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Bell System Centennial: 
100 Years of 
Publishing on Telecommunications 

This year the United States is celebrating the bicentennial of its 
founding-200 years of change, crises, and invention. At the beginning 
of the nation's second century, in lVlarch 1876, the "speaking tele­
phone" was invented. With it began 100 years of research and develop­
ment in telecommunications-a technology whose influence on the 
growth of the nation and, indeed, of all western nations, has been 
profound. The continual improvement and expansion of telecom­
munications has depended on the depth and diversity of technical 
research and development. And, if research and development is to 
encompass all the economic and physical requirements of a growing 
telecommunications system, it must be founded upon an active ex­
change of ideas. 

Inventiveness in any organization engaged in research and develop­
ment can be ascribed not only to individual intelligence, but also to 
the participation of its members in the exchange of ideas-among its 
own people and throughout the scientific community. Indeed, it is 
apparent that the process of exchange is an active element in the de­
velopment of ideas. For example, it is recorded that Alexander Graham 
Bell's invention sprang from a mistranslation of a German text. Bell 
had the impression from Helmholz'sbook Sensations of Tone that the 
author had telegraphed vowel sounds over a wire. Although Bell later 
discovered the mistake, the idea led him to a study of electricity. 

In this anniversary article, we note that timely, open publication of 
advances in telephony has a history as old as the telephone itself. 
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For example, Bell dated his invention February 14, 1876, found it 
would carry voice on l\1arch 10, and described the instrument in his 
paper "Researches in Telephony," which he read on l\1ay 10 at a 
meeting of the American Academy of Arts and Sciences. The paper 
was subsequently printed in Volume XII of the Academy's Proceedings. 
(We found Bell's original paper so refreshing as an expression of his 
thought and technique that we have reprinted it as the first article 
in this issue.) 

Similar in function to professional journals and magazines, pro­
fessional societies like the Academy are created to be forums for the 
exchange of scientific and technical information. As electrical engineer­
ing was emerging in the late 19th century as a discipline with an in­
creasing volume of specific knowledge, the American Institute of 
Electrical Engineers was formed. (Bell was a cofounder and was 
elected president in 1892.) Discussions at professional society meetings 
included philosophical and operational topics as well as technical 
matters. For example, the practical viewpoint of today's systems 
engineering is clearly identifiable in "Telephone Engineering," J. J. 
Carty's paper in the 1906 Transactions of the AlEE. A year later 
General Carty became AT&T's Chief Engineer. 

In 1876, Sir William Thompson-later Lord Kelvin-observed the 
operation of the telephone at one of Professor Bell's lectures and re­
ported the discovery to a meeting of the British Association. In 1877, 
Bell went to England and demonstrated his instruments at a meeting 
of the same association. The idea caught on so rapidly that only ten 
years later there were 200,000 telephones in operation in England. 
Today, even before the new technology of lightwave communications 
has become commercially feasible for telephone signal transmission, 
the scientific community throughout the world is keeping pace with 
the most recent developments in the United States through Bell 
System publications and Bell System patents. 

The founders of the telephone industry early established the policy 
of open publication that has remained a characteristic of the industry. 
This policy has been based on the protection of proprietary information 
afforded by the patent systems of the United States and other countries, 
and often the publication of new technology is to be found in issued 
patents. This policy of early publication and patenting is frequently 
a direct stimulus to invention. As a case in point, the rapid evolution 
of the telephone transmitter in 1877 and 1878 can be traced in the 
series of inventions by Edison, Hughes, Blake, Berliner, De Jongh, 
Mix and Genest, and Hunnings. 

In the first thirty years of telecommunications development, Bell 
System workers depended upon such established professional publica-
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tions as Science AIagazine, The Proceedings of the Anwrican AcadeJny 
of A rts and Sciences, the Philosophical AI agazine, and Silliman's 
Journal. But in 1912, the Bell System started the first of a series of 
company publications with the first issue of the Western Electric News, 
which combined news of employee activities with articles on new 
research techniques and technical developments. 

A decade later, in 1922, the need for a specialized medium of ex­
change among scientists and engineers in telecommunications, and 
specifically between the research and development areas in the Bell 
System and those in industry, academia, and government, was 
affirmed in the Foreword to the first issue of The Bell System Technical 
Journal: "A casual examination of recent technical literature dealing 
with electrical communication would show articles which touch upon 
almost every branch of human activity, which we designate as science . 
. . . With this intense and growing interest in the proper application 
of scientific methods to the solution of the problems of electrical 
communication, it is natural that a widespread desire should have 
arisen for a technical journal to collect, print, ... and make readily 
available the more important articles relating to the field of the com­
munication engineer. These articles are now appearing in some fifteen 
or twenty periodicals scattered throughout the world .... The need 
already felt for such a journal will grow keener as new developments 
extend the scope of the art and the specialization of its engineers of 
necessity increases." 

While The Bell System Technical Journal became the primary voice 
of Bell System research and development, several other technically 
dedicated publications were started: The Bell Laboratories Record was 
established in 1925 and at the present time provides functionally 
descriptive articles on the discoveries and developments at Bell 
Laboratories. The Bell Telephone Quarterly (1922-1940), established 
as a medium of information exchange among the telephone companies, 
was superseded by The Bell Telephone AIagazine in 1941; and The 
Western Electric Engineer (begun in 1957) contains articles by Western 
Electric engineers on all phases of engineering in the manufacture of 
telecommunications equipment. Parallel with the establishment of 
these source publications, significant technical papers were published 
in the Western Electric Reprint series, begun in 1919, which evolved into 
The Bell Telephone System Technical Publications (l\1onographs), pub­
lished until 1967. On the management side of the business, The Bell 
Journal of Economics was begun in 1970 with the object of encouraging 
scholarly interest and thought in the application of economics, to the 
study of regulation, firm and market organization, and the study of 
interdisciplinary issues in law and economics. 
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Other telecommunications companies also responded to the need 
for technical information exchange. Publication of Electrical Commun­
ication was begun in 1922 by the International Western Electric Com­
pany and has been continued since 1925 by the International Tele­
phone and Telegraph Corporation. N ow published by General 
Telephone and Electronics, the GTE Automatic Electric Technical 
Journal was begun in 1913 as Automatic Telephone. Ericsson Technics 
was begun in 1933 by the Swedish firm Telefonaktiebolaget L M 
Ericsson, and the Philips Telecommunication Review was established in 
1934 by the Philips' Telecommunicatie Industrie B. V., Netherlands. 

One of the oldest continuing journals in the field is Tele. Published 
by the Central Administration of Swedish Telecommunications, Tele's 
origins can be traced back to 1895. Telephony, one of the leading 
-U. S. commercial publications in the field, was started in 1901 and 
was followed by Telephone Engineer in 1909 (now Telephone Engineer 
and Management). 

With technical and scientific specialization have come journals to 
embrace each new field, e.g., optics, acoustics, materials, computers, 
circuit theory, etc. We find that, in the last decade, almost 19,000 
papers by Bell System authors were published in these specialized 
journals and magazines, nationally and internationally. 

This fundamental requisite for free exchange of information, which 
has been evident since the inception of telecommunications, will be 
equally necessary in the future if the industry is to maintain its 
scientific, technical, and, in the final analysis, functional integrity. 
The Bell System through its own publications and contributions to 
professional societies and technical journals remains dedicated to this 
principle. 
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On October 18, 1892, only sixteen years after the invention of his 
"speaking telephone," Alexander Graham Bell in N ew York talks to 
William H. Hubbard in Chicago at the inauguration of the New York­
Chicago telephone line. 
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REPRINT 

PROCEEDINGS 

OF THE 

AMERICAN ACADEMY 
OF 

ART SAN D SCI E N C E S. 

VOL. XII. 

PAPERS READ BEFORE THE ACADEMY. 

I. 

RESEARCHES IN TELEPHONY. 

By A. GRAHAM BELL. 

Presented May 10, 1876, by the Corresponding Secretary. 

1. It has long been known that an electro-magnet gives forth a 
decided sound when it is suddenly magnetized or demagnetized. 
When the circuit upon which it is placed is rapidly made and broken, 
a succession of explosive noises proceeds from the magnet. These 
sounds produce upon the ear the effect of a musical note, when the 
current is interrupted a sufficient number of times per second. The 
discovery of "Galvanic Music," by Page,* in 1837, led inquirers in dif­
ferent parts of the world almost simultaneously to enter into the field of 
telephonic research; and the acoustical effects produced by magnetiza­
tion were carefully studied by Marrian,t Beatson,t Gassiot,§ DelaRive, II 

* C. G. Page. "The Production of Galvanic Music," Silliman's Journ., 1837, 
XXXII., p. 396; Silliman's Journ., July, 1837, p. 354; Silliman's Journ., 1838, 
XXXIII., p. 118; Bibl. Univ. (new series), 1839, II., p. 398. ~ 

t J. P. Marrian. Phil. Mag., XXV., p. 382; lnst., 1845, p. 20; Arch. de l'~lectr., 
V., p. 195. 

t W. Beatson. Arch. de l'Electr., V., p. 197; Arch. de Sc. Phys. et Nat. (2d series), 
II., p. 113. 

§ Gassiot. See "Treatise on Electricity," by De la Rive, I., p. 300. 
II JJ.e la Rive. Treatise on Electricity, I., p. 300; Phil. Mag., XXXV., p. 422; Arch. 

de l'Electr., V., p. 200; lnst., 1846, p. 83; Comptes Rendus, XX., p. 1287; Compo 
Rend., XXII., p. 432; Pogg. Ann., LXXVI., p. 637; Ann. de Chim. et de Phys., 
XXV!., p. 158. 

279 



Matteucci, * Guillemin, t Wertheim,t Wartmann,§ J anniar, II J oule, ~ 
Laborde,** Legat,ttReis,tlPoggendorff,§§Du Moncel,1I11 Delezenne, ~~ 
and others. *** 

2. In the autumn of 1874, I discovered that the sounds emitted by 
an electro-magnet under the influence of a discontinuous current of 
electricity are not due wholly to sudden changes in the magnetic con­
dition of the iron core (as heretofore supposed), bu'~ that a portion of 
the effect results from vibrations in the insulated copper-wires compos­
ing the coils. An electro-magnet was arranged upon circuit with an in­
strument for interrupting the current,-the rheotome being placed 
in a distant room, so as to avoid interference with the experiment. 
Upon applying the ear to the magnet, a musical note was clearly per­
ceived, and the sound persisted after the iron core had been removed. 
It was then much feebler in intensity, but was otherwise unchanged, 
-the curious crackling noise accompanying the sound being well 
marked. 

The effect may probably be explained by the attraction of the coils 
of the wire for one another during the passage of the galvanic current, 
and the sudden cessation of such attraction when the current is inter­
rupted. When a spiral of fine wire is made to dip into a cup of mer­
cury, so as thereby to close a galvanic circuit, it is well known that 
the spiral coils up and shortens. Fergusonttt constructed a rheotome 
upon this principle. The shortening of the spiral lifted the end of the 

* Matteucci. Inst., 1845, p. 315; Arch. de l'Electr., V., 389. 
t Guillemin. Compo Rend., XXII., p. 264; Inst., 1846, p. 30; Arch. d. Sc. Phys. 

(2d series), I., p. 191. 
t G. Wertheim. Compo Rend., XXII., pp. 336, 544; Inst., 1846, pp. 65,100; Pogg. 

Ann., LXVIII, p. 140; Compo Rend., XXVI., p. 505; Inst., 1848, p. 142; Ann. de 
Chim. et de Phys., XXIII., p. 302; Arch. d. Sc. Phys. et Nat., VIII., p. 206; Pogg. 
Ann., LXXVII., p. 43; Berl. Ber., IV., p. 121. 

§ Elie Wartmann. Compo Rend., XXII., p. 544; Phil. Mag. (3d series), XXVIII., 
p. 544; Arch. d. Sc. Phys. et Nat. (2d series), I., p. 419; Inst., 1846, p. 290; 
Monatscher. d. Berl. Akad., 1846, p. 111. 

II J anniar. Compo Rend., XXIII., p. 319; Inst., 1846, p. 269; Arch. d. Sc. Phys. et 
Nat. (2d series), II., p. 394. 

'If J. P. Joule. Phil. Mag., XXV., pp. 76, 225; Berl. Ber., 111., p. 489. 
** Laborde. Compo Rend., L., p. 692; Cosmos, XVII., p. 514. 
tt Legat. Brix. Z. S., IX., p. 125. 
H Reis. "Telephonie." Polytechnic Journ., CLXVIII., p. 185; Bottger's Notizbl., 

1863, No.6. 
§§ J. C. Poggendorff. Pogg. Ann., XCVIII., p. 192; Berliner Monatsber., 1856, 

p. 133; Cosmos, IX., p. 49; Bed. Ber., XII., p. 241; Pogg. Ann., LXXXVII., p. 139. 
1111 Du Moncel. Expose, II., p. 125; also, 111., p. 83. 
'If'lf Delezenne. "Sound produced by Magnetization," Bibl. Univ. (new series), 1841, 

XVI.,p. 406. 
*** See London Journ., XXXII., p. 402, Polytechnic Journ., CX., p. 16; Cosmos, 

IV., p. 43; Glosener-Traite general, &c., p. 350; Dove, Repert., VI., p. 58; Pogg. 
Ann., XLIII., p. 411; Berl. Ber., I., p. 144; Arch. d. Sc. Phys. et Nat., XVI., p. 406; 
Kuhn's Encyclopredia der Physik, pp. 1014-1021. 

ttt Ferguson. Proceedings of Royal Scottish Soc. of Arts, April 9, 1866; Paper on 
"A New Current Interrupter." 
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wire out of the mercury, thus opening the circuit, and the weight of 
the wire sufficed to bring the end down again,-so that the spiral was 
thrown into continuous vibration. I conceive that a somewhat similar 
motion is occasioned in a helix of wire by the passage of a discontinu­
ous current, although further research has convinced me that other 
causes also conspire to produce the effect noted above. The extra 
currents occasioned by the induction of the voltaic current upon itself 
in the coils of the helix no doubt play an important part in the pro­
duction of the sound, as very curious audible effects are produced by 
electrical impulses of high tension. It is probable, too, that a molecular 
vibration is occasioned in the conducting wire, as sounds are emitted 
by many substances when a discontinuous current is passed through 
them. Very distinct sounds proceed from straight pieces of iron, 
steel, retort-carbon, and plumbago. I believe that I have also obtained 
audible effects from thin platinum and German-silver wires, and from 
mercury contained in a narrow groove about four feet long. In these 
cases, however, the sounds were so faint and outside noises so loud that 
the experiments require verification. Well-marked sounds proceed 
from conductors of all kinds when formed into spirals or helices. I 
find that De la Rive had noticed the production of sound from iron 
and steel during the passage of an intermittent current, although he 
failed to obtain audible results from other substances. In order that 
such effects should be observed, extreme quietness is necessary. The 
rheotome itself is a great source of annoyance, as it always produces 
a sound of similar pitch to the one which it is desired to hear. It 
is absolutely requisite that it should be placed out of earshot of the 
observer, and at such a distance as to exclude the possibility of sounds 
being mechanically conducted along the wire. 

3. Very striking audible effects can be produced upon a short circuit 
by means of two Grove elements. I had a helix of insulated copper-wire 
(No. 23) constructed, having a resistance of about twelve ohms. It 
was placed in circuit with a rheotome which interrupted the current 
one hundred times per second. Upon placing the helix to my ear I 
could hear the unison of the note produced by the rheotome. The 
intensity of the sound was'much increased by placing a wrought-iron 
nail inside the helix. In both these cases, a crackling effect accompa­
nied the sound. When the nail was held in the fingers so that no 
portion of it touched the helix, the crackling effect disappeared, and a 
pure musical note resulted. 

When the nail was placed inside the helix, between two cylindrical 
pieces of iron, a loud sound resulted that could be heard all over a large 
room. The nail seemed to vibrate bodily, striking the cylindrical pieces 
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of metal alternately, and the iron cylinders themselves were violently 
agitated. 

4. Loud sounds are emitted by pieces of iron and steel when sub­
jected to the attraction of an electro-magnet which is placed in cir­
cuit with a rheotome. Under such circumstances, the armatures of 
Morse-sounders and Relays produce sonorous effects. I have suc­
ceeded in rendering the sounds audible to large audiences by inter­
posing a tense membrane between the electro-magnet and its armature. 
The armature in this case consisted of a piece of clockspring glued 
to the membrane. This form of apparatus I have found invaluable 
in all my experiments. The instrument was connected with a parlor 
organ, the reeds of which were so arranged as to open and close the 
circuit during their vibration. When the organ was played the music 
was loudly reproduced by the telephonic receiver in a distant room. 
When chords were played upon the organ, the various notes composing 
the chords were emitted simultaneously by the armature of the receiver. 

5. The simultaneous production of musical notes of different pitch 
by the electric current, was foreseen by me as early as 1870, and 
demonstrated during the year 1873. Elisha Gray,* of Chicago, and 
Paul La Cour,t of Copenhagen, lay claim to the same discovery. 
The fact that sounds of different pitch can be simultaneously produced 
upon any part of a telegraphic circuit is of great practical importance; 
for the duration of a musical note can be made to signify the dot or 
dash of the Morse alphabet, and thus a number of telegraphic mes­
sages may be sent simultaneously over the same wire without confusion 
by making signals of a definite pitch for each message. 

6. If the armature of an electro-magnet has a definite rate of oscil­
lation of its own, it is thrown bodily into vibration when the interrup­
tions of the current are timed to its movements. For instance, present 
an electro-magnet to the strings of a piano. It will be found that the 
string which is in unison with the rheotome included in the circuit 
will be thrown into vibration by the attraction of the magnet. 

Helmholtz,t in his experiments upon the synthesis of vowel sounds 
caused continuous vibration in tuning-forks which were used as the 
armatures of electro-magnets. One of the forks was employed as a 
rheotome. Platinum wires attached to the prongs dipped into mercury. 

The intermittent current occasioned by the vibration of the fork 
traversed a circuit containing a number of electro-magnets between 
the poles of which were placed tuning-forks whose normal rates of 
vibration were multiples of that of the transmitting fork. All the 

* Elisha Gray. Eng. Pat. Spec., No. 974. See "Engineer," March 26, 1875. 
t Paulla Cour. Telegraphic Journal, Nov. 1, 1875. 
t Helmholtz. Die Lehre von clem Tonempfinclungen. 
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forks were kept in continuous vibration by the passage of the inter­
rupted current. By re-enforcing the tones of the forks in different 
degrees by means of resonators, Helmholtz succeeded in reproducing 
artificially certain vowel sounds. 

I have caused intense vibration in a steel strip, one extremity of 
which was firmly clamped to the pole of a U-shaped electro-magnet, the 
free end overhanging the other pole. The amplitude of the vibration 
was greatest when the coil was removed from the leg of the magnet to 
which the armature was attached. 

7. All the effects noted above result from rapid interruptions of a 
voltaic current, but sounds may be produced electrically in many other 
ways. 

The Canon Gottoin de Coma, * in 1785, observed that noises were 
emitted by iron rods placed in the open air during certain electrical 
conditions of the atmosphere; Beatsont produced a sound from an 
iron wire by the discharge of a Leyden jar; Goret obtained loud 
musical notes from mercury, accompanied by singularly beautiful cris­
pations of the surface during the course of experiments in electrolysis; 
and Page§ produced musical tones from Trevelyan's bars by the action 
of the galvanic current. 

8. When an intermittent current is passed through the thick wires 
of a Ruhmkorff's coil, very curious audible effects are produced by the 
currents induced in the secondary wires. A rheotome was placed in 
circuit with the thick wires of a Ruhmkorff's coil, and the fine wires 
were connected with two strips of brass (A and B), insulated from one 
another by means of a sheet of paper. Upon placing the ear against 
one of the strips of brass, a sound was perceived like that described 
above as proceeding from an empty helix of wire during the passage of 
an intermittent voltaic current. A similar sound, only much more 
intense, was emitted by a tin-foil condenser when connected with the 
fine wires of the coil. 

One of the strips of brass, A (mentioned above), was held closely 
against the ear. A loud sound came from A whenever the slip B was 
touched with the other hand. It is doubtful in all these cases whether 
the sounds proceeded from the metals or from the imperfect conductors 
interposed between them. Further experiments seem to favor the 
latter supposition. The strips of brass A and B were held one in each 
hand. The induced currents occasioned a muscular tremor in the 
fingers. Upon placing my forefinger to my ear a loud crackling noise 

* See "Treatise on Electricity," by De la Rive, 1., p. 800. 
t Ibid. 
t Gore. Proceedings of Royal Society, XII., p. 217. 
§ Page. "Vibration of Trevelyan's bars by the galvanic current." Silliman's Journal, 

1850, IX., pp. 105-108. 
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was audible, seemingly proceeding from the finger itself. A friend 
who was present placed my finger to his ear, but heard nothing. I 
requested him to hold the strips A and B himself. He was then dis­
tinctly conscious of a noise (which I was unable to perceive) proceed­
ing from his finger. In these cases a portion of the induced currents 
passed through the head of the observer when he placed his ear against 
his own finger; and it is possible that the sound was occasioned by a 
vibration of the surfaces of the ear and finger in contact. 

