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Basic Fluid-Dynamic Considerations in the 
Drawing of Optical Fibers 

By F. T. GEYLING 

(Manuscript received January 9, 1976) 

The optical fiber drawing process is considered in its totality-from 
source to forming zone to draw-down region and take-up end-as a prob­
lem in fluid dynamics. Fiber drawing of most glasses is dominated by 
viscous stresses, surface tension effects, and quenching rates. This con­
trasts with the drawing of textile fibers, where other fluid properties and 
non-Newtonian effects can play important roles. Preliminary tim.e-in­
variant "base flow" nwdels are developed for glass drawing, using the one­
dimensional, small-slope approxi11wtion of extensional flow. First-order 
sensitivities of these base flows to changes in operating conditions are 
examined via a stability analysis. Two ilnportant instability mechanisms, 
denoted as the tensile and capillary modes of dynamic fiber response, are 
discussed. Several follow-on objectives arising from this study are described. 

I. INTRODUCTION 

Stringent tolerances set on optical fibers used in communication 
systems have generated a need for understanding the fluid dynamics 
of the fiber drawing process. The responses of this process to various 
disturbances, especially those resulting in perturbations of the fiber 
diameter, are of interest. 

For steady-state drawing, one seeks analytic models that interrelate 
the draw-down ratio, draw force, flow rate, and some characteristic 
temperature. Such models serve two purposes: they predict the effects 
of changes in the operating parameters and can therefore be used in 
the control of industrial drawing processes; they also provide a "base 
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state" for the theoretical study of dynamic responses. Such responses 
could be due to a variety of physical disturbances; for example, 
mechanical vibrations, thermal transients, ambient gas flow, and even 
acoustic noise. All of these disturbances may produce variations in the 
diameter of the finished fiber. 

In studying the perturbations of liquid fibers, our philosophy departs 
somewhat from the more traditional one of stability analysis in textile 
engineering. Textile fiber studies, in general, strive to avoid fiber 
rupture and gross distortions of the thread line. (See, for example, 
Refs. 1 through 9.) In cases where continuous drawing of textile fibers 
is impossible, much emphasis is placed on the prediction and control 
of thread length, i.e., the filament lengths attainable between spon­
taneous ruptures. 

The drawing of optical fibers takes filament continuity for granted. 
However, the ultimate optical application is sensitive to small diame­
tral perturbations, far from rupture. l\1oreover, optical fibers are 
usually drawn at higher viscosities and draw forces than textile fibers. 
Starting from a much higher melt temperature, the subsequent viscos­
ity increase due to quenching of the glass is much more severe than in 
polymers. Also, in its molten state glass is more nearly Newtonian than 
most polymers. 

Our purpose, then, is to model the mechanisms by which perturba­
tions arise in the glass-drawing process and are frozen into the finished 
fibers. Based on this understanding, we hope to control fiber dimensions 
within the tolerances imposed by optical considerations (e.g. Ref. 10). 

The fluid dynamics of fiber forming involve a source flow, also re­
ferred to as the forming zone, and a draw-down region. The forming 
zone is usually characterized by a rapidly contracting flow issuing 
from the bottom of a preform, or pulled from an orifice at the bottom 
of a crucible (Fig. Ia). In drawing from preforms, we may distinguish 
between a very sharply contracting configuration (Fig. 1 b), commonly 
encountered with laser heating, and a more gradual contraction that 
results from furnace heating (Fig. Ic). We include in Fig. Id the case 
of an overheated preform, where the forming zone consists essentially 
of a liquid drop from \vhich the filament is drawn. The different 
forming-zone configurations shown in Fig. 1 can imply fundamental 
differences in the flow field, as far as the steady-state and potential 
instabilities are concerned. For example, there is some evidencell to 
suggest that the overheated preform, Fig. Id, is capable of self-sus­
tained oscillations at critical draw speeds, whereas, at noncritical 
speeds, the liquid reservoir in the pendant drop tends to absorb per­
turbations coming from the take-up end. 

The forming zone makes a continuous transition to the draw-down 

1012 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976 



ORIFICE 

FORMING ZONE 

DRAW-DOWN ZONE 

(a) 

FINISHING ZONE 

TAKE-UP 

LASER­
HEATED 

PREFORM 

1---1 
I I 
I I 
I 1 
1 I 
I 1 

I I 
I 1 

I I 
I 1 
1 1 
I I 
I 1 

(b) (e) 

Fig. l-Fiber-drawing methods. 

1--­
I 
I 
1 

I 
1 

I 
I 
I 
1 

I 
I 

(d) 

region, where an essential part of the fiber contraction occurs. Typical 
draw-down ratios, defined as terminal velocity/source velocity, in this 
region run between 10 and 100. lVIost fiber stability studies place major 
emphasis on the draw-down region, because of its physical importance 
and mathematical tractability. However, the role of incipient perturba­
tions in the forming zone cannot be ignored. The essential need for 
modeling this part of the flow field, if only by numerical simulations, 
is obvious. For completeness, we also recognize that a very small 
amount of fiber deformation occurs beyond the draw-down region; but 
this falls within the visco-elastic rather than the fluid-dynamic regime . 

.i\1uch of the empirical evidence in textile and glass-fiber drawing l 

suggests that fluid dynamics in the draw-down region is governed by 
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the so-called Trouton viscosity, a measure of the ability of fluid 
filaments to sustain tensile stress as a function of elongational strain 
rate. Indeed, if fiber breakage occurs in the draw-down region, it 
exhibits the neck-down and cohesive separation reminiscent of tensile 
test specimens. l\1uch of the early modeling by Ziabickil2 ,13 and sub­
sequent efforts by Pearson,5,14 Kase,6,7 and others are based on this 
notion, and for this reason we refer to these analyses as "tensile" 
models. 

In parallel, and possibly quite independent of the tensile mechanism, 
local flow conditions may exist where surface-tension-driven phe­
nomena playa significant role. Such "capillary" responses could occur 
at the hot tip of the forming zone, where the viscosity is still quite low 
and the filament begins to take shape. Capillary models of filament 
response go back to Rayleigh's classical work,15,16 with subsequent 
extensions and experimental corroboration by, for example, Taylor,9 
Tomotika,17,18 and Weber,19 

The present paper serves several purposes: (i) it generates pre­
liminary base-flow models for the draw-down region, using the one­
dimensional, small-slope approximation of elongational flow; (ii) it 
makes a preliminary assessment of sensitivities, through differences in 
base flow, to changes in operating conditions, such as take-up speed 
and quenching profile; (iii) it presents the tensile and capillary models 
of dynamic fiber response as fundamentally distinct mechanisms; it 
explores their applicability to different parts of the draw process by 
suitable modifications and extensions of existing theories; (iv) it pro­
jects several follow-on efforts aimed at unified models of the steady 
and perturbed drawing process, viz. more realistic base-flow models, 
including heat transfer and two-dimensionality at the start of the 
draw-down region, and transient-response models, which account for 
these refinements in the base flow together with possible interactions 
between capillary and tensile mechanisms. 

II. REVIEW OF EARLIER WORK 

In this section, we discuss some of the literature on tensile and 
capillary stability analyses of liquid filaments. Table I relates several 
key publications and identifies their underlying assumptions and 
physical models. 

The first comprehensive study of tensile fiber models was undertaken 
by Ziabicki et a1.1- 4,12,13,20 ::\1otivated by the textile engineers' interest 
in potential instabilities and fracture mechanisms, the authors reviewed 
existing phenomenological evidence on filament "spinning."· They 

* This traditional terminology, which suggests twisting a fibrous material into 
strands, will be avoided henceforth as inappropriate to the drawing of liquid filaments. 
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Table 1 - Overview of tensile and capillary fiber models 

Tensile models, Viscosity = 3 }J., inertia, Viscosity = 3 p., Viscosity = 3 p., 
physical features surface tension, stability analyses. stability experiments. 
discussed. quenching, finite 

draw-down. 

Pertinent literature ReG. 1-4, 12, 13, 20: Refs. 5, 14: dynamic RefL ~ ~ 21, 2~25: 
analysis and experi- analysis of attenuat- experimen ts corrob-
mental corroboration ing fibers, including orating cyclic and 
of relevant physical the effects of viscos- transient responses of 
factors in base state ity perturbations and tensile fiber models. 
and some dynamic different base states. 
perturbations. 

Capillary models, Newtonian viscosity Inertia and surface Newtonian viscosity. 
physical features and surface tension. tension. inertia, and surface 
investigated. tension. 

Pertinent literature Ref. 16: cylindrical Refs. 16, 19: theory of Refs. 16, 17, 18, 19: 
filaments neglecting inviscid capillary complete theories of 
inertia. fluid cylinders. capillary jets. Modifi-

cation for quenching 
effects given here. 

Refs. 17, 18: adaptation 
to contracting flows 
and quenching effects. 

Note: Numerous authors have conducted experiments over the years to dem-
onstrate instabilities of capillary jets and filaments under isothermal, i.e., 
constant viscosity, conditions. 

also cite experimental evidence that when a filament is formed, say 
in the wake of a free-falling viscous drop, either a tensile ("cohesive") 
fracture or capillary separation may sever the flow. 

In Ref. 12, a suitable tensile theory is developed for the prediction of 
finite filament lengths, assuming the cross-sectional distribution of 
longitudinal velocities to be uniform and the steady-state flow to con­
tract with small slope. Reference 20 accomplishes the same for capillary 
effects by an adaptation of Rayleigh's classical theory (as 'we have 
done independently for our own purposes). Ziabicki's subsequent 
publications include a thorough evaluation of experimental results, 
corroborating his predictions of filament lengths. * 

Ziabicki's comprehensive effort was followed by a series of papers 
by Pearson and others, aimed predominantly at tensile stability models. 
Starting from the simplest possible representationlL-an isothermal 
filament under constant viscous tension-progressively more elaborate 
results were achieved by adding fiber quenching, inertia, surface 
tension, and gravity. A physical interpretation of this work, however, 
is difficult since the explicit features of diametral perturbation profiles 
along the fiber, their time dependence, and their sensitivity to proper­
ties of the base state seem poorly understood. We will return to this in 
Section VII. Ziabicki's tensile flow models and the draw-resonances 

* Like other \Vestern readers, the author has been somewhat late in fully recogniz­
ing the significance of Ziabicki's work, much of which was initially recorded in Polish 
journals. Note, however, Ref. 4 for a more recent, comprehensive account. 
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predicted by Pearson et al. were corroborated by several experimen­
ters. We cite the work of Kase21 ,22 and Donnelly and Weinberger25 as 
examples in this area. 

As mentioned earlier, the study of surface-tension-driven perturba­
tions contributes another, as yet separate, view of fiber stability which 
goes back to Rayleigh's classical work as presented in Refs. 15 and 16. 
Rayleigh himself studied several simplified cases: (i) constant viscosity 
pI us surf ace tension ( no inertia), (ii) inertia pI us surf ace tension (no 
viscosity), and (iii) constant viscosity plus inertia plus surface tension. 
Each analysis yields an exact solution of the hydrodynamic perturba­
tion equations for an incompressible liquid contained by a cylindrical 
boundary with surface tension. Simplifying assumptions are made only 
in solving the characteristic equations. 

Weber19 showed that exact solutions of the characteristic equation 
differ little from Rayleigh's approximation. He also considered the 
effect of aerodynamic drag on the perturbed filament. Tomotika17 ,18 

extended Rayleigh's model to allow for an ambient viscous fluid that 
surrounds the filament and is subjected to a steady elongational flow. 

For our own purposes, we need to modify Rayleigh's and Tomotika's 
work to reflect not only contraction in the base flow but also the viscos­
ity buildup due to quenching. These are essential features of such 
"capillary" models of fiber drawing and are therefore listed explicitly 
in Table 1. A display of diametral response profiles along the fiber and 
their dependence on wavelength and base-flow properties is given for 
comparison with tensile stability models. 

III. FUNDAMENTAL EQUATIONS AND THE ASSUMPTION OF 
ONE-DIMENSIONAL FLOW 

Let z = axial coordinate 

r = radial coordinate 

v = axial velocity component 

U = radial velocity component 
p = fluid density, assumed constant 

(J = surf ace tension, 

J.L = Newtonian viscosity, a function of temperature. 

In the cylindrical coordinate system (r, z), the Eulerian equations of 
mass and momentum conservation read: 

U 
Vz + U r + - = 0 

r 

[ ] 
aT rIa T rz 1 

p Ut + UUr + VUz = -a + - Tr + -a - - 78 r r z r 
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[ ] 
aTz aTrz 1 

p Vt + UVr + VVz = -a + -a + - Trz, 
Z r r 

(3) 

where Tr, Tz, Trz denote stress components. In all other instances, the 
subscripts r, z, t denote partial derivatives. 

The constitutive relations for an incompressible Newtonian fluid are 

Tz = 

Tr = 

aV 
-p + 2J.L az 

au 
-p + 2J.L ar 

U 
TO = -p + 2J.L­

r 

(
av au) 

Trz = J.L ar + aZ ' 

(4) 

where p is the pressure. It is one of the dependent variables, along 
with u, v, and the free surface configuration r = a(z, t). Equations (1) 
to (3) have the following boundary conditions: 

At z = 0: 
v(r, 0, t) = vo(r, t) 

u(r, 0, t) = uo(r, t) 

a(O, t) = ao(t). 

At z = L, the take-up position: 

v(r, L, t) = vL(r, t). 

At r = a(z, t) : the kinematic condition 

aa aa 
v = u az + at 

(5) 

(6) 

(7) 

together with tangential and normal surface-stress conditions, which 
we do not reproduce in detail at this point. (See Appendix A.) Once a 
solution of this boundary value problem has been found, the draw 
force at any cross-section follows from 

P(z, t) = 2a1ro/[1 + (aa/az)2J! + 21r loa rTzdr. (8) 

In particular, IlP(t) = P(L, t) - P(O, t) and, to the extent that the 
solution for Tz contains J.L, p, (J, the expression for !l.P depends on these 
fluid properties. 

The complete set of governing equations for the fiber drawing 
process includes an energy equation from which the temperature dis-
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tribution T(r, z, t) in the draw-down region is determined. This, in 
turn, yields J.L as function of position and time. Strictly speaking, 
therefore, the heat-transfer equation is coupled to the fluid-dynamic 
equations. However, since we give it a separate, detailed treatment 
elsewhere, we uncouple it from this preliminary discussion and in­
troduce J.L(r, z), for nonisothermal draw-down, as a function presumed 
obtainable from some heat transfer model. 

The general axisymmetric, free-surface flow problem posed by (1) to 
(7) is a formidable one. However, for the purposes of an engineering 
analysis and to gain some basic insight, much headway can be made 
by taking advantage of the fact that lazl = O(e)« 1 and lu/vl 
= a (e) «1 throughout the draw-down region. This "small slope" 
assumption expresses the obvious fact that fluid flow in fiber drawing 
is essentially one-dimensional. The consequences of this kinematic 
feature are developed in Appendix A, taking advantage of the fact that 
we are dealing with low-Reynolds-number flow away from regions of 
strong relaxation in velocity profile. Specifically, we find: 

(i) Vr == 0, i.e., "plug" flow throughout the draw-down region. 
(ii) Trz a: e(Tz, Tr, TO)r/a 

(iii) u a: evr/a 
(iv) Tr = TO, uniform over the cross-section 

(v) T z = - (j / a + 3J.Lvz, over the cross-section, 
where 3 J.L is the so-called "Trouton" viscosity for extensional 
flow in a liquid filament. 

These features of one-dimensional flow in the draw-down region sug­
gest that mass and momentum conservation may be expressed con­
veniently in terms of cross-sectional fluxes and stress integrals. Equa­
tions of this kind may be obtained formally by integrating over the 
fiber cross-section: eq. (1) for volume conservation and eq. (3) for the 
axial momentum balance. Alternatively, we may derive these equations 
directly by taking a segment, of length dz, from the tapered axisym­
metric filament as control volume. We obtain for volume conservation 

(9) 

and for axial momentum conservation 

(10) 

For an eventual comparison with the early work of Pearson et aI., 
we also record (10) after the terms in p and (j have been dropped. We 
have the simplified momentum equation 

(11) 
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where 1J1 is an arbitrary time function. This equation merely states 
that the draw force is uniform along the fiber and varies only with t. 

For later reference, the time-independent (i.e., steady-state) versions 
of (9) and (10) yield 

a2v = const. = Q (12) 
and 

(13) 

where C is a constant of integration, viz. the cross-sectional draw force 
reduced by the momentum flux. 

IV. STEADY-STATE SOLUTIONS FOR THE DRAWING PROCESS 

In this section, we consider solutions of the time-independent 
equations (12) and (13). These constitute steady-state representa­
tions of the drawing process which are of interest for two reasons. First, 
they model the steady drawing operation and yield some insight into 
its controlling parameters, i.e., the dependence of draw force and 
draw-down profile on the draw-down ratio, the viscosity profile, fluid 
inertia, and surface tension. Second, they provide reference states on 
which to build dynamic response models for fiber-stability studies. In 
this context, such solutions are often referred to as base flow models. 

It is well-known in fluid-dynamic stability theory that detailed 
features of the underlying base flow can be quite important to the 
predicted dynamic response. Hence, it is necessary that we examine 
several base-flow solutions of the drawing process for the physical 
features they represent. 

Starting from (13), one observes that the first term on the right-hand 
side represents the viscous stress effect, the second fluid inertia, and 
the third a contribution from surface tension. We assume the following 
fiber dimensions and fluid properties at the start of draw-down: 

v = 10 cm/s 
a = 10-2 cm 

Vz = 100/s (e.g., Av = 100 cm/s, over Az = 1 cm) 
p = 2.5 gm/cm3 

(j = 200 dyn/ cm 
J.I. = 100 poise for soda lime glass 

= 1000 poise for fused silica. 

Note that the temperature at the interface between forming and draw­
down zone is very dependent on as yet unknown fluid-dynamic and 
heat-transfer conditions in the forming zone. Therefore, the assumed 
values for J.I. are rather tenuous. 100 poise probably represents a mini-
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mum for soda lime glass, as might be expected in fiber drawing from 
crucibles. 

Given these data, the order-of-magnitude relations between terms 
in (13) are: 

Soda lime glass 
Fused silica 

Viscosity Viscous stress 
p. (poise) 3p.a2v' (dyn) 

100 
1000 

3 
30 

Inertia 
pQv (dyn) 

2.5 X 10-2 

2.5 X 10-2 

Surface Tension 
ua (dyn) 

2 
2 

Thus, inertia effects amount to barely 1 percent of the viscous term 
under the most favorable circumstances, while surface tension can be 
important when J.I. is near its minimum. However, physical evidence 
suggests rapid quenching of glass fibers in the draw-down region. 
Hence, inertia and surface tension effects soon become negligible as the 
temperature drops by several hundred degrees over the first few milli­
meters of the draw-down region, causing J.I. to grow by several orders 
of magnitude (see, for example, Ref. 23). 

Disregarding, for a moment, the quenching effect that actually 
occurs in the draw-down region, we briefly consider an isothermal base 
state for two reasons. First, it permits an understanding of secondary 
physical effects such as inertia and surface tension, without being 
obscured by viscosity changes. Second, in later dynamic response 
studies, the isothermal base state serves as a basis of comparison for 
the stabilizing effect of the quenching that does occur. 

Letting the fluid properties in (13) be independent of z, we consider 
flow conditions such that inertia and surface-tension effects can be 
viewed as perturbations in relation to the viscous stress. Eliminating 
the radius a from (12) and (13) and nondimensionalizing according to 

'lr = vivo, r = zlL, )I=~ ar ' 
we find 

(14) 

where Vo = vat z = 0, L = length of draw-down region, and D = LC / 
3a5V5J.1.o, the nondimensionalized equivalent of C in (13). The inertia 
and the surface-tension terms are characterized by a Reynolds number 
Re = voLp/3J.1.o and a Weber number, We = fYLl3aovoJ.l.o. The elementary 
solution for (14) with We = Re = ° is 

'lr (0) = eSlnE , 

where we have used the boundary conditions 

'lr=1 

'lr=E 

at 

at 
r=o 
r = 1 

(15) 

and E = VL/VO is the so-called "draw-down ratio." Note that D = lnE. 
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Corrections to this simple base-state solution for small We and Re 
can be found by perturbation methods. A first-order approximation 
for We «D and Re « D is found by substituting (15) into the r.h.s. 
of (14): 

'l1 (1) = exp lnEr + -- (e-(lnE/2)t - 1) + - (ennE - 1) (16) [ 
2We Re] 
lnE lnE . 

Resubstituting this into the right side of (14) for a second iteration, 
terms such as exp[et1nE ], were approximated by power series prior to 
quadrature with respect to r. Then, 

'l1(2) = nnE J 1 _ W X [~ We _ lnE _ (We + !Re) r] 
e 1 e 2lnE ' lnE ' 2' lnE' ~ 

+ ReX [2Re 4We lnE _ (4We + !Re) rJJ (17) 
lnE' lnE " lnE' ~ , 

where the expression for X[a, b, c, d, r] is recorded in Appendix B. 
Numerical results from (17) are best presented in terms of the non­
dimensional radius a/ ao = X. According to (12) 

x = 'l1-!. (18) 

This has been plotted in Figs. 2 and 3 for a range of values in We and 

0.900 

C/l 0.800 
::> 
o 
« 
a: 

~ 0.700 
co 
LL 

o 

~ 0.600 
-I 
« 
:2! 
a: 
o 
z 0.500 

0.400 

/ 
We = 0--/ 

__ -We = 1.0 
/" 

NONDIMENSIONAL DISTANCE \" 

Fig. 2-Perturbation solutions for base-flow profiles with increasing surface tension; 
E = 10, Re = O. 
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Fig. 3-Perturbation solutions for base-flow profiles with increasing fluid inertia i 
E = 10, We = O. 

Re. These results show a tendency for filament contraction to be de­
layed with increasing surface tension and fluid inertia, a familiar phe­
nomenon from more accurate base-flow models obtained by numerical 
methods.24 

Now let us return to the more realistic case of variable viscosity. We 
denote it J..lo1](r), where the second factor represents only the dimension­
less dependence on r, with 1](0) = 1. Then (14) becomes 

(19) 

Using an inverse approach, we can, for example, assume Re ~ 0, 
We = D = 0 (where D = lnE is no longer true) and'l1 = ennE, as in 
(15). This yields 

Re 
1] = -etlnE 

lnE 
(20) 

and constitutes an inertia-dominated base flow. Experimental data 
suggest that something like an exponential viscosity buildup along the 
draw-down region is a fair representation of quenching effects. Note 
that for this base-flow model, 

x = e-(lnE/2)t, (21) 

which has the disadvantage that X ~ 0 for r » 1. To provide a finite 

1022 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976 



asymptotic value for x, we may assume a draw-down profile of the 
form X = je- ar + g with j + g = 1, 0 < j, g < 1, and solve for ~ 
from (18) and 1] from (19). 

We summarize the three elementary base-flow models obtained so 
far with the notation lnE /2 = a: 

Unquenched base flow; Re = We = 0: 

Quenched base flow; Re ~ 0 ; We = 0; 

X ~ 0 for r ~ 00 : 

Quenched base flow; Re ~ 0 ; We = 0; 

X finite for r ~ 00 : 

1] == 1. (22) 

(23) 

X = (je- ar + g), ~ = 1/(je-ar + g)2, 1] = ear/(je-ar + g). (24) 

In addition to the inertia-dominated base flows (23) and (24), we can 
show that 

X = je- ar + g, 
1 

1] = - ear (25) 
g 

is a solution of the approximate fluid-dynamic and heat-transfer equa­
tions, for small a, if we let Re = TVe = 0 and assume 

J..L = J..Loe{J(l-T/To), 

where To is the initial temperature and (3)> 1. This represents a 
quenched base flow that is not inertia-dominated, in keeping with some 
of the perturbation equations discussed later on. Note that for each of 
these base-flow models aa/ az = 0 (aao/ L). Since a = 0 (1) but ao/ L« 1, 
this means that I aa/ az I « 1 and confirms the basic assumption pro­
viding for one-dimensional flow, as discussed in Section III. Note also 
that the viscosity profiles in models (23), (24), and (25), which reflect 
a cooling process along the fiber, are connected with the draw-down 
profile through the parameter a. This parameter is indicative of the 
quenching rate in 1], and also controls x', the slope of the draw-down 
profile. 

The draw-force follows from any of these solutions by the obvious 
relation, in dimensional form, 

(26) 

If we neglect (J' and substitute one of the base flows, we find that P 
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depends on ao, vo, J.Lo as well as the draw-down ratio and the quench­
ing rate a; all of which could be expected on physical grounds. 

Clearly, we could refine upon the viscosity profiles to be used in 
simple base-flow Inodels. Since some experimental temperature profiles 
tend to show an exponential decay and the viscosity temperature 
relation for many glasses is of the form TJ t"-' eklT , we might consider 
functions of the form 

TJ = r + s exp (e2ai). 

However, such elaborations result in a loss of mathematical simplicity 
and usually lead to equations for 'l' that require numerical integration. 
At that point, it seems more appropriate to solve the coupled heat­
transfer/flow problem by numerical means. This has been done and is 
documented elsewhere.24 

v. PERTURBATION EQUATIONS FOR TENSILE STABILITY MODELS 

In this section, we develop the first-order perturbation equations 
necessary for a linear stability analysis of tensile fiber models. Let the 
first-order solution of (9), (10), and (11) be denoted 

ii = a(z)[1 + a(z, t)] 
v = v(z)[1 + v(z, t)] 
ii = v(z)[1 + v(z, t)], 

(27) 

where a(z), v(z), and v(z) represent radius, velocity, and kinematic 
viscosity for a suitable base state, in dimensional form for the time 
being, and a, v, v are dimensionless first-order perturbations of these 
quantities. 

Substituting (27) into (9), the first-order variation of the continuity 
equation reads 

(28) 

Similarly, (10) without the surface-tension term becomes 

~ + ~ (vz + Vz 2v ) 1 ~ + " (2Vz 2V) 
Vzz Vz -; V - 3v - 3v Vt az v - 3v 

2 " + "(0 Vz 2V) / + ~ ( VVz 2V) / - - at a,t,v - - - v V - - - v 
3v v 3 z v 3 z 

"Vz 
A ( VVz) / = -vz ; - v v z V (29) 

and from (11), the momentum equation without inertia terms, 

2 " + A + ~ + v ~ d(t) a v v -Vz = -, Vz Po 
(30) 
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where we have used a2))vz = Po = const. from (11) and d(t) is a per­
turbation of M (t). Since the examples in later sections use the base 
states of Section IV, it is convenient to nondimensionalize the space 
and time variables as 

(31) 

and use the notation 

d ( ) _ ( )' and ~ = ( )0. 
----cJjJ - d T 

(32) 

The specific versions of (28), (29), and (30) now develop as follows. 
With the base states (22) or (23), eq. (28) becomes 

6,' + !v' + ae-23 = o. (33) 

Neglecting inertia in the momentum equation, (22) and (30), for the 
unquenched inertialess base state, yields 

26, + v + v + !v' = cp(T), (34) 

where cp is an arbitrary function of T. On the other hand, the momen­
tum equation (29), using the quenched inertia-dominated base state 
(23) leads to 

v" - 4v - 46e-23 - 2~e-23 = - 2v' - 4v. (35) 

Turning now to the inertialess, quenched base state (25), we revert to 
(28) and (30) as basic equations, but reserve the substitution of v and 
Vz from (25) for a later time. 

For some of the examples treated in later sections, it is convenient 
to eliminate v from (34) and (35) by means of (33) and similarly from 
(28) and (30) for base state (25). The resulting equations for 6, are 
recorded in Appendix C for later reference. 

Conversely, the boundary conditions for some problems demand an 
equation in v. This is the case with steady-state responses to changes 
in the takeup velocity, which we treat in the next section. If (27) is 
used in (12) and we let Q = Q(l + tJ.), the first-order variation of that 
equation yields 

26, + v = q. (36) 

N ext, consider (13), where we neglect surface tension and perturba­
tions in )). As noted before, the constant G may be interpreted as a 
force parameter, carried from the forming zone to the draw-down 
region. Taking the first variation of (13), letting (J = G(l + c), and 
eliminating 6, by means of (36), 

v - ~ v - - £ c + q" (~ - ~). (37) 
z 3)) - 3Q)) 3)) V 
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N ondimensionalizing the base-flow variables in this equation according 
to Section IV, we have 

where 

vr - Re'l! v = '!.. + (Re'l! _ 'l!r) q, 
'rJ 'rJ 'rJ 'l! 

k = Lee. 
3a~vo,uo 

(38) 

Equation (38) is designed to yield changes in the steady-state velocity 
profile, v, as a function of q and k, which are perturbations of the volume 
flux and force parameter of the base flow. 

In summary, this section has developed first-order perturbation 
equations based on the continuity and momentum equations of 
Section III. The perturbation equations were given in terms of a or v 
as needed for the steady-state and dynamic-response studies to be 
pursued in Sections VI and VII. 

VI. PERTURBATIONS OF THE BASE FLOW 

In this section, we use the time-independent versions of perturbation 
equations derived in Section V to display changes in several base-flow 
solutions due to shifts in such steady-state parameters as the boundary 
values and the viscosity profile along the fiber. Since these parameters 
are often accessible to control in real fiber-drawing processes, their 
effects on the steady flow are of operational interest. Obviously such 
effects could be determined by differencing neighboring base-flow solu­
tions in the control-parameters space; however, exhibiting the changes 
(analytically) as first-order perturbations can yield useful insight for 
the design of feedback controls. 

We start by examining the response of steady state (24) to a change 
v L in take-up speed. Substituting the appropriate base-flow expressions 
for 'l! and 'rJ into (38), one has 

e-3 e-3 

v' - Re X v = ke- 3X + (Re - 2f) X q, (39) 

where 

( )'=~ 
a'll s = fe- 3 + g 

and a factor of l/a has been absorbed in Re and k. The boundary con­
dition for (39) is 

(40) 
We find 

VA = Vx-Rel! kX2 + ( 2f 1)'" 
- 2 (1 + f) Re - q (41) 
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with 

v = [VL + (1 + ~~) q] xfe
/! + 2(;~ f) (2 + Relf), 

where XL = X(ZL)' Given (41), the corresponding changes in fiber 
radius a follow from (36). 

Additional features of interest with (41) are v at Z = 0 and perturba­
tions of the draw force at either end. Thus, 

Vo = v(O) = V - 2(1 ~ f) + (~~ - 1) q. (42) 

For the draw force, 

which yields 

From this, 
A A + VRe + k 
po = q 2f 2(1 + f) (43) 

and 
A _ A + VRe -Rei! + kXl 
p L - q 2f XL 2 (1 + f) , (44) 

the changes in draw force, as function of VL, q, and k. 
The solution (41) is of little more than conceptual value as long as q 

and k are unknown. Recall from (38) that these parameters represent 
perturbations in the integration constants of the base-flow solution for 
the draw-down region: q, a change in the volume flux, and k, a change 
in the force parameter of the momentum equation. Such changes must, 
in general, be expected to enter from the forming zone when the steady 
state is altered due to v L. 

Fortunately, q = 0 for drawing from a preform that is fed at a 
constant rate. However, the exit flow from a crucible (Fig. la) does 
not provide such a simple condition. If operating at a low head in the 
reservoir, we would expect the entrance flow into the orifice to be 
affected by changes in the take-up speed. In neither case does there 
exist an obvious condition for the force parameter k [i.e., c and C, see 
eq. (38)]. 

A theory of the forming zone should be able to relate Vo and po on 
the one hand with q and k on the other. Given such relations, these 
would combine with (42) and (43) to determine q and k in terms of 
VL, and hence v, a, p as functions of VL. Depending on the different 
situations depicted in Fig. 1, the relations of vo, po vs q, k in the forming 
zone could vary considerably. In some cases, an understanding of the 
complex fluid-dynamic and heat-transfer processes of the forming 
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zone (see Fig. Id) would seem essential for a satisfactory representation 
of speed-diameter-force relations at the take-up end. 

In the remainder of this section, we examine the sensitivity of steady­
state flow in the draw-down region to changes in the viscosity profile. 
Such changes can be viewed as consequences of perturbations in the 
heat-transfer mechanism. Our primary purpose is to determine re­
sponse amplitudes for a, the perturbation in draw-down profile, as 
functions of Po, an amplitude parameter of the viscosity perturbation. 
Once again we encounter the problem of assuming reasonable boundary 
conditions at z = 0 without a dynamic model of the forming zone. 

We consider two different cases: the draw-down response without 
inertia effects imposed on the unquenched, inertialess base state (22), 
and the response with inertia effects imposed on the quenched, inertia­
dominated base state (23). In particular, we shall be working with 
eqs. (76) and (77) after deletion of the time derivatives. 

In both cases, we consider a viscosity perturbation of the form 

(45a) 

which represents a distribution of arbitrary amplitude and spread, 
determined by Po and 'Y, respectively. A family of such functions is 
displayed in Fig. 4 for 1 ~ 'Y ~ 6. Note that for a given value of 'Y 

'II 1 
-.. - = 'Ve' 
"'Omax I 

(45b) 

the peak viscosity perturbation, normalized w.r.t. Po. 
Let us consider various boundary conditions that may be applicable 

to solutions of this problem. If we assume that the fiber is drawn from 
a preform with constant feed and take-up conditions, an obvious 
boundary condition is 

(46a) 

In view of q == 0, it seems reasonable to assume that the forming zone 
will respond with p (0) = o. i/ (0) can be eliminated from these two 
conditions to yield 

a' (0) - ~'(6~) 0,(0) = o. (46b) 

If three boundary conditions are needed, we take 

0,(0) = 0, (46c) 

and then, according to (46b), also 0,'(0) = o. Finally, for a fourth con­
dition, let 

(46d) 

which implies that P(3L) = 0, i.e., no perturbation of the draw force 
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Fig. 4-Profiles of the viscosity perturbation, 1'/1'0 = iJe-YD. 

occurs at the take-up end. Conditions (46) will be invoked as necessary 
with increasing order of the perturbation equations. 

We start by considering the inertialess perturbation eq. (77). We 
have 

a = - ~o e--yD (~ + iJ) + BliJ + B 2• (47) 

Results from (47) have been plotted in Fig. 5 to represent the effect 
of viscosity perturbations on the unquenched base state. Note the non­
monotonic evolution of these curves with increasing ')'. 

N ext, we examine the corresponding results, including effects of fluid 
inertia. Integrating (76) after deletion of the time derivatives, the 
quenched inertia-dominated base state (23) leads to 

a"' + 20," - 4t1' - so, = v" + 4v' + 4v + C. (4S) 

C is a constant of integration. 
Substituting (45) into (4S), we obtain 
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Fig. 5-Draw-down response to the viscosity perturbations of Fig. 4, without 

fluid inertia, for unquenched base flow. 

Figure 6 shows (49), the effect of viscosity perturbations on the 
quenched, inertia-dominated base state, over the range 1 ~ 'Y ~ 6. 
Note that the presence of quenching significantly alters the evolution 
of response curves in Fig. 6, which becomes monotonic with 'Y. Typical 
amplitudes in this case are about one-half to one-third as large as for 
the unquenched base flow (Fig. 5). 

The main inference to be drawn from a comparison of Figs. 5 and 6 
is that typical peak amplitudes for a/ vo are reduced significantly due 
to fluid inertia and quenching. 

By way of specific example, we consider results for 'Y = 3.5: 

Maximum for viscosity perturbation (Fig. 4) 

Maximum for response without inertia on 
unquenched base state (Fig. 5) 

Maximum for response with inertia on 
quenched base state (Fig. 6) 

vivo = 0.110 

a/vo = 0.018 

a/vo = 0.005 

The latter case, which represents the more realistic model, also predicts 
the lower response amplitudes. Thus, for example, a 10-percent de­
parture from the nominal viscosity profile would cause only a 0.5-
percent departure from the draw-down profile. 
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In summary, the first-order results given in this section yield a 
qualitative indication of base flow responses to time-invariant changes 
of the boundary conditions and of the viscosity profile. As stated in 
Section IV, a more satisfactory treatment of viscosity effects may be 
achieved by numerical integration of the base-flow equations, which 
introduce heat-transfer perturbations through the energy equation. 
However, the question of realistic interface conditions between the 
drawn-down region and forming zone remains open until the latter is 
included in our model. 

VII. THE DYNAMIC RESPONSE OF TENSILE FIBER MODELS 

We turn now to the dynamic response of tensile fiber models for the 
unquenched and quenched base flows; i.e., we address solutions of the 
equations in Appendix C, including the time-dependent terms. Un­
fortunately, the formulation allowing for fluid inertia, eq. (76), does 
not lend itself to a simple solution. We therefore seek what preliminary 
insight can be gained from solutions obtainable with (77) and (78), 
i.e., by neglecting inertia in the perturbation equations. 

Starting with (77), which represents perturbations of the un­
quenched base flow, the operator on the left-hand-side suggests a gen-
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eral solution of traveling waveform 

a' = f( T + !e-23) (50) 
and 

ae = f f(T + !e-23)di} + 'I>(T), (51) 

where 'I> (T) is an arbitrary time function. This solution may be used 
to represent radial excitations at the source or take-up end or to satisfy 
boundary conditions in the presence of a particular solution. In the 
former case, where 0,(0, T) = sin WT, we reconstruct a solution by 
Pearson and MatovitchI4 of the form 

a(i}, T) = A I(i}) sin WT + A 2(i}) cos WT 

with the terminal response amplitude 

A(w, i}L) = [AiCw, i}L) + AHw, i}L)]!. 

(52) 

(53) 

This is normalized with respect to 0,0, the amplitude of radial perturba­
tions at i} = 0, and plotted, for later comparison, in Fig. 7 as a function 
of w, for i}L = 2. It shows a series of response peaks presumably due to 
the absence of quenching from the base state (22), used in (77). 

These response peaks are commonly referred to in the literature as 
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"draw resonances." The author takes exception to this term since it 
implies the existence of natural frequencies contingent on the inter­
action of system inertia and some restoring force, neither of which is 
obvious in the present model. Nevertheless, experimental evidence con­
firms the occurrence of highly amplified responses near some of the 
"critical" frequencies predicted by Pearson's model. Typical radial 
perturbation profiles for a(3, T) are shown in Fig. 8 for w = 100, at 
T = 0, the start of a period, and T = 0.25, its quarter-point. They 
illustrate the spatial amplification of surface perturbations occurring 
along the draw path. 

