 are not satisfied. 
Under these conditions either T(t) ~ T' or 5v(t) ai(t) ~ 0, for all values 
of t, and consequently from equation 66 one obtains Tav ~ T'. There
fore in this case, and only in this case, Tav can be regarded as a function 
of the diode characteristics alone and theorem 1 is applicable, with T 
replaced by T'. 

An important application of the preceding result is given by an 
ideal Schottky barrier diode. In fact, the relations derived in Ref. 
22 between the noise figure and the conversion loss of such a diode 
imply that its junction can be represented, under certain particular 
conditions, by means of an ordinary resistive network held at half 
the temperature To of the junction. 
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The Analysis of Circular Waveguide 
Phased Arrays* 

By N. AMITAY and VICTOR GALINDO 

(Manuscript received July 9, 1968) 

In this work, a planar phased array of circular waveguides arranged in 
an equilateral triangular grid is analyzed. The boundary value problem is 
first formulated rather generally in terms of a vector two dimensional integral 
equation for an array of ele11wnts that are arranged in a doubly periodic grid 
along two skewed (nonorthogonal) coordinates. Dielectric plugs, covers, and 
loading, as well as thin irises at the aperture, are accounted for in the 
formulation. Numerical solutions are obtained by using the Ritz-Galerkin 
method to solve the integral equation. Excellent agreement with experimental 
measurements using a waveguide simulator is observed. The existence of 
forced surface wave phenomena in equilateral triangular grid arrays and 
their strong dependence upon the mode of excitation is also de11wnstrated. 
These phen01nena are shown to exist at isolated points in the scan co
ordinates. Reflection characteristics as well as the polarization characteristics 
of the radiation pattern are illustrated at selected planes of scan for both 
linear and circular polarization excitation. 

I. INTRODUCTION 

The requirements of modern radar and communication systems have 
stimulated considerable activity in the design and use of phased 
array antennas. To date, the design information required for their 
development has been obtained from the analysis of simplified array 
models and from experimental data. The great speed and storage 
capacity of present day digital computers, however, have now made 
it possible to solve the planar phased array boundary value problem 
very accurately.l.,2 

A general formulation of the planar phased array boundary value 
problem may be found. A vector two dimensional integral equation 

* The work reported in this paper was supported by the U. S. Anny Materiel 
Command under contract DA-30-069-AMC-333(Y). 
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for the tangential aperture field (that is, the tangential field at the 
planar interface between the waveguides and free space) can then 
be derived. 

In its most general form the array elements are assumed to be 
arranged in a doubly periodic grid along two skewed (nonorthogonal) 
coordinates; and dielectric loading, covers, and plugs, as well as thin 
irises at the aperture plane, may be accounted for in the analysis. 
The possibility of multimode excitation of the array has also been 
included. The Ritz-Galerkin method is applied to obtain a solution 
for circular waveguide arrays. 

Numerical solutions for the reflection characteristics of dielectric
free planar arrays of circular waveguides hexagonally arranged in a 
conducting ground plane have been carried out. Experimental meas
urements have been made which compare favorably with the results. 
Forced surface waves3- 11 are found to occur at isolated points in the 
scan coordinates and can be related to certain vector and geometrical 
symmetries for an equilateral triangle grid array. These surface waves 
(or resonances) are often difficult to locate experimentally by the use 
of waveguide simulators12

- 14 or small test arrays. The strong depend
ence of these forced resonances upon the mode of excitation is also 
demonstrated. The reflection characteristics as well as the polarization 
characteristics of the radiation pattern are illustrated for various 
combinations of linear and circular polarization excitation of the 
array. 

II. ANALYSIS 

An infinite planar array of waveguide elements, Fig. 1, is imbedded 
in a conducting ground plane at its interface (plane z = 0) with free 
space. The elements are arranged in a periodic grid along the skewed 
(nonorthogonal) coordinates 81 and 82. The x and 81 axes coincide 
while the 82 axis makes an angle a with respect to the x (and 81) 

axis. The element location is defined by two indices (p, q) correspond
ing to a physical location 

(1) 

where 81 and 82 are unit vectors along the 81 and 82 axes, while band d 
represent the basic periods of the two dimensional grid. A basic 
periodic cell/5 the parallelogram shown in Fig. 1, is thereby defined. 
If the array elements are excited uniformly in amplitude with a linear 
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Fig. 1- Circular waveguide array geometry. 

phase taper such that the phase of the (p, q)th element is 

1905 

(2) 

then the resulting electromagnetic fields in the (p, q)th and (m, n)th 
periodic cells satisfy the following periodicity relationship 

E(gpa) = E(gmn) exp [i {(m - p)1/It, + (n - q)1/It.}] (3) 

where E(gpq) may designate the electric or magnetic field at the (p, q)th 
periodic cell of the grid. * Therefore, except for a phase factor, the fields 
in all the cells are identical. 

In order to solve the boundary value problem, the exterior (free space) 
fields are expressed in terms of a complete set of Floquet type solutions 
of Maxwell's equations {W!:.n exp ± iBmnz}. These vector modes, which 
are functions of the steering phases 1/11, and 1/It. are derived in Appendix 
A. The interior (z ~ 0) fields are expressed in terms of the appropriate 
waveguide complete orthonormal set of vector modes {<I-i exp ± iT' iZ}.t 
The boundary value problem is expressed in terms of an integral equa
tion which includes the necessary continuity conditions. This equation 
is formulated l by satisfying the continuity of the transverse (to z) 

* The parallelogram in Fig. 1 defines the (p = 0, q = 0) cell. The (p, q)th cell 
is translated by pb and qd along the 81 and 82 axes, respectively. 

t The waveguide modes are real functions and in general consist of both TE 
and TM modes with double subscripts. However, one can always systematically 
relabel these modes with a single subscript according to the increasing values of 
the eigenvalues. 
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electric and magnetic fields within a single· periodic cell. As shown in 
Appendix B, the periodic cell consisting of the parallelogram CDEF of 
Fig. 2 can be replaced, without a loss of generality, by the parallelogram 
GHI J (or any other periodic contiguous cell containing a complete 
single waveguide aperture). 

00 
-b/2 

'" \ \ 
b/2 

00 
~E 
C~L 

G D H 

Fig. 2 - Periodic cell in skewed array geometry. 

The tangential electric and magnetic fields at the array interface 
(E and H at z = 0) can be expressed in terms of a Fourier series of the 
complete orthonormal set of waveguide modes {~i} for z ~ 0 and by the 
set of Floquet type modes {W!:'n} for z ;;; O. Let the waveguides be 
excited by any linear combination of their propagating modes* with 
amplitudes Ai(j = 1, ... , J for J propagating modes) and let the 
coefficients Ri represent the amplitudes of the corresponding reflected 

* It is straightfonvard to include, if desired, any linear combination of both 
propagating and evanescent modes. 
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modes.* Let the coefficients D j represent the amplitudes of the reflected 
evanescent modes which are generated at the aperture. Then, in terms 
of the waveguide modes, the electric field at z = 0 is given by 

{± (Aj + Ri)iPi + I:. DiiPi (over the waveguide aperture) 
E_ = i-I i~J+l (4) 

o (over: the: rest: of the'" periodic cell). 

The corresponding magnetic field is 

i~l i~J+l 

[
± Y{(Ai - Ri)iPi - f YiD/P j 

-H_ = (over the waveguide aperture) (5) 

o (over the rest of the periodic cell). 

where the modal admittances {Yj} are real for propagating modes and 
pure imaginary for evanescent modes. These admittances are given by16 

r· y. = -L for TE modes' 
1 wJ1. ' 

we 
Y j = r. for TM modes , (6) 

for an exp [-iwt] time convention with the r I (the z propagation con
stant) being positive imaginary for evanscent modes. The tangential 
electric field at z = O+, expressed in terms of the Floquet type modes, is 

2 

E+ = L L L FmnpW!:.n (over the periodic cell) (7) 
v=l (m) (n) 

where the superscript p designates TE(p = 1) or TJ\1(p = 2) modes. 
The magnetic field is correspondingly given by 

2 

-H+ = L L L Fmnpy:nnpW;:'n (8) 
v~l (m) (n) 

where the modal admittances Y:nnp are given by 

Y' _ Bmn • mnl - , 
wJ1. 

Y' -~. 
mn2 - Bmn 

(9) 

From the orthonormality of the sets {iP,.} and {W;:'n} it is clear that 

(E_ ,iPi) = If E_·iPi da = {Ai + Ri for ~ ~ J (10) 
A Di J > J 

* Actually {R J} can represent the reflection coefficients once {Ai} are properly 
normalized. 
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where A is the waveguide aperture, and 

periodic cell A 

where the symbol * denotes the complex conjugate. Notice that E+ 
vanishes on the conducting ground plane. To insure the continuity 
of the tangential fields across the aperture at z = 0, one requires 

E+ = E_ = E, over the aperture and the periodic cell (12) 

while 

H+ = H_ = HI over the aperture only. (13) 

Using the various relations, (4) through (13), one obtains an integral 
equation for the tangential electric field E, at the array interface 

J 

2 2: Ai Yifll i 
i=1 

~ Yjfll i If fIli ·E , da 
A 

+ ± 2: 2: Y{,.npW;;'n l~r (W;;'n)* ·E, da. (14) 
p=1 (m) (n) J 

A 

Similarly, one can obtain1 an integral equation for HI which is defined 
over the entire periodic cell. Under certain conditions17 it is possible to 
interchange the order of summation and integration in (14) and thereby 
obtain the usual form of Fredholm integral equation of the first kind. 

A useful method of obtaining a solution to (14) is by the application 
of the Ritz-Galerkin method,18 whereby the integral equation is reduced 
to a linear matrix equation. Substituting (4) in (14) for E, and taking the 
moments of (14) with respect to the set {fIl i }, while using (10), leads to 
the following matrix equation 

(15) 

where II( I IS a square matrix with the (i, q)th element given by 

2 

kiq = Y i Diq + 2: 2: 2: Y{,.npC;;'niC;;'~q . (16) 
p=1 (m) (n) 
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In (16) Diq is the kroenecker delta 

{
1 if 1, = q 

Oi(l = 0 
if i ~ q 

(17) 

and 

C;nni = II lV!:,n .t])" da (18) 

A 

is the coupling coefficient between the designated interior and exterior 
modes.* 

The practicality of an accurate numerical solution or approximate 
analytical solution often hinges upon obtaining C!:.ni in closed form. 
Recently the authors19 have obtained closed form expressions of these 
coupling coefficients for circular as well as coaxial waveguides. 

A solution for the aperture field in terms of the coefficients of the 
waveguide modes is given by 

(19) 
o 

The solution vector can be obtained by matrix inversion or by rapidly 
convergent iterative methods.5

•
20 A similar procedure should be followed 

to obtain H t except that the aperture field and the moments may be 
taken with respect to the set {W;;'n}. 

Once the aperture electric field is obtained, the input impedance 
and radiation properties of the array, as a function of scan, are easily 
obtained. The reflection coefficients are obtained directly from (19), 
as are the amplitudes of the evanescent modes in the waveguides. The 
radiation pattern of a single element in the array environment, includ
ing its polarization characteristics, can also be easily obtained.21 • 22 

The addition of either a dielectric sheath or plug or both to the 

* Notice that other sets of functions {~l} can be used to reduce (14) by the method 
of moments. However, the integrability of 

If (A) cI» i • ~ I and If (A) 'F mnP • ~ I 
may prove difficult depending on ~l. The convergence properties as a function of 
the order of K will also be influenced by the choice of {~zl. 
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array, Fig. 3, does not alter the functional form of the integral equa
tion (14). As was shown by Galindo and Wu,s· 23 only the modal 
admittances in (14) have to be replaced. For the case when dielectric 
plugs are used, Y j is replaced by 

Y 
Yi - iYi tan "Iit1 

i ~ Yi 'Y Y i - 1, i tan "I i t1 
(20) 

where Yj and "Ii are the modal admittance and propagation constants, 
respectively, of the lIl j mode in the dielectric and t1 is the dielectric plug 
thickness. The relation between the reflection coefficients of the propa
gating modes in the dielectric-free region (fo) and the aperture field is 
given by 

, 
(21) 

the phase of R j being referred to the aperture. Similarly, for the 
exterior dielectric sheath covering the array, the modal admittances 
are replaced by 

Y ' ,Y:nnp - iY:nnp tan {3mnt~ 
mnp ~ Ymnp I 'Y' t Q t" . Ymnp - 1, mnp an fJmn 1 

(22) 

where Y~np and f3mn are the modal admittance and propagation constants, 
respectively, of the W!:.n mode in the sheath, and ti is the sheath thick
ness. The coefficient of the mode lY!:.n in the free space region above the 
sheath, F mnp , is related to the aperture field by the following relation: 

F - exp( -iBmntDY~np if E p* d 
mnp -, Q" Y" I t ·w mn a, Ymnp cos fJmntl - 1, mnp SIn f3mnt1 

periodic 
cell 

the phase of F mnp being referred to the aperture plane. 

(23) 

The integral equation formulation can be extended to the case when 
thin metallic irises are present at the waveguide aperture for matching 
purposes (see Fig. 4). The integral equation for the aperture electric 
field, (14), is still valid except that the integral has to be defined over the 
effective aperture with the result that the orthogonal relations of (10) 
and (11) cannot be used for the Ritz-Galerkin method of solution.* 
The modal coupling coefficients, (18), are still integrable in closed form 

* An integral equation for the magnetic field is not valid in this case because of 
the discontinuity of He across the iris. 
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over the effective aperture if the iris is circularly symmetric. However, 
the matrix elements, as given by (16), do change in form when an iris is 
present at the aperture. As a result of the «)i not being orthogonal over 
the new effective aperture, the term Y,Oia in (16) is replaced by an infi
nite sum. 

Multimode excitation of waveguide antenna fields has been used for 
primary pattern control. Such excitations may prove useful for the 
reduction of mutual coupling effects.7 They also may be used to obtain 
circular or elliptical polarization from two linearly polarized modes and 
improve the polarization characteristics of the array. In the circular 
waveguide array, the horizontal TEll (<Ill) and vertical TEll (<Il2) modes 
are degenerate (that is, they have the same z-directed propagation 
constant and impedance). In order to obtain a linear, elliptical or 
circular polarization excitation of the waveguide, one may redefine the 
first two modes as <IlIN and <Il2N: 

Al A2 
<IlIN = (I Al 12 + 1 A2 12)~ <Ill + (I Al 1"'--2 -+-"-:-1 A-2 ~12)-;-t <Il2 

EFFECTIVE 
APERTURE P4// 

,-' THIN IRIS 

Fig. 4 - Aperture iris geometry. 

(24) 
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(25) 

This redefinition of the first two modes preserves the orthonormality 
and completeness of the set of waveguide modes while allowing the 
flexibility in adjusting the desired array excitation. The reflection 
coefficients which correspond to these redefined modes are RIN and 
R 2N • The polarization characteristics of the radiation pattern may 
be determined from the () and <p components of the radiated field, 
Eo and E1>, respectively. After proper normalization of Eo and E1> one 
may obtain the corresponding transmission coefficients19 

To = (Y~o2r 1 y, (1 - T; - T~)! JI E t • ('F~o)* da (26) 
(aperture) 

T", = _(Y;:ly II E t • ('F~o)* da (27) 

(aperture) 

where T {JJ and Ty define the scan angle directional cosines. When the 
first two waveguide modes are the only propagating ones and while 
only a single lobe propagates in the free space, equations (24) through 
(27) are related by the conservation of energy relation: 

(28) 

For more than one lobe in free space or additional propagating modes 
in the waveguides, (28) has to be accordingly modified. 

III. NUMERICAL AND EXPERIMENTAL RESULTS 

In order to obtain a numerical solution for the aperture field, the 
infinite dimensional matrix of equation (15) must be truncated and 
cast in a finite dimensional form. In other words, the electromagnetic 
fields will be approximated by a finite Fourier series of the waveguide 
and free space modes, and consequently the solution of the problem 
as given by (19), is finite dimensional as well. 

In numerical solutions of problems of this type, various ways of 
ascertaining the validity and accuracy of the solution are desirable. 
One obvious way is to increase the number of waveguide and free 
space modes and check the convergence of the solution as a function 
of the number of modes used in truncating (15). However, for the 
type of kernel involved in this problem, monotonicity of the conver
gence is not assured. Nevertheless, convergence is an important check 
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since this numerical solution is variational or stationary for the im
pedance.12,24 Iterative methods and error estimates5

,20 may also be 
used for checking the convergence of the solution. Special symmetries 
of the reflection coefficients versus the scan angles which are dictated 
by the array geometry and mode of excitation can serve as a semi
independent check. An important independent check in which the 
reflection and transmission coefficients can be measured at special 
scan angles with the aid of a waveguide simulator is used as well. 

The numerical results will in general be presented as a function 
of scan angle. For convenience, however, the differential phase shifts 
between elements will be used as the independent variables. These 
quantities are tfx in the x-direction and tfy in the y-direction. Further
more, since we limit ourselves to radial planes of scan, we introduce 
the quantity tfr. These quantities are related to the directional cosines 
as follows: 

.f, = 27rd sin ex T . 
'Yv A v , (29) 

The amount of computation can be reduced when one recognizes that 
the following symmetry in the aperture field as a function of scan 
exists: 

(30) 

Convergence tests as a function of the number of waveguide and 
free space modes indicated that 18 waveguide modes and 338 free 
space modes yield several percent (usually less than 2 percent) 
accuracy in the magnitude of the reflection coefficients, R j , except 
near sharp changes of R j where the position of the sharp changes is 
accurate to several degrees in tfr. 

The energy conservation check, equation (28), is a necessary check 
but not a sufficient one in this problem as well as in other interior 
type boundary value problems.17, 22, 33 

One of various special symmetry checks is depicted in Fig. 5. A square 
grid array in the (x, y) coordinates is excited by the vertical TEn (<<I»2) 
mode. In this coordinate system the array parameters are represented 
in the following way 

b = d; ex = 90
o
}. 

«I»2N = -«1»1 

(31) 
a = waveguide radius; 

The parameters of the same array, when viewed in the (x', y') coordi-
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Fig. 5 - Symmetries in square grid arrays. 

nate system, can be alternatively represented as 

b' = (2)'d' = (2)'d; 

1 
<flfN = (2) t {-<flf + <fl~} ; 

(32) 

where the reference to the (x', y') system is denoted by primes. The 
same results should be found for this array at any scan direction 
regardless of the representation. This offers, to a degree, a check on 
roundoff error. Numerically, the reflection coefficients differed only 
by a fraction of a percent. 

An additional symmetry check is given in Fig. 6, where the magnitudes 
of the reflection coefficients are plotted versus "'r for a 45 ° plane of scan. 
RIN and R2N correspond to the reflection coefficients of <fllN and <fl2N as 
defined by (31). At "'r = 240° (shown by a vertical arrow) the main beam 
is grazing, while for "'r > 240 0 no beam exists in real space and the total 
incident power is reflected and divided between the two propagating 
modes, <fllN and <fl2N • Of special interest is the point if;r = 180° 
X (2)! ~ 255°. At this point "'x = "'v = "'t. = "'t. = 180° and the array 
excitation is as indicated in the inset of Fig. 6. If the array is to be 
simulated at this scan angle, the appropriate waveguide simulator would 
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0: :;::: 0.48, b :;::: 1, d :;::: 1, A :;::: 1.5 and 0: :;::: 90°. 

consist of the square waveguide (solid lines) shown in the inset. It is 
clear that the horizontal waveguide mode (((l2N) cannot be excited. The 
numerical results indeed show that I R2N I = ° at this scan angle. 

Figure 7 shows a close agreement between experimental and numeri
cal results for a rectangular grid array with vertical polarization ex
citation scanned in the H -plane. The scan angle which corresponds to 
steering phases o/x = o/h = 180 0 and o/y = o/t. = 0, can be simulated 

0.4 

0.3 

z a O.2 

0.1 

o 

I 

PLANE 
OF 

SCAN 

~ ~ 
~).. 

"t 

LR1N ->-- --i--
-,~ 

~ 

T 

CDiCDICD 
IDfm]w 
m-iCD!-CU 

I I 
o EXPERIMENTAL 

o COMPUTER 
SOLUTION 

2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 

FREQUENCY IN GHz 

-

-

150 
cf) 
w 
w 

140 (Y 

19 
w 
o 

130 
~ 

120 ~ 
cr 

110 -..:::] 

2.74 

Fig. 7 - Rectangular grid array: computed and experimental results vs fre
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and 0: :;::: 90°. 
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Fig. 8 - Rectangular grid array: simulator for H -plane symmetry point. 

by the rectangular waveguide (solid line) in the inset. The experi
mental results were obtained from measurements of an abrupt junc
tion between a circular waveguide and an L-band rectangular wave
guide as shown in Fig. 8. 

IV. EQUILATERAL TRIANGLE GRID ARRAYS 

Let us consider the reflection and radiation characteristics of cir
cular waveguide arrays arranged in an equilateral triangle grid, and 
the strong dependence of the array properties upon the mode of 
excitation. Grating lobe incipience or a beam at grazing is designated 
by a vertical arrow in the illustrations, 
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Figure 9 shows the reflection coefficient of an array in the E-plane 
scan, with vertical polarization excitation. In this plane the hori
zontal mode is not excited because of symmetry so that R2N = O. As 
can be seen, the slope of both the magnitude and phase of RIN is dis
continuous and singular at a grating lobe incipience, which parallels 
previous observations in rectangular waveguide arrays.26,27 This is 
related to the asymptotic decay of the coupling coefficients. A forced 
surface wave resonance can be seen around grating lobe incipience 
where I RIN I = 1.0. Notice that this forced surface wave resonance 
is extremely sharp and consequently may not be observed in small 
finite arrays. 

The corresponding transmission coefficient T 8 is shown in Fig. 10. 
The plot of the transmission coefficient is actually the radiation pat
tern of a single element in the array environment and it exhibits the 
null which corresponds to a total reflection. Notice that the phase 
of the transmission coefficient will exhibit a 1800 discontinuity when 
the magnitude has a zero. The magnitude of the reflection coefficients 
of the same array, in a 60 0 plane of scan, are shown in Fig. 11. Again, 
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the singular slope at grating lobe incipience can be observed. As can 
be seen, the distribution of the reflected power between the two modes 
is a function of the scan angle. 

An interesting phenomenon can be observed in the corresponding 
transmission characteristics which are shown in Fig. 12. The cp trans-

1.0 ,-----,-----,---------,---,----------r----, 

I 

----1-
_1_ CD~,.,;: P~~~OF 

0.8 r------+---t----+---!-\-------t--- / 

1--"" 0.6 r-----+------t----t---t--+-----.....;::_+__ CD IP CD 
~ 1'\ ~ CD 
~ 0.4 I 

0.2 

o~_~ __ ~_~ __ ~_~~ __ ~~-~-~---~-~ 
o 36 72 108 144 180 216 252 288 324 360 

.pr I N DEGREES I (J = 90° 

Fig. 12 -I Tel and 1 TifJl vs 1/1 .. in the 60° plane of scan (a = 0.48, b = 1, d = 1, 
A= 1.4, and IX = 60°). 

mission coefficient, T ¢, vanishes prior to grating lobe incipience (the 
positions of the vertical arrmvs). The vanishing of T ¢ at this scan 
angle can be directly related, when coupled with the vector symmetries 
in the array excitation and geometry, to a forced surface wave reson
ance. If the array excitation consists of the sum of the two modes 
(equal in phase and magnitude) indicated by the solid arrows in 
Fig. 13, then in the 60° scan plane To == 0 by symmetry considerations 
and T ¢ vanishes as shown in Fig. 12. Since the vectorial sum of the 
two solid arrows in Fig. 13 is the dashed arrow, zero transmission or 
a forced surface wave resonance will occur in the H-plane of this 
polarization. Figs. 14 and 15 indeed show this effect in the H-plane 
scan where I R1N I and I T ¢ I attain unity and zero respectively prior 
to grating lobe incipience::~ 

Since the forced surface waves are related to the vector symmetries 
just mentioned, one may anticipate that the scan points at which they 
occur are isolated. Figure 16 indeed demonstrates that the forced reso
nances in the E and H planes occur at isolated points. The scan around 

* The difference in the values of 1/1 .. at which these phenomena occur is inherent 
in the definition of 1/1 .. , equation (20). 
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the grating lobe circles in Fig. 17 shows that the peak of the total reflec
tion I RT I = (I RIN I 2 + I R2N I 2)! varies from unity in the H plane 
(8 = 0), gradually decreases, and then increases again and reaches unity 
in the E-plane (8 = 90°). The anomalous behavior near grating lobe 
incipience is eliminated when the polarization of the excitation is changed 
to horizontal, as shown in Fig. 17, indicating thus the strong dependence 
of the forced surface wave resonances upon the mode of excitation. Over 
the frequency band given by 1.3 ~ A ~ 1.5, qualitatively similar 
behavior of the radiation and reflection characteristics of the array was 
observed. 

Figure 18 shows the reflection characteristics of the array under 
circular polarization excitation. In this case 

The incident mode is «I»lN' 

Again the singular slope of these curves at grating lobe incipience 
can be seen. The division of the reflected power between the two 
modes as a function of scan may be observed as well. Fig. 19 shows 
the polarization characteristics of the radiation pattern of an array 
element. The axial ratio, denoted as A.R., is the ratio of the minor 
to major axis of the polarization ellipse while the tilt angle of the 
major axis, T, is taken with respect to the cp axis. As indicated by 
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the plot, the element (or the array) far field pattern is circularly 
polarized around broadside, A.R. = 1.0. It deteriorates to linear 
polarization, A.R. = 0, at two points prior to grating lobe incipience. 
The linear polarization att/lr = 203.5° with T = 90° results from the 
H -plane forced surface wave resonance of Figs. 14 and 15 where 
T 1> vanishes. The null of the axial ratio at t/lr = 207° (with T = 105°) 
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is caused by the difference between the phases of To and T 1> causing 
the cp and B components of the far field to be in phase. 

The reflection and polarization characteristics in the 30° plane of 
scan are shown in Figs. 20 and 21, respectively. In this case the 
single null of the axial ratio at grating lobe incipience results from 
the E-plane forced surface wave resonance of Figs. 9 and 10. For 
planes of scan between 0° and 30° the results corresponding to one 
plane change gradually to those of the other plane. Around grating 
lobe incipience the axial ratio drops appreciably (to around 0.1) but 
does not reach zero. From the circular symmetry of excitation and 
six-fold symmetry of the array geometry, a 30° sector of scan com
pletely specifies the array reflection and radiation characteristics. 

V. CONCLUSIONS 

A general formulation of the planar phased array boundary value 
problem has been given in terms of a vector two dimensional integral 
equation. The solution of this equation by the Ritz-Galerkin method 
closely agreed with experimental results. 

Equilateral triangle phased arrays of circular waveguides were 
numerically analyzed. It was found that forced aperture resonances 
or forced surface waves, manifested by total reflection and no radia
tion, do exist for these arrays even in the absence of dielectric ma
terials. These effects were observed over a 15 per cent frequency 
band. The forced aperture resonances occurred prior or close to grat-

1. 0 ,..----,----,------,..----,-------,----,----.,------, 

0.8 

z 
(\J 

~ 0.6 
Cl 
Z 
<{ 

:z 0.4~---r----+_---+----~~~----~ 
ci 

Fig. 20 - IR1NI and IR2.v1 VS 1/Ir in the 30 0 plane of scan. Circularly polarized 
excitation (a = 0.48, b = 1, d = 1. A = 1.4, and a = 60°). 
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of scan. Circularly polarized excitation (a = 0.48, b = 1, d = 1, A. = 1.4, and 
a = 60°). 

ing lobe incipience in the E and H plane of scan for vertical polariza
tion excitation. These resonances were found to occur at isolated 
points as a function of the scan variables and are strongly influenced 
by the mode of excitation. The resonances vanish when the polariza
tion of excitation changes from vertical to horizontal. 

The polarization characteristics of the radiation pattern (or al
ternatively the radiation pattern of a single excited element in the 
array environment) is shown at selected planes of scan for circular 
polarization excitation. The degradation of the axial ratio resulting 
from the forced surface waves was shown. Total reflection or no 
transmission owing to forced aperture resonances were not observed 
for circular polarization excitation in the cases presented. 

The analysis of coaxial waveguide arrays, as well as the incorpora
tion of thin, circularly symmetric irises in the aperture of the wave
guide element, can be carried out along lines similar to those dis
cussed here. 

The effects of dielectric loading of the array as well as dielectric 
covers and plugs have also been studied.34 
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APPENDIX A 

Floquet Type Wave Functions in Skewed Coordinates 

Consider the periodic array, Figs. 1 and 2, excited with incremental 
phase shifts (steering phases) between adjacent cells along the SI and 
82 coordinates. A complete set of solutions to the scalar wave equation, 
each of which varies periodically, according to Floquet's theorem, 
along the SI and S2 coordinates is 

S - ('B) .[1f/h 27J"m l .[1f/t~ 27m] mn - exp '" mnZ exp'" b - -b-JS l exp'" d - d S2 (34) 

with the integers m, n = - 00, ••• -1, 0, 1, 2, 3, ... , + 00. Equation 
(34) describes a wave traveling (or decaying) in the Z direction with 
propagation constant Bmn (exp -iwt time convention). The steering 
phases 1f/h and 1f/t. are directly related to the beam pointing direction, r, 
of a radiated plane wave with a vector propagation constant ko = kor, 
so that (34) can be rewritten as 

Sm. = exp (iBm.z) exp {k".§, - 2~m l exp {ko'§' - 2;: Js,. (35) 

The free space propagation vector ko can be expressed in the cartesian 
coordinate system as 

(36) 

where T~ , Til and Tz are the directional cosines of ko with respect to 
that system and X, '0, and z are the unit vectors. The quantities 

and (37) 

are the projections of ko on the reciprocal grid (lattice) coordinates tl 
and t2 , respectively.15,2s-3o The unit vectors in the tl and t2 directions 
form a biorthogonal set with 8) and 82 (Fig. 22). To express (35) In 
cartesian coordinates it can easily be shown that 

SI = X - Y cot a, S2 = yjsin a, (38) 
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so that the substitution of (38) into (35) yields 

Smn = exp (iB:z) exp i[ koTx - 2~m ]x 

.exp{koT, - C~:'" - b
2t::J]y· 

1927 

(39) 

The propagation constants of the (m, n)th Floquet mode along the 
x and y directions, ka; and k y respectively, are 

(40) 

" ( 27rn 27rm ) k == k·y = kaT - -.- - -- . 
II II d sm a b tan a 

Since Smn is a solution to the scalar wave equation, it can be shown 
that 
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Bmn = (k~ - k; - k~)! 

~ {k: - [ko'l" - 2~1n T 
where the positive imaginary root holds for (k; + k~) > k~ (time 
convention exp - iwt). 

