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This paper presents a new method for computing the parameters which 
determine the differential equations governing a linear time-invariant 
system with multiple inputs and outputs. Unlike earlier approaches the 
method presented does not involve c01nputation of the impulse response. 
One of the main advantages of this method is its easy generalization to the 
case when the given data is contaminated with noise. 

The identification of multiple input-output linear systems has been 
a problem of considerable interest because of its importance in circuit 
and control system theory. In circuit theory the problem is that of 
synthesizing a linear time invariant circuit to exhibit a prescribed 
input-output behavior. In control theory, however, the problem arises 
out of a need to model a given linear system with a suitable set of 
differential equations, given its input-output behavior. References 1, 
2, and 3 deal with the problem of determining the parameters of the 
differential equation model from the impulse response. To the best of 
the author's knowledge, there is no published method which deter­
mines the impulse response from a finite segment of input-output 
data in the case of systems with more than one input and output. 
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I. THE "STATE INVARIANT" DESCRIPTION 

In most applications of identification techniques, one is given only 
a record of input sequences and a record of output sequences, rather 
than the impulse response function. In these cases it seems best to 
get an internal description of the system directly from these data; 
that is, avoid the intermediate step of synthesizing the impulse re­
sponse. In many applications the structure of systems that are being 
identified remains the same, while values of parameters change. 
Therefore, it is convenient to work in a certain coordinate frame which 
is fixed for the given system. Most important of all, a method of arriv­
ing at the values of parameters directly from input-output data is 
easier to analyze than the method in which impulse response is syn­
thesized, since the sensitivity of intermediate computations re­
quired to obtain the impulse response matrix need not be analyzed. 

The problem is therefore formulated as follows. Let ~ be a linear 
system in discrete time modeled by equations (1) and (2): 

xes + 1) = Fx(s) + Gu(s) 

y(s) = Hx(s). 

(1) 

(2) 

x (s) € En (the un" dimensional Euclidean space) is the state of ~ at 
time s; similarly u(s) and y(s) are the m-dimensional input and the 
p-dimensional output of ~. F, G, H are real constant matrices of ap­
propriate dimensions. ~ is assumed to be completely reachable and 
completely observable (for details about these terms see Ref. 4), 
namely 

rank of [G, FG, ... , Fn-1G] = n (3) 

and 

rank of [H', F'H' , ... , F,n-1H'] = n (4) 

where prime (') denotes the transpose. Given a sequence of inputs u(s) 
and outputs yes) for s = 1, 2, ... , N (where N is sufficiently large), 
find a system 2 of the same dimension as ~ namely n such that 2 
simulates the input-output behavior of ~. 
Remark 1: It is clear that there are some sequences u(s) which will 
not be sufficient to uniquely specify 2. Theorems, presented in Section 
II, give sufficient conditions for u(s) and N which uniquely determine 2. 
Remark 2: When 2 is uniquely determined it will be shown that the 
state of 2 is uniquely related to the state of ~. In fact the F, G, and 
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H of t will be related to the F, G, and H of ~ by a nonsingular trans­
formation such that HFiG = H pi G which implies that the impulse 
responses of ~ and t are identical. Notice that for any nonsingular T 

H = HT- 1 F = TFT- 1 G = TG 

implies that 

HFiG = HPiG. 
The main difficulty in obtaining a direct algorithm is in getting at the 
state x(s) from output sequences when the parameters of the system 
are not known. When, for example, H in the equation below is identity, 
or equivalently the output itself is the state, it is easy to find an in­
ternal description from sequences of inputs and outputs. From writing 
this equation as 

xes + 1) = [F G][X(S)] 
u(s) 

yes) = Hx(s) = x(s) , 

it follows that given enough observations one can solve for F and G 
from the above equation for most nontrivial input sequences (see 
Theorem 2). An easy way is to multiply both sides of this equation 
by [x'(s) u'(s)] and sum from s = 1 to s = N where N is the number 
of observations: 

t {xes + l)[x'(s) u'(s)]} = [F G] t {[x (s)] [x'(s) U'(S)]}. 
a-1 8-1 u(s) 

Whenever the matrix mUltiplying [F G] in the above equation has 
an inverse, there exists a unique solution for F and G. 

In the case when y (s) is not the state itself but only a linear 
function of the state, the problem is much more complex and one 
has to select certain appropriate components of the output sequence 
for an external description in terms of the observables, namely y (i) 
and u(i). The selection of the right components can be done by in­
troducing an operator to be called the selector matrix as defined below. 

In describing the theory of the direct identification method, con­
sidera ble use is made of the input-output description to be detailed 
below. 

Definition: S will denote the set of k X l matrices (k ~ l) with the 
following properties: 
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(i) S = {Si;} where Sij = 0 or 1. 

(ii) \;/ i , Sij = 1 for one and only one j, say ji . 

(iii) j] < j2 < ... < jk , ji ~ l, i ~ k. 

Examples of matrices belonging to S are 

[1][0 1 OJ ... [1 0 OJ and so on. 
o 0 1 0 0 1 

(5) 

(6) 

(7) 

Any matrix S E S will be referred to as a selector matrix, because S 
operating on a linear space E' transforms it into a linear space Ek by 
mapping every vector x E E' to a vector y E ETc by selecting the com­
ponents j1 , ••• ,jk of x E E'. 

The description presented is an "external" description in the sense 
that the dynamical equations are given in terms of quantities which 
can be observed from outside, that is, values of input and values of 
output. 

Consider a completely reachable and completely observable discrete 
time system ~ represented as follows 

xeS + 1) = Fx(s) + Gu(s) , (8) 

yes) = Hx(s) , H: p X n; F: n X n; G: n X m. (9) 

"Completely observable" implies* 

perF' : H']) = n. (10) 

peA) = rank of A. Therefore, '3 an S E s, such that 

s[ 7] = Twhere ']1 is nonsingular; 

HFn
-

1 

(11) 

that is, T-l exists. Without loss of generality it can be assumed from 
remark 2 that T = I so far as the external description is concerned. 
Using equations (8) and (9) repeatedly, it follows that 

yes) = Hx(s) , 

yes + 1) = Hx(s + 1) = HFx(s) + HGu(s) (12) 

yes + n - 1) = HFn-]x(s) + HFn- 2Gu(s) + ... + HGu(s + n - 2). 

Let 

* [F' : H'] £ [H', F'H', ... , F'(n-OH']. 
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y'(S) ~ [y'(S) y'(S + 1) ... y'(S + n - 1)], (13) 

u'(s) ~ [u'(s) u'(s + 1) ... u'(s + n - 1)]. (14) 

Then, writing equation (12) in vector form, and also using equations 
(13) and (14), it follows that 

o 
o 

HG 

HFG 

xes) + 

o 
o 
o 

HG 

HFn
-

3G HFn
-

4G HFn
-

5G 

HFn
-

2G HFn
-

3G HFn
-

4G 

o 0 

HG 0 

o 
o 
o 
o 

o 0 

o 0 

o 0 

o 

HG 0 0 

HFG HG 0 

o 

o u(s). (15) 

o 

(16) 

then mUltiplying both sides of equation (15) by S, using the comments 
given below equation (11), it follows that 

Sy(s) = xes) + SR1u(s). (17) 

Once again, using equation (9), 

xes + 1) = Fx(s) + Gu(s), 

which because of equation (17), with s replaced by s + 1, reduces to 

xes + 1) = Sy(s + 1) - SR1u(s + 1); (18) 

substituting equation (9) for x (s) in equation (17) gives 

H I 

sg(s + 1) ~ F(Sg(s) - SR,'1(S)) + S ~F jGU(S) + SR1u(s + 1). 

HFn - 1. (19) 

t The last column of zeroes in Rl is added so that fj and u may be consistently 
defined. 
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Since it has been shown that [see equation (11)] 

S I~F 1 = I, 

HFn-1J 

it follows that 

where:!: 

Sy(s + 1) = FSy(s) + Ru(s) , 

HG 

HFG 

R ~ -FSR1 + S HF2G 

o 
HG 

000 

000 

HFG 0 0 0 

o 
HFn-lG HFn-

2G HG 

(20) 

(21) 

(22) 

Equation (21) gives a relation between the input sequence 'U (i) and 
the output sequence y (i) which does not involve the state. It is an 
external description in the sense that the variables in equation (21), 
namely u(i) and y (i), can be measured externally. From equation 
(22) it follows that if R is partitioned as 

(23) 

then 

(24) 

It is obvious how one obtains the columns of the second product 
in equation (22). To obtain the contribution from - FSR1 , notice from 
equation (16) that S times the second column from the end of Rl 
is, from equation (24), merely Rn- 1• Therefore, the second column of 
FSR 1 from the end is simply FRn- 1 and therefore 

t In adding SRIU(S + 1) to the second term in equation (20), the last column 
of Rl may be dropped because it is all zeroes. 
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r 0 

Rn
-

2 = - FRn
-

1 + sl ~G 
HFG 

(25) 

Now notice that Rn- 2 + FRn- 1 is S times the third column from the 
end of RIo Therefore the third column from the end of R is 

o 

R n - 3 = - FR n - 2 - F2R n _ 1 + S HG 

HFG 

HF2G 

Continuing in the same way, 

and finally 

o 

o 
HG 

~ :!G ~ Ro + FR, + ... + r'R._, . 
LHF~-lG 

Now, since it was possible to choose a basis such that 

(26) 
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one has 

G = Ro + FRI + ... Fn-1Rn_1 . (27) 

Equation (21) may be written in the form 

Sy(s + 1) = [F RJ[SY(S)] 
_ 71(s) 

and may in principle be solved for F and R. Thus from equations 
(27) it is clear that if the values for u (i) and y (i) were given and 
S were known, one could also solve for one set of values for F; and 
since in most cases H is full rank, H can be assumed to be [I 0]. 

II. THE MINIMAL REPRESENTATION AND THE DIRECT ALGORITHM. 

It was shown in Section I that, corresponding to every internal 
description of ~ which is completely controllable and completely ob­
servable, there is a description in the form of equation (21). In this 
scction we show that from the knowledge of the values of 'Ll(i) , i = 1, 
... , N, and y (i), i = 1, ... ,N, one can get the internal description 
of ~ under very general conditions on u (i). Central to the discussion 
are a few results which are presented in the form of theorems for the 
sake of clarity and precision. 

Given u(i), i = 1, ... , N, the inputs to a system ~ of dimension n 
which is completely observable and completely reachable, and the 
corresponding outputs y (i), i = 1, ... ,N, the following propositions 
hold true: 
N otel: It will be assumed in the following that the column dimension 
k of the selector matrix is always a multiple of p; further if k = rp, 
then 

(r - l)p ~ jz ~ rp. 

It is obvious that there is no loss of generality involved in this assump­
tion. (l is the row dimension of S.) 
Note 2: In the definition of yes) and u(s) in equations (13) and (14), 
the n should be replaced by r defined in Note 1 above. 
Theorem 1: Let S be I X k (= rp); then 

H 

HF 
p S < 1 (28) 
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implies that 

Nfl [SYCS)][Y'CS)S' u'Cs)] is a singular matrix (29) 
8= I uCs)' 

for every sequence u (i) , i = 1, 2, ... , N. 
Proof: Multiplying equation (10) on the left by S and replacing n by 
r we have, 

H 

Sy(s) = S ,HF xes) + SRl'u(s). 

Because of equation (28) 3 a vector, Z ~ 0, and in El such that 

H 

HI? z's = o. 

Therefore, multiplying equation (30) on the left by z' gives 

z'Sy(s) = z'SR{u(s). 

Therefore, 

[Z' _Z'SRI][SY(S)] = 0 
u(s) 

which implies that 

'\Is ~ N - r + 1 

Nfl [SY(S)][y'(S)S' u'(s)] is singular. 
s=1 u(s) 

(30) 

(31) 

(32) 

(33) 

QED 

'Pheorem 2: If ~ is completely observable and completely reachable, the 
matrices F, G, and Hare n X n, n X m, and p X n respectively; then 
3 an S: n X np such that 

T ~ nI: [SY(S)]rY'Cs)SI lies)] > ° almost surely (34) 
a=1 uCs) 
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where u (i) are random variables having a joint non lattice distribu­
tion.* 
Proof,' The first step in the proof consists of establishing Lemma 1. 
Lemma 1 " T > 0 if and only if 

n+nm [xes)] L [x'es) lies)] > O. 
11-1 lies) 

(35) 

Proof of Lemma 1: If T ::t> 0, 3 z' such that z' [zi z~] ~ 0, and 

zfSy(s) + z~u(s) = 0 'Vs. (36) 

Since ~ is completely observable, multiplying equation (17) 

Sy(s) = xes) + SR1u(s) (37) 

on the left by zi one obtains 

zfSy(s) = zfx(s) + zfSRIU(S). (38) 

Combining equations (36) and (38), 

zfx(s) + (ziSR1 - z~)u(s) = 0 'Vs, (39) 

and 

[zi ,ziSR1 - zn ~ OJ 

for if [zi , zfSR 1 - z~] = 0, then [zi z~] = 0, which contradicts z ~ O. 
Therefore, 

n~ [X(S)][X'(S) u'(s)]::t> O. 
.-1 U(S) 

N ow suppose T > O. Let 

n~ [x (S)] [x'(s) u(s)]::t> O . 
• -1 u(s) 

Then 3 a z' = [zi z~] ~ 0 such that 

zix(s) + z~u(s) = 0 'V s. 

(40) 

(41) 

Again mUltiplying equation (37) by zi and using equation (41), it 
follows that 

(42) 

* A nonlattice distribution is one in which no nonzero probability mass is 
concentrated on a surface less than the dimension of the random variable. 
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z:Sy(s) + (z~ - z:SRl ) U(S) = 0 'Vs. (43) 

Once again [Z:, (Z~ - zfSRl )] ~ 0 since z ~ 0, which contradicts 
T > O. The proof of Lemma 2 will now complete the proof of Theorem 2. 

Lemma 2: If (i) ~ is completely controllable, (ii) u (i) are random 
variables with a joint nonlattice distribution, then the (n + nm) X 

(n + nm) matrix 

[
X(l) ... x(n + nm) l 

11(1) ... 11(n __ + nm)J 
(44) 

is almost surely nonsingular. 
Proof: From Lemma A.2 in Appendix A of Ref. 5 it follows that if 

z(s + 1) = FlZ(S) + Glu(s) , (45) 
with Fl(n + nm) X (n + nm), 

then [z (1), ... , z (n + nm)] is nonsingular with probability one, if 
F l , Gl is completely controllable. Further, from equations (8) and the 
definition of u, it is clear that 

xes + 1) 

u(s + 1) 

u(s + n) 

F G 0 

001 

o 0 

o 0 

Therefore, identifying F land Gl as 

I 

o 
o 

. I 

. 0 

xes) 

u(s) 

I 

u (s + n) (46) 

respectively, equation (44) follows since it can easily be shown that 
[F G] controllable implies that [F 1 Gl ] is completely controllable. 
Lemma 2 implies that the matrix in equation (40) is positive definite 
since in general A nonsingular -? AT A > 0, which implies equation 
(34) by (i). 



1112 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969 

III. THE COMPUTATIONAL METHOD 

The main part of the algorithm, as would be expected from the dis­
cussion in Section II, is to determine the right selector matrix. Once 
this has been done it is easy to solve for the parameters. In order to 
utilize certain properties of the matrix [F' : H], a class of matrices 
S C s is detailed below since S C S, the number of different selector 
matrices one has to try, is smaller than S. 
Definition: S is the set of matrices S t S such that S is l X k; then 

(i) k is an integral multiple of p and further, if k = rp, then 

(r - 1) p < j I ~ rp 

where jz is as defined in equation (5). 

(ii) 

Observe that by (i) there always exists an S t S such that equation (11) 
holds, since as can easily be proved, if 

p([H', F'H', ... ,F'SH']) = p([H', F'H', ... , F!C8+1) H']) = q 

then 

p([H', F' H', F,c8
+f) H']) = q j = 0, 1, 2, ... ; 

so that in spite of condition (ii) in the above definition, there exist 
an S t S such that equation (11) holds. 

(iii) The formulas (21) and (27) are still valid for any S t S satisfying 
equation (11), with n replaced everywhere by r defined in condition (i) 
in the definition of S above. 

N ow from Theorems 1 and 2 and the above discussion, the direct 
algorithm can be summarized as follows. 

It can be assumed without loss of generality that: (i) N ~ n + 
(m + l)n; that is, there is a sufficient number of observations to deter­
mine the internal description uniquely. n is the minimal dimension of 
the system to be identified. (ii) H has full rank. (iii) n ~ p. 
Step 1: Since n ~ it / (m + 2), let it be the largest integer 
~N /(m + 2). Then n ~ N. In order to arrive at the right S, one starts 
with an S t S of row dimension it and tests the nonsingularity of 

T 4: CmfN [S'O(S)J['O'(S)S' u'(s)] 
.-1 u(s) 

for all S £ S and having row dimension it. If Tis nonsingular, it = n. 
If T is singular, then reduce the row dimension of S by 1 and repeat the 
test. Repeat the procedure until T becomes nonsingular. The row di-
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mension of S will then be n; let r be as defined in condition (i) in the 
definition of s; that is, S is n X rp. 
Step 2: Solve for F, R as follows. 

{

(m+l)N } 

[F R] = ~ Sy(s + l)[y(s)S' u'(s)] T- 1 

Step 3: Solve for G from the following formula. 

G = Ro + F Rl + ... + F r
-

1 R r - 1 , 

where S:n X rp and Ri are the partitions of R such that 

R = [Ro R1 ••• Rr - 1 ] 

and Ri = n X m i = 0, ... , r - 1. H can be assumed to be [1 0] where 
the identity has dimension p. 

In the case when ~ is a continuous-time system, the algorithm 
presented above applies with appropriate modifications. In the defi­
nitions of yes) and u(s), s now assumes values in (R and yes + i) should 
be replaced by y(i) (s) evaluated at s. The summation signs should be re­
placed by integration over an interval. The formulas for the parameters 
become 

[F R] = ~t+E Sy('\s)[y'(s)S' u'(s)] ds T- 1 

T = ft+E [SY(S)][y,(S)S' u'(s)] ds. 
t u(s) 

G can be obtained from R exactly as in the above algorithm for the 
discrete time case. 

In the case when observations are contaminated with noise, this 
method can be generalized to yield consistent estimates for the param­
eters (see Ref. 5). 
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Uniform Synthesis of Sequential Circuitst 

By J. D. ULLMAN and PETER WEINERt 
(Manuscript received July 19, 1968) 

In this paper we consider the synthesis of sequential machines by 
networks of a fixed module with delay. We show that every binary in­
put n state sequential machine has an isomorphic realization using at 
most p copies of a module with 2r + 1 inputs, where p is the smaller of 

2r 2~ 1 (nl+10gr2 + 4n1+1ogr4) and r2[nlrl. ([x] is the smallest integer ~ x.) 

1. INTRODUCTION 

The realization of an arbitrary binary output synchronous se­
quential machine by a network of copies of a fixed sequential machine 
(module) or copies of a small number of machines is a problem which 
has received recent attention.1- 5 An equivalent problem has been stud­
ied in Ref. 6. A design of this sort is particularly suited to batch fabri­
cation techniques, because it is possible to mass produce a fairly 
complex integrated circuit (the module) and then wire these circuits 
together to realize any desired sequential machine. 

The machines, so constructed, will be fast; the time between inputs 
need not be longer than the time it takes a single module to resolve 
its output after a change in input, no matter how many modules are 
in the network. The disadvantage of this technique, so far, has been 
the large number of copies of the module necessary to realize a 
machine; as many as 2n - 2 copies for an n state machine are re­
quired when using the modules of Refs. 1 and 2. These modules are 
shown in Fig. 1 for the binary input case. 

Not shown in any of our diagrams is provision for initializing the 
output of any module to the hot (1) state if desired. Neither is pro­
vision for control of the module by a clock shown in this or any other 
module. 

t Portions of this paper appeared in the Proceedings of the IEEE 9th Annual 
Symposium on Switching and Automata Theory, Schenectady, N. Y., October 
1968. 

:j: Princeton University, Princeton, New Jersey. 
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-+ 
I 

INTER­
MODULE 
INPUTS 

I 

t 

EXTERNAL INPUT 

(a) 

-+ 
I 

INTER­
MODULE 
INPUTS 

I 

t 

Fig. 1-Simple modules. 

(b) 

The modules of Fig. 1 each have two intermodule inputs, that is, 
inputs to which either logical constants or the output of some module 
will be connected. If a module with two intermodule inputs is uni­
versal (can realize any sequential machine having one binary input), 
then there is a unique minimal network composed of copies of this 
module realizing a particular sequential machine with a binary 
input.1 •2 If there are more than two intermodule inputs, there may be 
more than one network realizing a given machine. We consider a class 
of modules with different numbers of intermodule inputs and attempt 
to design small networks consisting of copies of one of the modules 
in the class. 

The class of modules we use for single input machines is represented 
schematically in Fig. 2a. There is a member of the class with 2r inter­
module leads for each r ~ 1. Let the module of Fig. 2a with a partic­
ular value of r be Mr. Note that M 1 is essentially the same as the 
module of Fig. 1a. M2 is shown in Fig. 2b. 

In what follows, we restrict ourselves to the design of networks for 
the realization of machines with one binary input. The generalization 
to the use of machines having k binary inputs is straightforward when 
one uses a class of modules represented schematically in Fig. 3. 

Notice that conventional designs of sequential circuits, represented 
schematically in Fig. 4, require the construction of log2 n Boolean 
functions of k + log2 n variables, where k and n are the number of 
input variables and states, respectively, of the machine. The number 
of gates necessary for a two-level realization of several functions of p 
variables can be as high as 2P

, so one would expect, even in the case 
k = 1, to require as many as n gates for a realization in the form of 
Fig. 4. We cannot showJ for fixed rJ that all n state machines with 
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r lEADS {o----t.. __ __ 

r lEADS {o----t. __ __ 

ta) 

(b) 

Fig. 2 - (a) The module Mr; (b) the module M2. 

single inputs can be realized by networks of as few as n copies of Mr. 
However, we show that the number of copies of Mr needed to realize 
any binary input n state sequential machine is bounded above by two 
functions of n. These functions, to within a constant factor, are 2n

/
r 

and n1+1ogr4. 

rlEADS{o-__ -t ____ _ 

rlEADs-(~--~ ____ ~ 

k INPUTS 
I 

"'--:-----.-I----=----7---I 

2k 
OUTPUTS 

Fig. 3 - Generalization of Mr. 
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· · · 

I 
I 

~ 

h 
Fig. 4 - Conventional sequential circuit. 

II. DEFINITIONS AND BASIC CONCEPTS 

A sequential machine will be denoted A = (K,~, 0, qo, F). K and ~ 
are finite sets of states and inputs, respectively. F, the final states, is a 
subset of ](. It is the set of states for which the output is 1. qo, the 
start state is a particular element of K.o maps K X ~ to K. It gives 
the next state for each combination of state and input symbol. The 
function 0 is usually displayed as a flow table, with a row for each 
state and a column for each input. The entry in the ith row and jth 
column is the value of 0 for the ith state and jth input. The first state 
will always be the start state. An example is shown in Table I. 

We extend 0 to domain K X ~.:< by: t 

(i) 0 (q, 'E) = q for all q in K. 
(ii) 0 (q, W'a) = 0 (0 (q, w), a), for all q in K, w in ~.*, and a in ~. 

The event defined by the machine A, denoted T(A), is {w 10 (qo, w) 
is in F}. That is, T (A) consists of exactly those input strings which 
cause A to go from the start state to a final state. For example, if 3 
and 5 are the final states of the machine of Table I, then 110 is in 
T(A), since 0(1,1) = 6,0(6,1) = 4 and 0(4, 0) = 5. 001 is not in 
T(A) since 0(1, 0) = 3,8(3,0) = 1 and 8(1,1) = 6. 

Let R be a subset of ~~. for some finite set ~. For each w in ~*, 
define the derivative of R with respect to w, denoted Rjw to be set 
of strings x such that xw is in R.t 

-r ~* is the set of all strings of symbols in ~, including e, the string of length o. 
:j: This notion of derivative is "backwards" from that used in Ref. 7. It is 

actually the quotient operation of Ref. 8. 
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Let A = (K, ~, 0, qo, F) be a machine, and let ~ = {0,1}. We can 
define two "inverses" of 0, denoted fLO and fJ-l. These functions map 
sets of states to sets of states by: 

J1.o(G) {q I o(q, 0) is in G}, 

J1.1(G) {q I o(q, 1) is in G}. 

For each subset G of 1(, let Aa be the machine (K, {O, I} ,0, qo, G). 
LetH = fJ-o(G) and J = fJ-l(G). If R = T(Aa), then RIO = T(AIl ) 

and Ril = T(AJ ). For w is in RIO if and only if wO is in T(Aa). 
But wO is in T(Aa) if and only if o(qo, w) is a state p such that 
° (p, 0) is in G. Equivalently, w is in RIO if and only if ° (qo, w) is in 
H. The argument for Ril is analogous. 

When talking about a fixed sequential machine, A = (K, {O, I}, 0, 
qo, F), we often identify T (Aa) with G for each subset G of K. We 
use GIO and Gil for fJ-o(G) and fJ-dG). For example, if A is the 
machine of Table I and G = {I, 3, 5}, then GIO = {I, 2, 3, 4, 5} and 
Gil = {3}. 

A network of a module M is an interconnection of copies of M 
such that each intermodule input is connected to either the output 
of a copy of llf in the network or a logical constant (0 or 1). The 
external inputs of each copy of M (or corresponding external inputs 
if a copy has more than one) are connected together and receive the 
input to the network. One copy of M is designated the output of the 
network; the network accepts an input sequence if the output of the 
designated copy is hot (1) after receiving the sequence. 

The module M 2 of Fig. 2b is repeated as Fig. 5 with certain points 
marked. Suppose that this module is part of a network realizing the 
event F of the sequential machine A = (K, {O, I}, 0, qo, F). Suppose 
also, that it has been determined that the output of this copy of the 
module must be some event G C K. That is, the output of this module 

TABLE I-NEXT STATE FUNCTION 

inputs 

1 
2 

states 3 
4 
5 
6 

o 

3 
5 
1 
5 
5 
2 

6 
4 
5 
6 
2 
4 
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(h) o---~--­

(L) 0----:. __ 

(f) o---~----­

(g) 0----1<--_ 

Fig. 5 - Points in the module M 2. 

is hot exactly when the sequence of inputs to the network is in the 
event G. Thus, when the last input appears at the external input of 
this module, point a, the input to the delay, must immediately become 
hot if and only if the last input completes a sequence in G. 

Observe that point b can be hot only if the last input is 1 and point 
c can be hot only if the last input is O. Thus, immediately before the 
last input appears at the external input terminal, point d must be hot 
if and only if the previous inputs form a sequence in G /1 and point e 
must be hot if anly only if the previous input sequence is in G /0. 

The union of the events at f and g must thus be G/l and the union 
of events at hand i must be G /0. Weare free to choose the events at 
the intermodule inputs subj ect only to these constraints. For ex­
ample, we could choose the events at f and g to be those strings in G /1 
of even and odd length, respectively. However, we restrict our choice 
so that the events at the intermodule leads will be representable as 
sets of states of A. 

Design, using the module 1vlr, r > 2, proceeds the same way. If a 
given copy of the module is to realize the event G, then the lowest r of 
the intermodule inputs must be from modules realizing events HI, H2 , 

... ,Hr whose union is G/l; the remaining r intermodule inputs must 
be from modules realizing events J 1, J 2, ••• ,J r, whose union is G /0. 
However, some of HI, ... , Hr or J1 , ••• ,Jr may be the empty set 
or the set of all states, in which case these events are "realized" by 
logical constants rather than modules. 

The above arguments justify the following reduction in the design 
problem for the class of modules Mn r ~ 1: 

Let A = (K, {O, 1}, 0, qo , F) be a sequential machine. An M r-syn­
thesis of A is a set S of subsets of K having the properties: 

(i) F is in S. 
(2'i) If G is in S, then there are sets H 1 , H2 , ••• , Hr and 
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J. , J 2 , ••• , J r in S, not necessarily all distinct, such that 
r r 

U Hi = G/l l[and UJr = G/O. 
i ~ 1 ..!I~.~j i-1 

From what we have said concerning the flow of signals in the 
module Mr , we may conclude that if S is an Mr-synthesis of A, then 
there is a network of m copies of Mr realizing T(A), where m is the 
number of elements of S that are neither <P nor I{. t We call m the 
size of s. 

Notice that an Mr-synthesis requires that all modules realize events 
which are identifiable with a set of states. Such networks are called 
isomorphic to A. There may be networks of copies of M r which realize 
T(A), but are not Mr-syntheses of A. However, in our search for small 
networks we shall not consider any networks except those which are 
M r-syntheses. See Ref. 5 for some comments on the existence of non­
isomorphic realizations of sequential machines. 

III. CONSTRUCTION OF Mr-SYNTHESES 

The purpose of this paper is to show that Mr-syntheses of small 
size exist for an arbitrary n-state sequential machine. The first bound 
on the size of an .Ll1>synthesis is straightforward. 

Let A = (K, {O, I}, 0, qo, F) be an n state sequential machine. We 
may choose r disjoint subsets of K, say K1 , K 2 , ••• , I{r, such that 
U:-1 Ie = I{ and no Ki , 1 ~ i ~ r, contains more than [n/r] states.t 
Let S = {F} U {G I G C Ie for some i}. To see that S is an Mr-syn­
thesis of A, we have merely to observe that any subset G of K can be 
expressed as U~=1 Gi , where Gi = G n Ki C K. for all i. Thus, for 
any H in S, H /0 and H /1 are both the union of r elements of S. 

The size of S is no greater than 1 + r (2[n/T] - 1), which is almost 
r2[n/T) • We thus have: 

Theorem 1: If A is an n state sequential machine, with a single binary 
input, then there is an Mr-synthesis of A using at most r2[n/r] copies 
of Mr. 

Notice that Theorem 1 is not dependent upon the assumption that A 
has a single binary input. The machine A in that theorem can have 
any number of binary inputs. Of course, the appropriate generaliza­
tion of the input module M r , as given in Figure 3, must be used. 

t <I> denotes the empty set. 
:j: We use [xl for "the smallest integer equal to or greater than x." 
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Example: We use a technique suggested by Theorem 1 to design a net­
work for the sequential machine of Table I with final states {4, 5, 6}. 
We generate subsets in a sequential manner, and terminate when no 
new sets are required. Let r = 2 and let the states be divided into two 
sets Kl {I, 3, 5} and K2 = {2, 4, 6}. Now {4, 5, 6}/O = {2, 4, 5} and 
{4, 5, 6} II = {I, 2, 3, 4, 6}. If we intersect {2, 4, 5} and {I, 2, 3,4, 6} 
each with Kl and K 2 , the inputs to the module realizing {4, 5, 6} must 
be connected to modules realizing {5}, {2, 4}, {2, 4, 6} and {I, 3}. 
The two derivatives of each of these sets are found among {2, 4, 5}, {6}, 
{I, 3}, {3}, {2, 5, 6}, {I, 2, 4, 5, 6} and <1>. Intersecting each of these 
sets with Kl and K 2 , we find that the network needs modules realizing 
the events {6}, {3}, {2, 6} and {I, 5}, in addition to the modules 
already used. Proceeding in this way, we find that the entire network 
also requires modules realizing {I}, {4} and {3, 5}. The completed net­
work is shown in Fig. 6. Modules are labeled with the event (set of 
states) they realize. Those modules realizing a set including state 1, 
the start state, must initially give a 1 output. Inputs to the module 
are shown in no particular order, and inputs not shown are connected 
to o. 

The second bound uses the concept of partitions on the set of states 
of a finite automaton.!) A partition on a set of states K is a set of 
disjoint, nonempty sets, called blocks whose union is K. If A = 
(K, {O, l},S, q.o, F) is a sequential machine, we can associate with 
every string w in {O, I} i:· a partition TIw as follows: 

(i) TIe = ({qt), {q2}, ... , {qm}), where K = {ql, q2, ... , qm}·t 
(ii) For any w in {O, 1}*, let TIw be (Kt, [(2, ... , Kr). Let 

TIwo be the list of nonempty sets G such that G = KilO for some i and 
TIwl be the list of nonempty sets H such that H = Kill for some i. 
Example: Consider the machine of Table I. TIe = 1, 2, 3, 4, 5, 6) 
TIo is the list of sets of states that map to a single state under a 0 
input. Thus, no = (1, 245, 3, 6). Similarly, TIl = (14, 26, 3, 5). Pro­
ceeding, we can calculate TIooand HOl from no by seeing which sets 
of states map onto a single block of TIo under inputs 0 and 1, respec­
tively. For example, states 2, 4, 5 and 6 are those which map under a 
o input to one of the states 2, 4 or 5. We find TIoo = (1, 2456, 3) and 
HOl = (14, 2356). Also, [ho = (1, 245, 3, 6) and TIll =(145, 26, 3). 

A partition II is said to represent a family of sets, namely those sets 

t We denote partitions by lists of the blocks. Sometimes it is simpler to repre­
sent each block by, a string of states not surrounded by brackets. Thus ({ql, Q2}, 
{Q3}) will appear as (Q1Q2, qa).· . 
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Fig. 6 - Network suggested by Theorem 1. 

which are the union of some of the blocks of TI. For example, TIOl above 
represents the sets <P, {I, 4}, {2, 3, 5, 5} and {I, 2, 3,4,5, 5}. Suppose 
TIw = (Kl' K 2 , ••• ,I(m) and G is the union of j of Kl , K 2 , ••• , K m, 
say G = Ki1 U Ie. U ... U Kif . Then for a = 0 or 1, 

G/a = K,ja U Ki./a U ... U Kija is represented by TIwa and is, 
in fact, the union of, at most, j blocks of TIwa • Armed with this obser­
vation, we prove: 

Theorem 2: For every n state sequential machine with single binary input 
A = (K, {O, I}, 0, qo , F) and r ~ 2, there is an 11r-synthesis of A of 

size at most ~(nl+lOgr2 + 4nl+logr4). 

2r - 1 
Proof: Let j = [logr n]. Define the blocks of those partitions TIw , such 
that I w I ~ jt to be basic events. We will choose J to be a set of pairs 
(G, 10), where G C K, w is in {O, I} *, and for each (G, w) in J, G is re­
presented by TIw • After constructing J, we construct S, an Mr-synthesis 
of A, from J by S = {cp} U {G I (G, w) is in J for some wI. We con­
struct J by: 

(i) (F, e is in J). 
(ii) If G is a basic event, then (G, e) is in J. 
(iii) Let (G, w) be in J, I w I < j, and let G be the union of k blocks 

of TIw • We may choose HI , H 2 , ••• , Hr such that their union is G/O 

t Iwl denotes the length of w. 
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and for each i, Hi is the union of from zero to [klr] blocks of IIwo . Also, 
choose J 1 , J 2 , ••• , J r such that their union is Gil and for each i, J i 

is the union of from zero to [klr] blocks of IIwl . If Hi is not <P or a basic 
event, add (Hi, wO) to ~. If J i is not <I> or a basic event, add (J i , wI) 
to ~. 

We say that each (Hi, wO) or (J i , wI) in ~ is in the family of (G, w). 
We extend the notion of a family by saying that (G, w) is in its own 
family and if (H, x) is in the family of (G, w) and (J, y) is in the family 
of (H, x), then (J, y) is in the family of (G, w). The family of (G, e), 
where G is F or a basic event, can be thought of as the set of elements 
that must be in ~ because (G, e) is in ~. 

We must show that s is an Mr-synthesis of A. If (G, w) is in ~, then 
G consists of at most r i

-
1wl blocks of IIw . (Since ri ~ n, we have r i- 1 = 

[rilr] ~ [niT]; r i- 2 = [r i- 1/d ~ [[nlr]jr] and so on.) We may conclude 
that if I w I = j, then G would be a basic event, and hence, for no G and 
w of length j is (G, w) in ~. If G is a basic event or F, one can, by rule 
(iii) find HI , H 2 , ••• , Hr and J 1 , J 2 , ••• , J r such that 

For all i, either (Hi, 0) is in ~ or Hi = <P or Hi is a basic event, and 
either (J i , 1) is in ~ or J i = <P or J i is a basic event. In any case, all of 
HI, H 2, ... , H rand J 1 , J 2, ... , J r are in S. If G is in S but G is 
neither a basic event not F, then it must be that (G, w) is in 
~ and I w I < j. But in this case, it again follows immediately from rule 
(iii) that HI , H 2 , ••• , Hr and J 1 , J 2 , ••• , J r in S can be found with 
U~-1 Hi = GIO and U~~1 J i = GIL 

We must now put a bound on the size of S. We do so by bounding 
the number of elements in the families of all (G, e) in~. The sum of the 
sizes of all these families bounds the size of S. 

Suppose G consists of k states and m = [logrk]. For each i ~ 0, there 
are at most (2r)i elements (H, w) in the family of (G, e) such that Iwl = i. 
If (H, w) is in the family of (G, e), then H consists of at most rm- 1wl 

blocks of IIw . Thus the family of (G, e) contains no pair (H, w) such 
that Iwl ~ m. An upper bound on the size of the family of (G, e) is 
1 + 21' + (21')2 + .,. + (2r)m-l. This number does not exceed 
(2r)m/(2r - 1). But m ~ 1 + logrk, so (2r)m-l ~ kl+1ogr2. 

We may conclude that the family of (F, e) consists of at most 

2r 2.:. 1 n1+1ogr
2 elements. We must also bound the families of the basic 

events, and do so by the following argument. 
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Let N k be the number of basic events consisting of exactly k states. 
There are 1 + 2 + 4 + ... + 2i partitions lIw where Iwl ~ j. The 
number of these partitions is at most 2i+1; the blocks of each partition 
have among them a total of n states. Thus: 

n 
~ ·+1 
L..J kNk ~ n21 

• (1) 
k~1 

An upper bound on the sum of the sizes of the families of all the basic 
events is 

Since k does not exceed n in the summation, we have 

Using equation (1), we see that the sum of the sizes of the families 
of all basic events is bounded above by 2r/(2r - 1)n1+logr22i+1. Since 
j ~ 1 + logr n, this bound becomes 8r/(2r - 1)n1+logr4. 

Including the family of (F, e), we see that the size of S is no greater 

than ~(n1+10gr2 + 4nl+logr4). 
2r - 1 

We comment that a straightforward generalization of this argument 
shows that every sequential machine with p binary inputs (2P symbol 
input alphabet) can be realized by a network of at most 2Pr/(2Pr - 1)· 
(n1 +p logr2 + 4Pn 1 +p logr4) copies of the generalization of the module Mr . 

Thus, for any number of binary inputs p, and any c > 0, there are 
constants rand k such that any n state sequential machine with p binary 
inputs can be realized by a network of at most kn1+c copies of a module 
with 2Pr intermodule leads. 

Example: Theorem 2 suggests the design of a network of copies of M 2 

for the machine of Table I with states 4, 5 and 6 final. That machine 
has 6 states and [log2 6] = 3. However, in this case the construction of 
:J given in Theorem 2 will not require the addition of any pair (G, w) 
where I wi> 1. So we may restrict ourselves to consideration of certain 
sets represented by the partitions lIw , for I w I ~ 2. These were calcu­
lated in the previous example: 

lIe = (1,2,3,4,5,6) 

lID = (1,245,3,6) 

lIDo = (1,·2456, 3) 

lID 1 = (14, 2356) 
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III = (14, 26, 3, 5) IIlO = (1,245,3,6) 

lIn = (145,26,3). 

We begin by placing ({ 4, 5, 6}, e) in~. {4, 5, 6} /0 is the basic event 
{2, 4, 5}, and {4, 5, 6} /1 is the union of three basic events {2, 6}, {3} 
and {l, 4}. These three must be formed into two groups; we choose to 
realize {2, 3, 6} and {I, 4}. We place ({2, 4, 5}, e) and ({l, 4}, e) in~, 
since these are basic events, but since {2, 3, 6} is not a basic event, 
we place ({2, 3, 6}, 1) in~. 

{2,4,5}/0 = {2,4,5}U {6},so({6},e)isplacedin~. {2,4,5}/lcan 
be expressed as {2, 3, 6} U {5}. We thus place ({5}, e) in~. {l, 4}/0 = 

{3} and {I, 4}/1 = {2, 6}. Each of these are basic events, so ({3}, e) 
and ({2, 6l, e) are placed in~. {2, 3, 6} /0 = {l} U {6}. These are basic 
events, so we add ({I}, e) to~. {2, 3, 6}/1 = {I, 4} U {5}; these basic 
events are each represented in ~ already. Proceeding, we find that the 
basic events added to ~ require no new events, basic or not. The re­
sulting network is shown in Fig. 7. 

IV. CONCLUSIONS 

We have considered the design of synchronous sequential machines 
by networks of a fixed module. This design has various advantages, 
including speed and ease of production using batch fabrication. It was 
shown that there is a family of modules Mr , r ~ 1, such that any n 
state sequential machine with a single binary input can be realized by 
a network of at most p copies of M r, when p is the minimum of r2 [n/rl 

and ~(nl+l0gr2 + 4nl+logr4). 
2r - 1 

Fig. 7 - Network suggested by Theorem 2. 
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We feel that the type of design suggested in this paper leads to 
many interesting questions. In particular, the bounds expressed 
in Theorems 1 and 2 do not seem to be attained, or even approxi­
mated, in most cases. Efficient search techniques will probably yield 
much better networks than indicated; there is every reason to sus­
pect that the bounds themselves can be improved, even if we restrict 
consideration to isomorphic networks. 
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Propagation from a Point Source in a 
Randomly Refracting Medium 

By R. T. AIKEN 

(Manuscript received August 6, 1968) 

This paper considers the propagation of scalar (acoustic) waves from 
a single-frequency point source imbedded in a medium with random re­
fractive index, in contrast with the usual plane-wave case in which the 
source is far removed from the medium. With the index being a statistically 
homogeneous and isotropic function of position, but not a function of time, 
the average complex field uc(r) = (u(r) and the spatial covariance 
(u.; (r)u~(p) of the fluctuation field Ui (r) = u(r) - uc(r) are calculated. 
Beyond a few correlation lengths from the source, the average field can be 
approximated by a spherical wave with the same complex wavenumber 
found in the plane-wave case. A near-source wave number is also obtained. 
Under an improved far-field condition, the spatial covariance is reduced 
to spectral integration formulas for both transverse and longitudinal separa­
tion of the receiving points. These formulas reveal that correlation lengths 
are much longer in the point-source case than in the plane-wave case, even 
though the relative variances are the same. We illustrate this result with 
plots for an exponential index spectrum and for a constant spectrum. 

I. INTRODUCTION 

For analysis of a detection or communication system which proc­
esses signals from an array of sensors, a convenient postulate is that 
the signal field in the vicinity of the array is a plane wave (or perhaps 
a finite collection of plane waves in the multipath case). Under such a 
postulate, coherent addition of the sensor outputs can yield array 
gain and directivity in the presence of ambient noise. However, there 
is always some disparity between the predicted performance and the 
performance realized in practice. In part, the disparity can be at­
tributed to shortcomings in the signal model, the field not being a 
time-invariant plane wave in the vicinity of the array. The output of a 
single sensor may not be constant in time but instead is apt to 
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fade. Moreover, the outputs of different sensors do not fade "in step"; 
that is, after the array is steered, the signals do not fade with the 
unity correlation predicted by a fading-plane-wave model. Instead, 
the signals fade with correlation less than unity. The origin of these 
fading phenomena is the subject of this paper. 

A simplified model of fading is considered within the framework 
of the following assumptions. For a short period of time, the trans­
mission properties of a propagation path are constant; then they 
undergo small deviations to attain another constant configuration for 
the next short period of time. These short-term deviations are relative 
to some nominal or average configuration, as opposed to representing 
a slow gross trend of the overall path properties. Such short-term 
deviations are modeled here by the effects of random fluctuations of 
the index of refraction, which could be associated in the under­
water acoustic case, for example, with the temperature microstructure, 
turbulence, and circulatory motion of water masses. Deviations of path 
properties associated with fluctuations of a surface of reflection are 
not incorporated into the model. Thus, the model is most appropriate 
for short-term deviations of the properties of a pure-refracted path. 

In the specific situation analyzed below, the acoustic source is a 
single-frequency point source suspended far from any boundaries. If 
the refractive index were nonrandom and not position dependent, 
the acoustic field would be the usual spherical wave. Instead, the re­
fractive index is a random function of position, but not of time. The 
average value of the index is not position dependent, so that the aver­
age line-of-sight ray path is straight rather than bent. The spatial 
covariance of the index is a function of the magnitude of the position­
difference vector (the index is second-order homogeneous and iso­
tropic). The problem is to find the average and spatial covariance of 
the acoustic field. 

Much of the literature (for example, Refs. 1-3 and most of Ref. 4) 
is concerned not with the above spherical-wave problem but with a 
situation in which plane waves impinge upon a half-space with 
random refractive index. One essential difference is that the spherical­
wave source is imbedded in the random medium whereas the plane­
wave source is far removed from the random medium. Regardless of 
how large the distance from the spherical-wave source to an observa­
tion point becomes, this difference of configuration is preserved.t 

t The configurations are called the "radio link problem" (spherical) and the 
('radio star problem" (planar) in Ref. 9. 
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Some aspects of the spherical-wave case have been treated with the 
Rytov method (Refs. 4-5) and other techniques (Refs. 6-8). 

This analysis treats the spherical-wave problem with a version of 
perturbation theory previously applied to the plane-wave problem.2

,3 

For distances greater than a few correlation lengths, the average 
field can be approximated by a spherical wave with the same complex­
valued wave number previously derived in the plane-wave case.2 A 
near-source wave number is also obtained. On the other hand, it is 
found that the covariance function of the fluctuation field exhibits 
much larger correlation lengths in the spherical-wave case than in 
the plane-wave' case.3 ,4 This conclusion follows from simple integra­
tion formulas for the covariances and is illustrated by plots of the 
covariance for special cases. 

II. PERTURBATION THEORY 

We consider the propagation of acoustic waves in a random time­
invariant medium for the case of a monochromatic omnidirectional 
source. Our model is the Helmholtz equation: 

[V 2 + (1 + }.t(r))2k~]u(r) = - oCr) (1) 

where V2 is the Laplacian V· V, }.t(r) is the random deviation of the 
index of refraction which is a function of position r, k~ = W

2/C 2
, C is the 

sound velocity for a homogeneous medium if }.t were everywhere zero, 
w is the angular frequency of the source, u(r) is the complex amplitude 
(for example, the displacement potential), and 0 is the Dirac delta func­
tion. The time dependence exp (- iwt) has been suppressed. We assume 
the source is suspended far from any boundaries; that is, we consider the 
medium to be unbounded. 

Our interest is in both the mean field (u) = U c (coherent field) and 
the fluctuation field u - U c = Ui (incoherent field), where ( ) de­
notes expectation. 

We develop a pair of equations for U c and Ui as follows. Consider 

[L + eLl + e
2L2]u = f (2) 

where L is a linear deterministic operator, Ll and L2 are linear 
stochastic operators, € is a size parameter, and f is a deterministic 
forcing function. With j1. in (1) replaced by €j1., the correspondence of 
(1) and (2) is evident. We put u = U c + Ui into (2) and operate with 
( ) to obtain 

[L + e(LI) + e2(L2)]UC = f - e(Llui) - l(L2Ui). (3) 
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We then subtract (3) from (2) in which U = Uc + Ui to obtain 

[LUi + e(LtUi - (LtUi») + e2(L2ui - (L2Ui»)] 

= - e(Ll - (L1»)uc - e2(L2 - (L2»)uc • (4) 

Equation (3) shows the source 1 of the mean field is countered by the 
sink €(L1Ui) + €2(L2Ui) describing the effects of scattering into the 
fluctuation field. Equation (4) is not written to exhibit true sources of 
Ui as much as to exhibit a zero-mean forcing function and zero-mean 
terms on the left side. These equations are generalizations of those 
derived by Keller [Ref. 2, p. 166, equations (12) through (13)] for 
other purposes. 

Solution of (3) and (4) can proceed with perturbation theory for 
the case of small €. Relative to ,€ ~ 0, equation (3) exhibits U c = 0 (1) 
and (4) exhibits Ui = O(€). Accordingly, (3)-(4) can be rewritten 

[L + e(Ll) + e2(L2)]Uc = f - e(Llui) + O(e3
) (5) 

LUi = - e(Ll - (Ll»)uc + O(e2
). (6) 

These equations can be partially uncoupled by operating with L-1 on 
(6) and substituting into (5) to obtain 

[L + e(Ll) + e2(L2)]Uc = f + e2(LlL-IL1)UC 

- e2(Ll)L-l(Ll)Uc + O(e3
) (7) 

(8) 

Equation (7) for the mean field U c is the result obtained by Keller 
(Ref. 2, p. 148, equation (10) ), who used a successive-substitution 
solution of (2) in conjunction with a crucial, and at-first-glance 
mysterious, replacement of L-11 by (u). Equation (1.8) is a version of 
Keller's equation (31) on p. 169 of Ref. 2. Thus, we have shown that 
these equations arise quite naturally from the pair (3) and (4). 

We now specialize (7) and (8) to the case of the Helmholtz 
equation (1). Here, 

(9) 

We assume (p.(r) = 0; that is to say, we neglect any systematic 
dependence of refractive index upon position (the average profile). 
We have 

L - 1 = _ J exp (ik 0 I r - r' i) (') d ' 
g 4 I 'I gr r, 7r r - r 

(10) 
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where the integral is over all space. The inverse L-1 is an integral 
operator with kernel corresponding to the Green's function 

G(r, r') = exp [iko I r - r' IJ 
471" I r - r' I 

Thus, the pair (7) and (8) is specialized to 

[\7 2 + k~(1 + E
2(l(r))Juc(r) 

(11) 

- oCr) - 4ik! J exp [iko I r ~~ (f.L(r)f.L(r')uc(r') dr' + 0(E3
) 

471"1r-r I 
(12) 

( ) 2 7 2 J exp [iko I r - r' IJ (') (') d ' + O( 2) 
U i r = E/e o 471" I r _ r' I f.L r U c r r E • (13) 

III. THE AVERAGE FIELD 

We now develop an approximation of the solution of (12) for the 
average field uc • It is assumed that the refractive index is statistically 
homogeneous and isotropic. The index covariance function is 

r( I r - r' I) = (f.L(r)f.L(r'). (14) 

Equation (12) becomes 

{\72 + k~[1 + E
2 r(O)J }uc(r) 

= - oCr) - 4E2k! J exp4~~o pi ( IJ r(1 p \)uc(r + p) dp + 0(E3
). 

(15) 

We assume an approximation of U c (r) of the form 

exp [ik I r IJ 
471" I r I (16) 

where k is a constant wave number to be determined (k ~ ko). It will be 
found that (16) is not a global solution, because a constant k cannot 
exist. Nevertheless, (16) can serve as a useful local approximation of 
the solution, with k interpreted as a weak and slowly varying function 
of I r I· 

If (16) were the solution, then 1tc would satisfy 

[\7 2 + e]uc(r) = - oCr). (17) 

Then (15) and (17) yield 
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{l~:[1 + €2r(0)] - k2 }uc (r) 

= -4€2k! J exp4~~o pi ( IJ r(1 p I)uc(r + p) dp + 0(€3). (18) 

The volume integral in (18) can be evaluated by an integration over 
the surface of a sphere with radius R followed by a radial integration 
from R = 0 to R = 00. For the surface integration, we need only 
observe 

f dS 
uc(r + p) 4 R2 

S:lpl=R 7r 

jUcCr) si~;R , 

= (). k I I exp [ik(R - I r I)J 
U C r sm r kR 

O<R<lrl 
(19) 

R> Ir I 

where dS is a differential of area on the sphere S = {p: I p I = R}. 
This mean value theorem follows from (16) and (17); see Appendix 
A. Then (19) inserted into (18) yields 

{l~2 - k~[1 + €2 r (0)] }uc(r) 

4
2

k
4 [l lr, 

= T ucCr) 0 exp (ikoR)r(R) sin kR dR 

+ foo exp (ikoR)r(R) sin k I r I exp [ik(R - I r I)] dRJ + 0(€3). 
I r I 

(20) 

If (16) were an exact global solution, then U c (r) could be cancelled 
in (20); the result would be a relation for the supposedly constant 
wave number k. But the integrals in (20) suggest that the relation is 
I r I-dependent, which is a contradiction. Nevertheless, (16) will 
serve as a local approximation of 1{,c (r) in regions in which k is vir­
tually constant. 

The following manipulations are made upon the integrals in (20). 
We run the first integral from 0 to 00 and correct for its contribution 
from I r I to 00 by another term in the second integral. We then change 
the variable of integration of the resultant second idtegral. Then (20) 
becomes 

k2 = k~(1 + €2r(0)) + 4~k! [100 

exp (ikoR)r(R) sin kR dR 
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- exp [i(k, - k) 1 r I] f exp (ik"R)r(1 r 1 + R) sin kR dR ] + 0(,') 

(21) 

The I r I-dependence is now confined to the second integral. The 
large-I r I case occurs when we can assume this integral to be negli­
gible, namely 

lexp [i(ko - k) I r 1]1 r(1 r I + R) «r(R), (22) 

where we assume the first integration can run from 0 to Ro with 
little error. The condition (22) shows that I r I must be much larger 
than a correlation distance; moreover, (22) shows that the increasing 
function exp [ (1m k) I r I ] must be taken into account. 

Thus, for large I r I, the wave number k satisfies 

e ~ k~[l + e2 r(O)] 

+ 4~:k! loo exp (ikoR)r(R) sin kR dR + O(e3
). (23) 

This is the relation found by Keller [Ref. 2, p. 151, equation (14)] for 
the plane-wave problem. As expected, the spherical wave solution far 
from the source has the same wave number as the plane-wave solu­
tion. 

The small-I r I case occurs when the integrals in (21) nearly cancel 
one another; the wave number k is given by 

(24a) 

or 

(24b) 

Whereas (24) yields the small-I r I values of k directly, notice that 
(23) determines the large-I r I values of k in an implicit fashion. 
However, an explicit approximation of the large-I r I value of k can 
be obtained. Notice that (23) could be solved by successive sub­
stitutions, the first step employing either ko in the integral below or 
employing (24) as follows 

4~k! loo exp (ikoR) r(R) sin kR dR 

~ k
o
[l ~e2:e~r(o)] 100 

exp (ikoR)r(R) sin {ko[l + !e
2
r(O)]R} dR 
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~ 4lk~ 1~ exp (ikoR)r(R) {sin (koR) cos ko[!ir(O)R] 

+ cos (koR) sin ko[!lr(O)R]} dR 

~ 4lk~ i~ exp (ikoR)r(R) sin koR dR. (25) 

Since terms have been discarded consistently insofar as powers of € 

are concerned, approximations (23) and (25) yield 

k2 ~ k~[l + e2 r(0)] 

+ 4e2k! i~ exp (ilcoR) r(R) sin koR dR + O(e3
). (26) 

From (26), it follows that 

k ~ ko[l + !e2r(0)] 

+ 2lk~ i'" exp (ikoR)r(R) sin koR dR + O(l), (27) 

or equivalently 

Re k ~ ko[l + !e2 r(O)] + e2k~ i'" r(R) sin 2koR dR + O(l), (28) 

and 

1m k ~ ik~ i'" (1 - cos 2koR)r(R) dR + O(e3
). (29) 

If r has a correlation length Lo and if koLo » 1 (a large-scale condition 
not yet imposed), then 

1m k ~ e2k~ i'" r(R) dR. (30) 

Also, accuracy of the approximation (25) requires the bracketed fac­
tor in the integrand to be equivalent to sin l{',oR; this holds when 

But 

i'" r(R) dR "-' r(O)Lo , 

and (31) is equivalent to 

(31) 
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1m k« ko . (32) 

When (32) is not met, neither (28) nor (30) can be expected to be 
a good approximation. Also, for the successive-substitution procedure 
to yield a good approximation at this first step, it appears sufficient 
that the first step value (28) be well approximated by the initial 
value (24) ; equivalently, 

reo) » ko 100 

r(R) sin 2koR dR, (33) 

which is a restriction on the large-wave number value of an integral 
which resembles the spectrum of T. 

The approximation (16) for the average field U c (r) together with 
(23) and (24) for the large-I r I and small-I r I values of k comprise 
the principal results of this section. The further approximations (28) 
through (30) for the large-I r I case are more useful than (23), but 
conditions (31) through (33) must be met. When (28) through (30) 
are compared with the small-I r I approximation (24), it can be seen 
that the spherical wave (16) develops attenuation and a change in 
phase velocity as I r I increases. The transition from small-I r I to 
large-I r I behavior occurs when (22) begins to hold, namely, when 
the second integral in (21) begins to become negligible. The order of 
magnitude of this transitional value of I r I is a few correlation lengths. 

IV. COVARIANCE OF THE FLUCTUATION FIELD 

The previous section provides a solution of (7) or (25) for the av­
erage field U c (r) which now can be used in (8) or (13) to yield the' 
fluctuation field Ui (r). Thus, (11) and (13) yield 

uJr) = -2€k! I G(r, r')J.I.(r')uc(r') dr' + O(€2), (34) 

where uc(r') is given by (16) in which k is a weak function of 1 r' I. 
The spatial covariance function (ui(r)u~(p) is now computed for the 

case in which the medium is statistically homogeneous and isotropic. 
Equations (34) and (14) yield 

(ui(r)u~(p) = 4€2k! II G(r, r')G*(p, p') 

·r(1 r' - p' I)uc(r')u~(p') dr' dp' + O(€3). (35) 

It is convenient to change to the following variables of integration 
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(with unity Jacobian) : 

where 

r' + p' 
y = 2 ' 

x 
r' = y + 2 ' 

x = r' - p' , 

x 
p' = y - ~. 

2 

(36) 

(37) 

Moreover, it IS convenient to evaluate the fields at the following 
points: 

where, by definition, 

r + p 
rJ=-2-' ~ = r - p. 

(38) 

(39) 

The relation of the positions (36)-(39) is shown In Fig. 1. The 
covariance of the fluctuation field Ui is thus 

(Ui(~ + ~)U~(~ - ~)) 

= 4lk! If a( rJ + ~ , y + ~)a*( rJ - ~ , y - ~)r(1 x I) 

.uc(Y + ~)u~(y - ~) dx dy + o (E3) . (40) 

In words, the second-moment of the fields at observation center rJ 
with observation position-difference vector ~ comprises the integrated 
effect of scattering of the average field by the refractive index at scat­
tering center y with scattering position-difference vector x. 

We now approximate the integrand of (40). Although the approxi-

Fig. 1-Scattering points r', p' and receiver points r, p. 
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mations are not valid over all space, they are valid for a region which 
can account for the major contribution to (40) in the case to be de­
scribed later. The first approximation involves 

G( ')G*( ') - exp [iko(1 r - r' I - I p - p' 1)1. (41) 
r, r p, p - (4 )2 I I I I I I 7r r-r . p-p 

But 

I r - r' I = 11J - Y + !C~ - x) I 

11J - y I + !C~ - x)· (1J - y) + (42a) 
11J - Y I 

and 

I p - p' I 11J - Y - !C~ - x) I 

!C~ - x)'(1J - y) 
11J - y 1- + 

11J - Y I 
(42b) 

The above expansions in powers of (~ - x) are appropriate for a large 
vector 1J - y as perturbed by the small vectors ±!C~ - x). Our approxi­
mation of (41) is 

( ~ x) *( ~ x) G1J+ 2 'Y+2 G 1J- 2 ,y-2 

. [(1J-Y)'(~-X)J 
exp 2ko I I 1J - Y 

~ ( 47r)2 I 1J _ Y 12 (43) 

exp [ik.(y)· (~ - x)] 
( 47r) 2 I 1J - Y 12 

(44) 

where the relation 

1J - Y 
k.(y) = ko I I 1J - y 

(45) 

defines a scattering wavevector . 

The second approximation involves replacing the coherent-field factor 
uc(Y + x/2)u~(y - x/2) by a function that locally represents the 
fields as plane waves. Thus, it follows from (16) that 

( ~) *( ~) _ exp [i(k 1 y + ~ 1- k* I y - ~ I)] 
U

C 

y + 2 U c Y - 2 - 21 x II x I 
(47r) Y + - y - -

2 2 

(46) 
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where the wavenumber k is a weak function of position. But 

1 y 
Iy 1 +--·x+ 21yl 

1 y 
Iy I---'x+ 21yl 

leads to the approximation 

( + x) *( x) 1 () 12 ik(y)'x U c y "2 u c y -"2 ~ U c Y e , 

where 

l~(y) = (Re k) 1 ~ 1 

defines an incident wavevector, and 

1 () 1
2 - exp ( - 2 1m k 1 y i). 

U c Y - (4'71l 1 y 12 

Collecting these approximations into (40) yields 

r-..J 4 2k4 J d exp [iks(Y) .~] exp [-21m k L1Lll 
r-..J E 0 Y ( 47r) 4 1 11 _ Y 12 1 Y 12 

(47a) 

(47b) 

(48) 

(49) 

(50) 

. J dx 1'(1 x I) exp {i[k(y) - ks(Y)]·x}. (51) 

This is the central result of this section. Equation (51) has the 
physical interpretation of a volume distribution of sources. The 
source at y generates a plane wave at the receiver with correlation 
exp[iks(Y) .~]. The strength of this wave is proportional to I'YJ - Y 1-2 

I Y 1-2 and to the value of the spectrum 

S(I K D = J dx 1'(1 x D exp {iK'X} (52) 

as evaluated at the local wavevector k (y) - ks(Y). At this wave 
vector, the spectrum is a measure of the amplitude of those com­
ponents of refractive index with the orientation and the periodicity 
required for constructive interference (Bragg scattering; compare 
with Ref. 4, pp. 68-69). 
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The physical justification of the above approximations follows from 
(40) by noticing the role played by the index covariance r in the in­
tegrand. The weighting introduced by r means that scattering from cen­
ter y depends upon the neighborhood of y with linear extent Lo , where 
Lo is the outer scale. First, the local plane-wave approximation (48) is 
poorest near the origin where the wavefronts are most curved. With a 
criterion of not more than 71'/16 radian departure from plane-wave phase, 
Fig. 2 shows that 1 y 1 must be larger than 4L~/A. In fact this usual far­
field condition can be replaced by 1 y 1 > 4Lo(Lo/A)! which is less re­
strictive when Lo > A. This weaker condition, derived in Appendix B, 
follows from an overbound of the phase error in (48) caused by elimi­
nating the remainder of (47). Second, the scattering approximation 
(43) is poorest near the observation center rJ where the phase (and 
amplitude) of (41) can experience large excursions as r', p' range over a 
neighborhood of linear size Lo . A usual far-field condition is 1 rJ - y 1 > 
4L~/A or 1 rJ - y 1 > 4(1 ~ 1 + L o)2/A. Again, when Lo > A, only a weaker 
condition, 

(53) 

need be met. Condition (53) follows from an overbound of the phase 
error in (43) associated with the remainder in (52), (see Appendix B). 
Strictly speaking, the y-integration in (51) must exclude the near-source 
and near-receiver spheres of radius 4Lo(Lo/A)!, and their contributions 
must be evaluated separately. In Section V we give a condition necessary 
for this contribution to be negligible. 

I 
I 

I 
1 

I I r------- Ilj 1-------1 

! Lo/2......, }../32 
2" -'lj-'- '"\J L o/2 

OR 

I I 
4 L~ 

Ij ~-}..-

Fig. 2 - Distance for the plane-wave approximation [in fact, only 4Lo{Lo/'I\.)1/2 
required] . 
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Apart from the excluded regions of integration, the validity of ap­
proximation (51) does not rely upon a "large-scale" condition re­
quiring the wavelength A to be much smaller than some refractive­
index scale size. But when such a condition is met, (51) yields both 
a maximum angle of important scattering and a finite volume of 
important scattering. In the approximation (51), the refractive-inde'X 
spectrum (52) is evaluated at the local wave vector, 

key) - k.(y). (54) 

Suppose there exists an inner scale lo such that for 1 K 1 > 271" /lo the spec­
trum (52) is negligible. Since the maximum magnitude (54) can attain 
is of order 471" /X, whereas 271" /X » 271" /lo , it follows that the integrand of 
(51) is large only for values of y such that 

1 key) - k.(y) 1 < 271"/lo. (55) 

Under the assumption that 1 key) 1 = ko = 271"/X, condition (55) yields 
the maximum angle of important scattering. With y;(y) the angle 
between key) and ks(y), as shown in Fig. 3, we have 

1 key) - k.(y) 12 = 2k; - 2k; cos y;(y) = 4k~ sin2 y;~y) . (56) 

Then (55) and (56) yield cos y;(y) > 1 - }..2/2l; or 2lo/X sin y;(y)/2 < 1 
or approximately y;(y) < X/lo . 

These conditions may be used to find the region of important scat­
tering. Figure 4 shows cylindrical coordinates with origin at the midpoint 
between transmitter and receiver; there is rotational symmetry around 
the transmitter-receiver axis. With tan y; constant, we have 

But 

tan y; = tan (a + (3) 
tan a + tan {3 

1 - tan a tan {3 

b tan a =--
L -+a 
2 

b 
tan {3 = -L--' 

2- a 

(57) 

(58) 

(59) 

Algebraic manipulations which include completing a square yield 

2 ( L)2 (L)2 
a + b + 2 tan y; = 2 sin y; . (60) 
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Fig. 3 - Angle of scattering. 

Equation (60) is a circle in the a-b plane passing through the trans­
mitter and receiver-center locations, Fig. 5. The slope of the curve is 

db 
da 

Thus, near the transmitter, 

b db 

~+a~da 
2 

and near the receiver 

a 
L 

b + 2 tan 1/; 

= tan 1/;, 

(-L/2,O) 

b db 
L-- ~ - da = tan 1/;. 
--a 
2 (L/2,O) 

Also, at the midpoint a = 0, (60) yields 

b = ~ (_._1 ___ 1_) = ~tan:f. 
2 sm 1/; tan 1/; 2 2 

b 

L 
""2 

Fig. 4 - Coordinates for the region of important scattering. 

(61) 

(62) 

(63) 

(64) 

a 
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L 'I' 
_-,---.....<::.-/ -ZTAN 2" 

/ 

I L TAN 'I' 

Fig. 5 - Region of important scattering (spherical waves). 

The condition for important scattering is 

)..2 t. 
cos if; > 1 - 2l~ = cos 'lr. (65) 

The volume specified by (65) is enclosed within the surface generated 
by rotating the arc of the circle (60), with tf; = w, around the trans­
mitter-receiver axis. This volume lies within the volume common to 
two cones with apexes at transmitter and receiver, each cone with 
half-angle W. 

For the large-scale case, ).. « lo ~ Lo , a condition necessary for (51) 
to be an accurate approximation of the covariance (40) is now apparent. 
The volume of important scattering shown in Fig. 5 must be much larger 
than the volumes in which the integrand of (51) is a poor approximation 
of the integrand of (40). These comprise a near-source cone of axial 
length 4L~/2/)..! and a near-receiver cone of axial length 4(L., + I ~ I) 3/2/'A.!. 
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An equivalent condition is seen to be that the transmitter-receiver 
distance must be much larger than the axial lengths of these cones, that 
is to say, 

(66) 

It remains to observe that the covariance expression (40) is itself 
an accurate relation provided that the average field is not severely 
attenuated by virtue of scattering into the fluctuation field. The at­
tenuation exhibited in (50), as evaluated throughout the above region 
of important scattering, must be small; that is to say, 

(1m k) I ?J I « 1, (67) 

where 1m k is given by (30). Combining conditions (66) and (67) 
yields an interval for validity of (51). When I ~ I = 0, this interval is 

L!/2/'} . .!« I?J I «(Imk)-l. (68) 

In other words, the transmitter-to-receiver distance must be (i) suf­
ficiently large so that far-field approximations of the covariance are 
valid, and (ii) sufficiently small so that single-scatter perturbation 
approximations are valid. 

v. REDUCTION OF THE INTEGRATION FOR THE COVARIANCE­

SPHERICAL AND PLANAR CASES 

5.1 Spherical-Wave Case 

The central result of the previous section is the approximation (51) 
of the covariance. The problem remains to evaluate the integral 
specified by this approximation. In this section, we introduce a set 
of coordinates which simplifies the integration, the result being (77). 
Although Section V indicates the extent of the important region of 
integration, the result (77) is equivalent to integration over all space 
rather than over only the important region. Under the large-scale 
approximation, the formula (77) is specialized to (83) and to (85) 
for transverse and longitudinal receiver separations. 

For simplicity, we first observe that (51) can be replaced by an 
expression employing the unperturbed field U o rather than the average 
field Uc • We need only observe from (7) that 

U c = L-11 + O(i) 

where (L1 ) = O. It immediately follows that (8) can be replaced by 

Ui = - eL -lLtuo + Oel) 
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where Uo = L-1j is the field that would exist in the nonrandom medium 
(€ = 0). In our special case, 

() 
_ exp [iko I r I] 

U O r - 471" I r I ' 
and accordingly 

Ui(r) .= -2€k~ J G(r, r')J.I.(r')uo(r') dr' + O(l) 

can replace (34). Equivalently, (51) can be approximated by 

2 4 J exp [ik.(y) .~] I" ( ) I) ~ 4€ ko dy (471")4 I Y 12 I rJ _ Y 12 S( koY - k. Y , (69) 

where the spectrum S is defined by (52) and where y = y/I y I. That is 
to say, the replacement of U c by U o corresponds to the replacement of 
key) by koY. 

The volume integration can be carried out with spherical coordi­
nates which have the receiving center rJ as their origin. In such co­
ordinates, the differential of volume of dndR R2, where R = I 'r} - y I 
and do, is the differential of the solid angle. Since ks(Y) is a function 
only of the direction of an element do, relative to the origin at rJ, it 
follows that (69) equals 

t~:~~ J dQ exp [ik • . ~] J dR {I y 1-2 S(I koY - k.(y) D} (70) 

where the factor in braces is to be evaluated as a function of R with 
ks fixed. 

The angular integration in (70) will use the coordinates in Fig. 6, 
where () = 0 corresponds to the direction of the transmitter. The 
radial integration in (70) will employ the angle", shown in Fig. 7. The 
argument of the spectrum is the square root of 

I koY - ks 12 = k~(2 - 2 cos 1/;) = 4k~ sin2 t-. (71) 

The law of sines is 

w_ L 
sin e - sin (71" - 1/;) 

R 
(72) 

sin (1/; - e) , 
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1\ 

~ ~ (TRANSVERSE) 

1 ~ (LONGITUDINAL) 

Fig. 6 - Spherical polar coordinates at the receiver. 

and thus 

1
1 1 = L s~n 0 
y sm 1/; 

(73) 

dR = L sin 0 . 
d1/; sin2 1/; 

(74) 

The radial integral in (70) is thus 

(L sin Or l i7l" d1/; S(2ko sin~) , (75) 

and (70) becomes 

4f?k!L f7l" f271" . 171" ( . 1/;) 
(47rl(4'71-L)2 0 dO 0 dcp exp (1,k s .~) e d1/; S 2ko sm 2" . (76) 

The 0-1/; integration is over the triangle {O ~ 0 ~ 7r, fJ ~ 1/; ~ 7r} = 
{O ~ 1/; ~ 7r, 0 ~ 0 ~ 1/;}, so that interchange of the order of integration 
yields 

2eL 171" ( 1/;) 1'" 1271" (27r) 2 (47rL)2 0 dt/; S 2ko sin 2" 0 dfJ 0 dcp exp (ik • . ~). (77) 

L 

Fig. 7 - Radial variable R related to angle 1/1. 
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Further specialization of (77) is made to the cases in which the 
receiving displacement ~ is transverse and is longitudinal, Fig. 6. In 
the transverse case, ks'~ = -ko I ~ I sin 0 sin cp, and (77) becomes 

2k4L 111" ( t/;) 1'" 2;(4~L)2 0 dt/; S 2ko sin 2 0 dO J o(ko I ~ I sin 0). (78) 

In the longitudinal case, k s' ~ = ko I ~ I cos 0, and (77) becomes 

2;;::~)2 i1l" dt/; s( 2ko sin~) i'" de exp (iko I ~ I cos e). (79) 

Expressions (77) to (79) correspond to integration over all space, 
rather than over only the region of important scattering. Further ap­
proximations rely upon the cutoff provided by S(,,) for" > 2-Tr-jlo, 
where lo is the inner scale size and lo » A. For the transverse case, (78) 
becomes 

(80) 

€2k~L . 100 1'" (. I ~ Il) 271'(471'L)2 exp (1,ko I ~ D 0 dx Sex) 0 d" exp -1, ~ • (81) 

The K-integral in (80) can be evaluated in closed form, namely 

fo'" d" J o(" I ~ \) = xJo(x I ~ D + ~ xJ1(x I ~ DHo(x I ~ D 

- ~ xJo(x I ~ DH1(x I ~ \) (82) 

where H" are the Struve functions. Thus, for the transverse case, (80) 
IS 

2k
2
L 100 

[ 2;(4~L)2 0 dx xS(x) Jo(x I ~ D + ~ J1(x I ~ DHo(x I ~ D 

- ~ Jo(x I ~ DH,(x I ~ D 1 (83) 

The K-integral in (81) is related to the Fresnel integrals, namely 

1'" (.I~ll) (7rk o )!(2)ll(""I€1/2kO

)' ·2 
o d" exp -1, ~ = IT! ;: 0 dt exp (-1,t) 

= (I~}[ 6(x'21: Iy - is(x~l: IYl (84) 
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Thus, for the longitudinal case, (81) is 

5.2 Plane-Wave Case 

For the spherical-wave case, the spatial covariance (Ui(7] + ~/2)u~(7]­
U2) > is given by (77) and its transverse and longitudinal specializations 
(80) and (81) or (83) and (85). By way of contrast, we derive the cor­
responding expressions for the plane-wave case. 

Approximations (45) and (48) show that the covariance (40) IS 

approximately 

where key) is a constant wavevector, 1 key) 1 = ko in keeping with 
the interchange of U c and uo, and 1 uo(Y) 12 = 1. Here the integral is 
over the volume of a half-space with k perpendicular to the face. 

With spherical coordinates centered at the receiving center 1], (86) 
becomes 

(~:;2 J dn exp (ik. ·~)S(I k - k8 D J dR (87) 

where the radial integral has k.-dependent integration limits correspond­
ing to the half-space interface. Under the large-scale approximation, 
'A/lo « 1, the radial integral is approximately L. For transverse separa­
tion, (87) is 

(~;~ { [' d8 d<p sin 8 exp (-ik, I ~ I sin 8 sin <p)S(2k, Sin~) (88) 

or 

e
2

;;L i 7r d () sin ()J o(ko 1 ~ 1 sin ()) S( 2ko sin ~) . (89) 

Under the large-scale approximation, with small angles yielding the 
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significant part of (89) the covariance becomes 

(90) 

This expression was obtained by Tatarski [Ref. 4, equation (7.64)] 
to be equal to twice the correlation function for either the log-ampli­
tude or the phase fluctuation of the total field. But 

Sex) = 471" 100 

dr rr(r) sin xr, 
x 0 

(91) 

because (91) is a function of 1 K I, and 

100 {( 2 1 ~ 1
2
)-112, 

dx sin (xr)Jo(x 1 ~ I) = r-
o 0 

r2 > 1 ~ 1
2

, 

r2 < 1 ~ 12. 
(92) 

Substituting (91) and (92) into (90) and changing the variable of 
integration shows that 

< u,( ~ + ~)u~( ~ - ~) ~ 2"":L t dT r(1 + I ~ 1')1 (93) 

for transverse separation. This is a central result of much of the 
literature (for example, Ref. 3); we have obtained this result in a 
simple and novel way. 

For the case of longitudinal separation, (87) is 

2k4L 171" 1271" ( ()) 
€(2;) 2 0 0 d() dcp sin () exp (ik o 1 ~ 1 cos ())S 2ko sin 2 (94) 

or 

";';L .c de 2 sin ~ cos ~ exp [i". I ~ I (1 - 2 sin' ~) J8(2k. sin~). 
(95) 

Under the large-scale approximation, the upper limit of the variable of 
integration K = 2ko sin ()j2 can be replaced by infinity. Thus, 

~ €2;;L exp (iko 1 ~ I) faoo dx xS(x) exp ( -i I ;Lx
2
). (96) 

It does not appear possible to simplify (96) by using (91) together 
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with the sine-transform of the exponential III (96). However, the 
special case 

r(r) (97) 

is of interest. Then 

(9S) 

Inserting (9S) into (96) and using the variable u = l~X2/2 for integration 
yields 

1-i llJ 
< u,( ~ + ~)u~ (~ - m R:! "";L1o(2,,)! exp (i"o 1 ~ D (I :01)" 

1 + J:-Z2 
Ivo 0 

(99) 

This expression corresponds to a result of Chernov [Ref. 1, p. 94, equa­
tion (lS7)] for longitudinal log-amplitude or phase fluctuations. The 
magnitude of the last factor in (99) is reduced by 5! when 1 ~ 1 = 2kol~ . 

5.3 Comparison of the Spherical and Planar Cases 

Notice that the relative variance (zero receiver separation) is the 
same for the spherical and planar cases. That is to say, expressions 
(SO) and (Sl) yield the same variance, relative to the spherical-wave 
power (47TL)-2, as do expressions (90) and (96), relative to the unity 
plane-wave power. 