Since the direct physical realization of radial perturbations at 
3 = 0 may be difficult, we now examine the effect of viscosity perturba­
tions that are convected along the fiber as a consequence of fluctuations 
in the heat source; i.e., 

v = geT + !e-23 ). (541 

Substitution into (77) yields the inhomogeneous equation 

( aaT + e23 :3 ) a' = -geT + !e-23
), (55) 

where the dot is also used to designate differentiation with respect to 

40.---------------------------------------------------~ 

-20~ __ ~----~--~~--~~--~----~--~----~--~~--~ o 2~ 

DIMENSIONLESS DISTANCE 3 

Fig. Sa-Surface perturbation for base state Ceq. (22) ] with w = 100, 3L = 2, 
at T = o. 
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Fig. 8b-d. at T = 0.25. 

the compound space-time argument. If we substitute 

a' = h(T + !e-23 )e-23, 

this leads to h = -!!i; hence, the particular solution 

a = -!g(T + !e-23) = -!v. (56) 

This suggests that any space-time history of viscosity changes given 
in the form (54) translates into changes of fiber radius by the factor 
-!. It is a traveling-wave type of response only in the sense that it is 
convected with the moving fluid. * 

To take a specific example, consider a periodic viscosity perturba­
tion, as would be caused by misalignment of the rotating laser beam 
used in heating the preform, 

v = sin WeT + 1]), (57) 

* The negative sign may appear surprising at first. One notes, however, from the 
continuity equation (33) written as 

(e-23a/ar + a/a'lJ)d. = -!v', 
that d. of the form g(r + !e-23) leads to v' = O. This means that such a form of radial 
perturbation can travel with the flowing fiber without perturbing the local velocity. 
Further, if a constant draw force is to be maintained, the expression 

P / p = 7ra2vv' 
shows that, with v' unperturbed, an increase in II requires a decrease in a of half this 
magnitude. 
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where 1] = !e-23 , yielding the particular solution 

ap = -! sin WT cos W1] - ! cos WT sin W1]. (58) 

The boundary conditions to be satisfied with the help of (51) are then 

V(O, T) = 0, V(iJL, T) = 0, 
ac(O, T) = ! sin WeT + !). (59) 

In this case, the perturbations are driven only by the variations in 
viscosity. 

An appropriate form for 1 is 

1(iJ, T) = h cos WeT + 1]) - h sin WeT + 1]) (60) 
so that 

ac(iJ, T) = !(h cos WT - h sin wT)[CiJ~~2 
- !(h sin WT + h cos wT)[SiJ~~2 + <I>(T), (61) 

where 

and h, h are integration constants. After determining <I>(T), h, and 
b to satisfy (59), once again a solution of the form (52) is obtained, 
where Al and A2 are recorded in Appendix D. It is interesting to note 
that A (w, iJ L) for this case, if normalized in terms of Vo and plotted as 
in Fig. 7 shows exactly the same response spectrum, but with half the 
amplitudes. Moreover, the profiles of radial perturbations along the 
fiber for this case strongly resemble the ones obtained for radial excita­
tion at iJ = ° (Fig. 8). 

The sharp response peaks given by the above solutions at certain 
frequencies reflect the absence of quenching in the base flow (22). In 
search of some allowance for quenching effects, we consider two ad hoc 
modifications of the tensile fiber model: the base flow (25), which 
includes moderate quenching together with moderate draw-down, and 
base flow (23), which represents quenched, inertia-dominated, exponen­
tial draw-down. 

Using eq. (78), which is based on (25), a solution of this perturbation 
equation is developed in Appendix D for the case of cyclic perturba­
tions in the starting radius a (0, T) = sin WT. The resulting expression 
for a(r, T) is recorded in (88). It turns out that the term e-'Yr sin WT 
exceeds all other contributions to the dynamic response by several 
orders of magnitude for all values of wand 'Y of interest. Thus, the 
perturbation in the fiber radius is merely a shift in the exponential 
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draw-down profile of the base state, whose spatial variation is inde­
pendent of wand characterized by 'Y, the quenching parameter of the 
base-flow viscosity profile v = v oe'Y l". This perturbation oscillates in 
time with constant phase along the entire draw path. Typical profiles 
of a are shown in Fig. 9, again for T = 0, the start of a period, and 
T = 0.25, its quarter-point. A contribution from the nonexponential 
components in a(r, T) is only seen at T = 0, the zero-crossing of its 
sin WT term. These profiles show none of the spatial amplification evi­
dent in Fig. 8, which confirms, at least qualitatively, the attenuating 
effect of the quenching process. Unfortunately, a limiting comparison 
between the two models is not possible as the quenching effect is made 
to vanish, since that also requires a vanishing of the draw-down in base 
state (25). 

If the quenched, inertia-dominated base flow (23) is employed in 
the inertialess perturbation equation (30), the resulting model is indeed 
subject to criticism as logically inconsistent. However, as a plausibility 
argument, we might suggest that inclusion of inertia in the base flow 
would at least give a qualitative indication of changes to be expected 
from a more complete allowance for inertia effects. The formal exercise, 
starting from (23) and (30), closely resembles the derivation of (79). 
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The resulting frequency response functions evolve quite clearly from 
curves such as Fig. 7 with considerable smoothing of peaks and valleys. 
This suppression of the response peaks, due to quenching, certainly 
agrees with experimental evidence. 

The main point to be made in this preliminary assessment of tensile 
fiber models is that their frequency response curves and surface per­
turbation profiles bear little resemblance to the perturbations caused by 
surface tension, which we discuss in the next section. To generate 
more realistic response predictions for tensile fiber models, including 
inertia effects and heat transfer, we will have to resort to numerical 
means. 

VIII. THE DYNAMIC RESPONSE OF CAPILLARY FIBER MODELS 

We next inquire under what circumstances the well-known phe­
nomena of surface-tension-driven perturbations on liquid filaments 
apply in the fiber-drawing problem. Indeed, there may be limited 
portions of the draw path, presumably near the hot tip of the forming 
zone, where the viscosity drops low enough for surface tension to be­
come significant. At least for low-melting glasses, such as soda lime, 
this is a possibility, as born out by the comparison of essential terms in 
the base-flow equations of Section IV. We shall characterize this type 
of fluid-dynamic behavior as capillary fiber models. As we shall see, 
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their spatial response profiles under harmonic radial excitation are 
totally different from those of tensile fiber models. By all indications, 
these two kinds of filament response are fundamentally distinct phe­
nomena. The ultimate question is to what extent they coexist and 
interact in a real fiber-drawing process. 

Rayleigh's classical theory of capillary jets is our point of depar­
ture. IS ,I6 It shows that the growth rate of "varicose" perturbations 
(axisymmetric harmonic surface modulations) is given by 

where 

q(k2 - 1) 
m = 2,ua[k2 + 1 _ Ji215(k)IHk)] , 

m = real, the rate of growth 
a = fiber radius 
A = wavelength of the perturbation 
k = 27ra/A 

10 and II = modified Bessel functions. 

The denominator of (62) turns out to be negative for all k.· 

(62) 

If this capillary response model is locally applied to a base-flow model 
such as (24), assuming that base-state parameters change negligibly 
over the wavelength A, we may use it to construct the dynamic re­
sponse along a contracting fiber. Then the evolution of a small surface 
disturbance may be synthesized using the stepwise relation between 
displacement amplitudes at successive instants of time 

(63) 

where 

Un and U n+l = peak amplitudes of sinusoidal surface perturbations 
at tn and tn+l, respectively 

an+l = stepwise scale factor due to fiber draw-down 
an 

iii = m at center of wavelength 

ilt = tn+l - tn. 

Our response simulation convects the end points of a given perturba­
tive wavelength at their respective speeds, while computing local fiber 

* Note that (62) results from a simplification of the characteristic equation, 
neglecting inertia effects, which in turn precludes initial conditions on perturbative 
velocities. However, it can be shown that the quantitative effect of this approximation 
on m is trivial (Ref. 19). 
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Fig. lO-Response histories for different values of a. 

properties from the base model (24). We use the notation: 

and 

x = a/ao 

-0 = U/Uo, 

'lr = vivo 
& = aao, 

Z = (8 + q)/2ao, 

1] = p,/p,o 

}:.o = Ao/ao, 
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where 8, q, are end points of the perturbative wavelength. The non­
dimensionalized surface tension is assumed to vary as 

allowing for possible changes along the fiber (small values of j3 approxi­
mate a linear dependence). 

Figure 10 shows a set of response histories in terms of log [U Ix] for 
g = 0.1, ~o = 100, 0-0 = 0.25, j3 = 0, 7]0 = 300, and 0.0008 ~ ci 
~ 0.0016, illustrating the build-up to different asymptotic levels as a 
function of ci. 

Figure 11 shows typical profiles of surface perturbations along the 
fiber for ~o = 15.7, which corresponds to a frequency of 200 Hz. As 
expected, the varicose response consists of sinusoids whose wavelength 
is progressively stretched due to fiber draw-down and whose amplitudes 
are modulated according to a response history such as given in Fig. 10. 
Note that this behavior differs drastically from the tensile fiber re­
sponse of Figs. 8 and 9, which are also driven by radial harmonic 
excitation at the origin. 

Figure 12 displays asymptotic response amplitudes for a range of 
initial wave numbers 27r/~0 and several values of g, the terminal radius 
in units of ao for the base flow. For fixed g and ci, the response has a 
maximum in the neighborhood of ~o = 50. The low responses at short 
wavelengths are due to vanishing of the Rayleigh instability as ~o ~ 27r 
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Fig. 12-Amplification factor vs dimensionless wave number for a = 0.001. 

while for large :\0, hence large zo, the perturbations encounter a rapid 
viscosity build-up along the fiber. Contrast these response curves with 
the ones for tensile models, and a fundamental difference is again 
apparent. 

The influence of the terminal radius g, is illustrated in Fig. 13. As 
expected with a in the denominator of (62), increased draw-down 
(decreasing g) will enhance terminal perturbations. The second curve 
on that figure indicates the effect of /3, the growth rate of surface 
tension. Finally Fig. 14 shows the decrease in response with initial 
viscosity, 7]0 and the increase with rising values of 0'0, the initial surface 
tension. 

Since the above simulation averages fiber properties over a perturba­
tive wavelength and does not ensure continuity of perturbative surface 
velocities between time steps, it seemed appropriate to corroborate it 
by a slightly different model, due to Tomotika,17.18 which is also germane 
to our situation. In Tomotika's study, filament contraction is effected 
by a surrounding medium subjected to extensional shear flow, as in 
some of Taylor's experiments.9 This apparent difference in base flow 
and the need to let ambient viscosity approach zero for our purposes 
seems to limit the applicability of Tomotika's model to the fiber­
drawing problem. However, as we shall see, it agrees quite well with 
our adaptation of Rayleigh's theory. 
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Tomotika finds the following asymptotic expression for interface 
perturbations as a function of several model parameters: 

where 

(64) 

~ = ratio of filament to ambient viscosity 

k = 27raj'A = local wave number of the perturbation 
iT = nondimensionalized surface tension 

1/-'(k) = a kernel that is detailed in the references. 

1042 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976 



The behavior of this expression is illustrated in Fig. 15 by plotting 
it against ko for various values of ~. These plots show that, in the 
absence of quenching, the stabilizing effect of ambient shear flow 
diminishes steadily with ambient viscosity while the maximum response 
shifts to higher frequencies. This behavior is altered significantly if 
exponential changes of filament viscosity and surface tension are in­
troduced to represent quenching effects, similar to our modification of 
Rayleigh's analysis. Equation (64) then changes to 

8 

log [U /X]oo = ~~ fk~ y (1 - k2) cp (k)dk, 
3g ko 03ko 

7)0 
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Fig. 14-Amplification factor vs '1]0 and ito. 
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where 

y ~ e~;; ~ (1 - gi [ ( :0) t - g r 
and cp (k) is another kernel detailed in the references. Plots of this 
expression in Fig. 16 show good agreement with Fig. 12 for large ~ 

(and g = 0.1). Plots of (65) for ~ = 106 and various values of the 
terminal base flow radius are given in Fig. 17. They show the same 
response of [[; /xJ~ for g ~ 0 as Fig. 13. 

In summary, these results indicate that the two capillary models of 
quenched fiber responses, obtained by modifying Rayleigh's and 
Tomotika's analyses, are essentially equivalent. Note again that none 
of the response curves, such as Fig. 17, bear any resemblance to those 
of tensile fiber models. 

An additional piece of insight into capillary response mechanisms 
comes from Weber's work. 19 He reproduces Rayleigh's analysis by a 
somewhat different approach and obtains an exact equation for m, as 
well as a simplified expression that agrees with (62). Weber shows that 
the small errors in (62) are essentially due to the neglect of radial 
components of the flow field. He demonstrates this conclusively by 
rederiving (62) from a one-dimensional representation (recorded in 
Appendix E) which captures all salient features of the capillary re-
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sponse mechanism. Thus, multidimensionality is not the criterion that 
distinguishes capillary from tensile response models. The fundamental 
difference seems rather to lie in the energy source from which the 
perturbations are fed: surface tension in one case and axial stress in 
the other. 

Figure 18 attempts to emphasize this distinction in a pictorial 
fashion: (i) In the capillary model, surface tension, by overcoming 
viscous stresses, tends to accumulate fluid from both directions into 
periodic "beads," ultimately pinching off individual droplets as the 
minimum energy configuration. A multiplicity of such separations can 
occur independently of each other, and the essential physical mecha­
nism is equally as valid for stationary, uniform filaments as it is for 
contracting base flows. (ii) In the tensile model, on the other hand, 
the "worst" among random localized constrictions, due to surface 
perturbations, causes a tensile stress concentration which further 
reduces the cross-sectional area and results in a single, "run-away" 
tensile separation. This is the familiar necking of any tensile test 
specimen. The tensile stress associated with draw-down in the base 
flow is an essential prerequisite for this mechanism. Surface tension 
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will indeed contribute to tensile resistance in the necked down section, 
but it does not fundamentally alter the separation process. 

Thus, the capillary mechanism is a contest between surface tension 
and viscosity, independent of filament draw-down, whereas in the 
tensile mechanism the viscous stresses, jointly with surface tension, 
attempt to resist the draw force. 

IX. SUMMARY AND CONCLUSIONS 

Several important observations result from the discussions in the 
preceding sections. 

(i) Optical fiber drawing differs from textile fiber "spinning" in 
several essential ways. The flow of glass in the forming zone 
and draw-down region is dominated by viscous stresses. 
Inertia and surface tension play secondary roles. (They be­
come noticeable only for the lower-melting glasses and then 
only in limited portions of the flow field.) This contrasts with 
polymer fiber forming, where, in some instances, viscosities can 
be quite low and other effects may be of comparable importance. 
Moreover, glass fibers are quenched over a wider range of tem­
peratures than polymer fibers. This, together with the extreme 
temperature-dependence of glass viscosities, causes viscosity 
profiles along the draw path to rise much more abruptly than in 
textile fibers. Finally, and perhaps most importantly, molten 
glass can be considered very nearly Newtonian, which is not 
true for most polymers. Given the above physical features and 
the small-slope assumption of gradual draw-down, we can 
justify one-dimensional base states as useful representations of 
steady flow in the draw-down region. 

(ii) Given a base-flow model, its sensitivity to changes in operating 
conditions, such as the take-up speed and temperature profile, 
can be estimated by first-order perturbations. It turns out that 
the draw-down profile is relatively insensitive to significant 
viscosity changes, assunling that interface conditions between 
the draw-down region and forming zone have been modeled 
correctly. For nontrivial forming zones, e.g., Fig. la, b, or d, it 
is difficult to make reasonable assumptions for these conditions. 
Since we lack a complete understanding of the forming zone, 
but expect its flow field to change with perturbations in the 
draw-down region, our results must be considered tentative. 

(iii) Fundamental differences exist between the tensile and capillary 
models of dynamic fiber response. The tensile mechanism seems 
to prevail in most of the draw-down region. For low-melting 
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glasses, we conjecture that the capillary model may apply in 
the short and very hot transition between fornling zone and 
draw-down region, where surface tension can sustain perturba­
tions that subsequently propagate by the tensile mechanism. 
The interactions of these two phenomena and their relation to 
dynamic responses in the forming zone itself are presently not 
understood. In the following we amplify each of these points to 
some extent. 

The base-flow models we supplied in Section IV are admittedly 
qualitative. A heat-transfer analysis was circumvented in this pre­
liminary study by assuming exponential viscosity profiles, suggested 
by qualitative experimental evidence. Exact solutions of the coupled 
one-dimensional momentum and heat-transfer equations are now being 
carried out to allow for different kinds of heating in the forming zone 
and various cooling mechanisms in the draw-down region. The resulting 
simulation will be able to provide more detailed operational trade-offs 
between steady drawing parameters. It will also assess the limited in­
fluence of fluid inertia, surface tension, and gravity. Finally, this 
modeling effort presents a natural opportunity for experimental cor­
roboration by suitably instrumented steady-state runs, using laser 
and/ or furnace-heated preforms or crucibles. 

As an extension of one-dimensional base-flow models, radial-heat­
transfer mechanisms should be simulated, leading to nonuniform cross­
sectional viscosity distributions at the start of the draw-down region. 
These viscosity distributions must be input to a perturbation model of 
axisymmetric free surface flow which generates the nonplanar velocity 
profiles expected in the transition between forming zone and draw­
down region. Ultimately, the detailed flow fields of forming zones such 
as Fig. Ib and d may have to be simulated by discretization techniques. 
If properly combined, these efforts may, hopefully, result in a unified 
base-flow model that properly allows for interactions between the 
draw-down region and forming zone in representing steady-state re­
sponses to changes in the control parameters of the draw process. 

Finally, as mentioned before, it appears that vastly different fre­
quency response curves and longitudinal profiles of surface perturba­
tions characterize tensile and capillary dynamic responses as fundamen­
tally distinct physical mechanisms. (Note the intuitive distinctions 
given at the end of Section VIII.) They do not seem derivable, in proper 
relation, from some universal fiber stability analysis. The question is 
then, what must be done to develop them into parts of a realistic and 
unified dynamic response model. 

Since analytic solutions for tensile responses of nontrivial base flows 
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in the draw-down region are not possible, numerical solutions by modal 
analysis or space-time integration are being attempted. This is ex­
pected to shed further light on the anti-intuitive response profiles ob­
tained from the "inertialess" perturbation equations. Similarly, the 
capillary model applied so far to an elementary base flow may be im­
plemented, by numerical means, for conditions representative of the 
transition between forming zone and draw-down region. Combining 
these extensions of the tensile and capillary response models, it nlay 
be possible to relate dynamic records of thermal or mechanical surface 
perturbations coming out of the forming zone to diameter variations in 
the finished fiber. 
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APPENDIX A 

Implications of the Small-Slope Approximation 

We briefly sketch the consequences of the small-slope approximation, 
lazl «1 and lu/vl «1, as they evolve from (1), (2), (3), and (4) by 

scaling arguments. Let 

v = vo'!', u = UoCP, P = POL, 

L 
t = - T. 

Vo 

(66) 
a = aoX, r = ao~, z = Lr, and 

Then the small-slope assumption amounts to 

I ~: I = 0 ( ~) = E« 1. 

Substitution of (66) into (4) yields 

T z = J.l.oVo [_ PoL L + 21]'!'r] == J.l.Lovo Tz 
L J.l.OVO 

J.I. oVo [ PoL + 2 ]. J.I. oVo _ 
Tr = - - - L 1] CPt = - Tr 

L J.l.oVo L 

J.l.oVo [poL ] • J.l.oVo_ 
T8 = - - - L + 21] cP / ~ = - T8 L J.I.~O L 

(67) 

J.l.oVo [1 ] . J.l.OVO_ 
Trz = L 1] -; '!'t + ECPr = L Trz, 

where PoLl J.l.OVo = 0 (1) and will be omitted henceforth. Substituting 
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(66) and (67) into (3), 

pVoL ['1'1' + (J.LoL) (cpi'e + i'i'r)] 
J.Lo voao 

11 
= (-t + 27]i'rh + ~~ [~7](i'e + e2 CPr)]e· 

Considering the case pVoL/J.Lo = Re « 1, 

1 o = e2
( -t + 27]i'rh + ~ [~7](i'e + e2 CPr)]e. 

Hence, 
(~7]i'e) e = O. 

If no constraint is to be imposed on 7], we have 

'lie = 0 
and 

Now, from (1), 

and because of (68) 
( 

J.LoL) i'r + - (CPe + cp/~) = 0 
voao 

Then, 

and 

(68) 

(69) 

(70a) 

(70b) 

t is determined from the normal stress condition at the fiber surface 
~ = X. In dimensional form, 

(71) 

Substituting (66) and (70) into (71) and dropping terms of 0(e2) and 
higher, as well as azz , one finds 

a-
t = - - 7]i'r 

X 
(72) 

for all values of ~, where a- = aL/J.Lovoao. With this result, Tz from (70a) 
becomes 

(73) 

where 37] constitutes the "Trouton" viscosity. (The additional 7]i'r 
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term, augmenting 27]'¥r in (70), originated in Tr of (71). This, in turn, 
is due to CPt of (67), the cross-sectional contraction that necessarily ac­
companies the extensional flow of fiber drawing.) We also note from 
(72) and (70) that 

(74) 

which agrees with the radial equilibrium equation if (66), (68), and 
(70) are used in (2) and we let Re « 1. 

The tangential surface stress condition at ~ = X reads 

(75) 

and, if rendered dimensionless, has leading terms of O(e) ; hence, it will 
be ignored. For completeness, we also note that the kinematic boundary 
condition (7), rendered dimensionless and time-invariant, yields 

which is the time-invariant continuity equation (9). 

APPENDIX B 

Second-Order Perturbation Term for the Base-Flow Solution [Eq. (17)] 

X[a, b, c, d, rJ = r (1 + a~2 + d + ~2 + ~3) + ~~ (1 + d + ~2) 
1-3 2 1-4 3 + _~ _c (1 + d) + _~ c 

6 24 

+ _1_ [(1 + d + d2
) (aertnE _ 2be-(lnE/2)r) 

lnE 2 

+ (1 + d) (f e2rtnE + 2abe(lnE/2)r - ~ e-rtnE) 

+ a
3 

e3rtnE + a
2
b e(3lnE/2)r _ b

3 
e-(3lnE/2)r] 

18 3 9 

- l~~ [ (a - 2b) (1 + d + ~2 ) 

+ (a
2 + 2ab _ ~) (1 + d) + a

3 + a2
b + !!.:] 

,4 2 18 3 9 

~. c { (1 + d) [aF(lnE,!) + bF ( - I~E ,,)] 
a
2 

(lnE ) b
2 

+ 2 F(2lnE, r) + abF 2' r + 2 F( -lnE, r) 

+ ~ [ aG (lnE, ,) + bG ( - I~E , , ) ]} , 
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where 

and 

F ("1 t) = ! [(t - "1 )e'Yl" + ! ] 
'''1 "1 

G ( "1, t) = - t2 + - + - e'Yl" - - -1 [( 2t 2) 2 ] 
"1 "1 "12 "12 

APPENDIX C 

Differential Equations for First-Order Dynamic Perturbations in the Radius, a 
Using (33) to eliminate v from the first-order variations of the 

momentum equations, we obtain from (35), which reflects the 
quenched, inertia-dominated base state (23) with inertia effects in the 
perturbation equation, 

a"" + 0,-'" e-23 + 20,'" - 46:" e-23 - 20,--' e-43 + 8a--e-43 

- 4ii" - 80,' = 4,,' + 4,," + ,,"'_ (76) 

From (34), the inertialess momentum equation, and the unquenched, 
inertialess base state (22), we obtain 

a" + a·' e-23 = P'. (77) 

Note in (76) and (77) that ( )' = a( )la3 and ( ). = a( )/aT, 
where 3 = az/ Land T = aVot/ L_ Finally, from (28) and (30), the 
inertialess momentum equation with the quenched inertialess base 
state (25), we can find 

( a + 1 a ) ('" + ") e-al" A' at -;j; aT a aa = 2 v , (78) 

where t/; = vivo as in (25), t = zlL and T = tvo/L. In this case, 
( )' = a( )/at. 

APPENDIX D 

Detailed Results for Forced Dynamic Responses of the Tensile Fiber Model 

The detailed expressions for Al and A2 resulting from (58) and (61) 
are 

A. = 1 ~ [cosJ:i,' + 4<~~r ;);l) X [(-B. sin w/2 + B, cos w/2) 

X [CiJ::;l. - (B. cos w/2 + B, sin w/2) X [SiJ:~l.Jl 

A, = {~[SinJ:i,' + 4«~1-+ <kl) X [(B. cos w/2 + B, sin w/2) 

X [CiJ::;i. + (-B. sin w/2 + B, cos w/2) X [SiJ=~l.J 1 ' 
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where € = e23 Land 

BI = [Ci + 2W Si + COS]W/2 
€ W/2E 

B2 = [Si - 2
w Ci + sin]w/2 . 

€ W/2E 

(79) 

Recall that lJ = azl L. 

We now parallel the development of Section VII for the quenched 
base flow (25). Equation (7S) with v == 0 suggests a solution of the form 

d(i", r) = Re {10 f exp[a(i"' - OJ exp[iw(r - mal' 

+ "'0 cxp(iwr - all I ' 
where 

10 = 11 + ih, (SO) 

Explicitly, 
6(r, T) = Al sin WT + A2 cos WT, 

where 

AI(r) = for eaW- n (11 sin w~ - 12 cos w~)dr' - <I>2e- ar, 
(Sl) 

A 2 (r) = lor eaW- n (11 cos w~ + h sin w~)dr' + <I>Ie-ar, 

describing the r -dependent phase and amplitude of the response. Note 
that r = z/ Land T = tvol L, whereas in (79) lJ = ar and T = aVotl L. 

We use the same boundary conditions as in developing (52). For 
cyclic radial perturbations at r = 0, 

6(0, T) = sin WT, 

together with the velocity conditions 

v(O, T) == 0 v(l, T) == O. 

(S2) 

An expression for v is obtained by eliminating v' from (2S) and (30) 

A _ 2 ". + 2v "I 2" + 2G( ) v-lla 1T a - a T, (S3) 

where G (T) is an arbitrary time function and the differentiation symbols 
mean ( ). = a( )ldT, ( )' = a( )Iar. Substituting (Sl) into (S3) 
we find 

vcr, T) = VI sin WT + V 2 cos WT 
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with 

-2w (t , . 
Vl(r) = 7 Jo ea(t -n(Il cos w~ + 12 SIn w~)dt' 

- 2 fot eaW- n (II sin w~ - 12 cos w~)dr' 

+ 2e-at [ ( ~, a + 1) ~2 - ~I gil] 
+ !~ (11 sin w~ - 12 cos w~) + 2G1 

V 2(r) = !~ lor ea(t'-n (II sin w~ - 12 cos w~)dt' 

- 2 lot eaW- n (II cos w~ + 12 sin w~)dt' 

- 2e-at [ ~I ~2 + (~, a + 1) ~l] 
+ !~ (II cos w~ + 12 sin w~) + 2G2. (84) 

Ultimately, (82) leads to 

~l = 0, ~2 = -1 
II = (B 1G1 + B 2G2)/ (Bi + B~) h = (IIB2 - G2)/B l 

G1 = 1 + :~ (a + 12 cos w~o - 11 sin w~o) (85) 

G2 = - :~ (w + II cos w~o + 12 sin ~o), 
where 

w) ) 1/;1 B 1 = 1/;; H (1 - K (1 + 1/;; cos wh - 1 

B2 = - ;; K(I) - H(I) + ~; sin W~l (86) 

G 2 = (~; a + 1 ) e-a 
- ;~ - l. 

The subscripts 0, 1 denote evaluation at r = 0, 1 respectively, and the 
quantities H, K are defined as 

H (r) = for ea w-n sin w~dt' 
. {t 

K(n = J 0 eaW- n cos w~dt'. 

(87) 
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With this notation, we ultimately get 

a(r, T) = [f1H(r) - f2K(r) + e-at] sin WT 

+ [fd((r) + f2H(r)] cos WT. (88) 

APPENDIX E 

Weber's Derivation of the Capillary Stability Equation 

This appendix gives a simplified derivation of the stability equation 
for the capillary fiber model based on assumptions that are quite 
equivalent to those made for the one-dimensional tensile model. In 
fact, the rationale used here closely parallels that of Section III. 

The analysis proceeds in terms of equilibrium and continuity equa­
tions, which we write in dimensional form for the entire filament cross­
section. The perturbed surface radius becomes a + 0 and a given cross­
sectional element is displaced by vdt along the fiber over the time 
increment dt. The radius of this element now becomes 

ao ao 
a + 0 + at dt + az vdt. (89) 

Since the last term is of higher order, it will be neglected. 
The constitutive relations are as in (4) and the derivation of an ex­

pression for Tz is quite similar to Appendix A. The main difference arises 
in the radial stress boundary condition, where, in distinction from the 
treatment of (72), the longitudinal curvature term cannot be neglected 
for varicose perturbations. Then the r.h.s. of (72) becomes 

and, instead of (74), 

Tz = <T (~+ 0") + 3}Lv'. 

The continuity equation yields 

2· 
- 0 + v' = o. 
a 

Now, combining (9) and (10), 

T~ = pv + pvv', 

(90) 

(91) 

(92) 

(93) 

where the last term was apparently overlooked by Weber but seems to 
have little effect on the resulting stability equation. 

Substituting (91) and (92) into (93) and assuming surface perturba­
tions of the form 0 = o*emt cos kz/a, leads to the stability equation 

(3}L) - <T - -
1]1,2 + m - k2 = - (1 - k2)k2. (94) 

pa2 2pa3 
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The unstable root, of interest here, is 

m = - (3J.L)k
2 + [_(J_ (1 _ k2)k2 + (3J.L)2k4]!. (95) 

2pa2 2pa3 4p2a4 
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An injection-molded plastic splice connector for splicing optical cables 
has been fabricated and evaluated. Five optical cables containing 90-J.Lln 
OD graded-index fibers with 55-J.L1n core diameters were spliced, yielding 
an average splice loss of 0.20 dB for the 425 splice joints measured. 
Fifty percent of the losses measured were less than 0.1 dB and 95 percent 
of the splice joints had losses less than 0.8 dB. 

Assembly methods for splicing optical cables using this connector and 
a 1nultiribbon optical-fiber cutting tool capable of cutting 144 fibers simul­
taneously are also described. 

I. INTRODUCTION 

The feasibility of splicing groups of optical fibers in a laboratory 
environment has been demonstrated by a number of investigators.1-5 
The next phase in the development. of optical-fiber splicing is to pro­
duce splice connectors, based on the concepts that have shown labora­
tory feasibility that are adaptable to field use. A field-adaptable 
splicing technique will require that telephone crafts people be able to 
splice groups of optical fibers in a routine fashion, with relatively 
simple tools, in a hostile field environment. 

In this paper, an injection-molded splice connector fabricated using 
a mold designed to optimize reproduction of mold dimensions is 
described and evaluated. Assembly methods for splicing optical cables 
using this connector and a multiribbon optical-fiber cutting tool 
capable of cutting 144 fibers simultaneously are also described. 

II. DESCRIPTION OF SPLICE CONNECTOR AND PRECISION-MOLDING 
TECHNIQUES 

A precision metal mold was used to fabricate a 12-ribbon, multi­
groove substrate with prealigning slots. The molded plastic substrate 
which forms the base for the optical cable splice connector is shown 
in Fig. 1. It consists of twelve sections. Each section has a prealignment 
slot and a set of twelve fiber-alignment grooves spaced 90 J.Lm apart. 
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Fig. 1-Precision-molded substrate for 12 X 12 optical-fiber splice connector. 

The splice is made by properly seating a precut set of ribbons into 
grooves and sliding them together to form a butt joint. A coverplate 
is attached to the substrate and matching material is injected through 
a slot in the coverplate to complete the splice. The completed splice 
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connector can join two optical cables, each consisting of twelve ribbons 
that house twelve 90-,um OD fibers. 

The transverse alignment of the fibers in the grooves of the connector 
is a critical parameter in attaining low-loss splices. Tight tolerances 
were placed on the center-to-center spacing between the grooves. The 
design tolerance for the center-to-center spacing was 3.55 ± 0.05 mils. 
Less stringent tolerances were placed on the depth of the grooves. 

The metal master was measured in an optical toolmakers micro­
scope to determine how well it was machined. Figure 2 is a histogram 
showing the spacing between the internal grooves. The average groove 
width was 3.51 mils. Using the metal master in a screw-injection 
molding machine, a number of polycarbonate substrates were fabri­
cated under different molding conditions. Samples were randomly 
selected from a batch that was molded to replicate the master as 
closely as possible. Figure 3 is a histogram showing the spacing between 
the internal grooves of the molded polycarbonate substrate. The 
average groove width was 3.49 mils compared with 3.51 mils obtained 
for the metal master. 

Figure 4 is a derived cumulative distribution function of Figs. 2 
and 3 showing a comparison of the groove-width dimensions for the 
master and plastic part. A very small amount of shrinkage, less than 
0.1 mil, appears to have occurred in the plastic substrates. Measure­
ment repeatability in obtaining this data with the toolmakers micro­
scope was ±0.05 mil. 
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III. SPLICE CONNECTOR ASSEMBLY TECHNIQUE 

The splicing of optical cables requires the integration of a number 
of operations including stripping of the cable sheath, ribbon prepara­
tion, removal of the plastic coatings from the fibers, fiber-end prepara­
tion, and, finally, the assembly and protection of the splice connector 
itself. Approximately 1 hour and 45 minutes is required to splice two 
optical cables consisting of 12 ribbons (each containing 12 fibers) 
together with the molded connector. Using current techniques, the 
majority of this time (about 1 hour) is spent stripping the ribbons 
and assembling them in the fiber organizers. Fiber-end preparation 
using the multiribbon cutting tool described in the Appendix requires 
about 15 minutes to prepare both ends of the cable. After the 144 
fibers have been cut, the organizer is removed from the cutting tool 
and clamped to a micropositioner stage in preparation for insertion 
into the substrate of the splice connector. As shown in Fig. 5, tapered 
pre alignment combs allow the ribbons to be lowered into the prealign­
ment slots and grooves of the substrate. A mechanical wiper is attached 
to each organizer and is used to massage the fibers to assure that they 
are seated properly in their grooves. After the wiping process is com­
pleted, epoxy is used to permanently fix the wipers in place. The splice 
is closed by means of an assembly that enables the coverplate to be 
tacked in place with extra-fast-setting epoxy. An epoxy index-matching 
material is then injected through the slot in the coverplate to com­
plete the splice. To assemble the connector itself requires only 30 
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Fig. 5-Splice with coverplate epoxied in place showing expanded view of one 
ribbon joint. 

minutes. Since splicing is a parallel operation, all twelve ribbons are 
spliced simultaneously. 

IV. EVALUATION OF SPLICE CONNECTOR 

Using Corning Glass Works graded-profile 90-,um OD fibers with 
55-,um core diameters, adhesive sandwich ribbons 6 were made and 
formed into short prototype cables for the splicing studies. Following 
the procedures outlined in the previous section, five different cable 
splices were assembled and measured. Included in the statistics quoted 
were all ribbon-to-ribbon splices with twelve fibers present at the 
splice joint. When fiber breakage occurred, ribbon-to-ribbon splices 
with less than twelve fibers present were included in the statistics if 
proper alignment was maintained. Figures 6 and 7 show, for the 425 
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splice joints measured, the histogram and derived cumulative distri­
bution function of the total splice loss data taken. The average splice 
loss was 0.20 dB with a standard deviation of 0.32 dB. Fifty percent 
of the total losses measured were less than 0.1 dB and 95 percent of the 
splice joints had losses less than 0.8 dB. Five additional outliers, not 
shown in the histogram but included in the statistics, had losses of 
1.60, 1.64, 1.79, 2.03, and 2.66 dB. Four of these high-loss splices 
occurred in one of the cable splices. 
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To determine the loss in a splice joint, an input beam with a numeri­
cal aperture approximately equal to that of the fiber was used and the 
input and output power to the splice joint was measured. This tech­
nique for measuring the loss in a splice joint has been described in 
detail in a previous paper.1 The detector used in this study consisted 
of a United Detector Technology PIN long-line photodiode housed in 
a special glycerin-immersed fixture built to accommodate a ribbon 
organizer. To maintain accuracy in the splice loss measurements when 
measuring large groups of fibers (144 fibers in a linear array), it is 
necessary to establish accurate positioning of individual fibers on the 
surface of the detector. Variations in the sensitivity, as a function of 
position on the active surface of a large area detector, can cause errors 
in the measurements which are greater than 0.1 dB. 

V. REQUIRED IMPROVEMENTS AND DISCUSSION 

To maintain a high splice yield with this method of parallel splicing 
of large groups of optical fibers, 12 contiguous fibers must be present. 
If fibers are broken in the ribbons during ribbon stripping, fiber 
organizing, or end-preparation processes, gross misalignment (> 10-J-Lm 
transverse misalignment) can occur at the splice joint. The small 
alignment grooves shown in Fig. 8 do not provide adequate guidance 
unless the 12 contiguous fibers are present to force partial alignment 
of the fibers in the connector. 

CURRENT DESIGN 

ALTERNATE DESIGNS 

Fig. 8-Alternate groove depths. 
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Typically, two fibers per cable end are broken in the ribbon stripping, 
cleaning, and organizing processes. The fiber-end preparation process 
yields about 99.7 percent efficiency. Thus, three to five ribbons within 
the group of twenty-four ribbons being spliced in a connector have 
less than twelve surviving fibers and have the potential for being badly 
misaligned. 

The development of automated ribbon-stripping techniques and 
better fiber-handling methods will improve the yield of this process. 
I t is very probable, however, that some fibers will break. To prevent 
high splice losses in an entire ribbon, if breakage occurs, requires a 
redesign of the molded connector. Increasing the alignment groove 
depth as shown in the connector designs of Fig. 8 will tend to provide 
guidance for individual fibers independent of the ribbon structure. 
When guidance of this type is achieved, the breaking of an individual 
fiber will not affect the alignment of the rem.aining fibers in a ribbon, 
and splicing performance will be greatly improved. 

APPENDIX 

A Multiribbon Optical·Fiber Cutting Tool 

The production of low-loss splices between optical fibers or the 
splicing of groups of optical fibers in the form of fiber ribbons and 
cables requires a reliable and convenient method of fiber-end prepa­
ration. Two basic techniques of end preparation have been developed 
and are described in the literature. The first, a conventional grinding 
and polishing technique, has been used by Miller3 and Cherin1 in the 
splicing of optical-fiber cables and ribbons. This technique of end 
preparation could be utilized in a controlled environment to prepare 
the ends of factory-installed cable connectors.3 The second method of 
fiber-end preparation requires the controlled fracturing or breaking of 
fibers as developed by Gloge et al. 7 A simple cutting tool for preparing 
the ends of individual fiber ribbons has been used by Chinnock et a1.4 

and Cherin and Rich1 •2 with excellent results. A properly engineered 
tool of this type seems well-adapted for use under field conditions. 

In this Appendix, we briefly describe the design of a cutting tool 
that, operating on the principle described by Gloge et al.,7 is capable 
of cutting 12 fiber ribbons (144 fibers) simultaneously. The cutting 
tool has been designed to be compatible with the injection-molded 
splice connector described in this paper. 

A.1 Cutting tool and ribbon organizer 

The fiber-cutting tool, shown in Fig. 9, consists of four basic parts. 

(i) A precision diamond-tip-stylus scoring assembly used to create 
a crack or origin of fracture on the outer surface of the fibers. 
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CLAMPING FIXTURE 

STYLUS ASSEMBLY 

PRECISION SCREW TO 
APPLY LONGITUDINAL STRESS 

Fig. 9-Fiber ribbon cutting tool. 

(ii) A polished curved surface over which sets of fiber ribbons are 
securely clamped. When the fiber ribbons are stressed over this 
surface, the stress distribution necessary to form flat hackle­
free ends on the fibers is created. 

