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Steady-State Losses of Optical Fibers 
and Fiber Resonators 

By D. MARCUSE 

(Manuscript received May 24, 1976) 

We study the steady-state loss of a fiber with random, nearest-neighbor 
coupling and compare it with the mode with the lowest loss of a cavity 
formed from a section of the same type of fiber. lVe find that the loss of 
the cavity is not identical with the loss of the steady-state distribution of 
the fiber with random coupling. In fact, fiber and fiber resonator behave 
very differently if the fiber mode of highest order is made very lossy. The 
loss of the steady-state distribution of the fiber with random, nearest­
neighbor coupling approaches a weighted average of the losses of its in­
dividual modes plus a contribution from the coupling coefficient that couples 
the highest-order mode to its neighbors. The cavity loss, on the other hand, 
becomes independent of the coupling coefficients and of the loss of the 
highest-order mode, provided this loss becomes much higher than the coupl­
ing strength. This behavior leads us to conclude that the loss of the cavity is 
a weighted average of the losses of all those modes whose coupling strength 
exceeds their (individual, uncoupled) loss coefficients. Two resonator modes 
with propagation constants t31 and t32 remain uncoupled unless they satisfy 
the condition /31 - /32 = 27rn/ L, where n is an integer and L is twice the 
length of the resonator. 

I. INTRODUCTION 

We consider a multimode optical fiber with random imperfections. 
It is well-known that any type of imperfection built into a fiber causes 
coupling among its guided modes. 1- 3 In a long fiber, the distribution 
of average power versus mode label approaches a steady state that 
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can be described by a steady-state loss coefficient and a unique distri­
bution function. 3 

N ow assume that we take a section of this fiber, place reflectors 
at either end, and observe the steady-state power distribution of this 
cavity. Without giving the matter much thought, we might expect 
the steady-state power distribution of the resonator to be identical 
to the steady-state power distribution of the long fiber. However, this 
is not the case. Mode coupling in a resonator has a very different 
effect on the steady-state power distribution and its loss coefficient 
than coupling in a long fiber. The reason for this difference in behavior 
is the fact that the wave traveling back and forth in 'the resonator 
experiences a periodic structure whose Fourier transform has a line 
spectrum. In a resonator of length L/2, two modes with propagation 
constants {31 and {32 are effectively coupled only if they satisfy the 
condition {31 - {32 = 27rn/L, where n is an integer. The losses and 
steady-state power distribution of the long fiber and the corresponding 
fiber resonator are very different. It is the purpose of this paper to 
clarify these differences. 

We dramatize the difference of the fiber and the resonator by con­
sidering a fiber supporting only two guided modes. Furthermore, we 
assume that one of the two modes is relatively very lossy (in the 
absence of coupling), while the other mode has either no loss at all or 
very much lower loss. In a long fiber, the loss of the steady-state 
power distribution turns out to be the sum of the loss coefficient of 
the (uncoupled) low-loss mode plus the power-coupling coefficient of 
the two modes. This result is intuitively pleasing. It says that there 
are two independent loss mechanisms that reinforce each other 
additively-the loss of the first mode (in the absence of coupling to its 
high-loss companion) and the coupling of the low-loss mode to the 
high-loss mode. Since the high-loss mode carries practically no power, 
coupling of power to this mode appears directly as a loss coefficient. 

Naively, it should be expected that the same behavior occurs in the 
fiber cavity. However, this is not true. In the resonator, the loss of 
the resonant field distribution is identical to the loss of the low-loss 
mode alone. Coupling between the two modes has no influence on the 
loss of the resonator, provided that the loss of the second mode is very 
high compared to the coupling coefficient. It is hard to understand 
this situation intuitively. In the periodic structure (the resonator), 
the field apparently manages to shape itself in such a way that it 
avoids carrying power in those regions that provide high loss. Since 
the structure is periodic, the field passes over the same region again 
and again, adjusting itself to the unfavorable loss situation. In the 
long fiber with random coupling, no such adjustment is possible. The 
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field does not have the chance to establish a normal mode and is 
confronted with a new, random-coupling situation in each section of 
the fiber. In this case, coupling to the high-loss mode simply subtracts 
power from the low-loss mode that is irretrievably lost. 