When two persons receive a shock from a Ruhmkorff's coil by clasp­
ing hands, each taking hold of one wire of the coil with the free hand, a 
sound proceeds from the clasped hands. The effect is not produced when 
the hands are moist. When either of the two touches the body of the 
other a loud sound comes from the parts in contact. When the arm 
of one is placed against the arm of the other, the noise produced can be 
heard at a distance of several feet. In all these cases a slight shock 
is experienced so long as the contact is preserved. The introduction 
of a piece of paper between the parts in contact does not materially 
interfere with the production of the sounds, while the unpleasant 
effects of the shock are avoided. 

When a powerful current is passed through the body, a musical note 
can be perceived when the ear is closely applied to the arm of the 
person experimented upon. The sound seems to proceed from the 
muscles of the fore-arm and from the biceps muscle. The musical 
note is the unison of the rheotome employed to interrupt the primary 
circuit. I failed to obtain audible effects in this way when the pitch 
of the rheotome was high. Elisha Gray* has also produced audible 
effects by the passage of induced electricity through the human body. 
A musical note is occasioned by the spark of a Ruhmkorff's coil when 
the primary circuit is made and broken sufficiently rapidly. When 
two rheotomes of different pitch are caused simultaneously to open and 
close the primary circuit, a double tone proceeds from the spark. 

9. When a voltaic battery is common to two closed circuits, the 
current is divided between them. If one of the circuits is rapidly 
opened and closed, a pulsatory action of the current is occasioned upon 
the other. 

All the audible effects resulting from the passage of an intermittent 
current can also be produced, though in less degree, by means of a 
pulsatory current. 

10. When a permanent magnet is caused to vibrate in front of the 
pole of an electro-magnet, an undulatory or oscillatory current of 
electricity is induced in the coils of the electro-magnet, and sounds 

* Elisha Gray. Eng. Pat. Spec., No. 2646, see "Engineer," Aug. 14, 1874. 
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proceed from the armatures of other electro-magnets placed upon the 
circuit. The telephonic receiver referred to above (par. 4), was con­
nected in circuit with a single-pole electro-magnet, no battery being 
used. A steel tuning-fork which had been previously magnetized was 
caused to vibrate in front of the pole of the electro-magnet. A musical 
note similar in pitch to that produced by the tuning-fork proceeded 
from the telephonic receiver in a distant room. 

11. The effect was much increased when a battery was included in 
the circuit. In this case, the vibration of the permanent magnet threw 
the battery-current into waves. A similar effect was produced by the 
vibration of an unmagnetized tuning-fork in front of the electro-mag­
net. The vibration of a soft iron armature, or of a small piece of steel 
spring no larger than the pole of the electro-magnet in front of which it 
was placed, sufficed to produce audible effects in the distant room. 

12. Two single-pole electro-magnets, each having a resistance of 
ten ohms, were arranged upon a circuit with a battery of five carbon 
elements. The total resistance of the circuit, exclusive of the battery, 
was about twenty-five ohms. A drum-head of gold-beater's skin, 
seven centimetres in diameter, was placed in front of each electro­
magnet, and a circular piece of clock-spring, one centimetre in diame­
ter, was glued to the middle of each membrane. The telephones so 
constructed were placed in different rooms. One was retained in the 
experimental room, and the other taken to the basement of an ad­
joining house. 

Upon singing into the telephone, the tones of the voice were re­
produced by the instrument in the distant room. When two persons 
sang simultaneously into the instrument, two notes were emitted simul­
taneously by the telephone in the other house. A friend was sent 
into the adjoining building to note the effect produced by articulate 
speech. I placed the membrane of the telephone near my mouth, and 
uttered the sentence, "Do you understand what I say?" Presently 
an answer was returned through the instrument in my hand. Articu­
late words proceeded from the clock-spring attached to the membrane, 
and I heard the sentence: "Yes; I understand you perfectly." 

The articulation was somewhat muffled and indistinct, although in 
this case it was intelligible. Familiar quotations, such as, "To be, or 
not to be; that is the question." "A horse, a horse, my kingdom for 
a horse." "What hath God wrought," &c., were generally understood 
after a few repetitions. The effects were not sufficiently distinct to 
admit of sustained conversation through the wire. Indeed, as a gen­
eral rule, the articulation was unintelligible, excepting when familiar 
sentences were employed. Occasionally, however, a sentence would 
come out with such startling distinctness as to render it difficult to 
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believe that the speaker was not close at hand. No sound was audible 
when the clock-spring was removed from the membrane. 

The elementary sounds of the English language were uttered suc­
cessively into one of the telephones and the effects noted at the other. 
Consonantal sounds, with the exception of Land M, were unrecog­
nizable. V owel-sounds in most cases were distinct. Diphthongal 
vowels, such as a (in ale), 0 (in old), i (in isle), ow (in now), oy (in 
boy), oor (in poor), oor (in door), ere (in here), ere (in there), were 
well marked. 

Triphthongal vowels, such as ire (in fire), our (in flour), ower 
(in mower), ayer (in player), were also distinct. Of the elementary 
vowel-sounds, the most distinct were those which had the largest oral 
apertures. Such were a (in far), aw (in law), a (in man), and e (in 
men). 

13. Electrical undulations can be produced directly in the voltaic 
current by vibrating the conducting wire in a liquid of high resistance 
included in the circuit. 

The stem of a tuning-fork was connected with a wire leading to one 
of the telephones described in the preceding paragraph. While the 
tuning-fork was in vibration, the end of one of the prongs was dipped 
into water included in the circuit. A sound proceeded from the distant 
telephone. When two tuning-forks of different pitch were connected 
together, and simultaneously caused to vibrate in the water, two mu­
sical notes (the unisons respectively of those produced by the forks) 
were emitted simultaneously by the telephone. 

A platinum wire attached to a stretched membrane, completed a 
voltaic circuit by dipping into water. Upon speaking to the membrane, 
articulate sounds proceeded from the telephone in the distant room. 
The sounds produced by the telephone became louder when dilute sul­
phuric acid, or a saturated solution of salt, was substituted for the 
water. Audible effects were also produced by the vibration of plumbago 
in mercury, in a solution of bichromate of potash, in salt and water, in 
dilute sulphuric acid, and in pure water. 

14. Sullivan* discovered that a current of electricity is generated 
by the vibration of a wire composed partly of one metal and partly of 
another; and it is probable that electrical undulations were caused by 
the vibration. The current was produced so long as the wire emitted 
a musical note, but stopped immediately upon the cessation of the 
sound. 

15. Although sounds proceed from the armatures of electro-magnets 
under the influence of undulatory currents of electricity, I have been 

* Sullivan. "Currents of Ele~tricity produced by the vibration of Metals." Phil. 
Mag., 1845, p. 261; Arch. de l'Electr., X., p. 480. 
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unable to detect any audible effects due to the electro-magnets them­
selves. An undulatory current was passed through the coils of an elec­
tro-magnet which was held closely against the ear. No sound was per­
ceived until a piece of iron or steel was presented to the pole of the 
magnet. No sounds either were observed when the undulatory cur­
rent was passed through iron, steel, retort-carbon, or plumbago. In 
these respects an undulatory current is curiously different from an in­
termittent one. (See par. 2.) 

16. The telephonic effects described above are produced by three 
distinct varieties of currents, which I term respectively intermittent, 
pulsatory, and undulatory. Intermittent currents are characterized by 
the alternate presence and absence of electricity upon the circuit; 
Pulsatory currents result from sudden or instantaneous changes in the 
intensity of a continuous current; and undulatory currents are pro­
duced by gradual changes in the intensity of a current analogous to 
the changes in the density of air occasioned by simple pendulous 
vibrations. The varying intensity of an undulatory current can be 
represented by a sinusoidal curve, or by the resultant of several sinus­
oidal curves. 

Intermittent, pulsatory, and undulatory currents may be of two 
kinds,-voltaic, or induced; and these varieties may be still further 
discriminated into direct and reversed currents; or those in which 
the electrical impulses are all positive or negative, and those in which 
they are alternately positive and negative. 

I W 

{VoltaiC' 
{Direct (See par. 1, 2, 3, 4, 5, 6). 

o+" 
H ~ Reversed. o..c,) Intermittent. H c,) 

{Direct. C,) H H 

Induced . ..o;jC\'l 
~<:)..c: Reversed (See par. 8). 
C\'l~ <:) 

JDirect (See par. 9). <:) 0._ 
w..c: 

{VoltaiC' 2~~ 'LReversed. <:) C\'l ~ Pulsatory. C,)C,)>, 
{Direct. ~ S.~ Induced. 

<:) >,.S Reversed. 
·2..0 .t {Direct (See par. 11, 12, 13, 15). 0"'0 <:) 

{VoltaiC' ..c: C,)~ Reversed. o..<:)C,) 
Undulatory. C,);j~ 

{Direct. Q3"'00 
Induced. E-1 Reversed (See par. 10). 

17. In conclusion, I would say that the different kinds of currents 
described above may be studied optically by means of Konig's mano­
metric capsule. * The instrument, as I have employed it, consists 

* Konig. "Upon Manometric Flames," Phil. Mag., 1873, XLV., No. 297, 298. 
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simply of a gas-chamber closed by a membrane to which is attached 
a piece of clock-spring. When the spring is subjected to the attraction 
of an electro-magnet, through the coils of which a "telephonic" current 
of electricity is passed, the flame is thrown into vibration. 

I find the instrument invaluable as a rheometer, for an ordinary 
galvanometer is of little or no use when "telephonic" currents are to 
be tested. For instance, the galvanometer needle is insensitive to the 
most powerful undulatory current when the impulses are reversed, and 
is only slightly deflected when they are direct. The manometric cap­
sule, on the other hand, affords a means of testing the amplitude of 
the electrical undulations; that is, of deciding the difference between 
the maximum and minimum intensity of the current. 
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Using the paraxial ray approximation, simple formulas for the cross 
polarization introduced by curved reflectors are developed. In particular, 
when the reflectors are quadric surfaces of revolution with the center ray 
of the bewn passing through the foci, the maximum cross-polarized field 
amplitude throughout a gaussian beam, relative to the on-axis copolarized 
field, is 

2~Kl • 
C = -{e sm (h 

where e is the base of the natural logarithm, ~ is the 1/ e power radius of 
the beam, Kl is the curvature of the reflector perpendicular to the plane of 
incidence, and (Ji is the angle of incidence. For such reflectors, the beam 
fields are accurately represented by a superposition of just two gaussian 
modes for each plane of polarization: the fundamental mode, which cor­
responds to the co-polarized gaussian beam, and a higher-order mode, which 
accounts for the cross-polarized field and the amplitude "space" taper. 
Transformation of a beam through a general sequence of such reflectors is 
influenced by three factors: the curved reflectors, longitudinal propagation 
lengths, and rotations of the plane of incidence. The effect of each factor 
is described by a 4. X 4. l1wtrix relating the input and output gaussian 
modes. Several typical bea1n-reflector systems are analyzed by this method. 
Theoretical cross-polarization patterns are shown to be in accurate agree­
ment with measurements on a symmetrical dual-reflector system. 

I. INTRODUCTION 

At millimeter wavelengths, normal waveguide losses become too 
large in many applications. For example, long lengths of waveguide are 
required in satellite earth stations between the transceiver and the 
reflector antenna focus. To reduce these losses one may use quasi­
optical beams1 which employ reflectors or lenses for refocusing at 
various intervals, thereby confining the beam within a geometric tube 
with no (lossy) guiding walls. Long-focal-length, multiple-reflector 
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antennas (e.g., Cassegrainian and Gregorian antennas) may them­
selves be thought of in the context of beam waveguides. 

In another application, periodically refocussed beams of millimeter 
or submillimeter wavelength electromagnetic waves might be used2 as 
a means of distributing large amounts of information in cities. Such a 
transmission system is referred to as Hertzian cable. 

In the above beam waveguide systems, it is desirable to double the 
system capacity by transmitting separate signals on each of two 
orthogonal polarizations (e.g., vertical and horizontal linear polariza­
tions). In such dual-polarization systems, cross-polarization coupling 
introduced by the refocusers can significantly decrease system per­
formance because of crosstalk between the different signals carried on 
each of the two polarizations. 

The purpose of this paper is to describe simple formulas for com­
puting the cross-polarization coupling introduced by sequences of beam 
refocusers which consist of quadric reflector surfaces arranged with the 
beam axis passing through their foci. 

II. CROSS POLARIZATION OWING TO REFLECTOR CURVATURE 

Consider a beam incident on a flat reflector, as in Fig. 1a. We restrict 
our attention to beams with narrow angular divergence where the 
paraxial ray approximation applies so that, for example, the beam 
field may be described in terms of gaussian beam modes. 3 The paraxial 
ray approximation applies roughly whenever the 3-dB angular diver­
gence of the beam is less than one radian. 

The geometrical optics law of reflection from a perfect conductor is· 

(1) 

where ei and er are unit vectors in the direction of the incident and 
reflected field polarizations, respectively, and n is the surface unit 
normal vector. The caret""" indicates a unit vector. If the polarization 
of the incident field is a fixed linear polarization throughout the beam 
and is perpendicular to the surface normal, then 

(2) 

i.e., the reflected field is also a fixed linear polarization throughout the 
beam. As expected, a flat plate introduces no cross polarization. 

In general, a reflector will be curved with two principal radii of 
curvature,4 as shown in Fig. lb. The surface unit normal vector will no 
longer be perpendicular to ei at all points. In fact, for small displace­
ments ~x and ~y along the directions of maximum and minimum 

* See Ref. 9, Sec. 6.11, for example. 
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(a) 

MAXIMUM 
CURVATURE, K, 

(b) 

PLANE OF INCIDENCE 
.......... (DEFINED BY ~ AND R) 

" sr 
_ PLANE OF 

- INCIDENCE 

MINIMUM 
CURVATURE, K2 

Fig. l-(a) Heflection of a beam from a flat plate. (b) Heflection of a beam from 
a curved surface. 

curvature, respectively, the unit normal vector will change by 

jj,fi = -Kl(jj,X)X - K2(jj,y)y, (3) 

where K1 and K2 are the maximum and minimum curvatures, respec­
tively, and positive curvature indicates the surface bends toward the 
incident radiation. 

This change in the surface unit normal vector causes the term (fi· Ci) 
In eq. (1) to change from zero to 

(4) 

where p is the angle between the plane of incidence and the direction 
of maximum curvature as shown in Fig. lb. 

Thus, due to surface curvature, the polarization of the reflected field 
varies over the surface from that resulting from a flat plate (- Ci) by 
an additional component 211(fi· Ci). Part of this component represents 
the change in the in-line polarization as a consequence of the change in 
the reflected-ray direction, and part represents cross-polarized signal 
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introduced by the surface curvature. The portion of n that is aligned 
with the cross-polarized field (the field in the plane of incidence and 
perpendicular to the reflected ray) is of magnitude sin (h Thus, the 
ratio of the cross-polarized field to the incident field at a given point is 

c = 2 sin Oi[ -Kl(AX) sin v + K2(Ay) cos v] (5) 

or 
c = -2(Ap) sin Oi~ (Kl sin V)2 + (K2 cos V)2 cos (¢ + 0-), (6) 

where 

0- = arctan ( ~ cot v ) . 

Ap is the displacement of the reflection point from that of the beam 
center and ¢ is the angular direction of that displacement relative to 
the axis of maximum curvature. For a fixed displacement, Ap, the 
direction, ¢, that gives maximum cross-polarized signal ratio, c, is 
¢max = -0-. 

If one assumes the incident polarization is in the plane of incidence 
rather than perpendicular to the plane of incidence, the resulting cross­
polarized field is also found to be given by eqs. (5) and (6). 

If the incident beam has a gaussian amplitude distribution 

1 
(Ap)2. I Ei = Eo exp - -w [1 - sln2 Oi cos2 (¢ - v)] (7) 

(where ~ is the lie beam intensity radius), one may calculate the ratio 
of the cross-polarized field relative to the in-line on-axis field (denoted 
by capital C to differentiate from the lower case c, representing the 
ratio of in-line and cross-polarized fields at the same point), 

C = -2(Ap) sinOi~(Klsin V)2 + (K2COS V)2 cos (¢ + 0-) 

exp 1- (~:t [1 - sin' 0, cos' (q, - v)] I· 
For a fixed direction ¢, the radius Ap at which the relative 

polarization is maximum is 

- ~ 
Apcmax 

- ~1 - sin2 Oi cos2 (¢ - v) , 

with 

(8) 

cross 

(9) 

(10) 

and the direction, ¢Cmax , which provides the greatest cross polarization, 
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is given by 

t [ 
sin 2 0 i sin (v + (]") cos (v + (]") ] 

¢cmax = arc an 1 . 2 0 . 2 ( .+) - (]". - sIn ism v (]" 
(11) 

When the plane of incidence coincides with either of the principal 
curvature planes'(v = 0° or 90°), as in the case of quadric surfaces with 
the beam center ray passing through the surface foci, the expression 
for the maximum cross polarization of eq. (10) simplifies to 

(12) 

(plane of incidence coincides with either plane of principal curvature), 
where Kl is the curvature in the direction normal to the plane of 
incidence. Thus, in this case, the maximum cross-polarized field is 
found in a direction normal to the plane of incidence in the direction 
of maximum (if v = 0°) or minimum (if v = 90°) surface curvature. 

In one example, an antenna is formed from two cylindrical mirrors 
such that v = 0° and Kl = 0 for both mirrors, which by eq. (12) in­
dicates that no cross polarizat~on is generated by the mirrors, in agree­
ment with the results of Ref. 5. 

Another example is the offset paraboloid launcher, shown in Fig. 2. 
The maximum cross-polarization amplitude ratio was derived in Ref. 6 
and found to be 

C = Oe tan (0 0/2) 
max -Ve In 10 ' (13) 

10-dB CONTOUR----------------

% - - - PARABOLOIDAL 

BEAM CENTER RAY -- -~ - -- -
S // ()j 

r // ~ OJ 
/ .-

10 dB CONTOUR--------r--~-----; 

/ ~ ..... '" // A:( s.>_/ 

<9;- / ~..: ..... / ()o 
- --77 ,e: - - -- - -- -

FOCAL LENGTH; F 

Fig. 2-0ffset paraboloid launcher. 

REFLECTOR 

()o 
(); -

I 2 

" AXIS OF 
PARABOLOID 
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where Oc is the 10-dB half angle of the gaussian beam incident from the 
focus and 00 is the offset angle of the beam center ray. 

The lie beam intensity radius ~ at the paraboloidal reflector is 
related to the 10-dB half angle, Oe, by 

~ = OcF sec2 (0 0/2) . 
.yIn 10 ' 

(14) 

where F is the focal length of the paraboloid. The curvature of the 
paraboloid in the direction perpendicular to the plane of incidence is 

cos (0 0/2) 
Kl = 2F (15) 

Using eqs. (14) and (15), it is seen that eq. (12) is in agreement with 
eq. (13). 

Another example is the use of cylindrical mirrors in Hertzian cable 
systems. A typical refocuser mirror arrangement7 is shown in Fig. 3. 
The beam remains in a horizontal plane (the plane of incidence) as it 
is refocused by two cylindrical mirrors both tilted so that their direc­
tion of curvature makes an angle v = 50.5 degrees with the plane of 
incidence. The output beam has changed. direction from the input beam 
by 225 degrees. The angle of incidence at both mirrors is 33.75 degrees 
and the curvatures are 

K2 = 0, 

1 -1 
Kl = 66 meters , 

and the beam radius is 
~ = 0.212 meters. 

The tilted orientation of the mirrors allows the mirrors to have equal 
curvature and large aperture efficiency while maintaining sharp focus­
ing and beam symmetry. 7 

The maximum cross polarization for the pair of reflectors is less than 
twice the maximum cross polarization from either one of the reflectors 
alone. From eq. (6), u is zero, and from eq. (11) 

CPcmax = 10.515 degrees. 

From eq. (10) the maximum cross polarization is 

20 10g1o (2Cmax) = -48.4 dB. (16) 

This is indeed a small value; however, in Hertzian cables with many 
such refocusers, this cross polarization could accumulate to be a 
problem. 
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~ = 0.212 METERS 

Fig. 3-Typical Hertzian cable refocuser-redirector. 

By using geometric optics, eqs. (1) and (7), the cross polarization 
has been numerically computed for various ellipsoids and paraboloids. 
The maximum cross polarization was found by a trial-and-error search 
and compared with that predicted from the paraxial ray result, eq. (12). 
The comparisons indicate that eq. (12) is accurate to within 0.1 dB 
for 10-dB half angles of the beam less than 45 degrees. 

III. DECOMPOSITION INTO GAUSSIAN BEAM MODES 

As described in the previous section, with quadric surface mirrors 
and the beam center ray passing through the foci of the surfaces, the 
cross-polarized field resulting from reflection of a perfectly polarized 
incident gaussian beam is maximum in a direction perpendicular to the 
plane of incidence and has the maximum value, relative to the in-line 
polarized field on axis, given by eq. (12), at a distance ~ from the beam 
center ray. 