Each mode, Smn , for which Bmn is real corresponds to a radiated plan1e 
wave of the phased array. The plane wave with the indices m = 0 and 
n = 0 is identified with the main beam while m or n ~ 0 corresponds to 
a radiating grating lobe. As a function of Tx and Ty (or Y;I. and Y;t.), a 
given Bmn may become pure imaginary as it goes through a zero, as in 
equation (41). In such cases, the related Floquet mode, Smm becomes 
evanescent or nonradiating. By plotting the curves obtained by setting 
the Bmn = 0 as a function of Tx and Til , one obtains a convenient dia
gram which illustrates these effects. Setting Bmn = 0 yields 

[T, - "toT + [1'. - C;;" - b:~JT ~ 1, (42) 

where Ao = 211" Iko. As a function of T a; and Tv, (42) represents a 
family of circles with unit radius displaced from the origin. This 
diagram of displaced circles constitutes the well-known grating lobe 
diagram, Fig. 22.31, 32 

Notice that the steering phases, tftl and tft2' are related to Ta; and 
T y through equations (36) and (37). The parallelogram C' D'E' F' of 
Fig. 22 corresponds to the range of steering phases 

(43) 

and is a periodic cell along the tl and t2 coordinates. 
As mentioned in Section II, it is possible to define a complete ortho

normal see6 of vector modes {W!:.n} over the parallelogram CDEF, 
Fig. 2. The tangential electromagnetic field at the plane z = 0+ can be 
expressed by a Fourier series of this set of modes which consists of both 
TE and TM modes (transverse to z). These modes, {W'!:.~} and {W~~}, 
are given by 

TE _ exp i(xlex + yley) {ley " _ kx "} I 
W mn - (bd')A 1. X 1. Y SIn a 2 IV r IV r m,n 

(44) 

and 

(45) 
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with kr = (k~ + k~)!. The quantities kz and ky are functions of (m, n) as 
given by (40). The orthonormality of this set of vector modes is defined 
by the following scalar products: 

(W~~ , lV;aE
) = 

where 

JI 
parallelogram 

CDEF 

~ = {I for 1n = p and 
Umn,pa 

o otherwise 

and 

APPENDIX B 

On the Invariance of the Scalar Product with 
the Shape of the Periodic Cell 

(46) 

n = q, (47) 

(48) 

(49) 

The orthonormality and completeness of the set {lV!:'n} of Floquet 
modes, equations (44) and (45), need not be defined over a specific 
periodic cell such as the parallelogram CDEF of Fig. 2. This fact is 
especially significant when a periodic cell intercepts parts of more than 
one circular (or other type of element) aperture. It will be shown that 
the orthonormality of {lV!:'n} can be preserved over a properly deformed 
periodic cell which contains only a single waveguide aperture. 

Using (37), equation (44) can be rewritten as 

llJ'TE - F( ) .[1/;1 1 - 271'111, + 1/;1 2 - 271'n ] 
mn - 111" n exp ~ b 8 1 d 82 (50) 

The scalar product betewen two TE modes is 

If 
(CDEF) (51) 

If lV'!:,~· (W;a
E

) * sin a d81 d82 

(CDEF) 

F(m, n) . F(pq)* sin a 
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(CDEF) 

The integral over the parallelogram CDEF in (51) can be divided 
into three (or more) integrals over the triangles CGI( and LEI and 
the polygon GDLIFI( (Fig. 2) : 

II = Jf + II + If (52) 

CDEF CGK LEI GDLIFK 

Because of the array periodicity, the triangles DHL and LEI are 
displaced by b with respect to the triangles CGK and KF J, respectively, 
along the 8 1 direction. Thus, for example, if the 8~ coordinate of the points 
within the triangle DHL is 8~ given by 

with (53) 

then 

II exp -{ 21r(m
b 

- p) sf + 21r(n d- q) s,] ds; ds, 

DIlL 

= exp -i21r(m - p) II cxp -{ 21r(m
b 

- p) s, + 21r(n
d
- q) s,] ds, ds, 

CGK 

II exp -{ 21r(m
b 

- p) s, + 21r(n d- q) s,] ds, ds, . (54) 

CGK 

Similarly 

If exp _{21r(m
b 

- p) s, + 21r(n d- q) s,] ds, ds, 

LEI 

= If exp _{21r(m
b 

- p) s, + 21r(n
d

- q) s,] "'" ds,. (55) 
KFJ 

Thus 

II exp -{ 21r(m
b 

- p) s, + 21r(n d- q) s,] ds, ds, 

CDEF 

= II exp -{ 21r(m
b 

- p) s, + 21r(n d- q) s,] ds, ds, (56) 

GHIJ 
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and the orthonormality and completeness of the set {lJ!~n} is preserved 
over the new periodic cell GHI J. This is the two dimensional analog of 
the single dimensional Fourier series whereby the functions and coeffi
cients are independent of the initial value of the period. In fact, the two 
dimensional periodic cell can be deformed to any shape which contains 
a single waveguide provided that the area of the cell stays the same and 
the parts of the cell which cause the deformation are translated by b or d 
along the 81 and 82 coordinates, respectively. 
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The Effects of Strain 011 Electromagnetic 
Modes of Anisotropic Dielectric 

Waveguides at p-n Junctions 

By JAMES McKENNA and J. A. MORRISON 

(Manuscript received May 22, 1968) 

A first order perturbation expansion is carried out in order to analyze the 
effect of small spatially uniform strains on the lowest order (even) TE and 
T M modes in an anisotropic dielectric waveguide. This generalizes the 
results of an earlier paper in which the effects of certain special cases of 
uniform strain were calculated. Unlike in these special cases, the perturbed 
modes are, in general, neither purely TE or TM, and one effect of two of the 
offdiagonal components of the strain is to tilt the plane of polarization and 
change the relative phase of the two polarizations. To first order, the modes 
are not exponentially attenuated. Some numerical examples are considered 
in order to illustrate the results. It is found that, under appropriate condi
tions, the effect of the small strain may be quite large in relation to its 
magnitude. 

r. INTRODUCTION 

The concept of a multilayered dielectric waveguide is central to 
the theory of the GaP electro-optic diode modulator.1-9 As part of a 
detailed study of the properties of electro-optic diode modulators, 
Nelson and McKenna4 have investigated the possible discrete modes 
which can propagate in a number of such waveguides and have cal
culated the detailed properties of the lowest order mode of each 
polariza tion. 

In the fabrication of a p-n junction a certain amount of strain is 
always introduced. Because of the photoelastic effectI° this strain will 
induce a change in the dielectric matrix describing the unstrained p-n 
junction. In general the strain will be spatially nonuniform, making 
it extremely difficult to calculate modes in such a structure. However, 
a knowledge of the effect of a spatially uniform strain on the mode 

1933 
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structure would provide insight into the effects of nonuniform strain. 
The effects of certain special cases of uniform strain on the modes of 
a simple model of a dielectric waveguide were calculated in Ref. 4. 
In the present paper we complete this investigation and calculate the 
modes in the same model dielectric waveguide when subjected to an 
arbitrary uniform strain. We use first order perturbation theory in a 
small parameter describing the magnitude of the strain. 

Although the work presented in this paper was motivated by re
search on the theory of the electro-optic diode modulator, the results 
have considerable relevance to the theory of the GaAs injection laser. 
Here too, various dielectric waveguide models have been used to 
explain the light containment.11- 14 The same problems of strain exist, 
and the results of this paper give a qualitative picture of the effects 
of strain on modal structure. The effect of strain on completely 
different types of electro-optic light modulators have been studied by 
Kaminow15 and by DiDomenico and Anderson.1G 

II. FORMULATION OF THE PROBLEM, AND RESULTS 

In Ref. 4 the symmetric step model was used to study the effects 
of strain. This very simple model exhibits many of the main features 
of interest in dielectric waveguide models. 

The model consists of an anisotropic crystalline slab bounded by the 
planes x = ± w, whose refractive index is raised uniformly by some 
constant amount, the physical origin of which is still obscure, and which 
is embedded in an isotropic medium of relatively lower index of refrac
tion. The central slab represents the junction region whose anisotropy is 
caused by the junction field EJ acting through the electro-optic effect.9 
The direction of the x-axis is always taken parallel to E J • The isotropic 
medium represents the normal GaP. 

The model is determined by its dielectric matrix, which in the absence 
of strain and for certain orientations of EJ with respect to the crystal 
axes can be diagonal in a coordinate system having its x-axis parallel to 
E J • For such orientations of EJ , the diagonal matrix elements of the 
dielectric matrix I(~O)(x), a = 1,2,3, depend only on x. (We use x, y, Z 

for the coordinates rather than Xl, x2, X3.) The matrix elements in the 
absence of strain are then defined by the equations 

I(~O)(x) = I(a , I x I < w (1) 

K~O)(x) = Ko , I x I > w (2) 

where a = 1, 2, 3 (see Fig. 1). 
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K~)(;X:) 

-w 

(a) (b) 

Fig. 1- (a) The coordinate system used in the symmetric step model. (b) A 
graph of Ka(x). 

There are two orientations of EJ of particular interest which allow us 
to diagonalize the dielectric matrix in the desired coordinate system. 
If EJ is in the [111] direction, then the x, y, and z axes can be taken in 
the [111], [110], and [IT2] directions, while if EJ is in the [100] direction, 
the x, y, and z axes can be taken in the [100], [011], and [011] directions. 
The set of axes determined by the unstrained model will be used in all 
the strain calculations and the dielectric matrix will always be referred 
to these axes. See Ref. 4 for further details of the model. 

In the presence of a uniform strain, the dielectric matrix is in 
general no longer diagonal, and we can write for the dielectric matrix 
elements K a{3 (x) , 

Kaa(x) = K~O)(x) + f}Saa , 

Ka{3(x) = f}Sa{3 , 

a = 1,2,3 

a ~ (3. 

(3) 

(4) 

The symmetric matrix (1]Sa{3) is the contribution of the photoelastic 
effecVo which we have written in this form for convenience in the 
perturbation analysis. The matrix elements Sa{3 are spatially constant. 
vVe assume that n-2Sa{3 is of order unity, where n is the index of refrac
tion of GaP and 17 is a small parameter. In Section II we express 1]Sa{3 

in terms of the strain matrix and give estimates for the size of 1]. 

We now seek solutions of the Maxwell curl equations 

v X E = -,uoH, (5) 
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of the form 

v X H = €oK(x) ·R, 

E = e(x) exp i(wt - (3kz) , 

H = hex) exp i(wt - (3kz). 

(6) 

(7) 

(8) 

These solutions correspond to waves travelling in the positive z direc
tion, where lc = w(}lo€o)i = 27r/'A is the free space wave number and 'A the 
free space wavelength of the light. 

In the strain free cases (?] = 0), there are both TE and TM modes 
and these modes can be either even or odd functions of x. At most 
only a finite number of modes can exist, and Ref. 4 shows that for the 
typical parameter values encountered in GaP diode modulators only 
the lowest order even TE and TM modes can exist. For that reason 
we confine ourselves here to solutions which in the limit of zero 
strain (?] = 0) reduce to even modes. However, the perturbation 
technique used here applies equally well to solutions which in the 
limit?] = 0 reduce to odd modes. 

When 1] ~ 0, we seek solutions of Maxwell's equations of the form 

ea(x) = Aa exp -kp(x - w) 

+ Ba exp -kq(x - w), 

= ea exp kr(x + w) + Da exp ks(x + w), 

= Fa exp ikfx + Ga exp -ikgx 

+ La exp iklx + M a exp -ikmx, 

x ~-w 

I X I ~ w 

(9) 

(10) 

(11) 

for a = 1, 2, 3. The general solution in each region is a sum of four 
linearly independent solutions, but in the regions I x I > w, the bound
ary conditions at infinity eliminate two of these solutions. The expres
sions for ha (x) can be obtained from equation (5). The various coef
ficients and parameters Aa ... , p, ... can be expanded in powers of ?] 

Aa = A~O) + 77A~l) + ... , (12) 

P = Po + 77Pl + "', and so on. (13) 

In Section III we list the terms in these expansions of order zero and 
one in ?], and in Section IV we outline their derivation. In this section 
we merely discuss some of the features of the solutions. 

We refer to solutions which in the limit as ?] ~ 0 reduce to even 
TE modes as "perturbed TE modes"; similarly, we refer to "perturbed 
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TM modes." Expressions for the unperturbed TE and TM modes 
(7] = 0) are given in equations (25) through (32). 

Although the expressions we have obtained for the coefficients and 
parameters are quite complicated, several features of the perturbed 
modes stand out. If 8 12 ~ 001' 823 ~ 0, then the modes cannot be purely 
TE or T1VL In general an important effect of the strain is to tilt the plane 
of polarization. This tilt is in general a function of x but not of z. Since 
the coefficients A a, ... are complex in general, the relative phase 
between Ey in the perturbed TE mode and E", in the perturbed TM mode 
is a function of x. This relative phase at x = ° cannot be determined 
unless the method of excitation is known, since all the A a cannot be 
determined, as is shown in Section IV. Ref. 4 considers the special case 
where 8 12 = 8 23 = 0, 8 13 ~ ° and shows that the modes are rigorously 
TE or T1VL That paper calculates only such parameters as {3 and p, not 
such coefficients as A a and B a' The parameters are expanded in two 
small quantities 0 and A describing the unstrained dielectric matrix. If 
we expand the expressions for the parameters in this paper to first order 
in the same small quantities 0 and A (to second order for {3) complete 
agreement is obtained with the Ref. 4 results. 

In the absence of strain, the surfaces of constant phase for both 
TE and TM modes are the planes z = constant. However, in the 
presence of strain, the surfaces of constant phase are no longer planes, 
and are different for the perturbed TE and TM modes.4 

Finally, /30 + 7]/31 is real in all cases. Thus at least to first order in 
7] the modes experience no exponential attenuation as they propagate. 

In order to get some feel for the magnitude of the effects involved, 
we consider several numerical examples. We first estimate the order 
of magnitude of 7] by relating it to observable phase differences. 
Consider a plane wave whose free space wavelength is A propagating 
over a distance l in a medium of index of refraction n + An. The phase 
difference t:..rp which this wave would experience over the same wave if 
the index of refraction were n is 

27r 
A<p = ): l(An). (14) 

If 7]n2 is the photoelastic contribution to the dielectric constant, then 

(15) 

Therefore, we have 

(16) 
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Now the upper limit of phase shifts observed17 in GaP at A = 6328 A 
over a length l = 0.6 mm is about 7r / 4. Taking18 n = 3.31 this yields 
1'/ ~ 0.8 X 10-4

• This probably represents an extreme upper limit, and 
so we will assume 1'/ = 10-6 in our examples. Recent X-ray measure
ments19 of strain in P doped Si yield a value of 1'/ of about 10-6 when the 
concentration of the dope is N D ~ 1018 atoms per cubic centimeter.9 

It can be shown that the matrix ('Y]Sa(3) is approximately related to the 
strain matrix (E a(3) by the equations10 

3 

'Y]Sa(3 = _n
4 L p a (3jJ. vEjJ. V (17) 

J.L. v= 1 

where n is the index of refraction and P a(3jJ.v are the elasto-optical coeffi
cients. Crystals of class 43m have only three different elasto-optic 
coefficients when referred to the crystal axes. (See p. 251 of Ref. 10.) 
For GaP these are20 

Pu = -0.151, P44 = -0.074, P 12 = -0.082. (18) 

Since1B n = 3.31 for GaP, and n-28afJ is at most of order one, it 
follows that the magnitude of the strain is roughly proportional to ?J. 
In order to obtain the values of the elasto-optic coefficients in the 
coordinate system used in this paper, it is necessary to make a trans
formation of the elasto-optic tensor from its representation in the 
crystal axes. 'Ve will not do that here; rather we take (?J8afJ) as given. 
In Table I we define three possible strain contributions to the dielectric 
matrix, labelled a, band c. Matrices a and b were chosen to demon
strate the effect of the off-diagonal elements 812 and 823 , respectively 
(Ref. 4 considered the effect of 813 alone), while c was chosen to dem
onstrate a possible effect when all the off-diagonal elements are nonzero. 

For a GaP diode modulator we can write2 • 4 

a = 0, 1,2,3, (19) 

where n = 3.31 is the index of refraction of GaP17 and the quantities 
0o, a = 1, 2, 3 are functions of the applied bias voltage V. In the original 

TABLE I - STRAIN CONTRIBUTION TO THE DIELECTRIC MATRIX* 

Type 'Y/ 811 822 833 812 823 813 

a 10-6 0 0 0 10 0 0 
b 10-6 0 0 0 0 10 0 
C 10-6 7.07 7.07 7.07 7.07 7.07 7.07 

* Components of the strain contribution, Sij , and the magnitude parameter rJ. 
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symmetric step model 00 is independent of V. For EJ II [111] Ref. 4 
showed that 

(20) 

where 

(21) 

and whereEJ is the (spatial) average junction field, r41 is the electro-optic 
coefficient, and n is the index of refraction. For a typical diode (diode 
KC46CA of Ref. 9), EJ(measured in V /m) is related to the diode half 
width w(measured in m) and bias voltage V(measured in V) by9 

EJ = (2 - V)/(2w). (22) 

The half width can be determined by capacitance measurements8
, D 

and related to the bias voltage by 

w(V) = 0.139 X 10-6 (1 - V /1.8)°·380. (23) 

Using the value r41 = -0.86 X 10-12 m/V,* we can now calculate 
81 ,82 , andS3 as functions of V. 

For this diode, So = 1.612 X 10-3
• However, it has been shown 

that the voltage dependence of the parameters of the symmetric step 
model is not correct, and the double walled waveguide much more 
closely describes the true voltage dependence.4 ,9 We have not used 
the double walled model because it is analytically complex. Instead, 
since the modes in the single and double walled guides are very similar 
in form because they both decay exponentially as functions of x out
side the guide, we have used the single walled model but simulated 
the voltage dependence of the double walled model. This has been 
achieved by letting So vary with voltage. The voltage variation of 80 

has been obtained by requiring the equality of expressions (2.33) and 
(3.18) in Ref. 4 for the decay constants p, and letting WI = W (0) and 

W2 = w (V). This yields the relation 

00 = (2.24 X 10-10)/w. (24) 

In Table II we list these basic constants describing the unstrained 
diode as functions of V. Using these values, we can calculate from 
equations (33) through (37) the parameters of the unstrained TE 

* This is the unclamped value of r41 given in Ref. 18. After these calculations 
were made it was determined that the clamped value rtl = -0.97 X 10-12 m/V 
should be used. However, since our results supply only qualitative information 
about actual diodes, we have not redone the numerical example. 
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TABLE II-CHARACTERISTICS FOR A TYPICAL GaP DWDE* 

Bias 
voltage w 

(V) (lO-i em) 104 01 1O( 02 lO( 03 104 00 

-2 1.87 -1.17 0.58 0.58 12.00 
-12 3.04 -2.51 1.25 1.25 7.38 
-24 3.85 -3.67 1.84 1.84 5.82 

* Given as functions of the applied reverse bias voltage V. The half width of the 
junction is w, and the components of the unstrained dielectric matrix are Ki = 
n2(1 - 0/), j = 0, 1,2, 3, where n = 3.31 is the index of refraction of GaP. 

and TM modes for A = 6328 A. These values are listed in Table III. 
Finally, in Tables IV and V we list the parameters of the correspond
ing perturbed TE and TM modes respectively. The accuracy of those 
terms less than 10-4 is uncertain in case c of Tables IV and V. In 
Figs. 2 through 7 we plot some of the components of the perturbed 
TE modes correct to first order in '7. In Figs. 2, 3, 5, 6, and 7 the 
imaginary part of the component js negligible and is neglected, while 
in Fig. 4 the real part is negligible with respect to the imaginary part 
and is neglected. In all cases the e3 component is negligible compared 
to the e1 component. We have chosen the undetermined coefficients 
so that at x = 0, z = 0, e2 in the perturbed TE mode and e1 in the 
perturbed TM mode have zero phase to first order in '7. 

This example illustrates how much tilting of the plane of polariza
tion, or coupling of the TE and TM modes, is to be expected. The 
812 component produces the main effect, which from Figs. 2 and 3, 
is a maximum tilt of the plane of polarization of 3.5 0

• This effect 

TABLE III-UNPERTURBED MODE PARAMETERS* 

Type Bias 
of voltage 

mode (V) {30 PO fo lo 

TE -2 3.308 0.0226 0.1096 0.1180t 
TE -12 3.309 0.0195 0.0796 0.1022t 
TE -24 3.309 0.0160 0.0641 0.1007t 
TM -2 3.308 0.0259 0.1089t 0.1174 
TM -12 3.309 0.0307 0.0759t 0.0994 
TM -24 3.309 0.0363 0.0552t 0.0953 

* Describing the unstrained TE modes, and the parameters f3o, Po and lo de
scribing the unstrained TM modes as functions of the applied reverse bias voltage V. 
The wavelength of the light is 6328 A. 

t Derived parameters lo for the TE modes andio for the TM modes. These derived 
parameters appear only in first and higher order corrections to the field. 
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TABLE IV - P ARAl\IETERS FOR PERTURBED TE MODES* 

Type Bias PI ql 
of voltage --------

strain (V) (31 Re(PI) 1m (PI) Re(ql) 1m(ql) II ml 
--

-2 0 221 -221 0 0 
a -12 0 257 -257 0 0 

-24 0 312 -312 0 0 
---

-2 0 1. 51 -1.51 0 0 
b -12 0 1.51 -1.51 0 0 

-24 0 1.51 -1.51 0 0 
---

-2 1.07 156 -0.3X10-7 -156 -2.14 2.13 -O.4XlO-8 

c -12 1.07 181 +O.2XlO-7 -181 -2.14 2.13 -0.4XlO-8 

-24 1.07 221 -0.2X10-7 -221 -2.14 2.13 -0.4XlO-8 

* For all perturbed TE modes 11 = gl = o. 

decreases with increasing reverse bias voltage. However, it should be 
noticed from Figs. 4 and 5 that the coupling effect resulting from 
823 increases with reverse bias voltage. The el component is roughly 
proportional to TJ, so a doubling of the strain would double the mode 
coupling. Mathematically, the existence of this relatively large effect 
results from the largeness of the factor c given in equation (64) for 
perturbed TE modes and in equation (84) for perturbed TM modes. 
The TM modes exhibit a similar behavior. 

From Tables IV and V we see that the changes in the parameters, 
TJP1, TJQ1, TJf31' and so on, are indeed small, which gives us confidence 
that the perturbation treatment is reasonable. 

III. FORMULAS FOR THE SOLUTIONS 

To list the formulas for the coefficients and parameters, A a , ••• , 

p, . . . (which appear in the expressions (7) through (11) for the 
solutions in terms of the various parameters describing the symmetric 
step model and the strain matrix), we begin by writing down the solu
tion for the strain free (TJ = 0) case for both the even TE and TM 
modes. When TJ = 0, we have for the even TE modes 

el(x) = e3(x) = 0, 

e2(x) = cos (kfox) , 

all x 

= cos (kfow) exp kpo(w - I x I), 

while for the even TlVI modes 

(25) 

(26) 

(27) 



Type Bias 
of voltage 

strain (V) (31 

-2 0 
a -12 0 

-24 0 

-2 0 
b -12 0 

-24 0 

-2 1.07 
c -12 1.07 

-24 1.07 

TABLE V - PARAMETERS FOR THE PERTURBED TN! MODES 

PI ql 

I Re(Pl) 1m(pl) Re(ql) 1m (ql) /1 gl 
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163 -163 0 0 
138 -138 0 0 

1.51 -1.51 0 0 
1.51 -1.51 0 0 
1.51 -1.51 0 0 

136 -0.2XlO-7 -136 -2.13 -1.2XI0-4 -1.2XI0-4 
115 -0.2XlO-7 -115 -2.14 1.9 X 10-4 1.9XI0-4 
97.3 -0.3XI0-7 -97.3 -2.14 0.72XlO-4 0.72XlO-4 

it ml 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

2.13 -2.13 
2.13 -2.13 
2.13 -2.13 

i--l 
~ 
~ 
l-,.:) 

8 
iJ:1 
t?:i 

to 
t?:i 
t"' 
t"' 
U1 
>< 
U1 
8 
t?:i 
~ 

8 
t?:i a 
iJ:1 
Z ..... 
a 
> 
tot 
4 
o 
ct 
~ 
Z 
> 
!' 
z 
o 
< 
t?:i 
~ 
to 
gg 
~ 

~ 
o 
00 



\V A VEGUIDE STRAIN 1943 

~ -3f-----r--~~~+_--_+----+_--_+----~~~--~----~ 
~ 
<lJ 

a: 
C\J 

STRAIN 
TYPE a 
1J = 10-6 

o -4 

-5 

-7~ __ ~ __ ~ ____ ~ __ ~ ____ L-__ -L ____ L-__ -L __ ~ ____ ~ 

-6.0 -4.8 -3.6 -2.4 -1.2 0 1.2 2.4 3.6 4.8 6.0 

:x: (w- 4 em) 

Fig. 2 - The relative amplitude of the real part of el for the perturbed TE mode. 

1 X 1 ~ w 

= ~: cos Cklow) exp kpoCw - 1 X I), 

all X 

C ) 
. loK I ' (k l ) e3 X = '" (30!(3 sm ox, 1 X 1 ~ w 

1 X 1 ~ w 

(28) 

(29) 

(30) 

(31) 

= i ~:~: cos (klow) sgn (x) exp kpo(w - 1 X I), 1 X 1 ~ w. (32) 

The parameters in these equations are given for the TE modes by 
the positive roots of the system of equations for Po, {30, and fo 

p~ = {3~ - Ko I 

f~ = K2 - (3~ I 

fo tan(kwfo) = po 

(33) 

(34) 

(35) 

while for the TM modes the parameters are the positive roots of the 
system of equations for Po, {30, and lo, consisting of equation (33) and 

(36) 
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li'ig. 3 - The relative amplitude of the real part of e2 for the perturbed TE mode. 
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Fig. 4 - The relative amplitude of the imaginary part of e1 for the perturbed 
TE mode. 
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Fig. 5 - The relative amplitude of the real part of e2 for the perturbed TE mode. 

(37) 

The expressions for hex) can be obtained from equation (5). 
We now turn to listing the formulas for the coefficients and param-

eters of the solutions for the perturbed TE and TM modes. For both 
the perturbed TE and TlV! modes we have the relations 

(::)13. - (4P~K)Ko(S" + S,,) + 13i(S" - S,,) + 2ipof30S.,J 

± (4P~J() {[1(0(S22 - S33) - {3~(Sll - S33) - 2ipo{30S13]2 

+ 41(0[{30S12 + ipOS23]2}!, (38) 

where PI corresponds to the "+" sign and qI to the "-" sign. It is 
also true, at least to first order in 7], that 

a = 1,2,3, (39) 

hence we only list those parameters determining the solution jn x ~ -w. 
For the perturbed TE modes Po, fo, and {30 are the positive solutions 

of the system of equations (33) through (35), and lo is then given 
in terms of {30 as the positive root in equation (36). The remaining 
parameters are 

qo = Po , 

go = to , 
(40) 

(41) 
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Fig. 6 - The relative amplitude of the real part of el for the perturbed TE mode. 

lo , (42) 

(43) 

The quantities Pl and ql are now determined by equations (38) and 
(43). Next we have 

(44) 

N 

~ 
Q) 

0::0.4~--~~~~----+-----~---4-----+----~----+-~~~~~ 

OL-__ ~ ____ -L ____ ~ ____ L-__ ~ ____ -L ____ ~ ____ ~ ____ L-__ ~ 
-6.0 -4.8 -3.6 -2.4 -1.2 0 1.2 2.4 3.6 4.8 6.0 

x (1O- 4 cm) 

Fig. 7 - The relative amplitude of the real part. of e2 for the perturbed TE mode. 
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II = 2Kl l [Sl1(K3 - l~) - 2K3{3o{31 + S33(K1 - (3~) ± 2S13 lo{3o], 
ml 10 

(45) 

where II corresponds to the "+" sign and ml to the "-" sign, and in 
equations (44) and (45) /31 is given in equation (43). Notice that 
from (43) and (44), fl = g1 = 0 for the TE case. 

The expressions for the coefficients are 

AiO) = -(30({30S12 + ipOS23) cos (kfow)/[2KoPo(PI - ql)], (46) 

A~O) = - ql cos (kfow)/(Pl - Ql), (47) 

AiO) = i(Po/{3o) AiO) , (48) 

BiO) = - A~O) , (49) 

B~O) = PI cos (kfow)/(Pl - Ql), (50) 

L~O) = M~O) = 0, a = 1, 2, 3 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

L?) = ((30K3/loKl)L~1), (59) 

M~I) = -((30I(3/loKl)M~1), (60) 

L~l) = M?) = 0, (61) 
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where 

a = [loKo cos (lewlo) + POK3 sin (lewlo) r 1 
, 

b = [loI(o sin (lewlo) - PoI(3 cos (lewlo) r 1 
, 

c = (ICI(3 - I(3{3~ - ICf~)-l, 

and P1 and q1 are the values appropriate to the TE modes. 
Finally, we write down the three combinations 

A~l) + B~1) = -i(f3o/Po) [A~l) + B~l)] 

(62) 

(63) 

(64) 

- cos (kfow) [(p~ - 1(0)812 + i{3oP0823J!(2I(op~), (65) 

A~l) + B?) = cos (lefow) [F~l) + G~1)], (66) 

A~l) + B~l) = [F~1) + G~l)] cos (lefow) + i[F~1) - G2)] sin (lefow) 

+ [L~l) + .1l1~1)] cos (lclow) + i[L~1) - 111~1)] sin (lelow). (67) 

The coefficients F~1) = G~l), and hence A~l) + B~l), are arbitrary and 
correspond to an overall multiplicative constant. They can be set equal 
to zero with no loss in generality. We discuss this point further in 
Section III. lVloreover, the individual coefficients A?), A~l) I B~l), and 
B~l) cannot be determined at this stage. However, the terms we have are 
sufficient to determine each component of the field up through order 
one in 1]. 

For the perturbed TM modes Po, lo, and {30 are the positive solu
tions of the system of equations (33), (36), and (37), and fo is given 
in terms of (30 as the positive root in equation (34). The parameters 
qo and Po are still related by equation (40), mo and lo by equation 
(42), and go and to by equation (41). The remaining parameters are 

131 = [1/(2{30) ][I(0(I(1l~ + I(3P~) + tr1 

. {[Sllf3~/I(1][I(oI(3P~ + I(il~ + t] 
+ [I(1S33l~/K;][I(3(K3 - I(o)p~ + tJ}, (68) 

where 

(69) 

'Vith the aid of (68) and (69) for {31, P1 and q1 are determined by 
equation (38),11 and gl by equation (44), and II and 1n1 by equation 
(45) . 
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The expressions for the coefficients are 

AiO) = -IC cos (kwlo)(2/3of31 - 2pOPl - S22)/[2po[(O(Pl - Ql)], (70) 

A~O) = -[(1 cos (kwlo)(f30Sl2 + iPoS23)/[2po/3oI(0(Pl - ql)], (71) 

BiO) = 1(1 cos (kwlo)(2/30/31 - 2pOql - S22)/[2poI(0(Pl - Ql)], (72) 

B~O) = - A~O) , (73) 

where /31 is given by equations (68) and (69), PI and Ql are the values 
appropriate to the TM modes, and AiO) is related to A~O) by equation 
(48) and BiO) to B~O) by equation (51). Furthermore, 

a = 1,2,3 

- l - 2, 

L~O) = M~O) = 0, 

LiO) = -lYliO) = (loIC)/(2/30[(3), 

Fi l
) = Fil) = Gil) = G~l) = 0, 

F~l) 
= cos (kwlo) {/3oaSI2 [[(1 + 2cp~(I(o - 1(3)] 

(74) 

(75) 

(76) 

(77) 

(78) 

(80) 

A~l) + B~l) = [F~l) + G~l)] cos (kw/o) + i[F~l) - G~l)] sin (kw/o) 

where 

+ [Lil) + M?)] cos (kwlo) + i[L2) - M2)] sin (kwlo), (81) 

a = [Po cos (kwfo) - fo sin (kwfo)r l , 

b = [fo cos (kwfo) + Po sin (kwfo)r l , 

c = ([(2 - l~ - /3~rl. 