(iii) Clamps to secure the fiber ribbons during the scoring and 
stress-application portions of the cutting process. 

(iv) A precision screw, which displaces a clamp and causes the 
application of a longitudinal stress within the fibers. 

A ribbon organizer is used to hold 12 ribbons in the form of a linear 
array. The organizer is clamped to the cutting tool and holds the 
fibers securely in place during the cutting process. After the 144 fibers 
have been cut, the organizer is removed from the cutting tool and is 
ready for insertion into the cable-repair splicing fixture. 

A.2 Cutting experience 

To date 52 cable ends have been prepared using the cutting tool. 
The nominal cable consisted of 12 ribbons each containing 12 fibers. 
Planar ends have been made on 99.67 percent of all the fibers that 
have been cut, 7328 out of 7352 (a few of the ribbons had less than 
12 fibers within them). Typical fiber ends that were prepared using 
the tool are shown in Fig. 10. The total cutting efficiency of the tool 
was determined by the number of fibers surviving the entire process 
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(a) 

(b) 

Fig. 10 (a)-Optical ribbon with prepared fiber ends. (b) Typical fiber end. 

of clamping, scoring, and tensioning. A total of 7283 fibers success­
fully survived the entire process, yielding a cutting efficiency of 
99.06 percent. 
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Digital Coding of Speech in Sub-bands 

By R. E. CROCHIERE, S. A. WEBBER, and J. L. FLANAGAN 

(Manuscript received March 26, 1976) 

A rationale is advanced for digitally coding speech signals in terms of 
sub-bands of the total spectrum,. The approach provides a means for 
controlling and reducing quantizing noise in the coding. Each sub-band 
is quantized with an accuracy (bit allocation) based upon perceptual 
criteria. As a result, the quality of the coded signal is improved over that 
obtained from a single full-band coding of the total spectrum,. In one 
impleJJwntation, the individual sub-bands are low-pass translated before 
coding. In another, "integer-band" sampling is e111ployed to alias the 
signal in an advantageous way before coding. Other possibilities extend 
to complex demodulation of the sub-bands, and to representing the sub-band 
signals in terms of envelopes and phase-derivatives. In all techniques, 
adaptive quantization is used for the coding, and a parsimonious allocation 
of bits is made across the bands. Computer sil1LUlations are made to 
demonstrate the signal qualities obtained for codings at 16 and 9.6 kb/s. 

I. DIVISION OF SPEECH SPECTRUM INTO SUB-BANDS 

.For digital transmission a signal must be sampled and quantized. 
Quantization is a nonlinear operation and produces distortion products 
that are typically broad in spectrum. Because of the characteristics of 
the speech spectrum, quantizing distortion is not equally detectable 
at all frequencies. Coding the signal in narrower sub-bands offers one 
possibility for controlling the distribution of quantizing noise across 
the signal spectrum and, hence, for realizing an improvement in 
signal quality. In earlier work, splitting of the spectrum by high-pass 
and low-pass filtering has been used advantageously for video and 
speech transmission. 1 ,2 

A question, then, is what design of sub-bands makes sense for 
speech coding? A choice based upon perceptual criteria is suggested, 
namely, band-partitioning such that each sub-band contributes 
equally to the so-called articulation index (AI).3 The AI concept is 
based upon a nonuniform division of the frequency scale for the speech 
spectrum. Twenty nonuniform contiguous bands are derived in which 
each elemental band contributes 5 percent to the total AI. 

1069 



Appealing to this notion, one partitioning of the frequency range 
200 to 3200 Hz into four "equal-contribution" bands is given below 
and shown in Fig. 1. 

Sub-band 
Number 

1 
2 
3 
4 

Frequency Range 
(Hz) 

200-700 
700-1310 

1310-2020 
2020-3200 

Each sub-band in its original analog form contributes 20 percent to AI. 

The total AI, therefore, is 80 percent, which corresponds to a word 
intelligibility of approximately 93 percent.4 

II. LOW-PASS TRANSLATION OF SUB-BANDS 

A straightforward approach to processing the sub-bands is to make 
a low-pass translation before coding. This facilitates sampling-rate 
reduction and realizes any benefits which might accrue from coding 
the low-pass signal. 

The low-pass translation can be accomplished in a variety of ways. 
One method is shown in Fig. 2. The input speech signal is filtered with 
a bandpass filter of width W n for the nth band. Win is the lower edge 
of the band and W 2n is the upper edge of the band. The resulting 
signal Sn(t) is modulated by a cosine wave, cos (W1nt), and filtered 
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Fig. I-Partitioning of the speech spectrum into four contiguous bands that con­
tribute equally to articulation index. The frequency range is 200 to 3200 Hz. 
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Fig. 2-Sequence of operations for low-pass translation of speech sub-bands, 

adaptive PCM encoding, transmission, decoding, and band restoration. 

by a low-pass filter hn(t) with bandwidth (0 - W n). This filter is 
necessary to remove the unwanted signal images above 2W1n, as 
shown in Fig. 2. The resulting signal rn(t) corresponds to the low-pass 
translated version of Sn(t) and can be expressed in the form: 

(1) 

Notice, in this instance, that a constraint is implied by the convolution, 
namely, that the pasf3band width W n ~ 2W1n, or that W 2n ~ 3W1n. 
Practically this poses no problem. * 

The signal rn(t) is sampled at rate 2W n. If it is already in digital 
form, the sampling rate is decimated (reduced) to the rate 2W n. This 
signal is digitally encoded and multiplexed with encoded signals from 
other channels as shown in Fig. 3. At the receiver the data is demulti-

* For example, this constraint requires that W be increased slightly, from 200 to 
233 Hz, for n = 1 in Fig. 1. 
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MULTI- CHANNEL M~L~~-
PLEX - PLEX 

Fig. 3-Four-band encoder using low-pass translation and APCM encoding in each 
band. 

plexed into separate channels, decoded, and interpolated to give the 
estimate Tn(t) for the nth channel. Reconstruction of the detected 
signal is simply done by the reverse band translation. That is, it is 
modulated by cos (W lnt) and bandpass filtered to the original pass­
band, as shown in Fig. 2. The sub-band signal Sn(t) is then summed 
with the other bands to give the full-band signal set). 

An alternate implementation of the low-pass translation method, 
which avoids the above-mentioned restriction on W n, follows from a 
modification of the complex demodulation process. In this approach, 
set) is complex modulated by eiwnt[Wn = (W In + W 2n) /2 = center 
frequency of band n] and filtered by a low-pass filter h~(t) with band­
width (0 - W n/2). The resulting complex signal an(t) + jbn(t), 

an(t) = [set) cos wnt]*h~(t) (2a) 

bn(t) = [set) sin wnt]*h~(t) (2b) 

corresponds exactly to the output of the phase vocoder.5 The conjugate 
of this signal an(t) - jbn(t) corresponds to a modulation of set) by 
e-iwnt. If the complex signal an(t) + jbn(t) is complex modulated by 
e-i (Wn!2)t and its conjugate complex modulated by ei (Wn!2)t, the two 
resulting complex signals correspond to the negative and positive 
frequency components of the low-pass translated signal rn(t), as shown 
in Fig. 4. The sum of these two signals gives a real signal corresponding 
to the desired low-pass translated signal rn(t) ; i.e., 

rn(t) = [an(t) + jbn(t)]e-i (Wn!2)t + [an(t) - jbn(t)]e+i (Wn/2)t, (3) 
or 

For reconstruction, it can be shown that an(t) and bn(t) can be re­
covered from the low-pass translated signal rn(t) by the following 
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relations 
an(t) = [rn(t) cos (W nt/2) J*h~(t) 

bn(t) = [rn(t) sin (W nt/2) J*h~(t). 

(5a) 

(5b) 

Equations (4) and (5) suggest a method of implementation of the 
low-pass translation and reconstruction with a phase vocoder. For a 
digital implementation of the low-pass translation, this approach is 
particularly appealing. For example, at the sampling ratef8 = 2W n/27r, 
the sequences corresponding to cos (W nt/2) and sin (W nt/2) are 1, 0, 
-1, 0, 1, ... , and 0, 1, 0, -1, 0, ... , respectively. Therefore, an effi­
cient way to generate rn(t) is to sample an and bn (or decimate if they 
are in digital form) to one half of this sampling rate (i.e., W n/27r) and 
form rn(t) by interleaving samples of an and bn (with appropriate 
sign changes). A similar approach can be used in the reconstruction 
process by recognizing that alternate samples of rn(t) cos (W nt/2) and 

~Wn~ 

I I 

~wn~ 

I s- I I s+ I I I 
-W2 -W n -W, 0 0 W, -Wn W2 

MODULATE ~ /DDULATE 
BY e iwn ! & LPF BY e- iwn ! & LPF 

1·- I .' I an + ibn I an - ibn 

-Wn 0 Wn -Wn 0 Wn 

2 2 2 2 

MODULATE / \ MODULATE 
BY e-i((on/2It BY e i(W n/2l t 

I I I 
s+ I 

-Wn 0 0 Wn 

\ SUM / 
I I I s- s+ 

R(w) 

-Wn 0 Wn 

Fig. 4-Frequency-domain interpretation of complex demodulation method for 
low-pass translation. 
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rn(t) sin (W nt/2) (at sampling rate 2W n/27r) are zero valued. Thus, 
the two input sequences to the interpolators (which can be sampled 
at half of this rate or W n/27r) can be generated by selecting alternate 
samples of rn(t) (with appropriate sign changes). 

A further modification on this approach can be made by noting 
that, since adaptive coding is used to encode rn(t), the sign changes 
in the construction and separation of rn(t) are not necessary. That is, 
an alternate sequence r~(t) can be generated by interleaving samples 
of an and bn without sign changes. This sequence can be encoded and 
decoded and inputs to the interpolators can be formed from alternate 
samples of r~(t) (without sign changes). Figure 5 shows an implemen­
tation of this method. The signal set) is modulated by cos wnt and 
sin wnt, where Wn is the center frequency of band n. These signals are 
filtered with low-pass filters h~(t) with bandwidth (0 - W n/2). The 
outputs are decimated (if they are in digital form) or sampled (if 
analog) at a sampling rate W n. The low-pass translated signal r~(t) 
is obtained (at sampling rate 2W n) by interleaving samples of an and 
bn • r~(t) is encoded, transmitted, and decoded as in Fig. 3. On recon­
struction an and bn are recovered by selecting alternate samples of 
r~(t). These signals are then interpolated, filtered, modulated, and 

s(t) 

SIN Wnt 

Fig. 5-Implementation of complex demodulation for low-pass translation with 
interleaving of samples of an and bn • 
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summed as shown in Fig. 5 to give the reconstructed sub-band signal 
Sn(t). 

For digital implementation h~ can be realized with a digital filter. 
Decimation, or sampling-rate reduction by an integer factor M, can be 
achieved by retaining only one out of every M samples of the output 
of the filter. The filter is necessary to avoid aliasing. Interpolation by 
an integer factor M is accomplished by increasing the sampling rate 
by filling in M - 1 zero-valued samples between each pair of input 
samples. The filter h~ then removes the unwanted harmonic images of 
the base-band signal and smooths (i.e., interpolates) these samples to 
appropriate values of the base-band waveform. Efficient methods for 
implementing digital decimators and interpolators are discussed in 
Ref. (6). 

III. ENCODING OF THE SUB·BAND SIGNALS 

Digital encoding of the low-pass translated signal rn(t) is best 
accomplished using ada pti ve-PCM (APCM). 7 . 8 APCM encoding is preferred 
over adaptive-differential PCM (ADPCM) methods in this case due to the 
low sample-to-sample correlation of the low-pass-translated, N yquist­
rated, sampled signals. 

For computer simulations, APCM coders based on a one-word step­
size memory were used according to methods proposed by J ayant, 
Flanagan, and Cummiskey.7-9 Step-size adaption is achieved accord­
ing to the relation 

Llr = Llr-l X M, (6) 

where Llr is the quantizer step-size used for the rth sample and Llr-l is 
the step-size of the (r - l)th sample. M is a multiplication factor 
whose value depends on the quantizer level at the (r - l)th sample. 
For example, in a two-bit quantizer, two magnitude levels and the 
sign can be represented. If the smaller magnitude level is used at 
time r - 1, M is chosen to have a value M = M 1 < 1, and if the larger 
magnitude level is chosen, M = M 2 > 1 is used. For a three-bit 
quantizer, four magnitude levels and the sign can be represented. In 
this case, there are four choices for JJI. Through simulations, appro­
priate values of AI for a two-bit quantizer were found to be M 1 = 0.845 
and M 2 = 1. 96. For a three-bit quantizer, they are M 1 = 0.845, 
M2 = 1.0, M3 = 1.0, and M4 = 1.4. Note that the three-bit quantizer 
does not change its step-size at time r unless the largest or smallest 
quantizer level is encountered at time r - 1. The above values of M 
are in approximate agreement with values proposed by J ayant7 for 
full-band APCM encoding. 
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Fig. 6-Partitioning of the speech spectrum into four noncontiguous bands to 
achieve reduced bit-rate coding. 

IV. SUB-BAND CODING FOR TRANSMISSION AT DATA RATES 

The transmission bit rate of the sub-band coder can be reduced into 
the range of conventional data speeds by further limiting the sub­
bands in width and tolerating some spectral gaps as shown in Fig. 6. 
Carried to excess, the noncontiguous bands produce a reverberant 
quality in the signal, such as one gets from comb filtering. In moder­
ation, however, some highly useful compromises can be achieved 
between transmission bit rate and quality. The coded bands still 
cover a respectable range of the speech spectrum, and provide a 
quality considerably better than coding a single full-band signal. 

V. INTEGER-BAND SAMPLING AND HARDWARE CONSIDERATIONS 

Another attractive alternate implementation of these ideas is to use 
"integer-band" sampling to code a signal that is aliased in an advan­
tageous way. The technique is illustrated in Fig. 7. 

The signal sub-bands Sn(t) are chosen to have a lower cutoff fre­
quency of mfn and an upper cutoff frequency of (m + l)fn, where m 
is an integer andfn is the bandwidth of the nth band. This bandpassed 
signal is sampled at 2f n to produce the sampled spectrum shown in 
Fig. 7 (for m = 2). The received signal is recovered by decoding and 
bandpassing to the original signal band. Typically, values of m from 
1 to 3 are most useful for coder applications with lower bands using 
values of m = 1 and upper bands using 1n = 2 or m = 3. This integer-
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band sampling technique achieves the theoretical maximum efficiency 
in sampling. lo 

A very attractive advantage of the integer-band sampling approach 
is that it does not require the use of modulators. A slight disadvantage 
is that the above restrictions prevent the choice of bands strictly on 
the basis of equal contribution to AI. However, little loss in performance 
is observed if this equal contribution to AI condition is only approxi­
mate (within a factor of 2). This implementation was used for per­
ceptual comparisons, which will be discussed later. 

This approach is especially attractive for implementing the bandpass 
filters as charge-coupled-device (CCD) transversal filters. The analog 
to discrete-time conversion is inherently accomplished by the CCD 

filter with little or no analog prefiltering or post filtering required for 
the prevention of aliasing. The initial signal sampling can be con­
veniently high, say 15 kHz, to realize the CCD filter, and the filter 
output can be decimated to the 2f n rate for coding. After transmission 
and decoding, the 2f n rate can be interpolated to the I5-kHz rate for 
the final bandpass filtering, again by the analog CCD filter. 

Another advantage of CCD filters (and also digital filters) is that 
the filter cutoff frequencies are inherently normalized to the initial 
sampling frequency. Therefore, the sampling frequency and, conse­
quently, the bit rate of the coder, can be varied over a limited range by 

5(t) 

-I F sn(t) 
BP 

mfTO(m+1)f mf TO (m+ 1)f 
SAMPLE 
AT 2f 

AMPLITUDE SPECTRA 

~ I I ~ BP: mf TO (m + 1)f 
-4f -3f -2f -1f 0 1f 2f 3f 4f (m = 2) 

. t t t t t . 
SAMPLE AT 2f 

-4f -2f 0 2f 4f 

SAMPLED SIGNAL 
-4f -2f o 2f 4f 

~I DESAMPLED SIGNAL 
-3f -2f o 2f 3f 

Fig. 7-Integer-band sampling technique for digital encoding of speech sub-bands. 
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Table I - Frequencies and sampling rates for the 16-kb/ s coder 

Sub-band Wn r: (t) Decimation Quantization Center Freq Sampling No. (Hz) Rate (S-l) (From 10 kHz) (Bits) 

1 448 1250 16 3 
2 967 1429 14 3 
3 1591 1667 12 2 
4 2482 2500 8 2 

varying the master clock frequency. This cannot be achieved with 
analog filters. 

Present technology is able to provide four 100-tap CCD transversal 
filters on a single integrated-circuit chip or one 200-tap filter on a 
chip with all necessary drivers and control logic. 

VI. COMPUTER SIMULATIONS OF SUB-BAND ENCODERS 

The sub-band coder has been implemented by computer simulation 
for transmission bit rates of approximately 16 kb/s and 9.6 kb/s. The 
complex demodulation approach in Fig. 5 was used for low-pass 
translation of the bands. An initial sampling rate of 10 kHz was 
employed in both cases. 

The 16-kb/s coder was implemented with the band center frequencies 
and sub-band sampling rates shown in Table 1. Bandwidths are equal 
to one half of the sampling rates and correspond to those shown in 
Fig. 1. Three-bit coders were used in the two lower bands, and two-bit 
coders were used for the upper bands. The filters were 125-tap FIR 

filters. As can be observed in Fig. 1, the filters overlap in their transi­
tion bands and give an overall fiat frequency response from 200 Hz 
to 3100 Hz. 

The 9.6-kb/s coder was implemented with the bands given in Table 
II and illustrated in Fig. 6. In this case gaps were allowed between 
bands. Larger filter orders, 175-tap (FIR), were used to reduce transition 
bands and conserve bandwidth. Only the lower band used a three-bit 
coder. Upper bands used 2-bit coders. 

Table II - Frequencies and sampling rates for the 9.6-kb/s coder 

Sub-band Wn r~ (t) Decimation Quantization 
No. Center Freq Sampling (From 10 kHz) (Bits) (Hz) Rate (S-l) 

1 448 800 25 3 
2 967 952 21 2 
3 1591 1111 18 2 
4 2482 1538 13 2 
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Illustrations of the signal coded for 16 kb/s and 9.6 kb/s by the 
above-band-translation technique are given by the spectrograms of 
Figs. 8 and 9, respectively. In each figure, the upper spectrogram 
corresponds to the original sentence. The middle spectrogram corre­
sponds to the signal played through the filters, decimators, and interpo­
lators-but without coders. The bottom spectrogram illustrates the 
sub-band encoded speech at the designated bit rate. 

Other simulations have also been made for encoding the signals 
an(t) and bn(t) directly and also for encoding the magnitude and phase 
derivative (as in the phase vocoder). Similar quality results were found 
in these simulations. 

VII. SUBJECTIVE COMPARISONS WITH OTHER ENCODING METHODS 

Informal listening tests were made to compare the quality of the 
sub-band coder simulations with that of full-band encoding. For the 
16-kb/s coder, comparisons were made with 2- and 3-bit ADPCM. For 
the 9.6-kb/s coder, comparisons were made with adaptive delta 
modulation (ADM) (i.e., I-bit ADPCM). Results for the 16-kb/s coder 
comparisons are given in Table III. 

Twelve listeners were asked to compare pairs of sentences for signal 
quality and indicate which was better. Two speakers were used in the 
experiments and sentence pairs were played in a randomly selected 
order. Each listener made a total of 16 comparisons in each of the 
experiments. 

In comparing 16-kb/s sub-band encoding to 16-kb/s (2 bits/sample) 
ADPCM, listeners rated the sub-band encoded sentence as having higher 
quality in 94 percent of the sentence pairs. When the bit rate of the 
ADPCM coder was increased to 24 kb/s (3 bits/sample), they rated the 
sub-band encoded sentence as having higher quality in 34 percent 
of the sentence pairs. Experiment I demonstrates that the quality of 
the 16-kb/s sub-band coder is clearly preferred over that of ADPCM 

at the same bit rate. In Experiment II listeners exhibited much 
greater indecision, indicating that the quality of the 16-kb/s sub-band 
coder is close to that of 24-kb/s ADPCM, but that preference leans 
slightly in favor of the ADPCM. 

Also included in Table III are signal-to-quantizing-noise ratios 
(s/n) measured on the speech signals, averaged for the two speakers 
for each of the coding methods. sin data is not found to be a reliable 
indicator of listener preference. This observation is not surprising 
and has been previously recognized in the speech coding literature. 7.8 

A second series of listening experiments compared 9.6-kb/s sub-band 
coding with ADM. The sub-band encoder in this case is implemented 
with the integer-band method described earlier. The ADM coder is a 
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Table 111- Comparison of 16-kb/s sub-band coder with ADPCM 

Experiment 1: 16-kb/s Sub-band vs 16-kb/s ADPCM 

16-kb/s Sub-band 
16-kb/s ADPCM (2 Bits) 

Listener SIN 
Preference (%) (dB) 

94 
6 

11.1 
10.9 

Experiment 2: 16-kb/s Sub-band vs 24-kb/s ADPCM 

16-kb/s Sub-band 
24-kb/s ADPCM 

Listener SIN 
Preference (%) (dB) 

34 
66 

11.1 
14.5 

forward step-size transmitting coder shown by J ayantll to have 
improved performance over conventional ADM. Table IV shows the 
results of these experiments. Three different bit rates, 10.3, 12.9, and 
17.2 kb/s, were used for the ADM coder. In the first two experiments, 
the 9.6-kb/s sub-band coder was clearly preferred. In the third experi­
ment, there was greater indecision with preference leaning slightly in 
favor of the sub-band coder. Note that this is true despite the opposite 
ordering of the sin values! In other words, the perceptual palatability 
is not well reflected in the sins as has been observed previously.s 

Table IV - Comparison of 9.6-kb/ s sub-band coder with ADM 

Experiment 1: 9.6-kb/s Sub-band vs 10.2-kb/s ADM 

9.6-kb/s Sub-band 
1O.3-kb/s ADM 

Listener SIN 
Preference (%) (dB) 

96 
4 

9.9 
8.2 

Experiment 2: 9.6-kbjs Sub-band vs 12.9-kb/s ADM 

9.6-kb/s Sub-band 
12.9-kb/s ADM 

Listener SIN 
Preference (%) (dB) 

82 
18 

9.9 
9.7 

Experiment 3: 9.6-kb/s Sub-band vs 17.2-kb/s ADM 

9.6-kb/s Sub-band 
17.2-kb/s ADM 

Listener SIN 
Preference (%) (dB) 

61 
39 

9.9 
11 
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Fig. 10-(a) Relative comparison of quality of 16-kb/s sub-band coding against 
ADPCM coding (based on listener preference) for different ADPCM coder bit rates. 
(b) Relative comparison of quality of 9.6-kb/s sub-band coding against ADM coding 
for different ADM coder bit rates. 

Figure 10 summarizes the results of the listener preference tests in 
Tables III and IV. Listener preference is plotted against the ADPCM 

and ADM coder bit rates. The crossover points of the curves in the two 
comparisons determine the point at which the two types of coders 
have approximately equal subjective quality. In the first comparison, 
the quality of the 16-kb/s sub-band coder is seen to be comparable 
to that of 22-kb/s ADPCM; i.e., it has a 6-kb/s advantage over the 
ADPCM coder. In the second comparison, the 9.6-kb/s coder has a 
subjective quality that is comparable to the 19-kb/s ADM and, there­
fore, has a 9.4-kb/s advantage over ADM. 
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It is clear from the listener preference tests that the sub-band 
coding technique is considerably better in quality than full-band 
ADPCM or ADM coding methods. We have carried this coding down to 
7.2 kb/s and find that the quality is only slightly poorer than that at 
9.6 kb/s. We have also pressed the coding rate down to 4.8 kb/s and 
find that the quality becomes considerably poorer owing to the in­
creased band limiting and gaps between bands. 

VIII. CONCLUSION 

We have described a method for digitally coding speech in sub-bands 
of the total signal spectrum. Partitioning into sub-bands has several 
distinct advantages. Bit allocations for quantization of each band can 
be made on a perceptually palatable basis. Quantization products in a 
given band are confined to that band and do not "spill over" into 
adjacent frequency ranges. Selection of sub-band widths can also be 
made according to perceptual criteria, namely, for equal contributions 
to AI (and hence to signal intelligibility). As a result, the sub-band 
coding produces a quality signal that is better than a single full-band 
coding at the same total bit rate. The price paid is the band-filtering 
and the individual coding. 

"Integer-band" sampling is demonstrated to be an economical 
and effective method for implementing the sub-band coder. Emerging 
technologies in device fabrication (such as CCDS) suggest economical 
implementations of the band filtering in terms of analog transversal 
filters. 

The sub-band coder, implemented by integer band sampling, is 
demonstrated for speech transmission at rates of 16, 9.6, and 7.2 
kb/s. The latter two transmission rates push down into the data 
range and are attractive for "voice-coordination" over data channels. 

Informal perceptual experiments demonstrate that the signal 
quality of speech coded at 9.6 kb/s by the sub-band method is approxi­
mately equivalent to a 19-kb/s coding of the full-band signal. For a 
given transmission bit rate, therefore, the sub-band technique provides 
a significant improvement in signal quality. Or alternatively, for a 
given signal quality, the sub-band system can provide the transmission 
at a significantly reduced bit rate. 
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Subjective quality ratings of PCM coded speech were obtained with the 
aims of (i) determining the effects of certain coder parameters and their 
interactions on speech quality, (ii) finding objective measures for predicting 
perceived distortions, and (iii) providing guidelines for optimizing coder 
design. Coders with various combinations of four clipping levels, seven 
step sizes, four bandwidths, and three logarithm,ic companding laws were 
simulated. The coders were rated for quality on a lO-point scale by 48 
listeners who heard male and female speech processed by the coders. 

The ratings depended strongly on clipping level and step size, but only 
weakly on bandwidth. None of the coder parameters interacted strongly 
with another. Clipping noise power grossly overestimated the extent of 
perceived overload distortion; instead, clipping percentage is proposed as 
a much more realistic predictor. Signal-to-granular-noise ratio was a 
good predictor of perceived granular noise. For a given bit rate, the coder 
with the highest quality rating was not the coder with minimum total 
clipping and granular noise power, contrary to traditional wisdom. 

I. INTRODUCTION 

"How does it sound?" This is a fundamental but elusive question 
for the engineer designing or evaluating a system for transmitting, 
recording, or processing speech signals. If the system is analog, the 
engineer has as a guide a substantial body of information about the 
interrelated effects on speech quality of such factors as attenuation, 
noise, linear and nonlinear distortion, echo, and cross-talk. l With 
respect to digital systems, however, the subjective effects of charac­
teristic distortions have been documented to a much smaller extent 
and, as a consequence, the quality of an existing system and the 
merits of proposed designs are much harder to predict. 

One approach to the evaluaton of digital systems is to relate a 
digital signal distortion to one of the analog distortions, and to define 
digital speech quality as the subjective correlate of the equivalent 
analog distortion. 2 Although expedient and reasonably accurate for 
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certain individual distortions, the value of this approach seems quite 
limited in the important situations where several distortions occur 
simultaneously. 

While the engineering literature contains many reports of subjective 
tests of digitally coded speech, most of the tests were undertaken to 
provide performance data on the overall distortions produced by 
specific coders. Among the exceptions to this approach and more 
aligned with the spirit of our work are the experiments reported by 
Donaldson and Chan,3 O'Neal and Stroh,4 and Yan and Donaldson5 in 
which individual sources of distortion were identified and the manner 
of their interaction investigated. In these studies, the effects of band­
width, predictor network, number of bits per sample and transmission 
error rate in PCM (pulse code modulation) and differential PCM systems 
were studied. Another design variable, quantizer overload point, was 
held fixed although Ref. 5 ends with the suggestion, "A careful study 
of the dependence of subjective quality on ... [overload point] ... 
seems necessary." Our experiment contains a thorough study of the 
role of this parameter in PCM. 

II. AN OVERVIEW OF THE EXPERIMENT 

We used a digital computer to process speech with 208 different 
PCM coding schemes whose characteristics span an important range 
of bandwidths, number of bits per sample, overload levels, and com­
pression characteristics. Our aims included the study of: (i) the in­
fluence on speech quality of the above design parameters, (ii) objective 
measurements that are good predictors of speech quality, and (iii) 
optimum combinations of code parameters. 

In the experiment, 48 listeners used a 10-point opinion scale to 
provide quality ratings of speech processed by each of the coders. 
The speech material consisted of 10 sentences, each spoken by two 
females and two males. Our principal conclusions from the analyses 
of the data are: 

(i) Overload level and quantizing step size were primary deter­
miners of listeners' ratings. Bandwidth was, by comparison, a 
secondary determiner of speech quality. 

(ii) The traditional objective measurement, overall signal-to-noise 
ratio, was not a useful predictor of speech quality. On the other 
hand, the percent of samples clipped, P and the signal-to-noise 
ratio, Q of the granular quantizing noise were useful and 
independent predictors of speech quality. A simple linear 
equation 

R = aP + bQ + c, 
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Fig. I-Block diagram of major steps in the experiment. 

where a, b, and c are empirically derived constants, was a 
good predictor of the quality rating R. 

(iii) For a fixed number of bits per sample, the coder with the 
highest quality rating was not the coder with the highest 
signal-to-noise ratio. 

The experiment involved three major steps, as shown in Fig. 1. 
The first step was to compile a source speech library consisting of high­
quality recordings of sentences. The second step was to simulate a 
variety of coders and noise processes on a computer. The final step was 
to process the source speech with the simulated coders and noise 
processes in accordance with an overall experimental design and to 
obtain subjective quality ratings from listeners. 

III. SOURCE-SPEECH LIBRARY 

Digital recordings were made of the ten phonetically balanced 
sentences listed in Table I as spoken by two females and two males. 
The talkers were seated in a sound-proof booth and spoke into a Sony 
ECJ\1 22p microphone. The amplified microphone signal was low-pass 
filtered at 9.6 kHz, sampled 24,000 times per second, uniformly 
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quantized to 12 bits per sample, and written onto digital tape. Each 
sample was represented by an integer between -2047 and +2048. For 
each talker, the quantizer step size was adjusted manually to use the 
full quantizer range without clipping. Once a step size was established 
for a talker, the same step size was used for all ten sentences. This 
procedure approximately equalized the peak power level of the four 
talkers over all sentences. The source-speech library thus consisted of 
digital recordings of 40 sentences containing all the speech sounds 
spoken by four talkers and approximately equalized for peak power 
over talkers. 

IV. SIMULATION OF CODERS AND NOISE PROCESSES 

A PCM system contains a low-pass presampling filter of bandwidth 
W, a sampler that generates 2W equally spaced signal samples per 
second, a quantizer operating independently on each sample, and a 
low-pass desampling filter of bandwidth W which generates a con­
tinuous waveform from the quantized sequence. In the experiment, 
each of these components-presampling filter, quantizer, desampling 
filter-was simulated on a DDP-224 digital computer. Within the 
computer, "analog speech" appeared in the 24,000-samples/second, 
12-bits/sample format of the recording scheme, while sampled and 
quantized speech appeared with fewer bits and fewer samples. 

4.1 8andlimiting and sampling 

The four sampling rates used in the experiment were all integer 
submultiples of 24 kilosamples/second: 12, 8, 6, and 4.8 kilosamples/ 
second and the nominal cutoff frequencies of the associated low-pass 
filters were 6, 4, 3, and 2.4 kHz, respectively. The filters, all realized 
as finite impulse-response digital filters with integer coefficients, were 
designed to meet the requirements listed in Table II, which conform to 

Table 1-The ten sentences spoken by each of four talkers * 

1. A lathe is a big tool. 
2. Grab every dish of sugar. 
3. An icy wind raked the beach. 
4. Her father failed many tests. 
5. Joe brought a young girl. 
6. The chairman cast three votes. 
7. The boy was mute about his task. 
8. Beige woodwork never clashes. 
9. Both teams started from zero. 

10. My cap is off for the judge. 

* Each is a simple declarative sentence that can be spoken in approximately two 
seconds. The list includes all the phonemes of English in initial, final, and intervocalic 
position. 

1090 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976 



Table II - Bandlimiting filter specifications 

Sampling rate (kilosamples/s) 
Nominal cutoff W kHz (Attenuation at 

12 8 6 4.8 

least 15 dB at f = W) 6 4 3 2.4 
Passband edge attenuation within 

±0.125 dB 4.5 3 2.25 1.8 
Stopband edge attenuation at least 30 dB 7.125 4.75 3.562 2.85 
Filter order 21 33 41 51 
Oversampling ratio 2 3 4 5 

the requirements imposed on channel banks of digital mUltiplex 
systems. 

4.2 Interpolation 

The digital interpolating filter simulates the desampling filter of a 
PCM coder. The latter transforms a sampled signal to a continuous 
waveform. In the computer, "continuous waveforms" appear as 
samples occurring at the rate of 24,000 per second; to produce them, 
an interpolating filter inserts 1, 2, 3, or 4 new samples between each 
pair of PCM samples, depending on whether the sampling rate of the 
simulated coder is 12, 8, 6, or 4.8 kHz, respectively. 

OUTPUT 

-A A 
INPUT 

Fig. 2-Input/output diagram of a quantizer. 
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While, in practice, specifications of desampling filters are often 
identical to those of presampling filters, we found for our purposes 
that a 30-dB stopband attenuation was insufficient at certain fre­
quencies. Some speech sounds, particularly nasals, with strong low­
frequency components produced audible output tones in the vicinity of 
the sampling frequency in desampling. For example, the spectrum of 
sound with considerable energy around 200 Hz has images at 5800 Hz 
and 6200 Hz when sampled 6000 times per second. Even attenuated 
40 dB, these images produced an audible "whistle," which was very 
distracting to listeners. In the design of interpolating filters, therefore, 
:we specified an attenuation of at least 65 dB near the sampling 
frequency. 

4.3 Quantization 

A quantizer is defined by an input/output diagram such as Fig. 2. 
To study the subjective effects of quantization, it is appropriate to 
formulate this operation as a sequence of four processes as in Fig. 3: 
clipping, compression, uniform quantization, and expansion. 

Clipping is an inherent part of the quantizing operation. Figure 2 

CLIPPING 

y 

UNIFORM 
QUANTIZING 

COMPRESSION 

EXPANSION 

Fig. 3-Four processes included in quantization. 
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shows that the largest magnitude that can be represented by the 
quantizer is A. All samples greater than A result in the same output, 
as do all samples less than -A. Hence, the quantizer operates as a 
device that first clips the input and then represents with finite reso­
lution all signal samples in the range -A to A. 

C01npression and expansion (each the inverse of the other) are 
nonlinear transformations of the uniform quantizer's analog input 
samples and quantized output samples, respectively. Current trends 
in communication technology favor the use of segment-compression 
characteristics, which are piecewise linear approximations to loga­
rithmic input/output relationships. In the experiment, we simulated 
segmented ,u-Iaw quantizers* in which the length of each linear segment 
is double, and the slope one-half, that of the previous segment. 6 The 
compression curve in Fig. 3 contains five segments. There are three seg­
ments for positive inputs and three for negative inputs, with the inner­
most positive and negative segments colinear. In the input/output 
characteristic, the quantization step size is constant over a segment and 
double that of the previous segment. Hence, high-level samples are 
quantized more coarsely than low-level samples. 

In practice, the number of positive (or negative) segments is a 
power of 2 so that the total number of distinct segments can be written 
as 2(c+I) - 1. In the experiment, we studied quantizers with c = 0 
(uniform quantization), c = 2, and c = 3, which are 1, 7, and 15 
segment quantizers with parameter ,u = 0, 15, and 255, respectively. 

We describe the uniform quantizer in Fig. 3 by its step size S which 
is equal to the minimum step size of the nonuniform quantizer of Fig. 2. 

The entire quantizer is now defined by three parameters: the over­
load level A, the companding number ,u, and the step size S. For 
engineering purposes, the most important quantizer parameter is the 
number of bits per sample B. Table III shows the dependence of B 
on A, ,u, and S over the range of parameters appearing in the experi­
ment. While, in engineering studies, quantizers are usually specified by 
,u, B, and S or by ,u, B, and A, the design and analysis of experiments 
such as this one are greatly facilitated by viewing ,u, A, and S as the 
independent variables of a quantizer. The advantages of this point of 
view derive from the fact that quality varies monotonically with both 
A and S. The relationship of quality to B is considerably more com­
plicated (see Section VIII) and is more readily derived as a combination 
of two relatively simple functions than measured directly. 

Because the source speech appears in the computer encoded in 

* The compressor characteristics are piecewise linear approximations to 

z = sgn(y)[log (1 + JLlyj)J/log (1 + JL). 
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Table III - Number of bits as a function of step size 
and clipping level 

Jl.=0 

Clipping level 
2048 1024 512 256 128 64 32 

1 12* 11 10 9* 8* 7* 6 
2 11* 10 9 8* 7* 6* 5 
4 10* 9 8 7* 6* 5* 4 
8 9* 8 7 6* 5* 4* 3 

16 8* 7 6 5* 4* 3* 2 

Step size 32 7* 6 5 4* 3* 2* 1 
64 6* 5 4 3* 2* 1 * 

128 5 4 3 2 1 
256 4 3 2 1 
512 3 2 1 

1024 2 1 
2048 1 

Jl. = 15 
Clipping level 

1920 960 480 240 120 60 30 

1 10* 9 8 7* 6* 5* 4 
2 9* 8 7 6* 5* 4* 3 
4 8* 7 6 5* 4* 3* 

Step size 8 7* 6 5 4* 3* 
16 6* 5 4 3* 
32 5* 4 3 
64 4* 3 

128 3 

Jl. = 255 
Clipping level 

2040 1020 510 255 

1 7* 6 5 4* 

Step size 2 6* 5 4 
4 5* 4 
8 4* 

* Indicates quantizers used in experiment. 

steps of 1 from - 2047 to 2048, A cannot exceed 2048 and S cannot 
be less than 1. Hence, for each c, there is an upper limit on the number 
of bits per sample that can be simulated. The limit is 12 bits for c = 0, 
10 bits for c = 2, and 7 bits for c= 3. Conversely, there is a lower 
limit on B because there must be at least one output level for each 
positive segment and one for each negative segment in the compression 
curve. This implies that the c = 2 quantizer must have at least 3 
bits/sample and the c = 3 quantizer at least 4 bits. 

After a pilot experiment, we decided to vary S in octave steps. 
Table III shows for each companding law the values of S, A, and B 
that can be simulated by our, procedure. An asterisk indicates a 
quantizer used in the experiment. The first column of each matrix 
contains quantizers with no clipping. We omitted quantizers in the 
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second and third column because the pilot study suggested that the 
deterioration in quality associated with the transition from the first 
to the fourth column was approximately the same as the deteriorations 
in the transition from fourth to fifth, and fifth to sixth columns. 