It is shown in Ref. 6 that this type of reflected field can be repre­
sented as the superposition of two gaussian beam modes:3 

(i) Fundamental mode 

Eoo = (HooX + VooY) .~ 
"J7r~OO 

1
· p2 . [ ( Z) k p2 ] 1 . exp - Jkz - 2~5o + J arctan k~5o - 2Roo ' (17) 
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(ii) Higher-order mode 

E [V ( " ".) H (". +" ) ] ~p 01 = 01 X cos a - Y SIn a - 01 X sm a y COS a . ,-
"'1I"~51 

. exp 1- jkz - 2~;, + j [ 2 arctan (k;51) - 2~:']} , (18) 

where 'fJ is the free-space impedance, {iJ:o/ EO, and V oo, H 00, and VOl, 
HOI are the phasor coefficients of the fundamental and higher-order 
gaussian beam fields for the cases when the incident electric field is in 
the plane of incidence (V) and perpendicular to the plane of incidence 
(H), respectively. The subscripts refer to the standard TEMoo and 
TEMol mode notations of Ref. 8, not the "m" and "n" of Ref. 3. g 
and x are unit vectors normal to the beam axis in the plane of incidence 
and normal to the plane of incidence, respectively; p, a, and z are 
cylindrical coordinates, with z denoting distance along the beam axis 
from the beam waist. 

At the beam waist, z = 0, the radius of curvature of the phase front 
of the beam field, R, is infinite, and the field varies with increasing 
distance, p, from the axis at a rate determined by ~. For the fundamental 
mode, the field is maximum on axis and decreases to 1/ -{C of its maxi­
mum value at p = ~oo. For the higher-order mode, the field is maxi­
mum at p = ~01 and decreases to {2[e of its maximum value at 
p = v'1~01. Away from the beam waist z ~ 0, the beam-field amplitude 
varies with p at a rate determined by ~ instead of ~, and the phase 
front has a finite radius of curvature R. ~ and R are determined from 
~ and z by the following formulas: 8 

(19) 

and 

(20) 

The choice of eq. (18) as the higher-order mode is based6 on its 
ability to approximate simultaneously both the cross-polarization and 
the "space" taper (amplitude asymmetry from top to bottom of mirror) 
properties of offset reflectors. 

Both modes have a characteristic exponential attenuation with 
distance from axis, exp( _p2/2~2), and a spherical wavefront near the 
axis at constant z, denoted by the term, exp ( - jkp2/2R). As one passes 
through a beam waist, with increasing z, the on-axis phase advances 
by 11" for the fundamental mode and 211" for the higher-order mode 
(relative to the plane-wave retardation, e-ikz). Thus, if the cross-
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polarization field (due to the higher-order mode) is in phase with the 
in-line polarization field at the beam waist, it will be in phase quadra­
ture at large distances, Z » k~, from the beam waist. 

From the results of Section II and eqs. (17) and (18), we find that, 
if the higher-order mode is generated by reflection with incidence 
angle, Oi, from a quadric surface with curvature, Kl, perpendicular to 
the plane of incidence, beam radius, ~, and reflected phase front radius 
of curvature R at the reflector, then 

and 

~OO(Zr) = ~OI(Zr) = ~, 

Roo(zr) = ROI (Zr) = R, 

t::,. VOl HOI J;; . 
'Y = - = - = ",eCmax = 2~Kl SIn Oi, 

VOO Hoo 

(21) 

(22) 

(23) 

where the reflector is at Z = Zr, and the beam waist is at Z = o. A 
picture of a typical aperture-field decomposition into gaussian beam­
mode fields is shown in Fig. 4. 

Note that, at the reflector Zr, the two modes are in phase with equal 
beam radii and phase-front curvatures. As one progresses along the 
beam to an observation point, Zo, the beam radii and phase-front 

p .v 'v I I I 

t1H+-~ JI,,- \\~!j~ + 
L ____ 

\(x 

Eoo + Eo! ETOT 
FUNDAMENTAL HIGHER ORDER TOTAL 

(a) 

'v tv tv I 
I ~ ~ -r-

~--- + ) L{_~ ~-- x - ____ x 
~ --

Eoo + EO! - ETOT 
FUNDAMENTAL HIGHER ORDER TOTAL 

(b) 

Fig. 4-Two-mode decomposition of aperture field (looking opposite to direction 
of propagation). (a) Feed horn vertically polarized (parallel to plane of incidence). 
(b) Feed horn horizontally polarized (perpendicular to plane of incidence). 
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curva ture are still equal 

~oo(zo) = ~oo(zo) = ~ ~1 + (:~ )' (24) 

and 

Roo(zo) = ROI(zo) = Zo [ 1 + (kZ:2 YJ ' (25) 

where ~ and Zr are given by 8 

- ~ 

~ = ~1 + (ke/R)2' 
(26) 

and 
R 

(27) 

However, at Zo there is a relative phase shift between the higher-order 
mode and the fundamental mode, from eqs. (17) and (18), 

d<I> = <POI (Zo) - <poo(Zo) = arctan (;;2 ) - arctan (:i2 ). (28) 

This is the relative phase shift near the beam waist mentioned above. 
When the beam is focusing down towards the beam waist, Rand Z are 
negative; when diverging away from the beam waist, Rand z are 
positive. 

The power carried by each of the modes in terms of their mode 
phasors is 

!c 
<Xl !c 211" 1 E 12 

P = pdp da- = IAI2, 
o 0 211 

(29) 

where A is the phasor of the particular mode in question; i.e., V oo, H 00, 

VOl, or HOI. 

IV. MATRIX REPRESENTATION OF BEAM-WAVEGUIDE FACTORS 

To keep track of the cross polarization generated by a sequence of 
factors in a beam-waveguide system, it is useful to represent each 
factor in terms of its transmission matrix9 for the fundamental and 
higher-order modes. We will consider three types of factors that 
normally affect cross polarization in the reflection process: (i) the re­
flectors per se, (ii) the longitudinal propagation length, and (iii) the 
rotation of plane of incidence. See Fig. 5 for an example. 

If ~ and R are the same for all modes at the input to a series of 
reflectors, they remain so throughout the system. Thus, we will assume 
~ and R the same for all modes in what follows. If several modes are 
injected with different pairs of ~ and R, the response to each mode may 
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Fig. 5-Factors influencing cross polarization in a reflector-type beam system. 

be computed as shown herein and then superposition used to find the 
total output. 

As a dual-mode beam progresses along, undergoing a number of 
reflections, each factor may be thought of as a reflectionless, passive, 
eight-port device, as shown in Fig. 6. The coupling between the various 
modes may be expressed by the matrix equation 

SIDE a 

VO~ 

Hoo "-

"'-

,.... 

_a 

_a 
__ a 

__ a 

b = Ta, 

BEAM 
WAVEGUIDE 

FACTOR 

b = r-; 

[ 

VOOb J b = HOOb 

VOlb 

HOI b 

a = 

SIDE b 

---b 

---b 
,... 

---b 

--b 

[ 

VOOa J 
HOOa 

VOla 

HOI a 

VO~ 

Hoo 

(30) 

Fig. 6-The beam waveguide factor as a reflectionless eight port. 
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where a is a four vector whose components are the phasors of the input 
modes, 

a= 
VOoa] HOOa 
VOla ' 
H Ola 

(31) 

and b is the four vector whose components are the phasors of the 
output modes 

[ 

VOOb] 
b = HOOb . 

V Olb 
HOlb 

(32) 

The properties of the beam factor are described by the four-by-four 
factor matrix, 

(33) 

In general, the matrix T depends on the parameters of the beam 
propagating through the system. However, it is a simple matter to 
compute the appropriate matrix for each beam and beam direction one 
wishes to apply to the system. 

4.1 Curved-reflector matrix 

To express the beam modes in a form which allows the reflectors to 
be oriented arbitrarily in space, the beam coordinates at the input and 
output of a reflector are defined with z in the direction of propagation, 
y in the plane of incidence perpendicular to z and toward the surface 
normal, and x normal to z and y (thus normal to the plane of incidence) 
so that (x, y, z) forms a right-handed cartesian coordinate system, as 
shown in Fig. 7. 

By using the cross-polarization analysis of Section II, the mode 
definitions of Section III, and conservation of power, the matrix 
elements applying when a fundamental mode is incident are easily 
determined: 

TIl =~, Tl3 = -,,(, 
T IZ = Tn = T14 = T Z3 = 0, 

Tzz = --VI - "(2, 
(34) 

where "( is given in eq. (23) as 2~Kl sin (h Note that, for reflectors 
concave or convex in the direction perpendicular to the plane of 
incidence, "( is positive or negative, respectively. 
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Fig. 7-Reflector matrix components (fields viewed in direction opposite to propa­
gation direction). (a) Voo incident. (b) Hoo incident. 

Since the complex conjugate electric field satisfies Maxwell's equa­
tions and the boundary conditions on a perfect conductor (time re­
versal symmetry), the remaining matrix elements follow readily from 
the above real matrix elements of eq. (34): 

T33 = --VI - 'Y2, Tn = -'Y, T44 = -VI - 'Y2, 

T41 = T32 = T43 = T34 = O. 
(35) 

Note that V modes (plane-of-incidence modes) do not couple to H 
modes (normal-to-plane-of-incidence modes) during reflection from a 
curved reflector. Thus we have 

-VI - 'Y2 0 -'Y 0 

Tref = 
0 - -VI - 'Y2 0 'Y (36) 

-'Y 0 --VI - 'Y2 0 

0 'Y 0 -VI - 'Y2 

Since the matrix only describes transmission one way, the matrix 
elements are not necessarily directly related by reciprocity. 
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4.2 Longitudinal-propagation matrix 

As mentioned in Section II, there is a relative phase shift between 
higher-order modes and their corresponding fundamental modes. In 
analyzing beam propagation through a system, it is only required to 
keep track of the relative mode phases to compute the overall cross­
polarization coupling. Thus, we will lump all the differential beam­
waist phase shifts, Ll<I>, of eq. (28) with the higher-order modes. As a 
result, the beam-factor matrix for a longitudinal-propagation length 
lis 

where 

[
1 0 
o 1 

Tlp = 0 0 

o 0 

00] o 0 
e+j~<I> 0 ' 

o e+j~<I> 

Ll<I> = arctan ( kZ;2 ) - arctan ( {;2 ) , 

(37) 

(38) 

and Za and Zb are the positions, relative to the beam waist, of the input 
and output, respectively. 

4.3 Rotation-of-plane-of-incidence matrix 

As described in Section 4.1, the beam coordinates are attached to the 
plane of incidence of each reflector. Thus as one passes from one reflec­
tor to another, the plane of incidence may rotate, and what had been 
a plane-of-incidence mode (V mode) may become a normal-to-plane­
of-incidence mode (H mode). From Fig. 4, if one rotates the plane of 
incidence clockwise by an angle {3, the projections of the input modes 
onto the output modes give the following beam factor matrix for rota­
tion of plane of incidence: 

[

COS {3 
T - sin {3 

rot - 0 

o 

-sin {3 
cos {3 
o 
o 

o 
o 

cos 2{3 
sin 2{3 

V. TYPICAL BEAM-WAVEGUIDE APPLICATIONS 

-Si~ 2fJ]· 
cos 2{3 

(39) 

In this section, we illustrate the application of the above formulas by 
considering some typical beam-reflector systems. 

5.1 Symmetrical dual reflector 

In the symmetrical dual-reflector configuration shown in Fig. 8a, 
there is no rotation of plane of incidence. The arrangement comprises 
a curved reflector, followed by a longitudinal propagation length, 
followed by another reflector. Thus the overall beam system matrix is 
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the product of three beam-factor matrices 

(40) 

where Tref is given by eq. (36) and T lp by eq. (37). Neglecting terms 
of order 1'2, we have 

o 
-'Yl i e;A<'Y'] . 

ejtJ.rf> 

(41) 

From eq. (41), we see that to avoid conversion from a fundamental 
mode input to a higher-order mode at the output, 

e-jtJ.rf> = 1'1 = ~lKll sin Oil 
1'2 ~2K12 sin Oi2 ' 

(42) 

which implies 

LleI> = 0 (43) 

or 
LleI> = 7r. (44) 

Assuming symmetry, ~l = ~2 and Oil = Oi2, and eq. (43) shows that 
cross polarization is avoided if the two mirrors have equal concave 
curvature perpendicular to the plane of incidence and are close enough, 
Llz «k~2, or both far enough to one side or the other of the beam 
waist so that negligible "beam waist" phase shift takes place. From 
eq. (44), cross polarization can also be avoided if the reflectors are on 
opposite sides of the beam waist and in its far field, Llz» k~2, if one 
reflector is concave and the other convex with equal and opposite 
curvature normal to the plane of incidence. 

Note, from eq. (41), if two identical reflectors are placed symmetri­
cally about the beam waist in the far field, then 1'1 = 1'2 and LleI> = 7r 

so the cross-polarization coupling is 6 dB higher than that resulting 
from just one of the reflectors. 

Measurements made by K. C. KelleylO on a symmetrical dual­
reflector beam-waveguide feed subsystem for a Cassegrainian antenna 
provide a valuable check on this theory for the combined effect of two 
of the factors, reflector curvature and 'longitudinal propagation 
length. An analysis of his 11-GHz measurements is given in the 
appendix. The reflectors had equal curvature, the beam size was nearly 
the same at both curved reflectors, and the relative phase shift was ap-
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Fig. 8-Some typical beam waveguide applications. (a) Symmetrical dual re­
flector. (b) Asymmetrical dual reflector. (c) Right-angle dual reflector. 

proximately 90 degrees between fundamental and higher-order modes. 
Thus, from eq. (41), the cross-polarization coupling of the pair at the 
center frequency is approximately 3 dB higher than that from a single 
reflector, as confirmed by the measurements. Also, the theoretical 
frequency dependence of cross-polarization coupling is in approximate 
agreement with the measurements as shown in the appendix and 
Fig. 13. 
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5.2 Asymmetrical dual reflector 

In the asymmetrical dual reflector shown in Fig. Sb, the plane of 
incidence is rotated 7r radians. The overall matrix is the product of 
four beam factor matrices, 

where, from eq. (39), since {3 = 7r, 

[

-1 

T",. = ~ 

Thus (neglecting terms of order 1'2), 

o 
-1 

o 
(1'2 + eiLl<P'Yl) 

o 0 
-1 0 

o 1 
o 0 

(1'1 + eiLl<P'Y2) 

o 
eiLl<p 

o 

(45) 

(46) 

(1'1 + °e iLl<P'Y 2)] 
o ' 

eiLl<p 

(47) 

and the requirement that higher-order modes be avoided is 

(4S) 

Thus the conclusions stated above for the symmetrical dual-reflector 
configuration with equal (or opposite) curvature on reflectors 1 and 2 
apply to the asymmetrical dual-reflector system with opposite (or equal) 
curvatures on reflectors 1 and 2, respectively. 

Note, with closely spaced reflectors in the asymmetrical reflector 
arrangement (..1z ~ 0, Oil = Oi2), a pair of equal curvature mirrors give 
6 dB more cross-polarization power coupling than just one of the 
mirrors, whereas oppositely curved mirrors give cancellation of cross 
polarization (a well-known property of the Cassegrainian reflector 
arrangement) . 

5.3 Right-angle dual reflector 

In the right-angle dual reflector shown in Fig. Sc, the plane of 
incidence is rotated by 7r/2 radians. From eq. (39), with {3 = 7r/2, the 
matrix for rotation of the plane of incidence is 

T'Oh,2 = [~ 
-1 0 

~] , 
0 0 

(49) 
0 -1 
0 0 -1 
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and the resulting overall matrix is (neglecting terms of order ')'2) 

1 
o 

- e i t.<I>')'2 

')'1 

-eit.<I> 

o 
(50) 

From eq. (50), it is seen that the cross polarization introduced by the 
first curved reflector cannot be cancelled by the second curved reflector 
in a right-angle dual-reflector system. 

5.4 Confocal beam feed for an offset Cassegrainian antenna 

As mentioned in the introduction, an attractive application of beam 
reflectors is as a feed for a satellite-system ground-station reflector 
antenna. To show how the above theory may be applied to multiple­
reflector antennas, we consider the example of an offset Cassegrainian 
antenna fed by a beam waveguide. The offset Cassegrainianll con­
figuration provides a main reflector aperture with little or no blockage 
and is shown in Fig. 9 along with a beam reflector feed path from the 
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Fig. 9-Beam reflector feed for offset Cassegrainian antenna. 
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subreflector to a focusing reflector at the elevation axis and on out the 
elevation axis to an offset launcher6 in a side cab. 

We assume a confocal feed-reflector arrangement as suggested by 
Arnaud. 12 Subreflector A is an hyperboloid with foci at F and B, re­
focuser B an ellipsoid with foci at A and C, and the offset launcher 
reflector is an ellipsoid with foci at G and B. The advantage of this 
arrangement is that the beam diameters at A and C remain constant 
with frequency, as do the reflector curvatures, since the beam always 
seems to originate from the fixed points G, C, B, A, or F. This assumes 
the feed horn at G has constant beam width and phase center position 
over the range of frequency variation. 

Tracing from G through the beam reflector system, we have the 
following factors: reflector C, longitudinal propagation length dBc, 

plane of incidence rotation /1BC, reflector B, longitudinal propagation 
length dAB, plane of incidence rotation /1AB = -7r/2, reflector A, longi­
tudinal propagation length d MA , plane of incidence rotation /1MA = 7r, 
and reflector M. Thus the overall matrix 

Since the cross polarization is small and we may neglect terms of 
second order (1'2 « 1), it is easier to add the phasor higher-order mode 
coupling coefficients as one progresses through the system than to 
multiply out all the matrices shown in eq. (51). 

'YVV = 'YHH = - {'YM + exp(jilcf>MA)'YA 
+ sin /1BC exp[j(ilcf>MA + ilcf>AB + ilcf>BC)]'YC} , (52) 

'YVH = -'YHV 
= exp[j (ilcf>MA + ilcf>AB)][ 'YB - cos /1BC exp (jilcf>BC)'YC], (53) 

where, for example, 'YVII is the "normal to plane of incidence" output 
higher-order mode, when unit "parallel to plane of incidence" funda­
mental mode is present at the output, and 

ilcf>BC = arctan (k~ic) - arctan (k~~c) , (54) 

and 
(55) 

~BC being the beam waist radius of the beam traveling from reflector C 
to reflector B, ZB, and Zc the longitudinal positions of reflectors Band C, 
respectively, relative to that beam waist, ~B the beam radius at reflec­
tor B, and KIB the curvature of reflector B perpendicular to the plane 
of incidence. 

The curvature in the plane perpendicular to the plane of incidence 
for quadric surfaces of revolution, with beam center rays passing 
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through the foci, may be shown to equal* 

(56) 

where a is the major axis, b the minor axis, and (Ji the angle of incidence 
of the beam center ray. Using eq. (56) and neglecting diffraction 
(d<PMA == 0) between the subreflector A and the main reflector M, one 
finds that the cross-polarization coupling due to the Cassegrainian 
combination of M and A is 

sin2 (r /2) 
'YCASS = 'YM + 'YA = 'YM • 2 (J , sIn iM 

(57) 

where r is the offset angle, relative to the main reflector axis of the 
beam center ray incident on the subreflector A. Equation (57) is just 
the result one would obtain from an equivalent parabola13 with focal 
length (e + l)/(e - 1) times that of reflector M and with beam center 
ray offset angle r. 

As frequency decreases from infinity, a beam waist appears on both 
sides of reflector B; however, d<PAB and d<PBC remain equal to 7r/2.l2 

Because of this phase relation, it is not possible to cancel 'Y B with 'YC in 
(53). However, the residual of 'YM + 'YA in eq. (52) may be cancelled 
by a special choice of {3BC. In fact, if 'Yc is adjusted to equal 'YM + 'YA, 

{3BC = 7r/2 will minimize the cross-polarized modes of both (52) and 
(53). To maintain {3BC = 7r/2, it is necessary to rotate the offset 
launcher in Fig. 9 as the antenna is rotated around the elevation axis, 
just as the fundamental mode polarization at the side cab launcher 
rotates with antenna elevation angle. 

Thus, with d<PMA == 0, 'Yc = 'YM + 'YA, and {3BC = 7r/2, we have 

'YVV = 'YHH == 0 (58) 

and 
\"'tVH I = I 'YHV I = 'YB •. (59) 

From (23) and (25) and (JiB = 45°, 

( 1 1) 1 + d AB/ dBc 
'Y B = ~B dAB + dBc tan (JiB = k~A (60) 

To satisfy the condition on 'Yc, we may choose an incidence angle, 
(Jic, as follows, from eq. (57), 

( 1 1) sin2 (r/2) 
~ c -d + d- tan (J ic = 'Y M • 2 (J , 

GC BC sIn iM 

* Use the method of Ref. 4, Sec. 19.8, for example. 
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or 
tan (jic = tan (r /2) 

(dBc/dGc) + 1 
(61) 

As a specific example to illustrate the cross polarization encountered 
in practice, consider the following typical antenna dimensions: 

dBc _ 14 
dGC - "4' (62) 

where f is the frequency in GHz. Thus, the cross-polarization coupling 
becomes 

20 loglo ({e) = -8 - 20 loglo f dB, (63) 

e.g., -34 dB at 20 GHz. The incidence angle required on the offset 
launcher to cancel "1M + "IA (= -54.3 dB) in (52) becomes 1.6 degrees, 
which is too small to be practical without blockage, thus other means 
would be required to reduce "IC; for example, the launcher could itself 
be an offset Cassegrainian antenna. 