The results presented in this paper are needed for the discussion of 
scattering losses in a fiber laser that is the subject of Ref. 4. 

II. TWO-MODE CASE 

For a fiber supporting only two modes, the problem can be solved 
easily. We describe each mode by its amplitude coefficient a1 and a2. 

The interaction of the two modes is described by the familiar coupled­
wave equations5 (self-coupling coefficients only modify the real parts 
of the propagation constants and are therefore omitted), 

da1 
- i'na1 + K 12a2 (1) Tz-

da2 
- i"/2a2 + K 21a1. (2) Tz-

The complex propagation constants "/1,2 contain the loss coefficients 
a1,2 of each mode in the absence of coupling, 

"/n = {3n - ian n = 1,2. 

The coupling coefficients obey the symmetry relation6 

K21 = -K~2' 

(3) 

(4) 

I t is convenient to express the z-dependence of K 12 explicitly (X is 
real), 

K12 = iXf(z). (5) 

To first-order perturbation theory, it is only the Fourier com­
ponent of fez) at the spatial frequency (J = {31 - (32 that contributes 
to coupling between the modes. 3 This allows us to write (1) and (2) as 

(6) 

(7) 

We have assumed that 
co 

fez) = L 2b p cos (JpZ, (8) 
p=l 

with real values of bp) and have included in (6) and (7) only the terms 
in (8) that contribute to mode coupling, dropping the index on bp • 
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We introduce new variables Al and A2 by the definitions 

a1 (z) = Al (z)e-1i(Pl-P2)Z 

and 
a2(z) = A 2(z)e1i(Pl-P2)z, 

and obtain, by substitution into (6) and (7), 

dA l .~ A + . A dz = - ~u 1 1 ~c 2 

and 

with 
n = 1,2 

and 
c = Kb. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Equations (11) and (12) represent two modes coupled by a constant­
coupling coefficient. These equations are not exact representations 
of the starting equations (1) and (2), but they are good approxi­
mations. Comparison has been made of the results of this theory 
with the result of an exact theory of a two-mode model using a straight 
fiber with discrete offsets alternating periodically in opposite directions. 
The exact theory agrees with the approximation presented here, pro­
vided that the differential loss of the modes is small, 

(15) 

and that the following condition holds to an accuracy on the order of 
10:1 - cx21 : 

21l' 
{31 - {32 = T n, (16) 

with n indicating an integer. If (16) cannot be satisfied for any integer 
n, the two modes remain effectively uncoupled. Our derivation makes 
it clear that the coupling process is periodic with a period 

(17) 

A periodic structure of this type can be used to represent a resonant 
cavity. It is only necessary to envision the field traveling back and 
forth in the resonator; when we unfold the resonator of length Lj2, 
the periodic structure results. 

We now consider the normal modes of the coupled-equation system 
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(11) and (12) by asking for solutions of the type 

n = 1,2, (18) 

with constant coefficients BI and B 2• Substitution of (18) into (11) 
and (12) results in the equation system 

(0" - al)B I + icB 2 = 0 (19) 
and 

(20) 

The requirement that the determinant of the equation system (19) 
and (20) must vanish leads to the determination of the two eigenvalues, 

(21) 
and 

0"(2) = ! (al + (2) + !~ (a2 - al)2 - 4c2. (22) 

The amplitude coefficients can be expressed as 

,...(k) _ rlIl B (k) - • v ..... B (I;) 
2 - 't C I k = 1,2. (23) 

The actual field amplitudes may now be expressed as a superposition 
of the two normal modes of the coupled system. Only the normal mode 
with the lower loss survives for z ~ 00 so that the steady-state loss of 
the resonator is given by the eigenvalue (21). 