4.4 Noise processes 

In addition to speech degraded by the PCl\I coding process, the ex­
periment included speech distorted by two types of additive noise. 
There were four levels of simulated white gaussian noise added to 
speech samples; the noise levels were chosen to provide signal-to-noise 
ratios around 30, 20, 10, and ° dB. It was felt that gaussian noise is 
silnilar in character to the granular quantizing noise of a uniform 
quantizer (c = 0). 

In addition, we included four levels of speech-dependent noise. 7 To 
each sample Xn was added ±pxn , where p is the noise-to-signal ratio 
and the + or - sign is determined by a simulated coin-toss. Thus, 
the noise magnitude added to each sample is proportional to the 
magnitude of the sample. This type of distortion is similar in character 
to the quantizing noise of a companded quantizer in which the noise 
magnitude increases in a probabilistic sense with signal magnitude. 
The four speech-dependent noise levels provide the signal-to-noise 
ratios 30, 20, 10, and ° dB, where s/n = 20 log (1/ p) dB. 

V. SUBJECTIVE EVALUATION OF TRANSMITTED SPEECH 

After all simulations were completed, the source speech was pro­
cessed by the coders and noise processes and the processed speech 
written onto digital tape to form a transmitted speech library, as 
shown in Fig. 1. When the library was complete, the transmitted 
speech was converted from digital to analog and recorded onto audio 
tape for subjective evaluation. 

Four analog tapes were prepared, each containing one example of 
each of the 240 experimental conditions: (52 coders + 8 noise con­
ditions) X 4 bandwidths. The assignment of talkers to conditions 
followed a latin square design in a bandwidth by tape-number matrix. 
Thus, for a given coder or noise condition, a different talker was 
associated with each of the bandwidths on a single tape. Over the four 
tapes all 16 talker-bandwidth combinations appeared with each coder 
and noise condition. For a given bandlvidth, each sentence occurred 
6 times and each talker 15 times over the 60 noise and coder conditions. 

The 240 conditions on each tape were presented in random order 
to 48 students at a local university, who listened to the stimuli on 
TDH-39 earphones. Twelve subjects judged the stimuli of each tape. 
They were asked to "rate each sentence on a scale of 1 to 10 according 
to its acceptability as a communication link, using 1 to represent the 
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least acceptable, 10 the most acceptable, and the other numbers 
between 1 and 10 for intermediate ratings." Before the test began, 20 
representative conditions were presented to familiarize the listeners 
with the range of speech quality. 

VI. OBJECTIVE MEASURES OF SPEECH QUALITY 

Because signal-to-noise ratio (sin) is the most frequently cited 
measure of speech quality, the relationship of sin to subjective 
appraisal of processed speech is a matter of substantial interest in an 
experiment such as ours. A very strong inference of our data is that a 
single sin statistic-the ratio of the power in the original speech to 
the power in the difference between processed speech and original 
speech-is a poor predictor of subjective quality. Instead, we find 
that the effects of clipping and granular quantization must be con­
sidered separately if we are to arrive at a correct prediction of per­
ceived quality. Therefore, we define two noise components: NC, the 
clipping noise, defined as y - x in Fig. 3, and the granular quantizing 
noise NG, defined as q - y. The total quantizing noise is 

NQ = q - x = NC + NG. 

To facilitate measurement of these and other quantities for each 
quantizer, we produced a digital data tape which, for each utterance 
passed through each presampling filter, recorded the number of times 
each possible sample amplitude (from - 2047 to 2048) occurred. We 
uS,ed this tape to calculate the power in each filtered utterance, the 
mean square values of NG, NC, and NQ for each quantizer, and addi­
tionally, the percentage of samples clipped by each quantizer. This 
last statistic, P, proved a better correlate of listener opinions than the 
mean square value of NC. 

VII. RESULTS 

7.1 Overview 01 data analyses 

Statistical procedures were applied to evaluate the relative influence 
of each of the experimental variables on the listeners' ratings. Analyses 
of variance showed that two variables, clipping level A and step size S, 
were the major sources of variability influencing the ratings. lVIultiple 
regression procedures provided linear estimates of ratings as functions 
of two objective distortion measures, one related to A, the other to S. 

7.2 Determiners of speech qualify 

7.2.1 Listeners and tapes 

An analysis of variance was computed to study the variability of 
the ratings of the 12 listeners who judged a single tape, and the vari-
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ability among the four listener groups, each of which judged a different 
tape. The analysis showed that the listeners within each group were 
not significantly different in their ratings and that the ratings among 
the four groups of listeners were not significantly different. In each 
case, the F ratios were less than 1.0. Therefore, the mean of the 
listeners' ratings for each condition was used for all further analyses. 

7.2.2 Coder parameters 

A second analysis of variance was computed, using the means of 
the listeners' ratings, to study the effects of the experimental variables. 
In this analysis, the differences in the ratings due to step size, clipping, 
and companding were statistically significant, as expected, and in 
combination accounted for 84 percent of the total variance. While the 
variability in the ratings due to the different talkers, the different 
bandwidths, and their interaction were all statistically significant, each 
of these effects accounted for only 2 to 3 percent of the total variance. 

7.2.3 Talkers 

Figure 4 shows the mean rating across clipping and step size as a 
function of bandwidth for each talker at the three companding values 

7~ I ~ I . -~..; 
~ 6 ~=-__ -=f.:=------:=:f' V.J.---- ~ _--
f= ~~~ -- r""'" ",0-------0--~ ~ /"- -0--- "'" 
~ 45r:""',..o----- p=O ./ p=15 r 28 CODERS 19 CODERS 

1~ __ ~ ________ ~ ________ ~ 

2.4 3 4 6 2.4 3 4 

BANDWIDTH IN kHz 

t!J 
Z 
f= 

7~X------------------------~1 

.'~. ~- ----~~x - "'x---::::::=:---o--::_- =-
6.-0-- -
_-~-----U' 

/"'" 
~ 5 
z 
« 
l.U 
:2: 

3 

p = 255 
5 CODERS 

4 
BANDWIDTH IN kHz 

6 

x--x MALE 1 

.-. MALE 2 

~-...(:, FEMALE 1 

0---0 FEMALE 2 

Fig. 4-Mean rating across clipping level and step size as a function of bandwidth 
for each talker and each companding law. 
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Table IV - Mean ratings across talkers and listeners 

Companding JL=O JL = 15 JL = 255 

Clipping Level 2048 256 128 64 1920 240 120 60 2040 255 

1 9.2 8.8 7.0 4.7 9.1 7.6 6.9 4.7 9.2 5.0 
2 9.2 8.5 6.3 4.4 9.1 7.4 5.3 3.4 7.8 

6 kHz 4 9.1 8.3 6.1 4.1 8.3 6.2 5.2 3.3 6.5 
Band- Step size 8 8.1 7.1 5.8 4.0 8.7 4.8 3.8 4.6 
width 16 8.1 6.3 4.8 3.8 7.6 3.9 

32 6.3 5.1 4.0 2.4 5.9 
64 5.0 3.8 3.2 1.3 4.3 

1 9.0 7.6 6.3 3.6 8.7 7.2 5.3 3.8 7.7 4.8 
2 8.3 7.6 6.4 4.2 8.6 6.7 4.7 3.8 7.3 

4kHz 4 8.3 6.8 5.7 4.2 8.2 6.3 5.1 3.2 6.0 
Band- Step size 8 7.2 6.2 4.9 4.3 7.5 5.3 3.7 5.2 
width 16 6.7 5.7 4.7 3.6 6.9 3.9 

32 5.9 4.8 3.6 2.5 5.6 
64 5.3 3.6 3.1 1.2 4.7 

1 7.9 6.7 5.3 3.9 8.1 6.4 5.1 3.6 8.2 4.5 
2 7.9 6.6 5.2 3.7 8.7 6.2 4.3 3.4 6.9 

3 kHz 4 7.2 6.4 4.5 4.1 7.8 6.3 4.4 2.7 5.7 
Band- Step size 8 6.6 5.6 5.3 3.3 6.6 4.6 3.3 5.0 
width 16 5.8 4.9 4.4 2.7 5.7 4.1 

32 4.7 3.9 3.6 2.1 4.5 
64 3.8 2.9 2.6 1.3 3.6 

1 9.4 7.7 6.0 4.7 8.9 8.0 5.5 3.9 8.4 4.6 
2 9.1 6.9 6.2 4.4 8.4 7.2 5.1 4.0 7.5 

2.4 kHz 4 8.2 7.3 6.1 4.3 8.1 6.1 4.1 3.3 6.0 
Band- Step size 8 8.0 6.7 5.6 4.2 8.1 5.7 3.5 5.2 
width 16 7.1 5.7 5.1 3.2 6.7 4.3 

32 5.6 4.5 4.2 3.0 5.8 
64 4.9 4.4 2.8 1.3 5.0 

J.L = 0, 15, 255. Although there was some evidence that the coded 
speech of female talkers was rated somewhat lower than that of male 
talkers, the major source of the statistically significant differences 
among the talkers and the talker-bandwidth interaction was the 
consistently lower ratings assigned to one fenlale voice. The mean 
power of her speech was approximately 3 dB greater than that of the 
other three talkers and the standard deviation of the power about 0.2 
dB less, making her speech more sensitive to clipping and filtering. 
Since the effect of the talkers was minimal, the mean rating across 
talkers was used for further analyses, thus reducing the variability 
in the data to that due to the influence of only the physical variables 
of the coders. The mean ratings across talkers and listeners are shown 
in Table IV. 
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7.2.4 Bandwidth 

Figure 4 also shows the effect of the four different bandwidths on the 
ratings. Although the ratings tended to decrease as the bandwidth 
narrowed, the differences between 6, 4, and 3 kHz were very small. 
Indeed, the source of the significant differences due to bandwidth was 
the much lower ratings that resulted from reducing the bandwidth from 
3 to 2.4 kHz. The ratings pertaining to three of the talkers contained 
no significant interactions between bandwidth and the other coder 
design variables. Only in the data for the female talker with the low 
ratings were these interactions statistically significant. The most 
salient of these interactions was between bandwidth and clipping. 

7.2.5 Clipping, step size, and companding 

Figure 5 shows the mean rating across listeners, talkers, and band­
width at each step size as a function of clipping level, A, for each of 
the three companding conditions. The horizontal axes show A de­
creasing (Le., the amount of clipping increasing) from left to right. 
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Fig. 5-Mean rating across listeners, talkers, and bandwidth at each step size as 
a function of clipping level for each companding law. 
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Fig. 6-Mean rating across listeners, talkers, and bandwidth at each clipping level 
as a function of step size for each companding law. 

For each step size S the mean rating decreases as the amount of 
clipping increases. With J..L = 0 or J..L = 15, an octave decrease in A 
results in a relatively small decline in rating when A > 256 and a 
relatively large decrease when A ~ 256. The data for J..L = 255, though 
limited, suggest that relative to the other compression laws, ratings 
are more sensitive to small amounts of clipping (A > 256). 

Figure 6 shows the same data points plotted as a function of step 
size at each clipping level. While, for each A, the ratings are inversely 
related to S, equal incremental differences in S tend to result in larger 
differences in the ratings as S increases. That is, the curves generally 
have a steeper slope when S > 8 for J..L = 0, and S > 4 for J..L = 15. 
The steeper slope of the curve for f.L = 255 suggests that quality may 
be influenced by an interaction between f.L and S. An analysis of the 
ratings of unclipped speech with S = 1, 2, 4, and 8 confirms this 
observation. While the ratings for f.L = 0 and J..L = 15 ·were not signifi­
cantly different, those at J..L = 255 were significantly different from 
the ratings for the other two companding laws. 

7.3 Prediction of qualify ratings 

7.3.1 Signa/-to-noise ratio 

Figure 7 is a scatter plot of average rating vs measured sin for the 
28 uniform quantizers and the 4 white-gaussian-noise processes. Here, 
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sin is the usual engineering measure: the ratio of signal power to 
mean-square difference between quantizer input and output (x - q 
in Fig. 3). The sin coordinate of a point in Fig. 7 is the average of the 
16 sin's of the individual utterances (4 bandwidths by 4 talkers) 
processed by a coder or noise condition. The most important feature 
of Fig. 7 is the horizontal clustering of the seven points associated with 
a given value of A, when A ~ 256. In all of these quantizers, the 
clipping noise, NC, substantially dominates the granular noise, NG, in 
the total noise, NC + NG. This dominance implies that sin is virtually 
independent of S with A ~ 256, while, by contrast, perceived dis­
tortion depends strongly on S, as evidenced by the vertical spread of 
the points pertaining to each A. Clearly, in the presence of clipping, 
sin is a poor guide to ratings of speech quality: coders ·with the same 
sin elicit widely divergent ratings. 

7.3.2 Noise references 

In Fig. 7, ratings and sin are well correlated for one set of coders: 
those with no clipping, A = 2048. Here, the relationship of rating to 
sin is similar to that observed for the gaussian noise processes. Figure 
7 suggests, therefore, that for uniform quantizing, white gaussian noise 
is a good noise reference ,vhen there is no clipping; it is a poor noise 
reference when clipping is significant. 
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Fig. 7-Relationship between mean rating and total sin for the 28 linear conditions 
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noise conditions as a function of the total sin. 

Because the amount of granular distortion produced by a coder 
with companding depends on signal amplitude, one may suppose that 
speech-dependent noise would provide a better noise reference than 
white gaussian noise for companded coders.2,7 Figure 8 lends support 
to this conjecture by showing, for all of the coders with no clipping and 
all of the noise processes, the relationship of average rating to sin. 
For J1. = 255, the relationship is similar to that observed with speech­
dependent noise; for J1. = 0, it is similar to that observed with white 
gaussian noise. J1. = 15 is an intermediate case. 

7.3.3 Regression analysis 

Because total sin proved a poor correlate of listener ratings, we 
turned to multiple regression procedures to find an objective predictor 
of the ratings. The analyses of variance indicated that the ratings were 
primarily influenced by S and A, which have nearly independent 
effects. * Consequently, we used as independent variables of the 
regression one distortion measure related to S and one related to A. 
Appropriate measures proved to be Q, the granular sin (ratio of signal 
power to power in NG) measured in dB, and P, the clipping proba­
bility (the proportion of speech samples> A), expressed as a 
percentage. 

* In the analyses of the linear conditions, S accounted for 35 percent of the total 
variance, A for 45 percent, and the interaction of S and A for only 1 percent. 
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The regression was computed at each companding level with the 
original values for each talker at each bandwidth included as repeated 
observations. For example, each of the 28 coders with J.1. = 0 was 
represented by 16 measurements (4 talkers X 4 bandwidths). Table V 
lists the coefficients obtained by the regression procedure at each 
companding level and also by combining the three companding levels. 
While the values of the coefficients change with J.1., the correlations and 
the rms values of the residuals do not change radically. The regression 
procedure was applied to the data for the coders with J.1. = 255 for 
completeness, but the computation was based on information for only 
five coders at the smaller step sizes and only one clipping condition. 
When the ratings of the three companding laws were also included as 
repeated observations, the ratings predicted by appropriate weighting 
of only the Q and P correlate highly with the obtained ratings. 

VIII. DISCUSSION 

8.1 Effects of design variables 

Among the PCM design variables, system bandwidth W had the 
smallest effect on the ratings, a finding consistent with that of O'Neal 
and Stroh4 who state that "over the range of 2.4-4.3 kHz changes in 
the bandwidth W of the speech signal are inconsequential in terms of 
the resultant user ratings." (To describe our data, we would substitute 
"of minor importance" for "inconsequential.") In considering the 
practical application of this conclusion, a caveat is necessary. In a 
recent experiment, Goodman, Goodman, and Chen 8 found that band­
limiting, although less important than clipping and quantizing in 
determining listener ratings, had a very strong effect on consonant 
intelligibility. This suggests that the impact of band-limiting on the 
quality of communication may be more substantial than the results of 
rating tests imply. 

The significance of the dependence of ratings on the quantizer 
variables, J.1. (compression law), S (step size), and A (clipping level), 

Table V - Coefficients obtained by regression level 

(R = aP + bQ + c) 

p.=o 
p. = 15 
p. = 255 
Combined 

P = Percent clipped. 

a 

-0.08 
-0.11 
-0.27 
-0.10 

Q = sin granular quantizing noise. 

b 

0.09 
0.11 
0.16 
0.09 

c 

3.87 
3.09 
2.96 
3.99 

Corre- RMS 
lations Residual 

0.87 
0.87 
0.84 
0.85 

1.005 
0.957 
0.825 
1.038 
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will be more apparent if we return to the usual engineering description 
of a quantizer which includes the number of bits per sample, B, as an 
independent variable. Thus, in Fig. 9, we have plotted the same points 
that appear in Fig. 5,. but in this case, we have drawn lines showing 
contours of constant B rather than constant S. Here we see the effect 
on subjective ratings of the well-known compromise between clipping 
and quantizing in coder design. At the left of each curve, we have 
the quantizers that cause little or no overload but have high step sizes 
and, therefore, substantial granular quantizing noise. At the right, 
clipping distortion predominates over granular noise. 

Figure 10 demonstrates the effect of companding on ratings by 
displaying on the same graph rating vs clipping level curves for 5-bit 
and 6-bit encoders with J.L = 0 and J.L = 15. For a given clipping 
level, even this small amount of companding (practical values of J.L 

are 100 and 255) produces substantially higher ratings than those 
given the uniform quantizer. The companding advantage is well known 
and accounts for the presence of compandors in all PCM transmission 
systems. In terms of statistical signal theory, we may explain the 
advantage by saying that a nonuniform quantizer provides a better 
match to the probability distribution of speech amplitudes than a 
uniform quantizer. A perceptual explanation is that the low-level 
portions of a speech signal carry the most information. With A and B 
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given, a nonuniform quantizer codes low-amplitude samples with a 
smaller step size (and, therefore, lower NG) than the corresponding 
uniform quantizer. 

8.2 Objective measures 01 distortion 

Figure 11 shows, for coders with uniform quantizers, total sin as a 
function of A. There are striking differences between these curves and 
Fig. 9. The most important differences are in the locations of the 
maximum points on corresponding curves and the substantially 
steeper slopes to the right of the maxima in Fig. 11. Both of these 
differences reflect the fact that NC increases very rapidly from zero as 
the clipping level decreases from A = 2048, while, by contrast, listener 
opinions are relatively insensitive to clipping until A < 512. 

The disparity between Figs. 9 and 11 suggests that even with B 
constant, sin, the usual engineering measure of quantizer quality, 
is a poor guide to subjective ratings, mainly because the mean-square 
clipping is a poor predictor of listener ratings. A more useful measure 
of clipping distortion is clipping probability, which we have measured 
as the percentage of samples clipped in an utterance. P varies with A 
in the manner shown in Fig. 12. Observe that, like the ratings, P 
changes slowly as A decreases from 2048 and that it is most sensitive 
to changes in A when A < 512. These similarities account for the 
accuracy of the regression formulas in Table V, which have as in-

CLIPPING LEVEL 

Fig. ll-Total sin as a function of clipping level at a constant number of bits. 
Circles indicate the maximum sin at each bit rate. 
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dependent variables P and the signal-to-noise ratio Q of the granular 
quantizing noise NG. These formulas, based on the notion of two 
perceptually distinct distortions, are more useful predictors of subj ec­
tive quality than is total sin, which is based on the fallacious assump­
tion that listeners attend only to the difference between quantizer 
input and output with no regard to the components of this difference. 

8.3 Optimum quantizers 

Given a companding law and a fixed number of bits per sample, 
there is an optimum quantizer with overload point A * that provides 
the best mixture of clipping distortion and granular noise. For 
A < A *, clipping is the predominant type of distortion; for A > A * 
granular noise predominates. A circle in Fig. 9 indicates the subjec­
tively optimum overload point for a given bit rate. As the number of 
bits per sample increases, so does A *. In high-resolution quantizers, 
it is possible to have low granular noise and very little clipping simul­
taneously. Notice that the optimum points in Fig. 9 are all one or 
two octaves to the right of the corresponding points in Fig. 11. The 
experiment demonstrates that listeners are more tolerant of clipping 
than sin measurements suggest. In addition, the curves in Fig. 9 are 
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considerably broader than those in Fig. 11, which indicates that 
listeners are relatively insensitive to changes in A in the region of A *. 

This observation relates directly to the quantizer dynamic range 
problem. While in the experiment we have held the speech power 
fixed and varied A, we would have obtained the same distortions by 
holding A fixed and changing the speech signal level. It follows that 
the horizontal axes that we have labeled "clipping level" can, for a 
single quantizer, be renamed "speech level," which increases from 
left to right. Figure 11 shows that a uniform quantizer has near­
optimum signal-to-noise performance for only a narrow range of 
speech levels. By contrast, we see in Fig. 9 that listeners give nearly 
optimum ratings over a much wider range of input powers. 

IX. CONCLUSIONS 

Our results lead to several general observations regarding the subjec­
tive evaluation of speech degraded by digital coding. First, our data 
indicate that when the degraded speech includes certain types of 
digital signal distortions, such as peak clipping, then total sin is a 
poor objective indicator of subjective speech quality. For the coders 
we studied, a simple linear combination of two objective measures 
was a good predictor of the subjective quality of speech with quantizing 
and clipping distortions; however, we do not know of any single 
objective measure which would be a good composite indicator of 
subjective speech quality for all types and combinations of digital 
signal distortions. Second, because some types of digital signal distor­
tions seem to be perceptually distinct, it seems unlikely that the 
subjective quality of digital speech can be evaluated by reference to a 
single type of analog or digital signal distortion, such as speech­
dependent noise. And third, because coders are optimized by trading 
off different types of distortions, it follows that the important cases to 
study are those where distortions occur in combination rather than 
singly. This implies that knowing the relationships between subjective 
speech quality and various types of reference-signal distortions 
occurring singly-be they digital or analog-may be of limited value 
for predicting the subjective quality of coded speech if most practical 
coders produce speech degraded by combinations of distortions. These 
observations should be kept in mind by designers who must struggle 
with the problem of how various parameters of their coders affect the 
subjective quality of the speech. 
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An extension of a method of Chen and Lahlum l for estimating the 
distributions of high rain rates is described. Through application of the 
statistical theory of extremes to available yearly maximum rain-rate data, 
a reasonably accurate distribution is obtained. The calculated results 
agree well with previously obtained 20-year data. Application of this 
method to Weather Bureau Rainfall I ntensity-Duration-Frequency Curves 
has yielded 50-year distributions of 5-minute rain rates for 36 locations 
in the western United States; others can be similarly obtained. Such 
long-term rain-rate distributions are valuable for microwave radio-path 
engineering, especially in the western United States where shorter-term 
data sources are inadequate. 

I. INTRODUCTION 

References 2 and 3 describe a procedure for obtaining long-term 
(~20 years) distributions of 5-minute rain rates from data published 
by the National Climatic Center.4 Such distributions have been ob­
tained for 202 locations in the eastern and mid\vestern United States 
and applied to path engineering of II-GHz radio links. 

However, the excessive short duration rainfall data4 on which these 
distributions are based contain only rainfalls that exceed an excessive 
rainfall threshold defined by the National Climatic Center.2,3 For 
example, the threshold is 75 mm/hr for 5-minute intervals. In low 
rain-rate areas, such as Oregon and Washington, almost all rainfalls 
do not exceed the threshold and, hence, are not included in the excessive 
short-duration rainfall data. For example, at Spokane, Washington, 
the 5-minute rain rate exceeded the 75 mm/hr threshold only once in 
the 20-year period from 1953 to 1972. This data source, therefore, is 
an unsatisfactory basis for radio-path engineering in such areas. On 
the other hand, processing other longer-term data-say 50 years-is 
tedious and costly. This has motivated the search for an alternative 
method. Fortunately, the statistical behavior of the extremes of a 
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random variable has been extensively investigated. 5- 10 This paper de­
scribes a method for obtaining distributions of high rain rates by 
applying this theory to the yearly maximum rain-rate data published 
by the National Climatic Center. 

In an unpublished work, Chen and Lahlum1 have applied the 
theoretical distribution of yearly maximum 5-minute rain rates and 
an empirical extrapolation to obtain the rain-rate distribution in the 
range of interest to radio-path engineering. In this paper, we extend 
Chen and Lahlum's method by incorporating the theoretical distri­
butions of yearly kth largest 5-minute rain rates for k ranging from 1 
to 12. The application of the higher-order statistics of extremes elimi­
nates the need for empirical extrapolation. 

In this paper, a 5-minute rain rate corresponds to the average value 
of the randomly varying rain rate in a 5-minute interval and is calcu­
lated as llH / T, where llH is the 5-minute accumulated depth of rainfall 
and T = 1/12 hour = 5 minutes. For illustration, only the statistics of 
5-minute rain rates are discussed in this report. The method is also 
applicable to other integration times. 
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Fig. I-Comparison of 20-year rain-rate distribution calculated by extreme 
statistics method (dashed line) with 20- and 22-year data (solid lines) for Newark, 
New Jersey. The difference between the 20- and 22-year data also indicates the 
instability of high rain-rate statistics. 
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Fig. 2-Comparison of 20-year rain-rate distribution calculated by extreme 
statistics method (dashed line) with 20- and 22-year data (solid lines) for Wilmington, 
North Carolina. The difference between the 20- and 22-year data also indicates the 
instability of high rain-rate statistics. 

II. THE STATISTICS OF EXTREMES 

Let R be the randomly varying 5-minute rain rate and Rk be the 
kth largest 5-minute rain rate in a given year. In other words, Rl is 
the yearly maximum 5-minute rain rate, R2 is the yearly second largest 
5-minute rain rate, etc. The value of Rk varies from year to year, and 
the probability distribution of Rk is the subject of the statistics of the 
kth extreme. 

lVlany sets of rain-rate datall- 15 indicate that rain-rate distributions 
in the moderate and low rain-rate region can be closely approximated 
by the lognormal distribution. In the tail region, the time bases are 
usually insufficient to yield stable results for testing the lognormal 
hypothesis. Figures 1 and 2 show instability at extreme values occurring 
in 20-year time bases. We will assume that the rain-rate distributions 
are lognormal and proceed to shmv that the calculated distributions of 
extreme rain rates agree well with the data as displayed in Figs. 1 
through 9. 

Let 
x = In R, (1) 
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Fig. 3-Comparison of 20-year rain-rate distribution calculated by extreme 
statistics method (dashed lines) with the 20-year data (solid line) at La Guardia 
Airport, New York, New York. 

and 
(2) 

The lognormal hypothesis for R is equivalent to the statement that x 
is (approximately) normal. The distribution of the kth extreme, Xk, 
as derived by Cramer8 is 

where 

k-l e-Ny 
1 - e-e-V L -­

N=O N! 

y = a(X - U) 

(3)* 

(4) 

and is called the reduced variate. In this expression, a and U are scale 
and location parameters, respectively, and are related to the sample 
mean and sample standard deviation of Xl. Notice that the distribution, 
P(Xk ~ X), for any k, is completely determined by the t\vo parameters 
a and U. These two parameters can be calculated from the measured 

* The cumulative distribution function (3) is obtained by integrating the prob­
ability-density function derived by Cramer in Ref. 8. 
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yearly maximum rain-rate data. Let 

RI(j), } = 1,2,3, "', M (5) 

be the measured yearly maximum 5-minute rain rate in M years of 
measurements. For example, R I (7) represents the yearly maximum 
5-minute rain rate observed in the seventh year of an M year experi­
ment. Let 

(6) 

be the yearly maximum value of x in the }th year. From the measured 
data of XI(j), } = 1, 2, 3, "', M, we can obtain an approximate 
distribution of Xl. The parameters a and U can be estimated by fitting 
the theoretical P(XI ~ X) to the measured data. Gumbel6 has shown 
that a least-square fit of P(XI ~ X) to the data leads to the following 
formulas for calculating a and U: 
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Fig. 4-Comparison of 20-year rain-rate distribution calculated by extreme 
statistics method (dashed line) with 20-year data (solid line) for Pittsburgh, Pennsyl­
vania, and Chicago, Illinois. 
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and 

where 

is the sample mean of Xl, 

U - z = Xl -­
a' 

_ 1 ~ (.) 
Xl = M .i~1 Xl J 

is the sample standard deviation of Xl, 

Z (j) = -In ( -In M ~ 1 ) , 

20 YEARS (1953-1972) 

5-MINUTE RAIN RATE IN MM/HR 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Fig. 5-Comparison of 20-year rain-rate distribution calculated by extreme 
statistics method (dashed line) with 20-year data (solid line) for Harrisburg, Pennsyl­
vania, and New Orleans, Louisiana. 
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Fig. 6-Comparison of 20-year rain-rate distribution calculated by extreme 
statistics method (dashed line) with 20-year data (solid line) for Lynchburg, Virginia. 

and 

- 1 M 
Z2 = - L [Z(j) ]2, 

M i=l 
(14) 

(15) 

Thus, we have all the necessary formulas for calculating P(Xk ~ x). 
To obtain the rain-rate distribution, we substitute (2) into (3) to yield 

where 

k-l e-Ny 
P(R k ~ r) = 1 - e-e- II L -­

N=O N! ' 

y = o{(ln r) - UJ. 

(16) 

(17) 

Therefore, the time that Rk will exceed the threshold r, on long-term 
average, is 

T(Rk > r) T X P(R k ~ r) 

1 
k-l e-Ny 1 

T X 1 - e-e-1I L --, 
N=O N. 

(18) 

where T = 5 minutes is the rain-gauge integration time. Furthermore, 
in any given year, Rk and Rz will never occur in the same 5-minute 
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interval if k =;t. l. This means T(Rk ~ r) for various order k can be 
summed to yield an approximation to the original rain-rate distribution 
in the extremal region; i.e., 

s 
T(R ~ r) ~ L T(Rk ~ r) (19) 

k=l 

for high rain rates. 
The only input required for the calculation is the yearly maximum 

5-minute rain rates, 

R 1(}), i = 1,2,3, "', M, 

which can be obtained from National Climatic Center publications.4 

III. COMPARISON OF CALCULATED AND MEASURED RESULTS 

Figures 1 through 6 display the comparison of the distributions of 
high rain rates calculated via statistics of extremes from the data for 
eight locations. The number of years M is 20 (from 1953 to 1972). In 
these figures, the solid lines represent the data obtained by the method 
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described in Refs. 2 and 3, whereas the dashed lines are the distribution 
calculated by the theory of extremes. 

In Fig. 3, the value of S in eq. (19) is varied from 1 to 12. For S = 1, 
T(RI ~ r) is the distribution of yearly maximum 5-minute rain rate 
and is approximately equal to T(R ~ r) only in the extremal region 
(beyond 160 mm/hr). As r decreases, T(RI ~ r) deviates significantly 
from T(R ~ r), limiting at the 5-minute-per-year level as r approaches 
zero. The basis for this saturation is that there is only one yearly 
maximum 5-minute rain rate (with 5-minute duration by definition) 
in any given year. It is obvious that the yearly maximum 5-minute 
rain rate can exceed any threshold by no more than 5 minutes per 
year. Similarly, for S = 2, T(RI ~ r) plus T(R2 ~ r) is limited to a 
10-minute-per-year level as r approaches zero. However, Fig. 3 shows 
that the applicable range of approximation (19) increases rapidly 
with S. 

For engineering terrestrial radio paths, we are interested in the 
range of rain-rate distributions below 50 minutes per year, because a 
single radio hop outage exceeding 50 minutes per year is considered 
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rates calculated by extreme statistics method with measured 20-year (1953-1972) 
data for Pittsburgh, Pennsylvania. 
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rain rates calculated by extreme statistics method with measured 20-year (1953-1972) 
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undesirable. Figure 3 shows that using S = 12 in eq. (19) includes 
the range of interest to terrestrial radio-path engineering. 

Figures 1 to 6 show similar close agreement between the calculated 
results and the data. 

The advantage of using the extreme statistics method is its sim­
plicity; i.e., it is much easier to obtain the extreme-statistics results 
from the set of 20 maximum yearly rain rates than to obtain the other 
displayed results which require analyzing all heavy rainfalls in each 
year. 

IV. FIFTY-YEAR DISTRIBUTIONS OBTAINED FROM RAINFALL 
INTENSITY-DURATION-FREQUENCY CURVES 

Rainfall intensity-duration-frequency curves published by the 
Weather Bureau16 were obtained from approximately 50 years (1900-
1950) of rain-rate data processed in accordance with the statistical 
theory for distribution of yearly maximum rain rate by the Gumbel 
method. 6 In other words, these curves represent peRl ~ r), where RI 
is the yearly maximum rain rate. The return period Q(R I ~ r), which 
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is the reciprocal of peRl ~ r), is labeled on each curve; i.e., 

Q(RI ~ r) = P(Rl
l ~ r) years. (20) 

These curves cover the range-of-return period from 2 to 100 years and 
rain-gauge integration time T (i.e., the duration) from 5 minutes to 
24 hours. We considered only the 5-minute rain-rate statistics in 
this report. 

Since these curves represent peRl ~ r), the two parameters a and 
U in eq. (17) can be estimated by fitting the theoretical peRl ~ r) 
to two points on the intensity-duration-frequency curves. Once a and 
U are obtained, we can calculate a distribution of high rain rates by 
eqs. (18) and (19). However, one adjustment is needed in this process. 
Gumbel6 has shown that as the number of years 111 approaches infinity, 
Z and (Jz in eqs. (13) and (15) approach the following asymptotic values 

lim Z = 'Y = Euler's Constant 
1.1 -+ 00 ~ 0.5772 

7r 
lim (Jz = J

6
£;· 

1.1-+00 '\fO 

(21) 

(22) 

The corresponding asymptotic forms for a and U are 

1
. 7r 
1m a = a oo = ~, 

1.1-+00 '\f6.(Jx 
(23) 

and 

lim U = U 00 = Xl - -L. (24) 
111 -+ 00 a oo 

The rainfall intensity-duration-frequency curves were obtained using 
the asymptotic values, a oo and U 00, even though the number of years 
Mare 50 or less. Such approximations introduce slight errors and can 
be corrected by the following relationships among a oo , U 00, a, and U: 

-J6 
a = a oo • (J z • -

7r 
(25) 

(26) 

To relate theoretical peRl ~ r) with the intensity-duration-frequency 
data, we combine eq. (16) and (20) to give 

Q (R I ~ r) = 1 _ ~-e 11 , (27) 

where 
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The two parameters, <Xoo and U 00, can be determined by equating (27) 
to two sets of data, say (ra, Qa) and (rb, Qb), read from the intensity­
duration-frequency curves. It is easily shown that the relationships are 

Aa - Ab (29) 
Woo = In r a - In rb ' 

and 

Uoo = 
A a In rb - A b In r a 

(30) 
Aa - Ab 

, 
where 

Aa = -In [In Qa c: 1 ] , (31) 

and 

Ab=-ln[ln~ l Qb - 1 
(32) 

By substituting <xoo and U 00 into (25) and (26), we obtain <X and U for 
the 50-year data. Substituting <X and U into (18) and (19) gives the 
50-year distribution of 5-minute rain rates. 

The time bases (i.e., M) in the intensity-duration-frequency curves 
are mostly 50 years or less. However, several locations have time bases 
much shorter than 50 years. For example, the time bases are 18, 16, 
and 17 years for l\1t. Tamalpais, California; Tonopah, Nevada; and 
Yakima, Washington, respectively. Due to this limitation, we have 
chosen Qa = 2 years and Qb = 10 years for calculations of <X and U. 
Since Qa and Qb are fixed, we then need only three numbers: M, ra, 
and rb for each location, read from the intensity-duration-frequency 
curves to calculate the rain-rate distribution. 

For example, for New York City, the three numbers are: 

M = 49 years (1903-1951) 

ra = 4.4 inches/hr = 111.8 mm/hr 

rb = 6.5 inches/hr = 165 mm/hr. 

Substituting ra and rb into eqs. (29) and (30) yields 

<xoo = 4.828 

Uoo = 4.64. 

Substituting 111 into eqs. (12) through (15) and <xoo and U 00 into (25) 
and (26) gives 

a = 4.363 

U = 4.63. 

The 49-year (1903-1951) distribution of 5-minute rain rate calculated 
from this <x, U pair for New York City is very close to the 20-year 
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(1953-1972) data, as shown in Fig. 7. Figure 8 shows similar close 
agreement between 50-year and 20-year distributions in Pittsburgh, 
Pennsylvania. 

However, Fig. 9 shows an appreciable difference between 36-year 
and 20-year distributions for Chicago, Illinois. This appreciable 
difference, the irregular shape of the 20-year distribution in Fig. 9 and 
the instability noted in Figs. 1 and 2 indicate that a 20-year time base 
with a single rain-gauge measurement may not be sufficient to guaran­
tee a stable distribution for extremely high rain rates. If more stable 
results are required, the 20- and 50-year data may be combined to give 
a 70-year distribution. 

The calculated curves (dashed lines) in Figs. 1 through 6 are based 
on 20-year data from 1953 to 1972 in Ref. 4, whereas the calculated 
curves (dash-dot lines) in Figs. 7 through 9 are based on approximately 
50 years of data in Ref. 16. 

V. CONCLUSION 

A method has been described for calculating the distribution of high 
rain rates by applying the statistical theory of extremes to the available 
yearly maximum 5-minute rain-rate data. Figures 1 through 9 show 
that the calculated distributions agree closely with the data in the 
heavy-rain region of interest to radio-path engineering. The virtue of 
this method is that only yearly maximum rain-rate data are required 
to generate satisfactory results for radio-path engineering. The rainfall 
intensity-duration-frequency curves16 provide approximately 50 years 
(1900-1950) of such data for 203 locations in the United States. 
Furthermore, a new publication on "lVIaximum Short-Duration Pre­
cipitation,"17 for approximately 300 U. S. locations issued annually by 
the National Climatic Center since 1973, provides additional yearly 
maximum rain-rate data. Therefore, long-term (~50 years) distri­
butions of high rain rates for 203 U. S. locations can easily be obtained 
by this method. 
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Distinguishing Stable Probability Measures 
Part I: Discrete Time 
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A sequence of N, independent, identically distributed, random variables 
is observed froJrL one of two stable distributions with known parameters. 
The likelihood-ratio test for discriminating between these two distributions 
is found explicitly and performance limitations are determined. 

When the two distributions differ only in location, the likelihood-ratio 
test is sensitive to whether· the distribution is nongaussian stable 
(0 < a < 2) when nonlinear soft limiting of large deviations is used, or 
gaussian stable (a = 2) when linear processing is used. 

When the two distributions differ only in scale, the likelihood-ratio 
test is sensitive to whether 0 < a < 2 when nonlinear soft limiting of 
large deviations is used, or gaussian (a = 2) when a chi-squared test 
is used. 

The analysis of the two remaining cases, distinguishing between one of 
two characteristic indices, and between one of two skewness parameters, 
parallels the analysis of distinguishing between one of two scale parameters 
and is only touched upon briefly. 