The cross polarization due to the ellipsoid refocuser at B can be 
reduced by using an additional flat mirror in combination14 as shown 
in Fig. 10. With long focal lengths, the beam is essentially of constant 
width through the combination, and the resultant incidence angle 
allowing no beam blockage for a beam diameter D depends on the 
available space h, 

1 . (D) (jiB = 2 arCSIn h . (64) 

As a specific example, assume there is space available for D /h = i; 
whence (jiB is reduced from 45 to 19 degrees and from eq. (60) the cross 
polarization is reduced 9 dB. 
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Fig. IO-Combination ellipsoid and flat to reduce ()iB. 
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VI. CONCLUSIONS 

By using the paraxial ray approximation, it has been possible to 
develop simple formulas for the cross polarization introduced by curved 
reflectors, e.g., eq. (12). The effect of curved reflectors in a beam­
reflector configuration using quadric surfaces of revolution, with the 
beam center ray passing through the foci, is shown to be accurately 
characterized by two gaussian modes for each of two planes of polariza­
tion. Cross polarization in a general beam-reflector arrangement de­
pends on three factors: reflector curvature, longitudinal propagation 
length, and rotation of plane of incidence. Using the gaussian modes 
allows one to represent the effect of the above factors by beam factor 
matrices which relate the input and output fundamental and higher­
order gaussian modes. Some typical beam-reflector configurations were 
analyzed using these techniques. The theory agrees well with measure­
ments on single reflectors,6 on a symmetrical dual-reflector system,10 
and with numerical ray tracing computations. 

There has been considerable interest in the effect of reflector curva­
ture in beam-reflector configurations. In particular, the work by 
Mizusawa and Kitsuregawa15 is worth noting. They show that the 
symmetric amplitude distribution of an optical beam passing through 
the foci of a pair of quadric surface-of-revolution reflectors will be 
preserved if all the foci lie on a straight line and if the eccentricities of 
the two reflectors are properly related. If both reflectors are ellipsoids 
or both reflectors are hyperboloids, then the eccentricities must be 
equal and the exit beam will be parallel to the entrance beam. If one 
reflector is an ellipsoid and one reflector is an hyperboloid, then one 
eccentricity must be the inverse of the other eccentricity and the 
direction of the exit beam is the reflection around the line through the 
foci of the direction of the entrance beam. By using eq. (12), one can 
show that only in the case of equal eccentricities does the preservation 
of amplitude symmetry imply zero cross polarization and then only 
in the infinite frequency limit where beam waist diffraction is negligible 
so the relative phase shift between fundamental and higher-order modes 
is either 0 or 180 degrees. 

The frequency dependence of the cross-polarization coupling in a 
beam-reflector system is an important property not generally indicated 
in the literature. The paraxial ray approximation for beam diffraction 
used herein provides a convenient means for computing the frequency 
dependence of the cross-polarization coupling which, in some cases, 
can be quite strong; e.g., in eq. (63) for the reflector configuration of 
Fig. 9 the cross-polarized power varies as the inverse square of the 
frequency. 
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APPENDIX 

Comparison of the Matrix Theory With Measurements on a Beam Waveguide 

The measurements described in Ref. 10 involved a beam-waveguide 
feed for a Cassegrainian antenna arranged as shown in Fig. 11. 
Reflectors 9a and 9c are identical ellipsoids approximately 0.76 m by 
1.09 m in size with major and minor axes a = 3.656 m and b = 3.656 
m/Vl, respectively. Reflectors 9b and 9d are flat mirrors. When one 
uses the images of the flat mirrors to unfold the beam waveguide, it is 
seen that a symmetrical dual-reflector type results as shown in Figs. Sa 
and 12. The feed was designed to produce beam waists approximately 
at planes u-u and v-v of Fig. 11 and a beam of the proper diameter and 
phase curvature at the subreflector position w-w to provide a focussed 
wave reflected from the subreflector toward the main reflector (not 
shown) of the Cassegrainian antenna. Performance for both vertical 
and hori?Jontal polarization was measured by rotating the launching 
horn (No. S of Fig. 11) around its axis (azimuth axis). Measurements 
were made at 10.36, 11.06, and 11.76 GHz for both horn polarizations. 
The phase and amplitude of the copolarized signal at the subreflector 
position was measured along the intersection line of plane w-w and the 
beam-bending plane (the plane of the paper in Fig. 11), and the cross­
polarized signal (at plane v-v) along a line in the beam-bending plane 
and also along a line perpendicular to the beam-bending plane. The 
cross-polarized signal along the line in the beam-bending plane always 
remained below -40 dB relative to the on-axis copolarized signal. 

To compare these measurements with theory, the launching horn is 
assumed to radiate negligible cross-polarized signal and, since measure­
ments of the beam dimensions throughout the reflector system are not 
available, the beam measurements at the subreflector position (plane 
w-w) will be used to reconstruct the beam dimensions throughout the 
beam waveguide as shown in the following equations. The theoretical 
cross polarization will then be computed at plane v-v and compared 
with measurements. 

Since the horn did not produce a perfectly symmetrical gaussian 
beam, the average (over both horn polarizations) of the measurements 
at planes w-w and v-v are used in the gaussian beam analysis. From the 

CROSS POLARIZATION FROM REFLECTORS 311 



Co) .... 
N 

-i 
:::I: 
m 
OJ 
m 
r 
r 
en 
-< en 
-i 
m 
s: 
-i 
m 
o 
:::I: 
Z 

~ r 
c­
O 
C 
:II 
Z » 
.! 
s: » 
:II 
o 
:::I: 
-L 
(0 
-..,J 
m 

5 

LEGEND: 

1. SIGNAL GENERATOR 

2. ISOLATOR 

1---- --2.576 m --- --+ ------- -----4.412 m --------------1 
I I I 
T I y 
: AZIMUTH I : 
I D l ~a ~d 13

.969m f /' 1-- I ________ . _________ _ 0.975_m --'7--~ {11 

0.634 m I 10 I \ 

T 

8 --........... --' " I E I " 
U M I W 

\k~ : ;¥'~ : I ~ I v 

IO _______ [~~8~:~~ 
2.803 m ,ge 

9b i , 

7. WR-90 TO 6.3 em /2.8 SQUARE WAVEGUIDE 

8. MULTIMODE HORN OF MULTIFLARE TYPE 

! cp 
ELEVATION 

AXIS 

3. WR-90 SLOTTED LINE 9. REFLECTORS OF FOLDED BEAM WAVEGUIDE SUBSYSTEM 

4. PROBE 

5. PROBE POSITION DIAL INDICATOR 

6. STANDING WAVE INDICATOR 

10. FLAT ALUMINUM PLATE SHORT THROUGH PHASE 
CENTER OF FINAL IMAGE 

11. POSITION CORRESPONDING TO SUBREFLECTOR 
OF CASSEGRAINIAN ANTENNA 

Fig. ll-Experimental setup for measurement of subsystem total loss. 



HORN 8 
OF FIG. 11-, 

w 
I 
I a 

" 

v 

REFLECTOR 
9a OF FIG. 11 

: 900' .... 

I I b / 

~ _______ ~ _______ ~ ____ l_ 

I 
I I :~FLECTOR 

9c OF FIG. 11 

I V I o I 
/. - - - - - - - - - 3.969 m - - - - - - - - + ---1.828 m - - -..J 

Fig. 12-Unfolded beam waveguide. 

measurements at plane w-w, the gaussian beam radius ~a and phase 
front radius of curvature Ra at the subreflecto.r position are given in 
Table 1. 

Using the beam transformation formulas of Ref. 8, the beam radius, 
~b, at the beam waist b and the distance from the subreflector to the 
beam waist Zab are 

(65) 

Table I - Measured gaussian beam parameters at the 
subreflector position 

Frequency (GHz) 

10.36 
11.06 
11.76 

Beam Radius (meters) 
~a 

0.355 
0.328 
0.338 

Phase Front Radius of 
Curvature (meters) 

Ra 

4.177 
4.623 
5.027 
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and 
Ra 

Zab = -l-+-("-R-
a
-'/ k-~--"~"'-) 2 , (66) 

where k = 27r /A is the free-space propagation constant. 
Going from beam waist b in Fig. 12 to reflector 9b at c, the trans­

formation formulas give the beam parameters on the output side of the 
reflector, 

(67) 

and 

[ ( k~~)2] R cout = Zbc 1 + z;: , (68) 

where Zbc is the distance from beam waist b to reflector c in Fig. 12, 

Zbc ~ 5.797 - Zab meters. (69) 

The radius of curvature of the beam phase front on the input side of 
reflector c is given by the thin lens formula9 

[ 
1 1 ]-1 

R Cin = 1 828 - ~ meters, 
• Cout 

(70) 

where 1.828 is the focal length of the ellipsoidal reflectors. 
The beam radius ~d at the beam waist d and the distance from 

reflector c to the beam waist Zcd are 

and 

The beam radius at reflector e (9a) is 

~, = ~d ~l + U~J ' 
where the distance from beam waist d to reflector e is 

Zde = 3.656 - Zed meters. 

(71) 

(72) 

(73) 

(74) 

From Section 5.1, the maximum cross-polarized signal at plane v-v 
occurs perpendicular to the beam-bending plane at a distance ~v from 
the axis, where ~v is the beam radius at plane v-v 

~, = ~b~l+ U~i)" 
and the distance from the beam waist b to plane v-v is 

Zbv = Zab - 3.969 meters. 
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From eq. (41), the maximum cross-polarized signal amplitude relative 
to the on-axis copolarized signal is 

(77) 

where the mode coupling coefficient at reflector c is 

2 · ~c 
l'c = ~cK1C SIn Oic = 1.828' (78) 

because the incidence angle Oic = 45 degrees and the curvature is 
Kl c = (a/b2

) cos Oic (a and b are the major and minor axes of the el­
lipsoid, respectively). Similarly, 

~e 
l'e = 1.828' (79) 

LlcI> is the relative phase shift of the higher-order mode relative to the 
fundamental mode over the longitudinal propagation length between 
reflectors c and e; from eq. (38), 

Llff? = arctan ( I~~~ I ) + arctan ( I;~i I ). (80) 

From eq. (18), to find the cross-polarized field at any other radius p 

CROSS POLARIZATION FROM REFLECTORS 315 



instead of PCmax = ~v, one multiplies by the factor: 

C(p) = Cm .. l ~. exp [(1 - p2/~;)/2J I· (81) 

Using eqs. (65) through (81) and the values given in Table I, the 
curves shown in Fig. 13 were computed for the cross-polarized signal 
power (relative to on-axis copolarized signal) as a function of distance 
from the axis at plane v-v in a direction perpendicular to the beam­
bending plane for the three frequencies 10.36, 11.06, and 11.76 GHz. 
Also shown are the measured values from Ref. 10. The theory is in 
approximate agreement with the measurements, showing the shape of 
the curve of cross-polarized signal versus off-axis distance and approxi­
mating the absolute level of the maximum cross-polarized signal. The 
frequency dependence of the theoretical cross-polarized signal is also 
in the same direction as the measured values. 

Theoretically, the cross polarization in the beam-bending plane IS 

negligible, which also is in agreement with the measurements. 
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In this paper, we describe a novel receiver structure for two-dimensional­
modulated, suppressed-carrier data signals. The receiver consists of a 
passband equalizer followed by a demodulator which compensates for 
frequency offset and phase jitter; the demodulator's phase angle is pro­
vided by a data-directed, carrier recovery loop, which is shown by analysis 
and simulation to be capable of tracking relatively high frequency phase 
jitter. A derivation of the receiver parameters is presented, based on a 
gradient algorithm for jointly optimizing the equalizer tap coefficients 
and the carrier phase estimate, to minimize the output mean-squared 
error. System performance is related to carrier phase-tracking parameters 
by analysis. Computer simulations confirm the feasibility of the receiver 
structure. 

I. INTRODUCTION 

In recent years, a number of double-sideband suppressed-carrier 
linear-modulation techniques have seen increasing application to the 
efficient transmission of digital data over band-limited channels. Two­
dimensional modulation may be an appropriate designation for these 
techniques, since they call for coding the transmitted data as two­
dimensional data symbols and transmitting the two components by 
amplitude-modulating two quadrature carrier waves. 

Phase-shift keying (PSK) and quadrature amplitude modulation 
(QAM, sometimes termed QASK), illustrated in Fig. 1, are familar ex­
amples. Other two-dimensional modulation examples, characterized 
by their signal constellations (discrete sets of two-dimensional data 
symbols), have been extensively studied.1- 3 

This paper presents a unified treatment of adaptive equalization, 
carrier recovery, and demodulation for two-dimensional-modulated 
data communication systems. Most previous studies of QAM and PSK 

systems have treated these receiver functions separately.4-8 Kobayashi 
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Fig. I-Examples of two-dimensional signal constellations. (a) 8-phase PSK. (b) 
I6-point QAM. 

presented a unified receiver structure applicable to two-dimensional 
modulation, based on maximum-likelihood reception. 9 Chang studied 
a unified linear receiver structure for (one-dimensional) single-sideband 
modulation systems. 10 A novel feature of the receiver structure pre­
sented in this paper is the placement of the carrier phase-tracking and 
demodulation functions together, after adaptive passband equaliza­
tion. t In a more traditional receiver arrangement,8-1O baseband 
equalization follows demodulation and precedes decision-directed 
phase estimation, thereby introducing a delay of many symbol in­
tervals between these two functions. The decision-directed phase esti­
ma te is therefore a delayed version of the true channel phase shift 
affecting the signal that is entering the demodulator. This delay 
would lead to inaccurate demodulation of a signal perturbed by a time­
varying phase shift (phase jitter) introduced by some channels. The 
receiver structure presented here avoids this source of inaccuracy by 
placing both the demodulation and phase estimation functions after 
the equalizer. 

In Section II we introduce complex notation for two-dimensional 
bandpass signals and for the effects of linear distortion, phase jitter, 
and frequency offset. Section III introduces the receiver structure 
and reviews the function of the passband equalizer. Section IV intro­
duces a mean-squared-error criterion and proposes a gradient al­
gorithm for arriving at a (nonunique) set of equalizer tap coefficients 
and a carrier phase estimate to minimize it. This ideal gradient al­
gorithm is the motivation for a joint decision-directed equalizer up-

t The receiver structure and an equivalent implementation of it are depicted in 
Figs. 2 and 3, respectively. 
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dating and demodulation phase-tracking algorithm. It is shown that 
the phase-tracking algorithm performs essentially the function of a 
first-order phase-locked loop operating in discrete time. A very simple 
linear analysis of the loop in Section V illustrates its phase-jitter track­
ing capability. The receiver's capabilities are further confirmed by the 
results of simulations, reported in Section VI. 

II. BANDPASS SIGNALS AND PHASE JITTER 

We consider double-sideband, suppressed-carrier, two-dimensional­
modulated data signals specified by 

set) = L: ang(t - nT) cos 27r jet - L: ang(t - nT) sin 27r jet, (1) 
n n 

where je is the carrier frequency, get) is a suitably chosen baseband 
pulse waveform, T is the duration of a symbol interval, and the pair 
(an, an) represents a discrete-valued two-dimensional data symbol. 
For example, in a 16-point QAM system, each an and an is chosen inde­
pendently from the set {±1, ±3}. In a phase-modulation system 
(PSK), an and an have the form an = cos t/;n and an = sin t/;n, the 
information being coded onto the phase t/;n. These examples are dis­
played in Fig. 1. 

It is convenient to deal only with the positive frequency content of 
passband spectra. The associated time functions are complex-valued. 
Thus set) = Re [set) + J·s(t)], where set) is the Hilbert transform of 
8 (t) and [s (t) + js (t)] possesses a Fourier transform consisting of 
twice the positive frequency part of the spectrum of s (t) : 

set) + js(t) == L: Ang(t - nT) exp(j27rjet), (2) 
n 

where An = an + jan. The complex passband waveform get - nT) 
X exp (j27r jet) is said to be analytic if its spectrum is nonzero only for 
positive frequencies. In general, we shall represent real quantities by 
lower-case letters and complex ones by upper-case letters. 

When set) is passed through a noisy linear channel, the output is 
expressed as 

s'(t) == Re {L: AnC(t - nT) exp[j(27rjet + O)]} + net), (3a) 
n 

where C (t) is a complex baseband equivalent impulse response of the 
combined transmitting filter and channel, 0 a phase shift that may be 
inserted by the channel, and net) a realization of additive noise. 

Some channels introduce a time-varying phase shift, expressed in 
general as 

O(t) == 0 + 27rLlt + t/;(t). 
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Here 0 represents a fixed phase shift, d a fixed frequency offset, and 
tf;(t) a random or quasi-periodic waveform that is a manifestation of 
phase jitter. On voiceband telephone channels, the peak magnitude 
of the waveform tf;(t) is usually less than about 10 degrees, and its 
highest frequency spectral component is typically less than 10 percent 
of the data signal's bandwidth.H If the typical rate of variation were 
comparable to the symbol rate liT, a mathematical model for phase 
jitter would be critically dependent on the linear filter transfer func­
tions preceding and following the location where the channel phase­
modulates the data signal with the phase jitter. However, the assump­
tion of small, relatively slow phase jitter permits us to sidestep this 
distinction and to model the phase-jitter-perturbed received signal 
conveniently as 

s'(t) == Re {L: AnC(t - nT) exp[j(271"fct + On)]} + net); (3b) 
T 

i.e., On is interpreted as the channel phase shift affecting the trans­
mission of the nth data symbol An. 

III. RECEIVER STRUCTURE 

Figure 2 shows the two-dimensional receiver structure. The real­
valued received waveform s' (t) first enters a phase splitter, consisting 
of parallel passband filters with impulse responses h(t) and h(t), where 
h(t) is the Hilbert transform of h(t); thus the complex impulse response 
defined by H(t) == h(t) + jh(t) is analytic. An appropriate choice for 
H (t) is a filter matched to the transmitted pulse, i.e., 

H(t) = g( -t) exp(j271"fct). (4) 

If the channel C (t) were known a priori, an optimal choice for H (t) 
would be a matched filter impulse response 

C ( - t) * exp (j271" f ct) . 

The optimality of the complex matched filter and sampler for two­
dimensional modulation is brought out in the studies of Kobayashi,9 

" EXP [-j (21T fcnT + On) 1 

Fig. 2-Two-dimensional receiver. 
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Ungerboeck,12 and Ericson and Johansson. I3 Sampling is carried out at 
the symbol rate liT. We assume a fixed choice of sampling phase and 
will not be concerned with its optimization. The problem of deriving 
the optimum sampling phase has been treated previously.14-16 

The pair of outputs at time nT from the sampler rn and rn can be 
expressed as a complex sample 

Rn == rn + jrn, 

which is of the form 

where Xn == X(nT) is a sample of the overall complex baseband 
equivalent impulse response and N n is a complex sample of filtered 
nOIse. 

The passband linear equalizer7 with, say, 2M + 1 complex tap co­
efficients {C~}~M produces complex passband output samples {Qn} 
which are a linear combination of sampled inputs; i.e., 

M 

Qn == qn + Fin = L C';.R n- k. (6a) 
k=-M 

Note that the equalizer's implementation is described either by the 
above complex expression or by two expressions for the two real out­
puts, viz., 

where 

M 

qn = L (Ckrn-k + Ckrn-k) 
k=-m 

M 

qn = L (Ckrn-k - Ckrn-k), 
k=-M 

C~ == Ck - jCk. 

Expression (6) can also be expressed in vector notation. Define 

Then 
Qn = C*Rn, 

where * means complex conjugate transpose. 

(6b) 

(6c) 

(7a) 

(7b) 

(8) 
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Ideally, the passband equalizer's sampled impulse response {C;} 
should be such as to yield an overall passband channel with no inter­
symbol interference; i.e., 

The information symbol A n is then recovered by demodulating Q n 

to baseband and quantizing the result in accordance with the two­
dimensional signal constellation. If the demodulator has a phase esti­
mate en, the complex demodulated output is given by 

or 
Yn = qn cos (271' fenT + en) + qn sin (271' fenT + en) (9b) 

Yn = -qn sin (271'fcnT + en) + qn cos (271'fcnT + en). (9c) 

The ideal output at time nT is A n and the receiver error is defined by 

(lOa) 

For the joint optimization of the equalizer tap coefficients and the 
demodulator phase, we adopt the following mean-squared-error cri­
terion: minimize En, where 

(lOb) 

and the expectation, denoted by ( ), is over the data sequence and 
noise.t 

The receiver structure shown in Fig. 2 is characterized by the follow­
ing expression for the complex output sample before quantization. 
From (6a) and (9a), 

An alternative equivalent receiver has a "baseband" structure. De­
fine a new set of tap coefficients by 

C~' == C; exp ( - j271' fckT) 

and a set of demodulated received samples by 

R~ == Rn exp( - j271'fcnT). 