(82) 

(83) 

(84) 

Just as in the perturbed TE case, the coefficients cannot all be deter
mined uniquely. vVe can with no loss of generality set 

(85) 
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Once this choice is made, we have 

L~l) [Sla - l0{31 - ll{30 + (Sa3 - 2lol1)(loKd{3oKa)]/(2{3olo), (86) 

M?) [-Sla - l0{31 - ml{3o + (Saa - 2loml)(loKl/{3oKa)]/(2{3olo), 

(87) 

A~I) + Bill = {-(SI3Pokw)/Ko 

+ i[!kw(K3{3~Sll/K1 + K1l~Saa/I(a - 2K3{3o(31)]/(Ka{3o)} cos (kwlo) 

(88) 

A;l) + B;1) = -i({3o/Po)[A~1) + B~l)] + (K1 cos (kwlo)/Ko{3oPo) 

• [-K0{31/PO - (30S11(P~ - Ko)/(2PoKo) 

+ Po{3oSa3/(2Ko) - ip~S1a/Ko]. (89) 

A knowledge of these terms is sufficient to determine each component 
of the field up through order one in '1]. 

IV. DETAILS OF THE CALCULATIONS 

In standard fashion H can be eliminated from equations (5) and (6) 
by taking the curl of equation (5) and by making use of the assumed form 
of the solutions, equations (7) and (8). There results the system of 
equations 

'{3 dea - {32 + ~ K 0 ~ dl: e1 L..J 1aea = , .:; a~1 

(90) 

(91) 

d2ea . del ~ K 0 
d~2 + ~{3 d~ + f:: aaea = , (92) 

where we have introduced the new independent variable 

~ = kx. (93) 

The standard boundary conditions21 on E and H yield the conditions 
that e21 e3, de2/ d~, and deal d~ + i{3e1 must be continuous at ~ = u = kw. 

The general plan of the calculation is first to consider the equations 
obtained by substituting into equations (90) through (92) the expres
sions for ea in the various regions given by equations (9) through 
(11). From these equations, one can determine up through first order 
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in ?] all but one of the parameters and some of the coefficients as 
functions of the parameter f3l. Upon substituting these values into 
the boundary condition equations, a set of equations is obtained from 
whichf3l and some of the remaining coefficients can be determined. 

Since the components of the electromagnetic field satisfy a linear, 
homogeneous system of equations, it follows that if ea(x) ,a = 1, 2, 3 
is a solution set, then so is (1 + al?] + a2?]2 + ... ) ea (x), a = 1, 2, 3, 
where the constants al, a2, ... are arbitrary. For example, if the 
coefficients Aa , E a , ••• given by expansions of the form (12) rep
resents a solution, then the coefficients given by expansions of the form 

(94) 

with the same al used in each expansion, represent another solution. 
Thus unless the corresponding zeroth order coefficient is zero, the first 
order coefficient cannot be uniquely determined. We do, however, 
have the arbitrary constant al at our disposal. The multiplicative 
constant (1 + al?] + ... ) can only be determined from a knowledge 
of the excitation of the mode. 

If the assumed expressions for ea in ~ ~ (j given by equation (9) are 
substituted into equations (90) through (92) we get the set of homoge
neous, linear equations in A a, a = 1, 2, 3, 

(Ko + 'Y]Su - ,62)Al + 'Y]S12A 2 + ('Y]S13 - i,6p)A3 = 0, (95) 

'Y]S12A 1 + (Ko + 'Y]S22 + p2 - ,62)A2 + 'Y]S23A3 = 0, (96) 

('Y]S13 - i,6p)Al + 'Y]S23A2 + (Ko + 'Y]S33 + p2)A:l = 0, (97) 

plus a similar set of equations with Aa replaced by Ea and p replaced 
by q. The condition that these equations have a nontrivial solution, 
the vanishing of the determinant of coefficients, yields a relation be
tween {3 and p of the form 

D(p, ,6) = 0, (98) 

where D (p, (3) is a quartic polynomial in p and {3. The second set of 
equations involving the Ea and q yields the same determinantal equa
tion with p replaced by q, 

D(q,,6) = 0. (99) 

That is, q is a second root of the quartic. If p, q, and f3 are expanded 
in powers of ?] as in equation (13), equations (98) and (99) can be 
expanded in powers of ?] and the coefficients of the various powers of 
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7] can be equated to zero. The vanishing of the lowest order term 
yields equation (33), which is satisfied by both Po and qo, thus also 
yielding equation (40). The vanishing of the first order coefficients 
shows that PI and qi are the two roots of a quadratic which are 
given by equation (38). These results are independent of the TE or 
TM character of the mode. 

Equations (95) through (97) can now be expanded in powers of 7] 

by substituting in the expansions of p, [3, and Aa. The three similar 
equations involving q, /3, and Ba can be expanded in powers of 7] in 
the same way. Because Po and /30 satisfy equation (33), equation (96) 
vanishes to zeroth order in 7], while equations (95) and (97) yield 

(1(0 - ,B~)A~O) - i,BoPoA~O) = 0, 

-i,BoPoA~O) + (Ko + p~)A~O) = o. 
(100) 

(101) 

The determinant of this pair of homogeneous equations vanishes because 
equation (33) is satisfied, so a nontrivial solution exists. The quantities 
B~O) and B~O) satisfy the same equations. Using equation (33), it follows 
from equation (101) that A~O) and A~OJ are related by equation (48), and 
B~OJ and BiOJ are related by equation (51). 

To first order in r}, equations (95) through (97) are 

(Ko - ,B~)AilJ - i,BoPoA~l) 

= - [(811 - 2,BO,Bl)A?) + 812A~0) + (813 - ipO,Bl - ipI,BO)A~O)], 

(102) 

S12 A iO) + (2pOPl - 2,Bo,B. + 822)A~0) + 823A~0) = 0, (103) 

-i,BoPoA~l) + (1(0 + p~)A~l) 
- [(813 - ipO,BI - ipl,BO)A~O) + 823A~0) + (833 + 2POPI)A~0)]. 

(104) 

With the replacement of Aa by Ba and p by q in equations (102) 
through (104) we obtain the first order equations satisfied by the Ba. 
At this stage we must differentiate between the perturbed TE and 
TM modes. For the perturbed TE modes we must have 

AiO) + BiO) -i(,Bo/Po) [AiO) + BiO)] = 0, (105) 

A~O) + B~O) cos (kfow) , (106) 

while for the perturbed TM modes 

A~O) + BiO) = -i(,Bo/Po) [AiO) + BiOJ] = (K1/l(0) cos (lclow) , (107) 
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A;O) + B;O) = O. (108) 

If we now add to equation (103) the equivalent equation in B c" and 
make use of the fact that A~O) + B~O), ex = 1, 2, 3 are prescribed for the 
perturbed TE modes, in equations (105) and (106), we get a new equation 
involving only A~O) and B~O). This equation together with equation (106) 
can be solved for A~O) and B~O) to yield (47) and (50). Once A~O) is known, 
AiO) and A~O) can be determined from equations (103) and (48) yielding 
(46). We get BiO) and B~O) from equation (105). In the same fashion we 
determine A~O) and B~O), ex = 1, 2, 3 for the perturbed T1VI modes. 

Equations (102) and (104) [and the two equivalent equations in Bi l
) 

and B~l)] are two inhomogeneous equations whose determinant vanishes. 
Thus the left side of (102) is a multiple of the left side of (104), and the 
equations are compatible only if the right side of (102) is the same 
multiple of the right side of (104). This can be shown to be the case, and 
so (102) and (104) provide just one relationship between Ail) and A~l). 
There is a corresponding relationship between Bil) and Bjl). 

By replacing A a , B a ) p, q by C a , D a , -1', -8, respectively, in the 
equations so far obtained, the formulas for the region ~ ~ - (J' are ob
tained. Here - t and - 8 are the remaining two roots of the quartic 
D(p, (3) = O. 

Next, if the assumed expressions for ea in \~\ < (J' given by equation 
(11) are substituted into equations (90) through (92) we get four sets 
of three homogeneous, linear equations in Fa, G a , La, and 1\1[ a , 

respectively, which hold for both the perturbed TE and TM modes. 
These equations are obtained from equations (95) through (97) by 
replacing A a and p by F a and - if, G a and ig, L a and - il, and M a and 
im, respectively. 

The determinental equation for each of these four sets of homo
geneous equations can again be expanded in powers of 'l}, and the coef
ficient of each power of 'l} separately equated to zero. The vanishing 
of the zeroth order coefficients yields equations (34), (41), (36), and 
(42) relating io, go, lo, and mo to {30. The vanishing of the first order 
coefficients yields equations (44) and (45) relating i1, 91, ll' and m1 
to {31. 

Each of the four sets of homogeneous equations can be expanded in 
powers of r], just as for the equations describing the region ~ ~ (J'. To 
proceed further, we must again differentiate between the perturbed 
TE and TM modes. For the perturbed TE modes, equations (52) 
through (54) must be satisfied, while for the perturbed TM modes, 
equations (74) through (77) must be satisfied. These values satisfy the 
lowest order equations identically. 
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For both the perturbed TE and TM modes, the first order equations 
can be written as 

(Kl - f3~)F~l) - f3ofoF~l> = - S12F~0> , 

-f3ofoF?> + (K3 - f~)F~O) = -S23F~o>, 

(K2 - f~ - f3~)F~l) 

(109) 

(110) 

= - S12F~0) - S23F~0) - (S22 - 2/ofl - 2f30(31)F~0). (111) 

For both the perturbed TE and TM modes, equation (111) vanishes and 
yields no information, while equations (109) and (110) have a nonzero 
determinant and so can be solved for Fi l

) and F~l) yielding the solutions 
given in (55), (57), and (7S). If we replace Fa and f by G a and -g, we 
get equations which can be solved for G?) and G~l) yielding solutions 
given in (55), (57), and (7S). The equations obtained when Fa and fare 
replaced by La and l, and M a and -m, respectively, have a different 
character. The two equations in L~l) and M~l) corresponding to (111) do 
not vanish identically and can be solved for L~l) and M~l). The solutions 
are given in (61) and (SO). The equations in L~l) and L~l), and M~l) and 
M~l), have a vanishing determinant. In the perturbed TE case, the 
equations are homogeneous and yield (59) and (60). In the perturbed 
TM case, the equations are nonhomogeneous but compatible, and yield 
the relations 

-f3oloL~l) + (K3f3~/Kl)L~1) 
= -!(S13 - lOf3l - ll(30) - !(S33 - 2loll)(loIC/f3oK3)' (112) 

f3oloM?) + (K3f3~/Kl)M~1) 
= -!(S13 + lOf3l + ml(30) + !(S33 - 2loml)(loKl/f3oK3). (113) 

We finally turn to the boundary conditions at ~ = ±cr, of which there 
are eight, four at each boundary. They can be grouped as follows 

A2 + B2 = F2e
iftr + G2e- iUtr + L2ei1tr + lVI2e- imtr , (114) 

C2 + D2 = F2e-
iftr + G2e

iUtr + L 2e- i1tr + M2eimtr , (115) 

-pA2 - qB2 = ifF2e
iftr - igG2e- iutr + ilL2e

i1tr - imM2e- imtr , (116) 

rC2 + sD2 = ifF2e- iftr - igG2e
iUtr + ilL2e- i1tr - imM2eimtr , (117) 

A3 + B3 = F3eiftr + G3e- iU
(f + L3ei1u + M 3e- imu , (lIS) 

C3 + D3 = F3e- iftr + G3e
iUtT + L3e- iltr + M3eimu, (119) 
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-pA3 - qB3 + i.B(Al + B 1) = i(fF3 + .BFl)eif~ + i( - gG3 + .BGl)e-ifl~ 
+ i(lL3 + .BL1)eil~ + i( -mM3 + .BM1)e-im~, (120) 

rC3 + sD3 + i.B(CI + D1) = i(fF3 + .BFl)e-if~ + i( - gG3 + .BG1)e
ifltT 

+ i(lL3 + .BLl)e-il~ + i( -mMg + .BM1)eim~. (121) 

These equations split naturally into two groups, one group involving 
only the subscript 2 and the other group involving only the subscripts 
1 and 3. These equations can be expanded in powers of YJ. The zeroth 
order equations are satisfied as long as (35) holds in the perturbed 
TE case and (37) holds in the perturbed TM case. 

For the perturbed TE modes, the first order expansion of equations 
(114) through (117) yields four nonhomogeneous equations in A~l) + 
B~I), C~I) + D~1), F~l) and G~1). The inhomogeneous terms on the right 
side of these equations contain the parameter .Bl' The determinant of the 
equations vanishes, and then the condition that they be compatible 
provides an equation from which .B17 given in (43), is determined. Once.Bl 
is determined, these equations yield (56) and (66). We can now choose 
the arbitrary parameter aI-indicated in (94)-so that F~l) = O. Then 
from (56) and (66) G~l) = A~l) + B~l) = O. In addition, since .Bl is real, 
it can now be shown that r l = p~, SI = q~, C~O) = A~O)*, D~O) = B~O)*, 
and C~l) + D~l) = [A~l) + B~l)]*, a = 1, 2, 3, which justifies equation 
(39). Finally, the first order expansion of equations (118) through (121) 
can be combined with equations (59) and (60), equation (102), and the 
corresponding three equations in B~l) and B~l), C~l) and C~ll, and D~l) 
and D~l) to form a set of equations from which A~l) + B~l) = [C~l) 

+ D~l)]*, and M~l), a = 1, 3, can be determined. These are listed in 
(58), (65), and (67). 

For the perturbed TM modes the procedure is virtually the same, 
except that it is now the first order expansion of equations (118) 
through (121) which has a vanishing determinant. The condition 
that these be compatible then yields the expressions (68) and (69) 
for (31. This set of equations also yields the result that 

L~l) + M~l) = O. (122) 

We can now pick the arbitrary parameter al so that L~I) 0, which 
combined with (122) yields (85). Equations (112) and (113) now yield 
(86) and (87). The first order term of equation (118) then yields (88), and 
this result, combined with the equation obtained by adding equation 
(102) to the corresponding equation in B yields (89). Finally, equations 
(114) through (117) yield expressions (79) through (84) for F~I), G~l), 
L;1), M~l), A;ll + B~1). 
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A State Variable Method of Circuit Analysis 
Based 011 a Nodal Approach 

By R. E. PARKIN 

(Manuscript received April 12, 1968) 

A method which is well suited for implementation on a digital computer 
is presented for the solutions of active circuits. Unlike many state variable 
approaches the state vector is defined as the set of voltages which exist between 
certain nodes and the reference node. An advantage of this approach is that 
degeneration in the order of cornplexity of the network caused by capacitance 
loops is handled automatically. Any type of controlled source can be specified. 
From the basic algorithm the circuit is specified in matrix form by inspection 
using standard nodal methods, and the solution is obtained by a systematic 
reduction of this one matrix equation. An upper bound on the order of 
complexity of the network is evident from the network topology or the 
partitioned form of the original matrix. Inductors are included in this 
approach by considmoing the equivalent gyrator-capacitor combination. 

r. INTRODUCTION 

State variable techniques presently being used to analyze networks 
require a detailed knowledge of graph theory.1-7 Another method of 
state variable analysis that is based partly on a nodal approach and 
does not require a detailed knowledge of graph theory is very re
strictive.s The method presented here performs a nodal analysis on a 
transformation of the network in which all magnetic storage elements 
have been replaced by gyrator-capacitor equivalents, and nothing 
more than a basic knowledge of graph theory nomenclature is re
quired. The RCLMST-:' network can be transformed to an equivalent 

* Resistor, capacitor, inductor, mutual inductor, source and ideal transformer. 

1957 
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Fig. 1- Inductor and transformer equivalents. 

resistance capacitance source network using the gyrator-capacitor 
equivalents shown in Fig. 1. Each gyrator shown in Fig. 1 has the 
indefinite admittance parameters 

choosing this type of gyrator enables the capacitor value in farads of 
the equivalent pair to be equal to the inductor value in henries. 

Let the number of nodes of a transformed network be n. Using 
Kirchoff's current law, it can be shown that for an n-node ReS net
work 

CV=I-GV (1) 

where I is an (n - l)th ordered column vector representing the currents 
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injected into the nodes, V is an (n - l)th ordered column vector repre
senting the voltages between the nodes of the network and the reference 
node. If the transformed network contains l capacitors then the matrix 
C is an (n - l)th ordered symmetric matrix which contains imbedded 
within it l second order indefinite matrices, each having the dimensions 
of farads. Similarly G represents the resistors and has the dimensions of 
mhos, but G may be asymmetric. Node n is the common or ground node 
of the network; for convenience this node is always assumed to have 
capacitors connected to it. 

The objective is to find an upper bound on the rank of the ca
pacitance matrix C by partitioning C as described in Section II, and 
reducing the matrix equation (1) containing the partitioned matrix 
C to the rank of C; this reduction is symbolic and does not take into 
account degenerate cases which can occur. It is shown in Appendix B 
that for all conditions, for any type of circuit, an upper bound on the 
order of complexity of the network (rank of C) can be found from 
the network topology. 

II. PARTITIONING OF THE CAPACITANCE MATRIX 

There are basically four types of voltage source (VS) , the independ
ent vs (IVS) , the voltage dependent vs (VDVS), the current dependent 
vs where the current is through a resistor (CDVSR), and the current 
dependent vs where the current is through a capacitor (CDVSC). It will 
be shown that the only current source (cs) which can effect the parti
tioning is the current dependent cs where the current is through a 
capacitor (CDCSC). As a result, any type of cs will be termed simply 
a CS, unless it is a CDCSC. 

The method of partitioning makes the reduction of the matrix 
equation (1) to its rank a simple process. Generally only the voltage 
at a node to which a capacitor is connected can be a state variable 
node. However it is possible to choose a node to which a CDCSC or 
CDVSC is connected as a state variable node instead of one of the 
nodes of the capacitor whose current supplies the dependence, but this 
possibility is avoided automatically in the partitioning method pre
sented here. 

The presence of inductors and time-invariant, independent Cs's 
forming a cut-set in the original untransformed network causes a 
linear dependence problem in the transformed network. In the trans
formed network such a cut-set appears as a capacitor tree with gyra
tors only connected to the end nodes of the tree as shown in Fig. 1, 
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and gyrators and perhaps time-invariant independent c.s.'s connected 
to the central node (the GCNODE) ; the nodes of this capacitor tree will 
be called the GCSET nodes. 

The capacitors in the transformed network can be divided into two 
classes, those connected to the reference node directly or through a 
vs-capacitor chain (the fixed capacitors), and those not so connected 
(the floating capacitors). The m floating capacitor sub graphs are 
defined as the m unconnected subgraphs obtained from the floating 
capacitor plus imbedded vs graph of the transformed network. 

The partitioning of the capacitance matrix will be related to the 
example of Appendix A in the discussion that follows. Partition the 
matrix Cas 

nl n2 n3 n4 nS 

nl Cll Cl2 Cl3 0 CI5 

n2 C21 C22 C23 0 C25 

n3 C31 C32 C33 0 C35 

n4 0 0 0 0 0 

nS C51 C52 C53 0 C55 

where 

(i) The nodes nl are all the nodes to which capacitors are connected 
omitting the following nodes: 

(a) A node for each vs imbedded in a capacitor chain (these nodes are 
in the n2 section), but each capacitor must be specified by at least one 
node. 

(b) A node for each of the m floating capacitor subgraphs (these nodes 
being in the n3 section). 

(c) A node for each GCSET which is specified in section n2. 

In the example in Appendix A, nl contains nodes 1 ~ 9. 

(ii) The nodes n2 represent: 

(a) A node for each DVS imbedded in a capacitor chain. 

(b) A node free of capacitors for each CDVSC and CDCSC free of capaci
tors on at least one node. 



NODAL CIRCUIT ANALYSIS 1961 

(c) A node for each GCSET. 

In the Appendix A example n2 contains nodes 10 and II. 

(iii) Section n3 contains a node for each of the m floating capacitor 
subgraphs. 

In the example n3 contains nodes 12 and 13. 

(iv) Section n4 contains the nodes to which only resistors and cs's (but 
not CDCSC) are connected, including a node for each IVS, VDVS or CDCSC 

free of capacitors, other CDVSC'S or CDCSC'S on both nodes. (The other 
nodes of these sources are specified in section nS). 

In the example n4 has no entries. 

(v) Section nS contains all the remaining nodes. These are: 

(a) A node for each IVS. 

(b) A node free of capacitors for each VDVS or CDVSR free of capacitors 
or CDVSC or CDCSC on at least one node. 

In the example nS contains node 14. 
The rank of the C matrix is nl, and nl = 9 for the example of Appendix A. 
Notice that the presence of capacitance loops in no way alters the method 
of partitioning. 

III. REDUCTION OF THE CIRCUIT DESCRIPTION TO A MINIMAL FORM 

Theorem: An upper bound on the order of cmnplexity of a network is the 
order of nl. 

This theorem is proved in Appendix B, where it is shown that every 
row in sections n2, n3, n4, and nS is linearly dependent on rows in section 
nl; the subspace spanned by sections n2, n3, n4, and nS is contained in nl. 

The systematic reduction of equation (1) is accomplished by first 
eliminating section nS by applying the voltage restrictions caused by the 
vs's in section nS. Secondly, section n4 is eliminated using the fact that 
these nodes are free of capacitors. Next, section n3 is eliminated to 
correct the over specification of the floating capacitor subgraphs. 
Finally, the remaining dependencies of the system are caused by the 
DVS'S imbedded in capacitive chains, the CDVSC and CDCSC free of capaci
tors on at least one node, and a node for each capacitive tree in which a 
GCSET has occurred; these dependencies are eliminated with section n2, 
yielding equation (9) of Appendix B. 

Equation (9) of Appendix B can be written as 
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where 

vI = B - AvI 

vI 

v2 

v = v3 

v4 

v5 

and vI is the voltage vector for nodes nI, n2, n3, etc. 

(2) 

An example of a solution based on the problem set by Pottle is 
given in Appendix C. 

IV. CONCLUDING REMARKS 

A state variable technique has been described that offers two ad
vantages over traditional methods: 

(i) The network can be specified completely by inspection using 
well known nodal techniques with little skill required, the problem 
then becoming one of simple matrix reduction (easily programmed 
for a digital computer). 

(ii) Capacitor loops present no problem and are not even recognized 
as such since the partitioning and matrix reduction are unaltered if 
there are any capacitor loops present. 

The main disadvantages are that currents must always be ex
pressed as functions of node voltages and inductors must be replaced 
by gyrators and capacitors; inductor cut-sets must be recognized and 
the circuit redrawn before inductors are eliminated so that the cut
set encircles one node only, and this is sometimes inconvenient. 

APPENDIX A 

Example of Partitioning 

For the example of Fig. 2 (a), the transformed circuit without in
ductors is given in Fig. 2 (b). (This is a theoretical problem and the 
circuit has no practical value.) This circuit is described by the equa
tions 



1 2 3 4 5 6 7 
1 C1 0 0 0 0 0 0 
2 0 C2 0 0 0 0 0 
3 0 0 Ll 0 0 0 0 
4 0 0 0 C6 -C6 0 0 
5 0 0 0 -C6 C6+C7 0 0 
6 0 0 0 0 0 L2 -L2 
7 0 0 0 0 0 -L2 L2 +C3 : l ~ 0 0 0 0 0 -C3 

0 0 0 0 0 0 
10 0 -C2 -Ll 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 -C7 0 0 
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14 0 0 0 0 0 0 0 
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(a) 
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Fig. 2 - Circuit to demonstrate transformation and partitioning. 

where 11 and 12 are the unbalance currents due to the vs's and 

V14 = Vs . 

Notice that except for degenerate cases (for example, if C6 = 0), the 
order of complexity of this network is 9. 

APPENDIX B 

Matrix Reduction 

Consider the partitioned form of equation (1). The section n5 can be 
eliminated as follows: for an IVS of a volts connected between nodes k 
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and l (node k is in section nS, node l is not) 

Vk = v, + a. 

For a VDVS or CDVSR connected between nodes k and l, where the vs is 
dependent on the voltage vector v m (each voltage of v m is not in section 
nS). 

Vk = v, + {3vm • 

Thus the system can be reduced to 

nl n2 n3 n4 

nl Cll C12 C13 0 
[VI 

il 
fGU 

G12 G13 G14 vi 

n2 C21 C22 C23 0 v2 i2 G21 G22 G23 G24 v2 
. (3) = 

n3 C31 C32 C33 0 

L
V3 i3 G31 G32 G33 G34 v3 

n4 0 0 0 0 v4 i4 LG41 G42 G43 G44 v4 

Nodes n4 can be eliminated by first writing part of equation (3) as 

(4) 

Thus 

[
Cll C12 C13] [VI] [ill [Gll G

12 
G13] [VI] [GI4] 

C21 C22 C23 ~2 = ~2 - G21 G22 G23 v2 - G24 v4 

C31 C32 C33 v3 13 G31 G32 G33 v3 G34 (5) 

[
itt] [GIll G1

12 
G1

13
] [VI] 

= it2 - G1 21 G1 22 G1 23 v2. 

it3 G1 31 G1 32 G133 v3 

The matrix 

[

Cll C12 C13] 
C21 C22 C23 

C31 C32 C33 

has order nl + n2 + n3 and rank no greater than nl + n2. The n3 
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linearly dependent rows and columns can be deleted from equation (5) 
by adding selected rows in the section nl and n2 to rows in the range n3. 
The selection is made as follows: starting with any row in the section n3, 
examine the first entry. If it is nonzero add row 1 to this row. Continue 
along the row, repeating if necessary, until all the entries are zero. 
Proceed for the other dependent rows. Equation (5) can then be written 
as 

and 

(7) 

It is a simple process for the reader to prove to himself that elimi
nating a node of a floating capacitor subgraph which is part of a 
GCSET as described above yields the same result as equating the alge
braic sum of the voltages across the capacitors in the GCSET to zero 
(analogous to the algebraic sum of the currents entering the inductor 
cut-set node through the inductors adding up to zero) . 

Substituting equation (7) and its derivative into equation (6) we 
obtain 

[
C211 C212] [VI] = [iPI] _ [G211 G212] [VI]. (8) 
C221 C222 v2 ip2 G221 G222 v2 

The total number of restrictions have not yet been placed on the 
network. 

(i) For a DVS imbedded in a capacitor chain or a CDVSC free of capaci
tors on one node connected between nodes k and l, where node k is 
specified in section n2 J 

or 

where V; is the set of voltages upon which the source is dependent. A 
particular voltage of Vi may be in any section nI, n2, n3, n4, or nS. 
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(ii) For a CDCSC connected between nodes k and l, the currents 
Ik and Iz injected into nodes k and l with the CDCSC removed must be 
modified to 

and 

respectively, where 1] has the dimensions of farads. 
(iii) For a GCSET with node j of the capacitor tree containing the 

GCSET specified in section n2, node j is eliminated as follows: examine the 
entries of row j of the remaining capacitance matrix. If entry 0 i.r ~ 0, 
subtract Of.dOr,r times row l from row j, where l = 1, p; p is the order of 
nl + n2. Thus row j is reduced to a row of zeros. 

The system can now be written as 

[C]v! = iF! - [G]vl. (9) 

Barring degeneracy, matrix 0 is nonsingular with rank nl. 

APPENDIX C 

Example of the Method 

For the circuit of Fig. 3 (the example of C. Pottle9
), nodes 1, 2, and 3 

are placed in the nl section, and node 4 is placed in the nS section. Thus, 
by inspection 

0 1 + 0 4 0 0 -04 

o O2 0 0 

o 0 0 3 0 

-04 0 0 0 4 

G2 + G3 -G2 -G3 0 

- G2 G1 + G2 0 - G1 

-G3 0 G3 - G4 0 

o -G1 0 G1 

where 
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3 

Fig. 3 - Example of Appendix C. 

The derivative of the source E must be considered if a capacitor is 
connected to both of its nodes. Clearing out the voltage terms in the 
current array, 

CI - C4 0 0 C4 ih 

0 C2 0 0 V2 

0 0 C3 0 V3 

-C4 0 0 C4 V4 

~ l- G3 - Gz Gz -G3 0 VI 

-G2 G1 + G2 0 -GI V2 

~,~ 
-G3 0 G3 + G2 0 V3 

0 -G1 0 GI t'4 

Eliminating V4 and v, as described in Appendix B, 

[

CI-C ... 2C4 O][~l] [-C4~] [G3-
G

2 'f G
2 

-G3][Vl] 
o C2 0 V2 = G1E - -G2 GI + G'2 0 V2 • 

o 0 C3 V3 0 -G3 0 G3 + G4 V3 

This is as far as we can go symbolically and as far as the method 
takes us. Normally all that remains is a simple inversion of the re
maining capacitance matrix, but Pottle chose C1 = C4 • This makes 
the capacitance matrix singular and so another node must be elimi
nated. Eliminating node 1, 

[

C2 + 2C4C2 
G3 - G2 

2C4G;>. 
- G2 
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G2 

+ G2 + G
3 
~ G

2 

G2G3 

G3 - G2 

The vector 

can now be expressed explicitly. 
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Uniform Asymptotic Expansions for Saddle 
Point Illtegrals-Application to a 
Probability Distribution Occurring 

in Noise Theory 

By STEPHEN O. RICE 
(Manuscript received June 5, 1968) 

The non central chi-square distribution occurs in noise interference 
problems. When the number of degrees of freedom becomes large, the middle 
portion of the distribution is given by the central limit theorem, and the tails 
by a classical saddle point expansion. Here recent work by N. Bleistein and 
F. Ursell on "uniform" asymptotic expansions is combined and extended 
to obtain an asymptotic series which apparently holds over the entire range 
of the distribution. General methods for expanding saddle point integrals in 
uniform asymptotic series are discussed. Recurrence relations are given for 
the coefficients in two typical cases, (i) when there are two saddle points and 
(ii) when there is only one saddle point but it lies near a pole or a branch 
point. 

