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Codes Which Detect Deception

By E. N. GILBERT, Mrs. F. J. MacWILLIAMS, and N. J. A. SLOANE
(Manuscript received May 15, 1973)

We consider a new kind of coding problem, which has applications in a
vartety of situations. A message x s to be encoded using a key m to form
an encrypted message y = ®(x, m), which is then supplied to a user G.
G knows m and so can calculate x. It is desired to choose ®(-,-) so as to
protect G against B, who knows z, y, and ®(-,-) (but not m); B may
substitute a false message y' for y. It is shown that if the key can take K
values, then an optimal strategy for B secures him a probability of an
undetected substitution = K—% Several encoding functions ®(-,-) are
given, some of which achieve this bound.

. INTRODUCTION

The gambling casino has often supplied a vivid and concrete setting
for problems in probability theory,! stochastic processes,> hypothesis
testing,? information theory,* and coding theory,® and we shall use it
to describe our problem.

There are two main participants, the owner of the casino G (stand-
ing for good guy) and the manager B (the bad guy). B has been re-
porting the daily takings from the slot machines to be less than they
actually are and keeping the difference for himself. To prevent this,
G proposes to install in each slot machine a key generator of which he
possesses an exact duplicate and an encoder which will encrypt the
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day’s takings x using a key m to produce an encrypted message
y = &(z, m). 1

(See Figs. 1 and 2.) The device will punch y onto a paper tape. At
suitable intervals B will mail the tape to G, who will calculate  from
y and m. From time to time G will visit the casino to change the key
generator. We assume that B knows = and &(-,-) (but cannot change
them), and y (which he can change), but does not know m. G knows
Yy, m, and ‘I)(',-).

If B attempts to give G a false message y,, there may be no 2’
satisfying y, = ® (2, m), and then G will discover B’s deception. But
if B can solve (1) for m, then he can successfully substitute a false
message =’ by giving @ the correctly encrypted message y' = ®(z’, m).
The problem is to design ®(-,-) so as to make it as difficult as possible
for B to deceive G without being caught.

Clearly, the problem is applicable to other situations (vending
machines, cash registers, etc.) and in fact was first presented to us by
G. J. Simmons of Sandia Corporation in connection with monitoring
the production of certain materials in the interests of arms limitation.

The problem resembles the one normally encountered in cryptog-
raphy in that a key m is used to encrypt a clear text x into an encoded
form y = ®(x, m). But there is an important difference. Since B knows
z already, many of the standard cryptographic codes would allow B
to recover the key m.

To prevent B from using (1) to learn the key, G must construct
&(-,-) so that (1) has several solutions m. Then B will probably pick
a wrong key m, and @ will discover that B’s encrypted mesage v, is
incompatible with the correct key. As one might expect, to provide
many solutions to (1) G must use a large number K of possible keys.

FALSE MESSAGE x’

6 y OR vy, KEY
GENERATOR
" 1
| | KEY m
| KEY |
MESSAGE x : GENERATOR : | DECODER
| KEY m | x.x, OR | WARNING
| |
——+{_encooen_f1—1v
ENCODER G
| |
I |

Fig. 1—Encoding to detect substitution.
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MESSAGE KEY ENCRYPTED
MESSAGE

Fig. 2—Diagram of a code.

When B tries to substitute a false message, his probability of escap-
ing detection will be called p,. The probability p, for an optimal B
strategy will be called p,. We will show that p;, = K~} Although
Section IV will construct a code which is best-possible in the sense of
achieving p, = K this equality can be achieved only by severely
restricting the number N of possible messages . More useful codes
must compromise among three conflicting goals for G : small p,, small
K, and large N. We give two such codes, one random (Section VII)
and one systematic (Section VIII).

Throughout most of this paper we imagine that B has a particular,
but unknown, false message &’ to substitute for . We assume that
is equally likely to be any one of the N possibilities and that B picks
z’ at random from the remaining N — 1 messages. Then p, is an average
of the probabilities p,(z, ¥, «’) of success when B substitutes a given
2’ for given z, knowing .
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In Section 1X, B uses a different strategy. There B is content to
succeed in any deception. Given z and y, B now picks z’ to maximize
the chance of escaping detection. Merely keeping p, small does not
protect G against this if individual terms p,(z, y, ') are large. With
proper design, the systematic code of Section VIII still defeats B.

Il. THE AUTHENTICATOR
A convenient special form for the encryption (1) is

y = (z;2), (2)

i.e., y is the clear text « followed by a string z of extra digits or letters.
Here 2z is some function of  and m. G will use z to test the received
message y for authenticity. For this reason z will be called an
authenticator.

Although (2) is a special case of (1), nothing is lost by restricting the
encryption to this special form. Indeed, if some other ®,(x, m) in (1)
provides a good code, one can always create a code of the form (2)
by taking z = &,(z, y), i.e.,

y = o, m) = [x; Po(z, m)].

Including z as part of ¥ cannot help B; he knows z already. Giving z
to @ explicitly cannot hinder him in detecting a deception by B. Thus
the new code is at least as good for G as the old one.

Whether or not to use a code of the form (2) is purely a matter of
convenience. However, the form (2) has a special property which we
can now require without loss for all codes. It is that different clear
text messages ;, 2 cannot be encoded into the same y, i.e.,

& (my, 1) #= P(ma, T2) (3)

holds for all my, m, if £; # x,. Then a typical code has a diagram like
Fig. 2 which portrays clear messages x as points in the left column and
encrypted messages y as points in the right column. The lines directed
from left to right are labeled by the key names 1, - - -, K to show how
these keys encode each z into a y. Because of (3) the encrypted mes-
sages y fall into disjoint clusters, each cluster containing all possible
images of a particular z.

IIl. PROBABILITY OF DECEPTION

B successfully deceives G with probability p, = K~ just by guessing
a key m, at random with all K keys equally likely. Better strategies use
B’s knowledge of # and y to restrict his guess to keys satisfying (1).
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Usually B need not guess m, = m, the correct key. B still succeeds if
&(z', m,) = ®(z', m). (4)

In Fig. 2, B would pick m, to be one of 2, 3, 4, 5, or 6; if m = 2 then
the guesses m, = 2, 4, or 6 all succeed.

An important qualitative feature of a code is the size of the bundle
of lines leading from the message x to the encrypted message y in the
code diagram (Fig. 2). G must make these bundles large enough to
prevent B from guessing m with high probability. But if the bundles
are too large, B will succeed often because many keys m, satisfy (4).
In compromising between the two extreme bundle sizes, G cannot limit
B to a probability p, = 1/K. In fact, we now show that B can always
use a strategy which succeeds with probability

po = KL (5)

In order to prove (5) we will have to place some natural restric-
tions on the behavior of G and B.

(a) B does not attempt to deceive @ by replacing x by 2’ = z. If
we allowed B that kind of ‘““deception,” B could succeed with
probability p, = 1 and (5) would be a weak result.

(b) All N messages « are equally likely. Although this requirement
could be relaxed, some condition like it must be imposed to
forbid G from using one particular message z; almost exclu-
sively. In that case G could let all keys encrypt «; to the same
1 but give all other messages z’ K distinct encrypted forms.
B would then have p, < K=t but G would receive little
information from each message.

(¢) Another restriction on G might be that he use the K keys at
random, equally likely and independent of z. We won’t need
this restriction on G to prove (5). If G uses the keys in any
other way he only helps B increase po.

(d) We will prove that (5) holds even if B picks 2’ at random from
the N — 1 messages different from z, all equally likely. This
only strengthens (5) because there may be better strategies
for B.

Knowing how the message z, =/, and key m are distributed, we can
compute the joint probability P(x, y, '). This probability is the weight
used in averaging p,(z, y, ') to get

Po= 2 P(z,y, 2)p.(z, y, &), (6)

T,Y,T
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as mentioned in Section I. The probability p.(z, y, 2’), that B succeeds
in substituting 2, knowing = and y, depends on how B uses z, y, '
to determine a false encrypted message y,. B knows the function
®(-,-) and the key distribution. From these, he can compute the
conditional probability distribution P(y’|z, y, ') of the correctly en-
crypted false message y’ = ®(z’, m). B maximizes his chance of suec-
cess by using a false message y, which maximizes P(y’|z, y, 2’'). Then
B achieves

po(x) Y, LE') = MEILX P(yllx) Y, x,) (7)
v

and maximizes p, in (6). Since (7) is optimal for B we give the corre-
sponding p, value a special name p,.

As a preliminary to (5) we now relate p, to the average uncertainty
U which B has about the correctly encrypted false message y’. U is a
conditional entropy

U=H{Y|z, y, )
= - Z P(CIJ, Y, x’: yl) lOg P(yllx: Y, .’Z,). (8)

x,y,:l 'yl
Lemma: If B chooses vy, to make (7) hold, then
Po = po 2 270 9)

Equality holds in (9) if and only if all the possible encrypted messages y’
for each (x, y, ') having P(x, y, ) #~ 0 are equally likely and there are
exactly 2V such y'.

The proof does not require restrictions (a), (b), (¢), or (d). Use (7)
to write P(y'|z, y, ') £ p.(x, y, ') in (8). Sum on %’ and usc the
convexity of the function —log p to get

U ; - Z P(.’E, Y, x,) IOg pg(d), Y, .’B/)

z,y,2

2 —log 2 Pz, y, &)po(x, y, o).
z,y,%

Now (9) follows from (6).

The derivation used two inequalities. Both must become equalities
if equality holds in (9). P(¥'|z, y, 2') = p.(x, y, ') requires all possible
y" to be equally likely for given z, y, «’. In the convexity argument,
equality requires all —log p,(z, y, ') terms to be equal to U.

We now bound p, in terms of the uncertainty H (m) associated with
the choice of key.

410 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1974



Theorem 1: Suppose (7) and restrictions (a), (b), (d) all hold. Then
Py = p} 2 27, (10)

First note that 3’ is determined by ' = ®(m, a’) if m, 2’ are known.
Then g’ contains less information than (m, z'):

U= H(y,le Y, 1}/) = H(’”; x,|x7 Y, x,) = H(ml:c, Y, CI)/). (11)

~ But the conditional probability for m given z, y, 2’ depends only on
z, ¥, so (11) becomes
U £ Him|z, y). (12)
Also,
H(m) z H(m|x) = H(m, y|z) = H(ylz) + H(n|z, y)

so (12) provides
U< H(m) — H(yl|x). (13)
But
U=H(®yz,y, ') = Hy'|2).

Because of constraint (d), =’ is equally likely to be any one of the
N messages. Then, by (b), z and z’ have the same distribution,
H(y'|z'") = H(y|x), and finally

U £ H(y|=). (14)

Now compare (13) and (14). If H(y|z) < $H(m), then U £ $H (m)
follows from (14). If H(y|x) = 3H (m), then U = 1H (m) follows from
(13). In either case, (10) follows from the lemma.

Remark: The bound (10) implies (5), and in fact reduces to (5) when
restriction (c) holds.

IV. PROJECTIVE PLANE CODES

Since p, is the largest probability of success obtainable by B, a
code for which equality holds in (10) guarantees G the minimum p,
against optimal behavior by B. This section designs such a code. We
now assume that G behaves according to (¢) of Section III, for that
will make

po = KL

If equality is to hold in (10), all the inequalities used in proving
Theorem 1 must become equalities. We now review these inequalities
to obtain requirements on the code.
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The requirements are most easily stated in terms of the bundles of
keys in the code diagram, Fig. 2.

(7) Every pair of bundles, from z, to y1 and xs to y,, with 2, # z,
have exactly one key in common.
(#7) Every bundle contains K! keys.
(#7i) 'There are K* bundles at each =.

To prove (3), (¢%), (¢47), begin with (11) and write H(y'|z, y, x')
= H(m, z'|z, y, «’). If, for some z, y, ¥/, more than one key m satisfied
y' = ®(m, a’) then there would be more conditional uncertainty about
the pair (m, «') than about y’. Thus equality in (11) requires

(i) Every pair of bundles, from z; to y; and xy to y», x. # z,
have at most one key in common.

Equality in (9) requires that the keys in any bundle from z to y
be distributed equally over 2V = 2##( = K% images y’' of any z'.
Each of these keys leads from 2’ to a different 3’ [by (¢/)]. Then the
bundle x to ¥ has K* keys, which proves (7). Now (¢72) follows from
(#7) because there are only K keys. Requirements (727) and (¢77) also
guarantee H (y|z) = 5log K = 3H (m), which is needed for equality
in (13) and (14).

To strengthen (¢) to (i) consider the K* bundles leaving x and the
K? bundles leaving z’. There are K*-K* = K pairs of bundles. (¢')
permits each pair to have at most one key in common. But each key
is common to some pair. Since there are K keys, (¢) must hold.

One can find trivial codes which satisfy (2), (¢2), (47¢) but which
have only a few messages z. For instance, the K keys might be arranged
in a K} X K* square matrix and each row (or column) be designated
as the bundle for a distinct encrypted form of z, (or ). Since this code
has N = 2 it is not very useful. In order to force N to be large we need
another requirement.

Since (¢Z) requires a pair (mi, ms) of different keys to belong to at
most one bundle, the number of pairs of keys having a common bundle
isN (é"). This number must be no greater than the unrestricted number
of pairs of keys (¥), so that

INKI(KS — 1) < $K(K — 1)
N £ Ki+ 1. (15)
The condition for equality in (15) is

(7v) Every pair (mi, m,) of different keys belongs to exactly one
common bundle.
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We now add requirement (7v) in order to have a code with the largest
possible N. Note that even for this code (15) indicates only about
half as many message bits as key bits.

A code satisfying (2), (47), (472), (fv) can be constructed from any
finite projective plane. Recall that a projective planec is a set of points
and lines in which:

(v) Each pair of different lines has a unique point in common, and
(vz) Each pair of different points belongs to a unique line.
Y

The most easily visualized projective plane is an infinite one based on
the surface of a sphere. The lines and points of this projective plane
are the great circles and pairs of diametrically opposite points on the
sphere. A well-known technique (see Refs. 6, 7) uses a Galois field
GF (q), where ¢ is a prime power, to construct a projective plane having
¢ + g + 1 points and ¢* + ¢ + 1 lines.

The code will be obtained by using certain points and lines of a pro-
jective plane as the names of messages, keys, and bundles. First
pick any line S to serve a special role. Using the sphere as a model,
we call S the equator. Points on the equator will represent messages z.
Points not on the equator will represent keys m. Lines other than the
equator represent encrypted messages y (bundles). Each z and m
determines a unique line (not S because it contains m) which we use
as the name of y in (1).

Figure 3 shows the projective plane constructed from GF(2). It
has 22 4+ 2 + 1 = 7 points. Six of the seven lines are shown as straight
lines and the seventh, which we may take as the equator S, is a circle.

m, Txg my

Fig. 3—A projective plane.
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The three points on S are the messages and the remaining four are
keys. The six straight lines are bundles, containing two keys each.
One can easily verify (¢) and (#v) using (v) and (vz). Moreover, in
the projective plane based on GF(q), ¢ + 1 lines pass through each
point and ¢ + 1 points lie on each line. Each line different from S con-
tains one message x and q keys.
Each z lies on S and on ¢ other lines. Then (47) and (i77) hold if

g = K%, (16)

The equator contains N = 1 4+ ¢ = 1 4+ K? points, as we expect from
(15), and (¢v) holds. When G uses this code, B will know that m is
one of ¢ keys on the line y. For any 2’ # x, these keys lie on ¢ different
lines through =’ and B has p, = 1/¢ = K%

A Galois field GF(q) exists if and only if ¢ is a power of a prime,
g = p™ Then (16) requires K to be an even power of a prime: K = p?»
in this design.

V. IMPLEMENTATION

This section simplifies the code of Section IV into a form that is
easily realized by a logie circuit.

The usual construction for a projective plane begins by defining the
points as vectors, having three components taken from GF(q). Two
vectors vy, vy are regarded as two names for the same point if they
differ only by a scalar multiple, i.e., if Vo = av; for some « & GF(q).
The zero vector (0, 0, 0) is not used as a point. Lines are sets of points
satisfying a linear homogeneous constraint. A line L can then be
described by a nonzero vector L = (a, b, ¢) with the understanding that
the points on L are the vectors v = (r, s, t) satisfying

L-v=gar+bs+c =0.

Take the equator to be the line specified by the vector S = (0, 0, 1).
Then messages ¢ are points having third coordinate zero. By applying
appropriate scalar multipliers, each z can be written cither as (0, 1, 0)
or as (1, s, 0) with s € GF(g). The remaining points, which can be
written in the standard form (4, 7, 1), are the ¢* keys.

To make the logic circuit as simple as possible we agree not to use
(0, 1, 0) as a message. There remain N = ¢ = K* messages, all of the
form (1, s, 0). The ¢ lines through (1, s, 0) all have vectors (—s, 1, ¢)
where

sE—j=c¢ 7

holds for all keys (7, 7, 1) on the line.

414 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1974



Only a single element s of GF(q) need be transmitted to specify
the vector (1, s, 0) and hence z. Likewise, the key input in Fig. 1
requires only the pair (¢, j). The encrypted message y [a line with
vector (—s, 1, ¢)] can be transmitted just as a pair (s, ¢). That amounts
to using ¢ as an authenticator 2. The encoder is a computer which uses
(17) to produce the authenticator value ¢ from the inputs s, 4, 7. ¢
uses a similar computer to test that his received s, ¢ and known 4, j
satisfy (17).

For example, the code obtained from the projective plane of Fig. 3
is:

message key encrypted message
0 00 or 01 00
10 or 11 01
1 00 or 11 10
01 or 10 11

Again the code obtained from the projective plane with 13 points
based on GF(3) = {0, 1, 2} is:

message key encrypted message
0 00, 01, 02 00
10, 11, 12 01
20, 21, 22 02
1 00, 12, 21 10
01, 10, 22 1
02, 11, 20 12
2 00, 11, 22 20
02, 10, 21 21
01, 12, 20 22

Tables for constructing larger Galois fields will be found in Refs. 8§,
9, 10, and circuits for doing arithmetic in these fields in Refs. 10, 11,
12. A field GF(2%) is convenient if the message originates in binary
form. Then z and z each consist of b binary digits while 2b digits (b
for ¢ and b for j) are required for the key.

VI. BLOCK DESIGNS

Projective planes are special cases of more complicated structures
called balanced incomplete block designs (BIBD). The technique used
in Section IV generalizes directly to produce new codes based on
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BIBD’s. The new codes do not achieve p, = K%, but they provide
good solutions for some new values of K not of the form p?~.

A (b, v, r, k, \) BIBD is another system of points and sets of points.
The sets are now called blocks instead of lines. There are v points in
total and each block contains exactly & points. Each point belongs to
r blocks and each pair of points is a subset of N blocks. These condi-
tions determine the number b of blocks. For bk = vr and r(k — 1)
= A(v — 1) must hold in a BIBD (Ref. 6, p. 96; Ref. 7, p. 100).

Examples:

(1) The projective plane formed from GF(q) (see Section IV):
b=v=¢+q+1,r=k=q+1,\=1.

(2) The affine plane formed from GF (g) (Ref. 7, p.176):b = ¢* + ¢,
v=¢,r=q+1,k=¢ )=1

(3) Many other examples are known: see, for example, Refs. 6, 7,
13, 14, and recent volumes of the journals Sankhya, Annals of Mathe-
matical Statistics, and the Journal of Combinatorial Theory.

Given any BIBD with A = 1, we may form a code as follows. Pro-
ceeding as in Section IV, we select a particular block S to serve as the
“equator.” Points on S will represent messages x. Points not on S
will represent keys m. Blocks other than the equator represent
encrypted messages y (bundles). Each z and m determines a unique
block different from S which we use as the name of the y in (1).

There are N =k messages, K = v — k keys, b — 1 encrypted
messages, and k& — 1 keys per bundle. Since A = 1, the & — 1 keys in
the bundle from z to y belong to distinet bundles leaving z’. Then
po=1/(k —1) = 1/(N —1).

When the BIBD is a projective plane these formulas become again
K=¢ N =1+ K} and p, = K-} For affine planes K = ¢ — g,
N =¢g <14+ K% and p, = 1/(¢ — 1) > K-} Thus, for given K, the
affine plane has both smaller N and larger p, than one would expect
from the projective plane. The larger p, should be expected since (i2),
(%) fail.

To have (i2), (727) hold, r and k should be as close as possible. In
most known BIBD’s other than the projective and affine planes, r
and k are considerably different. For example, consider the BIBD
with parameters b = 195, v = 91, r = 15, k = 7, A = 1 (number 111
in Hall’s list”). The code obtained from this design has K = 84 keys,
N = 7 messages, and p, = . For comparison, the projective plane
code based on GF(9) is superior on all counts, having K = 81, N = 10,
and p, = 3.
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Vil. RANDOM CODES

The projective plane code in Section IV obtains p, = K-, the
smallest possible value, but it has only N = 1 + K? messages. Codes
with N >> K have more interest. To see how large the corresponding
p, might be, this section examines a code constructed at random. Now
N can be made as large as desired. The main result will be that p,
still need not exceed K~ by a large factor.

The random code will have one free parameter A. Each z is allowed
A possible encoded forms y. For each of the K keys the y in (1) is
chosen at random from the A possibilities, all equally likely. The K
choices are made independently. It may well happen that one of the
A possibilities is never chosen in the K trials. In that case the code
diagram, Fig. 2, will show fewer than A bundles from z. The code has a
p, which depends on the random choices. We will look for the expected
value E(p;). Specific codes, with the given N and K and having p,
less than this expectation, surely exist.

All the data about &(-,-) that B needs when substituting z’ for x
are contained in a table showing how the encrypted messages y, 3’
depend on the key m. Figure 4 shows a convenient table as an A X 4
array of cells, each cell containing a list of all keys which determine a
(y, ¥') pair. Figure 4 corresponds to the pair of messages labeled z, 2’
in Fig. 2. Let »(y, y’) be the number of keys in the (y, y’) cell.

Knowing y, B examines the corresponding column in Fig. 4. Since
the K keys are equally likely,

Pz, y, ") = »(y, y)/ ; v(y, 1) (18)

The optimal strategy, by which B achieves (7), is to pick y, to maxi-
mize v(y, ¥'). In Fig. 4 the row y, intersects the y column in a cell
with the largest number of keys. There may be k£ > 1 such cells in
the y column, in which case B may as well pick one of the k rows
equally likely, at random.

E(p,) can now be described as the solution to a distribution problem.
Imagine that the correct key is key #1 and that it occupies the cell in
column 1 and row 1. Distribute the K — 1 remaining keys at random

35 7

y' 24,6
1 8

Fig. 4—Table of keys.
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over the A? cells. Let p.,» be the probability that the (1, 1) cell con-
tains »(1, 1) = n keys, that & — 1 other cells in column 1 contains n
keys, and that moreover all of the A — & remaining cells in column 1
contain fewer than n keys. Then

E(p,) = Zk k'pa i (19)

is the probability that B picks the first row for y,.

The exact formula for p, . is cumbersome. It is not hard to simulate
the distribution experiment on a computer in order to estimate E(p,)
when K is less than a few hundred. This has been done, but only as a
check on the simpler approximate calculation which follows.

When A is large, each key has a small probability A= of belonging
to the cell (y, y’). After a large number K — 1 of independent trials,
the number »(y, ) of keys in the cell will have approximately a Poisson
distribution with mean

A= (K — 1)/A% (20)

Accordingly, we treat numbers »(y, %’) as independent Poisson random
variables with mean A. The number »(1, 1) is special because we started
the distribution by placing key #1 in cell (1, 1); »(1, 1) — 1 is the
Poisson variable for this cell. Poisson approximation has the dis-
advantage that the total number of keys >, ., »(y, ¥') is itself a
random variable. However, the mean number of keys is K and there
is high probability that there will be close to K keys if K is large.
The effect of this approximation should be worse for small K than for
large K. The Poisson approximation and the simulation do give the
same E (p,) to within a few percent even for K = 25.

Table | — E(pg) for random designs

A= & 1 1 4 16 K-

K =25 0.47 0.44 0.54 0.2
64 0.46 0.34 0.32 0.38 0.57 0.125

100 0.40 0.29 0.27 0.32 0.46 0.1
256 0.27 0.21 0.19 0.22 0.32 0.06
400 0.23 0.17 0.16 0.18 0.26 0.05
1,024 0.15 0.12 0.11 0.12 0.03
4,096 0.087 0.069 0.062 0.068 0.092 0.015
10,000 0.062 0.047 0.042 0.046 0.061 0.01
40,000 0.036 0.026 0.023 0.024 0.032 0.005
100,000 0.025 0.018 0.015 0.016 0.021 0.003
1,045,576 0.0084 | 0.0063 | 0.0054 | 0.0055 | 0.0069 0.001
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To simplify writing an expression for p..x, let b, and B, denote the
probabilities that a Poisson random variable has value exactly n or
at most n.

b, = Amne/n !
By =bo+by+---+4 b
Then
Pake = baabETIBAZF (AT, (21)

In (21), b._: is the probability that cell (1, 1) contains n keys,
bi~! B2-F is the probability that a particular set of k¥ — 1 other cells
have n keys but all A — k others have n — 1 keys or less, and the
binomial coefficient counts the different sets of & — 1 cells. Now
insert (21) into (19) and sum on k to get

EG) = ¥ (t/AA){Bf — Bis). (22)

Table I gives values of E(p,), computed from (22). For fixed K,
a broad minimum of E(p;) occurs near A\ = 1. Then (20) shows that the
minimum occurs when A = K3} approximately. Thus, even when @G
designs his code by random means, he should pick A to make (¢z) and
(717) of Section IV hold as nearly as possible.

Although (22) is only an approximate solution to the problem, it is
also a generating function for the exact solution. Let e¢(K) denote the
exact expected value of p, when the number of keys is K. Instead of
e(K), eq. (22) provides

2y K—1
> SV exp (—hAe(B),

ie., a sum of terms ¢(K) weighted by the probability that the Poisson
experiment produces K — 1 keys in addition to key # 1. In principle,
one could multiply the sum in (22) by exp (AA?), expand the result
into a series in powers of A\, and identify the coefficient of A&~! as
A EDe(K)/ (K — 1) 1. The result for e(K) is unpleasant and (22) is
accurate enough. In an experiment to estimate e(64), 2000 trials were
made for each of A = 1, 1, 4. The fractions of trials in which B suc-
ceeded were 0.31, 0.30, 0.37.

VIil. SYSTEMATIC CODES

This section constructs a systematic code with large N by means of
another generalization of the projective plane code of Section IV.
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"

X
/ (DIM s)

o \o (DIM M-1)

Fig. 5—Code designed from projective space of dimension M.

Unlike the random code, which had N as a free parameter, this code
will specify a particular N. That disadvantage is offset by a smaller
value of E(p,) and by a more important advantage discussed in
Section IX.

Figure 5 will illustrate the code design. Given a field GF(g), one
can construct a projective space PG (M, q) of dimension M in which
points are again equivalence classes of nonzero vectors, now having
M + 1 components. M = 3 in Fig. 5. The number of points is

FM) = (@ —-1)/(g—1) =1+q+---+ ¢™. (23)

Each set of points satisfying a system of M — D independent linear
homogeneous equations is a D-dimensional subspace PG(D, gq) con-
taining f(D) of the points of PG (M, ¢). The number of D-dimensional
subspaces of PG(M, q) is'®

fMfM —1)---f(M — D)
FDYFD —1)---f(0)

_ @ —1)(@¥ —1)--- (MM P — 1),

(@ —-1DE>—-1---(g—1)

Proceeding as in Sections IV and VI, we again select a particular
subspace S of dimension M — 1 to serve as the “equator.” In Fig. 5,
S is a projective plane. We again identify messages ¢ with subspaces
of S. But now § has subspaces of dimension 0, 1, ---, M — 2 and so
we can specify the dimension s of the messages as another parameter of
the design. In Fig. 5, s = 0; another code might use s = 1. Given
M, s, the number of distinct messages is

N =g(s, M — 1). (25)

9D, M) =

(24)
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Again, the points not in S will be keys. There are

K=jfM)— f(M—1) =qg” (26)
keys.

The key m (a point) and message = (of dimension s) determine a
unique (s + 1)-dimensional space which will represent y. Since y
has f(s + 1) points and f(s) of them belong to S, y contains f(s + 1)
— f(8) = ¢**' keys. Now (i7), (27z) of Section IV need not hold.
Instead, for each z, the ¢/ keys fall into

A = g1 (27)
bundles of
K/A = ¢t

keys each. In Fig. 5, A = ¢?, K/A = q.