(12a) 

(12b) 

t The "symmetric" mean-squared-error criterion (lOb) was proposed by R. D. 
Gitlin and K. H. Mueller as an improvement to the "single-sided" criterion proposed 
in Ref. 7. 

322 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976 



Then (11) can be re-expressed as 

Y n = [ f C~/R~-k] exp( - jOn). 
k=-M 

(12c) 

The fully equivalent implementation expressed by (12c) is depicted 
in Fig. 3. Note that the received samples are demodulated to baseband 
using a free-running oscillator as in (12b) before equalization. However, 
a second stage of demodulation following baseband equalization 
remains, whose purpose is to remove the effects of channel phase varia­
tion. Again, the delay of the equalizer does not come between this 
secondary demodulation and the derivation of the phase estimate On. 
The equivalence of the "passband" and "baseband" receiver imple­
mentations of Figs. 2 and 3, respectively, gives the system designer 
some extra flexibility. 

IV. OPTIMIZATION OF EQUALIZER TAP COEFFICIENTS AND 
DEMODULATION PHASE 

To bring out the relationships governing the optimal tap vector en 
and demodulator phase On (both of which may be functions of time), 
we assume that successive data symbols are uncorrelated; i.e., 

(AlAm) = 0 all l, m 
(AlA~) = (I A 1

2 )Olm, 
(13) 

where Olm is the Kronecker delta function. Then for future reference 
we note, from expressions (5) and (7b), that cross correlation of the 
data symbols with sampled phase-splitter outputs results in 

where 

s'(t) 

(A~Rn) = Xn exp[j(27rfcnT + 8n)](IA 12 ), (14) 

EXP [-j 2 7T fenT] 

BASE -
BAND 
EQUAL-
IZER 

Fig. 3-Equivalent implementation. 

QUAN­
TIZER 

(15) 
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is the complex impulse response vector of the combination of the 
transmitter pulse filter and the channel, truncated to 2M + 1 samples. 
The channel correlation matrix or A matrix is defined to be 

(16) 

This is a Hermitian matrix (A* = A) whose l-mth element is 

Aim = L XnX:+ m - z exp[j271'Jc(l - m)TJ + Pl-m, (17) 
n 

where {Pl-m} is the noise autocorrelation. Furthermore, it is positive 
semidefinite. (For any vector u, u*Au = <lu*Rn I2) ~ 0.) 

Using definitions (10), (11), (14), and (16), we can rewrite En in terms 
of A and X, which are fundamental characteristics of the channel. 

En = {en - A-IX exp[- j(On - On)]}* 
. A{ en - A-IX exp[ - j(On - On)]} + 1 - X* A-IX. (18) 

Because the matrix A is positive semidefinite, En has the unique 
minimum 

Emin = 1 - X* A-IX, (19) 

which is achieved when en and On satisfy 

Observe that the solution (20) is not unique; there is an infinitude 
of combinations (en, On - On) that yield the minimum. However, for 
any specific choice of On (including zero), there is a unique optimum 
choice of en. Indeed, this is a manifestation of the "tap-rotation" 
property of the passband equalizer which was pointed out by Gitlin, 
Ho, and Mazo. 7 In particular, when there is no attempt to estimate 
On(On = 0), then any amount of frequency offset Ll(On = 271'nLlT) 
causes en opt to "rotate" with frequency Ll. However, a typical adaptive 
equalizer whose tap coefficients may not be permitted to change by 
more than about 1 percent from one symbol interval to the next will 
not be able simultaneously to equalize the channel effectively and to 
rotate 271'Ll radians per symbol interval even for moderate amounts of 
frequency offset. Similarly, the equalizer taps could not be expected 
to track typical phase jitter components accurately. 

The principal innovation reported in this paper is the joint operation 
. of the adaptive equalizer and a separate phase-tracking loop which 
removes the major burden of tracking from the slowly adapting 
equalizer. Assuming this separate phase-angIe-tracking algorithm is 
successful so that the phase error (On - On) remains constant, we ob-
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serve, by writing the mean-squared error using definitions (10) and 
(11) as 

En == (/1/2) (/C:R n - An exp[j(27rfcnT + On)]/2), (21) 

that, if the equalizer's reference signal for the purpose of adapting its 
tap coefficients is {An exp[j(27rfcnT + On)]}, the reference signal 
rotates in synchronism with the frequency-offset and phase-jittered 
carrier of the received signal, and hence the equalizer tap coefficients 
do not have to rotate if On - On remains constant. 

If the gradients of En with respect to the real tap coefficient vectors 
en and en are denoted respectively by V' cnEn and V'cnEn and if we define 
the gradient with respect to Cn to be 

then the gradient of the right-hand side of (18) can be written 

(22) 

Then it follows from expression (18) and from the fact that A is positive 
semidefinite that V' en En = 0 is a necessary and sufficient condition for 
En to attain its minimum value.* If the receiver knew X exp(jOn), 
defined by (15), and A, defined by (16), and could calculate this 
gradient during each symbol interval, then in the nth symbol interval 
it could use a gradient algorithm to update its estimate of Cn as follows: 

(23) 

where the gradient is defined by (22). In this equation, Cn is the esti­
mate of the correct tap coefficient vector in the nth symbol interval 
and {3/2 is a positive constant. For the moment, we defer consideration 
of a more realistic algorithm that does not require prior knowledge of 
A and X. 

Let us now consider the means for providing the estimated sequence 
{On}. In general, of course, the true phase jitter angle sequence {On} 
is a random process. However, the reasonable assumption that it 
varies slowly with n leads us to treat On as a quasi-static parameter 
that must be estimated in symbol interval n from present and past 
received data {Rn} and reference information symbols {An}. 

Accordingly, the receiver will incorporate an algorithm for updating 
its estimate On, based on a gradient search technique. The derivative 

* We assume that matrix A is nonsingular. 
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of €n with respect to On is, for a fixed value of Cn, 

Ven€n = -2 1m {C~X exp[ - f(On - On)J}. (24) 

The estimate On is thus updated as 

(25) 

where a/2 is a constant. In general, a should be large relative to the 
equalizer's constant {3, to ensure that the estimate On can closely track 
a varying angle On, thereby obviating the need for the passband 
equalizer taps to follow it closely. 

Suppose the angle On is not time-varying (On = 0). Then the sta­
tionary points of the gradient algorithms (23) and (25) are the solu­
tions of the equations 

VC€n = 0 

or 
AC = X exp[ - j(O - O)J, (26) 

and 

or 
1m {C*X exp[ - f(O - O)J} = o. (27) 

It is easy to show from the Hermitian property of A that, if (26) is 
true, then (27), is true. Furthermore, A is positive semidefinite and 
thus expression (18) for the mean-squared error shows that the infinite 
set of stationary points, defined by (26), are the only global minima. 

The following question immediately arises: Starting with fixed 
initial values, Co and 00 and assuming On = 0 for all n, do the gradient 
algorithms (23) and (25) jointly converge to a stationary point? Note 
that by defining 

and 

we can combine (23) and (25) by writing 

(28) 

It is shown in Ref. 17 that, if {3 and a are chosen small enough, the 
sequence {Zn} converges in mean-square to a stationary point for 
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which V'Z€n = O. As pointed out previously, the stationary points all 
yield the global minimum of the. mean-squared error and thus (28) 
converges to yield the minimum mean-squared error. The question of 
rate of convergence will be treated in a later paper. 

In a practical situation, the receiver does not know a priori the 
ensemble averages represented by the channel correlation matrix A 
and the truncated impulse response vector X. In this situation, the 
receiver can approximate the gradient search algorithm by utilizing 
the gradients with respect to C and On of the actual unnormalized 
squared error 

instead of its mean. The An used in this calculation is initially an ideal 
reference known to the receiver, and during normal operation it is 
the receiver's output decision An in the nth interval. Thus a decision­
directed stochastic approximation algorithm corresponding to (23) 
and (25) is 

Cn+1 = Cn - (11 12) {RnR~Cn - A~Rnexp[-j(271"fcnT + On)]} 

~ * A* 
= Cn - <IA 12) Rn(Qn - Qn), (29) 

where Qn = An exp[j(271"fcnT + On)] is the "rotated" reference for 
the equalizer in the nth interval, using the receiver's decision An, and 

A A a 1m {* * [ . A ] } On+l = On + 1 An 12 CnRnAn exp - J (271" fenT + On) 

A a A* 
= On + 1 An 121m (QnQn), (30) 

which can also be written as On+l = On + allAn 121m {Y nA~}. 
Expression (30) has a simple heuristic interpretation. Suppose the 

equalizer has successfully removed all intersymbol interference so that 
its output, neglecting noise, can be written 

Qn ~ An exp[j(271"fenT + On)]. 

Then we can write (30) as 

On+l ~ On - a sin(On - en). (31) 

Equation (31) describes a discrete-time, first-order, phase-locked 
loop. Because the tracking algorithm makes use of the receiver's 
decisions, it can be termed a decision-directed tracking loop or a 
decision feedback loop.5.6 As expressed in (31), the demodulator phase 
On is corrected by an amount proportional to the sine of the angular 
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difference between the demodulated output Y n and the receiver's 
decision An. The maximum bandwidth of the phase jitter that can 
be compensated for is a function of the constants a and {3. This will 
be explored in the next section and in a subsequent paper. 

The decision-directed phase-tracking principle is well-known for 
application in systems that do not require adaptive equalization. 5,6 

Its appropriateness is further confirmed by studies of maximum-like­
lihood detection.9 ,12 

Note that there is a phase ambiguity in the receiver's decisions 
inherent in suppressed-carrier systems with symmetric signal con­
stellations, using decision-directed phase tracking. For example, the 
QAM signal constellation of Fig. 1 is quadrant ally symmetric, and there­
fore constant 90-degree errors in the phase of the receiver's decisions 
{A n} are undetectable. This source of ambiguity is customarily re­
moved by differentially encoding the transmitted data onto the points 
of the signal constellation, so that phase differences between successive 
decisions {An}, rather than absolute phase values, convey information. 

v. THE PHASE-TRACKING GAIN CONSTANT a: TRACKING 
BANDWIDTH CONSIDERATIONS 

As pointed out in Section IV, the phase-angIe-tracking algorithm 
is, assuming perfect equalization, basically that of a first-order phase­
lock loop with gain constant a. The actual system does not behave 
quite as simply as this, however, since the passband equalizer, even 
with a small gain constant {3, will also attempt to track the phase to 
some extent; i.e., the difference equations (29) and (30) are coupled. 
This coupling and its effect on performance will be explored in a later 
paper. In this section, we ignore this effect and also the effect of im­
perfect equalization. Furthermore, in view of the difficulty in analyzing 
discrete-time phase-locked systems, we make the following linearizing 
approximation for the steady-state phase error: I en - (}n I «7r, so 
that sin (en - (}n) ::::::d en - (}n. We can write (31) as the simple linear 
difference equation 

(32) 

The case of sinusoidal phase jitter, (}n == Re [J exp (jwnT)], is of 
interest because the phase jitter observed on telephone channels 
often consists of one or more sinusoids with frequencies w/27r Hz, which 
are harmonics of various power line frequencies. The response en 
= Re [j exp (jwnT)] of the linearized phase-locked loop to (}n is 
easily found to be given by 

; = F(jw) 
a (33) 

exp(jwT) - 1 + a 
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N ow let us consider the effect of additive noise on the linearized 
phase-tracking algorithm. Assume the complex, equalized, demodulated 
output can be written 

Y n = An exp[ - J(On - On)J + V n, (34) 

where V n = Vn + jVn is a complex gaussian random variable with 
zero mean. Although in general successive noise samples at the equal­
izer output will be correlated, we assume they are uncorrelated to 
simplify the results. The effect of this simplification should be minor 
if the phase-tracking bandwidth is much smaller than the data band­
width or if the frequency response of the channel and of the equalizer 
are both nearly fiat. Thus if the signal-to-noise ratio is (IAI2)/No, 

(VnVm) = (VnVm) = (No/2)onm, and (VnVm) = O. Then eq. (31) for up­
dating On can be written, after using the linearizing approximation as 
in (32), 

A )A (Vn) On+l = (1 - a On + aOn + a 1m An . (35) 

The random variable Wn = 1m (V n/ An) is not gaussian unless 1 An 1 

is constant (pure phase modulation). However, assuming the in­
formation symbols and noise are independent, the {w n } are zero-mean 
and statistically independent with variance (N 0/2) (1/1 A 12). 

By the superposition principle for linear systems, the error in the 
output of the phase-locked loop is given by 

On - On = Re {J[F(jw) - IJ exp(jwnT)} + Vn, (36) 

where the sequence {v n } satisfies 

Vn+l = (1 - a) Vn + aWn, 

and therefore has zero mean and steady-state variance 

1· (2) aN 0 < 1 > 
n ~~ V n = 2 (2 - a) 1 A 12 . 

The mean-squared error in the phase estimate is thus 

«(On - On)2) = 1~12 IF(jw) - 112 + (V;), 

which from (33) and (38) is 

A 2 _ 1 J 12 4 sin2 (w T /2) 
«(On - On) ) - -2- a2 + 4(1 - a) sin2 (wT/2) 

+ 2(;~0 a) <I~ 12)' 

(37) 

(38) 

(39) 

The residual RMS phase jitter, given by the square root of the above 
expression, is plotted as a function of the coefficient a for signal-to-
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noise ratios (IA 12)/No of 30 dB and 22 dB in Figs. 4a and 4b, respec­
tively. In each case, a 16-point QAM constellation is assumed. The 
higher the phase jitter frequency w relative to the symbol rate liT, 
the greater the residual RMS jitter. The curves in Figs. 4a and 4b show 
the case of no jitter (in which case, the residual jitter results from 
noise entering the discrete time-phase-locked loop) and also the cases 
of 14-degree peak-to-peak jitter with wT /27r = 1/48 and with wT /27r 
= 1/20. The choice of bandwidth of the decision-directed phase-track­
ing loop, determined by a, should be governed by the highest expected 
phase jitter frequency. If the spectrum of the phase jitter is known, a 
higher-order phase-locked loop may permit more effective phase 
tracking. 

For given values of RMS residual phase jitter, the error probability 
can be approximated as in Ref. 1. For example, we find from Fig. 4b 
that the residual RMS phase jitter is about 2.5 degrees in the 16-point 
QAM systems, for a = 0.3, when the channel has a signal-to-noise ratio 
of 22 dB and 14 degrees peak-to-peak channel phase jitter with fre­
quency 1/48 that of the symbol rate. From Fig. 11 of Ref. 1, we find 
that the resulting error probability is about 4 X 10-7• The same system 

Ul 
UJ 
UJ 
a: 
l'J 
UJ 
o 

~ 4 

a: 
UJ 

t -, 

~ 3 
<1: 
J: 
c.. 

Ul 
~ 
a: 
...J 2 
<1: 
=> o 
Vi 
UJ 
a: 

(a) (b) 

0.2 0.4 

PHASE TRACKING COEFFICIENT a 

Fig. 4-(a) Residual rms phase jitter for a channel with 30-dB sin and 14-degree 
peak-to-peak phase jitter. (b) Residual rms phase jitter for a channel with 22-dB sin 
and 14-degree peak-to-peak phase jitter. 
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with the same value of a in the absence of phase jitter has an error 
probability of about 5 X 10-8

• The same system with a = 0 and no 
phase jitter has an error probability of about 10-8 • 

VI. SIMULATION OF THE QAM RECEIVER 

The receiver described in this paper with the QAM constellation of 
Fig. 1 has been simulated on an IBM 370 computer, with 9600-b/s 
QAM data signals transmitted over real voiceband telephone channels 
as input. The simulation technique and the evaluation of this and 
other high-speed modems were reported in Ref. 18. In general, over a 
variety of different voiceband channels, the QAM system's performance 
appeared to be superior to that of all other systems tested. 

One channel used for transmission of the QAM signals consisted of a 
Holmdel-to-Murray-Hill voiceband channel plus 50-Hz, 17-degree, 
peak-to-peak sinusoidal phase jitter which was inserted by a line 
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Fig. 5a-Receiver output constellation a = 0.0l. 

'!', •• 

:: 0:· : .. : 

"+ •••• 

·+····t: 
't' 

."." '+++ 
t+'t.t. 

·'t o 
•• 

'+ ••• 

. : .. :: t9 ~: .. 
•• "'+' 

++ •• 

"'+' ·0 .. 

EQUALIZATION AND CARRIER RECOVERY 331 



fff'+ 
+'+ .. fff . .. 

.. O~tf" . 
ff' + • 

: : .. : +' : . 

Ji(~' : tf !+::. 
f+ +'" 

'+ ++ 
.. f 

:J~!t . "t' + •• 1.} t+' 
f: 71.' 

+ .•. f f+f 
f~+1!f' . + +B f 

:. ~f+~:>' 
........ i++ +"'" · ... +·t. ++++-.. ::~~+: ........ 

Fig. 5b-Receiver output constellation a = 0.3. 

· ~~;!!: . 
h~ t:: 
" ~f' 
"" ++ .. 

.... "" + .. :" 

• + 
'f+ 
. +f .... .. + 

. f' ++' 
. t!Q. +: . 

• f ~+ .,. 
+: f " 

f: 

++ 
; +! + • : 

++..J. "'''" 
· :+!B!!+. 

• + : + + .. ' 
..•• : + 

simulator. The phase jitter and other impairments contributed by the 
Holmdel-to-Murray-Hill line alone were not too severe; the worst 
impairment was second-harmonic distortion, amounting to 32 dB 
(fundamental to average second-order product). 

An illustration of the receiver's effectiveness in tracking and remov­
ing sinusoidal jitter from the same recorded data signal is shown in 
Figs. 5a and 5b, in which the unquantized complex (i.e., two-dimen­
sional) receiver outputs are plotted, Yn versus Yn. A . indicates that 
the particular set (y, y) occurred at least once during transmission, a 
+ that it occurred between 4 and 10 times, a # that it occurred between 
11 and 20 times, and an @ that it occurred more than 20 times. Thus, 
these figures are "constellations" or coarsely-quantized two-dimen­
sional histograms of the receiver's demodulated ouput. The coordinates 
of the possible transmitted information symbols (±1, ±3 for QAM 

332 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976 



signals) are shown as circles. Figure 5a shows the two-dimensional 
receiver output constellation for the case when the parameter a is 
too small to allow the jitter to be tracked; a = 0.01. Thus, in this 
case, the original 17-degree peak-to-peak jitter appeared at the 
receiver output, resulting in the banana-like shapes lying along the 
circumferences of circles centered at the origin. Note that, if the only 
impairment present was additive random noise, we would expect 
the scatter plots to look like circles centered on the information symbol 
coordinates and with radii proportional to the rms value of the noise. 
Figure 5b is a constellation for the case a = 0.3, which allows the 
sinusoidal jitter to be tracked and almost completely removed by the 
demodulator. 

VII. SUMMARY AND CONCLUSIONS 

We have proposed a decision-directed demodulator phase-recovery 
loop coupled with adaptive passband equalization for use in a two­
dimensional, suppressed-carrier, data communications system. Accu­
rate compensation of phase jitter and frequency offset is afforded 
by placing the demodulator and a sufficiently wide bandwidth decision­
directed phase-tracking loop together following the equalizer. 

The derivation of the receiver's adaptive algorithm for jointly setting 
the equalizer tap coefficients and the carrier phase estimate was based 
on a gradient search algorithm for minimizing an expression for the 
receiver's output mean-squared error. This gradient search algorithm 
was shown to converge in the absence of noise and phase jitter to a 
nonunique but optimal set of tap coefficients and carrier phase-angle 
estimate. 

Computer simulations using real-channel received waveforms re­
ported here and in Ref. 18 confirm the feasibility of the QAM receiver 
structure. 

Assuming perfect passband equalization and making a simplifying 
linear approximation, we analyzed the system's residual phase error 
as a function of carrier tracking loop gain, signal-to-noise ratio, and 
the amount and frequency of sinusoidal phase jitter. The optimum 
value of the carrier-tracking-Ioop-gain parameter a was seen to depend 
on the noise and phase-jitter parameters, although reasonable design 
compromises can be made. 

A forthcoming paper19 will explore the adaptation and tracking 
behavior of the combined equalizer, carrier recovery system, and 
demodulator in more detail. 

The two-dimensional adaptive receiver structure described here can 
also be extended to systems employing decision feedback equalization. 
The performance of such a receiver will be reported in a later paper. 
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The Field of a Line Charge Near the Tip 
of a Dielectric Wedge 
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We calculate the potential of a line charge embedded in a dielectric 
medium of permittivity E2 in the presence of a dielectric wedge of per­
mittivity EI. The potential is calculated with the aid of the Mellin transform, 
and the answer is given as a definite integral which is then transformed 
into an infinite series. We show that, for all wedge angles and all ratios 
Ed EI, V' <p is singular at the tip of the wedge, and we give the strength of the 
singularity. The results have relevance to the design of contacts on semi­
conductor devices. 