For transverse receiver separation, the planar-case result (90) can 
be compared with the spherical-case result (SO). The weighting of the 
spectral function xS (x) is jo (x 1 ~ I) in the planar case; this 1 ~ 1-func­
tion has its first zero at 1 ~ 1 = 2.4/x with subsequent zeros spaced 
3.1/x apart. In the spherical case, the weighting is 

X-I iX 

dK Jo(K 1 ~ I); 

this I ~ I-function is a mixture of functions with "periodicity" larger 
than that of Jo(x I ~ \). Presumably, correlation lengths would usually 
be larger in the spherical case than in the planar case. 

For longitudinal receiver separation, the planar-case result (96) can 
be compared with the spherical-case result (Sl). The weighting of xS(x) 
IS 

exp (-ilU£) 
2ko 
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in the planar case; this I ~ I-function has period 41rko/X2. In the spherical 
case, the weighting is 

x-1 1'" dK exp (-i lili) ; 
o 2ko 

this I ~ I-function is a mixture of longer-period functions, and again 
correlation lengths would presumably be larger in the spherical case 
than in the planar case. 

Physical reasoning also suggests that correlation lengths are larger 
in the spherical case than in the planar case. First, compare the regions 
of important scattering. For the spherical case, this region is sketched 
in Fig. 5, where the angle \Jf is given by (65). For the planar case, this 
region is a cone with half-angle \Jf and axial length L (the transmit­
ter-receiver separation being replaced by the distance the receiver is 
imbedded into a half-space of random refractive index), Fig. 8. Com­
parison of the two regions suggests the the fluctuation field in the 
spherical case is more directive than the fluctuation field in the planar 
case. 

Second, consider the implication of a more directive fluctuation 
field. The directionality function N can be defined by 

<u;(~ + ~)u~(~ - ~» . 
(\ Ui(ll) \2) = J dn exp ('lks ·~)N(ks). (100) 

A wave in direction ks contributes a correlation exp(iks'~), and the 
total correlation is a weighted average of such constituents. The form 
(100) is exhibited by (70) in the spherical case and by (87) in the 
planar case. An idealized directionality function would be· constant 
with kS'TJ above a threshold and would be zero elsewhere. That is to 
say, (l00) would be 

--r--
I 
I 
I 
I 

2L'I' 
I 

I 

I 

t 
I 

~------------ L ------------J 
Fig. 8 - Region of important scattering (plane waves). 
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(101) 

where ~n is a small cap on the unit sphere of size 271"(1 - cos 8) ~ 71"82. 
When ~ is transverse, (101) becomes 

1
8 12

1!" [271"(1 - cos 8)r1 
0 0 de dcp sin e exp (-iko I ~ I sin e sin cp) 

(1 - cos 8)-1 18 

de sin eJo(ko I ~ I sin e). 

Under the small-angle approximation, (102) yields 

2J1(ko I ~ I 8) 
ko I ~ 18 

(102) 

(103) 

The correlation function (103) is unity at I ~ I 0, is 0.88 at I ~ I 
A/271"8 ~ 0.16 A/8, and is zero at I ~ I ~ 0.61 A/8. 

When ~ is longitudinal, (101) becomes 

[271"(1 - cos 8)r1 1
8 

1271- de dcp sin e exp (iko I ~ 1 cos e) 

= (.k Itl)l-exp[ikol~l(l-cose)] 
exp 1, 0 ',; iko I ~ 1 (1 - cos 8) (104) 

= (·k I I) 1 - exp [-i2k o I ~ I ~n/471"]. 
exp 1, 0 ~ i2ko I ~ I ~n/471" (105) 

The correlation exp (iko 1 ~ J) associated with a plane wave is modulated 
by a function having ripple in its numerator with period A (271"/ ~n). 

The A-dependence exhibited in (103) and (107) must be tempered by 
the A-dependence of the angle 8. Figures 5 and 8 suggest that 8 would 
be at most A/lo (~n at most 7I"A2/l~) for equivalence of the idealized and 
true directionality functions. For the transverse case, the null of (103) 
would be at I ~ 1 = 0.61 lo or more; the A-dependence disappears as in 
(80) and (90). For the longitudinal case, the period in (105) would be 
at least 2l!/A; this period is to be compared with the width of the last 
factor in (99) for the plane-wave gaussian-index correlation case. 

Both (103) and (105) exhibit the fact that correlation lengths are 
inversely proportional to b.O, the width of the directionality, function. 
But the scattering volumes depicted in Figs. 5 and 8 show that this 
width is smaller in the- spherical c~se than in the planar case. This 
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physical reasoning corroborates the previous interpretation of the 
integration formulas which showed larger correlation lengths for the 
spherical case. 

VI. EXAMPLES OF TRANSVERSE COVARIANCES 

It has been shown that, for transverse receiver separation, the covari­
ance (Ui(rJ + ~/2)u~(rJ - ~/2» is given by (80) in the spherical case and 
by (90) in the planar case. These expressions are now evaluated in closed 
form for two illustrative spectra. 

Recall that the spectrum S (K) is related to the refractive index 
covariance r(r) by (52) which becomes (91) for the statistically 
isotropic case. For convenience, (91) is repeated here, together with 
its inverse: 

S(K) = 471" 100 

dr rr(r) sin Kr 
K 0 

1 100 

r(r) = -2 2- dK KS(K) sin Kr. 
71" r 0 

Also, the planar-case covariance (90) is 

2lc
2 I roo 

E2;~ J
o 

dKKS(K)Jo(KI~\), 

and the spherical-case covariance (80) is 

E
2
k;L foo foo 

(471"L)2271" 0 dK Jo(K I ~ \) K dx S(x); 

the order of integration has been changed. 

(106) 

(107) 

(108) 

(109) 

The normalization of the spectrum follows from (107) evaluated 
at r = 0, 

1 roo 2 

1 = 271"2 J
o 

dK K S(K), 

so that €2 plays the role of the variance of the refractive index. 
Our first example is the case of an exponential spectrum: 

S(K) = 7I"2A3 exp [-AK], 

r(r) = [1 + (rl A)2r2 

where A» A. Then, the planar covariance (108) is 

E2k~L7I"2 A [1 + (I ~ II A)2r3/2 
271" 

(110) 

(111) 

(112) 

(113) 
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and the spherical covariance (l09) is 

2k2L 2A 
(4:L):271" [1 + (I ~ II A)2r1l2. (114) 

The respective correlation functions in (112) to (114) are plotted in 
Fig. 9. The correlation length for the spherical case is larger than 
the comparable correlation lengths for the planar case and for the 
refractive index. 

Our second example is the case of a constant spectrum: 

{

3A3 

471" ' 

0, 

(115) 

r(r) (116) 

I.O~::::-----r-------r------r-----r----...------' 

A = IIINDEX CORRELATION LENGTH II 

t- 0.8r--~~--~~-+----~----+------~----~ 

z 
w 
U 
lL. 
lL. 
w 0.6~---4~.----+--~~----4----+----~ 
o 
u 

z 
Q 
t-
<{ 
....J 
W 
a:: 
a:: 
0 
u 

0.4 

0.2 

O~ __ ~~ __ ~ ____ ~ ____ ~====~~~ 
o 0.5 1.0 1.5 2.0 2.5 3.0 

NORMALIZED RECEIVER SEPARATION I ~ I/A 

Fig. 9 - Correlations for the exponential spectrum. 
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Then, the planar covariance (108) becomes 

(117) 

The correlation function in brackets agrees with (103) with ® = 'AI A, 
which determines the angular extent of the constant directionality 
function. The spherical covariance (109) is 

J 2J (~Li) 
ik~L 371" A 12J (~) _ 1 A 
(471" L) 2 2 0 A 271" I ~ 1/ A 

+ J (~)H (~) - J (~)H (~)l 71" 1 A 0 A 71" 0 A 1 A f' (118) 

where H v are Struve functions. The correlation functions in (116) to 
(118) are plotted in Fig. 10. As before, the correlation length for the 
spherical case is larger than the comparable correlation lengths for 
the planar case and for the refractive index. 

VII. SUMMARY 

In Section II, the perturbation theory of Keller is developed in a 
novel way.2 This development shows that the nearly uncoupled equa­
tions (12) and (13) arise naturally from the fundamental pair (3) and 
(4). In Section III, the equation for the average field (12) is solved for 
the case in which the refractive index is statistically homogeneous and 
isotropic. The spherical wave (16) is shown to be a good local approxima­
tion of the average field; the wavenumber k is a weak function of position 
and satisfies (21). Beyond a few correlation lengths from the source, 
the wavenumber is a constant given approximately by (28) to (30). 

In Section IV, the equation for the fluctuation field (13) is shown to 
imply (40) for the spatial covariance of the field. A useful approxima­
tion of the covariance is (51) which is then justified on physical grounds. 
For the large-scale case t... « lo , where t... is the wavelength and lo is the 
inner scale for the refractive index, this approximation shows that the 
region of important scattering is given by (60) with (65) and lies within 
the volume common to two cones with apexes at transmitter and re­
ceiver, each cone with half-angle approximately t.../lo . The interval for 
validity of (51) is given by (68) which states that the transmitter-to­
receiver distance is sufficiently large for far-field covariance approxima-
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lL. 
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W 
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u 

0.2 
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NORMALIZED RECEIVER SEPARATION 271"1 ~ I/A 
Fig. 10 - Correlations for the constant spectrum. 

tions to be valid but is sufficiently small for single scatter perturbation 
approximations to be valid. In Appendix B, it is shown that a far-field 
condition relative to the covariance is less restrictive than a far-field 
condition relative to the field itself. 

In Section V, the volume integration of (51) for the covariance is 
transformed to the angular integrations exhibited in (77). For the 
large-scale case, the covariance is given by (80) and (81) for trans­
verse and longitudinal separation of receivers. These expressions for 
our spherical-wave model are contrasted with (90) and (96) for the 
plane-wave model, showing that relative variances are the same but 
that correlation lengths are larger in the spherical-wave case than in 
the plane-wave case. This is to be expected on physical grounds, for 
comparison of the volumes of important scattering for the two cases 
indicates that the fluctuation field is more directive in the spherical 
case. But a more directive field has longer correlation lengths; this is 
illustrated by (103) and (105) for transverse and longitudinal sepa­
rations under the idealized directionality function in (101). In Sec­
tion VI, two special cases of refractive-index correlation which cor-
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respond to an exponential spectrum and a constant spectrum are 
considered. For transverse separation, the covariance functions are 
derived in closed form. Plots of the correlation functions show that 
correlation lengths for the spherical wave case are larger than the 
plane-wave correlation lengths, which are comparable to the correla­
tion lengths of the refractive index. 
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APPENDIX A 

AM ean-Value Theorem 

'Ve show that any solution of 

[V 2 + k2]u(r) 

satisfies the mean-value relation 

4:R2 J dS u(r + p) 

ur ~, 

-0(1') 

O<R<lrJ, j 
() sin leR 

= ( ) sin kR + sin k( I r I - R) 
u r kR 471" I r I kR ' R> I r I, 

(119) 

(120) 

where the integration is over the surface of the sphere {p: I p I = R}. 
In particular, when u(r) is of the form (16), then (120) becomes (19). 

Introduce a function tf (r) that satisfies 

[V 2 + e]lf(r) = - 0(1' - 1'0). (121) 

Then (119) and (121) imply that 

V· (lfVu - uVIf) = ua(1' - 1'0) - Ifa(r). (122) 

For the sphere {r: 11' - 1'0 I = R} with the outward unit normal p 
(1' - 1'0)/1 l' - 1'0 I, the divergence theorem yields 

J dS (lfp· Vu - Up· V If) 

{
u(ro) , 

= u(r 0) - If (0) , 

o < R < I ro J, 

R > 11'0 I· 
(123) 
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We choose If; to be a linear combination of 

_exp (±ik 1 r - ro I) 
471" 1 r - ro 1 

1159 

(124) 

such that If; is zero on the surface of the sphere and satisfies (121). 
This choice is 

1f;(r) = 
sin k( 1 r - r 0 1 - R) 

471" 1 r - r 0 1 sin kR . 
(125) 

The radial component of the gradient of (125) evaluated on the sur­
face of the sphere is 

kR 
(126) 

Then (125) and (126) in conjunction with (123) yield (120). 

APPENDIX B 

An Improved Far-Field Condition 

The kernel (41) used in the integral (40), yielding the covariance, is 

G( ')G*( ') = exp [ik o ( 1 r - r' 1 - 1 p - p' i)J. (127) 
r, r p, p (471")2 1 r - r' lip - p' 1 

vVith the definitions and inverse relations (36) to (39), 

the kernel is 

r+p 
1]=-2-' 

r' + p' 
y = 2 ' 

x 
r' = y + "2' 

~ = r - p, 

x = r' - p', 

x 
p' = y - "2 

exp [iko(1 1] - y + !(~ - x) 1 - 1 1] - y - !(~ - x) I)J 
(471")2 1 1] - y + !(~ - x) 1 1 1] - y - !(~ - x) 1 

(128) 

(129) 

(130) 

The far-field (Fraunhofer) approximation arises from the series 
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expansions (42) 

1 r] - y I 7] - y + !(~ - x) I = I r] - Y I + -2 I I· (~ - x) + 
177 - Y 

1 1] - y I 1] - y - !(~ - x) I = I 1] - y I - - . (~ - x) + 
211] - Y I 

and the approximation kernel (44) is 

eXPiko[1 ~::: ~ I·(~ - xl] 
(4'71ll 1] - Y 12 

A usual condition for the validity of a far-field approximation is 

L2 
11] - Y I» XO , 

(131) 

(132) 

(133) 

where Lo is an outer scale of the scatering medium. This condition is 
relative to approximation of the field. But relative to approximation 
of the covariance of the field, the condition of validity is 

(
L )! I 1] - Y I »Lo A

O 

• (134) 

In the case L o » X, condition (134) is considerably less restrictive than 
condition (133). The reason for this improved state of affairs is that. 
rather than approximating Green's function G, we are approximating 
the kernal GG*. In the computation of the phase of this kernel with 
expansion (131), there is cancellation of terms that ordinarily remain 
when computing the phase of G itself. Overbounding the effect of all 
neglected terms, not just the first one, leads to condition (134). 

Our task is to approximate the phase in (130), namely, the argu­
ment of the exponential. We put 

so that 

Then, we observe 

Y = 1] - y, x = ~ - x, 

I r - r' I = I Y + !X I, 
I p - p' I = I Y - !X I· 

(135) 

(136) 

(137) 
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SO that 
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1 r - r' 1 = 1 y 1 (1 + a + (3)i, 

1 p - p' 1 = 1 y 1 (1 - a + (3) i . 

1161 

(138) 

(139) 

The next step is to assume I ± a + f3 I < 1 and expand I r-r' I and 
I p-p' I with a binomial series. Then, 

1 . 1·1 
(1 ± a + (3)2 = 1 + !(±a + (3) - 2.4 (±a + (3)2 

1·1·3 3 1·1·3·5 4 + 2.4.6 (±a + (3) - 2.4.6.8 (±a + (3) + ... (140) 

In the above expression, only terms with differing signs contributed to 
the difference I r-r' I - I p-p' I. Thus, 

(1 + a + (3)! - (1 - a + (3)! 

1·1 1·1·3 3 1·1·3 2 

= a - 2 2.4 2af3 + 2 2.4.6 a + 2 2.4.6 3a{3 + R, (141) 

where the remainder R has the series expansion 

R= 1·1·3·5 [(a + (3)4 - (-a + f3tJ 
2·4·6·8 

1·1·3·5·7 5 5 + 2.4.6.8.10 [(a + (3) - (-a + (3) J - ••.. (142) 

The series is readily "majorized," with the result 

1

1.1.3.5 4 

1 R 1 < 2 2.4: 6.8 (I a 1 + 1 (3 I) 

1·1·3·5·7 5 I + 2.4.6.8.10 (I a 1 + 1 (3 \) + ... , (143) 

or, with y = I a I + I f3 I and 0 < y < 1, 

ill 5 4[ 7 7·9 2 ] 
2 < 128'1' 1 + 10 'Y + 10.12 '1' + ... . (144) 
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But the series in brackets is overbounded by 

Thus, y < ~ implies 

1 2 --=1+')'+')' + ... 
1-,), 

1 R 1 < 3
5
2 ')'4 = ;2 (I a 1 + 1 {3 1/· 

The above calculations show that 

[
y,X 1 y·X X 2 

1 r - r' 1 - 1 p - p' 1 = 1 y 1 y2 - 8" y2- y2 

1 (Y.X)3 3 Y.X (X2)2 ] + 8" y2 + 128""Y2 y2 + R , 

where 

5 (] y. X ] X
2 )4 

1 R 1 < 32 ""Y2 + 4 y2 . 

The conditions 

and 

(145) 

(146) 

(147) 

(148) 

(149) 

'\ y.x] X
2 

1 ""Y2 + 4y2 < 2" (150) 

have been imposed. Since condition (150) implies (149) it is clear 
that both are met when 

ill <!, 
1 y 1 3 

(151) 

The far-field approximation of the kernel employs the leading term 
of (147) ; that is to say, the Fraunhofer phase is 

y 271" 'l1 - Y 
koTYl'X =}: 1 'l1 _ Y I'(~ - x). (152) 

The phase error is then 

{ill y·X X2 

-ko 8 'I y 1 1 X I' y2 

[ ( 
Y .X )2 3 X2] } 

, 1 - 1 y 1 1 X 1 - 16 y2 - 1 y 1 R . (153) 
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Our task now is to overbound the magnitude of the phase error. 
We impose I X I ~ Lo , an outer scale of the refractive-index correlation 
function r. This is appropriate for zero receiver separation, I ~ I = 0; 
later, Lo could be replaced by I f I + Lo for nonzero receiver separation. 
Apart from the remainder, (153) is seen to be a function of the cosine 
U·V, withu = XII X I and v = YII Y I, and of the ratio w = I X III Y I. 
We overbound the product in (153) by a product of overbounds in which 
u . v has distinct values, and overbound the second factor by unity (unity 
is greater than both the largest positive value 1 - 1

3
6 w2 and the largest 

magnitude, 136W2, of negative values, since w < 1). It follows that the 
magnitude of the phase error is overbounded by 

(154) 

vVe now overbound our previous estimate of 1 R I. We assume 1 Y 1 

> L o , even though tighter overbounds can be obtained under 1 Y 1 > 
3Lo as previously assumed. Then, (148) yields 

(155) 

or 

1 (25)3( Lo )4 ( Lo )4 I R I < 10 16 TYl < 0.382 TYl . (156) 

vVe use 

2 ( Lo )4 
IRI<sTYl' (157) 

The above phase-error bound (154) is less than 

k L! (1 + 16 Lo ) 
'0 8y2 sTYl' (158) 

which is less then 

(159) 

All of the above calculations required 1 Y 1 > Lo. With the stronger 
condition 1 Y 1 > 4Lo , the next -to-last calculation becomes 

k L! (1 + 16 Lo ) < koL~~. 
o 8 y2" S TYl 8 y2 5 (160) 
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This overbound is less than 

(161) 

Suppose we impose the condition that the phase error be less than 
77"/32 and we ask what value of I Y I, the scattering range, is required. 
The last overbound yields 

(
L )! 

\ rJ - Y \ = \ Y \ > 4 -t Lo. (162) 

This is a less restrictive condition than one specifying the far-field range 
to be much greater than L~/X. When L o » X, it is a considerably weaker 
condition. On the other hand, with Lo > X (but now Lo ~ A), the con­
dition (162) still implies the assumption \ Y \ < 4Lo under which it was 
obtained. When Lo < X, the results are valid but vacuous, since the 
pertinent condition is then \ Y \ > 4Lo. 

We turn to the approximation of the coherent-field function (46), 

U (Y + ~)U~(Y _ ~) = exp [i(k 1111 + ~ 1111e* I Y I ~ I)] , 
(47l') 

2 
y + ~ y - ~ 

(163) 

in which k is a weak function of position. '¥ith the identification y = 
Y, x = X, the previous analysis is applicable. The approximation (48) 
to (50) is 

exp (-21m k 1 Y I) exp [i(Re Ie) TfI·xJ 
(47l'? \ Y \2 

with a phase error less than 

(164) 

(165) 

In view of the interchangeability of k and ko, the phase error (165) 
is comparable to 

(166) 

Then, a phase error in (164) less than 7l'/32 requires that the source­
to-scattering distance I y I satisfy 

(167) 
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Our calculation is similar to one by Lahti and Ishimaru, but the 
calculation (and result) is simpler and the final conditions are less 
restrictive.10 Simplicity is obtained in part because we use variables 
with symmetric form, (128) and (129), and we overbound a quartic 
remainder rather than modify a cubic remainder. Our quartic-re­
mainder overbound also yields less restrictive conditions, say I Y I > 
4Lo (Lo/A)! implying a phase error less than 71"/32 in comparison with 
I Y I > 7Lo{Lo/A)! yielding an error less than 71"/10. 
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Response of Delta Modulation 
to Gaussian Signals 

By M. R. AARON, J. S. FLEISCHMAN, R. A. McDONALD, 
and E. N. PROTONOTARIOS 

(Manuscript received October 30, 1968) 

Analytical, experimental, and computer simulation results are given for 
the error spectrum of a delta modulator when probed by stationary, band 
limited, gaussian noise. These three complementary methods are used to 
increase our quantitative understanding of the nonlinear system with mem­
ory. The error is conveniently split into two components: one linearly 
dependent on the input signal and one linearly independent of the input 
signal. In order to isolate these two types of errors we use two measurement 
techniques. For purposes of analysis we show that the delta modulator can 
be replaced by an equivalent linear system with additive noise at its output 
which is linearly uncorrelated with the input. The equivalent linear system 
may be approximated by using methods involving statistical linearization 
or the deterministic describing function. Alternately, the equivalent linear 
system may be obtained from computer simulation. 

1. INTRODUCTION 

1.1 General Background and Broad Objectives 

Delta modulation (DM) has been known for almost two decades; 
yet, little has been published comparing experiment with theory par­
ticularly for random inputs.t On the surface this might seem strange 
because of the apparent simplicity of the delta modulation system 
blocked out in Fig. 1 (a). The waveforms depicted in Fig. 1 (b) and 
the mathematical model in Fig. 1 (c) should suffice to explain how the 
system operates. The principal difficulty of the analysis is the ab­
sence of general tools for handling random processes in nonlinear sys­
tems with memory. From this viewpoint the simplicity of the delta 

t The first reference to delta modulation appeared in French patent literature 
(see Ref. 1) in 1946, but the first readily available description in English ap­
peared in 1952 (see Ref. 2). 
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modulator is deceptive. However, if we make some inroads into the 
quantitative understanding of this seemingly simple case, it may give 
us courage to go on to more complicated situations. 

In this paper we concentrate on the development and exploitation 
of analytical, experimental, and computational techniques to enhance 
our understanding of the objective performance of delta modulation. 
We do not consider the correlation of objective measures with sub­
jective effects for applications to either voice or video; rather, our 
main aim is to correlate what is known in theory, including our own 
developments with what has been achieved experimentally. 

Renewed interest has come from at least two sources. First, differ­
ential systems of which delta modulation is the simplest member, 
have long been known to be well suited to handling signals whose 
spectra fall off at high frequencies. 3

-
5 This is particularly true of 

black and white video; there is substantial interest in transmitting 
such signals digitally.6 Interest also has been generated by the desire 
to produce inexpensive time division switching and transmission sys­
tems for voice.7 In this application, delta modulation is attractive be­
cause of its simplicity and great compatibility with the emerging in­
tegrated circuit technology. 

1.2 Use of the Random Noise Probe 

Reasons for characterizing a delta modulator with a random noise 
probe are twofold. First, the envelope of a scanned video signal has 
a power spectral density that is close to that obtained by passing gaus­
sian noise through an RC filter.t Therefore objective performance 
measures obtained in response to this signal bear some relationship to 
subjective performance. Second, use of the established noise-loading 
procedure for determining the spectrum of the noise in a nonlinear 
system yields a "signature" that is useful for verifying that the delta 
modulator is performing as designed. Verification of prescribed per­
formance is an essential prelude to careful subjective testing as well 
as an absolute necessity for production control. To avoid measure­
ment problems that result from the low spectral density of the RC 
noise source at the upper end of the band, we deal with flat band­
limited white noise almost exclusively. 

1.3 Chronology and Summary 

At the start of our work the signal-to-noise ratios obtained by 
computer, experiment, and analysis disagreed substantially, partic-

t We use the terms power spectral density, power spectrum, and spectrum in­
terchangeably throughout. 
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ularly when the signal was changing more rapidly than the delta 
modulator could follow. In this region, known as the region of slope 
overload, two methods of computing slope overload noise differed 
markedly.6.s Reference 9 gives a reconciliation of the differences and 
the development of an analytical expression for the mean square 
value of the slope overload noise. By using the best features of the 
previous conflicting theories, an analytical result was obtained that 
yielded good agreement with computer results.9 Granular noise, as 
computed from Van de vVeg's approach, agreed with both simula­
tion and experiments.1o Results obtained by noise-loading experi­
ments continued to disagree with both theory and simulation in the 
slope overload region. It quickly became apparent that the differ­
ence resulted from the fact that this measurement procedure did not 
measure the noise as defined by theory. 

To clarify the differences it is desirable to consider the spectrum of 
the noise introduced by the delta modulator. Two definitions of noise 
are possible; the simplest is that the noise is the error, that is, the 
difference [x (t) - y (t)] between the input signal and the local out­
put signal as defined in Fig. 1. This error is correlated statistically 
with the input signal. In other words, the error may be considered to 
be made up of two components, one linearly dependent on the input 
signal and one linearly independent of the input signal. The linearly 
dependent component may be regarded as being caused by passing 
the signal through a noise-free linear filter. 

This equivalent linear filter does not introduce noise but merely 
introduces frequency distortion, as for example in producing selective 
attenuation and phase shift, particularly for the higher frequency 
components of the signal that the delta modulator cannot follow. The 
noise component linearly independent of the signal may be viewed as 
equivalent to additive uncorrelated noise just as in the case of a non­
feedback type of pulse code modulation quantizer.ll When the noise 
is split up this way, the components have distinctly different subjec­
tive effects and are thus meaningfully studied separately. In fact the 
spectrum of the uncorrelated component of the noise is measured by 
the noise-loading test pictured schematically in Fig. 2. This test 
procedure is commonly used to test transmission systems, primarily 
for nonlinear distortion, in this manner.12 With the switch in the 
upper position, the colored gaussian noise is passed through a narrow­
band elimination filter prior to exciting the system under test. At the 
system output, noise generated by system nonlinearities is measured 
by the bandpass filter in the receiver of the noise-loading set. This 
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(bJ 

1 
S 

(c) 

Fig. 1-Delta modulation: (a) delta modulation system, (b) waveforms, (c) 
mathematical model. 

filter passes only those frequency components eliminated from the 
input signal. This differs from the total noise as computed by analysis 
and simulation. 

Two approaches were taken to reconcile measurements with the 
paper and pencil results. First, we used a straight-forward, but tedious, 
measurement procedure called the cancellation test to measure the 
total noise as defined by theory, that is, the difference between output 
and input. The results achieved substantiated the theoretical results. 
Unfortunately the cancellation or "feed-around" technique, as dis­
cussed in detail in Section IV, is tedious and difficult to perform ac-
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curately. This made it necessary to rely on the more convenient noise 
loading measurements. To compare theory and experiment it became 
necessary to remove the correlated components of the noise as ob­
tained from theory and simulation. It was not possible to do so for 
the purely theoretical approach, but the results of the simulation were 
modified, as described in Section III, to agree with the measurement 
made with the noise-loading technique. 

The equivalent linear filter, defined in Section 1.4, cannot be ob­
tained analytically, but it may be determined using computer simula­
tion. An approximate analytical method for arriving at the equivalent 
linear filter is statistical linearization to replace the quantizer (signum 
function, threshold circuit) of Fig. 1 with a "suitable" linear gain. 
This approach is discussed in Section 2.2 where comparisons are made 
of the equivalent linear filters obtained by the statistical linearization 
and simulation approaches. Most of the manipulations regarding the 
statistical linearization are relegated to Appendix A. Section 2.3 is 
concerned with harmonic analysis useful in its own right as well as 
a part of the cancellation test. The prelude to the Fourier analysis 
relevant to the sinusoidal response in the overload region is given in 
Appendix B. 

In Section III we cover the highlights of the simulation program 
with emphasis on the spectral calculations. Estimates of accuracy are 
given in Section 3.2. Section IV is devoted to a discussion of the 
techniques used for measuring the spectrum of the error. We also show 
how the delta modulator parameters are measured and discuss the 
realization of a laboratory model delta modulator. Throughout the 
paper we compare experiment with theory and simulation. In Section 
V we make some general comments about the various sets of results. 

1.4 System Definition, Terminology, and Symbols 

The following are the terms and symbols used. Our input signal 
x(t) in Fig. 1 is chosen from a stationary, zero mean, gaussian random 
process, band-limited to jb . Its correlation function is Rxx(r) and cor-

NOISE 
SOURCE 

80----0 

DIFFERENTIAL 
PULSE CODE 

MODULATION 
SYSTEM 

BAND­
PASS 

FILTER 

TUNED 
DETECTOR 

Fig. 2 - Noise loading test: When the switch is at A the uncorrelated noise is 
measured; when at B the signal plus total noise is measured. 
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responding spectral density Sxx(w). The delta modulator is characterized 
by the step size k of the quantizer, sampling frequency i8 , or normalized 
sampling frequency i,lib = F s , and an ideal integrator with transfer 
function II s. t Clearly the maximum slope that the delta modulator 
can follow is kj. == x~ , which corresponds to a string of one's at its out­
put. As k approaches zero with x~ fixed, the granular noise tends to zero 
and the noise primarily results from slope overload. Under these con­
ditions it will be convenient and quite accurate to represent the delta 
modulator as a continuous feedback loop with a step size x~ . We make 
this assumption in much of the analysis to follow. 

Throughout we use e (t) for the total noise, net) for that component 
of the noise uncorrelated with the input signal, z (t) for the unsampled 
output of the threshold circuit, and y (t) for the output of both the 
local integrator and the remote integrator (error free transmission). 
Other symbols are defined as needed. 

II. DEFINITION OF THE UN CORRELATED NOISE-AN EQUIVALENT 

LINEAR SYSTEM 

2.1 General 

In this section we define an equivalent linear system and an addi­
tive uncorrelated noise which produce statistical behavior identical 
with that of the delta modulator up to second moments. Notice that 
any time invariant linear transformation of the input signal contained 
in the output may be considered as useful signal because, at least in 
principle, the input may be recovered by passing it through a fixed 
linear filter corresponding to the inverse linear transformation. 

Definition 1: Equivalent Linear System. We compare the output 
of the delta modulator y (t) with the output of an "equivalent linear 
system," defined by Figure 3, whose impulse response 9 (t) is defined 
such that the difference 

yet) - g(t)*x(t) ~ net) 

is uncorrelated with the input x(t) ; that is, 

(1) 

Rxn(T) = (x(t + T)n(t)\v = (x(t + T)[y(t) - g(t)*x(t)])av = 0 (2) 

where * denotes convolution. 
Definition 2: Additive Unc01~related Noise. The difference n (t) 

t In Section 2.2 we consider the more practical case of a leaky integrator with 
transfer function 1/(8 + a). 
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given in equation (1), with equation (2) satisfied, is defined as the 
additive uncorrelated noise. Equation (2) is satisfied when 

(3) 

Taking the Fourier transforms of both sides of this equation and then 
the complex conjugates we get 

G(jw) = ~::~:~ = 1 - Sx~(w) {Re [Sxe(w)] - j 1m [Sxe(w)]}. (4) 

\Ve remark here that the transfer function G (jw) does not have to be 
ca usal; that is, g (t) may be nonzero for t < O. 

Applying the orthogonality principle we can see that g (t), thus 
found, also satisfiest 

([y(t) - g(t)*x(t)]2)av = minimum. 

Notice that from Fig. 3, we can write 

SlIuCW) = \ G(jw) \2 Sxx(W) + Snn(W). (5) 

If the input process [X (t)] has a spectrum Sxx (w) such that 

{ ~w ~w} Sxx(w) = 0 for w t Wo - 2 ' Wo + 2 (6) 

where Wo is a given radian frequency and Aw a small radian frequency 
slot, then applying (5) we get 

S .. (w) = S,,(w) for w' {w, - ~w ,w, + ~w}. (7) 

So that for the noise power in this frequency slot we will have 

1 1"'0+.1"'/2 1 1"'0+.1"'/2 
-2 Snn(w) dw = 2- Syiw) dw. 

7r "'0-.1",12 7r "'0-.1",/2 
(8) 

The noise-loading measurement described in Section I applies the 
technique mentioned here. Thus the noise spectrum and noise power 
measured are Snn(w) and (n2 (t)av. In order to compare experiment 
and analysis we have to find G (jw) and (n2 (t) )av. When we are slightly 
in slope overload, G (jw) is practically equal to 1 and all noise defini­
tions so far used are equivalent. When well into slope overload, 

t Kazakov used this approach to obtain g(t) or equivalently G(jw) in equation 
(4) in 1960.13 We were unaware of his work at the time we conceived of the 
additive uncorrelated noise approach which for our purposes has real physieal 
appeal. 
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x(t) 

(a) (b) 

Fig. 3 - Equivalent linear system. 

G(jw) deviates markedly from unity, thus accounting for the differ­
ences between experiment and analysis. To find G (jw) we need the 
cross-spectrum Sya;(w) which is not presently available analytically. 
We can find Sya;(w) using computer simulation; this is what is done 
in Section III. 

2.2 The Method of Statistical Linearization 
Even though the equivalent transfer function G (jw) cannot be 

found analytically, it may be approximated through the method of 
statistical linearization.14 Statistical linearization can be applied to 
the corresponding continuous system (without sampling) as shown in 
Fig. 4. The study of the slope overload noise corresponds to the 
study of this feedback loop, with the nonlinear element in the forward 
path being a hard limiter with saturation levels ±x'o = ±kfs. The use 
of the continuous system is not a substantial limitation since the cor­
related component of the overall noise e (t) is conj ectured to be mainly 
overload noise. 

The nonlinearity in the loop will be replaced by a linear gain K 
chosen according to criteria given in this section and in Appendix A. 
Independent of the choice of criterion, the equivalent linear system 
will have the form, 

e(t) ! zIt) 

INTEGRATOR 

y'(t) 

1 

y(t) S 
INTEGRATOR 

Fig. 4 - Continuous feedback system for the study of slope overload noise. 
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H(j) = AI(s + A) (9) 

or 

1 
H(f) = 1 + j(flie) (10) 

where fo is the corner frequency (3dB frequency) of the filter (fo = 
K/27T) . 

In a real system, we generally have a leaky integrator whose trans­
fer function is of the form II (s + a). Then it is easy to show that 

where 

H(O) 

H(f) = H(O) 

1 + jt 
ie 

-~ and f =K+a. 
K+a' e 27r 

(11) 

The variety of ways by which one can determine the equivalent 
gain K, are presented in detail in Appendix 1. Let us call ]{l the 
equivalent gain found with the assumption that the input to the non­
linearity is gaussian with variance 0-

2 equal to the overload noise 
power. Denote by ]{2 the equivalent linear gain when the gaussian 
assumption is removed. Let K3 be the equivalent gain determined 
under the requirement that the difference between the overload error 
and the input to the linearized element be uncorrelated (for T = 0) 
with the input signal. In order to compare the equivalent linear filter 
transfer functions with the computer simulation results we plot the 
magnitude I G (jw) I of the transfer function [calculated using equa­
tion (4) and the computer generated cross-spectra] for kfslfb = kFs = 
2 and 4 in Fig. 5. From these figures we find that the equivalent linear 
system may be approximated by a one-pole tranfer function with 
corner frequency, fo = 0.358 fb and 0.94 fb, respectively, and cor­
responding dc gains (caused by the small leak in the integrators) 
H (0) = 0.89 and 0.98. The results of the comparison are summarized 
in Table 1. Thus there is reasonable agreement between the equivalent 
linear system transfer function obtained from computer simulation 
and all the approximate statistical linearization methods. 

2.3 Describing Function Method 

In Appendix B a method is outlined for obtaining an equivalent 
frequency dependent complex gain for a delta modulation system with 
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Fig. 5 - Bode plot of the gain of the equivalent linear system (computer results, 
a=0.16 wb). 

a leaky integrator, subject to a sinusoidal input of amplitude Xo and 
frequency Wo , under pure slope overload conditions. This complex gain 
is defined to be the ratio of the complex amplitude of the fundamental 
of the output to the complex amplitude of the input sinusoid. This deter­
ministic equivalent linearization method is well known as the describing 

TABLE I-PARAMETERS OF EQUIVALENT LINEAR SYSTEMS 

kF. = 2 kF. = 4 

K/lb Icllb Kltb tdtb 
Equivalent Corner Equivalent Corner 
linear gain frequency linear gain frequency 

Computer Ko = 2.10 0.358 Ko = 5.90 0.94 

Gaussian assumption Kl = 2.34 0.398 Kl = 7.13 1.13 

Without gaussian 
K2 = 1.48 0.262 K2 = 4.00 0.64 assumption 

Correlated noiset 
Approach K3 = 2.70 0.43 K3 = 5.90 0.94 

t The leaky integrator effect is neglected; if taken into account the results would 
be somewhat smaller. For kFII = 4, the effect of leak is negligible. 
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function method. The corresponding magnitude of the equivalent gain 
is given as a function of "normalized" frequency (woXo/x~) in Fig. 6 when 
the leak in the integrator goes to zero. For x~ = kF 8 = 2 the 3 dB point 
(corner frequency) is atjc f"'/ O.4jb , which is in good agreement with the 
results in Table 1. lVIeasured values of equivalent gain shown on Fig. 
6 agree well with theoretical predictions. 

III. COMPUTER SIMULATION TECHNIQUE 

3.1 Basic Concepts 

Computer simulation provides a convenient method of studying the 
characteristics of delta modulation systems without actually building 
them. The computer can also provide accurate numerical results 
against which to compare experimental results from laboratory or 
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production models. Computer simulation is a compromise between 
laboratory techniques and analytical techniques in that it is easy to 
change the program in order to study a variety of system parameters 
or to introduce defects similar to those expected in practical systems. 
On the other hand, the simulated system is an idealized abstraction 
which does not represent the practical system in full detail. 

The BLpm programming system, used for the simulation, results in 
a program which processes a sequence of samples by whatever set of 
mathematical operations may be specified by a block diagramY BLpm 

flexibility allows the use of FORTRAN for such things as computing 
estimates of signal statistics, for which FORTRAN is more efficient. Fig­
ure 7 indicates the basic philosophy: a FORTRAN program supervises 
the entire operation calling the various subprograms as needed. By 
structuring the simulation programs as a hierarchy of modules, 
changes in one area of the model could be effected without involving 
the entire program. The program was purposely written with exten­
sive use of subroutines. This for example, makes it applicable to dif­
ferential pulse code modulation (DPCM) by simply changing the 
subroutine for the quantizer. The actual programs are of interest to 
only a few people, and are not listed here. Appendix C gives a discus­
sion of the computational formulas used to estimate correlation func­
tions and spectra. 

3.2 Accuracy of Computer Estimates of Spectrum of Error 
In order to estimate the expected accuracy of the spectrum esti­

mates from the computer simulation, the following example is given: 
In the simulation the estimate Se(k) is made on the basis of 10,000 
input samples. Here k is an integer index related to frequency, and 

I 
r------~------r------------~----------I 

PSEUDO 
RANDOM 
SOURCE 

DELTA MODULATOR OR 
DIFFERENTIAL PULSE 
CODE MODULATION 

SYSTEM 

ARRAYS: 
INPUT, 
ERROR 

Fig. 7 - Computer simulation. 

FORTRAN 
CORRELATION 
COMPUTATION 

PRINTED 
OUTPUT 



UNDERSTANDING DELTA MODULATION 1179 

the subscript e refers to the total noise e (t). In one particular run, 
ten intermediate estimates based on 1,000 input samples each were 
made. Using the notation Sel (k) through Selo(k) for these we have 

sample mean = S.(lc) = -ftr [Sel(k) + ... + S.lo(k)] (12) 

E[Se(k)] = JL, 

sample variance = var = lo{ [S.l(lC) - S.(k)]2 + ... 
+ [Selo(k) - Se(k)]2}. (13) 

One can then show that the variance of the estimate Se(k) relative 
to p.. is estimated by 

(14) 

For the cancellation technique and one particular value of k, rep­
resenting a low frequency point in the spectrum, a numerical computa­
tion yielded: 

(t var)! = 0 066 
Seek) .. 

Although the result may in general depend on k, spot checks at other 
points yielded similar results. 

Assuming the estimate is a gaussian random variable with 0.066 = 
the ratio of standard deviation to mean, the result indicates that the 
estimate is within ±lh dB of the true mean with probability 0.9. 

Other sources that could contribute errors in the results of the simula­
tion include: (i) random error in measurements caused by finite averaging 
time constant, estimated as ±! dB, (ii) round-off errors in computation, 
which are most significant in the region of high noise, and (iii) syste­
matic error resulting from differences between the spectral shape of the 
simulated input and the output of the laboratory noise generator used 
in the experiments. 

IV. EXPERIMENTAL TECHNIQUES 

The extensive analytical and computer work that has been presented 
was undertaken to a large extent to gain a better understanding of an 
actual laboratory delta modulation system. 

4.1 Description oj the Delta Modulator 

The delta modulator used for the measurements is a variable pa­
rameter system in which the step sizel leakl and sampling rate are 
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independently variable. Figure 8 is a block diagram of the encoder. 
The difference between the input and the local integrator output is 
amplified and presented to the threshold detector. This circuit con­
trols the output of the pulse generator. 

The local integrator has circuit elements which can be changed to 
vary the important parameters of the system. The capacitor C con­
trols the step size; since the amplifier has a high input impedance, the 
resistor RL controls the leak. 

The decoder consists of a regenerator for amplitude and phase re­
generation and a decoder integrator which is a duplicate of the local 
integrator. The system was operated at a 12.5 MHz sampling rate. 

Waveforms in a delta modulator are rather simple; nevertheless, 
some are shown in Fig. 9 to illustrate the actual operation of the 
system. Figure 9a indicates the output of the decoder and the pulse 
output of the coder when no input is presented to the system. A delta 
modulator should change state every clock period with no input; the 
photograph illustrates this. This waveform can be used to measure 
the step size. 

Figure 9b illustrates the output of the system when it is in over­
load. The slope of the input sinusoidal signal is greater than the 
slope that the delta modulator can follow. Therefore, the output is a 
triangular wave whose slope is a measure of the normalized step size. 
An interesting feature can be seen by observing the slopes of the fiat 
steps in this picture. In the lower half, they slant upward and in the 
upper half they slant downward, illustrating the leaking off of the 
capacitor voltage. 

Figure 9c illustrates the response of the delta modulator to a sine 
wave whose amplitude is below overload. The rather blurred trace 

ANALOG 
INPUT 

Fig. 8 - Delta modulator encoder. 

DIGITAL 
OUTPUT 
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Fig. 9- (a) Analog output yet) and digital output with no input 000 ns/em) ; 
(b) yet) with system in overload (400 ns/em); (e) yet) with system not in 

overload (2 /Ls/ em) . 
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results because the frequency of the sine wave is not a submultiple 
of the sampling frequency. 

4.2 Noise Loading Test 

The use of the noise loading test to measure nonlinearities in a 
transmission system has been mentioned in Section 1.3. In this test, 
as shown in Fig. 2, a wideband of gaussian noise is applied to a low­
pass filter to band limit the input to the delta modulator. With the 
switch in the upper position, a narrow band of noise can be elimi­
nated from the input signal. Several band elimination filters are 
available to cover the input spectrum. This signal is fed into the sys­
tem and only that band from which signal has been eliminated is 
allowed to pass to the tuned detector. With the switch in the upper 
position, only noise introduced by nonlinearities in the delta modula­
tor and uncorrelated with the input is passed into the detector. The 
power spectrum of the uncorrelated noise component net) can be 
measured by changing the center frequency of the band elimination 
and bandpass filters. With the switch in the lower position, the full 
signal enters the system and the tuned detector reads signal and noise 
within the passband. 

4.3 Cancellation Technique 

To measure the total noise output, e (t), and its spectrum, the ar­
rangement shown in Fig. 10 was set up. The signal is fed to the delta 
modulator and the output of the delta modulator and the attenuated 
and delayed input are compared, their difference being the noise in­
troduced by the system. 

The immediate problem encountered in this technique is the ad­
justment of the variable attenuator and the delay to cancel the signal 

Fig. 10 - Cancellation technique. 
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component at the output of the delta modulator. The delay is not 
the same for all frequencies and will have more of an effect at high 
rather than low frequencies. A sine-wave input whose amplitude was 
less than that required to overload the system was used to correctly 
null the system, making the equivalent gain unity. The frequency was 
chosen as high as conveniently possible (within the signal band) so 
that the effects of delay could be observed on the nulling procedure. 
Attenuation and delay were adjusted to produce a null at the input 
frequency at the tuned detector. Then the noise source was used to 
replace the sine wave and the output noise measured as a function of 
frequency by the tuned detector. The gain and delay should be ad­
justed at each frequency where the noise spectrum is measured. The 
rather broad null, particularly at the lower frequencies, makes this 
measurement both tedious and inaccurate. Consequently only the 
high-frequency approach was used. 

The noise-free output signal is measured by removing that input 
to the difference amplifier that comes from the delta modulator. 

4.4 Accuracy of the Measurements 

The tuned detector used to measure the noise in these experiments 
was a 37B transmission measuring set. It has a frequency window of 
about 400 Hz. Therefore, when the noise is measured at a particular 
frequency, a 400 Hz band is actually measured and the meter reading 
must be averaged, ignoring peaks. It is estimated that the readings are 
accurate to about ±0.5 dB. 

Another source of error arises in the determination of the normalized 
step size kFs. As mentioned above kFs can be found from direct meas­
urement on an oscilloscope, or by using a square wave input that over­
loads the system. A small error in this measurement is equivalent to 
a displacement in the noise curve (or signal-to-noise ratio) when 
plotted against kF s. The noise changes in the overload and granular 
regions about 1 dB for every dB change in kFs • Furthermore, the 
spectrum in overload also changes very rapidly with kFs. 

Therefore, it is fair to conclude that the experimental results in Section 
V are accurate to about ± 1 dB. 

v. RESULTS 

5.1 Noise Loading Results-Uncorrelated Noise Component 

In Fig. 11 we have plotted the spectrum of the signal uncorrelated 
component of the noise as obtained by the noise loading test for three 
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values of kFs. For kFs = 8 and 16 notice that the noise spectrum is 
fiat, as expected, since granular noise is predominant. When kFs = 2, 
overload noise is controlling, and the noise spectrum is largest at low 
frequencies. Agreement between the computer generated spectrum 
and the measured spectrum is good except where the granular noise is 
small. In this region, it is believed that round-off errors in the com­
puter simulation account for the discrepancy. Integration of the noise 
spectrum yields the signal to noise curve of Fig. 12 plotted as a func­
tion of kFs. 

5.2 Cancellation Technique-Total Noise 

Noise spectrum measurements obtained by the cancellation tech­
nique are compared with computer results in Fig. 13. As before, for 
kFs = 8 and 16 the spectrum is fiat and nearly identical in level with 
the noise loading results. When well into overload (kFs = 2), the total 
noise spectrum peaks at the high frequency end. This behavior is 
readily explained in terms of our equivalent linear system. Consider 
the difference e (t) between the input signal and the output of the 
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equivalent linear system of Fig. 3 

e(t) = x(t) - yet) = x(t) - net) - L: get - r)x( r) dr (15) 

or 

e(t) = L: [oct - r) - get - r)]x(r) dr - net). (16) 

Since net) and x(t) are uncorrelated by definition, it is an easy mat­
ter to show that the error spectrum of the total noise is 

(17) 

Substituting H (jw), obtained by statistical linearization and given in 
equation (10) for the equivalent linear system function G (jw) in equa­
tion (17), we get 

2 
W 
2 

SnnCW) + ~ SxxCw). 
1 + W 2 

We 

(18) 

From either equation (17) or (18) we can see that when G (jw) is es­
sentially unity (in the granular region) that the total noise is given 
by Snn (w). On the other hand, when well into overload, the low fre­
quency portion of the total noise is determined by Snn (w) and the 
noise at high frequencies increases due to the second term in equation 
(18), the term linearly dependent on the input. Indeed, we can use 
the measured noise spectrum in Fig. 13 for kFs = 2 along with equa-
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tion (18) to determine the corner frequency for the equivalent linear 
system. The fo so obtained is about 0.4 fb in agreement with the 
analysis. 

For completeness, we present in Fig. 14 the signal-to-total-noise 
ratio obtained by integrating the curves of Fig. 13. In addition, we 
have noted the corresponding analytical results obtained by using the 
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results of Refs. 9 and 10. Agreement is good except when far into the 
overload region where it is known that the mean square value of the 
total noise obtained analytically is a coarse upper bound. 
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APPENDIX A 

Statistical Linearization 

A.1 General 
In this appendix we consider the delta modulation system under 

pure slope overload conditions. Our objective is to replace the hard 
limiter in the encoder loop with a linear amplifier. We give three 
methods for the determination of the gain in this linear approxima­
tion. 

A.2 Conventional Statistical Linearization-Gaussian Assumption 

First, we use the statistical linearization method attributed to 
Booton.IS We isolate the hard-limiter in Fig. 4 with input e (t) and 
output z [ e (t)] in order to replace it with an ideal linear amplifier of 
gain Keq. This gain factor is chosen such that I{eqe (t) differs least in 
the mean square sense from z [ e (t) ]. It is readily shown the optimum 
Keq satisfies 

(19) 

For the hard limiter, under the assumption that e (t) is gaussian, we 
get the well known result14 

K" = X{(e~)} "" K, . (20) 

A.3 Removal of Gaussian Assumption 

In general, e (t) will not be gaussian; though this is commonly as­
sumed in all references to the statistical linearlzation method. We 
remove this assumption in this section since we can determine both 
(ez)av and (e2)av using the approach given in Ref. 9. Since (e2)av was 
found in that reference, we need only consider (ez)av = Rez (0). 
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Notice that when 

and where 

Hence 

e(t) > 0, 

e(t) < 0, 

z(t) = x~ }. 

z(t) = -x~ 

(ez)av = x~(1 e(t) I)"v = x~ ave [e(t)] Ip.b. 

(21) 

(22) 

that is, the average of e (t) over the positive bursts (p.b.) only of the 
slope overload noise. 

Following the procedure developed in Ref. 9, we obtain 

where 

'(I () I) 1 bt [3blJ [(X~)2J ( ) 
Xo e t av = ;. b~ x~ exp - 2b

l 
n Xl 

x~v'2 
Xl = 3(b

l
)! 

n(Xl) = 1 - (1 - xi) exp ( - ~i) - X~<I>(XI) 

¢(XI) = f~ exp ( - ~) dz 
Xl 

In Ref. 9· it was found that 

(e'(f).v = 4(L)! (~:)(:~1)5 exp {-[~i;'J}A(x) 
where A (x) is given in equation (66) of Ref. 9. Hence 

(23) 

(24) 

(25) 

(26) 

A.4 Equivalent Gain from Definition of Equivalent Linear System 
Among the many other viewpoints that might be adopted to find 

K eq , we single out one that makes use of the definition of the equi­
valent linear system given in the text. Recall that 

(27) 
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or 

(28) 

If we integrate equation (27) over (-2nfo to +27rjo) and choose G(jw) = 
K3/Ie + jw, we obtain the following equation defining K3 . 

2 1 f21r I. SxxCw) 
(x(t)e(t)av = RexCO) = (x (t)av - -2 dw. 

7r -hI. 1 + j~ 

Noticing that Sxx (w) is an even function of w, using 

F(f) = 2Sxx(27rf) for f > 0, 

and defining j 0 = 1(3/271", we get 

K3 

(29) 

(30) 

1,· F(f) dj 2 

h(fe) = ( )2 = (x (t)av - (x(t)e(t)av . (31) 
o 1 + L 

fe 

The left side of equation (31) is a function of fe only, and hence of K3 , 
while the right side of equation (30) is known; a formula for (x(t)e(t) )av 
has been found. 17 Equation (31) can be shown to always have a solution. 

A little reflection will convince the reader that equation (31) could 
have been obtained from scratch by preselecting the form of the equiva­
lent linear system, and requiring that x(t) be uncorrelated with net) 
at T = O. The approach we have taken could be generalized to match 
various spectral moments of the processes under consideration. This 
would entail multiplying equation (28) by w2n prior to integration and 
choosing the number of parameters in G(jw) equal to the number of 
moments matched. In general a set of simultaneous nonlinear equations 
would have to be solved and quantities such as (dnx(t) / dte(t) )av obtained 
using the techniques of Ref. 9. Fortunately, no such generalization is 
required. As we see below and from Table I all of the techniques used in 
this Appendix give good agreement with computer simulation. 

Example: Application of equation (31) to flat band limited signals 

(x2 )av = 1, fo = 1 gives 

1 - (xe\v . (32) 
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APPENDIX B 

Harmonic Response of a Delta Modulator with a Leaky Integrator 
Under Pure Slope Overload Conditions 

B.1 Introduction 

Consider the single-integration delta modulator with a leaky in­
tegrator under pure slope overload conditions. The problem is to find 
the steady-state response of this nonlinear system to a sinusoidal 
input. The analysis is applicable to differential pulse code modulation 
and delta modulation with a more complicated linear network in the 
feedback path. 

Consider a sinusoidal input signal: 

x(t) = X" cos wot (33) 

with 

W" = 271'j". (34) 

In the steady-state the output y (t) will be a periodic function of t 
with period lifo. The maximum value of the magnitude of the slope 
of the input sinusoidal signal is clearly equal to woXo so that if 

(35) 

the output will follow the input and we will have 

yet) = x(t) = Xo cos wot. (36) 

Suppose now that x~ < WoX o' In this case slope overload occurs. 
Call cp the value of wot - 2n7l' (where n is a positive integer) for which slope 
overload occurs for the first time after the beginning of the nth period. 
Assuming that we have reached the steady-state, the value of cp will 
be the same for all periods. 

Clearly 0 < cp < 71'/2. The slope of the input signal at the transition 
point A (Fig. 15) will be negative and equal to - X oWo sin cp. (The second 
derivative at A is also negative and equal to -Xow~ cos cp.) 

For slope overload to begin at A we should have;t - WoX 0 sin cp = - x~ , 
so that 

. x~ smcp=--· 
woXo 

(37) 

t A similar analysis may be made in the asymmetric case, that is, when the 
positive overloading slope is not equal to the negative overloading slope. 
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At this transition point the output signal begins to follow an exponential 
curve such that 

1 - exp ( -a wot - cP - n7r) 
y(t) = Xo cos cP - x 01 Wo (38) 

a 

as long as y (t) exceeds x(t). The exponential segment ends when 
y (t) and x(t) once again become equal as shown in Fig. 15. For small 
leak, the response in overload is clearly linear in time. As long as I () I 
< cp we have for all n 

Xo cos wot for e + n7r ~ wot ~ cP + n7r 

y(t) 

1 - exp ( -a wot - cP - n7r) 
(-l;nXo cos cP + (-lr+lx~ wo. 

a 

(39) 

It it easy to show that the region where equation (39) is true may 
be translated to the condition 

(40) 

Fig. 15 - Slope overload for 

1 < wo~o ~ {1 + ~ [1 - exp (-a7r/wo)]2}t 
Xo 4 a7r/wo 

(leaky integrator). 
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In the limit when a goes to zero (no leak) equations (39) and (40) 
reduce to results obtained previously by Baikovskii.16 The quantities 
() and cp coalesce when 

(41) 

and the output is made up of segments of an exponential curve as 
shown in Fig. 16. From Fig. 16 we see that 

and for all n 

yet) 

1 exp (- ::) 
cos CPo = x~ -------=-

2aXo 

2a 

(42) 

1 - exp [- .!!:.. (wot - CPo - n7r)]l 
- Wo a J. (43) 

Notice that in this case the magnitude of the output depends only 
on the frequency of the input sinusoidal waveform and not on its 

Fig. 16 - Slope overload for 

wo~o > {I + ~ [1 - exp (-a7r/wo)]2}t 
Xo 4 a7r/wo 

(leaky integrator). 
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amplitude. Only the phase of y (t) depends on Xo. Clearly when the 
leak goes to zero (a = 0) the response is triangular. 

B.2 Harmonic Analysis of y(t) 

In all three regions above the output y (t) is a periodic function of 
t with period 27T/(J)o such that 

y(t + :) = -y(t). (44) 

Hence y (t) contains only odd harmonics; it is a straight-forward 
matter to compute the Fourier coefficients. The complex equivalent 
gain is given by the ratio of the coefficient of the fundamental in the 
output to Xo. We leave this manipulation to the interested reader 
and merely provide a curve of equivalent gain computed for the case 
of a perfect integrator (a = 0), in Fig. 6. Experimental points on the 
curve are seen to be in close agreement with the analysis. 

APPENDIX C 

ComputaNonal Formulas to Estimate Correlation Function and 
Spectra 

From the sample sequences Xi and ei for signal and error pro­
duced by the simulator, autocorrelation and cross-correlation functions 
Re (j) ,Ra; (j) ,Ra;e+ (j), and Rxe- (j) were estimated as the arithmetic 
means of emem+.iJ xmxm+h emXm+j and emXm-j, respectively. In the com­
putations, sample sequences of length 10,000 were used. Correlations 
were computed up to j = 30. It is easy to show that spectrum estimates 
may be obtained by using the correlation estimates as coefficients of 
a Fourier series. In the case of the cross spectrum, real and imaginary 
parts must be computed. For clarity, the formulas are listed below. 
Using the relationship derived in Section 2.1, the uncorrelated noise 
spectrum may be estimated by: 

To smooth possible ripples in the spectrum estimates due to time 
truncation of the correlation functions, a hanning window function 
was used.19 This smoothing amounts to replacing each spectrum 
estimate by a linear sum of the estimate and the two adjacent esti­
mates, with weights :1, ~, and l 
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Error spectrum: 

N-2 Z· 
SeCf) = R.(O) + 2 {; R.(l) cos N ~ 1 + R.(N - 1) cos irr. (46) 

Signal spectrum: 

N-2 Z· 
Sx(J) = Rx(O) + 2 t; Rx(l) cos N :: 1 + Rx(N - 1) cos j'Tr. (47) 

Cross spectrum: 

N-2 z· 
Re {Sxe(j)} = RxiO) + t; [Rxe+(l) + Rxe-(l)] cos N:: 1 

+ -HRxe+(N - 1) + Rx.-(N - 1)] cos j'Tr (48) 

1m {Sxe(D} (49) 
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Delta Modulation Granular 
Quantizing Noise 

By DAVID J. GOODMAN 

(Manuscript received September 25, 1968) 

We present a statistical analysis of a single integration delta modulation 
system, in which slope overload effects are negligible. In defining the delta 
modulation signal ensC'rnble, we identify a binary phase parameter and 
show that when this para1neter is random" the signal statistics are stationary, 
provided the input is stationary. Thus the delta modulation correlation 
functions depend on a single time variable and have Fourier transforms 
that are the power spectra of the delta 1nodulation signals. 

After deriving the delta 1nodulation correlation statistics and power 
density spectra, we use these functions to investigate the properties of the 
delta modulation granular quantizing noise. vVe demonstrate the ratio of 
input signal po'wer to the quantizing noise power of three signals that 
approximate the system input. These signals are the integrated delta 
modulation signal, the signal at the output of the ideal low-pass interpola­
tion filter usually considered in delta modulation studies, and the signal at 
the output of the optimum, interpolation filter. We determine the properties 
of this filter by referring to the derived spectral density functions. 

1. BACKGROUND 

Delta modulation (~l\1) systems are subject to two types of quan­
tizing distortion, generally referred to as granular quantizing noise 
and slope overload noise. The overload noise arises when the analog 
input to the delta modulator changes at a rate greater than the maxi­
mum average slope of the signal generated in the delta modulator 
feedback loop. The granular noise is analogous to pulse code modula­
tion (PCM) quantizing noise; it arises because the ~M signal is a 
discrete-time discrete-amplitude representation of a continuous-am­
plitude process. 

After the discovery of ~M in the early 1950's, two statistical analy­
ses of distortion effects appeared.1 Van de vVeg considered a delta 
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modulator, constrained so that slope overload effects are negligible, 
and analyzed the effects of granular quantizing noise in a manner that 
paralleled Bennett's analysis of quantizing noise effects in a pulse code 
modulation (PCM) system constrained to be free of overload.2 •3 Zet­
terberg, in 1955, published a study of both types of distortion as part 
of an extensive mathematical analysis of the ~M process.4 Zetterberg's 
expression for granular noise power is less precise than van de Weg's . 

. His results pertaining to slope overload have recently been revised.1i 
Eleven years after the appearance of Zetterberg's paper an in­

dependent analysis of slope overload noise was published by O'Neal 
whose effort was supported by S. O. Rice. 6 O'Neal used van de Weg's 
formula to predict the granular noise power but obtained slope over­
load characteristics that differed from those derived by Zetterberg. 
The reason for the two solutions to the same problem is investigated 
in a recent paper by Protonotarios.5 This paper gives new expressions 
for the slope overload noise that are more accurate than any previ­
ously obtained. Like O'Neal, Protonotarios uses van de Weg's char­
acterization of the granular quantization effects. 

Although van de Weg's formula for granular quantizing noise power 
has been experimentally verified over an important range of operat­
ing conditions, his statistical characterization is inadequate for cer­
tain analytical purposes. A principal difficulty in this characterization 
is the nonstationarity of the ~M signal ensemble. Because the sta­
tistics are nonstationary it is not possible to calculate correlation co­
efficients by Fourier transformation of the power spectral density 
function, derived by van de Weg as a mean square amplitude spec­
trum. 

To admit the techniques of stationary time series analysis to the 
study of ~M signals, we generalize the signal ensemble by defining a 
binary phase parameter. We derive correlation statistics directly as 
average products and show that if the phase is random with both 
values equiprobable, the ensemble is stationary. Thus we are able to 
compute power density spectra as Fourier transforms of the correla­
tion functions and to compare the new formula for granular quantiz­
ing noise with that given by van de Weg. We find that over the range 
of operating speeds considered by van de Weg and O'Neal that van de 
Weg's formula is a good approximation to the one presented here. For 
very low speeds van de Weg's approximations break down while the 
formulas we present in this paper are applicable to all ~M sampling 
rates. 

An additional advantage of this analysis is the presentation of 
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cross-correlation statistics and the cross-power spectrum of the AM 
signal and the analog waveform it represents. We use the cross-power 
spectrum to derive the transfer function of the optimal interpolation 
filter for AM. We compare the output noise power of this filter with 
that of the ideal low-pass filter usually considered in AM studies. 
The correlation statistics presented here have also been used in the 
synthesis of optimal digital filters.7 

II. THE AM SYSTEM 

The delta modulator shown in Fig. 1 transforms the continuous signal 
yet) to the binary sequence 

•.. , b_1 , bo , b1 , ••• 

in which bn may have the value + 1 or -1. The modulator generates 
binary symbols at T second intervals according to the sign of e(t), the 
error signal. This error is the difference of yet) and x(t), the integrated 
AM signal generated in the modulator feedback loop. The term x(t) is 
the integral of the binary impulses weighted by the "step size," o. Thus 
x(t) has a step of + 0 or - 0 at each sampling instant and is otherwise 
constant. At the AM receiver, this integrated AM signal is recovered 
by a replica of the modulator feedback loop and an analog signal, 'OCt), 
is generated by means of the interpolating filter with impulse response 
h(·). The signal yet) is an approximation to the system input, and in this 
paper the fidelity of the AM system will be measured by the mean square 
error, 

'Y} = E {[y(t) - y(t)]2}, (1) 
in which E { .} is the expectation operator. We assume that the binary 
signal processed by the receiver is identical to the one generated at 
the modulator. The effects of transmission errors are not considered. 

The two AM parameters are T, the sampling interval, and 0, the step 
size. The quantizing distortion decreases monotonically with increasing 

DELTA MODULATOR DELTA MODULATION RECEIVER 
! /~------~I----------

Fig. 1 - The delta modulation system. 
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sampling rate, i. = l/T, while for a fixed rate the value of the step size 
determines the mix of granular quantizing noise and slope overload noise 
in the quantizing noise signal, yet) - yet). In this paper we consider only 
the granular quantizing noise; thus we postulate a system in which 0 
is set such that OfT, the maximum average slope of x(t), is exceeded by 
the slope of yet) with very low probability. To serve this aim we follow 
van de Weg and establish the condition that OfT is four times the 
root mean square slope of y(t). This condition is analogous to the "40-
loading" assumed by Bennett in his analysis of a PCIVI system with 
negligible overload effects.3 For gaussian signals, the probability that the 
slope of yet) is greater than 0/ T is less than 4 X 10-5

• 

If y (t) is a sample function of a stationary stochastic process, the 
stated design condition may be expressed in terms of Syy (f) , the power 
spectral density of the process. The important parameters of Syy (f) 
are its average, 

(2) 

the mean square signal, and its effective bandwidth,S 

(3) 

The rms slope of y (t) is 27ro-Ic. Thus the condition that the maximum 
average slope of x (t) equal four times the rms slope of y (t) may be 
expressed as 

0/ T = 87ro-i. 
or 

(4) 

in which we have related the AM parameters to the important signal 
parameters. Thus, (3 is the step size as a multiple of the rms signal and 
F =, Is/Ie is the sampling rate as a multiple of the effective bandwidth. 

Equation (4) establishes {3 for each sampling rate; in the analysis 
of granular quantizing noise to be presented, it is the sampling rate 
that is considered to be the independent variable of the AM system. 
Studies of slope overload indicate that for minimal total quantizing 
noise, {3F, instead of remaining constant as it does here, should in-
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crease with increasing F.5,6 In the numerical examples given by O'Neal 
and by Protonotarios, the value of f3F that results in minimal total 
quantizing noise approximates 871" for the highest sampling rate con­
sidered. 

III. THE SCOPE OF THE ANALYSIS 

The signals processed in the Al\1 system have been analyzed as realiza­
tions of discrete-time (sampled-data) random processes. The transmitted 
binary sequence, Ibn}, the integrated Al\1 signal, x(t), and the analog 
output, y(t), are all determined by the values of the analog input at the 
sampling instants, nr (n = ... , -1, 0, 1, ... ). Thus the analysis 
reported here consists of derivations of the statistical properties of 
{xn} = {x(nr)}, the integrated AM sequence and {en} = {e(nr)}, the 
error sequence, from the statistics of {Yn} = {y(nr)}, the input signal 
sequence. 

If y (t) is drawn from a stationary process with auto-covariance 
functiona2p ( . ) [the Fourier transform of Syy (f) ], the covariance 
coefficients of the AM signals may be expressed as functions of the 
statistics, pn = p(nr). The derived covariance functions are E{XiXj}, 
the autocovariance of the integrated AM signal, and E{YiXj}, the 
cross-covariance of this signal and the analog input. A property of the 
definition (in Section 5.1) of the ensemble of sequences {Xn} is its 
stationarity in the wide sense. (Van de Weg considers a somewhat 
different ensemble, one that has nonstationary statistics.) Thus the 
covariances are functions of the single time variable, p.. = j - i, and we 
denote them rp, (the auto covariance) and <pp, (the cross-covariance) re­
spectively. Also of interest is Qf.tl the error covariance function given by 

QJ.l = E{enen+J.l} = a
2

pJ.l + rJ.l - <PJ.l - cp-J.l. 

It is shown in Section 5.4 that the covariance statistics, <pp" are pro­
portional toa2pp" the autocovariance of the continuous input. Thus <pp, 
=<p-p, and the error covariance function is given by 

(5) 

Because the processes under consideration are stationary, their 
power density spectra are Fourier cosine series with coefficients given 
by the covariance statistics defined above. The spectra are periodic 
in frequency over intervals of 1/ r Hz; they are denoted with asterisks 
in keeping with conventions of sampled data analysis. We apply the 
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Fourier series representation: 

00 

A * (f) = ao + 2 L an cos 27r'nfT 
n-l 

so that 

1
',/2 

an = 2T 0 A *(f) cos 27r'nfT df· (6) 

In the sequel we will denote these Fourier transform relationships be­
tween A':· (f) and an by A'~ (f) ~ an. 

The power density spectrum, Sy~(f), of the samples of the analog 
input is related to Syy (f) , the power spectrum of the continuous input 
signal, by 

(7) 

It follows that if y (t) is bandlimited to W < f8/2 Hz, there is no 
aliasing distortion and 

1 
S:vCf) = - Syy(f) , for 1 f 1 < fsl2. 

T 
(8) 

The other transform pairs of interest are Sx~(f) ~ rJ.l, Se~(f) ~ QJ.I , 

and Sx~(j) ~ cf>J.I • Sx~(f) and Se~(j) are the power spectral density func­
tions of the integrated AM signal and the error signal, respectively. 
Sx~(f) is the cross-power spectrum of the integrated AM signal and the 
analog input. Equation (5) implies that the four power density spectra 
are related by 

(9) 

These spectral density functions and H (f), the transfer function of 
the interpolating filter, determine the value of the output quantizing 
noise power defined in equation (1).t Thus, 

1
',/2 

1] = 2T 0 {S:y(f) - 2Re [H(f)S;y(f)] + I H(f) 12 S;x(f)} df (10) 

so that the transfer function of the optimal interpolation filter, that is, 
that which minimizes 1], is the (nonrealizable) Wiener filter,9,lo 

t It is assumed here that H (f) processes a sequence of ideal impulses. In Fig. 1 
the filter input is a sequence of flat pulses of T second duration so that when a 
filter described in this analysis is to be included in a real system, its transfer 
function should be weighted to compensate for the aperture effect.3 
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H (f) - 8;vCf) for I f I < f /2 
opt - S;x(f) , = 8 

(11) 
= 0, for I f I > f./2. 

The associated minimal quantizing noise power is 

_ rf
./

2 
{ * [8;,,(f) ]2} 

1]min - 2r J 0 S"vCf) - S;x(f) df· (12) 

In previous AM studies it was assumed that y (t) is band limited 
to W Hz and that the interpolation is performed by a perfect low pass 
filter with transfer function 

H zl'!(f) = 1, for I f I ~ W 

= 0, for I f I > W. 
Equation (10) indicates that the quantizing noise power associated 
with this filter is 

1]zp! = 2r i W [S:vCf) + 8;x(f) - 28;,,(f)] df 

(13) 

Thus the quantizing noise power associated with the low-pass filter 
is the portion of the power of the error signal that lies within the band 
of the analog input. By substituting the Fourier series with coefficients 
Qp, into equation (13) we arrive at the formula for the low pass filter 
quantizing noise in terms of the error covariance coefficients: 

1 [ 00 s in (if)] 
~I.f ~ Ii Q, + 2 ~ Q. (;; ) (14) 

in which R = isl2W is the bandwidth expansion ratio of the AM sys­
tem. It is the ratio of the AM sampling rate to the Nyquist sampling 
rate of the input signal. The ratio, FIR, of the two normalized sam­
pling rates is 2W lie, twice the ratio of the highest frequency spectral 
component of y(t) to the effective bandwidth. 

IV. PRINCIPAL RESULTS 

4.1 Covariance Coefficients 
By means of the formulas of the preceding sections, the charac­

teristics of granular quantizing noise may be expressed in terms of 
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the correlation statistics PM rp" and cpp,. These quantities depend on 
the nature of the analog input and on the normalized sampling rate, 
F. Details of the derivations of rp, and cpP" when the input is drawn 
from a stationary gaussian process, are given in the subsequent sec­
tions of this paper. Here we present the covariance formulas and use 
them to investigate the quantizing noise properties. 

As multiples of the mean square input, the autocovariance coef­
ficients of the integrated AM signal are 

for J.l even, 

rlJ. { 00 [F2e]} 128 00 00 1 m 
(j2 = Pp. 1 + 4 t; exp - 32 + F2 ]; t; mk (-1) 

.{ exp [ F'(k' + 7~8- 2mkp.l] - exp [ F'(k' + ~/ 2mkp,)]} 

for J.l odd. (15) 

The cross-covariance function of {xn} and {Yn} is proportional to 
(J2PM the auto covariance function of {Yn}. Thus 

~~ = Cp 
(j J.I. 

(16) 

where 

00 [F2e] c=I+2Lexp --. 
k=l 32 

(17) 

Qp" the autocovariance of the error signal, is related to PP" rp" and 
CpP, through equation (5). Therefore 
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[ 
F2(k} + m2 + 2mlCPp,)]} 

- exp - 128 ' for f.L even, 

Q~ = 12
2
8 ttl (-1)m{exp [_ F2(lc

2 + m 2 

- 2mlcpp,)] 
(J' F m=l k=l mlc 128 

- exp [ - F'(k' + ~8 + 2mkp,l]}. for p, odd. (19) 

4.2 The Minimal Output Quantizing Noise Power 

The proportionality of the auto covariance of the input signal and the 
cross-covariance of the input and the integrated L\M signal implies that 
the related spectra are also proportional: Sx~(f) = cSy~(f). When this 
relationship is substituted into equation (12), the formula for the quan­
tizing noise power at the output of an optimal interpolation filter, the 
result is 

(20) 

in which equation (9) has been used to substitute for Sx*x(f). By algebraic 
manipulation equation (20) may be shown to be identical to 

17min = (20 ~ 1)' {2r J S:.CfJ dt - 2r J (20 _ IJ~~:mJ~ S:.CfJ dt} 

- (c - 1) 2 2 J S* (f)' df 
2c - 1 7 1111 

(21) 

in which the integrals are taken over the set of 1 in 0 ~ 1 ~ 18/2 for 
which SII~(f) ~ O. The third integral in equation (21) is (J'2/27; if the 
input is bandlimited to W Hz [with SII~(f) ~ 0 for I f I < W], the first 
integral is that given in (13), 171p,/2T. It follows that equation (21) may 
be rewritten as 

c
2 

[ lw [Se~(f) ]2 ] 
17min = (2c _ 1)2 171pI - 2T 0 (2c - 1)SII;(f) + Se~(f) df 

(c - 1)2 2 

- 2c - 1 (J'. (22) 

Thus for a bandlimited signal, equation (22) relates the quantizing noise 
power at the output of a low pass interpolation filter to the noise at the 
output of an optimal filter. As the sampling rate increases, c --7 1 and 
the integral in equation (22), of a quadratic form of the coefficients, Qp, , 
becomes negligible relative to 17zp! which is the integral of a linear form. 
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Thus for high sampling rates, 1]min ~ 1]Z14 , indicating that the transfer 
function of the optimal filter is nearly flat over frequencies at which 
Sll~(f) ~ 0 and is zero where Sll~(f) = O. 

4.3 Approximations 

The infinite series in the formulas for the covariance coefficients 
converge rapidly, and in many cases of practical interest, entire series 
contribute negligibly to the values of the coefficients. For example, if 
the input possesses a flat power spectrum, cutoff at W Hz, the effec­
tive bandwidth is W / (3); and the normalized sampling rate is related 
to the bandwidth expansion ratio by F = 2 (3)! R. Thus for R ~ 12 
~M samples per Nyquist interval, the single summations in equations 
(15), (17), (18) and (19) consist of powers of a e-54 or less. These 
summations are added to 0.25 or to 7r

2/3 and thus have negligible ef­
fect on the values of the covariance coefficients. In the double sum­
mations, only the terms obtained with the two indices equal contribute 
significantly to the total when F is high. These double summations 
may, therefore, be replaced by single sums and we have the following 
approximations: 

ro 647r2 

u2 ~ 1 + 3F2 

(23) 

c ~ 1, (24) 

(25) 

If in equation (25) we approximate sinh x by eX j2t and substitute the 
result in equation (14) for 1]zv! , we obtain van de Weg's formula for the 
granular noise power. Van de Weg claims its validity for R ~ 2 samples 
per Nyquist interval. Our precise formula for Q", equation (19), leads 
to noise power characteristics that are valid for all sampling rates. 

t This leads to a small but nonzero value of QI' as p, ~ co and PI' ~ O. Reten­
tion of the e-X term in the approximate formula for QI' results in Q", = 0 and thus 
avoids an anomaly and a source of numerical error in van de Weg's noise power 
formula. 
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4.4 Signal-to-N oise Ratio Characteristics 
In this section we demonstrate the nature of the derived quantizing 

noise characteristics by illustrating the effect of the AM sampling rate 
on the quantizing noise powers, 'Y}lp! and 'Y}min, and on Qo, the mean 
square error at the input to the interpolation filter. In particular, Fig. 
2 shows on a dB scale, Sopt =a2/'Y}min, the output signal-to-noise ratio 
of an optimal interpolation filter; SIP! = a 2 /'Y}IPf, the signal-to-noise 
ratio of a low pass filter; and So = a2/Qo the signal-to-noise ratio 
prior to interpolation. The data in Fig. 2 pertain to the case of a zero­
mean stationary gaussian input with a fiat bandlimited power spec­
trum. The signal-to-noise ratios are shown as functions of R, the num­
ber of AM samples per Nyquist interval. 

For high sampling rates, equation (25) indicates that Qo is ap­
proximately 82/3, the mean square value of a random variable dis­
tributed uniformly over an interval of length 28. Thus with increas­
ing R, So rises at the rate of 20 dB per decade. At high sampling rates 
SIP! and Sopt are nearly identical. Their slope is 30 dB per decade as 
indicated by equation (14) which is a linear combination of the error 
covariance coefficients (proportional to R-2) , weighted by I/R. 