To find p, consider the matrix, Fig. 4, corresponding to a particular
pair z, ’. The ¢**! keys in a given column y need not be distributed one
to a row [as in (z) of Section IV]. Each cell in the matrix contains
all the keys belonging to an intersection between (s + 1)-dimensional
spaces through x and 2’. If  and 2’ themselves intersect in an r-dimen-
sional space x () 2’ then the cell contains the ¢"*! keys of an (r + 1)-
dimensional space through z (M 2’. B must choose one of ¢*t/q¢
= ¢* " equally likely rows; his probability of correctly guessing 3’ is

po(z, y, ') = ¢ (28)
Now (6) and (28) provide
po = X h(r)g—, (29)

where h(r) is the probability that a randomly chosen z’ intersects a
specific z in a space of dimension r. In (29), the range of summation is
2+ 1 —-—M=r=<s—1provided2s+1 = M. Butif 2s +1 < M,
as in Fig. 5, then z M 2" can be empty. In that case the summation
(29) extends over —1 < r < s — 1.

We now show

h(r) = q@=%(s —r — 1, M — s — 2)g(r, 5)/

which together with (24) and (29) gives p,. The factor ¢(r, s) in (30)
is the number of different r-dimensional subspaces of z; it suffices to
show that the remaining terms of (30) give the probability that a

randomly chosen 2’ intersects « in a particular subspace H of dimen-
sion r. Given z, and a subspace H, we can find M basis vectors eo, €1,
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-+ +, ey for S such that e, €1, - - -, e, span H, and ey, €1, -
Each 2" contains H and so has a basis containing e, - -
maining s — r basis vectors of 2’ can have the form

-, €, span z.
-, €,. The re-

M

v, = X Eie,

i=r+1

i=rtl s,

in which e, €1, - - -, e, do not appear. In determining £;,; one must not
allow 2/ to intersect 2 in a space of dimension larger than r. This
requirement is equivalent to a condition that the partial sums

M

vy = Z Ei,jej, i=7‘+1"":3)

j=s+1

of v; be linearly independent. Then the o7 span an (s — r — 1)-di-
mensional subspace 2° of the (M — s — 2)-dimensional subspace S°
spanned by e;y1, :--, ey. The factor gr —s — 1, M — s — 2) in
(30) is the number of ways of choosing z°. Having chosen H and z°
(and hence &; for j = s+ 1, ---, M), the (s — r)? numbers

£i5; t=r-+1 - s; Jj=r4+1 -+ s

can be chosen in ¢¢="* ways to specify 2’ completely. Now the numer-
ator in (30) is the number of ways of picking an 2’ to have an r-dimen-
sional intersection with x and the denominator is the number N — 1
of messages (different from z) from which B chooses z'.

Now ¢, M, and s determine N, K, A, p,. Table II gives some of the
better designs obtained by taking ¢ = 2. These all have M = 2s + 2,
so that K/A? = 1 follows from (26) and (27). For given K, the least

Table Il — Designs with q =2

Dimensions Keys Inputs Prob (B; wins)
M s K N Po
2 0 4 3 0.6666
4 1 16 35 0.400
6 2 64 1,395 0.2222
8 3 256 200,787 0.1176
10 4 1,024 1.09 X 108 0.0606
12 5 4,096 2.3 X 101 0.0308
14 6 16,384 2 X 101 0.0155
16 7 65,536 6 X 101 0.0078
18 8 262,144 8 X 10% 0.0039
20 9 1,048,576 4 X 10% 0.00195
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Table Il — Design with q=2, M=12, s =5

r =dim (z N ') h(r) Po(@, 4, 7')
-1 0.3979 0.015625
0 0.5773 0.03125
1 0.1204 0.0625
2 0.00432 0.125
3 2.9 X 107% 0.25
4 3.4 X 1078 0.5

p, was always obtained when K/A? = 1; a similar phenomenon was
encountered with random designs having A = 1 [ef. eqs. (20)]. The
table contains codes having N much larger than K. At the same time,
p, is approximately 2/K? which compares well with the projective
plane code.

IX. CHOICE OF x’

Until now B had no control over the choice of «’. We treated '
as a random variable which B accepts as given. But suppose that B
has no particular 2’ in mind; he merely wants to mislead G by sub-
stituting any convenient wrong message =’. An optimal strategy for B
must again achieve (7) but B will select 2’ to maximize p,(z, y, «’) for
each given z, y.

A code with small p;, for randomly chosen ', may now be a poor one.
Table III shows more detail about the code with ¢ = 2, M = 12,
s = 5 in Table II. This code had p, = 0.0308, as computed from (29).
But some false messages ¢’ intersect = in spaces of dimension r = 4;
if B substitutes one of these, his chance of success is 0.5 [eq. (28)7.

Table IV — Effect of changing field, keeping key size
approximately fixed

Prob (B wins)

Field | Dimensions | Key bits | g /42 Msg bits

M 10 92 K lo 9 N

! s & & if r =s —1| averaged
256 2 0 16 1 8.01 0.0039 0.0039
41 3 1 16.08 41 10.7 0.0244 0.0250
16 4 1 16 1 16.1 0.0625 0.0078
9 5 2 15.9 9 19.2 0.1111 0.0137
7 6 2 16.86 1 25.5 0.1429 0.0058
5 7 3 16.24 5 28.3 0.2000 0.0096
4 8 3 16 1 32.5 0.2500 0.0078
3 10 4 15.9 1 40.5 0.3333 0.0082
2 16 7 16 1 65.9 0.5000 0.0078
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The code is good for randomly chosen 2’ only because B usually has a
message &’ withr = — 1 or 0.

A good code for G must now have p,(z, y, ') small uniformly, not
just on the average. The code of Section VIII achieves this if ¢ is
large. For (28) shows p.(z, y, ') = 1/q. Unfortunately for G, in-
creasing ¢ has the effect of decreasing N. Then G must compromise,
picking ¢ small enough to obtain large N but large enough so that
B’s chance of success, 1/¢, is tolerably small. Table IV shows a typical
tradeoff between N and 1/¢. The designs in Table IV all have approxi-
mately the same key size K = 216, Table IV shows both probabilities
of success for B, 1/¢ if B makes r = s — 1 and the averaged value
(29) if B picks 2’ at random. If one ignores the designs with K/A? 5 1,
the averaged probability doesn’t change much. To reduce 1/¢ from
0.5 to 0.1 reduces the message size, log N, by a factor of 3.
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Formulas on Queues in Burst Processes—I|
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Queues arising in buffers due to either random interruptions of the
channel or variable source rates are analyzed in the framework of a single
digital system. Two motivating applications are: (z) multiplexing of data
with speech on telephone channels and (¢7) buffering of data generated by
the coding of moving images in Picturephone® service.

In the model a source feeds data to a buffer at a uniform rate. The
buffer’s access to a channel with fixred maximum rate of transmission is
controlled by a switch; only when the switch is closed (“‘on’”) is the buffer
able to discharge. The on-off sequence of the switch is indicated by a
burst process which is a key element in this paper. In such a process,
long periods during which the switch stays closed alternate with periods,
called bursts, during which the on-off sequence is a first-order Markov
process. The length of a burst is randomly distributed. This is a general-
1zation of the memoryless burst process considered in an earlier paper.!
In that paper we gave formulas for the efficient computation of various
Sunctionals of the queues arising in the system. Now we extend these
formulas to hold for the generalized class of burst processes.

I. INTRODUCTION

In a recent paper! we considered the problem of buffering the output
of a uniform source whose access to a given transmission channel is
controlled by a burst process. We gave formulas for efficiently com-
puting various functionals of queues that form in such a communica-
tion system when the controlling burst process is memoryless.

In the present paper we generalize the controlling process to one
which is first-order Markov within a burst. This generalization con-
siderably increases the usefulness of the formulas. Consider, for ex-
ample, the two motivating applications discussed in Ref. 1: (4) multi-

*The sequence of names was decided by coin tossing.
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plexing of data with speech on telephone channels*=¢ and (iz) buffering
of data generated by the coding of moving images in Picturephone®
service.” For the first application, analysis of data shows? that it is
necessary to go to a first-order Markov process to adequately model
the burst phenomena in speech signals. In the Picturephone applica-
tion, although the correlation of data rates within a frame is negligible,
it is quite significant from frame to frame.® For frame-to-frame coding,
therefore, the present model with memory becomes necessary.

The system under consideration is shown in Fig. 1. The source emits
data uniformly at the rate of 1 symbol per unit time. The transmission
rate of the channel is (k 4 1) symbols per unit time, where % is some
positive integer. The on-off pattern of the switch is indicated by a
binary burst process: E(j) is either 0 or 1 for j =0,1, 2, --.. If
E(7) = 0 the switch is closed for the time duration [, 7 + 1); other-
wise, the switch is open. We assume that there are long periods during
which E(j) = 0 and that at the end of every such period the buffer is
empty. The activity separated by such periods we call a burst. We
assume bursts to be independent of each other, and the burst length
to have a probability distribution which is either geometric or is a
weighted sum of geometric distributions. Within a burst, {E(j)} is
assumed to be a homogeneous two-state M arkov chain with transition
probabilities 6; and 6, given by

8; £ Prob. {E(j + 1) = 1|E(j) = 0} (1a)
6, 2 Prob. (E(; +1)=0|E(j) =1}, j=0,1,2 ---. (lb)

These two parameters completely specify the Markov chain; the
probabilities of the other two possible transitions are, of course, given
by

1 — 6, = Prob. {E(j + 1) = 0[E(j) = 0}
and

1 — 8, = Prob. {E(j + 1) = 1[E(j) = 1}.

We shall assume that 0 < 6, < 1and 0 < 6, < 1. If 6, + 8, = 1, E;
becomes a Bernoulli sequence of independent random variables, which
is the case treated in Ref. 1.

In subsequent sections of this paper we will obtain the results sum-
marized below.

In (2), (&%), and (¢iz), we assume the switch to be controlled by an
infinitely long sequence generated by the Markov chain described by
(1) ; these three results are therefore of interest in situations where the
distribution of burst lengths is not known accurately.
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UNIFORM
SOURCE BUFFER SWITCH  p————a CHANNEL

Fig. 1—Switched communication system.

(z) We derive a recursive formula for the steady-state distribution
of buffer content for finite buffers, the recursion being with respect to
the buffer size, N.

(#27) Let T be the steady-state probability of a buffer of size N
being full when the channel is inaccessible. (T'‘¥, therefore, is the
steady-state probability of a transmission fault.) We show that

1 1 1 1—6,—6, 1 1—6, 1

TEFED — T — g, TR + 1—6, TON 1 _—g, T

where (k + 1), as previously defined, is the transmission rate of the
channel. We show that the steady-state probability of the buffer
being full is T /(1 — 02), and therefore satisfies the same recursive
relation.

(#7) For a buffer of size greater than N, let F denote the mean
time to first passage through the level N. We show that F (¥ satisfies
the recursion

FN+EHD F(N+k> 41 =0 =0 piya
1— 6, 1—8,

1 —61 oy o 011 0s
1—02F +1—02

The next two results are of interest when the distribution of burst
lengths is well-approximated by a weighted sum of geometric
distributions.

() Let G™ be the probability of overflow for a buffer of size N
during a burst. Then if the burst lengths have a geometrical prob-
ability distribution with parameter p{i.e., Prob. (burst length = 7)
= p"1(1 — p)}, we show that

1 _ 1 1 +p(1—01—02) 1 _1—01.1‘
GNHE) T 5(1 — @,) GNHR) 1 — 6, G (N+D) 1 — 8, G

This result generalizes to the case when the burst length distribution
is a sum of geometric distributions.

(v) We derive a closed expression as well as a recursive formula for
the mean time for first passage through a level N during a burst
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conditioned on the occurrence of an overflow. The recursion is with
respect to N, and the bursts are assumed to be distributed as in ().

(vz) We determine the asymptotic behavior of all the formulas
in (¢) to (v) as N — . For instance, we prove that, as N — «,
(1/GM) ~ sV, where s is the unique positive real root of a particular
polynomial, such that s > 1/p > 1.

The closed expressions are all valid for £ = 1 and N = 0, and the
recursions as stated above are valid for N = 0. The recursive formulas
provide very efficient means for computation of the various functionals,
particularly in design studies where a whole range of buffer sizes is to
be investigated.

1.1 Notation

Whenever necessary we will use a superseript in parentheses, e.g.,
D to indicate that the quantity corresponds to a buffer of size M
(or to the level M in a buffer of size greater than M). If x is a vector,
then the superseript (M) will also indicate that the vector x0 is
(M + 1)-dimensional with components z{*”,7 = 0,1, 2, - - -, M. These
two uses of the superseript are consistent because the dimensions of
all vectors defined in this paper are related to buffer size (level) in this
manner. Whenever the superseript is missing, the standard value ()
will be implied.

We will use lower-case boldface letters to denote column vectors,
upper-case boldface letters to denote matrixes, and a superscript 7' to
denote the transpose. We will dencte by I the identity matrix, by 1
the vector whose components are all equal to 1, and by e; the vector
whose jth component is 1 and the rest 0, e.g., ef = (1,0, -+, 0).

Il. EQUATIONS OF THE PROCESSES
Let B(f) be the number of symbols in the buffer at time ¢. Then for
a buffer of size N
B+ 1) = Max [B(t) — k, 0] if E@®) =0 (2a)
= Min[B@®) +1,N] if E(@ =1. (2b)
In the last equation the assumption is that if the channel is inaccessible

and the buffer is full, then the current source symbol is discarded and
the buffer remains full.

In order to study the evolution of the buffer content process, it is
convenient to introduce two (N 4+ 1)-dimensional vectors p(f)
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= {po(t); ) pN(t)} and q(t) = {qo(t); ) qN(t)} defined by the
equations

pi(t)
q:(t)

Under the assumption that {E(¢)} is the two-state Markov chain de-
fined by (1), it is straightforward to show that p(¢) and q(¢) represent
a 2(N + 1)-state homogeneous Markov chain. For

Pr{B(t) =4, E() =0}, 4=0,---, N (3a)
Pr{B() =4, E(t) =1}, 4i=0,---,N.  (3b)

It>

po(t+1) EPr{Blt+1) =0, E¢+1) =0}

Zk Pr{B(t) =4, E(t+1) =0, E(t) =0}

=0

_ gkoPr (E(t+1) = 0|E(®) = 0, BX) = 4}
X Pr (B() = i, B(t) = 0}

- (1= 8) % pi00), @

where the last step follows from the Markov property of {E(f)}.
Similarly,
pit+ 1) = (1 — 0)piya(t) + 020i0(), ¢=1,2, .-+, N~k

= 0pqi—1(t), t=N-—-k+1---,N —1,

= 02{qi1(t) + gn (D)}, 1= N. (5)
Also

k
it +1) =6 ;)pj(t), =0,
o

= 01pi+k(t) + (1 - 02)Qi_1(t), 1= 1: 2v Ty N - k:
= (1 — 02)qia(t), t=N—-k+1,--- N —1,
= (1 = 0){qia(®) +:(1)}, ¢=N. (6)

Equations (4), (5), and (6) can be written conveniently in matrix
notation as

p(t+1) = (1 — 6.)Bp(t) + 6:Aq() (7a)
qt + 1) = 6:Bp(t) + (1 — 62)Aq(1). (7b)
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Here the (N 4+ 1) X (N + 1) matrixes B and A are defined as

*+1)
f——-—J—ﬁ
1 1---1 010 0 0
1 1 10
A ’ 1°-
B = 0 1\N—% K2 .70 ®)
01 1

Notice that the composite matrix

[ (1 —46,)B 9,A ]

0,B (1 —6)& ©)

is stochastic (nonnegative elements and every column sums to 1) and
independent of ¢{. Equations (7a), (7b) are, therefore, the transition
equations of a 2(N + 1)-state homogeneous Markov chain.

2.1 Equations for some new probabilities

For many of the derivations in the succeeding sections (e.g., mean
first passage time, probability of no overflow, ete.) it is convenient to
define certain new probabilities r;(f) and s;(¢), 7 =0, 1, ---, N. Con-
sider a buffer of size greater than N and let X(¢) be the event
Ni=o {B(s) = N}, i.e., the event that B(s) does not exceed N at any
of the time instants s = 0, 1, 2, - -+, . Then

rit) 2 Pr{B({t) =4, E(t) =0, X(®)}, ¢=0,---,N, (10a)

s:i(t) 2Pr{BWt) =4, EQ®) =1, X®JT 4i=0,---,N. (10b)

We define the (N + 1)-dimensional vectors r(t) and s(¢) with com-
ponents {7,(t), ---, rx(t)} and. {s,(t), - - -, sx(t)}, respectively.

In a manner analogous to the derivation of egs. (7a) and (7b),
we can derive recurrence relations giving r(t + 1), s(t 4+ 1) in terms
of r(), s(?). Thus, fori = 0,1, ---, N,

r(t+1) 2 Pr{Bt+1) =4 Et+1) =0 X+ 1)}
=Pr{B(t+1) =4 E{t+1) =0 X}
= (1 —0)Pr{B(t+1) =i E@t) =0, X}
+6,Pr{Bit+1) =1 EQ¢ =1 X®©®}, (11

where the last equation follows from the Markov property of {E(t)}.
As before, B(t + 1) and E(¢) determine the possible values of B(t)

II>
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and we get
k

rit+ 1) = (1 —6y) ZO ri(t), ©=0,
=

= (1 — )7k () + O25:a (1), i=12 -, N—kFk,
0s5:i-1(1), i=N—-k+1,--- N.

Comparison of eq. (12) with eqs. (4) and (5) shows that for
t=0,1, -,

(12)

i

r(t+1) = (1 — 01)Br(t) + 6,As(1), (138)
where A is obtained from A by setting to O the single nonzero entry
on its main diagonal, i.e.,

A=A — eyel (14)
Analogously to (13) we can also show that
s(t+ 1) = 6:;Br(t) + (1 — 6:)As(z). (15)

The transition equations (13) and (15), although very similar to
egs. (7a) and (7b), differ fundamentally from them in that A, and
consequently the matrix

(1—46,B 6.A
[ 6B (1 —6)A | (16)
are not stochastic.

We close this section by deriving from (13) and (15) a useful second-
order recursion involving s(t + 2), s(¢ + 1), and s(¢f). Multiplying
(13) by 64, (15) by (6, — 1), and adding we get

6t +1) = (1 —6)s(t + 1) — (1 — 6, — 62)As(¥). (17)
From (15),
s@+2) =6Br(t+1) + (1 — 62)As(t + 1). (18)
Premultiplying (17) by B and adding to (18) gives
s(t+2)=[1—6)B+ (1 —0)AJs(t + 1) — (1 — 6, — 62)BAs(d),
t=0,1,2 ---. (19
As we will have to refer frequently to the recursion (19) it is convenient
to define

C2[(1—06)B+ (1—6,)A]
and (20)
D2 —(1-6,—6,)BA

FORMULAS ON QUEUES—II 431



so that eq. (19) becomes
st + 2) = Cs(t + 1) 4+ Ds(?), t=0,1,2 ---. (21)

. INFINITELY LONG SEQUENCES

When the burst length distribution is not known, useful information
can still be obtained by considering the behavior of the buffer content
when the switch in Fig. 1 is controlled by infinitely long sequences
generated by the Markov chain (1). In this section we derive various
functionals for such a situation.

3.1 Stationary distributions for finite buffers

In egs. (7a), (7b), if we set p(¢( + 1) =p() =p and q(t 4+ 1)
= q(t) = q, then the vectors p = {po, -+, pn} and q = {po, * -, qn}
give the limiting distributions® as t — « of the buffer content process
defined in Section II. The limiting distributions p, q are thus the solu-
tions of

p = (1 — 01)Bp + 6:hq (22a)
q = 6:;Bp + (1 — 6:)Aq (22b)

with, of course, the normalization
1"p+q =L (23)

In this section we derive a simple formula for computing the vectors
p and q for a given buffer size (N + 1) in terms of p and ¢ for a buffer
of size N. As a first step we simplify the problem by eliminating p from
eqs. (22a), (22b). Multiplylng (22a) by 6; and (22b) by (6: — 1) and

adding gives
1—29 1—6,—0s 4
p=( 5 ‘)q————,,‘ * Aq. (24)
1 1

Substituting (24) into (22b) gives
[I—1—-6)B— (1—6,)A+ (1—6,—6,)BAlq=0. (25
Premultiplying (24) by 17 and subtracting from (23) gives

6,
17q =
1= 5, %6

(26)

since 17A = 17. It is important to note that the N + 1 component
equations in (25) are not independent. Indeed, since 17A = 17B = 17,
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it is clear that the first equation is just the sum of the rest and may
therefore be ignored. The remaining N equations are linearly inde-
pendent and we can solve them for qo, - - -, qy—1 in terms of qn, and
then obtain ¢x from (26). Finally, we can obtain p from (24).

In carrying out the solution of (25) and (26) in this manner the
recursion we are looking for becomes obvious if we define the (N + 1)-
dimensional veetor y ¥ with components given by*

y" = q¢P/qf”, i=0,---, N. (27)

[ The meaning of the superseript () is given in Section 1.1.7] Equations
(25) and (27) give

ys" =1 (28a)
B,
™ —
Y1 - (28b)
™ _ Y =9 ..k (28c)
Yi 1 — 02) ? ’ ’ Y
;) 1—-6,—86 6
v = peg T v o (28d)

1—
W Y 1—60—6 o 11—
1 -0,

Y T 1=, 1= 06, Yi—k — 0 YyMey, >k + 1. (28e)

The important fact about (28) is that the superscript (V) is superfluous.
If N is changed to N + 1, for instance, in (28) we see that

ylgv+1) — yi(N), 1=0, -, N, (29)

and the last component of y ¥V is

1 6, — 0 1—96
yz(év+-|il) 1= 02 y + ‘—1—_———02 Y e — 1— 0: y§2  (30)

Thus the vector y ¥+ is obtained from y ™) by merely appending to the
components of ¥y one component given by (30). To complete the
recursion for ¢ ¥+ we note from (26) and (27) that

1 01 _I_ 02 N +1
ED =< 8, > >y (31)

=0

* Note that ¢’ # 0, for otherwise the solution ¢ of (25) is the null vector which
cannot satisfy (26).
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and therefore, from (29) and (30),

1 1 640 e
@ TP T e U
1 01 + 0,

X [yz‘vN’ + (1 -6, - oz)yz(vN 1—k — (1 - Gl)yz‘évlk . (32)

Equation (32) gives ¢¥%Y in terms of the components of q‘¥,

3.2 Probability of transmission fault and of buffer being full

Frequently it is adequate to determine the variation with buffer
size of the components p{ and ¢ rather than of the complete dis-
tributions p™ and q‘». Notice that the probability of transmission
fault T3 is, by the definition given in Section I, identical to ¢{";
and the probability that a buffer of size N is full is clearly p{ + ¢{".
It is therefore of interest to obtain recursions for these quantities
without having to compute the entire p and ¢ vectors from the re-
cursions derived in Section 3.1.

By premultiplying eqs. (22a) and (22b) by eﬁ(é {0,0, ---, 0, 1})
we get

efp = 0,e5Aq = i & 7 exq (33)
— U2

or

T . e_g;q _ T(N) YR

eN(p+q)_1_02—1_02} (o)

ie.,

P + ¢ = 1 TN

N 1 — 6,

It therefore suffices to obtain a recursion for 7¥. Suppressing the
superscript (N) from (28e), and summing over the index 7 from k + 2
to N + k + 1, we get

N+k+1 1 N +k 1 _91_02N+1
; Yi=37—"54. . Yit ——p5— 2 ¥i
i=%42 1 —0: :-Fh 1—-06, =

1—-6, X

- 1 — 02 igl y]' (35)

Since TV = ¢f, (31) is used to relate T to {y,}. Now substituting
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the values of {y:} given in (28) we obtain

1 1 1 1—-6,—96 1 1—-6, 1
T+ 1 — g, TR~ 1 — g, T& D + 1—6, T

N1 (36

=O,

Equation (36) is the recursion quoted in Section 1.

3.3 Mean first passage time

Let N be a positive integer and let the buffer be of size greater than
N. Let an infinitely long burst start at ¢ = 0, with the buffer initially
empty, and let F) denote the mean time required for the buffer
content to first exceed N. The manner in which F® depends on N
is a useful guide in designing an adequate buffer, especially when the
distribution of burst lengths is not accurately known. In this section
we derive a recursive formula for F %) the recursion being with respect
to the level N.

By definition, the Nth component of the vector s(¢f) defined in eq.
(10b) is the probability that the level N is exceeded for the first time
at the instant ¢ 4+ 1. Therefore,

P = 3 (¢ + Dsn ()

0

ey 2 (t+ Ds(®). (37)

t=0

Il

In the appendix we show that if X is an eigenvalue of the matrix de-
fined in (16), then |A| < 1. This proves the convergence of the series
in (37).

We proceed by obtaining an expression for > 2, (¢ + 1)s(f) by the
method of generating functions. Let

S() £ X #s() (38)

so that -
§'() = £ (t+ De's©) (39)

and, in particular, -
S = & @+ s (40)
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From the equation, (21), governing the evolution of {s(¢)} we find that
S(2) = [I — 2C — 22 D] {zs(0) + 22s(1) — 2*Cs(0)}. (41)

It is shown in the appendix that the above matrix inverse exists for
all |z| = 1. Following the procedure already outlined [eqs. (39) and
(40)] we find that

g)(t—l-l)s(t) =[I-C—DJ'[C+2D][I—-C—DT*{s(0)+s(1)—Cs(0)}

+[I-C—D]'{s(0)+2s(1)—2Cs(0)}. (42)
The resulting expression for F® from (37) and (42), is further

simplified by using the following identities:

ef = - 17[I - C - D],
1

and
17[C + 2D] = (6, + )17 + (1 — 6, — 20,)ef .
Then
Fo» = o—loil"ﬁ.ﬂ[l — € —DJ{s(0) — (1 — 6)Bs(0) + 0:Br(0)}
+ (17 (0) — 65)/6:. (43)

The above expression for F¥ holds for arbitrary initial states of the
buffer. However, as mentioned in the beginning of this section, in
deriving a recursive formula for (¥’ we will assume the buffer empty
at t = 0. In that case, r(0) = 7eo and s(0) = (1 — 7)eo with 7¢[0, 1].
Substituting in (43) we get, for this special case,

F = (0, + 0)17( — C — D)eg + 7 b, (44)
1

We can derive a recursion for the quantity
f® 2 17(I — C — D)le, (45)

from which the recursion for F) will follow immediately. The pro-
cedure is very similar to the one used to derive (36). Thus let
x? = (@0, 21, - -+, ) be the solution of

(I—C — D)x = e (46)

Then, since 17(I — C — D) = 6:eF, we get xy = 1/6,. We may re-
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place the first of the component equations in (46) by this relation.
Exactly as in (27) and (28), we find that the components z{™ (¢ = 0,
- -+, N) of the vector x™ are, in reverse order, the first N 4 1 numbers
&; in the sequence generated as follows:

. 1
fo= & (472)
£i= — 13, i=1 ek (47b)
1—1_02 i—1, ] y vy
&y = _1 Fi1 -+ 1_—&_:_03@_’6 - } — zl fikoy, 1> k. (47c¢)
- V2

1_02 1_02

Summing (47¢) over ¢ from k 4+ 1 to N 4+ k£ 4+ 1 and noting that
J = 3N,z we get

1 1—-6,

1—6,—86,
(N+E+1) __ (N+k) - (N+1) (N)
J l—ﬁgf 1— 0, / 1—02f
_kA_ 1 ’°—1A41—01—02A
~i§bxk 1—6, 5" 1—6
1
= 1= (48)
where the last step follows from (47a), (47b). However,
fO = AFN — (7 — 65)/61}/ (61 + 62).
Substituting in (48) we get
1 1 —6,—206: 1 -6,
(N+k+1) — = (N+k) - - (N+1) . - "2
F 1—02F + 1 — 6, F 1—206.
yhtl N 012 . (49)
1—6,

Interestingly, 7 does not appear explicitly in the recursion (49); it
does, of course, affect the initial conditions [i. e., the values of F©®,
-, F® 7 via eq. (44).