It is interesting to distinguish two cases. For strong coupling, 
c» I a2 - all, we have, from (21), 

Re (0"(1)) = ! (al + (2). (24) 

For weak coupling, c« I a2 - all, we have, instead, 

(25) 

N ext we consider the long fiber with two randomly coupled modes. 
It is possible to derive the solution for this case directly from the 
coupled wave equations (1) and (2). However, the same result is 
obtained from the corresponding coupled power equations3 ,7,8 

(P n = <la n I2»), 
(26) 

and 

(27) 

The power coupling coefficient is3 

h = K2(IF(8) 12), (28) 
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with the Fourier transform of fez) defined as3 

F(e) = ~ (L f(z)eifJzdz = b~L. 
~Jo 

(29) 

The coefficient b is defined by (8) and (14) and L is the length of the 
periodic structure or twice the length of the resonator. According to 
(14), (28), and (29), the coupling coefficients c and h are thus related as 

(30) 

A steady-state solution for the long fiber with random coupling is 
again obtained with the help of the trial solution, 

(31) 

We find, from (26) and (27), 

p(l).= ! (al + a2 + h) - !~ (a2 - al)2 + h2 (32) 
and 

p(2) = !(al + a2 + h) + !~ (a2 - al)2 + h2• (33) 

The smaller eigenvalue is the steady-state loss coefficient.3 In the case 
of strong coupling, h» I a2 - all, we have, from (32), 

while we obtain, in the case of weak coupling, h « I a2 - all, 

h2 

p(l) ~ al + !h - ----:-
4(a2 - al) 

The power coefficients are related in the following way: 

h - 2p(i) + 2al 
Q2 = h QI. 

III. DISCUSSION OF THE TWO-MODE CASE 

(34) 

(35) 

(36) 

Weare now ready to compare the steady-state losses of the long 
fiber and the fiber resonator. In case of strong coupling, we have 
approximately 

(37a) 
for the resonator and 

(37b) 

for the long fiber. Strong coupling ties the two modes together so 
effectively that the steady-state losses are equal to the average losses 
of the uncoupled modes in either case. From (21) and (23), we find 
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B2 = BI and from (36) Q2 = QI if the coupling coefficients are very 
much larger than the loss coefficients. We thus see that both modes 
carry equal amounts of power in the strong coupling case. There is no 
difference in loss behavior between the resonator and long fiber if the 
coupling is strong. 

The situation changes for weak coupling. From (25), we have in the 
limit c2/a2 ~ 0 for the resonator 

(38) 

while (35) yields for the long fiber 

p(l) = al + !h. (39) 

In the resonator, coupling to a relatively lossy mode has no effect on 
the loss of the steady-state field distribution. The solution of the 
exactly solvable model shows that this is true even if (15) and (16) 
are not satisfied. The resonator loss becomes equal to the loss of the 
low-loss mode as though coupling were absent. In the fiber with random 
coupling, (39) shows that the steady-state loss is equal to the sum of 
the inherent loss of the low-loss mode plus half the power coupling 
coefficient. Coupling to the high-loss mode thus expresses itself directly 
as a loss factor. The power ratios of the two modes are also of interest. 
From (23), (25), and (30), we find for the weak coupling (or high-loss) 
resonator case 

I
B212 h 4 
BI = 4(a2 - al) (a2 - al)L' 

(40) 

For the randomly coupled fiber we obtain, from (35) and (36), 

Q2 h 
QI = 4(a2 - al) 

(41) 

IV. THE MULTIMODE CASE 

We have seen in the section on the two-mode case that we may 
consider coupled wave equations with constant coupling coefficients 
if we suitably redefine the mode amplitudes. In addition, we shall 
assume that only modes that are nearest neighbors are coupled in the 
resonator or long fiber. This assumption is justified by the observation 
that the Fourier components of the coupling function fez) tend to 

. drop off very rapidly with increasing spatial frequencies so that 
coupling of modes that are not nearest neighbors (such coupling is 
caused by Fourier components with higher spatial frequencies) is 
much weaker than nearest-neighbor coupling. In addition only modes 
satisfying (16) are coupled to each other. Consider the coupled equa-
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tion system, 

d~JI = -i'YJlAJI + KJI,JI-IA JI- I + KJI,JI+IA JI+I 11 = 1,2, .. " N. (42) 

We have shown for the two-mode case that we may assume the real 
parts of all 'YJlS are identical, 