At low sampling rates, So and SZP! become very low (-15 dB at the 
Nyquist rate) while Sopt tends toward unity, corresponding to a filter 
that generates zero output (the mean input), and thus has a mean 
square error of a 2

• 

V. DERIVATION OF COVARIANCE STATISTICS 

Although the AM system considered in this paper is identical to 
the one studied by van de Weg and the values obtained for granular 
noise power are virtually the same as his over a wide range of trans­
mission speeds, the method of analysis used in obtaining the present 
results differs considerably from van de Weg's. Van de Weg formu­
lated the ensemble of integrated AM signals as a nonstationary proc­
ess; he was thus unable to compute spectral characteristics from 
derived covariance statistics. Instead of considering correlation prop­
erties, van de Weg began with the amplitude spectrum of a sample 
function of the integrated AM signal ensemble. He then calculated 
the power density spectrum as the mean square amplitude spectrum. 

In the work reported in this paper, the ensemble of integrated AM 
signals is stationary in the wide sense, so that the power spectra are 
Fourier transforms of the covariance functions whose derivations are 
described in the remainder of this paper. The difference between van 
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Fig. 2 - Quantizing noise characteristics. 
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de Weg's signal ensemble and ours lies in the role of the binary phase 
parameter defined in the Section 5.1. 

5.1 The Integrated 1).M Signal Ensemble 

The integrated 1).1\11 signal, {xn }, is a discrete-time discrete-amplitude 
function. The signal ranges over values ko (k = 0, ±1, ±2, ... ), and 
the absence of slope overload implies that Xn takes on the value of the 
allowed quantization level nearest to Yn. (In overload conditions, Xn 
and Yn may differ considerably.) At any sampling instant, the set of 
allowed quantization levels of a given signal is either the odd-parity 
subset of quantization levels, 

± 0, ±30, ±5o, (26) 

or the even-parity subset 

0, ±20, ±4o, (27) 

This restriction to a subset of the k8 follows from the ~M mechanism 
which constrains each sample of {xn} to differ by ±8 from its predeces­
sor. Thus if Xo = 2k8, Xl = (2k ± 1)8 and any sample that may be 
written X2m (m = 0, ±1, ±2, ... ) is constrained to an even-parity 
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value. Similarly the subsequence {x2m+d ranges over the odd-parity 
set of quantization levels. 

Thus in the absence of slope overload, Xn is the result of processing 
Yn with a uniform PCM quantizer with quantization intervals of 
length 28. Either Xn is the output of the even-parity quantizer, with 
levels given by equation (27) or the output of the odd-parity quantizer 
with levels given in equation (26). The input-output characteristics 
of the two quantizers are shown in Fig. 3. 

In defining the 6.M signal ensemble, van de Weg assumed that the 
"initial condition," Xo = 2k8, applies to all sequences {xn }. In van de 
Weg's analysis, therefore, all samples in {~m} are generated by the 
even-parity quantizer and all samples in {X2m+l} are generated by the 
odd parity quantizer. Thus the probability functions of X2m and X2m+1 
differ and the ensemble of sequences {Xn} is nonstationary. 

vVe now generalize van de Weg's formulation of the integrated 6.M 
signal ensemble by observing that the 6.M system may also generate 
signals with the initial condition, Xo = (2k-1)8. In this event {X2m} 
is the output of the odd-parity quantizer of Fig. 3 and {x2m+d is the 
output of the even-parity quantizer. We shall refer to the initial con­
dition that applies to a given {xn} as the "phase" of the signal. Thus 
we define the two phase states: 

AI: {X2m} generated by the even-parity quantizer 
A2: {X2m} generated by the odd-parity quantizer. 

A delay of a signal by T seconds results in a phase reversal from Al 
to A2 or from A2 to AI. 

(a) 

I­
;:) 
0.. 

~58 
o 

INPUT 

-58 

(b) 

Fig. 3 - Two uniform quantizers: (a) even-parity quantizer, (b) odd-parity 
quantizer. 
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If we admit signals with both phases to the LlM ensemble, the 
statistics of the ensemble of {xn} depend on the relative frequency of 
occurrence, that is, on the prior probability of the two phases. Van 
de Weg's ensemble is a "coherent" one for which the prior probability 
function is 

Pr {Ad = 1, (28) 

In this paper we study the statistics of the noncoherent ensemble in 
which 

(29) 

The correlation analysis begins with the derivation of probability 
functions conditioned on each of the two phases. Marginal proba­
bilities may be calculated on the basis of a prior probability func­
tion as 

Pr {xn = leo} = Pr {Ad Pr {xn = leo I Ad 

+ Pr {A 2 } Pr {Xn = leo I A 2 }. (30) 

When equation (29) is used in the computation of equation (30), the 
result is independent of n. Similarly the joint marginal probability of 
Xn and xn+~ is independent of n when equation (29) is accepted. When 
equation (28) is accepted, as it is in van de Weg's analysis, both the 
single and joint probability functions depend on the parity of nand 
the covariance statistics are functions of two time variables. 

In principle, either equation (28) or (29) may be applicable to the 
operation of a particular LlM system. In practice, numerical results 
based on the two phase conditions are usually quite similar. In analytic 
work, there is a considerable advantage offered by equation (28), the 
noncoherence assumption. It admits the techniques of stationary time 
series analysis to the investigation of questions of interest. 

5.2 The Probability Distribution of Xn 

Here we derive the probability function of a sample, Xn , of the in­
tegrated LlM signal. The probabilities conditioned on Al and A2 de­
pend on whether n is even or odd, but the marginal probability func­
tion is independent of n when Al and A2 are equiprobable. 

Under the condition AI, the samples {X2m} are outputs of the even­
parity quantizer so that X2m = 2k8 when 

(2le - 1)0 ~ Y2m < (2k + 1)0. 
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If {Yn} is a sample function of a stationary zero-mean gaussian proc­
ess with variance 0"2, we have 

1 f(Zk+l)5 (U2 
) 

PI' {Xz m = 2ko I Ad = (2 )! exp - 2----:i du 
0" 7r (2k-l)5 0" (31) 

Pr {X2m = (2k - 1)0 I Ad = O. 

The samples {x2m+d are generated by the odd parity quantizer so 
that 

PI' {X2m + l = 2ko I AI} = 0 (32) 
1 f2kO (u2 

) Pr {X2m+ l = (2k - 1) 0 I Ad = -( ).1. exp - -2 duo 
0" 27r 2 (2k-2) 5 20-

Under the condition A2 , the complementary probability function 
applies: 

PI' {X2m = 2ko I A 2 } = PI' {X2m+l = (2k - 1)0 I A 2 } = 0, 

PI' {x2m = (2k - 1)0 I A 2 } = PI' {X2m+l = (2k - 1)0 I Ad, (33) 

Pr {X2m+l = 2leo I A 2 } = Pr {X2m = 2ko I Ad. 

By combining equations (30) to (33), one may demonstrate that 
Pr{xn = kS} depends on n (in particular on whether n is even or odd) 
for all prior probabilities of Al and A2 except the equiprobable pair 
given in equation (29). Thus equation (29) is a necessary condition 
for stationarity. When this condition is imposed and f3 = S/O" incor­
porated, the formula for the marginal probability of Xn becomes 

1 f (k+l){3 (u2
) 

Pr {Xn = ko} = 2(27r)! (k-l){3 exp - 2 duo (34) 

From equation (34), the moments of Xn may be calculated. We have 

o 00 j(k+l){3 (u2
) 

E{xn } = 2(2 )! L k exp - -2- du = 0 7r k=-oo (k-l){3 _ 

(35) 

and 

2 o2{3 00 211 [{32 2J 
E{xn } = ro = (27r)! k~OO Ie 0 exp - 2 (v + Ie) dv, (36) 

which is equivalent to the form of ro given in equation (15). The 
derivation of equation (15) from (36) is demonstrated in Section A.2 
of the appendix. 
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5.3 The Joint Probability of Xn and Xn+1' 

For each phase condition, the expression of the joint conditional 
probability of Xn and Xn+tt depends on the parity of n and the parity 
of p.. For phase AI, Xn and Xn+tt are both generated by the even-parity 
quantizer when nand p. are even numbers. Thus the conditional 
probability that Xn = 2kS and Xn+tt = 2lS is the probability that 

(2k - 1)0 ~ Yn < (2k + 1)0 and (2l - 1)0 ~ Yn+p. < (2l + 1)0. 

Thus for nand p. both even, 

Pr {Xn = 2ko, Xn+1' = 2lo I Ad 
1 f(2k+1)~ f(2Z+1)8 [u2 + v2 

- 2p uv] 
= 2 2 ! exp - 2 2 I' du dv 

27r<T (1 - PI') (2k-IH (2Z-1)a 20- (1 - PI') 

Pr {Xn = (2k - 1)0, Xn+1' = lo I Ad 

= Pr {xn = ko, Xn+1' = (2l - 1)0 I Ad = o. (37) 

Similarly we derive conditional probability expressions for the 
eight cases listed under step 1 in Table 1. The four marginal proba­
bilities indicated under step 2 are calculated as 

Pr {xn = ko, Xn+/l = lo} = ! Pr {xn = ko, Xn+/l = lo I AI} 

+ ! Pr {Xn = ko, Xn+/l = lo I A 2 }. (38) 

Among the four cases there are only two different formulas. One is 
applicable to even values of p. and the other to odd values of p.. When 
p. is even, Xn and Xn+tt are generated by the same quantizer and when 
p. is odd they are generated by different quantizers. The marginal 
joint probability function is independent of n. It may be expressed in 
terms of the double integral expression 

p(k, l, p,) 
1 f (k+l)P (V2) - exp--

- 47r(1 - p!)! (k-1)P 2 

f (Z+l)P [(U - Vpl')2] 
. exp - 2(1 _ 2) du dv 

(Z-1)P P/l 
(39) 

as 

Pr {xn = ko, Xn+/l = lo} = p(lc, l, p,) for k + l + p, even 
(40) 

= 0 for k + l + p, odd. 
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TABLE I-STEPS IN DERIVING Pr {Xn = lco, Xn+ Jt 10 } 

Step 1 
Conditional 

Step 2 Step 3 
Identical 

probabilities Marginal expressions except 
obtained for cases probabilities for cases 

n even, p, even Al 
n even, p, even 

n even, p, even A2 
p, even 

n odd, p, even At 
n odd, p, even 

n odd, p, even A2 

n even, p, odd Al 
n even, p, odd 

n even, p, odd A2 
p, odd 

n odd, p, odd Al 
n odd, p, odd 

n odd, p, odd A2 

The auto covariance coefficient, r fL' is the expected product of Xn and 
Xn +fL : 

00 00 

rJt = I: L: (ko)(lo) Pr {xn = ko, Xn+ Jt = lo}. (41) 
k=-oo 1=-00 

Substitution of equation (40) into (41) results in 

00 00 

rJt = 02 L: L: (2lc)(2l)p(2k, 2l, p.) 
k=-oo 1=-00 

00 00 

+ 02 L: L: (2k - 1)(2l - 1)p(2k - 1, 2l - 1, p.) for p. even 
k=-oo 1=-00 

00 00 

202 L· L: (2k)(2l - 1)p(2k, 2l - 1, p.) for p. odd. 
k--oo 1=-00 

(42) 

Section A.3 of the appendix outlines the derivation of equation (15) 
from (42) and (39-). 

5.4 The Joint Distribution of Yn and Xn+1' 

Here we consider the joint probability function of a discrete random 
variable, Xn+fL and a continuous random variable Yn. Once again the 
marginal distributions are independent of n when the two phases are 
equiprobable. For fJ.. = 0, the marginal probability function is 
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Pr {Yn = u, Xn = ko} = 2u(~7I")! exp ( - ;:2) du 

for (k - 1) 0 ~ u < (k + 1) 0 

= 0 for other values of u. 

The expected value of XnYn may be computed as 

au 00 fCk+l){J (u2
) 

E{xnYn} = ¢o = 2(2 )! L Ie u exp - -2 du 
71" k--oo Ck-l){J 

(43) 

(44) 

which is shown in Section A.4 of appendix to be cu2
, with c given by equa­

tion (17). 
For other values of p" the conditional probability function of u and 

ko is the probability that Yn = u and (k - 1)0 ~ Yn+p. < (k + 1)0, 
provided ko is an output level of the quantizer that processes Y,.+p. • The 
marginal probability function may be written as 

Pr {Yn = U, Xn+p. = ko} 

1 fCk+l)~ [u2 + v2 
- 2UVP/-l] 

= 2 2 J. exp - 2 2 dv du 
471"u (1 - pp.)' Ck-1)8 2u (1 - Pp.) 

(45) 

from which cross-covariance coefficient ¢P- may be calculated as 

00 foo 
¢p. = k~OO ko -00 u Pr {Yn = U, Xn+p. = ko} • (46) 

If equation (45) is substituted into (46) and the integration with 
respect to u is performed first, the result is 

o 00 fCk+1){J (V2) 
¢p. = 2P

(2/-l u)! L k v exp - -2 dv 
71" k--oo Ck-l){J 

which is equation (44) multiplied by pp-. 

APPENDIX 

Applications of the Poisson Sum Formula to the Derivation of 
Covariance Coefficients 

A.l Basic Formulall 

I(x, t) = :t exp [- I(x + n)2]. 

(47) 

(48) 

t(x, t) = (~Y[ 1 + 2 t, exp ( - 7r';') cos 27rkx J. (49) 
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A.I.l Even Terms 

g(x, t) = nt~ exp [- t(x + 2n)2] = f(~ , 4t) (50) 

g(x. t) ~ ~ (~)'[ 1 + 2 t. exp ( - 7r~;') cos 7rkX]. (51) 

A.1.2 Odd Terms 

00 

hex, t) = L: exp [-t(x + 2n - 1)2] = f(x, t) - g(x, t) (52) 
n=-CO 

hex, t) = .! (~);[1 + 2 f: (_I)k exp (- 7r
2e) cos 7rkX]. (53) 

2 t k-l 4t 

A.2 Mean Square Value of Xn 

Equation (36) may be developed in terms of the partial derivatives 
of equation (48) : 

~ 

fl(x, t) = - L: (x + n)2 exp [-t(x + n)2] (54) 
n=-co 

and 

~ 

fx(x, t) = -2t L: (x + n) exp [- t(X + n)21. (55) 
n=--oo 

Equations (54) and (55) may be combined to form 

nt;~ n2 exp [-t(x + n)2] = x
2
f(x, t) + 7 fx(x, t) - fl(x, t). (56) 

If the order of summation and integration in equation (36) is reversed, 
the resulting integrand is identical in form to the left side of equation 
(56). Thus equation (49) may be substituted into the right side of equa­
tion (56) and the three terms integrated over 0 ~ x ~ 1. The result is 

11 nt;~ n2 exp [- t(x + n)2] dx 

= ~ (~)![1 + 4 f: exp (_ 7r
2e)] 

2t t k-l t 

+ (~)!r.! + f (1.-)2 exp (_ 7r
2e)]. (57) 

t L3 k=l 7rk t 

The variable, t, in equation (57) is related to equation (36) by t = 
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f32j2 = 3271"2 jF2; when this latter form is substituted for t, the form 
of ro given in equation (15) results. 

A.3 Autocovariance Coefficients 

In order to illustrate the derivation of equation (15) for rp, from 
equation (42), we consider odd values of p... By substituting into equa­
tion (42) the form of p (k, l, p..) given in equation (39) we write 

202 
00 f (2k+l),B (V2) 

rJ.l = 4 (1 _ 2)! L 2k exp - -2 G(v) dv, 
7r PJ.l k=-oo (2k-l),B 

(58) 

in which we have defined 

11-~PI'I.B 00. [(32(X + 2l - 1)2J 
G(v) = {3 L (2l - 1) exp - 2(1 _ 2) dx. 

-l-~pl'l{J l=-oo PJ.l 
(59) 

The integrand in equation (59) is related to the infinite series in equa­
tion (52) and its partial derivative with respect to x by 

00 

L (2n - 1) exp [-t(x + 2n - 1)2] 
1 

-xh(x, t) - 2t hx(x, t), 
n=-oo 

(60) 

in which the variable t = (32/2(1 - p~), Into equation (60) we substitute 
the form of hex, t) given in equation (53) and perform the integration 
required in equation (59). The integral of the second term is zero so 
that G(v) is (3 times the integral of the first term of equation (60). Thus 
equation (58) may be written in the form 

(61) 

which must be weighted by exp (-v2j2) and integrated according to 
equation (58). 

Equations (58) and (61) thus show rp, to be the sum of two terms. 
The first term consists of a constant, pp,uS/ (271") ~, multiplying the sum 

00 f (2k+l).B I 2) 00 [{32 J L 2k v exp ( - ~ dv = 2 L exp - - (2k - 1)2 . 
k=-oo (2k-l){J \ 2 k=-oo 2 

(62) 

This latter summation is in the form of equation (52) with x = 0, t = 
f32j2 so that with the application of equation (53), (62) becomes 
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( 
(32) (2'11-)i [ 00 k (7r2e)] h 0, - = - 1 + 2: (-I)' exp - -2 • 
2 (3 k=l 2(3 

(63) 

The second term in the expression for r p, may be written in the form, 

(/(~)! t l exp [_ 7r2

m
2

(1 ;; p~)] 
7r m= 1 7rm 2(3 

00 f (2k+l)j3 (V2) m v .2: 2k exp - - sin~dv. 
k=-oo (2k-1)j3 2 (3 

(64) 

If the sine in this expression is developed in exponential form, the 
summation, ranging over k, in the above expression, has a form 
similar to the integra~ and sum in equation (59). If it is analyzed in 
the manner that G (v) was reduced the following identity may be 
demonstrated: 

00 f (2k+1)j3 (V2). 7rmpfJ.v 2: k exp - - sm--dv 
k--oo (2k-l)p 2 (3 

X exp ( _ ;~~2) sinh (,,2~~p")} (65) 

Thus equation (64) becomes 

(66) 

so that rp, for f-t odd, the sum of (66) and pp,u-o/ (211") 1/2 times (63), may 
be expressed as 

(67) 

If 81l",/F = f32 is substituted in equation (67) the result is equation (15). 
Similarly the formula given in equation (42) for rp, when f-t is even 

may be developed to demonstrate jts identity to the formula in equa­
tion (15). 
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A.4 Cross-Covariance 

Performing the integration indicated in equation (44) we have 

GO" 00 { [(32 2J 
¢o = 2(27ri k~OO k exp -"2 (k - 1) exp [ - ~. (k + l)·J} 

(68) 

which is equivalent to equation (48) with x = 0, t = f32J2 = [327r2J 
F2]. Thus equation (49) may be substituted with the result given in 
equation (16): 

[ 

00 (2 2e)J ¢o 0"2 1 + 2 t; exp - ~2 • 
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A System Approach to Quantization 
and Transmission Error 

By M. M. BUCHNER, JR. 

(Manuscript received October 10, 1968) 

I n a system designed to quantize the output of an analog data source and 
to transmit this information over a digital channel, errors are introduced by 
the quantization and transmission processes. Quantization resolution can be 
improved by using all positions available in a data stream to carry informa­
tion, or transmission accuracy can be improved if some of the positions are 
used for redundancy with error-correcting codes. The problem is to deter­
mine, from a system viewpoint, the proper allocation of the available posi­
tions in order to reduce the average system error rather than concentrate 
exclusively on either the quantization problem or the transmission problem. 

We develop a criterion for the performance of data transmission systems 
based upon the numerical error that occurs between the analog source and 
the destination. The criterion, termed the average system error, is used to 
evaluate and compare possible system configurations. Significant-bit packed 
codes are defined. These codes are useful because their protection can be 
matched to the numerical significance of the data and their redundancy can be 
sufficiently small to maintain good quantization resolution. The average sys­
tem error resulting from representative system designs is numerically 
evaluated and compared. 

1. INTRODUCTION 

When designing a system to sample the output of an analog data 
source and to transmit the samples over a digital channel, the usual 
approach is to consider the errors introduced by quantization and 
transmission as separate problems. However, from a system view­
point, a conflict arises. On the one hand, the quantization resolution 
can be improved by using all of the available positions in a data 
stream to carry information. Alternatively, the transmission accuracy 
can be improved if redundancy and error-correcting codes are intro­
duced by converting some of the information positions into parity 

1219 
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check positions. The problem then is to determine the proper alloca­
tion of the available symbols in order to reduce the average system 
error rather than concentrate exclusively on either the quantization 
problem or the transmission problem. 

We consider a data transmission system with uniform quantization. 
The average absolute error that occurs between the analog source 
and the destination is used as the criterion of system performance. 
The criterion, termed the average system error (ASE) , is used to evalu­
ate and compare the effectiveness of various systems. 

Some work has been done on the design of error-correcting codes 
which provide different amounts of protection for different positions 
within a code word. In Ref. 1, the general algebraic properties of these 
codes, referred to as unequal error protection codes, were investigated. 
In Ref. 2, significant-bit codes (which turn out to be a subclass of un­
equal error protection codes) and a criterion for evaluating the per­
formance of codes for the transmission of numerical data were devel­
oped. 

In this paper, we define packed codes and significant-bit packed 
codes, we analyze their performance, and we numerically evaluate the 
average system error resulting from the use of representative quatiza­
tion resolutions and coding schemes. 

II. PRELIMINARIES 

We consider a binary symmetric channel in which the errors are 
independent of the symbols actually transmitted. In the numerical 
examples, we further assume that the errors occur independently 
with probability p = 1 - q. The error-correcting codes to be discussed 
are binary block codes in which the code vectors form a group under 
component by component modulo 2 addition. Let n denote the block 
length and k denote the number of information positions per code 
vector. The notation (n, k) is used to denote such a code. A complete 
discussion of these codes is contained in Ref. 3. 

The encoder receives k binary information symbols [called a mes­
sage and denoted by (VI;, Vk-l, •.• , vd] as an input and deter­
mines from the message (n - k) binary parity check symbols. The 
decoder operates upon the blocks of n binary symbols coming from the 
channel in an attempt to correct transmission errors and provides k 
binary symbols at its output. 

Let H denote the parity check matrix for such a code. An n-tuple u 
is a code vector if and only if 
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uH = 0 (1) 

where H is the transpose of H. The matrix H can be written in the form 

H = (Ck , Ck- 1 , ••• , C1I n - k) 

where C i (l ~ i ~ k) is the column of H in the position corresponding 
to information position Vi in a code vector and I n- k is the (n - k) X 
(n - k) identity matrix. 

vVhen the integer s is to be sent, the message used is Bk(s) such that* 

where 
Bk(S) = (Vk' Vk-l , .•. , VI) 

k 

S = L 2i
-

1
V •• 

i=1 

The parity check symbols E (8) are chosen so that the code vector 
C (s) = Bk (s) IE (s) satisfies equation (1) where the symbol I indi­
cates that C(s) can be partitioned into Bk(s) and E(s). 

III. PACKED CODES 

A model of the data transmission system is shown in Fig. 1. Let us 
assume that each quantization step is of equal size and that there are 2l 

SOURCE SCALE 
TO BINARY 

CONVERTER 

BINARY TO 
SOURCE SCALE 

CONVERTER 

Fig. 1-System model. 

quantization levels. For many applications, the quantizer uses a rel­
atively small l (perhaps 15 or less). In addition, coding schemes must 
have low redundancy; otherwise so many information positions are 
converted into check positions that the quantization error becomes too 
large. These requirements lead us to define "packed" codes in the follow-

* Bi (j) denotes the i-bit binary representation of the integer j where 0 ~ j ~ 
2i - 1. 
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ing manner. Consider an (n, k) binary group code in which a samples 
are packed into each code vector. If each sample consists of l bits, then 
k = al. Let 8 m denote the integer that is transmitted for the mth sample 
in a code vector where 0 ~ 8m ~ 21 - 1 and 1 ~ m ~ a. Accordingly, 
the code vector actually transmitted is 

where 

'" 
8 = L: 2(m-l) 18

m
• (2) 

m-l 

A packed code vector is shown schematically in Fig. 2. 
Two examples are in order. In the first, a (7, 4) perfect single error­

correcting code is used to form a packed code with a = 2 and l = 2. 

1 1 1 0 

H = 1 1 0 1 13 . 

101 1 

82 Positions.-1' L81 positions 

In the second example, the idea behind significant-bit codes is applied 
to packed codes and results in what will be referred to' as a signifi­
cant-bit packed code.2 Specifically, the basic (7, 4) code can have its 
protection capabilities arranged to match the numerical significance of 
the bit positions; that is, to protect the most significant bit of each of 
four samples (a = 4 and l = 2). 

1 0 1 0 100 0 

H = 1 0 1 0 0 0 1 0 13 . 

1 000 1 0 1 0 

84 Positions.-1' ) 

8a positions-- 1 Ls, ~o~itions 
--82 posItIOns 

Notice that the significant-bit packed code requires only half as many 
parity check positions per sample as the packed code. 
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1'-------------- n BITS -------------, 

i---------- k BITS ---------1 I 
I B Z (Sa) I Bz(Sa-l) I I B Z (SI) I E(s) I 
~-l BITS-~-l BITS-~ ~-l BITS-~- ~~T~ -~ 

Fig. 2 - Packed code vector. 
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Many packed codes can be designed to provide desired levels of 
protection and redundancy. Numerical data concerning the effective­
ness of representative packed codes are presented in Sections VI and 
VII. 

IV. FORMULATION OF A CRITERION OF SYSTEM FIDELITY 

In this section, we develop a criterion of system fidelity as a func­
tion of the number of quantization levels and the capability of the 
error-correcting code. This is done for packed codes because of their 
generality. 

Let Xm denote the output of the analog source that results in 8m 

being transmitted. It is assumed that Xm is a random variable that is 
uniformly distributed on the interval (Xl, X 2 ). The probability den­
sity function for Xm is 

1 

(3) 
=0 

If 

then the output of the quantizer is 

The "source scale to binary converter" receives 

X ( 1)(X2 - Xl) 
1 + 8m + 2" 21 

from the quantizer and delivers Bl(sm) to the encoder. After a samples 
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are received by the encoder, the message 

Bk(S) = Bz(sa) \ BZ(Sa-l) \ .•. \ BZ(SI) 

is encoded to form the code vector O(s) = Bds) I E(s) where the 
value of S is determined from equation (2). At the destination, the 
decoder attempts to correct errors and provides the message 

Bk(r) = Bz(ra) \ BZ(ra- l) \ ... \ BZ(ri ) 

at its output where 0 ~ r m ~ 2z 
- 1 for 1 ~ m ~ a and 

a 
_ ~ 2(m-I)Z r - L..J rm . (4) 

m-l 

The "binary to source scale converter" receives Bl (rm) and delivers 

to the destination. Because uniform quantization is used, a useful 
measure of the numerical error that occurs as a result of the quantiza­
tion and transmission of Xm is 

where y > O. The appropriate value of y will depend upon the nature 
and use of the signal. For this paper, let y = 1. 

For the mth sample position in a packed code, let Prm{rm ISm} 
denote the probability that rm is received when 8m is sent. Accordingly, 
the average system error for the mth sample (ASEm) is 

ASE
m 

= 2tl 2tl jXl+(Sm+l) (X.-X.)/2
1 I Xm - Xl - (rm + !)(X2;-; Xl) I 

rm-O sm=O X 1 +s m(X.-X 1 )/21 

·Prm {rm \Sm}f(xm) dXm . (5) 

It is desirable to express Prm{rm ISm} in terms of the properties of 
the error-correcting code. Let Pr{ r Is} denote the probability that r 
occurs at the output of the decoder when s is the input to the encoder. 
As shown in Appendix A, for a channel in which the errors are inde­
pendent of the symbols actually transmitted, 

Pr
m 

{rm \ 8m } = 2tl ... 2I: Pr { t 2(m'-1)Ztm, I o} 
ta-O h~O m'=l 

excluding tm 
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where Bl(tm) = Bl(rm) ffi Bl(sm) .'f This expression is interesting be­
cause it permits us to compute Prm{rm I sm} from the properties of the 
code. Specifically, it is necessary to determine the probability that 
each possible sequence of a samples, in which the mth position equals 
tm, is received, given that zero is transmitted for each sample, and 
then to sum these probabilities. 

For the case in which one sample is transmitted per code word (that 
is, a = 1 and l = k) and all samples are equally likely to be trans­
mitted, the average numerical error (ANE) that occurs during trans­
mission has been defined as2 

1 2L1 2k_1 

ANE = 2k r~ 8?; I r - s I Pr {r Is}. 

The average numerical error is the average magnitude by which the 
output of the decoder differs numerically from the input to the en­
coder and thus provides a measure of the performance of the channel 
and the code. This concept can be generalized by defining the average 
numerical error for the mth sample as 

1 2/_1 2/_1 

ANEm=2l L L Irm-smIPrm{rmlsm}. 
rm-O 8m=O 

(6) 

By reasoning analogous to that in Theorem 1 of Ref. 2, for a binary 
group code used with a binary symmetric channel, equation (6) can 
be reduced to 

l 21-1 

ANEm = L 2i
-

1 L Prm {rm IO}. 
i=-1 rm=r:2 i - 1 

With this definition of ANEm, the probability density function in 
equation (3), and the steps shown in Appendix B, the average system 
error for the mth sample, as given in equation (5), can be expressed as 

ASEm = (X2;;; X1)(ANEm + 1 Prm {O IOD. 

One feature of packed codes is that the protection afforded various 
samples against transmission errors can be unequal. If this occurs, 
different positions will have different system error. Therefore, in 
general, the average system error per sample (ASE) is 

1 a 

ASE = - L ASEm • 

a m=l 

* The symbol EB denotes component by component modulo 2 addition of vectors. 
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The range of the analog source is specified by Xl and X 2 • When con­
sidering system design, it is convenient to let X2 - Xl == 1 (or to con­
sider a normalized average system error). Accordingly, in the re­
mainder of this paper, we shall be concerned with the expression in 
equation (7). 

1 a [1 ] 
ASE = - L 2' {ANEm + i Prm {O IOD . 

a m~1 
(7) 

For a system in which one sample is transmitted per code word (that 
is,a ==, 1 and l == k), 

1 
ASE = 2' (ANE + i Pr {O IOD (8) 

where ANE and Pr{O I O} are for the entire code. 
For error-free transmission, Prm {O I O} == 1 and ANEm == 0 for all 

coding schemes including uncoded transmission. In this case, ASE == 
2-(Z+2). Thus, the system error is independent of the particular code, 
is minimized by maximizing l, and cannot be reduced to zero but i~ 
bounded by the quantization error. 

V. THE AVERAGE SYSTEM ERROR FOR UNCODED TRANSMISSION 

Before examining the role that error-correcting codes can play in 
reducing the average system error, it is advantageous to consider sys­
tem effectiveness when uncoded transmission is used with a memory­
less channel. In the system model, uncoded transmission is charac­
terized by a == 1 and l == k == n. Let ASNuc denote the average system 
error for uncoded transmission. From Theorem 2 and the comment 
following the proof of the theorem in Ref. 2 (these are summarized 
in Appendix C), the average numerical error for uncoded transmis­
sion is 

ANEuC = P 

, 1 _ (9..)' 
~ 2i-1 l-i 21-1 2 L..J q = P • 
i=1 1 _ 9.. 

2 

The probability of correct transmission is qZ. Therefore, from equa­
tion (8) 

1 ( I i-1 l-i i) 
ASEuc = 21 P f.; 2 q + 4- . (9) 
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Figures 3 and 4 present the average system error for uncoded trans­
mission for representative values of land p. 

For each value of l, notice that as p --;. 0, ASEuc ~ 2-(l+2) which is 
the limitation imposed by the quantization error. Also, ASEuc increases 
monotonically with p for 0 < p < lh (see Appendix D). For a given 
value of l, how large must p become so that ASEuc deviates appreci­
ably from 2-(l+2) (that is, for what values of p does the transmission 
error make a significant contribution to the system error?) 

u 
::> 

w 
(f) 

<t: 

For small p, equation (9) yields 

(10) 

iO-2.----,-----.--,-,-.----,r----,--r-~._----r_--_,--,__r1 

8~==~=====h==~~~==~~==~==+==F-9=====F=---·+-~~F=·-~·~-
l =5 

---
4~==~====~==~~~===9=====+==+_=9-+----=F==~·-+---~--~ 

6 

_I- ...... -------

_\-_ ____ ____ --1-- /,/' 1/'~~ 
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8 

i 2 ._ --1---1-- --- ",/' / L!4/--I---l-----+-----+---+--+---1 
6 ./ v/ 

...... ./ / 

4~---+----~--~~,~-~---~7·/~/~"+__+~~----_r----T_~~~ 
_~~ __ ---1--- -- /L/ ,,/ 

2 _--1----- -
i4 

// \,,/ 
.",""" ./ 

1--1--' /./ 

p 

Fig. 3 - Average system error for uncoded transmission (ASEuc) for various l. 
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Fig. 4 - Average system error for uncoded transmission (ASEuc) for various 1. 

This expression can be broken into two components; the term 

and the term 2-(l+2). These components are shown in Fig. 5 for l 
15. In Fig. 5, the terms intersect at a probability of error denoted by 
Pc where 

1 
Pc 

Notice that pc is the value of p for which the transmission error equals 
the quantization error [within the approximations leading to equa­
tion (10)]. Accordingly, for p = pc, ASEuc "" 2-(l+1). In Fig. 6, Pc is 
given for various l. From pc, it is possible to obtain an estimate of the 
general region in which ASEuc begins to deviate from 2-U

+
2

) because of 
transmission errors. 
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An additional feature of Figs. 3 and 4 is that, for a given value of l 
and for p greater than the appropriate Pc, ASEuc is approximately equal 
to p. This causes the converging of the curves as P increases and im­
plies that systems with different l will have essentially the same 
performance. Let us consider qualitatively the cause of this phenome­
non. 

For p > Pc, the transmission error is significantly greater than the 
quantization error and, thus, the average system error is largely deter­
mined by the transmission error. If a single error occurs in a sample 
and if it occurs in the most significant position, on the average, a 
numerical error of 1;2 will result for any l. For values of p that are of 
practical interest, the probability that this occurs is essentially jn­
dependent of l and equal to p. Similar reasoning can be applied to the 
less significant positions although the numerical error that results 
will, of course, be less than 112. The point is that the probability that 
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Fig. 5 - A verage system error for uncoded transmission (ASEuc) for l = 15. 
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these single errors occur and the numerical errors that result are es­
sentially independent of l. This implies that the transmission error 
(and thus the average system error) will be relatively insensitive to l. 

Notice that Pc decreases as l increases. The reason is that the quanti­
zation error decreases as l increases whereas the transmission error is 
approximately independent of l. Thus, the value of p where the trans­
mission error becomes a significant portion of the system error de­
creases. 

From equation (10), no system using uncoded transmiEision can 
have an average system error significantly less than p no matter how 
large l becomes. This leads to the problem of how to make the average 
system error less than p. 

Suppose that the ()" most significant positions per sample are pro­
tected by coding and that the remaining (l - <T) positions are not pro­
tected. Further, assume that sufficient protection is provided so that 
the probability of error in the protected positions is substantially 
less than p. Under these conditions, the transmission error is deter­
mined primarily by errors in the least significant positions and we 
can consider the protected positions to be free of errors. Then, from 
Theorem 2 of Ref. 2 (summarized in Appendix C), 

1 ( ~ 2'-1 l-O'-i + 1 1-0') ASE = 21 P £..oJ q "4Q' 
i-I 

For values of p that are of practical interest, 
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1 [(21
-" 1 l - u) + IJ ASE f"'oo..J 21 - - -4- P 4· (11) 

Accordingly, for p in the range where transmission is the major source 
of system error, the average system error can be reduced by a factor 
of approximately 2-(1 from the average system error for uncoded trans­
mission. This implies that we should seek codes that can both protect 
the significant positions of each sample and maintain quantization 
resolution by requiring small redundancy. The above requirements 
provide the motivation for significant-bit packed codes. 

VI. SOME EXAMPLES OF SYSTEM PERFORMANCE WITH CODING 

In this section we assume that a predetermined number of positions 
(denoted by ~) are available to transmit each sample. By numerical 
evaluation, the average system error that results from the use of 
representative coding schemes (for ~ = 7 and ~ = 15~~) is determined 
for various values of p. The examples illustrate that system perform­
ance depends upon p and upon the manner in which the ~ positions 
are allocated between information bits and redundancy for error 
control. 

Let ASEuc denote uncoded transmission. First, consider codes in 
which one code vector is used per sample (a = 1). Listed below is a 
brief description of each code. The codes are indexed by the notation 
used for their average system error in Fig. 7 (~ = 7) and Fig. 8 (~ 

= 15). 
ASE(3,l): A (3, 1) perfect single error-correcting code is used to pro­

tect the most significant position. 

~ = 7: 

~ = 15: 

a = 1 

a = 1 

l = 5 

l = 13 

ASE(3,l),(3,l): Independent (3, 1) perfect single error-correcting codes 
are used to protect the two most significant positions. 

~ = 7: 

~ = 15: 

a = 1 

a = 1 

l = 3 

l = 11 

* These values were selected because in each case it is possible to construct a 
perfect single error-correcting code and thus to compare uniform protection 
with protection that is heavily. weighted in favor of the most significant bit per 
sample. 
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Fig. 7 -Average system error (ASE) with representative codes; 7 positions per 
sample (~ = 7). 

ASE(7,4): A (7, 4) perfect single error-correcting code is used to pro­
tect the four most significant positions. 

~ = 7: a = 1 l = 4 

~ = 15: a = 1 l = 12 

ASE(15,1l): A (15, 11) perfect single error-correcting code is used to 
protect all 11 positions. 

~ = 15: a = 1 l = 11 

Although many significant-bit packed codes can be constructed, we 
consider only three examples. They were selected because the codes 
should protect the most significant positions of each sample and 
because a small number of parity check positions per sample should 
be used so that we can reasonably consider 2Z quantization levels. 
The codes illustrate the general capabilities of significant-bit packed 
codes and are easy to. implement. One prime is used in the average 
system error notation to indicate that the most significant position 
of each sample is protected and two primes to indicate that the two 
most significant positions of each sample are protected. Let p de-
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note the number of parity check positions per sample where p = 
(n-k)/a. Let R denote the code rate where R = lc/n. 

ASE~15.11) : A (15, 11) perfect single error-correcting code is used in 
a significant-bit packed code to protect the most significant position 
of each sample. 

~ = 7: 

~ = 15: 

a = 11 

a = 11 

l = 7 

l = 15 

p = 0.36 

p = 0.36 

R = 0.950 

R = 0.976 

ASE~31,26) : A (31, 26) perfect single error-correcting code is used in 
a significant-bit packed code to protect the most significant position 
of each sample. 

~ = 7: 

~ = 15: 

a = 26 

a = 26 

l = 7 

l = 15 

p = 0.19 

p = 0.19 

R = 0.974 

R = 0.987 

ASE~~l,26) : A (31, 26) perfect single error-correcting code is used in 
a significant-bit packed code to protect the two most significant 
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positions of each sample. 

~ = 7: 

~ = 15: 

a = 13 

a = 13 

l = 7 

l = 15 

p = 0.38 

p = 0.38 

R = 0.948 

R = 0.975 

We can make the following observations concerning system per­
formance when codes are used. In all cases, as p ~ 0, ASE ~ 2-(Z+2) 

which is the limitation on system performance because of quantiza­
tion. As l increases, the quantization error decreases. Thus, the value 
of p for which the transmission error becomes a significant portion of 
the system error decreases. In other words, if you design for good 
quantization resolution, then you need a good channel. This implies 
that, as the number of positions per sample increases, codes are use­
ful for smaller values of p in order to bring the channel up to the 
required quality. 

Because all 0: = 1 codes necessitate a sizable reduction in l to al­
low for redundancy, they are only attractive for larger p where con­
siderable coding capability is required. For these p, we have demon­
strated that system performance can be improved (by an appreciable 
amount in some cases) by sacrificing quantization resolution for an 
improvement in transmission fidelity. However, because significant­
bit packed codes provide protection for the most significant positions 
without the large penalty in quantization resolution required by the 
a = 1 codes, significant-bit packed codes are effective for considerably 
smaller values of p than are the -0: = 1 codes. 

Notice that ASE~31.26) and ASE~15.11) are nearly equal. The reason is 
that although the significant-bit packed code using the (31, 26) code 
provides less error protection than the significant-bit packed code based 
on the (15, 11) code, in each case the protection provided for the most 
significant position is "sufficient" and, thus, the errors that hurt are 
coming in the less significant positions. 

On the other hand, ASE~~1.26) is less than either ASE~31.26) or ASE~15.11) 
for the values of p where significant-bit packed codes are preferable. 
The reason is that errors are now nearly eliminated in the two most 
significant positions in each sample. Further reductions in system error 
could be achieved by using significant-bit packed codes which protect 
three or more positions per sample. However, we must be careful not to 
go too far or we should begin to charge the redundancy against quan­
tization resolution. 

Significant-bit packed codes achieve an effect similar to interleav­
ing. Thus, although the computations herein have been for independ-
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ent errors, significant-bit packed codes could prove useful for a channel 
with clustered errors. 

VII. SIGNIFICANT-BIT PACKED CODES FOR DIFFERENT l 

Several interesting points are illustrated in Fig. 9. Indexed on the 
left are the four values of l considered. For l = 15, ASEuc is shown. 
For l = 15, 14, 13, and 12, ASE~31.26) and ASE~~1.26) are given. 

The following observations concerning Fig. 9 can be made. For 
small p, the l = 15 schemes are best. This is to be expected because 
quantization is the major source of system error for small p. 

However, for larger p, the significant-bit packed codes with l < 15 
have less system error than uncoded transmission for l = 15. This is 
particularly interesting because, in these significant-bit packed codes, 
more positions are saved by reducing l than are added by the parity 
check positions. For example, in the l = 13 system that results in 
ASE~31.26) , a = 26 and n = 343. If uncoded transmission with l = 15 is 
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used to send these 26 samples, 390 positions are required. Thus, for 
P > 4.5.10-5

, this significant-bit packed code reduces system error 
and saves 47 positions every 26 samples. Similar behavior can be noted 
for other significant-bit packed codes considered in Fig. 9. 

For p = 10-3
, the three systems with o' = 1 converge to approximately 

2-1 ASEuc and the three systems with a = 2 converge to approximately 
2-2 ASEuc even though the systems use different quantization resolu­
tions. However, for p = 10-6

, the convergence is determined by l. This 
clearly demonstrates the two extreme cases in system behavior: limita­
tion by transmission error and limitation by quantization error. 

VIII. THE SYNTHESIS PROBLEM-AN EXAMPLE 

,suppose that the probability of error and the maximum allowable 
average system error are specified. Let these be denoted by Ps and 
ASEs respectively. From equation (11), ,a and l should be chosen to 
satisfy the relation 

(12) 

where a represents the number of protected positions per sample. 
Because equation (11) is an approximation, values of l and a that 
satisfy equation (12) cannot be guaranteed to provide a system with 
an ASE ~ ASEs • However, as (j decreases compared with l, equation (12) 
becomes increasingly reliable. * 

Notice that l and a appear as negative exponents in equation (12). 
Therefore, for a given Ps, a wide range of values for the ASEs can be 
achieved by varying l and ,a. Also, equation (12) frequently can be 
satisfied by several pairs of values for land la. For each pair, there 
may be several possible coding schemes. The system designer must 
then choose the final system configuration from these candidates on 
the basis of such items as the cost of implementation or the number 
of positions in the data stream per sample. 

As an example of system design, consider a telemetry channel in 
planetary space missions. This channel can often be modeled satis­
factorily by the memoryless binary symmetric channel and typically 

* A major assumption leading to equation (11) is that all of the average nu­
merical error comes from the unprotected positions. However, if u is large, then 
errors in the protected positions result in a much larger numerical error than 
errors in the unprotected positions. Therefore, even though errors in the pro­
tected positions are less likely, a significant portion of the average numerical 
error can COme from these positions. 
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has a bit error rate of 5 ,10-3 • Thus, equation (12) becomes 

(13) 

If uncoded transmission is a system requirement, then a o and 

ASEa > 5·10-3 +2-<z+2). 

Notice that successive increases in l result in successively smaller 
reductions in the average system error and that the average system 
error can never be less than 5.10-3

• From Fig. 4, all systems with 
l ~ 8 have essentially the same average system error and, thus, little 
is gained. by using l > 8. 

A more interesting situation exists if the system designer is per­
mitted to choose l and the coding scheme. If ASEs > 5'10-3

, it is pos­
sible to design a system using uncoded transmission although coding 
could prove effective as ASEs approaches 5.10-3

• However, if ASEs < 
5 '10-3

, some form of coding is mandatory. Conversely, from equa­
tion (13), if coding is used, the system error can be made small by 
choosing appropriate values of l anda. In Table I, the approximate 
average system error is given for representative land a. The informa­
tion in Table I was computed by using equation (11) and,· thus, is 
subject to the assumptions and approximations leading to equation 
(11). However, from Table I, the improvements in system performance 
that can be achieved by coding are evident. 

c TABLE I-ApPROXIMATE AVERAGE SYSTEM ERROR (ASE) FOR 
REPRESENTATIVE l AND a; p = 5.10-3 

Approximate ASE . 

7 1 4.4,10- 3 

2 3.2 '10- 3 

3 2.5 '10-3 

8 1 3.5'10-3 

2 2.2 '10-3 
,:> 
v 1.6,10-3 

9 1 :3.0,10-3 

2 1.7 '10-3 
') 
.) 1.1'10-3 

10 1 2.7 '10-3 

2 1.5,10-3 

3 ,. 8.7 .10-4 
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Consider the following specific example which illustrates certain 
alternatives in code selection without requiring extensive computational 
effort. Suppose ASE. = 4.10-3

• From equation (13) or Table I, we can 
use U' = 1 and l ~ 8 or U' = 2 and l ~ 7. The minimum values of l will 
be used. Several coding schemes are possible in each case. The codes, 
indexed below by the notation used for their average system error in 
Fig. 10, follow the ideas in Section VI. Thus, the parity check matrices 
are not presented. 

For (J' = 1, l = 8: 

ASE(3,1): A (3, 1) perfect single error-correcting code is used to pro­
tect the most significant position. 

a = 1 l = 8 

ASE~15.11): A (15, 11) perfect single error-correcting code is used in 
a significant-bit packed code to protect the most significant position 
of each sample. 

a = 11 l = 8 

ASE~31 ,26) : A (31, 26) perfect single error-correcting code is used in 
a significant-bit packed code to protect the most significant position 
of each sample. 

a = 26 l = 8 
For U' = 2, l = 7: 
ASE(3,1),(3,1): Independent (3, 1) perfect single error-correcting codes 

are used to protect the two m08t significant positions. 

a=l l=7 

ASE~~1.26) : A (31, 26) perfect single error-correcting code is used in 
a significant-bit packed code to protect the two most significant 
positions of each sample. 

a = 13 l = 7 

The design objective, denoted by an asterisk in Fig. 10, is satisfied 
by each system although the systems vary somewhat in performance 
for other p. Notice that the systems differ in the coding equipment and 
quantization resolution required for implementation. Also, notice that 
the systems vary in the number of positions per sample in the data 
stream [from a low of 7.4 for ASE~~J,26) to a high of 11 for ASE(3.1).(3.1)]' 

Which system would actually be selected would thus depend upon the 
details of the specific application. 
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Fig. 10 - Systems for space telemetry channel. 

IX. CONCLUSIONS 

A general formulation of the error introduced by quantization and 
transmission has been developed for the data transmission system 
shown in Fig. 1. It has been shown that system performance is in­
fluenced by both the quantization resolution and the channel error 
characteristics, that certain levels of performance cannot be achieved 
without the use of coding no matter how fine the quantization, and 
that performance can, in some cases, be improved by sacrificing 
quantization for redundancy and error control. In general, when 
coding is used, it is beneficial to use codes that match their protection 
to the numerical significance of the information positions. Significant­
bit packed codes are particularly useful because they provide protec­
tion for the most significant positions without incurring a large penalty 
in quantization resolution. The problem of determining the coding 
capability and the number of quantization levels required to achieve 
a specified average system error has been considered. 

The specific results are based upon the choice of y = 1 in Section 
IV. However, varying y simply changes the "cost" assigned to the 
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numerical errors and, thus, the general ideas presented here are ap­
plicable for any y > 0: for example, the desirability of the system 
approach to quantization and transmission error, the possibility of 
improving system performance by sacrificing quantization resolution 
for redundancy, and the use of codes that concentrate protection on 
the numerically most significant positions. Actually, it appears that 
as y increases, the desirability of protection for the most significant 
positions also increases. 

Because of the unit distance properties of Gray codes, it is natural 
to inquire whether Gray codes could prove useful in the system dis­
cussed in this paper. It can be shown (for y = 1) that a Gray code 
with 21 levels gives exactly the same average numerical error and 
average system error as the natural binary numbering with 21 levels 
even when error-correcting codes are used. 

APPENDIX A 

Derivation of an Expression for Prm{rm ISm} 

Let Prm {rm 18m } denote the probability of receiving rm when 8m is 
transmitted using a packed code. Let Pr {8i} (1 ~ i ~ a) denote the 
probability that 8i is transmitted. Then 

21_1 21_1 21_1 21_1 

Prm {rm 18m } = L ... L L ... L Pr {r 18} Pr {8 a } ... Pr {8d 
ra=O rl-0 8«==0 81-0 V 

exCluding rm and 8m excluding Pr {8m} 

where the values of rand 8 are determined from equations (4) and (2), 
respectively. However, Pr {8d = 2- l for 1 ~ i ~ a, i ~ m. Thus, 

1 21_1 21_1 21_1 21_1 

Prm . {rm 18m } = 2(a-1)l r~o ••• r~ 8~O ••• 8~ Pr {r I 8}. (14) 

excluding rm and 8m 

The expression in equation (14) can be simplified. From equations 
(2) and (4), equation (14) can be written as . 

1 21_1 21_1 21_1 21_1 

=~ L .... L.L"· L 
2 Ba~O 81=0 ra=O rl-0 

excluding r m and 8m 

·Pr Lt, 2(m'~"'rm' I};, 2(m'-"'Sm} (15) 

By Lemma·J of,.Ref. 2, for a binary group code used with a binary 
symmetric channel in which the errors are independent of the symbols 
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actually transmitted, 

Pr {i 2(m'-1)ltm, lo} = Pr { i 2(m'-llZrm, I i 2(m'- llZSm'} 
m'-l m'-l m'-l 

where Bl(tm') = Bl(rm,) ED Bl(sm')' By Lemma 2 of Ref. 2, equation 
(15) can be written as 

Prm {rm ISm} 

= 2(a~lll 2tl 2I: 2tl 2I: Pr { i 2(m'- llZ tm , I o} 
Ba=O B1=0 ta=O 1.=0 m'=l 

excluding Sm and tm 

which reduces to 

excluding tm 

APPENDIX B 

Reduction of the Expression for the Average System Error 

By substituting equation (3) into (5) and rewriting, 

where 

Orm8m = 1 for rm = 8m 

= 0 for r m ~ 8m • 

Thus, 
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The average numerical error for the mth sample was defined in equa­
tion (6) as 

1 2'_1 2'_1 

ANEm = 2' 2: 2: I r m - Sm I Pr m {r m I Sm} . 
rm-O 'm-O 

In addition, it can be shown that for a channel in which the errors are 
independent of the symbols actually transmitted, 

2'_1 2'_1 

2: 2: Prm {rm ISm} Ormlm = 2' Prm {O I O}. 
rm-O .m-O 

Therefore, 

APPENDIX C 

Theorem 2 of Reference 2 

A significant-bit code is a code in which the (k-ko) most signifi­
cant positions are protected by what is referred to as a base code and 
the remaining ko positions are transmitted unprotected. For the base 
code when used alone, let PrB{O I O} denote the probability that the 
output of the decoder is the zero message when the input to the en­
coder is the zero message. Also, let ANEB denote the average numerical 
error of the base code. The average numerical error for the signifi­
cant-bit code is given by Theorem 2 of Ref. 2: 

Theorem 2: Let the base code be defined as above. For a binary sym­
metric. channel with independent errors and when all messages are 
equally likely to be transmitted, 

ko 

P {O I O} "2 i - 1 k.-i + 2k• ANE SB = r B P .£.oJ q ANEB • 
i-1 

Uncoded transmission is the special case where k = ko. Thus, the 
average numerical error for uncoded transmission can be obtained by 
letting ANEB = 0 and PrB{O I O} = 1 when k = ko. 

APPENDIX D 

Proof that the Average System Error f,or Uncoded Transmission In­
creases Monotonically with p 

In Section V, equation (9) gives the average system error for un-
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coded transmission as 

ASEuc = ;z (p t 2 i
-

1q
Z-i + f)· 

After differentiating with respect to q and grouping terms, 

For! < q < 1, 

dA~:UC < O. 

Thus, ASEuc decreases monotonically as q goes from 112 to 1 or, alter­
natively, ASEuc increases monotonically as p runs from 0 to 112. 

APPENDIX E 

Parity Check 111atrices for Codes Considered in Section VI 

ASE(3,l): A (3, 1) perfect single error-correcting code to protect the 
most significant position. 
~ = 7: 

~ = 15: 

H = [1 0 0 0 0 12] 
1 000 0 

a = 1 

H = [1 0 0 0 0 0 0 0 0 0 0 0 0 12] 
1 0 0 0 0 0 0 0 0 0 000 

l = 5 

a = 1 l = 13 

ASE(3,l),(3,l): Independent (3, 1) perfect single error-correcting codes 
to protect the two most significant positions. 

~ = 7: 

100 

H = 1 0 0 14 

010 

010 

a = 1 l = 3 
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~ = 15: 

100 0 0 0 0 0 0 0 0 

H = 1 0 0 0 0 0 0 0 0 0 0 14 a = 1 l = 11 
o 1 000 0 0 0 0 0 0 

o 1 0 0 0 0 0 0 0 0 0 
ASE(7,4): A (7, 4) perfect single error-correcting code to protect the 

four most significant positions. 

~ = 7: 

~ 

~ 

H = [~ ~ ~ ~ 1,1 
101 1 

a = 1 l = 4 

15: 

[1 1 1 0 000 0 0 000 

1,1 H= 110 100 0 0 0 000 a = 1 l = 12 

101 1 0 0 0 0 0 0 0 0 

ASE(15,l1) : A (15, 11) perfect single error-correcting code. 
= 15: 

1 1 1 1 1 1 1 0 0 0 0 

H = 1 1 1 1 0 0 0 1 1 1 0 14 

1 100 1 101 101 

1 0 1 0 101 101 1 

a = 1 l = 11 

ASE~15.11) : A (15, 11) perfect single error-correcting code in a sig­
nificant-bit packed code. 

~ = 7: 
111 1 1 1 100 0 0 

1 1 1 1 000 1 1 1 0 
H = 06 06 06 06 ~.1~06 06 06 06 06 06 06 14 

1 100 1 101 101 

1 0 1 0 101 101 1 

a = 11 l = 7 p = 0.36 R = 0.950 
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~ = 15: 

1 1 1 1 1 1 10000 

1 1 1 1 000 1 1 1 0 
H = 014 014 014 014 014 014 014 014 014 014 014 14 

1 100 1 101 101 

1 0 1 0 101 

ex = 11 l = 15 p = 0.36 

101 

R = 0.976 

1 

ASE:31.26l : A (31, 26) perfect single error-correcting code in a signifi-
cant-bit packed code. 

~ = 7: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 

H= 1 06 1 06 1 06 1 06 0 06 0 06 0 06 0 06 1 06 1 06 1 06 1 06 0 06 0 06 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 0 0 0 0 

o 06 1 06 1 06 1 06 1 06 0 06 0 06 0 06 1 06 1 06 1 Or, 0 06 15 

0 1 1 0 0 1 1 0 1 1 0 1 

1 1 0 1 0 1 0 1 1 0 1 1 

ex = 26 l=7 p = 0.19 R = 0.973 

~ = 15: 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

H= 1 014 1 014 1 014 1 014 0 014 0 014 0 014 

1 1 0 0 1 1 0 

1 0 1 0 1 0 1 
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1 1 1 1 1 1 1 1 0 0 

1 0 0 0 0 0 0 0 1 1 

o 014 1 014 1 014 1 014 1 014 0 014 0 014 0 014 1 014 1 014 

0 1 1 0 0 1 1 0 1 1 

0 1 0 1 0 1 0 1 1 0 

0 0 0 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 

1 014 1 014 0 014 0 014 0 014 1 014 1 014 1 014 0 014 15 

0 0 1 1 0 1 1 0 1 

1 0 1 0 1 1 0 1 1 

a = 26 l = 15 p = 0.19 R = 0.987 

ASE~~1. 26) : A (31,26) perfect single error-correcting code in a significant­
bit packed code. 

~ = 7: 

11 11 11 11 11 11 

11 11 11 11 00 00 

H = 11 05 11 05 00 05 00 05 11 05 11 05 

11 00 11 00 11 00 

10 10 10 10 10 10 

11 10 00 00 00 00 00 

00 01 11 11 11 00 00 

0005 01 05 11 05 10 05 00 05 11 05 1005 15 

11 01 10 01 10 11 01 

10 11 01 01 01 10 11 

a = 13 l = 7 p = 0.38 R = 0.948 
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~ = 15: 

11 11 11 11 11 11 

11 11 11 11 00 00 

H= 11 013 11 013 00 013 00 013 11 013 11 01~ 

11 00 11 00 11 00 

10 10 10 10 10 10 

11 10 00 00 00 00 00 

00 01 11 11 11 00 00 

00 013 01 013 11 013 10 013 00 013 11 013 10 013 15 

11 01 10 01 10 11 01 

10 11 01 01 01 10 11 

a= 13 l = 15 p = 0.38 R = 0.975 
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The Chirp z-Transform Algorithm 
and Its Application 

By LAWRENCE R. RABINER, RONALD W. SCHAFER, 
and CHARLES M. RADER* 

(Manuscript received November 21, 1968) 

We discuss a computational algorithm for numerically evaluating the z­
transform of a sequence of N samples. This algorithm has been named the 
chirp z-transform algorithm. Using this algorithm one can efficiently 
evaluate the z-transform at M points in the z-plane which lie on circular 
or spiral contours beginning at any arbitrary point in the z-plane. The 
angular spacing of the points is an arbitrary constant; M and N are 
arbitrary integers. 

The algorithm is based on the fact that the values of the z-transform on a 
circular or spiral contour can be expressed as a discrete convolution. Thus 
one can use well-known high-speed convolution techniques to evaluate the 
transform efficiently. For M and N moderately large, the computation 
time is roughly proportional to (N + M) log2 (N + M) as opposed to 
being proportional to N· M for direct evaluation of the z-transform at M 
points. 

Applications discussed include: enhancement of poles in spectral analysis, 
high resolution narrow-band frequency analysis, interpolation of band­
limited waveforms, and the conversion of a base 2 fast Fourier transform 
program into an arbitrary radix fast Fourier transform program. 

r. INTRODUCTION 

In dealing with sampled data the z-transform plays the role which 
is played by the Laplace transform in continuous time systems. One 
example of its application is spectrum analysis. The computation of 
sampled z-transforms, which has been greatly facilitated by the fast 
Fourier transform algorithm, is further facilitated by the "chirp 
z-transform" algorithm described in this paper.l.2 

* Mr. Rader is with Lincoln Laboratory, Massachusetts Institute of Tech­
nology, Lexington, Massachusetts. Lincoln Laboratory is operated with" support 
from the U. S. Air Force. 
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The z-transform of a sequence of numbers Xn is defined as 

(1) 

a function of the complex variable z. In general both Xn and X (z) 
could be complex. It is assumed that the sum on the right side of equa­
tion (1) converges for at least some values of z. We restrict ourselves 
to the z-transform of sequences with only a finite number N of non­
zero points. Therefore, we can rewrite equation (1) without loss of 
generality as 

N-l 

X(z) = L: xnz-n (2) 
n=O 

where the sum in equation (2) converges for all z except z = o. 
Equations (1) and (2) are similar to the defining expressions for 

the Laplace transform of a train of equally spaced impulses of magni­
tudes X n . Let the spacing of the impulses be T and let the train of 
impulses be 

L: Xn oCt - nT). 
n 

Then the Laplace transform is 

which is the same as X (z) if we let 

(3) 

For sampled waveforms the relation between the original waveform 
and the train of impulses is well understood in terms of the phenomenon 
of aliasing. Thus the z-transform of the sequence of samples of a time 
waveform is representative of the Laplace transform of the original 
waveform in a way which is well understood. The Laplace transform of a 
train of impulses repeats its values taken in a horizontal strip of the 
s-plane of width 27r / T in every other strip parallel to it. The z-transform 
maps each such strip into the entire z-plane or, conversely, the entire 
z-plane corresponds to any horizontal strip of the s-plane, for example, 
the region - 00 < u < 00, -7r/T ~ w < 7r/T, where s = u + jw. 

In the same correspondence, the jw axis of the s-plane, along which 
we generally equate the Laplace transform with the Fourier transform, 
is the unit circle in the z-plane; the origin of the s-plane corresponds to 
z = 1. The interior of the z-plane unit circle corresponds to the left 
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half of the s-plane; the exterior corresponds to the right half plane. 
Straight lines in the s-plane correspond to circles or spirals in the z-plane. 
Figure 1 shows the correspondence of a contour in the s-plane to a 
contour in the z-plane. To evaluate the Laplace transform of the im­
pulse train along the linear contour is to evaluate the z-transform of 
the sequence along the spiral contour. 

Values of the z-transform are usually computed along the path 
corresponding to the jw axis, namely the unit circle. This gives the 
discrete equivalent of the Fourier transform and has many applications 
including the estimation of spectra, filtering, interpolation, and corre­
lation. The applications of computing z-transforms off the unit circle 
are fewer, but one is presented in this paper, namely the enhancement of 
spectral resonances in systems for which one has some foreknowledge 
of the locations of poles and zeros. 

Just as we can only compute equation (2) for a finite set of samples, 
so we can only compute equation (2) at a finite number of points, 
say Zk: 

N-l 

X k = X(Zk) = L: xnz;;n. (4) 
n-O 

The special case which has received the most attention is the set of 
points equally spaced around the unit circle, 

.._,.0..---­
---

k = 0,1, ... ,N - 1 

z-PLANE 

(5) 

s-PLANE 

Fig. 1-The correspondence of a z-plane contour to an 8-plane contour through 
the relation z = e,T. 
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for which 

N-l (2) 
X k = f.; Xn exp - j .; nk , k = 0,1, ... ,N - 1. (6) 

Equation (6) is called the discrete Fourier transform. The reader may 
easily verify that, in equation (5), other values of k merely repeat 
the same N values of Zk, which are the Nth roots of unity. The discrete 
Fourier transform has assumed considerable importance, partly be­
cause of its nice properties but mainly because since 1965 it has be­
come widely known that the computation of equation (6) can be 
achieved, not in the N2 complex multiplications and additions called 
for by direct application of equation (6), but in something of the 
order of N log2 N· operations if N is a power of two, or N ~ mi opera-

i 

tions if the integers mi are the prime factors of N. Any algorithm 
which accomplishes this is called a fast Fourier transform. Much of 
the importance of the fast Fourier transform is that the discrete 
Fourier transform may be used as a stepping stone to computing 
lagged products such as convolutions, autocorrelations, and cross cor­
relations more rapidly thanbefore.3,4 The discrete Fourier transform 
has some limitations which can be eliminated using the chirp z-trans­
form algorithm which we describe. We also investigate the computa­
tion of the z-transform on a more general contour, of the form 

k = 0, 1, ... , M - 1 (7a) 

where M is an arbitrary integer and both A and Ware arbitrary 
complex numbers of the form 

(7b) 

and 

(7 c) 

(See Fig. 2.) The case A = 1, M = N, and W = exp (-j2'Tr/N) corre­
sponds to the discrete Fourier transform. The general z-plane contour 
begins with the point z = A and, depending on the value of W, spirals 
in or out with respect to the origin. If Wo = 1, the contour is an arc of a 
circle. The angular spacing of the samples is 27r'Po . The equivalent 
s-plane contour begins with the point 

(8) 
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Fig. 2 - An illustration of the independent parameters of the chirp z-transform 
algorithm. The upper figure shows how the z-transform is evaluated on a spiral 
contour starting at the point z = A. The lower figure shows the corresponding 
straight line contour and independent parameters in the. s-plane. 

and the general point on the s-plane contour is 

1 ~ 
Sk = So + k(f1(j + j f1w) = T (In A - k In W), 

k = 0, 1, ... ,1.11 - 1. (9) 

Since A and Ware arbitrary complex numbers we see that the points 
Sk lie on an arbitrary straight line segment of arbitrary length and 
sampling density. Clearly the contour indicated in equation (7a) is 
not the most general contour, but it is considerably more general 
than that for which the discrete Fourier transform applies. In Fig. 2, 
an example of this more general contour is shown in both the z-plane 
and the s-plane. 

To compute the z-transform along this more general contour would 
seem to require NM multiplications and additions since the special 
symmetries of exp (j27rkjN) which are exploited in the derivation of 
the fast Fourier transform are absent in the more general case. How­
ever, we shall see that by using the sequence Wn

'/
2 in various roles 

we can apply the fast Fourier transform to the computation of the 
z-transform along the contour of equation (7a). Since for Wo = 1, the 
sequence Wn

'/
2 is a complex sinusoid of linearly increasing frequency, 

and since a similar waveform used in some radar systems has the 
picturesque name "chirp", we call the algorithm we are about to present 
the chirp z-transform. Since this transform permits computing the 
.$-transform on a more general contour than the fast Fourier transform 
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permits, it is more flexible than the fast Fourier transform, although it 
is also considerably slower. The additional freedoms offered by the 
chirp z-transform include: 

(i) the number of time samples does not have to equal the number 
of samples of the z-transform. 

(ii) Neither M nor N need be a composite integer. 
(iii) The angular spacing of the Zk is arbitrary. 
(iv) The contour need not be a circle but can spiral in or out with 

respect to the origin. In addition, the point Zo is arbitrary, but this is 
also the case with the fast Fourier transform if the samples Xn are multi­
plied by z~n before transforming. 

II. DERIVATION OF THE CHIRP Z-TRANSFORM 

Along the contour of equation (7a), equation (4) becomes 
N-l 

X = ~ x A-nwnk 
k L....t n , k = 0,1, ... ,M - 1 (10) 

n~O 

which, at first appearance, seems to require Nllf complex multiplica­
tions and additions, as we have already observed. But, let us use 
Bluestein's ingenious substitution5 

nk = n
2 + e - (k - n) 2 

2 
(11) 

for the exponent of TV in equation (10). This produces an apparently 
more unwieldly expression 

k = 0, 1, ... ,M - 1 (12) 

but in fact equation (12) can be thought of as a three step process 
consisting of: (i) forming a new sequence Yn by weighting the Xn ac­
cording to the equation 

Yn = XnA -nwn'/2
, n = 0, 1, ... , N - 1, (13) 

(ii) convolving Yn with the sequence Vn defined as 

to give a sequence gk 
N-l 

gk = L YnVk-n , 
n-O 

Vn = W-nO
/

2 (14) 

k = 0, 1, ... ,1vl - 1, (15) 
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and (iii) multiplying gk by W k
'/

2 to give X k 

k = 0, 1, ... , M - 1. (16) 

The three step process is illustrated in Fig. 3. Steps i and iii require 
Nand M mUltiplications respectively; step ii is convolution which may 
be computed by the high speed technique disclosed by Stockham, based 
on the use of the fast Fourier transform.3 Step ii is the major part of 
the computational effort and requires a time roughly proportional to 
(N + M) log (N + M) . 

Bluestein used the substitution of equation (11) to convert a dis­
crete Fourier transform to a convolution as in Fig. 3. The linear sys­
tem to which the convolution is equivalent can be called a chirp filter 
which is, in fact, also sometimes used to resolve a spectrum. Blue­
stein showed that for N a perfect square, the chirp filter could be 
synthesized recursively with NIh multipliers and the computation of a 
discrete Fourier transform could then be proportional to N3/2 (see 
Ref. 5). 

The flexibility and speed of the chirp z-transform algorithm are 
related to the flexibility and speed of the method of high-speed con­
volution using the fast Fourier transform. Recall that the product of 
the discrete Fourier transforms of two sequences is the discrete Fourier 
transform of the circular convolution of the two sequences; therefore, 
a circular convolution is computable as two discrete Fourier trans­
forms, the multiplication of two arrays of complex numbers, and an 
inverse discrete Fourier transform, which can also be computed by 
the fast Fourier transform. Ordinary convolutions can be computed 
as circular convolutions by appending zeroes to the end of one or 
both sequences so that the correct numerical answers for the ordinary 
convolution can result from a circular convolution. 

We now summarize the details of the chirp z-transform algorithm 
on the assumption that an already existing fast Fourier transform 

II HIGH SPEED 9 X 
_X_n _-.{ X r--.....;;;"_n-+( CON VOLUTION I--~k -+( X \--__ k 

Yn@W-n2/ 2 n=o,I, ... ,N -I k = 0, 1,2, ... M-1 

Fig. 3 - An illustration of the steps involved in computing values of the 
z-transform using the chirp z-transform algorithm. 
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program (or special purpose machine) is available to compute discrete 
and inverse discrete Fourier transforms. 

We begin with a waveform in the form of N samples Xn and we 
seek M samples of Xl.; where A and W have also been chosen: 

(i) We choose L, the smallest integer greater than or equal to N + 
M - 1 which is also compatible with our high speed fast Fourier 
transform program. For most users this will mean L is a power of two. 
Notice that while many fast Fourier transform programs will work 
for arbitrary L, they are not equally efficient for all L. At the very 
least, L should be highly composite. 

(ii) We form an L point sequence Yn from Xn by the equation 

n = 0,1,2, ... ,N - 1 
(17) 

n = N, N + 1, ... ,L - 1 

(iii) We compute the L point discrete Fourier transform of Yn by 
the fast Fourier transform, calling it Yr, r = 0, 1, ... , L - 1. 

(iv) We define an L point sequence Vn by the relation 

other n, if any 

J
W- n'/2 

w-(L-n)'/2 

1arbitrary 

O~n~M-l 

L - N + 1 ~ n < L. (18) 

If L is exactly equal to M + N - 1, the region in which Vn is arbitrary 
will not exist. If the region does exist an obvious possibility is to in­
crease M, the desired number of points of the z-transform we com­
pute, until the region does not exist. 

Notice that Vn could be cut into two with a cut between n = M - 1 
and n=L-N +1; if the two pieces were abutted differently, the result­
ing sequence would be a slice out of the indefinite length sequence 
W-n

·/
2

• This is illustrated in Fig. 4. The sequence Vn is defined the way 
it is in order to force the circular convolution to give us the desired 
numerical results of an ordinary convolution. 

(v) We compute the discrete Fourier transform of Vn and call it Vr , 

r = 0, 1, ... , L - 1. 
(vi) We multiply Vr and Y r point by point, giving Gr: 

r = 0, 1, ... , L - 1. 

( vii) We compute the L point inverse discrete Fourier transform 
gk, of Gr. 



(a) 

N-I n 

5mn (b) 

N-I n 

famn:nmm (c) 

L-I r 

n 

~ ARBITRARY -ill111 (e) 

M-l L-N+l L-l n 

(f) 

L-l r 

~ (9) 

L-l r 

~
k 

-----------------
---NOT USED----~ 

(h) 

M-1 L-I k 

(L) 

M-I k 

Fig. 4 - Schematic representation of the various sequences involved in the 
chirp z-transform algorithm: (a) input sequence Xn with N values. (b) weighted 
input sequence Yn = A -nWn2 12xn . (c) discrete Fourier transform of Yn. (d) values of 
the indefinite sequence W-n2 /2. (e) sequence Vn formed appropriately from segments 
of W-n 2 /2. (f) discrete Fourier transform of vn • (g) product Gr = Yr· Vr . (h) inverse 
discrete~Fourier transform of Gr. (i) desired M values of the z-transform. 
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(viii) We multiply gk by Wk'/2 to give us the desired X k : 

k = 0, 1, 2, ... , M - 1. 

The gk for k ~ M are discarded. 

Figure 4 represents typical waveforms (magnitudes shown, phase 
omitted) involved in each step of the process. 

III. FINE POINTS OF THE COMPUTATION 

3.1 Operation Count and Timing Considerations 
An operation count can be made, roughly, from the eight steps just 

presented: 
(i) We assume that step i, that is, choosing L, is a negligible opera­

tion. 

(ii) Forming Yn from Xn requires N complex multiplications, not 
counting the generation of the constants A -nwn'/2

• The constants may 
be presto red, computed as needed, or generated recursively as needed. 
The recursive computation would require two complex multiplications 
per point. 

(iii) An L point discrete Fourier transform requires a time kFFTL 
log2L for L a power of two, and a very simple fast Fourier transform 
program. More complicated (but faster) programs have more com­
plicated computing time formulas. 

(iv), (v) The value of Vn is computed for either M or N points, which­
ever is greater. The symmetry in W-n

'/
2 permits the other values of Vn 

to be obtained without computation. Again, Vn can be computed re­
cursively. The fast Fourier transform takes the same time as that in 
step iii. If the same contour is used for many sets of data, Vr need only 
be computed once, and stored. 

(vi) This step requires L complex multiplications. 
(vii) This is another fast Fourier transform and requires the same 

time as step iii. 
(viii) This step requires M complex multiplications. 
As the number of samples of Xn or X k grows large, the computation 

time for the chirp z-transform grows asymptotically as something 
proportional to L log2L. This is the same sort of asymptotic depend­
ence of the fast Fourier transform, but the constant of proportionality 
is bigger for the chirp z-transform because two or three fast Fourier 
transforms are required instead of one, and because L is greater than 
N or M. Still, the chirp z-transform is faster than the direct com-
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putation of equation (10) even for relatively modest values of M 
and N of the order of 50. 

3.2 Reduction in Storage 

The chirp z-transform can be put into a more useful form for com­
putation by redefining the substitution of equation (11) to read 

nle = (n - N o)2 + le
2 

- (Ie - n + N o)2 + 2Nok. 
2 

Equation (12) can now be rewritten as 
N-l 

X
k 

= Wk'/2WNok L xnA -nrv(n-No)·/2w-(k-n+No)·/2. 

n=O 

The form of the new equation is similar to equation (12) in that the 
input data Xn are preweighted by a complex sequence (A -nw(n-No) '/2), 
convolved with a second sequence (w-(n-No) 2/2), and postweighted by a 
third sequence (Wk'/2WNok) to compute the output sequence X k • 

However, there are differences in the detailed procedures for realizing 
the chirp z-transform. The input data Xn can be thought of as having 
been shifted by No samples to the left. For example, Xo is weighted by 
W

N
02/2 instead of Woo The region over which W-

n
'/

2 must be formed, in 
order to obtain correct results from the convolution, is 

-N + 1 + No ~ n ~ !v! - 1 + No . 

By choosing No = (N - M)/2 it can be seen that the limits over which 
W- n

'/
2 is evaluated are symmetric; that is, W-n

'/
2 is a symmetric func­

tion in both its real and imaginary parts. (Therefore, the transform of 
W- n

'/
2 is also symmetric in both its real and imaginary parts.) It can 

be shown that by using this special value of No only (L/2 + 1) points 
of W-

n2
/

2 need be calculated and stored, and these (L/2 + 1) complex 
points can be transformed using an L/2 point transform*. Hence the 
total storage required for the transform of W- n

'/
2 is L + 2 locations. 

The only other modifications to the detailed procedures for evaluating 
the chirp z-transform presented in Section II are: 

(i) following the L point inverse discrete Fourier transform of step 
vii, the data of array gk must be rotated to the left by No locations, 

(ii) the weighting factor of the gk is W
k
'/

2
W

N
o
k rather than W

k
'/

2
• 

* The technique for transforming two symmetric L point sequences using one 
L/2 point fast fourier transform was demonstrated by J. Cooley at the fast 
Fourier transform workshop, Arden House, Harriman, New York, October 1968. 
The appendix summarizes this technique. 
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The additional factor WNok represents a data shift of No samples to 
the right, thus compensating for the initial shift and keeping the 
effective positions of the data invariant to the value of No used. 

N ow we can estimate the storage required to perform the chirp z­
transform. Assuming that the entire process is to take place in core, 
storage is required for Vr which takes L + 2 locations, for Yn , which 
takes 2L locations, and perhaps for some other quantities which we wish 
to save, such as the input or values of W n2

/
2 or A -nw

n2
/

2
• 

3.3 Additional Considerations 

Since the chirp z-transform permits jM ~ N, it is possible that occa­
sions will arise where 111 » N or N » M. In these cases, if the smaller 
number is small enough, the direct method of equation (10) is called 
for. However, if even the smaller number is large it may be appropriate 
to use the methods of sectioning described by Stockham.3 Either the 
lap-save or lap-add methods may be used. Sectioning may also be used 
when problems, too big to be handled in core memory, arise. We have not 
actually encountered any of these problems and have not programmed 
the chirp z-transform with provision for sectioning. 

Since the contour for the chirp z-transform is a straight line seg­
ment in the s-plane, it is apparent that repeated application of the 
chirp z-transform can compute the z-transform along a contour which 
is piecewise spiral in the z-plane or piecewise linear in the s-plane. 

Let us briefly consider the chirp z-transform algorithm for the case 
of Zk all on the unit circle. This means that the z-transform is like a 
Fourier transform. Unlike the discrete Fourier transform, which by 
definition gives N points of transform for N points of data, the chirp 
z-transform does not require M = N. Furthermore the Zk need not 
stretch over the entire unit circle but can be equally spaced along an 
arc. Let us assume, however, that we are really interested in comput­
ing the N point discrete Fourier transform of N data points. Still the 
chirp z-transform permits us to choose any value .of N, highly com­
posite, somewhat composite, or even prime, without strongly affecting 
the computation time. An important application of the chirp z-trans­
form may be computing discrete Fourier transforms when N is not a 
power of two and when the program or special purpose device avail­
able for computing discrete Fourier transforms by fast Fourier trans­
form is limited to when N is a power of two. 