It is interesting to note that the forcing term (6, + 62)/(1 — 6:) in
(49) can be eliminated. By direct substitution it is seen that if 8, # k6,
then F\W) — (0, + 0;)N/ (61 — k6,) satisfies the homogeneous recursion
(49). When 6, =1Fk#0,, the same is true of FV) — (6,+60,)N2/k(2—0,—6,).
These transformations which reduce (49) to the homogeneous form
will be of use when we investigate the asymptotics of solutions in
Section V.
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IV. BURSTS WITH GEOMETRICALLY DISTRIBUTED LENGTHS

When information is available concerning the distribution of burst
lengths we can compute design parameters which are more realistic
than the quantities 7™ and F discussed in the preceding sections.
Clearly an event is of consequence only if it occurs within a burst.
Its probability of occurrence at the tth instant must therefore be
weighted by the probability that the burst length exceeds ¢. If the
distribution of burst lengths is the weighted sum of geometric dis-
tributions, i.e.,

J
Prob. {Burst length = 2} = 3 8,(1 — pr)pi™?,
k=0

1=1,2 --+; 0<pr<1, (50)

then simple recursions can be obtained for such weighted averages. To
keep the derivations simple we have only treated the case J =1
since, as shown in Ref. 1, generalization to higher values of J is straight~
forward. In Sections 4.1 and 4.2 we derive such recursions for the
probability of overflow within a burst and for the mean time to first
cross a level within a burst.

4.1 Overflow within a burst

For a buffer of size greater than N let G denote the probability
that the buffer content exceeds N (at least once) during a burst. It
is clear that G also equals the probability that a transmission fault
oceurs (at least once) during a burst, when the buffer size is N. We call
G the probability of overflow.

By its definition in (10), sy (¢) is the probability that the buffer
content exceeds N for the first time at ¢ 4 1. Therefore,

G 2 3 5 (1) Prob. {burst length = (¢ + 1)}

t=0

gwww

eﬁgwﬂu (51)

As proved in the appendix, the matrix in (16) has all its eigenvalues
strictly within the unit circle. Therefore the series in (51) converges
forp = 1.
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Multiplying (21) by p**? and summing over ¢ from 0 to « we get,
on re-arranging terms,

s(0) + p{s(1) — Cs(0)}
[I— p(1 — 6,)B]s(0) + p6:Br(0). (52)

(1= oC = »'D) L p's()

I

In the appendix we show that (I — pC — p?D) is nonsingular for all
p = 1. Therefore

G = eF(I — pC — pD)-1[{I — p(1 — 6)B}s(0) + p8:Br(0)]. (53)

As before, specializing to the interesting case of an initially empty
buffer, i.e., r(0) = reo, s(0) = (1 — 7)eo, with 7in [0, 17, we get

GM = [(1 — 7)1 — p) + pf:1]eF(I — pC — p?D)"les.  (54)

We can obtain a recursion for G»’ by a procedure almost identical
to that used in obtaining the recursion for T™), Note that if z(™ is a
vector such that

(I — pC — p*D)zM) = ¢y (55)
then the components of the vector z(¥/z{ are, in reverse order, the
first N 4+ 1 numbers in the sequence 2;, ¢ = 0, 1, 2, -- -, generated by
the relations
2 =1 (56a)
b= s, =1,k (56b)

p(1 — 62) ’ ’
s 1 N p(1 —61—0), 1 —06:1,
R = p(l — 02) %1+ ﬁ‘—zz—k =06, Ri—k—1,
i> k. (56¢)

The first component equation in (55) then gives

1 k .
s = Lomdve, N>k, (57)
where mo, -, 7 are the leading (k + 1) entries in the first row of

(I — pC — p*D). (The remaining components of this row are null.)
For N > 2k, each term on the right-hand side of (57) satisfies the
recursion (56c). Therefore 1/2{" satisfies the same recursion. From
(54), since G is proportional to z{" we find that 1/GV also satisfies
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the same recursion, i.e., for N > 2k,

1L _ 11 p(1=0—0) I
G = 50 — 6y G 1—0, G&»
1—6, 1
T 1=, GEED

(58)

It can additionally be shown that the above recursion holds for
2k = N > 1, by direct substitution of the initial values of GV,

4.2 Mean time for first passage within a burst

For a buffer of size greater than N, let t denote the time required for
the buffer content to first exceed N within a burst. Let H® denote
the expectation of ¢ conditional to the hypothesis that the level N is
indeed exceeded within the burst. (Equivalently, H® is the mean
time taken by a buffer of size N to first overflow within a burst, given
that an overflow does occur.) Clearly

0

H® = 3% (t + 1)sy(t)-[Prob. that burst length = ¢ + 1]/G™

t=0

g (t + Dsy(B)o/G

el 3 (¢ 4 1ois(H)/GM. (59)
=0
A comparison of (51) and (59) shows that
d 1
H®M = b (pG(N’)'W' (60)

Multiplying (563) or (54) by p and differentiating with respect to p
we can get closed expressions for H ¥ for arbitrary initial state and for
the buffer initially empty. The resulting expressions are rather un-
wieldy.

We can also use (60) to get a recursion for H . Thus let

A 1
v S mmw (61)

Then
d 1 1
=2 Y.
H dp ( VN> G

Sl e (62)
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where U £ (d/dp)V™. Here V@™ satisfies the recursion (58),
and U gatisfies a recursion obtained by differentiating the recursion
for V¥, Thus

1 p(1 — 6, — 8y) 1—-6,
W) — o L P =0 —0) iy L T 0 v
LA i B s e =%
and
1 (1 —6,—06,) 1—-6,
VM = pgw-n M =0 =% gw-n _ 279 rrav—k-n
a8 A e wy =
1 (1 —6,—8,)
R S 20 0 B T S ¢ St AR v ¢ S
20— 6 V) 4+ 16, v . (63)

V. ASYMPTOTIC BEHAVIOR

In this section we discuss the behavior as N — « of sequences gen-
erated by the recursion

__ 1 _u(l =60 —6y)
PN ”(1 — 02) YN-1 1 — 0, PON—k
1—94
+1T6—:‘PN—lc—l= EN, (64)
with N=k-+1, k+2 - and 0<6, <1, 0<6, <1, and

0 < p = 1 the parameter ranges.

Every recursion derived in this paper can be put into the canonical
form (64) by simple manipulations; furthermore, all but the recursion
(63), Section 4.2, correspond to the homogeneous form of (64), i.e.,
¢v = 0. In formulas for infinitely long burst (Sections 3.1, 3.2, 3.3)
the parameter u = 1; in formulas for geometrically distributed bursts
(Sections 4.1, 4.2) 0 < u = p < 1.

Due to the linear, time-independent nature of the recursions in (64),
the behavior of the solutions is determined by the sequence {éx} and
the roots, A, of the characteristic polynomial:

CON ) 2 u(l — )N — Nk — 12(1 — 8, — BN + u(1 — 61).  (65)

For the special case u = 1 the relevant properties of the roots were
derived in Ref. 2. Here we derive the properties for arbitrary u in the
range 0 < p = 1. These properties are summarized in the following

Lemma: For the range of parameters specified above, (a) C(\, ) has ex-
actly two positive real zeros Ny and e which lie in the ranges [u(l — 61)]
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Fig. 2—Proof of lemma.

< MN)EZpand 1/p £ X < 1/u(l — 0,) (the equality signs are un-
necessary unless u = 1); (b)* the remaining zeros all satisfy |N;|* < u.

Proof: (a) Regardless of the sign of (1 — 6, — 8,) there are two sign
reversals in the coefficients of C(\, u). By Descartes’ rule, therefore,
C (N, p) has at most two positive real zeros. On the other hand, suc-
cessively setting A =0, N* =u(l —6y), NP =pu, N=1/py, A =1/
(1 — 0:) we find that C (), u) takes on the respective values u(1 — 6y),
20102 (1—61) %, —pb: (1 —p*H0I%) - —6, (u=*—p), and p6i8:/ (1—6s).
Also C(\, u) > + o as A — 4+ . For 0 < p < 1, therefore, there are
exactly two zeros in the respective ranges asserted. For u = 1 further
examination is required to decide whether one or both of these zeros
become exactly equal to 1. Noticing that C(1, 1) = 0 and (d/\)
C(1, 1) = 6; — kf,, it follows that when u = 1, either X; or A, or both
become equal to 1 according as 6, — k6, <0, >0, or =0. (b) We
will prove the stronger result that the remaining zeros lie strictly

within the contour I' (Fig. 2) defined by the following segments in the
complex A plane:

A = Reib 0<R < ulk (66a)
= pllkei ;—C’ <0< 2 — % (66b)
= Re—i@r—r/k) 0 <R < it (66¢)

To prove this let us define
C1 £ WA[(L = 6N — u(l — 61— 6)] (672)
Ca 2Nk — (1 — 6)) (67b)

*We are tacitly assuming k£ > 1. For k¥ = 1, C(\, ) becomes a quadratic with
both roots positive and real in the ranges given in (a).
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so that
C()" ”’) =C;— C,

—a(G-1) o5

We will show that Re[C;/C, — 1] < 0 for all A on the contour T
Then by an obvious modification of Rouche’s theorem, it follows that
C(\, u) and C; each have the same number of zeros within I'. As C,
has k — 1 zeros within T, this proves the lemma.

To show that Re (C1/C: — 1) < 0 for all A on T, let us consider
separately the circular arc defined by (66b) and the radial lines defined
by (66a) and (66¢).

() On the circular arc (66b) straightforward manipulation gives

l01|2 —_ “2+2Ik|02[2
= — 20,u?(2 — 6, — 6,)(1 — coskd) = 0. (69)

For u < 1, therefore, |C1/C:| < 1, hence Re (C;/C; — 1) < 0.
If u = 1, this argument remains valid except at points where
cos k§ = 1, for then |C1/Cs| = 1. However, if cos k8 = 1 and
v =1 we find that C,/C; — 1 = ¢/* — 1, whose real part
<Oforw/k £0 < 27 — w/k.

(#7) On the radial lines (66a) and (66¢),

C,

- ”R (1 — 6, 1010,

T RE (1 — )

which is obviously <0 for R* < u.

) cos—;g —1, (70)

All the recursions of this paper except (63) correspond to the homo-
geneous form of (64), i.e., & = 0. Solutions of all such recursions are of
the form

k

=0

and therefore the asymptotic behavior is governed by X, and A,
when it is equal to 1. (In the special case p = 1 and 6, = kb, the
dominant root is repeated and the usual modification must be made.)
Dropping the subscript ¢ from \; and 8; we give below an expression for
the latter in terms of the initial conditions of the recursion, namely
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(‘Po, Tty ‘Pk):

_ —1 (1 - 01) 1 Qi Sok
B = a’l:)\k+l (1 0) @0+ l_kp(l—ez)}1zl)\ + ]; (72a)

where
= p(1 — O)NHY/[NE + kp*(1 — 01 — ;) — (kK + 1)p(1 — 6)].  (72b)

Thus, for example, the recursion for the probability of overflow
[eq. (58)], with r = 0, in the canonical form (64) has the initial
conditions o = 1, ¢; = 1/[p(1 — 82)], ¢ = 1,2, ---, k. Also, in this
case the dominant root of the characteristic polynonial A, is the only
root outside the unit circle in the complex plane. Therefore,

1
gan ~ BN, (73)
where 8 is obtained from (72) for the appropriate values of ¢,, * - -, ¢&.

It can be easily shown that 8 > 0. In (73) (and similarly throughout
this section) we use the notation 1/G¥) ~ g\¥ to mean that |1/G®)
—BA\Y| < €7, for sufficiently large N, and ¢ < 1.

In a manner similar to the derivation of (73) we can show that the
probability of a transmission fault (Section 3.2) has the following
asymptotic behavior

01 + 0,

1
7w ~ e + 5. — T, When 0y < ko, (74a)
Fa2e,N+1 1—6;,—8,78;,4-8 hen k 74b
Nl2—91—02+ =7 J 7 when 6; = k6. (74b)
~ 01 + 02 When 01 > koz (740)

01 — ko,

In (74), a1 is obtained from the generic formula (72a). We have shown
that «; > 0 and, of course, 1 < X, < 1/1 — 6,. Likewise, the mean
first passage time (see Section 3.3) is, asymptotically,

F o~ q\y — (6: + )N , a; > 0, when 6, < k8,
ko, — 64
(6, + 6;,)N? B
k(@2 = 6, — 6) + asN + oy, when 8; = k6,
(w + as, When ol > kgz
01 — k02
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Finally,
H®™ ~ Qg + a1N, ar > 0. (76)

VI. COMPUTATIONS

We have written computer programs to recursively compute the
quantities T FM @M H) g5 functions of N for specified values
of 64, 8y, k, and p. Figures 3 through 6 are sample illustrations generated
by these programs for §; = 0.2 and 8, = 0.1. The asymptotic behavior

N
LOG,,G!N!

~10 l ! i | L L L N I
0 20 40 60 80 100 120 140 160 180 200 220
N

Fig. 3—Probability of overflow in a burst vs level (6, = 0.2, 8, = 0.1, k = 5).
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=z 0.900. >\ N
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0 I | { | 1 | | | ] |
0 20 40 60 80 100 120 140 160 180 200 220
N

Fig. 4—Mean time for first passage conditional on overflow vs level (6. = 0.2,
02 = 01, k= 5)
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Fig. 5)—Steady—state probability of transmission fault vs buffer size (6, = 0.2,
02 = 0.1 .
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LOG, ,F N

0 ] J ] | j | | ] | |
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Fig. 6—Mean time for first passage in infinitely long bursts (6, = 0.2, 6, = 0.1).

of the various quantities is seen to be in accord with that given by
eqs. (73)-(76) of the previous section. The dependence on the param-
eters p and £ also is intuitively reasonable.

APPENDIX

(a) We prove the assertion made in the text [immediately following
eq. (37)] that the eigenvalues of the matrix (16) all lie strictly within
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the unit circle. Let

A1 —06)B— 2l 8,A
M = [ 6B (1 — 8)A — AL ] "

where I is the identity matrix of order N + 1. Then we must show that
det M = 0, for |A] = 1. (78)

From the defining equations (14) and (18), we notice that the last
column of 4 is identically zero. Thus

det M = — X det M, (79)

where M’ is obtained from M by deleting its last row and column. Let
mij, ¢, 7 =0, -+, 2N 4+ 1, denote the elements of M’. Then a theorem
of Hadamard" states that det M’ £ 0 provided M’ is irreducible and
2N+1
Imi|l 2 Pj= 3 |myl, (80)
1=0,1%7
for all j, with strict inequality for at least one j. The irreducibility
condition as stated in Ref. 11 is satisfied. To show (80) we note that

|my,,|=|\] and P, =1, forj=1,---,2N + 1, (81)
and
[moo| = |1 — 81 — A, Py = 61 (82)

Thus except at A = 1, we find that (80) is true with strict inequality
for j = 0. This proves the assertion (78) except for the point A = 1.
However, for A = 1, det M = 6,(1 — 6;)¥ which, by assumption, #0.

(b) Following eq. (52) we made the assertion that I — pC — p?D is
a nonsingular matrix for p £ 1. The proof is as follows. Let

A [ My My
M= [le Mzz]’ (83)

with My = (1 — 6,)B — AL, My; = 6,B, ete. As My; commutes with
M, an identity of Schur'® states that

det M = det [M11M22 —_ M21M12]. (84)

However, straightforward manipulation of the right side of (84) shows
that
det M = det (\2I — \C — D). (85)

Then the assertion follows from (78).
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Although coherent phase-shift keying (CPSK) is an efficient means of
transmitting digital signals over carrier systems, it has not enjoyed wide-
spread wuse at microwave and millimeter wavelengths because of the
difficulty of recovering an accurate reference carrier for coherent detection.

In this paper, a system is described which requires only a narrow-band
phase-locked-oscillator filter for reference carrier recovery. This s ac-
complished by block-coding and decoding the pulse sequence at the ter-
manals; the recovery of a baseband timing wave ts also facilitated by the
coding process. It is also shown that: (2) for an arbitrary random tnput
sequence, accurate carrier recovery cannot be achieved with just a narrow-
band filter, (it) for the system described, any input pulse sequence is
acceptable, and (iii) there is a maximum error in the phase of the re-
covered reference carrier which can be controlled by choosing the number
of pulses in the coding block and the bandwidth of the recovery filter.

I. INTRODUCTION

Coherent phase-shift keying (CPSK) is one of the most efficient
means of modulation for the transmission of digital information over
carrier systems. In particular, CPSK is at least as efficient as frequency-
shift keying or differentially coherent phase-shift keying.!=* Equally
important from the point of view of hardware realization, CPSK is
suited to operation with amplifiers which operate most efficiently in a
nonlinear regime; this class of amplifiers includes those using traveling-
wave tubes, varactor up-converters, and tunnel or IMPATT diodes
used as power amplifiers or as injection-locked oscillator amplifiers.

Traveling-wave-tube amplifiers have been proposed for use in
satellite repeaters, and there is considerable current work directed
toward the application of millimeter-wave integrated circuit injection-
locked oscillator amplifiers in digital radio and waveguide transmis-
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sion systems.*'¢ The CPSK method described here is suitable for
those applications.

For the type of operation envisaged for these systems, the statistics
of the digital sources are usually unknown. To achieve maximum
operational flexibility, it was assumed at the outset that the system
must operate with any input pulse sequence. With this arrangement,
the statistics of the signal source need not be restricted.

In the system to be described, the recovery of the reference carrier
phase—a major problem in CPSK transmission—is accomplished with
the aid of a block-coding and decoding of the pulse sequence at the
terminals. This coding allows recovery of the reference carrier with a
narrow-band phase-locked-oscillator filter.

Another important problem in digital systems with unrestricted pulse
sequences is the recovery of the timing wave for use in the regeneration
process. The same coding process which affords reference carrier
recovery for all sequences also assures timing wave recovery for all
sequences.

In this paper, the block-coding, the reference carrier recovery, and
the timing wave recovery are described for binary and multilevel
CPSK systems.

Il. COHERENT DIGITAL PHASE MODULATION
2.1 The baseband and modulated carrier signal formats

A diagram of the block-coded CPSXK carrier system is shown in Fig. 1.
Ignoring the block coder for the moment, the input to the radio system
is a baseband sequence of discrete amplitudes as illustrated by a binary
sequence of gnes and zeros in Fig. 2a. The ones are coded as positive
pulses and the zeros as negative pulses as shown in Fig. 2b; this se-
quence is the input to the phase modulator. Although raised-cosine
pulses are used for illustration, other pulse shapes can also be used.

An m-level baseband sequence of raised-cosine pulses shown in
Figure 2b is written

v(@®) = Vo X a.p(t — nT), (1)
where T is the pulse interval, V, the peak pulse amplitude, a. = =+ 1,
and
2xt T
il < =
<1+cosT), |t|=2
p(t) =
T
0: lt‘ > 5
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Fig. 1—Block-coded CPSK carrier terminals.

This baseband signal is used to phase modulate a sinusoidal carrier. The
output of the phase modulator is

M@) = A cos [wd + 2 aplt — nT)], (2)

where a, = kx/m, k = &1, £ 3, ---, &=(m — 1). The pulse sequence
of Fig. 2b represents both the baseband signal voltage of (1) and the
phase modulation in (2). The peak baseband voltage V, produces a
peak phase deviation of =/2 radians for the binary case illustrated.

A vector representation of the modulated signal is shown in Fig. 3a.
The carrier amplitude is A. and the unmodulated phase of the carrier

1 1 0 0 1 1 1 1 o] 1 0 0

(a) BASEBAND PULSE SEQUENCE
AT INPUT TO RADIO SYSTEM

V, OR /2 "T’|

|VAVANEWAVAVAVANIIAN
L VV \VARVAV/

-V, OR —m/2

AMPLITUDE
OR PHASE

(b) BINARY POLAR CODE
OF PULSE SEQUENCE

Fig. 2—Binary polar signal format.
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Fig. 3—Phase plane representation of a binary signal.

is zero. When pulses modulate the phase of the carrier the amplitude
remains constant and the phase follows the modulating signal voltage.
Trajectories for the positive and negative raised-cosine pulses of Fig.
3b are shown in Fig. 3a for the binary case.

It is worth noting that double-sideband suppressed-carrier modu-
lators and switched delay-line modulators are sometimes regarded as
phase modulators. A justification for this interpretation is that the
pulses are sampled at the receiver only when the phase is at the peak
value. However, they differ from phase modulators in the amount of
amplitude modulation that is generated. The trajectory of the double-
sideband suppressed-carrier modulation is the vertical axis in Fig. 3a
between the points A and B; the trajectory of the switched delay-line
modulation may be intermediate between the vertical trajectory and
the circular trajectory of a phase modulator. Since future systems are
expected to have power amplifiers operating in the region of saturation,
the distortion caused by large variations in amplitude can be avoided
by restricting consideration to phase modulators. Phase modulators
suitable for this purpose are described elsewhere.®

2.2 A description of coherent phase detection

Let the input to the phase detector of the receiver in Fig. 1 be the
phase-modulated signal M (). The phase detector requires a local
reference signal with the proper phase. This reference signal is written

R(t) = — 2Agsin [wd + ()], 3)
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where €(?) is any error in the reference phase. The output of the phase
detector is the low-frequency part, Vz(t), of the product of the input
signal and the reference signal.

Va(t) = Acdrsin [X awp(t — nT) — ()] 4

If the phase error, (t), is zero, and if the output of the phase detector
is sampled at times ¢ = nT, the output will be +A4¢Ar accordingly
as a, = == 1 and the transmitted pulse sequence is recovered.

If the reference phase error is not zero, the signal output amplitude
will be reduced by the factor cos e. For example, if ¢ = 7/4, the base-
band pulse amplitude will be reduced 3 dB. An important function of
the system to be described is to recover the reference phase in such a
manner that e(¢) is small.

Ill. REFERENCE CARRIER RECOVERY WITH A PHASE-LOCKED OSCILLATOR

The reference carrier recovery filter is assumed to be a phase-locked
oscillator with a locking bandwidth much smaller than the bandwidth
of the modulating pulse sequence. The analysis presented here applies
to an injection-locked oscillator or a first-order phase-locked loop;
the noiseless case will be considered.*

Let the input signal be

M@) = A, cos [wd + ()] 5)

The differential equation describing the locking behavior of a
negative resistance sine-wave oscillator has been derived in several
forms.'"~1* With the present notation the equation is

= (wo — we) — Asin [e(t) — 6(8)], (6)

where w, is the unlocked oscillator frequency, |w, — w.| < w., 24 is
the locking bandwidth, and e(¢) is the reference phase error.

Since the oscillator is being used to recover the reference phase, the
phase error, e(f), should be as small as possible. For this reason it is
necessary that the locking bandwidth of the locked oscillator be much
smaller than the bandwidth of the signal, 6(¢). This assumption, in its
most useful form, means that AT << 1. Following Adler, expression (6)
is rearranged as follows:

de(t)

o = AK — Asin[e(t) — 0(t)], (7

* Eisenberg has presented a related analysis which includes additive thermal noise.1¢
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where K = (w, — w.)/A. The term K represents any initial difference
between the free-running frequency of the oscillator and the input
frequency ; in the region of interest |K| < 1.

We are interested in deriving an unambiguous reference carrier for
multilevel digital modulation in which each pulse is time-limited to a
single interval of duration 7.

6t) = Zn‘, a.p(t — nT). 8)

During a single pulse the variation in 6(¢) is much larger than the
variation in e(t) because AT << 1. Therefore, the phase error at the end
of the nth pulse can be found by integrating (7) over the nth pulse with
€(t) held constant at the value of the phase error at the beginning of
the nth pulse. Writing ¢, = ¢(nT), we have, from (7) and (8),

(n+1)T
enpr — € = A/ (K — sin [e. — 0(8)]}dt
nT

1 (n+1)T
= AT [K — SH}FG" f cos 0(t)dt
nT

COS €,

e [ T n 0(t)dt]~ )

T

.+_

Each pulse is nonzero in a single interval of duration T so we have
(n )T (n )T T
/ cos 6(t)dt =/ cos ap(t — nT)dt =/ cos|a.|p(z)dz,
nT nT 0
and

(n+1)T . (n+1)T .
/ sin 6(t)dt =/ sin a.p(t — nT)dt
nT nT

On

~ Taa] AT sin|a.|p(z)dz.

Simplifying the notation, we write

T
be = an/|aanl, CnE]—f cos|an|p(x)dz,
T Jo

and
1 [T .
Sn = —f sin|a.|p(x)dx. (10)
T Jo
Expression (9) becomes
€np1 — €n = AT[K — C,sin e, + b2Sn cos €, ]. (11)

As shown in (10), €. and S, are functions of the shape of the pulse.
For the digital signal described by (8) the peak deviation is less than «
radians for any number of levels and, for the class of pulse shapes of

454 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1974



interest, S, is positive. This is not true of C',—it can be positive, nega-
tive, or zero. Eisenberg!® has derived C and S for several pulse shapes
of interest. The sign of C. has an important effect upon the phase of
the recovered reference carrier; in order that the recovered reference
carrier have an unambiguous phase near zero degrees, it will be shown
that a pulse shape must be used for which ¢, > 0.

For the binary case, (11) can be written

fntl O~ K — O+ SEsin (en —~ b, tan—t 3 ) (12)

AT C
Let the probability that b, = + 1 be p and the probability that
b, = — 1be (1 — p). The average phase, ¢, will be such that the error

due to p positive pulses is equal in amplitude and opposite in sign from
the error due to (1 — p) negative pulses. From (12) we get

P [K — VC* 4 82 sin(ao — tan—lg>]
= — (1 — p)[K — VC? + S%sin (fo + tan! g)] ,

and solving for the average phase, we get

K
NC? + (2p — 1)282

Under the best circuit adjustment, K = 0 and the average phase error
is given by the second term in (13). When C is positive, the average
phase is in the first or fourth quadrant and when p = § the average
phase is zero. On the other hand, when C is negative, the average phase
is in the second or third quadrant and when p = } the average phase
is .

A switch of the reference carrier phase from near zero to near = can
happen in a multilevel system. Consider a 4-level system with rec-
tangular pulses and peak phase deviations of +x/4 and £3w/4.
Suppose that for a time the pulses alternate between +r/4. From (10),
C = cos 7/4 = 1/¥2 > 0 and the average phase is zero. If the pulse
sequence then changes to alternate between =+3w/4, C = cos 3w/4
= — 1/v2 < 0 and the average phase becomes . This very undesirable
situation can be avoided by using pulse shapes for which C > 0. In
the rest of this paper we assume that, in all cases, a pulse shape is
chosen for which C, > 0.

It is highly desirable that the average phase of the reference carrier
be near zero. This means that in addition to requiring that C, > 0, it

+ tan— (2p — 1) g (13)

€ = sin™!
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is also necessary that K =~ 0 and p =~ } as may be seen from (13).
The parameter K can be kept near zero by setting the rest frequency of
the phase-locked oscillator equal to the signal carrier frequency. The
system is required to operate with any input sequence so it is unlikely
that p will always be near one-half. The input sequence can be coded—-
by a block coder to be described in Section V—into a transmitted
sequence with p = 3, thus insuring tan=! (2p — 1)S/C =~ 0. Even
with coding, however, the reference phase will fluctuate about zero
and it is necesssary to insure that these fluctuations do not cause
substantial degradation in performance relative to the performance
which would be obtained with a perfect reference carrier. It has often
been thought that the problem in the recovery of reference phase is
that the occurrence of long sequences of identical pulses drives the
recovered phase beyond reasonable limits and that if the sequences of
pulses were sufficiently random this problem would go away. Random
sequences are therefore of great interest. In the next section the vari-
ance of the reference phase error is derived and the results illustrated
by an example.

IV. REFERENCE CARRIER PHASE ERROR FOR RANDOM SEQUENCES

The differential equation which describes the phase-locked oscillator
is nonlinear and therefore difficult to solve. We begin by noting that
(7) can be solved exactly on a pulse-by-pulse basis if the pulses are
rectangular. For pulses with other shapes an equivalent rectangular
pulse can be derived. Then, linearizing the equation, and recognizing
that the phase error is approximately normally distributed, the vari-
ance can be estimated for the equivalent rectangular pulses. The binary
case is considered.

Let the pulses be rectangular with peak deviation =+6,. Then, re-
arranging (7) and setting 8(t) = 0., we have

(n+1)T de(t) _ /(n+l)T _
./;T —K + sin [G(t) - 0n] B nT Adt.