I. INTRODUCTION 

This paper deals with the problem of obtaining asymptotic series 
for the complex integral 

J = i, th-1g(t) exp [xh(t)] dt (1) 

when x becomes large. Problems of this sort are quite often encoun
tered in applied mathematics, particularly in wave propagation. The 
material presented here grew out of some recent work by G. H. Rob
ertson l on the "Marcum Q-Function." This function, which appears 
in the study of radar interference, gives the distribution of the random 
variable (noncentral x2 ) 

'" 
z = (1/x) L y~ . (2) 

n-l 

1971 
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Here x is a positive integer and Yl, Y2, ... , Yx are independent gaus
sian random variables with unit variances and mean values which 
may be different. 

Mr. Robertson has devised an algorithm for computing the Q-func
tion which may be used for a wide range of the parameters appearing 
in the function (that is, in the noncentral x2 distribution). In an 
earlier paper on information theory, by working with an integral of 
the type in equation (1), I had obtained an asymptotic (for large 
x) expression for the tails of the distribution.2 However, comparison 
with results obtained by Robertson showed that my expression failed 
badly in the central part of the distribution where the central limit 
theorem holds. 

The need for an asymptotic expansion which holds uniformly over 
the entire range of the distribution led to a study of the recent work 
on "uniform" asymptotic expansions of integrals. The first part of 
this paper is an exposition, plus extensions and generalizations, of 
some of the procedures which have been used to obtain uniform 
asymptotic expansions of integrals of the type in equation (1). The 
theory is then applied to the noncentral x2 distribution. 

Two procedures are considered. For convenience, we call them the 
"Bleistein method"3 and the "Ursell method."4 Although these names 
are among the best that suggest themselves, they are not entirely 
satisfactory because they contain no hint of the earlier work by 
others, especially Olver, Chester, Friedman, and Ursell.5

,6 Here we 
have recast the underlying ideas used by Bleistein and Ursell into 
forms better suited to our purpose. 

Both methods lead to the same asymptotic series. The Bleistein 
method gives a compact expression for the coefficients in the expan
sion. However, from the few examples that have been studied, it 
appears that the labor required to reduce this compact expression to 
a computable form is at least as great as that required by the Ursell 
method. 

Section III and Appendices A, B, and C are concerned with a prelimi
nary change of variable in the integral J. The case, denoted by "A = 1" 
for brevity, in which the exponent A is a positive integer, is discussed in 
Sections IV, V and VI. This material is applied to the problem of two 
saddle points in Appendix E. The case in which A is general, denoted 
briefly by "A ~ 1," is discussed in Sections VII, VIII, and IX, and in the 
examples in Appendices F, G, and H. The results of Section IX are ap
plied in section X to obtain the desired type of expansion for the non
central x2 distribution. Useful results regarding classical saddle point 
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expansions are stated in Appendix D. Some of the results given in 
Appendix F for the general case of a saddle point near a branch point are 
applied in Appendix G to obtain an asymptotic series for the Poisson
Charlier polynomial, a polynomial of interest in traffic theory. 

II. STATEMENT OF PROBLEl\I 

The general problem is to obtain an asymptotic series for the inte
gral J defined by equation (1) when x becomes large and most of the 
contribution to J arises from a (rather loosely defined) "critical re
gion" around t = o. The path of integration L' is supposed to start 
and end at I tl = CIJ in "valleys" in the complex t-plane where 
exp [xh (t)] ~ 0 as I t I ~ CIJ. Let the starting and ending valleys be 
denoted by Sand E, respectively. The path L' starts in S, climbs up 
to and passes through the critical region, and then descends down 
into E. 

The functions h (t) and 9 (t) are analytic in the critical region; 
and one or more saddle points, that is, points where h'(t) = dh(t)/dt 
vanishes, lie in the critical region. vVe assume h (0) = 0 and that x is 
real and positive. If x were complex, the factor exp (i arg x) could be 
included in h (t) . 

The path L' may be deformed into a path D consisting of (i) paths 
of steepest descent which pass through some or all of the saddle 
points plus possibly (ii) loops around branch cuts and poles. The 
path D is independent of x. When x is extremely large, all but a 
negligible part of J arises from contributions of very small portions 
of D. If t = 0 is a singularity, one portion may lie close to t = o. 
Another portion is centered on the highest (that is, largest exp [xh (t) ]) 
saddle point. If the two highest saddle points are of the same height, 
a portion is centered on each, and so on. Thus when x is extremely 
large, the asymptotic series for J may be obtained by the classical 
or "usual" saddle point method. 

However, we may wish to compute J for values of x which, though 
large, are not large enough to allow J to be evaluated by the classical 
saddle point method. For such x's the highest saddle points and the 
singularity (for A ~ 1) at t = 0 cannot be treated separately, that is, their 
interaction must be taken into account. If other saddle points of lesser 
height lie in the critical region, they must also be considered. This is the 
range of x of interest here. Our problem is to obtain the appropriate 
expansion of J in descending powers of x. The type of expansion we seek 
is shown in equation (46) for J. 
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This type and the type shown in equation (15) have occurred in 
earlier publications3

- 6 and have been called "uniform" asymptotic 
expansions because they hold uniformly as a saddle point approaches 
a singularity or another saddle point. 

III. CHANGE OF VARIABLE 

In Appendix A it is shown that, in the critical region, h (t) behaves 
much like a polynomial of degree p. + 1 in t. Here p. is the number of 
saddle points in the critical region. This suggests changing the variable 
of integration from t to v where 

F(v) = h(t) (3) 

and F(v) is a polynomial of degree J.I. + 1 in v. When F(v) is known, 
solving (3) for v as a function of t gives J.I. + 1 branches. The branch 
chosen for the change of variable is the one for which dtl dv ~ c through
out the critical region, c being a constant. That one and only one of the 
J.I. + 1 branches has this property is rendered plausible by the discussion 
in Appendix A . 

. Fortunately we do not have to solve equation (3) to obtain the 
asymptotic series we desire. However, for some steps we do need the 
values of dt/dv and higher derivatives at the saddle points. These 
may be obtained by repeated differentiation of (3). 

F (v) is not uniquely determined by h (t). The factors which influ
ence its choice are reviewed in Appendix B. 

The change of variable from t to v carries the integral (1) for J into 

J = L VX-1!(v) exp [xF(v)] dv (4) 

where 

t(1) = dtl dv. (5) 

The path of integration L starts in the v-plane valley corresponding 
to valley S in the t-plane, passes through the critical region surround
ing v = 0, then descends into the v-plane valley corresponding to 
valley E. 

IV. THE BLEISTEIN METHOD FOR A = 1 

For the case A = 1, the integral J becomes 
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I = i, get) exp [xh(t)] dt = i f(v) exp [xF(v)] dv, 
(6) 

f(v) = get) ~~ = g(t)['ll. 

The Bleistein method begins by constructing a polynomial Po (v) of 
degree p. - 1 such that Po (v r ) = f(v r ), r = 1,2, ... , p. where Vl, V2, 

... , v p. are the zeros, assumed simple, of F' (v). By Lagrange's inter
polation formula, 

(7) 

where the primes denote derivatives. The polynomial may be written as 

1 f f(t)F'(v) dt 1 f [F'(t) - F'eV)] 
Po(v) = f(v) + 27ri c (v - t)F' (t) = 27ri c f(t) (t - v)F' (t) dt (8) 

= ~ f dt f(t)9(t, v) 
27ri c F (t) 

where Q (C, v) is a polynomial in v of degree p. - 1, 

Q(t, v) = F'(t~ == :'ev
) , (9) 

and f (v) has been added to remove the contribution of the pole at 
C = v. The path C is taken in the counter-clockwise sense and encloses 
C = v and the zeros of F' (C) but no singularities of f (~) . 

The expression for f(v) obtained from (8) gives 

I = f dv f(v) exp [xF(v)] 
[. (10) 

f f 1 f dt f(t)F'(v) = L dv Po(v) exp [xF(v)] + L dv exp [xF(v)] 27ri c (t - v)F'(t) . 

In order to simplify interchanging the order of integration in the 
double integral, we cut off the tails of L in the usual fashion. The 
error introduced by truncation is exponentially small compared with 
the terms that remain. Deforming C so that it encloses the truncated 
L (in the sense that it encloses the point C = v for all v's on the trun
cated L), interchanging the order of integration, integrating by parts 
with respect to v, neglecting the contributions from the integrated 
portions at the ends of L, and reverting to the original order of inte-
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gration carries (10) into 

l. dv f(v) exp [xF(v)] = i dv Po(v) exp [xF(v)] 

1 f 1 f ds f(s)( -1) + ~ L dv exp [xF(v)] 27ri c F'(s)(s _ V)2· (11) 

Incidentally, if the contributions from the ends (say at a and b) 
of the truncated L were not neglected, the right side of (11) would 
contain the additional term 

[
[f(V) - Po(v)] exp [xF(V)]]b 

xF'(v) a· 

The procedure used to establish (11) can be used to show that, 
for any function fn(t) analytic inside 0, we have 

i dv fn(v) exp [xF(v)] 

= f dv Pn(v) exp [xF(v)] + ! f dv fn+l(V) exp [xF(v)] (12) 
L x L 

where 

1 f ds fn(s) ( -1) 
fn+l(V) = 27ri c F' (s)(s - V)2 , 

P.(v) = 2~ i d, w-{ ~~r~)] -
Setting fo(t) = f(t) and using (12) repeatedly gives 

I = t, x-n i dv Pn(v) exp [xF(v)] + RN , 

RN = X-
N- 1 i dv fN+l(V) exp [xF(v)] . 

(13) 

(14) 

Since Q (t, v) is a polynomial of degree fL - 1 in v, the same is true 
of Pn(v) and we write 

11-1 

P n(V) = L PnlV1 , n = 0, 1,2, ... 
1=0 (15) 
11-1 N 

I = L Uz(X) L Pnll~-n + RN 
/"'0 n=O 
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where 

Uz(x) = i VZ exp [xF(v)] dv, l = 0, 1, ... , p. - 1. (16) 

The series (15) is the type of expansion we seek. It would be desir
able to have close inequalities for R N , but none are available at the 
present time. 

Another expression for Pn(v) may be obtained from (13): 

P () = _1 f ds (J(r, v) _1 f dz fn-l(z) ( -1) 
n v 27ri C F'(?:) 27ri c z F'(z)(z - r)2 

1 f [ 1 a Q(z, V)] 
= 27ri c

z 
dz fn-l(Z) F'(z) az F' (z) (17) 

~ 2!i L dl; im[F'~I;) :1; J CJ);r('I;~) . 
In the first line Cz must enclose the point z = , in the z-plane in addi
tion to the zeros of F'(z). Hence initially Cz encloses C. When the 
order of integration is interchanged, the only singularity of the inte
grand in the ,-plane lying outside C is the double pole at t = z. Ex
pand C until it consists of a circle of infinite radius at 00 plus a nega
tive loop around t = z. The contribution of the infinite circle vanishes 
because the integrand is a rational function of t of 0 (t-3

) at 00. The 
contribution of the pole at t = z gives the derivative. 

Notice that the coefficients Pnl in (15) are independent of the path 
L in the v-plane. 

The procedure used to obtain the integral (17) for Pn(v) may also 
be used to show that 

i'H(V) ~ 2~ L dl; fm( -1{F'~') :, ]If?'m(~ - V),] • (18) 

When p. = 1 and F(v) = v2
, the polynomial P n(v) reduces to 

(-ltt<2n) (0)/(4nn!) and fn+1(v) is equal to [fnCv) - vf~(v) - fnCO)]/(2v2). 

v. COMPUTATION OF P n (v), A = 1: BLEISTEIN METHOD 

We shall regard the functions Ul(X) in the series (15) for I as tabu
lated or easily computed. For example, when J1. = 2 the functions 
Uo (x) and U1 (x) may be expressed in terms of Airy functions. Then 
the most difficult step in applying the series is the calculation of the 
coefficients Pnl, l = 0, 1, ... , fL - 1, of the polynomial Pn(v). We 
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desire an expression for Pnl in terms of the values of the functions 
get), h(t) and their derivatives at the saddle points t = tr , r = 1,2, 
••• ,I'-' 

Let t = t(v) denote the change of variable from t to v, and let the 
saddle point v = Vr in the v-plane [F' (v r ) = 0] correspond to tr in the 
t-plane: tr = t(vr ). We shall use the notation 

= [C~)"h(t) t,. ' 
t!·' = [C~)"t(V) t .. ' r = 1,2, ... ,fJ.. 

(19) 

When convenient, we shall write hr for h;O) = h(tr ) and gr for g;O) = g(tr). 
First consider the expression (7) for Po (v). As shown in Appendix 

B, F ( v) is a polynomial of degree I'- + 1, 

1'+1 

F(v) = 2: Ajv i (20) 
j=O 

whose coefficients Aj may be expressed as functions of the hr's. When 
this equation for F(v) is used in (7), the coefficient of v l in the result
ing expression for Po (v) gives 

1'+1. I' f(Vr)V~-2-l 
POL = ,2: JAj 2: F"(v) , l = 0, 1,,,' ,fJ. -1. (21) 

z=l+2 r~l r 

Multiplying the right side of (21) by -1 and changing the limits 
of summarion for j from l + 2, p.. + 1 to 1, l + 1 gives another ex
pression for POl. 

Since f(v) = g(t)t(l) , we also need an expression for t;l) in terms of get) 
and h(t). Differentiating F(v) = h(t) twice with respect to v and using 
h;1) = 0 leads to 

(22) 

The sign of the square root is chosen to agree with the constant c in t ~ cv, 
the form assumed by the change of variable throughout the critical 
region. 

Since the Als and vr's may be expressed in terms of the hr's, equa
tions (21) and (22) show that POl depends only on the hr's, gr's and 
hr (2)'S. 

When n is general, an expression for Pnl similar to (21) for POl may 
be obtained by expanding the derivative in the integral (17) for P n (v) 
in partial factions and then using the Cauchy integral theorem. For 
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n = 1 it is found that 

p+1 p p 1 

Pll = j!;2 jAi ~ ~' F"(v.)F"(v
r

) 

.v~-2-l[f(Vr) - f(V28) + f'(v r) + fll(Vr)] (23) 
(v. - Vr) V. - Vr 2 

where the prime on L:' denotes that the term for s = r is omitted. The 
primes on f (v) and F (v) denote derivatives with respect to v. 

The expression obtained for P n (v) is of the form 

p 2n+1 
Pn(v) = L: L: a;~~t'm-1)(vr)/(m - I)! (24) 

r=l m=l 

where ar(~~ is a polynomial in v. Recurrence relations for the a's may be 
obtained with the help of the partial fraction expansion 

(r - vr)-m _ i~} (V8 - vr)-m [_1 __ f (VB - vr)q ] (25) 
F' (r) - .=1 F" (v.) r - v. q=O (r - Vr ) q+l • 

The relation L:' [1/F"(v s )] = - I/F"(vr ) can be used to simplify the 
coefficient of (t - vr)-m-l. 

The 1nth derivative of f(v) evaluated at V r, 

t'm)(Vr) = t (n:)t~i+l) f(!l:.)m- i get)] 
,=0 J ..... dv t=tr 

(26) 

contains derivatives of t(v). They may be obtained by extending the 
method used to get t;l). Straightforward differentiation of F(v) = h(t) 
with respect to v leads to 

(27) 

where the nth derivative F(n) of F(v) is evaluated at Vr and h(n), 
t(n) are evaluated at tr. 

The values of t(j+l) for larger j's may be obtained with the help 
of equation (94), namely 

n 

FCn)(v) = L: hCk)(t)Cn,k (28) 
k=1 

where Cn,l = t(n), cn,n = t(l)n and the remaining c's are given by the 
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recurrence relation (96). Setting lc = 1 in (96) gives 

(29) 

for n ~ 3, the last summation being omitted when n = 3. The term in (28) 
for k = 1 vanishes when v = Vn t = tr • Substituting for Cn ,2 its value 
given by (29) and solving for t(n-l) leads to the desired result when n ~ 3; 

ten-I) = __ 1 __ [F(nl _ t h(klC _ h(2l ~ (n - l)t(n-ml t(m l ]. (30) 
r nt;l)h~2l k=3 n,k m=2 m r 

The value of F(n) (v) is zero for n > fL + 1. 

VI. COMPUTATION OF P n (v), A = 1: URSELL METHOD 

The Ursell method avoids the evaluation of the derivatives of f(v) 
which appear in equation (24) for Pn(v). Instead, it makes use of 
classical saddle point expansions about the individual saddle points 
in the t and v planes. 

Let JL different paths of integration, Li, L~, .,. , L~ be chosen in (6) 
such that the chief contributions (as x --* (0) along the paths correspond
ing to t, namely L~ in the t-p]ane and its mate Lr in the v-plane, occur at 
the saddle points t = tr and v = Vr , respectively. Let the classical 
asymptotic expansions around tr and Vr be 

Ir = i'r get) exp [xh(t)] dt ~ exp [xh(tr)] 
co 

L (Xrnx- n- l 
n=O 

(31) 

[U1(X)]r = ir VI exp [xF(v)] dv ~ exp [xF(v r)] ,~ {JrlmX-m-l. (32) 

Using k(tT ) = F(vr ), substituting (31) and (32) in the uniform asymp
totic expansion (15) with N = 00, and equating coefficients of x-n-! gives 

Il-l n 

(Xrn = L L {JrlmPn-rn,1 
1=0 m=O 
Il-l Il-l n 

L {JrlOPnl + L L {JrlmPn-m,1 
1=0 I=Om=1 

(33) 

where the second sum in the last line is omitted when n = O. The 
expression (17) for Pn(v) shows that Pn(v) remains the same, irrespective 
of the path of integration L, as long as f(v) and F(v), that is, get) and h(t), 
remain the same. Hence, for n = 0 and r = 1, 2, ... , JL, (33) furnishes JL 

simultaneous linear equations which may be solved for poz, l = 
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0, 1, ... , J.L - 1. Similarly when n = 1, (33) determines the Pu's, and so 
on. It turns out (see equation 39) that f3rlO = v!f3roo. This allows us to 
write the simultaneous equations in the form 

r = 1,2, ... ,J1. 
(34) 

lXrn n p.-l (f3rlm) 
Pn(vr) = f3- - L L -f3 Pn-m,l. 

rOO m=l 1=0 rOO 

Expressions for am and f3rlm may be obtained from the classical 
saddle point asymptotic expansion (103) given in Appendix D. Chang
ing n to j in order to agree with the notation of Appendix D gives 

(35) 

where h~n), g~n) are the derivatives defined in equations (19), and 
(x)o = 1, (x)n = x(x + 1) ... (x + n - 1). The bmn's are computed from 
the recurrence relation (100), namely 

1 
bm+1.n+l = n + 1 

n-m+l 
L 
k=l 

starting with boo = 1 and using 

k = 1,2, .... (36) 

The value of arg [-2/h~2)]l is equaJ to arg (t - t r ) on the portion of L~ 
(deformed into a path of steepest descent through tr ) leaving tr • 

Similarly, 

[ -2Ji+! 2i (_1)2i-n( -l). 1-2i+n n 
(3rli = (71")! F(2) L (2' _ 21)~Vr L bmn(!)m+i 

r n=O J n. m=O 

(37) 

where now the bmn's are computed from (100) with 

_2F(k+2) [(d )n ] 
ak = (k + 2)! F;2) , F;n) = dv F(v) V=vr' 

(38) 

Setting j = 0 in (35) and (37) gives 

![-2J! (0) = (71")2 h;2) gr , ![ -2J! 1 
{3r/O = (71")2 F;2) vr , 

(39) 

P o(V r ) = ;:0°0 = [~i:: J! g;O) = t;1) g;O) = f(v r ) 

where t;l) and f(v r ) are the same as in equation (22). The relation 
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Po(Vr ) = t(vr ) is the starting point for the Lagrange interpolation formula 
(7) in the Bleistein method. 

Setting n = 1 in (34) and j = 1 in (35) and (37) leads to 

P1(Vr) = ~ - I: f3rll POl 

f3rOO l =0 f3roo 

[
_2t(1)]{g(2) g(1)h(3) [_h(4) 5h(3)2 ]} 

;:010 = h;2~ 4 -~ + g(O) 16h(2) + 48h(2)2 r (40) 

f3rl1 = [-2]{l(l - 1) Z-2 lvZ- 1F(3) Z[-F(4) + 5F(3)2 ]} 
f3roo F;2) --4-- v - 4F(2) + v 16F(2) 48F(2)2 r 

where the subscript r on the braces indicates that the enclosed g's, 
h's, v's, F's have the subscript r. 

VII. THE BLEISTEIN METHOD FOR A. ~ 1 

Here we deal with 

J = f e,-l g(t) exp [xh(t)] dt = f vA
-
1t(v) exp [xF(v)] dv 

L' L (41) 
t(1) = dt/dv. 

The origin is now a singularity, and its vicinity may contribute to J just 
as the vicinities of the saddle points do. Accordingly, we now require that 
the polynomial Po(vLbe such that PoCO) = teO) in addition to Po(vr) = 

t(vr ), r = 1, 2, ... , p,. Assume for the moment that F'(O) ~ O,that is, 
that the origin is not a saddle point. Starting with Lagrange's interpola
tion formula and proceeding as in Section IV gives 

Po(v) = t(O)v,F'(v) +:t t(vr)vF'(~~ 
vF (0) r=l (v - vr)vrF (vr) 

Q(r, v) 

= t(v) + ~ f f(r)vF'(v) ,dr 
27ri c (v - r)rF Cr) 

= ~ f t(r)Q(~, v) dr 
27ri c rF (r) 

rF'Cr) - vF'(v) 
r-v 

(42) 

where C encloses, = v, , = 0, , = vr , r = 1,2, ... , fL but no singu
laritIes of f (,). Here Po ( v) and Q U;, v) are polynomials of degree 
fL instead of fL - 1. 
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When the origin is a saddle point, Po(v) is still given by the expressions 
in (42) which contain integrals. In fact, we have P~(O) = 1'(0) (with 
primes denoting derivatives) in addition to PoCO) = 1(0). 

Much as in Section IV, we obtain 

i dv V>'-l In(v) exp [xF(v)] 

= f dv V>'-l Pn(v) exp [xF(v)] + .! f dv V>'-l In+I(V) exp [xF(v)] 
L x L 

(43) 

where jo(v) = f(v) and 

I () - ~ f dt In(t) ( -1) (~t - ~v + v) 
n+l V - 27ri c tF' (t) (t - V)2 , 

(44) 

P (v) = ~ f dt In(t)Q(t, v). 
n 27ri c tF' (t) 

Equations (43) and (44) lead to the desired series for J: 

J = 'to x-n i dv V>'-l Pn(v) exp [xF(v)] + RN , 
(45) 

RN = X-
N- I i dv V>'-l IN+I(V) exp [xF(v)] dv. 

When P n ( v) is written out we get 

1.1 

Pn(v) = L Pnzvz , n = 0,1,2, ... 
Z=O 

1.1 N 

J = L Vz(x) L PnZ x- n + RN , (46) 
z=o n=O 

Vz(x) = i VZ+>.-l exp [xF(v)] dv, l = 0, 1, 2, ... ,J.L 

Furthermore, the recurrence relation (44) for f n (v) leads to 

P (v) = ~ f dt tn-let) [t>' ~ t->'Q(t, v)] 
n 27ri c tF'(t) at F'(t) 

= 2!i i dl; f(l;)l;'-{F'~I;) :1; J Q(~,(~r 
1 f >.-l[ 1 a ]n (~t - ~v+ v)t-

A 

fn+I(V) = 27ri c dt f(t)( -l)t F'(t) at (t - v)2F'(t) . 

(47) 
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When A = 1 the formulas of this section do not reduce to those of 
Section IV since they contain the additional condition P n (0) = f (0). 
However, (46) gives the same series for J as (14) does for I because 
Vf1,(x) can now be expressed as a linear combination of Vo(x) , ... , 
Vf1,-l(X) [which become Uo(x), ... , Uf1,-l(X)]. 

The only singularities enclosed by C in the integral (47) for Pn (v) 
are poles at t = 0 and at t = vr , r = 1, 2, ... , p,. Evaluating the 
integral by Cauchy's theorem gives the coefficients in P n (v) as the 
sum of derivatives of f(v) at v = 0 and at v = v r • The derivatives 
at the saddle points may be obtained by differentiating 

t 
In f(v) = In get) + (A - 1) In - + In t(1) 

v 
(48) 

with respect to v and using the expressions for t;n) developed in Section V. 
The derivatives t n

) (0) may be computed with the help of the series 
2 

tlv = t(1) + !l.- t(2) + ~ t(~) + ... 
° 2! ° 3! ° (49) 

where t6n
) denotes the nth derivative of t with respect to v at v = O. The 

t6n
)'S may be obtained by differentiating F(v) = h(t) repeatedly with 

respect to v and then setting v = o. If F' (0) ~ 0, 

F62) - h62) t61) 2 

h61
) 

(50) 

where the subscript 0 refers to t = 0 when it is on h and to v = 0 
when it is on F. Higher order derivatives may be computed by using 
the results of Appendix C in much the same way as in Section V. 

It may be verified that 

f(O) = g6°) t61)h 
(51) 

[ 
(A + 1) 00(0) to(2) ] 

t<1)(0) = t61)h 061) t61) + 2 ~) 

where g6n
) is the nth derivative of get) with respect to t evaluated at t = o. 

VIII. THE URSELL METHOD FOR A ~ 1 

When the origin is not a saddle point, the p, + 1 linear equations 
to be solved for the coefficients PnZ, l = 0, 1, ... , J1. in Pn(v) turn out 
to be 
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= arn _ ~ ~ ((3rlm) 
(3 L.J L.J -(3- Pn-m,l , 

rOO m=l Z=O rOO 
r = 1,2, ... ,J1. (52) 

aOn ~ '" ((3olm) PnO = - - L.J L.J - Pn-q,l 
(3000 q=l l+m=q (3000 

(53) 

where the summations are omitted when n = O. The summation condi
tion l + m = q in (53) is also subject to 0 ~ l ~ J1., 0 ~ m ~ 00. 

Equations (52) are given by the analysis of Section VI for the 
case A = 1 when g (t) is replaced by {X-lg (t), V Z by V Z+A- 1 , Ir by Jr, 
and Dz(x) by Vz(x). The a'S and f3's in the Tth equation of (52) are 
the coefficients in the classical saddle point expansions about tr and Vr: 

J r = i" {A-lg(t) exp [xh(t)] dt I".J exp [xh(tr)] j; arnx-n
-! 

(54) 

[VI(X)]r = i. V
1+X- 1 exp [xF(v)] dv I".J exp [xF(vr)] m~ (3rlm X- m

-! 

The a,.t in (52) (with j for n) is given by equation (35) 
g;2 i - n) replaced by g;2i-n) where 

for ad with 

get) tX- 1 g(t) = t (t - ,trf g;n) 
n=O n. (55) 

g;n) = t; t (~)g;n-k)( -l)k(l - 'A)k t;k-1. 
k=O I~ 

The f3rlj in (52) is given by equation (37) for f3rlj with l replaced by 
l + A-Ion the right side. 

Equation (53) arises from a consideration of the region around the 
singularity at the origin. As described in connection with equation (106) 
in Appendix D, let L~ be a loop enclosing the branch cut running out 
from t = 0, and let Lo be its mate in the v-plane. Then, as x -7 00, the 
a's and (3's in (53) are defined by 

J o = iOl tX-1g(t) exp [xh(t)] dt I".J ~ aonx-n- x 

(56) 

[VZ(x)]O = f V1+X-l exp [xF(v)] dv I".J t (3olmX-m-Z-X. 
LO m=O 

Substituting (56) in the uniform asymptotic expansion for J 0 given 
by (46) and equating coefficients of x-n - A gives (53). 

Using the asymptotic series (106) to determine aOn and f3rlm leads to 

( l)i i (j-n) n 

(3a
oi = t~l)X l~l) L: -(?~ ) I L: bmn('A)m+i 

000 1,0 n=O J n. m=O 
(57) 
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where the subscript 0 refers to the origin and bum is computed from 
(100) with ak given by 

(58) 

The value of t~l) is the value of dt/ dv at v = 0 determined by the change 
of variable from t to v. Similarly, 

(301i (_I)I+i ~ 
-(3 = F(l) L..J bmlA)m+l+i 

000 0 m=O 
(59) 

where, replacing j by n, bmn is computed from (100) with 

k ~ 1. (60) 

In Appendix F the theory which has just been developed is applied to 
the case of one saddle point (p. = 1, X ~ 1). 

So far in this section it has been assumed that the origin is not a saddle 
point. Now let the ILth saddle point coincide with the origin so that F~l) 
and h~l) vanish. The p. + 1 equations determining Pnl: l = 0, 1, ... , IL 

are now 

r = 1,2, ... ,IL - 1 (61) 

_ aO,2n _ ~ '"' ((301m) pnO - L..J L..J Pn-'1,1 
(3000 '1=1 m+l=2a (3000 

(62) 

Pnl = (3~ [aO'2n+l - (3001PnO - t L: (301mPn- '1 'Z] 
010 '1=1 m+l=2'1+l 

(63) 

where the summations are omitted when n = O. The values of land m 
occurring in the inner summations in (62) and (63) must also satisfy 
o ~ l ~ IL and 0 ~ m ~ 00. 

Equations (61) are the same as (52) except that r runs from 1 to 
p. - 1 instead of from 1 to JL. The a'S and f3's in (62) and (63) are the 
coefficients in the asymptotic expansions 

J O = i,o t>,-lg(t) exp [xh(t)] dt ~ ~ aOix-(i+~)/2 
(64) 

[V1(x)]0 = io Vl+~-1 exp [xF(v)] dv ~ t, (301mX-(m+l+~)/2 
where, as discussed in connection with equation (109), the paths L~, Lo 
coincide with the paths of steepest descent through t = 0, v = 0 except 
for indentations at those points. 
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Equation (62) is obtained by substituting (64) in the uniform asymp
totic series for Jo given by (46) and equating coefficients of x-(2n+}.)/2. 
Equating coefficients of x-(2n+l+}.)/2 gives equation (63). 

Some results for the case of two saddle points, one of which is at 
the origin, are stated in Appendix H. 

IX. SIMPLE POLE AT THE ORIGIN 

When there is a simple pole at t = ° and one saddle point in the 
critical region, a case discussed briefly by Bleistein,s we have 

J = f C 1 exp [xh(t)] dt. 
L' 

(65) 

In the critical region, L' is assumed to coincide with the linear path 
running from a - ioo to a + ioo, a > 0. 

Let h(t) be real when t is real and in the critical region. Let the saddle 
point tl lie on the real axis. As usual, ho = 0, h~l) = 0; and we assume 
hl ~ 0, h~2) > 0. As suggested by example Ci) of Appendix 3, we choose 

F(v) = v2 
- 2v1v, 

where VI is real. vVe write 

in order to make VI and t have the same sign. 
Equation (46) shows that the uniform asymptotic expansion for 

J has the form 
co co 

J "-' Vo(x) L Pnox- n + V1(x) L Pnl X -
n (66) 

n=O n=O 

where, with L parallel to, and to the right of, the imaginary v-axis, 

Vo(x) j, V-I exp [xF(v)] dv = i7r[l - erf (VIX~)] 

V1(x) = r exp [xF(v)] dv = i(n/x)! exp (-xvD 
• £ 

2 1z 

erf (z) = -1: exp ( - t2
) rlt. 