There is also no reason why the chirp z-transform cannot be ex­
tended to the case of transforms in two or more dimensions with simi­
lar considerations. The two dimensional discrete Fourier transform 
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becomes a two dimensional convolution which can be computed by 
fast Fourier transform techniques. 

Caution: For the ordinary fast Fourier transform the starting point 
of the contour is still arbitrary; merely mUltiply the waveform Xn by 
A-n before using the fast Fourier transform and the first point on the 
contour is effectively moved from z = 1 to z = A. However, the con­
tour is still restricted to a circle concentric with the origin. The angular 
spacing of Zk for the fast Fourier transform can also be controlled to 
some extent by appending zeros to the end of Xn before computing the 
discrete Fourier transform (to decrease the angular spacing of the 
Zk) or by choosing only P of the N points Xn and adding together all 
the Xn for which the n are congruent modulo P; that is, wrapping the 
waveform around a cylinder and adding together the pieces which 
overlap (to increase the angular spacing). 

IV. APPLICATIONS OF THE ALGORITHM 

Because of its flexibility, the chirp z-transform algorithm discussed 
in the Section III has many potential applications. 

4.1 Enhancement of Poles 

One advantage of the chirp z-transform algorithm over the fast 
Fourier transform is its ability to evaluate the z-transform at points 
both inside and outside the unit circle. This is important in the investi­
gation of systems whose transfer functions can be represented as ratios 
of polynomials in z; that is, in finding poles and zeros of a linear sys­
tem. By evaluating the transform off the unit circle, one can make the 
contour pass closer to the poles and zeros of the system, thus effectively 
reducing the bandwidths and sharpening the transfer function. 

For example, a five-pole system was simulated at a 10 kHz sam­
pling frequency. The poles were located at center frequencies of 270, 
2290, 3010, 3500 and 4500 Hz with bandwidths of 30, 50, 60, 87 and 
140 Hz, respectively. The z-plane pole positions are shown in Fig. 5. 
(Those familiar with speech will recognize these numbers as resonance 
positions appropriate for the vowel i in the word beet.) The input to 
the system was a periodic impulse train of period 100 samples; that is, 
100 pulses per second. Impulse invariant techniques were used to 
simulate the system.6 The z-transform of one period of steady state 
data (100 samples) was evaluated on two spirals outside the unit 
circle, one on the unit circle, and two spirals inside the unit circle. 
Figure 6 shows the five contours as they would appear in the s-plane 
and the s-plane pole positions. The contours are seen to be equi-
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z- PLANE 
x 

x 

Fig. 5 - Representation of the z-plane locations of the poles of the linear sys­
tem simulated in the text. 

angularly spaced. The five sets of magnitude curves are shown in Fig. 
7. The transform was evaluated at 50 equally spaced points from 0 
to 4900 Hz, corresponding to cpo = - 1/100. The sharpening of the 
magnitude response in the region of the poles is quite pronounced. 
Figure 6 indicates that contour 5 should be near optimum since it 
intersects three of the poles. 

This example is a somewhat idealized case in that spectral samples 
were taken every 100 Hz; that is, at the harmonics of the funda­
mental frequency. Figure 8 shows the case for spectral data taken 
every 25 Hz on contour 5 of Fig. 6, along with the case where the 
spectral resolution is the same as shown in Fig. 7. This figure places 
in evidence the true nature of the z-transform of a finite number of 
samples. It is clear from equation (2) that X(z) has no poles any­
where in the z-plane except at z = O. There are instead N -1 zeros 
which manifest themselves in the ripples seen in the upper curve of 
Fig. 8. In many cases the poles of the original system which generated 
the samples are still in evidence because the zeros tend to be arrayed 
at approximately equal angular increments except at the locations of 
the original poles. Hence a pole usually manifests itself by an absence 
of zeros in the vicinity of that pole in the z-plane. Zeros of transmis­
sion are often masked by these effects when only a finite number of 
samples are transformed. Examples of this effect are given after equa­
tion (23). 

It is of interest to examine the ability of the chirp z-transform 
algorithm to determine the bandwidth of a pole as well as its center 
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frequency. To investigate this point, synthetic samples were generated 
with the bandwidth of the lowest pole (B 1 ) variable from 10 to 320 
Hz by factors of 2; all other bandwidths and center frequencies were 
held at values used in the previous example. Again a fixed 100 pulse 
per second source excited each of the systems. Figure 9 illustrates the 
six sets of poles and three contours used in the investigation. Contour 
3 extends into the right half-plane (spiral outside the unit circle) and 
is only close to the lowest pole. Contour 2 corresponds to the unit circle 
in the z-plane (that is, the discrete Fourier transform). Contour 1 is 
an appropriate left-half plane contour (spiral inside the unit circle) 
used for investigating this system. The resulting set of 18 magnitude 
curves (six different sets of poles and three contours) are shown in 
Fig. 10. The rows of Fig. 10 show magnitude curves with a fixed band­
width and variable contour, whereas the columns show curves on the 
same contour with variable bandwidths. There are 801 points plotted 
in each curve in the range 0 to 5,000 Hz. 

Looking down any column it is seen that as Bl increases, the level 
of the first resonance decreases steadily. The variation in fine spectral 
detail resulting from the distribution of zeros in the neighborhood of 
the poles of the original system is seen clearly in column 1. For ex-
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Fig. 6 - The s-plane locations of the poles of Fig. 5 and five contours for 
evaluation of the z-transform. 
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Fig. 8 - A comparison of high resolution and low resolution evaluations of 
the z-transform. The spacing of points is 25 Hz in the upper curve and 100 Hz 
in the lower curve. 
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Fig. 9 - The pole locations and contours used to investigate the possibility of 
bandwidth determination using the chirp z-transform. 

ample, the fifth resonance at 4,500 Hz is difficult to find in the upper 
plots and almost missing in the lower plots, because of the presence of 
a zero at the pole position. Furthermore, the frequency at which the 
magnitude is minimum, that is, the closest zero to contour 1 shifts 
from 2,500 to 2,700 to 800 to 1,100 Hz as bandwidth increases. 

The plots in columns 2 and 3 show little or no variation from about 
2,000 to 5,000 Hz where the appropriate contours are generally far 
away from the zeros of the distributions. The resonance at 4,500 Hz 
is always easy to locate on these plots, thus indicating the desirability 
of both detailed close-up examination of the transform (as on con­
tour 1) and less detailed, further away looks at the magnitude curve 
(as on contours 2 and 3). The magnitude curves in the regions 0 to 
2,000 Hz are still fairly sensitive to the exact zero distribution for 
contour 2, and slightly sensitive for contour 3. It would appear from 
Fig. 10 that there are cases when bandwidth can be determined either 
from the width or the magnitude of the resonance. Further investiga­
tion is necessary before quantitative techniques for determining band­
widths are available. 

The choice of the optimum contours is highly dependent on the 
locations of the poles of the original system. In general there is no 
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single contour on which all the poles are located since these contours 
are essentially lines of constant Q = (center frequency) / (bandwidth) . 
Hence the choice of contour is highly dependent on which of the sys­
tem poles is of most interest in the particular problem. However, some 
interesting observations can be made from studying magnitude curves 
for systems whose poles are constant Q poles. Such a system was 
simulated by keeping the pole center frequencies at the values used 
previously and setting the Q of each of the poles to 20. A 100 pulse 
per second impulse train was again used to excite the system and one 
period of steady state data was analyzed along contours 1 to 7 shown 
in Fig. 11. The pole positions of the system are shown in this figure 
and are seen to coincide with contour 6 exactly. The magnitude curves 
for these seven contours are shown in Fig. 12. These are high resolution 
spectra containing 801 points from 0 to 5,000 Hz. Notice that both 
magnitude curves 5 and 6 accentuate the poles equally except in the 
region of the fifth pole where curve 5 appears slightly better than 
curve 6. The fact that this occurs is not surprising in view of the fact 
that the pole is really manifested by an absence of a zero in an array 
of zeros of approximately the same magnitude and angular spacing. 

Another anomaly which can be attributed to the way in which the 
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Fig. 11- The s-plane locations of constant Q poles and contours on which the 
z-transform was evaluated. 
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Fig. 12 - Magnitude curves for contours of Fig. 11 (constant Q poles). 

zeros are distributed is evidenced by comparing curves 5 and 7. Based 
on the relative positions of the two contours with respect to the poles 
we would expect the magnitude curves for these contours to be identi­
cal, but the comparison shows that this is not the case in actual com­
putation. This is the result of the fact that the zero distribution is not 
exactly symmetric so that contours which pass very close to the zeros 
may look considerably different from one another. 

A final point of interest in Fig. 12 is the linear component in the 
last three curves which dominates at high frequencies. This effect is 
also shown in Fig. 14. Figure 13 shows the five contours used in ob-
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taining the log magnitude plots in Fig. 14. It is clear that when the 
contour passes inside the original pole locations (and therefore inside 
the array of zeros in the z-plane), the log magnitude function exhibits 
a definite linear component. This effect is easily explained when X (z) 
is written in the form 

N-I 

X(z) DZ-(N-I) II (1 - a;lz). (19) 
r=l 

where the a/s are the zeros of X(z). If we evaluate equation (19) at 
z = W;k exp (-j27r<p)c) we obtain for the magnitude 

N-I 

1 X k 1 = 1 D 1 W;(N-I) II 1[1 - a;IW;k exp (-j27r<Pok)]I. (20) 
r-l 

For plotting in dB we define 

20 logio 1 X k 1 = 20 loglo 1 D 1 + 20(N - l)k loglO Wo 
N-l 

+ L 20 loglo 1[1 - a;IW;k exp (-j27r<Pok)] I. (21) 
r-l 

In the examples we have shown, almost all of the zeros ar have mag­
nitudes slightly less than 1. Thus for contours inside these zeros (cor-

N 
I 

5ooo.------------------------------. 

4000 

Z 3000 

>­
u 
z 
UJ 
::::> 

S 2000 
0:: 
lL 

1000 LEFT HALF-PLANE 

-~0~0----~--~----~-----20~0----~--~0 

FREQUENCY IN Hz 

Fig. 13 - Contours and pole locations used to study the effect of passing in­
side the pole locations. 
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Fig. 14 - Magnitude curves for the contours of Fig. 13 showing a large linear 
component resulting from the N - 1 poles of X(z) at z = o. 

responding to contours 2 through 5 in Fig. 13), Wo is greater than 1. 
Thus each term in the sum on the right side of equation (21) tends to 
decrease as k gets larger. In contrast, the second term on the right 
side of equation (21) represents a linear component with slope equal 
to 20 (N-l) logloWo • 

In Fig. 14, the mth curve corresponds to a value of Wo = e47Tm/lo,ooO, 
m = 1, 2, 3, 4, 5. The value of cpo is - 1/100, N is 100, and the sam­
pling rate is 10 kHz. Thus the frequency going from 0 to 5 kHz cor­
responds to k going from 0 to 50. For example, in the fifth curve Wo = 
e207T/IO,OOO and the slope should be 

20(N - 1) 1 W = 20(99)2071' loglo e = 5 4 
OglO 0 10,000 . . (22) 

Thus the total dB change in going from 0 to 5 kHz should be on the 
order of 50 (5.4) = 270 dB. In Fig. 15a we show this case again. In 
Fig. 15b we show the result of evaluating 

° L: Xn+N_lZ-
n = Z(N-l) x(z) , (23) 

n--(N-l) 
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using the same value of Wo and <po. Notice that this should remove the 
second term in equation (21) leaving the other terms unaffected. This 
observation is substantiated by Fig. 15b since the value at 5 kHz is 
very nearly 270 dB less than in Fig. 15a. Notice also that some of the 
resonances are still in evidence although not as clearly defined because 
the contour is passed relatively far inside the zeros of X (z). 

Another interesting question was investigated using this technique. 
As shown above, when the response of a linear system is truncated by 
repetitively pulsing the system and transforming a finite number of 
samples, the z-transform has only zeros except for poles at z = o. 
However, the poles of the original system function can still be located 
in magnitude response curves by the absence of zeros in the ap­
propriate regions. The question arises about what happens when the 
system function contains zeros. Suppose h (nT) is the impulse response 
of a linear system with both poles and zeros in its z-transform H (z). 
Since H (z) has poles, h (nT) will be an infinite sequence. There is 
clearly no reason to expect that the transform of only N of these 
samples will have zeros at the same location as the zeros of H (z). 
However, the system zeros can be expected to have an effect on the 
distribution of zeros of the truncated z-transform. 

To illustrate this point, the system response used in the above ex­
amples was modified by passing the output waveform through a sys­
tem whose transfer function consisted of a complex conjugate zero 
pair. A periodic 100 pulse per second source was again used to excite 
the system and one period of steady state data was analyzed. The 
system pole-zero pattern and the contours of analysis are shown in 

!~;;~I 
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Fig. 15 - Magnitude curves obtained by evaluation of the z-transform on 
contour 5 of Fig. 13: (a) with the effect of the N - 1 poles at z = 0; (b) with 
the N - 1 poles removed by shifting the sequence Xn by N positions to the 
left. 
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Fig. 16. In one simulation a zero was placed at point A (500 Hz, 12.5 
Hz), and in a second simulation the zero was at point B, (2,500 Hz, 
60 Hz). The analysis was made at 801 points from 0 to 5,000 Hz along 
these contours. The resulting magnitude curves, along with a set of low 
resolution curves where the magnitude was computed every 100 Hz 
from 0 to 5,000 Hz, are shown in Figs. 17 and 18. The data of Fig. 17 
are for the case where the transmission zero was at 500 Hz whereas 
for Fig. 18 the zero was at 2,500 Hz. 

The high resolution data of Fig. 17 show no strong indication of 
the transmission zero; whereas the transmission poles are still very 
much in evidence. The low resolution data (evaluated at harmonics 
of the source) does indicate the presence of a zero along contour 1, 
but along the other contours the case is not so clear. The most unusual 
observation is that along contour 3, the contour closest to both the 
transmission zero and the poles, there is little or no indication of the 
zero; whereas the poles are still strongly in evidence. Along contour 
4, at the high frequency end, there is noise in the magnitude spectrum. 
The source of this noise is discussed in Section V. 

The indications from Fig. 17 are that a transmission zero can be 
more easily located on contours which are far from the zero than on 

5000~------------------------------~ 

N 
I 

4000 

z 3000 

>­u 
z 
w 
:::> 
S 2000 
0:: 
LL 

1000 
LEFT HALF-PLANE 

o~ __ ~ ____ ~ ____ ~ ____ ~ __ ~ ____ ~ 
-180 -150 -120 -90 -60 -30 0 

FREQUENCY IN Hz 

Fig. 16 - The s-plane locations of poles and zeros (at A and B) and contours 
used in studying the effect of zeroes on the magnitude curves. 
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Fig. 17 - Magnitude curves for a zero at 500 Hz (position A in Fig. 16). 

contours which traverse it. Furthermore it is much easier to locate on 
a low resolution spectrum than on a high resolution spectrum. Hence 
zeros, unlike poles, are not generally easy to locate from spectra. 

The zero of Fig. 17 was at 500 Hz and in a region where the high 
resolution spectra displayed a large amount of ripple from the trunca­
tion zeros of the data. Figure 18 shows similar magnitude curves for 
the zero at 2,500 Hz, a region with much less ripple in the spectrum. 
The magnitude response curves show effects entirely similar to those 
of Fig. 17. The zero is most easily locatable for contour 1, the stand­
ard fast Fourier transform. In contour 3, which again passes through 
the zero, there is no indication of the zero. Also the low resolution data 
tends to show the zero better than the high resolution data. One im­
portant implication of these results is that one could not use these 
techniques to accurately find the position of complex transmission 
zeros. In many cases it would be difficult to differentiate between dips 
in the spectrum between poles and dips caused by complex zeros, thus 
indicating the difficulty of locating even the center frequency of a 
zero. 

The chirp z-transform algorithm has been applied to the spectral 
analysis of speech in order to aid in automatic detection of the time 
varying resonances (poles or formants) of speech. Voiced speech can 
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Fig. 18 - Magnitude curves for a zero at 2,500 Hz (position B in Fig. 16). 

be modelled as the convolution of a source waveform with a vocal 
tract impulse response. The vocal tract impulse response is essentially 
a sum of damped exponentials, each exponential corresponding to a 
mode or pole of the vocal tract transfer function. It is of interest to 
speech researchers to detect these time varying resonances. The chirp 
z-transform algorithm has been applied to individual periods of voiced 
speech with a high degree of success. Figure 19 shows the result of ap­
plying the chirp z-transform algorithm along the two contours shown 
at the upper left of the figure, to a period of voiced speech. The upper 
contour corresponds to the standard fast Fourier transform contour; 
the lower to a suitably chosen spiral contour. The magnitude function 
along the upper contour indicates a single wide peak in the region 
2,000 to 2,500 Hz, whereas the magnitude along the lower contour 
shows two isolated peaks in this region corresponding to the physical 
knowledge that there actually are supposed to be two peaks in this 
region. Variations on the chirp z-transform algorithm for spectral 
analyses of speech have been studied and will be reported on in a 
subsequent paper.7 

4.2 High Resolution, Narrow Band Frequency Analysis 

One very useful application of the chirp z-transform algorithm is the 
ability to efficiently evaluate high resolution, narrow frequency band 
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spectra. Using standard fast Fourier transform techniques, in order to 
achieve a frequency resolution of ~ !::.F, with a sampling frequency of 
the data of liT, requires N ~ 1/(T·!::.F) points. For very small !::.F, 
this implies very large values of N. The crucial issue is that what is 
often required is high resolution for a limited range of frequencies and 
low resolution for the remainder of the spectrum. An example of such a 
circumstance is the design of band-pass or low-pass filters. Usually 
what is desired is a microscopic look at details of the frequency response 
in the pass-band and only a gross look outside the pass-band. 

The chirp z-transform algorithm is extremely well suited for such 
cases since it allows selection of initial frequency and frequency spac­
ing, independent of the number of time samples. Hence high resolu­
tion data over a narrow frequency range can be attained at low cost. 

To illustrate these points, simple rectangular band-pass filters were 
simulated by symmetrically truncating a delayed impulse response. 
The impulse response used was 

h(nT) = a sin [7r(F2 - F1)(n - ! - m)T] 

S-PLANE 

x 
x 

x 
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. cos [7r(F2 + F1)(n - ! - m)T], o ~ n ~ 2m (24) 
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Fig. 19 - Magnitude curves from evaluation of the z-transform of one period 
of natural speech. The contour for the upper plot is the unit circle in the z-plane 
while the contour for the lower curve is a spiral inside the unit circle. 
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where 

2m = number of terms in the truncated impulse response 
1/ T = sampling frequency = 10,000 Hz 
Fl = lower cutoff frequency in Hz 
F2 = upper cutoff frequency in Hz. 

Values for m of 100 and 500 were used with F 1 = 900 Hz and F 2 = 
1,100 Hz. Figure 20 shows plots of equation (24) for these two cases. A 
standard 1,600 point fast Fourier transform was calculated and the 
magnitude response for m = 100 is shown in the upper half of Fig. 21. 
In order to investigate the pass-band and transition region more care­
fully the chirp z-transform algorithm was used to give a 1.25 Hz 
resolution over the band from 500 to 1,500 Hz. The contour used was 
identical to the contour for the fast Fourier transform. The resulting 
magnitude response curve is shown in the lower half of Fig. 21. To 
achieve this high a resolution would have required an 8,000 point 
fast Fourier transform, instead of the 1,000 point transforms actually 
used. (Similar expansions of regions of the phase curve were made for 
this filter but are not shown.) 

Figure 22 shows similar effects for the case m = 500. The applica­
bility of the chirp z-transform algorithm for such frequency expan­
sions is a powerful tool for close examination of small frequency 
bands, as well as for debugging implementations of digital filters. 
For example, one could easily check if a desired filter met its design 
specification of in-band ripple, transition ratio, and so on.S 

One situation where the chirp z-transform algorithm may be quite 
useful is when we are confronted with an extremely long sequence for 
which we desire a fine grained spectrum over a narrow band of fre­
quencies. Suppose we have a sequence of P samples and desire M 
spectral samples where M « P. That is, we wish to evaluate 

P-l 

X k = L xnA -nwnk, k = 0, 1, ... , M - 1. (25) 
n~O 

The sum in equation (25) can be broken up into r sums over N points 
as follows 

k=O,I,···,M-l 

(26) 

where rN ~ P. Each of the r sums in the brackets can be evaluated 
using the chirp z-transform algorithm, requiring storage on the order of 
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Fig. 20 - The impulse responses of simple band-pass filters. 

3(N + M - 1) locations. In addition we require 2M locations in which 
to accumulate the M complex values of the transform. Although 2 
fast Fourier transforms and 2M complex multiplications are required 
for each of the r transforms, it is quite possible that a saving in total 
time may result from this method as opposed to evaluation of a P 
point transform using auxiliary storage such as drum, disk or tape. 
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Fig. 21- Frequency response curves for upper impulse response (200 samples) 
in Fig. 20. Upper curve obtained with 1,600 point fast Fourier transform (resolu­
tion 6.25 Hz). Lower curve obtained with chirp z-transform algorithm (1.25 Hz 
resolution) . 

4.3 Time Interpolation or Sampling Rate Changing 

The flexibility of the chirp z-transform algorithm for obtaining high 
resolution in frequency has been explained and illustrated in Section 
4.2. A similar procedure applies to interpolation between samples of a 
bandlimited time function using samples of the frequency spectrum.9 

In this section, we discuss how the discrete Fourier transform can be 
used to perform interpolation on a set of samples and the advantages 
and disadvantages of using the chirp z-transform algorithm for this. 

4.3.1 Bandlimited Interpolation Using the discrete Fourier transform 

Assume that we have available N samples x(nT), n = 0, 1,2, ... , 
N - 1, of a bandlimited waveform x(t). The sampling interval T is 
assumed less than or equal to the Nyquist interval. The total time in­
terval spanned by these samples is therefore NT seconds. We wish to 
obtain equally spaced samples of x (t) at a sampling interval T' , where 
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T' is less than or equal to the Nyquist interval. These samples are 
denoted by x (mT') , m = 0, 1, ... , N' - 1, where N'T' = NT. (Notice 
that we are assuming N' is an integer. This assumption will be dropped 
later.) 

If all the samples x (nT) are available, the samples x (mT') can be 
obtained from 

x(mT') 
00 sin f (mT' - nT) 
L x(nT) -----

n--oo f (mT' - nT) 
(27) 

Thus the interpolation can be viewed as the result of convolving the 
interpolation function [sin (7rt/T) ]/[ (7r/T) t] with the samples x(nT) 
and then resampling with period T'. It is well known that convolution 
may be done using the discrete Fourier transform, and we will show 
how the res amp ling can also be affected by properly augmenting the 
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Fig. 22 - Frequency response curves for lower impulse response (1,000 sam­
ples) of Fig. 20. Upper curve obtained with 1,600 point fast Fourier transform 
(resolution 6.25 Hz). Lower curve obtained with chirp z-transform algorithm 
(1.25 Hz resolution). 
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transform with zeros. Because the discrete Fourier transform uses only 
a finite number of samples, we shall encounter errors similar (but not 
identical) to using only N terms in equation (27). 

The discrete Fourier transform of the given samples is 

X!(k) = }; x(nT) exp ( - j ~; knT) , 

k = 0, 1, ... ,N - 1. (28) 

(Notice that we have changed notation in this section in order to make 
explicit the number of samples and the sampling period.) We define 

(29) 

where HN(k) is the N point discrete Fourier transform of the inter­
polation function to be convolved with the samples x (nT). [Notice 
that this convolution is equivalent to cyclic convolution of a periodic 
impulse response h(nT) with the samples x(nT).] 

In order to change the sampling to period T', we split X!v(k) about 
k = N /2 and expand (by inserting zeros) or contract (by discarding 
zeros) the transform according to the following equations 

Xf.." (k) = Xf..,(k) (30a) {
o ~ k < N' /2 N' < N 

o ~ k < N /2 N' > N 

=0 k = N'/2 N' < N (30b) 

= !Xf..,(k) k = N/2 N' > N (30 c) 

=0 N/2 < k < N' - N/2 N' > N (30d) 

= !Xf..,(k - N' + N) k = N' - N/2 N' < N (30 e) 

= X/;(lc - N' + N){ N' /2 < k < N' N' < N (30f) 
N'-N/2<k<N' N' > N 

Equations (30b) , (30c) , and (30e) are required only when N' and N 
are even integers and equation (30d) is required only when N' > N. 

The N' point inverse discrete Fourier transform of Xf.." (k) is defined 
to be 

x'(mT') = ~, ~~l Xf..,,(k) exp (j ~;, kmT') , 

m = 0, 1, ... ,N' - 1. (31) 
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For example, if N is even and N' > N, we can show using equations 
(28), (29), and (30) that 

1 N/2 [N-l (2 )] 
x'(mT') = N' k~~/2 HN(k) ~ x(n) exp -j N~ knT 

. exp (j ~;, kmT') , (32) 

where m = 0, 1, ... ,N' - 1, and the terms corresponding to k = ±N /2 
are understood to be multiplied by 1/2 since N is even. By interchanging 
the order of summation and using the fact that N'T' = NT, we obtain 

N N-l 

x'(mT') = N' ~ x(nT)h(mT' - nT) (33) 

where 

1 N/2 [ 2 ] 
h(mT' - nT) = N L HN(k) exp j N7rT k(mT' - nT) . 

k--N/2 
(34) 

Notice that equation (33) has the desired form for interpolation [see 
equation (27)], however the values of x'(mT') are clearly not exactly 
equal to the desired interpolated values x (mT') . This is so because 
only N samples are used and because of the form of h (mT - nT). As 
an example, suppose 

-N/2 < k < N/2 

k = ±N/2 
(35) 

(This is equivalent to splitting XN(k) at k = N /2 and inserting N' -
N zeros between the two halves of the transform). If we evaluate 
equation (34) for this case, we obtain 

sin ~ (mT' - nT) 
h(mT' - nT) = --------

N tan ;T (mT' - nT) 
(36) 

This function is plotted in Fig. 23a where () = (mT' - nT)/T, and 
N = 8. Clearly 

sin ~ (mT' - nT) 
h(mT' - nT) ~ ------¥ (mT' - nT) 

(37) 
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Fig. 23 - An illustration of bandlimited interpolation using the discrete Fourier 
transform: (a) the periodic function which is convolved with the original sam­
ples; (b) a bandlimited time function showing samples with spacing T; (c) How 
the interpolated values r(mT') are formed. 

when 1I"(mT' - nT)/NTis small, that is, in a region where h(mT' - nT) 
is significantly different from zero. Figure 23b shows a segment of a 
waveform x(t) and samples x(nT). In Fig. 23c, we have shown just 
two of the terms in equation (33). This figure places in evidence the 
nature of the interpolation which is performed. The errors are likely 
to be greatest at either end of the segment, since the interpolated values 
at one end depend on the samples at the other end in a way which is 
not at all consistent with equation (27). The error caused by this 
effect will be most significant in the regions 0 ~ mT' < 2T and 
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T(N - 2) ~ mT' ~ TN. The remainder of the values will have es­
sentially the same error associated with using only N terms in equa­
tion (27). 

Notice that equation (36) is not the only interpolation function 
which can be used. Other choices of HN(k) may lead to interpolation 
functions which are in some sense more desirable. For example, Fig. 
24 shows four different choices for HN (k) and their associated inter­
polation functions or impulse responses. (The impulse responses were 
shifted modulo N' as an aid in plotting.) It can be seen from Fig. 24, 
that removing the sharp cutoff in HN(k) greatly shortens the effective 
duration of the impulse response, thus tending to minimize the end 
effects discussed previously. Clearly the approximation to (sin 7rt) /7rt 
interpolation is not as good as equation (36), but in many cases such 
smoothing of the interpolated values may not be objectionable. 

UJ 1.0,-----------.,--------, UJ 1.0,--------y-------, 

g 0.8 F:E~~~E~SCEY @ 0.8 r- F~f~WoWsCJ 
!::: 0.6 0.6r-

~ Q4 ~ Q4r-

~ O.~ L--_-'-_ ____'__----' __ -"--_ __' ~ O.~ r- I I Ii ~ 
o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 

FREQUENCY IN Hz FREQUENCY IN Hz 
800.----------------, 

UJ 600 
:3 400 

~ 200 

IMPULSE 
RESPONSE 

0~---------_v~1 '/V----------~ 
-200L--___ ~~_~~____'_ _ _L _ __' 

o 10 20 30 40 50 60 
TIME IN SAMPLES 

(a) 

UJ 1.0 .-------~~-----, 

g 0.8 F:EES~UOE~CEY 
!::: 0.6 

~ 0.4 

~ O.~~_....I.._ _ ___L..._~_~o.I__-I 
o 1000 2000 3000 4000 5000 

FREQUENCY IN Hz 
800,------------------, 

600 
UJ 
:3 400 
~ 200 

IMPULSE 
RESPONSE 

O~---......... '" 
-200~_~_~_~__' _ __' _ __' 

o 20 30 40 60 
TIME IN SAMPLES 

(c) 

800,--------------, 

UJ 6001-
:3 400r­

~ 200r-

IMPULSE 
RESPONSE 

Or--------w~--------~ 
-200~_~~_~~__'~~·'__'~ _ __'~_~~_~~____' 

o 20 40 60 80 100 120 140 160 
TIME IN SAMPLES 

(b) 

UJ 1.0.----------,-----., 

g 0.8 - F:i~UoENNS~Y 
!::: 0.6-

~ 0.4-

~ O·~~-_ __', __ ~, __ ~ __ ~I~ 
o 1000 2000 3000 4000 5000 

FREQUENCY IN Hz 
800,---------------, 

UJ 600 
:3 400 

~ 200 

IMPULSE 
RESPONSE 

O~----~~~~-----~ 
-2000~__'_--'-__'_~~~~~~~ 

Fig, 24 - A set of four simple frequency responses and corresponding im­
pulse responses which could be used for interpolation. 
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4.3.2 Computational Considerations in Bandlimited Interpolation 
In Section 4.3.1 we discussed a method of bandlimited interpolation 

based on the discrete Fourier transform. The operations involved are 
summarized in Fig. 25. The sequence {XN(k)} may be evaluated using 
the fast Fourier transform. In this case, N will be restricted to a value 
compatible with the available fast Fourier transform routine, for ex­
ample, N would be highly composite. The transform is then multipled 
by HN(k) and expanded or contracted according to equation (30). 
Then we must compute the inverse discrete Fourier transform with N' 
points. This can be done using the fast Fourier transform provided 
that 

(i) N' = NT j'P' is an integer and compatible with the available fast 
Fourier transform routine. 

(ii) Enough high speed storage (a minimum of N' locations) is 
available. 

[Notice that i applies for either N' > N or N' < N while ii will probably 
not be a problem except when N'» N.] 

In many cases it may not be possible to meet one or both of the 
above conditions; then the chirp z-transform algorithm can be very 
useful. The N' point inverse discrete Fourier transform may be com­
puted using Wo = 1 and 'Po = + liN', where N' need not even be an 
integer. Thus we can compute M interpolated values using 

1 N/2 

x'(mT) = -, W mO
/

2 L [X;",(k)Wk
'/

2
]w-<m-k)'/2 (38) 

N k--N/2 

where X;',(k) is determined by equation (30) and 

X;", ( -k) = X;",(N' - k), 

N 

DISCRETE 
--+I FOURIER 
x(nT) TRANSFORM 

n=o,l, ... ,N-l 

k = 1,2, 

N' 

,N/2. (39) 

N' 

X'(mT') 

m=o,l, ... ,N-1 

Fig. 25 - Illustration. of the steps involved in bandlimited interpolation using 
the discrete Fourier transform. 
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Assuming that the transform of W- k2
/

2 is available, equation (38) 
can be evaluated using two L point fast Fourier transforms where L 
is the smallest integer which is greater than N + M - 1 and which is 
compatible with an available fast Fourier transform routine. 

Alternatively we can evaluate 

1 N/2 

Y'(mT') = N' W m2
/

2 ?; [Y1,(k)Wk2
/

2
]w-<m-k)'/2 (40) 

where 

Y1,(k) = {X1,(k) 
2X1,(k) 

It can be shown that 

k = 0 

o < k ~ N/2 

y'(mT') = x'(mT') - jx'(mT') 

where x'(mT') is the inverse discrete Fourier transform of 

X1,(k) = j sgnN' (k) . X:V, (k) 

and 

sgnN' (k) 
J 0 

= 11 
-1 

k = 0, N'/2 

o < k < N'/2. 

N' /2 < k < N' - 1 

(41) 

(42) 

(43) 

(44) 

From equation (41) and (44) it can be shown that x'(mT') is an approxi­
mation to the Hilbert transform of x'(mT). In this case we require at 
least (N /2 + M - 1) point transforms to compute M interpolated 
values. This is at the expense of not being able to do two interpolations 
at once as is possible with equation (38) (obtaining one interpolation 
as a real output and one as an imaginary output); however we do obtain 
an approximation to the Hilbert transform of x' (m T') which may be of 
value in some applications. 

If sufficient core storage is not available to compute an N' point 
fast Fourier transform, we can compute the interpolated values in 
sections and piece these sections together as is commonly done in high 
speed convolution. The chirp z-transform algorithm allows us to com­
pute as many as 2111 interpolated points at a time, where M can be 
chosen so that the fast Fourier transforms can be done using only core 
storage. Probably the most significant advantage, though, is the 
ability to efficiently interpolate to arbitrary sampling intervals. 
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As an example of the ideas discussed in this section, consider the 
waveforms shown in Fig. 26. Figure 26a shows 500 samples of a speech 
waveform where the sampling rate was 20 kHz. (T = 5 X 10-5 sec­
ond). The samples are connected by straight lines in the figure. Figure 
26b shows the 500 samples of the waveform in (a) after filtering with 
a nonrecursive filter of the type shown in Fig. 24, whose gain was zero 
after 3.2 kHz. Figure 26c shows 160 samples of the result of a change 
of sampling rate from 20 kHz to 6.4 kHz. The value of N was 700 and 
N' = (6,400) (700) /20,000 = 224. It is difficult to judge quantitatively 
from such a figure the accuracy of the interpolation. It does seem safe 
to conclude that the error is not extreme. Our experience has been that 
there is significant error only in the first and last few samples of the 
N' output samples. Using the chirp z-transform algorithm, these "bad" 
samples need not ever be computed, for example, only M "good" values 
need be computed. 

o 5 10 15 25 
TIME IN MILLISECONDS 

Fig. 26 - An example of interpolation for the purpose of changing the sampling 
rate: (a) 500 samples of speech at 20 kHz sampling rate; (b) 500 samples of (a) 
after low pass filtering to 3.2 kHz; (c) 160 samples of (a) after changing the 
sampling rate to 6.4 kHz using the chirp z-transform. (In all cases the samples 
are connected by straight lines). 
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If one wishes to low-pass filter a waveform and then go to a lower 
sampling rate, the filtering and interpolation can be combined if we 
use a nonrecursive filter. That is, the discrete Fourier transform of the 
filter impulse response can be simply combined with HN (k). 

V. LIMITATIONS 

Several times we have pointed out shortcomings of the chirp z-trans­
form algorithm. One limitation in using it to evaluate the z-transform 
off the unit circle stems from the fact that we may be required to com­
pute w;nO/2 for large n. If Wo differs very much from 1.0, w;nO/2 can 
become very large or very small when n becomes large. (We 
require a large n when either M or N become large, since we 
need to evaluate Wn2

/
2 for n in the range -N < n < M.) For example, if 

Wo = e-
2

'
5

/
10

,OOo ~ 0.999749, and n = 1,000, w;n'/2 = e±125 which 
exceeds the single precision floating point capability of most computers 
by a large amount. Hence the tails of the functions w±n2/2 can be 
greatly in error, thus causing the tails of the convolution (the high fre­
quency terms) to be grossly inaccurate. The low frequency terms of the 
convolution will also be slightly in error, but these errors generally are 
negligible. 

An example of this effect is shown in Fig. 27. The contour for the 
five curves in this figure was held fixed (contour 5 in Fig. 6) and the 
number of frequency points in the range 0 to 5,000 Hz was increased 
in steps of 2 from 50 to 800. Spectral samples are plotted every 100 Hz 
for comparison. (This example was programmed using single-precision 
floating-point arithmetic on a GE 635 computer with a 36 bit word 
length.) It is seen that as the number of output points increases, errors 
in the high frequency region become large and completely mask the 
fifth resonance for the 800 point case. The effects of the inaccuracy in 
W±n2/2 can also be seen at low frequencies. For example, the spectral 
magnitude at 0 Hz goes from about 120 dB to 134 dB as the number of 
points goes from 50 to 800. These small errors generally do not affect the 
gross spectral characteristics as seen in Fig. 27. The resonances are 
easy to locate in all cases until the errors get exceedingly large. One 
can push the maximum point limit higher than 800 (in this case) by 
using double precision arithmetic. 

The limitation of contour distance in or out from the unit circle is 
again the result of computation of w±n'/2. As Wo deviates significantly 
from 1.0, the number of points for which w±n2/2 can be accurately 
computed decreases. It is of importance to stress, however, that for 
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Fig. 27 - A comparison of magnitude plots for varying number of points on the 
same spiral contour. The fifth plot shows the effect of errors in evaluating Wn2

/
2 for 

large n. (Points are plotted every 100 Hz in each curve to aid in comparison.) 

Wo = 1 there is no limitation of this type since w±n'/2 is always of 
magnitude 1. 

The other main limitation of the chirp z-transform algorithm stems 
from the fact that two L point fast Fourier transforms and one L/2 
point fast Fourier transform must be evaluated where L is the smallest 
convenient integer greater than N + M - 1 as previously mentioned. 
We need one fast Fourier transform and 2L storage locations for the 
transform of xnA -nwn'/2; one fast Fourier transform and L+2 storage 
locations for the transform of W- n

'/
2

; and one fast Fourier transform 
for the inverse transform of the product of these two transforms. We 
do not know a way of computing the transform of W- n

'/
2 either re­

cursively or by a specific formula (except in some trivial cases.) Thus 
we must compute this transform and store it in an extra L + 2 storage 
locations. Of course, if many transforms are to be done with the same 
value of L we need not compute the transform of W- n

'/
2 each time. 

We can compute the quantities A -nw
n
'/

2 recursively, as they are 
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needed, to save computation and storage. This is easily seen from the 
fact that 

(45) 

If we define 

(46) 

and 

(47) 

then 

(48) 

and 

(49) 

Setting A = 1 in equations (45) through (49) provides an algorithm 
for the coefficients required for the output sequence. A similar recursion 
formula can be obtained for generating the sequence A -nw(n-No ) '/2. 

The user is cautioned that recursive computation of these coefficients 
may be a major source of numerical error, especially when Wo ~ 1 
or CPo ~ O. 

VI. SUMMARY 

We give a computational algorithm for numerically evaluating the 
z-transform of a sequence of N time samples. This algorithm, the 
chirp z-transform algorithm, enables the evaluation of the z-trans­
form at M equiangularly spaced points on contours which spiral in or 
out (circles being a special case) from an arbitrary starting point in 
the z-plane. In the s-plane the equivalent contour is an arbitrary 
straight line. 

The chirp z-transform algorithm has great flexibility in that neither 
N or M need be composite numbers; the output point spacing is 
arbitrary; the contour is fairly general and N need not be the same as 
NI. The flexibility of the chirp z-transform algorithm comes from being 
able to express the z-transform on the above contours as a convolu­
tion, permitting the use of well-known high speed convolution tech­
niques to evaluate the convolution. 

Applications of the chirp z-transform algorithm include enhance­
ment of poles for use in spectral analysis, high resolution narrowband 
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frequency analysis, and time interpolation of data from one sampling 
rate to any other sampling rate. These applications are explained in 
detail. The chirp z-transform algorithm also permits use of a radix 2 
fast Fourier transform program or device to compute the discrete 
Fourier transform of an arbitrary number of samples. Examples were 
presented illustrating how the chirp z-transform algorithm was used 
in specific cases. It is anticipated that other applications will be found. 
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APPENDIX 

Fast Fourier Transforms for Two Real L Point Sequences 

The purpose of this appendix is to show how the fast Fourier trans­
forms of two real, symmetric L point sequences can be obtained using 
one L/2 point fast Fourier transform. 

Let Xn and Yn be two real, symmetric L point sequences with corre­
sponding discrete Fourier transforms X k and Y k • By definition, 

n = 0,1,2, .•. ,L - 1; 
Yn = YL-n 

it is easily shown that X k and Y k are real, symmetric L point se­
quences, so that 

X k = XL-k 

Y k = Y L - k 

k = 0, 1, 2, ... I L - 1. 

Define a complex, L/2 point sequence Un whose real and imaginary 
parts are 

Re [un] : X2n - Y2n+l ~ Y2n-l} 

1m [un] - Y2n + X2n+l X2n-l 

n = 0, 1, ... ,L/2 - 1. 

The £/2 point discrete Fourier transform of Un is denoted Uk and is 
calculated by the fast Fourier transform. The values of X k and Yk may 
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be computed from Uk using the relations 

__ 1 __ {Re [Uk] - Re [UL / 2- k]} 
4 . 27r k SIlly 

for k = 1, 2, ... ,L/2 - 1. 

The remaining values of X k and Yk are obtained from the relations 

L-l 

Yo 2: Yn 
n=O 

L-l 

X L / 2 2: (- Itxn 
n-O 

L-l 

Y L/2 2: (- ItYn . 
n-l 
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Some Networl(-Theoretic Properties of 
Nonlinear DC Trallsistor Networl(s 

By 1. W. SANDBERG and A. N. WILLSON, JR. 
(Manuscript received September 9, 1968) 

This paper extends, in several directions, some of the results of earlier 
work concerned with the existence and uniqueness of solutions of the de 
equations of nonlinear transistor networks. In particular, here we 
develop techniques which enable us to deal directly with a more complicated 
transistor model. 

I. INTRODUCTION 

Several results are presented in Ref. 1 concerning the equation 

F(x) + Ax = B (1) 
(with F ( .) a "diagonal" nonlinear mapping of real Euclidean n-space 
En into itself, and A a real n X n matrix) which plays a central role 
in the dc analysis of transistor networks. In particular, a necessary 
and sufficient condition on A is given such that the equation possesses 
a unique solution x for each real n-vector B and each strictly mono­
tone increasing F ( .) that maps En onto itself. Several circuit-theoretic 
implications of the results are also described in Ref. 1; for example, 
it is shown that the short-circuit admittance matrix of the linear 
portion of the dc model of an interesting class of switching circuits 
must violate a certain dominance condition. 

In Ref. 1 the word transistor was used to refer to the three-terminal 
device whose dc equivalent circuit is shown in Fig. 1 (a). Although 
this equivalent circuit is frequently used in the design and computer 
analysis of transistor networks it is, from a physical standpoint, some­
what incomplete. A more exact dc model of a physical transistor is 
that of Fig. 1 (b) in which the presence of series resistance in each 
of the transistor's leads has been accounted for. 

In this paper we report on several extensions of the previous results. 
The motivation for much of this work was to enable the model of 
Fig. 1 (b) to be taken into account. In addition, we present here 

1293 
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Fig. 1-DC transistor models. 

further material concerning cases in which (in accordance with stan­
dard assumptions) the nonlinear functions of Fig. 1 (b) do not map 
El onto itself. Finally, we prove a considerably stronger result than 
that of Ref. 1, to the effect that a certain class of networks cannot 
be bistable. 

'Ve now summarize some of the material of Ref. 1 that will be 
needed in the sequel: 

For each positive integer n, we let ffn denote that collection of map­
pings of the real n-dimensional Euclidean space En onto itself defined 
by: F t ffn if and only if there exist, for i = 1, ... , n, strictly monotone 
increasing functions ti mapping EI onto EI such that, t for each x == 
(Xl' ... , Xn)t tEn, F(x) == (f1(XI), ... , tn(xn))t. 

The origin in En will be denoted bye. Throughout this article we 
consider only matrices whose elements are real. If D is a diagonal matrix 
then D > 0 (D ~ 0) means that each element on the main diagonal of D 
is positive (nonnegative). 

The classes of matrices P and Po have been defined by M. Fiedler 
and V. Ptak in Refs. 2 and 3. They prove that these classes can be 
defined by anyone of several equivalent properties. We shall need only 
the following characterization of the classes P and Po : A square matrix 
A is a member of the class P (Po) if and only if all principal minors of A 
are positive (nonnegative). In the appendix it is proved that A t Po 
if and only if det [A + D] ~ 0 for every diagonal matrix D > o. 

t If M is an arbitrary. matrix, then the transpose of M is denoted in this article 
byM'. 
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The following theorem is proved in Ref. 1: 

Theorem 1: If A is an n X n l1wtrix then there exists a unique solution 
of (1) for each F E ;yn and each BEEn if and only if A E Po . 

We say that an n X n matrix A is strongly (weakly) row-sum dominant 
if and only if the elements ai; of A satisfy 

aii > (~) L I aii I, for i = 1, ... , n. 
jr"i 

Similarly, a strongly (weakly) column-sum, d01ninant matrix is one that 
satisfies 

aii>(~)Llajil, for i=l,···,n. 
ir"i 

The square matrix A is said to be d01ninant (strongly d01ninant) if and 
only if A is weakly (strongly) row-sum dominant and symmetric. 

If a square matrix A is strongly column-sum or row-sum dominant 
then A is nonsingular, in fact A E P. 

The following theorem is also proved in Ref. 1: 

Theorem 2: It the square l1wtrix A satisfies a strong column-sum domi­
nance condition and if the square lnatrix B satisfies a weak (strong) column­
sum dominance condition, then A -IB E Po (P). 
An analogous theorem involving row-sum dominant matrices is also 
true, and can be proved with trivial modifications of the proof of 
Theorem 2 given in Ref. 1. 

II. FURTHER RESULTS CONCERNING THE EXISTENCE AND UNIQUENESS OF 

SOLUTIONS 

The proof of Theorem 1 given in Ref. 1 exploits the fact that the 
straight line described by the equation y = -ax + b has exactly one 
intersection with the graph of each strictly monotone increasing function 
f(x) which maps EI onto EI if and only if a ~ o. 

It happens that a useful result that is slightly more general than that 
of Theorem 1 can be proved easily if use is made of a proposition that is 
similar to, but stronger than, the elementary fact mentioned in the 
preceding paragraph. That proposition is stated below. 

Definition: For all a, {3 with - 00 ~ a < (3 ~ 00, let I(a, (3) denote 
the interval I(a, (3) = {x : a < X < {3}. 

The following proposition is quite easily verified: 

Proposition: For - 00 ~ a < {3 ~ 00, the straight line described by the 
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equation y = -ax + b has exactly one intersection with the graph of 
each strictly monotone increasing function f(x) which maps lea, fJ) 
onto El if and only if a ~ o. 
Definition: For each positive integer n and each pair of n-vectors a, {3 
whose components ai , {3i lie in the extended real number system, with 
a < {3 (that is, with - 00 ~ ai < (3. ~ 00 for i = 1, ... ,n) let 
g:n(a, (3; En) denote that collection of mappings of l(al , (3l) X ... X 
lean , (3n) onto En defined by: F t g:n(a, (3; En) if and only if there exist, for 
i = 1, ... , n, strictly monotone increasing functions fi mapping 
(ai' (3,) ontoEl such that for each X == (Xl' ... , Xn)' tl(al' (3l) X ... X 
lean , (3n), 

F(x) == (fl(Xl), ... , fn(xn))'. 

Let the collection of strictly monotone increasing mappings of En onto 
l(al,{31) X ... X l(an ,{3n) be similarly defined, and denoted by 
g:n(En; a, (3). Note that F t g:n(a, (3; En) if and only if F- l exists and 
F- l t g:n(En; a, fJ). Also, in case l(al,{3l) X ... X l(an,{3n) = En, 
then g:n(a, (3; En) = g:n(En; a, fJ) = g:n. 

Using the above proposition it is now easy to prove: 

Theorem 3: For the n-vectors a < {3 whose components lie in the extended 
real number system" if A is an n X n 17wtrix then there exists a unique 
solution of (1) for each F t g:n(a, (3; En) and each B t En if and only if 
A t Po. 

Proof: (if) The proof of this part of the theorem is identical to the 
proof (given in Ref. 1) of the corresponding part of Theorem 1 with 
the exception that appropriate use is made of the above proposition. 
Since the necessary modifications are quite obvious we omit the details. 

(only if) Suppose A ¢ Po . Then there exists a diagonal matrix 
D == diag [d l , ••• , dn ] > 0 such that det [A + D] = O. Let XO be an 
arbitrary point in l(al , (3l) X ... X l(an , (3n) and let yO be an arbitrary 
point in En . Let 

B = yO + Axo. 

Let 0 > 0 be chosen such that 

ai < x~ - 0 < x~ + 0 < (3i , for i = 1, ... , n, 

and choose F == (fl(·), ... , in(·))' in g:n(a, (3; En) such that for 
i = 1, ... , n, and for x~ - 0 < Xi < x~ + 0, 
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Thus, F(xO) = yO and hence, XO is a solution of (1) for this choice of F. 
Since det [A + D] = 0, there exists some n-vector x* ~ e having the 

property that 

Ax* + Dx* = e. 
Thus, for each real number e, 

yO + Dex* + A(xO + ex*) = B. 

In particular, if e ~ 0 is chosen such that I el is sufficiently small, then 
I exT I < 0 for i = 1, ... ,n. Hence, for such e, if x = XO + ex*, F(x) 
yO + Dex* and therefore x ~ XO is also a solution of (1). 0 

An important special case of Corollary 3 of Ref. 1 is: 

Corollary 1: For the n-vectors a < (3 whose components lie in the extended 
real number system, if A is an n X n matrix then there exists a unique 
solution of (1) for each F t ;s.n(En; a, (3) and each B t En if A t P. 

Theorem 3 may be used to prove a sharper (and, from the viewpoint of 
transistor networks, a more useful) result than Corollary 1. We have: 

Theorem 4: For the n-vectors a < (3 whose components lie in the extended 
real number system (in the real number system), if A is an n X n matrix 
then there exists a unique solution of (1) for each F t 'J-n(En; a, (3) and each 
B t En if (and only if) A t Po and det A ~ o. 

Proof: (if) As pointed out in Ref. 1, A t Po and det A ~ 0 imply that 
A -1 t Po . Also, F- 1 exists and F- 1 

t 'J-n(a, (3; En). Now x satisfies (1) 
if and only if y satisfies 

(2) 

where y = F(x). But, according to Theorem 3, there exists a unique y 
which satisfies (2). 

(only if) We assume here that the components of a and (3 are real. 
Suppose A ¢ Po . Then, in a manner similar to that used in the proof of 
the "only if" part of Theorem 3, we can choose a mapping F t 'J-n(En; a, (3) 
and a point B t En, such that the solution of (1) is not unique. 

If, on the other hand, det A = 0, then there exists x* ~ e such that 
A 'x* = e. Assume that (1) has a solution x for each B t En. Then, 
since (x*, Ax) = 0 for all x, we have 

(x*, F(x» = (x*, B), 

for each B t En (and the corresponding x). It is clear, since the com-
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ponents of a and {3 are finite, that there exists some constant llf such 
that 

I(x*, F(x)1 ~ llf 

for all x E En. But B can certainly be chosen such that (x*, B) > llf. 
This contradiction completes the proof of the theorem. 0 

The following theorem provides an alternative method of characteriz­
ing the class of matrices that are in Po and are nonsingular (compare 
with the theorem of the appendix). 

Theorem 5: If A is a real square matrix then A E Po and det A ~ ° 
if and only if det [A + D] ~ ° for every diagonal matrix D ~ 0. 

Proof: (if) It is clear, by the theorem of the appendix, that A E Po , 
since det [A + D] ~ ° for all diagonal D > 0. l\10reover, det A ~ 0, 
by hypothesis. 

(only if) It is shown in Ref. 1 that, for each A E Po and each diagonal 
D ~ 0, A + D E Po. It suffices, therefore, to show that if 
D i = diag [0, ... , 0, d i ,0, ... , 0] with di ~ 0, and A E Po with det A 
> 0, then det [A + D i ] > 0. Letting Ai denote the principal sub­
matrix obtained from A by deleting the ith row and the ith column, 
we have 

det [A + D i ] = det A + di det Ai . 

But det A > ° and di det Ai ~ 0. 0 

III. APPLICATION TO EQUATIONS FOR TRANSISTOR NETWORKS 

In the analysis of a transistor network one could account for the 
presence of series lead resistance, while using the model of Fig. 1 (a) 
to represent the transistor, by including appropriate additional resis­
tors in the rest of the network. Indeed, there is at least one good 
reason for doing this. When treated in this manner, the presence of 
nonzero series resistance in the base, collector, and emitter leads of 
each transistor ensures that the v-parameter matrix exists for the 
circuit to which the transistors are connected-and hence ensures that 
the transistor network can be described by an equation having the 
form of (1). On the other hand, there are also good reasons for rep­
resenting the transistor, for analysis purposes, by the model of Fig. 
1 (b). Using this model it will be shown, for example, that it is often 
possible to determine that there is a unique solution of the equation 
describing a given transistor network regardless of the (nonnegative) 



NONLINEAR DC TRANSISTOR NETWORKS 1299 

values of the transistors' series lead resistances. Since these resis­
tances are usually parasitic and unavoidable in nature it is significant 
that one might be able to show that their introduction in, say, a cer­
tain monostable circuit will not cause the circuit to become bistable. 

Using the model of Fig. 1 (b) it is quite easy to see that the port 
variables for the transistor, when considered as a nonlinear two-port 
network, obey the following relationship 

where 

As in Ref. 1 we assume that 0 < a12 < 1, 0 < a21 < 1, and that both 
of the functions /1 and /2 are strictly monotone increasing mappings 
of El into El. 

Suppose an electrical network is synthesized containing transistors, 
resistors (that is, linear resistors having nonnegative resistance), inde­
pendent voltage and current sources, and nonlinear resistors which are 
described by strictly monotone increasing conductance functions (and 
which shall henceforth be called "diodes"). Suppose the network con­
tains n transistors and d diodes (n + d > 0). For k = 1, ... , n let 
X2k-l , X2k , X2k-l , X2k , Y2k-l , and Y2k denote the voltage and current 
variables VI , V2 , VI , V2 , i l , and i2 , respectively, for the kth transistor. 
For k = 1, ... , d, let X2n+k and Y2n+k denote the voltage across, and the 
current through, the kth diode; also (for k = 1, ... , d) let X2n+k = X2n+k • 

Let these variables be related by Y2n+k = /2n+k(X2n+k)' Then, if x = 
(Xl , •.. , X 2n+d) t, X = (Xl , ... , X2n+d) t, and Y = (Yl , ... , Y2n+d) t, 

we have 

Y = TF(x) , X = X - Ry, (3) 

where T = diag[T1 , T 2 ], with Tl a block diagonal matrix with n 
2 X 2 diagonal blocks of the form 

(k)] 
-a12 , 

1 
(4) 

and T2 the d X d identity matrix. Also, R = diag[R1 , R 2 ], with Rl 
a block diagonal matrix with n 2 X 2 diagonal blocks of the form 
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(5) 

and R2 the d X d null matrix. 
Consider now the (2n + d)-port network of resistors and independent 

sources which is formed from the original network by removing the 
transistors and diodes. If the y-parameter matrix G of this (2n + d)-port 
exists then we have the additional equation relating the vectors:f and y: 

y = -G:f + it (6) 

where u is some vector of constants that is, in general, nonzero since 
sources are present in the (2n + d)-port. 

The vectors x and y can easily be eliminated from (3) and (6), re­
sulting in the equation 

TF(x) + [I + GRr1Gx = u, (7) 

where we have defined the vector u by 

u = [I + GRr1it. 

According to Theorem 6, below, the matrix [I + GR] must be non­
singular. 

In case the matrix R contains all zeros (that is, in case all series 
lead resistors are omitted from the transistors) (7) reduces immedi­
ately to the equation which was studied in Ref. 1. Even when R 
does not contain all zeros, however, the results of Ref. 1 can be ap­
plied directly to (7). By applying Theorem 2 we have: If the matrix 
[I + GR]-l G is dominantt then there is at most one solution of (7). 
If, furthermore, F maps En onto En, or if [I + GR]-lG is strongly 
dominant, then there exists a unique solution of (7). 

Making use of Theorem 4, we also have the stronger result: There 
exists a unique solution of (7) if [I + GR]-lG is dominant and G is 
nonsingular. 

Although it is not, in general, true that the inverse of a strongly 
column-sum (row-sum) dominant matrix is strongly row-sum (col­
umn-sum) dominant, the statement is true when the order of the 
matrix is less than three. This elementary observation turns out to 
be quite useful in the proof of Theorem 6, which yields results that 
focus attention on the properties of G, concerning the existence and 
uniqueness of a solution of (7). 

t For symmetric matrices the properties (i) weak column-sum dominance, and 
(ii) dominance, are identical. Since it is easily verified that for symmetric G and 
R, [l + GR]-lG is also symmetric, we simply specifiy: that [l + GR]-lG be 
dominant. 
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Theorem 6: Let A (B) be the direct sum of n 2 X 2 and d 1 X 1 
strongly column-sum (weakly row-sum) dominant matrices. Let B 
be symmetric and let C be a square matrix of order 2n + d. Then: 

(i) det [1 + CB] ~ 0, provided that C 'is positive semidefinite j 

(ii) A -1[1 + CBr1C £ Po , provided that C is dominant, 
(iii) A -1[1 + CBr1C £ P, provided that C is strongly dominant. 

Proof: (i) Here C is positive semidefinite. Let B! be the symmetric 
nonnegative square root of B, so that 1 + CB = 1 + CB!B!. Since 
(see Appendix A of Ref. 4) det [1 + CBlB!] = det [1 + B!CB!], and 
since 1 + B!CB! is positive definite, we have det [1 + CB] > o. 

(ii) Here C is dominant (which, as is well known, implies that C is 
positive semidefinite and hence, by (i), implies that [1 + CBr1 exists). 
Suppose A-1[1 + CBr1C ¢ Po . Then, by the theorem of the appendix, 
there exists a diagonal matrix D > 0 such that A -1[1 + CBr1C + D 
is singular. But 

A -1[1 + CBr1C + D = A -1[1 + CBr1[C(D-1 A -1 + B) + l]AD, 

which means that C (D-1A-l + B) + 1 must be singular. Since A is a 
direct sum of 1 X 1 and 2 X 2 strongly column-sum dominant ma­
trices, it follows that A-l is a direct sum of 1 X 1 and 2 X 2 strongly 
row-sum dominant matrices. Thus, D-1A-l and hence D-1A-l + B is 
strongly row-sum dominant. Therefore, (D-1A-l + B) is nonsingular, 
and (D-1A-l + B)-l is strongly column-sum dominant. But, 

C(D-1A -1 + B) + 1 = [C + (D-1A -1 + B)-1](D-1A -1 + B) 

in which the right-hand side is nonsingular since C + (D-1A-l + B)-l 
is strongly column-sum dominant, which is a contradiction. 

(iii) Here C is strongly dominant. Since C (I + BC) = (I + CB) C, 
we have det(I + BC) > 0 and 

(1 + CB)-lC = C(l + BC)-l. 

Suppose that there is no constant 0 > 0 such that A-1 C(l + BC)-l -
01 £ Po . Then, for each 0 > 0 there is a diagonal matrix D > 0 such that 
A -1 C(l + BC)-l - 01 + D is singular. But, 

A -lCCI + BC)-l - 01 + D 

= A -l[C - oA(l + BC) + AD(l + BC)](l + BC)-l 

= D{l + BC + D-1A-1[C - oA(l + BC)]}(l + BC)-l 

= {D + [DB + A -1 - 0(C-1 + B)]C}(l + BC)-l, 
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which leads to the conclusion that for each 0 > 0 there is aD> 0 
such that D + [DB + A-I - 0(C-1 + B)]C is singular. We now es­
tablish a contradiction: 

For all x £ En, let II x II = max I Xj I. If x, Y £ En such that II x II = 1 
and j 

[DB + A-1]y = x 

then it is easy to show that 

II y " ~ max __ -=1=--__ 
k Cikk - L I Cikj I 

j,.<k 

in which the aT.:j are the elements of A-1. Thus, the norm of [DB + A-1]-1 
can be bounded from above uniformly in D > O. Therefore, 

D + [DB + A-I - 0(C-1 + B)]C = (DB + A-I) {(DB + A -l)-lD 

+ [I - o(DB + A -1)-1(C-1 + B)]C} 

in which 0 > 0 can be chosen so small that [I - o(DB+A -1)-1(C-1+B)]C 
is strongly column-sum dominant for all D > O. Since (DB + A -l)-lD 
is also column-sum dominant, we have a contradiction. It follows that 
for some 0 > 0, A -l(I + CB)-1C - oI £ Po and hence, by Theorem 1 
of Ref. 1, A -1(I + CB)-1C £ P. 0 

The matrices T, R, and G of (7) satisfy the hypotheses on A, B, and 
C, respectively, of Theorem 6 if it happens that G is dominant (strongly 
dominant for (iii». Thus, we have the result: If the y-parameter matrix 
G is dominant then there is at most one solution of (7). If, furthermore, F 
maps En onto En, or if G is strongly dominant, then there exists a unique 
solution of (7). 

Making use of Theorem 4 and since det C ~ ° implies det [A- 1 

(I + CB) -lC] ~ 0, we also have: There exists a unique solut'ion of (7) if 
G is dominant and nonsingulm'. 

These results show that if the solution of the equation 

TF(x) + Gx = il, (8) 

describing a given transistor network (with the transistors represented 
by the model of Fig. l(a) is shown to (exist and) be unique by showing 
that the y-parameter matrix G is dominant (and det G ~ 0, or that 
F maps En onto En), then any other network obtained from the original 
by adding arbitrary (nonnegative) resistances in series with any of the 
transistor leads will be described by (7) and, furthermore, the solution 
of (7) will also (exist and) be unique. Thus, the addition of series lead 
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resistance does not affect the existence and uniqueness of the solution, 
provided G is dominant. 

We now prove another result concerning the relationship between the 
existence and uniqueness of solutions of the two equations (7) and (8). 
We prove that, roughly speaking, whenever (8) has a unique solution 
for all transistors and diodes then so does (7). l\10re precisely, let us 
define, for a given transistor network, the class of matrices 3: 

Definition: Let (8) describe the given network for some choice of 
transistor parameters aI2 , a21 , for each transistor. Let 3 then denote 
that class of matrices T obtained by considering all possible combina­
tions of values of aI2 , a21 (0 < aI2 < 1,0 < a2I < 1) for each transistor. 

We then have: 

Theorem 7: If (8) has a unique solution for each T £ 3, and each 
F £ 'J-n(En; a, (3) for all a < (3 whose c01nponents lie in the extended real 
number system, then, for each R, so does (7). 

Proof: The hypotheses imply (using Theorem 4) that T-IG £ Po and 
det [T-IG] ~ 0 for each T £ 3. Thus, G- I exists. Letting 

H == [I + GRf1G, 

H- 1 exists and, 

H- 1 = G- 1 + R. 

As pointed out in Ref. 1, since det [T-IG] ~ 0, T-IG £ Po for every 
T £ 3 implies that G- 1 T £ Po for every ']1 £ 3. Hence 

det [G- 1 T + D] > 0, for all T £ 3 and all D > o. 
But then, 

det [G- 1 + DT- 1
] > 0, for all T £ 3 and all D > o. 

Now, due to the special structure of the matrix R (that is, block di­
agonal with dominant blocks that are "compatible" with T- 1

) it is 
clear that, for any such R, any diagonal D > 0, and any T £ 3, there 
exists a diagonal .1 > 0 and some 111 £ 3, such that R + DT- 1 = .1111- 1

• 

Hence, it is clear that 

det [G- 1 + R + DT- 1
] > 0, for all T £ 3 and all D > o. 

It easily follows that H- 1 T £ Po and hence T- 1H £ Po for all T £ 3. 
Applying Theorem 4, we thus have that there exists a unique solution 
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of (7) for each T t :J, and each F t 'In(Enj a, (3) for all a < (3 whose com­
ponents lie in the extended real number system. 0 

It is not difficult to show that there exist transistor networks for 
which [I + G Rr1G is dominant while G is not, and also networks for 
which G is dominant while [I + GRr1G is not. For the first case, pick 
any network for which G is not dominant and det G ~ O. If the values 
of the series lead resistors in each transistor lead are then allowed to 
become large, since 

[I + G Rr1G = [I + R-1G-1r1 R-1, 

and since each element of R-l approaches zero as the lead resistor 
values approach infinity, we see that [I + GR]-lG -7 R-l. But R-l is 
strongly dominant and hence there certainly exist sufficiently large 
values for the lead resistors such that [I + GR]-lG is dominant. The 
network of Fig. 2 is an exampJe of the other case. For this network, 

1 0 -1 0 9 9 0 0 

G= 
0 1 0 -1 

R= 
9 9 0 0 

-1 0 1 0 0 0 9 9 

0 -1 0 1 0 0 9 9 
while 

19 -18 -19 18 

[I + GRrlG = l 
-18 19 18 -19 

37 -19 18 19 -18 

18 -19 -18 19 

IV. A SPECIAL CLASS OF TRANSISTOR NETWORKS 

Transistor networks in which the base terminal of each transistor is 
connected to a common node are considered in Ref. 1 using the model 
of Fig. l(a) to represent the transistor. It is shown there that there is 
at most one pair of base-collector and base-emitter voltages for each 
transistor in such a network-even in the cases in which the network is 
not described by an equation having the form of (1). 

In this' section we show that the class of common-base transistor 
networks is but a subset of a considerably more extensive special class 
of transistor networks for which the same statement is true. We show 
that there is at most one pair of base-collector and base-emitter volt-
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Fig. 2 - A two-transistor network. 
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TRANSISTOR 

NO.2 

1305 

COLLECTOR 

ages for each transistor in any dc network which has the structure shown 
in Fig. 3. The box at the top of Fig. 3 represents, assuming that there 
are n transistors, any (2n + I)-terminal network consisting of inde­
pendent voltage and current sources, resistors (that is, linear resistors 
having nonnegative resistance), and diodes (that is, nonlinear resistors 
which are described by strictly monotone increasing conductance 
functions). Each of the n boxes at the bottom of Fig. 3 represents an 

-e-
~I 

Fig. 3 - A special class of transistor networks. 
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arbitrary 2-terminal network consisting of independent sources, resistors, 
and diodes. Each of the transistors in Fig. 3 is represented by the model 
of Fig. l(b), in which the value of each of the resistors rb , rc , re may 
be any nonnegative number. In this regard, we note here that it suffices 
in what follows to show, for each transistor, the uniqueness of the 
voltages VI and V2 (in Fig. l(b» since, clearly, the voltages i\ and V2 

are then uniquely determined. 
As in Ref. 1 we assume,. temporarily, that no diodes are present in 

the network. This assumption allows each of the n boxes at the bottom 
of Fig. 3 to be replaced by either a current source or else a Thevenin's 
equivalent circuit in which the value of the Thevenin's resistor is not 
infinite. Let us temporarily ignore the possibility that any of these 
boxes is equivalent to a current source. Following the technique pre­
sented in Section IX of Ref. 1, we may then consider the network of 
Fig. 4 instead of that of Fig. 3. In Fig. 4 we have explicitly shown the 
base, emitter, and collector resistors of each transistor, and we consider 
the Thevenin's resistor of each base circuit to be lumped in with the 
corresponding base resistor. The m-vectors v-:~ and i~~ (m 2 2n) and 
the 2n-vectors v' and 1: are related by the four equations: 

-e-

Fig. 4-Network derived from that of Fig. 3. 
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i* = -Gv* + b, 

i* = Qi', 

v' = Q1v* + c, 

i' = TF(v' - e - Ri'), 

1307 

(9) 

(10) 

(11) 

(12) 

in which b, c, and e are vectors whose elements are constants, G is a 
dominant matrix, Q is an m X 2n matrix having the property that 
whenever the 2n X 2n matrix 1\£ is strongly column-sum dominant 
then so is the m X m matrix QlYIQt, T and Rare 2n X 2n block di­
agonal matrices having 2 X 2 diagonal blocks of the form (4) and (5), 
respectively. 

We now show that the vectors v*, i*, v', and i' which satisfy (9) 
through (12) are unique (if they exist). Let {vfl) , ifl) , V~l) , i~l)} and 
{VT2) , iT2) , V~2) , i~2)} denote two sets of vectors, each of which satisfies 
(9) through (12). Subtracting corresponding equations, and observing 
the strictly monotone character of F, we see that there exists a diagonal 
matrix D > 0 such that: 

iTl) - i(2) = -G(vTl) - V(2» , (13) 

iTl) - i(2) = Q(i~l) - i~2»' (14) 

V~l) - V~2) = QI(vTl) - V(2» , (15) 

i~l) - i~2) = T D(V~l) - V~2) - R(i~l) - ib». (16) 

But (15) and (16) imply 

[1 + T DR](i~l) - i~2» = T DQt(vTl) - V(2». 

However, since 

[1 + TDR] = T[T-1 + DR], 

in which T is strongly column-sum dominant (T- 1 is strongly row­
sum dominant), and DR is weakly row-sum dominant, we have 
det [1 + TDR] ~ 0, and hence, 

i~l) - ib = [1 + TDRrlTDQI(v{l) - V(2». (17) 

Substituting this into (14) and then (13), however, yields: 

{Q[1 + TDRr1TDQt + G}(vTl) - V(2» = e. 
Now if Q[1 + TDRr1TDQt + G can be shown to be nonsingular 
then vTl) - VT2) = e and hence, by (13), (15), and (17): iTl) - i(2) = e, 
v~l) - V~2) = e, and i~l) - i~2) = e, which, together, show that the 
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vectors which satisfy (9) through (12) are unique. Since G is dominant 
it suffices to show that [I + TDRr 1 TD (and hence Q[1 + TDRr 1 TDQ t

) 

is strongly column-sum dominant. But 

which is the inverse of the direct sum of 2 X 2 strongly row-sum dom­
inant matrices and is, therefore, strongly column-sum dominant. 

Let us now consider the case in which diodes are present in the box 
at the top of Fig. 3. In this case, arguing as in Section IX of Ref. 1, if 
the set of base-emitter and base-collector voltages for Fig. 3 was not 
unique, we could replace all of the diodes by an appropriate series 
combination of a voltage source and a (nonnegative) resistor and 
thus synthesize a network of the type just considered, for which the 
set of base-emitter and base-collector voltages is not unique. This is 
a contradiction, and hence establishes that the set of base-emitter and 
base-collector voltages for the network of Fig. 3 is unique even when 
diodes are present in the top box. 

A somewhat similar argument may now be used to show the unique­
ness of the voltage across each of the diodes in the box at the top of 
Fig. 3. Assume that there exist two sets of branch voltages and currents, 
8 1 and 8 2 , which satisfy Kirchoff's and Ohm's laws for the network of 
Fig. 3. Since we have just proved the uniqueness of the base-emitter and 
base-collector voltages of each transistor, the elements of 8 1 and 8 2 

which correspond to any such voltage must be identical. Thus, if each 
transistor is replaced by, say, an appropriate pair of voltage sources, 
the sets 8 1 and 8 2 still satisfy Kirchoff's and Ohm's laws for the modified 
network. Let us now choose (arbitrarily) any diode in the network and, 
as in the previous argument, replace all other diodes by a series combi­
nation of a voltage source and a (nonnegative) resistor, thus obtaining 
a new network, containing only one diode, for which the sets 8 1 and 8 2 

still satisfy Kirchoff's and Ohm's laws. Suppose this remaining diode is 
characterized by the equation i = f(v). The (now linear) network to 
which this diode is connected contains only independent sources and 
nonnegative resistors, and hence is characterized by one of the equations: 
-i = gv + 10 , v = Vo , where g ~ 0, 10 , and Vo are constants. Due to 
the strictly monotone increasing character of f~ however, the graph of 
either of the above equations can intersect the graph of f in at most one 
point. Thus, the elements of 8 1 and 8 2 that specify the voltage across 
this diode must be equal. We can therefore conclude that the corre­
sponding elements of 8 1 and 8 2 which specify the voltage across any 
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diode are equal. That is, the diode voltages are unique for all diodes 
in the box at the top of Fig. 3. 

We now consider the case in which some box at the bottom of Fig. 3 
is equivalent to a current source. Let I b denote the value of this current 
source (with reference direction chosen to be out of the base of the 
associated transistor). In this case, using the notation of Fig. l(b), 
the variables VI , i l , V2 , and i2 , for the associated transistor, are con­
strained by the relationships: 

(1 - (X12(X21)fl(VI) - (X12Ib i
1 

= ~--"-~=':""::"":"""':;~-""'=;"'-"-

(1 - (X12) 

. (1 - (X12(X21)f2(V2) - (X21I b 
~2 = . 

(1 - (X21) 
(18) 

Thus, this transistor can be replaced by a pair of diodes (each in series 
with one of the resistors re , rc) whose nonlinear conductance functions 
are specified by (18). We may now consider these diodes, these resis­
tors, and the current source, all to be components of the box at the 
top of Fig. 3. We have thus shown, in summary, that when one (or 
more) of the boxes at the bottom of Fig. 3 is equivalent to a current 
source, the base-emitter and base-collector voltages of each transistor 
are still unique, since the network is then equivalent to a network of 
a type already considered.t 

By use of the same type of argument that was applied to the case 
in which diodes are present in the box at the top of Fig. 3, the above 
results may, finally, be shown to be valid when diodes are present in 
the boxes at the bottom of Fig. 3. 

The above results show the validity of the following statement con­
cerning bistable networks: One cannot synthesize a bistable network 
which consists of resistors, inductors, capacitors, diodes, independent 
voltage and current sources, and an arbitrary number of (Fig. lb) 
transistors, and which has the structure of Fig. 3 when all capacitors 
are open-circuited and all inductors are short-circuited. 

APPENDIX 

In this appendix we give the proof of a theorem which is used here 
and which is implied in Ref. 1 but is not stated explicitly there. 

Theorem: If A is a real square matrix then A E Po if and only if 
det [A + D] ~ 0 for every diagonal matrix D > o. 

t Here, of course, we use the proposition, proved above, that the voltage across 
each diode in the box at the top of Fig. 3 is unique. 
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Proof: (if) Suppose A ¢ Po . If det A < 0 then for sufficiently small 
r > 0, det [rI + A] < o. For sufficiently large r, however, 

det [,I + A] = !"·dct [I + ~ A ] > o. 

Thus, since det [rI + A] is a continuous function of r, there exists 
some value of r > 0 such that det [rI + A] = O. For this value of r 
let D = rIo 

If det A ~ ~O but, for some positive integer k < n, A has a k X k 
principal minor which is negative we may, without loss of generality, 
assume that A is partitioned as 

A = [At A2], 
A3 A4 

where Al is a k X k matrix with det Al < o. This is so because 
det [D + A] is not altered if any two rows and then the correspond­
ing pair of columns are interchanged. Let D (1) = diag [d1 , ••• , dn] 
with d1 = ... = dk = ~, where ~ > 0 is chosen so small that det [~1 + 
Ad < o. Then, with dk + 1 = ... = dn = , > 0, we have 

det [D(1) + A] = det [~I + At A2 J 
A3 rI + A4 

= rn - k .det [<11+ A, A, J 
~ Aa 1+ t A4 

Thus, for, > 0 chosen to be sufficiently large, det[D (1) + A] < o. 
Now, if D(2) = '11, for 'f} > 0, then it is clear that for 'f} chosen suffi­
ciently large, 

det [D'" + A] = ~··det [I + ~ A ] > o. 

Thus, if 

D(€) = €D(l) + (1 - €)D(2), 

it is clear that there exists a value of e, 0 < e < 1, such that 
det [D(e) + A] = o. 

(only if) By Theorem 1 of Ref. 1, since A E Po and D > 0, [D + A] E P. 
Thus, det [D + A] ~ o. 0 
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Measuring Frequency Characteristics 
of Linear Two-Port Network~s 

Automatically 

By JAMES G. EVANS 

(Manuscript received November 2, 1968) 

This paper presents a new automatic technique for complete linear 
characterization of transistors and general two-port devices from standard 
insertion and bridging measurements. This technique includes a calibra­
tion sequence and mathematical transformation to provide parameters inde­
pendent of actual test set impedances, as well as a special hardware design 
which allows for convenient self-measurement of the test set impedances. 
Knowledge of these impedances is used to reduce the measured quantities 
to arbitrary device parameters referenced entirely to a set of calibration 
standards. This independence of the parameters from the measuring set 
impedances allows for considerable reduction in the design constraints on 
the test set impedances and device connecting jigs. 

I. INTRODUCTION 

In implementing a linear two-port device characterizing facility 
on the computer operated transmission measuring set, several factors 
had to be considered.! First, the advantages of automated measure­
ments could be retained only if the switching required to obtain four 
iRdependent measurement configurations were done automatically. 
Second, the implementation must be broadband to take advantage of 
the 50 Hz to 250 MHz frequency range of the measuring set. Finally, 
the measurement method must be inherently capable of utilizing the 
high accuracy of the measuring set. An implementation was chosen 
which uses standard insertion and bridging measurements.2

-
4 This 

choice is particularly compatible with the above factors. 
Insertion and bridging measurements are made with the unknown 

terminated in a nominal impedance environment, in the present 
instance 50 ohms. At this impedance level, broadband, solenoid-oper-

1313 
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ated coaxial switches are available which introduce only minor re­
flections in 50 ohm transmission circuits. In the computer operated 
transmission measuring set such switches are extensively used to 
provide automatic commuting of the unknown among the four inde­
pendent configurations in which measurements are made. By arranging 
relay switching so that dc bias can be continuously maintained when 
measuring active unknowns such as transistors, multiple warm-up 
periods are eliminated and thermal equilibrium must be reached only 
once. Another advantage of the 50 ohm environment surrounding the 
unknown is that transistors and other active devices tend to be stable 
when terminated resistively. 