The solution to the integral on the left can be found in many tables of
integrals. After some algebra the result can be written
€n — On

€n AT
R tan 5 —I—(K—tan 5 )tanh(—z— )
R+(1—Ktan€"2 )tnh( )
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where ¢, = [ (n + 1)T] and R = V1 — K2 Equation (14) is exact
for rectangular pulses and, if an input sequence of rectangular pulses
is specified, the exact phase error can be computed. We will estimate
the variance for a linearized version of (14). When K = 0, (14) can
be written

€nt1 = on + 2 tan—l (e_AT tan &n g 0” ) . (15)

Approximating the tangent by its argument,
€nt1 N on(l - e_AT) + ene_AT- (16)

Applying (16) repeatedly we get
. k—1
enrn B €6 AT 4 (1 — ¢ 8T) 3 0, e~ (—1=mIAT,
m=0
When k is large, the phase error is independent of n and becomes
k—1
a2 (1 — e27) 3. 0.emT, ")
m=0

where the pulses have been rearranged to simplify the notation.
From (12) it may be seen that the error due to a shaped pulse when
€, =2 0 is given by

€y ATVC? 4+ S%sin <tan‘1—g> , (18)
where a pulse of positive polarity is assumed. Comparison of (18)

with the error in (17) due to the pulse 8, suggests that the equivalent
rectangular pulse is obtained by letting

b = b,NC? + S sin (tan“ g) (19)
in (17) where b,, = -+ 1 with probability p, b, = — 1 with probability

(1 —p).
The variance of (17) can be found by straightforward means;*
the mean, from (13), and the variance for shaped pulses are:

p RS tan™! (2p — 1) g
(20)

2
2 [ " Fsin (tan—l‘g)] ATp(1 — p).

The reference error is approximately normally distributed and the
probability that the reference phase error will exceed a specified value
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€ 152

P(|e|zes)%Q<es;m)+Q(e“¥%)- @1)

These results will be illustrated by an example. Let the pulse rate
be 100 megabits per second and the locking bandwidth 0.5 MHz. For
raised-cosine pulses with a peak deviation =£x/2,

pStan™! (2p — 1)
o2 2 2ATS*p(1 — p)

with S = 0.6021947. For p = %, ¢ = 0 and ¢ & 0.0213 radian rms.
The fraction of time that the phase error exceeds 0.1 radian is

P(le| = 0.1) ~ 2Q(4.697) = 2.75 X 10-°.

In some applications, changes in pulse pattern density may occur which
are reflected in fluctuations in p. In this event the probability of a pulse
being positive will not be constant at p = 3 but will wander slowly
about this value. Suppose, in the foregoing example, p increases by
five percent from p = % to p = 0.525. Then, p = 0.05 and

P(le] 2 0.1) & Q(0.235) + Q(7.04) ~ 0.41.
Two important conclusions are illustrated by this example.

() For practical circuit parameters, the probability of exceeding
reasonable phase errors is uncomfortably large even for well-
behaved random input sequences.

(7¢) Small variations in pulse pattern density can cause large
increases in the probability of exceeding reasonable phase
errors.

It should be understood that the above example is but one of many
possible examples ; however, the filter bandwidth assumed is a practical
value for systems operating at millimeter wavelengths. It should also
be noted that the pulse sequences assumed in the example are highly
idealized and may or may not approximate sequences from real
sources.

V. THE BINARY BLOCK CODER

The coder described in this section is a digital adaptation of a coder
invented by F. K. Bowers.2

The operation of the block coder will be described with the aid of
Fig. 4. The block counter is an up/down counter which counts each
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Fig. 4—Binary coder.

successive block of M pulses in the input sequence and indicates on its
output terminal whether that block contains more positive than nega-
tive pulses. M is an even integer. The output counter is also an up/
down counter which counts all pulses transmitted and indicates whether
a surplus of positive or negative pulses has been transmitted since the
start of transmission. The outputs of the two counters are used in the
decision circuit to invert or not invert the block of M pulses just
counted, the decision always being made to equalize the number of
positive and negative pulses transmitted.

In addition to the framing pulses, a coding pulse is added to each
block of M pulses and is used in the receiver to re-invert those blocks
which were inverted at the transmitter. Figure 4 shows the operations
of a block coder on a sequence of binary input pulses. In this configura-
tion a framing pulse and a coding pulse have been added to each
block of M input pulses. While a coding pulse is necessary for each
block of M input pulses, fewer framing pulses can be used if desired.

The decoding process at the receiving terminal is illustrated in Fig. 5.
The position of the coding pulses in the input sequence are known
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Fig. 5—Binary decoder.

relative to the position of the framing pulse. When framing is estab-
lished, the coding pulses can be detected and the proper block in-
versions made so that the output sequence will be identical to the input
sequence at the transmitting terminal.

A detailed analysis of the coding operation reveals the following
results for M even.

() The output count, and hence the sum of the output sequence,
cannot exceed =+ (1 + 3M/2).

(#7) At the end of each frame of M + 1 output pulses the output
count cannot exceed =+ (M + 1); whatever the count at the
end of a frame, the count at the end of the next frame will
have moved in the direction of zero by a count of at least one.

(#77) The maximum number of pulses between a zero in the output
counter and the next zero is (M 4+ 1) (M + 2).

(i) The maximum number of identical pulsesis 2 + 5M /2 and the
output count at the end of such a sequence is + (1 + 3M/2).

In deriving these properties it is necessary to adopt a convention as
to the output indicated by the output counter when the count is zero.
If the count approached zero from the negative side it will indicate
that a surplus of negative pulses has been sent and the converse is
true if the zero count is approached from the positive side. Suppose
the output counter indicates that a surplus of positive pulses has been
transmitted. The coding pulse is counted as a positive pulse at the
input counter making an odd number of pulses counted. At the end
of the frame the input counter indicates that a surplus of positive or
negative pulses is contained in the block. The block is inverted or not
so that the output count goes toward zero. Since there is always a
surplus of at least one pulse in each block, the output counter counts
toward zero at least one count at the end of every frame; the output
count can pass through zero in this process. Now suppose that the
output count is zero and that this count was approached from the
negative side. The output counter indicates that a surplus of negative
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pulses has been transmitted. If the next block has all positive pulses,
the block will not be inverted and the output count will go to (M + 1).
This is the maximum count which can occur at the end of a frame since
it has already been shown that at the end of the next frame the count
must go toward zero by at least one. Property (¢7) has therefore been
demonstrated.

The example can be continued to demonstrate property (z). Let
the count be (M + 1) at the end of a frame. At the end of the next
frame the count cannot exceed M so that the maximum number of
positive pulses that can be added to the count during the frame is
M /2. Thus, the maximum count is M +1 + M/2 =1+ 3M/2 and
this is property (z).

The maximum number of pulses between zeros of the output count
is found by achieving the maximum count of (M -+ 1) in the first
block and reducing the count by the minimum of one in successive
blocks until zero is reached. There are just (M + 2) blocks necessary
to reach the next zero and (M + 1) pulses per block so the maximum
number of pulses between zeros is (M + 1)(M + 2). This is property
(#22). Finally property (iv) is achieved by letting the count at the end
of a frame be — (M -+ 1). The next frame has all pulses positive which
brings the output counter to zero from the negative direction. The
next (1 + 3M/2) pulses can be positive bringing the total number of
successive positive pulses to (M + 1) + (1 +3M/2) =2 + 5M/2
as stated.

When the coder is in operation the transmitted sequence contains
equal numbers of positive and negative pulses. The resulting average
phase is given by (13) with p = 3.

€ = sin™! o
The fluctuations about ¢, can be determined from (17). The number
of pulses between zeros is (M + 1)(M + 2) and if AT is sufficiently
small that (M + 1)(M + 2)AT « 1, the exponential termsin (17) are
approximately unity. Then, since the maximum sum of the output se-
quence is 1 4 33 /2, an upper bound on the phase error results.
Jemeel = sin—t KL ar (1433, (22)
c 2
where 0,, is the equivalent rectangular pulse as given in (19).
A graphic example of the effect of coding is given in Fig. 6. A se-
quence of 200 random pulses from the Rand table of random numbers
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is shown at the bottom of the figure.?® The sum of these digits, 3, b,
is the upper plot. Note that although there are many transitions be-
tween positive and negative pulses the sum remains above zero most
of the time. The slow drift of this sum illustrates the manner in which
the phase error wanders.

The same input pulse sequence is shown after coding in a block coder
with M = 8. The framing and coding pulses are not present. In the
uncoded sequence the maximum error for AT = 0.01 is 0.36 radian
(20.6 degrees) for rectangular pulses with #/2 radian deviation,
whereas the maximum phase error in the coded sequence is 0.06
radian (3.4 degrees).

The original sequence in Fig. 6 is not a rare case. As shown, }_, b,
reaches 36 and the probability of this is

Puo(|Z b 2 36)%2@(%)

~2Q(2.54) = 0.011.

Thus, about one out of a hundred sequences of 200 pulses each has a
sum at least as great as the one shown in Fig. 6.

The price paid for the recovery of the reference carrier with a small
phase error is an increase in the transmission rate by the factor
(M + 1)/M.

VI. TIMING WAVE RECOVERY

It has been shown that, by coding the transmitted pulse sequence,
the reference carrier can be recovered accurately. As shown in Fig. 1,
the reference carrier is used to drive the phase detector in which the
baseband pulse sequence is recovered. In a self-timed system, such as
the one depicted in Fig. 1, it is necessary to recover a timing wave for
use in regenerating the pulse sequence. Block-coding also helps in this
process.

Bennett has shown that a timing wave can be recovered by suitable
nonlinear operations even if a spectral line at the timing frequency
does not exist; the method requires a suitable number of transitions
between signal polarities.?* But the block coding discussed in Section V
insures that the largest number of pulses between signal transitions
is 2 4+ 5M /2. Therefore, the block coding insures the recovery of
both the reference carrier and the timing wave for any sequence of
pulses whatever.

For the sequence of pulses shown in Fig. 6 it is instructive to note
that, although the sum >, b, fails to cross the axis for a string of 186
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pulses, there are frequent transitions between signal states and for
each transition the timing recovery filter will receive a timing pulse.?
There are 98 transitions in all and the maximum number of identical
pulses between transitions is six. This is typical of the behavior of
random sequences and is the reason that the recovery of the reference
phase is usually more difficult than the recovery of the timing wave.

VIl. MULTILEVEL BLOCK-CODED CPSK

The binary coding scheme described in Section V can be extended to
4, 8, 16, and higher numbers of levels. In each case the coder operates
to equalize the numbers of pulses with equal amplitudes and conjugate
phases. For example, the 4-level coder illustrated in Fig. 7 equalizes
the numbers of pulses with x/4 radian peak deviation and opposite
signs, and equalizes the numbers of pulses with 37/4 radian peak
deviation and opposite signs. The 4-level decoder is shown schemati-
cally in Fig. 8.

Because the multilevel coder equalizes the numbers of positive and
negative pulses for each pair of levels the computation of bounds on
the phase error reduces to the binary case. A bound can be computed
for each pair of levels and the largest bound applies; this will usually
be the bound computed for the pair of levels with the largest deviation.

OUTPUT
BLOCK _
COUNTER | DECISION ‘ coxl\gasn

1 r — 4 1
PHASE FRAMING
SELECTOR AND > >
+135° CODING
CHANNEL A ’
INPUT INVERT 4-LEVEL
OR 4—LEVEL |OUTPUT
NOT COMBINER %
CHANNEL B INVERT
INPUT ;
PHASE FRAMING
SELECTOR AND >
+45° CODING

| OUTPUT
BLOCK >
COUNTER # DECISION COE?;ER

Fig. 7—Four-phase block encoder.
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—
RECOVERY NOT
INVERT
CHANNEL B
CODE FRAME AND OUTPUT
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Fig. 8—Four-phase block decoder.

Viil. CONCLUSION

The CPSK system which results from block-coding the input digital
sequence as described in this paper has the following properties:

(@)

(¥)
(431)
(4v)

(v)

The system places no restrictions on the pulse sequence ac-
cepted from the source; any sequence whatever can be
transmitted.

Recovery of the reference carrier at repeater points is ac-
complished with a narrow-band filter.

A timing wave can be recovered for any sequence of pulses.
Any pulse shaping required can be done at baseband.

The phase-modulated carrier is suited to operation with
nonlinear amplifiers; in some applications RF filters are not
required to shape the spectrum.

The costs of providing these features are:

(@)
(i7)

(43)

A block coder must be supplied at the transmitting terminal
and a decoder at the receiving terminal.

The transmission rate is increased by the factor (M + 1)/M
where M is the number of pulses in the coding block. In
principle, M can be very large; in practice, it will be limited by
the frequency stabilities of the RF oscillators used in the
system.

The error rate is increased by the factor 2(1 — P,) because
an error in a coding pulse causes M errors in the signal se-
quence. This increase in error rate is of little practical im-
portance.
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Controlled Current Filaments in PNIPN
Structures With Application to
Magnetic Field Detection

By G. PERSKY and D. J. BARTELINK
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Stable biasing of mulliterminal PNIPN structures to support con-
trolled current filaments is proposed. A filament forms when base layer
spreading resistance ts sufficiently high for lateral base voltage drops to
shut off injection at all but a small interior portion of the structure. For
elongated parallel stripe ematter-base configurations, application of a
magnetic field normal to the current filament and stripe axes results in
lateral displacement of the filament which s detectable through a change
in the external circuit current flow pattern. This displacement can be
significantly larger than that of a single-pass Hall deflection, yielding
high sensitivity. Analysis of an tdeal model confirms a substantial tm-
provement tn performance over that of conventronal Hall devices, viz.,
a manyfold increase tn the ratio of short circuit signal current to drive
current, similar tmprovement in signal-to-offset ratio, and controllable
high output impedance making large signal voltages available. Solutions
for the ideal model are presented for carrier transport in the I region both
without and with lateral diffusive spread. It is argued that departures of
actual device behavior from this model are not apt to be tmportant. Possible
ctrcuit connections and a sample calculation of parameter values for a
realizable structure are also given.

I. INTRODUCTION

The purpose of this paper is to show how PNPN structures can be
biased stably to support controlled current filaments and to describe
a sensitive magnetic field detector utilizing this principle in a PNIPN
structure. PNPN devices are widely used as 2-terminal bistable
switches! and as 3- and 4-terminal controlled switches,? and have also
been utilized in 4-terminal operation as a linear amplifier.’ The multi-
terminal circuit operation of the PNIPN structure described here forces
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nearly equal base and emitter currents and thereby suppresses these
switching and amplifying effects. Stable filament formation properties
are introduced when significant spreading resistance is incorporated
in each base layer. For the operating conditions considered, the central
junction remains in reverse bias and supports counterflowing con-
fined streams of both electrons and holes. The shape and position
of this filament are controlled by fully characterized device and cir-
cuit parameters, in contrast with previously reported filamentary
instabilities.*

Magnetic field sensing is made possible because a magnetic field
applied perpendicular to the filament displaces it laterally and thereby
produces a signal in the external circuit. The displacement can be
many times larger than the Hall displacement of either carrier species
for a single transit of the I region. The I region is incorporated in the
structure for the purpose of increasing filament length and hence its
interaction with the magnetic field. The analysis will show that the
sensitivity of the device can markedly exceed that of an ideal Hall
effect detector of similar dimensions. Improved sensitivity is per-
mitted because the compensating electron and hole streams prevent
the buildup of a net Hall voltage. For moderate magnetic fields,
detection is linear, yielding field polarity as well as magnitude. This
behavior differs strongly from that of previously reported filamentary
magnetic sensors in which detection is related to precipitous disrup-
tion of the filament when the field reaches a sufficient magnitude.’

Section II explains how stable multiterminal operation of the
PNIPN structure can be achieved and how base resistance leads to
the formation of a controlled current filament. An intuitive picture of
the magnetic response is then developed. Sections IIT and IV present
an analytical treatment of the filament characteristics and the magnetic
response, respectively. Two cases are considered, transport in the
intrinsic region without lateral spread and with diffusive spread.
Section V assesses various effects that may cause actual device be-
havior to depart from the ideal operation predicted in Sections III
and IV, shows possible circuit connections for the device, and pre-
sents theoretical performance characteristics for a realizable structure.
Section VI summarizes the main features of the analysis. Preliminary
experimental results are presented elsewhere.®

Il. GENERAL CONSIDERATIONS

Figure la shows an elementary circuit which causes the emitter
currents to equal the base currents in an idealized one-dimensional
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Fig. 1—(a) Four-terminal connection of PNIPN structure. (b) Current loop with
figure-8 configuration. (¢) Terminal 1-2 It — V' characteristics.

symmetric PNIPN structure with infinite current gain in each emitter-
base configuration. We assume in addition that there is no significant
recombination in the I region and that electrons and holes have
identical properties apart from the charge sign. The current, Ir,
supplied by the constant current source in Fig. 1a, follows a figure-8
path as shown in Fig. 1b. Upon entering emitter P,, the current is
injected as hole current through base N, and region I. It arrives on
base P, where, as a stream of majority carriers, it can exit only through
contact 4 to battery V, Simultaneously, electrons are injected by
emitter N, to arrive at N, where, as majority carriers, their only path
is to close the loop through contact 3. It is the direct external con-
nection through battery V, that permits stable conduction of the
current 217 in the I region. Interruption of this external current would
force the central junetion to become forward biased, corresponding to
the “on” state of the switching mode. With battery V, in place, a
typical terminal characteristic between contacts 1 and 2 is shown in
Fig. 1lc. It is single-valued and consists of the characteristic of a
battery V, and two diodes, all connected in series. Clearly, any finite
impedance source connected between these terminals will give dc
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stable operation. The fact that stable 4-terminal operation of PNPN
devices is possible has recently been demonstrated.?

With the addition of a resistance R in series with battery V,, the
voltage across the whole structure is reduced by IrR, causing the
characteristic eventually to bend back into a negative resistance region
as indicated by the dashed curve in Fig. 1c. Stable operation will then
require a source impedance greater than R. Note that this type of
voltage turnback is consistent with common-base current gain «
maintained at or near unity for each emitter-base configuration,
throughout the negative resistance portion of the characteristic except
near zero voltage. We have operated a commercial 4-terminal PNPN
device, as well as an Ebers equivalent pair of transistors, in this
circuit and have observed a stable negative resistance as depicted
in Fig. le.

Formation of a stable current filament is brought about by base
spreading resistance in the otherwise ideal PNIPN structure. The
filament formation mechanism can be understood qualitatively with
reference to the schematic illustration given in Fig. 2. We retain the
assumption that the central diode is everywhere in reverse bias and
that « = 1 for each emitter-base configuration. This structure is
explicitly 2-dimensional, having a stripe geometry, and there is as-
sumed to be no functional dependence on the third coordinate. With
the end terminals of each base layer shorted together as shown, the
current filament will locate itself along the center line of the structure.
We now trace the temporal evolution toward this state, starting from
an initial distribution of hole current which is assumed to be uniform.
Upon arrival on P, the hole current flow is divided between the base

;j;%/////////////////d
A

I ®B ’\J>TIT

AIIL

\\\\\\\

Fig. 2—Filament forming structure with multiterminal circuit connection.
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contacts and, consistent with uniform spreading resistance of the base,
produces a parabolic voltage profile with its maximum at the center.
The total injection of electrons from N, must correspond to a current
Ir, but the base voltage profile will not permit this injection to be
uniform. Because the base-emitter voltage is a maximum at the center
and because the law governing electron injection is a highly nonlinear
function of this voltage, the electron current density will peak sharply
at the center. With only moderate lateral spreading in the I region,
which is readily attainable,” electrons arrive at N, with a distribution
still peaked at the center. Since the average electron must now cross
a greater length of resistive base than the average hole did in the uni-
form distribution, a greater maximum base voltage will be developed
and the voltage gradient at points away from the contacts will be
enhanced. This sharper voltage profile will in turn lead to an injected
hole distribution more sharply peaked than the incident electron dis-
tribution. The analysis will show that, after a steady state is reached,
the injected distribution of electrons and holes becomes identical.
Because of the exponential injection law, this steady-state profile will
become progressively sharper as Ir is increased. In particular, when
the voltage from base center to base contact is 1 V, the ratio of
current density at the center to that at the edge is exp (qV/kT) ~ e%.
When the filament is highly localized at the center, it is clear that the
base resistance acts very much like the resistor R in series with battery
V, in Fig. la, and that negative resistance from terminals 1 to 2 in
Fig. 2 will similarly result.

The sharpest filament profile occurs when the I region is made ex-
tremely thin to eliminate the lateral diffusive and/or space-charge
spread. Although a thick I region is needed for good magnetic field
sensitivity, previous work on confined electron beams in Si7 demon-
strates that highly localized distributions of electrons and holes arriv-
ing at the base layers can still be expected. Accordingly, in this paper
it is assumed that space-charge spreading is negligible for reasons of
low beam current or electron-hole charge compensation, and diffusion
will be used to characterize the lateral spread.

When a magnetic field is applied into the plane of Fig. 2, the filament
will move some distance to the right of center, producing an observable
current unbalance in the external circuit. Such bodily displacement of
the filament is brought about by the Lorentz force, which by virtue
of the counterstreaming motion of the electrons and holes causes a
Hall displacement to the right for both carrier species. If there were
no effects tending to return the filament to center, the interjection of a
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unidirectional Hall displacement into each pass of the regenerative
particle flow loop would translate the filament indefinitely to the right,
in the manner depicted in Fig. 3a.

However, when the filament is shifted off-center, a ‘“‘restoring force”
is produced. This force is proportional to the displacement of the
filament from the center, while the Lorentz force remains constant.
Therefore, an equilibrium position is attained for which the return
injection maximum is displaced back toward center by an amount
equaling the single-pass Hall displacement, as indicated in Fig. 3b.
Further insight into the nature of this equilibrium state can be gained
from a study of Fig. 3¢, which illustrates the relationship between the
arriving hole current distribution, J,(z), and voltage profile V,(z) in
base P,. Since the distribution J ,(z) is displaced to the right of center,
it sends more current to the right-hand contact than to the left-hand
contact because the resistance is less looking to the right. The point
in the J,(x) profile which divides the leftward from the rightward
flowing currents must therefore lie to the left of the centroid of J,(x).

(— ELECTRONS
N

~ELECTRONS

-
_ —HOLES
— —xy

HOLES & —\~f—.)

Fig. 3—(a) Representation of multipass displacement in the absence of a restoring
force. (b) Representation as in (a) with restoring force. (c¢) Illustration of relation
between hole current profile J,(z) and base voltage V3 (z) for a displaced filament.
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This division point is, of course, the point of maximum base voltage
since it is the electric field in the base which causes current conduction
toward the contacts. In the vicinity of each contact, far from the
filament, the magnitude of the slope of the V,(z) curve must cor-
respond to the total current at that contact. The ratio of these slopes
is, for the present discussion, adequately characterized by the assump-
tion that the straight-line extrapolations intersect at the centroid
position ., as depicted in the figure, and thus correspond to a ratio
(L + z.)/(L — z.). The leftward displacement of the maximum of
Vu(x) from the J,(x) centroid is therefore determined by the require-
ment that the areas under the J,(z) curve to the right and left of the
division point be in the ratio (L + z.)/(L — z.). The significance of the
leftward displacement x4 is that the return injection profile of the
electrons peaks at the voltage maximum and is therefore displaced
leftward from the centroid of the arriving distribution by this amount.
Equilibrium occurs when x, is equal to the rightward single-pass Hall
displacement xg.

It is apparent that, to within the above approximations, filament
displacement in the magnetic field must be linear since z, « x4 and
zq = zg. Furthermore, the sensitivity increases with drive current
because this increase narrows the filament, requiring a larger off-center
displacement z, to bring z, into equality with 5. For narrow filaments
it is possible for the displacement to bec many times larger than xg,
resulting in a signal current greatly exceeding that of a Hall device of
similar dimensions. As a practical matter, the short circuit signal cur-
rent of devices typified by Fig. 2 will saturate at perhaps ten times
that of a Hall device, because the sharpness of the profile eventually
becomes diffusion-limited. However, this does not appear to be a
fundamental limitation on device sensitivity, as is shown by the ex-
ample at the end of Section IV.

. DERIVATION OF CURRENT PROFILE AND TERMINAL CHARACTERISTICS

IN THE ABSENCE OF A MAGNETIC FIELD

This section presents the calculation of the filament profile in the
absence of a magnetic field, as well as the device terminal character-
istics. It is shown that the shape of the filament can be characterized
directly in terms of the device parameters in both the absence and
presence of diffusion. We first consider, in Section 3.1, the highly
idealized model introduced in the last section, and neglect diffusion
as well. In Section 3.2 we take into account diffusion, which is the most
important additional effect present in a real situation.
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3.1 Fully regenerative solution

Here we develop the mathematical solution relating the filament
current profile to the structure parameters and the drive current Ir.
The various voltages and currents entering the analysis are shown in
Fig. 4, where it must be remembered that the two contacts on each
base are shorted together as in Fig. 3. The procedure followed starts
with a consideration of the lower base layer. Employing the continuity
equation and the base resistance per unit length, r, we derive a general
relation between the hole current per unit length J,;(x) incident on
base P3, and the base voltage V() developed with respect to the base
contacts. From V;(x) and the terminal voltage V.1, we find the emitter-
base voltage profile and, through the junction law, the injected return
electron distribution J.,(x). V.. is ultimately determined by the
requirement that the total emitter current is Iy. We can write a similar
relation, for the upper base, between the incident electron profile
J.:(z) and return hole profile J,.(x). In general, the complete set of
self-consistent equations is then obtained by introducing the appro-
priate connection between the incident and return profiles of each
species. For a symmetrical structure and in the absence of diffusion,
J () can be directly equated to J ,:(x). A single equation immediately
results.

The functional dependence of Vy(z) on J,:(z) can be written in
the form

Vi@ = [ 20, o)), (1)

where the transfer impedance function Z(z, z') is the voltage response
at « to a é-function of current incident at 2'. It is easy to verify that
Z(z, ') is given by

Z(z, ')

’

x
z'. (2)

r(L — x)(L + 2")/2L, x
=r(L 4+ 2)(L — z')/2L, x

IA IV

The other equations required to complete the description of the
lower emitter-base configuration are the voltage balance equation

V() = Vilx) + V. (3)
and the junction law

Jur(@) = J.exp [qV.(2)/kT], (4)

where the constant J, has dimensions of current per unit length.
Equation (4) assumes large injection, i.e., net saturation current is
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Fig. 4—Definition of variables.

negligible. Although with filamentary conduction this cannot be the
case everywhere along the junction, the errors involved are unim-
portant when high-level injection is achieved in the vicinity of the
device center.

Combining Eqs (1) to (4) produces the relation between J,;(z)
and J,..(2):
LiyIn[J..(2)/J,] = / (L — x)(L 4+ 2)J pi(x")dz’ ZLL"

+/ (L + 2)(L — 2')J pi(2")dz’ 2L2 I:iL’ (®)

where
ET

Ly = oL (6)

is a structural, regenerative current constant and is the amount of
current necessary to produce a voltage drop k7/q when flowing from
base center to either base contact. Differentiating (5) yields

I iy dJur(z)
Jur(@)  dz

222 [/ (L + 2")J pi(a")dz" — / (L — 2")J pi(z")dx’ ] (7)

the right-hand side of which may be identified as 1/L times the right-
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ward flowing current I,,(z) in P, Accordingly, we rewrite (7) as

o3 AL IR ) MNEY A ®)
where
Iy(z) = ziL [ /_L (L + o) i) da — f ‘L — x’)J,,i(:c’)dx’]
= %[/2 Jpi(2)dx' — fL J pi(x)dx'
+ % L LL x’Jp,-(:c’)dx']- 9)
Note that
Toi@) = Hetl). (10)

A single equation in one unknown is obtained by invoking the as-
sumptions of symmetry and lack of diffusion:

.';Eg - fﬁii] by symumetry, (11a)
Tus@) = Tar@)| e
Ji(2) = Jp,(x)’ by diffusion = 0. (11b)

Clearly, all currents are equal. In particular, J.,(z) = J,:(z), so that
from (8) and (10) we obtain

a2 b (:E)

dI(x) )
dx?