7r' 0 

Putting A = ° in the integral (47) for Pn(v) gives 
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(67) 
f(v) = vt(1) It, t(1) = dtldv 

where C encloses ~ = 0 and ~ = VI but no singularities of f (~). Setting 
V = 0 in (67) gives 

PoCO) = Poo = f(O) = 1, 

n> O. 

Here the series (49) for t/v has been used to show that f (0) 1. 
Therefore the series for J reduces to 

IX) 

J '"'"' i7l"{1 - erf [VIX!]} + i(7l"lx)~ exp (-xv;) L PnIX-n. (68) 
n=O 

Setting V = VI in (67) gives 

(69) 

pnl = 2!i fe d~n~:~) (r ~ VI :r r (r ~ vJ, n > o. 

From (22) and F"(v) = 2 it follows that t~l) = [2Ih~2)]!. The integral 
for Pnl may be evaluated in terms of the 2nth derivative of f(v)/v = 
t(l)/t = (dldv) In t(v). Thus, writing r/(r - VI) as 1 + v1(r - V1)-1 
and using 

(_1_ ~)n(r _ V1)-1 = (-lt1.3 ... (2n - 1)(r - v1)-2n-t, n > 0 r - VI ar 
leads to 

= (-It(!)n {v~n+l [(~)2n~] _} 
pnl vin+ 1 (2n)! dv t V=', 1 

The first of the Pnl'S required in the series (68) for J is given by 
equation (69) for POI. The remaining ones may be obtained by using 
the Ursell method equation (52). Since POO = 1 and PnO = 0 for n > 0, 
equation (52) gives for n > 0 

Pnl = v; [a1n - {310n - t {3l1mPn-m.l] . (70) 
11-'100 m=1 
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From equation (55), get) = t-1 and its nth derivative at t1 is g~n) 
(-ltn!t~n-1. Replacing g by gin (35) leads to 

(Xli = (71")![ ~RJi+! ± (_lrt~2i+n-1 t bmn(!)m+i 
hI n=O m=O 

where arg [-2/h?)]! = 71"/2 and the bmn's are computed from (100) with 

k = 1,2, .... (71) 

Equation (54) shows that the /1llm'S are the coefficients in the asymp
totic expansion of [Vz(x) h, that is, in the asymptotic expansion of an 
integral, which has the same integrand as Vz(x), taken along the 
path of steepest descent through the saddle point v = Vl. Instead of 
obtaining the f3's by the general procedure outlined in Section VIII, 
we notice that the "asymptotic" series for Vl (x) consists of only one 
term. Consequently f311m is ° when 1n > 0 and the summation in 
equation (70) for pnl disappears. Moreover, the asymptotic series for 
the error function gives, when V1 > 0, 

co 

Vo(x) "-' i(71")! exp (-xvi) L (-I)m(!)m(xvi)-m-!. 
m=O 

When Vl > ° and x ~ 00, Vo (x) is given asymptotically by the con
tribution from Vl. When Vl < 0, the asymptotic expression for ~o (x) 
contains the constant term 27ri, but the contribution from a path of 
steepest descent through Vl is still given by the same expression as 
for positive Vl. Hence, irrespective of the sign of Vl, 

(310m = i(71")!( _1)m(!)mv~2m-1 . 

These results enable us to write equation (70) (with j for n) as 

(72) 

for j ;:::: 0. Here, to repeat, 

t1 ( ! 
V1 = m -hI)', t

1
(1) [2 J! VI t~l) 1 [-2h1J! 

= hi2 ) , -t
1
- = m hi 2 ) , 

(73) 
(e)o = 1, (e)n = e(e + 1) ... (e + n - 1) 

and the bmn's are computed in succession from equation (100) with 
ak given by (71). 
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The first two Pnl'S are 

POI = 1. [Vlt~l) - 1J 
VI tl 

Pu = - 2~; {[ v, f J\l - it, a, + tiCia, + ""Iai)] - I} 
(74) 

and the b1l1n's for P':21 may be read from the table in Appendix D. 
When I tl I is small, the expressions which have been given for Pnl are 

essentially small differences between large numbers. If the calculation is 
being performed on a digital computer it may be advisable to use double 
precision. Expanding h(t) about t = tJ and then setting t = 0 leads to a 
series for -hI which may be used to obtain V~2i-l as [til) /tl ]2i+l times a 
power series in tl . Series of this type can be used to show that 

POI = ~l til) + O(tl ) 

Pll = -itil )3(3a3 + _1-,}al a2 + ¥aD + O(t l ) 

where ale is given by (71). 

x. THE NON CENTRAL x2 DISTRIBUTION 

(75) 

Let x be a positive integer and YI, Y2, ... , Yx be independent gaussian 
random variables with unit variances and respective mean values 
'fh, Y2, ... , Y x • Let z be the (noncentral i) random variable 

1 % 

Z = - L: y; . 
X n=l 

(76) 

It may be shown that the mean value of z is z 
variance is (2 + 4r) / x where 

1 + r and that its 

1 :r: 

r = - L: Y! . 
X n=l 

Furthermore, from Ref. 2 (with a change of variable) the distribution 
function of z is 

1 lc
+

iCJJ 
Prob [0 ~ z ~ sJ = 27ri c-iCJJ C

l 
exp [xh(t)] dt (77) 

where c > 0 and 

h(t) Hst - In(l + t) + r(l + t)-l - r]. (78) 
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The integral on the right side of (77) is seen to be equivalent to 
minus lVlarcum's Q-function (and also to an expression given by 
R. A. Fisher) when (77) is written as 

Prob [0 ~ z ~ 8] = ~ is (z/r)(xI4)-! exp [-x(z + r)/2]I(xI2)_1[x(rz)!]dz. 

Here I denotes a Bessel function with imaginary argument. 
We are interested in computing the distribution of z when x is large. 

The equation h(l) (t) = 0 gives two saddle points. However, as pointed 
out in Ref. 2, when x is large only the one at 

t1 = -1 + 1 + (1 + 4r8)! 
28 

need be considered. The value of tl is real and> -1. 'Vhen 8 = 1 
+ r, tl is zero; and when 8 increases through 1 + r, tl decreases 
through O. 

From equation (68) the desired asymptotic expansion is 

00 

+ H7rx)-! exp (-xv;) L Pn1X-n (79) 
n=O 

where Pnl is given by (72). The quantities entering Pnl are 

t1 ( h)1 h h() t1(1) = [2/h1(2)]! 
VI = Tt~ - 1 2, 1 = t1 , 

h (n)(t) = H -It(n - I)! [nr(l + t)-n-1 + (1 + t)-n] , n ~ 2 (80) 

h~2) = r(I + t1)-3 + 2-1 (1 + t1)-2 

2( _1)k+1 [(k + 2)r + 1 + t1] 
ak = (k + 2)(1 + t1)k 2r + 1 + t1 ' 

k ~ l. 

The values of POl and Pll may be obtained from (74) by substitution 
of the parameter values (80). 

When 8 - Z = 8 - 1 - r is small, the central limit theorem in the 
theory of probability states that 

Prob [0 ;0; z ;0; s] ~ HI + erf [(~ ~ ~r~:]}' 
This agrees with the approximation given by the error function term in 
(79) when it is noted that t1 ~ - (8 - 1 - r) / (1 + 2r) and - hI ~ 
t~hi2) /2 if 8 - 1 - r is small. 
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The ordinary x2 distribution is obtained by setting l' = 0 in the 
noncentral x2 distribution. In this case we have 

1 - S 
tl =-

S 

1 - s (s - 1 - In s)! 
11 - s I 2 ' 

2( _S)k 
-k + 2 ' 

k ~ 1. 

(81) 

Equations (74) show that the first two coefficients POI, Pu III the 
asymptotic series (79) are now 

2 1 
POI = 1 - s - ~' 

P" = -He ~ J[s + (1 ~/J -~}. 
When s is close to its average value 1, equation (75) gives 

POI = 2/3 + O(tl ) 

Pll = 1/135 + 0(t1). 

Setting x = 2c and l' = 0 gives 

1 l eB 

Prob [0 ~ z ~ s] = r(c) 0 u
C

-
1 exp (-u) du 

= i: (cst exp (-cs) 
n-c nI 

(82) 

(83) 

(84) 

where c is assumed to be an integer (x even) in the last equation. 
These relations may be combined with the foregoing formulas to 
obtain asymptotic results for the incomplete gamma function and 
the Poisson distribution. 

There is reason to believe that the asymptotic expansion (79) for 
Prob [0 ~ z ~ s] may hold over the entire range 0 ~ s ~ CIJ. For exam
ple, consider the ordinary (1' = 0) x2 distribution. In this case the first 
two terms in (79) give 

Prob [0 ~ z ~ s] r-.J ! {I - erf [VIX!]} 

+ ![1I"xr1 L ~ s - ~Jexp (-xv;) (85) 
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where x = 2c and VI is given by (81). Let c be held fixed at some large 
value and consider further the three cases 8 ~ 0, 8 ~ 00, and 8 ~ 1. In 
all three cases it may be verified that the leading terms in Prob 
[0 ~ z ~ 8] given by (85) agree with those obtained from the exact 
equations (84) and the asymptotic properties of the incomplete gamma 
function. The expressions obtained from (84) are 

Prob [0 ~ z ~ 8] = (27rC)-!8c [exp c] [1 + O(cs) + 0(c- 1
)] , s ~ ° 

Prob [0 ~ z ~ s] = 1 - (27rc)-!sC-l[exp (c - cs)][1 + 0(8- 1
) + 0(c- 1

)] , 

8 ~ 00 (86) 

8 = 1. 

APPENDIX A 

The Behavior of h (t) in the Critical Region 

In this appendix we show that, in the critical region, h(t) behaves 
much like a polynomial of degree J1. + 1, and we examine the change 
of variable from t to v. 

First write 

,,+1 tjh~j) 

h(t) = L -.-, + R,,+l (87) 
j=1 J. 

where hci j
) is the value of (d/dt)ih(t) at t = 0, hci"+ll is not 0, and R ,,+l 

is 0(t,,+2). 
One of the distinguishing features of a polynomial in t of degree 

p, + 1 is that when t is much larger than r, where I t I = r is the smallest 
circle which encloses the zeros, the dominant term in the polynomial is 
the one containing tl-l+l. The function h(t) has a corresponding property. 
Suppose that the saddle points t1 , t2 , ••• , t 1-1 all lie within a distance E of 
the origin, and for the moment suppose that they may be moved towards 
the origin so that E may be made as'small as we desire. Also suppose that 
hci,,+I) = A + O(e) where A ~ 0. We shall show that by making e small 
enough we may find a range p < I t I < 'IJ throughout which 

(88) 

Here 'IJ is such that when I t I and E are less than 'IJ, the remainder R 1-1+1 in 
(87) is negligible in comparison with the (p, + 1) term T 1-1+1 = tl-l+ 1hcil-l+ O 

/ 

(p, + 1)!' Once 'IJ is fixed, p may be chosen to be arbitrarily small, subject 
only to p < 'IJ. 

In order to show that (88) holds when p < I t I < 'IJ, notice that by 
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repeated differentiation of the representation 

h'(t) = (t - t1)(t - t2 ) ••• (t - til) G(t) 

it may be shown that G(O) = hcill+l) / J.L! + O(e) and that hcij) is 

O[ell+l-ihcill+U] for j = 1, 2, '" , J.L. Hence when I t I > e, 

t tih·f) = O[t ll e hcill+l)] = O(~t T
Il

+ 1) • 

1=1 J. 

Choosing p to be arbitrarily small, subject only to 0 < p < 1], and then 
choosing e so that e/ p « 1 establishes (88). 

This property of h(t) suggests that some insight into the change of 
variable from t to v, specified by F(v) = h(t), may be obtained by 
considering h(t) to be a polynomial (()(t) of degree J.L + 1. Then a natural 
choice of F(v) is F(v) == (()(cv + b) where c and b are constants. For 
simplicity we take c = 1 and b = 0 so that Vr = tn r = 1, 2, ... , J.L 

where Vr is the rth saddle point on the v-plane. The equation F(v) = h(t) 
goes into (()(v) = (()(t) which ,ve write as 

(()(v) - (()(t) 
11+1 

L Ai(v i - ti) 
;=1 

(v - t)[AI + A 2 (v + t) + A3(V2 + vi + e) + ... ] 
= O. 

The branch used in the change of variable is 

v = t (89) 

for which dv/dt = 1 everywhere. The remaining JL branches, which 
are ignored in the change of variable, may be obtained by solving 

Al + A 2 (v + t) + ... + A Il + 1 (V Il + VIl
-

1
t + '" + til) = 0 (90) 

for v as a function of t. 'Vriting (90) as 

G(v t) = (()(v) - (()(t) = 0 
, v - t 

and expanding G(v, t) about v = tn t = tr shows that, near t = tn one 
of the remaining branches behaves like v = tr - (t - t,). On this branch 
v = tranddv/dt = -latt = tr.Again,letv = v.,s = 1,2, ... , J.L - 1, 
be one of the J.L - 1 roots of G(v, tr ) = 0 which is not equal to tr • Expand
ing G(v, t) about v = vs, t = tr shows that near t = tr the correspond
ing branch behaves like 
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_" + (t - tr )2cp"(tr ) 

v - V. 2cp' (v
s
) 

and that dv/dt = 0 at t = t j •• 

The examination of special cases suggests that there is a one-to-one 
correspondence between the JL branches of (90) and the fL saddle points 
in the sense that dv / dt for a particular branch is equal to -1 at its 
corresponding saddle point and is zero at the other saddle points. Thus 
it appears that the branch v = t [or its analogue for general h(t)] 
is the only one suitable for the change of variable throughout the 
entire critical region. 

APPENDIX B 

The Choice of F(v) 

The polynomial F (v) used in changing the variable of integration 
will be "vritten as 

j.I+I 

F(v) = L Aivi . (91) 
i=O 

The positions t l , t 2 , ••• , tp. of the saddle points and the associated 
values hr = h (tr) are supposed known. We require expressions for 
the A/s which are either pure numbers or depend only on the h/s. 
Although one or more of the zeros VI, V2, ... ,vp. of F'(v) = dF(v)/dv 
may appear in our final expression for F(v), they will always be ex
pressed in terms of the h/s. 

Since F (v) = h (t) , we have the 2/-t equations 

F(vr) = hr , 

F'(v r ) = 0, r = 1,2, ... ,J.L 
(92) 

relating the 2J.L + 2 unknowns VI' V2 , ••• , V J.I1 A o, AI, , A j.I+I. Con
sequently we have at least two arbitrary choices (A j.I+I = 0 is forbidden). 
For the case A. ~ 1 we shaH always require the change of variable to be 
such that v is 0 when t = 0 and thus we take Ao = o. In some instances 
the form of h(t) aids in the choice of the A ;'s. For example, when h(t) is 
an even function of t, we can take F(v) to be an even function of v. 

In choosing F(v) it is helpful to notice that in the critical region the 
change of variable takes the form t ~ cv, c being a constant. Conse
quently, from (87), 

(93) 
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and it follows that the J.I. zeros, Vn of F' (v) have nearly the same configura
tion in the v-plane (except for a possible rotation and magnification 
given by arg c and I c I, respectively) as do the zeros, tn of h'(t). For the 
case A = 1 there may also be a small displacement so that t ~ cv can be 
written more accurately as t ~ cv + b, or dtj dv ~ c. Furthermore, from 
(88), we can take c to be one of the roots of 

AI'+I = cl'+1hcil'+l) j(IL + 1)! . 

The following examples illustrate possible choices of F(v). 
(i) J.I. = 1, A ~ 1, tl ~ O. Initially there are 4 unknowns, VI, A o, AI' A2 
related by 2 equations, and F(v) given by 

F(v) = A2V2 + Aiv + Ao. 

We take Ao = 0 (because A ~ 1) and arbitrarj}y choose A2 
convenience). This carries the two equations into 

vi + Aiv i = hi 

Consequently 

This case has been considered by Bleistein.3 

1 (for 

(ii) J1. = 2, A = 1. Initially there are six unknowns VI, V2, Ao, AI, A2 , A3 
related by four equations, and F (v) given by 

F(v) = A3v3 + A2V2 + Aiv + Ao. 

We take A2 = 0 in order to simplify F'(v). The four equations become 

F'(vr) = 3A3V; + Al = 0 

3F(vr) = -AIVr + 3A Ivr + 3Ao = 3h r , r = 1,2. 

It follows that V2 = -VI, Ao = (hI + h2 ) /2, A1VI = 3 (hI - h2 ) /4. 
For the remaining choice we take As to be equal to - AIi3 and 

obtain, 

F(v) = l(h2 ~hl)(V3 - 3v)+ !(h2 + hI). 

Another choice for Aa is i which gives 

F(v) = iv3 
- viv + !(h2 + hI) 

v~ = -i(h2 - hi), V2 = -VI • 

This case has been considered by Chester, Friedman and Ursell. 6 
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(iii) J.I, = 2, A ~ 1, tl ~ 0, t2 = O. Here the unknowns and F(v) are the 
same as in example (ii) , but because of h2 = h(O) = 0 it turns out we 
have three arbitrary choices. Since A ~ 1 we take Ao = O. Then both 
F(v2) = h2 andF'(v2) = o are satisfied by choosing V2 = 0 and Al = O. This 
leaves F(v1) = hI and F' (VI) = 0 to be satisfied by the remaining three 
unknowns VII A 2 , A 3 • Our third choice is A3 = 2. It leads to 

(iv) J.I, = 2, A ~ 1, t1 , t2 , ~ O. This case illustrates the complication 
encountered for the general case when J.I, ~ 2. The value of Ao must be 0 
and we choose A 3 = 1. Then 

F(v) = v3 + A2V2 + A 1v 

F'(v) = 3v2 + 2A2v + Al . 

The last equation shows that A2 = - 3 (VI + V2) /2, Al = 3VIV2. Sub
stituting in F (v r ) = hr gives 

viC -VI + 3v2)/2 = hI 

v;C -V2 + 3v1) /2 = h2 . 

Setting a = hz/hI and p = V2/VI leads to 

p3 _ 3/ + 3pa - a = 0 

which has the three roots 

where WI = 1, W2 = i4/3, W3 = i-4/3 and the star denotes "conjugate 
complex." When tl and t2 tend to zero, one of the Pn's tends to t2/t1 , and 
this is the value of P to be used. The value of v~ is equal to 2h1/(3p - 1), 
and we have 

(V) P. = 3. The general case of three saddle points may be handled 
by a procedure similar to that used in example (iv). We do not dis
cuss this case beyond mentioning that when we set V2 = pVI, V3 = UVI 

the variable u = (p-l) / (.u-l) must satisfy the equation 

u
4 

- 2u
3 + 2au - a = 0, a = (hI - h2)/(h1 - h3)' 

(vi) p. = 3, ta = 0, h(t) even. Since h(t) is even we start with 

F(v) = v4 + A2v2 + An 
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and find that 

F(v) = v4 
- 2viv2

, 

This case has been treated by Felsen. 7 

APPENDIX C 

Derivatives of Composite Functions 

A result used in Section V to compute the nth derivative, t~n), of t(v) 
at v = Vr is stated in this appendix. Let the argument u in h(u) be a 
function t(v) of v. Then 

(d
d)nh[t(v)] = t h<k)Cn,k , 
v k=l 

n ~ 1 (94) 

where h(1.;) stands for (d/du)1.;h(u) evaluated at u = t(v), and the 
coefficients Cn , k are computed from the recurrence relations 

(95) 

Cn+1,k+l t (n)t<n+l- m )Cm ,k , 
m=k m 

(96) 

III which t<n) denotes (d/dvyt(v) and (~) the binomial coefficient. 

Equation (96) may be proved by induction. Differentiating (94) gives 

(1) d 
Cn+1 ,k+l = t Cn,k + dv Cn,k+l , l~k~n-1. (97) 

We assume that (96) holds when n is replaced by n-l and use it to 
express Cn , k+1 as a sum. Then one of the terms in the summand for 
d cn , k+ddv contains d Cm , 1.;/dv. From (97), assuming k > 1, 

d 
- C - C - t(1)C m ,k_l . dv m,k - m+l,k 

Equation (96), with (n-l, k-l) for (n, k), lets us sum the terms 
containing t(l)Cm , k-1 with respect to m. Equation (96) follows upon 
combining binomial coefficients and using Ck,1.; = t(1)Ck_1, k-1. 

The recurrence relations may also be obtained by writing the right 
side of (94) as a Bell polynomial and using the recurrence relation 
for these polynomials.8 Expressions for the C'n, 1.;'S (up to n = 8) as 
polynomials in the t(n),s may be obtained from Riordan's table of Bell 
polynomials given on page 49 of Ref. 8. 
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APPENDIX D 

Formulas for Classical Saddle Point Asymptotic Expansions 

A result useful in obtaining asymptotic expansions of integrals is 

iT TP-1G(T) exp [XH(T)] dT 

00 1 (_l)(P+f)/v j n ( p + j) 
r-v ~ -; xHv ~ Gj - n ]; bmnr ,m + -v- (98) 

where x ~ CIJ, Re p > 0, v is a positive integer, and 
co 

G(T) = L TnGn , (99) 
n=O 

The bmn's depend only on H (T) and are computed in succession, start
ing with boo = 1 and bon = 0 for n ;:::: 1, from 

1 n-m+l 

bm+1,n+l = -+ 1 L k akbm,n-k+l n k=1 

Here ak = - Hv+k/Hv, k = 1,2, .... 
Special values of bum are given in Table 1. 
The asymptotic expansion (98) is based upon the gamma 

integral 

100 z-1 ( V) d 1 (z) 
o u exp -u u = -; r ~ 

and the expansion 

exp [Y t aor ] 
00 n 

L ~n L bmny"'. 
n=O ",,;,0 

(100) 

function 

(101) 

(102) 

The recurrence relation (100) may be obtained by differentiating 
(102) with respect to /;, replacing the exponential by its series, and 
then equating coefficients of I;nym+l. 

TABLE I - SPECIAL VALUES OF bmn 

n bOn bIn b2n ban b{n bnn 
------

0 1 
1 0 al 
2 0 a2 a12/2 

3 0 a3 ala2 a1 3/6 
4 0 a4 ala3 + 2-1a22 2-1a12a2 a1 4/24 

n > 1 0 an - - - aln/n! 
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For an integral, say Ir in equation (31), having a simple saddle point 
at t = tT and a path of integration L~ which runs up to, through, and then 
down from ir , we can use (98) with v = 2, p = 1, T = t - tn G(T) = 
g(tr + r), and H(r) = h(tr + r) - h(tr). The contribution of the saddle 
point is obtained by deleting the terms in (98) for which j is odd, 
doubling the terms for j even, and taking arg (-I/xH2)! = arg 
[-2/xh;2)]! to be equal to arg (t - tr ) on the part of L~ just leaving tr • 

The result is 

iT' get) exp [xh(t)] dt 

I"'.J exp [xh r ] t [-h(~)Jj+! I: (2~;2~-n» , t bmnr(m + j +!) (103) 
1 =0 X r n=O J n. m=O 

where the derivatives of g(t), h(t) are defined in equation (19) and 
bll1n is computed with 

2h;k+2) 
(k + 2)! h;2) . (104) 

The gamma function rem + j + !) may be written as .y; (!)m+i' 
For the integral J o given by equation (56) most of the contribution 

comes from the region near the branch point at t = O. When t = 0 is not 
a saddle point, there is only one path of steepest descent {for exp [xh(t)]} 
leaving t = O. This path may be taken to be the branch cut in the t-plane 
and the path of integration L~ for J 0 may be taken to be a positive loop 
enclosing the cut. Then the asymptotic series for J 0 may be obtained 
from (98) by setting v = 1, p = 'A, T = t, G(r) = g(t), H(r) = h(t) and 
using in place of (101) the integral 

1
(0+) 2' (.) 

+rIJ u Z
-

1 exp (-u) du = [1 - exp (-i27rz)]r(z) = 7r~~;P_ ~'t7rZ 

(105) 

Here arg u is 0 on the part of the path of integration leaving t = O. 
The positive real u-axis in (105) is a branch cut. The path of integra
tion starts at u = + 00 on the top side of the cut, comes in along the 
cut, encircles u = 0 in the positive direction, then runs out to u = + 00 

along the bottom side of the cut. 
It is found that 
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J o = i., {,'-l g(t) exp [xh(t)] dt 

~ [ -1 Jh+i f.- g~j-nl 
~ -h(1) ~(._)' 
;=0 x 0 n=O J n. 

n 

. L bmn[I - exp (-27riA)Jr(m + A + j) 
m=O 

2001 

(106) 

where arg [-l/xh~ll] is equal to arg t on the part of L~ leaving t = 0, and 
bmn is computed with 

(k + I)! h6 1l
• 

(107) 

The last relation in (l05) may be used to handle the case in which A 

is 0 or a negative integer. 
When t = 0 is a simple saddle point as well as a branch point, the 

path L~ can be taken to coincide with the path of steepest descent 
through t = 0 except for an indentation at t = o. The indentation is 
chosen so that a man walking in the positive direction along L~ would 
have the point t = 0 on his left. We put v = 2, p = A, G(r) = get), 
H(r) = h(t) in (98) and use in place of (101) the integral 

f %-1 ( 2) d - III (. )Jr(Z) _ i7r exp (-i7rz/2) u exp -u u -"2 - exp -~7rZ --
K 2 r(l _ ~) 

(108) 

Here K runs from u = - 00 to u = + 00 with a downward indentation 
at u = 0, and arg u is 0 on the part of K leaving u = o. Instead of 
(106) we now have 

f 00 ( 2 )(>.+il/2 i (j-nl 

L.' th-1g(t) exp [xh(t)] dt I"'.J t; X~62) ~ (:~ n)! 

n ( A+·) .]; bmn!{1 - exp [-i7r(A + j)]} r m + ~ (109) 

where arg [-2/xh~2l]! is equal to arg t on the part of L~ leaving t = 0 
and bmn is computed with 

(k + 2)! hci2
) 

(110) 
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APPENDIX E 

Two Saddle Points 

In order to illustrate some of the results of Sections IV, V, and VI, 
we consider the case of two saddle points, ~ = 2. ,This case has been 
discussed by Chester, Friedman, and UrselU· 6 From (15) the desired 
expansion is of the form 

i, get) exp [xh(t)] dt r-../ Uo(x) i; Pnox-n + UI(X) t, PnIX-n, 

Pn(V) = PnO + PnlV 

where, from example (ii) of Appendix B and equation (16), 

Ul(X) = i VI exp [xF(v)] dv, l = 0,1 

F(v) = iv 3 
- v~v + Ao , 

Ao = !(h2 + hI), v~ = !(h2 - hI), v2 = -VI' 

(111) 

(112) 

Arg VI is determined by the correspondence of VI with tl which comes 
with the change of variable from t to v. 

Let L' and the change of variable from t to V be such that L runs 
in from V = 00 exp ( -i7T'/3) to the critical region near v = 0 and 
then out to 00 exp (i7T'/3) (it may be necessary to reverse the direc
tion of L'). Then 

Uo(x) = 27rix-! Ai(xiv;) exp (xAo) , 

UI(X) = -27rix- i Ai'(xiv;) exp (xAo) 
(113) 

where Ai(z) is the Airy function and Ai'(z) its derivative with re
spect to z. 

From F'(v) = v2 
- v~ and equation (9) it follows that Q(r, v) is r + v. 

Consequently equation (17) for Pn(v) gives 

P.(v) = 2~ i dl fCl{f' ~ vi :J -fo ~ ~;' (114) 

Here fev) = g(t)t(l) in which t(1) = dt/ dv is obtained by differentiating 
F(v) = h(t) with respect to v. The path of integration C encloses r = ±v1 

but no singularities of f(r). 

r = 1,2 
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we get 

POI (115) 

which may also be obtained from equation (21) for Pm. 
Putting v = VI, n = 1 in (114) and expanding the integrand III 

partial fractions leads to 

PI(V I) = 8\ [f(-v 1) - f(v l ) + 2vd(l)(v l ) - 2vit'2)(V I )]. (116) 
VI 

Expressions for PIO and Pn which agree with equation (23) for PH 
may be obtained from (116) by changing the sign of VI to get PI (-vd 
and using n = 1 in 

PnO 
P n(VI) + P n( -VI) 

2 
(117) 

Pnl 
P n(VI) - P n( -VI) 

2VI 

If we were to continue with the Bleistein method we would have to 
evaluate j(n) (v r ) by using equations (26) through (30). Instead we 
turn to the problem of obtaining Pn(vr ) by the Ursell method. For ft = 
2, equations (34) become 

r = 1,2 
(118) 

Pn(Vr) = ~ - t {3romPn-m,O + {3rlmPn-m,1 
{3roo m=l {3roo 

where arj and {3rlj are given by equations (35) and (37), 

Since get) and h(t) in the original integral (111) are quite general, we 
use equation (35) for arj as it stands. However, equation (37) for (3rl j 

simplifies considerably. This is to be expected since it gives essentially 
the coefficients in the asymptotic expansions of Ai(z) and Ai'(z). From 
F;2) = 2vr , F;3) = 2, and F;n) = 0 for n > 3 we have al = -1/(3vr), 
and ak = 0 for k > 1. It turns out that bmn is 0 for m ~ nand bnn = a~/n!. 
When l is set equal to 0 in (37), all terms vanish except the one for 
n = 2j, m = 2j. When l = 1, all terms vanish except those for n = 2j, 
m = 2j and n = 2j - 1, m = 2j - 1. It is found that 

(-7l')! (_1)3; (!)3; 
{3roo = ---;:' {3ro; = (3roo ---;: 9i(2j)! 

(119) 

( 1 + 6j ) 
{3rl; = Vr 1 _ 6j {3rOj . 



2004 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968 

Changing Pn(vr ) into Pk(vr ) in order to avoid confusion with .the 
n used in Appendix D carries (118) into 

[ 
2Jk 2k (2k-n) n 

Pk(vr) = t;1) h~2l L (2kr 
_ ) , L bmn(!)m+k 

r n=O n . m=O 

k 9-m 
(_1)3m [ (1 + 6m) ] 

]; (2m)! ----v:- (!)3m Pk-m,O + Vr 1 _ 6m pk-m,l . (120) 

Here r = 1, 2; V2 = -VI; and bmn is computed from (100) with ak given 
by equation (36). The value of t;1) is given by 

t(l) - (dt) _ {[-2J!/ (-I)'} (121) 
r - dv V=Vr - h;2l Vr 

where arg t;1) is calculated either from (i) the form t ~ cv assumed by 
the change of variable in the critical region or from (ii) arg [-2/h?l]! 
and arg (-l/vr)! being equal to arg (t - tr) and arg (v - vr ), respec
tively, on the portions of the paths of steepest descent leaving tr and 
Vr • The last summation in (120) is omitted when k = O. The expression 
for Pl(vr ) may be written with the help of equations (40). 