'YJI = (3 - iaJl • (43) 

A normal mode solution of (42) is obtained with the help of the trial 
solution, 

(44) 

Substitution of (44) into (42) results in a homogeneous algebraic 
equation system whose determinant must vanish. For N = 6, the 
determinantal equation assumes the form 

al - a -KI 0 0 0 0 
KI a2 - a -K2 0 0 0 
0 K2 a3 - a -K3 0 0 

= o. (45) 
0 0 K3 a4 - a -K4 0 
0 0 0 K4 a5 - a -K5 
0 0 0 0 K5 as - a 

For strong coupling with KJI » a,,; 11, Jl. = 1, 2, "', 5 but as » a Jl and 
a6 »KII , the smallest real root of this equation may be approxi­
mated by 

aIK~K~ + a3KiK~ + a5KiK~ + KiK~K~/(as - al) 
a = K~K~ + KiK~ + KiK~ (46) 

We have assumed that the guided mode of highest order, 11 = 6 in 
this case, is coupled very strongly to the radiation modes so that its 
loss coefficient is much larger than that of all the other guided modes 
and also larger than the coupling coefficients among the guided modes. 
This assumption is usually made in the analysis of fibers with many 
coupled guided modes.3 For the special case K I = K 2 = ... K 5 

= const., (46) simplifies to 

For weak coupling, KJI « a", we have the approximation 

Ki 
a = al + --­

a2 - al 

(47) 

(48) 

Here we assumed that al < a2 < ... as, in this case, (48) represents 
the smallest solution of (45). 
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The corresponding coupled power equations may be expressed in 
the form 

The trial solution 
Pp = e-2azQp (50) 

leads to the algebraic equation system 

(2ap + hp- l + hp - 2a)Qp - hp-1Qp-1 - hpQp+I = O. (51) 

The eigenvalue a is obtained as the solution of a determinantal equa­
tion which, for six modes, assumes the form 

(2al+hl-2a) -hI 0 0 0 0 
-hI (2a2+h2+hl-2a) -h2 0 0 0 
o -h2 (2a3+h3+h 2-2a) -ha 0 0 
o 0 -ha (2a4+h4+ha-2a) -h4 0 

=0. (52) 

o 0 0 -h4 (2a6+h6+h4-2a) -h6 
o 0 0 0 -h6 (2a6+h6-2a) 

For strong coupling (in the sense used in the cavity case), we obtain 
the following approximation from (52) in the special case hp = h 
= const., 

For weak coupling we find 

(54) 

V. DISCUSSION OF THE MULTIMODE CASE 

If we consider that the losses a p are caused by random coupling 
between guided modes and radiation modes, we may assume the 
following dependence 9•10 on the mode label v: 

(55) 

If the Fourier amplitudes bp in (8) were independent of the spatial 
frequency, we would have3 

and (56) 

However, the assumption of nearest-neighbor coupling becomes 
questionable in this case. It is natural to consider the case 

Kp = KI = const. and hp = hI = const., (57) 

and in our discussion of numerical examples we also include the case 
of decreasing coupling strength between neighboring modes of higher 
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order, 

K" = Kl 
11 

and (58) 

Numerical solutions of the eigenvalue equations (45) and (52) were 
obtained by computer. The relation between the coupling coefficients 
K" and h" is given by (30): 

(59) 

but for the purpose of comparing the long fiber with the fiber resonator 
it seems more realistic to choose instead 

(60) 

because this choice yields the same ratios of coupling coefficients to 
attenuation coefficient for mode 1 and mode 2 according to (45) 
and (52). 

Table I lists numerical values of the lowest eigenvalues of (45) 
and (52). It was found that, for strong coupling with K" = const., 
the lowest eigenvalue of (45) is of the form 

(61) 

The imaginary part of this expression is simply a correction to the 
propagation constant of the normal mode solution, while the real part 
has the meaning of the loss of the normal mode of the cavity. However, 
since the solutions of the cavity loss coefficients are not real, our 
approximate solution (46) does not apply because the approximation 
(46) yields the smallest real eigenvalue of (45). 