I. INTRODUCTION 

The problem of classifying a series of observations as coming from 
one of two or more possible classes or hypotheses has received a great 
deal of attention in the statistical and engineering literature. In many 
physical situations, a variety of disturbances corrupt the observations; 
rather than model each disturbance separately, it is often argued on 
physical grounds that the disturbances add and are independent, and 
the central limit theorem is invoked to model this sum using a gaussian 
distribution. This approach is adequate as long as the sum is not 
dominated by one or a few of the summands; if one or a few of the 
summands does dominate the sum, the disturbances can possibly be 
modeled as a stable distribution, one member of a family of probability 
distributions which includes the gaussian, by invoking a frequently 
overlooked generalization of the central limit theorem. 
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The gaussian distribution has enjoyed great popularity in hypothesis 
testing because it is analytically tractable and because it is the only 
stable distribution with finite variance. Although it may be argued 
that mathematical nlodels with infinite variance are physically in­
appropriate, this view conveniently overlooks the fact that the gaussian 
distribution is unbounded, which is also a physically inappropriate 
mathematical model. The gaussian model may adequately model dis­
turbances over a narrow range of amplitudes; an infinite-variance, 
stable-distribution model may adequately model disturbances over a 
larger range of amplitudes. Both distributions may be physically in­
appropriate mathematical models, but the infinite-variance distribu­
tion may, in this sense, be the better model. This paper examines 
several stable-distribution hypothesis-testing problems. 

The primary motivation for this work on stable probability measures 
is drawn from a recent statistical analysis l of noise on various telephone 
lines. This analysis indicated telephone noise may be adequately 
modeled (on the lines examined) by a sum of sinusoids at various 
frequencies plus a purely nondeterministic random process that is well 
characterized by a stable distribution (either gaussian or nongaussian 
stable). Since only a small number of lines were examined, this analysis 
is preliminary, awaiting other independent investigations. * 

Indirect motivation for this work is drawn from detecting electro­
magnetic signals at frequencies of 100 kHz or less. Noise at these 
frequencies is claimed to be nongaussian; unfortunately, adequate sta­
tistical evidence to substantiate this claim is lacking, with one 
exception.2 

A final source of motivation is found in financial problems. Over the 
last decade, a large body of statistical evidence has been amassed which 
indicates that the differences of logarithms of successive equally spaced 
prices of common stocks can be adequately modeled using stable 
distributions. 3,4 

II. OUTLINE OF DISCUSSION t 

A sequence of N random variables is observed; for simplicity, it is 
assumed they are independent and identically distributed-drawn 
from one of two stable distributions with known parameters (charac­
teristic index 0 < aJ ~ 2, skewness parameter -1 ~ (3i ~ 1, scale 
parameter "Ii > 0, location parameter - 00 < oi < 00; j = 0, 1).+ It 

* Applications of this work to removing telephone noise will be presented elsewhere· 
t These results were first presented at the Eighth Annual Princeton Conference on 

Information Sciences and Systems, March 28-29, 1974, p. 405, and at the 1975 
Johns Hopkins Conference on Information Sciences and Systems, April 2-4, 1975, 
pp.49-51. 

+ Both subscripts and superscripts will be used to denote the stable-distribution 
parameters under hypothesis H j (j = 0, 1); these parameters will be discussed more 
fully in Section III. 
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is well known that the likelihood-ratio test is a decision rule that is 
optimum with respect to either a Neyman-Pearson or Bayes criterion. 5 

Here, the likelihood ratio is found explicitly and performance limita­
tions of the tes~ are determined. The extension of these results from 
two to M stable distributions is well known and will not be dealt with 
here. 5 

The (log) likelihood decision rule, because of the independence as­
sumption, takes the following simple form: 

N Hl 
A' = L l (r i) ~ L' 

i=l Ho 

where {rdf are the N observed random variables, drawn from a dis­
tribution with probability density p (x ; ai, (3i, "Ii, oi), and L' is a thresh­
old. Since l(ri) can be rewritten as the sum of four functions, 

each of which tests for only one different parameter, this suggests 
studying each of these four situations separately. 

Two special cases are examined in detail: when the distributions 
differ only in location and when they differ only in scale. The proba­
bilities of error of the first and second kind are found for three analyti­
cally tractable cases (gaussian, Cauchy, and Pearson V) by calculating 
the characteristic function of the log likelihood probability measure 
induced under each hypothesis; the general case is apparently analyti­
cally intractable, and quite expensive to tackle numerically at present. 
Exponentially sharp upper and lower bounds on both types of prob­
abilities of error, and also the total probability of error, can be simply 
derived from the Laplace transform of the log likelihood probability 
measure induced under each hypothesis. These bounds are found 
analytically in three cases, and relatively inexpensive numerical results 
are presented for selected other cases. 

When the two distributions differ only in location, the likelihood­
ratio test is shown to be extremely sensitive to whether the distribution 
is nongaussian stable (0 < a < 2), when nonlinear soft limiting of 
large deviations is employed, or gaussian (a = 2), when linear process­
ing is used. When the distribution is nongaussian stable, performance 
is found analytically to be quite sensitive to whether a linear (sub­
optimum) or likelihood (optimum) decision rule is used: the total 
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probability of error for the linear test behaves asymptotically (N » 1) 
as 0 (ANI-a), while the total probability of error for the likelihood-ratio 
test is upper bounded by exp( -BN + C), where (A, B > 0, C) de­
pend on parameters of the two distributions and are independent of N. 
(For related work that complements the results in our discussion, see 
the list of references and particularly Refs. 6, 7, and 8.) 

When the two distributions differ only in scale, the likelihood-ratio 
test is extremely sensitive to whether the distribution is nongaussian 
stable when nonlinear soft limiting of large deviations is used, or 
gaussian when a chi-squared test is used. Performance for nongaussian 
stable distributions is extremely sensitive to whether a suboptimum 
(chi-squared) or optimum (likelihood-ratio) test is used: the total 
probability of error for the chi-squared test behaves asymptotically 
(N)> 1) as O(FN-(a/2-l), while the total probability of error for the 
likelihood-ratio test is upper bounded by exp ( - G N + H), where 
(F, G > 0, H) depend on parameters of the two distributions and are 
independent of N. 

The analysis of the two remaining cases, distinguishing between one 
of two characteristic indices and between one of two skewness parame­
ters, closely parallels the analysis that distinguishes between two scale 
factors and is only touched upon here. 

The continuous time analogs of these discrete-time problems are 
studied, where a sample function from one of two stable, stationary, 
independent-increment processes is observed for a finite time interval 
in the second part of this work. In contrast with this \vork, the analysis 
is simpler, and it is possible to obtain many results analytically in 
closed form. 

Section III deals with various mathematical preliminaries. A brief, 
selective, tutorial overview of the central limit theorem, infinitely 
divisible distributions, and independent-increment processes is pre­
sented to place this work in perspective (as well as to fix notation). No 
attempt is made to be exhaustive in the discussion. 

The length of the discussion is due to the many special sets of 
parameter values that must be taken into account to be thorough. The 
main reason for this completeness is to adequately cover all cases where 
uncertainty is modeled using a distribution arising from a central­
limit-theorem type of argument. The main contribution here is the 
results per se, many of which are presented here for the first time, which 
unfortunately often involve either tedious algebraic manipulation or 
machine calculations. It is hoped this will not obscure the surprising 
(at first glance) nature of the results: the quite singular behavior of 
both the log-likelihood-ratio test and (perhaps more importantly) its 
performance, for the gaussian vs nongaussian stable distribution, in 
distinguishing either location or scale. The generalization of these two 
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results to a wide class of infinitely divisible distributions (which 
include the family of stable distributions) is immediate, and is sketched 
at the end of Section IV. 

III. MATHEMATICAL PRELIMINARIES 

The reader is assumed to be familiar with the fundamentals of 
measure theory and probability theory, as found in standard 
references.9- 12 

Underlying the discussion to follow are: 

(i) The notion of a probability space: a triple {Q, A, PJ, where 
Q is the set of elementary events, A is a o--algebra of Borel 
measurable subsets of Q, and P is a probability measure on A. 

(ii) The definition of a stochastic process x(t, w) defined on a 
parameter set E (henceforth called time), with tEE, w E Q, 

which is a function mapping the direct product E X Q into the 
real line, and the associated probability measure induced by 
x(t, w). 

(iii) The measure theoretic concept of absolute continuity of one 
measure with respect to another, and the measure theoretic 
Lebesgue decomposition theorem. 

3.1 Infinitely divisible distributions and independent-increment processes 

In this section, various properties of infinitely divisible distributions 
and independent-increment processes are briefly revie\ved. The inter­
ested reader is referred to the literature for much more information.12-

15 

This tutorial section serves several purposes: 

(i) It gathers together for convenient reference all material on 
stable distributions to be used in Part II. 

(ii) It fixes notation. 
(iii) It emphasizes the central role played by stable distributions 

in understanding both the central limit theorem and the Levy 
decomposition of the infinitely divisible distributions. 

(iv) Finally, it alerts the reader to the rich structure and variety 
of infinitely divisible distributions, in general, and stable 
distributions, in particular, in the hope that they will find 
greater use in modeling uncertainty. 

The characteristic function of a (first-order) probability distribution 
P(x)* is defined as 

Cz(v) = f eivzdP(x) = E(eivz) a.s. 

* Upper case P ( .) will denote a probability distribution, while lower case p ( .) 
will denote the associated probability density function; all probability distributions 
examined here in any detail are absolutely continuous with respect to Lebesgue 
measure. 
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It can be shown that two probability distributions are identical if and 
only if their characteristic functions are identical (Ref. 14, page 28) ; 
thus, there is a one-to-one correspondence between characteristic func­
tions and probability distribution functions. A random variable is 
said to be infinitely divisible if, for every natural number n, the random 
variable can be represented as the sum of n independent identically 
distributed (i.i.d.) random variables, or equivalently if its charac­
teristic function can be written as 

n = 1,2, "', 

where ex is the characteristic function of some probability distribution 
which may depend on n. Two well-known examples of infinitely 
divisible random variables are the gaussian [taking values on 
(- 00, 00)] and the Poisson (taking values at nonnegative integer 
multiples of h) : 

Gaussian: Cx(v) = foo eixv _1_ exp{ - (x - mY/2u2 }dx 
-00 ~27rU2 

= exp (imv - tu2V2) 

00 'Ake-X 
Cx(v) = L -,- (eivh)k = exp['A(eivh - 1)]. 

k=O k. 
Poisson: 

De Finetti conjectured that any infinitely divisible distribution could 
be written as the convolution of a gaussian and a generalization of the 
Poisson; the resulting characteristic function can be written as 

In CxCv) = imv - tu2v2 + f (e ivu - l)dF(u), 

where the measure F(u) specifies at what points the Poisson variable 
takes on nontrivial values. However, this conjecture was shown to 
hold only for a subset of the infinitely divisible distributions by Levy; 
if one desires a canonical form of the characteristic function of an 
infinitely divisible distribution, then the following remarkable theorem 
can be proved (Ref. 13, page 76). 

Theorem (Levy): Any infinitely divisible characteristic function can be 
uniquely written in the canonical form 

j o- (eiVU _ 1 _ ivu 2) dv_(u) 
-00 1 + u 

+ f~ (e iVU - 1 - 1 ~UU2) dv+(u), 

where D is a location parameter (- 00 < D < 00), u2 > 0 is the variance 
of the gaussian component, and (v_, v+) are called the Levy measure of the 
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generalized Poisson distribution. The conditions the Levy measure must 
satisfy are (i) v_ and v+ are nondecreasing on the intervals (- 00, 0) and 
(0, 00), respectively, (ii) v_( - 00) = v+( 00) = 0, and (iii) for every 
finite E > 0, 

f~: u2dv_(u) < 00 

Some examples now follow: 

Examplel (Poisson): 0= ivh,/\/(l + h2), 0"2 = 0, v_ = 0, - 00 < u < ° 

1
_'/\ O<u<h 

v+ = ° h ~ u < 00' 

.. In Cx(v) = '/\(e ivh - 1). 

Example 2 (Cauchy): 0"2 = 0, 0 = 0, 

-00 <u<O 

-c 
v+=-

1rU 
O<u< 

.. In C x (v) = iov - c 1 v I. 

00 • , 

Example 3 (Ga1nma): 0"2 = 0, v_ = 0, - 00 < u < ° 
rct:J e-qu 

o = p J 0 1 + u2 du < 00 

dv+(u) = pe-qUd(ln u); 

( 
iv)-q 

Cx(v) = 1 - Ii . 

Most of the attention here will be focused on one particular class of 
infinitely divisible distributions, the stable distributions. 

Definition: A probability distribution is said to be stable if, for all 
al > 0, a2 > 0, b1, b2, there exist constants a > 0, b such that 

P(alx + b1)*P(a2x + b2) = P(ax + b), 

where * denotes convolution. In other words, stable distributions are 
closed under the action of the group of linear affine transformations on 
the real line. 

An important reason for examining stable distributions is found in 
the central limit theorem (Ref. 13, page 162; Ref. 15, page 168): 

Theorem: P(x) is a limiting distributionjor a SUln oj suitably scaled and 
translated, independent, identically distributed, random, variables if and 
only if P(x) is stable. 
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In many practical problems, a large number of independent dis­
turbances add and introduce uncertainty in a measurement. To 
analyze the effects of uncertainty, it is often convenient to replace this 
sum by its limiting distribution, which must be a stable distribution. 
The reader is referred to the bibliography for references on exactly 
'what conditions govern the limiting distribution being gaussian vs 
nongaussian stable (Ref. 12, pages 171-190; Ref. 15, pages 165-169). 

Stable distributions are infinitely divisible; the associated Levy 
measures can be shown to be v_(u) = c_lul-a , v+(u) = -c+u-a 

(Ref. 13, pages 164-168; Ref. 14, pages 128-133). Requirement (i) 
that the measure be nondecreasing leads to a > 0, while the final 
requirement (iii) forces a < 2. Substituting this into the canonical 
representation of the characteristic function of an infinitely divisible 
distribution and explicitly evaluating the integral over the Levy 
measure results in the following theorem: 

Theorem (Ref. 13, page 164; Ref. 14, page 136): The characteristicfunc­
tion of a stable distribution can be expressed as 

. { - 'Y I v I a [ 1 + i{J Th tan ( 1f'2
a 
)] + iov 

In E(e tXv
) = 

- 'Y I v I [1 + i{J Th ~ In I 'YV I ] + iov 

a ~ 1, 

a = 1, 

where 0 < a ~ 2, -1 ~ {J ~ 1, 'Y > 0 ('Y == ca ), - 00 < 0 < 00. For 
o < a < 1, {J = c- - c+/c_ + c+; for 1 ~ a ~ 2, {J = c+ - c_/c+ + c_. 
Note that for a = 2, the characteristic function, as a complex-valued 
function of v, is Coo, but for 1 < a < 2, it is only Cl, and for 0 < a ~ 1 
is only Co. 

For fixed {J ({J ~ 0), the characteristic function is discontinuous (as 
a function of a) in the neighborhood of a = 1. One approach to this 
problem is to rewrite the characteristic function (a ~ 1) as 

In E(e ixv
) = -'Ylvl a [1 + i{J Th tan (1f'2a)] 

+ iv (0 + 'Y{J tan 1f'2
a 

- 'Y{J tan 1f'2
a 

) 

- 'Y I v I a + i'Y{Jv tan 1f'a [1 - I v I a-I] 
2 

. ( 1f'a) + W 0 + 'Y{J tan 2"" . 

If a new parameter 0' == 0 + 'Y{J tan (1f'a/2) is defined, then for {J fixed 

lim tan 1f'2
a [1 - I v I a-I] = ~ In I v I . 

a~l 1f' 
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By inspection, this form of the characteristic function is not discon­
tinuous in the neighborhood of a = 1. 

Since the characteristic function is in Ll ( - 00, 00), all stable dis­
tributions are absolutely continuous with respect to Lebesgue measure, 
and have analytic probability density functions. Four parameters com­
pletely specify a stable distribution: 

(i) a, the characteristic index of the stable distribution P (X; a, (3) is 
associated with the asymptotic behavior of P (X ; a, (3). For 
-1 < {j < 1, 0 < a < 2, 

lim ! X ! a P ( - X) = k_ > 0, lim Xa[1 - P(X)] = k+ > o. 
X--co x-co 

For {3 = -1 (a similar argument holds for (3 = + 1), Lipschutz16 and 
Ibragimov and Linnik (Ref. 17, pages 62 to 66)* have shown that for 
1 < a < 2, 

P(X) = O{k(a) IX! a/2(1-a) exp[ -c(a) IX! a/a-I]} as X ~ - 00 

lim Xa[1 - P(X)] = k+ > 0, 
x-co 

while for 0 < a < 1, 

P(X) = 0{k(a)Xa/2(1-a) exp[ -c(a)X-a/l-a]} as X 1 0+ 

lim Xa[1 - P(X)] = k+ > 0, 
x-co 

where k(a), c(a) are constants which depend only on a. For the asym­
metric Cauchy probability density function, it can be shown (Ref. 17, 
pages 57 to 60) that 

p(X; a = 1, 

(3 = -1) = 0 [ exp ( i ! X! - :e exp (71' ! X ! /2) ) ] X ~ - 00 

lim p(X; a = 1, (3 = -1)X2 = k+ > O. 
x-co 

(ii) {3 characterizes skewness of the distribution: if (3 = 0 the dis­
tribution is symmetric about x = S. Otherwise, 

lim 1 - P(X; a, (3) - P( -X; a, (3) = -{3 
X -HJ 1 - P (X; a, (3) + P ( - X ; a, (3) 

r P ( - X ; a, (3) 1 + (3 
x~ 1 - P(X; a, (3) = 1 - {3' 

For 1 < a < 2, the distribution is skewed to the left for -1 ~ (3 < 0, 
since P(S) < 1 - pea), with the degree of skewness increasing as {3 

.. Note typographical errors in eqs. (2.4.30) and Theorem (2.4.7), of Ref. 17. 
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decreases. It suffices to consider varying /3 over one half its range be­
cause from the characteristic function it follows that the probability 
density p(x) obeys the relation 

p(x; ex, /3, ,)" 0 = 0) = pC-x; ex, -/3, ,)" 0 = 0). 

(iii) ')' (or c ~ ')'1/ a) is a measure of the dispersion or spread of the 
distribution. 

(iv) 0 is a location parameter, and for 1 < ex ~ 2, 0 is the mean. 
Only three analytic closed-form expressions for stable probability 

density functions are known at present: 

Gaussian (ex = 2, -1 ~ /3 ~ 1): 

p(x) = _1 exp [_ (~)2] 
~471"C2 2c 

-00 < x < 00; 

Cauchy (ex = 1, /3 = 0): 

c 
p(x) = - [(x - 0)2 + C2J-1 

71" 
-00 <x < 00; 

Pearson V (ex = !, /3 = -1): 

{

I (X - 0 )-! [ c] 
p(x) = c -{2; -c- :xp - 2(x - 0) x ~ 0 

x<o 
and its conjugate density 

p(x; ex = !, /3 = 1, ,)" 0 = 0) = p( -x; ex = !, /3 = -1, ,)" 0 = 0). 

Series expansions are known for the remaining stable density functions 
(Ref. 14, pages 138-148): 

p(x; ex, /3, ')' = 1, 0 = 0) 

(-l)kr(~+l) 
= ! f ex X k - 1 sin k7l" (0 - ex) 1 < ex ~ 2, 

71" k=l k! 2ex 

p(x; ex, /3, ')' = 1, 0 = 0) 

= ! f (-l)kr(~ex + 1) X-ak-1 sin k7l" (0 - ex) 0 < ex < 1, 
7I"k=l k. 2 

P (x; ex, /3., ')' = 1, 0 = 0) 

= ! f (_~)k Xk [ (00 tk{sin (1 + (3)t}e-(2~/1r)tln tdt] * ex = 1, 
71" k=O k. Jo 

where 
tan (071"/2) = /3 tan (7I"ex/2), and x> o. 

* For asymptotic expansions for a = 1, see Ref. 17, Theorem 2.4.3 and Ref. 18. 
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The reader can check that the series for a = 2 reduces to the series for 
the gaussian, and the series for 0 < a < 1 and I {31 = 1 are zero on a 
half line (cf. Pearson V). For (0 < a < 1, -1 < (3 < 1) and 
(1 ~ a ~ 2, -1 ~ (3 ~ 1), stable probability densities have support 
on (- 00, (0). The series expansion for the density for 0 < a < 1 can 
be used as an asymptotic expansion for the density for 1 < a < 2 for 
I {31 ~ 1. It can be shown from the characteristic function directly that 
all stable distributions are unimodal (Ref. 13, pages 158 to 161; Ref. 
17, pages 66 to 76). 

Figure 1 is a plot of various stable probability density functions for 
fixed a (1 < a < 2) and several {3; for a near two, it is quite difficult to 
distinguish symmetric ({3 = 0) and asymmetric stable distributions. 
Figure 2 shows that around the mode, all stable distributions appear 
roughly gaussian, for 1 < a < 2 (note the logarithmic scale). 

For a in the neighborhood of two, the gaussian and nongaussian 
stable distributions are virtually identical around their mode, and it is 
only in the tails of these distributions that the differences are pro­
nounced. One crude measure of the point at which the gaussian and 
nongaussian stable distributions diverge is the point at which the first 
term in the asymptotic series (a < 2) equals the gaussian density: 
for a = 1.90, 1.95, 1.99, this occurs at 3.342, 3.635, 4.158 gaussian 
standard deviations, respectively. 

One reason stable distributions have attracted little attention in the 
mathematical modeling of uncertainty is found in the theorem from 
Ref. 14, page 169: A stable distribution with characteristic index a has 
all absolute moments of order p, ° < p < a < 2: E( I x I p) < 00. Con­
versely, E ( I x I p) does not exist, i.e., it diverges, for p ~ a, a < 2. 

This suggests (albeit heuristically) that stable distributions may find 
application in modeling uncertainty when, as the number of observa­
tions increases, for ° < a < 1, both the sample mean and sample 
variance "wander erratically," being dominated by one or a few ob­
servations, while for 1 < a < 2, the sample mean stabilizes but the 
sample variance does not [cf. Refs. 1, 2, 3, 4]. 

The generalization of these ideas from discrete time sequences of 
independent, identically distributed, random variables drawn from an 
infinitely divisible distribution to continuous time sample functions 
of an independent increment process is clear. The characteristic func­
tional of a stationary independent increment process can be uniquely 
written as 

In E[eiv[x(t)-x(s)] ] 

= (t - s) [iov - !U2V2 + 
/

0- ( ivu ) eivu - 1 - ---2 dv_(u) 
-00 1 + u 

+ [00 (e iVU 
_ 1 - ~) dv+(u)] 

Jo+ 1 + u2 
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for 0 ~ s < t < T. The parameters 0, (}"2, and (v_, v+) have been defined 
already. In words, any independent increment process can be decom­
posed into 

(i) A singular piece, called the drift, specified by o. 
0.4.--------------------------. 

0.3 

CHARACTERISTIC INDEX a = 1.5 
SKEWNESSPARAMETER~ 

~ = -0.75 
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~= 0.0 
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X 

Fig. l-(continued) 
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(ii) A gaussian component, a component with continuous sample 
paths that have unbounded variation with probability one 
(w.p.l), specified by (12. 

(iii) A generalization of the Poisson process called a jump process, 
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with sample paths that are constant except for simple jump 
discontinuities at random times with random amplitudes, 
specified by the Levy measure (v_, v+). 

A (separable) pure jump process, a stationary independent increment 
process with no gaussian component, has sample functions that are of 
bounded variation * with probability one if and only if 

jO-luldv_(u) + [1 udv+(u) < 00. 
-1 Jo+ 

An example of an independent increment process with bounded varia­
tion (w.p.I) is a stable independent increment process (0 < a < 1) 
while stable independent increment processes (1 ~ a ~ 2) have un­
bounded variation (w.p.I). The intuitive meaning of the Levy measure 
is that first proposed by De Finetti: the Levy measure specifies the 
density of the amplitudes of the jumps of the Poisson process, provided 
the process sample paths are of bounded variation (w.p.I). 

By allowing 0, (]'2, and (v_, v+) to depend upon time, a time-varying 
generalization of infinitely divisible distributions or nonstationary in­
dependent increment processes is obtained. By examining nonanticipa­
tive functionals of either a discrete time sequence of i.i.d. random 
variables drawn from an infinitely divisible distribution, or a con­
tinuous time independent increment process, a wide variety of lVIarkov 
processes are derived. Thus, the generalizations of the results presented 
here to many other situations may sometimes be immediate. The 
richness of this class of random processes suggests these results may 
find wide application. 

Historically, the mathematical study of independent increment 
processes concentrated first on the gaussian case, then on the stable 
case, and finally on the general case. To date, most of the engineering 
literature has concentrated on the gaussian case or the purely Poisson 
case, with the notable exception of FrostY It is hoped this work will 
suggest promising avenues of constructive research by studying the 
stable case, as well as shedding light on some of the quirks of the 
gaussian case. 

IV. DISCRETE TIME DETECTION OF TRANSLATES OF STABLE MEASURES 

One of two sequences of independent, identically distributed (i.i.d.), 
stable, random variables is observed, under one of two hypotheses 
(Ho, HI): 

rk = SI + nk 

rk = SO + nk 
1 ~ k ~ N. 

* The variation of a function J(t), 0 < t < T, is defined as sup l:f=OI I JCti+l) - J(ti) I 
where the supremum is over all possible partitions of the interval [0, TJ: 0 = to < tl 
< ... <tN = T. 
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The observed or received sequence is denoted {rdf, while {ndf is a 
sequence of i.i.d. stable random variables with known parameters 
(a, (3, ,)" 0 = 0); both SI and SO are known. The a priori probability of 
H j is denoted 7rj (j = 0, 1). (The extension of allowing s\ SO to depend 
on k is immediate and is not dealt with here.) 

The measures induced by {r k } f under H 0 and HI are clearly not 
mutually orthogonal. Two cases occur: for (0 < a < 1, -1 < (3 < 1) 
and (1 ~ a ~ 2, -1 ~ (3 ~ 1), the stable measures have support on 
the whole real line, and hence are equivalent. For (0 < a < 1, (3 = 1 
or -1), the stable measures have support on a half line, and hence one 
measure is absolutely continuous with respect to the other but not 
vice versa: the supports of the t\VO measures overlap except for the 
interval [SO, SI). In either case, since the measures are not mutually 
orthogonal, the decision rule, which as is well known minimizes both a 
Bayes criterion as well as a Neyman-Pearson criterion, is the likeli­
hood-ratio test. 5 The goal is to find the exact form of this test, and 
characterize its performance. * Performance here means calculating the 
probability that HI is chosen given that H 0 is true, and the probability 
that H 0 is chosen given that HI is true; these are called probabilities 
of error of the first and second kind, and are denoted P 10 and POI, 
respectively. A quantity \vhich is also of interest is the total probability 
of error, defined as (7rOPI0 + 7r1P 01) == PE. 

4.1 The likelihood-ratio test 

The structure of the optimum detector is handled in two separate 
cases. First, when (0 < a < 1, -1 < (3 < 1) or (1 ~ a ~ 2, 
-1 ~ (3 ~ 1), the likelihood ratio is always strictly positive and finite, 
and is 

where Pn( .) is the probability density of nk. An equivalent test is to 
compute the log likelihood ratio, 

where 

N HI 
A' = InA = L:l(ri) ~ InL = £1, 

i=1 Ho 

l(ri) = In Pn(ri - SI) , 
Pn(ri - SO) 

and this can be explicitly calculated using the series expansions de­
scribed earlier. Before doing so, it is worthwhile to examine two 

* A discussion of the power of this test (or any other test) is deliberately omitted. 

PROBABILITY MEASURES-I 1141 



analytically tractable cases: 

Gaussian (0: = 2, -1 ~ f3 ~ 1): 

- 00 < x < 00 • , 

The log likelihood test can be implemented using only linear process­
ing. The rule has the interpretation of comparing an energy-like 
quantity, the received signal suitably translated and squared, with a 
threshold. Equivalently, the test defines a hyperplane in RN, and de­
pending upon which side of the hyperplane (rl' "', rN) lies, HI or H 0 
is chosen. All of this is well known (see Ref. 5, pages 94-97 and 163-
173). 

Cauchy (0: = 1, f3 = 0): 

-00 <x < 00; 

Unlike the gaussian case, the Cauchy log likelihood detector operates 
nonlinearly on the observation. A straightforward Taylor series ex­
pansion of the log likelihood about ri = !(SI + SO) shows that for small 
perturbations about this point the log likelihood is linear in the perturb­
ing quantity. On the other hand, for large excursions in anyone 
observation, 

Ir i ~ sll » 1, Ir i ~ sOl » 1, 

this one term in the sum behaves as O(ri-l) or, in other words, very 
large excursions in the received signal are essentially (but not entirely) 
discarded; this type of behavior will be called soft limiting. Only for 
N = 1 does this test reduce to finding a hyperplane and determining on 
which side of the hyperplane the observation lies in order to choose 
HI or H o• 
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The cases (0 < a < 1, -1 < f3 < 1) and (1 ~ a ~ 2, -1 < f3 < 1), 
can now be examined; it is a straightforward exercise to substitute into 
the log likelihood the series expansions for stable probability density 

o 
o 
o 
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Fig. 3-Representative log likelihood functions (SI = + 10, SO = 0) (0: fixed, (3 
varying) ; scale factor c = 1.0; location parameter 0 = o. 

PROBABILITY MEASURES-I 1143 



10 
CHARACTERISTIC INDEX a = 1.9 
SKEWNESSPARAMETER~ 

8 -- ~ = -0.5 

--- ~= 0.0 
6 ---- ~ = +0.5 

4 

0 
0 2 
0 
:c 
:::i 
w 0 
~ 

:::i 
~-~ (!) 

0 -2 SIlo. 
--I ~~ 

~ 

-4 HI: r = sl + n 

HO: r = sO + n 

-6 sl = +10 

sO = 0 

-8 

-10 
-30 30 

Fig. 3-(continued) 

functions. Figures 3 and 4 show various representative log likelihood 
ratios [l(ri)] for (1 < a < 2, -1 <(3 < 1) with a fixed a and (3 
varying; Fig. 5 shows the same log likelihood ratios as in Fig. 4 with 
(3 fixed and a varying. Similar results hold in the remaining cases 
(0 < a <: 1, -1 < (3 < 1). 

Three points are emphasized here. First, the structure of the optimum 
(log likelihood) detector is very sensitive to whether the underlying 
distribution is gaussian or nongaussian stable; this is not surprising, 
because small perturbations away from a = 2 result in a singular 
perturbation in the probability density function. * Second, when the 
observation is in a neighborhood of !(SO + S1), an identical Taylor series 
argument, as used in the Cauchy example, is applicable, and small 
perturbations about this midway point result in linear perturbations 
about the corresponding log likelihood point. Third, when large 
excursions occur, 

Ir i ~ sOl » 1, Ir i ~ S11 » 1, 

the (log) likelihood for this term behaves as O(ri- 1
), which follows from 

asymptotic expansions. 

* However, stable distributions in the neighborhood of ex = 2 are all close with 
respect to the topology induced by any reasonable metric, e.g., Prokhorov's metric. 
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The first two points in the preceding discussion hold for (1 ~ a < 2, 
1,8 I = 1). The third point must be slightly modified (assume now 

,8 = -1, since a similar argument follows immediately for ,8 = 1): 
l(ri) r-..J O(r;l) for ri > 0, but for ri < 0, l(ri) r-..J O( -I ri IlIa-I) (cf. 
gaussian case) (1 < a < 2), while for ri < 0, a = 1, 

l(ri) r-..J O[ -exp(n·lril/2)]. 

It remains to consider {ndf, a sequence of i.i.d. stable random 
variables with (0 < a < 1, 1,8 I = 1). Assume from here on,8 = -1, 
Sl > so. The likelihood ratio is thus zero or strictly positive and finite, 
and the log likelihood is either minus infinity or finite. First, consider 
the Pearson V distribution as an example: 

Pearson V (a = !,,8 = -1): 

{

I (x )-"-
( ) 

_ C .rn- - • exp[ -c/2x] 
pn X - '\'27r C 

o 
x~O 

x < 0; 

l (r i) = {- ~ In ( ~: == :: ) - ~ [ r i ~ Sl - r i ~ SO] r i ~ Sl > SO 

- 00 Sl > r i ~ so; 

A' = i~l [ - ~ In (~: == ::) - ~ [ ri ~ Sl - ri ~ SO ] t L' 

ri ~ Sl > SO 

for all i, 1 ~ i ~ N, 
A' = - 00 (choose H o) if Sl > ri ~ SO 

for some i, 1 ~ i ~ N. 

If all the received signal samples are greater than s1, the optimum 
test is to compute the log likelihood and compare it with a threshold to 
choose HI or H o. Note that for (ri - Sl)/C» 1, l(ri) decays asymptot­
ically as O(r;l), and thus large deviations are weighted lightly. For 
ri > 81, (ri - 81) « c, l(ri) r-..J (ri - Sl)-l. If one or more observations 
fall in the interval [SO, Sl), the optimum rule is to choose H o. 

The remaining cases (0 < a < 1 and,8 = -1) can be treated in an 
identical manner, using the series expansion for the densities. The im­
portant points are (i) the optimum detector is fundamentally non­
linear; for (ri - Sl)/C» 1, l(ri) decays as 0(ri-1), (ii) if any observa­
tion falls in the interval [SO, Sl), the optimum strategy is to choose H 0, 

(iii) for ri > Sl, I ri - sll «c, l(ri) r-..J O[ (ri - sl)-(l/1-a)]. 

4.2 Performance limitations 

To complete the solution of the problem, the probabilities of error 
of the first and second kind must be calculated. This appears to be 
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quite difficult in the general case of an arbitrary stable distribution 
and bounds are developed in Section 4.3. In this section the per­
formance of the optimum (log likelihood) detector is found explicitly 
for the three analytically tractable stable distributions to illustrate the 
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Fig. 4-Representative log likelihood functions (81 = + 10, 8° = -10) (a fixed, (3 
varying) ; scale factor c = 1.0; location parameter 0 = 0.0. 
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Fig. 4-(continued) 

problems that must be addressed in the general case. The approach 
adopted is to calculate the characteristic function of the log likelihood 
probability measure induced under either HI or H o. 

Gaussian (a = 2, -1 ~ /3 ~ 1) 

Section 4.1 showed that the log likelihood ratio is 

A' = - 4\ j.f [(ri - SI)2 - (ri - SO)2Jl ' 
c ~=1 

and since the log likelihood is a sum of i.i.d. random variables, its 
characteristic function can be found by using elementary Fourier tech­
niques. The results are: 

N(sl - SO)2 
In E (eivA/I HI) = [iv - v2J 

4c2 

N(sl - SO)2 
In E(eivA/I H 0) = 4c2 [ -iv - V2]. 

Using the Fourier inversion lemma, the density of the log likelihood 
under either hypothesis can be found in closed form to be 

p(A/IHj) = _~ exp[ - (A' - o;)2/4c'2J 
"'Y47rc' 

- 00 < A' < 00 

j = 0,1, 
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where 

The probabilities of an error of the first and second kind are 

P IO = Pr [choose HIJHo true] = roo p(A'JHo)dA' JL' 
~ ~ erfc ( L' 2~ o~) = ~ 11 - ( L~'4;0~) 

[ ( L' - o~ )2] [3 (L' - o~ )2J I ·exp - 2c' IFI 1; 2; 2c' . 

1 (L' - 0;) POI = Pr [choose HoJHI true] = 1 - 2 erfc 2c' 

= ! 1 (L' - 0;) [_ (L' - 0; )2] 
2 1 + -{; exp 2 ' c' 7r C 

[ 
3 (L' - 0' )2] I 

. IF I 1 ; 2 ; 2c' 1 , 

where erfc (.) is the complementary error function (Ref. 20, eq. 7.1.2) 
and IFI is a hypergeometric function (Ref. 20, eq. 7.1.21; see also 
Slater, Ref. 21). 

Cauchy (a = 1, /3 = 0)* 

It was noted previously that the log likelihood ratio can be written as 

, N (ri - 80)2 + c2 
A = L In . 

i = 1 (r i - 8 1) 2 + c2 

The characteristic function for the log likelihood can be found just as 
for the gaussian case: 

where 

.. The following analysis was suggested to the author by S. O. Rice; any errors in 
the development here are the responsibility of the author alone. 

PROBABILITY MEASURES-I 1149 



I t now helps to realIze 

(x ± Ll)2 + c2 = (x2 + Ll2 + c2) (1 ± 2Llx ) 
x2 + Ll2 + c2 

so that the characteristic function can be written as 

. [ f 00 ( 2LlX) iv ( 2Llx )-iV-l 
E(e,vA'IH1) = -00 1 + X2 + A2 + c2 1 - x2 + Ll2 + c2 

( c) dx ]N 
. :; x2 + 112 + c2 

[ f oo 0() 0() (iV) ( -iv - 1) ( 211x )m+n 
= -00 m2;o n2;o m n X2 + A2 + c2 

( c) dX]N 
. ;;: ( -1) n x2 + A2 + c2 • 

Only even powers of (m + n) contribute to the integral. This observa­
tion can be combined with the definition of the beta function (Ref. 20, 
eq. 6.2.1.) to show that 

E(eivA'IHl) = [ ~ f £ (iV) (-iV - 1) 
\j~ m=O n=O m n 

.( 4Ll2 )<m+n)/2 (-l)n r 2 (m +; + l)]N 
A2 + c2 7r r (m + n + 1) 

Substituting (m + n) = 2Z, and using the identity (Ref. 20, eq. 6.1.18) 

r(z + !) 
r(2Z) 

results in the final form of the log likelihood characteristic function 
assuming HI is true, 

The term 

( _ .) _ r ( - iv + 2Z) 
'tV 2l - r( -iv) 

is standard notation for Pochhammer's symbol (Ref. 20, eq. 6.1.22). 
A similar expression results for the characteristic function of the log 
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likelihood, assuming the other hypothesis is true: 

E(eivA/IHo) = [_ ~ f (1 + iV)21 
'V~ l=O (l!)2 

( 
(Ll/2)2 )l .. ]N 

. Ll2 + c2 2F l( -2l, w; -w - 2l; -1) . 

Since these series converge for all v (- 00 < v < 00), as well as for all 
(finite) values of Ll and c, the Fourier inversion lemma guarantees that 
a unique inverse to these transforms exists, and thus in principle the 
density of the log likelihood under either hypothesis is known and the 
probabilities of error of the first and second kind can be calculated. 
Numerical results are presented in a later section that were arrived at 
in exactly this manner. 

Several additional observations can be made. For N = 1 the log 
likelihood is a random variable whose distribution has compact support 
on the interval 

~ Ll2 + c2 - Ll I ( SI + SO) ~ Ll2 + c2 + Ll In ~ A - --- ~ In ---;====---
~ Ll2 + c2 + Ll - 2 - ~ Ll2 + c2 - Ll 

and thus the support of the log likelihood distribution for any finite 
number of samples, say N, is on the closed interval 

Since the log likelihood distribution has compact support, it is well 
known (Ref. 22, p. 121) that its Fourier transform has support on the 
entire real axis. The second observation concerns the asymptotic 
(v» 1) behavior of the characteristic function of the log likelihood. 
Since the saddle points of the log likelihood characteristic function 
are at ±~ Ll2 + c2, stationary phase arguments23 show that asymptot­
ically (v» 1) : 

E( iVA/IH)-[fOO ('1 (X+Ll)2+C2)(~) dx ] 
e 1 - -00 exp w n (x _ Ll) 2 + c2 7r (x _ Ll) 2 + c2 

f",J [~(Ll2 + c2)! !exp (ivln ~Ll2 + c2 + Ll + i'!"..) 
_ ~7rLlv ~Ll2 + c2 - Ll 4 

+ exp (iV In ~~: ! ~ ~ ~ - i i ) } + 0 ( n r ' 
so that asymptotically the characteristic function decays as I v I-NI2. A 
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similar result holds for the log likelihood characteristic function as­
suming H ° is true. 