Equation (120) was checked by using it to obtain the first few terms 
in the knownlo uniform asymptotic expansion for the Bessel function 
H~ll (xz) with 0 < z < 1. Here h(t) = z sinh t - t, the saddle points 
are at ±tl (tl > 0) on the real axis, and the path of integration runs 
from t = - 00 to t = 00 + i7r. If the direction of the path of integration 
is reversed [so that (111) gives -H~1)(xz)], the paths L' and L can be 
brought into correspondence by a rotation of 1200

• In the approximate 
form t ~ cv of the change of variable, arg c = 27r /3; and VI corresponding 
to tl is VI = ! -3h1/2!·} exp (-i27r/3). Furthermore, f(v) turns out to 
be an even function, (114) gives Pn( -v) = (-ltPn(v), and P2n.l, 
P2n+l,O are zero for n = 0, 1, 2, .... 

When t1 and t2 approach each other, hi2l , h~2l, VI and V2 tend to zero. 
In this case the asymptotic behavior of the integral (111) may be 
determined with the help of the equation obtained by setting v = 3 
in equation (98). However, if one is interested in the behavior of the 
coefficients Pnl , the following relations are useful. Putting VI = 0 in the 
integral (114) for Pn(v) shows that in the limit 

POO = f(O) , POI = 1'(0), (122) 
PlO = -f3 )(0)/3! , Pu = -2t<4 l(0)/4! 

and so on. The derivatives t(n) appearing in the derivatives of f (v) = 
g (t) t(l) are now obtained by differentiating 3-1V 3 = h (t) repeatedly 
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with respect to v. The leading coefficients are found to be 

APPENDIX F 

Saddle Point Near Branch Point 

[2/h~3)Ji 

_h~4)t~1)5/12. 

2005 

(123) 

Here we apply the theory of Sections VII and VIII to a case discussed 
by Bleistein,3 namely, A ~ 1 and J.L = 1. The paths L', L and the func
tions h(t), F(v) are assumed to be the same as in Section IX where the 
singularity at the origin was a simple pole instead of a branch point. 
In the critical region L' is parallel to, and to the right of, the imaginary 
t-axis. Only the case in which tl and Vl are real and of the same ~ign 
will be considered. When tl and Vl are positive the cut associated with 
the branch point is assumed to start out from the origin along the posi
tive real axis, and then quickly bend downward to run out to -ioo. 
When tl and VI are negative, the cut starts out along the negative axis 
and then bends downward to - i 00 • 

Equation (46) and F(v) = v 2 
- 2VIV lead to 

00 00 

J r-.J Vo(x) L Pnox-n + Vl(x) L PnlX-n (124) 
n=O n=O 

where, with c > 0 and the path of integration lying to the right of 
the cut, 

17 ( ) rC

+
iOO 

).-1 [ F()] d . -)./2 ~ (-2v t x
it 

, u X = V exp x V V = ~7rX L..J 
• c-'OO n=O n! r( 1 _ A t n) 

Replacing A by A + 1 gives Vr(x). Vo (x) and Vdx) are parabolic 
cylinder functions (Bleistein,3 and pair No. 740.2 in Campbell and 
Foster Table9

). 

Pn(v) = pnO + PnlV 
(125) 

= ~ f dr fcr2r).-1 [_1_ ~Jn (r + V - vl)r-A 

27r~ (J 2 r - VI ar r - VI 

where C encloses t = 0 and ~ = VI. Setting n = 0 and using f (v) 
9 (t) (tjv) X-1t(lj leads to 

P 0(0) = POO = f(O) 

Po(v l ) = f(v l ) , 

-2VI/h~1) 

[2/h~2)J! . 
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Setting n = 1 gives 

PI (0) = 2'A:2 [f(O) - f(v l ) + vd(1) (O)J 
VI 

1 'A _ f(2)~I). 
PI(V I) = ;:r-[f(O) - f(v l ) +vd(l)(v l )J 4 

The values of PnO and Pn1 may be obtained by following the steps 
outlined III the first part of Section VIII. Equation (52) and (53) 
become 

(126) 

PnO = -J- [aon - t ({3ooqPn-q,o + (3o,I,Q-IPn- Q,I)]. 
~ooo q=l 

The path L1 in (54) is parallel to the imaginary axis and passes 
through the saddle point at v = V1. The path £0 in (56) runs up along 
the right side of the cut, encircles the origin in a positive direction, and 
then runs down to v = -ioo along the left side of the cut, 

To get {3llj we replace l on the right side of (37) by l + A-I and 
notice that ak given by (38) is 0 for the values of k used in computing 
bnm , Consequently, the only nonvanishing bmn is boo = 1 and (37) 
gives 

{3lli = (-4)-i (-l _ "\ + 1) . 1-2i 
Q " 1\ 21VI. 
~IOO J. 

The expression for al n obtained by replacing Oi 2i
-

n
) in (35) by gi2i - nl

, 

where get) = tA-IgCt), contains [-2/hi2l]! which may be written as itill. 
In equation (57) for aod {3ooo we replace bmn by bmn to indjcate that 

bmn is computed with ak given by (58) instead of the ak used in computing 
aln/{31oo ' A still djfferent ak , given by (60), is used to compute {30/i/{3ooo . 
From equatjon (60) all of the a/s used to compute {3ozd{3ooo are zero 
except a l = 1/ (2VI)' Therefore bmn is zero unless m = n, and it follows 
from (59) that 

{3old{3ooo = ('A)Z+2i(2v l )-1-2ijjl. 

vVhen all of these results are used in the expression (126) for Pno we 
get, with j for n, 

i (i-n) n 

PiO = (2v )-i t(1) (Hi) L _0_0 -- L b ('A) . 
IOn = 0 (j - n)! m = 0 m ,n m + 1 
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wher~ h(O) = ho = 0, hi < 0, h~2) > 0, VI = tl I tl I-I( -hi)!' t61) = 
-2vI/h(~1), and bmn is computed from (100) with ak replaced by ak where 

k ~ 1. 

\Vhen j = ° the summation with respect to s is omitted. Similarly, 
Pn (VI) gives 

where til) 

with 

ak = - 2hik+2) /[(k + 2)! hi2
)]. 

(128) 

It is interesting to notice that \vhen A = 0, (127) and (128) give 
values of PjO and Pjl which agree with those obtained in Section IX. 

When the saddle point approaches the branch point, tl , hi , h61
), and 

VI tend to zero. In this case the integral J may be evaluated with the 
help of equation (109). The behavior of the coefficient Pnl may be 
studied by putting VI = 0 in the integral (125) for Pnev). It is found that 

poo = f(O) , POI = fl) (0), 
(129) 

Pia = -}·f2\0)/2, Pll = -(A + 1)f3 )(0)/12 

and so on. The derivatives t(n) appearing in the derivatives of f (v) = 
9 (t) (t/v) A-1t(l) are now obtained by differentiating v2 = h (t) re
peatedly with respect to v. 

For n = 1 and 2, 

(130) 

Substituting these values in equations (51) for 1 (0) and 1(1) (0) and 
using (129) gives the limiting expressions for POO and POI. 

APPENDIX G 

Poisson-Charlier Polynomial 

In this appendix equations (127) and (128) for PjO and Pjl are used 
to obtain an asymptotic series for the Poisson-Charlier polynomial 
cn(y, a) when y is 0(1) and both n and a are large and positive. 
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Multiplying the generating function 

00 amum 
(1 - ur' exp (au) = L --I cm(Y, a) 

m=O m. 
(131) 

by u-n- 1 and integrating II around a small circle enclosing u = 0 gives 
a contour integral for cn(Y, a). Instead of cn(Y, a), we find it more 
convenient to deal with the polynomial (in y) 

an exp (-a) 
dn(y, a) = , cn(Y, a). (132) 

n. 
Setting x = n + 1 and making the change of variable t = 1 - 1l in 

the integral for Cn (y, a) leads to 

1 l!+ioo til exp (-at) 
dn(y, a) = ~ . (1 _ t)X dt, 

7r't !-tOO 

= 2~ (~~ t' exp [xh(t)] dt 

J 
= 2-----: = J, 

7r't 

h(t) = -rt - In (1 - t) 

where r = a/x. The ratio r is positive. 

x>v+ 1 

(133) 

We wish to use equations (127) and (128) to compute PnO, Pnl in 
the expansion obtained by dividing (124) by 27ri, namely 

dn(y, a) = J I'V Vo(x) f Pnox-n + V1(x) f PnlX-n. (134) 
n=O n=O 

Here Vo(x) = V o(x)/27ri with A = Y + 1. The function V 1(x) is obtained 
from Vo(x) by increasing y by 1. 

We have 
1 jC+iOO 

Vo(x) = 27ri c-ioo v" exp [x(v
2 

- 2VIV)] dv, C > 0 
(135) 

= X-(1I+1)/2G[y, VIX!] 

where arg v is 0 at v = C and G(y, z) is the parabolic cylinder func
tion 

1 jC+iOO 
G(y, z) = -2 . u ll exp (u2 

- 2zu) du 
7r't c-ioo 

(136) 

= 2- 1 f (-2zt . 

n=O 1 (1 - Y - n) n.r 2 
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The function G is related to the function U discussed and tabulated 
in chapter 19 of Ref. 10 by the equation 

2-Y/ 2 

G(y, z) = 2(7r)! exp (-!l) U[ -y - !, z2!]. 

The saddle point t = tJ is obtained by setting the derivative h (1) (t) = 
-r + (1 - t)-l to zero; and the saddle point v = VI is given by the 
relation vi = -hI together with the condition that Vl and tl be of the 
same sign: 

1 t = 1 - -
1 r ' (137) 

The values of the derivatives t(1) = dtldv at v = 0 and v = V1 are 

to(1) - -2 II (1) - ~ 
- Vl 1,0 - r - 1 

For k > 1 the kth derivative h (k) (t) is (k - 1) 1(1 - t)-k and the 
coefficients used to compute bm •n , bm •n from (100) are 

ak = -k!j[(k + 1) 1(1 - r)] = 1/[(k + 1)(r - 1)] 
and 

ak = -2(k + I)! rk
+

2 /[(k + 2)! r2] = -2rkl(k + 2), 

respectively. 
Comparison of the integral (133) for d .. (y, a) with the integral (1) 

for J shows that get) = 1 and A = Y + 1. Consequently get) = tX-lg(t) 
becomes gCt) = tY

• For k > 0 the derivatives are g(k) = 0 and g(k) = 
y(y - 1) ... (y - k + l)ty

-
k

• 

Setting j = 0 in (127) and (128), and using the results just ob
tained gives 

( 
2VI )Y+l = (~)Y (2)! _ Poo (138) 

POO = r - 1 ' POI VI rV
I 

VI 

for the leading coefficients in the asymptotic expansion for dn(y, a). 

Here t1 and V1 are given by (137). The next two coefficients, obtained 
by setting j = 1, reduce to 

[ 
1 1 ] (y + I)Pol 

PIO = (y + l)(y + 2)poo 2(r _ 1)2 - 4v~ - 2VI 

= _ (~)Y+I[ (2)! J3[yCY - 1) _ ytlr + t~r2J 
PII VI r - 1 4 2 24· 

(139) 
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Some idea of the behavior of the series (134) for dn(y, a) may be 
gained from Table II. Equations (127) and (128) were programmed for 
calculation on a high speed digital computer. The table lists results for 
the typical case x = 30, a = 25, and y = -5. Here Term2n = 

Vo(X)Pnox-n, Term2n+1 = f\(X)Pn1X-n, and Sm = to + t1 + ... + tm. 
The "exact" value, 381.02, was calculated by using the recurrence 
relation for the Poisson-Charlier polynomials. 

No study was made to decide whether the relatively large value of 
Term7 results from accumulated round-off error (an accuracy of 1 
part in 107 was used) or whether the asymptotic series actually starts 
its divergence around m = 5 or 6. 

When r is near unity, VI and tl are small and the individual terms 
in the expressions (127) and (128) for PjO, Pjl, become large. In this 
case considerable cancellation occurs, and a high degree of precision in 
the calculations is required to obtain accurate values of PjO and PjI. 

An asymptotic series (nonuniform) which is useful when r - 1 is 
small may be obtained by a variation of the classical method which is 
sometimes used in cases of this sort. Instead of using an expansion 
about both t = 0 and t = tl , which is done (in effect) in obtaining the 
uniform asymptotic expansion, an expansion is made only about t = 
o. Thus, the exponent xh (t) may be written as 

xh(t) = [-x(1' - l)t + xe/2] + (xt2)(t/3 + e/4 + ... ). 
Changing the variable of integration from t to u = t (xj2) % and as
suming that r - 1 is so small that z = (1'-1) (xj2)% is 0(1) gives 

exp [xh(t)] = exp [-2zu + u2] exp [u2(2t/3 + 2t2/4 + ... )] 
(140) 

co n 

= exp [-2zu + u2] L (2/xt I2 L bmnu2m+n. 
n=O m=O 

The last series is obtained from equation (102) with.~ = t = u (2jx) %, 

TABLE II - PARTIAL SUMS FOR d2fJ ( -5, 25) 

m Termm Sm m Termm Sm 

0 276.62 276.62 4 0.015 381. 03 
1 82.82 359.44 5 -0.008 381.02 
2 20.1D 379.63 6 0.008 381.03 
3 1.39 381.01 7 -0.144 380.88 

Exact d29( -5, 25) = 381.02 
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Y = u2
, and an = 2/ (n+2). The coefficient bmn is computed from the 

an's and (100). 
Substituting (140) in the integral (133) for dn(y, a) leads to 

co n 

dn(y, a) rv L (2/x) (n+Y+1)/2 L brnnK2m+n (141) 
n=O m=O 

where 

1 jC+iCO 
Kn = 9" un+!J exp (u 2 

- '2zu du) 
... /7r1, c-ioo 

= G(n + y, z) = G[n + y, (r - 1)(x/2)j]. 

The recurrence relation 

(142) 

permits K2m+n in (141) to be expressed as a linear function of Ko and 
K 1 • Equation (142) is obtained by integrating the derivative 

d: un+!J exp (u 2 
- 2zu) = [en + y)u- 1 + 2u - 2z]un+Y exp (u 2 

- 2zu) 

As r -7 1 the leading term, (2/x) (Y+l)/2Ko , in (141) tends to the 
leading term Vo(x)poo in the uniform asymptotic series (134). Although 
(141) is much simpler than (134), it does not hold for nearly as wide a 
range of values of r - 1. 

APPENDIX H 

Saddle Point at Origin 

Here we are concerned with the leading term when A ~ 1 and there 
are two saddle points, one at t = 0 and the other at t = tl . We assume 
that tl is real and positive, and that h(t) is real on the real axis. Further
more, we assume lh < 0, h~2) < 0, hi2) > ° so that the saddle point 
at tl is lower than the one at 0, and the paths of steepest descent at ° 
and tl are parallel to the real and imaginary axes, respectively. A cut 
extends from ° to - 00 along the negative real axis. 

The paths of integration L' and L are taken to run in from 00 

exp ( -i7l'/3), cross the positive real axis in the critical region, and the 
run out to 00 exp (i'17/3). Example (iii) of Appendix B leads us to 
choose 

(143) 
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with arg VI = o. From equation (46), the uniform asymptotic ex
pansion is of the form 

00 00 00 

J r-.J Vo(x) 2: Pnox-n + Vl(x) 2: PnlX-n + V2(x) 2: Pn2X-n (144) 
n=O n=O n=O 

where 

Vl(x) = i VI+X-l exp [xF(v)] dv, l=0,1,2. 

Expanding exp (-3XVIV2) and integrating termwise with the help of 

i u' exp (u') du = 2.-i;[ 3r(2 ; p) ] 
gives 

VO(x) = 27ri (2X)-X/3 t (-3vlt(xI4t
I3 

(145) 

3 n~on!r(I_A~2n) 

from which Vz(x) may be obtained by replacing A by A + l. When A = 
1, Vo (x) reduces to the product of an Airy function and an exponential. 

Setting n = 0 in the integral (47) for Pn(v) gives 

Po(v) = POO + POlV + P02V2 

= ~ 1 t(r) [r
2 + rev ~ VI) + (v2 

- VlV)] dr 
27r~ c r (r - VI) 

(146) 

= teO) + t'(O)v + [f(vl) - teO) - Vlf'(0)]V2V~2. 

The values of t~l), t~2), t~l) appearing in teO), 1'(0), t(vl) are 

[ 
6v J! (2) 12 - h~3) t~1)3 

t~l) = ~~2) 1, to = 3h~2) t~l) 

t o) - [~J! 
1 - hi2) • 

(147) 

The derivatives t~l), t?) are positive and nearly equal when the saddle 
points are close together. 

When n = 0, the Ursell equations (61), (62), and (63) become 

p o(vl) = alOl [3100 

POO = aool [3000 (148) 

aOl [3001 
POI = --;:;- - --;:;- POO . 

POlO POlO 
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The values of a1O, /3100 otbained from the leading terms in the asymp
totic series (54) defining the am's and /31"lm'S give 

(149) 

Similarly, comparing the asymptotic series (64) defining the ao/S and 
/3olm's with the series (l09) leads to expressions which give 

(150) 

The remaining coefficient, P02, in Po(v) may now be obtained by com
bining (149) and (150). The coefficients POI give the leading part of 
the desired expansion (144) for J. 
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Gain Control for Diversity Receivers 

By STEPHENS. RAPPAPORT 
(Manuscript received April 18, 1968) 

Previous work on optimum gain control is extended to an important 
class of diversity receivers used for digital data trans11'"tission through fading 
media and for radar. As in the single diversity case the optimum gain 
(which yields IninimUln average cost of receiver saturation) is extremely 
insensitive to relative costs of saturation at the upper and lower dynamic 
range bounds. The sensitivity to relative cost decreases as the order of 
diversity increases. 

Optimum gain and perf o Tlnance characteristics are given from 1vhz'ch 
dynmnic range requirel1wnts for diversity receivers can be ded1iced. 

1. INTRODUCTION 

A good part of detection theory literature deals with the determina
tion of statistically optimum or near optimum receiver structures. 
However, in any practical implementation of these receivers the signal 
processing must be performed by components of finite dynamic range. 
To effectively use the amplitude range of a signal processing chain 
it is common to scale the received signal by adjusting the receiver 
gain. Optimum gain settings for minimum average cost of excluding 
(from a receiver's finite dynamic range) the envelope of a narrowband 
signal plus gaussian noise were presented last year.l Here similar 
results are presented for an important class of diversity receivers 
used for comunications through fading media and for radar. For 
the single diversity 011 = 1) case, these results reduce to those 
given previously. 

II. PREVIOUS RESULTS 

Consider the problem of determining the normalized attenuation, 
a to optimally scale a positive homogeneous functional, ~, of the 
received signal so that the average cost, l, of excluding ~ from the 
receiver's dynamic range is minimized. It follows from Ref. 1 that 

2015 
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the average exclusion cost is given by 

(1) 

in which d denotes the dynamic range of the receiver (such that D(dB) = 
20 loglo d, d > 1), v is the ratio of cost of saturation at the upper dy
namic range bound to the cost of saturation at the lower, w is a vector 
parameter determined by signal noise and channel conditions, and p", 
is the probability density function of ~. When the optimizing value of a 
is a stationary point of l it can be found as a real positive solution to 

(2) 

If as is the optimum a then the minimum average exclusion cost is 

(3) 

in which P", is the cumulative distribution corresponding to p",. For 
v = 1, l becomes the exclusion probability. Ref. 1 considered this prob
lem in detail for the case in which ~ represents the envelope of a narrow
band signal plus gaussian noise received through a Rician fading me
dium. The results are based upon the solution of (2) for the case in 
which p", is the Rician2 probability density function defined by 

P"Y(~) = ~ exp [- (~2 + 'Y2)/2]Ioh~) 1', ~ ~ 0 (4) 

where Y is a suitably defined signal-to-noise ratio. (YdB = 20 loglOY). 

III. GAIN SETTINGS FOR DIVERSITY RECEIVERS 

In various diversity receivers formation of the test statistic leads 
to the generalized Rician probability density function given by 

p",(R) = R(R(M)I/'Y)M-l exp [_(R2 + 'Y2/M)/2]IM_l['YR/(M)!] (5) 

R, 1', ~O 

M = 1,2, ... 

where I K denotes the modified Bessel function of the first kind and order 
K and w is the vector h, M). Such is the case for example in square-law 
combining M -fold diversity receivers for noncoherent frequency shift 
keyed signaling through Rician or Rayleigh (if'Y = 0) fading channels, 
in radar receivers using post detection square law integration of M 
pulses, t and in partially coherent diversity reception of N -ary orthogonal 

t In these cases the functional ~ is the test statistic. More generally however, 
the functional used for determining the optimum gain need not be actually 
formed in the receiver. 
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signals transmitted through M independent slow Rician fading chan
nels.3

•
4 

The probability density function (5) has interesting properties. It 
can be shown that (5) is the probability density function of the 
square root of the sum of squares of jvI independent normalized 
Rician variates, each variate having a probability density function 
of the form (4) with y replaced by y/(M)%. For M = 1, (5) of 
course reduces to the Rician probability density function (4), and 
if in addition y = 0 it becomes the Rayleigh probability density 
function. The density (5) can be viewed as the probability density 
function of the square root of a noncentral chi-square variate with 
2M degrees of freedom and noncentrality parameter .,/. With y = 0 
it becomes the density of the square root of a chi-square variate with 
2M degrees of freedom. 

In many practical cases y2 is proportional to the ratio of the total 
specular energy received via the M diversity branches to the sum of 
the scatter and noise energy received via any diversity branch (as
suming that this latter sum is the same for any diversity branch). 
Thus y2/M can be thought of as the power signal-to-noise ratio per 
diversity branch or per pulse in the case of time diversity if, as is 
commonly assumed, the diversity branches are statistically independ
ent but have identical parameters. 

Since (5) arises in various applications, let us consider the canonical 
problem. Specifically the solutions to (2) will be obtained in which PbJ 
is given by (5). Letting a = A(2)! and a = 'Y/(M)! leads to the following 
transcendental equation for A: 

A 2 = A~ + [(M + 1)/2] A~ + [1/(d2 
- 1)] 

in which 

. {In I.M-l[aA d(2)!] - In I.M-l[aA(2)!]} 

(6) 

(7) 

determines the optimum required attenuation for the Rayleigh case 
with unity cost ratio (v = 1), and 

(8) 

For the single diversity case (M = 1), (6) reduces to the trans-
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cendental equation encountered previously.l One is thus led to seek 
an iterative solution along the same lines. Before obtaining the 
required iteration equations consider some properties of (6). The 
equation can be written in the form 

A2 = A~ + MA~ + [1/(d2 - 1)]{ln [(aA d(2)!)M-IIu_I(aA d(2)!)] 

- (M - 1) In d2 
- In [(aA(2)i)U- II lII_I(aA(2)!)]). (9) 

Combining the logarithmic terms on the right side of (9) and using 
the fact that IK(Z) -7 (ZK)/2KJ(! as Z -7 0 it is seen that the quan
tity in braces goes to zero as y ~ O. Hence the optimum attenuation 
for the chi-square case (y = 0) is determined explicitly by A = Acs 
where 

(10) 

In the same manner it is seen that if A;s = 0, then A = 0 is a solution 
to (9) for any'Y and d. It is easy to show that the right hand side of (9) 
is an even function of A having a minimum of A~s at A = O. The left 
hand side of (9) is of course a standard parabola centered at the origin. 
These curves (i) do not intersect if A;s < 0, (ii) intersect only at A = ° 
if A;s = 0, and (iii) intersect at positive (and negative) values of A if 
A;s > 0. Thus meaningful values of A which minimize l are stationary 
if and only if A;. > 0. From (7), (8), and (10) this requires vd2l1I > 1, 
which for J\![ = 1 reduces to the constraint encountered previously.l 

The solution to (6) or (9) can be obtained using the extrapolated 
iteration scheme described in Ref. 1. The iteration formulas require the 
derivative of the right side of (9) which can be found using the identity 

d/dr [rnIn(r)] = rnIn_I(r) 

The result is 

n = ... -2, -1,0,1,2,,,, . (11) 

f'CA 2) = ;(2)! {d I M-2[A da(2):J _ I lII-2[Aa(2):J} (12) 
2(d - I)A IlII-I[A da(2)2J I lII_dAa(2)2J 

in which f denotes the right hand side of (9) and the prime denotes dif
ferentiation with respect to the argument. 

For computational purposes it is convenient to define the functions 

(13) 

which are uniformly bounded on the semi-infinite interval [0, 00]. 
For any argument , these functions can be readily generated by 
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numerical techniques using the recurrence relations and asymptotic 
expansions for the modified Bessel functions. 

Using (12) and (13) the following iteration formulas to solve 
(6) are obtained. 

F,: = A~ + [(.M + 1)/2] A~ 

+ Aia(2)! + [1/(d2 _ 1)] [In 'I'M-l(A,: da(2t)] 
d + 1 'I'M-l(A,:a(2)') 

(14) 

G. = 2a(2)! {d WM- 2[A i da(2):1 _ WU -2[Aia(2):1} 
• 2(d - l)Ai W M-dAi da(2)'] 'I' U-l [A ia(2)'] 

The iteration is begun with i = 1, ')' small, and Ai = A~8 and stopped 
when I (Ai+l - Ai) I Ai I is less than the allowable error. By this method 
the optimum required normalized attenuation was found for various 
values of v, ,)" d, and lJll. 

Inasmuch as the optimum attenuation satisfies the nonlinear equation 
(6) it will be helpful in interpreting results to find some useful approxima
tions. Accordingly one notes that for "/IM » 1 and d » 1 the second 
term in the brackets on the right side of (6) is negligible compared with 
the first. Then taking I lIf(X) ~ exp x leads to a quadratic equation in A 
whose solution 

(15) 

approximates the required attenuation over the range specified. 
For ,liM « 1, on the other hand, one may take Iu(x) ~ (x/2)U 1M! 

in (6). Some further approximations and manipulation lead to the 
result 

(16) 

which is exact for y = O. 
When the solution to (6) is found for given parameters the mini

mum average exclusion cost can be determined. For the probability 
density function (5), (3) becomes 

(17) 
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where 

QM(X, y) = J(fJ r(r /X)M-l exp [- (r2 + x2)/2]/ M-l(Xr) dr (18) 
1/ 

is the generalized Marcum Q-function.3 

IV. EFFECT OF COST RATIO ON REQUIRED ATTENUATION 

Since one cannot easily decide how much better or worse it is for 
the receiver to saturate at its upper limit than at its lower limit, the 
ratio, v, is generally difficult to assess accurately. It is interesting (even 
fortunate!) that here as in the single diversity case,l the solutions 
obtained using (14) show that the optimum receiver attenuations 
for a wide range of cost ratios do not differ appreciably from those 
for the minimum exclusion probability case (v = 1). 

For given v, y, d and M one may define the sensitivity, Sc, of the 
optimum attenuation to the cost ratio by the difference in required 
attenuation between the given case and the corresponding minimum 
exclusion probability case. Specifically, the sensitivity to cost ratio is 

Se(v, ,}" d, M) ~ 20 loglo A(v, ,}" d, M) 

- 20 loglo A(v = 1, ,}" d, M) (19) 

in which the functional dependence is shown explicitly. In (19) a positive 
value of Se indicates an increase in required attenuation compared with 
the minimum exclusion probability case. It can be shown that (i) the 
sign of (19) depends only on v (positive if v > 1, negative if v < 1), and, 
(ii) 1 Sc(v, ,}" d, M) 1 ~ 1 Sc(v, 0, d, M) I. Thus, one can define a maximum 
sensitivity 

S; ~ Se(v, 0, d, M) == 10 loglo A~8 - 10 loglo MA~ (20) 

where the second equality follows from (19) and (10). Using (7) 
and (8), (20) can be written 

S~ = 10 loglo [1 + (VdB/2M D)] (21) 

in which 

(22) 

is the cost ratio expressed in dB. S~ is an easily calculated bound which 
gives, with the correct algebraic sign, the maximum change (in dB) of the 
optimum required attenuation from the optimum for the minimum ex
clusion probability case. Figure 1 is a plot of S~. It follows from (21) 
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Fig. 1- Maximum change in required receiver attenuation caused by nonunity 
cost ratio. 

that for cost ratios in the range -MD ~ VdB ~ 2MD, the maximum 
change in required receiver attenuation is less than about 3 dB. Equiva
lently, with 'Y, v, and d fixed, the maximum sensitivity, S~ decreases as 
the order of diversity, M, increases. 

Since the optimum attenuation is extremely insensitive to cost 
ratio for typical parameters, the minimum exclusion probability 
case (v =1) is of special import among all average cost criteria of 
the form (1). The numerical results presented in this paper, there
fore, include only the case v = 1, although the formulas derived apply 
more generally and can be used to generate numerical results in an 
entirely similar manner. 

V. EFFECT OF DIVERSITY ON REQUIRED ATTENUATION 

It is interesting to consider how the order of diversity affects the 
optimum required attenuation. Accordingly, in a manner analogous 
to (19) one can define the difference in required receiver attenuation 
resulting from diversity by 

Sm(V, 'Y, d, M) = 20 loglo A(v, 'Y, d, M) 

- 20 loglo A(v, 'Y, d, M 1). (23) 
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Let 

.1n(V, "I, d, 1J1) ~ 20 loglo A(v, "I, d, M) (24) 

be the required normalized attenuation in dB. Then (23) can be 
written 

Sm(V, "I, d, M) = .1n(V, "I, d, M) - .1n(V, "I, d, 1). (25) 

Values of Sm(1, )I, d, M) were obtained for various )I, d, and M 
using (14) and (23). These are shown in Fig. 2 where all quantities 
except M are in dB. The optimum normalized attenuation An (1, )I, 

d, M) required for the minimum exclusion probability case can be 
found using (25). Specifically one finds Sm (1, )I, d, M) from Fig. 2, 
and adds to it the quantity An (1, )I, d, 1) from Fig. 6 in Ref. 1. 
Notice that in Ref. 1 only the single diversity case (M = 1) was 
considered so that the functional dependence of An on M was sup
pressed in the notation. That is, An(v, )I, d, 1) here is identical to 
An (v, )I, d) in Ref. 1. 

From Fig. 2 it can be seen that if )I is sufficiently small (or large), 
Sm is positive (or negative) so that more (or less) attenuation is 
required if multiple diversity is used than would be required if the 
same specular energy were concentrated in a single diversity branch 
or pulse. Also for sufficiently small (or large) )I the required attenua
tion increases (or decreases) as the order of diversity, AI, increases. 
There is of course a transition region which bridges the above cases 
and in which, for)l fixed, the differences Sm cross one another depend
ing on the particular values of M, and D (and, in the general case, 
v). The curves for )ldB = 15, for example, exhibit this behavior. 