— IregL 7

= I4(x) (12)
In (12) and thereafter we drop the superfluous subscripts; variable
Iy(x) still refers to the rightward flowing current in P, and also gives
the leftward flowing current in N.
The nonlinear second-order differential Eq. (12) can be solved as
follows. Rewriting (12) as
@L(@) _ (@)

— 2LLes dz* ~  dx

and integrating from 0 to z yields

dly(z)  dI+(0)
dx dx

- 2L1,eg[ ] — B@) — BO). (13)
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By symmetry about the center line of the structure,

I1,(0) = 0. (14)
Upon introducing the maximum value of the current profile,
- _dI,(0)
Jo == J(O) - dr '’ (15)
eq. (13) therefore becomes
dly, ., L}
& T Il (16)
Putting (16) into the form
dIb dx (17)

LT Jreg — I3 2010’

and integrating from —z to z results in

1 Ib(x)
- af ——z
V2L T s [ tanh <V2LJoIreg )
Iy(—2) 2
_ —1f ot =~ .
tanh < ,————2LJaIreg )] STl (18)

Again, by symmetry about the center line,

Iy(—x) = — Iy(x). 19)

Using (19) and the property that tanh='(y) is an odd function of ¥,
we obtain, after some rearrangement,

- JL x
I,(z) = V2LJ,I,e, tanh (1 /ng I ) (20)

1) = 2 (21)

From Fig. 4,

Therefore, the current profile peak J, can be determined from the ex-
ternally imposed drive current Iy with the relation

Tr = 2V2LT Iy tanh (‘ /‘;;L ) (22)
reg

Using this J, in (20) gives the functional dependence of the base
current on position in terms of the drive current and known param-
eters of the structure. In Fig. 5a, 2I,(x)/Ir is plotted vs. z/L for
various values of the dimensionless regeneration parameter Iz/41.e,.
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Fig. 5—(a) Position dependence of normalized base current for various values of
regeneration parameters. (b) Filament current profile normalized to unity peak
value for the same regeneration parameter values as in (a).

For sufficiently large drive currents such that this parameter is much
greater than unity, (22) reduces to

Ir &2 2V2LJ oI e, (23)

and hence

IT __qITTLN JOL'
4l .. 4T 77 N2l

Since the right-hand side of (24) is just the argument of the tanh func-

(24)
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tion in (22), the regeneration parameter is properly approximated by
(24) for contours of which the slope is small in the vicinity of z = L,
i.e., the filament does not touch the boundaries. The contours are
adequately described by
IT xr
Ii(z) =& IT tanh ( . L) (25)
which follows upon substituting (23) into (20).
The filament profile itself is obtained simply by differentiating (20)
or, for larger Ir, (25). We find, respectively,

J(x) = J, sech? (\/gTL %) (26)

2
J(z) = 8§reg sech? ( éig-% ) (27)
Plots of J (z)/Jo vs. /L for the values of Ir/4l,., used in Fig. 5a are
displayed in Fig. 5b. It is evident that, for large values of the regenera-
tion parameter, highly localized current flow is obtained. Equation
(24) shows that this parameter is made large through increase of Iy,
r, or L. However, I,.L is independent of L so that from (27) one sees
that the absolute width of the filament is unchanged by variations of
L for fixed r. For a given Ir the only way to sharpen the filament is to
increase r. With a high degree of control, the current path is self-
contained within an interior portion of the structure. Confined current
flows without benefit of physical nonuniformity and is furthermore
independent of overall dimension L. The parameter values necessary
to produce a well-localized filament can be realized in a practical
structure, as is demonstrated by the example in Section V.

We now proceed to caleculate the terminal characteristics. The most
straightforward approach consists of relating J(L) to Ir with (26)
and (22) and using the junction law (4) to relate J (L) to V... Recalling,
however, that (4) applies only at high-level injection, which may not
be satisfied at x = L, a more trustworthy method must be employed.
Since (4) is reliable at z = 0, we may utilize it to find V.(0) from J,,
and relate J, to Iy with (22). Then V., is determined from (3) and
(1), where (26) is used in the integral in (1). It is clear that, whatever
the junction law, J (L) follows V., as impressed through the voltage
balance described above, even if V.. is negative. Hence, with this
method the errors in calculating V .z are no greater than those in ob-
taining J, and V,(0) with the large injection assumption. When J,
greatly exceeds the saturation current, these errors are small.
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From (3) and (4),
Vo = ’%m (/T2 — Vb(0), (28)
where, in accordance with (1),
i .
Vs(0) = f |20, )] (@)d. (29)

Substitution of (2) and (26) into (29) yields

Va0) = 3 [ (L + ) sech? (\/g? ’Z)dx'

+%Jorfoll (L — z') sech? (\/‘E% )da:’
J.;T/OL (L — z') sech? (\/'%;% )dx’
2 k_q@ In cosh (\/';];Z ) (30)

Substitution into (28) results in

k 2T / ol
Ve = —q—T In (Jo/Js) - T In cosh ( glreg ) ’ (31)

where the definition (6) of I, was used. From (31)

kT 7.0
V= lin [J,, / J. cosh? , /2—1;; ] (32)

Together with (22), (32) specifies the terminal characteristics. It is
usually reliable only for J, > J; because of the large injection assump-
tion. When the regeneration parameter is large, (23) may be introduced
into (32), yielding V.., directly in terms of Ip.

Ver = Mln [IT/QVQLJ I eq cosh (4? )] (33)
reg

I

The terminal voltage Vr developed by current source Ir, as in Fig.
1c, is

VT = Vo + Vbuilt,—in + 2VeL
V. + Visicn + @ In [IT / V2L T.eg cosh ( i )] (34)
Teg
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Fig. 6—Form of terminal Ir — Vo characteristic based on fully regenerative
solution.

For large argument the cosh function can be approximated by an
exponential, permitting (34) to be rewritten as

45T Iy
Ve = Vo 4+ Viaitein + ——1 [—————]— LI 35
T + Viuilgin + P n N2 AT g rLlp (35)

The Iy vs Vr characteristic is displayed in Fig. 6. It should be ob-
served that the asymptotic negative resistance is essentially the same
as in the structure of Fig. 1. This is evidence of the fact that, with large
regeneration and a filament strongly confined to the center of the
structure, regions of the base away from the filament have an effect
indistinguishable from external series resistors.

3.2 Diffusion limited solution

While the regenerative solution of Section 3.2 may well be applicable
to PNPN structures with a narrow central junction, we must take
into account the diffusive spread of the carrier streams in the wide I
region of a PNIPN magnetic field sensor. In the presence of diffusion,
eqgs. (8) and (9) are still valid, but the equality (11b) between the
incident and return currents no longer holds. For example, the stream
of holes J ,,(x) injected by emitter P, spreads under the action of diffu-
sion while crossing the I region, to arrive at P, with a new broader
profile J,;(x). An initially spike-like or Gaussian profile arrives as a
Gaussian, and any other localized distribution also tends toward a
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Gaussian. This relation can be expressed mathematically by
Tu@ = [ G, &) i), (36)
where G (z, «) is the diffusion Green’s function®
Gz, z) = Lexp [—ad(z — )2] (37)
Vr |

and ap is the diffusive spreading parameter. Here ap is given by
b = va/4D.W, (38)

where W is the I region width and v, and D, are the drift velocity and
transverse diffusion coefficient of the carriers traversing it. It is, of
course, assumed here that the diffusive spread is insufficient to cause
the carrier stream to contact the boundaries at = =+ L.

Utilizing the symmetry relations (11a) and substituting (36) into
(9), we obtain from (8) the equation in one unknown, J,(z),

dJT(x) 1 ® ’ ’ L ’ e 1 r:
L =T = T @) [/_L (L + z')de /_LG(x,x )o@ )d

[ @ [ o, x")J,@“)dx”], (39)

where the species subscript has been dropped. In view of the com-
plexity of (39), we attempt only an approximate solution. It is evident
that such a solution would be most difficult in the parameter range for
which the diffusive spread and regenerative filament width are com-
parable. In the limit of small diffusion, which we shall not consider,
perturbation theory could be used to find the slight modification pro-
duced in the completely regenerative solution. At the other extreme,
large diffusion, the regenerative mechanism is largely interrupted and
the incident current profile tends toward a diffusion-controlled
Gaussian.

In the case of large diffusion, where the incident current profile is
Gaussian, we may solve (39) approximately by also parameterizing
J.(x) as a Gaussian, but with a different spreading parameter. This
procedure can be justified in the following way. If we had a uniform
incident current profile, the base voltage developed would be a para-
bolic function of . Then, with the assumed exponential junction law,
the injected return current is fortuitously Gaussian. This return profile
will remain Gaussian whatever the form of J;(z) in the regions external
to J.(x), as long as J;(z) is reasonably uniform within the region of
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J.(x). Therefore, in situations where the return profile is much nar-
rower than the incident profile, J,(z) is always well approximated by
a Gaussian. In the diffusion-controlled case, this narrow Gaussian
return profile diffusively spreads into the broad Gaussian incident on
the opposite base, thereby closing the self-consistent loop.
We assume that
J.(x) = J,exp (—ax?) (40)

with «, the return profile spreading parameter. Then, after inserting
(40) and (39) into (36), integration yields

aDJo L 2 ’ 2 7 ’
J:(z) = / exp[—ab(x — z')?] exp (—aiz't)dx (41)
Vr J-o
% 3%
= arJaexp (—aiz?),
where

[s2723))

"=t )
is the spreading parameter of the incident Gaussian. In performing the
integration, it has been assumed that epL > 1 and «,L > 1, so the
limits may be taken at infinity. We insert the form (41) for (36)
into the bracket on the right-hand side of (39) and integrate again.
The result is

T L z
/ (L + z")J(z")dx'’ —/ (L — z2)J(z")dx’ = 2L / Ji(x")dx'
—L z 0
VrL

r

Joerf (a;x). (43)

Substitution of (40) and (43) into (39) yields
4] olr = \/—L; Jo erf (a;x), (44)

which clearly cannot be satisfied at all x for any spreading parameter
values. The necessary approximation consists of replacing the error
function by its first-order power series expansion term valid for small
a;z. We obtain

2 reed = %’ o = Jfoaraa/\lag + 3. (45)
Using the normalization of (40),
Ira,
Jo = —F, 46)
r (
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(45) becomes
2 2 (ITaD/QLIteg)2 —

ot + dda
T

of which the meaningful root is

quap [ (aDLIre )2 OLDLI,e ]
2 = D 14+ £) — £l 48
C T ez N T\ VoL ) T e 48
For (48) to be accurate requires that the return distribution fall to a
negligible amplitude at values of = such that the next expansion term

in erf (a;z) beyond the first makes an insignificant contribution in
(44). Thus, setting * = 1/a,, for which

() -2 /0] w

the criterion is easily seen to be

( & >2<< 3. (50)

Qr

0, (47)

This is not really very stringent, because it indicates about 3 percent
accuracy when the incident distribution is only three times wider than
the return distribution. A simpler expression for o than (48) may be
obtained when the inequality (50) is well satisfied. We may estimate
the magnitude of the dimensionless ratio apLles/VrIr by applying
(50) to (48), together with the relation ap ~ «;, which follows from
(42) and (50) and is used to eliminate «;. Neglecting the departure
from unity of the bracketed expression in (48), we see that there
results the condition

apLl,, 3
L5 51
rl T 2 51
Therefore, in the diffusion-controlled regime, o2 is well approximated by
Ira

2 TXD

L o B 52)

Y o r L ey (

Surprisingly, the Gaussian parameterization of J.(z) yields a solu-
tion which, in the absence of diffusion [ap — « in (47)7], departs only
moderately from the fully regenerative solution (27). Figure 7 com-
pares these solutions for the same value of Ir and shows that the Gaus-
sian approximation overestimates the peak amplitude by 28 percent
and is correspondingly narrower. Although the Gaussian therefore only
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Fig. 7—Comparison of Gaussian approximation in the diffusionless case with fully
regenerative solution at one value of /7.

approximately represents the true solution, it demonstrates that we
can carry the large diffusion approximation well outside its intended
range of validity without a precipitous drop in accuracy.

The terminal characteristics in the diffusion-controlled case may be
found with the same procedure employed for the fully regenerative
solution. As long as the diffusion-controlled filament remains narrow
compared to 2L, the asymptotic negative resistance is reduced by the
factor (1 — 1/Vra;L) which is close to unity.

IV. RESPONSE TO A MAGNETIC FIELD

Section II gave a qualitative explanation of the magnetic response
of the PNIPN structure. It was shown that unequal leftward and right-
ward base currents resulted. Here we calculate this current unbalance
in the limit of linear response. We define the signal current Ig as the
increase in current flowing out of the right-hand contact of base P-..
Small signal calculation of I is simplified because it presupposes that
the magnetic driving force is negligibly perturbed by the magnetically
produced changes in current profile. Thus, the terminal response is
obtained by perturbation theory without a recalculation of the fila-
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ment shape. Again, we neglect and consider the effect of diffusion in
Sections 4.1 and 4.2, respectively.

4.1 Fully regenerative case

With the magnetic field directed into the page in Fig. 2, both the
downward flowing holes and upward flowing electrons are deflected to
the right by the Hall displacement

xg = uBW, (53)

which is the same for both carrier species, assuming equal mobilities.
As a consequence of this deflection, relations (11b) become

Jni(x + xH) = Jnr(x)

T oile + zn) = T o (@), (64)

which is applicable as long as the current profiles do not contact the
boundaries. The symmetry of the structure preserves relations (11a),
which, together with (54), yield from (8) and (9)

Tna g Ji6a + o) = 5z JiGo ) | [ (L + )@
- [f @ =], o9

where we have dropped the species subscript. By changing variables,
(55) can be rewritten

Ineg 7. d g, () = 2LZJ () /_;H (L + z)J:(z)dz’

_ (" (L—x’)J.-(x')dx’]

z—zH

= o5 7i@) f_’L (L + 2)Ji(x')da’
_ / (L — o) i(&')da + 2L / = Ji(x’)da:’]- (56)

We recognize from (9) that 1/2L times the first two terms in the last
bracket is I;(z). The last term, furthermore, can be written to first
order in the magnetic field as

Zfo_xH Ji(z')dzx' &~ — 2LxpJ i(x). D
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Therefore, (56) becomes

T 1 J4(a) = 1 J@To(@) — 2 T3(a), (58)

which, by (10), can be written

1 d

-1 2L dx

4 Jiw) = I3@) — T3, (59)

reg d

Integration of (59) from —L to L, together with the vanishing of
Ji(xL), yields

L
B — B(-D)] = an [  Ji)da. (60)
From the definition of Ig
L) = 2+ 1,
Ir
Ib(_L) = ——§+Is~ (61)

Therefore, to first order in Is, (60) becomes
25 _ on / J3(@)dz/ 2. (62)

Since the right-hand side of (62) is by virtue of x5 already linear in the
magnetic field, the unperturbed filament profile may be used for J;(x).
We can see from this equation that Is/Ir will increase for fixed zg
when the filament profile J;(z) is made sharper. Evaluation for the
fully regenerative profile (27) results in

IS TH IT

L~ DL (63)
Substitution for I, from (6) and for zy from (53) gives
Is _wBW/( q rLI T)
Im 2L \kT 6
~ bBW qV5(0)
~ 2L ( 3kT )’ ' (64)

where uBW /2L is the short circuit current ratio of an ideal Hall
device of similar dimensions and ¢V ,(0)/3kT is a convenient measure
of the enhancement of the sensitivity with regeneration. V(0)
X rLIy/2 is the center-to-edge base voltage in the absence of the
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magnetic field and can be on the order of volts, leading to enhancement
factors in the range 10 to 100.

4.2 Diffusion limited case

Putting (9) into (8) and using only the symmetry relation (11a)
we have, upon dropping the species subseripts,

Tt g5 740 = 1@ g3 | [ L+ )T
- / (L — x')Ji(x')dm']‘ (65)

In contrast with the procedure followed in Section 4.1, it is convenient
here to integrate (65) from —L to -+L at once, to obtain

0= /LL T (@)d f_ ’L (L + 2)J:(z')dz’
— /_LL J.(2)dz / "L = ) @)de. (66)

Again, we have assumed the vanishing of the filament profile at the
boundaries, i.e., J,.(+L) = 0. Upon introducing I.(x) defined by

7@ = L@, (67)

integration by parts of (66) yields
0 = [I.(L) + I.(—L)]LIr + [I.(L) — I.(—L)]
L L
X / 2J (z)dz — 2L [ L.(2)J:(z)dz.  (68)
—L —L
From the second form of (9) and from (61)
2 L
7 /LxJi(x)dx = (L) + Iy(~L)
= 2[g. (69)
In analogy with (61), we define Is by

I.(xL) = :l:— + Is. (70)

I. is a construct which can be interpreted as the lateral emitter cur-
rent if the emitter, like the base, had contacts at =+ L. Iy is the mag-
netically produced unbalance in I,. Substitution of (69) and (70) into
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(68) results in
L
0 = IpTs + Ipls — /  L@J(@)de. 1)

This equation is merely a simplified version of the integral of (65).

To proceed further, it is necessary to introduce explicitly the simul-
taneous diffusive spreading and lateral magnetic displacement of the
carrier stream as it crosses the intrinsic region. Combining (36) and
(54) leads to the general relation between J; and J,,

Ji(x) = ‘/: Gz, z')J (' — zy)dz’, (72)

where G(z, ') is the diffusion Green’s function (37). Expanding (72)
to first order in zy yields

L L
Ji(z) Rﬁf_L Gz, 2 )J (z')dz’ — xH/_L G(z, z) d% J.(z)dz’
L L
_ /_ GG, ¥, @) — o f_ Lad;G(x’ @)z, (73)

where the second form has been obtained through an integration by
parts with the boundary condition J(=+L) = 0, and the relation

dG@/dx’ = — dG/dz. Upon substituting (73) into the integral in (71),
the first term of (73) gives rise t o an integral of the form
L L
g = f I.(z)dz / Gz, z)J . (z')dz'. (74)
—L —L

It is possible to show by successive integration by parts that
L L
g = I.,(L)/ I.(z)G(z, L)dx — Ie(—L)f I.(x)G(z, —L)dz. (75)
—L —L

The vanishing of J, in the vicinity of the boundaries corresponds to a
nearly constant value of I.(z) in the boundary regions where G (z, #=L)
has a significant magnitude. By noting the normalization

L
[ 6@, <L)z = L (76)
_L 2
we obtain
g = 3[I%(L) — Ii(—L)] (77)
Therefore, substitution of (73) into (71) eliminates the I's term, leaving
L L
Inlg = — xn/ Ie(x)dxf 4 Gz, 2)J,(z")dz'. (78)
—L —L dx
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Interchanging the order of integration, integrating by parts with
respect to z, and utilizing (67) give

Inls = — xﬂ[uL) [ 6w, &)@
- Ie(—L)/LL G(—L, 2)J.(z')de’

— f: -/i J(z)G (z, «)J (z')dx dx']- (79)

Because J,(x) and G(=xL, x) do not overlap, the first two integrals in
(79) vanish, yielding the final result

Is _ L L , ) .
I, = Ty /_L /_L J.(@)G(x, 2)J (x")dx dz' /1% (80)

In the limit of no diffusion G(z, ') — §(x — z’) and (80) reduces to
expression (62), but (80) is valid for arbitrary diffusive spreading.
For J.(z) parameterized as a Gaussian according to (40) and using
(37) and the normalization (46), (80) becomes

LS — 202 L e/ INT T 20/, (81)
T
In the diffusion-controlled regime characterized by o2 as given in (52),
the radical in (81) is approximated by unity, and we find

& xHaD/‘f;r
Ir
TH \H)d/47rD1W. (82)

The result (82) can also be obtained from (80) by letting J,(z) — I+6(z)
for which

f—: — 23G(0, 0) = uon/VT. (83)
The equality of (82) and (83) demonstrates that, in the diffusion-
controlled regime in which a;/a, need only satisfy (50), the structure
nevertheless responds to a magnetic field as if the return current
profile were a very sharp spike. The absence of Iy on the right-hand
side of (82) indicates that diffusion saturates the magnetic sensitivity
and, unlike (63), the signal is now only linearly proportional to the
drive current Ir. To compare the diffusion-controlled detector with a
Hall effect device, we substitute for zx from (53), define the voltage
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across the I region at the center by
Ve =V,— 2V:(0), (84)

and introduce the transverse noise temperature of the carriers defined
by the Einstein relation

kT, = ¢D./p. (85)
Thus (82) becomes
Is _wBW (L [qV3 )
Ir 2L (W kT (86)

The expression in parentheses is the sensitivity enhancement factor
for this case, which should be compared with (64), derived in the ab-
sence of diffusion. Equation (86) shows that the sensitivity of the
diffusion-controlled detector is improved by increasing the central
bias voltage until carrier heating predominates. At 8 V, the radical has
a value of approximately 10 for W sufficiently large that 7', ~ 7.

Equation (86) seems to suggest that large sensitivity enhancement
with respect to Hall devices can be achieved by making L/W very
large. This improvement is, however, illusory because it merely creates
an unfavorable geometry for the Hall device. A fair comparison is
possible when the device configurations are nearly square. Although
in this case an enhancement factor involving only ¢V 5/kT . is indicated,
this should not be construed as an ultimate limitation imposed by
diffusion, but rather as a structural limitation. The following example
will illustrate how, for fixed W and L, the fully regenerative enhance-
ment factor can be obtained within the constraints imposed by diffu-
sion. An analysis has been carried out for a structure in which the
emitters are contacted at +L and have resistances per unit length
approaching but less than that of the base layers. It has been found
that, in the absence of diffusion, emitter resistance broadens the
filament but does not diminish its off-center displacement or signal
current when a magnetic field is applied. Since a broader filament is
less subject to diffusive spreading when diffusion is taken into account,
the effect of sufficient emitter resistance is to carry the filament forma-
tion and magnetic response out of the diffusion-controlled regime
back into the fully regenerative regime. Therefore, the diffusion limit
given by (86) would appear to be appropriate only to the structure
analyzed in detail, rather than to be fundamental.

V. PRACTICAL MAGNETIC DETECTORS

The previous sections of this paper have established the fundamental
principles according to which controlled filaments might be produced
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in PNIPN structures and have analyzed their magnetic sensitivity.
Certain idealizations were made in order to develop a coherent theory.
One purpose of this section is to give at least a preliminary account of
the effect of removing these idealizations, so that we may relate the
theory to practical devices. Since magnetic response has heretofore
been characterized solely in terms of the short circuit signal current I,
it is also necessary to analyze the behavior of the magnetic detector in
an actual circuit which presents a finite impedance to the detector
output. Several realizable circuits are considered. Finally, practical
design parameters of a particular detector are given and performance
predictions are made. Because filament formation in these devices
requires that they be biased into the negative resistance range, there
may be a tendency for ac instability, notwithstanding their apparent
stability at de. The dependence of oscillatory behavior on parasitics
suggests that, at the outset, only experimental resolution of the stability
question is feasible.

5.1 Removal of idealizations

The model developed thus far has been based on the explicit assump-
tions of (1) complete structural and electrical symmetry, (2) high
level injection, (3) infinite current gain, and (4) lateral carrier stream
spreading in the I region by diffusion only. It has also been implicit
in the analysis that it is permissible to neglect the effects of lateral
electric fields in the I region, filament position pinning resulting from
structural imperfections, and possible modulation of base width and
conductivity. While a detailed investigation of all these effects is
beyond the scope of this paper, we shall explain why they are not apt
to modify greatly the operation described in the previous sections.

In view of the regenerative nature of the filament, the assumption of
infinite current gain might appear questionable. In actual fact, it is
easily shown that for finite, but reasonably large, values of common
emitter current gain 8, device performance is only slightly degraded.
We consider first the fully regenerative case, i.e., no diffusion. In the
absence of a magnetic field we recall from (11a) and (11b) that J;(x)
= J,(z). When 8 — o, the base current, and hence the base voltage
Vi (z), are produced entirely by J:(z) as given by (9) and (1), re-
spectively. For finite 8, there is an additional base current component
produced similarly by a current profile J.(z)/8(=J:(x)/B) which is
subtractive, and hence reduces the base voltage drop to Va(z)
= (1 — 1/8) Vs (x). This voltage reduction is the same as would be
caused by retaining infinite 8 and reducing r from the original value
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r = (1——%)7@. (87)
Assuming now that an increase in the actual base resistance is made to
compensate for this effect, no modification results in the filament pro-
file if the current through the battery is maintained unchanged. To do
so with finite 8 requires an increase in emitter current by a factor
B+ 1)/(8 — 1). It is clear that the filament disappears for g8 < 1,
but that for 8 >> 1 there need only be a small degradation.

In the diffusion-controlled regime there can be additional significant
effects of finite 8. When the incident profile is much broader than the
return profile, we have J.(0)/J:(0) = a./a; > 1. Therefore, in the
vicinity of the origin, the injection process will give rise to subtractive
base current components comparable to those produced by J;(z), un-
less 8 is sufficiently larger than a,/a;. The presence of such subtractive
components lowers the base voltage at the origin, broadening the re-
turn profile and self-consistently lowering J,(0) until 8 > J.(0)/J:(0)
is suitably satisfied. Clearly, in the diffusion-controlled regime, finite
current gain places a limit on the sharpness of the return profile which
cannot be improved by increase of base resistance, i.e., o, < fap if the
approximation of a Gaussian return profile is retained. Because the
magnetic sensitivity is only weakly dependent on the return profile
width if (50) is satisfied, as shown by the comparison of (82) and (83),
it should only be slightly affected by finite current gain as long as
EY

We now briefly consider several effects that can modify filament
formation and translation through localized departure from the simple
theory. Lateral fields in the I region, brought about by the base layer
voltage, can cause deflection® of the carrier streams not taken into
account in the filament analysis. As a result of the symmetry of the
two emitter-base configurations, there is electrical symmetry about
the plane midway between the bases. Therefore, the electric field
streamlines in the I region may converge near midplane, but still
connect, in 1-to-1 fashion, points on the two base layers lying equi-
distant from filament center. Consequently, although the filament may
tend to neck in at the center, this effect will not by itself give rise to
additional lateral spreading. Similarly, when the filament is displaced
off-center by a magnetic field, these lateral fields will not cause a net
restoring force toward device center.

Filamentary instabilities characteristically occur at the particular
cross-sectional location where breakdown is most easily initiated.® We
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have shown that in the present controlled filament formation mecha-
nism, nucleation takes place at the center of the structure. It is still
possible, however, that at other locations pinning points may exist for
the filament because of structural inhomogeneities such as, for example,
a locally enhanced injection efficiency. It is convenient to classify
such inhomogeneities according to their size relative to the filament
width. Large-scale inhomogeneities, which we shall assume to be
reasonably weak, should result in only mild distortion of filament shape
and position. In using the structure as a magnetic field sensor, this
effect would produce a de “offset voltage,” but not otherwise interfere
with the magnetic response. On the other hand, intense small-scale
parameter fluctuations would provide distinct filament pinning points.
However, in the diffusion-controlled regime this effect should be much
reduced. Not only does the diffusion introduce an averaging over
dimensions larger than the inhomogeneity, but the accompanying
interruption of the feedback loop serves to damp down the multipass
gain fluctuations. Because of the filament centering force inherent
in the simple theory, pinning the filament becomes progressively more
difficult at points away from device center. Ultimately, however,
the importance of filament pinning will have to be determined
experimentally.

In contrast with structurally associated departures from ideal be-
havior, localized parameter variations may occur self-consistently in-
duced by the filament itself. Under conditions of high current density,
transport in the base may be modified by increased base width or
conductivity. It is well known that for transistors operated at high
currents the base tends to widen. A similar effect here would lead to
a decrease in the base resistance per unit length . When there is a
perfectly compensated filament of electrons and holes in the collector,
however, one would expect this effect to disappear but, if there is
diffusive spread of carrier streams, locally perfeet compensation is
absent and some base widening may still occur. A similar local de-
crease in 7 would result directly from the conductivity modulation
produced by the injected carriers. This effect is readily minimized by
making the base layer thin, while keeping the same sheet resistance.
With a thinner base the minority carrier density for a given current is
lower, while majority carrier concentration is higher. In any event, a
local reduction in r will broaden the filament, but one would expect:
the change in shape to be more pronounced than the actual change in
width. Similar modification of the filament profile can be anticipated
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from the falloff of injection efficiency at extremely high injection
levels.10

We now examine the assumptions of structural and electrical
symmetry. Structural asymmetries, an example of which is an in-
equality of base resistance, is subject to technological control and can
probably be made small. Such asymmetry will invalidate (11a), re-
sulting in inequivalent electron and hole profiles, but if reasonably
small it is unlikely to affect the average filament properties or magnetic
response. In contrast, the electrical asymmetry is mostly governed by
the disparity of the electron and hole mobilities which is not con-
trollable and may be quite large. An immediate and important con-
sequence of such a mobility ratio is inequality of the electron and hole
Hall displacements. It might appear that, because of this inequality,
a magnetic field would disrupt the filament by pulling apart the elec-
tron and hole streams. Indeed, it has been proposed that the magnetic
response of a GaAs double injection diode can be explained by such a
mechanism.® In the present system, this phenomenon may occur at
very high magnetic fields but should normally be avoidable, since the
filament is broader than the single-pass Hall displacement and there
is no strongly nonlinear pinning point. We have made an analysis based
on a rigid displacement of the electron and hole current profiles in
the fully regenerative case which indicates that no strong disruption
is to be expected. The results show that the coordinate difference
between centroids of the return distributions is just one-half the dif-
ference between their Hall displacements and is therefore much less
than the off-center displacement. A quantitative measure of the un-
balance can be obtained from the ratio of the unbalance of the signal
currents in the two base layers to their average:

ISn_ISp_SI—I'eg 15Hn'_$Hp>
Is - IT ( TH ’ (88)

where Ig,. and Ig, are the signal currents in Ny and Ps, 2y, and zg,
are the Hall displacements of electrons and holes, and I and zy are
the average signal current and Hall displacement. The factor Ir/31 e,
is recognized from (64) as twice the enhancement factor, and the right-
hand side of (88) is therefore much less than unity.