I. INTRODUCTION 

Lewis and Wasserstrom l have calculated the strength of the field 
singUlarity at the tip of a dielectric· wedge in the configuration shown 
in Fig. 1. In particular, with a wedge permittivity EI greater than the 
permittivity E2 of the surrounding medium and a conductor angle 
{3 = 7r (the "overhanging electrode"), they found that the tip field 
was singular for all wedge angles a greater than 7r/2. From this analy­
sis, it was concluded that semiconductor devices with undercut edges 
(a < 7r/2) would be advantageous in reducing local field strength and 
thus preventing breakdown. 

Because the analysis of Ref. 1 was strictly local, based on an ex­
pansion of the potential in positive powers of the distance from the 
wedge vertex, multiplied by trigonometric functions of the polar 
angle, it was felt by some that the results were suspect, since they 
were not based on the solution of a complete boundary value problem. 
Here we lay that suspicion to rest by presenting the solution of such 
a problem, namely the field due to a line charge near a dielectric wedge, 
as shown in Fig. 2. The solution of this problem, previously treated by 
Smythe2 in a somewhat involved fashion, gives Green's function for 
the composite region. Here we use the Mellin transform, obtaining an 
expansion of the potential near the wedge tip in terms of the poles of 
the transform. Based on this analysis, we conclude for the charge­
wedge configuration of Fig. 2 that, for arbitrary ratios Ed EI, the wedge 
tip field is singular for all values of the half-angle a. We show that, 
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Fig. I-Electrode, insulator, semiconductor configuration. 

when the plane y = 0 is replaced by a perfectly conducting sheet, the 
field singularity due to the line charge is exactly as described by Lewis 
and Wasserstrom. l In general, we can conclude that, for any charge 
distribution for which the resulting potential is neither purely even 
nor purely odd, the field at the tip of the wedge will be singular for all 
ratios EZ/ EI and all half-angles a. 

II. THE PROBLEM 

We consider the electrostatic potential due to a line charge of 
strength q in the presence of a dielectric wedge, as shown in Fig. 2. 
The charge lies at a distance a from the wedge tip in a dielectric 
medium with permittivity EZ, while the wedge, with permittivity EI, 

occupies the region -a < () < a. We shall always assume that 

Fig. 2-The dielectric wedge and line charge. 
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'"'I > a, taking into account the case where the charge lies within the 
dielectric wedge by interchanging €l and €2, replacing a by 7r - a 

and "I by 7r - '"'I where "I < a. Finally, instead of working with the 
dimensional potential cp(x, y) and distances (x, y), we introduce the 
dimensionless potential u(r, 0) = (€dq) cp(x, y), and the dimensionless 
distance r = (x2 + y2)!/a. Thus, we will calculate the dimensionless 
potential due to a unit line charge at unit distance from the origin. 
Although we assume no trapped surface charge on the surface of the 
wedge, our analysis could be extended to cover this case also. It should 
be noted that, in these units, a unit line charge located at the origin 
of a homogeneous medium (€l = €2) gives the potential 

1 1 
u = -In-· 

27r r 

In the composite medium, u satisfies Laplace's equation 

in the wedge 101 < a, and the inhomogeneous equation 

V'2u = - (2m·)-10(r - 1)0(0 - '"'I), 

(1) 

(2) 

where 0 is the Dirac delta function, giving the effect of the charge at 
(r,O) = (1, '"'I), for a < 0 < 27r - a. The problem is completed by 
the requirement that u and €Ue be continuous across 0 = ±a. 

To facilitate further calculations, we split u into the sum of an odd 
function in y and an even function in y, setting 

u = !(v + w), 

where v and w satisfy eqs. (1) and (2), the continuity conditions, and 
the boundary conditions 

v(r,O) = vCr, 7r) = Weer, 0) = weer, 7r) = O. (3) 

Obviously, the pair of problems for v and ware equivalent to the 
original problem for u. It should be noted, though, that valone is the 
potential due to a positive unit line charge at (1, '"'I) and a negative 
unit line charge at (1, 27r - '"'I), in the presence of the dielectric wedge. 
Alternatively, of course, it can be interpreted as the potential of the 
unit line charge at (1, "I) in the presence of the wedge, when the plane 
y = 0 is replaced by a perfectly conducting sheet. This corresponds to 
the model of the overhanging electrode used by Lewis and Wasser­
strom. l Further, w alone is the potential due to positive unit line 
charges at (1, '"'I) and (1, 27r - '"'I) in the presence of the wedge. 

We now proceed to calculate v and w, or rather their Mellin trans­
forms, the form of eq. (2) having been chosen to facilitate the applica­
tion of the transform. 
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III. THE MELLIN TRANSFORM 

The Mellin transform v(O, s) of vCr, 0) is given by3 

v(O, s) = i~ rs- 1v(r, O)dr. (4) 

If eq. (2) is multiplied by rs+1 and integrated from 0 to 00, after several 
integrations by parts there results the ordinary differential equation 

1 v" + S2V = - 27r 0(0 - ')'), (5) 

provided that s lies in the strip 0"1 < Re s < 0"2, where 

(6) 

for both r ~ 0 and r ~ 00. These terms arise from the integration by 
parts of rS +1(v rr + r-1vr ). We will determine appropriate values of 0"1 

and 0"2 later. 
First, let us dispose of the singularity by calculating v = VI for a 

homogeneous medium for which 11 = ed el = 1. Then VI satisfies eq. 
(5) in 0 < 0 < 7r and the boundary conditions 

VI (0, s) = VI (7r, s) = o. 
The expression 

VI = A sin sO -! (8 0(0' - ')') sin s(O - O')dO' 
s } 0 

satisfies the equation and the first boundary condition. A is chosen to 
satisfy the secondary boundary condition. We finally obtain 

{

sin s(7r - ')') sin sOls sin S7r, 
Vl(O, s) = sin s')' sin s(7r - O)/s sin S7r, 

-vl(27r - 0, s), 

o < 0 < ,)" 
')' < 0 < 7r, 
7r < 0 < 27r. 

(7) 

Now in this case, vl(r, 0) is known, and VI r-..; r for small r and VI r-..; l/r 
for large r, so for (6) to be satisfied for VI it is necessary that -1 
< Re s < l. 

An analogous calculation yields W in the homogeneous medium, viz, 

{

-cos s(7r - ')') sin sOls sin S7r, 
WI = -cos s')' cos s(7r - O)/s sin S7r, 

WI (27r - 0, r), 

o < 0 < ,)" 
')' < 0 < 7r, 
7r < 0 < 27r. 

(8) 

Again in this case, WI (r, 0) is known, WI r-..; r for small r and WI r-..; In r 
for large r, so for (6) to be satisfied for WI it is necessary that -1 
< Re s < o. 

We now use these expressions for the potentials due to a line charge 
in a homogeneous medium to obtain the potentials in the presence of 
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the wedge. Note the way e and '1' are interchanged in eqs. (7) and (8) 
to make VI and WI continuous. We choose a similar form for V, setting 

- _ - + B jSin s(7r - a) sin se, for 0 < e < a 
v - VI • • ( ) sm Sa sm S 7r - e , for a < 0 < 7r, 

thus satisfying the differential equations, the boundary conditions 
at e = 0, e = 7r, and the continuity condition 

v(a-, s) - v(a+, s) = o. 
B is determined from the second continuity condition 

v'(a-, s) - 17v'(a+, s) = 0, 

where 

(1 - 17)V~ (a, s) 
We find 

B= 
S[17 sin sa cos s(7r - a) + cos Sa sin s(7r - a)] 

The transform of the odd part of the potential u is then given by 

where 

and 

vee, s) = M(e, s)/sP(s, a, 7r), 

I
P(S' e, e) sin s(7r - '1'), 

M(e ) = pes, a, e) sin s(7r - '1'), 
, s P ( S, a, '1') sin s (7r - e), 

-M(27r - e, s), 

o<e<a 
a<O<'Y 
'Y<e<7r 
7r < e < 27r, 

(9) 

(10) 

pes, a, e) = (1 + 17) sinse - (1 - 17) sins(2a - e). (11) 

A similar calculation yields the transform of the even part of the 
potential, viz, 

where 

and 

Wee, s) = N (e, s) / sQ(s, a, 7r), 

l
-R(S' e, e) cos S(7r - '1'), 

N(e s) = -R(s, a, e) cos S(7r - '1'), 
, -R(s, a, '1') cos S(7r - e), 

N(27r - e, s), 

o<e<a 
a<e<'Y 
'Y<e<7r 
7r < e < 27r, 

Q(s, a, e) = (1 + 17) sin se + (1 - 17) sin s(2a - e), 
R(s, a, e) = (1 + 17) cos S7r - (1 - 17) cos s(2a - e). 

(12) 

(13) 

(14) 

Next, we must invert vee, s), wee, s) to obtain vCr, e) and w(r, e), or 
rather their forms for small r, since we are primarily interested in the 
behavior of the potential near the wedge tip. 
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IV. THE INVERSION INTEGRAL 

If the integral (4) defining a(e, s) converges absolutely for all s in 
the strip 0"1 < Res < 0"2, then u(r, e) is given by the inversion integraP 

1 jC+iOO 
u(r, e) = 2~ a(e, s)r-sds, 

71'~ c-ioo 
(15) 

where the integration contour in the complex s plane is any vertical 
straight line Re s = c with 0"1 < C < 0"2. We have already seen from 
the derivation of VI and WI that -1 < 0"2 < 0"1 < 0. An examination 
of (9) to (14) shows that, while vee, s) is regular at s = 0, wee, s) has 
double pole there. Further, as we shortly show, both V and w have a 
countably infinite number of poles. They are all real, and the nonzero 
poles are all simple. The largest of the negative poles, at s = So, 

satisfies -1 < - So < 0. Since the strip 0"1 < Re s < 0"2 can contain 
no singularities of u(e, s), it follows that 0"1 = So, 0"2 = O. Assuming So 
is known, since u(e, s) = t[v(e, s) + wee, s)], eqs. (9) to (15) provide 
an explicit integral representation of the desired potential u(r, e). 
This expression for u seems much more suitable than the expression 
given by Smythe2 for determining the small r behavior of u. 

The integral can be evaluated by the residue theorem4 by closing 
this contour with large semicircles, to the left for small r and to the 
right for large r. Examination of the forms for v and w, given by eqs. 
(9) to (14), reveals that the integrand of eq. (14) vanishes so rapidly 
on the semicircles that, as the semicircle radii tend to infinity, the 
semicircles make no contribution to the integral around the contour . 

. The sum of the residues enclosed by the left semicircle thus gives the 
small r behavior of u; those to the right the large r behavior. It is clear 
from (11) and (14) that, if P ~ ° is a zero of pes, (x, 71'), then so is -p, 
and, similarly, the nonzero roots of Q(s, (x, 71') come in pairs. Let pn, 
qn, n = 1, 2, .. , denote the positive roots of P and Q, respectively. 
Then it follows that, for r < 1, 

( ) -
_1 ;.. 1 M(e, Pn)r Pn + N(e, qn)r qn I u r, e = ~ 
2 n=l pnP'(Pn, (X, 71') qnQ'(qn, (X, 71') , 

while, for r > 1, 

u(r, e) 
N(e, 0) 

2Q'(0, (x, 71') In r 

(16) 

- ! i: 1 M (e, Pn)r-
pn + N (e, qn)r-

qn I. (17) 
2 n= 1 pnP' (Pn, (X, 71') qnQ' (qn, (X, 71') 

The poles of v and w lie at the zeros of pes, (x, 71') and Q(s, (x, 71') 
except, of course, when M(s, e) and N(s, e) also vanish for the same 
value of s. For example, v has a removable singularity at s = 0. Since 
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the zeros also depend on 1], we emphasize this by writing P(s, a, 7r) 
and Q(s, a, 7r) as P(s, a, 7r; 1]) and Q(s, a, 7r; 1]). Then it is simple to 
show that 

Q(s, a, 7r; 1]) = 1]P (s, a, 7r; ~), 

Q(s, a, 7r; 1]) = P(s, 7r - a, 7r; 1]). 

If we set s = p, then P(s, a, 7r; 1]) = 0 can be written 

(1 + 1]) sin p7r + (1 - 1]) sin p(7r - 2a) = 0, 

(18) 

(19) 

which is identical to eq. (15) of Ref. 1 with (3 = 7r, the case of an over­
hanging electrode. The two smallest values of p for various values of 
1] are then given by Fig. 11 of Ref. 1, here reproduced as Fig. 3. From 
Fig. 3 and eqs. (18) and (19) we see that, if 0 < 1] < 1, 0 < a < 7r/2, 
or 1 < 1], 7r/2 < a < 7r, then PI > 1, ql < 1, while if 0 < 1] < 1, 
7r/2 < a < 7r or 1 < 1], 0 < a < 7r/2, then PI < 1, ql > 1. In all 
cases, P2 > 1, q2 > 1. If PI = min (PI, ql), we have shown that for 
r < 1, Vu ~ r P1-

I and that for all angles a and ratios 1], PI < 1 so the 
field is always singular at the tip of the wedge. For the case of an over­
hanging electrode for which the potential is given by valone, Vv ~ rP1-t, 
so we have substantiated the local analysis of Ref. 1 by the solution 
of a complete boundary value problem. 

p 

o 7T 

2 
ex 

Fig. 3-The zeros of pes, ex, 71") for various 1]. 

7T 
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V. REALITY AND SIMPLICITY OF POLES 

One minor task remains to complete our analysis. We must show 
that all the roots of pes, a, 17") = 0 and Q(s, a, 17") = 0 are real and 
simple. We write the two equations as 

sin 17"S = ±E sin (17" - 2a)s, (20) 

where E = (1 - 77)/(1 + 77). We exclude the case 2a = 17", for which 
the zeros are clearly real and simple. If we set s = u + ir, the real 
and imaginary parts of eq. (20) become 

sin 17"U cosh 17"r = ±E sin (17" - 2a)u cosh (17" - 2a)r. 

cos 17"U sinh 17"r = ±E cos (17" - 2a)u sinh (17" - 2a)r. 

Divide the first by cosh 17"r, the second by sinh 17"r, square, and add to 
obtain 

[ 
. cosh2 (17" - 2a)r 

E2 sm2 (17" - 2a)u h
2 

+ cos2 (17" - 2a)u 
cos 17"r 

. sinh2 
(17" - 2a)r ] = 1. (21) 

sinh2 17"r 

With 2a ~ 17", 117" - 2a 1 < 17", r ~ 0, so that cosh2 (17" - 2a)r < cosh2 17"r, 
sinh2 (17" - 2a)r < sinh2 17"r, eq. (21) impliesE2 > 1, which is impossible 
since E2 ~ 1 for 0 ~ 77 < 00. By assuming a complex zero, we arrive 
at a contradiction, so all the zeros of P and Q must be real. 

If s is a multiple zero of (20), it must also be a zero of one of the 
equations obtained by differentiating (20), 

cos 17"S = ±E (1 - 2:) cos (2a - 17")s. (22) 

If we square and add (21) and (22), we get 

~2 = sin2 (17" - 2a)s + (1 - 217"a r cos2 (2a - 17"). (23) 

Since (1 - 2a/17")2 < 1, (23) implies (I/E2) < 1, which is a contradic­
tion. Thus, all the zeros of P and Q must be simple. 
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In this paper we reexamine results oj a previous paper1 in which the 
capacity oj the continuous-time channel with bandwidth W, average 
signal power Po, and additive gaussian noise with flat spectral density No 
was shown to be approximately W ln (1 + P 0/ NoW) under a number oj 
physically consistent assumptions. 

When one oj the models in Ref. 1 is modified by techniques suggested 
by Slepian in his 1974 Shannon Lecture,2 the channel capacity turns out 
to be exactly W ln (1 + Po/NoW). 

I. INTRODUCTION 

In his 1974 Shannon Lecture,2 D. Slepian introduced still another 
way of resolving the well-known paradoxes that arise when band­
limited signals are studied in a physical "real world" context. One 
such paradox results from the fact that a mathematically band­
limited function is determined for all time by its values in an arbitrarily 
small temporal interval-a highly nonphysical situation. An essential 
element in Slepian's resolution of these paradoxes is the recognition 
of the role of measurement accuracy in the determination of signals. 
To incorporate this into his mathematical model, he introduces the 
following concept. Two signals S1 (t), S2 (t), - co < t < co are really 
indistinguishable at level e if 

(1) 

where 

is the "energy" of the function of J(t). He then says that a signal 
get), - co < t < co, is bandlimited to (- W, W) at level e if U1(t) and 
U2(t) are really indistinguishable at level e, where 

U 1 (J) = G(J) 
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and 
If I ~ w, 
If I > w. (2b) 

Here, U 1, U 2, and G are the Fourier transforms of U1, U2, and g re­
spectively, i.e., 

U 1 (f) = f-: e-i21rJt
Ul (t)dt, 

etc. With band-limited functions so defined, paradoxes such as the 
one mentioned above are resolved, i.e., that get) is band-limited to 
level e > 0 does not imply its predictability. 

Let us remark that the quantity e in the above definitions represents 
a limit on the accuracy of the measuring instruments used to deter­
mine the frequency spectrum of a signal. Note that g (t) band-limited 
to a level e does not imply that c·g(t) (c> 1) is also so band-limited, 
even though get) and c·g(t) have the same shape. Thus, Slepian's 
notion of band-limited signals is distinctly different from the usual 
notion which defines the bandwidth of a signal as a function of its 
shape. 

In this note, we take another look at a related problem-determin­
ing the capacity of the band-limited gaussian channel-in the context 
of Slepian's bandwidth definition. We show that results obtained by 
the present author1 have a particularly elegant statement in this new 
context. 

II. STATEMENT OF THE PROBLEM 

The definition of the continuous-time, band-limited, additive 
gaussian noise channel has the following components: 

(i) Specification of a set aCT, W, Po) of allowable channel input 
signals that are "approximately band-limited" to (- w, W), 
approximately time-limited to (- T /2, T /2), and with total 
energy not exceeding PoT (so that the average power is ~Po). 

(ii) Specification of the noise. 

The channel output is 

yet) = set) + z(t), 

where the channel input sea(T, W, Po), and the noise z(t) is specified 
by (ii). 

We take Wand Po to be fixed parameters. A code with parameters 
(T, M, P e) is a set of M functions called code words which belong to 
aCT, W, Po), together with a decoder mapping which associates the 
received signal yet), I t I < T /2, with one of the M code words. With 
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each of the 111 code words assumed to be a priori equally likely to be 
transmitted, P e is the probability that the decoder makes an error. 

A number R ~ 0, is said to be permissible if for every A > ° there is 
a T = T (A) sufficiently large that there exists a code with parameters 
(T, M, P e), where 

P e ~ A. 

The channel capacity C is defined as the supremum of permissible R. 
Reference 1 has a detailed discussion of this problem and its 
formulation. 

In what follows, we shall specify a set a(T, W, Po) and also specify 
the noise. The main result is a formula for C. This model is very similar 
to Model 4 in Ref. 1. 

(i) Let a(T, W, Po) be the set of functions s(t), - 00 < t < 00, 

which satisfy 

(a) s(t) = 0, It I ~ T/2, 

(b) IIsll2 ~ PoT, 

(3a) 

(3b) 

(c) s(t) is band-limited to (- W, W) at level e > 0. (3c) 

Thus, a(T, W o, Po) is a set of strictly time-limited and approxi­
mately band-limited signals. 

(ii) The noise function z(t), is assumed to be a sample from a gaus­
sian noise process with spectral density 

N(f) = jNo/2, 
0, 

If I < W, 
If I ~ W. 

(4) 

Let us remark at this point that although we assume in our model 
that the signal is exactly time-limited to (- T /2, T /2) and the noise 
is exactly band-limited to (- W, W), our results do not exploit these 
assumptions. In fact, our results will hold if we introduce appropriate 
approximations here too. 

Finally, we must make the assumption that the decoder function 
is not capable of distinguishing among signals that are arbitrarily 
close together. Specifically, we assume that if Yl (t), Y2 (t), - T /2 < t 
< T /2 are functions that are mapped by the decoder to distinct code 
words, then 

(5) 

Inequality (5) is equivalent to requiring that the segments of Yl (t) 
and Y2(t), It I < T/2 (on which the decoding must be done), are really 
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distinguishable at level e'.· Put another way, the receiver must be 
insensitive to measurement errors of energy < e' / 4. 

III. THE RESULT 

We state our result as a theorem. 

Theorem: For the model defined above, 

C = W log (1 + :.~ ) , (6) 

provided e' > 4e. 
This result is analogous to the "2WT" theorem given by Slepian in 

Ref. 2. Note that (6) holds for every e and e' provided only that e'>4e. 
Thus, the result is independent of the precision with which we can 
make measurements. 

Proof: The theorem follows immediately from the capacity formula 
(28) given for Model 4 in Ref. 1. Observe that our aCT, W, Po) is 
identical to the set a4(T, W, Po), with 1] = e/(PoT). (Note that no 
changes in the capacity formula will result when we require the 
channel input signals to have energy exactly PoT.) 

Also note that the right member of ineq. (29) of Ref. 1 should be 
"4vNoWT." Thus, our assumption in (5) is identical to the assumption 
of (29) in Ref. 1 with v = e'/(4NoWT). 