An alternate approach is to calculate the l\1ellin transform of the 
likelihood probability density (for N = 1), then raise it to the Nth 
power and find the inverse transform; this was investigated without 
success. A direct approach, convolving the probability density of the 
log likelihood with itself N times, was also attempted; the resulting 
integrals were intractable. 

Pearson V (ex = !, f3 = -1) 

Assuming HI is true, the characteristic function of the log likelihood is 

E(eivA' I HI) 

f 00 ••• f 00 exp I iv f [ - ~ In ( ~ ) 
8 1 8 1 1 j = 1 2 r j - SO 

- ~ (r j ~ Sl - r j ~ SO ) ] JJ1 c~ ( r j ~ Sl)-i 

·exp ( - 2(r; ~ 81) )dr; } 

i~ 1 f exp [ - ~ iv In G: == ::) - i~c C; ~ 81 - r; ~ 8' )] 

. c~ (r; ~ 8

1 fl exp ( - 2(r; c_ c») dr;} 

I (00 exp [_ ~ivln (~) _ ivc (_1 __ 1 )] 
lJ~ 2 X+Ll 2 X-Ll X+Ll 

. c~ ( x ~ II )-1 exp ( - 2 (x ~ ll) ) dX} N , 

where Ll = ! (Sl - SO), X = r j - ! (Sl + SO). All attempts to simplify 
this expression were unsuccessful. Stationary phase arguments show 
that asymptotically (v» 1) 

E(e""!H1) ~ l[ ~k:V k, exp (iVk3 + i~)] + 0 (D r, 
where (kl' k2, k3) are complicated functions of (c, Ll). 

An attempt was made to find E (e ivA' I H 0), assuming no observation 
occurred in the interval (SO, Sl); this approach encountered the same 
problems as finding E(eivAl IH 1), and was unsuccessful. 

It is worth noting that the log likelihood has only one maximum on 
the interval (Sl, (0), for E(eivA'IHj)(j = 0, 1), and hence only one 
stationary point enters into the stationary phase asymptotic expression 
for E(eivA'IHj). It can be shown this behavior is typical of any asym­
metric (I f31 = 1) stable distribution. In contrast, the log likelihood has 
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two maxima for any stable distribution (-1 < (3 < 1), and hence two 
stationary points (cf. Cauchy). 

N either the use of lVIellin transforms (instead of Fourier transforms) 
nor convolving the log likelihood density with itself N times made the 
problem any more tractable. 

In the case of an arbitrary stable distribution, it appears quite 
difficult to find the density of the log likelihood by calculating the 
characteristic function of the log likelihood probability measure in­
duced under either HI or H 0, because only series expansions are known 
at present for stable probability density functions (except for the three 
cases covered here). Even resorting to numerical approximation tech­
niques poses some quite difficult problems: for 0 < a < 2, -1 ~ {3 ~ 1 
(as for the Cauchy and Pearson V distributions) the log likelihood 
characteristic function has its support on the entire axis, and oscillates 
and decays asymptotically as O[(eivwo/~)NJ from stationary phase 
arguments. * To accurately approximate numerically the probabilities 
of error of the first and second kind from the log likelihood characteristic 
function, the characteristic function must be approximated and stored 
at a great many frequencies, and the total cost (especially due to 
storage) can be quite high. Furthermore, one would like to carry out 
calculations for many different values of (a, (3, "I, 0). The storage cost 
plus the large number of parameter variations often desired can make 
this program quite expensive at present. 

4.3 Analytic performance bounds 

Because of analytical and numerical problems encountered in ex­
plicitly calculating the probabilities of errors of the first and second 
kind, as "veIl as the total probability of error, bounds on these quantities 
were investigated. 

Let PI and Po be probability measures defined on the same measure 
space (n, A). For 0 < q < 1, define 

where f.1, is any measure defined on (n, A) such that f.1,» PI, f.1, » Po. 
(An example of such a f.1, is f.1, = Po + Pl.) This definition of h q is seen 
by inspection to be independent of f.1,. Define 

* Different contours of integration (e.g., path of steepest descent) were investigated 
without success. 
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as the Kakutani inner product of Po with PI (Ref. 24); the classical 
Hellinger integral is a special case of the Kakutani inner product, and 
is defined as Hi (PI, Po). It is known that 

o ~ Hq(P I , Po) ~ 1, 

with H q = 1 iff PI == Po a.e. The Kakutani inner product can be 
thought of intuitively as the amount of "colinearity" or "overlap" of 
two probability measures, with the larger the Kakutani inner product, 
the larger the "overlap." A number of useful properties of the Kakutani 
inner product are summarized in the following easily proven lemma24 •25 : 

Lemma: (1) Po and PI are mutually orthogonal (denoted Po 1- PI), 
<=} H q(Po, PI) = 0 <=} hq(Po, PI) = 0 

(2) If 0 < q < 1, H q(Po, PI) is continuous in q. Four cases 
determine the behavior of H q(Po, PI) at q = 0, 1: 

(2a) If Po and PI are equivalent, then H q(Po, PI) is continuous 
at q = 0 and q = 1. 

(2b) If Po is absolutely continuous with respect to PI but not vice 
versa, then H q(Po, PI) is continuous at q = 1 but not at 
q = O. 

(2c) If PI is absolutely continuous with respect to Po but not vice 
versa, then H q(Po, PI) is continuous at q = 0 but not at 
q = 1. 

(2d) If Po and PI are neither mutually orthogonal nor equivalent, 
then H q(Po, PI) is discontinuous at q = 0, q = 1. 

(3) H q(Po, PI) and its logarithm are convex functions, 0 < q 
< 1. The convexity is strict iff (dP II dP 0) (x) is not constant 
for all x E supp(Po) n supp(PI). 

It is instructive to rewrite H q(Po, PI) in two different ways to ex­
plicitly show the relationship between the log likelihood functional and 
the Kakutani inner product: 

(i) H q (P 0, PI) = f exp { q In (dP II dP 0) } dP 0 

= E{exp [q In (dPIIdPo)] IHo}, 

(ii) H q(Po, PI) = f exp{ (q - 1) In (dPIIdP o) }dP I 

= E {exp [( q - 1) In (dP II dP 0)] I H d . 

(i) and (ii) are the Laplace transforms of the log likelihood probability 
density (also called the moment generating function of A), evaluated 
at q and (q - 1), and assuming Ho and HI are true, respectively. It is 
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196-197). Using Holder's inequality, it is straightforward to sho,,· that 
the logarithm of H q and, hence, H q itself, are convex functions of q, 

O<q<1. 
Chernoff26 was apparently first to use H q(Po, PI) (where Po «J1., 

PI «J1., J1. == Lebesgue measure) to upper bound the probabilities of 
error of the first and second kind, and his work has found widespread 
application in the engineering and statistical literature (see also, Ref. 
14, pages 517-520 and the references therein). 

In the notation used here, Chernoff showed 

POI ~ inf H q(Po, PI)e-qU 
O<q 

P IO ~ inf Hq(Po, PI)e-(q-l)U, 
q<l 

where L' is the threshold in the log likelihood ratio test. 
Chernoff's original ideas have been generalized in several directions. 

Kraft27 obtained upper and lower bounds on the total probability of 
error. For some choice of L' (see also Ref. 28) : 

t min (7rO, 7r1)Hi(Po, PI) ~ P E ~ (7r07rI)!H!(Po, PI)' 

Hellman and Raviv29 have also worked on this problem. Shannon, 
Gallager, and Berlekamp25 obtained lower bounds on the probabilities 
of error of the first and second kind in terms of the logarithm of 
H q(Po, PI), and the first and second derivatives of the logarithm. 

Here the Kakutani inner product plays t,yO key roles, providing a 
check on whether or not singular or perfect detection is possible 
[iff H q(Po, PI) == OJ, as well as giving exponentially sharp bounds on 
the performance of the log likelihood ratio test if detection is not singu­
lar. Since the Kakutani inner product need only be calculated at a 
small number of values of q to accurately numerically approximate 
upper and lower bounds on error probabilities, unlike calculating the 
probabilities of error of the first and second kind from the log likelihood 
characteristic function, this approach may be useful as a practical 
design tool because it is relatively inexpensive. 

The following observations are strightforward exercises: 

(i) When a sequence of N i.i.d. random variables is observed, 
H q(Po, PI) = e-AN, where A is independent of N, depending 
solely on Po, PI, and q. 

(ii) When Po and PI are absolutely continuous ,yith respect to 
Lebesgue measure, and the corresponding densities are unimodal 
translates of one another, then for fixed q, the lnrger the separa­
tion the smaller the inner product H q(Po, PI)' 
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The Kakutani inner product H q(Po, PI) can be explicitly calculated 
for the three analytic cases discussed earlier: 

Gaussian (a = 2, -1 ~ (3 ~ 1): 

Pn(X) = 1/~47rc exp( -x2/4c2
) -oo<X<oo 

H q(Po, PI) = eNJ.I(q), J1.(q) == In f-: p~(x - S1)p;-q(x - sO)dx 

J1.(q) = -q(l - q) (S1 - sO)2/4c2; 

: . J1. ( ~) = _ (SI ~ SO) 
2 

• 

Cauchy (a = 1, (3 = 0): 

where Ll = (S1 - sO)/2. 
From tables (Ref. 30, 263.00) for elliptic integrals: 

H!(Po, PI) 

= 1 ~ [ ( 81 ~ sO)' + 1 r en-I [ -1, [ ( 8
1 ~ 80)' + 1 r] } N , 

where cn-1 ( " .) is an inverse Jacobian elliptic function. 

Pearson V (a = !, (3 = -1): 

{

_I (~)-! e-c/2x X ~ 0 
Pn(X) = cfu c 

o x<O 

H q(Po, PI) = [f-: p~(x - S1)p;-Il(x - sO)dx ]N. 
The integral could not be expressed in any other analytic form. Since 
P I is absolutely continuous \vith respect to Po, but not vice versa, 
H q(Po, PI) is continuous for q E (0, 1J, and is discontinuous at q = O. 
Apparently only in the gaussian case does the Kakutani inner product 
or the Hellinger integral reduce to a simple form, and for general stable 
distributions the problem appears to be analytically intractable at 
present. Thus, it seemed worthwhile to investigate numerical methods 
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J: 

for approximating the desired integrals. Again it seems important to 
emphasize that an accurate approximation of the log likelihood prob­
ability density Laplace transform under HI or H 0 is needed at only a 
small number of choices of q, so the calculations can be quite inexpen­
sive. In the previous section, the log likelihood characteristic function 
had to be approximated at a great many frequencies, and the resulting 
computation effort and storage made that program relatively more 
expensive. 

4.4 Numerical approximation of performance bounds 

At present, three approaches have been investigated for calculating 
stable probability density functions. The first involves summing power 
series and asymptotic series,31 the second involves quadrature of an 
integral representation of the densitY,32 and the third uses a discrete 
fast Fourier transform of the characteristic function (Ref. 33, pages 
35-42; and Ref. 34). 

The approach used here was a combination of the first and third 
methods. The stable probability density function was approximated 
over its central region via a discrete fast Fourier transform, while 
asymptotic expansions were used outside this region. This approach 
avoids the difficulty of knowing how to merge the power series and 
asymptotic series (see Ref. 31). 

The Kakutani inner product was broken into two integrals. The first 
integral was approximated by a fixed step size Romberg integration 

1.00---0---0----0--...,..._ 

a = 0.5 
H = L: ,jp(x. sl) p(x - sO) dx 

a = 0.7 
;i 0.1 

p(x) = p(x; a, i3 = 0) a= 0.9 cc 
(!) 
w 
I­
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::i 
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a= 1.9 
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Fig. 6-Hellinger integral vs (SI - SO)/c [0: = 0.5(0.2)1.9, {3 = 0]. 
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Fig. 7-Hellinger integral vs (SI - SO)/c [0: = 1.90(0.01)2.00, {3 = 0]. 

routine35 using the discrete fast Fourier transform approximation to the 
density (typically, 4096 points were used). The second integral was 
approximated by a variable step size Romberg integration algorithm 
using the asymptotic expansion for the density. 

While this approach is adequate for finite mean stable distributions 
(1 < a ~ 2), and with care works for 0.5 ~ a ~ 1, it is inadequate for 
o < a < 0.5, because the expense is too great at present. The reason 
is that for 0 < a < 1, a great many evenly spaced points must be used 
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to adequately approximate the characteristic function in the neighbor­
hood of the origin (where its derivative is unbounded), as well as at 
other frequencies, and the expense of storing these values (to carry out 
the discrete fast Fourier transform) is prohibitive. One possible ap­
proach around this problem is to simply use only the series expansion 
(see Ref. 33). 

All results presented here were calculated on a Honeywell 6070 
computer using double-precision arithmetic (14 significant figures) ; the 
estimated relative error in all cases was less than a tenth of one percent. 

Figure 6 shows the Hellinger integral for various parameters 
[ex = 0.5(0.2)1.9, /3 = OJ as a function of [(SI - SO)/cJ, for N = 1. 
This figure suggests an interesting conjecture, that the Hellinger 
integral is smaller the closer the characteristic index ex is to two, all 
other factors being the same. No proof of this is known, at present. 

Figure 7 depicts results of numerically calculating the Hellinger inte­
gral for various characteristic indices close to two [ex = 1.90(0.01)1.99, 
/3 = OJ, for N = 1. The singular nature of the gaussian distribution 
(ex = 2) is quite evident when compared with that of ex = 1.99 or 
ex = 1.98. 

Figure 8 shows J.L(q) vs q for fixed [(SI - SO)/c]. Again, the closer the 
index is to two, the smaller the inner product. 

Figure 9 presents J.L(q) vs q for various choices of [(SI - SO)/cJ, and 
fixed characteristic index ex and skewness parameter /3; the larger 
(SI - SO)/c, the smaller H q(Po, PI)' 

4.5 Comparison of the performance of the log likelihood decision rule 
(0: = 1.95) with a linear decision rule 

It is interesting to compare the performance of the log likelihood 
decision rule ,vith a linear decision rule, when the observations are 
drawn from a nongaussian stable distribution with characteristic index 
near two. To be explicit, it is assumed the observations are i.i.d. stable 
random variables (ex = 1.95, /3 = 0), with 71'0 = 71'1 = ! and SI = -SO 
= S chosen for simplicity. The linear decision rule is simply 

N HI 

L ri ~ O. 
i=l Ho 

This sum is a stable random variable, with parameters (ex = 1. 95 
/3 = 0, N'Y, Nsf), assuming Hf(j = 0, 1) is true. The total probability 
of error is equal to the probability of either an error of the first or 
second kind, 

PE = P IO = POI, 

and can be computed from the series described earlier, or from pub-
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Fig. 8-Logarithm of Kakutani inner product Hq vs q [a = 1.1 (0.4)1.9, {3 = OJ 
[(S1 - SO)/c = 1OJ. 

lished tables. 31 This is plotted in Fig. 10 as a function of [( SI - SO) / c ] 
for various N. The same figure includes plots of the Hellinger integral 
upper bound on the total probability of error using the log likelihood 
decision rule. The figure makes it quite clear that the log likelihood 
decision rule, for many cases of interest, has a much much smaller 
probability of error than the linear decision rule. 
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Asymptotically, the total probability of error for the linear detection 
strategy behaves as 

P E ~ 0 ([ (N~fI/a ]-a) , 

P E ~ O[(S/c)-aNI-a], 

-10.0..----------------------, 

-0.02 

CHARACTERISTIC INDEX a = 1.90 
SKEWNESS PARAMETER (l = 0.0 

q 

Fig. 9-Logarithmof Kakutaniinner product Hq vs q [(Sl - SO)/c = 1,2, 10, 100J 
(ex = 1.90, [3 = 0). 
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Fig. 10-Linear processing probability of error and Hellinger integral upper bound 
on nonlinear processing probability of error vs (81 - 80)/C (a = 1.95, {3 = 0). 

while the probability of error for the log likelihood detection strategy 
asymptotically behaves at 
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where A = A (a, (3, /" S) > 0, independent of N. This simple asymp­
totic analysis suggests that the log likelihood decision rule has a much 
smaller probability of error than the linear decision rule, for large N, 
which is borne out in Fig. 10. 

4.6 Comparison 01 the upper and lower bounds and PE 

It remains to compare the bounds on total probability of error, and 
probabilities of errors of the first and second kind, with the actual 
quantities. None of the bounds employed here are tight, because the 
upper and lower bounds have different exponents. This program is quite 
difficult, and has only been carried out analytically for the gaussian 
case, and numerically for the Cauchy case. The remaining cases can 
be handled numerically following Shannon et a1.25 For simplicity, from 
this point on it is assumed that 7r0 = 7r1 = !, S1 = - SO = s. 

Gaussian (a = 2, -1 ~ (3 ~ 1) 

Earlier it was shown that 

PE = P
" 

= POl = ~erfc (~S). 
This can be upper and lower bounded tightly by (see Ref. 20, eq. 
7.1.13) 

where 

Since both KL and Ku behave as o (N-!), PE r'-J e-N82/4c2-0[LN(N)1, where 
Ku and KL introduce factors of log (N) in the exponent. The Hellinger 
integral bounds are 27 

-exp -N-1 ( S2) 
4 2c2 

1 (NS2) < P E < - exp - - . 
2 4c2 

By inspection, the exponent in the upper bound agrees with the tight 
lower and upper bound exponent [to within a factor of LN (N)]. The 
Chernoff upper bounds26 on P IO, POI are 

POI ~ exp[ -Nq2(S/c)2J 
for some q E [0, 1J 

or P IO ~ exp[ -N(l - q)2(S/C)2J, 

and for q = ! these exponents agree with the tight upper and lower 

PROBABILITY MEASURES-I 1163 



bound exponents to within a factor on LN (N). The lower bounds25 are 

POI> i exp[ -Nq2(S/C)2 - q(s/c)42NJ 

for some q E [0, 1J 
or P IO > i exp[ -N(l - q)2(S/C)2 - (1 - q) (s/c)42NJ, 

and for N sufficiently large, the upper and lower bound exponents 
are identical within a factor of O(N-!). 

Cauchy (0: = 1, /3 = 0) 

The real and imaginary parts of the characteristic function of the 
Cauchy log likelihood were calculated numerically at 513 evenly 
spaced frequencies starting at v = 0 from a direct numerical quadrature 
of the (complex) integral 

~ (v) = f-: exp (iV In ~ ~ ~ ; ~: ! ~: ) ( ;) (x _ ~)2 + c2 , 
V = kflv, k = 0, .. " 512 

using an adaptive, step-size, Romberg, numerical integration algorithm, 
with an estimated error of 10-10 (all arithmetic was performed in 
double precision). One representative characteristic function is plotted 
in Fig. 11. The stationary-phase asymptotic expression was used for 
frequencies outside of this range. The resulting approximation to the 
characteristic function was multiplied by itself N times, and a numeri­
cal approximation of the inverse transform of this resulting characteris­
tic function was calculated, using a fixed, step-size, Romberg algorithm 
for the first 513 frequencies; an adaptive, step-size, Romberg algorithm 
was used for the tail of the inverse transform. The final results are felt 
to be accurate to three significant figures. The results are plotted in 
Fig. 12, along with the Hellinger integral upper bound. Clearly, the 
Hellinger integral upper bound is quite conservative; it is straight­
forward to check that the Hellinger integral (squared) lower bound is 
too optimistic, from the curves in Fig. 12. 

4.7 Generalizations 

The extensions of the results in this section (as well as the following 
section) to a much wider class of infinitely divisible distributions is 
immediate. Here these extensions are sketched. Elementary arguments 
(Ref. 15, page 540) show that if the Levy measure of an infinitely 
divisible distribution behaves asymptotically as a power, i.e., veX, 00) 
r-o.J o (X-p) , v( - 00, -X) r-o.J o (X-q), then Pr [x > XJ t'oJ O(X-P), 
Pr [x < -XJ t'oJ O(X-q), where p, q > O. Given a sequence of i.i.d. 
random variables drawn from such a distribution with one of two 
location parameters, it is straightforward to check that results analo-
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Fig. 12-Log likelihood probability of error and Hellinger integral upper bound 
for Cauchy (a = 1, (3 = 0) samples vs (sic). 
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gous to those in this section hold: (i) l(ri) I"'.J O(ri- l), (ii) the probability 
of an error of the first and second kind, using a log likelihood ratio test, 
is upper bounded by exp ( - AN), (iii) using a simple linear test to 
discriminate between hypotheses, i.e., adding up the observations and 
comparing the sum with a threshold, results in the probability of an 
error of the first or second kind behaving as O(NL'-p), O(NL'-q), and 
choosing L' directly proportional to N (as in the gaussian case) gives 
POI, P IO I"'.J o (Nl-p) , O(Nl-q), which is much worse than the perform­
ance of the log likelihood test in this asymptotic sense. 

V. DISCRETE TIME DETECTION OF STABLE MEASURES WITH 
DIFFERENT SCALES 

In this section, one approach is studied for hypothesis testing of 
different scale parameters; since the ideas are quite similar to that just 
developed, the treatment is much shorter. 

One of two sequences of i.i.d. stable random variables is observed 
(under one of two hypotheses, H 0 and HI) : 

HI rk = sInk 
Ho rk = sOnk 

1 ~ k ~ N. 

The observed or received sequence is denoted {nk}f, where the {nk}f 
are i.i.d. stable random variables with known parameters (a, /3, 'Y = 1, 
o = 0); both Sl and SO are known. The a priori probability of H j is 7rj 

(j = 0, 1). The measures induced by {ndf under H 0 and HI are 
equivalent for (0 < a ~ 2, -1 ~ /3 ~ 1); it remains to find the 
optimum decision rule, the log likelihood ratio, and characterize its 
performance. 

5.1 Likelihood ratio test 

Before discussing the general case, the three special analytically 
tractable cases are treated. 

Gaussian (a = 2, -1 ~ /3 ~ 1): 

1 
Pn(X) = -- e- x2

/
4 - 00 < X < 00; 

{4; 

l(ri) = InPn(rdsl)/sl = ln~ _d[(1:)2 _ (1:)2]. 
Pn(ri/sO)/SO Sl 4 Sl so' 

:. A' = i~l l(l\) = N In (~) - [( 2~1 Y - (2~0 y] 'itl r~ HI 
~ L'. 
Ho 

The test involves squaring the observations and comparing with a 
threshold; this test is the \vell-known chi-squared test (see Ref. 5, 
pages 163-173). 
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Cauchy (a = 1, /3 = 0): 

1 
Pn(X) = - (X2 + 1)-1 

7r 
-00 <x < 00; 

For I ri I «SO, s1, Taylor series arguments show l(ri) behaves as r~, just 
as in the gaussian case. However, unlike the gaussian case, where l(ri) 
behaves asymptotically (Iril »SI, SO) as Oed), here l(ri) r-.J In (SI/S0) 
+ 0(ri2); again, large excursions are soft limited, or essentially 
discarded. 

Pearson V (a = !, /3 = -1): 

X>O 

x < 0; 

A' = - N In (~) _ ! (SI _ SO) f (~) ~l L'. 
2 SI 2 i = 1 r i H 0 

(ri > 0) ; 

(ri < 0) 

Again, large deviations in ri are soft limited or \veighted lightly, since 
asymptotically (ri» s1, sO)l(ri) behaves as O(ri-l). 

The remaining cases can be treated in identical manner using the 
pO\ver series and asymptotic series expansions for the stable probability 
density function. For (0 < a < 2, -1 < /3 < 1; a ¢ 1), the important 
points are: (i) for I ri I «so, s\ the ith term (f3 ¢ 0) in the log likeli­
hood behaves as ri, unlike in the gaussian case, while for /3 = 0, 
l(ri) r-.J d, (ii) for Iril »so, SI, soft limiting of large deviations is used, 
and the log likelihood's ith term behaves as a In (SI/S0) + O(lril-a). 
Figures 13 and 14 show representative log likelihood ratios for fixed a 
and varying /3, and fixed /3 with a varying, respectively, computed from 
power series and asymptotic series. 31 

The final case (0 < a < 2, /3 = 1, or /3 = -1) must be handled 
with a little more care. Only the case /3 = -1 is discussed, since the 
other follows immediately. For (1 < a < 2), the first point made above 
is still valid, while the second point is valid only for 1"i > 0, ri » so, SI. 
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For ri < 0, I ri I » so, sI, l(ri) behaves as a In (sl/s0) + o( - I ri I Ill-a), 
i.e., decreasing with I ri I. For (0 < a < 1), for ri > 0, ri « so, s\ the 
ith term in the log likelihood behaves as 0(ri-C1/1-a»). Finally, for a = 1, 
l(ri) = O{- exp[(-n/2)lriIJ} asri---? -00. 

5.2 Performance limitations 

The general problem of finding PE, POI, and P IO for arbitrary stable 
distributions is still open, both analytically and numerically (because 
of expense). The three special analytic cases are treated here, to point 
out the problems that must be overcome in the general case, if one 
attempts to find the log likelihood probability density by transform 
methods. 
Gaussian (p: = 2, -1 ~ f3 ~ 1): assuming hypothesis Hj(j = 0, 1) 
true, the Fourier transform of the log likelihood probability density is 

(
SO )iVN 1 [( SI)2 ] )-NI2 E(eivA'IHI) = Si 1 - iv So - 1 

(
So )iVN 1 [( SO)2 ] )-NI2 E(eivA'IHo) = Si 1 + iv Si - 1 . 

These Fourier -transforms can be inverted: 

x=A'-N In (~»O 

x = A' - N In ( ~) < 0. 

Finally, the probabilities of errors of the first and second kind are: 

_ 2 (L'[ (Sl)2 - (SO)2J )N12 
P IO - 1 - N (SO)2 

. F (N. 1 + N. L'[(SO)2 - (8
1
)2J )/r(NI 2) 

I I 2' 2 ' ( SO) 2 

_ 2 (L'[(SO)2 - (Sl)2J )N12 
POI - N (Sl)2 

. F (N. 1 + N. L'[(SO)2 - (Sl)2J )/r(NI 2) 
I 1 2' 2 ' (Sl)2 

L' > N In (sOlsl) 
P IO = 1, POI = ° 
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Fig. 13-Representative log likelihood functions (a fixed, (3 varying). 
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Fig. 13-(continued) 

Cauchy (a = 1, f3 = 0): the log likelihood characteristic function under 
HI is 

E (e ivA' / HI) {1-: ~ (~ ) i, [x' + (s')2Ji'[X2 + (Sl)2J-i'-ldx l N 

{ (Sl/SO)i,+l,F1 [iV + 1,~; 1; -1+ (~)'] r 
where 81 > 80 was assumed. Stationary phase arguments show that the 
characteristic function decays asymptotically as 0 ( / V /-N /2). Again, the 
Fourier inversion lemma guarantees that the problem of finding POI 

is solved. A similar analysis holds assuming H 0 is true. 
An alternate approach is to compute the l\1ellin transform of the 

likelihood probability density function; the results are 

{( ~)' 2F, [s, ~; 1; -1 + (~)'] l N 

E(A8-1/Ho) {( 81 ) 8-1 [1 ( 81 )2] l N SO . 2F 1 8 - 1, 2'; 1; - 1 + SO • 

Unfortunately, it is not clear how to invert this transform to find POI 

and P 10• 
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A third approach is to convolve the probability density of the log 
likelihood with itself N times; for N = 2, the convolution involves 
elliptic integrals; successive convolutions are quite formidable. This was 
not investigated further. 

Pearson V (a = !, f3 = -1): the log likelihood characteristic function 
is (assuming now SO > SI) 

E(e ivA1 jHI ) 

E (e ivA1 j H 0) 

{ (81)'.(80
)-',/ [1 - iv (~ - 1)] r" 

{(81)"(80
)-',/[ 1 - iv (1 - f,)] r'o 

The log likelihood probability density is 

--- xCN/2)-le-C80-sl/81)x r -
( 

S1 )N /2 / ( N ) 
SO - SI 2 

N 
x = A' - - In (S1 / SO) > 0 

2 

p(A'jHo) = (_s_O _)N/2 XCN/2)-le-C80-81/80)/r (N) 
SO - SI 2 

N 
p(A'j HI) = p(A'j H o) = 0 A' < 2ln (SI/S0). 

The probabilities of errors of the first and second kind are 

POI = 0 

Again, the general problem is still open analytically, because closed­
form expressions for stable probability density function are unknown 
at present (except for the three cases covered here).· The general 
problem is expensive to tackle numerically at present, because of the 
expense of both calculating and storing the characteristic function of 
the log likelihood probability density, and because of the expense of 
repeating these calculations for many different parameter choices. 
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5.3 Analytic performance bounds 

Apparently only in the three special cases does the Kakutani inner 
product reduce to simple expressions. These results are recorded here, 
while Section 5.4 discusses numerical approximations of these integrals 
for various cases of interest. 

Gaussian (a = 2, -1 ~ f3 ~ 1): 

1 
Pn(X) = - e-x2

/ 4 

fu 
-00 <X< 00 

H,(P"P.) = {( [~Pn(f.)]'[~Pn(~)r' dxr 

Hq(P o, PI) = (Sl)-qN(SO)-<l- Q )N (S~)2 + \~2q)-N/2; 

H 1. (P ° PI) = - - + - . [ 
1 (SO Sl )]-N/2 

., 2 Sl SO 

Cauchy (a = 1, f3 = 0) : 

1 
Pn(X) = - (X2 + 1)-1 

7r 
-oo<X<oo 

The Hellinger integral can be evaluated from the tables in Ref. 30 
263.00 : 

Pearson V (a = !, f3 = 1): 

{

I 3 1 Pn(X) = -.[2; ~'e-'z X~O 
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5.4 Numerical approximation of performance bounds 

The methods and checks employed were identical with those used 
in the detection of location for accurately calculating the inner product 
of the two stable probability measures. 

Figure 15 shows J.L(q) vs q for fixed (81/8°) and [a = 1.1 (0.4) 1.9, 
j3 = 0]. This raises the conjecture that the closer the characteristic 
index is to 2, the smaller the Kakutani inner product. 

Figure 16 shows J.L(q) vs q for fixed (a, j3) and various values of 
(81/8°) : the smaller the (81/8°), the smaller the H q(Po, PI)' 

Figure 17 shows H t (P 0, PI) f or various (a, f3) as a function of 
(81/8°); note that the case a = 2 does not appear to be singular here. 

5.5 Comparison of performance of log likelihood decision rule 
with a chi-squared test 

How does the performance of the log likelihood test compare with 
that of a chi-squared test, in particular for characteristic index a near 2? 

The chi-squared test involves 

N Hl 
L r1 ~ L'. 
i=l Ho 

The distribution of anyone of the r~ can be found from the series 
described earlier: 

( 2IH.) _ { \-- Pn[X = £; a, j3, (8 i
) a, 0 = OJ 

P ri 1 - 28h Jri 

o 
ri > 0 

ri < O. 

The discussion now follows from that in Section 4.6, but is not as 
detailed. Using elementary arguments (Ref. 15, pages 268-272), it can 
be shown that if 0 < a < 2, -1 < j3 < 1, then 

Pr (~1 r1 > L'IHi ) t"-' o (NL'-(a/2». 

If L' is set at a threshold which is a fraction of N, then 

PE t"-' 0(NI-(a/2» ; 

i.e., the probability of error grows with N, the number of observations. 
For comparison, the upper bounds on POI, P IO, and PE for log likelihood 
detection all behave as O(e-AN), where A depends on (a, j3, 8t, and 8°). 
Thus, the log likelihood test is asymptotically far superior to the chi­
squared by the above argument. 
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HI: r = sIn 

Ho: r = sOn 

-0.9 51 = 1/16, sO = 1 

{3=0 

q 

Fig. I5-Logarithm of Kakutani inner product Hq vs q [0: = 1.1(0.4)1.9, {3 = OJ 
(SO/Sl) = 16. 

VI. DISTINGUISHING STABLE PROBABILITY MEASURES WITH DIFFERENT 
CHARACTERISTIC INDICES AND SKEWNESS PARAMETERS 

For completeness, this section touches on the form the log likelihood 
test takes for discriminating between stable distributions with different 
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characteristic indices and with different skewness parameters. Per­
formance of this test will not be covered here; much of the earlier 
discussion on performance is applicable here. A table in the Ap­
pendix summarizes the behavior of l(ri) both asymptotically and for 

O.O~-------------------~ 

-0.2 

-0.3 

-0.4 

~ -0.5 

-0.6 

-0.7 

-0.8 

HI: r= sIn 

Ho: r=sOn 

-0.9 sO = 1 

a = 1.90, (3 = 0.0 

Fig. 16-Logarithm of Kakutani inner product Hq vs q [(a = 1.90, (3 = 0), 
(SO/SI) = 1,4, 8, 16J. 
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Fig. 17-Hellinger integral vs (Sl/S0) [0: = 0.7(0.2)1.90, {3 = 0]. 

I ri I « 1, and includes both the results in the Sections 5.4 and 5.5 as 
well as the results of this section. 

One of two sequences of i.i.d. stable random variables with known 
parameters is observed. In Section 6.1, the parameters are (ai, f3, 'Y = 1, 
D = 0), where 0 < a O < a 1 ~ 2; in Section 6.2, the parameters are 
(a, f3i, 'Y = 1, D = 0), where -1 < f30 < f31 ~ 1 (recall j = 0, 1). The 
special case (a = 1, 1131 = 1) is covered in the table in the Appendix 
but not in the discussion here. 

6.1 Distinguishing different characteristic indices 

For -1 < f3 < 1, the measures Po and PI are equivalent, so the log 
likelihood ratio is always finite. The log likelihood test is 

N HI 
A' = L l(ri) ~ L', 

i=l Ho 

where 
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Two cases arise: symmetric (/1 = 0) and asymmetric (/1 rf 0, -1 < /1 
< 1) stable distributions. For the symmetric case, the distributions 
are symmetric about their unique mode, and thus l(ri) r-.J I d I for 
I r i I « 1. For the asymmetric case, the modes no longer coincide, and 
l(ri) r-.J ri for I ri I « 1. Recall that for 1 < a < 2, for fixed skewness 
/1 (/1 < 0) the mode decreases as a ·decreases; for 0 < a < 1, the op­
posite is true. Thus, l(ri) is the difference of two unimodal functions 
and, in general, should have two points of zero slope. For I ri I » 1, 
l (r i) = 0 (-In I r i I ), so large deviations are weighted quite strongly. 
Note the log likelihood distribution has its support on whole line, un­
like the two previous sections, except for (0 < ao < 1 ~ al ~ 2, 
1/11 = 1). 

For /1 = -1, and 1 < aO < a l < 2, the measures Po and PI are 
equivalent, and the above discussion follows immediately with one 
exception: for ri» 1, l(ri) = O( -In ri), while for Iril »1, ri < 0, 
l(ri) = O( I ri I aolao-l). 

For /1 = -1, 0 < a O < a l < 1, the measures Po and PI are equiva­
lent. For ri > 0, I ri I «1, l(ri) r-.J rio/ l

-
ao, while for ri» 1, 

l(ri) = O( -In ri). 
Finally, for /1 = -1, 0 < a O < 1 < a l < 2, the measures Po and 

PI are neither equivalent nor mutually orthogonal. For ri» 1, 
l(ri) = O( -In ri), while for ri < 0, l(ri) = 00. For ri > 0, ri« 1, 
l(ri) = o (ri°/ao - I

). 

6.2 Distinguishing different skewness parameters 

For -1 < /10 < /11 < 1, the measures Po and PI are equivalent, so 
the log likelihood ratio is finite. The discussion follows that of Section 
6.1 exactly, with the difference that if ri» 1, l(ri) = In (RdRo) 
+ O(ri-a), while if I ri I » 1, ri < 0, l(ri) = In (LdLo) + O( I ri I-a). * 

For -1 = /10 < /11 < 1, 1 ~ a < 2, the measures Po and PI are 
equivalent. For I ri I » 1, ri < 0, l(ri) = O( I ri I ala-I), while for ri» 1, 
l(ri) = In (RdRo) + O(ri-a). 

For -1 = /10 < /11 < 1, 0 < a < 1, the measures Po and PI are 
neither equivalent nor mutually orthogonal. For ri» 1, l(ri) 
= In (RdRo) + O(ri-a

), while for 0 < ri «1, l(ri) = O(ri/a- l
). For ° > ri, l(ri) = 00. 
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APPENDIX 

Asymptotic Behavior of Log Likelihood Ratio 

A.1 Location (a) 

lex) = In p (x; a, {3, "I, (h) 00 < (h 
p(x; a, {3, "I, 00) 

x~+oo x~-oo 

a = 2 

o < a < 2, -1 < {3 < 1 
1 < a < 2, {3 = -1 
a = 1, {3 = -1 

o < a < 1, {3 = -1 

A.2 Scale (c) 

O(x) 
o (X-I) 

o (X-I) 

o (X-I) 

X~ +00 
o (X-I) 

lex) = In p(x; a, {3, "11 = CI, 0 = 0) 
p(x; a, {3, "10 = Co, 0 = 0) 

x~ +00 
a = 2 0(X2) 

o < a < 2, -1 < {3 < 1* a In (ct/co) + O(x-a
) 

1 < a < 2, {3 = -1 aln (ct/co) + O(x-a
) 

a = 1, {3 = -1 a In (ct/co) + O(x-a ) 

x~ +00 

O(x) 
o (X-I) 

O( -Ix II/a-I) 
O( _e(1r/2)lz-6 11) 

xlol 
O( - (X - Ol)a/a-l). 

Co < CI 

x~ -00 
0(X2) 

a In (ct/co) + O( Ix I-a) 
O( -Ixl a/a-I) 
O( _e(1r/2)lz/c 11 ) 

xlO 
o < a < 1, {3 = -1 a In (ct/co) + O(x-a) O( _xa/a-l). 

A.3 Characteristic index (a) 

lex) = In p(x; aI, {3, "I = 1,0 = 0) 
p(x; ao, {3, "I = 1, 0 = 0) , 

x~ +00 
o < ao < al = 2, -1 < {3 < 1 O( -x2) 

o < ao < al < 2, -1 < {3 < 1 O( -In x) 

1 < ao < al = 2, {3 = -1 O( -x2) 

1 < ao < al < 2, {3 = -1 O( -In x) 

1 = ao < al = 2, {3 = -1 O( -x2) 

1 = ao < al < 2, {3 = -1 O( -In x) 

x~ +00 
o < ao < 1 < al < 2, {3 = -1 O( -In x) 

o < ao < al = 1, {3 = -1 O( -In x) 

o < ao < al < 1, {3 = -1 O( -In x) 

x~ -00 
O( -x2) 

O( -In Ixl) 
O( I x I ao/ao-l) 

O( I x I ao/ao-l) 

0(e(1r/2)lx l) 

O(e(1!"/2)l zl) 

xlO 
o (xao/ao-l) 

o (xao/ao-l) 

o (xao/ao-l). 