Another effect of the mobility ratio is the destruction of the inherent
filament space-charge neutrality, with the result that there will be
increased lateral space-charge spreading. Qualitatively, the effects of
space-charge spreading are not greatly different from those of diffusion
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and therefore the simple diffusion theory should account for its main
features. Since, unlike diffusion, space-charge repulsion scales with
filament current, it can be minimized by increasing the base resistances
so that the necessary base voltage drops can be achieved at low current.
Another approach is to use a circuit that equalizes the carrier densities
by equating the electron-to-hole emitter current ratio to the mobility
ratio, thereby restoring a nearly neutral filament.

5.2 Magnetic-detector circuit connections

Up to this point, the response to a magnetic field has been character-
ized only in terms of a signal current Is. Here we consider the inter-
connection of the detector with a finite load impedance. In the circuit
of Fig. 2, Is could have been detected only by a perfect ammeter.
Figure 8 shows a straightforward circuit modification which provides
terminals for the connection of load resistors, Rr. In the absence of
magnetic field, the voltage and current of the six device terminals,
and therefore the filament profile, are completely unaltered by the
addition of the external resistors R.., provided battery Vg has the
value

Voo = VO + ITRex- (89)

The magnetic response is most easily understood by adopting an
alternative view, in which resistors R.. are considered part of extended
base layers having total effective resistance 2R = 2R + 2rL. If
the filament remains sufficiently confined to fall well within the actual
device boundaries, the whole configuration behaves as if it has a base
of effective length 2L related to Rer by 2rLets = 2Retr, so that

Rex.
T

Lt =L 4+ (90)
When the load terminals are open circuited, i.e., Ry — o, the signal
current for both the fully regenerative and diffusion-controlled case,
given by (63) and (86) respectively, are unchanged by the change from
L to Less. In (63) the product LI, and hence I, is independent of
L by (6), while in (86) Is is explicitly independent of L as long as
battery Voo has been inereased in accordance with (89). The open circuit
voltage Vi, is therefore

Vie = 2Rexl s (91)

and has the polarity given in Fig. 8(a). When the terminals are short
circuited (R, = 0), Is is still that given by (63) or (86) and now flows
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Fig. 8—(a) Magnetic field detector circuit with provision for load Ry. (b) Load
line for (a).

completely through the short as I'ro. Within the small signal approxima-
tion, the device is linear and we obtain the load line given in Fig. 8(b).
It is an interesting feature that the output impedance, 2R, is given
solely by the magnitude of external resistors. The apparent ability to
obtain an indefinite increase in open circuit voltage, by increase of R.x,
is just a reflection of the fact that battery Voo is correspondingly in-
creased in accordance with (89). It is worth noting that, although I
has the same value in both the open and short circuited conditions,
the off-center displacement of the filament, ., is unequal in the ratio
Lt/ L, reflecting the stronger centering force in the case of the short
circuit.

A problem encountered with all magnetic detectors is that structural
nonuniformities result in ““offset voltages.” If the present structure had
only a single base layer, the filament would locate itself at the elec-
trical center and there would be no offset voltage. It is expected that
in the actual structure the electrical centers of the two base layers
will not exactly coincide so that the filament will seek an intermediate
position. The result will be an offset voltage for each base layer. It
should be clear that the position of this new electrical center is de-
termined only by structural imperfections and will therefore not depend
on the enhancement factor. Consequently, the ratio of signal-to-offset
voltage for this device should exceed that for the equivalent Hall effect
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Fig. 9—Signal-summing offset-nulling magnetic detector circuit.

device by this enhancement factor. Furthermore, it is possible to
envision a circuit connection, as shown in Fig. 9, in which the signal
currents of the two base layers are additive, while their offset voltages
are cancelled at least to first order. This circuit has a cross connection
of the two base layers by means of two batteries V,. It also has the
interesting feature of displaying terminal characteristics of a nearly
ideal magnetically controlled current source 21 5.

5.3 Sample device parameters

Figure 10 shows a realizable configuration of the magnetic detector.
It is a planar structure formed on a nearly intrinsic substrate. The
largest areas are base layers N, and Ps. Application of reverse bias V,
between N and P depletes the substrate in the intervening region.
Heavily doped emitters N, and P, are shaped to be completely on
top of the base layers. This structure, with the dimensions shown, can
readily be fabricated with current technology and therefore constitutes
a reasonable choice for initial experiments. It is also assumed that a
base sheet resistance of 10 kQ/O0 is attainable. With these con-
straints the structure is far from optimum, but the performance
characteristics shown below nevertheless compare favorably with
other magnetometers.

With a base sheet resistance of 10 kQ/0 and a base width of 12.5 pm,
we find a resistance per unit length r = 800 @/um. Equation (6), with
L = 100 pm, then yields I, = 0.312 pA. For a drive current Iy = 10
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wA, the filament profile in the fully regenerative case is found from
(27) to be
J(xz) = 0.4 sech? (8 % ) pA/pm. (92)
Referring to Fig. 7, the half amplitude points fall at z, = 4 0.85L/8
~ + 11 pm, so that the filament is indeed much narrower than the
length of the base. Using (30) the corresponding voltage from base
center to edge, V(0), is 0.366 V. This result may be compared with
the value 0.4 V obtained by assuming a perfectly sharp profile for
which Ir/2 flows through a resistance rL, and indicates that the
finite filament width gives rise to a less than 10 percent voltage
reduction.
Two considerations enter the choice of the battery voltage V,. First,
it must be sufficient to fully deplete the substrate material between P,
and N Assuming a bulk resistivity of 5 kQ-cm or better after the
necessary processing steps, 5 V would be enough to deplete a plane
parallel structure 50 um across. Allowing for some extra width necessi-
tated by the plane configuration and some margin for being well
swept out, a voltage V, = 11 V, corresponding to a drop of ~ 10 V at
x = 0, should be just adequate. The second consideration is the diffu-
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Fig. 10—Illustrative example of realizable magnetic detector.
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sive spread. At ¢ = 0, the average field in the I region will therefore
be in the neighborhood of 2 kV/cm. This field is insufficient to greatly
heat the carriers, so that it is justified in (38) to use D, expressed by
(85), with kT./q>~kT/q = 0.025 ¢V. The resulting value of ap is
0.2 pm™!, for which the half-amplitude half-width of the Green’s
function (37) is 4.16 um. This value is small compared with the value
Zw = = 11 um for the filament and works out to an additional spread
of only about 12 percent. It is therefore proper to use the fully regenera-
tive solution to calculate the magnetic response.

The regenerative enhancement factor defined in (64) for the above
parameters works out to a value of 5. This value only specifies the
enhancement of the short circuit signal current Is over that of an
equivalent Hall device. The full available output voltage when the
device is used in the circuit of Fig. 8, however, still depends, by (91),
on the choice of Rex. Choosing Rex arbitrarily to be 1 M, adjusting
Voo according to (89), and using (63) and (91) leads to

VLO = 22BIT VOltS,

which corresponds to a figure of merit of 22 V/GA. This figure of
merit is of the same order of magnitude as that reported for other
sensitive magnetometers.!! It is expected that considerable improve-
ment can result from proper design.

VI. SUMMARY

We have shown that spreading resistance in the base layers of a
stripe geometry PNIPN structure, with cross section and circuit as
shown in Fig. 2, leads to a localized current density profile, i.e., a
filament. If lateral spread of the carrier streams in the I region can be
neglected, the current density profile is adequately represented by
eq. (27). A plot of this function appears in Fig. 5b, which shows that
as the drive current Iy is increased, a sharpening of the filament occurs.
The relevant parameter is the ratio of I'r to Ire,, where I,.., defined in
(6), is the amount of base current that would have to flow from device
center to a base contact to produce a voltage drop kT'/q. The numerical
example given in Section V shows that for a realizable structure a
- typical value of I, is ~ 0.3 uA, so that for I+ ~ 10 pA a highly con-
fined filament is obtained. When ecarrier transport in the I region is
characterized by significant lateral diffusion, the ultimate sharpness
of the filament becomes limited. For sufficiently large Ir it becomes a
good approximation to represent both the return and incident current
density profiles by Gaussians: (40) and (41), respectively. Although,
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as shown by (52), the return profile Gaussian continues to narrow with
increasing Iy, the incident profile saturates to a width determined
solely by diffusion, i.e., for a, — « we have a; — ap, where ap is
given by (38). Using at filament center vqa = pF = uVy/W and the
definition (85) of the transverse noise temperature, we find o% =
qV 5/4kT W2 Therefore, the width of the diffusion controlled filament
is independent of parameters characterizing the lateral extent of the
structure.

The small signal linear analysis of the magnetic response of the
PNIPN structure suggests that it may be regarded as a magnetically
controlled current source. The principal result of the paper, eq. (62),
relates the magnitude of the magnetic signal current Is to the drive
current Ip, the single-pass Hall deflection z;, and the incident current
density profile in the absence of diffusion. Noting that /2L repre-
sents the average current density (J;(x)) and that for any nonuniform
function (J%(z)) > (J:(z))? we see from (62) that Is/Ir will always
be larger than zy/2L, with the inequality increasing for progressively
sharper filaments. Since X z/2L is just the ratio of short circuit signal
current to drive current for an ideal Hall detector of dimensions W
and 2L, a clear advantage is indicated. A convenient measure of the
enhancement is given by the factor ¢V4(0)/3%kT in (64), where V,(0)
is the center-to-edge base voltage in the absence of the magnetic field.
This factor can be in the range 10 to 100. When lateral diffusion in the
I region is important, (80) must be used in place of (62). Equation
(80) involves the return profile J,(x) because J;(x) is explicitly re-
lated to J.(z) by the diffusion Green’s function. The sensitivity en-
hancement still depends on the sharpness of the current density
profile, but now, as shown by (83), an infinitely sharp return profile
J . (x) leads to only a finite enhancement factor, given in (86) in terms
of the fundamental parameters. Depending on the device geometry, the
enhancement factor can again be of order 10 or more. The parameters
which enter it are those pertinent to the diffusion-controlled filament
and do not include r or Ir. Although this limiting behavior follows
directly from the assumption of an infinitely sharp return profile,
the derivation of (82) and subsequent discussion makes clear that it
is also descriptive of the sensitivity when the return current profile
is only moderately sharper than the diffusion-broadened incident pro-
file. Because, within the limits set forth in Section V, the PNIPN
magnetic detector behaves as a magnetically controlled current
source, its useful output voltage is determined solely by the circuit
in which it is imbedded. For the circuit of Fig. 8, the device considered
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in the numerical calculation should have a sensitivity of 22 V/GA
when driven at Ir = 10pA.

An important feature of the PNIPN structure is the possible reduc-
tion of the offset level which is so troublesome in magnetic sensors.
There are various ways in which this reduction can be effected. Most
directly, the offset current, being of geometric origin, is not subject
to the enhancement factor experienced by the signal current, and
the signal-to-offset ratio is correspondingly improved. Furthermore,
the addition of matched external resistors, as in Fig. 8, permits ex-
ternal control of the offset because such resistors act as extensions of
the base layers, increasing the effective length of the device and thereby
making a percentage improvement in the tolerance. A quite different
approach to offset reduction is represented by the circuit of Fig. 9,
in which the device incidentally appears to function as a magnetic
current source. Analysis indicates that in this circuit configuration the
signal currents in the base layers will be summed in Ry, while the offset
currents will be nulled to first order, i.e., to the extent that they are
of the same magnitude in each base layer. While the circuit of Fig. 9
may not itself turn out to be practical, it illustrates that the device
can provide enough output information to make at least a first-order
distinction between the signal and offset.
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Design of Transmitter and Receiver Filters
for Decision Feedback Equalization
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We present the constructive design of finite order equalizer filters for
data transmission systems employing decision feedback equalization.
Both transmitter design with power constraints and receiver design with
ambient notse considerations are treated. Expressions for the filter tap
settings which maximize a signal-to-notse ratio are found for both baseband
pulse amplitude modulation and quadrature amplitude modulation
(QAM) systems. Design examples are given in a passband equivalent
(of QAM) formulation for an average toll telephone connection. Neglecting
the possibility of error propagation, these examples demonstrate that
decision feedback equalization requires fewer taps for acceptable system
performance as compared to linear equalization. The problem of post-
cursor size in a decision feedback equalized response is treated and shown
to diminish in importance when a hybrid equalization procedure s
imposed on the linear tap adjustment. The price one pays for allowing the
linear filter taps to reduce the postcursor sizes in this hybrid equalizer is a
lower stgnal-to-noise ratio.

I. INTRODUCTION

The advantage of using a nonlinear device, referred to as a decision
feedback equalizer, to cancel the tails of pulses whose amplitudes have
already been estimated in a PAM system has long been recognized.
Figure 1 depicts the typical system in which the decision feedback
mechanism has always been envisioned to perform this task. Namely,
by making decisions on a symbol-by-symbol basis and by knowing
the channel response precisely, a data system would be designed so
that postcursor (tails of preceding pulses) ISI could be eliminated
without the ambient noise penalty that a linear filter or equalizer
imposes. The tacit assumption being made in any decision feedback
implementation is that the signal-to-noise ratio is high without
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Fig. 1—Transmitter and receiver filter design.

equalization, and correct decisions are already being made with high
probability.

In this paper we consider the design of finite order nonrecursive
transmitting and receiving filters which counteract the two remaining
sources of noise, the precursor tails which are the interfering samples
of pulses whose amplitudes have not been decided upon, and ambient
noise, everpresent in a communication system. In addition we seek
the variation of the signal-to-noise ratio at the moment of decision
when the sampling time is varied. Along with this variation of the
criterion of system performance, we are also interested at each sampling
time in the amount of postcursor ISI noise which the decision feedback
mechanism is being asked to eliminate. This aspect of our investigation
yields insight into the feasibility of decision feedback system implemen-
tation. It is, of course, possible to design the transmitting and receiving
filters to achieve “hybrid”’ equalization between simple linear equali-
zation and decision feedback. That is, some of the linear filter’s
degrees of freedom will be used to combat some postcursor ISI,
although decision feedback is being used. The idea is to reduce the
possibility that large postcursor tails will be produced by a linear
filter whose sole job would otherwise be to reduce precursor ISI.

The system model we choose to work with is a sampled data or
discrete one. In addition, the channel and the system’s transmitting
and receiving filters are assumed to be of finite nonrecursive type.
Examples are discussed in a later section which involve voice-grade
toll telephone channel spectra. These spectra have been reduced to a
specified Nyquist equivalent bandwidth, both for baseband and
passband applications. The timing involved in going from continuous
waveforms to sampled data for these examples has been chosen to
maximize a signal-to-noise criterion before any filtering is done at the
receiver. Also, in the demodulation process for QAM, the carrier
phase angle, if fixed, can be absorbed by the receiver’s passband filter
taps. (For more detail on the system model we use in the following
sections, see Appendixes A and B.)
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This paper follows two previous documents'? that have dealt with
asymptotic performance results concerning decision feedback equaliza-~
tion. In these previous works, the filters assumed in the decision
feedback equalization scheme were of infinite length. In contrast, we
focus our attention here on designing filters of finite, implementable
length and study a channel which is modeled from transmission data
taken from the 1969-70 Toll Connection Survey of the Bell System.

II. TRANSMITTER AND RECEIVER FILTER DESIGN (BASEBAND)

We begin by referring to Fig. 1 and denoting the channel response’
by {h.}3’. We are seeking nonrecursive filter tap weights {a,}d and
{b.}d, N < M at the transmitter and receiver, respectively. We note
the total response through the system is then

{ra g2 = {an} (Rl {a} . ey

where * denotes sequence convolution.
If we decide to sample at time 7 and cancel* rx, £ > 7 through
decision feedback, then we can define a signal-to-noise ratio
r3

p(N, 7 a, b)éﬂm (2)
<r

representing the sampled signal in the numerator and two noise terms
in the denominator. The first noise term consists of the ambient noise
which is modified by the receiving filter. [We write b for (b, by, - -+, b,)
in EV+! Euclidean space with (a, b) as the usual inner product and
|b]|2 = (b, b) the usual norm.] We have assumed that the noise
samples are independent and of generalized variance’ ¢2 and that the
input binary stream of symbols is independently and fairly signed and
of unit magnitude. The second denominator term is a measure of the
precursor ISI.

2.1 Filter design by integral adjustment

If we assume that the transmitter filter is to be optimized indepen-
dently from the receiver filter we are then concerned with the

T Appendix A explains our use of the sampled response {hn}. We suppress the
constant multiplier 1/7" which converts the 27! coefficients to time samples (where
T is the time between samples).

¥ We choose to cancel all postcursors. In practice, only a few are cancelled and
others then become part of ISI term in (2).

§ By generalized variance we imply that a constant multiplies the true noise sample
variance. This constant takes into account the sampling speed at which we are
measuring the signal-to-noise ratio.
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response:
{gn}gﬁ-N = {a.}8*{ha}T". 3)

Define a = (ag, a1, -+, ay) and hy = (hg, by, -, le_n). We seek
the maximum of
_ (h,, a)
P(N, Ty a) - 0_2 + Z (hk, a)g (4)
k<t

subject to the constraint that ||aj|? = w2 That is, we place an average
power constraint on the transmitter. Hence, by constructing the
quadratic form induced® by the sum of bilinear forms (hs, a)?, we
reshape p (N, 7, a) into

(hy, 2)° )
r*(a, o’la) + (a, Qa)’
where I is the (N 4 1) X (N 4+ 1) identity matrix and @ is the
(N +1) X (N +1) positive semidefinite matrix (O r<r ho—ihi—j)

014 j=N with h.; =0, I > 0. By use of the Cauchy-Schwartz
inequality we find readily that the maximum of p(¥,,a) is achieved at

¢ _ sl + Q17h,
" DT + Q| ©

and the maximum is precisely

max p(N, r,a) = p(N, 7,a%) = (h,, W] + Q)7'hs). (7)

[lal|2=p2

P(N; Ty a) =

We note that the sequence (ho, by, - - -, h,) is mapped by the vector a*
into a sequence (gq, g1, - - -, g») Which the receiver is now expected to
process in forming the following signal-to-noise ratio:

e TES A ®

where
g = (g5, 9x—1, "+ *» Gr—n)-
Since p (N, 7, a*, b) is invariant to any scaling of b, we choose to

maximize the former with respect to ||b|| = 1. By the same argument
which led us to (6) and (7), we find

_ [/ +RI'g
10T + BT g

b* (9)
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and

1 * *
p(N) 7, a*) b*) = |]|:021—+R:|‘1g—:||(g” [021 + R:I—lgf)? (10)

where R is the (N + 1) X (N + 1) matrix (Ci<r gx—:195—y), 0 < ¢,
j = N. Hence, p(N, 7, a*, b*) in (10) represents the maximum signal-
to-noise ratio achievable through the integral or independent adjust-
ment of transmitter and receiver filters for a decision feedback system
committed to sampling at time 7 and constrained to use nonrecursive
linear filters of length N 4 1.

The difference between linear equalization and decision feedback
can be seen readily by observing the denominator terms of the follow-
ing signal-to-noise ratio:

(g-, b)?
p(N, r,a,b) = a"Hng + E, (gi, b)? + kz>r (g, D)¥

(11)

For decision feedback systems, the last term in the denominator
does not enter the picture because it is assumed it will be eliminated
without noise penalty. However, in linear equalization, the filter b
is expected not only to combat precursor ISI but postcursor ISI as
well, with as little compromise to ambient noise as possible. We can
rewrite (11) by assuming ||b|> = 1 (i.e., scaling irrelevant)

p(N, 7,8, b) = (&, bY 12)
[(e*I + By + R2)b, b7
where B; and R, are, as usual, positive semidefinite channel response
autocorrelation matrices. Here R; corresponds to precursor distortion
while R, relates to postcursor ISI. We notice that, if we form for
0as=s1

pe(N, 7,8, b) = (g, b)? (13)

A [(e*] + Ry + aR2)b, b’
we can continuously vary p.(N, 7, a, b) from the decision feedback
formulation where o = 0 to the linear equalization case where a = 1.
Thus, although we implement decision feedback equalization, it is
possible to design the transmitting and receiving filters so that the
amount of posteursor distortion is still mildly to strongly influential.
Of course, a more general formulation of this ‘“hybrid”’ design tech-
nique is possible by retracing our steps back to (11) and forming

p(N, r a,b) = (g, b)? (14)
T a*[|bl* + }; (Argr, b)?* + 2_:. (Argr, b)?
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where A, are (N 4+ 1) X (N + 1) diagonal matrices (obviously
Ay = I for the linear equalizer case).t

2.2 Joint optimization of transmitter and filter design (baseband)

In the individual design of transmitter and receiver filters treated
in the last section, we were able to find the optimal filters by a simple
rearrangement of interference terms and applying the Cauchy-
Schwartz inequality. We find that for joint filter optimization this
procedure will be slightly modified and additional steps will be taken
to arrive at the solution.

We recall that the total response of the system depicted in Fig. 1 is

{ra )8 = {aa 8 {ha} 8 (0, }E (15)
and the signal-to-noise ratio:
2
p(N, 7,2, b) = o B (16)

B+ 3 (e, B

where ¢ is the 2N + 1 dimensional vector formed from the sequence
{a,}8#{0.}8 and hy = (hg, he—y, * - -, he—2n ). Here again, p (N, 7, a, b)
is seen to be a continuous function of 2 and b and functionally in-
variant to the norm of b. Hence, we constrain our search for the
optimal b vector by imposing ||b|| = 1.

The transmitter power constraint was imposed in Section 2.1 by
lla]| = w2 In practical situations, the constraint is more likely to be
lla|| = w2 That is, we want to use only enough power to yield a suffi-
ciently high signal-to-noise ratio at the receiver. For example, we
constrain the receiver filter to be of unit norm since the norm is not
going to contribute toward the enhancement of the signal-to-noise
ratio at its output. Rather, it will be the transmitter filter power
output which determines the output signal-to-noise ratio to a large
extent. A way of solving the joint filter optimization problem with
constraints, then, is by permitting the transmitter power level to be
at that as-yet undetermined level so that the signal power through the
transmitter, channel, and receiver will be at a prespecified ratio to
that of the ambient noise. Hence, we have the following optimization

problem:
(axb, h,)?

max N, r,a, b) = max . 17
nh*a*bu=np( )78, b) In*a*b] =y 0% + 2 (axb, hy)? 1"
bl =1 Ibll =1 =

fof course, some constraint must be put on A, to make the maximization of p
meaningful.
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Proceeding as before, we obtain

2 —1
(asb)* = ko< %HTH + R) h,, (18)
(where ko is determined from the constraint ||hxaxb|| = ) with
2 -1
o(N, 7, a* b¥) = (h,, (%HTH + R) h,) , (19)

where H is the 2M + 1 X 2N + 1 matrix such that H (axb) = h*axb
where h = (ho, h1, hs, *-+, har). The matrix R is formed from the

> hx_shk_; terms. Now (18) can be written in its z—! transfer function
k<t
representation.

(axb)*(271) E(l 4+ oz 4 az? + -+ 4 agnz V)
AEMNB(E™) = kQi(z)Q:(e7) - - -Qn (27Y),

where & is a determined constant and the @’s are quadratic factors
with real coefficients. A choice of the quadratic factors for composing
A (z7Y) and B(z™") exists. However, since ||b*|| = 1 we are then left with
a determinable norm for a*. I'or cxample, we might choose

(20)

x(z) = Q™)
B*(z) = 0. (21)
Hence,
. A%E) = [Qu )| kQu() - Qe ™), (22)
with norm

1A% @] = kR 1Qe(™) - - - QazII.

Regardless of how the quadratic factors are assigned, B*(z™!) is
normalized and A*(27!) is then left with some norm value which may
be large or small. The total norm ||axh#b||, however, was chosen to be
n and for each receiver filter chosen from the quadratic factors of (20),
a corresponding |[A*(z71)|| results. It is of definite engineering interest
to seek that quadratic factor combination which minimizes |4 *(z™1)|],
but no obvious solution exists for this combinatorial problem. Other
considerations may come into play at this point which would obviate
the need for minimizing [[A*(z7)|. For example, a minimum phase
requirement for one of the two filters would delineate the two filters.
Roundoff noise considerations for digital filter implementations might
also contribute toward selecting one quadratic factor over another at
the receiver. Cost considerations may warrant the splitting of the
two filters into equal lengths (N even) so that the number of possible
quadratic combinations is reduced considerably. In any case, this
filter-splitting problem is akin to the quadratic factor placement
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problem in minimizing roundoff noise in digital filter implementations.
In Appendix D we outline a technique for separating the transmitter
and receiver filters.

Of course, it is possible to go through the same generalization on
posteursor and precursor equalization that we did for the integral
optimization problems of Section II. We obtain in that case

2 -1
o(N, 7, a*, b¥) = [h,, (%HTH 4R+ aRz) h,] (23
where
2 -1
asb = k0< ;—QHTH + R+ aR2) h, (24)

and where Ri(R.) is the matrix corresponding to precursor (post-
cursor) interference terms and 0 < « < 1.

1ll. PASSBAND FORMULATION

It is possible to extend the results outlined in the previous sections
to the passband equivalents of transmitter, channel, and receiver for
a quadrature amplitude modulation (QAM) system.! The extension
of results is not without complications, since QAM systems suffer
from another form of distortion—co-channel interference (CCI).
Thus, the transmitting and receiving filters will be expected to combat
not only ambient noise and ISI but also co-channel intersymbol
interference (CCISI).

3.1 Integral optimization

We begin by referring to Fig. 2 which illustrates the QAM system
with decision feedback. We are interested in the transmitter and
receiver filter designs so that a measure of transmission performance
is maximized. Namely, we seeck to maximize a sampled signal-to-
generalized-noise ratio similar to that defined in (2). To define the
terms which will appear in our performance measure, we note that
the “in-phase’ response at the receiver is

{rP38Y = {a@ [ {AP} (0P} — (A2} Mx{b{8}]]
— {a® 1[PPI+ {bP 1 + {RP}3{P}E],  (25)
while the “quadrature” response at the receiver is
(Y = (o LY BON + () (501
+ {0101 — (RO} (26)
T We will not concern ourselves with the problems of carrier acquisition and timing

for the QAM system we consider here in discrete form (see Appendix A for a discus-
sion of these items).
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Fig. 2—QAM data system with decision feedback equalization.

Each channel response has two ISI components, an in-channel inter-
symbol interference term and the other due to co-channel interference.
We notice that the CCI is completely eliminated if {b{”} = {hi?}
and {b{®} = {r{"}. However, in our considerations we will always
assume M 3> N so that our filters do not have a sufficient number of
degrees of freedom to eliminate CCI (also, this action does constitute
suboptimal filtering).

We form the in-phase resultant signal-to-noise ratio for independent
input channels, independent symbols of unit magnitude with equal
chance of occurrence and uncorrelated noise samples of variance o
We first treat the case where the receiver filter is all pass (i.e., b = e,
the identity vector in the algebra of convolution)

[@9,0) — @@, b
g + Z [(a(p), hl(cp)) — (a(Q)’ hl(f)):|2 4.
k<r
+ ¥ [@2,h9) + @, 50T, @D)

k=t

PS(N7 T, a, b) =
b=e

Now we define
a = [a(ﬂ), a(tI)]
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and h, = [h¥®, —h®7] and h¥f = [h®, h®], vectors of 2N + 2 unit
length. Hence, we can rewrite (27) into

(a, h,)?
o? + E (a) hk)2 + kz( (a) hit)z

Pa(]:r;eﬂ a, b) = (28)

In (27) and (28) we have tacitly assumed that at the receiver each
channel will “talk” to the other for the purpose of cancelling post-
cursor CCISI also.t That is, we have assumed a dual system of decision
feedback equalization is being implemented.