Table I shows that (with two exceptions) the cavity losses are 
generally lower than the losses of the corresponding fiber with random 
coupling. This fact is in agreement with the two-mode case. Further­
more, the numbers in the table show that an increase of the loss of 
mode 6 increases the steady-state loss of the fiber with random mode 
coupling while it decreases the loss of the fiber cavity. This behavior 
is in qualitative agreement with approximate formulas (47) and (53). 
In addition to the exact solutions of eigenvalue equations (45) and 
(52), Table I also contains entries for the approximate solutions 
obtained from one of the appropriate formulas (46), (47), (48), (53), 
or (54). In comparing the approximate and exact solutions for the 
cavity, we must remember that approximations (46) and (47) do not 
necessarily yield the eigenvalue with the lowest numerical value. 
In fact, only for the case K" = K 1112 and for small values of 
K" = Kl « a" do the approximations apply to the solution with the 
lowest loss. However, comparison of the exact and approximate values 
in Table I makes it apparent that the approximation provides a 
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Table 1-Loss values of the cavity mode with lowest loss and 
steady-state loss of the corresponding fiber with random 

coupling. Exact solutions of eigenvalue equations (45) 
and (52) are compared with approximate solutions 

a>. 

h. K. >.KI ae Exact Approximate 

Cavity Fiber Cavity Fiber 
----

hl"~ K I,,2 10-5 ul6 2 4.484 X 10-6 8.626 X 10-6 

a,103 1.923 X 10-6 1.022 X 10-' 1.95 X 10-6 

----
hI/v KI/" 10-' a610 3 3.223 X 10-6 3.129 X 10-6 1.77 X 10-' 
----

hi KI 10-7 a,103 1.003 X 10-6 1.097 X 10-6 1.00 X 10-6 1.10 X 10-6 

------
hi KI 10-6 a,10a U161 X 10-6 1.758 X 10-6 1.00 X 10-6 2.00 X 10-6 

----
hi KI 10-' al62 6.383 X 10-6 4.321 X 10-6 

a6106 6.415 X 10-6 4.322 X 10-6 1.17 X 10-' 7.67 X 10-6 

----
hi ' KI 10-4 a610 6 1.015 X 10-5 1.347 X 10-' 1.17 X 10-5 1.37 X 10-' 
----

hi KI 10-3 a6106 1.017 X 10-' 8.681 X 10-' 1.17 X 10-5 7.37 X 10-' 
----

hi KI 10-2 as106 1.050 X 10-5 8.159 X 10-4 1.30 X 10-5 6.73 X 10-4 

a,103 2.931 X 10-4 7.112 X 10-4 

reasonable order-of-magnitude estimate of the loss values of the cavity 
modes and gives at least an upper bound to the exact values. 

The approximate solutions for the fiber case with randomly coupled 
modes do apply to the solution with the lowest loss. Comparison of 
the exact and approximate values in Table I show that the approxi­
mations (53) and (54) are not very precise but again may be regarded 
as order-of-magnitude estimates. 

Table II shows the complete solution of the eigenvalue equation 
(45) for the fiber cavity for a typical case: K" = K 1 = 10-4/A, at 

= 10-6/A, a" = alv2, a6 = a 5103. As in all cases with IC = K 1 » a JJ , 

Table 11- Complete solution of eigenvalue equation of the fiber 
cavity (45) for a particular case and comparison of the 

exact solution to approximation (47) 

i aT ai aappr 

1 1.018 X 10-5 1.726 X 10-4 

2 1.018 X 10-5 -1. 726 X 10-4 

3 1.162 X 10- 6 1.001 X 10-4 

4 1.162 X 10-5 -1.001 X 10-4 

5 1.180 X 10-6 0.0 1.180 X 10-6 

6 2.500 X 10-2 0.0 
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0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

ACX" = ,,2 10-6 

K,,= ,,2 K1 

h,,= ,,4 K1 

------ .......... -- ..... 
4 5 6 

Fig. I-Normalized power versus mode number distribution for the case of a 
fiber with random coupling (solid line) and the lowest loss mode of the fiber cavity 
(dotted line). Kv = KIP2, hv = hl p 4, KI = O.5hl = 1O-6/X, a v = alP2 with al = lO-s/X, 
as = lOOOas. 