* This excludes the Cauchy (a = 1, (3 = 0), which was examined in the text as a 
special case. 
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A.4 Skewness (fj) 

l(x) = InP(x; a, f31, 'Y 
p(x; a, f30, 'Y 

o < a < 2, -1 < f30 < f31 < 1 

1 < a < 2, -1 = f30 < f31 < 1 

a = 1, -1 = f30 < f31 < 1 

1 < a < 2, -1 = f30, 1 = f31 

a = 1, - 1 = f3 0, 1 = f31 

o < a < 1, -1 = f30 < f31 < 1 

1,0 = 0) 
1, 0 = 0) 

X-7+oo 

In (RI/Ro) + O(x-a) 

In (RI/ Ro) + 0 (x-a) 

In (RI/Ro) + O(x-a) 
O( _xala- l ) 

O( _e(1I"/2)lx l ) 

X-7 +00 

In (RI/Ro) + O(x-a) 

R j = sin ~ (OJ - a), tan (rrOi/2) = f3j tan (rra/2) 

- f3j tan (rra/2). 
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Distinguishing Stable Probability Measures 
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A sample function from one of two stable, stationary, independent­
increment processes is observed for a finite time interval. For differing 
location, characteristic index, skewness, or scale, the probabilities measures 
induced by the process under either hypothesis are found to be lnutually 
orthogonal. By suitably modifying the Levy measure associated with each 
probability measure, continuous-time tests for differing characteristic 
indices, skewness, or scale parameters can be posed as nonsingular detec­
tion problems; distinguishing location remains a singular detection 
problem,. For the nonsingular problems, the likelihood functional is 
found explicitly, and performance limitations are determined. As an 
alternative approach, the observed sample function is sampled at discrete 
time instants over a finite time interval, and the performance of log likeli­
hood test is studied as a function of sample spacing with a fixed, total 
number of observations. 

I. INTRODUCTION 

In this paper, the work begun in Part II on discrete-time hypothesis 
testing of stable probability measures is extended to continuous time. 
In contrast to the earlier work, analytic closed-form expressions are 
found for both the log likelihood functional and Chernoff-type upper 
and lower bounds on various error probabilities for the log likelihood 
test. As in Part I, the singular role played by the gaussian probability 
measure within the family of stable probability measures is em­
phasized, both in terms of the form of the log likelihood functional and 
the expressions for Chernoff-type bounds on error probabilities. The 
earlier work dealt with observing N samples from a stable process 
with one of two sets of parameters at time instants At apart; here, we 
fix the observation interval at duration T, and allow the number of 
observations to become infinite while the spacing between samples 
shrinks to zero (N ~ 00, At ~ 0, such that N· At = T). 

Section II briefly reviews some properties of independent-increment 
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processes and infinitely divisible distributions that were touched on in 
Part 1. Section III draws on this tutorial material by considering an 
elementary hypothesis-testing problem for discriminating between two 
Poisson distributions with differing parameters. * Section IV briefly 
reviews some work by Newman2 ,3 and Newman and the author4 ,5 on 
calculating log likelihood functionals and Chernoff-type bounds on 
error probabilities for the path-space probability measures induced by 
independent-increment processes. These results are used in Section V 
to show if one or more of the parameters of the two stable-probability 
measures (0 < a < 2) differs, then the two path-space measures are 
mutually orthogonal. Section VI develops one remedy to this so-called 
singular detection by modifying the Levy measure of the tVvTO distribu­
tions to account for the real physical limitation that the process can 
only be observed to within an accuracy intrinsic in all measurement 
apparatus. Section VII considers a different but related issue, where 
the observed sample function is sampled at discrete time instants over 
a finite time interval, and the performance of the log likelihood test is 
studied as the sample spacing shrinks to zero; this allows one to trade 
off the sample spacing, or the rate at which samples are observed, for 
the total duration of the observation interval, or the total number 
of samples. t 

The results developed here are novel in that one can immediately 
ascertain explicit bounds on the performance of the likelihood ratio 
test, while it is not clear how to do this after reading the literature 
(e.g., see Refs. 6 through 10). The method of proof here relies on 
probabilistic semigroup tools or on the explicit nature of the sample 
paths of an independent-increment process, and this appears to be 
novel when contrasted with such approaches as those referenced above. 

II. MATHEMATICAL PRELIMINARIES t 

Let ri(t) (j = 0, 1) be a scalar real-valued random process, with 
right continuous sample paths with left-hand limits everywhere de­
fined. l\10re explicitly, let ri(t) be the sum of a deterministic drift 
process, oA and N independent Poisson processes (labeled by k, 
1 ~ k ~ N), where each Poisson process has rate Aik and hops of 
height hik. In words, ri(t) has simple jump discontinuities of heights 
hik' 1 ~ k ~ N, at random times. The characteristic functional of 

* The results in Sections III through VI were first announced in Proceedings of 
the 13th Annual Allerton Conference, University of Illinois, Champaign-Urbana, 
Illinois, October 1-3,1975, pp. 234-239. 

t The results in Section VII were first announced in Proceedings of the 1976 Johns 
Hopkins Conference on Information Sciences and Systems, Baltimore, Maryland, 
March 30-April 2, 1976, pp. 151-154. 

t See Ref. 1, Section 3.1 and its list of references for much more information. 
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rj(t) is easily seen to be (t > s), 

E[e'*;(tl-';<')J] = exp { (t - 8) [ivo; + k~/,;k(e;'h" - 1) ]} . 

If we now pass to the limit of an infinite sum of Poisson processes, 
then the jump amplitudes {h jk } take on a continuum of values, and 
the characteristic functional becomes (t > s) 

E[e'*;(tl-';(')J] = exp { (t - 8) [ivo; + I.",. (e'" - l)dv;(u) ]} , 

where v is called the Levy measure associated with the path­
space measure of rj, and generalizes the rate parameter set {Ajd; 
(t - S)fuEA dVj(u) is the expected number of jumps of rj whose 
amplitude falls in the set A, in a time interval of duration (t - s). 
Levy and Khinchin showed the following remarkable generalization 
of this heuristic development: 

Theorem/ (Ref. 11, p. 76): Let rj(t) be an Rn valued rand01n process 
with independent increments. Then 

E(exp {ivTR[T;(t) - T;(8)]1l = exp { (t - 8) [iVTROj - !VTRS;V 

+ L. (exp (iVTRU) - 1 - 1 ~T~~RU) dVj(U)]} , 

where OJ ERn, Sj is an n X n positive semidefinite matrix, and 

In words, any independent increment is the sum of three independent 
processes: (i) a purely deterministic drift process, completely specified 
by OJ, (ii) a purely nondeterministic gaussian process with zero drift 
and almost surely continuous sample paths, specified by Sj, and 
(iii) a purely nondeterministic jump process with zero drift, a 
sum of independent Poisson processes with different rates and jump 
amplitudes, specified by Vj. 

Historically, the mathematical study of independent increment 
processes concentrated first on the purely gaussian case (Vj = 0); then 
on the purely stable case (Sj = 0, dVj = dJ.L(O)dr/ra+I, 0 < a < 2, 
where J.L is a positive measure on the unit sphere in Rn and [r, OJ are 
polar coordinates in Rn); and lastly on the general case, building on 
the insight gained in the first two cases. 12 A second reason for wishing 
to study the gaussian and stable (0 < a < 2) probability measures is 
that they arise naturally from studying limiting distributions of 
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suitably scaled and translated sums of independent, identically distrib­
uted, random variables in the central limit theormll, and have found 
application in modeling noise in communication channels such as 
telephone lines. I3 These two reasons, as well as others, provide the 
major impetus for the study to follow. The richness of the structure 
of independent increment processes suggests they may find more and 
more application in model building as their properties become more 
widely known. 

III. DISTINGUISHING POISSON PROCESSES 

In this section, rj(t) (j = 0, 1) is observed on the interval [0, T), 
and is the sum of a purely deterministic drift process (specified by OJ) 
and a purely nondeterministic Poisson process (specified by rate 'Aj and 
jump amplitude hj). What is the log likelihood functional, and what 
is its performance? 

First, suppose the Poisson process has the same jump amplitude 
under either hypothesis, but the drifts differ. Then it is straightforward 
to show that the two probability measures Po and PI, associated with 
rj under hypothesis Hj, are mutually orthogonal, so (i) observing r 
over any finite interval, the log likelihood functional takes on the 
value + 00 if H 1 is true, - 00 if H 0 is true, and (ii) the probability of 
incorrectly choosing one hypothesis when the other is true is zero. 
The reason for this is clear on physical grounds: the Poisson component 
has constant sample functions with simple jump discontinuities at 
random times, while the drift process is continuous with constant 
slope. Thus, ignoring the jumps in the observation process, the slope 
of the continuous part of the sample path is OJ, and to discriminate 
between the two hypotheses is now trivial. From this point on, there­
fore, it is assumed 01 = 00 and, without loss of generality, set 
OJ = ° (j = 0, 1). 

What if the Poisson processes have different jump amplitudes? As 
soon as one or more jumps occur, it is possible to discriminate per­
fectly between the two processes, since the size of the jump h j is 
associated with hypotheses H j • To avoid this indeterminancy, it is 
assumed from this point on hl = ho = 1. Thus, Po and Pl, the 
probability measures associated with Hi, are mutually absolutely 
continuous. 

Lemma 1 : Let r j be as just defined. Let 

° ~ k ~ n - 1; j = 0, 1 

denote the conditional probability of r j at time [( k + 1) / n ] T, given r j 
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at time (kin) T. Then [rj(O) = 0 a.s.; j = 0, 1J, 

dP n-l pi 
(i) A = In dpl (r) = lim L In P~ (r). 

o n->oo k=O 0 

(ii) Hq(Po, PI) = lim [Hq(P~, p;)Jn. 
n-+oo 

Proof: The proof follows from standard limit theorems (Ref. 7, Lemma 
1.1), Q.E.D. 

We now explicitly evaluate the limits in Lemma 1 : 

Proposition 2: Given the conditions of Lemma 1, 

(i) A = f ! -(A1 - Ao) + k~O [In ( ~:) ] o(t - tk) I dt 

= loT [ -(AI - Ao)dt + In (~) dr t ] , 

where NT is the a.s. finite number of time instants {td where 
rt changes state. 

(ii) Hq(Po, PI) = exp { - T[qAI + (1 - q)AO - AiAb-<lJ}. 

Proof: 

(i) Given rj at time (kln)T, it will remain in that state in the next 
time interval (Tin) with probability 1 - AjT In + oCT In), and 
will increase by one with probability Aj(T In) + oCT In). The 
desired result now follows Lemma 1. 

(ii) If rj changes its state in the next time interval of duration 
(Tin), then 

while if rj stays in its present state in the next (Tin) time 
units, then 

Hq(P~, PD = 1 - ! [qAI + (1 - q)AoJ + oCT In). 
n 

H<l(P~, P;) = exp [ - ~ (qAI + (1 - q)AO - A~Ab-<l) ] 

+ o(Tln), 
Hq(Po, PI) = exp { - T[qAI + (1 - q)Ao - AfA6-<lJ}' 

where the last step follows from Lemma 1. 
Q.E.D. 

Recall from Part I that a crude bound on the total probability of 
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error P E for a log likelihood ratio test is provided by 

! min (1r1, 1ro)Hi ~ P E ~ ~1r1' 1roH!, 

where 1rj is the a priori probability hypothesis that j is true. Here, 

H! = exp [-T(~ - ~)2/2J 

and hence for fixed T, one would like to have the difference in the 
square roots of the rates as large as possible. 

To gain further insight into Hq(Po, PI), we rewrite it as the ex­
pectation of a third Poisson process. Let Xq(t) be a Poisson process 
with rate AP\6- 1l, hops of height + 1, and xq(O) = ° a.s. (intuitively, 
the probability measure P q associated with Xq has support on the 
common support of Po and I\). 

Proposition 3 : 

Hq(P" p.) = f dP, exp 1-f: D[Xq(t)]dt I 
= E" (cxp 1- f D[Xq(t)]dtj) , 

D(Xq) = qAI + (1 - q)Ao - A~A6-1l. 

Proof: The proof follows from the definition of D, P q, and Xq. 
Q.E.D. 

To the best of our knowledge, this result is new, and will be generalized 
in the following section and elsewhere. 4,5 Its significance lies in the 
fact that there exists a large body of results in both the mathematics 
and physics literature for studying properties of expectations of 
mUltiplicative functionals of random processes, so called Feynman-Kac 
functionals; now we can immediately draw on this body of knowledge. 

IV. DISTINGUISHING INDEPENDENT INCREMENT PROCESSES 

In this section, the results of Section III are extended to arbitrary 
independent increment processes. Here, rt E Rn is observed over 
[0, T), and has one of two sets of parameters (0;' S;, Vj) (j = 0, 1). As 
before, define for ° < q < 1, 

( 
dP l)q (dPo )l-q 

dhq(Po, PI) = d; d; dp., PI, P O« p. 

Hq(Po, PI) = f dhq(Po, PI), 

where H q is the Kakutani product associated with Po, PI. Next, it is 
useful to define a nonnegative measure jq(vo, VI) [the generalization of 
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the point measure at +1 with mass qAl + (1 - q)Ao - AlAA-1l In 
Section IIIJ, 

djq(lIo, Ill) = qdlll + (1 - q)dllo - dhq(lIo, Ill), 

J q(1I0, Ill) = f djq(lIo, Ill), 

and J Il is nonnegative and may be infinite, since 110 or III or both may 
not be finite measures. If J q < 00, it is convenient to define 

0; = OJ - f 1 + U TR dllj(u), 
u~O U U 

Oq = qOl + (1 - q)oo - r 1 + U TR djq(lIo, Ill). J u~o U U 

Finally, if Sl = So = S, and J q < 00, a third independent increment 
process Xq(t) is defined with parameters [Oq, S, hq(lIo, Ill)]. 

Theorem 4: For Po and PI not to be lnutually orthogonal, it is necessary 
and sufficient for the following three conditions to hold: 

(i) J q (1I0, Ill) < 00 

(ii) S 1 = So = S ~ 0 
(iii) Oq E range (S). 

If these three conditions are satisfied, then 

(a) A(rt) = rT [r In ddll l (u)durt - r (dill - dllo)dt] J 0 J u~o 110 J u~o 
+ ofRS-I[rT - jT - !(o~ + o;)J, 

where durt assigns a point mass at time instants where rt - rt- = u, 
i.e., where rt hops with amplitude u, and jt is the jump process com­
ponent of r t. 

(b) H q(P 0, PI) = exp [ - T J q(1I0, Ill) - ~ q(l - q)ofRS-10q]. 

Proof (sketched) *: The proof is broken into two parts, one part dealing 
with the jump process, the other with the gaussian process (including 
drift). The part dealing \vith the gaussian component is classical,6 and 
yields conditions (ii) and (iii), above. The main method employed 
in showing condition (i) for the jump-process component is to ap­
proximate the jump process by a sum of independent Poisson processes 
with different rates and jump amplitudes. As more and more Poisson 
processes are included in this sum, it can be shown that the approxi-

• From a detailed proof in Ref. 5. 
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mation converges weakly to the actual jump process. The Kakutani 
inner product of the probability measures of the approximations is 
simply the product of the Kakutani inner product associated with 
Poisson processes of the same jump amplitude (but possibly different 
rates); again, the delicate part of the proof is to show this approxi­
mation converges to the actual Kakutani inner product of the path­
space probability measures of the two independent increment processes. 

The program is to use this theorem in the remainder of this paper 
to exhibit the log likelihood functional and ascertain bounds on its 
performance in hypothesis testing for stable processes. Skorokhod7-

9 

has obtained conditions (ii) and (iii) in Theorem 2, and instead of 
condition (i) obtained t,vo conditions which must hold: 

{ (g - l)dvo < 00 
JID-II>i 

and { (g - 1)2dvo < 00 , 
J1 D-II ~t 

where g = (dvI/dvo); it is easy to show these two requirements are 
equivalent to J t(vo, VI) < 00. Hence, these conditions appear simpler 
than those of Skorokhod. l\Ioreover, it is obvious hmv to use J q to 
determine performance limitations, while it is not obvious at first 
glance how to apply Skorokhod's work. Also, the method of proof is 
different and may be easier to follow. 

Finally, it is instructive to rewrite H q as a Feynnlall-Kac type of 
functional of Xq: 

Proposition 5: Let Xq be a stationary independent -increment process 
with parameters (Oq, S, hq) as defined previously. Then, 

where 

Hq(P o, PI) = Exq [ exp ( - loT D(Xq)dt) ] 

= f dPq exp [ - loT D(xq)dt] , 

Proof: The proof follows immediately from the definitions of D, Xq, Pq • 

Q.E.D. 
Again, note that 

D(XI) = ~ [(oiR/2)S-I(Oq/2) + 1.,"0 (.J?ii - -/£)' dl' ], VI, vo«1' 

can be immediately used to provide a crude upper ancllower bound on 
the total probability of error. As in the Poisson CUfle, one desires the 
differences in the square roots of the Levy measures (suitably defined) 
as large as possible, for good performance. 
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V. DISTINGUISHING STABLE PROCESSES 

Let Xj(t) (j = 0, 1) be a scalar real-valued representation of a stable 
(0 < a < 2), stationary, independent increment process, t E [0, T), 
with characteristic functional [Xj(O) = 0 a.s.; j = 0, 1]. * 

Vj(U) 

= exp 1+0,1) + 1.,"0 (e i 
•• - 1 - 1 ~U2) dVj(U)]j 

= J vi = c~ I U I-ai U < 0 
1 vt = -c~u-ai U > o. 

Following Section IV, it is clear that J q(vo, Vl) diverges (to + 00 ), 

from simply substituting in the explicit form for Vj and carrying out 
the calculations. Hence, Po and I\ are mutually orthogonal if one or 
more of the parameters differ, the log likelihood functional is either 
+ 00 or - 00 on hypothesis one or zero, respectively, and the prob­
ability of incorrectly choosing one hypothesis when the other is true 
IS zero. 

Since J q(vo, Vl) diverges because Vj diverges as I U I ~ 0, this suggests 
that being able to observe the process perfectly, down to jumps of 
vanishingly small amplitudes, may be the mathematical reason for 
singular detection; but therein lies the flaw: it may well be physically 
impossible (the mathematical model is inadequate) to achieve this. 
FrostI° apparently first popularized this idea in the engineering litera­
ture; here we reach the same conclusions by entirely different methods. 
Sections VI and VII deal with two distinct methods for overcoming 
these flaws in the mathematical model. 

VI. DISTINGUISHING PSEUDO-STABLE PROCESSES 

Let Xj(t) (j = 0, 1) be a scalar real-valued representation of a 
stationary independent increment process just as in Section V, except 
that the Levy measure is now written as 

where 

and 

u<-L 
-L < U < 0 

O<u<R 
R < u, 

/

0- U 

-L 1 + u2 dX~(u) < 00, 

0; = OJ - f 1 +u 2 dVj(U). 
,,;060 U 

* The case a = 2 is well known 6-10 and, for brevity, is not included here. 

PROBABILITY MEASURES-II 1191 



A~, A~ are absolutely continuous with respect to Lebesgue measure, 
and Vj is nondecreasing on (- 00, 0-), nonincreasing on (0+, (0). 
The limit, as both Rand L approach zero, of a sequence of such pro­
cesses can be shown to converge weakly to a stable process, and hence 
these processes are christened pseudo stable processes. Here Land R 
quantify that the fact that no negative jumps can be observed with 
amplitude less than L, no positive jumps can be observed with ampli­
tude less than R. Both the properties of the sample functions and the 
one-dimensional distributions are radically different here from stable 
processes: (i) pseudo-stable process sample functions are of bounded 
variation w.p.I, with only finitely many nonzero jumps in any finite 
time interval; stable process sample functions are of either unbounded 
(1 < a < 2) or bounded (0 < a < 1) variation w.p.I, with the set 
of time instants at which nonzero jumps occur being dense in any 
finite time interval, and (ii) the set of one-dimensional distributions 
of pseudo-stable processes is clearly not closed under convolution, 
which was the defining property of stable distributions, but the 
asymptotic tail behavior is the same, since 

Pr [Xj(t = 1) > x] r'-/O (lOCI dVj(U)) , 

Pr [Xj(t = 1) < -x] r'-/ 0 (f_~X dVj(U))' 

For this special case, it is straightforward to show that J q (vo, VI) < 00 , 

and hence condition (i) of Theorem 2 is satisfied. HO\vever, Oq is not 
in general in the range of S ( = 0), and again singular detection is 
possible. The reason is clear on physical grounds (cL Section III, the 
Poisson case) : the slope of the sample paths of Xj(t) is 0;, ignoring the 
jump discontinuities, and hence it is trivial to discriminate between 
two pseudo-stable processes with different drifts. Two approaches are 
available: either let S be nonzero, which we do not pursue here because 
this seems ad hoc, having introduced L, R, already, or make the drifts 
match, o{ = o~, which we assume from this point on. 

The log likelihood functional is thus 

A(rt) = foT dt [f_~L In (dvI/dvo)drt + fROCI In (dvI/dvo)drt] 

+ foT dt [f_~L (-dVl + dvo) + fR~ (-dVl + dvo)] , 

where, for simplicity, it was assumed 
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As expected, the form of the log likelihood functional is quite sensitive 
to whether a = 2 or 0 < a < 2 (e.g., see Refs. 7-10 for a = 2). 

To obtain upper and lower bounds on the probabilities of an error 
of the first or second kind, and on the total probability of error, the 
Kakutani inner product H q must be calculated. Assuming A.~ = c~Lai, 
A.~ = - c~R-ai, the result is 

H q(Po, PI) = exp [ - T J q(vo, VI)], 

Jq(vo, VI) = q(c~L-al + c~R-al) + (1 - q) (c~L-ao + c?rR-ao) 

(a CO )I-q(a cl )q 
_ 0 - I - L-qal-(I-q)ao 

qal + (1 - q)ao 
(a CO )I-q(a c1 )q 

_ 0 + I + R-qa1-(I-q)ao 
qal + (1 - q)ao ' 

H,(P o, PI) = E., 1 exp [ - !. T D(x,)dt] I ' 
D(Xq) = J q. 

In summary, discriminating between Wiener processes (a = 2) with 
different variances leads to singular detection, while if the variances 
are identical then the detection problem is nonsingular. 6

-
1o Discriminat­

ing between stable processes (0 < a < 2) with one or more different 
parameters leads to singular detection. If the Levy measure is modified 
to be a finite measure, then if the drifts differ, singular detection occurs, 
while if the drifts are identical, then the detection problem is 
nonsingular. 

VII. DISTINGUISHING SAMPLED STABLE PROCESSES 

The previous sections show that it is quite easy to find examples of 
continuous time singular-detection problems. In this section, it is 
assumed that N samples of a stable process with one of two sets of 
parameters are observed, and we wish to study the effect of choosing 
the sample spacing and the total length of the observation interval 
on the Kakutani inner product H q; the goal is to make H q as small 
as possible. 

Attention is confined solely to scalar processes from this point on. 
The distribution of xX (k + l)dt] - Xj(kdt) is given by Pj(dt; OJ, Sj, Vj). 
The Kakutani Inner product of the new two discrete time distri­
butions is 

For At 1 0 or T ~ 00, with (T / dt) == N fixed in both cases, fixed, 
that H q can approach one, some number between zero and one [say 
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e-kN , where k = k(Ol, 00, Sl, SO, VI, Vo)], or zero. It is obvious that 
if the two continuous time independent increment process path-space 
measures are not mutually orthogonal, then the only approach to 
reducing H q is to fix .6.t and increase T. However, if the two con­
tinuous time independent increment processes have mutually orthog­
onal path-space measures, then it is possible to reduce H q by decreas­
ing .6.t with (T / .6.t) fixed. To state the result, a lemma is needed: 
Lemma 6. If J.I. is an infinitely divisible probability measure, with 
v(u) ,.......,O(lul-a

) as lui ~O, 0 < a < 2, then 

f exp (ivx)dJ.l.(x) = exp [-Slvl a + D(v)], o < a ~ 2, 

where if 

o - ( 1 +u 2 dv(u) = 0, J u.co u 
then 

Lim D (v) / I v I a = 0, o < a ~ 2; 
I vl-+oo 

otherwise, 

D(v) = ivo + D' (v), Lim D'(v)/Ivl a = 0, 1 ~ a ~ 2. 
Ivl-+oo 

Proof: The proof follows from properties of V, and is found in Ref. 5. 
Q.E.D. 

The main result can now be stated: 

Proposition 7: For 0 < q < 1, with a zero-drift gaussian component 
(a = 2) present in either Xl, or Xo, or both, if (T /.6.t) is fixed 

Lim Hq(T, .6.t) = 
A t~O 

(a) 1 iff S 1 = So> o. 
(b) Exp (- kN) iff Sl ¢ So, Sl > 0, and So > 0, 

k = In [q(SO/Sl)l-q + (1 - q) (SdSo)q]!. 
(c) 0 iff Sl ¢ 0 = So or Sl = 0 ¢ So. 

H a zero-drift nongaussian stable (0 < a < 2) component is present 
in either r1 or ro, then 

Lim Hq(T, .6.t) = 
At~o 

(d) 1 iff al = ao, Sl = So. 
(e) Exp (-kN) iff al = ao, Sl ¢ So, Sl > 01, So > O. 
(f) 0 iff al ¢ ao. 
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Proof: The proof follows from scaling arguments, and is found in 
Ref. 5. 

Q.E.D. 

If a gaussian component is present in both processes, then decreasing 
the sampling interval has no effect on decreasing H q, and T must be 
increased to decrease H q. However, if no gaussian component is present 
in one or the other of the processes, or if al ~ ao, then it is possible to 
decrease H q by decreasing I1t with (T /l1t) fixed. 

Analogous results for T ~ co with (T / I1t) fixed are presented in 
Ref. 5, as well as some results on the rate at which H q approaches its 
limiting value. 

Related work on nonuniformly sampling a continuous time inde­
pendent increment process with one of two drift parameters is available 
in the literature. 14 A typical result is that sampling two stable processes 
with identical characteristic index, skewness, and scale, but differing 
drifts, is a singular detection problem if 

00 

L (t;+l - t;)2[l-(l/a)] 
j=O 

diverges, where {tj} are the sampling epochs, 

t (tj+! - tj) = T. 
j=O 

Thus, spacing the samples apart by ti+l - tj ex:: j-m(m > 1) results in 
singular detection, but (t;+l - tj) ex:: e-mj(m > 0) may not. 
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Four of the Bell System digital transmission systems, Tl Outstate, 
T2, 3A-RDS (radio system at T3 rate), and T 4M, have violation monitor 
and removers (VMRs) located at the receiving-end maintenance offices. 
A mong other things, they monitor the lines, remove violations in the pulse 
transmission code, and generate alarms to initiate maintenance actions. 
This paper investigates the alarm statistics of the four types of VMR under 
the assumption that the information bits are statistically independent. It is 
found that all the VMRs have very sharp alarm thresholds. The results 
of the T 4M VMR are presented in detail. Curves are given to show the 
various statistics obtained. 

I. INTRODUCTION 

Digital tra~smission systems serving large numbers of message 
channels should be continuously monitored to check the quality of 
service. This can be achieved by putting monitors at maintenance 
offices along the digital transmission route. An ideal monitor should 
provide the exact number of errors made in transmission. Since line 
errors cannot be directly measured in service, alternative criteria have 
to be used for performance monitoring. For instance, bipolar coding l 

can be employed so that the monitor can detect line errors from the 
violations of the coding sequence, and parity bits can be inserted into 
the transmitted digital stream so that the monitor can detect line 
errors if the received parity bits differ from those calculated from the 
received signal. The monitor generates alarms to initiate maintenance 
actions when the detected violation rates are greater than a prede­
termined threshold. 

In some cases the digital stream has a periodic, identifiable pulse 
sequence called "frame format" to which the monitor must synchronize 
before it can detect violations. The monitor is said to be in-frame when 
it recognizes the location of the frame-pulse sequence. High line-error 
rates may alter the frame pulses such that they are unrecognizable by 
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the monitor, which is then said to be out-of-frame. The in-frame 
condition is necessary to identify the various signal components that 
are multiplexed to form the digital stream. The monitor removes all 
violations detected so that violations do not propagate beyond the 
maintenance office; hence, the name "violation monitor and remover" 
(VMR) was designated. Removal of a violation is not an attempt to 
correct the line error. It is perfomed to guarantee that the VMR output 
is violation-free so that if an alarm condition exists, it will not propa­
gate to the next maintenance office. The VMR performs other functions 
as well. If it is out-of-frame, a pseudorandom signal with proper frame 
format will replace the received digital stream at the VMR output in 
order to prevent alarm propagation. 

Four of the Bell System digital transmission systems, Tl Outstate, 
T2, 3A-RDS (radio system at T3 rate), and T4l\![ have VMRs located 
at the receiving-end maintenance offices. The Tl Outstate system uses 
bipolar coding. The T2 system utilizes B6ZS1 (bipolar with six zeros 
extraction) coding. Both the 3A-RDS and the T4l\![ systems employ 
added parity bits for performance monitoring. The VMR for each system 
has its own alarm rules. The durations of time for alarm generation 
and alarm release at various error rates are important system param­
eters. This paper investigates the alarm statistics of the four types of 
VMR under the assumption that the information bits are statistically 
independent; i.e., each bit is a Bernoulli trial. The derivations for the 
T4M VMR2 are presented in detail in Section II. Those related to the 
other VMRs are discussed in Appendix A. Section III discusses. some 
of the results obtained and their significance in digital transmission 
systems. 

II. THE T4M VMR 

2.1 Alarm strategy 

The T4l\![ digital transmission line2 has a transmission rate of 274 
megabits per second (l\1b/s) \vith the information transmitted in a 
binary format. Its frame format3 contains 196 bits of which 192 are 
information bits and 4 are housekeeping bits. One of the latter is a 
parity bit used to check the 192 information bits. The alarm strategy 
of the VMR at low-parity violation rates is implemented in the following 
manner. The first single parity violation that is observed triggers a 
lOO-ms timer and a counter. If the counter accumulates more than 31 
parity violations before the lOO-ms measuring timer times out, a 
3-ms waiting timer is immediately triggered. At the end of 3 ms, 
another lOO-ms timer is triggered and the counter starts counting 
again. During this second lOO-ms period, if the counter overflows; i.e., 
it accumulates more than 31 violations, a VMR alarm is generated 
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immediately. The 3-ms waiting timer is employed so that a short 
burst of errors will not cause an alarm. Since the transmission rate is 
274 lVlb/s and violation is checked once every 196 bits, the alarm 
threshold violation rate is set at 

31 X 196 _ -3 

2.74 X 108 X 0.1 - 0.222 X 10 . 

It will be shown in the next section that this violation rate corresponds 
to an error rate of approximately 1.1 X 10-6• 

To avoid oscillatory alarms near the threshold violation rate, 
hysteresis is designed into the VMR alarm system. A I-second release 
timer is used to measure the violation rate when the VMR is in the 
alarm state. The release timer is free-running and is not synchronized 
to the VMR alarm. The alarm is released only after a full duration of 
the release timer is passed and the 31-violation counter does not 
overflow. Thus, whenever an alarm is generated, it will last at least 1 
second. This produces a release-error-rate threshold of about 1.1 X 10-7• 

When the VMR is out-of-frame for 0.5 ms, a pseudorandom signal 
with the proper frame format is switched in to provide a violation-free 
output. As soon as the VMR is back in-frame, the violation counter is 
reset and starts counting until the I-second free-running release timer 
times out. If the counter does not overflow, the pseudorandom signal 
is then switched out. Thus, after a failure is restored, it takes anywhere 
from 0 to 1 second to switch out the pseudorandom signal. 

2.2 Bit error rate versus parity violation rate 

Since the digital transmission line performance objective is usually 
set in terms of the bit error rate, which cannot be directly measured 
in service, it is desirable to establish the relationship between the 
parity-violation rate and the bit-error rate. Let l be the number of 
information bits contained in each parity check. Then, 

P {parity violation} = P {odd number of bit errors in l bits} 
. P {the parity bit is correct} 

+ P {even number of bit errors in l bits} 
. P {the parity bit is in error}. (1) 

In what follows all random variables are in boldface type. Let the 
bit-error rate and the parity-violation rate be represented by t and v, 
respectively. For each realization of E, (1) can be written as 

v = (1 - b1) (1 - E) + b1E, (2) 

where b1 denotes the probability of having an even number of bit 
errors in l information bits. This event occurs if a correct first bit is 
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followed by an even number of bit errors or if an incorrect first bit is 
followed by an odd number of bit errors. Therefore, for l ~ 1, 

b, = (1 - e)b l- 1 + E(1 - b'-l), 

Define the generating function4 

co 

bo = 1. 

B (S) = L blSl - 1 < S < 1. 
l=O 

Multiplying (3) by Sl and adding over l = 1, 2, ... , we obtain 

(3) 

(4) 

B(S) - 1 = (1 - e)SB(S) + ES(1 - S)-1 - eSB(S) (5) 
or 

B(S) = !{(1- S)-1 + [1- (1- 2E)SJ-l}. (6) 

Expanding into geometric series, we get 

1 + (1 - 2E)l 
b, = 2 ' (7) 

which is equivalent but preferable to 

b, = (~) EO(1 - E)l + (~) E2(1 - e)l-2 + .. '. 

Substituting (7) into (2) 

v = 1 - (1
2

- 2E)l X (1 _ e) + 1 + (1
2

- 2E)l X E. (8) 

Equation (8) establishes the relationship between the parity-violation 
rate and the bit-error rate. When lE « 1, it is easy to see that 

v ~ (l + I)E. (9) 

In the T4M frame format, l = 192. Therefore, 

v ~ 193e. (10) 

Equation (10) is intuitively obvious because only errors occurring in 
the 192 information bits and the parity bit are counted by the VMR. 

Since a parity check is made every 196 bits, let E' = v/196, E' can be 
considered as the measurable bit-error rate. It differs from E by about 
1.5 percent when (10) holds. 

Figure 1 plots the parity violation rate versus the bit error rate 
based on (8) with l = 192, assuming the VMR stays in frame. We see 
that for bit-error rates below 10-3, there is almost a one-to-one corre­
spondence between a bit error and a parity violation. Above 10-3, 

the VMR may go out of frame. 

1200 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976 



100~--------------------------------------------------~ 

UJ 
I­
<X: 
a: 10-2 
z 
o 
f= 
<X: 
...J 
o 
:> 
~ 10-3 

a: 
<X: 
c.. 

10-5 10-4 

BIT ERROR RATE 

Fig. I-Parity-violation rate vs bit-error rate. 

In this paper, only low-parity-violation rates are being studied. 
Thus, E will be used in place of e' for simplicity. 

2.3 Statistics of the alarm interval 

Let "I represent the transmission rate, N the number of independent 
violations incurred, and T the time spent to count the violations. By 
the Bernoulli trial assumption, 

PIN = niT = t, t = e} = ("I~) en(1 - e)'Yt-n. (11) 

In this paper, only conditional distributions are discussed in most 
cases. For simplicity, conditions such as t = e, N = n, and T = tare 
not expressed explicitly when they are understood. 

Since "It is large, by De lVIoivre-Laplace limit theorem, a normal 
approximation to the binomial distribution is applicable. 

PIN ~ n} ~ 1 - <I> ( n - "Ite ), (12) 
~"Ite(1 - e) 
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Fig. 2-Probability of counter overflow vs bit-error rate and time. 

where 

<I>(x) = IX _1_ e- t2 / 2dt 
-~~ 

is the cumulative normal distribution. Let 

Jl = PIN ~ n}, 

(13) 

(14) 

Jl is the probability of counter overflow given an error rate and a fixed 
timer. Figure 2 shows, on a probability scale, this probability as a 
function of the bit-error rate for to = 100 ms. The same curve with a 
different ordinate also shows the probability as a function of time for 
E = 10-6• It can be seen that when the error rate varies from Eo/2 
to 2Eo, the probability of counter overflow varies from 0.0001 to 0.9999. 
Thus, the threshold is very "hard." 

Let M be the random variable such that the VMR alarm is generated 
at the M th measuring period. Each period is 100 ms if the counter 
does not overflow. It is desirable, then, to determine the probability 
pm, rn = 0, 1, 2, ... , that the VMR will generate an alarm at the rnth 
measuring period, given T = t and (: = E. If 1 represents the event 
that during a measuring interval the counter overflows and 0 repre­
sents the opposite, the rn periods must be of the form 

X X X···X 0 1 1, 
'--y------J 

m-3 
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where the sequence of m - 3 Xs does not have any 1 1 pair within it. 
Hence, 

pm = P{M = m} 
= P{1 1 does not occur in a sequence of length m - 3} ·p{OII} 

( m-3) 
= 1 - ?: Pi (1 - J.1.)J.1.2. 

t=O 

By definition, Po = PI = 0, P2 = J.1.2, and P3 = (1 - J.1.)p.2. Denote 

then 

qm = P{M > m} 

m 

= 1 - L pi, 
i=O 

Define the generating functions as 

peS) = f: PkSk -1 ~ S ~ 1 
k=O 

-1 < S < 1. 

Then, 
(1 - S)Q(S) = 1 - peS), 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

as can be seen by comparing the coefficients of any Sk terms on each 
side. From (19), (18), and (20) 

peS) = J.1.2S 2 + (1 - J.1.)p.2S3Q(S). (22) 

Equations (21) and (22) give 

(23) 

From (23), the statistics of M can be derived. For instance, the mean 
and the variance are 

E{M} = f mpm 
m=O 

= lim PI(S) 
8-+1 

(24) 
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Var {M} = lim [P" (8) + P' (8) - P'2(8) ] 
8-+1 

(1 - p.) (1 + 3p. + p.2) 
p.4 (25) 

Higher-order statistics of M can be similarly obtained. At the threshold 
error rate, eo, p. = !, E {M} = 6. Thus, the expected alarm time is 
approximately 600 ms. The threshold variance is 22, which is quite 
large. 

Two standard methods are available to evaluate the probability 
coefficients pm, m = 1, 2, .... The first one is 

. p(m)(8) 
pm = hm , 

8-+0 m. 
m = 0,1,2, .... 

The second one is through partial fraction expansion of (23). Both 
methods require extremely tedious derivations. A simple alternative 
is presented in Appendix B which first expands the denominator of 
(23) as follows 

(26) 

with 

and 

i ~ 3. (27) 

From (19), (23), (26), and (27) 

m ~ 3. (28) 

Equations (27) and (28) provide an attractive way to evaluate the 
probability coefficients Pm'S. What is more, pm can be obtained without 
first calculating pm-I, pm-2, etc. It is interesting to note that for any 
error rate, 

P2 = p.2 

P3 = P4 = (1 - p.)p.2 

pm > pm+l m ~ 4. 

Thus, the probability that the VMR will generate an alarm during the 
second measuring period is always the largest, regardless of the error 
rate. The probability decreases monotonically at later measuring 
periods. 
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The cumulative distribution function of M is 

m 

= L Pk. 
k=l 

Since the duration of each measuring period IS not greater than 
to = 100 ms, the length of the timer, 

m 

P{VMR has generated an alarm in mto ms} ~ L Pk. 
k=O 

This equation can be used to plot the lower bound of the alarm prob­
ability as a function of time. 