The maximization of p,(N, 7, a, b) subject to b = e and ||a|]> = w?
leads to a solution similar to that of (6) and (7):

H-l:[l._20'2-[ -+ Q + Qc]_lhf

S (72 N TN 29)
"rﬁlxza_xzp(N 7,a,b) = p(N, 7, a% e)
_ phy, (W’ 4+ Q + Q.)7'h,) (30)

|”:#_20'21 + Q + Qc]_lh'r“ ’

where @ and @), are respectively the in-phase and co-channel correlation
matrices similarly formed, as was the @ matrix of (6). The a* vector
of (29) separates into a*® and a*(® and the conditionally optimal
transmitter bandpass filter is completely specified. Following the
procedure in Section II, we now hold the transmitter design fixed
at a* and rewrite (25) as

L P e Ll L3
- {b(‘”} {{a;(”)} *{h(q)}M}
— {b’(ca)}o*{{a;(q)}N*{h(p)} }
{b(p)}N*{{a'(q)} {h(”)}} (31)
= [b)§ {7 )34 — (glo}ir)
— (B0} {gl )Y + (g0 )3, (32)
M+N

where {gi”}¥*N, u = pp, pq, qp, qq are recognizable from (31).
We can now write the expression for p(N, 7, a*, b) as

. 3 [(b(”), g1(_p)) — (b(a) (a))]z
P D) = Gl g (6,27~ B, cFF 3
Z L@, g + (b, g, (33)

t Also, we are assuming we will eliminate all posteursor ISI. However, in practice,
only a fow postcursors would be removed. Thus, some postcursor terms would appear
in the denominator of (28) in that case.
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where
g? = (g — g, g — 910, - -+, g7 — gi%), (34)

and similarly for g{. To maximize p(N, 7, a*, b) subject to |[b]| =
we first form the concatenated vectors of 2N 4 2 length:

= (b7, b9, g = (g, —gi’), gi= (g2, g"). (35)
Hence

* . (b7 gf)2
p(N, r,a* b) = 2Bl + ,;, ™, gr)? + kzs: b, g9)°’ (36)

and we proceed to find that
max p(N, 7,a% b) =[g, (¢’ + R + R)™g] (37)

b }=1

achieved at
(O'ZI + R + Rc)_lgf
[(*I + R + Ro)™'g.||’

where R and R, are channel response correlation matrices of the type
encountered before.

b* =

38)

3.2 Joint optimization

To jointly optimize the transmitter and receiver passband filters, we
follow virtually the same procedure found successful for the baseband
case. A comparable factorization problem arises here, for which only a
combinatorial solution seems to exist.

The in-phase and quadrature responses through a passband trans-
mitter, channel, and receiver are given by

PP} = (R} ([0l 18+ {0} — {af®}3*{b}E)
— {38 ({a )+ {0210 + {af® 10+ {0717)  (39)

[HP Y = (BN (P (D@1 + (a0 Fx(b))
+ (R (a [ (6P — Lo )b 1), (40)

Rewriting (39) and (40) in terms of a combined passband filter with
responses ¢® = {¢}2 and ¢c@ = {c@}3V

(PR = ()3 — (PNl (D)

{r)(ca)} gl+2N= {h(zz) 161*{0}(541) + {h,ﬁ”’}M*{c“’) , (42)
we form the augmented vectors ¢ = [¢@, ¢ ],

he = (M7, b2y, -, B2an, —RP, -+, —hiZan)
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and
hie = (hl(cm, hl(cq)-ly ) h(q) 2N) £”), © £7)2N) h(") = 0 k< 0 n = p,q.

Our signal-to-noise ratio becomes for the in-phase channel:

P T E T SB[+ (Be, o) + (Bee, o)
where R and R, are the now-familiar channel correlation matrices and
b = (b®, b(®), It is easy to show that the norm of the receiver filter
is irrelevant in the maximization of p(N, 7, c). Hence, we choose
IIbl| = 1. We now specify the amount of signal power n? we will need
at the receiver upon choosing the optimal filters. That is,

M+2N
];] l(hk, C)|2 +I (hf, C)|2 = 7’2- (44)
But (44) can be rewritten
Q9 _y, (45)

where @ is a sum of two correlation matrices. Hence, (43) then yields
the problem:

maX ooy (c, h.)? (46)
"b" _1n26__nci + (Rc, c) + (R, c)
to which the solution is
_ (—Q+R+R>lh, (47)

and
p(N, 7, c¥) = [h,, ("ni? +R+ Rc>_lh,].

The constant k& is determined from the constraint that (Qc, c) = 7%
Since ¢ = (¢@, ¢®) and the vectors (a‘®,a@) and (b®, b(®) all
make up ¢® and c¢(?, we encounter a factorization problem. We can
choose (b b(?) normalize the receiver filter, and then are left with
the transmitter filter which has a given norm. This norm is then the
transmitter power required to produce 5%/¢® generalized signal-to-
noise power at the receiver.

IV. EXAMPLES

To illustrate the difference in performance between decision feedback
and linear equalization, we have taken a telephone DDD toll connec-
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tion as a linear channel model. Specifically, we would like to know the
difference in performance on a telephone connection when both linear
and decision feedback equalization schemes are constrained to use a
finite number of taps. For comparison, we compute the performance
asymptotes (infinite number of taps) for each equalization scheme
(see Appendix C) realized when an infinite number of taps are available.
We ask whether it is possible to approach these asymptotes with a
reasonable (implementable) number of taps. Another point which is
raised in every implementation of decision feedback equalization is
that of postcursor size. If a mistake in symbol identification is made,
then the subtraction, for example, of an erroneously signed postcursor
may lead to a burst of errors if the postcursor size is large. We illustrate
the postcursor sizes for a passband decision feedback equalization
system operating on an average tclephone connection.

Figure 3 illustrates the magnitude characteristic of the average
DDD toll telephone connection as measured in the 1969-70 Toll
Connection Survey of the Bell System. The corresponding delay
characteristic follows a parabolic shape and has been numerically
integrated to yield a phase curve. As discussed in Appendix B, the
bandpass channel parameters have been calculated for various carriers
and various flat Nyquist spectral widths assumed at the transmitter.
The spectral width was controlled by superimposing a cosine rolloff
(400-Hz width centered at the Nyquist frequency) on the in-phase
and quadrature spectra. Figures 4 and 5 show typical passband spectra
computed for this channel. When this decomposition of the bandpass
channel into in-phase and quadrature responses is achieved, it is
possible to compute the performance asymptotes for linear and decision
feedback equalization given in Appendix C. The result of these compu-
tations is shown in Table I. It is seen that performance decreases

0

LOSS IN DECIBELS

_30 | | | |
0 800 1600 2400 3200 4000

FREQUENCY IN HERTZ

Fig. 3—Average amplitude characteristic for toll telephone connection (from
1969-70 Toll Connection Survey data).
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CARRIER = 1650 Hz

RAISED COSINE ROLLOFF OF 200 Hz
CENTERED AT 1200 Hz

LOSS IN DECIBELS

—20 | | ] 1 1 |
0 200 400 600 800 1000 1200 1400

FREQUENCY IN HERTZ

Fig. 4—Quadrature amplitude characteristic for average toll telephone connection.

with data rate and slightly with increased carrier frequency. The gap
between decision feedback and linear equalization widens as speed
is increased. For all computations, we have kept the total transmitted
power through the channel fixed at —12 dBm, whereas the noise power
spectral density was kept at that level corresponding to total noise
power of —48.3 dBm over a 0-3000 Hz bandwidth. This noise level
is 3 dB weaker' than the average noise power measured in the 1969-70
Toll Connection Survey.

A finite length receiving filter was increased in length until perform-
ance was reasonably close to the asymptote given in Table I for that
speed and carrier. Figure 6 illustrates the difference in performance
between decision feedback and linear equalization. It is seen that less
than half the number of taps are required by the decision feedback

—15

CARRIER = 1650 Hz

—25
F RAISED COSINE ROLLOFF OF 200 Hz
CENTERED AT 1200 Hz

LOSS IN DECIBELS

_35 ] l ] ] |
0 200 400 600 800 1000 1200 1400

FREQUENCY IN HERTZ

Fig. 5—In-phase amplitude characteristic for average toll telephone connection.

T Noise level was made weaker only for computational convenience.
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Table | — QAM transmission asymptotic SNR in dB for average
toll telephone connection
Noise at receiver — 48.3 dBm; transmitted power — 12 dBm

Carrier = 1650 Hz Carrier = 1700 Hz Carrier = 1800 Hz
Rate in

Baud/ch.

LE. | DF. | MF. | LE. | D.F. | M.F. | LE. | DF. | M.F.

2400 31.4 | 319 | 321 | 30.7 | 31.6 | 31.9 | 29.2 | 30.9 | 31.6
2600 313 | 315 | 317 | 311 | 313 | 315 | 30.5 | 30.9 | 31.2
2800 27.3 | 304 | 311 | 285 | 30.2 | 309 | 288 | 299 | 305
3000 27.8 | 29.8 | 306 | 27.8 | 29.6 | 304 | 255 | 28.7 | 29.9
3200 25,5 | 20.0 | 30.1 | 25.1 | 28.6 | 299 194 | 274 | 204

L.E. = Linear equalization asymptote. D.F. = Decision feedback asymptote.
M.F. = Matched filter bound.

equalizer to achieve a level of performance close to the asymptote.
In addition, the linear equalizer even with its 36 tap length per channel
could not keep an acceptable performance level when the data speed
was increased to 3200 symbols/s/channel. On this basis, the premise
that decision feedback equalization has significant advantages over
linear equalization may be too readily accepted. For, if we examine
postecursor sizes on one of these equalized bandpass channels, we can
see that the high signal-to-noise ratio offered by decision feedback
does not come without penalty. Figure 7 illustrates sample sizes of a
toll telephone channel equalized with a 16-tap (8-feedback) decision
feedback equalizer. The precursors, or samples before the main sample
peak, are too small to be seen on this scale. However, it is clear that
the postcursor adjacent to the signal sample, which is greater than
half the latter’s size, presents a problem. Should a decision error oceur,
the next signal sample could have its polarity reversed, since more
than twice its strength could be subtracted out by the decision feed-
back processor. Thus, error propagation is possible with only a single
mistake providing the ignition. Let us recall the hybrid equalization
scheme discussed in Section II. We note in Fig. 8 that, for an alpha
value of 0.01, we diminish the size of the large postcursor and more
evenly distribute the heights of all the postcursors to be subtracted
by the decision feedback processor. It is now apparent that no one
posteursor is large enough to reverse the polarity of the signal should
a decision error occur. It will take several consecutive decision errors,
for example, before this can happen now. However, we lose 1 dB in
signal-to-noise ratio for this example when we opt for this mitigation
of the postcursor size problem. Of course, a trade-off exists between
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Fig. 6—Performance of finite equalizers for average toll telephone connection.

the loss in signal-to-noise ratio and reduction of postcursor size by
means of this method.

V. SUMMARY

We have treated the design of finite length transmitting and
receiving filters for a data system employing decision feedback
equalization. Our purpose here was to examine the difference in
performance between linear and decision feedback equalization on
a given data channel. Sequential and joint optimization of trans-
mitting and receiving filters were treated for an all-Nyquist equivalent
data system. Although the solutions for the optimum tap settings
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Fig. 7—Postcursor size problem and mitigation.

and signal-to-noise ratio were derived in general terms, applying the
results to the spectrum of a toll telephone connection was of special
interest. For this channel example, it was found that fewer filter taps
were required for decision feedback equalization to achieve a reason-
able performance level. The problem of postcursor size for an overall
response of a passband decision feedback equalized system can be
mitigated by a hybrid equalization scheme. The price for allowing the
linear filter taps to diminish the postcursor sizes in this hybrid equalizer
is a lower signal-to-noise ratio.

APPENDIX A
Details about the discrete channel model

The lowpass filters in the A/D or D/A conversion process shown in
Figs. 1 and 2 delimit the channel frequency band which supports data

)
ALPHA =0.01
LOSS IN SNR: 1dB
SIGNALING
PERIOD

IN-PHASE RESPONSE I—I l_l —

I

QUADRATURE RESPONSE

Fig. 8—Total impulse response hybrid equalization.
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transmission. Hence, the channel can be seen as a bandlimited medium
and can also be reduced to discrete form for M sufficiently large:
. 3 T

H(f) = 3 = haeimoT |55,
where T is the data symbol interval or 1/27T is the Nyquist frequency.
The point here is that {h,} is dependent on the timing chosen for
this reduction. Obviously, a timing exists which maximizes a signal-
to-noise ratio, for example, of the unequalized response. We have
found by experimentation that this timing was an excellent approxi-
mation to the timing which leads to a maximum signal-to-noise ratio
after equalization.

For a bandpass channel, the decomposition into discrete form takes
place in two steps. First, a carrier frequency is chosen, and in-phase
and quadrature spectra are then computed. A constant carrier phase
is then a variable parameter. However, it is easily shown that this
carrier constant can be absorbed by either the demodulation process
or the passband equalizer tap settings.

It is important to recall that the time samples of the spectrum

M
H(f) = & hoemimer
n=0

1 . . . . .
are {T—~hn}3’ . Hence, in the formation of the signal-to-noise ratio:

h2
P = eTr ¥ 181

we form the generalized variance parameter ¢*T? where o? is the noise
sample variance. This accounts for this transformation from Fourier
coefficients {h,}¥ to time samples {1/T-h,}3.

APPENDIX B
Channel data from 1969-70 toll connection survey

The average loss and delay measurements of over 600 toll voice-
grade connections made in a 1969-70 survey are recorded in Ref. 4.
For our channel model, interpolative curves were constructed from
the average survey measurements made on 20 frequencies. A linear
loss slope was appended at the lower frequency end to extrapolate loss
down to zero frequency. The slope of the loss curve in decibels at the
lowest measurement frequency (200 Hz) was used for this extrapola-
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tion. A constant was added to the integrated delay curve to achieve
zero phase at zero frequency.

Passband responses at several carrier frequencies were then formu-
lated from the interpolated baseband data. An impulse response was
calculated for each in-phase and quadrature channel. Timing for the
two channels was chosen to maximize the squared sampled signal to
mean square ISI and CCISI before the receiver filter. One hundred
eight Nyquist samples ({hP}32 and {AL}§) represented each
passband channel.

APPENDIX C
Asymptotic MSE as derived by Falconer-Foschini*
We list here the formulas for the MSE as achieved by linear equali-

zation and decision feedback for passband systems (here, independent
binary =1 transmission is assumed with No/2 input noise spectrum).

MMSEie = [ 7( 50 XD 1) (48)
(MMSE)a; = exp {T f”” 10g<X0(f) n 1) 1df} . 49)
where -
%) = 3 2 |6(r+3) +ie(s+ )

ol(f + %) + jog(f + ,j—;) :

The passband transmitter and channel characteristics are denoted
by Gi1 + jG@y and C; + jCs, respectively. For comparison purposes,
it is simple to show that the matched filter bound is

(MMSE),( = ‘T f”” (X"(f) + 1)df} . (50)

—1/27 No

It is of interest to note that we can prove that expressions (48), (49),
and (50) follow the sequence

(48) = (49) = (50)

by invoking Jensen’s Inequality for the logarithm as the concave
function. It is clear that, for the ideal channel and transmitter, i.e.,
Xo(f) = 1/T, we have

(MI\/ISE)“near = (MN.[SE)df = (NIMSE)mf =

1
14 (NI
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APPENDIX D
A technique for separating transmitter and receiver filters

We wish to determine that factorization of
N
A@EDB(ET) = 1 Q.(™),
n=0

which minimizes ||A (z71)| while |B(zY)|| = 1. Each
@z =1+ afP2! 4 afz?

is a quadratic factor. We assume no real roots occur, although the
extension of the technique we present here to include real roots is
obvious. Now

”Q"(z—l)llz = /j|Qn(e—j21rfT) lzdf =14 (a{”’)2 + (aén))2-

We notice that, upon choosing B(1) = I Q.. (¢! (where
nsENB
NzUN4 = {0,1,2, ---, N}), then '

[AEH)I =1 II QuEMHI II QeI (51)
nx&Np nm EN4

Thus, what we really want to do is select a partition of the @y factors
so that the product of the norms of the partition factors is minimized.
Much like the quadratic factor partitioning problem in digital filter
implementation for minimizing roundoff noise, the only method for
obtaining the global minimum of ||4 (z)!| seems to be the formation
of all possible combinations of quadratic factors. When N is large,
say, 20, this combinatorial method is time-consuming even when the
filters are forced to be of the same order.

A technique for constructing the partition which sequentially
minimizes || 4 (z7)|| is first begun by reordering the quadratic factors by
norm {@.:}{<e. We think of the two norms of (51) as bins, and we
sequentially fill those bins with quadratic factors. We insert one of
two quadratic factors of largest norms into the first bin and the second
factor into that same bin. We evaluate the norm of the first bin and
now compare it to the product of the norms of the individual factors.
Whichever placement results in smaller norm product, we choose as
our partition initialization. Thus, at the end of the first step we have

either
binl bin2

[1Qn, @l [I11]
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or
bin1 bin 2

@[l 1@,

depending on which product is smaller. The next factor, Q. , is brought
into the current partition and the products again are tested as to
whether @,, minimizes the product when placed in bin 1 or bin 2.
The process continues until all quadratic factors are placed into
either bin.

This procedure has been programmed and tested on actual filter
quadratic factors. It has been our experience that the resulting factori-
zation was close to the optimal one. To cite an example: Ten quadratic
factors were randomly placed into two bins 500 times. The product
of the norms of the two bins’ contents ranged from 0.584 to 1183.33.
The partition which our procedure yields for this set of quadratic
factors had the product value of 0.646. Only 36 of the 500 partitions
yielded smaller products. But little could be gained by using any of
these 36 partitions. However, the worst partition was four orders of
magnitude away from the outcome of our procedure. This is possibly
what is most important, namely finding a partition very far away
from the worst one.
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Some Properties of the Erlang Loss Function
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This paper develops the properties of the Erlang loss function, B(N, a),
used in telephone traffic engineering. The extension to a transcendental
function of two complex variables is constructed, thus permitting the
methods of complex analysis to be employed for the further study of its
properties. Exact representations, Rodrigues formulas, and addition
theorems are given both for the loss function and for the related Poisson-
Charlier polynomials. Asymptotic formulas and approzimations are
developed for the loss function and also for its derivatives. A table of
coefficients is included which, together with one of the asymptotic formulas,
permits computation of B(N, a) by simple means even when the number
of trunks, N, is very large. This same table is used to obtain dB(z, a)/dzx.

I. INTRODUCTION

The Erlang loss function

B, a) =4 /5 ¥ (1)

is fundamental to the study of telephone trunking problems. A. K.
Erlang! used B(N, a) to express the probability that a call, which is a
member of a Poisson stream of parameter a, arriving at a group of N
telephone trunks will be rejected. Later studies of trunking problems
have shown the desirability of enlarging the scope of applications of
the loss function. For example, the consideration of trunk groups with
nonintegral number of trunks arises in determining the equivalent
number of trunks in Wilkinson’s ‘“‘equivalent random method.” 2
Methods for accomplishing the computation by interpolation are given
by Rapp® while continued fraction procedures for accurate computa-
tion are given by Levy-Soussan® and Burke.5 Derivatives with respect
to N and a arise in optimal trunk group size apportionment problems.
See, for example, Akimaru and Nishimura®-? who studied such models
525



and prepared tables of derivatives. In some investigations, rapid and
accurate approximate computations of B(N, a) for very large trunk
groups are needed. This occurred in the study of certain satellite
telephonic communication problems.®® The need thus arises of en-
larging the definition of B(N, @) as given in (1). Of course, that is done
implicitly in the above investigations. It has been customary to extend
the definition of B(N, a) by use of an integral formula (Theorem 3)
ascribed to Fortet. This integral formula is used in (23) to define a
transcendent, B(z, a), for complex z and «. The extension to the complex
plane in both z and « permits the powerful methods of complex analysis
to be applied for obtaining exact, asymptotic, and approximate
representations.

It is the purpose of this paper to provide an investigation into the
properties of B(z, ) with the object of generalizing known results,
obtaining new results, and presenting practical methods for application
to the class of problems outlined above.

Part IT derives exact relations satisfied by B(z, «). Similar relations
for the related Poisson-Charlier polynomials, G;(z, ), are derived in
the appendix. These relations provide efficient means for exact com-
putation; thus, Theorems 1 and 2 constitute a practical method of
computing B(N, a) to a prescribed accuracy for isolated computa-
tions. Similarly, the use of Theorem 5 enables one to compute B(z, &)
even for nonintegral number of trunks. Theorem 6 may be similarly
employed. The relationship of B(z, a) and G;(z, ) to Whittaker func-
tions as given in Theorems 7 and 24 is the key for linking up these
functions with the more well-known functions of applied mathematics,
i.e., hypergeometric functions and Laguerre polynomials. The Rod-
rigues Theorems 8 and 22 are useful for the evaluation of integrals
of the form

/ F (@)a-te—*B(N, a)-‘da, / F (@)are—Gy(z, ayda  (2)

and, as in the case of Theorem 22, for obtaining an integral representa-
tion. The addition Theorems 9, 10, 26, and 27 yield group-theoretic
structure information which is useful for simplifying formulas contain-
ing these functions, and for the evaluation of integrals. The evaluation
of an integral, by means of generating functions and Theorem 10, was
done in Part IV to obtain ultimately an approximate formula for
dB(x, a)/dx. A general use of the exact relations is to serve as a spring-
board for asymptotic and approximate results and also for their error
estimations. This is well illustrated in Part III of the paper.
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The asymptotic expansions of Part III are also representations of
B(z, ) but, unlike those of Part 11, when used as approximate formulas
for computation they cannot yield results of arbitrarily high accuracy,
i.e., the accuracy depends on specific values of parameters. Theorem
11 is particularly useful for computation when |z/«| is small. It may
be used for the computation of B(z,a) for fractional number of trunks
by computing B(z, «) for 0 < z < 1 and then using the recurrence
formula of Theorem 4. Theorem 11 includes well-known asymptotic
results, e.g.,

-1
B(-—%,a) =\/'7r—ae“(1—erf\/5)~1—%a_’+§a—2

it o, B
B(—1,a)'= —ae*Ei(—a) ~1 —a '+ 2!a?
—3la? 4+, a— o,

An undesirable feature of many methods of computing B(z, a) is the
dependence of the computational effort, e.g., time of computation, on
the value of x; thus, the larger the value of x the greater the computa-
tional effort. Theorem 14 overcomes this defect; the computational
effort is independent of the size of 2. Theorem 14 is easily usable even
with a desk machine regardless of how large = is. The accuracy, how-
ever, depends on x and a parameter ¢. For fixed ¢ the accuracy improves
with increasing . When z is fixed, the accuracy deteriorates when ¢
is large and negative but greatly improves as cis increased. To facilitate
the use of Theorem 14, Table I gives required coefficients, namely,
ao(c), ai(e), az(c). To use the table, one computes

a — X
¢ = \/’;) (4)

then

Bz, ) = a0V + arfe) + 2. ()
Vz

Possibly, one should comment that the range of values of z, ¢ for
which (5) is accurate is not as important as the fact that it is accurate
over a wide range of values of B(z, a), that is, values encompassing
the ranges of most applications. For quantitative limitations, see Fig.
1. A method of obtaining dB(z, a)/dx based on Theorem 14 is given
in Part IV. This uses the formula

dB(z, a) ~ _ B(z, a)? (a _ ‘E’)
ox - Nz 0
T+ a
2x

m@@{2—1+3@w)‘<m
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Table | — Coefficients for evaluation of B(x, a) and 4B(x, a)/dx

i)
*

i)
*

o ax as

225.3 2032 13726
167.7 1367 8536
126.0 925.4 5334
95.63 630.5 3348
73.28 432.2 2111
56.70 208.0 1336
44.29 206.7 848.1
34.92 1441 540.2
27.80 100.9 345.0
22.33 71.07 220.7
18.10 50.27 141.4
14.80 35.71 90.70
12.21 25.49 58.17
10.16 18.27 37.28
8.521 13.15 23.86
7.2056 9.522 15.23
6.139 6.936 9.692
5.271 5.090 6.141
4,557 3.772 3.872
3.968 2.830 2.430
3.477 2.159 1.519
3.066 1.682 | 0.9486
2.721 1.344 | 0.5960
2.428 1.108 | 0.3816
2.178 | 0.9435 | 0.2540
1.964 | 0.8318 | 0.1804
1.780 | 0.7580 | 0.1398
1.620 | 0.7112 | 0.1187
1.481 | 0.6840 | 0.1089
1.360 | 0.6705 | 0.1052
1.253 | 0.6667 | 0.1044

Qo ay [+2)

0.8230 | 0.7274 | 0.1011
0.7749 | 0.7414 | 0.0985
0.7313 | 0.7552 | 0.0954
0.6917 [ 0.7686 | 0.0920
0.6557 [ 0.7814 [ 0.0883
0.6227 | 0.7937 | 0.0845
0.5926 | 0.8053 | 0.0806
0.5649 [ 0.8163 | 0.0767
0.5394 | 0.8267 | 0.0729
0.5158 | 0.8364 | 0.0691
0.4940 | 0.8455 | 0.0654
0.4739 | 0.8540 [ 0.0619
0.4551 | 0.8619 | 0.0585
0.4376 | 0.8694 | 0.0552
0.4214 | 0.8763 | 0.0521
0.4062 | 0.8828 | 0.0492
0.3919 | 0.8889 | 0.0464
0.3786 | 0.8946 | 0.0438
0.3661 | 0.8999 [ 0.0413
0.3543 | 0.9049 | 0.0390
0.3432 | 0.9095 | 0.0368
0.3327 | 0.9139 | 0.0347
0.3228 | 0.9179 | 0.0328
0.3134 | 0.9218 | 0.0309
0.3046 | 0.92564 | 0.0292
0.2962 | 0.9287 (| 0.0276
0.2882 | 0.9319 | 0.0261
0.2806 | 0.9349 | 0.0247
0.2734 | 0.9377 | 0.0234
0.2666 | 0.9403 | 0.0222
0.2600 | 0.9428 | 0.0210

U

et e

e
OO O0O0 00000000 RN S S L NN NN RN DN ®
=HNNWER IO TWWOO=INNWHR IO OCO=NWERAROIOI~JOOO

BOOWWWWWWWWWINNRNNNNNNNNE R, E 0000
CoPNOUIBW OOV WO LN TR W~ DN

1 1.159 | 0.6696 | 0.1048 0.2538 | 0.9451 | 0.0199
2 1.076 0.6771 0.1052 0.2478 0.9473 0.0189
3 1.002 0.6877 0.1052 0.2421 0.9494 0.0179
4 0.9357 0.7000 0.1045 0.2367 0.9514 0.0170
5 0.8764 | 0.7135 | 0.1031
a—zx
Calculate ¢ = ——, then
‘J; )

B(z, )™ ~ apVz + a1 + as/V,

dB(z,a) B(z, a)? _a\ r+a {:f_ }
0 = ——M (ao o %7 B(z, a) 2 1 4+ B(z, a)

* Standardized offered load.

It is appropriate to mention, at this point, another method of approxi-
mating B(z, a) by means of a formula whose computational effort
is also independent of = and which, similarly, is applicable over a wide
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Fig. 1—Five-percent-error contour.

range of values of B(z, a). This method is described in Refs. 10 and 11.
A comparison of this method with that of Theorems 1 and 2 is given
at length in a report by S. Miller.?

Derivatives and inequalities on derivatives are given in Part IV.
Theorem 15 extends the well-known derivative formula for B(z, a)
with respect to the real variable a. Theorem 17 provides an accurate
approximation for 8B (z, a)/dx. Empirically, the accuracy seems to hold
to four significant figures or better over a very wide range of values
of z and a. Of significance is the corollary which shows that the ap-
proximate value obtained is always too small. If a quick appraisal of
the derivative is desired, Theorem 18 may be used. The logarithmic
convexity properties of B(z, a) given in Theorem 19 provide the useful
bounds of the corollary on the second derivatives. Also an application
is given to the logarithmic interpolation of Theorem 20. This is very
useful when, for example, one wishes to compute B(z, a) for x be-
tween consecutive integers, say N, N + 1, and for which B(N, a),
B(N + 1, a) are known. An extension of this idea is provided by
Theorem 21 which permits accurate computation of B(z, a).

It may be remarked that generally relations, representations, and
asymptotics for B(z, «)™! are simpler in structure than those for
B(z, @) and may provide greater numerical accuracy in computations.
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Il. CONVERGENT REPRESENTATIONS

The study of telephone trunking problems, whether in equilibrium or
transient condition, or even nonstationary,’* engenders the Erlang
loss funection, B(N, a), which initially arises in the form®

aVv S Y @ .
B\N,a) =~/ 2 —, N = 0 (integral), a > 0. )
N! 7=0 ]!