It follows that the capacity formula (28) in Ref. 1 holds; that is, for 
our model 

c = W log (1 + :.~ ) + e(1], v), (7) 

where e(1], v) ----70, as 1], v ----70, provided 

v Po ( ) 
~ > NoW' 8 

Since 1]= e/(PoT) and v= e'/(4NoWT), both 1], V----70 as T----7oo. 
Further, (8) holds if e' / e > 4, so that (7) becomes (6) as T ----700. 
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• This assumption requires that the space of received signals contain "null zones" 
which are not in the domain of the decoder mapping. When the received signal belongs 
to a null zone, the decoder declares an error. 

346 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976 



Copyright © 1976 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 55, No.3, March 1976 
Printed in U. S. A. 

On Optical Data Communication via Direct 
Detection of Light Pulses 

By J. E. MAZO and J. SALZ 

(Manuscript received October 16, 1975) 

A number of problems are considered relevant to understanding the 
performance of optical-fiber communication systems that use pulse 
transmission. The methods used are typically exact solutions or bounds, 
and we concentrate on simple examples that aid our understanding. 
Some of our work makes contact with previous studies, particularly by 
Personick and Hubbard. The major results are: 

(i) Presentation of an integral equation for the output density for single­
pulse detection with arbitrary avalanche gain 

(ii) Exact solution for the probability distribution for gains in physical 
avalanche diodes 

(iii) Bounds on performance when intersymbol interference is present 
(but no avalanche gain) which suggest that an optimum-bit de­
tector can perform, under practical conditions, only two or three 
dB better than a simple integrate-and-dump filter, yielding results 
still many dB from the quantum limit. Thus, in particular, little 
performance gain is to be expected from equalization techniques. 

I. INTRODUCTION AND OVERVIEW 

A large part of traditional communication theory has been directed 
to detecting and processing electrical signals transmitted over wires, 
cables, or the like. While the physical realization of each of these tradi­
tional systems may have led to mathematical treatments designed to 
handle problems such as linear distortion or fading, which were peculiar 
to one, or even perhaps several, systems, the principal concern of all 
mathematical treatments of these time-continuous channels has been 
the ubiquitous additive gaussian noise. In fact, it would be fair to 
say that much of the structure of the mathematical treatments used 
has been dictated by the mathematical properties of this noise. In the 
absence of noise, many problems would immediately degenerate, at 
least theoretically, to situations of perfect detection, infinite capacity, 
etc. 
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The consideration of some promising optical communication systems 
seems to alter the above picture. We have in mind the transmission of 
information by way of light pulses propagating through an optical 
fiber and subsequently detected by a photodetector that converts 
electromagnetic energy in the fiber to electrical signals in a circuit. 
We immediately note certain features which this problem has in common 
with the traditional problems. For one thing, the fiber can delay, 
attenuate, or spread the transmitted pulses. For another, the elec­
trical signal after photodetection may be corrupted by additive 
gaussian noise. Yet there is another fundamental impairment. The elec­
tromagnetic signal that propagates in the fiber (which acts as a wave 
guide) is, under practical considerations, of sufficiently weak intensity 
that any effective detection mechanism must be based upon the 
quantum nature of the electromagnetic disturbance. In other words, 
detection must be based upon photon counting. Here, a new element 
enters the problem-photon counting is subject to statistical fluctua­
tions. In the quantum case, a signal uncorrupted by any external 
disturbance still carries with it its own "noise," as it were, which is 
not additive gaussian. This new noise manifests itself in the following 
way. The photon-counting process is a time-varying Poisson process 
whose intensity (or rate) function A(t) varies in direct proportion to the 
information-bearing pulse train, the latter being thought of in the 
conventional way (except it must now always be positive). Our pur­
pose here is to explore some of the communication theory of this new 
situation, paying particular attention to the use of our considerations 
in proposed fiber-optic communication systems. 

The general background of the material that we treat, namely, 
direct detection of photons in an optical fiber, may be found in works 
by Personick1 •2 and Foschini et al. 3 Direct detection refers to the pro­
cessing of the electrical signal at the output of a photodetector as op­
posed to, say, more esoteric detection schemes based on optimum 
processing of the existing electromagnetic field, considered as a 
quantum system. In the case of binary transmission, the choice be­
tween a one or a zero is, in the systems considered here, translated into 
the presence or absence of a short burst of optical power (light) in the 
fiber. To understand this in more detail, we shall trace the passage of 
a single pulse through our mathematical model of the system (see 
Fig. 1). In the case of a one being transmitted, an electrical signal (a 
square pulse of duration T) turns on our "flashlight," which in this 
case is a laser or light-emitting diode, and electromagnetic energy is 
sent into the transmission medium (optical fiber). If a photodetector 
is placed at the end of the fiber, photons will be detected due to the 
electromagnetic energy present. Exactly when in time the photons 
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Fig. I-Passage of a single pulse through the optical system. 

register on the detector is random and is the Poisson process spoken 
of earlier. The probability of receiving a count between time t and 
t + dt is given by h(t)dt, where, owing to effects in the fiber, h(t) is a 
distorted and attenuated version of the transmitted pulse. The ac­
cumulation of distortion as the pulse propagates down the fiber is also 
sketched in Fig. 1. In practice, a background of counts also exists. 
This is called the dark current and is modeled by introducing a con­
stant additive intensity function Ao before the detector, although some 
of these counts can originate in the physical detector itself. Typically, 
transmitted power and transmission loss are adjusted so that on the 
order of one or two hundred photons per pulse are, on the average, 
detected. The dark current contributes from about 1 to 5 percent of 
the counts. 

To transmit a zero, we simply do not turn on the transmitting power, 
and the detector only registers counts resulting from the dark current. 

We have been loosely speaking of the output of the photodetector 
as "counts." The actual electrical current at the output of this device 
caused by a photon is a wideband pulse g·w(t) (very narrow com­
pared with T, a delta function in the limit), where g=integer-valued 
random variable or g == 1, depending on whether or not an avalanche 
diode is used. The electrical current at the output of the photodetector 
is further distorted by gaussian noise whose effect is often lessened in 
importance when an avalanche diode is used, but not for the g = 1 
case. In the most literal modeling of the experimental situation, the 
finite bandwidth of w (t) prevents one from assuming that the Poisson 
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part of the observation is singular, i.e., can be separated out from the 
background gaussian noise; however, whenever we feel there are 
insights to be gained from the separation we shall make it. 

If we take into account the facts that Personick4 has shown super­
position to hold (approximately) for optical-fiber transmission and 
that optical power is positive, then we may extend our single-pulse 
description to a model for transmission of an entire pulse train. If we 
transmit a sequence of on or off pulses, then the "received signal," 
defined as that electrical signal on which we may do processing, can 
be written as 

L gnW(t - tn) + net), (1) 
n 

where the time points {t n } form a Poisson process having intensity 
function A(t), with 

and 

A(t) = L anh(t - nT) + AO 
n 

h (t) ~ 0 = distorted pulse 
an = 0, 1 = independent, equiprobable data symbols 

AO ~ 0 = dark current 
T = signaling interval 

net) = gaussian noise 
gn = avalanche gain factors 

wet) = output pulse of photodetector. 

(2) 

(3) 

At various stages of our discussion, we may, for interests of simplicity 
or clarity, idealize or eliminate certain aspects of the full model given 
by (1), (2), and (3). 

The communication theorist is interested in processing the signal 
(1) to estimate the an given in (2). If the distortion is not severe, one 
may simply process in an intuitive way and (assuming proper syn­
chronization) count the number of photons detected in the appropriate 
T-second interval. If gn = 1, this is accomplished by integrating the 
output for T seconds (so-called integrate-and-dump detection). How­
ever, the simplicity of this technique demands its investigation even 
when gn are random. Neglecting the gaussian noise and assuming gn 
are exponential random variables allow one to determine exactly the 
probability distribution of the output statistic and to determine error 
rates. This is done in Section II. In Section III we return to the g = 1 
case to observe the effects of the random gain. In Section IV, 
Personick's implicit equation for the random gains gn of actual photo­
detectors is studied in detail and the exact distribution of these gains 
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is found. Also, the use of Chernoff bounds for bounding the error rate 
in the general situation is discussed. Section V branches out to include 
a worst-case analysis of intersymbol interference [the case of appre­
ciable spreading of h (t) J using integrate-and-dump detection. A 
particular example is also computed. Finally, in Section VI, we con­
sider the question of replacing the integrate-and-dump detector with 
an optimum detector. We know that equalization can achieve con­
siderable improvements for voiceband telephone transmission, but 
can we expect the same here? Using the lower bound on performance 
which we derive for the optimum detector and applying this to the 
example of Section V, we find that performance greatly surpassing that 
of integrate-and-dump detection cannot be expected. 

II. INTEGRATE-AND-DUMP DETECTION-AVALANCHE DETECTORS 

As already mentioned in the introduction, a simple way to detect 
the jth bit in (2) is to integrate the output of the photodetector over 
the jth T-second interval and compare the random variable thus 
obtained with a threshold F; if the output is greater than F, a one is 
declared (pulse present) ; if it is less than F, a zero is declared (pulse 
absent). In this section, we discuss the exact error rate for such a 
situation when pulse overlap in (2) can be neglected, as well as the 
additive noise. Further, the gains gn are assumed to be exponentially 
distributed. 

We shall need the moment-generating function (MGF) for the indi­
cated random variable, but we may as well begin by giving the MGF 

for a general linear filter P (t) rather than simply an integrator. Con­
sider a Poisson point process having an arbitrary intensity function 
A(t) [not necessarily of the form (2)J, and let the nth count be given 
nonnegative weight gn, i.e., consider 

(4) 

where the sequence of time points {t n } is Poisson with intensity func­
tion A(t). If (4) is linearly filtered, with Pct) being the impulse response 
of the filter, then the output of the filter at time t, xct) can be shown by 
elementary calculations to have moment-generating function given by 

Mx = E exp [sX] = exp [!_: A(r) {Mg[sP(t - r)J - l}dr l (5) 

where Mg(s) is the moment-generating function of the gn, assumed 
independent, and we have set x(t) = X. In particular, if Per) = 1 for 
o < r < T and zero elsewhere, and if t = T, (5) will simplify to 

Mx = exp {A[Mg(s) - IJ}, (6) 
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where 

(7) 

If the pulse wet) in (1) (assumed of unit area) is narrow enough so 
that end effects are negligible when doing the integration and if pulse 
overlap in (2) is negligible, then (6) and (7) are relevant quantities to 
consider in determining the error rate for integrate-and-dump detec­
tion of (1) and (2). To treat the two separate cases of a one or a zero, 
we need only replace A in (6) by Ai, i = 1 or 0, where 

Al = loT h(t) + TAo 

Ao = TAO. 

(8) 

(9) 

While the gaussian noise will be neglected here, let us at least note 
that to include the effect of the added noise term on the integrated 
output, we would multiply (6) by the moment-generating function of 
the noise M n(S), 

(10) 

to obtain the MGF of the new output variable. In (10), the variance of 
the noise (1"2 is given by 

(11) 

for the case of the integrator with white noise of two-sided spectral 
density N 0/2, or 

(12) 

in general, where N (w) denotes a general noise spectrum and 15 (w) 
is the Fourier transform of pet). 

In the special case where the gn in (4) are continuous variables and 
are exponentially distributed, i.e., 

we have 

peg) = a exp (-ag), 

Mg(s) = _a_, 
a-S 

g > 0, (13) 

S < a. (14) 

At this stage, it is easier to work with the characteristic function 
version of (6), namely, 

Cx(w) = exp {A[Cg (w) - 1J}, (15) 
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with C(w) denoting characteristics functions now, e.g., 

Cx(w) = E exp (iwX). 

To obtain our integral equation for p (x), differentiate (15) once with 
respect to w, multiply by exp (-iwx), and integrate over x to obtain 

(16) 

where p(x) denotes the density of the random variable X in (14), and 
Po(u) denotes the density of the nonnegative gain variable g. 

For the exponential gain case (13), an exact solution to (16) can be 
found. Note that then the variable x has probability exp (- A of 
being zero (no counts) and p(x) will thus contain a 0 function at the 
origin. Introducing this explicitly by writing 

p (x) = exp (-A) 0 (x) + exp (-ax) f( x) , (17) 

we find 

xf(x) = (aAe-A)x + aA lox (x - w)f(w)dw, (18) 

where use has been made of (13). Differentiating (18) twice, we obtain 
Bessel's equation 

x2 f" + 2xf' - (aA)xf = 0, (19) 

where f' stands for differentiation. The appropriate solution of (19) 
gives, finally, for the density p(x) of the detection statistic 

I I ( .) being the modified Bessel function. * The following may be useful 
in connection with (20): 

I ( ) < exp (x) 
I x = ~~, 

,,27rx 

I ( ) ,......, exp (x) 
IX _~, 

,,27rx 

x~O (21) 

x large (22) 

x small. (23) 

Typically, Al is in the range of 100 to 200 for a light pulse present and 

* This exact result, as well as several useful approximations to it found later in this 
section, were first derived by Hubbard (Ref. 5) using other techniques. 
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Ao in the range of 5 to 10 for dark current only. The quantity l/a, the 
average gain, may be 100 or 200. The average number of counts for a 
pulse is then Ada so, to within a factor of 2 or so, the decision threshold 
will be around Ad2a. Thus, virtually all the area of interest in (20) 
occurs for x > l/aAi for both i = 1 or 2, and (22) may be used and, 
to excellent accuracy, 

p(x)dx ~ (aA)i _1_ exp {_ (-Vx - -{A/ a)2} dx 
~ (x)l 2(1/2a)' 

1 
x > -. (24) 

aA 

Equation (24) is slightly more attractive if we write instead the density 
for u = {X, Pu(u), 

{ 
(u - ..JA/ a)2} 

Pu(u)du ~ (~)1 ~. exp - 2(1/2a) du, 
a -fU ~(-{fj2a) 

1 
u>_,--;, 

"JaA 
(25) 

showing that {X is, over a rather wide range, gaussian with mean 
~A/a and variance 1/2a. Note A/a = EX, while variance of X is 
2A/a2. Also, eq. (25) should not be confused with the central limit 
theorem version of (24), which is obtained when one writes (for large 
A) x = (A/a) + € and € becomes gaussian. Since, from (21), eq. (22) 
is an upper bound as well as being asymptotic, we have 

where 
1 /00 e-1I2/2 

Q(y) = - e-u'l./2du f"'oo.I --. 

-{2; 11 ~27rY 
(27) 

Likewise, in the same spirit of approximation that indicates (26) to be 
an excellent approximation (in addition to being an upper bound), one 
may write for the lower tail 

Even for A's differing by a factor of 100, the fourth root factor in front 
of (26) and (28) is weak indeed. Thus, we may, to excellent approxima­
tion, find the best threshold by equating the arguments of the Q func­
tion for the two cases of error. This results in 

(29) 

The left-hand side of (29) comes, of course, from using (28) for a pulse 
present (the number of counts is then expected to exceed the threshold). 
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Table I - Tabulation of error rate and threshold for an avalanche 
detector with exponentially distributed gains 

Ao Ala Fopt(a = 1) P e Ceq. (31)] Quantum Limit 

4 100 37.20 2.09 X 10-9 1.86 X 10-44 

4 200 66.28 8.88 X 10-19 ""' 10-88 

4 400 122.1 3.9 X 10-38 ""' 10-176 

10 100 46.58 8.03 X 10-8 1.86 X 10-44 

10 200 77.91 3.61 X 10-16 ""' 10-88 

10 400 137.0 3.66 X 10-34 ""' 10-176 

Likewise, the right member of (29) comes from using (26) for only 
dark current where the counts usually fall below the threshold F and 
an error is made only if they exceed it. We immediately obtain from 
(29) 

(30) 

where, again, Ao is not to be too small, for example, Ao ~ 2. In the 
above, we have in mind, from (8), taking Al = Ais + Ao where Ais is 
due to signal alone. 

For future comparisons, we should inject at this point the fact that 
the best detection probability one can obtain with no dark current 
(or no gaussian noise) is! exp (-A Is), often referred to as the quantum 
limit. 

Table I displays values of the right member of (26), for the optimum 
F given by (30), i.e., it displays the quantity 

(31) 

evaluated for several values of Ao and AIs , along with the quantum 
limit. Note that only aF enters the expressions, and thus the actual 
value of a plays no role in determining the probabilities for this prob­
lem. The fact should also be evident from the scaling properties of 
the problem. In real applications, 11a would be large so that the 
electronic circuitry could "see" the pulses above the gaussian noise. 

Table I shows (for the parameters shown) about a 7 -dB loss rela­
tive to the quantum limit, owing to the dark current, and also in part 
to the random nature of the gain mechanism. * 

* To be perfectly clear on this point, it is really the additional (random) gain 
provided by the avalanche detector that allows one to formulate the physical problem 
as in (4) without gaussian noise. However, from a mathematical point of view, once 
(4) is written down, the random gains are hypothesis-insensitive, and thus would be 
ignored by an optimum detector. 

LIGHT-PULSE DETECTION 355 



III. INTEGRATE-AND-DUMP DETECTION-PURE POISSON CASE 

We now give a brief discussion for the g = 1 case of (4), namely, 
the random variable X is Poisson, 

e-AAn 
p(X = n) = n! n = 0, 1,2, (32) 

EX = A, var X = A2, (33) 

The purpose of the remarks will be to shed light on the degradation 
suffered when the gn are random, as mentioned at the end of the last 
section, 

If X is Poisson, then the probability that X is larger than or equal 
to k is 

(34) 

If, in addition, we assume (k + 1) > A, then a simple consequence of 
(34) is that 

(
A )e-AAk 

1 + k + 1 --rr- < Pr [X ~ k > A-I ] 

1 e-AAk 
< 1 - (Alk + 1) 'k!' (35) 

Similarly, for the lower tail we have 

( 
k ) e-A A k 1 e-A A k 

1 + A --rr- < Pr [x ~ k < A] < 1 - (kl A) k!' (36) 

Thus, ignoring the weak effects of the coefficient in front, the 
optimum threshold F for a problem such as the one described in Sec­
tion II is obtained by equating probabilities such as these in (35) and 
(36), yielding 

or, equivalently, the optimum threshold in this case is 

F = Ai - Ao , 
In (AdAo) 

(37) 

(38) 

Table II displays the right-hand side of (35) for k given by the 
rounded-off values of (38), In particular, we see degradation ranging 
from 3,5 to 4 dB compared to the quantum limits given in Table 1. 
Typically, then, detecting the presence or absence of a single pulse 
using random amplitudes, as a linear detector might, results in a 3- to 
4-dB degradation (for the exponential case), compared with an "ideal" 
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Table ,,- Tabulation of error rate and threshold for detection 
with constant gain 

Ao Als F opt p. Ceq. (35)J 

4 100 30.69 1.17 X 10-17 

4 200 50.87 6.49 X 10-38 

4 400 86.67 2.18 X 10-82 

10 100 41.70 4.21 X 10-14 

10 200 65.69 9.80 X 10-32 

10 400 107.7 3.78 X 10-71 

avalanche detector, which has a large gain but whose distribution is 
concentrated at a delta function. 

The loss due to "gain jitter" suggests a possible remedy. The 
physical pulse gnW(t - tn) in the detection circuits following the 
avalanche diode should be clearly detectable against the background 
noise if gn is sufficiently large; in particular, if it is something like the 
mean gain G. Suppose this is also true for pulse gains gn ~ fG, f < 1. 
N ow suppose one processed the circuit output of the avalanche diode 
by first passing it through a pulse detector that detects pulses of height 
greater than fG and generates a pulse of fixed height if a pulse is 
detected. The output pulses of this device have fixed gain, which is 
beneficial, but, on the other hand, we have lost a fraction 0, 

1 riG 
o = G J 0 exp (-g/G)dg, (39) 

of light intensity. Seemingly, by a simple scheme we may have still 
gained a dB or two in performance. Because of effects such as possible 
overlap of two close pulses wet) and even in the pulse shape of wet) 
itself, the merits of this proposal are hard to assess without further 
stlldy. It does appear to be an interesting possibility for a future 
detailed investigation. 

IV. INTEGRATE-AND-DUMP DETECTION-OTHER AVALANCHE 
GAIN DISTRIBUTIONS 

Personick6 has considered the physics of a class of real avalanche 
detectors in considerable detail and has derived the following implicit 
equation for their moment-generating function Mg(s):* 

1 
S = In M - 1 _ k In [(1 - a)M + a], (40) 

* We shall drop the subscript on the MGF My of the gain variable when we refer to 
the particular My given by (40). Also, the k in this section has nothing to do with 
the k in (35) and (36). 
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where we have set 
00 

M := M(s) = L esnpn. (41) 
n=l 

The parameters k and a are related to the physical properties of these 
photon detectors. Since (40) has never been explicitly solved for M (s), 
we think it worthwhile to investigate the structure of M (s) implied by 
(40) in more detail. In addition to yielding structural properties of 
M(s), we shall find that (40) allows us to determine the pn of (41) 
exactly. 

To begin with, the gain G, given by G = Eg, is 

G:=E9=ddM(S)i ' 
S 8=0 

which, using (40), yields 
1 - k 

G=--· a-k 

From (43) we see that the restrictions 

o < a ~ 1 
O~k<a 

are to be imposed on the parameters in (40). 