If the terminal impedances deviate from the 50 ohm nominal, 
measurement data which assumes 50 ohm impedances will be in error. 
In the past, these errors were minimized to the best degree practical 
by controlling the impedance environment around the unknown. Even 
so~ the lack of ideal circuit elements meant that significant errors 
remain in linear characterization data. In the computer operated trans­
mission measuring set, the circuit elements are even less ideal because 
of impedance deviations resulting from the large number of coaxial 
relays used. The impedance control problem is further aggravated by 
the difficulty of designing low reflection dc bias networks to operate 
over several decades of frequency. For the latter reason the frequency 
range of measurement for devices requiring dc bias is confined to be­
tween 50 kHz and 250 MHz. The total measurement errors that could 
conceivably result from the residual impedance deviations would 
prevent meeting our accuracy targets. 

A solution to this problem, which represents an advance over past 
practice, was to endow the measurement facility with the capability 
to self-measure the source and load impedance deviations around 
the unknown, thereby permitting measurement data to be corrected 
for the residual mistermination. 

The effect achieved in the execution of this technique is to refer the 
corrected data to a set of calibration standards. It is not necessary to 
have carefully controlled terminal impedances, and high accuracy 
characterizations are obtainable using device-connecting jigs with 
poor terminal impedances. 

A further advantage of the new technique lies in the greater analytical 
ease of converting measured data to two-port characterization sets of 
most direct interest to the designer. In past measuring arrangements, 
measured insertion ratios e"''' and e"''' are related to relevant param-
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eter8 by the equations3
• 4 

and 

<P'2 1 - SllPL - S22Pg - PgPL(S12S21 - 811S22) e = ----~~--~~--~~~~~--~~ 
812(1 - PgPL) 

where the generator and load and reflection coefficients, Pu and PL, and 
the scattering parameters are referred to the nominal design im­
pedance, generally 50 or 75 ohms in earlier cases. Similarly, expres­
sions can be derived for the measured input and output reflection co­
efficients in terms of all four of the desired parameters and the 
terminating reflection coefficients. Even if the test set reflection coef­
ficients could be determined by independent measurement, the de­
sired parameters cannot be obtained without recourse to a difficult 
mathematical inversion or a lengthy iterative calculation upon four 
coupled equations. 

One of the important attributes of the new approach discussed in 
this paper is that the desired S parameters are explicitly dependent 
on known quantities and hence easily evaluated. This is made possible 
by initially finding the scattering parameters of the unknown, re­
ferred to the actual test set source and load impedances, as described 
in Section II. 

II. MEASUREMENT AND IMPLEMENTATION 

2.1 S Parameter Representation 
The insertion and bridging measurement data are closely related to 

scattering parameters. (See Appendix A.) It should be recalled that 
there are several types of scattering parameters.5- 7 The calculations 
which follow deal exclusively with voltage scattering parameters. In 
the present context, these parameters are defined with respect to the 
terminal impedances which actually prevail in the test set. The 
voltage S parameters along with their normalizing impedances can 
be transformed to any other parameter representation by well known 
transformations. 5 

2.2 111 easurement ot S12 and 821 

The transmission S parameters, S12 and 821, are obtained almost 
directly from the insertion measurement illustrated in Fig. 1. \Vith 
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~;~~ 
~VV~ ~ 

SOURCE DETECTOR 
STRAP 

• I 

(REFERENCE NETWORK) 

~ 
UNKNOWN 

Fig. 1-Model of 812 , 8Zl measurement. Circuit shown for 8Zl measurement; 
detector and source interchanged for 812 measurement. 

the unknown inserted in the measuring network the detected voltage 
V is directly proportional to 821 of the unknown defined with respect 
to the normalizing impedances Z1 and Z2. (See Appendix A.) 

(1) 

The constant of proportionality R21 can be determined by inserting a 
reference network with known 8R21 

{S21}Zl.Z. = {SR21}Zl.Z. ~:. (2) 

Typically the reference network is a coaxial line of known electrical 
length. When ports 1 and 2 can be directly connected the line is of zero 
length for which 8R21 takes the simple form 

2·Z., 
{SR2d Zl.Z. = Zl + ~Z2 (3) 

This result can be seen directly or derived from equation (31) in 
Appendix C. The results for a reference line of finite length are de­
rived as an example in Appendix C. 

The hardware implementation is such that the impedances seen to 
the left and right of the unknown are essentially the same for 812 and 
821 measurement. This invariance of the terminal impedances, with re­
spect to interchange of the source and detector, is accomplished by 
using a pair of judiciously located 20 dB pads. The hardware details 
are described in Section 2.5. The measurement of 812 is similar to that 
of S21. For this case, 

(4) 
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2.3 M ea8urement of Sl1 and S22 

The quantity 811 of an unknown device is obtained indirectly by a 
bridging measurement. For this measurement the source and de­
tector are directly connected as illustrated in Fig. 2. The device 
to be measured, as well as the calibration standards, are successively 
bridged across the source-detector interconnection. The implementa­
tion is such that the impedance seen at terminal 2 is Z2, the same 
impedance as for the previously described S12 and 821 measurement. 

The quantity Sl1 is determined by making four measurements of V. 
Three consist of calibration measurements using open, short, and 
reference impedance standards. The fourth measurement is made with 
the unknown connected. These measurements can be combined to 
obtain a reflection coefficient 

closely related to the desired 

{811} z •. z •. 

(5) 

The term 

{8U} ZR.Z. 

does not have the desired impedance normalization on port 1. The 
desired result is obtained through the transformation 

where 

{} { 
811 - r 1 } 

811 Z •• Z. = 1 - r . 
1 811 ZR .Z. 

Zl - ZR 
ZI + ZR 

(6) 

(7) 

is obtained from an additional measurement described in Section 2.4. 
Notice that r 1 is the reflection coefficient of ZI normalized with respect 
to Z R • Hence, once ZI becomes known, all of the information is avail­
able to compute the value of {811 } Z 1. Z • • The quantity 8 22 is determined 
in an analogous manner. In this case the hardware implementation is 
such that the impedance terminating port 1 of the unknown is Zl , the 
same impedance as in the 8 12 and 821 measurements; it is seen that the 
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OPEN SHORT STANDARD 
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MEASUREMENT OF: fl 

Fig. 2 - Model of 811, 8 22, T1 , and T2 measurement. 

measured data this time yield 822 with respect to Zl at port 1 and Z R at 
port 2. The term {822} Z •• z. is then determined as before, as a function of 
the four measured detector voltages and r 2 , where 

r - Z2 - ZR 
2 - Z2 + ZR (8) 

(Appendix B shows that the equations of Section 2.3 are general and 
apply for any linear network interconnecting the source, the detector, 
and the unknown.) 

The above discussion has described a procedure for determining the 
four voltage scattering parameters {8} z •. z • . This set can be transformed 
to a more useful parameter representation only if Zl and Z2 or equiva­
lently r 1 and r 2 can be determined. Section 2.4 discusses the procedure 
for determining r 1 and r 2 • 

2.4 M ea8urement of r 1 and r 2 

The measurement procedure for determining r 2 is similar to that for 
evaluating 8 11 • With the reference transmission strap used in the 8 12 and 
821 measurements inserted in the bridging configuration of Fig. 2 and 
terminated in Z2 , the detected voltage is V r •. The reflection coefficient 
computed from equation (5) with V x replaced by V r. is the reflection 
coefficient of Z2 , with respect to Z R , as viewed through the reference 
strap, which has known transforming properties. When ports 1 and 2 
can be directly connected the line section is of zero length for which the 
transformation is unity. In this event the reflection coefficient com-
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puted from equation (5) is equal to r 2 • The term r 1 is evaluated in a 
similar manner using the 822 bridging configuration. 

Notice that ZI and Z2 can be determined on a broadband basis 
simply with two additional calibration measurements. It is important 
to realize that this is possible only because of the particular physical 
embodiment which results in the network being terminated in Z2 on 
port 2 during the 812, 821, and 811 measurements and in ZIon port 1 
during the 812, 821, and 822 measurements. Section 2.5 describes the 
hardware arrangement. Notice that for an arrangment in which the 
terminal impedances remain invariant under all four S measurement 
conditions these two additional measurements are redundant. In this 
case, the terminal impedances can be determined from the open, short, 
and standard impedance measurements. (See Ref. 8.) 

2.5 PhY8ical Embodiment 

Figure 3 is a simplified schematic diagram of the 2-port linear char­
acterization facility. The components L 1 , 0 1 , L 2 , and O2 comprise the 
bias networks necessary for supplying dc bias to devices such as tran­
sistors. The attenuators PI and P2 have an insertion loss of 20 dB. 
These attenuators playa critical role in maintaining the terminal im­
pedance constancy described earlier. 

The coaxial switch closures and the circuit paths of a 821 measure­
ment are specifically shown in Fig. 4. The terminal impedances seen 
to the left and right of ports 1 and 2 are ZI and Z2, respectively. A 
simple examination of Fig. 3 will reveal that the switch closures and 
paths inside PI and Pz are identical for the 812 and 821 measurements. 
The switching necessary to convert to the 812 measurement changes the 
reflection coefficient seen looking to the left of PI and right of P 2 by 
less than 0.1. These changes are attenuated by PI and P2 so that the 
changes in r 1 and r 2 seen at the terminals 1 and 2, respectively, are 
less than 0.001. Within the bounds of neglecting a possible 0.001 
change, r 1 and r 2 , and therefore ZI and Z2, are invariant under the 
change from the 821 to the 812 measurement. 

Figure 5 illustrates the switch closures and circuit paths of an 822 

measurement. Attenuator P 2 has been eliminated from this measure­
ment to prevent a loss in measurement resolution. Notice that all 
switch closures and circuit paths between terminal 1 and attenu­
ator PI are the same as in the 812 and 821 measurements. The re­
flection coefficient seen to the left of PI has changed less than 0.1 in 
switching into this measurement mode. Therefore, the reflection 
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Fig. 3 - Simplified schematic of transistors measurement unit. Signal routing 
r~quired to set up measurement paths for the determination of 812, 821, 811, or & 
are shown for each switch. 

coefficient seen looking into terminal 1 cannot differ from r 1 by more 
than 0.001, a negligible amount. A similar analysis of the Sl1 measure­
ment mode reveals that the reflection coefficient seen looking into 
terminal 2 cannot differ from r 2 by more than 0.001. 

2.6 Other Parameter Representations 

The set {s} Z1.Z. , ZI (r 1) and Z2(r2) is a well defined voltage scatter­
ing parameter representation of the linear characteristics of the 2-port 
unknown. This representation has no practical application, but it can 
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be easily converted to a more useful representation by well known 
transformations (Ref. 6). One particularly useful and easily obtained 
parameter set is the voltage scattering parameters normalized to 50 
ohms (Z R = 50 ohms). This set is obtained from the measured set by 
use of the transformations of Appendix C: 

{} {rl + Sl1 + r l f 2s22 + r 2 ~S } 

Sl1 ZR.ZR~' 1 + rlsn + f 2s22 + flf2 ~s Z •• Z. 
(9) 

(10) 

12 

~: c, 
I L2 
I 

Z2--t- . 

Fig. 4 - Path through transistor measurement unit for SZl evaluation. 
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50 

50 

so 

Fig. 5 - Path through transistor measurement unit for 822 evaluation. 

(11) 

The transformations for 822 and 821 are found by transposing subscripts 
in the above equations. It is useful to realize that since the transformed 
S parameters are normalized to equal real impedances they are nu­
merically equal to the current and power scattering parameters with 
the same normalization. 

The transformed parameters are independent of Zl and Z2, depend­
ing only upon the open, short, ZR, reference network calibration stand­
ards and the loss and phase measurement accuracy of the test set. This 
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independence from Z1 and Z2 allows for useful freedom in the design 
of the measuring apparatus terminal impedances. 

III. SPECIAL CALIBRATION FEATURES 

In Section II a measurement technique has been presented in which 
the linear characteristics of a 2-port unknown are determined relative 
to four calibration standards. An idealized set consisting of an open, 
short, standard impedance and a zero length line were treated for 
mathematical simplicity. The calibration standards used with the 
automated facility deviate considerably from this idealized set over 
the broad frequency range of interest. A failure to compensate for 
these deviations would adversely affect the accuracy of linear char­
acterization. Compensation is accomplished by modeling the devia­
tions as a function of frequency and then computationally accounting 
for them in the data reduction program. 

3.1 Compensation for a Transmission Reference Line of Nonzero Length 

Physical constraints often make it impossible to directly inter­
connect ports 1 and 2 for the measurements needed for the deter­
mination of S12, S21, r 1 and r 2 • Interconnection is achieved in these 
cases by using a short transmission line with a characteristic im­
pedance equal to ZR and an electrical length equal to (). For this net­
work 

where (J is computed from the line constants and length. 
For determining r 1 and r 2 this line has a particularly simple trans­

forming property. r 1 and r 2 when viewed through the line appear as 
r 1e- i211 and r 2e- i211

, respectively. 
In the actual measurements, determining S12 and S21 of the unknown 

require SR12 and SR21 of the line normalized with respect to Z1 and Z2 • 

These quantities are obtained by transforming from the (ZR , ZR) im­
pedance normalization to the (Z1 , Z2) impedance normalization as 
illustrated in Appendix C. The data reduction program allows for 
reference lines of arbitrary length. 

3.2 Compensation for N on'ideal Bridging Calibration Standards 

Typically high quality standard impedance (ZR) terminations are 
available whose deviations from nominal are negligible. This is not 
true for the open and short calibration standards. Mechanical consider-
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ations sometimes require that the short and open reference planes be 
displaced from the measurement plane by a section of transmission 
line. In addition, the "open" differs from ideal by a fringing capaci­
tance. For small reactive perturbations or arbitrary displacements in 
a transmission line of characteristic impedance Zn, the actual open 
and short circuit reflection coefficients are of the simple form 

roo IZR = e-2
;TClJW 

ro IZR = _e-2
;TOW 

(12) 

(13) 

where Too and To are the time delays for the lengths of line involved, 
including a correction for fringing capacitance at the end. The linear 
dependence of the reflection phase angles on frequency facilitates 
broadband computational correction. In the data reduction program a 
more general bridging equation than equation (5) (see Appendix B) is 
programmed to allow for calibration standards of the above form. 

3.3 Measurement Plane Translations 

For some unknowns it is desirable to define the reference planes of the 
S parameters translated down 50 ohm transmission lines from the 
measurement planes. Examples are the air line measurements in Sec­
tion 5.1, and the case of measuring an integrated circuit connected 
to the test set by 50 ohm microstrip transmission lines of significant 
electrical length when information about the chip alone is sought. (An 
alternative approach to characterization would be to develop integrated 
circuit standards so that calibration could be performed at the chip 
interface.) Analysis shows that the presence of transmission lines of elec­
tricallength a are accounted for within the previously developed mathe­
matical framework by entering the translated angles - WT co + 2a, 
- WTo + 2a and (J - 2a instead of the physical angles - WT co, - WTo 

and (Jinto the data-- reduction program. The alternative approach, 
requiring additional programming, would "remove" the transmission 
lines _by_appropriate matrix manipulations. 

IV. STATEMENT OF ERRORS IN S50,50 PARAMETERS 

This section gives the results of an approximate worst case error 
analysis for S50.50 parameters. The analysis was performed on these 
parameters because of the mathematical simplifications resulting from 
their similarity. to the measured quantities. The results are derived by 
assuming that r 1 , r 2 , and the fundamental error terms are small com­
pared with unity. This approximation allows for simplification of the 
equations presented in the earlier sections. The fundamental error terms 
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are added on a worst case basis to obtain overall error bounds. The 
lengthy analysis has been omitted for brevity. 

4.1 Bound for the Sl1 and S22 M ea8urement8 

The errors in the 811 and 822 measurement arise from two principal 
sources, those associated with the bridging technique and those from 
interaction with the termination of the unknown. For an unknown with 
I S12' S21 I « 1 the latter error source is negligible and the bound for 
errors in the determination of S11 is, 

I Lls11 150.50 < {0.0023 + 0.0023 11 - S~1 I + 0.0013 I Sl1 I 11 + Sl1 I 
+ 0.0013 1811 I 11 - Sl1 I + I rs I 11 - S~l 1}50.50 (14) 

Implicit in equation (14) is the assumption that the uncertainties in 
the phase angles of the open and short circuit standards are less than 
0.02 degree. 

ZR - 50 
r. = ZR + 50 

(15) 

rs is the reflection coefficient of ZR with respect to 50 ohms, which 
independent measurements have shown to be less than 0.005. Notice 
that certain terms in equation (14) disappear when 811 equals 0, -1, 
and 1. This reduction of the error bound occurs when the bridging 
measurement of the unknown reduces to a differential comparison of 
the unknown with either the 50 ohm, short, or open standard. 

When the product 812' 821 is not negligible, errors that occur in 
determining the reflection coefficient of the termination, r 2 for the 811 

measurement, are transformed through the unknown to increase the 
error of the 811 determination. If Llr2 is the error in determining r 2 , 

the term 

(16) 

must be added to equation (14) to account for this second error source. 
Since r 2 is determined from a bridging measurement, the bound on 
Llr2 can be computed directly from equation (14) for r 2 « 1. 

I Ar2 I < 0.005 + I r. I < 0.01. (17) 

If r 2 were not determined by measurement, then Llr2 in equation 
(16) would have to be replaced by the worst case estimate of the 
value of r 2 • From Fig. 6, r 2 is seen to be as large as 0.08. The error 
term of equation (16) is eight times larger in this case. 

The relationship for Ll822 is found by changing subscripts. 
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Fig. 6 - Test set port 2 reflection coefficient defined with respect to 50 ohms. 

4.2 Error Bound for the S12 and S21 ]1,1 easurement 
The worst case fractional error in the determination of S12 is 

I ~~:' I",,, < {O,0013 + 0,0013/\ s" \ 

+ I ~e I + I ~rl 1·1 Sl1 I + I ~r2 1·1 S22 I} 50,50 (18) 

The term that increases as I S12 I decreases shows the intuitively 
appealing result that the relative error bound increases as the signal­
to-noise ratio decreases. The term ~() is the uncertainty in the elec­
trical length of the reference network (zero line). The value of ~() 

is less than 0.001 radians for the typical reference transmission line 
network. When direct interconnection of the measurement ports is 

. possible, () and therefore ~(), equals zero. 
The terms ~rl and ~r2 arise from the uncertainties in the knowl­

edge of the terminating reflection coefficients, r 1 and r 2 . The terms 
~r1 and ~r2 are less than 0.01, as described in Section 4.1. 

If r1 and r 2 are not determined by measurement then ~r1 and ~r2 
in equation (18) must be replaced by worst case values for r 1 and 
r2. From Figs. 6 and 7, r 1 and r 2 are as large as 0.08 resulting in an 
eight fold increase in the mistermination terms of equation (18). 

V. MEASUREMENTS TO CONFIRM ACCURACY 

The two-port properties of a precision air-line, a preCISIOn atten­
uator, and a common base transistor were measured. These unknowns 
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are useful for demonstrating the accuracy of small signal characteri­
zation over a wide range of test parameter magnitudes. 

5.1 Characterization of a Precision 30-cm Air Line 

A General Radio 900-L30 precision 14 mm air line was measured 
on the automated facility and the data processed to yield scattering 
parameter data. The calibration standards consisted of a General 
Radio 90-VV50 coaxial 50 ohm standard, a General Radio 900-vVN 
coaxial short circuit, a coaxial open circuit, and a zero length line. The 
test set measurement ports (General Radio 900) were at the ends of 
flexible cable, thus allowing direct interconnection for the reference 
insertion ("zero-line") measurement. The open circuit standard, con­
sisting of an unterminated General Radio 900 connector, was corrected 
for 0.16 pF of fringing capacitance by the techniques of Section 3.2. 

The S50,50 ohm parameters of the line were computed. This matrix 
is symmetrical and therefore only Sl1 and S12 data are presented in 
Figs. 8 through 11. The results for an ideal air line are Sl1 = 0 and S12 

= e-iWT
, where roT equals 90° at 250 MHz. To expose the errors of meas­

urement, the reference plane translation technique of Section 3.3 was 
used to remove the linear phase component from all the S parameters. 
Alternatively, the translation is equivalent to multiplying each matrix 
element by e}WT. For an ideal air line the resulting S50,50 parameters are 
Sl1 = 0 and S12 = 1. The data in Figs. 8 through 11 indicate how the 
actual air line deviates from these ideal values. 

The deviations can be accounted for by skin effect losses. The high 

0.10 

0.08 

i 

0.06 

,..; 

0.04 
I 

0.02 ,,/ ~ 1 ---~ ~ 
-

106 107 

FREQUENCY IN Hz 

Fig. 7 - Test set port 1 reflection coefficient defined with respect to 50 ohms. 
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Fig. 8 -- Magnitude of 81150,50 for a precision 30 cm airline with the linear 
phase component subtracted. 

frequency (1 MHz or greater for this example) 850,50 parameters for 
a transmission line deviating from the ideal because of skin losses are 
derived in Appendix D. Multiplication of these parameters by e1wr 

converts them to a form compatible with the figures. 

<f) 
w 
w 

{} ( )!(sin WT) (' 7r /4) 
811 50 50 = A ZWT -- exp 1 

, WT 

120r-------.-------,-------.-------,-------, 

60r-------+---~--TT~_T--~~~--_r------~ 

~ Or_----~+ft-+----+_------~------_r------~ 
l.') 
w 
o 

~ 
-60~----~~------+-------~------_r------~ 

-120r_----~*_------+_------_r------_r------~ 

-180~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ 
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(19) 

Fig. 9 -- Phase of 81150,50 for a precision 30 cm airline with the linear phase 
component subtracted. 
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Fig. 10 - Magnitude of 81250,50 for a precision 30 cm airline with the linear 
phase component subtracted. 

(20) 

where A is a frequency independent, skin effect parameter dependent 
on surface conductivity as well as other line parameters. The value of 
A was determined to be 0.0016 by fitting the magnitude of 812 from 
equation (20) to the measured results. The smooth curve in Fig. 10 
shows that the fit to the magnitude of 812 is typically better than 0.002 
dB. Using this value of A, the phase of 812 and the magnitude of 811 

were computed. The results are plotted in the Figs. 8 and 11. 
The deviations of the measured results from the theoretical skin 

loss curves are estimators of characterization accuracy. Most of the 
deviations result from the sensitivity limits of 0.001 dB and 0.010. 
The observed deviations are an order of magnitude smaller than the 
worst case errors predicted by the equations of Sections 4.2 and 4.3. 
If the mistermination corrections were not performed, the errors in 
811 and S22 would be substantially larger. For example Sl1 would be 
virtually equal to r 2 , the reflection coefficient of port 2. The values of 
r2 are plotted in Fig. 7, showing that the resulting error in 811 could be 
as large as 0.08. 

5.2 Characterization of a Precision Attenuator 

A General Radio 900-G6 precision 14 mm 6 dB attenuator was mea­
sured and the data processed to obtain S50.50 parameters. The true value 
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Fig. 11- Phnse of S1250 ,50 for a precision 30 em airline with the linear phase 
component subtracted. 

of these parameters are not sufficiently well known for the attenuator 
to be used as a measurement standard. However, its measurement is 
useful in verifying characterization accuracy by comparing 812 and 821 • 

The terms {812 } 50, 50 and {821 } 50,50 must be equal for a reciprocal net­
work; {812 } Z, , z. and {821 } Z, , z. are in general not equal since typically 
Z1 ~ Z2 • Therefore, the agreement between the 50 ohm S parameters 
is a measure of the success to which {812 } Z,' Z2 , {S21} z,' Z. , Z1 , and Z2 

have been determined. 
The magnitudes of 8 12 and 821 are plotted in Fig. 12 for comparison. 

The midfrequency values for S12 and 821 are close to the dc measured 
value of - 6.0151 dB. The attenuation bump below 104 Hz is from a 
poorer test set audio frequency signal-to-interference ratio. The agree­
ment between S12 and S21 over most of the 400 Hz to 250 IVIHz range is 
better than a few thousands of a dB. In Fig. 13 the difference between 
the phase angles of these two parameters is plotted. The typical agree­
ment is again excellent, better than several hundredths of a degree. 
The above differences are well within the 0.035 dB and 0.23° fractional 
error bounds on S12 and S21 computed from equation (18) 

5.3 Common Base Transistor lVI easurement 

A medium-power silicon transistor was measured in the common 
base configuration. The measurement data were then processed to 
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obtain common emitter h parameters by way of illustrating the flexi­
bility of the data reduction program. The parameter h21 (or f3) with 
and without mistermination errors is shown in Figs. 14 and 15. Differ­
ences between the corrected and uncorrected data as large as 5 dB and 
20° are readily apparent. Discrepancies of this magnitude result from 
the f32 multiplication of errors which occurs when converting common 
base parameters to common emitter parameters. Notice that the dis­
crepancies decrease as the magnitude of f3 decreases. The agreement 
between corrected common emitter f3 curves derived from measure­
ments in the common base, common collector, or common emitter 
modes is typically better than 1 dB and 5°. (See Ref. 1, Fig. 25.) 

VI. SUMMARY 

Complete device characterization can be rapidly and accurately 
achieved by the measurement method described in this paper. Loss 
of accuracy caused by nonideal test set terminations is virtually 
eliminated by measuring the deviations from ideal. The errors that 
arise are now the result of the smaller inaccuracy in measuring the 
deviations rather than to the gross deviations themselves. The se1£­
measurement of the termination deviations is done at any frequency 
by two extra calibration measurements. 

All measurements refer to a set of calibration standards, thereby 
making the derived parameters independent of the impedance prop­
erties of the test set. This attribute should facilitate the measurement 
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Fig. 15 - Common emitter h21 parameter computed from a common base 
measurement configuration. Mistermination errors are removed from the dashed 
curve and not from the solid curve. 

of integrated circuits, for only the integrated calibration standards 
and not the connecting jig determine the accuracy of measurement. 
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APPENDIX A 

Voltage Scattering Parameters 

A network can be characterized in terms of traveling waves at 
selected reference planes rather than in terms of currents and voltages. 
Voltage scattering parameters are one such traveling wave representa­
tion. These parameters relate the reflected voltages from a network 
to the incident voltages. The matrix notation for this relationship for 
a two-port network is 

(21) 
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Fig. 16 - Scattering coefficient representation of a two-port network. 

Vli and V2i are the incident voltage waves appearing at the port 1 and 
port 2 reference planes, respectively. VIr and V2r are the respective 
reflected voltage waves. The S parameters relating to the incident and 
reflected waves are defined with respect to the incident waves source 
impedances, ZI and Z2. 

The incident waves are related to the source potentials VOl and 
V02 (see Fig. 16) as follows, 

(22) 

The conventional voltages appearing at ports 1 and 2 are 

(23) 

From equations (21), (22), and (23) it is easy to verify that 

(24) 

when V02 = O. Therefore V2 is directly proportional to 
{821 } Zl. z. when the network is inserted between a source of impedance 
ZI and a load of impedance Z2 • Also when V 02 = 0 the reflection co­
efficient defined as VIr/Vii is equal to 
{8 11 }Zl. Z •• 

APPENDIX B 

The Bridging Technique 

The bridging technique is one method of determining the input and 
output scattering parameters of a device. This technique requires an 
oscillator, a detector, three impedance standards and an arbitrary 
three-port linear network. The judicious selection of this network will 
lead to better measurement sensitivity. 

The essentials of a bridging measurement are illustrated in Fig. 17. 
Z and E03 comprise the Thevenin's equivalent circuit of port 3, the 
measurement port. An analysis shows that the detected voltage V 
remains unchanged if the unknown impedance Zx is replaced by the 
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load and controlled source combination shown. 

Zx - Z 
r = Zx + Z' 

Since the interconnecting network is linear, 

v = Ji·E + B·r·Eo3 

and 

E03 = C·E. 

1335 

(25) 

(26) 

(27) 

A, B, and G are system constants. Equation (26) is therefore seen to 
reduce to the form 

V=a+b·r 

where a = A·E and b = B·G·E. 

(28) 

This equation has three unknowns, the two constants a and b, and the 
normalizing impedance Z. These constants are determined by three 
independent measurements made with Zx (see Fig. 2) replaced with 
three calibration standards. 

Three standards that are readily obtainable and which lead to com­
putational simplicity are an open, short, and termination (R); the 
reflection coefficients defined with respect to Z are 1, - 1, and r R , re­
spectively. A somewhat lengthy computation reveals that 

(r} - (Vx - VR)(Voo - Va) (29) 
x R - (Veo - VR)(VX - Va) + (VR - Vo)(Voo - V x) 

{rX}R is the reflection coefficient of Zx normalized with respect to R. 

THEVENIN'S 
2 

EQUIVALENT CIRCUIT 

1 -0+ I'" 'C., , 

~ E" tz 
- -

3 

tx ~rE" 
- -

Fig. 17 - Simplified schematic of bridging measurement. 
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APPENDIX C 

Change of the S Parameter Impedance Normalization 

The voltage S parameters will describe the traveling wave properties 
of a network terminated in a particular impedance environment. In 
a different environment the description is no longer valid. Therefore, 
for example, it is not possible to measure the S parameters of a net­
work in a 50 ohm test set and then use these parameters directly to 
describe the network performance in a 75 ohm system. It is possible 
to transform S parameters with one impedance normalization to those 
of another impedance normalization. These transformations are: 

(30) 

(31) 

(32) 

(33) 

where S21 and S22 are found by transposing subscripts. 
These transformations are useful in computing S12 of a uniform 

transmission line normalized with respect to two arbitrary impedances 
Zl and Z2. The voltage S parameters of a uniform transmission line, 
normalized with respect to the characteristic impedance of the line, 
are S11 = S22 = 0 and S12 = S21 = e-iO• Then from equation (31), 

(34) 

APPENDIX D 

S Parameters of a N onideal Transmission Line 

The primary deviation of a physical uniform airline from an ideal 
airline is caused by the skin effect. The nonidealline is modeled as an 
ideal line with the added series skin effect resistance of Row!(l + j) 
ohms per unit length. The characteristic impedance is 

[ 
R !J! 

Z = Zo 1 + wi: . (35) 
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The propagation constant is 

~ = -jwCoZ. 

The quantities used in the above expressions are defined as: 

W = angular frequency 

Lo = series inductance per unit length of an ideal line 

Co = shunt capacitance per unit length of an ideal line. 
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(36) 

The term Zo = (Lo/Co)! = characteristic impedance of an ideal line. 
The voltage scattering parameters of the nonideal line of length l 
normalized to two impedances equal to Z are of the simple form 

811 Iz.z = 822 Iz.z = 0 

{812}Z.Z = {82dz.z = e'Yz. 

(37) 

(38) 

The more useful 8lzo.zo parameters are easily obtained using the 
transformations of Appendix C. From equation (33) one obtains 

Z - Zo 
r 1 = r 2 = Z + Zo (39) 

For a practical airline [Row!]/Low == 2z « 1, allowing for the simplifi­
cation of expressions (38) and (39) to 

r 1 = r 2 == ~ (1 - JJ (40) 

and 

t} {} -WTZ -iWT(l+Z) 
812 z.z = 821 Z.Z = ee, (41) 

WT = wCoZol is the electrical length of the ideal airline. The application 
of the Appendix C transformations to the {8} z. z parameters, assuming 
that the line is electrical short (that is, ZWT « 1), yields the desired 
{811lzo .zo parameters. 

For 1/>.2 » WT » >.2 

I} {} == >'(2WT)! sin WT e-iWT+i(r/4) 
t 8 11 Zo.Zo = 822 Zo.Zo 

WT 
(42) 

(43) 

>. = Z(WT)! is a frequency independent constant of the nonideal line. 
(See also Ref. 9.) 
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A 50 Hz-250 MHz 
Computer-Operated Transmission 

Measuring Set 

By W. J. GELDART, G. D. HAYNIE and R. G. SCHLEICH 

(Manuscript received November 27, 1968) 

A computer-operated transmission measuring set has been developed for 
the 50 Hz to 250 1l1Hz frequency range. Use of the computer in this system 
has significantly effected the test set design and the measurements obtainable. 

Compared with previously available transmission 1neasuring sets, the 
computer-operated set increases speed more than 300 : 1. This speed, along 
with state-of-the-art accuracy and increases in operating range, flexibility, 
and convenience, enables the set to be used for types and quantities of 
measurements previously not practical. It has already been applied to 
laboratory and production testing with resulting improvements in the quality 
and reliability of manufactured product designs. 

In addition to the directly measured quantities of insertion loss and phase, 
the set provides insertion delay, impedance, and two-port parameters as 
derived quantities. The two-port data conversion program provides H, Y, Z, 

G, T, S, ABCD and ABCD-
1 parameters with a nUlnber of useful options. 

Results of transmission measurements, impedance measurements, and 
two-port measurements are presented. Some of the error mechanisms and 
means of measuring them, are discussed. Further development of centralized 
measuring facilities, with the computer operated set as a basic element, is 
discussed. 

1. INTRODUCTION 

The development of communication systems for the Bell System 
has, in the past, required large numbers of transmission measurements. 
These measurements have been costly and time-consuming. With the 
trend toward more complex systems, the volume and accuracy of 
measurements must be increased. At the same time, the increased 
use of computers in modeling and design requires flexibility in the 

1339 
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types of data obtained. For example, two-port characterization of 
devices such as transistors is becoming particularly important. 

This paper describes a computer-operated transmission measuring 
set developed for laboratory use in the 50 Hz to 250 MHz frequency 
range (see Fig. 1). Compared with previously available sets, this set 
provides increased speed, operating range, accuracy, flexibility, and 
convenience, and the capacity for types and quantities of measure­
ments previously not practical. 

The computer-operated measuring set is a part of the centralized 
measuring facilities being developed for Bell Laboratories. With the 
addition of various appliques now being developed, the measurement 
centers will provide additional measurement facilities in the 50 Hz 
to 250 MHz range, with environmental control, and in the three 
microwave radio bands at 4, 6, and 11 GHz. The set is also being 
used for production testing by the Western Electric Company. 

II. MEASUREMENTS SET CHARACTERISTICS 

2.1 General 
The small, general-purpose digital computer with fast and precise 

digital-analog components and with broadband analog components 
has had a significant effect on the measurements obtainable. 

Increased operating speed results from the use of computer control, 
memory, and computation as well as fast measuring set components. 
The operating speed is 10 to 300 times faster than manual test sets 
(per measurement point), depending on the output media and the 
test frequency. 

Computer control also makes wide operating ranges practical. By 
automatic control of test set level patterns, insertion loss can be 
measured over a range from -40 to +100 dB. By automatic control 
of signal sources and frequency dependent elements, operation over 
. nearly seven decades is obtained. This frequency range previously 
required three separate test sets. 

Accuracy is, of course, limited by accuracy of the test set standards. 
Computer operation, however, does play a significant part in the 
test set accuracy. First, test set errors can be comprehensively eval­
uated to a degree only practical with a high speed set. Second, the 
speed, memory, and computation capability permits the correction of 
data for known errors and the averaging of random errors. Correc­
tion of "zero line" errors is particularly important with the complex 
transmission paths used in the test set. Finally, the operating rules 
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Fig. 1- Computer-operated transmission measuring set. 

are set up so as to maintain near optimum levels during the measure­
ments. In this way, tolerable compression errors can be deliberately 
introduced to improve signal-to-noise ratio. 

The computer-operated set provides flexibility in a number of ways. 

(i) By using software rather than hardware control, operation of 
the set can be readily changed. 

(ii) Special measurements can be made which include system main­
tenance tests and periodic measurement of test set error sources. 

(iii) Measured data can be converted into more useful forms. For 
example, meaningful acceptance criteria, which may be too complex 
for manual application, can be used for GO, NO GO tests of measured 
networks. 

The computer-operated set is convenient in the ease of setting up 
measurements, particularly repeated measurements, and in the ability 
to yield measured or derived parameters on various output media. 

2.2 Transmission Measurements 
The basic quantities measured by the transmission-measuring set 

are insertion loss (or gain) and insertion phase shift as a function 
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of frequency. Internal switching provides for direct measurement of 
insertion loss and phase at a number of impedance levels. Insertion 
delay is automatically obtained by calculation from two phase mea­
surements separated by an appropriate frequency interval. 

Table I summarizes test set performance. 

2.3 I mpedance Measurements 

Fixtures are provided to permit connection of one port (or ter­
minated two-port) networks into the transmission measuring circuits. 
By measuring suitable impedance standards (three needed) along 
with the network and processing data on a computer, the impedance, 
reflection coefficient, or return loss can be obtained.1 With a change 
of program, the test set computer can be used for processing the data. 
In this case, the derived parameters can be output on the test set 
output equipment. 

Measurement accuracy is a function of the impedance measured 
but will be better than 1 percent over an impedance range of 104

• 

Section 5.2 has a more detailed discussion of impedance measure­
ment accuracy. 

2.4 Two-Port Characterization Measurements 

Coaxial terminals, coaxial fixtures, and dc bias supplies are pro­
vided which permit the linear characterization of two-port networks 
and of devices such as transistors. For unbiased networks, the fre-

TABLE I - TEST SET PERFORMANCE 

Characteristic 

Test frequency 

Gain measurements 
Loss measurements 
Phase measurements 
l)elay measurementst 

Range 

50 Hz to 250 MHz, 
adjustable to 0.01-
0.08 Hz 

o to 40 dB 
o to 100 dB 
o to 3600 

39 . 999 ms to 39. 999 
nsec, full scale 

Best accuracy 

3 parts in 108 

O.OOlrdB 
O.OO1!dB* 
0.01 0

-

55/tJ.jp.sec 

Impedance levels: 50, 75, 135 (balanced or unbalanced), 600 (balanced or un­
balanced), arbitrary Z, and probe mode. 

* Loss and phase accuracies decrease as loss or gain increases. For example, the 
random error in loss measurement is 0.001 (1 + 0.2 X lOL/20) dB for losses <40 dB 
and 0.01 (1 + 0.2 X 1O(L-40)/20) dB for losses >40 dB. 

t Computed from two phase measurements separated by tJ.j Hz. 
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quency range is 50 Hz to 250 MHz and for biased networks the range 
is 50 kHz to 250 MHz. Two-port characterization data, including 
calibration data, is processed by computer (such as the IBM 7094) 
to provide any of the standard two-port matrix representations such 
as H or y parameters. Accuracy of the output parameters is parameter 
dependent but errors in S parameters will be less than 0.02 for most 
unknowns. Section 5.3 has a more detailed discussion of parameter 
accuracy. 

2.5 Test Set Input-Output 

Figure 2 is a simplified block diagram of the computer operated 
test set from the human operator-test set interface. Information re­
quired by the computer to control a particular set of measurements 
is contained in the computer memory, in switch positions on the op­
erator control panel, or possibly on punched paper tape. The informa­
tion in computer memory is inserted either with the tape reader or 
the typewriter. The operator control panel can be used both to set 
up and start the desired set of measurements or to modify the se­
quence after it has started. 

Outputs are selected on the operator control panel. Visual readout 
is always present, and the typewriter, tape punch, and X-Y plotters 
can be independently selected. Plotting parameters are part of the 
input data, and output readings are scaled by the computer. Points 
are plotted to an accuracy of about 0.1 percent. If no output is selected 

NETWORK OR 
TRANSISTOR 

COMPUTER-TEST SET COUPLING UNIT 

Fig. 2 - Operator-test set interface. 
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or if the output switches are turned off during a measurement se­
quence, the test set will provide continuous loss and phase measure­
ments with the test frequency kept constant. 

2.6 Test Set Speed 

Measurement speed varies with a number of factors, particularly 
the number of measurements averaged to reduce random errors. How­
ever, Table II gives a useful summary of typical measurement times. 

III. BLOCK DIAGRAM DESCRIPTIONS 

3.1 Overall Description 

Figure 3 is a simplified block diagram of the measuring set and 
connections to the computer. At this interface, control and readout 
of the measuring set is entirely digital. 

Under computer control, the signal oscillator supplies the test 
signal to the comparison unit for excitation of the circuit to be mea­
sured and to the reference path frequency converter. The local oscil­
lator provides the proper frequency to the measurement path and 
reference path converters for translating the test frequency to a fixed 
intermediate frequency. The loss standard is adjusted to have a loss 
equal to that of the measured circuit using error signals provided 
by the loss detector. The phase meter provides a measurement of the 
phase difference between the measurement path and reference path 
inputs. With suitable switching, the difference between two readings 
provides the desired phase measurement. 

The measuring set block configuration is similar to others pre­
viously reported.2

•
3 However, when the elements in the configura­

tion are realized with the components to be described and then 
controlled by a computer, the advantages cited in Section I result. 

3.2 Gain-Loss Measurements 

Figure 4 shows the loss measuring circuit with details added which 
are esential to the discussion. 

3.2.1 Comparison Circuit 

The comparison circuit rapidly interchanges the unknown path and 
standard path between the signal source and the heterodyne detec­
tor. This produces amplitude and phase variations in the signal at 
the switching rate which correspond to differences in transmission 
between the unknown and standard paths. The unknown path con-
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TABLE II - TYPICAL MEASUREMENT TIMES 

Type of output 

Magnetic core 
X - Y plotters 
Paper tape 
Typewriter 

(Freq. <2 kHz) 
2 
2 
3 
9 

Time per point 
(seconds) 

(Freq. >2 kHz) 
0.2 
0.2 

1 
7 
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tains either the switching unit for two port characterization measure­
ments or a path connecting the network for insertion loss and phase 
measurements. Additional switches, not shown, provide connections for 
the various impedance levels. 

The standard path contains either a low loss transmission line or 
a 40 dB pad. The 40 pad is always inserted in the standard path when 
the unknown path is being measured. When the standard path is being 
measured, the transmission line is inserted for losses less than 40 dB. 
For losses equal or greater than 40 dB, the 40 dB pad is inserted in 
the standard path and a 40 dB preamplifier is inserted in the level 
adj ust unit. 

Use of the 40 dB pad and preamplifier in this way has several 

NETWORK OR 
TRANSISTOR 
~ 1--_·- --t---- -- ---- -- --------

TRANSMISSION MEASURING SET 

I DIGITAL COMPA- MEASUREMENT DIGITAL DIGITAL I 

I 
CONTROLLED t-..... RISON t-- PATH t-- CONTROLLED 1-.- LOSS SIGNAL FREQUENCY LOSS 

I OSCILLATOR UNIT 
CONVERTER STANDARD 

DETECTOR 

I I 
I 

DIGITAL 
DIGITAL 

I CONTROLLED 
LOCAL PHASE 

I 
OSCILLATOR METER 

I 
I REFERENCE I 
I 

PATH 

I FREQUENCY 
CONVERTER 

L __ 
f------.- ---------- --- I-- ~~ 

l DIGITAL COMPUTER I 

Fig. 3 - Simplified block diagram of measuring set. 
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SIGNAL 
OSCILLATOR 

250 MHz 

\ 
\ 
\ 
\ 
I 

SIGNAL 
ADJUST­

MENT 

SYNC 

8 

LEVEL 
ADJUSTMENT 

Fig. 4 - Loss measurement. 

0-60 dB 

advantages: the crosstalk requirement in the comparison switches is 
reduced by 40 dB and the required dynamic range of the measurement 
path frequency converter is reduced by 40 dB. Use of the preamplifier 
also improves the system noise figure by about 20 dB. 

Since the 40 dB pad has a significant frequency characteristic, some 
method of correction is necessary. This is conveniently accomplished 
by initiating an additional comparison cycle whenever the 40 dB pad 
is used. During this cycle, the two elements in the standard path 
are compared and the difference is measured on the IF loss standard. 
The 40 dB pad is, therefore, a transfer standard. 

3.2.2 Signal and System Level Adjustments 
The attenuators following the signal oscillator adjust the signal 

level into the measurement circuit. The attenuators are switched by 
the computer under manual or program control. In either case, if the 
unknown has enough gain to overload the test set detector, the signal 
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level is automatically reduced and the signal level actually used is 
typed out. 

The level-adjust circuit adjusts the level into the measurement 
path converter to minimize certain errors. When measured loss or 
gain is low, the level into the converter is maintained for best signal­
to-noise ratio consistent with 0.001 dB linearity. At high loss, the 
level into the converter (not yet programmed) is increased to improve 
the signal-to-noise ratio without producing significant linearity errors. 

3.2.3 IF Loss Standard and Detector 

Amplitude and phase variations produced in the test signal by the 
comparison unit are linearly translated to the final IF of 27.777 kHz. 
Here the loss standard is switched in synchronism. For loss, the IF 
loss standard and the unknown are switched out of phase and for gain 
they are switched in phase. 

The loss standard contains relay switched, precision attenuators 
ranging from 0 to 59.99 dB in 0.01 dB steps. Complementary gain is 
provided in the common output path so that the output is constant 
(± 1 dB) when the standard is correctly balanced. Hence the loss 
detector and phase detector are operated at nearly constant levels. 

The amplifier-detector in the loss detector has a logarithmic char­
acteristic which provides a dc output proportional to the input amplitude 
in dB. During the balance sequence, a measure of the difference in loss 
between the loss standard and the measured network (loss unbalance) 
is obtained from the difference of two readings with the analog-digital 
converter. After the loss balance is completed, the analog-digital 
converter readings provide the 0.001 dB decade indication to the 
computer for automatic readout. 

In order for the analog-digital converter to have ± 20 dB balancing 
range and yet provide the ±0.001 dB indication, the equivalent of 16 
bits is required. This was achieved with a 13 bit converter and a switched 
(5X) preamplifier. For loss standard balancing, the amplifier is out 
and the least significant bit is 0.005 dB. When a balance is achieved, 
the amplifier is switched in and the least significant bit is 0.001 dB. 

3.3 Phase Measurements 

Figure 5 is a block diagram of the phase measuring circuit. The phase 
changes produced by comparison switching are the changes between 
the unknown and standard paths at test frequency and between the 
loss standard and "strap" at intermediate frequency. The net change 
in phase is the change between the unknown and standard paths since 
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SIGNAL 
OSCILLATOR 

50 Hz 
250 MHz 

,------, 
I I 

UNKNOWN 
PATH 

~ 
\ 

\ 
\ 

MEASUREMENT 
PATH 

FREQUENCY 
CONVERTOR 

LOCAL 
OSCILLATOR 

REFERENCE 
PATH 

FREQUENCY 
CONVERTER 

SYNC 

~ 

27.7 kHz 

I 
I 
I 
I 
I 
I 
I 
I 

1-----, 
I PHASE DETECTOR I 

TIME 

I~~~~':L 1--_----, 

CONTROL 

PULSE 
GENER­
ATOR 

RESET 
100 MHz 

TIME 
INTERVAL 

METER 

I-+---~ STOP 

COMPUTER AND f----..... 
INTERFACE 

Fig. 5 - Phase measurement. 

the two paths at intermediate frequency are adjusted to have phase 
differences less than ±0.002°. The reference path signal provides a 
constant phase reference during the switching cycle. 

The phase measuring technique used cannot measure phase at exactly 
0°. Phase equalization of the measurement path and the reference path 
over the 250 MHz frequency range is not possible with fixed networks. 
The quadrant select circuit together with the 180° and 90° networks 
select a quadrant such that the relative phase into the phase measuring 
circuit is within 180° ± 135° for both positions of the comparison 
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switch. Operation of the quadrant select circuit does not add to the 
measurement time since it operates during an early portion of the 
switching cycle before transients have settled to the point where precision 
phase measurements can begin. 

The pulse generators produce pulses on the positive zero crossing 
of the IF signals. The pulse from the measurement path generator 
starts the time interval meter measurement and the reference path 
pulse generator stops the time interval measurement. The time in­
terval is measured by counting the number of pulses from a 100 MHz 
source that occur between the start and stop pulses. In a single period 
the time interval meter can resolve. 0.1 ° 

(
h' 27.777 kHz 1 . d) 

t at IS, 100 MHz = 3600 peno . 

The opportunity for increasing the resolution exists in the system. 
(See Ref. 3 and the Appendix.) By locking the 100 MHz source to the 
1 MHz crystal source in the frequency synthesizer, by a proper choice 
of the intermediate frequency, and by taking 100 readings, resolution 
can be increased by a factor of up to 100. Because of compromises in 
this system, resolution was increased by a factor of about 20, to 0.005°. 

The time interval meter control provides gating and reset signals 
so that 100 readings can be taken and provides timing signals to the 
computer. Level dependence of the phase meter is not a problem 
since the loss balance made before phase measurements is within 0.01 
dB and the level-to-phase conversion of the pulse generators is less 
than 0.03° per dB. 

3.4 Signal Frequency Generation and Conversion 

Automatic control of signal sources and frequency converters pro­
vides operation over nearly seven decades. Fig. 6 is a simplified block 
diagram of the elements, including switches, for signal generation 
and conversion. 

3.4.1 Signal Oscillator and Local Oscillator 

The signal oscillator provides a sinusoidal (harmonics less than 40 
dB) test signal to the measurement and reference paths, and the local 
oscillator provides the signal to tune the heterodyne detector. Each 
oscillator is composed of a frequency synthesizer and a frequency 
multiplier (including filters) which together produce output fre­
quencies from 50 Hz to 250 MHz in response to digital signals. Be-
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FREQUENCY 
SYNTHESIZER 

I 

COMPARISON 
CIRCUIT 

/ 
/ 

~ 

I FREQUENCY 
f MULTIPLIER 

I 
LOCAL 

OSCILLATOR SYNTHESIZER 
DRIVER 

Fig. 6 - Frequency generation and conversion. 

Local oscillator 
Signal frequency Frequency Modulators frequency synthesizer 

range multiplier used offset (kHz) 

0.05-2 kHz Xl Ml, M2 97.223 
2-100 kHz Xl Ml,M2 527.777 
0.1-5 MHz Xl M2 27.777 

5-50 MHz Xl M3,M2 527.777 
50-100 MHz X2 M3,M2 527.777/2 

100-200 MHz X4 M3,M2 527.777/4 
200-250 MHz X8 M3,M2 527.777/8 

Local 
oscillator 
2 input 
(kHz) 

125 
500 

Local 
oscillator 

500 
500 
500 
500 

low 50 MHz, frequencies are set to a precision of 0.01 Hz within 1 ms 
after signalling. Above 50 MHz, frequencies are set to a precision 
ranging from 0.02 to 0.08 Hz within 10 ms. Absolute accuracies of the 
output frequency, frequency changes of either oscillator, and frequency 
differences between the two oscillators are all within 3 parts in 108

, The 
accuracy of these oscillators eliminate test frequency uncertainty as a 
source of measurement error and permit the use of very narrow detec­
tion bandwidths to reduce errors caused by noise. In the test set 
operation the oscillators are tuned while the previous data point is 
being read out so the 10 ms tuning period is negligible. 
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3.4.2 Frequency Converters 

The frequency converters must provide linear translation of the 
50 Hz to 250 MHz test signal to a fixed intermediate frequency of 
27.777 kHz and maintain a satisfactory signal-to-interference ratio at 
the output. 

Since level differences produced by the comparison unit (up to 
60 dB) are transmitted through the converters, all elements in the con­
verters including amplifiers and filters must be linear within 0.001 dB. 
To measure 20 dB loss to ±0.001 dB, the converter noise must be 
100 dB and spurious products 80 dB below the maximum linear output 
level. 

In order to achieve this performance, four bands were used. When 
two stages of conversion are used, the second local oscillator frequency 
is derived from the 11VIHz standard in the frequency synthesizer. This 
provides a final IF accurate to 3 parts in 108 and a precision within 
±0.04 Hz, the precision required for the phase measuring circuit. 

3.5 Impedance Measurements 
Impedance and return loss measurements on one port ( or terminated 

two port) networks can be obtained by making the appropriate con­
nections, making the required sequence of measurements, and proc­
essing the measurement data. The frequency range for these measure­
ments is from 50 Hz to 250 MHz. 

The three practical connections used for impedance measurements 
are shown in Fig. 7. The connections are implemented with such net­
works as a coaxial tee, connector boxes furnished with the test set, or 
other means such as hybrid networks. 

The measured transmission obtained when the network is connected 
has been shown to be a bilinear function of the network impedance.4 

If four measurements are made, one with the measured network and 
the other three with "known" impedance standards, the impedance 
of the network can be determined in terms of the impedance stand­
ards. 

The equations relating the measurements and the standards are: 

_ Detector voltage, switches in upper path. 
T:z; - Detector voltage, switches in lower path' 

Z:z; connected 
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SHUNT CONNECTION 

SERIES CONNECTION 

HYBRID CONNECTION 

Fig. 7 - Impedance measurements. 

Where: 

T", = Tz I ' 
Zs ..... co 

Zz - Z, 
pz = Z", + Z,· 

If an impedance standard Zs is used and T8 = Tz Izz-z. 

and 

Zz - Za (Tz - Ta)(T", - To) 
p= = 

Zz + Z,. (T", - T 8)(Tz - To) + (T8 - To)(T", - Tz) 

Accuracy of the method depends on the accuracy of the standards 
and on the accuracy of the individual transmission measurements. As 
indicated in these equations, the expressions for impedance and 
reflection coefficient involves differences in measurements, and the 
error in the computed result is a function of impedance as well. 
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Processing of the impedance measurement data can be done on the 
system computer (PDP-7) by replacing the operating program with 
one of the available conversion programs. These programs permit 
computation of real and imaginary components of impedance and the 
reactance for a series or parallel equivalent (two element) circuits. 
Angle and magnitude of reflection coefficient with respect to an 
arbitrary reference impedance can also be computed. Output from 
the program can either be on tele-typewriter or X-Y plotters. 

Some impedance measurement results are discussed in Section 6.2 
and illustrated in Figs. 21 through 23. 

3.6 Two-Port Measurements 

3.6.1 General 

Linear characterization of two-port networks can be obtained by 
connecting the device (for example, the transistor) to the appropriate 
jig or coaxial cable, making the required sequence of measurements, 
and processing the measurement data. Devices not requiring bias can 
be measured from 50 Hz to 250 MHz and devices requiring bias can 
be measured from 50 kHz to 250 MHz. The bias can be voltage-reg­
ulated from 0 to 150 volts or current regulated from 0 to 1 ampere. 
Transistor case temperatures can be controlled from 0° to 95° C for 
dissipation up to 10 watts. 

To the extent that the imperfections in the calibration standards 
and the capacitance added by the temperature control unit are ac­
curately known, it is possible to reduce the measurement data to 
device parameters which are independent of the measurement en­
vironment.5t 6 The data reduction program provides H, Y, Z, G, T, S, 

ABCD and (ABCD) -1 parameters with anyone of the three device ter­
minals grounded. The terminal grounded in the output parameters is 
not necessarily the same terminal which was grounded during the 
measurements. 

3.6.2 Measurement and Calibration Techniques 
The technique which is used to characterize two-port networks is 

obtained from four transmission measurements which are a com­
bination of two ordinary transmission measurements and two im­
pedance measurements (shunt connection) as described in Section 
3.5. Figure 8 shows the four connections needed for the measurements 
of forward and reverse gain and of forward and reverse bridging loss. 
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Fig. 8 - Transistor measurement technique. 

In automating this sequence of four measurements, the constraint was 
applied that dc bias paths through the measured device must not be 
interrupted during the sequence. This means that the minimum net­
work which can be measured when characterizing a transistor is that 
shown between ports 1 and 2. Even with an accurate test set, accurate 
device measurements can be made only if the complete network be­
tween the test set terminals is characterized or if the reference plane 
(ports 3 and 4) can be characterized. 

Each approach has been used in a previous implementation. In 
the first case, available 7 mm coaxial standards were used to calibrate 
ports 5 and 6 (Fig. 8).1 Then four jigs containing an open circuit, short 
circuit, reference impedance, and the measured device were succes-
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sively plugged in to obtain the necessary measurements. The dis­
advantage of this technique is that symmetry in the jigs must be 
assumed and that the device bias must be set four times. 

In the second case, 21 mm coaxial standards are used to calibrate 
ports 1 and 2 (Fig. 8).7 Other coaxial standards (0.054-inch bore) 
are used to characterize the network between ports 1 and 3, and 4 
and 2 at specified frequencies. When the device is inserted, the total 
network between ports 1 and 2 is measured and the device charac­
teristics are extracted by calculation. The disadvantages of this tech­
nique are that calibration data is only available at the specified fre­
quencies and that the network must be manually connected for each 
of the four measurements. 

3.6.3 Implementation of Automatic Two Port Measurements 

In order to automatically switch the network into the four meas­
urement configurations, considerable coaxial relay switching was 
required. The return losses that these relays present are low enough 
so that, when "seen" from the measurement ports 3 and 4, appreciable 
errors will occur if corrections are not made. It is also desirable to 
be able to measure at any frequency in the range thus ruling out 
calibration at a fixed number of points. 

It was decided to fabricate "small bore" standards to calibrate ports 
3 and 4. Short circuit and 50 ohm standards were developed and the 
open circuit "standard" is obtained by open circuiting the ports and 
correcting for fringing capacitance. A 50 ohm "strap" was developed 
to give "zero line" measurements for the forward and reverse gain 
measurements. The "strap" also is used to measure the impedance 
into port 3 with port 4 and vice-versa. Table III lists the measure­
ment and calibration sequence for characterization of a device. 

The same technique is used for coaxial unknowns (for example, 14 
mm connectors). Open, short, and 50 ohm standards are commercially 
available and the strap measurement is simply made by connecting 
the cables from the two terminals together. 

3.6.4 Data Reduction 

Reduction of the data obtained in the measurement sequence just 
described is a sizable data reduction problem. At present, measure­
ment data is processed on the IBM 7094 computer. 

The data reduction program first computes scattering parameters 
referred to the physical test set impedances. The next step is to trans-
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TABLE III - TRANSISTOR MEASUREMENT AND 
CALIBRATION SEQUENCE 

REQUIRED ELEMENTS 
Transistor sample and jig 
"Small bore" coaxial standards: 

50 ohm termination 
Strap 
Short 
Open 

MEASUREMENT PROCEDURE 

Test set calibration 

Insert Measure 

Strap 
FWD & REV gain, 

FWD & REV bridging 

50 ohm in port 1 
50 ohm in port 2 
Short in port 1 
Short in port 2 
Open in port 1 
Open in port 2 

Bridging* 

Transistor measurement 

Insert transistor, set bias I FWD & REV gain 
FWD & REV bridging* 

Number of 
measurements 

4 

2 
2 
2 
2 
2 
2 

6 

* Bridging measurements made with and without quarter wave networks inserted. 

form to scattering parameters referred to 50 ohms. This sequence is 
considerably simpler than initially calculating 50 ohm scattering pa­
rameters. The 50 ohm S-parameters can then be transformed into 
H, Y, Z, G, T, S, ABCD or (ABCD)-l parameters. 

A number of useful options are also included. The measurement 
plane for a measured device can be translated through an arbitrary 
length of 50 ohm transmission line. Capacitance in shunt with any 
pair of terminals (for example, the transistor temperature control 
unit adds about 3 pF from case to ground when used) can be removed 
by computation and either of the noncommon terminals in the meas­
urement can be made the common terminal in the output data. 

The derived parameters can be output in cartesian or polar co-
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ordinates or in magnitude (dB) and angle. The output data forms 
include both tabulated and plotted data. Some two-port measure­
ment results are discussed in Section 6.3 and illustrated in Figs. 
24 and 25. 

IV. OVERALL CONTROL DESCRIPTION 

4.1 Operating Description 

As Fig. 2 indicates, the primary means of input are the operator 
control panel (mode selector), the tape reader, and the typewriter. 
Inputs are also made from the computer console when loading tapes 
and in special instances such as maintenance tests. Output is obtained 
from the visual readout, X-Y plotters, tape punch, and typewriter. 

In some of the operating modes, information previously entered 
via the typewriter or tape reader is stored in computer memory and 
can be used to make or repeat a measurement sequence. In other 
modes, the information is not stored and must be reinserted for each 
measurement sequence. 

4.1.1 Operator Control Panel 

The operator control panel, or mode selector, is shown on Fig. 9. 
Switch positions provide for selecting the desired measurement and 
readouts. The panel also provides for operator interaction during a 
measurement. 

The frequency selection switch selects the method by which test 

Fig. 9 - Operator control panel. 
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frequencies are chosen. The frequencies may be a sequence read from 
punched tape, a linear or logarithmic sequence generated by the com­
puter, a list of frequencies internally stored, or single values entered 
on the typewriter. 

The RECORD switches are used to select the parameters to be meas­
ured. This provides independent selection of loss-gain measurements 
and phase or delay measurements. In the usual case the measured 
values are displayed on the output media. In the PROTOTAPE mode, 
the displayed values are the measured values minus the values stored 
in the paper tape. This, of course, provides the means to compare a 
measured network with either a previously measured physical proto­
type or a "mathematical" prototype. 

Visual readout is always provided. The OUTPUT MEDIA switches are 
used to select other desired readouts. The TAPE, TYPE, and PLOT switches 
provide output on the punched tape, typewriter, and X-Y plotters, 
respectively. The CORE switch provides output to the computer mem­
ory. On any measurement run, the contents of the core can be sub­
tracted from the run being made by operating the SUBTRACT CORE DATA 

switch. This is a very useful option. Some of its uses are illustrated 
in Sections 5 and 6 on measurement results and on measurement of 
test set errors. If none of the output media switches are operated, a 
state is produced where continuous measurements are made at the 
prevailing test frequency. 

Precision of the output data is controlled by two switches. The 
switch labeled CONST-F(L) determines whether the measurement pre­
cision is to be variable or constant. In the F (L) position, the output 
loss and phase data are the average of from 1 to 1024 readings. The 
number of measurements averaged is controlled by an input param­
eter. The precision in this case is variable and depends on the test 
signal level, the loss (or gain) of the measured device, and the number 
of measurements averaged. If CONST precision is desired, the maxi­
mum precision switch is used to select the loss precision. In this case 
the test set must average enough measurements to achieve the de­
sired precision (1, 0.1, 0.01, or 0.001 dB) and total measurement time 
will vary according to the number of measurements averaged. If the 
necessary averaging exceeds the allowed limit of 1024 measurements, 
the estimated precision will be typed out. 

The LEVEL switch provides manual control of the signal level into 
the device being tested. A programmed position is also provided to 
permit program control of signal levels. 

The START-RESTART, RUN, and REPEAT switches provide control over 
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the program. The switches permit the measurement run to be stopped, 
to be resumed, to return to the beginning with or without new param­
eter entry, and to repeat the measurement run one or more times. 

4.1.2 Parameter Insertion 

The parameters required for a measurement depend on the settings 
of the mode selector switches. For example, if a linear frequency 
sweep is selected, the minimum frequency, frequency increment, and 
maximum frequency must be stored in the computer. If plotting is 
to be done, scaling parameters must be stored. 

The initial input of a set of parameters is usually made with the 
typewriter. If a parameter change is being considered, the parameter 
code is typed in and the current value is automatically typed out. 
The parameter is either changed by typing in a new value or retained 
by typing the appropriate symbol. Typing the list request code will 
cause the entire parameter list and current values to be typed out. 

A parameter list can be retained for later use by typing in a "dump" 
code. The list is then stored on punched paper tape. When the meas­
urement is repeated, the list can be read in on the paper tape reader 
by typing in a "read tape" code. This appreciably reduces the meas­
urement set-up time. 

4.2 Program Description 

The stored program in the computer provides the necessary control 
for data input, processing, and output; for operation of the transmis­
sion measuring set; and for dialogue with the operator. The dialogue 
occurs when parameters are being entered, when networks are being 
connected for two-port measurements, and when trouble indications 
occur. 

4.2.1 Data Input, Processing, and Output 

Figure 10 is a block diagram showing the input-output options 
available for data used in the operation of the set. Measurement 
parameters are entered with the typewriter or tape reader. In a later 
stage of development, measurement parameters will also be entered 
from punched cards or magnetic tape.* 

The test frequencies are generated by the program from stored 
measurement parameters, stored test frequencies, or from specific 
frequencies entered by typewriter, card reader, or tape reader. 

* Dashed lines indicate not yet operational. 
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After each measurement, which may include delay calculations, 
core data is subtracted if indicated by the mode selector. Prototype 
values on tape or cards can also be subtracted before data is output. 

Output is always obtained visually and can also be obtained in core 
and on paper tape, typewriter, X-Y plotters, and magnetic tape. After 
output, the loop control returns the program to obtain new parameters 
or set a new test frequency. 

LOSS-PHASE SECTION TRANSISTOR SECTION 

FREQUENCY 
INITIALIZATION 

OUTPUTS 

Fig. 11- Control program. 

LOOP 
FOR N 
FREQU­
ENCIES 

I 
I 

END OF MEASUREMENT 
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4.2.2 Control Program for Test Set Operation 
Figure 11 is a flow chart of the test set control program. Selection 

between the loss-phase section and the transistor section is made by 
choice of program starting address. The loss-phase section provides 
the subroutines for parameter entry, measurement, and data output. 
Notice that the frequency updating (change to a new frequency) oc­
curs before data output. This gives a maximum time for the measured 
circuit to reach steady state before the next measurement. 

The transistor section of the program provides the necessary con­
trol of switching, generates instructions for the operator, and pro­
vides the necessary connections to the subroutines in the loss-phase 
section. After entering the transistor section, there is the option of 
using permanently stored parameters or manually entering param­
eters. The next option is that of calibrating or not. Calibration is 
required if maximum accuracy is needed but adds 16 measurements 
at each frequency. With either option, the typewriter types instructions 
to indicate the standard or unknown network to be inserted and the 
particular connection to be made. The computer also makes the 
necessary connections in the measuring circuit. When the unknown 
is connected, six measurements are made (only four independent) 
and the four which provide the most accurate data are saved. Data 
is normally output on punched tape for subsequent processing to pro­
duce corrected, two-port parameters. 

v. MEASUREMENT ERRORS 

Measurement errors are evaluated in two complementary ways. 
The first is to directly evaluate each error-producing element in the 
system. The second is to measure networks with predictable properties. 
If the second group of measurements gives satisfactory results, con­
fidence is gained that all of the important elements were evaluated in 
the first group. 

5.1 Test Set Errors 
The error sources in the test set that must be considered are: spu­

rious signals, amplitude compression, mistermination errors, errors in 
standards, errors in detectors, circuit drifts, switching transients, and 
quantization errors. In order to measure these error sources efficiently 
and to approach the ideal of complete self-testing as closely as pos­
sible, measurements are made automatically on the test set wherever 
practical. 
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One example of automatic measurement of error sources is in the 
measurement of spurious signals. Any spurious signals present at the 
inputs of the loss detector or phase detector and some types of spu­
rious signals at the inputs to nonlinear system elements can cause 
measurement error. Spurious signals considered are crosstalk, noise, 
modulation products, power frequency pickup, and test signal har­
monics. 

By the introduction of several auxiliary circuit elements in the 
test set transmission paths (Fig. 12), spurious products such as cross­
talk, noise, 60 Hz harmonic pickup, and IF carrier leak as small as 
100 dB down can be automatically measured and plotted as a func­
tion of frequency and level configuration. With the connections, A-A', 
the converter and IF circuits are evaluated; with the connections 
B-B', the RF circuits are evaluated. 

Figure 13 plots the detector signal to interference ratio for a partic­
ular system configuration. For the range where the ratio is above 80 
dB, random and systematic errors for low losses will be less than 
0.001 dB and 0.010 (neglecting other error causes). Techniques have 
also been devised to automatically measure the other listed error 
sources with the test set. 

5.2 Impedance Measuring Errors 

Accuracy of the impedance measurements derived from transmis­
sion methods (Fig. 7) depends upon test set accuracy and accuracy 
of the impedance standards. 

An error is made by the test set when each of the four transmission 

Fig. 12 - Measurement of spurious products. 
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Fig. 13 - Test set signal to interference ratio. 

measurements (that is, unknown and three standards) is made. These 
errors depend on the impedance of the unknown and are caused 
primarily by test set noise and finite measurement precision. The 
expression for the error in the calculated reflection coefficient resulting 
from test set errors is given in ref. 6. For the case of measuring a small 
reflection with a coaxial tee, the error, t:.p, is typically less than 0.004. 

The unknown is defined in terms of the standards used. Imperfec­
tions in the standards therefore cause errors unless the standards are 
adequately characterized. At high frequencies, characterization of the 
standards includes making a precise definition of the measurement. 

When appropriate coaxial connectors are used to connect coaxial 
unknowns and standards, the reference plane and the measurement 
are well defined. In the case of unknowns with pig tail leads, the meas­
urement is not well defined unless the unknown and the standards 
have precisely the same geometry so that field patterns are identical 
in the four measurements. If the geometries are not uniform, the un­
known and standards can be placed in a shield but then the resulting 
parasitics must be estimated. 

5.3 Two-Port Measurement Errors 

Errors in determining two-port parameters include errors in meas­
uring impedance as well as errors in measuring transmission. In the 
data reduction program used, two-port measurement data is always 
reduced first to S parameters (50 ohm reference). The first order error 
expressions for the S parameters are given in Ref. 6. 

A worst case error for the s parameters of a precision air line 
would be: 

I ~81l(50, 50) I 

I 
~821(50JO) I 

821(50, 50) 

I ~822(50, 50) I ~ 0.004 

I 
~812(50, 50) I 

812(50, 50) ~ 0.002. 
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Estimation of errors in the s parameters is tedious, even when using 
a worst case estimate. The most promising approach advanced so far 
is to calculate errors by modifying the data reduction program. In the 
modified program each measured value obtained in the measurement 
sequence would be perturbed a small amount to obtain the parameter 
sensitivities to the measurement. Then the known systematic errors 
and the calculated random error (a standard test set output) would be 
applied to the sensitivity factors already obtained. Proper summing 
of the error terms would then give a good estimate of the parameter 
error expectation. 

Two-port measurement data obtained so far indicates errors that 
are perhaps one fourth of the worst case errors indicated by the 
formulas just referred to. 

VI. MEASUREMENT RESULTS 

As indicated previously, the basic quantities measured by the 
transmission measuring set are insertion loss (or gain) and insertion 
phase shift as a function of frequency. Insertion delay, impedance, 
and two-port parameters are quantities derived from transmission 
measurements. 

6.1 Transmission Measurements 

Ideally, transmission measurement accuracy would be confirmed 
with measurement standards whose properties were precisely known. 
No complete set of standards exist, but some networks are available 
where knowledge of their behavior gives reliable indications of the 
test set precision and accuracy. 

6.1.1 Precision Coaxial Attenuators 

The uniform transmission properties of precision coaxial attenuators 
over the low frequency range makes possible meaningful comparisons 
between dc and ac measurements. A 6 dB and 14 dB attenuator were 
measured individually and in tandem on the test set and compared with 
measurements made on a dc ratio bridge capable of 0.0001 dB accuracy. 

Results of the measurements are given on Figs. 14 through 17. Figure 
14 shows the discrepancy between two measurements of the same 6 dB 
attenuator taken 15 minutes apart. Figures 15 and 16 give the data 
for the individual measurements on the 6 dB and 14 dB attenuators. 
In midband, discrepancies between ac and dc loss values are less than 
those which occur with a 2°F change in ambient temperature. Midband 
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Fig. 14 - Repeatability of 6 dB pad measurements. 

phase shift of the attenuators is within ±O.OI° of zero. Figure 17 shows 
the discrepancy between the sum of the 14 dB and 6 dB measurements 
and the measurement of the two attenuators in tandem. 

Errors are seen to increase at the low frequency end of the test set 
range. The error magnitudes correspond to signal-to-interference ratios 
measured over the same range by the method described in Section 
5.1.2. The deviations at the high frequency end in Figs. 15 and 16 result 
primarily from changes in the insertion loss and phase of the attenuators. 
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6.1.2 Precision 30 cm Air Line 

I 

A well-made precision air line is essentially ideal up to 250 IVIHz 
except for skin effect loss. The 30 cm line was first measured at a list 
of frequencies for comparison of measured loss and phase shift with 
theoretical values, Table IV gives this data. The discrepancies above 
100 MHz are within the variation which could be caused by the ±0.02 
cm tolerance in line length. 
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Fig. 17 -14 dB and 6 dB coaxial pad addition. 
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TABLE IV - PHASE MEASUREMENTS ON PRECISION 

30 eM AIR LINE 

Phase 

Frequency Measured Calculated* 
(Hz) Om (degrees) O. (degrees) o. - Om 

27,777.77 -0.01 0.0115792 0.02 
55,555.55 0.02 0.0222333 0 
83,333.33 0.04 0.0327353 -0.01 

111,111.11 0.05 0.0431584 -0.01 
138,888.89 0.05 0.0535312 0 

166,666.67 0.06 0.0638682 0 
194,444.45 0.09 0.0741732 -0.02 
222,222.23 0.07 0.0844666 0.01 
250,000.01 0.08 0.0947376 0.01 
277,777.79 0.12 0.1049939 -0.02 

277,777.78 0.09 0.1049939 0.01 
555,555.56 0.21 0.2070624 0 
833,333.34 0.29 0.3086497 0.02 

1,111,111.12 0.41 0.4099878 0 
1,388,888.90 0.51 0.5111667 0 

1,666,666.68 0.62 0.6122325 -0.01 
1,944,444.46 0.70 0.7132126 0.01 
2,222,222.24 0.80 0.8141248 0.01 
2,500,000.02 0.91 0.9149817 0 
2,777,777.80 1.02 1.0157921 0 

2,777,777.78 1.02 1.0157921 0 
5,555,555.56 2.02 2.0223333 0 
8,333,333.34 3.02 3.0273524 0.01 

11,111,111.12 4.04 4.0315841 -0.01 
13,888,888.90 5.04 5.0353121 0 

16,666,666.68 6.02 6.0386825 0.02 
19,444,444.46 7.04 7.0417819 0 
22,222,222.24 8.04 8.0446667 0 
25,000,000.02 9.06 9.0473762 -0.01 
27,777,777.80 10.05 10.0499389 0 

27,777,777.78 10.06 10.0499389 -0.01 
55,555,555.56 20.08 20.0706242 -0.01 
83,333,333.34 30.09 30.0864966 0 

111,111,111.12 40.09 40.0998777 0.01 
138,888,888.90 50.13 50.1116667 -0.02 

166,666,666.68 60.15 60.1223247 -0.03 
194,444,444.46 70.17 70.1321258 -0.04 
222,222,222.24 80.20 80.1412484 -0.06 
250,000,000.02 90.22 90.1498166 -0.07 

* ()e 90/250 FMHz + 0.134 (FMHz/200)!. 
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Fig. 18 - Effect of loss on fixed and random phase errors; -20 dEm loss 
level, 16 measurrnents averaged. 

The same line was remeasured in tandem with 20 dB and 40 dB of 
loss. Figure 18 shows the effect of loss on the fixed and random phase 
errors. Figure 19 shows a curve of the measured delay of the line. The 
±0.01 nsec variation in the measured value corresponds to a ±O.Olo 
phase error with the 5 MHz frequency interval used. 

6.1.3 9 MHz Band Pass Crystal Filter 

Networks with especially "difficult" properties also provide useful 
information on the test set capabilities. Phase measurements in the pass­
band of a 9 MHz filter with a 3 kHz bandwidth are especially sensitive 
to FM in the signal source. 
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Fig. 19 - Measured delay, of precision 30 cm air line. 



1370 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969 

The upper curve on Figure 20 shows the measured delay of the filter 
with an in-band delay of about 0.5 ms. The lower curve shows the 
difference of two successive delay measurements. Mid-band values 
repeat to ±0.001 ms, or ±0.02° with the 100 Hz frequency interval used. 

6.2 Impedance Measurements 

Resistors, capacitors, and inductors were measured to confirm the 
accuracy of impedance measurements. In the results given, the 50 
ohm terminals and a 50 ohm impedance standard were used. The 
results were compared with measurements made on precision bridges. 

Resistor measurements were made from 2 kHz to 10 MHz. For resis­
tors (pigtail) of 100, 400, and 2500 ohms, the measurements are as 
shown in Fig. 21. The maximum deviation from the dc value of the 
resistors is less than 0.1 percent. 

Capacitors with nominal values of 10, 100, 1000, and 10,000 pF 
were measured in the 2 kHz to 3 MHz range which provided a re­
actance range from 50 ohms to 500 k ohms. These results were com­
pared with bridge measurements made at 100 kHz (less than 0.1 
percent error) and the results are shown in Fig. 22. 

Inductors with nominal values of 0.3, 1, 10, 100, and 1000 ph were 

1.6 

1.2 

en 
Cl 0.8 
z 
o 
u 
w 
en 
j 0.4 

::2' 

~ 0 
uJ 0.0 1 
Cl 

. 

• . 

. . . . . 

. .. . . 
o . 

-0.01 
8.99825 

• . . 
• . 
• . . 

.. . .... . 

..... 
• .. 

• .. . . 
• •• 4 ..... ...... . ..... - ,. ........ ~ ..... .... ' 

. ... . . ........ -or ... . . -.' .. '.' .. . , . .... 

8.99925 9.00025 
FREQUENCY IN MHz 

Fig. 20 - Measured delay of narrow band crystal filter. 

. . . . . . . . . 

. ........ ,. 