For these reasons and for the purposes of studying certain forms arising
in queuing theory related to B(N, a) and also for the facilitation of
numerical evaluation, it is useful to represent the loss function in
diverse ways.

The numerical computation of B(N, a) as given in (7) is awkward
when ¢ and N are large since then both numerator and denominator
are large. A form well adapted to numerical work is

N
B(N, )t = 3. NWa,
=0 (8)
NO®O =1, NO=NN-1)---(N—j+1) (4>0),

which follows from

NN! . N N ‘ N L
-1 = — —N — — ! = g—
B(N, a) j=§0 7 a’ j§=0 W j)!a g j§=0N Na=3.  (9)

A modified form of (8) is given in Theorem 1.

Theorem 1:

y—1
B(N,a)*t =3 NWag 74+ N®g*B(N — », a)7}, y =20
=0
Proof : Since
NG = NO(N — »)@) (10)
one has, from
v—1 N
B(N,a)'= Y NWa+ 3 NW@qg 11
=0 =

N N—v N-—v
(Dg—i = G g—i—v = NWg— — ) Dg—i
> NWqg > N a N®g™ > (N — v)@Pa
0

i=v =0 ]=

N®a7B(N — », a)™. (12)
The formula of the theorem follows from (11) and (12).
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Corollary : The case v = 1 implies the known'* difference equation

1
N
aB(N — 1, a)

R. Franks suggested using the value of B,(N, a) defined by

v—1
BN, o) =1 / T NGa-i (13)
F=)

BN, a) =
1+

to approximate B(N, a) in which, for any small number 4 > 0, the

index » is chosen so that
N®g— < g, (14)

Theorem 2 bounds the error of the method.

Theorem 2:
B,(N,a)(1 —n) £ B(N, a) £ B,(], a).
Proof: From Theorem 1 one has

1
B,(N, a)* 4+ N®g*B(N — v, a)™*

Thus

= B(N, a) < B,(N,a). (15)

B(N, a) _ 1
B,(N,a) 1+ N®a+B,(N,a)B(N — », a)~"’

Since N g~ is strictly monotone increasing as a function of N, (8)
shows that

(16)

B(N 4+ 1,a) < B(N, a) 17
for all N = 0; thus

BN, a) _ 1

BN, a) =1+ 1B,(N, ®)B(N, a)*’ (18)
and hence |
B(N,a) ., _
B, o= " (19)

The theorem follows from (15) and (19).
An integral representation, ascribed to Fortet,® may be obtained for
B(N, a).

Theorem 3:
B(N,a)! = af e*v(1 + y)¥dy.
0
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Proof : From the Eulerian integral

/ “eeuidy = T( 4 DaY, 1> — 1, (20)
0

one obtains
N@g=i=gq (Zj) fw e ovyidy. (21)
0
Use of (8) now yields

BN, a)' = a/

0

0 N 0
e 3 (N> yidy = a/ e=v(1 + y)Ndy. (22)
=0\ J 0

The integral representation now permits extending B(N, a) into
the complex plane with respect to both N and a. One defines

B@wﬂ=¢[wwa+ww (23)

in which 2, @ may both be complex. Clearly, B(z, &)~ is an entire func-

tion of z for Re o > 0 (Re designates ‘“‘real part’’). The symbols N, a

will be used for nonnegative integers and positive reals, respectively.
A generalization of Theorem 1 is given in Theorem 4.

Theorem 4:
v—1
Bz, @)t = Y 2Wa~7 4+ 20a"B(z — », a)7, Rea > 0.
=0
Proof : Integration by parts of (23).
It is of interest to investigate the relationship of B(z, &) to the func-
tion

Ve @) = e e (24)

which is an extension of the Poisson distribution function, ¢ (N, a),
with parameter a. The function ¢ (N, @) is a good approximation to
B(N, a) when a is much less than N. Exact relations between B(z, a)
and ¥ (2, «) are given in Theorems 5 and 6. These relations provide
convenient means of calculation of B(z, @) for general z, o; e.g., in
trunk group blocking problems when a nonintegral number of trunks
is considered.

Theorem & :
S

B(z; a)—l = ‘l/(zy a)_l - sgl (2 + 1) . (z + S)‘
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The series converges uniformly everywhere in Rez > — 1, Rea > 0.

Proof: Let w = 1 + y in (23), then

B(z, o)™ = ae* / ) e~ vyrdy; (25)
hence, l
B(z, o) = ae"‘/ao e yrdy — a/l ex U=y zdy, (26)
and ' '
B(, o) = y(z, &) — a ﬁ L tmy ey, 27)

To exhibit the integral in (27) as an inverse factorial series, consider
the beta function integral

! z—1 — y—1 = P(x)r(y)
/;u (1 — w)r'du Tty (28)

which yields the special case (s = 0 integral)

1 s'
21 — u)'du = : . 2
Jowt =i = ey 29
Use of the expansion
extmw = 3 (1 — e (30)
s=08:

in (27) and subsequent use of (29) yield the result of the theorem.
The Mittag-Leffler expansion for the integral of (27) leads to
Theorem 6 :
0 as
-1 —1 a — s -
B(Z: a) ‘;’(27 (X) + e sgl( 1) (S— 1)'(S+Z)

Condations of convergence are the same as in Theorem 5.

Proof: The expansion

e = 3 (—1)° 31)

s=0 S

a’u’
!

used in (27) leads immediately to the required result.
Whittaker functions, W ,.(z), play a useful role in the discussion
of B(z, a) and of Poisson-Charlier polynomials to be introduced later.
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They may be introduced by

W e—)zzk
@) = S =T Fm) o

Re (it —k+m) >0, |arg z| < .

° t\ E—4tm
et <1 + 2) t—h=ttmd (32)

Theorem 7 :
B(z, )™ = e*1%W .15, .41y02(@).

Proof: Let t = ay in (23), then
0 t z
Bz, o)t = ﬁ et (1 + &> dt. (33)

The required result follows on comparison with (32).
A Rodrigues type of relation for B(N, a)~! may be obtained from
Theorem 3.

Theorem 8 :
d M
da M

B(N 4+ M, a)™! = (—1)Mae® [e~¢a'B(N, a)~1].

Proof: From Theorem 3, one has

e“a'B(N, a)7! = /w e (1 + y)Ndy; (34)
0
hence,

M 0
(% 2 [ BW, @] = [T e 1+ ) rraay. 35)
0
The formula for B(N + M, a)~! now follows on multiplication by ae®.

Corollary :
N
B(N, a)' = (—1)Yae® d(ZN [e~2a].

Additional formulas for B(z, «)~! (as a function of ) provide con-
venient means of computation for values of « near some fixed point.
Two such formulas are given in Theorems 9 and 10.

Theorem 9:
Bato = (1+5)" % (1) B —na(5)
o v=0 \V o
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Proof: The function S, () given by

n a‘r
Sr(a) = 207 (36)
is an Appell polynomial, that is,
ds.
doEa) = Sn-1(a). @7

Thus the Taylor expansion for S,(a + t) can be written in the form

Su(a+ 8) = z"jo %Sn_y(a)t". (38)

One obtains from (7)
Bn,a)™ = nla"S.(a) (39)

and hence the theorem follows on substitution into (38).
Theorem 10:
Bz a4+ t) = (1 + é) e3> SV BG4 o,
Rea > 0, |t

Proof: Let
I(z, @) = e*"™ 2 1B(z, @)™, (40)
then, from (23),

d d . =
— —_ ptzT —a (1+y) z
ol Bae) = e ﬁ e+ (1 4 y)=dy,

- — efufw et (1 + y)=Hidy,
0
Iz 4+ 1, @), (41)

Il

and hence
a

T Iz, ) =1z + v, a). (42)

Thus, by Taylor’s formula,

©

e, a+t) = Eoi—”! I+ v, a). (43)

Substitution of (40) into (43) yields the required result. One has

l(z _l_ v, a) — ei(z+v)1r‘/‘uc e—a(1+y) (1 _|_ y)z-}-vdy’ (44)
0
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hence the terms of (43) are O (¢/Re «)?v®¢+]. The stated convergence
criterion now follows.

1li. ASYMPTOTIC EXPANSIONS

Particularly simple and convenient forms for theoretical and numer-
ical applications may be obtained by examining asymptotic expansions.

Theorem 11:

Bz, a)' ~ 3 2Ma, a— o, |argal <.
) v=0

Proof: The asymptotic expansion for W, . (2) is's
Wh,m(2) ~ edezk

k= 9200m— (k= ?]: [ — (b= r+4)"]

vz

o 2__
z— o, |argz| <w. (45)

Substitution of the parameter values given by Theorem 7 establishes
the result.

It should be remarked that the error, when using the partial sum
S kz8 2 to approximate B(z, a)~!, does not exceed |a||z®a~F|/
Re a provided Re z £ k, Re a > 0. This follows directly from Theorem
4 and (23).

For large 2, one has

Theorem 12:
bl o

Bl o) ~4E o™~ B ey e

z— o, |arg z| < 7/2, uniformly in any bounded region of the a-plane
Jor which Re o > 0.

8

Proof: The representation of Theorem 5 is used. One must show

aa

S+ 1)z +9)

-(ernern) W

B(Z, a)—l - III(Z, a)—l -

that is,

. o’ _
L o S IR B “n
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Let Re z = z, then one has

as—n

LEFnFD T
1 .
< —n ST
LT r ey @
Let v = 2 + nand [ = s — n, then the dexter of (48) is
) |'a|l .
HCFD - 0FD) (=
Use of (29) and (30) on (49) yields
as~"n 1
< lal (1—u)qyyo .
sgn(z+n+1)-°-(z+8) _\a|/?e ud} _ (50)
thus
as— " ia|e|¢ﬂ
sgn(z—}‘n—*—l)--'(z—l—s) =v+1 v— . (51)

The theorem is proved.

Useful asymptotic formulas are obtained when both « and z have
infinite limits but approach infinity in a fixed ratio, that is, @ = ¢z, ¢
fixed. The cases ¢ > 1, ¢ = 1 are discussed by A. Descloux! for large’
real z. Theorem 13 generalizes the result for ¢ > 1 to complex z and
provides the structure of the coefficients for the complete expansion.
The case ¢ = 1 is obtained as a corollary to Theorem 14 where the
result is also generalized to complex z.

Theorem 13: o o,

B, ) ~ X i,
) 1=0
i ™

z— o, J|argz| < 50 ¢>1,
_(_c dY_ec_
f1=\¢=1de)c—1"
Proof:* One has, from (23) o
B(Z, CZ)_I — sz“' e_”y(l +‘y')zdy - “,‘ . (52)

* The author wishes to thank C. L. Mallows for this proof whloh replaces a much
longer proof originally supplied by the author.
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Defining the function h(y) by
hy) = cy —In (1 + y), (53)

one may write, since h(0) = 0, h(») = «, and A(y) is monotonic
increasing,

U PR ¢ e o) I

B(z, ¢2) zﬁe e T (54)
The factor ¢c(1 + ¥)/[c(1 + y) — 1] is now expanded in powers of h
as follows:
cl +y) =

c(l+9y)—1 Z:, ! (55)
A theorem on Abelian asymptotics for Laplace transforms!® and (54),
(55) yield the asymptotic behavior of B(z, cz)~ forz— =, |argz| <v/2;
thus,

B(z, c2)"' ~ i gz (56)
=0
The coeflicients g; may be evaluated as follows. Let
w=c¢—lnec, (57)
and
¢
k(w) = ——, (58)
then
_ _ __cd+y
Thus, Taylor expansion yields
SRS LT ES)
A+ 1 51 d)Mm' (60)
One has
d c d
hence
d c d\' ¢
(dw)k(w) (c—l%)c—l=gl' (62)
The following formula is obtained directly from Theorem 13.
ao_C° c 1 2¢2 + ¢ l
B, c2) c—1 (c—10%¢z + (c — 1)822° (63)

The evaluation and behavior of B(z, &) for a in a neighborhood of 2
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is often of interest; accordingly, the function B(z, z + c¢+vz)~! will be
considered for 2 — « ; ¢ is a fixed real number.

Theorem 14: There exists a representation of the form

B(z, 2 + cvz) ~ i a;(c)z— G2,
=0

z— o, |argz| <7—;, ¢ real,
in which
ao(c) = e*"/n0 e 33y,
2,1, 1,
ai(e) = 3 -+ 3¢ 3 ao(c),
as(0) = — 7ot — o +—c+ c‘5+—c“+1 o (c).
18 36° 12

Proof: From (23), one has
B(z, 2 + ey~ = (2 + cvB) f CeGrevu(l £ wydu,  (64)
0

T
larg z| < 3

Let u = v/+z, then

B(z, 2 + cva)! = / e tren (o, 2)dy,
° (65)
h(v, 2)

ghvi—vzv (1 4+ — ) (\/— + C)

Let K be a positive constant, then, for |v| £ K, h(v, 2) clearly possesses
an asymptotic development in vz uniformly in »; thus,

h(v, 2) ~ g bi(v, )z~ VR, 2 oo, (66)
2

in which the coefficients bj(», ¢) are polynomials in ». In particular,

bo(?), C) = 1;

bi(v, ¢) = é ¥+ ¢, (67)
1 s 115

ba(v, ¢) = 3cv 7! + 180
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Since
e—(§vz+cv)vkeL(0’ w) (68)

for each £ > 0 and any ¢, termwise integration of (66) leads to the
required asymptotic expansion. Thus, letting

a;(c) = [ " e, (o, o)y, (69)
0
one has
B(z, 2 + VB ~ X a;(c)em DR (70)
=0

The formulas for ao(c), a1(c), as:(c) stated in the theorem are obtained
by evaluation of (69) using b;(v, ¢) as given in (67).

BG, z>—l~\f+ ENCE

z— o, larg z| < 5
Proof: The result is obtained from Theorem 14 with ¢ = 0.

This theorem helps explain the phenomenon of the efficiency of
large trunk groups since even when a > z, B(z, a) is small as long as a
is in a small neighborhood of ; thus, Theorem 14 shows that
B(z, z + cvz) ~ 1/ayVZ, x — .

Theorem 14 shows that the parameter ¢ may be viewed as a standard-
ized offered load measuring the deviation of a from z in units of vz.
The value of this viewpoint is derived from the very simple approximat-
ing form for B(z, a); thus,

B(z, a) = aoVE + ax + - (71)
An application of this is to the computation of dB(zx, a)/dx given in
(92). Another advantage is the capability of computing B(z, a) by
means of a single-entry table against the standardized offered load ¢
rather than the usual double-entry table against z and a.

Table I gives the values of ao(c), ai(c), as(c) for —3 < ¢ <4 in
steps of 0.1 with the intention of covering a practical range of values
of B(x, a). As an illustration, it is desired to compute B (400, 378).
Use of (71) with ¢ = — 1.1 gives the result 0.0122 correct to the last
figure. If ¢ does not appear in the table, then interpolation is used. For
example, to compute B(400, 377.6) for which ¢ = — 1.12 linear inter-

Corollary :
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polation in the table of coefficients and use of (71) yields 0.0118 cor-
rect to the last figure. The method, of course, is valid even when the
number of trunks is nonintegral. Consider, for example, B(400.34,
420) for which ¢ = 0.98463. The result obtained by linear interpolation
in the table is 0.0713 correct to half a unit of the last figure.

The accuracy deteriorates when x is decreased or when c¢ is large and
negative. Thus, for B(10, 8), one obtains 0.12144 as against the correct
value 0.12166. In this case ¢ = — 0.6325 is not too disadvantageous.
The case B(10, 5) for which ¢ = — 1.58114 yields a much greater
error, namely, 0.0256 as against the correct value 0.0184. This error
occurs, however, for a small trunk group where exact calculation is
quite feasible. To aid the delineation of suitable regions of (¢, ) for
which the table is accurate, a curve is given in Fig. 1 defining 5-percent
error. When a computation is made from the table using any point
(¢, ) in the unbounded, unshaded region, the error incurred will be
less than 5 percent of the true value of B(z, a).

IV. DERIVATIVES AND INEQUALITIES

It is desired to obtain formulas for the derivatives of B(e, ), with
respect to z and a.

Theorem 15

BeD 14 Bea) e, Rea>0
da a

Proof : From (23), one has
—1 0 =]
9Bz o)t =[ e (1 + w)*du — a/ e~ (1 + u)zudu; (72)
da 0 0
hence,

dB(z, a)!

L Bl ey — B+ 1,0 + Bz, @) (73)
da o

Use of Theorem 4 provides the relation

Bz, ) =z 1 _
T = p B(z, a) 1 1+ B(Z, a) L (74)
Since
dB(z, a)™! Bl 0 dB(z, ) ’ (75)
Jda da

the result of the theorem follows from (74).
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For the purpose of obtaining an approximate formula for the deriva-
tive with respect to 2, consider

fw) = aB(z, a)e (1 + u)* (76)
in which ¢ > 0, z > 0, and for which, by (23),

ﬁ * fuwydu = 1. 77)

It is convenient to introduce the random variable ¢ with density funec-
tion f(u). The power moments u, defined by

u, = EE7, r > 0 (integral), (78)
are given in the following theorem.
Theorem 16:
er = B(z, ) lZ:‘,O (—1)r—t (2) B +1, o)™

Proof: Define a generating function ¢ (¢) by

$(1) = Ee't = aB(s, a) [ " ete-nu(1 4+ w)edu, (79)
0
then, since
(@ — OBz, a — t)/w =0u(1 + w)xdu = 1, (80)
0
one has
_ aB(z, a) )
*0) = @=DB& a=1D ®1)
Use of Theorem 10 in (81) provides the expansion
) -1
(1) = B(z, a)e! go_lf(iir!’;’ﬂ— ) (82)
Since
o) = ¥ 1 (83)

the coefficient of ¢* in the expansion of (82) in powers of ¢ yields the
required result. Thus

r (=)' B@ 410!
#rzB(xya’)r!Eo(r—l)! : A -

(84)
and the formula of the theorem follows.
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Corollary : The central moments o, are given by

a = Bt = w) = B@a) ¥ (=0~ (]) G+ DB + 1,0
Proof: The same as for Theorem 16 but considering the function
e~*1t (1) instead of ¢(f).

An approximation to 8B (z, a)/dx may now be obtained.

Theorem 17:

Bz, o)1 PB@ @ aB(x a) (14 ) — 2 i izm)z
+%ﬁ,—%a4o, 0<6<1.
Proof: From (23) and (76), one obtains
_B(, a)—l‘-’%”i’—“) —Eln(1+ 5. (85)
Since, by use of the mean value formula,
In(1+ 8 =In(+p) +1Jr (& —p) — 2(14”‘)2(5 p)*
R Toe i mw—;uz%mx 0<6<1, (86)

one has, from (85) and the corollary to Theorem 16, the required
result.

Corollary :
—B (xi a)—l

(7} 1 a3

<In @ +w) - 2u+uv+§a+mﬁ

dB(z, a)
ox

Proof : The error term of Theorem 17 is omitted.
For ready reference the following formulas are given in which
B = B(z,a),B, = B(x + 1,a), B, = B(zx + 2,a), B; = B(z + 3, a),

= B(z + 4, a).
p = — 1 4+ BB{Y,
az = (w1 + 1)* — 2(uy + 1)BB7* + BB3, (87)
as = — (u1+ 1)*+ 3(us + 1)2BBi! — 3(u1 + 1)BB; ' + BB3,

= (w1 + 1)* — 4(uy + 1)3BB7" + 6(uy + 1)2BB;!
‘ — 4(u1 + 1)BB;*' + BB

" ERLANG LOSS FUNCTION 543



The evaluation of Bi!, B;!, B;!, B! is facilitated by successive use
of Theorem 4.

An alternative method of obtaining dB(z, a)/dz is based on Theorem
14. Let

f(z, ¢) = B(z, a), a =2+ cVz, (88)
then, from Theorem 14,
@ ™ I G )
Tar YT R wOEeTh ao e (89
hence,
0/, 0 1 _ @@,
dx ~ 2vz {ao(c) T } (90)

Thus, the computation of df(x, ¢)/dz is easily accomplished with the
help of Table I and the formula

of,0) _ p 2@ I7 By { a(e) — a—iﬂ} 1)

- f(x)c - 2@

One now has

dB(z,a) _ df(x,c) _ 3B(z, a) (1 n _\C/_E) (92)

oxr dx da

A simple upper bound on — B(z, a)"'[dB(x, a)/dx] is given in the
following theorem.

Theorem 18:

—B(z, a2 2B D) aB(x a)

<In (1 4+ ).
Proof: Since the function — In (1 + u) is convex for u = 0, the re-
quired inequality follows from Jensen’s inequality, namely,

g(E) < Eg(8) (93)

valid for functions g(x) convex over the range of the random variable
£, and (85).

A function g(z) > 0 is said to be log-convex over a set if In g(z) is
convex over the set. It is known?!® that the sum of log-convex functions
is log-convex and hence that the integral of a log-convex function with
respect to a parameter is log-convex provided the function is log-convex
for every value of the parameter. Since a necessary and sufficient
condition that a twice-differentiable function be convex is the non-
negativity of its second derivative over the corresponding set, one
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derives the inequality

gl'g —_— glz ; 0 (94)
as a necessary and sufficient condition that ¢ > 0 be log-convex. One
now has

Theorem 19: B(z, a)™, [aB(z, a)]! are log-convex functions of = and
of a, respectively, for a > 0 and all z.

Proof: The results are immediate from (23) and the observations that
(1 + w)? is log-convex as a function of z for u = 0, and e~** is log-
convex as a function of e for u = 0.

Corollary :
3’B(z, a) dB(z, a) 1?
B(z, a) e = [ or ] )
dB(z, a 3B (z, 9B (z, 2
aB(x,a)[2 ga )—i-a ;GZG)]é[B(x,a)—l-a f’)aa)]'

Proof: Use of (94).
An immediate application of Theorem 19 is to the logarithmic inter-
polation of B(z, @), that is, linear interpolation of In B(z, a).

Theorem 20: Let a, b, p, ¢ > 0, p + q = 1, then

B(z, a)*B(y, a)* < B(pz + qy, a),
[aB(z, a)]?[bB(x, b)1* < (pa + ¢b) B(z, pa + gb).

Proof: Jensen’s inequality applied to —In B(z, @) and —In [¢B(z, a)],
respectively.

An extension of the result of Theorem 20, for the purpose of obtain-
ing an approximate formula for B(z, a) when z is not an integer, may
be derived from the corollary to Theorem 16. Let N = [2],6 = z — N,
and «, be the central moments computed for the density function

f(u) = aB(N, a)e**(1 + u)¥, (95)
then one has

Theorem 21 :
B, o) = B(V, ) & ( D)t 4w+ BW, 0 )t
k even, 6] = 1.
Proof: Let ¢ be the random variable with density function f(u), then
B(z, @)™ = B(N, a)"'E(1 + §)°. (96)
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Since

1+ =L (1) @t mte— w4 () € - w, @)

r=

the result follows from (96) and the corollary to Theorem 16.
A useful special case of Theorem 21 is

BI—SBIG

i B?
1—§M1—m(EE—1)

B(z, a) ~ (98)
in which

B=B(N,a), Bi=BN+14a), B:=BWN+2a). (99

V. CONCLUSION

Further investigations would be desirable; for example, one would
like to know the contour function g (2) for which B[z, g (2)] is constant.
Truncation error formulas for the asymptotic expansions of Theorems
13 and 14 would be useful ; also, the general structure of the coefficients
a;(c) of Theorem 14 should be determined. Asymptotic formulas of
various types should be obtained for G;(z, o) similar to those given for
B(z, a). These formulas may then be used to obtain asymptotic results
for its zeros which are needed in many transient and time-variable
blocking analyses.
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APPENDIX

The function B(z, «) is related to the Poisson-Charlier poly-
nomials®~22 much used in telephone traffic studies. Let

Yol2, @) = ‘l’(z; Ot),
di
Uiz @) = T4 @), (100)
then the Poisson-Charlier polynomials, G;(z, ), are defined by

31/1'(2, a) = ‘lb(za a)Gi(z’ a)‘ (101)
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The Taylor expansion

0 tj
Ve ath) = 3 b0 (102)
yields the generating function?®
p 1+‘_)’= > Giz, @) L. (103)
a P

Thus, explicit formulas for G;(z, «) are

Gi(z, o) = 37,' ?_io (—1)»( 2 )av

] — v ;—i

- E v (e (2) o

The first few polynomials are
Gﬁ(z; Ol) = 17
1
Gz, 0) = - (2 — ),

: (105)
Ga(e, @) = 5 [# = (o + 1)z + 7]
Gs(z, @) = L[ = 3(a + )2 + (3 + 3 + 2)z — a7
A recurrence relation derived from (103) is
Ginla) =2 "L 7%, 0) — LGz 0. (106)

The polynomials, G;(z, @), possess many properties analogous to
those of B(z, o). A Rodrigues formula is given in

Theorem 22:
dlc
Giin(2, @) = a2 T [ea:G;(z, @)].
Proof : One has from (100)
dlx
‘I/f+k(z’ a) = W ¢f(z) a)y (107)

and hence

k .
Givaley Wz, @) = 1[0z, @)Gils, @) (108)
The result follows on use of (24).
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Corollary :
di
Gi(2, a) = a %€ o [e=ea=].

Proof:
Go(z, 0) = 1. (109)

An integral representation for G,(z, &) is given in
Theorem 23:
. af ® .
Gi(—2 ) = (—D’Wz) /0 e~ (1 + y)y='dy,
Rea > 0, Rez > 0.
Proof: From (20), one has

e % = I‘_tz_) /‘; e—a(l+y)yz——1dy‘ (110)

Substitution of (110) into the corollary of Theorem 22 yields the result.
Theorem 23 permits obtaining a Wittaker function representation.

Theorem 24
Gi(z, @) = (— 1)l CHIDZE2W (1o 1y9, (5—2r12(@).

Proof: Comparison of Theorem 23 with (32) and replacement of —z
by z.

The representation of Theorem 24 remains valid, by analytic con-
tinuation, even outside the region of convergence of the integral of (32).

Corollary 1:
B(Ny a)_l = (_1)NGN(_1: (X).

Proof: Comparison of Theorems 7 and 24.
Corollary 2:

Gz @) = 20z — 1, @) — Gz ).

Proof : Substitution of the representation of Theorem 24 into the re-
currence relation®

Win(@) = VeWigmy(@) + G — b+ m)Wiin(z)  (111)
yields the result.
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Corollary 3:
Gi(z, @) = Gi(z — 1, a) + (%G-_l(z -1, a).
Proof: Same as for Corollary 2, except the following recurrence rela-
tion is used:
Win(@) = NeWigmis (@) + G =k = m)Wiam(@).  (112)
A representation of G;(z, @) in terms of B(z, @) is given in
Theorem 25
.  (_1\N+i o’ dit 1 )
Gw(=d @) = (=DM Gy 31 2B, o
Proof: From (23),

1
aB(N, a)

and Theorem 23,

Gu(=de) = (D G Sy [T+ a1

[T+ vy, (13)

one has the result on use of

dj——l @ . © )
[T+ gy = (—0 e+ prpay. 115)
0

doi™1

The Poisson-Charlier polynomials possess addition formulas similar
to those of B(z, «)~! as given in Theorems 9 and 10.

Theorem 26 :
G a+t) = (1+ €>_j > j)G~ 2, @) (~1) 5)’-
FANS] o o v I—v\®) o
Proof: Use of (103) shows that the system of functions

[ Sl G

has the generating function e**(1 — t)?, and hence? form an Appell
system with respect to «, thus,

% [ (_j})jaij(z, a)] = (_(3:_1)_:1—)1' Gz, ). (116)

The Taylor expansion of [ (—1)¥/7!](a + 8)7G;(z, e, + t) in powers of
¢t now yields the required result.
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Theorem 27 :
G,’(Z, o + t) = (1 + £>_zet i GJ'—H'(z’ Ot) _t%
o »=0 v

The series is permanently convergent.

Proof: Use of (107) and Taylor’s expansion yields
© tv .
Yi(z, @ + 1) = Z=o S Vi (2, a). (117)
The result is now obtained from (101) and (117). Since, from (104),
2\ .
Gi(z) a)N(&’) ) J— =, (118)

the convergence is permanent.
An asymptotic expansion is given by

Theorem 28:
660 ) ~ (-1 {14 % (-1

] (")z )

], R

Proof: The result is obtained directly from (104). It may also be ob-
tained from Theorem 24 and (45).
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