Using (10) and (16) it can be shown that for )I -7 0 

Sm(V, "I, d, M) ~ 10 loglo M 

[1 + (vdB/2MD)] [1 + ('Y2/2M)] + 10 loglo 1 + (vdB/2D) + 10 loglo 1 + ('-//2) (26) 

which is exact for )I =, O. For the minimum exclusion probability 
case and )I = 0 (26) yields Sm (1, 0, d, M) = 10 loglo M which is in
dependent of d. Similarly it can be shown using (15) that 

lim Sm(v, "I, d, M) = -10 10glO M (27) 

which is independent of v and d. The differences Sm for 'YdB ± 00 

therefore appear as horizontal lines in Fig. 2. One also observes that 
over the range of parameters shown, the limit (27) is approached within 
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0.5 dB for 'YdB = 30. Noting that for 'Yo < 'Y < ')'*, Sm is bounded by 

Sm(v, 'Y*; d, 111) < Sm(v, 'Y, d, M) < Sm(v, ,,0, d, M) (28) 

it follows from (26) through (28) that for the minimum exclusion proba
bility case all the differences Sm(l, 'Y, d, M) lie between two horizontal 
lines in Fig. 2 determined only by the order of diversity. I Sm(l,,),, d, M) I ~ 
10 loglo M. The difference between the required optimum attenuation 
for dual diversity and that required for single diversity with the same 
total received specular energy is less than about 3 dB. 

VI. EXCLUSION COSTS FOR DIVERSITY RECEIVERS 

The optimum normalized attenuations obtained using the iteration 
equations (14) were used to obtain the minimum average ex
clusion costs (17) for the case v = 1. These are shown in Fig. 3(a) 
and for smaller values of D in Fig. 3 (b). The generalized Q function 
(18) was evaluated by computer, using relations derived from those 
given by Sagon.5 

It can be seen that for small values of y, the smallest dynamic range 
D required to obtain a given exclusion probability decreases rapidly 
as the order of diversity is increased; the most substantial decrease is 
obtained in going from single to dual diversity. This trend is lessened 
as the available signal-to-noise ratio y increases. As a matter of fact 
if y is sufficiently large (for example, y = 20 dB) the dynamic range 
required to achieve a given exclusion probability increases as M 
increases. However at the large values of y where this latter effect is 
apparent, even modest values of D yield extremely small exclusion 
probabilities. Moreover on the types of channels where diversity re
ceivers are useful one would generally encounter small values of y. 

Consider a diversity receiver operating in a small signal-to-noise 
ratio and let the dynamic range of the components used be such that 
the probability of excluding the signal at any point in the receiver is 
the same throughout. Then it follows from Fig. 3 and the foregoing 
discussion that the dynamic range required of the components used 
in the post-combining portions of the receiver may be considerably 
smaller than that required of those components used in the individual 
diversity branches. 

VII. SUMMARY AND CONCLUSIONS 

An important class of diversity receivers used for communications 
through fading media and for radar is considered. The required gain 
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is determined which minimizes the average cost of excluding from a 
finite dynamic range the signal appearing in the post-combining por
tions of the receiver. For the single diversity case (M =, 1) the results 
reduce to those given previously. 

It is shown that the required receiver gain is extremely insensitive 
to the relative costs of saturation at the upper and lower dynamic range 
bounds, differing at most by about 3 dB from the optimum for the (equal 
cost) minimum exclusion probability case for relative costs in the range 
-lI1D ~ Vdn ~ 2111D. One also finds that the sensitivity to relative cost 
therefore decreases as the order of diversity increases. 

The difference between the required optimum receiver gain for 
various orders of diversity M, and that required for a single diversity 
receiver having the same total received specular energy is considered. 
Exact differences are given for the minimum exclusion probability 
case, and it is shown that these are less than 10 10gloM dB independent 
of other parameters. Bounds on the difference are also given for non
unity cost ratio. 

Performance characteristics derived show minimum exclusion prob
abilities obtainable as a function of dynamic range for various signal
to-noise ratios and orders of diversity. For a small signal-to-noise 
ratio the dynamic range required of the components used in the post
combining portions of the receiver can be considerably smaller than 
that required of those components in the individual diversity branches 
in order to achieve uniform exclusion probability throughout. 

Notice that in some applications the normalization assumed in 
writing (4) and (5) may depend upon M and y. This fact must be 
accounted for if one is calculating the actual required attenuation 
from the required normalized attenuation discussed in Sections IV 
and V. The optimum exclusion costs however, depend on the normal
ized attenuation and not on the normalizing factor. The results of 
Section VI therefore apply directly. 
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Multimoding and its Suppression 
in Twisted Ring Counters 

By w. BLEICKARDT 

(Manuscript received March 21, 1968) 

Many digital systems, such as PCM systems, data processing and data 
transmission systems, use twisted ring counters. Most of these twisted ring 
counters are subject to multimoding. This paper develops tools and methods 
for predicting all possible modes in twisted ring counters, and derives a 
general solution for suppressing the wrong modes. Suppression is ac
complished by adding a few circuit connections from the output of certain 
stages to the input of another stage. The paper derives the number of neces
sary connection lines and their connection points for the various types of 
counters. 

r. INTRODUCTION 

Twisted ring counters of various types have been used for many 
years, and have been described in many publications.1

-
5 They are 

designed for creating a well-defined periodic pulse pattern. But they 
all have one problem in common: under certain circumstances they 
can multimode, that is, they can create undesired patterns. Each 
mode of a counter creates a particular pattern. Only one of these 
modes is the desired one, the "correct mode;" the rest are all "wrong 
modes" and must be suppressed. To the knowledge of the author, 
none of the publications on twisted ring counters presents a rigorous 
treatment of the problem of multimoding, although it must have 
shown up in many instances and often was solved empirically.5 The 
lack of a general theory on possible modes in twisted ring counters 
and on the prevention of undesired modes led to this investigation. 

Terminology for the characterization of modes, and relations be
tween the parameters, make it easy to find the entire set of possible 
modes for any twisted ring counter. There is a method for suppressing 
all wrong modes by adding a few circuit connections, and a general 
formula that indicates these additional connections for any individual 

2029 
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ring counter. The method for suppressing all wrong modes in any 
twisted ring counter is summarized in Section 5.5. 

II. OPERATION OF TWISTED RING COUNTERS 

A twisted ring counter consists of a shift register whose output is 
fed back over a twist to its input in a ringlike manner (Figs. 1, 2, 
and 3 y. An input clock keeps a certain pattern circulating around the 
ring. In the correct mode the stages create the desired pattern by 
switching on sequentially with subsequent clock pulses, and then 
switching off in the same sequence (part a of Figs. 1, 2, and 3) ::~ With 
each clock pulse only one stage is switching. A counter with n stages 
creates a periodic pattern with a period of 2n time slots as shown in 
the first three figures. Some possible implementations of counter stages 
are shown in Fig. 4, using AND gates, NAND gates and set-reset flip
flops. Equivalent stages can be built by using OR gates and NOR gates, 
or any custom-designed circuit. 

There are two general types of twisted ring counters: single-phase 
counters with one input clock line (example in Fig. 1), and double
phase counters with two input clock lines supplying interleaved pulses 
(examples in Figs. 2 and 3). Many of the single-phase counter stages, 
such as the ones shown in Fig. 4a and b, require short input clock 
pulses to prevent racing. The clock pulses must be shorter than the 
propagation delay of one stage. An example of a stage that does not 
require short clock pulses is shown in Fig. 4c.4 Double-phase counters 
permit the use of simple gated set-rerest flip-flop stages (Fig. 4d and e) 
without the restriction of short clock pulses. Notice that in counters 
with an even number of stages (Fig. 2) the two clock phases are dis
tributed in a different way from those in counters with an odd num
ber of stages (Fig. 3). 

The problem of multimoding arises whenever more than one mode 
can exist. In that case, errors can switch the counter to other (wrong) 
modes with undesired patterns. Such errors can be created by noise 
transients, aging components, marginal design, and so on. The first 
three figures show some examples of wrong modes. In general, the 
number of wrong modes possible increases with the number of stages 
of a counter, and is higher for single-phase counters than for double
phase counters. To design reliable circuits, one must prevent un-

* The numbers in parentheses in Figs. 1, 2, and 3 are a symbolic notation for 
different modes; they indicate the numbers of time slots a particular counter 
stage remains in one state. This notation is explained in Section III. 
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Fig. 2 - Double-phase twisted ring counter with even number of stages (six 
stages). 

desired patterns from circulating for more than a very short time 
(typically less than one counter period). 

III. GENERAL CHARACTERIZATION OF MODES 

There is a unique way in which a pattern, that is, a sequence of 
states 0 or 1, is circulated around the counter ring. Any pattern is 
shifted by one stage per time slot, as can be seen from the pulse dia-
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Fig. 4 - Implementation of counter stages with AND gates, NAND gates, and 
set-reset flip-flops; a, b, and c for single-phase counters, d and e for double
phase counters. 

grams in Figs. 1, 2 and 3. The state of the last stage appears in in
verted form at the first stage in the subsequent time slot. For a 
counter with n stages, the pattern, seen as a time sequence at each 
stage, repeats itself in inverted form after n time slots; the whole 
counter period is 2n time slots long. 

This well-defined behavior allows us to reconstruct the entire pulse 
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diagram for a particular mode, if we only know the states of all n 
stages at anyone time, or if we know a sequence of n states at any 
single stage. Therefore, a sequence of n binary digits uniquely de
scribes a mode. 

3.1 Definitions 

(i) \Ve will call the state of a particular stage in a particular time 
slot an elen/'ent. An element can have a state 0 or 1. 

(ii) Elements in successive time slots, or in successive stages that 
have the same state, form a logic group. 

(iii) The size of a logic group (gj) is the number of its elements. 
(iv) The smallest size logic group of a particular mode has gmin 

elements. 
( v) The positive direction of a sequence of elements corresponds 

to the sequence as observed on the positive time axis. This corresponds 
to a sequence backwards through the stages. (This can be illustrated 
with Fig. lb. The sequence III 0 1 appears at stage 81 in the time 
slot sequence t1, t'2, ts , t4, t5, and it appears at time t5 in the stage 
sequence 85,84,83,82,81') 

3.2 Description 

For describing one particular mode, it is sufficient to write the size 
and sequence of the logic groups gj that are built by n elements. The. 
following symbolic notation is used: 

where 

x 

L gj = n = number of stages 
j=l 

x = odd number. 

For example, (3 + 1 + 1) denotes a mode of a 5-stage counter, with 
three logic groups, the first containing three elements, the second and 
third containing one element each (shown in Fig. 1b). 

This symbolic notation describes one half of the periodic cycle. 
Since each half is always the complement of the other half, the ele
ments of the first and the last logic group in the mode notation have 
the same state. Therefore, the number x of logic groups in this nota
tion is always an odd number. This is illustrated with a 7-stage coun
ter1 for which a time sequence of states, as observed on the oscillo-
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scope connected to one of the stages, may look like this: 

counter period = 14 states 
< 

first half : second half 
< ):< ) 

time sequence: . . 0 1 1 0 0 0 0 1 0 0: 1 1 1 1 0 1 1 0 0 0 . . 
-----.~ -"-y---' : '----.,~ - '--y--' 

logic groups: 4 1 2 4 1 2 

(4 + 1 + 2) 

mode notations: (1 + 2 + 4) 

(2 + 4 + 1) 

(4 + 1 + 2). 

The period consists of 2n = 14 states. Describing this particular mode, 
the logic groups built by n = 7 elements can be written in three differ
entways: (4 + 1 + 2), (1 + 2 + 4), and (2 + 4 + 1). 

These mode notations are cyclic permutations. Hence they are 
equivalent and describe the same mode. The 7 -stage counter could 
have another mode with the same set of logic groups. This different 
mode can be described by the following three equivalent mode nota
tions: (4 + 2 + 1), (2 + 1 + 4), and (1 + 4 + 2). If a certain wrong 
mode can exist, all possible permutations can exist also. 

The correct mode always is the one with x = 1, that is, with one single 
logic group of size n. All other possible modes with x ~ 3 are wrong 
modes. 

IV. PREDICTION OF POSSIBLE MODES 

4.1 Possible Logic Groups 

Not all possible partitions of n into an odd number x of logic croups 
result in a possible mode, because there are some restrictions in pos
sible logic group sizes gj for the different counter types. 

In single-phase counters, the logic groups can have any even or 
odd number of elements, up to n, since in any time slot, either a "I" 
or a "0" can be shifted from any stage to the following stage (Fig. 1). 
This is not so in double-phase counters. 

In double-phase counters with an even number of stages (Fig. 2), 
a clock pulse A can shift either a "1" or a "0" to any odd-numbered 
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stage from the preceding stage, and a clock pulse B can shift either a 
"I" or a "0" to any even-numbered stage from the preceding stage. 
This results in the restriction that only logic groups with an even num
ber of elements can appear in a possible mode. 

In double-phase counters with an odd number of stages (Fig. 3), a 
clock pulse A can shift a "I" to any odd-numbered stage and a "0" 
to any even-numbered stage, and a clock pulse B can shift a "0" to 
any odd-numbered stage and a "I" to any even-numbered stage, 
always from the preceding stage. This results in the restriction that 
only logic groups with an odd number of elements can appear in a 
possible mode. 

4.2 Examples of Possible Modes 

We are now able to predict all possible modes of a twisted ring 
counter with n stages by breaking n into an odd number of logic 
groups in all possible ways, taking the restrictions of possible logic 
group sizes into account. This is shown in three examples. 

Example 1: A single-phase counter with n = 6 stages can have six 
different possible mode.s: 

(6) 

(4 + 1 + 1) 

(3 + 2 + 1) 

(3 + 1 + 2) 

(2 + 2 + 2) 

(2 + 1 + 1 + 1 + 1) 

correct mode 

wrong modes. 

In this counter type, the logic groups can have an even or odd number 
of elements. 

Example 2: A double-phase counter with an even number of n = 
6 stages (Fig. 2) has only two possible modes: 

(6) 

(2 + 2 + 2) 

correct mode 

wrong mode. 

In this counter type, the logic groups can only have an even number 
of elements. Because of this restriction, there are always fewer wrong 
modes than in a single-phase counter with the same number of stages. 

Example 3: A double-phase counter with an odd number of n = 9 
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stages has ten different possible modes: 

(9) correct mode 

(7 + 1 + 1) 

(5 + 3 + 1) 

(5 + 1 + 3) 

(5 + 1 + 1 + 1 + 1) 

(3 + 3 + 3) wrong modes. 

(3 + 3 + 1 + 1 + 1) 

(3 + 1 + 3 + 1 + 1) 

(3 + 1 + 1 + 1 + 1 + 1 + 1) 

(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) 
In this counter type, the logic groups can only have an odd number 
of elements. In general, the higher the number n of stages, the higher 
is the number of wrong modes. 

4.3 Experimental Verification of Predicted 1I10des 

Many counters of the three types shown in Figs. 1, 2, and 3 have 
been built, with various numbers of stages, and with different types of 
stages, including all types shown in Fig. 4. All of the predicted modes 
for these counters have actually been observed. Any desired mode can 
be induced by presetting all stages before turning the clock pulses 
on, but only the possible modes will be able to circulate without being 
altered. 

V. SUPPRESSION OF WRONG MODES 

All wrong modes can be suppressed by adding a certain small num
ber of circuit connections. A general method for finding the necessary 
and sufficient additional connections for any twisted ring counter is 
to find criteria that are common to all wrong modes but do not ap
pear in the correct mode. By suppressing these criteria, all wrong 
modes will be prevented. To find these common criteria, it is useful 
to define the concept of common logic groups. 

5.1 Common Logic Groups 

For a particular counter, the common logic groups represent the 
set consisting of the smallest logic groups (gmin) from each wrong 
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mode. For example, the 9-stage double-phase counter, whose wrong 
modes are listed in example 3 of Section 4.2, has two common logic 
groups of sizes 1 and 3. Each wrong mode contains at least one of the 
common logic groups. Taking the gmin-values of all wrong modes as 
common logic groups results in the smallest possible set of logic 
groups with the property of each wrong mode containing at least one 
of these logic groups. 

The size of the smallest common logic group (mk) is equal to the 
smallest glllin-value of all wrong modes, gmin min. That is 

gmin min = 1 for single-phase counters, 
gmin min = 1 for double-phase counters with odd number of stages, and 
Omin min = 2 for double-phase counters with even number of stages. 

The size of the largest common logic group (mo) is equal to the 
largest gmin-value of all wrong modes, that is, gmin max: 

'" 
mo = Ominma:z; of L OJ = n 

i=1 

with X ~ 3 for wrong modes. Every possible partition of the above sum 
represents a possible wrong mode with a certain value Omin • The maxi
mum of this value for all possible partitions is Omin max' It occurs with 
the minimum value of x = 3 and is 

Omin max ~ n/3. 

The largest common logic group is th'erefore 

1no ~ n/3, (1) 

the next possible logic group size equal or less than n/3. This is 

mo ~ (n - 2)/3 for single-phase counters, (2) 

mo ~ (n - 4)/3 for double-phase counters. (3) 

This results is only a single mo-value in each case, when the restric
tions of possible logic group sizes are taken into account. Combining 
the latter and expressions (1), (2), and (3) into a single expression, 
we get for the largest common logic group mo: 

n 2p m = - - - . .1 
o 3 3 

with ~ chosen to make 1no an integer, and 

n 
p 

number of stages 
1 

(4) 

for single-phase counters 
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P 2 for double-phase counters 
ma 1,2,3,4, for single-phase counters 
ma 2, 4, 6, 8, ... if n ~ even} for double-phase counters. 
ma 1, 3, 5, 7, ... if n = odd 

The set of common logic groups for a particular counter consists 
of the smallest and the largest common logic groups and all possible 
sizes of logic groups between. It is given in Table I for counters up 
to 20 stages. For single-phase counters with two stages and for double
phase counters with two or four stages there are no common logic 
groups, since these counters do not have any wrong mode. 

5.2 Suppressing the Common Logic Groups 

Suppressing all common logic groups in a counter leads, by defini
tion, to the prevention of all possible wrong modes, and does not in
troduce any new modes. This section shows that there is a subset of 
common logic groups (Table II) whose suppression is sufficient for 

TABLE I - COMMON LOGIC GROUPS 
(Common logic groups are all different gmin values of all wrong modes) 

For double-phase counters 
Number of For single-phase 

stages counters With even With odd 
number of number of 

n stages stages 

2 - -
3 1 1 
4 1 -
5 1 1 

6 2 1 2 
7 2 1 1 
8 2 1 2 
9 321 3 1 

10 321 2 

11 321 3 1 
12 432 1 4 2 
13 432 1 3 1 
14 432 1 4 2 
15 54321 531 

16 54321 4 2 
17 54321 531 
18 6 543 2 1 642 
19 6 543 2 1 531 
20 6 543 2 1 642 
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suppressing all common logic groups and is thereby sufficient for 
preventing all wrong modes. 

5.2.1 Method of Suppressing a Group 
If we want to suppress a particular common logic group of size mi, 

we must prevent one of the following two patterns consisting of an 
undesired sequence of ones and zeros 

···0011 1 1 1 1 1 100 

or ( . .. 1 1 0 0 0 0 0 0 0 0 1 1 ... ) 
\ ) 

mi elements 

from circulating around the counter ring. The inverse pattern, in paren
theses, always appears with the first one. This suppression can be 
accomplished by preventing stage Sz from switching from "0" ("I") 
to "I" ("0") whenever stage Sz-l-mi is in state "0" ("I"). The position 
of the patterns immediately before suppression is: 

···00 1 1 1 1 1 1 1 100 

or ( . .. 1 1 .0 0 0 0 0 0 0 0, 1 1 ... ). 

mi elements 

If stage Sa; does not switch to "I" ("0") with the next clock pulse, the 
logic group of size mi is prevented from passing through stage Sa;. It 
is sufficient to suppress only one of the two patterns, since the in
verse of it is then suppressed automatically. 

This suppression can be implemented by adding a circuit connection 
from the output of stage SZ-l-m; to the input of stage Sz , preventing 
Sz from switching from "0" to "I" whenever Sz-l-m; is in state "0." 
This circuit connection, shown in Fig. 5a, bridges mi stages, and there
fore is called a "bridging connection"; its associated parameter mi is 
called a "bridging parameter." 

The bridging connection could also be made on the inverse side of 
the stages SZ-l-mi and Sz, thus preventing Sz from switching from 
"I" to "0" whenever SZ-l-mi is in state "1." These two bridging con
nections are equivalent, and one of them is sufficient. However, if both 
connections are applied for each mi-value, a wrong mode is cleared 
within half a counter period instead of a full period. 
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ir--=Is::J I ~~~~~~~:~;~:J L--, --~ ~ --=t::J ~S.-m, _::_ S._. , ---=t:Jm ~ 
(a) 