9.00125 



TRANSMISSION MEASURING 

z 
o 
~ o.151---+---+-+--+--1--_f_-+_-+-___�_--+---4---I 

:;: 
WUJ 
e ::J 0.10 1---+---+-+--+---iI--_f_-+_-+-___I_--+---4---I 
w..J r--
~ ~ ?---t:::: ~ 
~~0.051---t---+-~~---i1---f--+--+----I---+---b~/~·· 
u, '" ~....-" 
(ij~ 1000~' ~t'-..4000 /.~~'- L. 

~ ~ 0 I "I\~ .-~i!)=."""""F~:.r--+~--+---+---i """"-II 

gLL i'~tS/.,. 25000 

~ -0.051---+----I---t---l--t-_t_-+---+--+--t--_f_----l 
W 
0.. 

FREQUENCY IN Hz 

Fig. 21- Deviations of measured resistance from dc values. 

1371 

measured in the frequency range from 3 kHz to 10 MHz over an 
impedance range from 0.006 to 600 ohms. The results are shown in 
Fig. 23 with the indicated deviations being from bridge measurements 
(less than 0.05 percent error) . 

Typical agreement between impedance measurements on the set 
and the bridge is within 0.2 percent in favorable impedance ranges 
and the worst errors are less than 1 percent. 
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6.3 Two-Port Measurements 

As an example of two-port characterization of a precise network, 
a precision 30 cm air line was measured.G Deviations of the measured 
characteristics from an ideal line result from measurement errors 
and skin effect. To emphasize these deviations, the characteristics of 
an ideal 30 cm line were mathematically removed from the measured 
data during processing. Figures 8 through 11 of Ref. 6 show the 
measured characteristics (normalized) compared with theoretical 
values. The 812 curves show the 0.001 dB and 0.010 resolution of the 
test set. Figure 24 shows curves of \811\ and \812\ for the same air 
line. The solid lines are the same as in the previous curves and the 
broken lines show the results that would be obtained if corrections 
were not made for test set misterminations. 

Transistor characterization data is shown in Fig. 25. In this case, the 
transistor was measured in the common emitter, common base, and 
common collector modes and data from all three sets of measurements 
were transformed to common emitter h parameters. The curves shown 
are for magnitude and angle of h21 (beta). 

VII. FURTHER DEVELOPMENT 

The speed and flexibility of the computer operated transmission 
measuring set offers the opportunity for further development in a 
number of areas. Those being considered include increasing the fre­
quency range, provision for measurements under environmental con­
trol and at remote locations, development of fault detection and loca­
tion tests, and provision for interaction with a larger computer. 
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7.1 Additional Measurement Capabilities 

One applique now under development will measure networks placed 
in an environmental chamber having temperature and humidity con­
trols. After the environmental conditions have stabilized, computer 
control will transfer the necessary portions of the basic test set to the 
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applique for making measurements during idle periods on the basic set. 
The applique will have a 50 Hz to 250 MHz frequency range. 

Other appliques are being developed to provide transmission meas­
urements in the three microwave radio bands at 4, 6, and 11 GHz. 
These appliques will provide the microwave sources, control and 
switching, and down-converters. In the applique mode, about 80 per­
cent of the basic set hardware is used. 

Figure 26 is a block diagram of the 4 GHz applique which was 
recently completed. 

A remote unit has been developed to permit transmission meas­
urements hundreds of feet away from the basic set. Capabilities are 
not fully evaluated but 0.01 dB accuracy has been obtained over a 
100 kHz to 100 MHz band at a distance of 275 feet from the basic 
set. Capabilities of the environmental applique and microwave ap­
pliques are estimated to be about 0.005 dB and 0.03°. 

In the completed measurement center consisting of the basic set 
and appliques, it is planned to store data and control programs on a 
magnetic tape system. Then operation can be transferred from one 
applique to another in a few seconds. 

7.2 Al aintenance Tests 

The question of test set accuracy is raised not only when a test 
set design is proven, but is a continuing question. The increased work 
load on the measurement center and the increased complexity of the 
total system inherent in the applique approach makes rapid and 
reliable fault detection and location vital. It is planned that the com­
puter will enter an automatic test sequence whenever the measuring 
sets are idle. The test sequence would include tests for the computer 
as well as for the measuring sets. 

7.3 Frequency Extension 

Modular components are now available which will permit extension 
of the basic set operation up to 1000 MHz. Transmission circuits and 
frequency multipliers have been modified to operate to 1000 MHz, 
and a frequency converter to operate from 5 to 1000 MHz is being 
developed. 

7.4 Computer Interaction 

Coupling the measurement center to a larger computer via a data 
link is being considered. Two benefits of this connection are appar~nt. 
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Fig. 26 - Extension of automated measurements to microwave frequencies. 

The processing of two-port parameters now involves a considerable 
turn-around time. Direct connection to a larger computer could 
provide processed data in a few minutes. The problem of adjusting 
networks (particularly with interacting adjustments) might be sub­
stantially simplified if measurement data could be processed by a 
larger computer and adjustment information be returned to the test 
set. 

VIII. SUMMARY 

The computer-operated transmission measuring set provides high 
accuracy over a wide range of levels and frequency. The memory, 
control, and data processing capabilities of the computer provide the 
means to improve accuracy, operate at high speed, and provide 
versatility in the forms of output data. 

The measurement capability of the set will make measurements an 
increasingly important part of the transmission system design process 
and, along with design aids such as computer analysis and modeling, 
improve the quality of systems being developed. 

The flexibility inherent in the computer-operated set provides the 
opportunity for further development to increase its capability. 
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APPENDIX 

Increased Resolution in Time Interval 
111 ethod of Phase ill easurenwnts 

A.I Basic Measurement 

A simplified block diagram of the time interval method of phase 
measurement is shown in Fig. 27. The measurement desired is (}2 - (}1 • 

The pulse generators detect zero crossings; the first zero crossing occurs 
at tl = (}t/ WI , the second at t2 = (}2/ Wl • The exact time interval, At, is 

or in degrees 

/1 t = CP2 - CPl. 
360/1 

To measure the interval At with a counter using the pulse source F., 
the number of pulses, n, gated into the counter are: 27r(n ± 1) = w.At. 

s 

R 0 

Fig. 27 - Time interval method of phase measurement. 
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Then: 

<P2 - <PI = 360 f (n ± 1)°. 

For the case where Is = 100.MHz and 11 = 27.777 kHz, 

<P2 - <PI = O.h~O ± 0.1°. 

This gives a resolution of 0.1 0. 

A.2 Vernier Technique 

It will be shown that if 18 and 11 are suitably related in frequency, 
multiple readings will provide increased resolution. 

The circuit above can be modeled by integrating the product of two 
time functions. The gate opening is represented by I (t), where 

f(t) = {I Ktl ~ t < Ktl + D.t 

o K tl + D.t ~ t < (K + 1) tl 

and where 

T = the total measurement period 

K = 0 1 2 ... (I - 1). 
, " 'tl 

The pulse train from the source F 8 is represented by 9 (t), where: 

'" 
get) = L oCt - To - mT) 

and where: T = 1/18 and To accounts for the relative phase between 
l(t) andg(t). 

The total number of counts into the counter is represented by N, 
where 

N = iT f(t)g(t) dt. 

If we let the ratio of tIlT be I and I is an integer, the resolution (as 
in Section A.1) will be 360°/1. Integrating the product of I (t) and 
9 (t) we obtain, 

(Tlt,-I) fKtl+At '" 

N = L L o(t - To - mT) dt. 
K=O Kt, m=o 

It is convenient to let m = m' + Ktr/T = m' + KI, where m' in-
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dexes the delta function relative to the beginning of each gate opening. 

(T/IT-l) fKIT+l1t co 

N = ~ KIT ]; oCt - To - (m' + KI)T) dt. 

In each integration, the delta functions will contribute when KI T ~ 

To + m'T + KIT < KIT + At, or - (To)/T ~ m' < (At)/T, which is 
independent of K. Thus the average of multiple readings will be the 
same as one reading. An example will illustrate this. If t1/T = I = 3600 
and At = 1.5r(that is, 0.15°), two cases are evident, as shown by Fig. 28. 

In the first case there will be one count during each opening and in 
the second there will be two counts during each opening. Since the gate 
opening is periodic in t1 , the count will not vary and the reading will 
be At ± 0.5r. 

H the ratio of tdT is varied so that the measurement is periodic in T, 
the precision is increased by T /t1 . In this example, during each counting 
period the delta function will move (t1/ T)r seconds relative to f(t) or a 
total of r seconds during the measurement. This will provide a count 
of 1 during half the periods and a count of two in the other half. The 
average will be the correct number of 1.5. 

To show this in the analysis, we define a slightly different frequency 
f: in the pulse source frequency so that t1/T' = 1/(1 + s), where s is 
a term to give t1/ T' a noninteger value. As before, T /t1 has an integer 
value. Then 

co co 

g'(t) = 2: oCt - ro - mr') 2: oCt - To - mr(1 + s)) 

f (t) t 

li--------A t----...-~---j 
o r 2r 3r 

~ 

t 

g(t)! 

~_ --':"~-----'-;I~-----I..~L--_---l~:.J-.,. CASE 1 

~--To--+---T ___ ~ t 

! ~ CASE 2 

~---T---~ t 

Fig. 28 - Example of average multiple reading being the same as one reading. 
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and 

N' = iT f(t)g'(t) dt 

(TilT-I) fKIT+t.1 co 

= L: L: oCt - To - mT(l + s)) dt. 
K-o KIT 

By substituting m = m' + KI as before and letting s = TIT = tIl (IT) 

(TIlT-I) fKIT+t.1 co ( ( t)) 
N' = ~ KIT ~ 0 t - To - (m' + KI) 1 + /T T dt. 

The delta functions make contributions when 

KIT ~ To + (m' + KI) (1 + Jr) T < KIT + ilt. 

Solving for the integers m', two inequalities are obtained. 

and 

~-K!l 
-T T 

m'~----

1+-.! 
T 

ilt _ !!!... _ K!l 
m' < T T T 

1+-.! 
T 

(1) 

(2) 

(3) 

For the ranges 0 ~ (To)IT < 1 and 0 ~ K ~ [(T It l ) - 1], the values of 
m' provided by equation 2 are: 

m' ~ 0 for all K 

m' = -1 for K ~ r (1 + -.! - ..!.2.). 
- tl T T 

Equation 3 depends on the measured quantity At and on the counting 
period, I{. Using the previous example where tt/T = 3600 and AtlT = 
1.5 assume that T Ih (the increase in resolution) = 100 and that TolT 
=,0.5. 

Then from equation 2, 

m' ~ 0 for 0 ~ K ~ 99 
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m' ~ -1 for 51 ~ Ii ~ 99. 

Then the sum of the integrals yield 

N' = 100(1) + 49(1) = 149 for an average of 1.49 counts. 
~ ~ 

m'-O m'--l 

As another example let t"liT == 3600, TIt! == 100, (To) IT == 0.9, and 
(.6.t) IT == 3599.9 (that is, 359.990). 

Then from equation 2 

m' ~ 0 

m' ~ -1 

And from equation 3 

for all K 

for 10 < K < 99. 

m' = 0, 1, ... ,3598 for all K. 

Then the sum of the integrals yield 

N = 100(3599) + 89(1) 100(3599.89) 
~~ 
m' =0 to 3598 m'==-l 

K>10 

for an average of 3599.89 counts. 
In each case the resolution is increased from 0.10 to 0.0010. 
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Sun Tracl(er Measurements of Attenuation 
by Rain at 16 and 30 GHz 

By ROBERT w. WILSON 

(Manuscript received November 28, 1968) 

This paper describes an instrument for measuring attenuation statistics 
on an earth-space path simultaneously at 16 and 30 GHz; the high attenua­
tions result from heavy rain. The sun is used as a signal source during the 
time of day when the sun ordinarily is visible; a 11wasuring range of more 
than 30 dB is achieved at both frequencies. The brightness temperature of 
the atmosphere also is measured both day and night. At night the antenna 
beam is stationary on the local meridian. Daytime brightness temperatures 
in conjunction with direct attenuation measurements are used to determine 
the equivalent absorber temperatures which are necessary for the reduction 
of night brightness temperatures to attenuation values. This paper discusses 
the measurements made during the first 12 months of operation and gives 
statistics of these measurements and an analysis of errors in the system. 

1. INTRODUCTION 

The advent of high performance booster rockets makes it possible 
to put very high-capacity microwave repeaters in synchronous orbit, 
possibly resulting in low cost per channeP The large bandwidth re­
quired for such a system is in direct conflict with the crowded condi­
tion of the microwave spectrum below 10 GHz. vVe must therefore 
consider the possibility of operating such a system at frequencies above 
10 GHz and must assess the magnitude of large attenuations which 
may be caused by heavy rain. Estimates based on attenuations for 
surface rainfall conditions2 and models of the structure of rain storms 
indicate that such a system is feasible,3 but direct measurement of the 
attenuation statistics is necessary.* 

* The overall plan for a system calls for ground-station space diversity, but 
that is not discussed here. 

1383 
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The apparatus described in this paper has been set up at Crawford 
Hill, Holmdel, New Jersey, to measure the attenuation statistics of an 
earth-space path at 16 and 30 GHz using the sun as a signal source. 
At night the same equipment monitors the temperature of the antenna 
with the beam in the local meridian. Attenuations up to about 10 dB 
can be deduced from these temperatures. Attenuations of greater than 
30 dB can be measured in the sun-tracking mode; the output time 
constant is two seconds so that even relatively fast fades can be fol­
lowed.t Daily cycling of the equipment is automatic and sun co­
ordinates are stored for a wl"ek's unattended operation. The sun 
tracker has been measuring at 30 GHz since October 1967 and at both 
16 and 30 GHz in almost continuous operation since December 1967. 

II. THEORY OF OPERATION 

At 16 and 30 GHz the sun is transparent down to the lower chromo­
sphere so the radiation temperature is fairly constant with time and 
fairly uniform across the disk of the sun. The value of the disk tem­
perature is about 11,500oK at 16 GHz and 7,500oK at 30 GHZ.4 

If an antenna is pointed at the sun, the increase in antenna tempera­
ture because of the sun Til is given by the product of the disk temperature 
of the sun and the fraction of the antenna's response which the sun 
subtends. At 30 GHz somewhat less than half of the response of the sun­
tracker antenna falls on the disk of the sun, so Til ~ 3000°1(, If the 
remainder of the antenna's pattern is directed to cold space, the total 
antenna temperature will equal T • . If we introduce a uniform lossy 
medium of transmission coefficient t and physical temperature T t be­
tween the antenna and the sun, the antenna temperature (Ta) will be 
changed from T. to 

(1) 

where radiation from the attenuating medium takes the place of some 
of the radiation from the sun. In our case To is the temperature of 
some component of the earth's atmosphere (in particular, rain) and 
will be about 270oK; but we are not able to measure it directly. For 
attenuations greater than about 12 dB, the second term of equation 
(1) will dominate and a simple measurement of antenna temperature 
therefore would not provide a linear measurement of attenuation; for 
attenuations greater than about 20 dB the errors resulting from the 

t If the signal going into a 2 second time constant is rapidly reduced to zero, 
the output drops at 2.2 dB per second, whereas if the signal is rapidly increased 
the output comes within 2 dB of the final value in 2 seconds. 
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unknown value of To would start to be significant. In the sun tracker 
these problems are solved by having the antenna's main beam scan 
on and off of the sun at a 1 Hz rate with an angular excursion of 2.6°. 
When the beam is 2.6° away from the sun, virtually the only radia­
tion is that of the attenuating medium and 

(2) 

The output of the receiver is sampled during the time the antenna is 
pointed at the sun and when it is pointed away from the sun; thus a 
difference voltage is generated. By subtracting equation (2) from (1), 
one sees that this voltage is proportional to tTs. As long as Ts is con­
stant any changes in the difference voltage can be interpreted as 
changes in t; thus, it is not necessary to know Ts in any absolute 
sense, just as a reference level at the radiometer output. In the sun 
tracker the difference voltage is passed through a logarithmic converter 
and presented on a chart recorder so the attenuation can be read di­
rectly in dB. 

At night the sun is not available and only equation (2) can be used 
as a measure of attenuation. In this case a Dicke switch is used and 
the temperature of the antenna is subtracted from the temperature of 
a reference termination at about 290°1(, The quantity plotted on the 
chart recorder is 

t1T = 290°I( - (1 - t)Tc . 

Uncertainties in the value of To limit the range for which t can be 
recovered to about 10 dB in this mode of operation. 

An additional output is obtained during the daytime by using the 
Dicke switch to connect the input of the receiver to the reference 
termination during the transition portion of the scanning cycle, that 
is, when the main beam is neither fully on nor off of the sun. A radi­
ometer output similar to that in the nighttime operation is obtained 
by comparing the off-sun antenna temperature with the reference 
termination temperature. From the simultaneous measurements of 
Ta and t, To can be calculated. 

III. EQUIPMENT 

Figure 1 shows the physical layout of the equipment. A five-by­
nine-foot plane reflector is mounted as a polar heliostat to reflect the 
sun's rays in the direction of the earth's north polar axis. A four-foot 
aperture conical horn-reflector antenna looks south along the same 
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Fig. 1-View of sun tracker from southwest showing equipment cab, horn 
reflector, and polar heliostat flat. 

axis and collects most of these rays. The hour-angle motion for track­
ing the sun during anyone day is provided by driving the reflector 
about its polar axis at a 24-hour per revolution rate. This tracking 
motion is automatically started each morning from an approximate 
starting position when the read-outs indicate a coincidence between 
the antenna beam and the ephermeris positions of the sun for that 
day. The seasonal motion of the sun (in declination) is corrected 
daily by motion of the reflector about its declination axis at half the 
angular rate. A motor-driven lead screw is automatically energized 
for a timed interval each morning to provide the required motion. The 
declination axis of the reflector is also used for the 1 Hz scanning 
motion mentioned in Section II. The upper end of the declination 
lead-screw connects to a crank shaft which is turned at about 1 Hz 
in the sun tracking mode of operation. A resolver, turned by the same 
shaft, generates timing signals for the radiometers. 

The output of the horn-reflector antenna is in a circular waveguide. 
One linear polarization is split off by a polarization coupler for the 
16 GHz receiver and the orthogonal polarization passes through a 
waveguide taper to the 30 GHz receiver. Figure 2 is a block diagram 
of the radiometer system. 
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The balanced Schottky-barrier-diode mixers have broadband input 
circuits allowing double sideband response and are directly connected 
to transistor IF preamplifiers. The resulting down converter has a 
low noise temperature (T,o) which varies somewhat over the IF band­
pass of the system with a broad minimum around 70 MHz. The gain 
has a 6 dB per octave slope characteristic of high frequency transistors 
operated in the f3 cutoff region. The equalizer following the second 
IF amplifier changes the sloping frequency response of the system to 
a weighting function [gain a{To/Tr)2] which minimizes the fluctua­
tion level at the output of the square law detector when referred back 
to the input temperature. The weighted average double sideband noise 
temperature of the receivers is 840 0 K at 30 GHz and 13000 K at 16 
GHz. The noise bandwidth exceeds 200 MHz in both cases. The noise 
temperatures of the receivers are degraded in the radiometer system 
by the combined loss of about 1 dB in the calibrating attenuator and 
switchable circulator. 

The operating cycle of the radiometer, when tracking the sun, is 
shown in Fig. 3. The top curve shows the declination of the antenna 
beam as a function of time; the second curve shows the resulting out­
put of the square law detector of the 30 GHz receiver. The third 
curve shows the drive to the circulator switches which connect the 
receiver inputs to the room temperature reference terminations dur­
ing the quarters of the cycle while the declination is changing rapidly. 
This switch causes the shoulder in the second detector output. The 
fourth curve shows the drive to the main sampling difference detectors. 
Positive sampling occurs during the quarter of the cycle when the 
beam is closest to the sun and negative sampling during the quarter 
cycle when the beam is farthest from the sun. The positive and nega­
tive samples are stored on separate capacitors with a charging time 
constant of 0.5 second. 

The sampling duty cycle of 14 gives a speed of response equivalent 
to a 2-second time constant. The fifth trace shows that the logarithmic 
converter (Fig. 2) operates on the output of the 30 and 16 GHz sam­
pling difference detectors alternately during the remaining two quar­
ters of the cycle. The sixth curve shows the drive to the radiometer 
sampling difference detector; it samples positively when the receiver 
is connected to the room temperature termination and negatively while 
the main beam is pointed away from the sun producing an output 
proportional to AT of equation (3). 

The last trace shows the drive to the automatic gain control sam­
pling circuit. The action of the automatic gain control is to adjust the 
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IF variolosser as necessary to keep the output level of the receiver at 
a fixed value during the portion of the cycle that its input is con­
nected to the room temperature termination. An integrator in the 
automatic gain control amplifier prevents the gain from changing 
rapidly. Dead times in the cycle have been exaggerated for clarity in 
the figure. 

DECLINATION OF 
ANTENNA BEAM 

OUTPUT OF 
SECOND 

DETECTOR 
(30 GHz) 

DECLINATION 
OF SUN 

DECLINATION 
OF SUN +2.6° 

Ts+Ta+Tr 

SWITCHABLE TEMPERATURE 

{

ROOM 

CIRCULATOR TERMINATION 
ANTENNA 

SA~~L~NG { + 
DIFFERENCE OPEN 
DETECTION 

DRIVE 

LOG {CONVERT 30 GHz 
CONVERTOR 

INPUT CONVERT 16 GHz 

RADIOMETER{ + 
D~:F~~~~CGE OPEN 
DETECTION 

AUTOMATIC { 
GAIN CONTROL SAMPLE 

SAMPLE HOLD 
AND HOLD 

o 
TIME IN SECONDS 

Fig. 3 - Switching cycle of sun-tracker radiometers. 

2 
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During nighttime operation the antenna beam is pointed to the 
meridian at the declination the sun had the previous day. The switch­
able circulators are operated as Dicke switches at about 2 Hz and 
the sampling difference detectors operate as phase sensitive detectors 
with blanking at the switching time. Their outputs go directly to the 
hold circuits which drive the recorder. 

Various parameters of the system are summarized in Table 1. The 
temperatures quoted refer to the antenna terminals. Room tempera­
ture and liquid nitrogen cooled absorbers are used as temperature 
standards at 30 GHz and a noise lamp and a room temperature 
absorber are used at 16 GHz. 

IV. CLEAR WEATHER ATTENUATION 

The antenna temperature (pointed away from the sun) has been 
measured as a function of elevation on a typical clear winter day 
(+3°C, 60 per cent relative humidity) and again on a hot summer day 
(37°C, 52 per cent relative humidity). Values of 8.3° and 17.1 ° K per 
atmosphere at 30 GHz and 4.1 ° and 7.8°K per atmosphere at 16 GHz 
respectively, were found. These correspond to 0.15 and 0.25 dB per 
atmosphere at 30 GHz and 0.06 and 0.12 dB per atmosphere at 16 
GHz, assuming the absorption took place at 2500 K (winter) and 
284°K (summer). Attempts to measure these rather small atmospheric 
absorptions directly using the sun, under atmospheric conditions simi­
lar to the above, have been frustrated by variations in atmospheric 
absorption, solar brightness, or antenna gain during the course of the 
measurement. Consistent results have obtained only at low elevation 
angles where the thickness of the atmosphere changes rapidly with 
hour angle. 

The normalization procedure which is normally used on sun tracker 
records cancels out clear weather attenuation. Thus attenuations 
quoted in other parts of this paper are increases above the clear 
weather value. 

TABLE I - PARAMETERS OF THE SUN TRACKER 

Antenna beam width 
Antenna temperature of sun (T.) (30° elevation) 
Receiver double side band noise temperature 
Measuring range on sun (1.5 dB peak error) 

16 GHz 

0.92 
1900 0 K 
17000K 
30 dB 

30 GHz 

0.54° 
3000 0 K 
1100 oK 
35 dB 
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V. TYPICAL RECORDS 

Figure 4 shows tracings of the output of the sun tracker during 
two 24-hour periods. The left two-thirds of both charts is night opera­
tion with antenna temperature presented on linear scales for both 
frequencies. The right portion is in the sun-tracking mode with a 
scale factor of 10 dB per major division. The sun is behind some 
trees during part of the sunrise. 

The upper record was taken on a clear day. During the lower record, 
several showers with rainfall up to 75 mm per hour occurred near the 
site. The high temperature peaks on the night portion of the 30 GHz 
record show rounding, indicating that the peak antenna temperature 
of about 275°K is close to the temperature of the attenuating rain. 
The three peaks of attenuation in the daytime portion of the record 
occurred at solar elevation of 8°, 15°, and 18°. 

Figure 5 contains tracings of the sun-tracker output on three other 
days. Figure 5a is from a 24-hour period when the sky was heavily 
overcast and occasional drizzle occurred. The attenuation did not 
exceed 2 dB during this period even for low elevations and was less 
than 1 dB most of the time. 

The lower records were obtained before the 16 GHz receiver was 
installed so that only 30 GHz levels are plotted. During the night 
that the lower level record was taken (b) passage of a cold front 
produced snow and ground level temperatures fell below O°C. The next 
morning about 1;i inch of rough ice was frozen on the reflector of the 
sun tracker. vVhen the ice was removed from the reflector (at the 
right end of b) , the signal level from the sun returned to normal. 

The following sequence of events is postulated to explain the rec­
ord. As snow fell on the warm reflector it melted to slush. The liquid 
water content of the slush has a very high absorption coefficient when 
its thickness amounts to an appreciable fraction of a wavelength 
above the aluminum reflector; as the slush collected, the antenna tem­
perature approached ambient temperature. After the snowfall stopped, 
the antenna temperature remained constant until the air temperature 
lowered sufficiently to slowly freeze the slush into ice which is a 
dielectric with a Iowa bsorption coefficient; thus the antenna tempera­
ture dropped to a value typical of the overcast night (Fig. 5b). When 
the sun rose and the sun tracker started tracking it, however, the 
signal level was about 7 dB below normal because of phase perturba­
tions (and a consequent reduction in gain) caused by the rough dielec­
tric on the reflector. Removal of the ice returned operation to normal 
(final short segment in b) . 
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The lower right record (c) was taken on a cold afternoon when 
snow fell uniformly for several hours. In 2% hours about 21j2 inches 
of snow collected on the reflector. When the snow was removed from 
the reflector to measure the effect of the falling snow, the signal level 
returned to about 1 dB below the normal level. More snow collected 
on the reflector, but the antenna temperature was hardly affected in 
the night-time mode. 

VI. ATTENUATION STATISTICS 

At this writing, the sun tracker has been in full operation for more 
than a year. On two occasions the attenuation at 30 GHz con­
tinuously exceeded the measuring range of the system (35 dB) for 
more than 30 minutes. During one of these periods the attenuation 
at 16 GHz exceeded 30 dB four separate times for a total of 15 min­
utes. It is clear from these results that if a reliable communication 
satellite system is to be constructed using these frequencies it will be 
necessary to have some form of ground-station space diversity for 
operation during such periods. 

A summary of the percentage of time that the attenuation exceeded 
various levels is shown in Tables II and III for 30 and 16 GHz. In 
both cases day and night statistics are shown separately since the 
measurement technique is different. Figures 6 and 7 are histograms 
showing the number of fades exceeding 9 dB at 30 and 16 GHz as 
a function of duration of the fade. No attempt has yet been made to 
divide this statistical data according to the elevation of the sun. It 
is expected that some differences will occur as a function of elevation; 
however, one of the two long-term high-attenuation periods, men­
tioned before, occurred when the elevation angle was about 60° and 
the other immediately before sunset. 

VII. RATIO OF ATTENUATION AT 30 GHZ TO ATTENUATION AT 16 GHZ 

If one knew the drop size distribution in an attenuating rain, the 
ratio of attenuation at 30 GHz to that at 16 GHz could be calculated. 
Using surface drop size distributions, Hogg has calculated that the 
ratio will lie between about 3.8 for small drops characteristic of 0.1 
mm per hour rain and 2.2 for large drops characteristic of a 100 mm 
per hour rain.5 Values over this range have been observed at various 
times. 

Figure 8 is a scatter plot of attenuation at 16 GHz against attenua­
tion at 30 GHz for various sample times during the first two hours of 
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TABLE 11- CUMULATIVE DISTRIBUTION OF ATTENUATION 

at 30 GHz FOR DAY AND NIGHT OBSERVATIONS 

Attenuation at 30 GHz 
(in dB) 

>3 
>6 
>9 

> 15 
> 21 
> 27 
> 33 

>3 
>6 
>9 

> 12 

Percent of total observing time* 
(3851 daylight hours) 

1.97 
1.00 
0.55 
0.309 
0.174 
0.105 
0.069 

(4826 nighttime hours) 

1.148 
0.300 
0.113 
0.052 

1395 

* December 8, 1967 through December 8, 1968. The daytime observations include 
all elevations from a maximum of 74° down to as low as 2° or 3°. Nighttime observa­
tions are made at a constant elevation varying from 73° on June 21 to 26° on 
December 21. Elevation effects may contribute to the differences between day and 
night distributions as well as rainfall differences. 

the daytime portion of the record shown in Fig. 4 (b). Except for two 
of the points, the dashed line which represents a constant ratio of 3.4 
to 1 is a good fit to the data. Figure 9 shows points from a thunder 
storm in which the ratio taken from the second order-fitted curve 
varies from 3 at high attenuations to more than 4 at low attenuations. 
Figure 10 shows points from another thunderstorm during which two 
separate observers remarked on the unusually large size of the rain­
drops. The ratio in this case was about 2.2 to 1. The ratio for other 
rains has fallen within the range indicated above. 

VIII. SUN VERSUS SKY BRIGHTNESS MEASUREMENTS 

As explained in Section II a sky brightness measurement is made 
at one frequency simultaneously with the measurements of attenua­
tion using the sun. With both attenuation and brightness the equa­
tions of Section II can be solved in either of two ways. In Fig. 11 a 
scatter plot has been made of attenuation derived from the sky-bright­
ness measurement using equation (2) against simultaneous attenua­
tion measured in the direction of the sun. It can be seen from this 
and other data that if the correct value for To is used (272°K in this 
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TABLE III- CUMULATIVE DISTRIBUTION OF ATTENUATION 

AT T6 GHz FOR DAY AND NIGHT OBSERVATIONS 

Attenuation at 16 GHz 
(in dB) -

> 1 
>2 
>3 
>5 
>7 
>9 

>11 
> 13 
> 15 
> 20 
> 25 
> 30 
> 33 

> 1 
>2 
>3 
>6 
>9 

> 12 

Percent of total observing time* 
(3839 daylight hours) 

1.59 
0.84 
0.45 
0.259 
0.158 
0.112 
0.085 
0.065 
0.049 
0.034 
0.023 
0.013 
0.009 

(4812 nighttime hours) 

0.46 
0.13 
0.05 
0.022 
0.016 
0.012 

* Same dates as Table II. The daytime obEervations include all elevations from a 
maximum of 74° down to as low as 2° or 3°. Nighttime obEervations are made at a 
constant elevation varying from 73° on June 21 to 26° on December 21. Elevation 
effects may contribute to the differences between day and night distributions as 
well as rainfall differences. 

case), measured sky brightness values can be interpreted as attenua­
tions with reasonably small scatter up to and perhaps beyond 10 dB. 
(Some of the scatter in Fig. 11 is undoubtedly caused by real differ­
ences in attenuation in the two directions.) 

A more interesting way of looking at this same data is to invert 
the equations and compute the apparent medium temperature Te. In 
Fig. 12 the derived value of T e has been plotted (dots) against meas­
ured attenuation for the same data as used in Fig. 11. At low values 
of attenuation the average value of T e seems to be below the ice point 
even though the air temperature near the earth's surface was about 
295°K during this rain. Super cooling might play some role in causing 
this low apparent temperature, but it is more likely that scattering as 
discussed in Section IX causes the main effect. 

At high values of attenuation the measured value of To goes up to 
as high as 290oK; this is a very definite effect since the measured 
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8~------------------------------------------------, 

7 

Fig. 6- Number versus duration for fades of 9 dB or greater at 30 GHz for 
the period December 1967 to August 1968. 

brightness temperature rises to 290oK. However, if a plot like Fig. 11 
is made using such a high value of T e, there is a definite curve at at­
tenuations above 5 dB and the fit is unacceptable by 10 dB. There 
are two contributions to the higher values of Te at higher attenua­
tions. First, scattering ceases to be very effective in lowering To; in­
stead of scattering radiation from the cold sky into the antenna beam, 
the lower drops scatter radiation from upper drops into the beam. 
Second, at high values of attenuation only the lower and hotter por­
tion of the rain contributes effectively to the brightness since the lower 
drops absorb the radiation from the upper drops and replace it with 
their own. 

IX. DEVIATIONS FROM SIMPLE THEORY 

The output of the sun tracker could depart from the true attenua­
tion in the path to the sun for several reasons: 

(i) N onlinearities and instabilities in the radiometers, are small 
enough to be negligible. 

(ii) Mispointing the antenna beam as a result of atmospheric refrac­
tion, use of noon solar positions during an entire day, and mechanical 
misalignment cause the signal from the sun to decrease more at low 
elevations than one expects from atmospheric absorption. These ef­
fects fortunately are quite repeatable from one day to the next so 
that clear weather days provide a reference level below which excess 
attenuation is measured. 
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Fig. 7 - Number versus duration for fades of 9 dB or greater at 16 GHz from 
December 1967 to August 1968. 

(iii) The brightness of the sun may not be constant. Clear weather 
records to date show no noticeable variations from day to day, except 
for a large increase for 40 minutes during the solar event of July 8, 
1968 and increases of 1 dB or less lasting only a few minutes on sev­
eral other occasions. 

(iv) Part of the received signal might result from forward scatter­
ing by the precipitation. The scattered energy might therefore be 
collected by the relatively broad beam of the antenna and be indistin­
guishable from the direct signal. However, since rain drops are not 
large compared with a wavelength, the forward scattering lobe will 
be relatively weak and large in angular diameter. Moreover, approxi­
mately equal scattered power will be picked up in the direction of the 
sun and in the reference direction 2.6 0 away. Forward scattered en­
ergy should therefore cancel out, resulting in a proper measurement of 
attenuation. In measuring sky brightness at low attenuations, how-
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Fig. 10 - Scatter plot of attenuation at 16 GHz against simultaneous attenua­
tion at 30 GHz for rain with noticably large drops (June 3, 1968). 

ever, forward scattering will scatter energy from the cold sky into the 
antenna beam; in other words, it will not contribute to sky brightness 
in the same way that absorption does. The apparent value of Tc in 
equations (1) to (3) will be lower than the actual temperature of the 
absorbing water, consistent with the low values shown in Fig. 12 for 
small attenuations. The presence of the hot sun in the cold sky does 
not alter this conclusion since the sun's contribution averaged over 
the upper hemisphere will be much less than 10 K. 

(v) In clear weather the transmissivity of the standard atmosphere 
will, in general, be different in the directions of the sun and of the 
reference region because of the difference in elevation angle of the 
two regions. Thus, even when not tracking the sun, the output of 
the sun tracker is not zero. At 30 GHz it can be as high as 25 dB 
below the sun at the low elevation cutoff of our observations. This 
effect does not limit the measuring range of the sun tracker because 
the false signal is attenuated as the sun is attenuated. If the high at­
tenuation region caused by rain were concentrated near the sun 
tracker, the false signal from the atmosphere would be attenuated by 
the same amount as the sun. Also if the high attenuation region had 
the same temperature as the rest of the atmosphere, its position in the 
atmosphere would not matter; by the same argument the false signal 
would be attenuated by the same amount as the sun. In the unlikely 
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case that the high attenuation region is beyond the atmosphere, the 
effect of the false signal would still be reduced with attenuation, but 
the maximum reduction would be the ratio of the average atmospheric 
temperature to the difference between the average atmospheric tem­
perature and the temperature of the high attenuation region. In the 
actual case, precipitation will at worst be distributed through the 
atmosphere and have nearly the same temperature as the atmosphere 
leading to the conclusion that the false signal is not a practical limit 
to the measuring range of the sun tracker. 

(vi) Precipitation collecting on the surfaces of the antenna can 
cause attenuation especially if the radio waves pass through a wetted 
surface such as a weather cover. This attenuation should not be at­
tributed to the atmosphere. For tests on the effect of water on the 
surfaces, a fire truck with a fine spray nozzle was used. At a water 
fall rate of 15 inches per hour, 3 dB attenuation was observed at 30 
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Fig. 11- Scatter plot of attenuation calculated from sky brightness against 
the value measured simultaneously, using the sun (16 GHz; To = 272 0 K; June 
12, 1968). 
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ATTENUATION AT 16 GHz IN DECIBELS 

Fig. 12 - Apparent absorber temperature derived from sky brightness measure­
ments plotted against attenuation. The dots are experimental points. The dashed 
lines show the effect in this plot of 10 dB differences between the attenuation in 
the direction of the sun and the. reference region. The solid lines show the effect 
of 20 percent differences in attenuation. The resulting error in attenuation meas­
ured by the sun tracker is labeled on the curves. A linear change in absorber tem­
perature with attenuation has been assumed in calculating the lines (June 12, 
1968). 

GHz and 1112 dB at 16 GHz. Snow is also an offender and measure­
ments during snow have been discarded except immediately follow­
ing removal of the accumulation." 

(vii) The high loss region (for example, a raincell) may not be uni­
form over the 2.6 0 lobing angle thereby resulting in a difference in 
brightness between the medium in the direction of the sun and the 
medium in the direction of the reference region. The main salvation in 
this case is that the sun produces an antenna temperature much higher 
than the physical temperature of the atmosphere. If the transmissivity 
of the medium in front of the sun is tl and in front of the reference 
region t2 , then on subtracting equation (2) from (1) we will have 

* However, as discussed in Section V, an inch or so of dry snow on the antenna 
has only a small effect on antenna temperature. 
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!J.Ta = tlT.[l + (t2/t 1 - l)(Tc/T.)]. 

Since To/Ts is about 0.1 at both frequencies the maximum over-esti­
mate of tl will be about 0.5 db as T2 becomes much smaller than tr. 
In the cast t2 > tl the second term in the brackets would begin to 
dominate if t2/t1 > 10. Thus t2 would be measured instead of tl for 
large ratios. Fluctuations of more than 10 dB in the transmissivity 
of the atmosphere over the 2.60 lobing angle would cause a significant 
average under-estimate of attenuation in the path to the sun. 

The 16 GHz radiometer data plotted in Fig. 12 can be used to esti­
mate the errors in attenuation measurement resulting from actual 
differences in attenuation. As shown above, a 10 dB excess of attenua­
tion in the direction of the sun would cause about a 3 dB under­
estimate of that attenuation. The expected apparent values of To in 
this condition are shown as the lower dashed line in Fig. 12. The 
upper dashed line indicates the values of To expected in the equally 
probable opposite case where the attenuation in the reference beam 
is 10 dB greater than in the direction of the sun. In this case the 
total error is only 0.6 dB. It is seen from Fig. 12 that the data ex­
cludes differences which are this great. In both of these cases and in 
the one to follow, a linear increase of To with attenuation has been 
assumed, namely from 265 0 at 0 dB to 285 0 at 30 dB. 

A more realistic model of the fluctuations in attenuation is that they 
are some fraction of the total attenuation. The solid lines in Fig. 12 
show the apparent values of To with plus and minus 20 percent differ­
ences in attenuation. These lines come remarkably close to being 
envelopes of the scattered points. The error in measured attenuation 
implied by this model is shown along the lines at 0.5 dB intervals. The 
maximum error of 1.5 dB out of 30 dB is acceptably small for the type 
of measurements intended with the sun tracker. The same type of 
plot has been made for other rains and with 30 GHz data with similar 
results. 

If the temperature of the attenuating medium is Tl in front of the 
sun and T2 in the reference region, but the transmissivity is a con­
stant value t, on subtracting equation (2) from (1) one obtains 

!J.T = tT [1 +. 1 - t Tl - T2J. 
~. s t T8 

In this case the temperature difference appears linearly in the correc­
tion term so that positive and negative errors are equally likely. Thus 
if there were significant temperature differences over the 2.6 0 lobing 
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angle, one would see periods of zero or negative receiver output during 
times of high attenuation. To date, when large attenuations have oc­
curred, this behavior has not been observed and the output has had 
the same appearance as receiver noise in the absence of signal. 
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High-Power Single-Frequency Lasers Using 
Thin Metal Film Mode-Selection Filters 

By PETER W. SMITH, M. V. SCHNEIDER, and 
HANS G. DANIELMEYER 

(Manuscript received December 12, 1968) 

In this paper we present the theory of mode selection by use of a thin 
metal film in the laser cavity and we derive formulae both by a rigorous 
method and by using a lumped-circuit approach. Experiments performed 
with a 500-m W argon ion laser showed that 350 m W or 70 percent of the 
multimode power could be obtained in single-frequency operation using 
this technique. Somewhat lower efficiencies were obtained with a neo­
dymium-doped yttrium aluminum garnet laser. We compare this with 
other mode-selection techniques. 

r. INTRODUCTION 

Troitskii and Goldina recently showed that a thin metal film can be 
used inside a He-Ne laser cavity to produce single-frequency output.1 

A thin lossy film will favor oscillation on a mode which has a standing­
wave minimum at the film position. 

The simplicity of this technique is very attractive. We have, there­
fore, investigated both theoretically and experimentally its efficiency 
and its application to high power continuous wave (CW) lasers. 

In Section II we develop formulas, both rigorously and using a 
lumped-circuit approach, which relate the complex refractive index 
of the metal film to its characteristics as a mode filter. We also show 
how the complex refractive index of a given metal film can be deter­
mined from measurements of the reflectivity and transmissivity of 
the film. Section III describes experiments using this thin-film tech­
nique to obtain single-frequency operation of a continuous wave argon 
ion laser; Section IV describes the results obtained with a neodymium­
doped yttrium aluminum garnet laser. In Section V we discuss these 
results and the applications of this technique. 

1405 
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II. THIN METAL FILMS FOR MODE-SELECTION FILTERS 

2.1 Optical Properties of Thin Metal Films 

The optical properties of a thin metal film can be characterized by 
a complex index of refraction and by an effective optical thickness. 
The parameters which are easily measured are transmittance, re­
flectance, and average physical film thickness. From these parameters 
one can deduce the index of refraction and the optical thickness. This 
procedure does not necessarily lead to meaningful optical constants 
since thin films often consist of separate islands or of material which 
is considerably different from the bulk metal because of special prob­
lems in the deposition process. 

Thin metal films can have high losses if the free space transmittance 
and reflectance are about equal. This property can be used in optical 
mode selection filters. The film is placed in the null of the E-field of 
one particular desired mode which experiences little loss because of the 
film. Undesired modes with nulls in a different plane are attenuated 
and hopefully eliminated. Best results are obtained for the thinnest 
film with the highest complex index of refraction. We require that 
the film be continuous, that is, that is does not consist of a large 
number of separate aggregates. (But see Ref. 2.) Chromium and ti­
tanium are particularly useful materials because they do not tend to 
form islands on quartz substrates. Continuous thin films can also be 
obtained with evaporated nickel-chromium alloys (Nichrome) since 
the high vapor pressure of chromium leads to fractional distillation 
during evaporation and consequently gives a base layer of chromium 
directly on the substrate. A further advantage of Nichrome is its high 
stability with respect to atmospheric contaminants; Nichrome can also 
be fully evaporated from a tungsten coil. 

2.2 Computation of Reflectance and Transmittance of Thin Metal Films 

The notation used in the following computation is shown in Fig. 
1a. The complex index of refraction of the metal film is Nl = N - jK, 
and the propagation constant in the film, p, is given by 

27rNl 
P = ---

A 

where A is the wavelength in vacuum. 

(1) 

The amplitude reflection and transmission coefficients rand 8 for a 
film with thickness D are3 
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r = (N2 -N1)(N1+No) exp (jpD)+(N2+N1)(N1 -No) exp (-jpD) (2) 
(N2+N1)(N1+No) exp (jpD)+(N2-N1)(N1-No) exp (-jpD) 

o = 4N2Nl (3) 
(N2 +N1)(N1+No) exp (jpD)+(N2-N1)(N1-No) exp (-jpD) 

Power reflectance R, transmittance T, and loss A are given by 

R = rr* 

A = 1 - R - T. 

(4) 

(5) 

(6) 

For thin films with D « A one can simplify equations (1) and (2) 
with exp (±jpD) = 1 ± jpD. In addition we let N2 = No = 1 and 
obtain 

jpD(1 - ND 
r = + 2Nl + jpD(1 + N~) 

2Nl 
o = + 2Nl + jpD(1 + N~) . 

For I Ni I » 1 one obtains finally 

1 
r = 

2 
1 + . DN JP 1 

o = + 1 • 
1 + jpDN1 

2 

(7) 

(8) 

(9) 

(10) 

This means that the thin film with I Ni I » 1 can be characterized 
by one single physical parameter 

. DN .27rD N2 JP 1 = J -}..- 1- (11) 

These approximations are appropriate when considering infrared 
wavelengths. For other cases one has to use the rigorous expressions 
of equations (2) and (3). 

It is often useful to derive an equivalent lumped-film admittance Y 
based on equations (2) and (3) or equations (7) and (8). The lumped­
film admittance Y is shown in Fig. 1 b in a transmission line with 
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admittance Y 2 and Yo. The reflection and transmission coefficients are 

r= 
Y 2 - Y - Yo 
Y 2 + Y + Yo 

2Y2 

o = Y2 + Y + Yo 

For Y 2 = Yo = 1 one obtains 

r = 
1 ----

I +~ 
Y 

0=+_1_. 

1 + Y 
2 

(12) 

(13) 

(14) 

(15) 

An expression for Y can be obtained from equations (2) or (3). A 
good approximation valid for thin absorbing films can be derived by 
using equation (7) 

r = + j pD(1 - Ni) 
2Nt + jpD(1 + Ni) 

The result for Y is 

Y = jpD(Ni - 1). 
Nt + jpD 

1 ----. 
2 1-+ -

.J Y 
(16) 

(17) 

The rigorous as well as lumped approach have been used for com­
puting transmittance, reflectance, and loss of the film as listed in 
Table 1. The film was one used in the experiments reported in Sections 
III and IV. The transmittance and reflectance were measured with a 
traveling-wave beam external to the laser cavity. By successive trials, 
the value of Nl was found which gave the best fit to the experimental 
measurements. One can conclude that this film is thin and lossy enough 
for using the lumped model. 

2.3 Thin Metal Film in Front of a Mirror 
A thin film in front of a mirror is shown in Fig. 1c. The high re­

flectance mirror can be considered as a short or open circuit which is 
spaced by a length L from the back end of the thin metal film. The 
reflectance and loss can be computed from a rigorous expression de­
rived from equations (2) and (3) or from the approximate model 
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TABLE I-MEASURED AND COMPUTED THIN FILM PROPERTIES 

Film material: Nichrome (80% nickel, 20% chromium) 
Film thickness: 50 A 
Wavelength: 10645 A 

1.5 quartz ; No 1.0 air 

Transmittance Reflectance Loss 
T R A 

-
Measured 0.78 0.01 0.21 
Computed, eqs. (2) and (3), 

N - jK = 1.66 - j·2.83 0.773 0.0116 0.214 
Computed, eqs. (2) and (3) 

exp (±jpD) = 1 ± jpD 0.776 0.0115 0.212 
Computed, lumped 

admittance, eq. (17), 0.777 0.0115 0.211 
Y = 0.272 - j·0.193 

N~ = 1.0 air; No = 1.5 quartz 

Measured 
Computed, eqs. (2) and (3), 

N - jK = 1.66 - j·2.83 
Computed, eqs. (2) and (3) 

exp (±jpD) = 1 ± jpD 
Computed, lumped 

admittance, eq. (17), 
Y = 0.272 - j·0.193 

INCIDENT WAVE 

REFLECTED WAVE 

(b) 

0.78 

0.773 

0.776 

0.777 

0.08 

0.0832 

0.0833 

0.0819 

TRANSMITTED WAVE 
t 

0.14 

0.143 

0.140 

0.140 

r------ L-----1 

Fig. 1- Notation used for computing optical film properties: (a) thin metal 
film with index N1 = N-jK and thickness D; (b) lumped admittance, Y = 
jpD(N12 

- 1)/(N1 + jpD), and (c) admittance Y in front of mirror. 
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with a lumped admittance Y. The rigorous result for r is 

where 

E+F 
r = G + H (18) 

E = (N2 - NI)[(N~No + N~)ej{J + (NINo - N~)e-j{J]ejpD (19) 

F = (N2 + N1)[(N]No - N~)ei{J + (NINo + N~)e-i{J]e-ipD (20) 

G = (N2 + N1)[(N1No + N~)ei{J + (NINo - N~)e-j{J]ejPD (21) 

H = (N2 - N1)[(N1No - N~)ej{J + (NINo + N~)e-j{J]e-jPD (22) 

and 

(3 = 27rNoL. 
"A 

(23) 

Reflectance obtained from equations (18) to (23) for a 50-A.. 
Nichrome film at A = 10645 A, and a 150-A film at A = 5145 A is 
plotted in Fig. 2. The reflectance is plotted as a function of b.f3/27r 
where f3 = 7rj2 + 27rn + b.f3 and n is an integer. ASf3 can be varied ei­
ther by changing the film-to-mirror spacing or by changing the fre­
quency of incident radiation, we have written b.f3 = Nob.LjA or 
MoLb.vjc.. The values of No and N2 are chosen to correspond to the ex­
perimental situations in which the films are used. Of particular impor­
tance are the minimum and the maximum absorption listed in Table 
II. Note that if the film has no loss and No = Nl = N 2 , the reflec­
tivity is 1 regardless of the value of L or A. 

The data are based on the assumption that the quartz substrate is 
lossless and that the surface roughness of the substrate is much less 
than the listed film thickness. 

Reflectance and loss can also be computed from the thin-film 
equivalent circuit of Fig. lc. The metal film is characterized by the 
lumped admittance Y, the mirror by a short, and the distance between 
mirror and film by the effective optical length NoL. The short IS 

transformed into a susceptance Y s in parallel with Y given by 

Y s _ . t 27r N oL 
Yo - -Jco'-"A-' 

The reflection coefficient r is 

r = 
Y 2 - y - Ys 
Y 2 + Y + Y s 

(24) 

(25) 
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Fig. 2 - Reflectance for mode selectors using 50-A or 150-A Nichrome films 
on quartz substrates as a function of their spacing from the high reflectivity 
mirror. Notice that the values of No, N2, and A. are chosen to correspond to the 
experimental circumstances under which each film was used. 

Ni - Cr A. 
Curve (A) (A) Nl No N2 

1 50 10645 1.66 - j·2.83 1.5 1.0 
2 150 5145 1. 33 - j. 1. 30 1.0 1.5 
3 100 10645 2.4 - j-3.5 1.5 1.0 

For the special case Y2 = 1 (air) and Yo = 1.5 (quartz) one obtains 

~ 1 - Y + 1.5j cot (7rLlA) r =, . 
·1 + Y - 1.5j cot (7rL/"A) 

(26) 

The lumped admittance model always gives a minimum loss of zero 
because it is based on a limit process in which the film thickness ap­
proaches zero while the product Y ~ jpDNl remains constant. 

It is clear from the form of equation (25) that the maximum re­
flectivity comes for 27/"NoL/>... = n7/" where n is an integer. The fre-

Film 
Thickness 

50 A 
150 A 

TABLE II-MINIMUM AND MAXIMUM Loss FOR 

NICHROME FILMS ON QUARTZ 

Index of refraction 
Wavelength --- Minimum 

Nl = N -fie No N2 loss 

10645 A 1.66 - j·2.83 1.5 1.0 8.5 X 10-5 

5145 A 1. 33 - j. 1. 30 1.0 1.5 1.3 X 10-2 

Maximum 
loss 

0.680 
0.841 
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quency spacing between reflectance peaks is just c/(2NoL). Thus for 
single-frequency operation the film should be situated sufficiently 
close to the laser cavity end mirror that c/(2NoL) is greater than the 
oscillation width of the laser medium. It is advantageous to make 
NoL as large as possible without exceeding this requirement, however, 
since the selectivity of the mode filter decreases as NoL is decreased. 

The minimum reflectance and the shape of the filter curve in the 
vicinity of the maximum reflectance are important parameters govern­
ing the mode selection properties of the filter. We separate the ad­
mittance Y into a real and imaginary part 

Y = G + jB (27) 

and obtain from equations (4) and (26) for the reflectance R 

R=1 
4G 

(28) 

The minimum reflectance occurs in the vicinity of the nulls of the 
cotangent function. Close to maximum reflectance, cot (7rL/'A) » 1 
and we obtain from equation (28) 

7 G 
27rL 

R = 1 - 1. 8 tan T' (29) 

For rigorous computations one has to use equations (18) to (23). 
Filter curves based on rigorous equations with Nl = N - jK as a 
parameter are shown in Fig. 3. The film thickness for all curves is 
D = 150 A and the wavelength A = 5145 A. 

Notice that we have assumed plane waves in all of these calcula­
tions. In practice, if the flat metal film is situated close to a plane 
laser end mirror, this condition will be well satisfied. If a plane metal 
film must be situated some distance from the laser end mirrors, the 
laser cavity must be designed so that there will be a beam waist at 
the metal film. 

The problems encountered in practical filter design are often that 
films with suitable index of refraction are not stable or vice versa. 
Additional protective coatings have to be deposited which may change 
the filter characteristics, or a compromise has to be found with one 
single stable film or two stable films spaced at an appropriate distance 
inside the laser cavity. 
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Fig. 3 - Reflectance of a mode selector using a 150-A metal film for various 
values of Nl = N - jK: (1) 1 - j, (2) 1.5 - j . 1.5, (3) 2 - j . 2, (4) 2.5 -
j . 2.5, and (5) 3 - j • 3. The curves are plotted for Ao = 5145 A, No = 1.5, and 
N2 = 1.0. 

2.4 Film Fabrication 

Films for use as mode selection filters are evaporated from a tung­
sten coil in a vacuum of 4 .10-7 torr. The coils are made from 4-strand 
tungsten wire with a diameter of 0.015-inch per strand. The source 
to substrate distance for a 150-A film is 3.0 inches and the Nichrome 
charge is a 0.010-inch diameter wire with a length of 0.854 inch. 
Total evaporation time is less than 10 seconds. The substrates are 
cleaned in isopropyl alcohol, immersed in methanol, and blow dried 
with dry nitrogen. It is concluded from separate experiments with a 
Tolansky interferometer that the Nichrome material is completely 
evaporated from the tungsten coil. 

III. ARGON ION LASER EXPERIMENTS 

Experiments were performed with a dc-excited discharge tube with 
an active plasma length of 60 cm and a 3-mm diameter bore. A 
Brewster-angle prism was used inside the cavity to select the desired 
laser transition; the cavity consisted of a 5-m mirror and a flat mirror 
separated by 150 cm. The metal film was situated 2 cm from the flat 
mirror. With this configuration, no adjustable aperture was required 
to obtain fundamental transverse mode operation. 

Films of pure nickel or Nichrome were deposited on one side of a 
fused quartz plate. These plates were of optical quality suitable for 
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their use as Brewster-angle windows for laser tubes. In order to 
eliminate the effects of Fabry-Perot interferences between the front 
and back surfaces of the plates, an additional plate with an antireflec­
tion coating on one side was contacted with optical matching oil to 
the bare surface of the metal-coated plate. 

The measurements reported here were made using this composite 
plate with an antireflection coating on one side and the metal film 
on the other. Virtually the same laser output power was observed 
when the simple plate with a metal film on one side, and no coating on 
the other, was used in the laser cavity. 

Several films of different thickness of nickel and Nichrome were 
used for these experiments. The best results were obtained with a 
150-A. Nichrome film. Because details of the deposition technique 
may affect the properties of the film obtained it is perhaps more 
informative to list the characteristics of the film measured with an 
external (traveling-wave) beam. These were 

T = 0.60 ± 0.01, R = 0.13 ± 0.005, A = 0.27 ± 0.01 

for the beam incident on the metal film and 

T = 0.61 ± 0.01, R = 0.013 ± 0.002, A = 0.38 ± 0.01 

for the beam incident on the antireflection coating. These measure­
ments were made at 5145 A.. Virtually the same results were obtained at 
4880 A.. These results were used to find the complex index of refraction 
used for the calculations in Section II. Figure 4a shows the laser output 
at 4880 A as a function of the distance between the metal film and the 
end mirror of the laser cavity. This distance was varied by a ramp volt­
age applied to a piezoelectric ceramic transducer element. on which 
the laser mirror was mounted. As the relative film position is varied, 
different longitudinal modes of the laser find themselves with a 
standing-wave minimum at the metal film and thus are able to 
oscillate. The overall outline of the pattern indicates the profile of 
the gain curve. The side humps are caused by the axial magnetic 
field applied to the laser tube. 

In order to verify that we had indeed achieved single-frequency 
operation, a scanning interferometer was set up to observe the fre­
quency spectrum of the laser output. Figure 4b shows the output 
versus frequency for the laser operating without a metal film in the 
cavity. This picture corresponds to the maximum available output 
of 500 mW at 4880 A.. With a 150-A. Nichrome film in the laser cavity, 
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Fig. 4 - Experimental results using metal-film mode selector in an argon ion 
laser oscillating at 4880A: (a) Single-frequency laser output as a function of 
separation between metal film and laser end reflector; (b) Multimode output of 
laser without mode selector as a function of frequency: total output power 500 
m W. The total oscillation bandwidths is ::::::6 GHz; (c) Single mode laser output 
obtained using metal film as a function of frequency: output power 350 mW. 

single-frequency output was obtained at 4880 A as shown in Fig. 4c. 
Over 350 m W or 70 percent of the multimode output could be obtained 
in a single frequency. At 5145 A, 50 percent of the multimode power 
could be obtained in a single frequency, using the same film. 

These figures can be compared with those for an interferometric 
mode selector of the type described in Ref. 4. A mode selector of that 
type was constructed for use with the argon ion laser. It was found 



1416 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969 

that with the same type of laser 50 percent of the multimode output 
power at 5145 A could be obtained in single-frequency output; 70 
percent of the multimode output power at 4880 A could be obtained 
in single-frequency output. Thus, for this laser, the two schemes 
appear identical in power output. 

From curve 2 of Fig. 2 we find that the loss produced by the metal 
film is less than the laser gain (~ 25 percent) for a frequency range of 
roughly 1.3 GHz. The fact that single-frequency operation was ob­
tained with this film indicates that mode-competition effects must have 
extended over this range of frequencies. This is not surprising as the 
naturallinewidth for the argon laser is about 500 MHz and radiation 
broadening will increase this homogeneous linewidth in a laser well 
above threshold. 5 Mode competition effects are expected between 
adjacent modes spaced by less than the homogeneous linewidth. Thus 
we see that, for the argon laser, single-frequency operation can be ob­
tained with a much lower selectivity mode selector than would be 
required if mode competition were not present. 

IV. Nd:YAG LASER EXPERIMENTS 

4.1 Description of the Laser 
The laser system consisted of a 30- by 2.5-mm neodymium: yttrium 

aluminum garnet (Nd:YAG) rod, pumped with a 1-kW tungsten 
lamp in an elliptic cylinder, a high reflectivity plane mirror, and an 
output mirror with 10-m curvature and 1.6 percent transmission. The 
mirror separation was M = 20 cm which resulted in a longitudinal 
mode spacing of 670 MHz. Without insertion of any mode selector, 
this cavity configuration gave fundamental transverse mode operation 
up to 850-W pump power. Figure 5a shows the output spectrum at that 
pump level observed with a scanning Fabry-Perot interferometer. The 
total output power was 200 m W with a maximum linearly polarized 
component of 130 mW. This component increased to 220 mW at 
960-W pump power, but this power was not all in the fundamental 
mode, and the amplitudes of individual modes were very unstable. 

To obtain single-frequency operation, the plane mirror was replaced 
by a fused silica flat 2.5 mm thick (free spectral range 40 GHz) which 
was high-reflectivity coated on one side and metal coated on the' other. 
This arrangement produced stable single-frequency output, as evi­
denced by Fig. 5b, which was photographed from a screen averaging 
over 10 scans in one second (the persistance time of the screen). The 
output stability was achieved by keeping one particular node of one 
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1.....---30 GHz 30 GHz ----' 

Fig. 5 - Experimental results using metal-film mode selector in neodymium­
doped YAG laser oscillating at 1.06,u. (a) Multimode output of laser without 
mode selector as a function of frequency. Linearly polarized output power 130 
m W. The frequency spacing between modes corresponds approximately to c/2L 
for the YAG rod. The upper trace shows the ramp voltage used to scan the 
Fabry-Perot interferometer. The output spectrum display repeats itself with the 
spacing of the interferometer free spectral range (30 GHz). The total oscillation 
bandwidth of the laser shown here is :::::22 GHz. (b) Single mode laser output 
obtained using metal film as a function of frequency: linearly polarized output 
power 60 mW. 

longitudinal mode close to the film center. Their relative positions 
should be within about ±20 A since the nodes corresponding to adja­
cent longitudinal modes are spaced at NoLA/2M = 84 A in the vicinity 
of the film. This implies temperature stabilization of the quartz flat 
to within ±O.I°C [a(NoL)/LaT = 8 X 10-6

/
oC], and cavity length 

stabilization to within ±1,OOO A. In addition, the film becomes in­
efficient if its tilt exceeds one adjacent longitudinal node spacing 
across the beam diameter. Thus the quartz flat must be parallel to 
about 2 seconds of arc and its flatness should be better than A/20. 

4.2 Results 

Best results at lowest threshold were obtained with a 50-A. nickel­
chromium film. Its transmission and reflection, as measured with a 
YAG laser beam, are shown in Table I. A power of 60 m W (maximum 
linearly polarized component) could be obtained in a single frequency 
which was 27 percent of the maximum multimode power output. 
However, the absorption of the film was not sufficient to obtain single­
frequency output up to the pump limit. At 960 watts pump power, the 
total (multimode) output power was 150 mW with a frequency range of 
4 GHz. Curve 1 of Fig. 2 predicts a 4 GHz range for a net gain of 3 
percent (c/NoL = 80 GHz). In addition it was observed that the out­
put was much more stable than that of the free-running laser: the 
power in an individual mode was constant to within 20 percent. 
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Therefore, inserting a metal film into the cavity is a simple technique 
for obtaining a stable YAG laser output in a narrow frequency range. 

Several other films have been tried. A 100-A nickel-chromium 
film, for instance, had close to zero minimum reflectance according 
to curve 3 of Fig. 2. This curve was calculated from the transmission 
(48 percent) and reflections (18 percent and 32 percent) measured with 
a YAG laser beam. It was verified that the minimum loss was larger 
than for the 50-A. film since the threshold for oscillation had increased 
to 800 W pump power (compared with 600 W for the 50-A film). 
Although curve 3 in Fig 2 indicates a higher selectivity for this film, 
the maximum single-frequency output was again 60 mW. If the pump 
power was increased beyond this point, multimode operation was ob­
tained. 

Obviously, the metal film technique works less efficiently for the 
YAG laser than for the argon ion laser. The reasons for this are (i) 
the apparent lack of mode competition which makes it necessary for 
the Y AG laser to completely suppress all but one mode (not just to 
provide a little more loss for the other modes), and (ii) its low gain 
which makes the Y AG laser output very sensitive to small additional 
losses. Therefore, it is generally much more difficult to obtain a high­
power single-frequency output from a YAG laser than from an argon 
ion laser or helium-neon laser. 

v. DISCUSSION AND CONCLUSION 

The theoretical and experimental results show that it is possible, 
under suitable circumstances, to obtain high-power single-frequency 
operation of a laser using the metal film technique. In practice, how­
ever, it is not always possible to find a material that has the required 
loss in a sufficiently thin film. This is in contrast with interferometric 
mode selectors whose selectivities are determined simply by the reflec­
tivities of the elements. For the argon ion laser an interferometric 
mode selector has some advantages over the metal film;4 however, it 
is difficult to apply to the YAG laser because of its much greater 
oscillation width (about 100 GHz). The metal film method described 
here does have the advantage of simplicity, however, and the system 
is relatively easy to make mechanically stable. The metal film tech­
nique should be of particular interest to people working in the fields 
of Brillouin scattering or holography where a narrow bandwidth 
source is required. It is relatively easy with a metal film to restrict 
the laser oscillation to a few neighboring modes. Thus a drastic re-
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duction in bandwidth can be made, often at little expense III total 
output power. 
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Microstrip Lines for Microwave 
Integrated Circuits 

By M. V. SCHNEIDER 

(Manuscript received December 2, 1968) 

M icrostrips, transmission lines of metallic layers deposited on a di­
electric substrate, are very useful for the microwave and millimeter wave 
hybrid integrated circuits required for solid-state radio systems because of 
their simplicity and planar structure. To design hybrid integrated circuits 
with microstrips requires computation or measurement of the impedance, the 
attenuation, the guide wavelength, and the unloaded Q of the line. These 
parameters can be obtained from the effective dielect1-ic constant and the 
characteristic impedance of the corresponding air line. This paper g1:ves 
the exact design data for all line parameters for the most important cases. 

We report the impedance and attenuation measurements performed on 
microstrips. Satisfactory agreement is obtained with theoretical results 
based on conformal mapping with logarithmic derivatives of theta functions 
and expressions involving the partial derivatives of the impedance with 
respect to independent line parameters. 

I. INTRODUCTION 

Transmission lines and passive lumped or distributed circuit ele­
ments, which are manufactured and assembled from planar metal 
conductors or conducting stripes on insulating substrates, are es­
sential basic elements in microwave and millimeter wave hybrid 
integrated circuits. The metal strips or microstrips are deposited by 
thin-film or thick-film technology on dielectric substrates; the proc­
essing steps are substantially different compared to conventional 
coaxial and waveguide circuit technology. Circuits built with micro­
strip transmission lines or microstrip components have three important 
advantages: 

(i) The complete conductor pattern can be deposited and processed 
on a single dielectric substrate which is supported by a single metal 
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ground plane. Such a circuit can be fabricated at a substantially lower 
cost than waveguide or coaxial circuit configurations. 

(ii) Beam-leaded active and passive devices can be bonded directly 
to metal stripes on the dielectric substrate. 

(iii) Devices and components incorporated into hybrid integrated 
circuits are accessible for probing and circuit measurements (with some 
limitations imposed by external shielding requirements). 

The purpose of this paper is to derive formulas for the electric pa­
rameters which are the impedance, attenuation, propagation constant, 
and unloaded Q of the microstrip transmission line. In addition to the 
electrical design data, attenuation measurements at 30 GHz are pre­
sented because: 

(i) The attenuation is the most important electrical parameter 
of a microstrip because it determines the circuit losses of microwave 
and millimeter wave hybrid integrated circuits. 

(ii) There are many solid-state radio systems for which hybrid in­
tegration looks attractive, such as the radio pole line, high-capacity 
domestic-satellite systems, Picturephone® visual telephone distribu­
tion, and mobile telephone systems.1 ,2 Hybrid integration of circuits is 
essential for many other applications in order to achieve small overall 
size, minimum weight, and low production cost. 

II. DEFINITION AND CLASSIFICATION 

A strip line or microstrip line is a parallel two-conductor line made 
of at least one fiat strip of small thickness. For mechanical stability 
the strip is deposited on a dielectric substrate which is usually sup­
ported by a metal ground plane. This basic configuration is shown 
in Fig. 1a. 

A parallel two-conductor line of this type may need modification 
because: 

(i) A radio frequency shield may be required to eliminate radiation 
losses. The shield dimensions or the sheet conductivity of the shield­
ing material have to be chosen in such a way that excitation of trans­
verse electric modes, transverse magnetic modes, and box resonances is 
suppressed. 

(ii) Proximity of the air-dielectric interface with the strip con­
ductor can lead to excitation of plane-trapped surface waves. This 
problem can be solved by using a substrate with a low dielectric con­
stant or by choosing a sufficiently small frequency-thickness product 
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Fig. 1 - Basic types of microstrip transmission lines with one strip conductor 
supported by a dielectric substrate: (a) standard microstrip, (b) embedded micro­
strip, (c) microstrip with overlay, (d) microstrip with hole, (e) standard 
inverted microstrip, (f) suspended microstrip, (g) shielded microstrip, (h) slot 
transmission line. 

for the microstrip. It can also be solved by removing the air-dielectric 
interface into the far field region as shown in Fig. lb. 

(iii) If the substrate is a semiconductor, surface passivation may be 
necessary to protect against atmospheric contaminants. This can be 
achieved by a thin dielectric film as shown in Fig. 1c. 
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(iv) Solid-state devices with substantial heat dissipation such as 
IMPATT, GUNN, and LSA diodes as well as high-power varactor diodes 
have to be shunt mounted in the microstrip in order to achieve a small 
thermal spreading resistance in the ground plane. A hole in the di­
electric is required in Fig. 1d for mounting a solid state device be­
tween the two microstrip conductors. 

IMPATT diodes, bulk sources, and high-power varactors are typical 
examples of solid-state devices which are usually shunt mounted in 
transmission line circuits. Other solid-state devices or materials 
which require shunt mounting are ferrites for circulators and isolators 
and high-Q dielectric resonators for microwave band-pass filters. 
Shunt mounting is facilitated in inverted microstrips and suspended 
microstrips shown in Figs. Ie and If. Solid-state devices which 
require a dc bias or a dc return have to be mounted by means of a 
pressure contact or bonded contacts between the ground plane and the 
strip conductor shown in Fig. Ie. Complete shielding of such a line 
is essential because fringe field effects are enhanced by increased elec­
tric field intensities in the dielectric support material. An attractive 
solution is to suspend the substrate symmetrically between the ground 
plane and the top shield. Such lines have been discussed by Brenner 
and have been used for balanced transistor amplifiers and ferrite 
circulators.3

- 6 A major advantage of all microstrip configurations with 
an air gap is that the effective dielectric constant is small. This means 
that the effective dielectric loss tangent is substantially reduced; also, 
all circuit dimensions can be increased, which leads to less stringent 
mechanical tolerances, better circuit reproducibility, and therefore 
lower production cost. 

Figure 19 shows a completely shielded standard microstrip and 
Fig. 1h is a schematic diagram of a slot line which consists of two 
conductors deposited on the same side of a high permittivity sub­
strate.7 The slot line can be tightly coupled to the lines of Figs. 1a 
through g by depositing the slot line metallization on one side of the 
substrate and the microstrip conductor on the opposite side of the 
same substrate. Standard microstrips supporting transverse electro­
magnetic modes and structures supporting slot modes can thus be 
combined on one single substrate for obtaining the widest possible 
choice of circuits to be built with existing hybrid integrated circuit 
technology. 
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III. IMPEDANCE, ATTENUATION, AND UNLOADED Q 

The electrical parameters of the microstrips of Figs. 1a through 
g which are required for circuit design are impedance, attenuation, 
unloaded Q, wavelength, and propagation constant. These parameters 
are interrelated for all microstrips of Figs. 1a through g assuming 
that 

(i) The propagating mode is a transverse electromagnetic mode, or 
it can be approximated by a transverse electromagnetic mode. 

(ii) Conductor losses in the metal strips are predominant, which 
means dielectric losses can be neglected. 

(iii) The relative magnetic permeability of the substrate material 
is }J-r = 1. 

The basic reason for the subsequently explained relationship of 
the line parameters is that the inductance per unit length depends only 
upon the conductor geometry and is absolutely independent of the 
geometry and the dielectric properties of the supporting structure. 
The relationship between line parameters is shown in Fig. 2. 

Let us assume in Fig. 2a that the conductor geometry is defined 
by a stripe width wo, a ground plane spacing ho, and a small stripe 
thickness to. Let us also assume that this is an air line with a char­
acteristic impedance Zo, a wavelength Ao, an attenuation per unit 
lengthao, and an unloaded Qo. If the conductor dimensions remain the 
same, and if the microstrip is fully embedded in a dielectric medium 
with a relative dielectric constant €r, one obtains the new line param­
eters given in Fig. 2b. If the line is only partially filled with dielec­
tric support material with a relative dielectric constant €n one obtains 
for the line parameters of Fig. 2c 

z = h impedance 
(eell) , 

A = ~! wavelength 
(ee") 

a = (eell)!ao attenuation 

(1) 

(2) 

(3) 

r 
(4) 

The effective dielectric constant €eff has to be computed or measured 
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as discussed in Section 4.3. The following inequalities are valid for 
the standard microstrip in Fig. la and the inverted microstrip of 
Fig. Ie 

1 + Er < < --2- = Eell = Er 

1 < < 1 + Er = Eell = --2-

standard microstrip (5) 

inverted microstrip. (6) 

If one has to compare the attenuation or the unloaded Q of different 
microstrips one has to consider lines which have the same impedance 
level. It is also necessary that the electrical length of both or at least 
one critical conductor dimension w or h of Fig. 2 is the same. By criti­
cal conductor dimension we mean the dimension which is more critical 
with respect to excitation of transverse electric modes or transverse 
magnetic modes. Plane-trapped surface waves or hybrid modes are not 
considered in this comparison. 

Figure 2d gives the line parameters for partial dielectric filling with 
reduced dimensions w = W o/(€ell)1/2 and h = ho/(Eeff)1/2. This insures 
that the electrical dimension of the two basic line parameters is the 
same as the electrical dimension of the air line of Fig. 2a. In order 
to obtain the same impedance for the partially filled microstrip of 
Fig. 2d and the air line one reduces the ground plane spacing ho to 
hl as shown in Fig. 2e such that the characteristic impedance of the 
air line is reduced to Zo/ (€eff) 1/2. 

We can now state that: 

(i) The microstrip with dielectric material of Fig. 2d and the 
microstrip without dielectric material of Fig. 2e have the same im­
pedance. 

(ii) If we assume that the current distribution is uniform for the 
air line over the width Wo on the ground plane and the adjacent bottom 
face of the strip we obtain the same unloaded Q for both lines of Fig. 
2d and Fig. 2e. The attenuation of the air line is lower by a factor 
(Eelt) 1/2 as given in Fig. 2e. 

IV. COMPUTATION OF LINE PARAMETERS 

4.1 Exact Analytic Solution for Impedance by Conformal Mapping 

The charactreistic impedance of the microstrip of Fig. 2a with 
thickness t = 0 can be obtained by Schwarz-Christoffel integrals 
which transform the upper half of a complex Zl plane into a rectangle 
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in the complex z plane.8- 1o More specifically, one has to find an ana­
lytic function which maps the two strip boundaries in the zl-plane on 
two opposite sides of the rectangle as shown in Fig. 3. The Schwarz­
Christoffel integral for this specific case can be expressed in terms of 
the theta function {)ol and {)o4. Theta functions are well behaved ana­
lytic functions of a complex variable, their properties are well known, 
and rapidly converging series have been published.11,12 These func­
tions and their logarithmic derivatives are essential mathematical 
tools for solving the following engineering problems: 

(i) characteristic impedance of conductors with strip geometries, 
(ii) junction capacitance in semiconductor diodes with strip junc­

tions, 
(iii) heat flow and thermal resistance from a line source into a 

solid, and 
(iv) series resistance of bulk devices with stripe contacts. 

The conformal transformation Zl = zdz) expressed in terms of the 
logarithmic derivative of the theta function {)ol and its parameter I< = 

• K 
+l.,·2 

o PLANE 

REAL 
AXIS 

Fig. 3 - Conformal mapping of a microstrip by the logarithmic derivative of 
the theta function {}l (z, K). 

Zl = _ 2hK alnth(z, K), Zo = (~);.~ 
7r az EO 2 
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I(' II( is 

2hK a 
z = --- - In tJ (z K) 

1 7r az 1 I 
(7) 

where K = K(m) and K' = K'(m) are complete elliptic integrals of 
the first kind with modulus m. 

The characteristic impedance Zo of the microstrip with width w, 
height h, and thickness t = 0 is obtained by solving the following 
equations 

(8) 

(9) 

(10) 

E = E (m) is the complete elliptic integral of the second kind, dn 
the Jacobian elliptic function, 11-0 and ~ the magnetic and dielectric 
permeabilities of free space. With (11-0!€0) 1/2 = 12071" ohm and K = 
K'IIC one obtains 

Zo = 607rK ohm. (11) 

For a very narrow strip w « h and a very wide strip w » hone 
obtains the simple expressions 

Z = 60 In 8h ohm w « h 
o w (12) 

Z - 1207rh ohm w » h. 
0- w (13) 

The exact computation for one important intermediate case by 
means of a series expansion for the logarithmic derivative of the 
theta function {}4 is treated in the appendix. 

4.2 Impedance Design Formulas 

The rigorous solution for computing Zo from equations (8), (9), and 
(10) is not recommended for most engineering applications. Useful 
expressions in terms of rational functions or series expansions can be 
obtained by generalization of equations (12) and (13) as follows 

-co (h)n 
Z 0 = 60 In L an - ohm 

n=l W 
w~h (14) 
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12071" 
w ~ h. (15) Zo = -0> (w)n ohm 

~ bn h 

The number of terms after which the series is terminated determines 
the accuracy of the approximations. The following formulas obtained 
by rational function approximation give an accuracy of ±0.25 per cent 
for 0 ~ w /h ~ 10 which is the range of importance for most engineering 
applications 

(
8h w) Zo = 60 In -:;;; + 4h ohm 

12071" ohm 

h ( h)fi 1 + 2.42 - 0.44 W + 1 - W 

~<1 
h= 

~>1 h = . 

(16) 

(17) 

The accuracy obtained for strips with w/h > 10 from equation (17) 
is ± 1 per cent. 