(42) 

(43) 

(44) 

When a = 1, (40) gives M = e8
, the 9 = 1 case. When k = 0, (40) 

is easily solved to give 

ae S 

M (s) - ----:-----,-­
- 1 - (1 - a)e s , 

k = o. (45) 

Equation (45) is the MGF of the discrete geometric distribution having 
probabilities pn concentrated on the positive integers, where 

a 
pn = -1 - (1 - a) n, 

-a 
n = 1,2, .... (46) 

It is reasonable to treat the continuous version of this density, and 
that was done in Section II. 

In the general case of (40), the variance may be calculated to give 

var 9 = G3 [1 _ (1 - a) 
2

] _ G2. 
. 1-k (47) 

If higher moments are desired, they can be obtained recursively from 
(40). This can be done by expanding M(s) in a power series and equat­
ing like powers in s. 

In view of the discussion in Section· III, one might prefer the de­
tectors represented by (40) that have small variance. A simple in-
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vestigation of (47) reveals that, for any a < 1, k = 0 uniquely gives 
minimum variance. Since even this minimum variance is large (equal 
to the mean), it may well not be a reliable guide. 

Returning to the general case represented in (40), it is evident from 
the relation 

00 

M (s) = L esnpn 
n=l 

that the MGF exists for all S ~ o. However, it does not exist for all 
positive s, and, in fact, setting ds/dM = 0 yields a critical value of M 
(call it M J given by 

a 1 - k 
Jlfe = 1 - a-k-

and thus a critical value Se of s given by 

1 - k k a 
Se = s(Me) = In 1 _ a - 1 _ kIn k' 

(48) 

(49) 

beyond which M(s) does not exist. Note that, if b ~ 0 (and a ~ 1), 
the value of the MGF at the critical s is finite. This shows that the far­
tail behavior of the 9 variable has an exponential-like tail, with damp­
ing factor related to Se, but in general there is a multiplicative factor, 
e.g., an inverse power that allows the MGF to be finite at its critical 
value. 

If we let Se - S = 0 > 0, Me - M(s) = A > 0, and write 

ds I Se - s ::: sCM) = s(Me - A) = s(Ale) - A dM 
g Me 

+ ! .12 d
2

s I + (50) 
2 dM~ Me 

we obtain, after evaluating the second derivative in (50), that 

(51) 

or, equivalently, 

M~M'[l-.J~l (52) 

thus exhibiting a square-root singularity of M(s) in the neighborhood 
of Se. This type of behavior is consistent with a far-tail fall-off of the 
"density" of the 9 variable being given by 

t 
exp (-seg) 

cons. 3 • go 
(53) 
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Let us now proceed to the exact solution for the pn in (41) when 
M(s) is given by (40). We use instead z = exp (s) and write, with a 
slight abuse of notation, 

M (z) = f Znpn. 
n=1 

Equation (40) becomes, setting M = M(z) when convenient, 

M 
z = [M(l - a) + aJl/C1- k)· 

In (55) it is useful to make the substitutions 

to obtain 

a 
M(z) = 1 _ a F[(l - a)ak/Cl-k)zJ 

u = (1 - a)ak!(I-k)z 

1 
P=l-k 

F 
u = [1 + FJp' 

(54) 

(55) 

(56a) 

(56b) 

(56c) 

(57) 

where F (0) = 0 and F is regarded as an implicit function of u in the 
neighborhood of u = o. Equation (57) is a canonical form for the 
Lagrange inversion formula7 for obtaining the coefficients Cj in the 
power series 

00 

F = L CjU
j
• 

i=1 

The formula yields, for the present problem, 

or 

Cl = 1, 
j-2 

1 1 ( d ) i-I I Cj = ~ - (1 + F)pj 
J. dF F=O 

Cj = llo (jp - s) _ r[j/(l - k) + 1J 
j! - r(j + l)r[kj/(l - k) + 2J' j ~ 2. 

From (54) and (56), the probabilities pj are then given by 

pj = -1 a [(1 - a)ak/(l-k) JjCj. 
-a 

(58) 

(59) 

(60) 

(61) 

For (kj) large, we have, from Stirling's asymptotic formula for the 
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gamma function, 

(62) 

that 
1 1 1 

ci t'V ~ (kj)i(l _ k)i-l (kk/(l-k)i' as kj --700. (63) 

One can show that the behavior given in (63) is, via (61), in complete 
agreement with (49) and (53). 

Remarkably, Personick reports that McIntyre, * from special-case 
calculations, has conjectured the exact form of (61). 

Knowing the Pi does, in principle, allow the exact calculation of the 
output statistics of the integrate-and-dump filter. The integral equa­
tion (16), appropriately interpreted with sums, provides one such way. 
Instead of discussing this, however, we now turn our attention to 
bounding techniques. We shall make some remarks directed toward the 
Chernoff bound, used by Personick6 for this type of problem. 

The Chernoff bound states that, if x has MGF Mx(s), then the prob­
ability that x is greater than (less than) F obeys 

Pr [x > FJ ~ exp (-sF)Mx(s) 
( <) 

for any s > o. 
( <) 

(64) 

One makes the bound as tight as possible by minimizing the right 
member of (64) over s. This, of course, assumes that Mx(s) is known or 
can be obtained explicitly as a function of s. For the general class of 
avalanche diodes for which Personick derives the moment-generating 
function, we saw that s is given explicitly as a function of M and, in 
fact, an explicit function of M vs s is difficult to obtain analytically. 
Personick gets M numerically as a function of s and then proceeds to 
optimize with respect to s-a rather tedious procedure. We found from 
our experience that a simpler approach is to eliminate s in (64) by 
using (40) and then to optimize over M. This optimization still has to 
be done numerically. Nevertheless, we could generate curves very 
quickly this way. We do not present these curves here, since they do 
not reveal more than those which Personick has already published. 

For insight concerning the accuracy of the bound for present pur­
poses, we shall apply it below to the problem of exponential gains, for 
which we have exact solutions available for comparison. 

The function appearing in the right member of (64) is, for the 
exponential gain case, 

exp (-sF) exp {A[l/(l - s) - I]}. (65) 

* In addition to the cited reference of Personick, other experimental properties of 
avalanche photodiodes may be found in Webb, McIntyre, and Conradi (Ref. 8). 
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Finding the optimum S is easy in this case, and (64) then yields, for 

these optimum s, * Sopt = 1 - ~A/ F, and, consequently, 

P[x > F > A] ~ exp [- (-u - ~)2J 
P[x < F < A] ~ exp [- (-U - ~)2]. 

(66) 

From the asymptotic forms of (26) and (28), we see that the Chernoff 
bound has given us the "right exponent." 

From saddle-point considerations, this would be expected to be 
true in this problem for any Mg(s); however, it by no means has to be 
true in general, where complex variable (saddle-point) techniques must 
be resorted to in order to decide the question. 

The optimum threshold for single-bit detection that would be ob­
tained by equating the two expressions in (64) (for different A's, of 
course) also results in (30). Table III lists the Chernoff upper bounds 
to the bit error rate, and these should be compared to the exact answers 
shown in Table I. Numerically, the Chernoff bound is off by one to 
two orders of magnitude in error rate due to "coefficient effects." 
However, even numerically this bound is judged to perform respect-

ably. Also shown in Table III is Sopt = a{l - ~A/FJ, where the gain 
(a) effect has been included. For the optimum choice of F, it turns out 
that the two choices of Sopt (due to two possible A's) are the negative 
of each other. Hence, only the positive one is shown in Table III. 

If one wishes to include the effects of gaussian noise here, one 
multiplies the right-hand side of (64) by the appropriate MGF, namely, 
(10). Instead of finding the optimum S for this problem, one can use 
the Sopt that held for the problem without additive noise (any S of 
appropriate sign furnishes a bound). The value 0"2 = 104 was used in 
further Chernoff bound calculations for the Mg(s) given in (41) and 
may be found in the article by Personick. 6 

v. INTERSYMBOL INTERFERENCE-INTEGRATE-AND-DUMP FILTER 

We turn now to the situation where A(t) is given by (2), i.e., a 
train of interfering pulses instead of just one of them. Personick has 
claimed that h(t) has a gaussian shape in real fibers and, hence, in 
practice only a few pulses would be expected to contribute inter­
symbol interference. 

It is evident that, if the filter P (t) that processes the output of the 
photon detector is always positive, as, for example, for an integrate­
and-dump filter, the presence of intersymbol interference increases 

* In setting the derivative equal to zero, one must choose the positive s that satisfies 
s < 1, since in the real-variable techniques used here, the MGF of the exponential 
does not exist for s ~ 1. 
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Table III - Tabulation of Chernoff bound (CB) for error rate, 
exponential gain case. Also given are Sopt = a[1 - -VA/F] 

for a gain 1/ a = 100, and a correction exp [s~Pt {T2/2] 

Ao 

4 
4 
4 

10 
10 
10 

for {T2 = 10,000. The latter is a correction for 
gaussian noise. 

Als eB Ceq. (66)J Sopt (gain = 100) 

100 5.05 X 10-8 6.72 X 10-3 

200 4.16 X 10-17 7.54 X 10-3 

400 2.70 X 10-36 8.19 X 10-3 

100 1.49 X 10-6 5.37 X 10-3 

200 1.16 X 10-14 6.42 X 10-3 

400 2.01 X 10-32 7.30 X 10-3 

S~PtU2 
exp-2-

1.25 
1.33 
1.40 
1.16 
1.23 
1.31 

the counts observed over any interval. Therefore, if a pulse is present, 
this intersymbol interference helps detection (helps keep out.put 
greater than the threshold) while, if the pulse is absent and no-counts 
is ideal, it hurts. Hence, the worst-case situation is to evaluate the 
probability of a one being decoded into a zero when no other pulses 
are present, while for the reverse error we assume all pulses are on. 

Since we are still considering an integrator, i.e., pet) = 1, I t I < T, 

we are still to use (6), but now for the two worst cases given we replace 
A in (6) by either 

Al = 2TAo + f_TT h(t)dt 

or (67) 

Ao = 2TAo + L iT h(t - nT)dt. 
nr"O -T 

Of course, we assume Ao < Al for any reasonable operating situation. 
In addition to the threshold choice, we must also contend with the 
optimum choice of T, half the time width of the integration. This 
latter step is easily handled numerically. 

Many calculations may be done and, for the worst-case situation 
described, nothing new is involved in addition to what has already 
been discussed. As an illustration, we will deal explicitly with one ex­
ample. We take Ao = 0, no avalanche gain (g = 1), and 

(68) 

where T is the pulse repetition rate. Thus, there is considerable over­
lap from neighboring pulses, but not from others. Also, Jh(t)dt = 100, 

LIGHT-PULSE DETECTION 363 



Table IV - An intersymbol interference example from Section V 

T 
F p. Ceq. (35)J T 

0.1 7 7.3 X 10-5 

0.2 15 1.5 X 10-5 

0.3 25 5.7 X 10-6 

0.4 34 1.5 X 10-5 

0.5 46 5.1 X 10-5 

so the quantum limit for single-pulse detection may be read from 
Table I. 

Table IV gives the worst-case error rate for the above example, 
using formulas (35) and (38) for the Poisson case. The optimum choice 
of T here is 0.3, i.e., 30 percent toward the peak of the neighboring 
pulse. Also, a 20-percent change in the value of T does not change the 
error rate drastically. Note that we are not inferring that one should 
be careless in the choice of T, because in calculating Table IV the 
optimum threshold (F) for each T is assumed. Also, note the large 
degradation with respect to the quantum limit caused by the inter­
symbol interference. For the present example, the error rate averaged 
over all sequences cannot be much better than shown, because the 
worst case occurs with probability 1, and hence (P e) av cannot be more 
than a factor of 4 better. 

VI. AN INTERSYMBOL INTERFERENCE EXAMPLE AND A LOWER 
BOUND ON PERFORMANCE 

We present now a lower bound on performance which can be readily 
evaluated for the intersymbol interference problem of the last section 
[pulses given by (68)]. This lower bound is valid for optimum bit 
detection and thus sets a limit on how well any detector can do in 
coping with intersymbol interference. In particular, the bound sheds 
light on the performance in the present situation of suboptimum 
schemes such as equalization, which have found such wide application 
in voiceband telephone transmission. 

The derivation of the lower bound proceeds along lines used by 
Maz09 to generalize Forney's lower bound for optimum bit-by-bit 
detection in the gaussian noise. Our approach is to assume that we 
are optimally detecting the kth bit in a sequence of (N + 1) inde­
pendent bits, i.e., sequences of the form (2) of length (N + 1) are 
being considered. We suppose an are binary, equiprobable, and inde­
pendent. Let PI (x I i) and po(x I i) be the two probability densities of 
the received signal under the hypotheses an = 1 or 0, respectively, 
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and i denote conditioning on the ith, i = 1, ... , 2N sequence being 
transmitted. Then the probability of error for the optimum detector 
is (in somewhat formal notation) 

1 f . [1 2N • 1 2N • ] 
P e ="2 dx mm 2 N i~ 1 PI (x I ~), 2 N J~ 1 Po (x I J) , (69) 

which, as in Ref. 9, can be lower-bounded by 

p e ~ 2~ P e (binary i, j problem). (70) 

In (70), P e (binary i, j problem) is the probability of error which 
would result for the simple binary problem of distinguishing between 
sequence i (one having ak = + 1) from sequence j (one having 
ak = 0). The bound (70) holds for all such (i, j) pairs. Finally, (70) 
holds if the sequences of length (N + 1) are shortened to N' + 1, 
with N being replaced by N' on the right side of (65). 

For communication in the Poisson regime, the right member of 
(70) has no known evaluation as it does for the gaussian case. What is 
known about the binary problem is the optimum detector, which is 
linear. The optimum filter Pet) and threshold F are known explicitly 
if one is deciding between equiprobable intensity functions Aa (t) and 
Ab(t). In fact, from the work of Bar-David,lO 

(71) 

and 

(72) 

Thus, the set of received impulses is filtered through P (t) and the 
resulting output variable X at the end of the observation interval is 
compared to the threshold F, choosing Aa(t) if X > F and Ab(t) other­
wise. Assuming Aa (t) is transmitted, the moment-generating function 
of X is, from (5) and (71) (recall g = 1 in this section), 

Mx(s) = exp [fAo(t)[exp {sIn [Al(t)/Ao(t)]} -IJdt] 

= exp [f [Aij-S(t)M(t) - Ao(t)Jdt]. (73) 

From this MGF, one can see why the right side of (70) is not known in 
general. 

We now apply (73) to the intersymbol interference of the previous 
section, where h(t) is given by (68). We choose N = 2, AI(t) to cor-
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respond to the pulse sequence (1, 1, 1) and "Ab(t) to correspond to the 
pulse sequence (1,0, 1). When applied to (70), we interpret the results 
as applying to the center bit of the sequence. We have, explicitly, * 

"Al(t) = 1 for It I .~ 1 
"Ao(t) = Itl, for It I ~ 1 (74) 
"AI (t) = "Ao(t) for I t I > 1. 

Since, from (71), pet) = 0 for I t I > 1, the detection interval 
t E [-1, 1]. Using (74) in (73), the decision variable has MGF 

Mx(s) = exp [_2_ - 1]. 
2 - s 

(75) 

Remarkably enough, this is the moment-generating function of the 
random variable dealt with in Section II; in the notation of that sec­
tion, it corresponds to A = 1, a = 2. The density is given by (20), 
and the threshold is, from (72) and (74), to be set equal to unity. 
Putting this all together, (70) becomes 

P e ~ ~ e-l f~ ~ e-2xI l (2€x)dx. (76) 

Or, scaling· (76) to reinsert the factor of 100 in front of (68), 

(77) 

So an excellent approximation in the right-hand side of (77) may be 
evaluated via (26) to give 

P e ~ !(!)lQ(",,400 - -V2OO) ~ 5.06 X 10-10• (78) 

The numerical value of (78) should be compared with Table IV for 
performance with integrate-and-dump filter and Table I for the 
quantum limit. Indeed, for this case our bound shows that the optimum 
detector performance is still far from the quantum limit and, in fact, 
is roughly only 2.2 dB (comparing powers of 10) better than the 
integrate-and-dump filter.t The present problem seems to imply that 
equalization,: in particular, cannot be expected to approach the 
quantum limit bound for the type of distortion found in present optical 
fibers. In fact, a simple integrate-and-dump receiver with properly 

* For the moment, we ignore the factor of 100 in (68) and also set T = 1. These 
are reintroduced only in the final numerical calculations. 

t More precisely, the figure is 2.9 dB for strong signals. 
: Some references on equalization for optical communication systems are Refs. 1 

and 11. 

366 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976 



chosen threshold compares well with a lower performance bound. The 
above problem ignored many practical factors, but in fact ignoring 
them focused even more on the pure intersymbol interference problem 
in the Poisson regime. It would seem that effects such as dark current 
and finite width of wet) would surely make the integrate-and-dump 
and the optimum detector perform even more equally, and it would 
seem too much for an equalizer to compensate for gain jitter, which is a 
rather nonlinear effect. 

Another linear filter P (t), which performs better than the integrate­
and-dump, may be inferred from (71). This is discussed and evaluated 
in the appendix for the present problem. This new linear filter has a 
worst-case exponent approximately 1 dB better than the integrate­
and-dump situation. 

APPENDIX 

A New Filter 

We have already noted that (asymptotically) the integrate-and­
dump filter performs within 2.9 dB of a lower bound on performance 
for the optimum processor for our particular example. We now show 
how a modified P (t) can perform within 2 dB of this bound. We 
confine ourselves to the worst case again, for which, we recall, the 
bestintegratorhadP(t) = 1 for It I ~ 0.3 (choosing T = 1). The worst 
casewithsignalpresentwasAl(t) = 1- Itl, It I < l,and Ao(t) = Itl, 
I t I < 1, for the worst case with signal absent. Now the optimum filter 

1 - It I 
P(t) = In It I ' It I < 1, (79) 

which distinguishes between these two signals, is not always positive 
(it is negative for I t I > t). Therefore, if (79) were used, there could 
be no claim for a worst-case bound. However, we modify (79) and use 

It I <! (80) 

instead. The filter represented by (80) is always positive, and therefore 
worst-case claims still obtain. The filter (80) clearly has to outperform 
our integrate-and-dump one, since the latter integrated only to 
I t I = 0.3, while (80) is optimum for an observation interval I t I ~ 0.5. 
The optimum threshold for (80) is, from (72), 

F = j! Al (t)dt -j! Ao(t)dt = t. 
-! -! 

(81) 

Using the Chernoff bound for the case when Ao(t) is sent, we have, from 
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(64) and (73), 

P, ;:;; exp 1 J AO(t)[e,P(t) - IJ - sF I 
= exp 12 f tl-'(l - t)'dt - ~ - ~ I ' s > 0, (S2) 

where we have used the expression for "o(t), the filter (SO), and thresh­
old (SI). If we let u = (1 - t)/t, then we may write 

(S3) 

Two integrations by parts give 

r r:t:J u 8 1 s s (s - 1) r r:t:J u 8-2 

il (1 + up du = 8" + 4 + 2 il 1 + u du, (S4) 

or, using (S4) in (S2), 

P e ~ exp [s(s - 1) fr:t:J 1u;2u dU]. (S5) 

Equation (S5) makes it evident that the exponent in (S2) will be 
negative for 0 < s < 1. If we expand the 1/ (1 + u) part of the inte­
grand in (SO) in powers of (l/u) and integrate term by term, the 
exponent in (S5) becomes 

'"' ( -l)k 
S (s - 1) kL; 0 k + 2 - s 

'"' 1 
= s(s - 1) k"fo (k + 2 - s) (k + 3 - s) 

k even 

(S6) 

Convergence in (S6) can be improved if we write 

L =! L +! L -! L 
k even all k k even k odd 

and use the fact that 

'"' 1 1 
nL; 1 (x + n)(x + n + 1) = 1 + x 

to obtain 

ss-l + . [ 
1 '"' 1 ] 

( ) 2(2-s) k~O (k+2-s)(k+3-s)(k+4-s) 
k even 

(S7) 

The optimum s is easily found numerically by plotting (S7); we 
truncated the sum after k= 10. We find the optimum s is about 0.6, 
giving a value of (S7) of 0.11138. As a check on the possible accuracy 

368 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976 



of our use of (87), we note that our technique gives 0.10696 when 
s = !, for which the exact answer can be shown to be 7r /8 - ! ::::d 

0.10730. Thus, the Chernoff bound is 

p e ~ exp (-O.l llAo) 

Ao = 1_11 Ao(t)dt, 
(88) 

while (73) yields as a lower bound something which behaves ex­
ponentiallyas 

exp ( -A, [ ({.4 ~ -V2)2]) ~ exp (-O.l72A,). (89) 

The exponent of (88) is 1.9 dB worse than that of (89). Concluding, we 
note that (80) has a logarithm singularity at t = O. Including dark 
current in the Ai(t) will remove this, and will also decrease the im­
provement which this kind of filter provides over the integrate-and­
dump filter. 
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