GATED SET-RESET 

~~~ ~~ll 
(b) 

FOUR-GATE STAGES: 

~~= ~~~ 

* INPUTS FOR ADDITIONAL 
BRIDGING CONNECTIONS 

(C) 

Cd) 

Fig. 5 - Suppression of wrong modes by adding bridging connections, bridg
ing mi stages. Part a shows the principle; b, c, and d show an example with 
the two bridging connections m = 3 and m = 1 for counters with different 
types of stages. 

Sz may be any particular stage of the counter, but it should be the 
same stage for all bridging connections (although this is not essential 
with many counters). The correct mode is not affected by this inhibition, 
since in the correct mode SZ-l-m. is always in state "I" ("0") when Sx 
is switched from "0" ("I") to "I" ("0") because mi is always smaller 
than n. 
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5.2.2 Automatically Eliminated Wrong Modes 

If we suppress one common logic group of SIze mi by using the 
described method, we prevent the pattern 

···0 ....... 1 0 .. . 

and hence eliminate not only the wrong modes containing the com
mon logic group 1Jli, but also all other wrong modes that show this 
pattern at anyone position. 

The remaining wrong modes, which do not contain this pattern, 
require additional steps for their prevention. It can be shown that if 
a mode with gmin < 1ni satisfies both of the following two conditions, 
it does not contain the above pattern and therefore is not eliminated 
by suppressing mi: 

(i) All possible sums of the elements of an even number 2v of con
secutive logic groups must be ~m. for at least one value of v (v = 1 or 
2 or 3 ... ). 

(ii) All possible sums of the elements of an odd number 2v + 1 of 
consecutive logic groups must be ~ mi + 1 for the same value of v that 
satisfies condition i. 

Example: Suppose we have a single-phase counter with 19 stages, 
and we suppress the common logic group of size mi = 6 by adding 
a bridging connection bridging 6 stages as shown in Fig. 5a. Would 
the mode (2 + 3 + 3 + 1 + 5 + 1 + 4) be suppressed? 

We check whether this mode satisfies both conditions. Condition i 
is satisfied with v = 1, since all pairs of consecutive numbers in the mode 
notation (2 + 3, 3 + 3, 3 + 1, 1 + 5, 5 + 1, 1 + 4, 4 + 2) sum up 
to ~ 6. That is, all sums of the elements of a pair (2v) of consecutive logic 
groups are ~ m • . Condition i could not be satisfied with v > 1 in this 
example. Condition ii is also satisfied with v = 1, since all triplets of 
consecutive numbers in the mode notation (2 + 3 + 3, 3 + 3 + 1, 
3 + 1 + 5, 1 + 5 + 1, 5 + 1 + 4, 1 + 4 + 2, 4 + 2 + 3) sum up to 
~ 7. That is, all sums of the elements of a triplet (2v + 1) of consecutive 
logic groups are ~ mi + 1. 

The above mode satisfies both conditions, and therefore would 
not be eliminated by suppression of the common logic group of size 
1ni = 6. 
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5.2.3 Sufficient Subset 

Suppression of a particular common logic group of size mi generally 
does not prevent wrong modes with gmin > mi, but it does prevent 
some of the wrong modes with gmin < 1nj,. In the remaining unsup
pressed modes with gmin < mi, which all satisfy the two conditions 
stated in Section 5.2.2, the largest possible gmin-value, called gmin max, 
follows from condition i: 

2. 

L: Y; ~ m. (v = 1 or 2 or 3 ... ). 
;=1 

Every possible partition of this sum delivers a value gmin' The maxi
mum of these gmin-values for all possible partitions is gmin max. It oc
curs with the minimum value of v = 1 and is 

Ymin mal: ~ mJ2. 

This is the next lower common logic group SIze mi + 1 that must 
be suppressed: 

(5) 

mi+1 is the next possible logic group size equal to or less than mJ2, 
which is 

mi+1 ~ (mi - 1)/2 for single-phase counters, (6) 

mi+1 ~ (m. - 3)/2 for double-phase counters. (7) 

This results in only a single mi+ I-value in each case, when the re
strictions of possible logic group sizes are taken into account. 

Combining the restrictions and the inequalities (5), (6), and (7) 
into a single expression, we get for the next lower common logic 
group 1nj, + 1 that must be suppressed: 

mi ( 1) mi+1 = 2 - p - "2 ·Ll 

with Ll chosen to make m,+1 an integer, and 

p = 1 
p=2 

mi+l =1, 2, 3, 4, 
m.+ 1 = 2, 4, 6, 8, ... ~f n = even} 
m'+ 1 = 1, 3, 5, 7, ... If n = odd 

for single-phase counters 
for double-phase counters 
for single-phase counters 

for double-phase counters. 

(8) 
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If we suppress 1ni , it is sufficient to supress 1ni+1 as the next lower 
common logic group, since suppression of 1ni prevents all wrong modes 
with 1ni ~ gmin > 1ni+1 • Recursion formula (8) determines the maxi
mum spacing of successive common logic group sizes 1n j to be suppressed 
for sufficiently suppressing all common logic groups within the covered 
range. By extending this range from the largest common logic group 
1no to the smallest common logic group 111'k , we get the sufficient subset 
of common logic groups 

that must be suppressed for preventing all wrong modes. 1no is de
termined by expression (4); 1n! through 1nT;, are obtained by expres
sion (8). 

5.2.4 Necessary Subset 

The mi-values resulting from expressions (4) and (8) 

1no , 1n1 , 1n2 , ••• , lnj, ... , 1nk 

always represent a sufficient subset of common logic groups to be sup
pressed for preventing all wrong modes. But for some particular counters, 
the necessary subset mo , m1 , 1n2 , ••• , mj may be smaller by a few 1ni
values. That is, the smallest values 1nj+1 ... 1nk of the set are not neces
sary. There is not a simple expression like (4) and (8) for giving only 
the necessary 1ni-values but, for a particular counter, they may be 
found by using the two conditions in Section 5.2.2, which have not yet 
been used to their full extent in Section 5.2.3. In a first step, the last 
value mk is left off and a check is made whether any wrong mode exists 
that could satisfy both conditions for the remaining 1ni-values. Such 
modes can be found by listing all possible combinations of logic groups 
that satisfy those two conditions (for 1 ~ v ~ 1nJ2). If there is no mode 
consisting entirely of these listed combinations, 1nk is not necessary. In 
the next step, 1nk-1 is left off, repeating the procedure, until the last 
necessary value 1nj is found. 

For counters up to 20 stages, Table II gives the. sufficient mi-values 
(bridging parameters) according to expressions (4) and (8), with 
the unnecessary ones in parentheses. 

5.3 I1nplementation in Different Counter Circuits 

Each bridging parameter 1ni denotes one bridging connection, bridg
ing 1ni stages, which has to be added to prevent wrong modes (as 
described in Section 5.2.1 and shown in Fig. 5a). Figures 5b, c, and d 
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TABLE II - BRIDGING PARAMETERS m, 
(Numbers without parentheses denote the necessary and sufficient bridging 

connections.) 

For double-phase counters 
Number of For single-phase 

stages counters With even With odd 
number of number of 

stages stages 
n mi mi mi 

2 * * 
3 1 1 
4 1 * 
5 1 1 

6 2 (1) 2 
7 2 1 1 
8 2 (1) 2 
9 3 (1) 3 (1) 

10 3 1 2 

11 3 (1) 3 (1) 
12 4 2 (1) 4 (2) 
13 4 2 1 3 (1) 
14 4 2 (1) 4 2 
15 5 2 (1) 5 (1) 

16 5 2 (1) 4 (2) 
17 5 2 (1) 5 (1) 
18 6 3 (1) 6 (2) 
19 6 3 1 5 (1) 
20 6 3 (1) 6 2 

* No bridging parameters because these counters have no wrong modes. 

show the bridging connections for the values m = 3 and m = 1 for 
counters with different types of stages. In counters with 6-gate stages, 
as shown in Fig. 5d, additional gates are required for proper sup
pression of common logic groups without impairment of the correct 
mode. For not impairing the correct mode, a feedback connection is 
required from the output of stage Sa;. These counters need one addi
tional gate if there is one bridging connection or two additional gates 
if there is more than one bridging connection. 

As an example, we obtain for a 3-stage single-phase counter only 
one bridging parameter mo = mj = 1. This means that only one 
bridging connection is needed, bridging one stage. Figure 6 shows 
three possible locations of the bridging connection. If bridging con
nections pass the twist, they must also be twisted, as illustrated in 
Figs. 6b and c. 

For double-phase counters with an odd number of stages, one also 
has to make sure that the signal from stage Sx-l-m; does not reach stage 
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c 

(a) 

c 

c 

m=I~ ____________________________ ~ 

(c) 

Fig. 6 - Single-phase counter with three stages reqmrmg one bridging con
nection, m = 1. Parts a, b, and c are three equivalent solutions. If a bridging 
connection passes the twist, as in band c, it must also be twisted. 

8 x earlier than the signal from stage 8x-1 caused by the same clock pulse. 
Otherwise a pattern· .. 1 + 1 + 1 + 1 + 1 ... might not be prevented 
under certain worst case propagation delays of the logic circuits in
volved. It is easy to assure this timing condition if logic gates are used 
that also provide a complementary output (as is the case in emitter
coupled gates). Figure 7 shows such an example with NOR/OR gates. In 
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A 

Fig. 7 - Double-phase counter with three stages (with NOR/OR gates). Use 
of complementary gate outputs (OR output 810 instead of NOR output 81 , and 
82f) instead of 82) for increasing the permissible gate propagation delay tolerance 
range. 

the case of a wrong mode (1 + 1 + 1) in this double-phase counter 
with three stages, output SlO appears one gate propagation delay later 
than S1 upon an input pulse A, and output S20 one propagation delay 
earlier than S2 upon the same input pulse A. This is sufficient to meet 
the above timing condition. If complementary gate-outputs are not 
available, a small delay may be introduced into the bridging connections. 
This additional timing condition does not exist in single-phase counters 
and in double-phase counters with an even number of stages. 

5.4 Experimental Verification 

Proper suppression of all wrong modes by bridging connections 
determined according to the described procedures has been verified 
experimentally with counters of all three types (Figs. 1, 2, and 3), 
with different stages (Fig. 4) and with many different values of n. 
Counters for which the necessary set of bridging connections is 
smaller than the sufficient set resulting from the formulas were 
given spe.cial attention. 

5.5 Summary: Suppression of Wrong Modes 

A small number of additional circuit connections (bridging con
nections) are sufficient for suppressing all wrong modes in a twisted 
ring counter. The bridging connections are determined by the bridg
ing parameters mi, which can be found by the formula: 

m =?!: - 2P.A, 
o 3 3 

mi ( 1) mi+l = 2 - p - "2 • A 
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with Ll chosen to make 1no and mi+l integers, and 

n = number of counter stages 
p 1 
p = 2 

mi = 1, 2, 3, 4, 
mi = 2, 4, 6, 8, ... if n = even} 
mi = 1, 3, 5, 7, ... if n = odd 

i = 0, 1, 2, 3, ... , j, ... , k. 

for single-phase counters 
for double-phase counters 
for single-phase counters 

for double-phase counters 

Each of the resulting bridging parameters mi denotes one bridging 
connection in the circuit, which bridges 1ni stages (Fig. 5). The 
bridging connection can be located anywhere in the counter ring; if 
it passes the twist, it must also be twisted. See Fig. 6. 

The resulting k + 1 bridging parameters denote a sufficient set of 
k + 1 bridging connections in every case. For certain counters, how
ever, the necessary set of j + 1 bridging connections is slightly 
smaller; it can be determined by the procedure described in Section 
5.2.4. 

Table II gives the k + 1 bridging parameters according to the 
above formula for different counter types up to 20 stages. The bridg
ing parameters denoting unnecessary bridging connections according 
to the above procedure are in parentheses. 

VI. CONCLUSION 

Tools and methods for predicting and suppressing wrong modes 
in twisted ring counters have been developed. As a result we have 
gained a better insight into the multimoding mechanism and ob
tained a simple method for preventing multimoding. This method is 
summarized, and the required additional circuit connections are given 
in Table II for counters up to 20 stages. 
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SYllthesis of Rational Transfer Function 
Approximations USillg a Tapped 

Distributed RC Line With Feedback: 

By DAVID A. SPAULDING 

(Manuscript received June 26, 1968) 

This paper describes a sil1l,ple procedure for synthesizing an active 
distributed RC network which, by using dominant poles and zeros, realizes 
a very accurate approxil1wtion of an arbitrary stable rational transfer 
function. The network uses a single uniformly distributed RC line with taps 
spaced along its length. A linear combination of tap voltages is added to the 
input signal to form the driving voltage for the RC line; the output signal is 
also a linear combination of the tap voltages. 

The network offers a number of significant advantages. Since it realizes a 
nearly rational transfer function, the approxil1wtion problen" can be 
conveniently solved using readily available results on rational function 
approximation. Also, the network uses only one uniform RC line, the transfer 
function can be changed simply by changing resistor values, and the frequency 
can be scaled by minor connection changes. Thus one standard network with 
minor modification is useful for a wide variety of applications. 

This paper develops the design procedure and derives the various sensi
tivity functions of importance. Two exmnple designs are carried out: an 
approximation to a second-order low-pass transfer function and an approxi
mation to a second-order band-pass transfer function with a Q of 100. The 
sensitivities for the examples are very reasonable and the measurements made 
on laboratory models indicate excellent agreement with theoretical predictions. 

I. INTRODUCTION 

The progress being made in miniaturizing electronic circuits has 
stimulated a continuing interest in the synthesis of networks using 
distributed RC components. Numerous techniques are available for 
synthesizing transfer functions using distributed RC components in 
conjunction with various active network elements.1 Generally, these 
synthesis procedures are applicable only if the transfer function has 

2051 
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a very special form. This form is not a rational function of the com
plex frequency variable s but involves hyperbolic functions of s. If 
the problem posed to the network designer were merely to realize 
given transfer functions of this special form using distributed RC 
networks, there would be no difficulty. 

However, the problem is generally not this but rather to realize a 
network which achieves certain system specifications such as band
limiting or pulse shaping. Thus, a realizable transfer function must 
be developed which approximates the specifications (that is, the ap
proximation problem must be solved) before a network can be 
synthesized. Because the transfer functions realizable by distributed 
RC networks have a somewhat complicated form, the approximation 
part of the network designer's work is more difficult when using dis
tributed RC networks. This fact has led to a continuing effort to 
develop distributed RC networks which realize rational transfer 
functions. Since rational functions are easier to manipulate, and many 
applicable results are readily available in the literature, the approxi
mation problem is made much easier. This paper develops a simple 
procedure and network for realizing an accurate approximation to a 
rational transfer function using an active network incorporating a 
distributed RC line. 

Available techniques for synthesizing rational transfer functions 
using distributed RC networks are documented by Heizer, Barker, 
Woo and Have, and Fu and Fu. 2

-
G Each of these techniques uses the 

fact, first demonstrated by Heizer, that some of the immittance 
parameters of a distributed RC line can be made rational functions 
of s by cutting the conducting layer of the RC line in a particular 
manner. 

These synthesis techniques have some definite disadvantages. They 
require two RC lines with cuts in the conducting layer which depend 
upon the transfer function being realized; this is undesirable from a 
manufacturing point of view and makes tuning difficult. Also, the 
synthesis procedure involves a test to determine that the curve cut 
in the conductor satisfies certain restrictions, that is, it does not "at
tempt" to create a negative capacitance in the line. If it does, a new 
try at the design is required. Fu and Fu eliminate this problem at 
the expense of a significant increase in circuit complexity.6 

Recently techniques have become available for approximating 
rational transfer functions by using the dominant poles and zeros of 
distributed networks. A few representative approaches are those of 
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Kerwin, Bello and Gausi, and Wyndrum. Kerwin's approach, in gen
eral, requires the use of lumped components. 7 Bello and Gausi con
sider only low-pass transfer functions and use different configurations 
to realize an arbitrary transfer function. s Wyndrum's technique also 
deals only with low-pass transfer functions.!) 

The synthesis technique described here offers advantages over the 
other available techniques since only one uniformly distributed RC 
line is used and it is capable of realizing an accurate approximation 
to an arbitrary transfer function. In addition, the design procedure 
is very simple. 

II. TRANSFER FUNC'l'ION OF UNIFORM RC LINE WITH FEEDBACK 

Chen and Levine10
,11 have suggested that filters could be built 

using a uniform RC line driven by an input voltage source and hav
ing the output formed as a linear combination of the voltages ap
pearing along the line as in Fig. 1. This procedure is useful in some 
cases but is not general enough because it synthesizes transfer func
tions by using zeros of transmission. What is needed in addition to 
zeros are poles; poles can be realized by using feedback as in Fig. 2. 

The network of Fig. 2 consists of a uniform RC line with taps 
spaced along its length. The tap voltages are appropriately scaled by 
the infinite input impedance coefficients ai and added to the input 
signal to form the driving voltage for the line. The output voltage is 
the sum of the tap voltages appropriately scaled by the infinite input 
impedance coefficients bi • The RC line is the three-layer structure 
shown in Fig. 3, where it will be assumed that there is no voltage 
varia tion in the y direction. 

To determine the voltage transfer function of the network of Fig. 

Fig. 1- Tapped RC line. 
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Fig. 2 - Tapped RC line with feedback. 

2, we first determine the voltage gain Gi (s) from the input of the line 
to a point Xi meters from the input. The result isl 

Gi(s) = cosh (l - xi)~rcs)! 
cosh l(rcs)' 

where 1 is the total length of the line in meters, and rand c are the 
resistance and capacitance per meter. If the distances l and Xi are 
constrained to be integral multiples* of some fixed length do, that is, 
l = Ldo and Xi = ido , and we Jet T = rcd~ , Gi(s) becomes 

G .(s) = cosh (L - i)\TS)!. 
• cosh L( TS)' 

(1) 

Using (1) the voltage transfer function of the network of Fig. 2 be
comes 

L 

L bi cosh (L - i)( TS)} 
G(s) = I{ ....:...i~--"O'--_____ _ (2) 

L Ci cosh (L - i)( TS)! 
i=O 

where Co = 1 and Ci = - a i for i r= ot . The real constant I{ is such that 
bi = 1 for the smallest i for which bi r= o. By making the substitution 
p = exp (TS)! and factoring the resulting polynomials in p, it can be 

* For any set of x! and l, a small enough d{) can be found that error in this 
assumption is negligible. 

to:o has been set to zero which can be done wit.hout any loss of generalit.y. 
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Fig. 3 - Uniform RC line. 

shown that (2) can be factored into the form 
R 

2R
-

L II [cosh (rs)! - Zi] 
G(s) =]( --L----'---i=~l------

II [cosh (rs)! - Pi] 
i=l 
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(3) 

where 1 ~ R ~ L [unless the numerator in (2) is unity in which case the 
numerator of (3) is 21

-
L

] and the quantities Pi and Z i are real or occur in 
complex conjugate pairs. 

Before considering the question of stability, we will determine the 
locations of the poles and zeros of G(s). Notice that, in spite of the fact 
that (s)! is involved, G(s) is single valued. To determine the pole (zero) 
locations, we set the denominator (numerator) factors in (3) equal to 
zero and solve for s. For a typical denominator factor (cosh (rs)! - PJ 
we calculate the s-plane pole positions to be 

rSi = In2 I Pi I - (arg Pi + 2n7l")2 + 2j In I Pi I (arg Pi + 2n7l") (4) 

where n = 0, ±1, ±2, ... and Pi = Pi + (P~ - I)!. The term Pi 
comes from the solution of a quadratic equation which has two roots. 
However, these roots are always reciprocals of one another and, as can 
be seen from the form of (4), these two values of Pi give the same Si • 

Hence, only one of them need be used. A simple check shows that each 
of the poles resulting from the single term (cosh (rs)t - Pi) as given by 
(4) is simple.* 

When Pi is real, the Si given by (4) are on the negative real axis for 
I Pi I ~ 1 and occur in complex conjugate pairs for I Pi I > 1. vVhen Pi 
is complex, (3) involves a term [cosh (rs)t - Pr] which gives poles that 
are the complex conjugates of those of (4). 

It is easy to see from (4) that the infinite set of poles generated by one 

* For P = ± 1 double roots occur but not for P = + 1 with n = O. 
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denominator factor lie on a parabola given by 

In2 I Pi I w
2
r 

(j = r - 4ln~· (5) 

Figure 4 shows the location of these poles in the normalized, r = 1, 
s-plane. The poles due to the term [cosh (rs)! - p,J are indicated by 
single circles and those due to the term [cosh (rs)! - PtJ by double 
circles. Similar comments hold in the case of numerator factors in (3). 

Knowing the locations of the poles of G(s) permits the question of 
stability to be answered easily. For simplicity we assume that in (2) 
bo = 0. If this is not the case, G(s) can be separated into the sum of a 
constant plus a G(s) which is of the form of (2) where G(s) has the same 
denominator as G(s) but different numerator and bo = o. The constant 
gain is stable. With bo = 0, G(s) is stable, that is, its impulse response 
remains bounded for large values of time, if all the poles lie in the left 

NORMALIZED s- PLANE IjW 
w2 

O'L = ~n2 I PLI - ---
4 in2 1PLI r----(arg PL + 4'7T)2----

I :1 (arg PL + 2'7T)2 

~--(arg PL -4'7T)2-

--I in2
1 PLI 

(j 

--(arg PL - 2'7T)2 

Fig. 4 - S-plane roots resulting from a pair of complex conjugate factors in 
G(s). 
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half of the s-plane and those on the jw axis are simple. This result can be 
proved by finding the inverse transform of G(s) by using the Cauchy 
residue calculus.12 

Notice that G(s) is a meromorphic function and G(s) ~ 0 as s ~ 00. 

The Laplace inversion relation is written as 

1 jCi+illR 
get) = lim -2 . G(s)e· t ds. 

n-+oo 7fJ Ci-jlln 

This integral is evaluated by closing the contour in the left half plane 
so that it does not pass through any poles of G (s) and encloses a 
finite number of poles. The value of the closed contour integral is 
determined by the residues of the poles enclosed. As n ~ co Yn ~ co 
and the contours in the left half plane become larger without bound. 
Using Jordan's lemma13 the integral over the left half plane contour 
approaches zero and g (t) is determined. For large values of time the 
behavior of g (t) is dominated by that pole with the most positive 
real part. The stability requirement follows directly from this. 

III. TRANSFER FUNCTION SYNTHESIS 

A glance at Fig. 4 shows that, if the n = 0 pole is close to the jw axis, 
the response of the network will approximate that of this single pole 
alone for values of w near the pole. An examination of (4) shows that this 
dominance can always be made to occur by an appropriate selection of T. 

From (4) the pole positions in the s-plane are proportional to T -1. 

Therefore, by decreasing T the poles become more widely spaced and 
hence those near the jw axis become more dominant. Since P. can be 
adjusted so as to cause the n = 0 pole to be arbitrarily close to the 
s-plane origin, a decrease in T can be offset, for the n = 0 pole, by chang
ing p • . Therefore, the n = 0 pole can be made dominant. Hence, a 
rational transfer function can be approximated by the system considered 
here by making its dominant poles and zeros match those of the desired 
rational function. To calculate the feedback and feed forward coeffi
cients of (2) we calculate the Pi and Z i of (3) by using the desired pole 
or zero for s. in 

Po} 1 Z: = cosh (TSY (6) 

and multiply the factors in (3). 
The scale factor T controls the dominance of the n = 0 poles and zeros; 

the dominance improves as T is reduced. A lower limit on practical 
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values of T occurs because the network sensitivity generally deteriorates 
with reduced values of T. An upper limit on T occurs because the n = 0 
poles are restricted to the shaded area of Fig. 5. If T is large enough so 
that a desired dominant pole Si 1ies outside the shaded region, the net
work will realize this pole for a nonzero value of n. It is clear from Fig. 4 
that the network will then have an n = 0 pole with a more positive real 
part than that of Si • This pole can destroy the desired dominance or 
cause instability if it lies in the right half s-plane. The region permitted 
for n = 0 poles in Fig. 5 is determined from (4) by setting n = 0, 
substituting a value for Wi and solving for the most negative value of (Ii • 

The resulting restriction is 

2 2 

O >= > WiT _~. 
(Ii = 47r2 T 

(7) 

Except in rather unusual situations T will be much smaller than the 
maximum implied by (7). 

To synthesize an approximation of a given rational transfer func
tion, the following simple steps are performed. 

(i) T is selected so that all the poles of the transfer function lie in 
the region shown in Fig. 5, and the resulting n = 0 poles and zeros 
realized by the RC line are dominant. 

jw 

Fig. 5 - Permitted n = 0 pole positions in s-plane. 
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(ii) The desired transfer function poles and zeros are used in (6) 
to determine the Pi and Zi which, when substituted in (3) and multi
plied out, yield the feedback and feed forward coefficients for the net
work. 

(iii) The exact response of the network is calculated using (2) or 
(3) to verify that a good approximation has been achieved. 

As pointed out in the examples in Section VI, a wide range of values 
of T gives a very accurate approximation. Thus, a little experience 
will then make step iii unnecessary. The selection of T also affects the 
sensitivity of the network; hence sensitivity considerations may de
termine the best value of T. 

IV. SENSITIVITY 

One of the most important aspects of any active network synthesis 
technique is its sensitivity to various parameter variations. In addi
tion, sensitivity results are necessary to show how a physical network 
may be tuned to achieve an accurate realization of the requirements. 
Of the several different sensitivity functions that could be derived, 
we have chosen to consider the relative changes of the poles and 
zeros with a variety of parameters. These seem to give good physical 
insight into the behavior of the circuit and result in reasonably con
cise expressions. The sensitivity functions derived are the relative 
changes of the poles resulting from relative changes in feedback 
coefficients, T, tap positions, and tap loading. Similar results hold for 
the zero sensitivity functions. The details of the derivations are con
tained in the Appendix. 

If Aj is the pole in question and the sensitivity of that pole to some 
parameter X is defined as 

Sh j _ aAj X 
x - aX Ai ' 

and Pq = cosh (TAq) % where Aq is the qth pole, then we have the fol
lowing:>:· 

(i) Pole sensitivity to feedback coefficients: 

S h j 
ai L 

2L-2(TAj)lsinh (TAj)! II (Pi - P k) 

* AJ is assumed to be a simple pole. 

k=l 
;><j 

(8) 
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Simple relations for determining the numerator of (8) are given in 
Appendix equations (20) and (21). 

(ii) Pole sensitivity to RC product, T: 

S;i = -l. 

(iii) Pole sensitivity to improper tap spacing l
:-

S>'i -
1. -

S>'i 
1L 

ia i sinh (L - i)(TAi)' 
L 

2 L
-

2 sinh (TA,i II (Pi - P k ) 

L-l 

k=1 
;><j 

L L Ck sinh (L - k)(TAj)! 
k=O 

L 

2£-2 sinh (rAj)! II (P j - P k ) 

k=1 
;><i 

(iv) Pole sensitivity to tap loading: 

i-I 

i ~ L 

giR cosh (L - i)(rA,i L Ck sinh (i - k)(rAi)' 
S Ai 

Di 

k=O 

L 

2L
-
2rA j sinh (TA,} II (Pi - P k) 

k=1 
~j 

where gi is the conductance loading the ith tap and R = dor. 

v. SECOND ORDER DESIGN EQUATIONS 

(9) 

(lOa) 

(lOb) 

(11) 

For the case where L = 2, that is, where the RC line is realizing an 
approximation to a second order transfer function H (s), the design 
and sensitivity relations given above take on the very simple forms 
below (A and p, which are complex, are the pole and zero positions in 
the upper left half s plane) : 

P = cosh (rA)!, Z = cosh (rp)! 

ao = 0, a l = 4 Re(P), a2 = - (1 + 2 1 P 1 2) 

bo = b1 = 0, b", = 1 for H(s) with no finite zeros 

bo = 1, b1 = -4 Re(Z), b2 = 1 + 21 Z 12 for H(s) with finite complex 
zeros 

* lido = x{ where Xi is the distance from the input of the RC line to the ith tap. 
Nominally It = i. 



RATIONAL TRANSFER FUNCTIONS 2061 

1, b2 = - 1 for H(s) with one zero at zero 

s~ = -1 

2P Re (P) 
= j(TA)! sinh (TA)! 1m (P) , 

-2 Re (P) 
j 1m (P) , S~, S~. 

2P* 
j 1m (P) 

}. -glRP 
Srll = 2jTA 1m (P) , 

S~o = 2j(Tp)~ s: (~p)~ 1m (z) for H(s) with finite complex zeros. 

For the case where H(s) has two complex zeros, the zero sensitivities are 
the same as for the poles with p and Z replacing A and P, except for S~. 
which is given. For the case where H(s) has a zero at zero and at infinity, 
the sensitivity of the zero at zero is infinite (due to the normalization by 
1/ p), but unnormalized, 

op op 
obI = ob2 = 

2 
and 

T 

Other sensitivities not given are zero. 

VI. EXAMPLES 

Two examples of approximations to second order rational transfer 
functions will be worked out and compared with experimental results 
achieved with a thin film line. The two functions to be approximated 
are, normalized in frequency, 

(s/4l + 1 
Gl(s) = S2 + (2)!s + 1 

0.01 s 
G2(8) = S2 + 0.01 s + l' 

(12) 

(13) 

The first is a noncritical low-pass function with a pair of zeros on the jw 
axis and the second is a band-pass function with a Q of 100. 

For the low-pass function (12), sensitivity is not a problem be
cause the poles are very low Q. Therefore, T can be selected to satisfy 
(7) and to insure dominance of the poles. Letting T = 1 we have the 
following results: 
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A = (-1 + j)/(2)!, 

p = +j4, 

P = 0.646 + 0.313j, 

Z = 0.342 + j1.9 

ao = 0, a l = 2.59, a2 = -2.032 

bo = 1, -1.36, b2 = 8.5, J( = 0.0544 

s~, = 3.33 L 154°, s;. = 3.65 L -52° 

s~, = 4.12L90°, s;. = 4.6L-U6° 

s~, = 1.15g1RL -19°, S~I = 2 .3g2R L 109° 

s~o = 0.508 L 125°, s~, = 0.16L -137°, S~. = 0.512 L -37° 

S~, = 0.359 L 90°, S~. = 2.03 L -170° 

S~, = 0.126g1R L800, S~I = 0.254g2R L 100° 

Figure 6 shows a block diagram of the experimental circuit, the theoreti
cal response, and the measured results. Notice that the theoretical 
response realized by the RC line and that of the rational function cannot 
be distinguished on the scale used for this figure, since they differ by 
1 percent at most. 

In the case of G2 (s) which has a pole with a Q = 100, dominance is 
achieved for a wide range of values of T for which (7) holds, and the 
selection of T is influenced primarily by sensitivity considerations. The 
parameter T affects the sensitivity in a rather complicated way as can 
be seen from the various sensitivity relations. An examination of the pole 
sensitivity to coefficient variations has shown that S~2 has a rather broad 
minimum in the range 2 ~ T ~ 14 and that S~l goes to zero in this range 
when at = O. Therefore, without an exhaustive study to determine an 
optimum value of T, we select that value which gives a] = 0, that is, 
T = 4.94. With this value of T the fol1owing result: 

A = -0.005 + j 

bo = 0, bl = 1, 

S;. = 00452 L -45° 

S~, = 0.1015g1R L90° 

P = j2.34 

a2 = -11.95 

b2 = -1 J( = 0.051 

S;. = 2 L 180° 

S;. = 0.203g2RL90° 

iE. = ~ = 00405 L 180° 
ab 1 ab 2 

~ = o A05R L 180° for the zero at zero. ag2 
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Fig. 6 - (a) RC line with feedback approximating Gl(S). (b) Gain vs fre
quency for Gl(S). 

The block diagram of the experimental circuit, the theoretical re
sponse, and measured results are shown in Fig. 7. The difference between 
the theoretical gain of the RC line and that of the rational function is 
not noticeable since it is approximately 0.1 percent over the frequency 
range shown in the figure. 

The sensitivity of this network is quite acceptable. 8~. can be con
trolled by the proper selection of impedance levels; l2 , a2 and T can be 
stabilized so that the values of 8;2 , 8:2 and 8~ are satisfactory. l2 should 
not change after manufacture; a2 can be made to depend only on the 
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Fig, 7 - (a) RC line with feedback approximating G2(s), (b) Gain vs fre
quency for G2 (s). 

ratio of two resistors which track with temperature and T can be stabi
lized by selecting the temperature coefficients of the resistive and 
capacitive materials of the Hne to be negatives of one another.* 

Several final notes concerning the network are in order. By isolat
ing the taps on the line with emitter followers when necessary, it is 
possible to reduce to two the number of operational amplifiers in the 
network used for combining and scaling, one for the feedback voltages 
and another for the feed-forward voltages. 'Vhen several of these net
works are cascaded, one of these two can be eliminated by using an 
operational amplifier from the succeeeding network. One RC line can 
be constructed with a large number of taps. Then by selecting the ap
propriate set of taps, the line can be used for a variety of purposes 
and at different frequencies. 

* Tantalum resistors on a substrate can be made to track within ± 5 ppm;oC and 
RC products can be made to track within ± 30 ppm;oC. 
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Although only second-order examples were worked out and built, it 
is not unreasonable to expect that advances in building thin film RC 
lines and resistors using tantalum may eventually yield the stability 
of the various parameters required to make higher-order realizations 
possible. 

VII. CONCLUSIONS 

A network has beeen described which uses a single uniform RC 
line with feedback to approximate an arbitrary rational transfer 
function. The design procedure is simple as is the physical network. 
Theoretical calculations indicate that the transfer function realized 
by the RC line is an accurate approximation of the desired rational 
transfer function and measurements made on experimental circuits 
agree well with the theory. 
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APPENDIX 

Derivation of Sensitivity Expressions 

This appendix derives the sensitivity expressions given by (8) 
through (11). The sensitivity of quantity A to parameter a is defined as 

(14) 

If Sj is a network pole and D (s) is the denominator of (2), D (Sj) = 
O. The equation D (Sj) = 0 defines Sj as an implicit function of the 
parameters in D (s). By differentiating the equation D (Sj) = 0 with 
respect to a parameter a, we can determine the quantity dSj/ da. This 
result will hold for general values of the various parameters in D (s) . 
For the particular case when all the parameters in D (s) have their 
nominal values, Sj will in fact be one of the desired network poles, 
that is, Sj = Aj. Furthermore, the factorization used in going from (2) 
to (3) can then be used to simplify the expression for dAj/da. The 
sensitivity of Aj to a is then determined by using (14). A similar pro
cedure using the numerator of (2) gives the sensitivity functions of 
the zeros. 
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A. 1 Sensitivity of Poles to Feedback Coefficients 

From (2) the denominator of G (s) is 
L 

D(s) = L Ck cosh (L - k)(7s)!. 
k-O 

If Sj is a root of D (Sj) = 0, we have 

~ D(sj) = 0 = [± ck(L - k) sinh (L - ~)( 7Sj)! 7J aS j 

ac. k=O 2( 7Sj) aC i 

(15) 

+ cosh (L - i)( 7Sj)!' 

Setting all the parameters to their nominal values gives Sj = Aj • As 
shown in (18), the term in brackets is nonzero if A is a simple pole and 
7Aj ~ - n2

'Jr2 where n is a nonzero integer. Therefore, solving the above 
equation gives 

aAj = cosh (L - i)(7A,.)! 

aC i ~ (L _ 7) sinh (L - k)(7A,i 
L.J Ck 11V ( "\)t 7 
k=O 71\j 

(16) 

As was done in (3), (15) can be factored, when all parameters have 
their nominal values and Pli, = cosh (7Ali,) %, into 

L L 

D(s) = L Ck cosh (L - k)(7S)! = 2L
-

1 II [cosh (7S)! - P k ]. (17) 
k=O k=l 

Differentiating this equation with respect to S gives 

~ (L - k) sinh (L - l1V)(7s)! 
L.J Ck 2( )! 7 
k-O 7S 

= 2L-1 ~ sinh (7S)1 IlL [ h ( )l _ P ] 
L.J 7 2( )! cos 7S k , 

m=l 7S k-1 
Fm 

and letting S = Aj, we have 

± Ck (L - k) sinh (L ~- k)(7A,.)1 7 = 2L - 27 sinh (T~j)! IT (P
j 

- P
k
). 

k-O 2(7Aj) (7Aj) k=l 

r'j (18) 

(18) is nonzero provided Ai is a simple pole and 7Aj ~ - n2
'Jr2 where n is 

nonzero integer. 
Using this and aCJaai 

SAj a, 

= - 1, i ~ 0, with (16) gives 

ai cosh (L - i)( 7Aj)! 
L 

2L
-

2(7Aj)! sinh (7Aj)! II (Pj - Pk ) 

k~l 

Fj 

(19) 
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The numerator can be simplified by expressing ai in terms of the PI; 
by using (17) and by factoring cosh (L - i) (TAj) %. The results are 

ao = 0 

(20) 

and 

(L-i) { [ 2k - 1 ]} cosh (L - i)(TAj)t = 2(L-i-Il g Pi - cos 2(L _ i) 7r , 

i ~ L. (21) 

A. 2 Sensitivity of Poles to Tap Position 

The tap positions are directly proportional to the integers k in (15). 
If k in (15) is replaced by ll.; which is no longer constrained to be an 
integer and Sj is a root of the resulting D (s), we have 

L 

D(sj) = L Ck cosh (lL - lk)(Tsj)t = o. 
k=O 

As in the previous section, differentiating with respect to lk' solving 
for os/alk , using the nominal values h = k so that Sj = Aj, and using 
(18) , we have 

and 

S A; 
li 

SA; 
I L 

L 

2L
-

2 sinh (TA;)! II (P j - P k) 

L 

k=l 
r'j 

L L Ck sinh (L - k)(TA li 
k=O 

L 

2L
-

2 sinh (TAj)! II (P j - P k ) 

k=l 
r'j 

* Divide af by 2 if i = L. 

i ~ L (22) 

(22) 
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9L 

'~--------~I---------/~'~----------I--------~/ 
AL AgL AL-i. 

Fig. 8 - RC line model for loading analysis. 

A.S Pole Sensitivity to Tap Loading 

To calculate the sensitivity of a pole Ai to the loading at the ith tap 
by a conductance gi , we assume that all other taps are not loaded, that 
is, g i = 0 for j ¢ i~ and calculate the voltage transfer function from the 
input to the various taps. Having found these, we calculate the denomi
nator of the system transfer function, D(s), and proceed to calcu1ate 
aA,jag. in the same ,yay as was done in Section A.2. 

To calculate the voltage transfer function we will use the chain matrix 
description of the line which is 

Ak = [ cosh lc( TS)! ZO sinh k( TS)tJ 
Z~l sinh k(TS)! cosh k(TS)t 

where Zo = (rlcs) 1h and kdo is the length of the line. The line, loaded 
by gi at the ith tap, can be considered as the cascade connection of 
an RC line of length ido connected to a two-port consisting solely of 
gi which in turn is connected to an RC line of length (L - i) do as seen 
in Fig. 8. The chain matrix of gi is 

Au; = [1 OJ. 
g. 1 

From Fig. 8 and the properties of the chain matrix we have for 0 

~k<i 

and for i ~ k ~ L 

r::J = AL-{ ~:J ~ B{ ~J . 
o the above relations give the voltage transfer functions 
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from the line input to the kth tap as 

Gk(s) = ek(s)/eO(s) = BkU/Bol1 

where Bkll is the (1, 1) element of the matrix Bk • 

The matrices Bk for 0 ~ k < i and i ~ k ~ L, are 

2069 

i{COSh (L - k)(TS)! } 

Bk = l + giZo sinh (i - k)(TS)1 cosh (L - i)(TS)! 

{ ... } !:: :1] 
and 

Bk = [COSh (L - k)(TS)! 

{ ... } 
{ ... }l ' 
{ ... L 

respectively, which give the gains GIe(s) as 

G ( ) - cosh (L - k)( TS)! + giZO sinh (i - k)( TS)! cosh (L - i)( TS)! 
k S - cosh L(TS)! + giZO sinh i(TS)! cosh (L - i)(TS)! , 

for 0 ~ k < i, and for i ~ k ~ L 

G (s) = ! cosh \L ~ k)(lTS)! . 1. 

k cosh L(TS)2 + giZo smh 1,(TS)2 cosh (L - 1,)(TS)' 

By using these equations in the expression for the gain of the feed
back structure and multiplying the numerator and denominator of 
this expression by BOll, we have the following expression for the 
denominator, D (s). 

L 

D(s) = L CkBkll 
k=O 

L 

L Ck cosh (L - k)(TS)! 
k=O 

i-l 

+ giZo cosh (L - i)(TS)! L Ck sinh (i - k)(TS)!. 
k=O 

Now proceeding as in the previous sections, let D (Sj) = 0 and differ
entiate with respect to g'L to get 
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\¥ith gi = 0, Sj = Aj and the above gives with (18) 

SAj !I. 

i-1 

giR cosh (L - i)(TAi)! L: Ck sinh (i - k)(TAi)! 
k=O 

L 

2 L
- 2TAi sinh (TAj)! II (Pi - P k ) 

k=1 
",i 

A. 4 Sensitivity to RC Product Changes 

It is assumed that the product RC = T of the line is uniform but not 
correct. The sensitivity of the poles to changes in T is easily seen to be 

S;i = - 1 

since T always appears multiplying s in the transfer function and IS 

a frequency scale factor. 
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