Table I compares the impedance obtained with theta functions, the 
impedance calculated from the rational function approximations, and 
the measured value, with a time domain reflectometer for w /h = 1. 
The physical dimensions of the line used for the time domain reflec­
tometer measurement are listed in Table II. 

The estimated maximum error for Zo is ±0.7 percent. Measure­
ments for different ratios w/h by the same procedure have also given 
excellent agreement with data obtained by means of the logarithmic 
derivative of the theta function {}4 (t, K). 

Figure 4 is a plot of Zo as a function of w /h. The impedance for the 
important case of the standard microstrip of Fig. la is also plotted 
for two materials which look attractive for hybrid integrated circuits 
in the microwave and the millimeter wave range. These materials are 

TABLE I - CHARACTERISTIC IMPEDANCE FOR w/h = 1 

Method 

Rigorous solution with theta functions eqs. (8), (9), (10) 
Measured impedance with time domain refiectometer 

(Table II) 
Approximation with narrow strip rationalfunction equation (16) 
Approximation with wide strip rational function equation (17) 

ZoOhm 

126.553 

126.60 
126.613 
126.507 
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TABLE II - IMPEDANCE MEASUREMENT DATA WITH TIME 

DOMAIN REFLECTOMETER 

Impedance standard, General Radio 
coaxial precision air line 

Time domain refiectometer, 
Hewlett Packard 

Microstrip ground plane spacing h, 
width w, 
thickness t 

Dielectric constant of polyfoam support and polyfoam 
cover 

Measured impedance for thickness t = 0.001 inches, 
dielectric constant Er = 1.032 

Extrapolated impedance Z for thickness t = 0 from 
measurements for t = 0.001 inch, 0.0115 inch, 
0.0265 inch, 0.0525 ineh and 0.0625 inch 

Microstrip air line impedance Z 0 = (Er) tz 

GR 900-L 
50 n 
hp 

1415A 
0.750 inch 
0.750 inch 
0.001 inch 

Er = 1.032 
124.42 n 

124.62 n 

126.60 n 

1431 

~L.1-------0~.-2-------0~.4----0~.~6~OL.8~1.~O------~2~------~4----~6~-8~~IC 

w/h 

Fig. 4 - Characteristic impedance of the standard microstrip for er = 1 and 
impedance of the standard microstrip for e .. = 3.78 (quartz) and €r = 9.5 
(alumina) as a function of w/h. 
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fused quartz (Si02 ) with fr = 3.78 and 99.5 percent alumina (AbOa) 
with fr = 9.5 whose impedance curves are based on computed effective 
dielectric constants treated in Section 4.3. 

4.3 Computation and Measurement of Effective Dielectric Constant 

The electrical parameters of any microstrip can be computed if the 
characteristic impedance Zo of the corresponding air line and the di­
electric constant (feft )1/2 are known. The basic equations required for 
this computation are listed in Fig. 2. 

The effective dielectric constant 'feft is a function of the ratio w /h, 
the relative dielectric constant fn and the geometrical shape of the 
boundary between air and the dielectric support material. The effective 
dielectric constant can be obtained by starting from the transformation 
given by equation (7), by mapping the boundaries between air and 
dielectric into the rectangle in the z-plane of Fig. 3, and by treating 
the new geometrical configuration obtained inside the rectangle of the 
z-plane as a parallel plate capacitor which is partially filled with di­
electric. 

Notice that the fringe field problem is eliminated in the z-plane 
because the complete upper half of the plane is transformed into one 
rectangle. The procedure is rigorous since conformal mapping pre­
serves the angle of refraction of electric field lines at the boundary 
between dielectric and air. If the capacitance of the parallel plate con­
figuration in the z-plane of Fig. 3 is Co without dielectric and C with 
partial dielectric filling one obtains 

(18) 

The method which is outlined above has been used by Wheeler for 
the standard microstrip of Fig. 1a by starting from an approximate 
conformal mapping transformation and by using an approximation for 
the transformed parallel plate capacitance.13 The square root of the 
effective dielectric constant (feft) 1/2 obtained by this method is shown 
in Fig. 5 as a function of wJh and fr. 

In order to find a function which approximates the set of curves of 
Fig. 5 over the total range 0 ~ w/h < 00 and 1 ~ Er < 00 we define a 
function F(Er , w/h) by 

Er + 1 + Er - 1 F ( w) 
Ee" = --2- --2- Erl h . (9) 
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Fig. 5 - Square root of the effective dielectric constant for the standard micro­
strip. (£8tt)1/2 plotted as a function of w/h with €r as parameter. 

From equation (5) we find for the standard microstrip of Fig. 1 (a) 

o ~ F (fr, ~) ~ 1. (20) 

One class of functions which fulfills this requirement is the class of 
irrational functions 

F ('n~) = [1 + t, c. (~) T (21) 

with en being functions of fr and m ~ O. The set of curves of Fig. 5 
can be approximated with m = - 0.5 and one single term of the series by 

( w) ( 10h)-! 
F fr' h = 1 + -;- . 

The final result with an accuracy of ±2 per cent for f.1! 

accuracy of ± 1 per cent for (fel!)! is 

= fr + 1 + fr - 1 (1 + 10h)-!. 
fel! 2 2 w 

(22) 

and an 

(23) 
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Effective dielectric constants can also be obtained by static capaci­
tance measurements or time domain refiectometer measurements. If 
the static capacitance per unit length is C with partial dielectric 
filling and Co with the dielectric removed, one obtains€eff = C jCo and 
from Z = (LIC) 1/2 with L = Zo/vo 

z=~= 1 1. 

(eell)' vo(CCo)' 
(24) 

where Vo is the velocity of light in vacuum, Vo = 3.1010 cm per second. 
Accurate measurements of €eff with a time domain refiectometer re­

quire a precision coaxial connector standard and a good transition 
from coaxial transmission line into the microstrip. Baseband transi­
tions up to a few GHz can be made by building an oversize model 
of the partially filled microstrip as shown in Fig. 6. The in­
verted microstrip of Fig. 1 (e) used for this measurement is sup­
ported by clear fused and polished quartz plates with a dielectric 
constant '€r = 3.78. The effective dielectric constant €eff plotted as a 
function of wlh is much lower than €r because only a small fraction 
of field lines passes through the quartz. Similar results are obtained 
if the line shown in Fig. 6 is completely shielded provided that the 
major part of the radio frequency energy remains concentrated in the 

1.30,----,.---...,------,.--...,.---,--------------, 

1.251-----..:p.~..,....-+---t----+--__i 

'~ir;:::~.=di ~ 
h = 0.750" 

77'7/777/.77//.°)/.7:)/.7:1.77) /.777/.777/.771/.0; /.7:1.777/.T777 / ~ 

1.20 I----+--"'..--~ _ ____'l'...,...---+--__i--_r_--,__-____,_--,.__----t 

~ 
'E 1.151----+-~-+_-_"'!_Oc,-,--,"--___+""~__if""_o;;;:::___t_--t_-_+_--+--_; 

C1> 

~ 

1.05i-i--i-i--i--i-i--r--?=:;:;:;::+==:::t, 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

w/h 

Fig. 6 - Square root of the effective dielectric constant for an inverted 
microstrip with quartz substrate. Oversize measurement with strip conductor 
thickness t = 0.010 inch. 
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air gap between the ground plane and the strip conductor. One con­
cludes from this measurement that all of the electrical parameters of 
inverted microstrips are close to the electrical parameters of the air 
line. One also concludes that dielectric losses are substantially re­
duced because all the dielectric support material is removed into the 
low field region of the microstrip. 

4.4 Computation of Conductor Attenuation 

The attenuation of any lumped or distributed circuit element is 
known if its inductance as a function of the geometrical conductor 
parameters can be calculated. Inductance and conductor attenuation 
are related because the inductance is the normalized magnetic field 
energy of the circuit element and attenuation is proportional to the 
magnetic field energy stored in the metal conductor.14 In order to 
calculate the attenuation one has to recede the metal surface by one 
skin depth or more generally by a small length on normal to the con­
ductor surface. If the corresponding increase in inductance is 8L and 
if the skin resistance of the metal is R s, then the radio frequency re­
sistance R of the circuit or line element is 

(25) 

with the skin resistance Rs given by 

(26) 

where f is the frequency in Hz, p the conductor resistivity in ohm' cm, 
and fLo = 4n- .10-9 henry per cm. The skin resistance in ohms as a 
function of frequency is plotted in Fig. 7 with p in ohm' cm as a 
parameter. 

The inductance L and the attenuation 0'0 in neper per unit length of 
a microstrip which supports a transverse electromagnetic mode are 
given by 

R 
a =-. 

o 2Zo 

From equations (25), (27), and (28) one obtains 

ao = (~)t ~ oZo. 
J-to 2Zo on 

(27) 

(28) 

(29) 
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Fig. 7 - Skin resistance R. of metals as a function of frequency. Bulk resistivity 
at de and 20° C for suitable conductors is 1.7 ,uohm· cm for copper, 1.6 /lohm· em 
for silver, 2.3 ,uohm·cm for gold, and 2.8 ,uohm·cm for aluminum. 

The geometrical conductor parameters of the microstrip are width w, 
height h and thickness t. Let us assume first that the skin resistance 
of the ground plane is different from the skin resistance of the strip, 
for example, the two conductor materials are not the same. The at­
tenuation a1 owing to the ground plane with a skin resistance RS1 is 
obtained by receding the metal surface by Sn = Sh 

al = (~)! Ral azo • 

J.l.o 2Zo ah (30) 

The strip attenuation ·a2 with a skin resistance RS2 is obtained by re­
ducing the strip dimensions by 2Sw and 2St as well as increasing the 
ground plane spacing bySh 

a2 = (~)! R'2 [azo _ 2 azo _ 2 aZoJ. 
J.l.o 2Zo ah aw at (31) 

The total attenuation ao is 

(32) 

If the conductor materials for the ground plane and the strip are 
the same we obtain with Rs1 = Rs2 = Rs 
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(33) 

It is useful to write the partial derivatives: 

azo = +1 azo 

aw 
h a(~) 

(34) 

azo _ w azo 

ah -
-h' a(~) 

(35) 

azo = + azo aw 
at aw at (36) 

with fJwjfJt being the derivative of w with respect to t for constant ZOo 
The attenuation ao in dB per unit length is finally 

w aw 
R. azo 1 + h + at 

071" In 10 a(~) hZo 
(37) 

The partial derivative awlat can be derived from approximate 
expressions published by Wheeler, Caulton, Hughes, and Sobol.13

•
15 

They define an effective width Welf = W + ~w by considering two 
different microstrips with the same characteristic impedance Zo and 
different dimensions given by w, h, t ~ 0 and Welf' h, t = O. The ap­
proximations are 

t ( 471"W) ~w = We!! - W =:; 1 + In -t- (38) 

t ( 2h) ~w = We!! - W =:; 1 + In t (39) 

Additional restrictions for applying equations (38) and (39) are 
t « h, t < w12, and tl ~w < 0.75. Notice also that the ratio ~wlt 
obtained from equations (38) or (39) is divergent for t ~ O. This does 
not present a problem since equations (29) to (37) are only applicable 
if the conductor thickness exceeds several skin depths. 

Being aware of these limitations, we obtain the partial derivatives 
awlat by computing aWe//lat from equations (38) and (39) 

(40) 
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aw 1 2h -- = -In-
at 7r t 

(41) 

It is convenient for design purposes to define the normalized at­
tenuation A in dB per ohm as follows 

67r In 10 a( 1) (42) 

A is plotted in Fig. 8 as a function of w/h with awjat as a parameter. 
The normalized attenuation A based on the assumption of uniform 
current distribution over the width w of the bottom conductor and the 
adj acent bottom side of the strip conductor is also shown in Fig. 8 for 
comparison. The formula valid for uniform current distribution is 

A=~~dB. 
In 10 wZo ohm 

(43) 

One can show that equations (42) and (43) give the same result for 
w/h» 1 since Zo = 1207rh/w and azo/a(w/h) = -1207rh2/w 2

• This is 
expected because fringe fields can be neglected for wide strips. One 
obtains a lower attenuation from equation (42) for narrow strips be­
cause currents are flowing on the top and bottom side of the strip and 
also because of the beneficial effect of wider current distribution in the 
ground plane because of fringe fields. For narrow strips the result is 
with Zo = 60 In (8h/w + w/4h) ohm 

10 (!h - :h)(l + ~ + ~~~) 
A---

7r In 10 (Z) 
Zo exp 60 

w<l h = . 

For wide strips one obtains from equations (17) and (42) 

A = Zo [1 + 0.44h
2 + 6h

2 (1 _ ~)5J (1 + ~ + aw) 
7207r2 In 10 w2 w2 what 

(44) 

~ ~ 1. (45) 

For design purposes it is recommended to read Rs and A from Figs. 
7 and 8 and to obtain £Yo in dB per unit length from 

(46) 
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Fig. 8 - Normalized conductor attenuation A = o:.oh/Rs in dB per ohm 
for a standard microstrip with €r = 1. The partial derivative awjat is a function 
of the conductor thickness t and given by equations (40) and (41). The con­
ductor attenuation for partial dielectric filling isa = (€ett )1/2 0:.0 as given by 
equation (3). 

The conductor attenuation for partial dielectric filling is obtained 
from equation (3). 

4.5 Measurement of Microstrip Attenuation 

Measurements of the microstrip attenuation in the 1 to 6 GHz fre­
quency range have been performed by Caulton, Hughes, Sobol, 
Pucel, Masse, and Hartwig.15

,16 Good agreement between theory and 
experiment has been obtained in Ref. 15 based on the assumption of 
uniform current distribution. Good agreement is also obtained in Ref. 
16 based on the assumption of the correct nonuniform current distri­
bution. This can be explained in part because the skin resistance Rs 
used for the calculations in Ref. 16 is based on the dc resistivity of 
the copper conductor plus a sizable correction in order to account 
for surface roughness. This correction increases Rs by 13 percent at 
1 GHz and 33 percent at 6 GHz. From recent work by L. U. Kibler 
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one concludes that this correction may be too large even if one takes 
into account the fact that the data obtained by Kibler in Ref. 17 are 
based on electro formed oxygen free copper without any additional 
treatment for improving the surface finish. 

The measurement of attenuation at 30 GHz requires a low loss 
transition from waveguide into microstrip. Such a transition has been 
developed by W. F. Bodtmann.18 Clear fused and polished quartz 
substrates are used for the substrate material in order to obtain a low 
effective dielectric constant. Evaporated and photoetched nichrome­
gold layers with a thickness of 2 {Lm are used for the conductor ma­
terials on both substrate surfaces. Table III summarizes the proper­
ties of the microstrip. 

Table IV gives the attenuation measured for a 3-inch long micro­
strip line by means of a transmission measurement with two-wave­
guide to microstrip transition at both ends of the microstrip. The 
theoretical loss based on the assumption of uniform current distribu­
tion and the theoretically computed current distribution is given in 
Table V. 

The agreement between measured and calculated data does not 
necessarily support the uniform current theory. It indicates as ex­
pected that the radio frequency film resistivity p at 30 GHz is higher 
than the dc resistance of Table V. The dc resistivity is calculated 
from a measurement of the composite nichrome-gold resistance and a 
thickness measurement with a Tolansky interferometer. 

The attenuation a' per guide wavelength is 0.0609 dB. A value from 
0.060 to 0.068 dB has been measured in the 26.5 to 30.5 GHz frequency 
range. The unloaded Q is given by 

Q = 207r _1_ = 27;~ = 450. 
In 10 ex)\o ex 

TABLE III - MICROSTRIP DATA 

Type of micros trip 
Substrate material* 
Substrate thickness h 
Conductor width w 
Conductor thickness t 
Metal deposition 
Thickness of Nichrome base layer 
Line fabrication 
Conductor resistivity 

standard of Fig. 1 a 
clear fused quartz 
0.030 inch 
0.030 inch 
2 JLm Nichrone-gold 
evaporated . 
100 to 150 A 
photoetching 
p = 3.0,10-6 Ohm'cm 

>I< 99.8 percent Si02, Amersil Inc., Hillside, New Jersey. 

(47) 
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TABLE IV-MEASURED MICROSTRIP Loss AT 30 GHz 

Measured total loss of waveguide to microstrip transitions and 
3-inch long micros trip at 30 GHz 0.88 dB 

0.10 dB 

0.78 dB 

Measured insertion loss for both transitions 
(two transitions back to back) 

Attenuation for line length l = 3 inches 

This is believed to be the highest Q obtained for a microstrip in this 
frequency range. 

V. MODE PROPAGATION IN l\IICROSTRIPS 

Microstrip transmission lines which are fully shielded and com­
pletely filled with dielectric material can propagate transverse elec­
tromagnetic, transverse electric, and transverse magnetic modes. Par­
tially filled and fully shielded lines cannot support these modes 
because the boundary conditions at the interface between air and di­
electric cannot be rigorously fulfilled. Zysman and Varon have shown 
that a hybrid mode can be found which satisfies all boundary condi­
tions and which can be decomposed into sums of transverse electric 
and transverse magnetic space harmonics.19 From their results one 
concludes that the hybrid mode propagates at all frequencies and that 
it approaches the transverse electromagnetic mode at low frequencies 
or for sufficiently small line dimensions. 

The problem of hybrid mode propagation has also been treated by 
Pregla, Schlosser, Hartwig, Masse, and Puce1.20 ,21 One concludes from 
the results that the frequency dependent behavior or the dispersion 
of the propagation constant and the effective dielectric constant IS 

TABLE V-THEORETICAL MICROSTRIP Loss AT 30 GHz 

Square root of effective dielectric constant for 
Er = 3.78 and w/h = 1, equation (23) 

Conductor skin resistance for f = 30 GHz 
and p = 3.0 X 10- 6 ohm' em, Fig. 7 

Normalized attenuation, uniform current 
distribution, w/h = 1, Fig. 8 

Normalized attenuation, nonuniform current 
distribution, aw/at = 2.1, Fig. 8 

Attenuation, line length l = 3", (Eell)! R.Al/h, 
uniform current 

Attenuation, line length l = 3" 
Nonuniform current distribution 

.;1 
[(Eell)! = 1.68 
''''II 
R. = 0.060 ohm 

A = 0.0685 dB per ohm 

A = 0.0420 dB per ohm 

0.690 dB 

0.423 dB 
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particularly pronounced for lines with substrates which have a high 
dielectric constant, such as alumina with €r = 9.6 and rutile with €r = 
104. It is also shown that the frequency of operation has to be lower 
than the cutoff frequency fe of the lowest order transverse electric 
surface wave which is given by 

(48) 

where h is the substrate thickness in millimeter.21 The cutoff frequency 
obtained for the line of Table III with h = 0.75 mm and €r = 3.78 is fe 
= 60 GHz. For high density alumina with €r = 9.6 the cutoff is con­
siderably lower with fe = 34 GHz. 

VI. CONCLUSIONS 

The electrical properties of microstrips can be derived from the 
characteristic impedance of the air line and the effective dielectric 
constant if the propagating mode can be approximated by a transverse 
electromagnetic mode. Substrates with a low dielectric constant are 
useful for circuit applications because dispersion of the line parameters 
is less pronounced. Structures with an air gap are recommended if 
circuit losses have to be minimized. Complete shielding is essential 
for most applications in order to reduce radiation loss and to reduce 
the coupling between different circuits. 
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APPENDIX 

Computing Microstrip hnpedance with Theta Functions 

The following example gives the numerical procedure for comput­
ing the characteristic impedance of a microstrip. It is convenient to 
calculate w/h and Zo as a function of the modulus m of the complete 
elliptic integrals 1(, 1(', and E. We assume m = 0.86 for this example 
and use equations (8), (9), and (10) 

(i) m = 0.86 modulus of complete elliptic integrals 
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(ii) 1( = 2.42093 l 
1(' = 1.63058 From tables, Ref. 22. 
E = 1.13600 f 

K = 1(' /1( = 0.673532. 

(iii) Characteristic impedance from equation (10) with (Ilo/ Eo)! 

1207r ohm 

1(' 
Zo = 607r I{ = 126.958 ohm. (49) 

(iv) From equation (9) and tables of the Jacobian elliptic functions 
we obtain23 

dn2(21(s-) = ~ = 0.469240 

2K S- = arc dn (~)! = 1.02806 

S- = 0.212328. 

(v) We use the rapidly converging series expansion12 

a ~ exp ( -n7rK) ., 
ar In tJls-, K) = 47r L...J 1 ( 2 ) sm (2n7rt) 

~ n=l - exp - n7rK 

and obtain for the sum S of the first 10 terms S = 0.124095. 
(vi) From equation (10) we obtain 

(50) 

(51) 

(52) 

(53) 

(54) 

The result listed in Table I is based on quadratic interpolation from 
a table made with closely spaced moduli m. 
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Experimental Simulation of a Multiple 
Beam Optical Waveguide 

By D. GLOGE and W. H. STEIER* 

(Manuscript received November 7, 1968) 

Two mirrors, 15 centimeters in diameter and 25 meters apart, form an 
optical delay line which can store two gaussian bemns for 342 round trips 
or 60 microseconds. This paper reports experiments which studied the 
intensity profiles, the phase fronts, and the cross scattering between these 
beams after their retrieval from the delay line. In certain respects, the delay 
line simulates a multiple beam guide made of 684 1nirror periscopes. The 
experimental results permit an estimate of the beam capacity, the crosstalk, 
and the transmission length of such a guide. 

1. INTRODUCTION 

The possibility of sending a multitude of gaussian light beams down 
a single lens waveguide has recently been suggested as an inexpensive 
means of multiplying the capacity of the waveguide.1

,2 Though the 
beams would overlap along the guide, appropriate optics could separate 
them in the receiver. 

The density of resolvable beams in the system is determined by 
beam distortion and scattering rather than the spread of the ideal 
beams. Smooth imperfections of the optical surfaces cause the beam 
to deviate from the exact position and distort its profile and cross 
section.3 This limits the density of the beams and determines the re­
ceiver size required to secure reception. Surface irregularities that are 
small compared with the beam size result in scattering that is collected 
by receivers of adjacent channels.4 This crosstalk increases with the 
receiver size, the density of beams, and the number of scattering ele­
ments. The purpose of this experiment was to check the amount of 
distortion, to determine the receiver size required, and then to measure 
the scattering and find out what beam density and transmission dis-

* Formerly with Bell Telephone Laboratories at the Crawford Hill Laboratory. 
Now with the University of Southern California. 
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tance could be achieved with tolerable crosstalk. In a multiple beam 
guide, front surface mirrors probably will be preferred to lenses 
because, for the large apertures needed, lenses are apt to have imper­
fections within the material. A first simulation of such a mirror guide 
was tried here by folding two beams into a two-mirror cavity with a 
size comparable to one guide section. The setup was similar to optical 
delay lines built previously,5 except that this line was optimized to 
exploit its full capacity.1 

In a delay line, the folded beam wanders about the mirror surfaces, 
being submitted to always new and statistically independent mirror 
imperfections, similar to the waveguide situation. The distortion is 
therefore equivalent to the distortion in a guide. Two beams launched 
simultaneously follow adjacent paths comparable to two adjacent 
beams in a multiple beam waveguide. Their cross-scattering is equiva­
lent to the cross-scattering of two neighboring beams in a waveguide. 

II. THE FOLDED-BEAM CAVITY 

Figure 1 shows the experimental setup with the two cavity mirrors 
in the background. Disregard the beam splitter for the moment and 
l1ssume that only one gaussian beam, beam 1, is injected at an angle 
through the center hole in the front mirror. By introducing astigma­
tism to this mirror, as indicated by the arrows, the beam can be kept 
in the cavity for many round trips, writing a Lissajous pattern on each 
mirror.5 Careful adjustment of this pattern permits recovery of the 
beam through the same hole at a slightly different angle. Figure 1 
shows the two-lens telescope used to inject the laser beam and a 
little mirror at the focus of the telescope which deflects the output 
beam, beam 4, into a photomultiplier. 

The delay line was designed so that a maximum number of round 
trips could be accommodated in an available 6-inch conduit, 25 meters 
long, with the beam axis never approaching the wall and the center 
hole closer than 2.5 beam radii. This clearance ratio is identical to the 
density factor k defined in Ref. 1. 

Also from Ref. lone obtains the possible number of round trips 

A4 
Ncavity = 4d2A 2k4 (1) 

in a delay line of radius A and length d, using an optical wavelength A. 
To allow for a slight misalignment of the conduit sections, we assumed 
an unobstructed cross section 12 cm in diameter. For A = 6 cm, d = 
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Fig. 1- Injection and recovery of the two beams after 342 round trips in the 
delay line. 

25 m, and k = 2.5, one obtains N = 335. We chose 342 18 X 19 
round trips because, for optimum conditions, N must be a mUltiple 
of two consecutive integers.1

,5 

For this optimum design, Ref. 1 demands a focal length 

f 
d 

(2) 
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for the undistorted mirror and focal lengths 

d 
(3) 

for the astigmatic mirror in the horizontal and vertical planes, respec­
tively. We chose i = 12 m and adjusted the mirror spacing to 26.1 m. 
This spacing was critical to within 1 mm. The astigmatic mirror had 
focal lengths ih, v = 12 m ± 5 cm corresponding to a surface deflection 
of ±1 micron at the mirror edge when forces were applied as shown in 
Fig. 1. Both mirrors were 2.5 em thick, 15 em in diameter, polished 
spherical within A/10, and coated for high reflectivity at 6328 A, the 
wavelength of the He-Ne laser used. 

The optimum design requires a beam radius 

(4) 

at the input.1 For the chosen parameters v = 1 mm. We provided a 
center hole with a radius kv = 2.5 mm in the front mirror. The radius 
v is also the minimum radius the beam ever has in the cavity. Figure 
2 is a photograph taken at the back of the rear mirror. It shows that 

Fig. 2 - Lissajous pattern of one beam photographed at the back of the rear 
mirror. 
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the beam size is smallest in the center of the pattern. The beam widens 
horizontally when it is displaced horizontally and widens vertically 
when it deviates vertically. Consequently, the beams have elliptical 
cross sections everywhere except along the pattern diagonals. The 
ratio of the maximum to the minimum beam radius is 

V 7r 
(5) 

for the optimum design; consequently u = 5.9 mm. 
To recover the beam after 342 round trips without interference 

from other paths, the Lissaj ous patterns on the mirrors must form 18 
lines and 19 rows of spots as shown in Fig. 2. The spacing of these lines 
and rows decreases toward the pattern edges; the spots overlap as 
their sizes increase. In the middle of the pattern, the spots are spaced 
center-to-center 6 mm horizontally and 5 mm vertically. The same 
spacing holds for the spots around the center hole of the front mirror. 
A better output beam was obtained from the rectangular arrangement 
shown in Fig. 2 than from one with equal horizontal and vertical 
spacing. A possible cause of this is discussed in the Section III. 

Figure 2 shows an increase in the pattern brightness from right 
to left caused by the nonuniform mirror transmission, which does not 
reflect a variation in beam intensity. The total loss for 342 round 
trips was 4.0 dB or 0.135 per cent per reflection. This loss is about 
three times that of the best mirrors reported.6 Unfortunately, the 
reflection maximum of the rear mirror was not exactly centered on the 
6328 A laser line, and the coating was not completely uniform across 
the surface. 

The conduit was mounted along the laboratory wall between two 
concrete tables which supported the ends. The mirrors were inside the 
airtight conduit. Their position and the astigmatism were adjusted 
from outside. Without evacuation, convection inside the pipe caused 
the beam to drift off the exit hole within minutes. A I-inch fiberglass 
insulation around the pipe did not improve this situation. After the 
pipe had been evacuated to a pressure of 3 torr, the proper alignment 
could be kept for hours. 

III. BEAM DISTORTION MEASUREMENTS 

In a well-aligned perfect cavity, the input and output beams pass 
the center hole with the same size and phase front, but with a slight 
difference in propagation angle. This permits their separation at the 
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focus of the launching telescope. Figure 3 shows a vertical and a 
horizontal scan of the output beam. The scans deviate little from the 
expected gaussian profiles. The width agrees well with that of the 
input beam. Obviously the high quality mirrors do not introduce 
appreciable distortion even after 684 reflections. This agrees with 
previous observations.3 

The mirror imperfections might be large enough, however, to make 
the beam stray from its predicted path. The output beam did not 
show this deviation, as we could and did correct for it by adjusting 
the mirrors. But there was some evidence that this effect is not com­
pletely negligible. Theory predicts that, with perfect alignment, 
changing the direction of the input beam only changes the direction 
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of the output beam, but both beams stay centered in the hole. Of 
course, this operation simultaneously changes the pattern size and 
either brings the outer paths close to the wall, or the inner paths 
close to the hole. Before we noticed any interference at the wall or the 
hole, the output beam would start moving off the hole center when we 
changed the input beam direction. Comparable experiments with and 
without astigmatism in a system with fewer round trips suggests that 
this imperfection is associated mainly with the way the astigmatism is 
introduced. 

Straying from the designed beam path will cause crosstalk in a 
multiple beam guide. To learn more about this effect, the input was 
split into a lower beam (1) and an upper beam (2), as shown in Fig. l. 
Beam 2 writes a pattern which is the mirror image of Fig. 2 about the 
horizontal axis. Figure 4 shows the composite pattern written by both 
beams. The output beams 3 and 4 are separated one above the other 
at the focus of the telescope and can be recovered separately or to­
gether by moving the deflection mirror up or down. The profile of 
beam 3 is very similar to the one shown in Fig. 3. Figure 5 shows the 
interference pattern of the output beams displayed on a card in front 
of the receiver. The straight lines indicate that the phase fronts of the 
two beams are tilted with respect to each other but are not noticeably 
different otherwise. 

To avoid too optimistic a conclusion from this result, one has to 
investigate the respective paths of the two beams. To every reflection 
made by one beam, one can find a reflection by the other which occurs 
not more than 6 mm away. The effects of small imperfections add 
up in a commutative way. Consequently, the sequence of reflections 
is immaterial, and the total distortion of one beam is closely related 
to the distortion of the other beam because of their neighborhood in 
the cavitY'. The nature of this neighborhood is the same as with two 
beams in a multiple beam transmission system when they are launched 
and received 6 mm apart. 

IV. BEAM SCATTERING MEASUREMENTS 

A better analysis of the light output from the cavity is possible 
when light pulses are inj ected. This was done by pulsing the laser 
output at a rate of 1 kHz for intervals of 100 ns using a polarization 
switch as shown in the foreground of Fig. 1. 7 The pulses were shorter 
than the cavity round trip time of 174 ns so that the output from suc­
cessive round trips could be resolved. The total delay of the primary 
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Fig. 4 - Composite pattern of both beams at the back of the rear mirror. 

Fig. 5 - Interference pattern of the two beams after 684 reflections. 
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output pulse was 59.5 p,S, confirming the proj ected number of 342 
round trips. 

Much weaker pulses were detected before and after the primary 
output pulse at periodic intervals corresponding to 18 or 19 round trips. 
By alternately blocking beams 1 and 2, we could attribute some of 
these pulses to beam 1 and some to beam 2. Blocking beam 2 avoids 
the strong primary pulse in beam 3 so that the weak pulses can be 
amplified without saturating the photomultiplier. 

Figure 6 shows pulses generated by beam 1 which leave the cavity 
along path 2. They were detected by moving the deflection mirror into 
this path. The numbers indicate the round trips completed before 
detection. Pulse 342 was caused by the primary output pulse which 
leaves the cavity along beam 4. Although it is not intercepted by the 
deflection mirror, some scattering outside the cavity resulted in a 
weak light pulse in the receiver. The other pulses can be attributed to 
scattering inside the cavity. Investigation of the Lissajous pattern 
shows that the beam path tends to approach the center hole whenever 
18 to 19 round trips are completed. The occurrence of scattered pulses 
with this periodicity suggests that the beams close to the center hole 
are responsible for the scattering. 

Figure 7 is a sketch of the area around the center hole as viewed 
from the back of the front mirror. The numbers indicate the round 
trips completed before the respective reflection. The arrows show 

Fig. 6 - Pulse train of scattered light received in beam path 2 when only 
beam 1 is injected. The numbers indicate the round trips completed before 
reception. 



1454 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969 

e 
38dB 

4 

8 
38dB 

2 

I 
I 
I 

5mm 
I 

Q~ 
--6mm--~ 

Fig. 7 - The reflections around the exit hole as seen at the back of the front 
mirror. The numbers indicate the round trips. The arrows point to the quadrant 
where the scattering is picked up. The dB values represent the ratio of total out­
put to scattered light. 

in which direction a particular beam scatters, that is, in what beam 
path it will be picked up. For example, all dots pointing toward 
quadrant 2 were received in beam path 2 and are present in the pulse 
train of Fig. 6. The additional pulses not labeled in Fig. 6 originated 
from reflections farther away from the hole. They were omitted in 
Fig. 7 to avoid confusion. The signal in Fig. 6 was calibrated by 
comparing it with the signal from the primary output pulse reduced 
by a 40-dB standard attenuator. The dB values in Fig. 7 represent 
the signal-to-crosstalk ratio obtained by calibrated reception in beam 
paths 2 and 3. 

These observations seem to support the theory that every reflection 
scatters a small amount of light into a narrow cone about the primary 
beam.4 Refocused by the mirrors, this light stays close to the beam; 
contributions from successive reflections add in power. This is why, 
after 323 round trips, 9 dB more scattering was measured than after 
18 trips, though at that time both beams are the same distance from 
the hole. Notice that the dB levels indicated in Fig. 7 are related to 
the power of the output beam. If we consider the attenuation and re­
late the scattering levels to the beam powers at the respective re­
flections, the scattering is 42.8 dB below that power after 18 round 
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trips and 39.2 dB after 323 round trips. The difference is 12.6 dB, that 
is, the scattering has increased 18 times from the 18th to the 323rd 
round trip, or about proportionally to the number of round trips. If 
the scattering could be measured after one reflection, the scattered 
power should be 30 dB + 10 log 646 = 57 dB smaller than the total 
power of the primary beam. 

This, of course, holds only for the specific arrangement shown in 
Fig. 7: an output hole 5 mm in diameter and a beam being displaced 
by about 5 mm from this hole. If the reflection occurs 1.56 times 
farther away from the hole (for example, reflection 341 or 343), the 
scattered power intercepted by the hole is about 8 dB smaller. From 
this it is concluded that the scattered power density decreases with 
about the fourth power of the distance from the hole. 

This result is subj ect to the specific measuring arrangement used, 
in particular the directional properties of the receiver. In our case, 
because of the deflecting mirror, the receiver collected one-quarter of 
the cone of light falling through the exit hole. The observation of a 
rapid fall-off of the scattered light around the primary beam agrees 
with measurements reported in Ref. 4. The fact" that scattered signals 
occur even after the primary beam has left the cavity means that the 
cone of scattered light, though intercepted partly by the exit hole, 
keeps travelling around in the cavity. 

V. AN EQUIVALENT MULTIPLE BEAM GUIDE 

Envisage the two cavity mirrors to be replaced by a sequence of 
thin lenses with the same focal length and spacing. Consider the 
beam to be unfolded along this path. Periscopic mirror arrangements 
could be used as well as lenses.8 Each periscope consists of two mirrors, 
thus there are two reflections at every focuser, twice as many as in 
the delay line. Consequently, after traveling through 684 sections, 
25 m in length, the beam suffers a loss of 8 dB or about 0.47 dB per km. 

In contrast with the delay line, it is not necessary to introduce 
astigmatism in the multiple beam guide. If the guide is installed above 
ground, the pressure in the conduit will have to be reduced to a few 
torr, but evacuation seems unnecessary in an underground install a­
tion.8 

The experiment demonstrated that two adjacent beams show neg­
ligible distortion and are fully separated after 684 sections, or 17 km. 
A receiver area of 5 mm diameter, the size of the exit hole, is sufficient 
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to collect practically all of the beam energy. It might be advantageous 
to reduce the detector diameter to 3 mm. Such a detector would still 
collect 90 to 95 per cent of the signal light but less of the light scat­
tered from adj acent beams. 

A double mirror periscope will cause twice the scattering of one 
delay line mirror. A detector with the size of the exit hole at the end 
of a 648-section guide will consequently receive twice the scattering 
measured in the experiment, that is, a level of 30 - 3 = 27 dB for 
two beams 5 mm apart and 38 - 3 = 35 dB for two beams about 8 
mm apart. The contributions from beams farther away decrease fairly 
rapidly. If one assumes a decrease with the fourth power of the spacing, 
one obtains a crosstalk level of about 27 dB for a beam surrounded by 
equal beams with a mutual spacing of 8 mm or 4 beam widths. Re­
ducing the detector diameter to 3 mm should improve this level to 
about 31.5 dB. 

The level that can be tolerated depends on various aspects of the 
complete transmission system, but for a comparative figure, regard 
the composite scattering from all beams as gaussian background noise. 
Then, with binary envelope detection and no other noise present, a 
crosstalk level of 20 dB would guarantee an error rate of 10-9

• 

With this figure in mind, one might consider increasing the trans­
mission distance to 4,000 sections, or about 100 km, allowing a total 
attenuation of 48 dB. This increases the crosstalk by about 8 dB re­
sulting in a signal to crosstalk ratio of 31.5 - 8 = 23.5 dB for a 
mutual beam spacing of 4 beam widths and a detector diameter of 
1.5 beam widths. Reference 2 calculates a diffraction crosstalk of 
about 60 dB for this beam spacing which is completely negligible com­
pared with the scattering effect. 

The number of beams that could be transmitted with a mutual 
spacing of k = 4 beam widths in a guide equivalent to the investi­
gated cavity isl 

11"4 A 4 

Nfluide = 32 d2 X. 2k4 • 
(6) 

For a section length d = 25 m, a useful cross section of A 6 cm 
radius, and A = 6328 A, one obtains about 600 beams. Filling the guide 
with this capacity, however, requires that the receivers have a better 
directional selectivity than the one used in the experiment. On the 
other hand, better selectivity would reduce the scattering received 
from other beams below what was measured. 
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VI. CONCLUSIONS 

A He-Ne laser beam was injected into an evacuated 25-m delay line 
and extracted with negligible distortion and only 4 dB loss after 
342 round trips. This corresponds to 60 fLS delay. The absolute devia­
tion from the ideal path could not be measured, but two beams injected 
simultaneously were found to be well resolved after 342 round trips. 

The light scattered at every reflection from the main beam traveled 
in a narrow cone about this beam. The power density of the scattered 
light seemed to decrease with about the fourth power of the distance 
from the beam. The crosstalk caused by scattering from earlier round 
trips was 30 dB below the signal level. 

A multiple beam waveguide equivalent to this delay line would have 
mirror periscopes spaced 25 m apart. It could transmit 600 beams over 
a distance of 100 km with an attenuation of 48 dB and a crosstalk 
level of 23.5 dB. 
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A Companded One .. Bit Coder for 
Television Transmission 

By R. H. BOSWORTH and J. C. CANDY 

(Manuscript received November 19, 1968) 

We compand a one-bit coder by increasing its step size when a string of 
equal bits is detected in the transmitted code. To code and decode each string 
we use a weight sequence 1, 1, 2,3,5 ... 5, the weight returns to unity when 
the string ends. Stability considerations restrict the choice of weights but 
those proposed give adequate stability as well as improve the signal-to-noise 
ratio about 5 dB. The weighted coder has a wide tolerance to changes of 
input, so that a ±3 dB change from the design value is hardly visible to 
most observers. Matching weights at the transmitter and receiver is un­
critical because mismatches appear as small changes of contrast rather than 
as noise. The circuit is easily implemented because it is tolerant to changes of 
component values. 

There is a description of an experimental coder and decoder, together 
with subjective and objective measures of performance. Signal-to-noise 
ratios of 50 dB are reported. 

I. INTRODUCTION 

Encoding an analog signal to digital form entails quantization of 
amplitude. This process introduces a noise into the analog signal 
that is recovered from the digits. The magnitude of the noise, relative 
to the signal, is determined by the bit rate in the digital representa­
tion and the spectrum of the signal. Successful coder designs make 
efficient use of the digits, avoiding worthless redundancies, and shape 
the noise to be subj ectively least noticeable. 

Delta modulation is one of the simplest and best known coding 
methods.1 It changes its analog output positively or negatively by a 
fixed increment at regular instants, as illustrated by V in Fig. 3. 
Differential coding is a related method where, at regular instants, the 
output changes by anyone of a set of prescribed values. Delta modula­
tion is regarded as one-bit differential coding because at each sampling 
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time it transmits either of two codes, a pulse or a space, representing a 
positive or a negative step, respectively. In general, an m-bit coder 
transmits one of 2m codes at each sample time. 

The advantages of one-bit coding are simplicity of circuitry and a 
high sampling rate. Thus, for a given bit rate in the digit channel, its 
sampling rate is m-times greater than that of a corresponding m-bit 
coder. Although the total noise power from a one-bit coder is greater 
than that from a multibit coder, much of the power occurs at higher 
frequencies where it is out of the signal band. The advantage of 
multibit coding is the ability to grade the step sizes to suit the signal 
values.2 Thus, some large steps are provided to track large changes 
and some small steps are provided to accurately reproduce fine de­
tails. In this respect, ordinary one-bit coders are handicapped by hav­
ing only a single step size. 

Theoretical results by J. B. O'Neal show that multibit differential 
coders have larger signal-to-noise ratios than delta modulators.3 Prac­
tical measurements confirm this and show that much of the advantage 
comes from companding the quantization levels.* We describe a 
method for varying the step size of a one-bit coder which has the 
advantages of both companding and a high sampling rate. 

Several authors have described a method for companding delta 
modulators by changing the step size according to the average pulse 
rate in the digit channel,4-7 The steps are smallest when there is an 
equal number of pulses and spaces; they increase when there is a 
higher proportion of either pulses or spaces for a significant time. This 
technique has been used for audio signals to adjust the step size with 
loudness and pitch of the sound. 

For video signals we usually are directly interested in the time 
dependence of the signal and so require means for adjusting the step 
size according to instantaneous signal values rather than an average 
value. Suitable methods have been described by M. R. Winkler and 
J. E. Abate.7.s They vary the step size when certain pulse patterns 
are detected in the digit channel. Thus, steps are increased when a 
string of consecutive pulses or spaces are detected. This paper de­
scribes the design, construction, and performance of such a coder. It 
differs from earlier coders in the way step sizes increase and decrease 
and in that the companding is incorporated in a direct feedback 
coder instead of a delta modulator. Direct feedback coding, which is 
reviewed in Section II, is an improvement on differential coding. 

* Two-bit coders have insufficient levels to permit adequate companding so 
they usually are inferior to other coders. 
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II. DIRECTING FEEDBACK. CODING 

Direct feedback coders are described in Ref. 9. They function al­
most the same way as differential coders, but the circuit is arranged 
to allow greater flexibility of filter design. Figure 1 is a block diagram 
of a one-bit direct feedback coder and Fig. 2 shows some typical 
filter characteristics. For television signals the de-emphasis filter H2 
is a short time integrator; the pre-emphasis Hl is a differentiating 
filter approximately the inverse of H 2; and the filter A in the feed­
back loop is a long time integrator. 

The feedback acts like a servomechanism trying to make the av­
erage value of the quantized signal y equal to the pre-emphasized 
input x. The difference between x and y is accumulated in A and used 
to correct the quantized output. The quantized signal in a one-bit 
coder is observed to oscillate between a positive and a negative level 
in such a way that its average equals x, as Fig. 3 demonstrates. Chang­
ing the pattern of oscillation, the coder interpolates values between 
the quantization levels, but low frequency components of the oscilla­
tion appear as granular noise on the output. The filter A is chosen to 
make these low frequency components small. High frequency com­
ponents are de-emphasized by the integrating filter H2 whose out­
put steps up or down in response to a pulse or a space as does the 
output of a delta modulator. The advantage of direct feedback cod­
ing is flexibility in choosing the deemphasis H2 independent of the in­
terpolation process which is controlled by the feedback loop. 

Notice in Fig. 3 how the large voltage spike in x overloads the 
quantizer by exceeding its quantization level. The coder responds 
with a string of pulses which is the largest signal it can transmit. The 
resulting distortion of the signal is called slope overload; it is a 
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Fig. 2 - Filter characteristics. 

characteristic of systems using integrating deemphasis. Usually, the 
input to the coder is adjusted to a compromise where there is neither 
too much slope overload at edges nor too much granular noise on 
"fiat" areas. 

In the companded coder, overloading is detected by locating strings 
of pulses or spaces in the code, and then the step size is increased 
both at the transmitter and at the receiver. This increase extends the 
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range of the coder but increases the interpolation noise in the vicinity 
of sharp changes. The success of the technique depends on the way step 
sizes are varied. We have no theoretical criterion for optimizing the 
formula, instead practical reasons are given in favor of the proposed 
scheme. The strongest arguments are: the system works, it is easy to 
implement, and it functions as well as any scheme we have tried for 
the Picturephone® see while you talk service, which is approximately 
the transmission of a 1 MHz video signal as a 6 MHz binary signal. 

III. COMPANDING METHOD 

3.1 The Weights 

Figure 4 shows a block diagram 'of the proposed coder and decoder 
(codec). It differs from the ordinary feedback coder by the addition 
of a weighting circuit in the feedback path at the transmitter and in 
series with the receiver. The weighting is controlled by a circuit that 
detects strings of pulses or spaces in the transmitted code. The 
signal y is then made up of a pulse sequence whose amplitudes depend 
on the code. The pulses corresponding to the first two bits of each 
string are left. unweighted at the smallest step size. For the third and 
fourth bits the pulse size is increased two and three times, respectively. 
For the fifth bit, and all that follow in the string, the pulse size is 
made five times that of the smallest pulse's value. The string ends 
when a change of polarity is called for by the appearance of the 
complementary binary code; then the weight returns to unity. An 
example of a digit stream and its corresponding quantized signal is 
given in Fig. 5 which also shows the decoded signal. Compared with 
Fig. 3 there is a decided improvement in the reproduction of the 
signal because slowly changing signals are reproduced with smaller 
steps but the larger signal changes are reproduced with larger steps. 
Consider the reasons for using this particular set of weights. 

3.2 Choice of Weights 

The plan is to increase the step size when the input changes rapidly. 
Thus, small steps are used when the differentiated input x is small, 
and they are increased as x increases. In this way we take advantage 
of the fact that noise in busy areas of a scene is less noticeable than 
noise in flat areas. 

The step size is left unchanged at its smallest value when no more 
than two consecutive bits are the same. Such codes are used to transmit 
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Fig. 3 - Waveforms in the ordinary one-bit direct feedback codec. 

the slowly varying inputs that represent the flat areas of a picture. The 
largest of these codes is 110110· . ·110 and the smallest is 001001· . ·001. 
They correspond, respectively, to values of y whose average is +1 and 
-1 of the smallest step size. These codes are generated when x has a 
steady value in the range ±1 of a step. 

When x exceeds Ys of a step size, codes with more than two re­
peated bits are generated; the weighting circuit then increases the 
step size. The signal level in the coder is set so that this occurs only 
in busy areas of the picture and at edges. Usually, the larger values of 
x appear as spikes of voltage resembling the one in Fig. 3. Therefore, 
step sizes should be increased promptly in order to code the transient 
in a short time; they should be promptly decreased afterwards. 1n-
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deed, it is desirable to code sharp changes in video signals in less 
time than is used to scan three picture elements, otherwise the dis­
tortion is objectionable.!) For Picturephone® visual telephone, the 
edges should be coded in less than 1.5 microseconds, that is, with 
less than nine bits. 

A stability requirement restricts the way weights can be applied. 
Consider for example, a poor design using a weight sequence 1, 1,2,4,9 
. . . 9 to code each string of similar bits. Figure 6 shows an impulse 
in the voltage x and the subsequent behavior of the quantized signal 
y: it oscillates continuously between the largest weights after the 
impulse instead of falling to unity. This oscillation is undesirable 
because it may increase granular noise in the flat areas of the picture. 
Figure 6 also shows the response of the proposed coder to an impulse. 
There is a small undershoot following the representation of the im­
pulse but the step size assumes its smallest value after taking eight 
bits to code it. 

A condition for the weights to fall to their lowest value after any 
impulse in x is that the weight sequence increase no faster than 
1, 1, 2, 4, 8 ... that is, each weight be no greater than the sum of pre­
vious weights in the sequence. The proposed weights 1, 1, 2, 3, 5 ... 5 
satisfy this requirement, giving a safe margin to dampen oscillations. 

The weight returns to unity when a string of similar bits end. Then 
subsequent weight values are independent of the previous code which 
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Fig. 5 - Waveforms in the companded one-bit co dec. 

helps to reduce streaking caused by transmission errors. Properties of 
a coder are often as dependent on its method of construction as they 
are on the philosophy of its design. In order that the evaluations be 
meaningful the circuits are described in the appendix. 

IV. EVALUATION OF THE CODER 

4.1 The Test Setup 

For the tests the coder uses a 6.3 MHz sampling rate to code a tele­
vision signal having 1 MHz bandwidth. This signal represents a 271 
line interlaced picture, displaying 30 frames a second. All subjective 
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Fig. 6 - Responses to an impulse of x using two different weighting sequences. 
In normal use the signal will be band-limited so the impulse will be broadened. 

tests were carried out using a 5Y2 by 5 inch display viewed from 3Y2 
feet. The peak luminance was 70 foot lamberts and the room illumina­
tion about 100 foot candles. 

4.2 Subjective Tests 
Subjective tests were made by observers who were experienced in 

picture evaluation and familiar with the coding process. They com­
pared two displays which they switched alternately onto the monitor 
with equal contrasts. One was the coded picture, the other an uncoded 
picture with noise added. Each observer varied the noise amplitude 
until the displays had equal overall quality for him. At this setting the 
ratio of the signal to the added noise power was recorded as his 
measure of picture quality. The noise used in these experiments was 
approximately gaussian with a flat spectrum from 100 Hz to 0.6 MHz 
as shown in Fig. 7. 

The first group of tests concern the signal level in the coder. The 
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Fig. 7 - (a) Noise source used for testing; (b) Characteristics of filters used 
for restricting the signal band at the codec input and output. 

input amplitude to the coder was varied while a compensating varia­
tion at the output maintained a fixed contrast on the monitor. At 
each amplitude setting an equivalent signal-to-noise ratio was ob­
tained as described. Figure 8 shows the graph of signal-to-noise ratio 
plotted against signal amplitude into the coder. Results obtained by 
four observers are given. 

Observers agree with one another for small inputs but differ at 
larger amplitudes where overloading predominates. They all prefer 
inputs around 70 m V; above this value the quality of the picture falls 
abruptly because overloading becomes objectional at edges of the 
scene. When the amplitude of the signal is decreased from 90 m V to 
30 m V the picture quality falls slightly as there is a subtle inter­
change between over loading and granularity. Below 30 m V the 
granular noise becomes objectional. This graph was obtained using a 
video signal derived from a back lighted transparency that has un­
naturally high contrasts. Figure 9 is a print of this film. 

Figure 10 shows an evaluation of a natural live subject. This test 
was difficult to perform because of the high quality of the coded 
picture. Observers accept larger inputs (up to 120 mY) because move­
ment makes edge distortion less noticeable. Figure 11 is an evaluation 
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of a transparent resolution chart. This has the lowest signal-to-noise 
ratio because the peak to root-mean-square value is small, and be­
cause a rapid succession of black and white vertical stripes induced 
oscillation in the weights. But these patterns are unlikely to occur in 
real scenes: the codes usually transmit pictures of graphic material 
with little impairment. All of the graphs demonstrate the wide toler­
ance of the coder to changes of input amplitude. 

A result of the second group of tests is shown in Fig. 12 demon­
strating the benefits of weighting step sizes. Curve (a) in Fig. 12 is 
a subjective measure of the ordinary unweighted one-bit coder; the 
other curves are for the weight values specified on the graph. Notice 
that at low signal amplitude, where granular noise predominates, the 
weight has no effect. Weighting only improves the response to large 
inputs where overloading is important. 

The next test concerns the tolerance of the coder to changes of 
weight values. The sequence 1, 1, 2, 3, 5 ... 5 was proposed for our 
application; an attempt was made to find a better sequence experi­
mentally. Figure 13 compares the proposed weights with the best we 
could find; there is little difference. In fact, the choice of weights is 
not critical provided they do not cause instability. 

The last subjective test concerns the matching of weights at the 
transmitter and the receiver. Figure 14 shows the equivalent signal-
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Fig. 9 - The still picture used for the subjective test in Fig. 8. 

to-noise ratio of a coder with a 70 m V input and a weighting sequence 
1, 1, 2, 3, 5 ... 5, at the transmitter. At the receiver the weighting se­
quence was~-

1, 1, (2 + e), (3 + e), (5 + e) ... (5 + e) 

where € is a controlled variable: it is the absissa of the graph. Graphs 
for other weight sequences are also given. In all cases the circuit is 
unusually tolerant of mismatching the transmitter and receiver. Mis­
matching weights tends to distort the scene in busy areas, rather 
than introduce noise. This is discussed in the Section A.2 of the 
appendix. 

We have not obtained numerical evaluation of the effect of trans­
. mission error. The opinion of most observers is that error probability 

* This type of mismatch is consistent with the method of construction where 
each new weight value is obtained by augmenting the previous one, as shown 
in Fig. 22. 
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less than one in 106 is hardly noticeable in a live scene. Errors more 
frequent than one in 105 were troublesome, but the picture was useful 
with error rates up to one in 103

• Each error appears as a streak 
no longer than 0.6 inches with random amplitude. Synchronizing errors 
were not included because the timing signals were sent on a separate 
channel. 

This subjective measurement is a valuable tool in that it gives more 
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realistic evaluation of the coder than any objective measure we have 
used. Objective measurement, however, is needed for commercial 
evaluations. A useful method is a noise loading test. 

4.3 Noise Loading Tests 

Because of difficulty in characterizing video signals and human 
observers, some theoreticians have considered gaussian noise as the 
input when determining a coder's signal-to-noise ratio. Their results 
can be tested with a noise loading measurement. Such a measurement 
is described here in order to provide a comparison with published fig­
ures for other coders and to provide data for theoretical confirmation. 

For these tests, gaussian noise with the spectrum shown in Fig. 7a 
was the coder input; the resultant output power was measured in 
selected 1 kHz bands. This power comprises a representation of the in­
put with additional noise generated in the coder itself. A band rejec­
tion filter was then inserted before the coder to block the applied noise 
in the frequency band where the measurement is made; the measured 
power is therefore the noise generated in the coder alone. A signal-to­
noise ratio for the coder can be determined from these two measure­
ments. It is an objective measurement of the coder's properties in the 
particular band of frequency chosen. 

Figure 15 gives the objective signal-to-noise ratio at 14 kHz for 
various weighting. These curves show that the weights have little ad-



If) 
;.J 
w 
m 
U 

55 

~ 50 

?; 
o 
~ 
c: 45 
w 
If) 

(5 
Z 
I 
o 
., 40 
;.J 
-« z 
~ 
If) 

35 

~ 

- -X 0 

-30 

TELEVISION CODER 1473 

x 
x-x-x 

0 00 
0 
X 

X 

X 

0 

r.. 

-20 -10 
rm S INPUT IN DECIBELS 

Fig. 13 - Subjective evaluation of two weight sequences: 0 = 1, 1,2,3,5 ... 5 
and x = 1, 1,2,3·6,4-7, __ .4.7. 

vantage for coding this noise. This is not surprIsmg because the 
weights were chosen to suit the characteristics of video signals­
especially the property that large values of the signal derivative oc­
cur as a few sharp spikes separated by relatively constant levels, 
whereas the derivative of the noise has a gaussian distribution. Figure 
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16 shows how the signal-to-noise ratio depends on the frequency at 
which the measurement is made. By combining this result with the 
known spectrum of the input, it can be shown that the net signal-to­
noise is about 22 dB. 

Figure 17 shows signal-to-noise ratios obtained in the same way as 
those in Fig. 15, but using a video signal as input. These curves more 
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Fig. 17- Objective signal-to-noise ratios at 14 kHz with video input, using 
the same weights as in Fig. 13. 

nearly resemble the subjective results in Fig. 12. Notice that Fig. 12 
refers to peak signals and Fig. 17 to root mean square signals; this 
accounts for the 11dB difference in the ordinates. 

V. CONCLUSIONS 

Weighting the step size of a one-bit coder improves the quality of 
the transmitted signal and broadens its tolerance to changes of input 
amplitude. The weighting is easily implemented with integrated cir­
cuits; in fact, the whole codec need be more complex or expensive than 
a simple radio receiver. The circuit tolerates up to ±30 percent mis­
matching of the transmitter and receiver (that is, € = 0.3 in Fig. 14). 
This is an important property for network applications where each 
transmission is available to many receivers. 

The coder has been presented as a useful circuit for a particular 
application. No theoretical method for optimizing the companding is 
known because of difficulty in analyzing a system that incorporates an 
interaction of a television source, a human observer, quantization, 
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linear filters, and digital processing. Instead, the circuit has been con­
sidered intuitively as an extension of the direct feedback coder de­
scribed in Ref. 9. Indeed, the filters used are those recommended in 
that work. 

We emphasize the tolerance of the circuit to parameter changes 
because attempts to improve a coder sometimes peak its response 
about certain parameter values. These parameters are then critical 
factors in the design. The present coder is very tolerant to changes; 
this is an important practical advantage. 

When each element of a television signal is coded with three bits, the 
degradation of the picture is subjectively equivalent to about -50 
dB of added noise. When the coder was adapted for voice transmis­
sion, telephone quality speech could be transmitted using a 50 KHz 
digit rate. In both examples the coders accepted a wide range (10 dB) 
of input level. 

APPENDIX 

The Circuit and Effect of Mismatched Weights 

A.I. The Circuit 

A.I.1. Circuit Outline 

It is important that the transmission delay around the feedback 
loop not exceed a sample interval. Otherwise the excess delay will 
cause a low frequency instability called double moding. Correct opera­
tion requires that each decision of the threshold be sent around the 
feedback in time to fully influence the next decision. Meeting this 
requirement at high sampling rates is difficult but simplified by moving 
the weighting circuit, in Fig. 4, outside the feedback loop, as in Fig. 
18. Now, each threshold decision activates a switch, S, that sends 
either of two values to the integrator. These two values have been 
set up by previous code values held in registers. For this purpose the 
threshold decision is placed in a flip-flop, F, in readiness for ensuing 
decisions. 

A.1.2 Circuit Action 

All the components of the feedback loop are dc coupled, enabling the 
levels in the circuit to be well defined and avoid displacements caused 
by spurious charges on coupling capacitors. 

The timing cycle is given in Fig. 18. When gate Tl conducts I it 
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samples the difference between the input and the feedback. It thus de­
fines the pulse width fed to the integrator and isolates the integrator 
from the input while a polarity decision is being made on its output . 
. The second gate, T 2 , conducts a short while after Tl switches off. It 

defines the time in which decisions are made. The threshold circuit is 
bistable and so holds its decision until reset.l0 Resetting occurs just as 
T2 starts conducting. A negative signal applied to the threshold input 
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leaves it in the "off" state; a positive signal switches it on. Once on, 
the circuit cannot be switched off again from the input terminal. 

The output from the threshold circuit sets the switch, S, in readi­
ness for the next conduction of gate T 1 • 'Vhen Tl conducts, the digit 
gate T'l also conducts, placing the decision in flip-flop F. At this time 
digit gate T'2 is off, it conducts at the same time as T2 transferring the 
content of F to the registers. A "one" in F resets the O-register and 
inserts a "one" into the one-register, shifting up its content. Similarly, 
a "zero" in F resets the one-register and inserts a "one" into the 0-
register. These registers feed signals to adding circuits whose outputs 
provide the quantized signals, either of which is selected by the next 
decision, using switch S. 

A.2 Effect of Mismatched Weights 

Any codec needs a digital-to-analog converter at its receiver to assign 
analog values to the digital code. For the ordinary one-bit codec it is 
simply a pulse shaping circuit; for multilevel codecs it is more complex, 
because a variety of different analog values must be generated in re­
sponse to different code words. The present co dec uses a digital-to­
analog converter with eight outputs, ±1, ±2, ±3, ±5 corresponding to 
different code patterns. 

vVhat happens when there is an error in one of the levels generated 
at the receiver? Every time the code calls for that level, the output 
will be wrong. When use of each level is completely determined by the 
instantaneous input the error is a distortion, or nonlinearity, of the 
output. This is a characteristic of straight pulse code modulation. 
Conversely, when use of a particular level is not determined by values 
of the input, but is used almost at random, then errors in it appear 
as noise on the output. This often happens in multilevel differential 
and feedback coders. For the companded one-bit coder described, 
there appears to be a high correlation between amplitudes of the pre­
emphasized input x and use of particular levels. Mismatching weights 
are thus, approximately equivalent to a distortion of x. 

Distortion of the pre-emphasized signal appears on the output as a 
distortion of edges and busy areas. The errors persist for about 3 mi­
croseconds which is the time constant of the de-emphasizing filter. 
The visible effect of small errors is not displeasing; it resembles a 
change of contrast in the busy areas, and sometimes, a little streaking 
near the edges. 

If the weight sequence used is one that makes the coder unstable, 
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then the correlation between values of x and use of particular weights 
is lost, and mismatching weights introduces noise. 
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The Silicon Diode Array Camera Tube 

By MERTON H. CROWELL and EDWARD F. LABUDA 

(Manuscript received November 26, 1968) 

A new electronic camera tube has been developed for Picturephone@ 
visual telephone applications; with minor modifications it should also be 
suitable for conventional television systems. The image sensing target of 
the new camera consists of a planar array of reversed biased silicon photo­
diodes which are accessed by a low energy scanning electron beam similar 
to that used in a conventional vidicon. This paper presents a description 
of the operating principles and an analysis of the sensitivity and resolu­
tion capabilities of the new silicon diode array camera tube. 

We also give the detailed experimental results obtained with the tubes. 
The gamma of a silicon diode array camera tube is unity and its spectral 
response is virtually uniform over the wavelength range from 0.45 to 0.90 
micron with an effective quantum yield greater than 50 percent. For a 
13.4 millimeter square target the silicon diode array camera tube's sensi­
tivity is 20 p.amp foot-candles of faceplate illumination with normal 
incandescent illumination or 1.3 p.amp per foot-candle with fluorescent 
illumination; with a center-to-center diode spacing of 15 micron it's modu­
lation transfer function is greater than 60 percent for a spatial frequency 
of 14 cycles per millimeter. Typical dark currents for a 13.4 millimeter 
square target are in the range of 5 to 50 nanoamperes. 

,;. INTRODUCTION 

A large number of electronic cameras have been developed for 
converting an optical image into an electrical signaJ.1-3 In many of 
these, a light-induced charge pattern is stored on a suitable image 
sensing target and a low velocity scanning electron beam is used 
to access the charge pattern. One such camera tube, the vidicon, has 
many desirable characteristics; it has found extensive commercial use 
partly because of small size and inexpensive construction.2 However, 
the vidicon does possess characteristics which, in many applications, 
can prove undesirable or even detrimental. 

1481 
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Recently there have been several reports of development aimed 
at obtaining an all solid-state image-sensing system.4- 8 Typically, 
these systems consist of an array of photosensitive elements scanned 
by solid-state logic circuits. In general, the technology associated with 
producing the logic circuits that must duplicate the function of the 
scanning electron beam is quite complicated. As a result, in all such 
systems reported to date, the density of photosensitive elements has 
been rather limited, and the resulting resolution has been small com­
pared with what can be achieved with a vidicon and what would be 
required in a great many applications of interest. 

This paper describes a new camera tube which has the resolution, 
small size, and inexpensive construction of the vidicon, but not 
many of its undesirable features. While the vidicon has an evaporated 
photoconducting film as the image sensing target, the new camera has 
a planar array of reverse biased silicon photodiodes.9-

12 The diode 
side of the array is scanned by a low velocity electron beam, and the 
electron optics are similar to that of a conventional vidicon. Notable 
improvements in device performance result from the chemical stability 
of the planar array of silicon photodiodes. This stability insures that 
the target performance will not be impaired by a high temperature 
vacuum bake (400°C), necessary for long tube life, or by accidental 
exposure to intense light images or prolonged exposure to fixed images 
of normal intensity. 

The new silicon diode array camera (SIDAC) tube has three valu­
able attributes: 

(i) The spectral response is approximately constant from 0.45p. to 
approximately O.90p. with an effective quantum yield of greater than 
50 percent. 

(ii) Electronic zoom can be achieved by varying the size of the 
raster on the mosiac of diodes since, as discussed in Section 6.2, under 
the proper operating conditions the scanning beam does not alter the 
uniformity of the target response. 

(iii) There is no undesirable image persistance resulting from 
photoconductive lag. 

The first two are unique to the silicon diode array camera tube; 
the last one is true for the Plumbicon and at high levels of illumination 
for the vidicon.3 

Section II discusses the operating principles of the silicon diode 
array camera tube and Section III analyses its sensitivity and resolu-
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tion capabilities. The results of the analysis are compared with ex­
periments. The experimental results which are in agreement with the 
theoretical calculations demonstrate the feasibility of using the tube 
in systems requiring the quality of entertainment type television. 
Several alternative modifications of the basic diode array structure 
that are intended to improve various aspects of its performance are 
described in Section IV. One of these embodiments, the resistive sea 
structure, is discussed and analyzed in more detail in Section V. 
Various other miscellaneous topics, including image lag and dark 
current are discussed in Section VI. 

Details about the target concerning fabrication techniques, X-ray 
imaging, and other electron imaging applications are described else­
where.13 ,14,15 

II. OPERATING PRINCIPLES OF THE DIODE ARRAY CAMERA TUBE 

Figure 1 illustrates the silicon diode array camera tube. The opti­
cal image is focused by a lens onto the substrate of the photodiode 
array. The diode side of the array is scanned by an electron beam 
that has passed through the appropriate electron optics for focusing 
and deflection. Deflection is achieved magnetically; focus is achieved 
either electrostatically or magnetically. In all the experiments to be 
reported, the interlaced raster scanning period was 1/30 second. 

Most of the experimental results given in this paper were obtained 

LIGHT FROM 
IMAGE 
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~ 

LENS 

~VT TARGET I VOLTAGE 

I 

Fig. 1-Schematic of a diode array camera tube. The electron beam scans 
the diode side of the array, and the optical image is focused onto the substrate 
of the array. 
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Fig. 2 - Schematic of a diode array target. To obtain a self-supporting struc­
ture, the perimeter of the wafer is left much thicker than the substrate in the 
area of the diode array. 

with the target geometry illustrated in Fig. 2. These arrays typically 
consisted of a matrix of 660 by 660 diodes-about 436,000 diodes 
within a 0.528-inch square. The substrate is nominally 10 O-cm, 
n-type silicon with a diameter of 0.85 inch. The substrate in the 
area of the diode array is uniformly thick-O.2 to 2.0 mils (5-50p.)­
while the perimeter of the wafer is thicker-4 mils-to ensure a se1£­
supporting structure. The diodes, consisting of p-type islands in the 
n-type substrate, are formed by standard photolithographic and 
planar processing techniques.13 The 660 by 660 array has a center-to­
center diode spacing of 20p. and an oxide hole diameter of 8p.. In the 
early models gold was evaporated over a separately diffused n+ region 
to ensure good electrical contact to the substrate. Subsequent ex­
perimental results have indicated that a satisfactory contact can be 
obtained without the evaporated gold. 

In normal operation the substrate of the diode array is biased posi­
tively with respect to the cathode of the electron gun. The substrate 
potential relative to cathode potential is called the target voltage and 
is typically 10 volts, The impinging electron beam thus strikes the 
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mosaic with a maximum energy of 10 electron volts and deposits elec­
trons on both the p-type islands and the silicon dioxide film surround­
ing the diodes, which isolates the substrate from the beam. Since the re­
sistivity of the silicon dioxide film is very high, the electronic charge 
accumulates on this surface and charges it to some voltage very close 
to cathode potential where it remains. 

The beam diameter, as indicated in Fig. 2, is generally larger than 
the diode spacing to eliminate any need for registration between the 
beam and the mosaic. The electronic charge deposited by a sufficiently 
intense beam will place a reverse bias of 10 volts on the diodes as it 
scans over the array. This bias will create a depletion width of ap­
proximately 5p. with a 10 O-cm substrate giving a junction capacitance 
that results in an effective charge storage capacitance for the target 
of approximately 2,000 pF per cm2

• Notice that, at this bias, the 
silicon surface under the oxide will normally be depleted as indicated 
in Fig. 2. With very low values of diode leakage currents (less than 
10-13 amperes per diode) the diodes remain in the full reverse 
biased condition throughout the entire frame period, if they are not 
illuminated. The usable values of target capacitance are limited to a 
narrow range by several factors. 3 For example, the minimum useful 
target capacitance is determined from the ratio of the required 
peak video current to the permissible swing in voltage on the scanned 
side of the array. The maximum voltage swing of the scanned surface 
is limited by the allowable amount of beam bending which results 
from transverse (that is, parallel to the surface) electric fields. On the 
other hand, the maximum capacitance is limited by the charging abil­
ity of the electron beam and the image lag requirements placed on 
the camera. The charging ability of the beam is substantially greater 
for a higher positive surface potential which is inversely proportional 
to the target capacitance. In addition, in the diode array camera tube 
the maximum amount of charge that can be stored is limited by the 
breakdown voltage of the diodes.12 

Almost all of the incident light associated with the image is ab­
sorbed in the n-type region, each absorbed photon giving rise to one 
hole-electron pair. Since the absorption coefficient for visible light in 
silicon is greater than 3000 cm-I, the majority of the photon-generated 
carriers will be created near the illuminated surface.16 This will 
increase the minority carrier (that is, hole) density above its thermal 
equilibrium value and cause a net diffusion of holes toward the re­
verse biased diodes. If the lifetime of the holes is sufficiently long 
and the illuminated surface has been treated properly to reduce 
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recombination effects, a large fraction of the photon-generated holes 
will diffuse to the electric fields associated with the depletion regions 
of the diodes and will contribute to the junction current. The light­
induced junction current will continue to flow and discharge the 
junction capacitance throughout the frame period as long as the 
diodes remain in the reverse-biased condition. Thus, high light levels 
require high values of reverse-bias voltage or high values of junction 
capacitance to avoid saturation. The video output signal from each 
diode is created when the electron beam returns to a diode and re­
stores the original charge by re-establishing the full value of reverse 
bias. The sensitivity and resolution capabilities of the basic diode 
array structure are considered in Section III. 

It has been found experimentally that the basic diode array 
structure indicated in Fig. 2 has one rather undesirable charac­
teristic: the silicon dioxide film which insulates the substrate from 
the electron beam can exhibit uncontrollable charging effects. In some 
cases the film will accumulate enough negative charge to repell the 
electron beam and prevent it from impinging on the p-regions. Several 
alternative modifications of the basic target structure which prevent 
this charging phenomenon and which improve the performance of 
the array in other respects are discussed in Section IV. 

III. SENSITIVITY AND RESOLUTION CAPABILITIES OF A DIODE ARRAY TARGET 

As described in Section II the light associated with the optical image 
is absorbed in the n-type substrate of the diode array creating hole­
electron pairs. The photo-generated holes then diffuse from their 
point of generation to the depletion regions of the reverse-biased 
diodes. This section considers the sensitivity and resolution capabili­
ties of the diode array target as determined by hole diffusion and the 
discrete nature of the diode array, but it does not consider any limi­
tations in resolution resulting from the finite size of the electron 
beam, aberrations in the light optics, or frequency response of the 
video amplifiers. 

3.1 Diffusion of Minority Carriers 

An analytical evaluation of the diffusion process in a mosaic 
target would be quite complicated. In fact, an exact solution would 
require detailed knowledge of the shape of the depletion regions. 
However, to estimate the light sensitivity and resolving ability from 
the simplifi~d model in Fig. 3 is quite straightforward. In this figure l 
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Fig. 3 - Schematic of the simplified model used to estimate the light sensitivity 
and resolving ability of a diode array target. 

the isolated p-regions have been replaced by one homogeneous p-re­
gion in which there is no lateral conductivity. This is equivalent 
to a mosaic structure with zero spacing between diodes. With the low 
surface recombination velocity normally achieved at the silicon 
dioxide-silicon interface between diodes or with a fully depleted surface 
as shown in Fig. 2, the theoretical results obtained from the simplified 
model should accurately predict the sensitivity of the silicon diode 
array camera tube. Since the response of the tube is proportional 
to the incident light level (that is, the gamma is unity) camera sensi­
tivity may be determined by calculating the ratio of the flux of 
optically generated holes entering the p-region to the incident photon 
flux. 

The steady state diffusion of optically excited holes in the substrate 
from their point of generation to the depletion regions of the diodes 
will be governed by the time independent continuity equation17 

_D\l2p + piT = G(x, y, z) 

where 

p = hole density in excess of thermal equilibrium 
T = minority carrier lifetime 

(1) 
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D = hole diffusion constant in n-type silicon 
G = hole generation rate per unit volume. 

For the model of Fig. 3, the appropriate boundary conditions are 

Sp = D ap 
ay 

p=O 

at y = 0 
(2) 

at y = La 

where S is the surface recombination velocity for holes at the illumi­
nated surface. Setting p = 0 at L = La, the edge of the depletion re­
gion, is valid since the electric field prevents any accumulation of 
holes by quickly sweeping the holes across the depletion region. 

The problem being considered here is similar to the one analyzed 
by Buck and others ;13 however, it does differ in two significant re­
spects. First, our calculation takes into account carrier generation in 
the depletion regions of the diodes whereas Buck's analysis, intended 
for short circuit current measurements, does not include carrier gener­
ation in the junction space charge region. Second, the hole generation 
rate is permitted to vary in the transverse direction (the x direction of 
Fig. 3) so that nonuniform incident light intensities can be considered. 
This permits evaluation of the loss in resolution caused by lateral 
diffusion of the holes. 

If it is assumed that the light incident on the target is stationary, 
monochromatic, parallel, and varying in intensity only in the trans­
verse direction as 

(No/2) (1 + cos kx), 

then the generation function G(x, y, z) will be given by 

G(x, y) = ~o 0:(1 - R)(l + cos kx)e- all (3) 

in which 

No = peak incident photon flux, 
a = silicon absorption coefficient at the optical wavelength of 

interest, 
R = silicon reflectivity at the optical wavelength of interest, 
k = 27r /[spatial period of the intensity variation in the transverse 

direction]. 
This equation does not include the response to infrared light that may 
be multiple reflected when the absorption coefficient becomes very 
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small (that is, aLb < 2 corresponding to optical wavelengths greater 
than approximately 0.8p.). With the above generation function, equa­
tion (1) can be solved, subject to the boundary conditions given in 
equation (2), for the hole distribution in the substrate. The hole flux 
entering the p-region, Jp(X) , can then be obtained by evaluating the 
hole diffusion current density that enters the depletion region and 
adding to this the number of holes per unit time and area created by 
photons absorbed in the depletion region. The result may be written 
in the form 

Jp(X) = (No/2){ 170 + 17k cos kx} (4) 

with 

_ aL(1 - R) [2(aL + SL/ D) - (f3+ - f3-) exp ( -aL,,) 
17k - a2L2 - 1 f3+ + f3-

- (aL)-l exp (-aLa) ] - (1 - R) exp (-aLb) I (5) 

170 = 17k I k=O 

and in which 

f3± = (1 ± SLID) exp ± (La/L ), 
1/L2(k) = 1/L~ + k2, 

Lo = diffusion length = (DT)\ 
La = thickness of undepleted region, 
Lb = thickness of the n-type region plus the width of the 

depletion region. 

Notice that 'Y}o is the ratio of the flux of optically generated holes en­
tering the p-region to the incident photon flux for uniform illumina­
tion (k = 0). 

The existence of a "dead layer" and an electric field associated with 
the illuminated surface, as discussed by Buck and others, invalidates 
the field-free continuity equation in a small region near the illuminated 
surface.13 Consequently, at the shorter wavelengths « 0.5p.), meas­
ured sensitivities may be less than that predicted by equation (5). 

With the above reservation in mind, 'Y}o versus optical wavelength 
for various values of the target parameters can be obtained from 
equation (5). For the results to be presented, the thickness of the un­
depleted portion of the substrate La was assumed to be 15p.. As Sec­
tion 3.1 shows, this is a practical value since the maximum value of 
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La for an operating camera tube will be determined by the resolution 
requirements. The width of the depletion region was assumed to be 
5/L which is appropriate for a 10 ,a-cm substrate with a target bias of 
approximately 10 volts. The wavelength dependence of ex, the absorp­
tion coefficient, was obtained from the data of Dash and Neumann 
while the measured wavelength dependence of R, the reflectivity as 
given by the solid curve in Fig. 4, was used.16 
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Fig. 4 - Reflectivity versus optical wavelength of a bare:, polished silicon sur­
face and of a polished silicon surface with an evaporated layer of silicon mon­
oxide. In both cases the silicon was n-type with a resistivity of approximately 10 
Q-cm. 

In Figs. 5 and 6, 1]0 is plotted versus wavelength for various values 
of Lo/La (or equivalently lifetime T) for two values of S.{~ As expected, 
the curves of Fig. 6, corresponding to a surface with a relatively low 
recombination velocity, are much higher at the shorter wavelengths 
than those of Fig. 5 which correspond to a surface with a high recom­
bination velocity. Also as expected, 1]0 becomes independent of T for 
Lo > La. 

An inspection of equation (5) in the wavelength range where aLa» 1 

* The apparent discontinuity in the curves near 0.5,u results from a discon­
tinuity, in the dependence of absorption coefficient upon optical wavelength as 
reported in the literature and is probably spurious. 
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indicates that 'fJo will be virtually independent of wavelength, except 
for the slight wavelength dependence of the reflectivity, if SID < a. 
This is illustrated by the curves of Fig. 7 which give 'fJo versus wave­
length for various values of S and a given value of T or equivalently Lo . 
At the shorter wavelengths (increasing a) the curves are essentially 
independent of wavelength for values of S less than l03cm per second. 