2.4 Distribution of violation measuring time 

The distribution of the measuring time T, assuming N = nand 
(: = e, is considered next. If we let Y be the number of error bits prior 
to the nth error, then Y has the negative binomial distribution 

P{Y = y} = Ene! - e)Y. (
y+n-1) 

n - 1 

The time elapsed for the nth error to occur, 

T=Y+n 
'Y ' 

has the probability-density function (PDF) 

P{T = t} = 'Y ('Y~ = i) Ene! - e)-yt-n. (29) 

Equation (29) is the distribution of the discrete violation measuring 
time T given that N = nand (: = e. The T4.i\1 VMR has the additional 
condition T ~ to = 100 ms; i.e., each measuring period is no greater 
than 100 ms. Let this censored random variable be denoted by T c. 

It is now desirable to find the distribution of T c, given that N = n, 
(: = E, and Tc ~ to. Unfortunately, this task is difficult to perform in 
the discrete sample space. However, since each infonnation bit is 
3.65 ns long while the T c of interest is in milliseconds, the discrete 
censored random variable can be considered continuous for ease of 
calculation. From the Poisson theorem, (11) can be approximated by 
the Poisson distribution 

e--YEt('YEt)n 
P{N = n} = n! . (30) 
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Let Yi , i = 1, 2, "', n represent the time from the (i - l)th error 
to the ith error, then its PDF is given by 

!Yi(t) = ,,(Ee-"(et. 

Through the use of the characteristic functions, it is easy to see that 
the sum 

has the gamma distribution 

!T(t) = (ey)n tn-1e-e"(t 
(n - I)! 

By successive integration by parts, it can be shown that 

(~ !T(t)dt = e-e"(to ntl (eyt,o)k. 
J to k=O k. 

Thus, the censored random variables Tc has the PDF 

{

!T(t) + o(t - to)e-e"(to ntl (eyt,o)k t ~ to 
!Tc(t) = k=O k. (31) 

o t > to, 
where o(t - to) is the delta function. Its characteristic function T(w) is 

Tc(w) = ( (E"{)~) (1 _ e-(e"(-iw)to ntl (E,,{ ~/w)kt~) 
ey - JW n k=O. 

n-l (eyt )k + e-(e"(-iw) to L __ 0_. 

k=O k! 
The mean 11 tc is given by 

l1 tc = d~c(w) I = !!:.. - 1- e-e"(to :t k(eyto)n-t (32) 
Jdw w=o ey E"{ k=l (n - k). 

The variance u1. can be evaluated similarly. The first term on the 
right of (32) is the mean value of T. The second term is present be­
cause of the additional restriction T ~ to. At the alarm-error-rate 
threshold, 11 tc ~ 97 ms, n/ E"{ = 100 ms, the contribution of the second 
term is about 3 ms. 

2.5 Distribution 01 the alarm time 

Let To represent the time it takes the VMR to generate an alarm at 
a given error rate. It is desired to find the PDF of To. Let T i, i = 1, 
2, "', M, represent the time from the (i - l)th to the ith measuring 
interval, neglecting the 3-ms waiting time. The PDF of T i is given in 
(31). The alarm time is then 
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Note that To is the sum of a random number of random variables.4 •5 

Through the use of conditional probability, since M and T/s are 
independent, the PDF of the random sum has a compound distribution 

fTo(t) = f Pmf~":)(t), 
m=O 

where pm is given in (28) and f~":) (t) is the m-fold convolution of 
fTe(t) with itself. The characteristic function of To is 

To(w) = f Pm[Tc(w)Jm. (33) 
m=O 

The right side of (33) is the Taylor expansion of peS) obtained in 
(23) with S replaced by Tc(w). Thus, 

To(w) = P[Tc(w)]. (34) 

The mean and the variance of To are 

I+JL 
'Y/to = --2- 'Y/to) 

JL 

2 _ 1 + JL 2 + (1 - JL) (1 + 3JL + JL2) 2 
(1to - --2 - (1t. 4 'Y/t., 

JL JL 

(35) 

where 'Y/ te is given in (32). Equation (35) is used to plot Fig. 3 which 
shows the mean alarm time versus the error rate. It can be seen that 
the mean alarm time decreases very fast as the error rate increases. 
The total alarm probability after time t is 

P{To ~ t} = lot fTo(t)dt 

= m~o pm 10 t f~":) (t)dt. (36) 

2.6 Waiting time distribution 

In the above analyses, the 3-ms waiting intervals have not been 
taken into account. The waiting timer is triggered after each counter 
overflow. The distribution of the waiting periods is studied next. Let 
W be the number of times the waiting timer is triggered before a VMR 

alarm is generated, assuming that M = m. The last three measuring 
periods before a VMR alarm should be 011 [notations are defined 
before (15)] and the waiting timer is definitely triggered once. Let 

A I = the event that 11 does not occur in l measuring intervals. 

This event occurs if the counter does not overflow in the first measuring 
interval, followed by the event A 1-1, or the counter overflows in the 
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Fig. 3-Expected alarm time vs error rate. 

first interval but not the second interval, followed by the event A Z- 2• 

Let 
aZ = P{Az}, 

then 
aZ = JL(1 - JL)al-2 + (1 - JL)aZ-l 

The generating function A (8) is defined as 

l ~ 2. 

A(8) = f az8 z -1 ~ 8 ~ 1. 
z=o 

l\1ultiplying (37) by 8 l and summing from l = 2 to infinity, 

(37) 

f al8 l = JL(1 - JL)82 t az_28 z- 2 + (1 - JL)S t az_18 z- 1• (38) 
Z=2 Z=2 l=2 

Since ao = al = 1, (38) can be written as 

A (8) - S - 1 = JL(1 - JL)82A (8) + (1 - JL)8[A (8) - 1J, 
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then 

A(S) = 1 + pS 
1 - (1 - p)S - p(I - p)S2 

Therefore, each P {A l}, l ~ 2, can be obtained by the method indicated 
in Appendix B. Let X be the number of times the waiting timer is 
triggered in l measuring periods, given that the event A l is true, then 

P {X = ./ A } = P {X = j, Ad. 
J l P{Az} (39) 

Let P { . /O} denote the conditional probability assuming the counter 
does not overflow in the first measuring interval, and P { . /1, O} denote 
the conditional probability assuming the counter overflows in the first 
but not the second interval. The numerator of (39) can be written as 

P{ X = j, Ad = P{ X = j, Ad I}P{1} + P{ X = j, AdO}P{O} 

= pP{X = j, Ad I} + (1 - p)P{X = j, AdO}. (40) 
However, 

P{X = j, AdI} = P{X = j, AdI, I}P{1/I} 
+ P{X = j, AdI, O}P{O/I} 

= 0 + (1 - p)P{X = j - 1, A z- 2 } (41) 

P{X = j, AdO} = P{X = j, Az-d. (42) 

Insert (41) and (42) into (40); then, 

P{X = j, Ad = p(I - p)P{X = j - 1, A l - 2 } 

+ (1 - p)P{ X = j, Az-d. (43) 
Let 

Pi,l = P{ X = j, Ad· 

Equation (43) can be written as 

Pi,l = p(I - P)Pi-l,l-2 + (1 - P)Pi,l-l. 

Following the derivation of (38), we obtain 

Define the bivariate generating function A (SI, S2) as 
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Since 

Pi,l = 0 
PO,l = (1 - J..L)l 

Pl,l = J..L, 

eq. (44) can be reduced to 

j > l, j = 1, 2, ... 

l = 0,1,2, ... 

A (81,82) - 1 _ (/ _ J..L)S2 - J..LSlS2 = J..L(1 - J..L)SlS~A (Sl, 8 2) 

+ (1 - J..L)82 [A(8 l' 8 2) - 1 - (/- J..L)S2]· 

Therefore, 

(45) 

An iterative expression similar to that given in Appendix B can be 
obtained for the evaluation of Pi,l, and, hence, P{ X = j I Ad according 
to (39). Note that PIX = jlAd = 0 for j > l/2 + 1. 

An example is given below. When E = EO, J..L = !, it was shown in 
(24) that on the averag~ six measuring periods are required for the 
VMR to generate an alarm. During the last three periods (011), the 
waiting timer is triggered once. It is desirable to find the distribution 
of X in the first three periods. From (37) and (45), 

P{A3} = 1 - 2J..L2 + J..L3 

P03 = (1 - J..L)3 

P13 = 3J..L(1 - J..L)2 

P23 = J..L2(1 - J..L) 

P33 = 0 
3 

E{XIA3} = L i X PIX = i1A3} 

At the threshold, U = !, 

i=O 

J..L(1 - J..L)(3 - J..L) 
1 - 2J..L2 + J..L3 

E{ XIA 3} = 1. 

Thus, in the first three measuring intervals, the waiting timer is 
expected to be triggered once. In the last three intervals (011), the 
waiting timer is definitely triggered once. Hence, if the alarm occurs 
at the sixth measuring interval, then 

E{WIM = 6} = 2. (46) 

Equation (46) says when E = EO, the waiting timer shall be, on the 
average, triggered twice before an alarm is generated. 
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2.7 Statistics of alarm release and oscillation 

To avoid oscillatory alarms near the error threshold, a release timer 
with duration d > to is used to measure the violation rate when the 
Vl\IR is in the alarm condition. The alarm is released only after the release 
timer times out and the counter does not overflow. Let v be the prob­
ability of counter overflow during the measuring period d. From (12) 

v ,........ 1 _ 1> ( n - 'Yd€ ) . 
,........ ~'Yd€(1 - €) 

Let K represent the number of measuring periods before the Vl\IR 

stops alarming; i.e., the Vl\IR will release the alarm at the (K + 1)th 
period. Then, 

hk = P{K = k} 
= (1- v)v k k = 0,1,2, .... (47) 

Thus, K IS governed by a geometric distribution with generating 
function 

1 - v 
R(s) = --. 

1 - vS 
(48) 

The distribution of the alarm-release time D (assuming the error 
rate remains constant) will be derived first. Let Di represent the time 
from the (i - 1)th to the ith counter overflow during the alarm state. 
The distribution of Di is given by (29) and its generating function is 

€S1I-y 
Di(S) = 1 _ (1 _ €)Sl/-y (49) 

The alarm-release time is again given by a random sum 

k 

D = L Di + d, (50) 
i=O 

where by definition, Do = 0. Since K and the D/s are independent, 
the generating function of D is 

00 ( €Sl/-y )kn 
D(s) = Sd k~O hk 1 _ (1 _ €)Sl/-y 

= SdR[Di(S)]. (51) 

The PDF of D is the compound distribution 

fn(x) = f: hk'Y ('Y(X - d) - 1) €kn(1 _ €)-y(x-d)-kn. (.52) 
k=l kn - 1 

The mean and the variance of Dare 

v n 
'Y/d = -- X - + d (53) 

1 - J) €'Y 

<T~ = 1 ~ J) X €~2 X (1 ~ J) + 1 - €). (54) 
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Fig. 4-Average first-oscillation time vs duration of release timer. 

The first oscillation time T a , i.e., the time it takes for an alarming 
VMR to release and then generate another alarm, assuming the error 
rate remains constant, is 

Ta = D + To. 

Its PDF is simply the convolution 

The mean and the variance of T a are 

'1/ta = '1/d + '1/to· 
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Equation (56) is employed to plot Fig. 4 which shows the expected 
first oscillation time versus the duration of the release timer d with 
the error rate as the parameter. When E = 10-6, if d = 330 ms, alarm 
oscillation is expected to occur once in 187 years; if d = 1 second, 
alarm oscillation is extremely unlikely to occur. 

The time from an initial alarm state to the ith alarm oscillation is 
i X Ta, whose distribution can be easily obtained from that of Ta. 

2.8 Pseudorandom signal switching statistics 

As described in 2.1, after the pseudorandom signal is switched in, 
if the VMR is back in-frame, immediately the violation counter is reset 
and starts counting again until the free-running release timer of 
duration d times out. Since the in-frame condition can occur anytime 
within the interval 0 to d, the time spent to count the violations is 
uniformly distributed between 0 and d. When the release timer times 
out, the number of violations counted is a mixture distribution ob­
tained through randomization5 of the parameter t in (30) 

P{N = nit = e} f d e-'YEt('YEt)n 1 
= X -dt 

o n! d 

= _1_ (1 _ e-'YEd t ('Y~,t) i) . 
"lEd i=Q 'L 

(58) 

The PDF fE(E) of the error rate t is usually unknown. If fE(E) is given 
or can be estimated empirically, (58) can be randomized by fE(E). 

P{N = n} = !O' P{N = nit = e}fE(E)dE, (59) 

where the upper integration limit is determined by the domain of E. 

From (59), the probability P {N < n} that the counter does not 
overflow, i.e., the pseudorandom signal will be switched out, can be 
evaluated. 

2.9 Generalizations 

All the above derivations are general enough so that if one requires 
the counter to overflow consecutively more than twice (with the 
waiting timer triggered each time the counter overflows) before an 
alarm is generated, the results can be easily extended. For example, 
if the VMR generates an alarm after k consecutive counter overflows, 
then (24) becomes 
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and the probability coefficients are 

pm = 0 m=0,1,···,k-1 

Pk = J..Lk 

Pk+I = Pk+2 = ... = P2k = (1 - J..L)J..Lk 

pm > pm+I 111 ~ 2k + 1 

III. DISCUSSION 

As discussed in the introduction, one of the main functions of the 
Vl\IR is to generate alarms when it detects that the line performance is 
below a predetermined objective. However, the digital line performance 
objective is usually set in terms of a threshold bit-error rate which 
cannot be directly measured in service. Equation (8) establishes the 
relationship between the bit-error rate and the parity-violation rate 
for a digital line employing parity-checking digits. Figure 1 shows 
that for the parity-check structure used in the T4~f system and for 
bit-error rates below 10-3, there is almost a one-to-one correspondence 
between a bit error and a parity violation. This implies that the parity­
checking scheme is effective in determining digital transmission line 
performance. 

When the T4:\I V:\IR parity violations exceed a specified threshold 
in two consecutive measuring intervals, an alarm is generated. This is 
normally followed by an automatic transfer of the failed line to a spare 
line if the latter is available. In general, each spare line will protect 
several service lines to reduce system cost. Thus, a so-called "hard" 
alarm threshold, which clearly distinguishes between error rates slightly 
above and below the threshold, is desirable because it is unlikely to 
cause an alarm at error rates below the threshold. In this case, the 
spare line ,vill be available to protect more serious failures on other 
service lines. It also takes less time for a Vl\IR with a hard threshold to 
generate alarms when the error rates are above the threshold. Equation 
(14) gives the probability of the parity-violation counter overflow as 
a function of the error rate and the duration of the measuring interval. 
Figure 2 is a plot of (14) and exhibits the desirable hard threshold 
characteristics. As the error rate varies from 0.6 X 10-6 to 2 X 10-6

, 

the probability of counter overflow changes from 0.0001 to 0.999. 
When a catastrophic failure occurs on a line, its Vl\IR should generate 

an alarm as soon as possible so that an automatic transfer to a spare 
line can take place without trunk disconnection. When an error rate 
just above the threshold is detected, little harm will be done if the 
Vl\IR takes longer to announce an alarm. Equation (35) obtains the 
mean alarm time as a function of the error rate. From Fig. 3 it can be 
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seen that the mean alarm time of the T4l\1 Vl\IR reduces very fast 
with increasing error rates. Note that if an error rate of 0.7 X 10-6 

(slightly below the threshold) persists for hours, eventually an alarm 
will be generated because the alarm threshold is not infinitely hard. 

The amount of hysteresis required in releasing an alarm is an 
important part of Vl\IR design. The release timer should be long enough 
so that oscillation between alarm request and alarm release is unlikely 
to occur. It should also be short enough so that alarms are not un­
necessarily prolonged. Equation (56) gives the expected oscillation 
time as a sum of the mean alarm time and the mean release time, 
both of which are functions of the error rate and the length of the 
release timer. Figure 4 shows that when the duration of the release 
timer is greater than three times that of the parity-violation measuring 
interval, alarm oscillation is not likely to occur at any constant error 
rates. This is due to the fact that the mean alarm time is large for 
error rates below the alarm threshold while the mean release time is 
long for error rates above the alarm threshold. 

APPENDIX A 

The Tl Outstate (1.544 l\lb/s) Vl\IR counts 16 bipolar violations 
(violations occurring within a 0.3-ms interval are counted only once) 
in 85 ms to generate an alarm. The T2 (6.312 lVIb/s) VMR generates a 
low-error alarm if it counts 32 bipolar violations in 5 seconds (violations 
occurring within a 3.2-J-ts interval are counted only once). Since the 
error rates of interest are near the threshold, it can be assumed that 
no two violations occur "close" to each other. The 3A-RDS (44.736 
lVIb/s) VMR generates an alarm if it counts 31 parity violations in 2 
seconds. These alarm rules are simpler than that for the T4l\1 VMR, 

hence, the alarm statistics of these VMRs are also easier to derive. For 
the VMR of each system, a probability of counter overflow J-t can be 
derived as in (14). This probability is also the probability of alarm. 
The three alarm rules have ide~tical mathematical models; hence, 
no separate discussions are necessary. 

Let M represent the number of elapsed measuring periods before 
the VMR generates an alarm; i.e., the VMR will generate an alarm at 
the (M + l)th period. Then, 

pm = P{M = m} 
= J-t(1 - J-t)m m = 0,1,2, .. '. 

M is governed by a geometric distribution. l\lost other statistics dis­
cussed in Section II can be derived similarly. 
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Because of the simplicity of the geometric distribution, given a 
probability of alarm p, the number of elapsed periods k before the 
probability p is reached can be obtained explicitly, 

Therefore, 

k 

P ~ L pm 
m=O 

k ~ In(l - p) - 1. 
- In(l - J1.) 

In each of the first k measuring intervals, the counter ,,,ill not overflow 
when the measuring timer times out. Thus, the total alarm probability 
as a function of elapsed time can be plotted easily as opposed to 
evaluating (36) for the T41VI VMR. 

APPENDIX B 

This appendix derives an iterative expression to calculate the prob­
ability coefficients p/s discussed in Section 2.3. Specifically, given that 

and 

00 

peS) = L PiSi 
i=O 

m 

L ajSj 

P (S) = ------=J,--" =-'-O-n --

I + L biSi 

i=l 

(60) 

(61) 

it is desired to obtain the p/s in terms of the a/s and the b/s. Let the 
denominator of (61) be expanded as follows 

__ 1 __ = f CiSi. 

1 + t biSi i=O 
i=O 

C i, i = 0, "', n - 1, can be determined through long division or by 
comparing the coefficients of the Si'S in 

For i ~ n, 
n 

Ci = - L bkCi- k. 
k=l 
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Therefore 
m CX) 

peS) = L a;Bj X L CiSi. (62) 
j=O i=O 

Compare (60) and (62), pi, i = 0, 1, "', m - 1 can be determined 
easily. For i ~ m 

m 

Pi L ahCi- h 
1.=0 

f. ah [- t bkCi-h-k] 
h=O k=l 

m n 

L L ahbkCi-h-k. 
h=O k=l 

Pi can be calculated by computer without knowing Pi-I, Pi-2, etc. 
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cessor applications. 

James L. Flanagan, Sc.D. (E.E.), 1955, lVlassachusetts Institute 
of Technology; Bell Laboratories, 1957-. lVIr. Flanagan has worked 
in voice communications, acoustics, and digital techniques for signal 
coding and transmission. He is Head, Acoustics Research Department. 
Fellow, IEEE; Fellow, Acoustical Society of America; Board of 
Governors, American Institute of Physics; member, Sigma Xi; Tau 
Beta Pi. 

Franz T. Geyling, B.S., 1950, lVLS., 1951, and Ph.D., 1954, Stanford 
University; Bell Laboratories, 1954-. lVIr. Geyling has engaged in 
solid mechanics research and experimental stress analysis. From 1959 
to 1970 he specialized in orbital mechanics and was responsible for 
tracking and control studies of missiles, satellites and spacecraft. He 
also contributed to the structural analysis of ground antennas and 
suspended underwater arrays. Since 1971, he has been engaged in 
continuum physics as applied to materials research. He is coauthor 
of a book and has served as associate editor of the SIAM and AIAA 
Journals, as well as chairman of the AIAA Astrodynamics Specialist 
Committee. Associate Fellow, AIAA; Member, APS, Rheol. Soc., 
ASME, SIAl\I, Phi Beta Kappa, Tau Beta Pi, Sigma Xi. 
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David J. Goodman, B.E.E., 1960, Rensselaer Polytechnic Institute; 
IVLE.E., 1962, New York University; Ph.D. (E.E.), 1967, Imperial 
College, London; Bell Laboratories,1967-. l\1r. Goodman has studied 
various aspects of digital communications, including analog-to-digital 
conversion, digital signal processing, assessment of the quality of 
digitally coded speech, and error mechanisms in digital transmission 
lines. In 1974 and 1975, he was a Senior Research Fellow at Imperial 
College, London, England. l\1ember, IEEE. 

Sing-Hsiung Lin, B.S.E.E., 1963, National Taiwan University; 
l\1.S.E.E., 1966, and Ph.D., 1969, University of California, Berkeley; 
Bell Laboratories, 1969-. At the Electronics Research Laboratory, 
University of California at Berkeley, l\1r. Lin engaged in research 
on antennas in plasma media and numerical solutions of antenna prob­
lems. At Bell Laboratories, l\1r. Lin is \vorking on wave propagation 
problems on terrestrial radio systems and earth-satellite radio systems. 
l\1ember, IEEE, Sigma Xi, AIAA. 

Barbara J. McDermott, B.A. (Psychology), 1949, University of 
l\1ichigan; l\1.A. (Psychology), 1963, Columbia University; Bell 
Laboratories, 1959-. l\1s. l\1cDermott has worked on speech quality 
evaluation and multidimensional scaling analysis. l\1ember, Acoustical 
Society of America. 

Lloyd H. Nakatani, B.A. (l\1athematics), 1964, Ph.D. (Psychology), 
1968, University of California; Bell Laboratories, 1968-. l\1r. 
Nakatani has worked on speech quality evaluation and on speech 
perception and synthesis research. l\1ember, Acoustical Society of 
America. 

Philip J. Rich, B.S., 1972, University of Illinois, M.S. (Physics), 
1974, Georgia Institute of Technology, Bell Laboratories, 1974-. 
Mr. Rich is currently engaged in studies related to the characterization 
and splicing of optical fibers. 

B. W. Stuck, S.B.E.E., S.M.E.E., 1969, Sc.D., 1972, Massachusetts 
Institute of Technology; Bell Laboratories, 1972-. Mr. Stuck has 
worked on problems in applied probability theory and mathematical 
physics. He is presently concerned with modeling and performance 
analysis of large digital systems. Member, SIAM, MAA, IEEE. 

Susan A. Webber, B.A. (l\1athematics), 1972, Vassar College; Bell 
Laboratories, 1973-. l\1iss Webber is engaged in scientific program­
ming for laboratory computer systems dedicated to speech research. 
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Abstracts of Papers by Bell System Authors 
Published in Other Journals 

CHEMISTRY 

The Anodic Behavior of Gold in Sulfuric Acid Solutions Effect of Chloride and 
Electrode Potential. R. P. Frankenthal and D. E. Thompson, J. Electrochem. Soc., 
123 (June 1976), pp. 799-804. Gold corrosion in the passive and transpassive 
potential regions is affected by CI-. Soluble Au(III) and Au(OH)a film are the 
reaction products. Chloride promotes dissolution and restricts film formation. 
Mechanism of 02-evolution is different on a filmed than on a film-free surface. 

Brillouin Scattering from Polymer Films. G. D. Patterson, J. Polym. Sci., Part A-2, 
Polym. Phys., 14 (1976), pp. 143-149. Many polymers cannot be prepared as 
clear amorphous blocks suitable for classical light-scattering studies. However, most 
linear polymers can be prepared as films which are somewhat transparent. With the 
advent of high-contrast multipass interferometers, these films can now be studied 
by Brillouin scattering. This work demonstrates the wide range of polymeric ma­
terials that can now be studied by Brillouin spectroscopy. 

Direct Measurement of Spontaneous Pre dissociation Using Coaxial Laser-Molecular 
Beams. R. M. Lum and K. B. McMee, Jr., J. Chern. Phys., 63, No. 11 (December 
1975), pp. 5029-5033. A laser-molecular beam technique has been devised to 
enable direct observation of radiationless transitions of isolated single molecular 
states. Spontaneous predissociation, detected as a modulation of the molecular beam, 
has been observed in Br2 at laser wavelengths which produce selective excitation of 
the individual Br2 isotopic species. 

Neutron Scattering Study at High Pressure of the Structural Phase Transition in 
Paratellurite. D. B. McWhan, R. J. Birgeneau, W. A. Bonner, H. Taub,* and J. D. 
Axe,* J. of Phys. C. Lett, 8 (1975), pp. L81-L85. The dispersion relation fQr the 
transverse acoustic phonon mode propagating along (110) polarized along (110) in 
Te02 has been measured at P = 1 atm, Pc (:::::9.0 kbar), and 2Pc where Pc is the 
tetragonal-to-orthorhombic structural transition pressure. Measurements of the order 
parameter are consistent with a mean field theory of a pressure induced elastic 
instability. *Brookhaven National Laboratory. 

COMPUTING 

Integrated Injection Logic: A Bipolar LSI Technique. R. A. Pedersen, Computer, 9, 
No.2 (February 1976), pp. 24-29. Integrated Injection Logic (PL) is a novel 
bipolar circuit design approach to achieve high-density large-scale integration. As 
the basic logic unit, it uses multicollector npn transistors which are powered from 
merged multicollector lateral pnp transistors. PL can be fabricated with standard 
buried collector technology and is therefore compatible with conventional bipolar 
circuitry-digital or linear-on the same silicon chip. 

ELECTRICAL AND ELECTRONIC ENGINEERING 

Behavior of Tandem Buffers with Geometric Input and Markovian Output. J. Hsu 
and P. J. Burke, IEEE Trans. Commun., COM-24 (March 1976), pp. 358-361. A 
discrete-time system of infinite-capacity buffers in tandem is studied. Input to the 
first buffer is geometric and the output for all but the last buffer (which can be 
arbitrary) is Markovian. The analysis shows that, in equilibrium, each buffer can be 
analyzed separately and independently. 

Chemisorption and Schottky Barrier Formation of Ga on Sj(111)7 X 7. G. Margari­
ton do, S. B. Christman, and J. E. Rowe, J. Vacuum Sci. Techno!., 13 (January­
February 1976), pp. 329-332. The chemisorption of gallium atoms on Si(111)7 X 7 
was studied using photoemission, electron-energy-Ioss, LEED and Auger spectros­
copy. Most of t.he states formed at the metal-semiconductor interface are due to the 
first 1-2 mcLal mOllolayer:> and need a microscopic-atomic bonding or surface-band­
structure theoretieal description. 
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A Comparison of Chemical Etches for Revealing (100) Silicon Crystal Defects. 
D. G. ~chimmel, J. Electrochem. ~oc., 123, No.5 (May 1976), pp. 734-741. Etch 
pit results of the Sirtl, Dash, Secco, and an experimental etch are compared for 
(100) silicon wafers after various device processing steps. Factors influencing etch­
pit formation on silicon surfaces are discussed. A recommendation is given for the 
etch formation with the best etch-pit development. 

Fabrication and Performance of Offset-Mask Charge-Coupled Devices. A.M. 
Mohsen and T. F. Retajczyk, Jr., IEEE J. Solid State Circuits, 8C-11 (February 
1976), pp. 180-188. The use of the offset-mask technique to fabricate two-phase 
and uniphase charge-coupled device (COD) electrode structures is described. A 
new two-phase electrode structure with polysilicon-electrodes and self-aligned gates 
for the peripheral circuits has been developed. The polysilicon offset-mask electrode 
structure is very attractive for charge-coupled memories. Compared to other two­
polysilicon level CCD structures, it has a higher packing density, is more tolerant 
to intralevel shorts, and does not require large numbers of small contact windows 
to connect the gate electrodes to the phase bus lines. 

High Repetition-Rate and Quasi-CW Operation of a Waveguide CO 2 TE Laser. 
P. W. Smith, C. R. Adams, P. J. Maloney, and O. R. Wood II, Opt. Commun., 16, 
No.1 (January 1976), pp. 50-53. We report operation of a waveguide C02 TE 
laser at excitation pulse repetition frequencies as high as 40 kHz. Quasi-continuous 
laser output was obtained yielding an average output power of 1.5 W from an active 
volume of 0.1 cc. Details of laser construction and excitation circuitry are given. 

Hydrogen Embrittlement of Electroless Copper Deposits. Y. Okinaka and S. 
Nakahara, J. Electrochem. Soc., 123 (1976), pp. 475-478. Electroless copper 
deposits were investigated for ductility, impurity content, void distribution, and 
fracture surface morphology. It is concluded that the brittleness of electroless copper 
deposits is due to the internal hydrogen embrittlement rather than the incorporation 
of cuprous oxide or morphological effects. 

Multicomponent Photopolymer Systems for Volume Phase Holograms and Grating 
Devices. W. J. Tomlinson, E. A. Chandross, H. P. Weber, and G. D. Aumiller, 
Appl. Opt., 15, No. 2 (February 1976), pp. 534-541. Novel photopolymer 
systems for the fabrication of high-resolution volume phase holograms and gratings 
devices are reported. We use a mixture of components chosen to have differing 
reactivities and polarizabilities. The image-forming exposure results, ultimately, in a 
modulated chemical composition. Peak-to-peak refractive index differentials of up 
to 1.5 percent were achieved. 

Multipoint Private Line Access Delays Under Several Interstation Disciplines. 
C. D. Pack and B. A. Whitaker, IEEE Trans. Commun., COM-2J,. (March 1976), 
pp. 339-348. Performance objectives for some types of computer-communications 
networks are stated in terms of access-delay statistics which measure the grade of 
service experienced by stations bidding for access to a multipoint private line (MPL). 
Using simulation and some analysis, we examine the access delay statistics for an 
MPL under each of four service disciplines. 

Observations on the Influence of Processing Steps on the Magnetic Hysteresis 
Parameters of a CO/Fe/Nb Alloy. M. R. Pinnel, IEEE Trans. Magn., MAG-12 
(May 1976), pp. 236-243. The variation of both magnetic and mechanical 
properties and microstructure of a Co/Fe/Nb alloy (Nibcolloy) with changes in 
processing has been characterized. Results indicate the use of a softening anneal 
prior to the final aging anneal can alter magnetic properties. A nonstability of 
coercivity to subsequent brief elevated temperature exposures of around 1000°C 
was also observed. 

Profile Parameters of Implanted-Diffused Arsenic Layers in Silicon. R. B. Fair and 
J. C. C. Tsai, J. Electrochem. Soc., 123 (April 1976), pp. 583-586. Equations 
have been derived that describe the important variables that are required to charac­
terize the diffusion of As-implanted layers for the surface doping concentration range 
CTO ~ 1 X 1019 cm-a• In addition, data obtained from differential conductivity 
profile measurements and SIMS profile measurements have been used to obtain 
experimental parameters for these equations. 
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Qualitative Observations on the Diffusion of Copper and Gold Through a Nickel 
Barrier. M. R. Pinnel and J. E. Bennett, Met. Trans., 7 A (May 1976), pp. 629-635. 
The interdiffusion behavior in planar-layered couples of Cu/Ni/ Au at temperatures 
between 150 and 750°C have been characterized. Results demonstrate that the 
nickel barrier layer retards but does not block the transport of copper to the gold 
surface. Possible mechanisms for the anomalous buildup of copper at the gold/nickel 
interface and gold at the copper/nickel interface are discussed. 

Signaling and Switching As We Enter the Second Century. J. S. Ryan, Telecommun. 
J.,43, No. 111 (March 1976), pp. 206-219. During the first century of the tele­
phone, switching evolved from the 21-line New Haven switchboard to the 104,000-
trunk No. 4 ESS, and signaling from voice alerting to CCIS. This centennial issue 
article traces the history and reviews the status of signaling and switching as we 
enter the second century. 

A Study of Deep Levels in GaAs by Capacitance Spectroscopy. D. V. Lang and R. A. 
Logan, J. Electron. Mater., 4, No.5 (1975), pp: 1053-1066. We show how the 
DLTS capacitance spectroscopy technique can be used to detect small amounts of 
deep-level impurities in GaAs p-n junctions. The DLTS spectra associated with Cu, 
Fe, Cr, 0, and two unidentified, but commonly occurring, deep levels in GaAs are 
shown. The LPE distribution coefficients are obtained for Cu, Fe, and Cr. The 
carrier capture cross sections for six levels are measured and give evidence for capture 
by multiphonon emission. 

MATERIALS SCIENCE 

Detection of Catalytic Oscillations by Differential Thermal Analysis. P. K. Gallagher 
and D. W. Johnson, Jr., Thermochim. Acta, 16 (May 1976), pp. 238-240. Oscil­
lations in DTA curves associated with the oxidation of CO using Pt containing 
catalysts were observed. This offers a relatively quick and simple technique for 
studying instabilities that arise from the interaction of the catalytic mechanism 
and the exothermic nature of the reaction. 

Kinetics of Formation of LiFe02 from 2LhCOa·Fe20a Mixture. P. K. Gallagher 
and D. W. Johnson, Jr., J. Amer. Ceram. Soc., 69 (March-April 1976), pp. 171-172. 
Mixtures of 2LbCOa·Fe20a were found to form LiFe02 at <600°C. Excess LhCOa 
did not react until higher temperatures. Isothermal and dynamic kinetic studies gave 
an activation energy of 42-50 kcal/mole. A model involving the rapid surface diffusion 
of LhCOa is proposed. 

Diffusion Kinetics of Au Through Pt Films About 2000 and 6000 A Thick Studied 
with Auger Spectrscopy. C. C. Chang and G. Quintana, Thin Solid Films, 31 
(1976), pp. 265-273. Pt-Au couples with 2000 A and 6000 A Pt films were 
heat treated between 250° and 350°C in 1 atm N 2. Au was found to diffuse initially 
through Pt films <6000 A by grain boundary migration and more than 1015 atoms 
cm-2 of Au crossed the Pt when the bulk of the Pt contained little Au (~1 at. %). 
For 2250 A Pt on Au, the time for half-saturation of the Pt surface with Au was 
t(0.5) = 1.2 X 10-7 X exp (0.96 eV /kT) min. 

Domain Wall Image Contrast in the SEM. D. C. Joy, H. J. Leamy, S. D. Ferris, 
D. E. Newberry,· and H. Yakowitz,· Appl. Phys. Lett., 28 (April 15, 1976), pp. 
466-468. Contrast from domain walls in materials with cubic magnetic anisotropy 
has been observed in scanning electron microscope images. This contrast, which is 
visible in both the backscattered and absorbed current images, arises from the 
interaction of the convergent incident electron beam with the domains on either side 
of the wall. • National Bureau of Standards. 

Ultranarrow, Forbidden, Singlet-Triplet Anticrossings in H 2• T. A. Miller and R. S. 
Freund, J. Chern. Phys., 63 (1975), pp. 256-263. Forbidden singlet-triplet 
anticrossings have been observed between different Zeeman sublevels of the i (3d) aUg, 
v = I, N = 6 and We?) l~g+, v = I, N = 4 states of H 2. The anticrossings are 
quite sharp and hence allow accurate determinations of the states' zero field separa­
tion, linear and quadratic Zeeman parameters, coupling perturbation, and radiative 
lifetimes. 
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PHYSICS 

The Determination of Energy-Level Shifts Which Accompany Chemisorption. 
Homer D. Hagstrum, Surface i::ici., 54 (1976), pp. 197-209. This paper discusses 
the ionization limit with respect to which the electronic energy levels of an adsorbed 
complex on a solid surface should be referenced, and how this limit is defined and 
measured. This leads to a reasonable procedure for determining energy-level shifts, 
at least for simple systems. 

The Linear Electric Field Effect for Low Spin Ferric Heme Compounds. W. B. 
Mims and J. Peisach*, J. Chern. Phys., 64, No.3 (February 1, 1976), pp. 1074-1091. 
Measurements were made on the linear electric field induced g shifts for a series of 
low-spin ferric heme compounds by the electron spin echo method on noncrystalline 
samples at liquid helium temperatures. Some of these samples consisted of proteins 
and protein derivatives; others were made from heme reacted with small ligand 
molecules. Analytic expressions relating the observed changes in spin echo amplitude 
to certain of the g2-shift coefficients lJii were derived. Results suggest the presence 
of extensive back bonding between the Fe3+ ion and the axial ligands of the heme 
complex. Results also suggest that myoglobin hydroxide is characterized by a crystal 
field which is exceptionally low for the S = (1/2) ferric heme group of compounds. 
* Departments of Pharmacology and Molecular Biology, Albert Einstein College 
of Medicine of Yeshiva University. 

Elastic Constants of bcc 4He. D. S. Greywall, Phys. Rev. B (Nucl. Phys.), 13 (Feb­
ruary 1976), pp. 1056-1068. Longitudinal and transverse sound velocities were 
measured in single crystals of bcc 4He with known orientation at 21.00 cm3/mole 
and at 1.612 K. The temperature dependence of sound velocities along an isochore 
and along the melting curve was measured for several samples. No premelting effects 
were observed. The ratios of bcc 3He to 4He elastic moduli at the same molar volume 
are considerably larger than the classical ratio of unity but in excellent agreement 
with the quantum-mechanical calculations of Horner. Existing calorimetric data 
are compared with the present determination of the Debye temperature. 

Isotope Abundances in Interstellar Molecular Clouds. P. G. Wannier, A. A. Penzias, 
R. A. Linke, and R. W. Wilson, Astrophys. J., 204, No.1 (February 15, 1976), 
pp. 26-42. We use the J = 1 - J = 0 transitions of 12C I60, 13C 160, and 12C I80 
at ~ 110 GHz to measure abundance ratios of carbon and oxygen isotopes throughout 
our galaxy. The measured values of [12C]/[13C] seem to be different than the 
terrestrial values, suggesting significant galactic chemical evaluation since the birth 
of the sun. 

1224 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976 



THE BELL SYSTEM TECHNICAL JOURNAL is abstracted or indexed by Abstract Journal 

in Earthquake Engineering. Applied Mechanics Review, Applied Science & Technology In­

dex, Chemical Abstracts, Computer Abstracts, Computer & Control Abstracts, Current 

Contents/Engineering, Technology & Applied Sciences, Current Contents/Physical & 

Chemical Sciences, Current Index to Statistics, Current Papers in Electrical & Electronic En­

gineering, Current Papers on Computers & Control, Electrical & Electronic Abstracts, Elec­

tronics & Communications Abstracts Journal, The Engineering Index, International Aero­

space Abstracts, Journal of Current Laser Abstracts, Language and Language Behavior 

Abstracts, Mathematical Reviews, Metals Abstracts, Science Abstracts, Science Citation 

Index, and Solid State Al)stracts Journal. Reproductions of the Journal by years are avai lable 
in microform from Univer!;ity Microfilms, 300 N. Zeeb Road, Ann Arbor, Michigan 48106. 



@ Bell System 