Measured values of '1]0 for three diode array camera tubes with 
different targets are shown in Fig. 8. These results are in qualitative 
agreement with the above considerations. The arrays with a low re­
combination velocity which provide the best response for short wave­
lengths were obtained by the formation of an n + region on the light 
incident side while the array with a high recombination velocity had 
an untreated etched surface. In the near infrared (wavelengths > 
O.90p.) the thicker array had a higher response. This is not surprising 
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since the only reason Tlo is falling with increasing wavelength in this 
range is because the photon energy is approaching the bandgap energy 
of silicon and the substrate is becoming transparent. 

The sensitivity of a diode array camera tube is compared with that 
of a commercially available vidicon and the response of a unity quan­
tum efficiency (Tlo = 1) ideal detector is shown in Fig. 9a. The target 
of the diode array tube was approximately 20"" thick and had a low 
recombination velocity on the light incident surface. For the com­
parison, both tubes were operated with comparable dark currents. The 
dark current of a typical diode array camera tube is in the range from 
5 to 50 nanoamperes. This upper value of dark current is obtained at 
a target bias of 30 volts in a typical vidicon with visible light response. 
The vidicon response curves shown in Figure 9 were obtained with this 
target bias. The light power incident on the tubes was adjusted so 
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that the video output current was approximately equal to the dark 
current. The conclusion that follows from the curves given in Fig. 9a 
is that the diode array camera tube has a much broader and a much 
higher sensitivity than that of a vidicon. 

The sensitivity of the diode array camera represented by the curve 
given in Fig. 9a may also be expressed as approximately 20 ,uamps 
per ft-cd of faceplate illumination when the scene is illuminated 
with an incandescent lamp operating at a normal temperature. The 
corresponding response of a vidicon with 50 nanoamperes of dark 
current may be written as approximately 0.6 ,uamp per ft-cd at a 
faceplate illumination of 0.1 ft-cd. At this light level, the video s.ignal 
current of the vidicon is comparable to that of the dark current; be­
cause of the photoconductive decay characteristics the image lag in 
the displayed video may be excessive. For fluorescent illumination the 
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sensitivity of the diode array camera is approximately 1.3 p'amps per 
ft-cd of faceplate illumination. 

The sensitivity of a vidicon is less at higher levels of illumination 
since its gamma is approximately 0.65. This is ilustrated in Fig. 9b 
in which the sensitivity versus output signal current is plotted for a 
diode array camera tube a'nd a vidicon. These curves were obtained 
with monochromatic illumination at a wavelength of 0.55p. when 
both tubes were operated at a dark current of approximately 0.02 
p.amp. The zero slope of the diode array camera tube results from a 
unity gamma; whereas the slope for the vidicon corresponds to the 
value of (y - 1). 

The cross-hatched area below 0.02 p'amp of output signal current 
is the region where the dark current is greater than the signal cur-
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Fig. 9 - (a) Sensitivity of a silicon diode array camera tube as a function of 
optical wavelength. As a comparison the sensitivity of a commercially available 
vidicon is also plotted. For the vidicon the signal current was equal to the dark 
current (0.05 Ila) at all wavelengths. (b) Sensitivity of a silicon diode array 
camera and a vidicon as a function of video signal current: Optical wavelength = 0.55 Il; dark current = 0.02 Il amps. 
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rent and is considered to be below the operating range of both camera 
tubes. As the signal current approaches 1.0 p'amp, the sensitivity of 
a vidicon is reduced to a value approximately 1/25 of a diode array 
camera tube. Notice that the optical wavelength of 0.55p. used for the 
above comparison corresponds to the peak of the response for both 
the vidicon and the normal eye. 

For the experimental curves of Fig. 8 no effort was made to reduce 
the reflectivity of the substrate below that given in Fig. 4 for bare 
silicon which is approximately 0.34 throughout the visible portion of 
the spectrum. This reflectivity can be significantly reduced by a 
single-layer antireflection film. As illustrated by the dotted curve of 
Fig. 4, a film of evaporated silicon monoxide, 550 A thick, will reduce 
the reflectivity to less than 0.10 throughout the visible portion of the 
spectrum. When such a film is used on a diode array target, the target 
sensitivity is increased by an amount corresponding to the reduction 
in reflectivity for wavelengths greater than approximately 0.55p.. For 
wavelengths less than 0.55p., the sensitivity is also increased but not 
as much as would be expected from the reduction in reflectivity. The 
reason is not fully understood but it may be that light absorption in 
the evaporated silicon monoxide layer is appreciable at these shorter 
wavelengths. 

In the diode array camera, the video signal is normally obtained 
from the target lead as in a conventional vidicon; as a result, the 
lowest usable light level will be determined by thermal noise sources 
in the video preamplifier. This means that in spite of the high sensi­
tivity of the basic silicon diode array camera, its use will be restricted 
to relatively bright light with presently available commercial pre­
amplifiers. If it is desired to operate at extremely low light levels, 
the use of return beam reading with secondary emission amplification 
may improve matters. The minimum detectable light level of an image 
tube depends upon a number of factors, and the actual determination 
of this level is beyond the scope of this paper. With return beam 
reading, however, the minimum detectable light level of the silicon 
diode array camera would probably be limited by the presently 
achievable room temperature dark current of 5 to 50 nanoamperes.18 

A modest amount of cooling could be used to reduce the dark current 
considerably since the dark current drops an order of magnitude for a 
reduction in temperature of about 25°C. 

Consider how lateral diffusion of the photo-generated holes affects 
the resolution capabilities of the model depicted in Fig. 3. The resolu­
tion capabilities of a camera tube are usually evaluated by illuminat-
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ing the tube with a sinusoidal light pattern, measuring the peak­
to-peak video response as a function of the spatial wavelength or 
frequency of the light pattern, and normalizing with respect to the 
response for uniform light. For targets with low values of diode leak­
age currents it is reasonable to assume that the peak-to-peak video 
signal is proportional to the peak-to-peak hole flux entering the p­
region of Fig. 3. Therefore, the modulation transfer function resulting 
from the hole diffusion process, Rn , is readily obtained from equation 
(4) , the result is 

RD(k) = 'YJit/'YJo. 

Values of Rn for various values of the target parameters can be ob­
tained from equation (5). 

The response Rn(k) will be a function of the wavelength of the 
incident light pattern, increasing with increasing wavelength as long 
as multiple reflections in the substrate are not significant. This in­
crease results from the fact that at the longer wavelengths more of 
the photo-generated holes are created closer to the edge of the deple­
tion region and thus they do not have as far to diffuse. In addition, 
the existence of a dead layer and associated electric field may result 
in greater resolution capabilities than predicted by equation (5) when 
the illumination is restricted to wavelengths less than 0.5p-. 

As illustrated by Fig. 10, where RD is plotted versus spatial fre­
quency (k/27r) for various values of Lb , the degradation in resolution 
contributed by lateral diffusion is a strong function of target thickness. 
For these curves the width of the depletion region (Lb - La) was kept 
constant at a value of 5p. and the wavelength of the incident light was 
assumed to be 0.55p.. The quantity RD(k) will also be a decreasing 
function of the minority carrier lifetime T. This is illustrated by the 
curves of Fig. 11 for which T has been increased an order of magnitude 
over the value used for Fig. 10. For the curves of both of these figures 
a low surface recombination velocity was used because this is a necessity 
for adequate sensitivity in the visible portion of the spectrum. The 
resolution and sensitivity will be relatively independent of T or Lo 
when La « Lo . However, if Lo < La , then the sensitivity will increase 
and the resolution will decrease with increasing Lo , and vice versa. 

3.2 I mage Detection with a Mosaic 
The discrete nature of a diode array target places a limit on its 

resolution capabilities; an estimate of this limit can be obtained if 
the model depicted in Fig. 3 is modified so that the homogeneous 
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p-region is divided into discrete p-islands as indicated in Fig. 12. It 
will be assumed that the lateral conductivity of each p-type island 
is infinite. 

The resolution capabilities of the mosaic will be obtained by eval­
uating the peak-to-peak response obtained on the p-type islands for 
a given incident hole flux. The response of the nth island rn will be 
proportional to the total number of holes collected by this p-region; 
if J~(x) is the hole flux, then 

f
cn+1)d P 

rn ex: J~(x) dx 
(n-1)d p 

(6) 

in which 2dp is the center-to-center spacing of the islands. Assuming 
a sinusoidal variation in the incident light pattern, it follows from 
equation (4) that 

J~(x) = (No/2)['I]o + 'l]k cos (kx + <,0)] (7) 

where cp is a spatial phase factor that accounts for the relative orienta­
tion between the mosaic and the light pattern. The peak-to-peak 
response will be a function of the phase relationship cp between the 
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light pattern and the mosaic; however, if we restrict our considera­
tions to spatial wavelengths greater than two or three times dp , the 
response will be virtually independent of cpo With equation (6) and 
(7), the peak-to-peak response of the mosaic can be evaluated and 
if this is normalized with respect to the response for uniform light, 
the resulting modulation transfer function R (k) is given by 

R(k) = 'YJk (sin kdp) = RD(k) (sin kdp) 
170 kdp kdp 

for kdp « 27r. (8) 

Thus because of the discrete nature of the diode array target, its 
resolution capabilities are reduced by the factor 

sin kdp/kdp • 

The effect of this function on the curve of Fig. 10 corresponding to 
Lb = 20ft is shown in Fig. 13 for various values of the diode spacing 
2dp • 

In addition to lateral diffusion and the discrete nature of the target, 
the resolution capabilities of an operating camera tube will be de­
graded by the finite size of the electron beam. Measured modulation 
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transfer functions of a typical diode array camera tube for electro­
statically and magnetically focused electron beams are given in Fig. 
14. Using reasonable estimates of the unknown target parameters, the 
modulation transfer function can be calculated from equation (18); 
the results of such a calculation are also given in Fig. 14. The agree­
ment between calculation and experiment is fairly good when a mag­
netically focused electron beam is used. The increased resolution 
obtained with magnetic focus compared with electrostatic focus re­
sults from a smaller electron beam size. 

IV. MODIFICATIONS OF THE BASIC TARGET STRUCTURE 

In the basic diode array structure, the silicon dioxide is exposed 
directly to the scanning electron beam; it has been found that suf­
ficient negative charge can accumulate on the insulating silicon 
dioxide layer to prevent the beam from striking the recessed p-type 
islands. The effect of the silicon dioxide film is analogous to that of a 
control grid in a triode. This section discusses three modifications of 
the basic diode array structure that will prevent this charging be­
havior and will improve the performance of the array in other 
respects. 

4.1 Enlarged Islands 

One modification of the basic diode array structure, identified as 
a conducting island structure, is shown in Fig. 15. In this structure, 
electrically isolated conducting islands are placed over each p-type 
region. If the spacing between islands is small enough, most of the 
silicon dioxide film will be covered with a conducting material so 
that charging of this surface should be reduced if not eliminated. 

Another advantage of the island structure is that the electron beam 
current is utilized more efficiently. With the typical diode spacing of 
20ft and the typical diode diameter of 8ft only approximately Ys of 
the total beam current is available for producing an output signal if 
beam pulling effects are neglected. This is simply the ratio of the 
total exposed area of all of the p-regions to the total target area. 
With the conducting islands, the beam landing area of each p-type 
region is greatly increased and more of the beam current can be 
used. Reducing the required beam current permits smaller beam 
diameters to be achieved and as a result the degradation in resolu­
tion because of the size of the electron beam may be reduced and 
possibly the cathode loading may be reduced. 
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Fig. 14 - Measured values of the modulation transfer function of a diode array 
camera tube as a function of spatial frequency. Results are given for both a 
magnetically (x) and electrostatically focused (0) electron beam (optical wave­
length = O.55,u). 

The conducting islands will also increase the capacitance shunting 
the diodes without a corresponding increase in the diode leakage cur­
rent. Thus the time constant and the charge storage characteristic or 
dynamic range of each diode will be increased. However, this increase 
in capacitance must be consistent with the image lag requirements 
because if the capacitance becomes too large the electron beam may 
not be able to fully recharge the diode in one scan. 

Another potential advantage of metallic conducting islands is that 
the infrared sensitivity will be increased at wavelengths where a 
significant amount of light can pass through the substrate. The metal­
lic islands will reflect most of the transmitted light back into the sub­
strate and thus effectively double the absorption path. Furthermore, 
the metallic islands will also shield the substrate from stray light 
emitted by the cathode. 

Several diode array camera tubes with gold conducting islands 
have been fabricated. The thickness of the gold islands was about 
O.5p.; the minimum separation between islands that has been success­
fully achieved to date is approximately 3p.. These arrays when exam­
ined in a camera tube still showed significant charging effects. These 
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results indicate that with an island thickness of approximately 0.5p.., 
an island separation of less than 2p.. would be required to eliminate the 
charging behavior. However, stringent requirements must be placed on 
the photolithographic processes in order to obtain this small separation 
over the entire array. On the other hand,. if the thickness of the islands 
is considerably increased, it might be possible to use a larger island 
separation with no deleterious charging effects. 

4.2 Conductive Sea Surrounding the p-Type Islands 

Another attractive target structure, called a conducting sea struc­
ture, is illustrated in Fig. 16. In this embodiment the silicon dioxide 
is covered by a conducting material which surrounds the diodes with­
out contacting the p-type islands. This structure should also eliminate 
charging effects since the silicon dioxide is shielded from the electron 
beam. 

An attractive feature of the conducting sea is that the potential be­
tween the sea and the n-type substrate can be varied. Thus the silicon 
surface potential at the silicon-silicon dioxide interface can be con­
trolled and, more important, it can be optimized so as to minimize 
the leakage current resulting from generation centers at the interface. 
These centers are the dominant source of dark current in an operat­
ing camera tube. Notice that the capacitance between the sea and the 
substrate is rather large (approximately 6000 pF per cm2 for an oxide 
thickness of 0.5p.., assuming no depletion at the interface), and the 

n-TYPE _ 
SUBSTRATE 

CONDUCTING 
ISLANDS---- ~'% 

~ 

Fig. 15 - Conducting island structure in which electrically isolated conducting 
islands are placed over each p-type region. 
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high frequency shunting effects of this capacitance must be reduced 
by the use of a high frequency blocking filter in the bias lead for the 
sea as shown in Fig. 16. 

The conducting sea also has the potential advantage of providing 
electronic gain. Gain may be obtained by adjusting the bias applied 
to the conductive sea so that the fraction of beam current which can 
strike the sea will be modulated by the charge pattern stored on the 
p-type islands. The video signal is obtained from the parallel com­
bination of the conductive sea and the n-type substrate. When the 
target is operated in this mode, the performance should be similar to 
a triode with zero spacing between the control grid and the plate. 

The practicality of these advantages depends upon the develop­
ment of successful fabrication techniques for creating the conductive 
sea. Thus far inadvertent shorts between the sea and the substrate or 
between the sea and some of the p-type islands have prevented actual 
evaluation of a conducting sea structure. 

4.3 Resistive Sea in Contact with the p-Type Islands 

Another technique for eliminating the uncontrolled charging of the 
silicon dioxide film is illustrated in Fig. 17. In this case, a resistive 
film or sea covers both the silicon dioxide film and the p-type islands. 
This resistive sea prevents any build-up of excess charge in the 
regions between p-type islands by providing a controlled leakage path 
to the individual diodes. The resistance (that is, ohms per square) of 
the resistive sea must be chosen judiciously in order to provide this 
leakage path without impairing the resolution capabilities of the 
basic diode array target. This implies that there should not be a 
significant amount of charge leakage between picture elements dur­
ing a frame period (that is, 1/30 second). 

Section V shows that for a silicon dioxide film thickness of ap­
proximately 0.5p., the resistivity of the resistive sea must be greater 
than approximately 1013 ohms per square. This sheet resistivity has 
been obtained with thin films formed by evaporation or sputtering. 
Table I lists some of the source materials that have been tried. Since 
sometimes the process was performed in the presence of a background 
gas, the composition of the resulting resistive film is not precisely 
known. The required film resistivity is rather high and one of the 
biggest problems in obtaining suitable resistive sea structures has 
been reproducibility. Comments about the reproducibility of the 
different materials are given in Table 1. 

Although in many respects Sb2S3 works well as a resistive film, it 
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Fig. 16 - Conducting sea structure with suitable bias network. In this struc­
ture, the silicon dioxide surrounding the p-type islands is covered with a con­
ducting material. 
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Fig. 17 - Resistive sea structure. 
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TABLE (-SOURCE MATERIALS 

Method of Obtainable 
Material deposition resistivity 

Sb2S3 Evaporated 
High 

enough 

GaAs Evaporated 
High 

enough 

SiN* Sputtered 
High 

enough 

Si* 
Evaporated 
Sputtered Marginal 

High 
Ha eTa) Nt Sputtered enough 

* These films were provided by E. N. Fuls. 
t This film was provided by F. Vratny. 

Reproducibility 

Small 
problem 

Problem 

? 

Extreme 
problem 

? 

has one serious drawback. That is, the completed camera tubes with 
an Sb2Sg film cannot be vacuum baked at high temperature. The other 
materials listed in Table I result in films which permit the camera 
tube to be baked at 400°0. 

Of the many structures and techniques proposed to eliminate the 
charging problem associated with the basic diode array structure, we 
have found the resistive sea structure to be the simplest to implement 
and to date it has given the best results. All of the experimental results 
presented in this paper were obtained with diode arrays which had a 
resistive sea. 

V. RESISTIVE SEA STRUCTURE 

It is quite clear that a resistive film covering the diodes and the 
silicon dioxide can affect the resolution capabilities of the basic diode 
array structure and, as pointed out previously, in order for the film 
not to impair these capabilities, its resistance should be such that 
there is not a significant amount of charge leakage between picture 
elements during a frame period. In addition to affecting the resolu­
tion, the amount of lateral charge spreading permitted by the film 
during a frame period will influence many of the other electrical 
properties of the basic diode array structure. 

The following model of the resistive film will be used to establish 
the required sheet resistivity and to provide a basis for interpreta-
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tion of experimental results. It will be assumed that the film can be 
characterized by an effective sheet resistance Rt . This sheet resistance 
could be a function of the free carrier density spatial distribution in 
the film if the current flow is space charge limited or if interface 
states are present at the oxide-film interface. To simplify the present 
considerations, we assume that Rt is independent of the lateral cur­
rent flow in the film and that the free carriers in the film are nega­
tively charged and reside at the oxide interface. 

Under these assumptions the voltage distribution with respect to 
the cathode V on the resistive film as a function of time will satisfy 
the following equation 

v 2V = R C av 
f at (9) 

in which C is the capacitance per unit area between the oxide-film 
interface and the substrate. This capacitance, which consists of the 
series combination of the oxide capacitance and the capacitance of 
the depletion region formed at the oxide-silicon interface, will gen­
erally be a function of the difference between the substrate voltage 
and the film voltage. To obtain a model amenable to analysis the 
capacitance C will be assumed to be independent of V. This assump­
tion will be valid for a target in an operating camera tube if the 
maximum amplitude of V is small compared with the target (sub­
strate) voltage. 

To obtain some idea of the minimum film resistivity or charge 
spreading behavior required to prevent a loss in resolution, consider 
a simple model of the resistive sea structure that neglects the discrete 
nature of the target. The oxide layer is assumed to be uniform in the 
lateral direction as indicated in Fig. 18. With such a model, it is 
possible to determine, for a given stored charge pattern, a minimum 

/RE515TIVE FILM-SHEET RESISTANCE - Rf 

} 
51 LICON SUBSTRATE /' 

Fig. 18 - The model u~ed for analyzing the resistive sea structure, 
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value for R, for which there is no appreciable lateral charge leakage 
during a frame time. 

Since the purpose of the resistive film is to provide a controlled 
charge leakage path without introducing a concurrent loss in resolu­
tion, the decay rate of a given initial charge distribution is the pa­
rameter of interest. If we restrict our considerations to a one dimen­
sional charge distribution and a uniform oxide layer, equation (9) 
becomes 

(10) 

in which x is a lateral coordinate parallel to the film. 
Let the initial charge distribution at the resistive film-oxide inter­

face be given by 

in which 

k = 27l"(spatial wavelength) -1. 

This charge distribution will create a voltage profile which may be 
a pproxima ted as 

Vk(x, t = 0) = (qojC) cos kx, 

provided k « C j Eo , where Eo is the permittivity of free space. It follows 
from equation (10) that such an initial voltage profile will decay ex­
ponentially with time with a time constant Tk that is given by 

(11) 

Thus the time interval over which a sinusoidal charge pattern may 
be stored without smearing is proportional to the square of the spatial 
wavelength of the pattern. 

If the decay time of the voltage profile is required to be 10 times 
the frame period of 1/30 second so that there is only a 10 percent loss 
in resolution resulting from charge spreading, then the value of R f 

must be such that 

R, > ej3C. 

For a spatial frequency of 14 cycles per mm, the largest spatial fre­
quency of interest, and assuming C rv 4000 pF per cm2 (a value which 
lies between the oxide capacitance and the capacitance of the depletion 
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region under the oxide), it follows that 

R, ~ 5 X 1013 ohms per square. 

This implies that for a resistive sea thickness of approximately O.ltL, 
a bulk resistivity of at least 108 ohm-cm is required for the material 
of the resistive layer. 

Measurements of the decay of an initial voltage distribution have 
been used to obtain estimates of the sheet resistances of the resistive 
films. A voltage distribution is created on the resistive sea by focus­
ing onto the camera target a bar pattern (resolution chart) that is 
illuminated by a light pulse, the duration of which is much shorter 
than a frame period. The light induced charge pattern and resulting 
voltage pattern is introduced to the resistive film in discrete areas 
corresponding to the p-regions of the diodes. If the spatial wave­
length of the illuminated bar pattern is much greater than the diode 
spacing, then the charge over the p-regions will relax into the sur­
rounding areas in a time that is short compared with the relaxation 
time of the overall light induced charge pattern. For times longer 
than the relaxation time between diodes, the simple model discussed 
above should be valid. In the measurements, the peak-to-peak video 
response is measured as a function of the time between when the bar 
pattern is illuminated with the light pulse and when the electron beam 
scans the light induced charge pattern produced on the resistive sea. 

Some results obtained from this type of measurement are given in 
Fig. 19 for targets with different film resistances. During the time 
between writing and reading, the electron beam was blanked so that 
no electrons were hitting the target. A square wave bar pattern was 
used and the dotted lines are calculated curves for the decay of an 
initial square wave voltage profile using the simple model discussed 
above. Except for very short times, the agreement between calcula­
tion and experiment is very good. At long enough times, only the 
fundamental component of the square wave contributes to the video 
signal and the decay is then truly an exponential, that is a straight 
line on the semilog plot of Fig. 19. The sheet resistances indicated in 
the figure were calculated from the decay times of the various curves 
by assuming the effective capacitance between the film and the 
substrate was the same for all curves and was equal to 4000 pF per 
cm2

• In the remainder of the paper, when a value of sheet resistance is 
given, it refers to a value obtained from decay curves as plotted in 
Fig. 19. 
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Fig. 19 - Peak-to-peak video response obtained from a bar pattern as a func­
tion of the interval between the time when the bar pattern is optically written 
onto the target with a light pulse and the time when the pattern is read with 
the electron beam. During the interval between writing and reading the electron 
beam was not scanning the target. The various curves are. for different film 
resistances. (Spatial wavelength = 0.04 cm; C = 4,000 pF/cm2 ) 0 experimental 
points, - - - calculated curves. 

It has been found that targets with low resistivity films (sheet re­
sistances < 1013 ohms per square) will have certain distinguishing 
characteristics that are quite different from those observed on targets 
with high resistivity films (sheet resistances > 1014 ohms per square). 
That is, the resistance region between 1013 ohms per square and 1014 

ohms per square is a transition region for the typical diode arrays 
with a diode spacing -in the range of 15 to 20ft. One of the most striking 
contrasts between targets with a high resistivity film and those with 
a low resistivity film occurs when the video current through a white de­
fect is observed as the substrate voltage is increased. Most arrays fab­
ricated to date have isolated diodes which exhibit higher values of dark 
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current than their neighboring diodes. This higher value of dark 
current manifests itself in the displayed video as an isolated bright 
spot or equivalently a white defect. 

The behavior of a target with a low resistivity film is illustrated in 
Fig. 20. The pictures in this figure are of the video display of the 
dark current pattern at different target voltages obtained from a 
camera tube which had many white defects. With the low resistivity 
film, as the target voltage is increased, the video current through 
the defects increases, that is, the white spots get brighter and also 
tend to enlarge only slightly. 

Compare this behavior with that exhibited by a target with a high 
resistivity film as shown in Fig. 21. Here, as the target voltage is 
increased the video current through the defects again increases, but 
now when the target voltage reaches a certain critical voltage, the 

Fig. 20 - Photographs of the video display of the dark current pattern at 
different target voltages obtained from a camera tube in which the target had 
a low resistivity resistive film: (a) V T = 1.5 volts, (b) V T = 5.0 volts, (c) V T = 12 volts. (Video display scan lines and printing screens cause moire patterns 
in some figures that are not in the originals.) 
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Fig. 21- Photographs of the video display of the dark current pattern at 
different target voltages obtained from a camera tube in which the target had a 
high resistivity resistive film: (a) V T = 2.5 volts, (b) V T = 3.0 volts, (c) V T = 
3.5 volts, (d) V T = 4.0 volts. 

defects grow larger in the lateral direction very rapidly and eventu­
ally envelop the entire target. This enveloping or "whiting out" of 
the target can result from only one single defect. 

The large white regions in the last two photographs of Fig. 21 
cover many diodes and correspond to areas in which the diodes are 
all electrically shorted together. Experimental evidence indicates that 
these diodes are electrically shorted together by a p-type inversion 
layer which forms under the oxide and which connects the originally 
isolated p-regions. The fact that an inversion layer can form with a 
high resistivity film but not with a low resistivity film turns out to 
be what one would expect; the reason for this is illustrated in Fig. 22. 

In the top part of the figure, the area around one diode is sche­
matically indicated just after the electron beam has recharged the 
diode. The film potential will be at cathode potential; assuming the 
target voltage or the potential of the n-region is high enough, ap-
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proximately 5 to 8 volts for a 10 O-cm substrate and an oxide thick­
ness of approximately 0.5p., the area under the oxide will also be 
depleted as indicated. Let us further assume that in the vicinity of 
this diode there is for some reason a high generation rate of minority 
carriers. This situation could arise for example as the result of some 
sort of defect in the vicinity of the diode. 

The charge collected on the p-region resulting from the large gen­
eration rate will cause both the potential of the p-type island and the 
potential of the film over the p-region to increase from cathode po­
tential towards target potential. What happens now depends upon 
the charge spreading behavior of the film. 

As indicated in the lower left half of Fig. 22, the rise in potential of 
the p-type region for a low resistivity film will be communicated lat­
erally a significant distance during a frame period. Thus the film po­
tential over the oxide increases and as a result both the diode depletion 
region and the depletion region under the oxide directly surrounding the 

LOW RESISTIVITY 
FILM 

NO INVERSION 

HIGH RESISTIVITY 
FILM 

ONSET OF INVERSION 

INVERSION 

Fig. 22 - Illustration of how an inversion layer can form around a defect when 
a high resistivity resistive film is used but not when a low resistivity resistive film 
is used. 
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p-region will be reduced. The reduction of the depletion region under 
the oxide inhibits the formation of an inversion layer and no inversion 
occurs in this case. 

On the other hand, as indicated in the lower right half of Fig. 22, 
with a high resistivity film the rise in potential of the p-region is not 
accompanied by a rise in potential of the film out over the oxide. 
Therefore, the depletion region under the oxide will not immediately 
collapse along with the diode depletion region and an electric field in 
the lateral direction will be produced which forces holes from the 
p-region into the depletion region under the oxide, resulting in the 
formation of an inversion layer. As the experimental results have 
indicated, the inversion layer can cause many diodes to be shorted 
together. This behavior is similar to the shorting together of the 
source and drain of an insulated gate field effect transistor by the 
application of the appropriate voltage to the gate electrode. 

Thus with a high resistivity film we have the possibility of inver­
sion layers forming at a defect whereas with a low resistivity film 
the lateral charge spreading inhibits the formation of an inversion 
layer:)!-

Besides influencing the target properties discussed above, the resis­
tive sea also affects the ability of the electron beam to re-establish 
the full value of the reverse bias on a diode during one scan.15 Some 
insight into this problem can be obtained from the equivalent circuit 
shown in Fig. 23 which approximates one of the diodes. In this figure 
the p-n junction is represented by a schematic diode which is shunted 
with an effective junction capacitance, Cj , and a current generator. 
The equivalent circuit is valid only if the charge stored on the oxide 
surrounding the diode is negligible compared with that stored on the 
diode. The resistive sea immediately over the p-region is represented 
by the parallel combination of Rs and C s' The time-constant for this 
combination is the intrinsic time-constant for the resistive sea (that 
is, RsCs = ps€s€o where €s is the relative dielectric constant and ps is 
the volume resistivity of the resistive film) . 

A qualitative estimate of the charge storage properties of the 

* These conclusions are consistent with the results obtained by Grove and 
Fitzgerald19 on a gate-controlled diode structure. They show that for inversion 
to occur, the difference between the silicon surface potential at the oxide inter­
face and the reverse bias voltage of the diode must be less than twice the fermi 
potential of the substrate. Because of the lateral charge spreading in a low re­
sistivity sea, this inequality is never satisfied' whereas with a high resistivity sea 
it can be satisfied in a region where there is a high generation rate of minority 
carriers. 
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Fig. 23 - Equivalent circuit used to represent the area around one diode or 
p-type region. 

equivalent circuit can be obtained from intuition. Consider first the 
fact that the electron beam will charge both the resistive sea and the 
beam side of capacitor Cs down to zero potential. If the reverse-bias 
leakage current of the diode may be neglected, the resistor Rs will 
discharge any voltage difference across Cs at a rate related to the 
time-constant RsCs. From the previous discussion it is estimated that 
ps is approximately 108 ohm-cm. Therefore, RsCs may be estimated 
to be 35 p.,sec by assuming £s to be 4. Thus, without illumination, the 
p-regions are quickly charged to cathode potential and the full value 
of reverse-bias is placed across the diode. 

The current from the photoresponse is represented by the current 
generator in Fig. 23. Since the capacitance from the film surface to 
electrical ground is very small, any change in reverse-bias voltage 
across the diode caused by photoresponse throughout the frame period 
appears very quickly on the electron beam side of the resistive sea. 
Furthermore, this process does not create a significant voltage drop 
across Rs. However, when the full value of reverse bias is re-estab­
lished by the scanning electron beam, a significant voltage drop may 
appear across the parallel combination of Rs and C s since the beam is 
on a diode for less than 0.3 p.,sec. For example, if the photoresponse 
has created a reduction in diode reverse-bias of ~ V 1 volts, the process 
of charging the beam side of the resistive sea down to zero volts will 
increase the reverse-bias by the amount 6, V2 where 

.1 V 2 = C
s 
~ C

i 
.1 Vl' 

The ratio of 6,V2 to 6,V1 may be estimated by assuming equal values 
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for the relative dielectric constants for the resistive sea and the deple­
tion region. Thus, if the thickness of the resistive sea is 1/6 of the 
depletion width, then 

AV2/AV1 = 6/7. 

The significance of this voltage ratio is that the scanning beam can­
not re-establish the full value of reverse bias across the diode in one 
sweep even with arbitrarily large beam currents. While the charge 
stored on the oxide surrounding the diode has been neglected in this 
discussion, a similar conclusion would result from a calculation 
which included this additional charge. 

One important question about the resistive sea structure that has 
not yet been answered is whether a film resistivity can be chosen 
which will lead to an increase in the effective beam landing area of 
each p-type region without significantly affecting the resolution capa­
bilities of the basic diode array. Answering this question requires an 
evaluation of the amount of charge stored on the resistive film over 
the oxide surrounding the diode relative to the amount of charge stored 
on the diode. This evaluation in turn requires a complicated model 
which includes the effects of the isolated p-regions and is beyond the 
scope of this paper. However, preliminary calculations indicate that 
there is a value of Rt which will preserve the resolution capabilities 
of the diode array and will also lead to a significant increase in the 
beam landing area of each p-type island. The optimum value of Rt 
is a strong function of the target geometry but will always be in the 
range of 1012 to 1014 ohms per square for practical geometries. 

VI. MISCELLANEOUS TOPICS 

The dark current characteristics of a diode array target are pre­
dominantly determined by the surface states at the silicon-silicon 
dioxide interface, as discussed by Buck and others.13 However the de­
tailed behavior of the dark current versus target voltage depends 
upon many other factors some of which are discussed in this section. 

6.1 Effect of Resistivity Striations on Dark Current 
A large number of the silicon diode array camera tubes fabricated 

to date have exhibited a phenomenon called "coring." Coring manifests 
itself as a modulation of the dark current pattern as illustrated in 
Fig. 24. The photographs in the figure are of the video display of the 
dark current pattern of a diQde array camera tube at different target 
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Fig. 24 - Photographs of the video display of the dark current pattern of a 
camera tube which exhibits "coring": (a) VT = 4 volts, (b) VT = 6 volts. (c) 
V T = 8 volts, Cd) V T = 12 volts. 

voltages. The modulation introduced by the coring pattern is seen 
to be a strong function of the target voltage; its maximum amplitude 
can be as high as 40 per cent. The spatial wavelength of the coring 
pattern is typically of order sOap.. The term modulation as used here 
means the ratio of the peak-to-peak modulation of the dark current, 
introduced by the coring, to the average dark current. 

One possible cause of the coring, consistent with experimental re­
sults, is resistivity striations produced in the silicon substrate during 
crystal growth. The standard methods used for growing silicon crystals 
would result in circular striations.20 In addition, a silicon crystal in 
which resistivity striations had been purposely introduced yielded 
targets which exhibited coring patterns that corresponded to the 
resistivity striations. A variation in resistivity of approximately 25 
per cent yielded coring patterns with a modulation of approximately 
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50 per cent. Another fact supporting this hypothesis is that no coring 
patterns have been observed in targets fabricated from epitaxially 
grown silicon which should not have resistivity variations. 

To understand how resistivity striations could produce a coring pat­
tern and in particular its behavior as a function of target voltage, 
the voltage dependence of the dark current must be considered. As 
pointed out by Buck, the voltage dependence of the dark current of 
a diode array target is consistent with a model in which it is assumed 
that most of the dark current is generated by Shockley-Read centers 
located at the silicon-silicon dioxide interfaceP This model predicts 
that the voltage dependence of the average dark current should ap­
proximate that of the curves sketched in Fig. 25. As indicated in the 
figure, there is a critical voltage Va above which the dark current 
rises steeply and then quickly saturates. This behavior is interpreted 
as resulting from the formation of a depletion region under the oxide. 
That is, at the threshold voltage Va, the surface under the oxide is 
just starting to deplete and as a result the electron-hole pairs gen­
erated by the interface states can now contribute to the dark current. 
Therefore the dark current rapidly increases with increasing voltage 
and then saturates when the surface under the oxide is strongly depleted. 
The threshold voltage Va will be a function of the oxide thickness and 
the net positive charge distribution in the system. More important 
for our discussion here, however, is the fact that the slope of the dark 
current versus voltage curve for voltages slightly larger than Va will 
depend upon the substrate resistivity as indicated in Fig. 25. 

Consider what happens if the resistivity of the silicon substrate at 
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Fig. 25 - Ideal dark current versus target voltage curves for two different 
5\lbstrate resistivities. (p = substrate resistivity; P2 < Pl). 
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the interface is nonhomogeneous along the interface. Then for target 
voltages slightly above 11e, the depletion existing at the interface will 
vary in the same manner as the resistivity varies, and the dark cur­
rent from a given area at the interface will be modulated with the 
modulation pattern reflecting the variation in resistivity. The modula­
tion should be a strong function of target voltage for voltages slightly 
larger than 11e because in this voltage range the dark current is a 
rapidly increasing function of target voltage; whereas for higher 
voltages where the entire surface becomes strongly depleted, the 
modulation should approach zero. The photographs in Fig. 24 are 
consistent with this predicted behavior. 

In Fig. 26, the average dark current as a function of target volt­
age along with the modulation of the coring pattern is given for a 
typical diode array camera tube exhibiting coring. This dark current 
curve is somewhat different from the ideal curve of Fig. 25 in that 
there is no real saturation of the current with respect to target volt­
age. For target voltages between 8 and 9 volts, the dark current rises 
rapidly and does indeed tend to saturate between 9 and 10 volts. Also 
in accord with the predictions of the model discussed above, the cor­
responding modulation peaks in the voltage range between 8 and 9 
volts. The increase in dark current above 10 volts results from the 
formation of inversion layers at defects as discussed in Section IV. 

The possibility that the coring is produced by variations in the 
surface state density can be eliminated because the modulation of 
the coring pattern goes to zero at the high target voltages where the 
entire surface under the oxide is strongly depleted. On the other hand, 
variations in the oxide fixed charge would produce coring consistent 
with the experimental results. However, the fact that no coring was 
observed with targets fabricated from epitaxial substrates indicates 
that the oxide growth conditions being used do not produce such fixed 
charge variations in the absence of resistivity striations. This of course 
does not eliminate the possibility that variations in the fixed charge 
are coincidental with and generated by resistivity variations in the 
substrate. 

6.2 Change in Dark Current Characteristics Throughout Tube Life 

One of the more valuable attributes of the silicon diode array 
camera is that the target is quite stable chemically and as a result the 
electrical characteristics should be stable with time. Experimental 
results obtained to date indicate that this is essentially correct. How-
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Fig. 26 - Measured dark current versus target voltage curve of a camera tube 
which exhibits coring. The modulation of the coring pattern as a function of 
target voltage is also plotted. 

ever, preliminary aging experiments in which a small portion of an 
array was scanned for approximately 1,000 hours indicate that the 
uniformity of the dark current of a diode array may be modified by 
the electric field in the silicon dioxide when the array is being scanned. 
Those portions of the array where the electron beam has created a 
raster for a period of time greater than a few hundred hours will 
typically exhibit a noticeable change in the dark current dependence 
upon target voltage. This change appears to be monotonically cumula­
tive with the period of scan and modifies the dark current performance 
of the camera tube by a significant amount after several thousand 
hours of operation. 

A typical change in the dark current characteristic is illustrated in 
Fig. 27. From the curves it is apparent that the substrate voltage re­
quired to reach the saturated value of dark current, which is slightly 
larger than Va identified in Section 6.1, is reduced by some process, 
but that the saturated value of dark current is unaffected. Therefore, 
if this camera tube is operated at a target voltage of 13 volts, for 
example, the observed dark current would be uniform and constant 
throughout tube life. However, if the tube is operated at a target 
voltage of 10 volts, the dark current of the scanned portion of the 
array will increase during use. The appearance of the increase in 
dark current is illustrated by the center photograph in Fig. 28 when 
the target voltage is adjusted to maximum contrast between the 
aged and unaged areas. The small bright portion of the array is 
about Y16 of the total area and was scanned during the aging test for 
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approximately 3,000 hours. The stability of the saturated value of 
dark current may be observed by simply operating this camera tube 
at a target voltage of 10 volts or more. The complete absence of any 
visible modification of dark current at this voltage implies that the 
saturated value of dark current was changed by less than one percent. 

Additional experiments have been performed to establish that the 
light response of the camera is unaffected by continuous scanning as 
long as the target voltage is large enough to saturate the dark cur­
rent. At these voltages the silicon diode array camera tube does not 
exhibit any "burn-in" effects and consequently electronic zoom may 
be achieved by simply changing the size of the raster on the diode 
array. 

While the exact details of the mechanism or mechanisms which 
cause the change in target voltage required to saturate the dark cur­
rent are unknown, preliminary experiments indicate that continuous 
scanning with the electron beam modifies the charge distribution in 
the silicon dioxide surrounding the p-type regions. Simple calculations 
show that either a small decrease of the total net positive charge in 
the silicon dioxide film or a migration of net positive charge away 
from the silicon-silicon dioxide interface would account for the ob­
served change in dark current characteristics. The targets which have 
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Fig. 27 - Dark current versus target voltage in an area of a diode array target 
which has been scanned with the electron beam for several thousand hours com­
pared with an area which has not been scanned. 
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Fig. 28 - Photographs of the video display of the dark current pattern at 
different target voltages obtained from a camera tube in which a small portion of 
the array was scanned with an electron beam: (a) V T = 4 volts; (c) V T = 8 
volt.s; V T = 10 volts. 

exhibited a decrease in the voltage required to attain the saturated 
value of dark current in the scanned area have been demounted and 
annealed in vacuum at 400°C for several hours. After remounting 
these targets into tubes, the properties of the originally scanned area 
were identical to those of the unscanned area resulting in a uniform 
dark current pattern. Thus, it appears that this annealing process 
removes any net change of the charge distribution induced in the 
silicon dioxide film by the electron beam. 

6.3. Image Lag 

All electronic cameras utilizing a scanning electron beam exhibit 
some undesirable image lag or image retention caused by incomplete 
erasure of the stored charge pattern. This results from the thermal 
distribution of energy in the electron beam or insufficient beam cur-
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rent. In addition, some cameras (for example, the vidicon) exhibit 
image lag because of the photoconductive decay properties of the im­
age sensing target. The diode array camera tube does not exhibit 
image lag from photoconductive decay since the lifetime of the photo­
generated hole-electron pairs is less than 10 microseconds. However, 
the thermal distribution of electron energies and the voltage division 
resulting from the series capacitance of the resistive sea do prevent 
complete erasure of the stored charge pattern during one frame period. 

The amount of image lag which results from the thermal distribu­
tion of electron energjes is critically dependent upon the design of 
the electron gun and the image sensing target.21 The most important 
parameters are the effective charge storage capacitance of the target, 
the secondary electron emission characteristics, the beam current, and 
the amount of illumination. 

In the silicon diode array camera tube another important considera­
tion is the effective use of the incident beam current. With the typical 
diode spacing of approximately 20ft and diode diameter of approxi­
mately 8ft, only lis of the total beam current is available for producing 
an output signal if beam pulling effects are neglected. Thus, it is ap­
parent that the optimum target design must include the capabilities 
of the electron gun and also the permissible amount of image lag. 

The image lag obtained with a diode array camera tube is a strong 
function of target voltage since the junction capacitance and the 
effective charge storage capacitance is a function of the reverse-bias 
across the diodes. Increasing the reverse-bias of the diodes reduces t.he 
dynamic value of the charge storage capacitance and therefore reduces 
the amount of image lag from both the secondary emission charac­
teristics of the surface and the voltage division resulting from the 
series capacitance of the resistive sea. 

Typical lag performance of a diode array camera tube is shown in 
Fig. 29. The lag is determined from the ratio of the signal output 
current after the illumination has been removed for 33 milliseconds, 
to the signal output in the presence of illumination, for various values 
of target voltages. The electron beam is continuously scanning during 
this measurement. It is apparent that the lag is slightly greater for 
small signal levels. This is normal behavior for most camera tubes 
and, in this case, results from the dependence of the effective sec­
ondary emission ratio upon electron beam energy and not from photo­
conductive decay. The small increase in lag that occurs in the voltage 
range (6-8 volts) at which the silicon surface under the oxide is being 
depleted is not well understood. 
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Fig. 29 - Image lag as a function of target voltage for different video signal 
levels: D = 50 nanoamps, f::J. =200 nanoamps, 0 = 500 nanoamps. 

VII. CONCLUSION 

The preliminary results reported in this paper indicate the silicon 
diode array camera tube has improved lag and spectral response and 
comparable resolution capabilities when compared with commercially 
available vidicons. In addition, the unity gamma of a diode array 
camera would be a significant advantage for color television cameras. 

Two of the outstanding features of the silicon diode array camera 
are its wide spctral response (0.4 to 1.0fL) and its high effective quan­
tum yield (approximately 50 percent). For fluorescent illumination 
these provide a sensitivity of approximately 1.3 fLamp per ft-cd of 
faceplate illumination with an image sensing area of 1.8 sq-cm. 

The expected operating life of a silicon diode array camera should 
exceed that a vidicon for at least two reasons. First, the image sens­
ing target is not damaged by intense light images (for example, the 
noonday sun has been imaged with a F: 1.5 lens on the silicon target 
without damage) Second, the completely assembled tube can be vac­
uum baked at 400°0 provided an appropriate resistive film is used. 
This vacuum bake should provide a longer cathode life. 

Typical video performance of a diode array tube is illustrated by 
Figs. 30, 31, and 32. These photographs were obtained from a 525-line 
monitor when the image of a black and white transparency was 
focused onto the camera. The photograph in Fig. 32 was obtained by 
reducing the size of the raster on the diode array so that only a small 
portion of the array was scanned. This electronic zooming permits 
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the individual diodes to be observed for detailed study. For example, 
the one very bright spot or white defect on the number 300 results 
from a single defective diode. The two bright spots on the extreme 
left represent two defective diodes separated by a good diode. For 
this photograph the optical magnification was adjusted so that the 
black and white wedge pattern created 300 cycles per inch at the 
center of the display. Since the diodes are located on 20p. centers, only 
two diodes are fully illuminated by a white bar near the numeral 300. 

While the bright defects depicted in the photographs of Figs. 30 to 
32 impair the image quality and would in some instances prevent this 
tube from being used, the small size and number of defects would be 

Fig. 30 - A video display obtained with a typical silicon diode array camer& 
tube. The subject was a black and white transparency. 
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Fig. 31- Video display of a resolution chart obtained with a silicon diode 
array camera tube. 

acceptable in a number of applications. Although most of the arrays 
fabricated to date have exhibited bright defects, considerable progress 
has been made in reducing their number; improved technology should 
permit fabrication of defect-free arrays with moderately good yield. 
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Fig. 32 - The video display of a small portion of the resolution chart shown 
. in Fig. 30 obtained by electronically zooming the diode array camera. The 
white spots or defects correspond to diodes with a high value of reverse bias 
leakage current. 
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Television Transmission of Holograms 
With Reduced Resolution Requirements 

on the Camera Tube 

By C. B. BURCKHARDT and L. H. ENLOE 

(Manuscript received November 21, 1968) 

This paper proposes a technique for the television transmission of a 
hologram of a two-dimensional transparency. The spatial resolution re­
quired on the camera tube is reduced by a factor of four compared with the 
transmission of a conventional off-axis reference beam hologram. The 
resolution required is therefore no higher than that required for the direct 
transmission of the transparency itself. Implementation of the proposed 
arrangement should be easy. Three holograms formed with an on-axis 
reference beam are transmitted. The phase of the reference beam assumes 
the values 0°, 120°, and 240° for the first, second, and third hologram, 
respectively. The carrier-frequency hologram is "synthesized" from these 
three on-axis holograms at the receiver. The technique has the further 
advantage that the undesirable zero-order terms are eliminated. 

Holograms of two-dimensional transparencies have been transmitted 
via television.1 The hologram is first formed on the face of the camera 
tube with an off-axis reference beam and is then transmitted. The 
main difficulty with this scheme is the high spatial resolution re­
quirement for the camera tube. If the object wavefront has spatial 
frequencies between - Wand + W, then the spatial frequencies of the 
unwanted zero-order terms extend from -2W to 2W. The spatial 
frequency of the reference beam therefore has to be at least 3W; the 
highest spatial frequency to be resolved by the camera tube is 4W. 
(The conditions mentioned, and further discussed in Ref. 2, are well 
known.) This is higher by a factor of 4 than the highest spatial 
frequency of the original two-dimensional transparency which is 
unfortunate because television camera tubes are of rather limited 
resolution. 

Two scanning schemes have recently been proposed which reduce 

1529 
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the resolution requirement for the camera tube by a factor of 2 and 4.3 

It is the purpose of this paper to point out that a reduction by a factor 
of 4 can also be achieved by the adaption of a scheme described by 
Burckhardt and Doherty.4 The idea to be described should be easier 
to implement than the heterodyne scanners proposed in Ref. 3 and 
has the advantage that it allows the use of charge storage camera 
tubes. Since a factor of 4 is saved in resolution requirement, the 
resolution of the camera tube has to be no higher than that required 
for the direct transmission of the original transparency. 

Figure 1 shows the adaption of the idea of Reference 4 to hologram 
transmission via television. The hologram is formed with an on-axis 
reference beam on the camera tube. This hologram is scanned and 
transmitted; at the receiver, the received electrical signal is multiplied 
by a cosinusoidal signal and displayed on a kinescope. The phase 
plate at the transmitter is then switched electro-optically to give a 
phase shift of 1200 in the reference beam; correspondingly the 
cosinusoidal signal at the receiver is shifted by 1200 in temporal phase. 
The hologram is again scanned, transmitted, multiplied by the cosinu­
soidal signal, and displayed. This procedure is repeated once more. It 
will now be shown that the intensities of the three scans add up to give 
a carrier frequency hologram on the kinescope. 

Let the complex-valued amplitude of the subject wavefront be 
called A and the real-valued amplitude of the reference beam be 
called B. For the intensity 11 on the camera tube during the first 
scan we then have 

11 = (A +B)(A*+B) 

TRANSPARENCY 
"-

ILLUMINATING 
BEAM 

" 

AA* + B2 + AB + A*B. 

I 
I 

CHANNEL 

\ 
\ 

j: 

REFERENCE 
BEAM 

_--f-t--"7V r--8-----
I 
I ____ ..J 

f\ f\ 
V 

(1) 

Fig. 1-Hologram transmission via television, with reduced resolution re­
quirement on the camera tube. 
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Suppose now that the transmitter is linear and that the voltage VI 
arriving at the receiver is proportional to II, 

(2) 

where 1(1 is the constant of proportionality. The voltage VI IS now 
multiplied by a cosinusoidal signal to give the voltage Vi , 

Vi = VI cos wt = 1(111 cos wt 

= 1(1 cos wt(AA* + B2 + AB + A*B). (3) 

We now assume that the display is also linear and that the intensity 
I K1 on the kinescope is given by 

(4) 

The constant bias term Ie is necessary because Vi assumes both posi­
tive and negative values. The term K2 is a constant of proportionality. 
Combining equations (3) and (4) we obtain for the intensity IK1 on 
the kinescope 

IK1 = 1(0 + 1(11(2 cos w8x(AA * + B2 + AB + A *B). (5) 

The term W8 is the spatial frequency which corresponds to the temporal 
frequency w in equation (3). 

During the second scan the total amplitude on the camera tube is 
A + B exp (j27r/3) because the phase of the reference beam is now 
shifted by 1200

• The intensity 12 therefore is 

12 = [A + B exp (j27r/3)]· [A * + B exp (-j27r/3)] 
(6) 

= AA * + B2 + AB exp (-j27r/3) + A *B exp (j27r/3). 

We now multiply the voltage arriving at the receiver by cos (wt + 27r/3) 
and obtain for the intensity I K2 on the kinescope 

IK2 = Ko + I(d(2I2 cos (W8X + 27r/3) 

= 1(0 + tI(1I(2I2[exp (jw.x + j27r/3) + exp (-jW8X - j27r/3)] 

= Ko + tI(1K2[exp (jW8X + j27r/3) + exp (-jW8X - j27r/3)] 

. [AA * + B2 + AB exp (-j27r/3) + A *B exp (j27r/3)]. (7) 

The intensity I K3 on the kinescope during the third scan is obtained in 
an analogous way. For the total intensity I Ktot we then obtain 
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2 

= 3Ko + !KtK 2 L {[exp (jw.x + jn21r/3) 
n-O (8) 

+ exp ( - jw.x - jn2'71/3)] 

. [AA * + B2 + AB exp (-jn27T/3) + A *B exp (jn21r/3)]} 

= 3Ko + (!)ABKtK 2 exp (jw,x) + (!)A*BI(tK2 exp (-jW8X). 

The last two terms of this expression are the real and virtual image 
terms modulated onto different spatial carriers. Notice that the un­
desirable zero-order terms do not occur in equation (8). This is because 
we multiplied the voltage arriving at the receiver with a bipolar elec­
trical signal. If the subject wavefront at the camera tube has spatial 
frequencies extending from - W to W, the spatial carrier frequency 
at the kinescope can be chosen as W. The positive spatial frequencies 
of the kinescope display then extend from 0 to 2W. (Since the in­
tensity on the kinescope is a real function, a knowledge of the positive 
frequencies is sufficient.) 

Some bandwidth considerations are appropriate. If the positive 
spatial frequencies of the amplitude transmitted through the original 
transparency extend from 0 to W, the hologram displayed at the 
receiver has a bandwidth of 2W. This increase by a factor of 2 occurs 
because the hologram contains information about amplitude and 
phase. The system just described transmits three holograms, each 
with a bandwidth W. This is equivalent to transmitting one hologram 
with a bandwidth 3W. The minimum bandwidth of an off-axis holo­
gram is 4W; therefore, our scheme requires less bandwidth than trans­
mitting an off-axis hologram. Since the bandwidth of the hologram 
on the kinescope is 2W, the amount of information to be transmitted 
in our scheme is still higher by a factor 3/2 than what it necessarily 
has to be. The scheme described in Section IV of Ref. 3 only transmits 
a hologram of bandwidth 2W therefore avoiding this increase. 

In our discussion we have used three subholograms and phase shifts 
of 1200

• In the Appendix we derive the general equations and show 
that three subholograms is the minimum required number. 

It might be mentioned that our scheme can be modified such that 
it only transmits one hologram of bandwidth 2W. In this case all the 
processing is done at the transmitter and the final hologram of band­
width 2W is transmitted. A scheme for doing this is shown in Fig. 2. 
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Fig. 2 - Modification of the arrangement of Fig. 1 to reduce the amount of 
information to be transmitted by one third. 

The voltage from the scan is multiplied by the sinusoidal signal and 
then stored in a tapped delay line. The delay line delays the first 
scan by the time needed for two scans and the second scan by one 
scanning time. The gate opens during the third scan. The channel is 
only used during one third of the time. In order that anything be 
gained the channel has, of course, to be used for something else 
during the remaining two thirds of the time. Alternatively, the 
output of the gate can be stored in a buffer memory (for example, 
magnetic tape) and transmitted at a slower rate. It is seen that the 
scheme of Fig. 2 is quite a bit more complex than the scheme of Fig. 1. 

APPENDIX 

General equations 

Here we present the general equations which must be satisfied for 
the N subhologram case and show that the least number required 
is N = 3. 

The general expression for the spatially varying part of the intensity 
on the kinescope corresponding to equation (8) is 

N-l 

f tot = Re L [{1 + AA * + A exp C -j{3n) 
n-O 

(9) 
N-l 

= Re L [{ [1 + AA *] exp (j'Yn) + A exp (hn - j{3n) 

+ A * exp Chn + j{3n)} exp (jwax)] 
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where' f3n is the relative phase-shift of the plane-wave reference beam; 
w" and 'Yn are the spatial frequency and phase of the grating produced by 
the electrical carrier introduced at the receiver. In order to simplify 
expressions, we have equated the multiplying factors 1(1 , ](2 and the 
magnitude of the reference beam to unity. Notice that the quantity 
within the { } braces in the second equation of (9) represents the beam 
which would be diffracted at the angle w" when a hologram is recon­
structed. This term is the coefficient of exp (jw"x). We desire to super­
impose N exposures, each having the form of Eq. (9), to accomplish 
the following: 

(i) Force the complex coefficient of 1 + AA * to zero. This prevents 
components from the direct beam, during reconstruction, from being 
diffracted at angle w" • 

(ii) Force the complex coefficient of A * to zero. This prevents com­
ponents of the conjugate wave from being diffracted at Ws • 

(iii) Force the complex coefficient of A to some nonzero value. This 
reconstructs the desired object wavefront at angle Ws • 

In order to control these 3 complex coefficients, we need a minimum 
of 6 independent variables to adjust.t Each exposure of the form 
equation (9) has 2 variables to adjust, f3n and Yn. Thus, we need a 
minimum of 3 subholograms. 

The equations which must be satisfied are 

N-1 

2: exp (jyn) = 0 (lOa) 
n-O 

N-1 

2: exp (jy n - if3n) ~ 0 (lOb) 
n-O 

N-l 

2: exp (jyn + jf3n) = 0, (lOc) 
n-O 

where N = 3 is the minimum value. Equation (lOa) can be satisfied 
if for the yn'S we simply pick the N roots of exp (jO) according to the 
well-known theorem of De Moivre, that is, 

'Yn = 
o + 21!11, 

N 

t There is always a possibility that the equations for these three complex co­
efficients are not themselves independent, and that as a consequence only four 
independent variables are required to control them. In order to rule out this case, 
we let N = 2 in equations (10) and define 8n == exp (hn) and Zn == exp (j{3n). 
Equations (10) then reduce to 80 = -811 80*(Zo - Z1) ~ 0 and 80(Zo - Zl) = O. We 
see that these equations cannot be satisfied simultaneously. 
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where n = 0, 1, 2, ... N - 1. If we then set /3n = ,,/n, equations (lOb) 
and (10c) are then automatically satisfied. 

As an example, for the minimum number of subholograms N = 3, 
we may pick () = 0 without loss of generality since the absolute phase 
of the reference beam is unimportant. Then we have from De Moivre's 
theorem ,,/0 = /30 = 0, "/1 = f31 = 217"/3, 1'2 = /32 = %/3. Thus, for 
three sub holograms we shift the reference beam and grating producing 
electrical carrier phase by 1200 
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A Sliding-Scale Direct-Feedbacl( 
PCM Coder for Television 

By EARL F. BROWN 

(Manuscript received December 19, 1968) 

A sliding-scale coder for television signals was built which extends the 
J'ange of the quantizing scale by processing the input signal twice when 
the input signal exceeds a prescribed threshold. On the second pass the 
quantizing range is effectively moved outward to reduce the errors in coding 
large signals. Double processing nearly triples the number of quantizing 
levels of a basic three-bit coder. Measurements of the number of extra bits 
required, that is, those in excess of three-bits per sample show that they 
may be accomodated on a three-bit per sample transmission channel by 
reducing the sampling rate five percent. The experimental coder generates 
19 quantizing levels. Its performance approaches that of a seven-bit pulse 
code modulation coder. Busyness or streaking, common to most three-bit 
differential type coders, is eliminated. Acceptable pictures are reproduced 
with ±5 dB changes in the input signal's range. Over this range the signal­
to-noise ratio of the reproduced pictures varies from 47 dB to 54 dB and 
the rise-time of a regenerated step-signal varies from 1 microsecond to 1.45 
microsecond when the input signals rise-time is limited to 1 microsecond. 

1. INTRODUCTION 

Differential, direct-feedback, and delta-modulation pulse code mod­
ulation systems take advantage of the television viewer's tolerance to 
brightness errors, especially in high detail areas of the picture.1

-
5i< 

Analog signals must be quantized into a finite number of levels for 
conversion to digital signals. This quantization introduces errors in 
the reconstructed picture. These errors are lumped together under the 
name of quantizing noise which for differential pulse code modulation 
(PCM) systems is a function of the quantizer step size (s), the sam­
pling rate, channel capacity, and filter characteristics. Quantizing 
noise may be classified into six visually subjective catagories: granular 

* This family of coders are hereafter referred to as differential coders. 

1537 
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noise, streaking, contouring, slope-overload, edge-busyness, and edge­
stepping. 

Granular noise is a high frequency noise, caused by individual sam­
ple errors, whose visibility is increased by amplitude differences from 
frame to frame. Contouring produces brightness steps in flat regions 
of the picture. Both of these defects may be decreased with proper 
filtering and decreasing the smaller step sizes. A reduction in contour­
ing is usually made at the expense of increased granular noise. 

Streaking results from mistracking between the coder and the de­
coder. The length is determined by the decoder's time constant. 

Slope-overload, edge-busyness, and edge-stepping occur at large 
brightness boundaries which are not parallel to the scanning lines. 
These defects become increasingly visible as the brightness boundaries 
approach the vertical. Slope-overload appears as a smearing effect. 
This may be reduced by increasing the step size for large difference 
signals at the expense of increasing edge-busyness and edge-stepping. 
Edge-busyness appears as relatively large brightness errors jumping 
back and forth along the scanning line. This defect results from large 
errors at brightness boundaries whose jitter is increased with frame­
to-frame amplitude differences and when the sweep rates are not 
locked to the digital processing rates. Edge-stepping appears as dis­
continuities in brightness boundaries because of amplitude differences 
along the continuum. This defect appears to crawl up and down the 
boundary when the sweep rates are not locked to the digital processing 
rates. 

Some or all of these defects may be reduced, if not eliminated, 
through one or more of the following procedures: 

(i) Companding the signal, 
(ii) Increasing the number of levels and length of PCM words, and 
(iii) Increasing the sampling and bit rate. 
When the bandwidth and bit rate are fixed, more sophisticated tech­

niques are required such as: 
(i) Optimizing sampling rate or coder processing rate as a function 

of spatial frequency, 
(ii) Adding levels as a function of slope amplitude. 
(iii) Efficiently using time slots such as redundant signal areas and 

blanking periods. 

Two types of sliding-scale differential coders were simulated on a 
computer.6 The excellent results obtained in the simulation encouraged 
the building of a real-time sliding-scale coder. 
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The real-time sliding-scale coder was designed to process the input 
signal twice and introduce additional levels when the input signal ex­
ceeded a threshold. Double processing can increase the number of 
effective levels in a three-bit system to 22 at a moderate increase in 
circuit complexity. The additional information may be handled by 
reducing the sampling rate; or the additional information could be 
transmitted during the blanking period or in place of redundant signal 
components. 

The experimental coder was limited to 19 levels. Its performance 
approached that of a 7 -bit straight PCM coder. Slope-overload, edge­
stepping, and granular noise were minimized. Edge-stepping was just 
perceptible when the sweep rates and the digital processing rates were 
unlocked. Edge-busyness and contouring were eliminated. Input signals 
varying over a ±5 dB range produced acceptable pictures. At midrange 
the peak-to-peak signal to root mean square noise was 50 dB; and with 
a 75 percent change in signal level, the rise-time increased from 1 to 
1.15 j.ls. Over the input signal operating range of ±5 dB, a signal-to­
noise ratio of 54 to 47 dB was obtained. Over the same operating range, 
and with a 75 percent change in signal level occurring in 1 j.lS, the rise­
time of the output signal varied from 1 to 1.45 j.lS. 

II. DIRECT-FEEDBACK CODING 

The sliding-scale coder was built around a direct-feedback coder 
configuration. Briefly, direct-feedback coders function the same as 
DPCM coders, but the circuit is arranged to allow greater flexibility of 
filter design. Figure 1 is a schematic diagram of a direct-feedback 

ANALOG r------, 
INPUT 

DIGITS 
IN 

A TRANSMITTER 

DIGITAL-TO­
ANALOG 

CONVERTER 

B RECEIVER 

H2 
INTEGRATOR 

Fig. 1-Block diagram of a direct-fe~dback fCM coder, 
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ANALOG 
OUTPUT 
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Fig. 2 - Filter characteristics of a direct-feedback PCM coder. 

coder, and Fig. 2 shows typical filter characteristics. For television 
signals the preemphasis filter H 1 is a differentiating filter. The de­
emphasis filter H 2 is a short time integrator, approximately the in­
verse of H 1. The accumulator filter A in the feedback loop has a long 
time constant. 

The feedback acts like a servomechanism trying to make the aver­
age value of the quantized signal, y, equal to the pre-emphasized in­
put signal, x. The difference between x and y is accumulated in A 
and used to correct the quantized output. 

Figure 3 shows a typical 8-level companded quantizer scale. The 
quantizer is tailored to the observer's perception; that is, fine quantum 
steps are used for small signal errors and coarse steps for large errQr 
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signals. Optimally designed companded quantizers adhere to Max's 
rule for minimum distortion.7 Max states that the decision levels must 
fall midway between the quantizer levels. In such a quantizer the 
error amplitude ranges between plus and minus half a quantum step 
over the range of the quantizer. 

Even so, minimum distortion quantizers of three bits per sample 
or less are subject to considerable noise and are only marginally ac­
ceptable. The sliding-scale coder is an attempt to increase the sub­
jective acceptability of predictive coders. 

III. PRINCIPLES OF THE CODER 

3.1 Transmitter Coder: 

Figure 4a is a block diagram of a sliding-scale direct-feedback 
coder. It has the same functional blocks as a direct-feedback coder 
except for an AND gate and an elastic store. Assume a three-bit coder 
with the quantizer levels shown in Fig. 5. Switches S1 and 82 of Fig. 4a 
are closed at time t1 • The error signal out of the accumulator at time 
t1 is quantized and fed back to the accumulator. If the quantizer out­
put stays within the bounds of decision levels + c and - c, the proc­
essing during that sample period is complete and one word describing 

/ 
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/ 

~or---------------~~--------------~ 
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Fig. 3 - Typical eight-level companded quantizer scale. 
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Fig. 4 - A sliding-scale direct-feedback PCM coder. 

the error signal is generated. If decision levels +d or -d are gener­
ated they are also fed back to the accumulator; they reduce its error 
signal. In addition, levels +d and -d are used to open the AND gate. 
A pulse then passes through the AND gate at time t2 closing switch 
82 during the same sample period. In so doing, the output of the ac­
cumulator, already coarsely corrected by level +d or -dJ has a fine 
correction applied to it during the sample period. 

When levels +d or -d are generated, two words are produced in 
one sample period. To facilitate a uniform transmission rate the words 
are fed into an elastic store which feeds the transmission channel at 
a constant rate. The sampling rate may be reduced by an amount pro­
portionate to the number of additional words so as not to exceed the 
channel bit rate capacity. When the sampling rate is reduced, the cut­
off frequency of the low-pass filter must be reduced proportionately so 
as to reduce the effects of foldover (aliasing) and granular noise. 

3.2 Receiver Decoder 
Figure 4b is a functional block diagram of the receiver decoder. 
The output of the receiver elastic store is applied to the digital-to­

analog converter. When a +d or -d level is detected by the digital-to­
analog converter, a second word is taken out of the elastic store during 
that sampling period. The output of the decoder after integration by 
filter H2 is a replica of the input analog signal at the transmitter. 
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3.3 Quantizer Levels 
The technique of double processing the error signal may be 

thought of as one operation in which the quantizing scale's midpoint 
may occupy one of three positions: centered around zero, +d, or -d. 
Thus the midpoint of the quantizer scale slides up and down the 
scale as a function of the amplitude of t.he accumulator's error signal. 
For an 8-level quantizer six levels are available when the midpoint of 
the scale is centered around zero and 8 each when centered around 
level +d or -d as illustrated in Fig. 5b. For a three-bit coder operat­
ing in this mode, 22 levels are available during one sample interval 
if level +d,-d is counted twice. Although the quantizing scale of 
Fig. 5b is not optimized, it is adequate for most television applications. 
The effectiveness of all 22 available levels may be increased by addi­
tional companding of the error signal, approximately the inverse of 
the initial companding, on the second pass. 
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Fig. 5 - Quantizing scales: (a) an eight-level companded quantizing scale; 
(b) typical levels of a sliding-scale coder derived from the eight-level quantizing 
scale. 
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A general expression for the number of effective quantizer levels 
in a sliding-scale coder is 

(1) 

where 2n is the number of levels the quantizer can generate, K is the 
number of levels which causes a double processing, and 2m is the num­
ber of levels used when the midpoint of the quantizer scale is shifted 
from zero and where m usually equals n. 

IV. EXPERIMENTAL SLIDING-SCALE CODER 

Figure 6 is a block diagram of the experimental coder. This is a 
direct-feedback coder with the sliding-scale features added to it. This 
arrangement of the sliding-scale coder was used to increase its ex­
perimental versatility. The elastic stores were omitted since they do 
not directly relate to the quality of the picture if they have suf-
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Fig. 6 - Experimental sliding-scale direct-feedback PCM coder. 
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ficient capacity. The design procedure of Brainard and Candy was 
followed for the direct-feedback coder.3 

Two feedback paths were used, one for coarse and one for fine 
quantized levels. Several switches were used to control the timing 
of the operations. Each switch was closed for 50 ns with a 50 ns 
space between successive operations so that all operations were com­
pleted in the sampling period of 0.5 ","s. 

The companded quantizing scale for the experimental coder is shown 
in Fig. 7. The fine quantizer was designed with seven levels. Level a 
was set at zero volts. The five inner levels a, ±b, and ±c satisfied 
Max's first rule for minimum distortion. The two outer levels, +d 
and - d, of the fine quantizer were assigned the same code words as 
the two coarse quantizer levels, +d' and -d'. (Notice that in Section 
III levels +d and -d, and +d' and -d', respectively, have the same 
value). 

The decision levels for +d and -d were set slightly higher than the 
decision levels for +d' and -d'. Thus code words for levels ±d' will 
always preceed the code words for levels ±d. This permits the receiver 
to identify and assign the correct level to the d words. Although the 
optimum quantizing scale was not determined, some information in 
this direction was obtained. The coder was not sensitive to changes in 
the fine quantizing scale when the +d and -d levels did not exceed 
ten percent of the peak input signal. The coarse levels +d' and - d' 
prefer to be slightly more than twice the value of +d and - d. 

Examination of the quantizing scale, Fig. 7, shows that the 19 levels 
are not efficiently used. For instance, levels +d' ±b and -d' ±b pro­
duce substantially the same results as the ±d' +a level with signal 
changes of this magnitude. Therefore, the effective number of levels 
is more like 15 instead of 19. Since excellent results were obtained with 
the fifteen "effective" levels the techniques which would permit the 
effective use of all 19 levels were not tried. 

v. LARGE SIGNAL CHANGES 

5.1 Frequency of Occurrence 

The frequency of occurrence of the two outer levels, ±d', was meas­
ured for the two still pictures shown in Figs. 8a and c. The results are 
listed in Table I for three levels of input signal. Picture A refers to the 
picture shown in Fig. 8a and Picture C to the picture shown in Fig. 8c. 
The position of levels ±d' for picture A is shown in Fig. 9 for three 
levels of input signal. 
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Fig. 7 - Companded quantizing scale of the experimental sliding-scale direct­
feedback PCM coder. 

5.2 Capacity of Elastic Store 
The data of Table I provide a measure of the size of the elastic 

store that is required. Assuming that the average proportion of large 
changes per picture is the same as the average proportion for each 
line, an elastic store with a capacity of ten percent of the bits per 
line would be adequate to handle the three signal levels listed in Table 

TABLE I-FREQUENCY OF OCCURRENCE OF LEVELS ±d' IN 

PERCENT OF TOTAL CHANGES FOR THREE INPUT 

SIGNAL LEVELS 

Picture A Picture C 
Change in 
signal level 

-d' +d' Total -d' +d' Total 

+5 dB 4.6 4.7 9.3 5.8 4.7 10.5 

o dB 1.1 1.2 2.3 1.6 1.8 3.4 

-5 dB 0.4 0.6 1.0 0.4 0.4 0.8 
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Fig. 8 - Photographs of television pictures bandlimited to 1.0 MHz: (a) high 
detail picture without coding, (b) high detail coded picture with optimum input 
signal level, (c) low detail picture without coding, and (d) low detail coded pic­
ture with optimum input signal level. (The scan lines and printing screen in Figs. 
8 through 11 cause moire patterns that are not in the originals.) 

1. If the average number of large changes per line exceeds ten per­
cent, the coder degrades to an eight-level coder. This "graceful" 
degradation occurs at the edge of the picture which in most cases 
will not be noticed. 

VI. EVALUATION OF CODER 

6.1 Coder Environment 

The signal source was a television system consisting of a 275 line, 
2: 1 line interlaced picture, displaying 30 frames per second. The tele­
vision signal was bandlimited to 1 MHz and sampled at a 2 MHz rate. 
The transmission bit rate was 6 MHz with 3-bits per sample. The pic­
ture display was 5i inches by 5 inches and was viewed from 3i 
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Fig. 9 - Television pictures showing where ±d' occurred for input signal 
level changes of -5dB, OdB (optimum input level), and +5dB. 

feet. The peak luminance was 70 foot lamberts and the room illumina­
tion was 100 foot candles. 

6.2 Picture Material 

Two types of still pictures (see Fig. 8) were used for the subjective 
evaluation; one with great detail and one with little detail. Evalua­
tions were obtained for input signals which varied over a ±5 dB range. 
Figs. Sa and c show the uncoded pictures passed through the same 
low-pass filters as the coded pictures. Figs. 8b and d show coded 
pictures at the optimum input signal level. Fig. 10 shows the detailed 
picture with a -5 dB(a) and a +5 dB(b) change in input signal. 

Photographs should be used with care in evaluating television pres­
entations. Long exposures of photographs, compared with television 
frame time, will integrate noise and motion defects out of television 
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pictures. The photographs of Fig. 8 may be compared except for the 
granular noise defects which appeared in Figs. 8b and c. The granular 
signal-to-noise ratio of these two pictures was 50 dB. Fig. lOa shows 
some of the effects of granular noise that appeared in the television 
picture. For this picture the input signal was reduced 5 dB from the 
reference level and had a granular signal-to-noise ratio of 47 dB. 
Fig. lOb illustrates slope-overload defects which occurred when the 
input signal was increased by 5 dB from the reference value. This 
defect is most apparent in the young woman's blouse. The granular 
signal-to-noise ratio in this case was 54 dB. 

6.3 Evaluation 
Evaluation of the coder using live subjects indicated that the defects 

listed in this section were more severe for the two still subj ects. 
Therefore only the still subjects were used in the evaluation. 

The six types of noise associated with differential type PCM coders 
were evaluated. The six types of noise are: granular noise, streaking, 
contouring, slope-overload, edge-busyness, and edge-stepping. These 
were evaluated subjectively by the author, except for slope-overload. 
The subjective evaluation was conducted on pictures when the sweep 
rates were locked to the digital processing rates and when they were 
not. 

Contouring, edge-busyness, and streaking were not perceptible in 
either picture whether or not the sweep rates and the digital processing 
rates were locked. However, when the ratios between the outer levels, 

Fig. 10 - Detailed coded picture at two input signal levels: (a) decrease of 
5 dB from optimum; (b) increase of 5 dB from optimum. 



1550 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969 

+d' and -d', and the inner levels were different between the trans­
mitter and receiver, streaking did occur. The threshold for streaking 
permitted a difference in ratios of ±4 percent. Worst case transmission 
errors which occur in the d' and - d' words produce an error signal 
which decays exponentially to zero in 6 p,s and appears as a streak 
about 0.05 inches long on the picture. The photographs in Fig. 11 
show the effect of an error locked to the line rate in a -d' and a +d' 
word. 

Edge-stepping was not perceptible when the sweep rates and the 
digital processing rates were locked. When they were unlocked, edge­
stepping was just perceptible at large brightness boundaries. 

Slope-overload was measured objectively. A slide which provided a 
75 percent white to black transition along the scanning lines was placed 
in front of the camera. An oscilloscope was used to measure the transi­
tion time from white to black for several input levels at the input to 
the monitor. The results are shown in Fig. 12 and a typical waveform 
shown in Fig. 13. The rise-time varied from 1.0 to 1.45 f-tS over a 12.5 
dB range of input signals, where the input signal was limited to a rise­
time of 1.0 ""s. At the optimum input signal level (0 dB), the rise-time 
increased to 1.15 ""s. There was no measurable difference in the slope 
response when the sweep rates and the digital processing rates were 
unlocked. 

Granular noise was measured subjectively by comparing the coded 
picture with an uncoded picture to which gaussian noise had been 
added. The granular noise resulting from coding was a high frequency 

Fig. 11- Effect of transmitting erroneous ±d' word when the erroneous 
word is locked to the scanning rates: (a) -d' error, (d) +d' error. 
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Fig. 12 - Measurements of signal-to-noise ratio and slope-overload as a func­
tion of input signal level for the sliding-scale coder. 

noise occurring at or near the sampling rate. Since the gaussian noise 
occupied the full band, some subjective weighting was necessary. The 
uncoded picture with added noise was passed through the same low­
pass filters as the coded picture. The two pictures with equalized con­
trast were alternately switched onto the monitor and the added noise 
adjusted until they were judged subjectively equal. The signal-to­
noise was measured in terms of peak-to-peak signal to root mean 
square noise on the uncoded picture with added noise. The results are 
shown in Fig. 12. The equivalent signal-to-noise of the two test pic­
tures was substantially the same, ranging from 47 dB to 54 dB over an 
input signal range of 10 dB. With the input signal level optimized 
(0 dB) the equivalent signal-to-noise was 50 dB. The signal-to-noise 
of a companded 3-bit differential pulse code modulation coder, using 
the same measuring technique, was 45 dB. When the picture sweep 
rates and the digital processig rates were unlocked, the signal-to-noise 
was decreased by 3 dB. This decrease in signal-to-noise is caused by 
sampling position differences from frame to frame at the smaller 
brightness boundaries. 

VII. CONCLUSIONS 

This experiment, with the sliding-scale coder, demonstrated that 
15 "effective" levels are sufficient to produce a high quality television 
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Fig. 13 - Waveform response to a 75 percent change in brightness level when 
bandlimited to 1.0 MHz: (a) analog response; (b) response of sliding-scale coder. 

picture with a small increase in circuit cost and complexity. The 
increase in circuit cost and complexity is offset by the double process­
ing technique which reduces the requirements on the number of 
threshold and quantizing circuits. 

The most significant improvement offered by the sliding-scale coder 
is in the rendition of the subj ectively critical large brightness changes. 
The coder performance approaches that of a seven-bit PCM system. 

A reduction in the sampling rate of about five percent permits the 
sliding-scale coder to nearly triple the number of quantizer levels 
without an increase in channel bit rate. 
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