J.L < 6, there are two sets of complex, conjugate solutions and two 
single, real solutions. Approximation (47) yields the smallest of the 
real solutions to a remarkable accuracy. 

I t is interesting to compare the distribution of power versus mode 
number for the cavity and fiber cases. Figure 1 (and all subsequent 
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figures) shows the normalized power P" as a function of the mode 
label v. For Fig. 1 we used K" = ICv2 for the fiber cavity and h" = hlV4 
for the fiber with random-mode coupling with K 1 = hr/2 = 10-5/A. 
This and all the other figures were computed with a" = 10-6 v2 lA, for 
v = 1, 2, "', 5. In Fig. 1 we assumed a6 = a5103. Even though the 
coupling strength is increasing for nearest neighbors with increasing 
mode number, mode 1 carries by far the most power. Of course, we 
have only plotted the power distribution for the mode with the lowest 
loss. In the cavity case, there are solutions with the maximum power 
in anyone of the six modes. The coupled power problem of the fiber 
with random coupling also has six different solutions. However, only 
the solutions with the lowest loss value have physical significance3 as 
the steady-state power distribution. This solution is shown in Fig. 1 
and the subsequent figures. 

Figure 2 was drawn for almost the same condition as Fig. 1, except 
that we used the law a" = alv2 for all six values of v. This has the 
consequence that the loss of the mode of highest order, v = 6, is now 
much lower than in Fig. 1 so that more power is carried by the higher­
order modes. 

0.6r-------------------------, 

0.5 

0.4 

~"':. 0.3 

0.2 

0.1 

~ , , , , 
\ 

\ 
\ 
\ 
\ 
\ __ -CAVITY 

\¥ 
\ 
\ 
\ 
\ 
\ 
\ 

'XCI./J = /J2 1O-6 

K/J= /J2 K1 

h/J = /J4 h1 

Cl.6 = 6210-6 

Kl = hl/2 = 1O- 5/'X 

--
Fig. 2-Same as Fig. 1 but with a6 = a 162• 

--
6 
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0.6 

;\~I' = ,,,210- 6 

/FIBER 
Kv=Kl/1' 

/ 
0.5 

".;'\ 
". \ _-CAVITY 

hv=hl/V2 

". ~ ~6 = 1000~5 
"./ \ 

0.4 
", \ Kl = hl!2 = 10- 5/;\ 

\ 
\ 
\ 
\ 

::. 0.3 \ c.. 
\ 
\ 
\ 
\ 

0.2 ~ 

0.1 

6 

Fig. 3-Same as Fig. 1 but with Kp = Kt!v. 

Figure 3 applies to the case Ie, = Kdv, h" = hdv2
, with Kl = hd2 

= 10-5 Ix. Contrary to the cases in Figs. 1 and 2, the coupling strength 
is now decreasing with increasing mode number. It is interesting to 
observe that the cavity as well as the fiber with random coupling 
now carries more power in modes 2 and 3. The cavity solution with 
the least loss now has higher loss than in the case in Fig. 1 (see Table 
1). The loss of the steady-state power distribution of the fiber is, 
however, reduced compared to the case in Fig. 1 (again see Table 1). 

The remaining Figs. 4 through 7 describe the case of constant 
coupling, K" = Kl with different values of Kl and a6. We see that 
for very weak coupling most power resides in the modes with the 
lowest loss, v = 1. As the coupling strength is increased, more power 
is carried in higher-order modes. If we did not insist on making the 
last mode (v = 6) very lossy, there would be equal power in all the 
modes of the fiber with random coupling. It is interesting to observe 
that there is a saturation effect; comparison of Figs. 6 and 7 shows that 
the power distribution remains unchanged for a further increase of 
the coupling strength. Another interesting phenomenon is the different 
shape of the power distribution for the cavity mode with the lowest 
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loss and the steady-state power distribution in the fiber with random 
coupling. Naively, one may have expected that the steady-state power 
distribution of the fiber would also apply to the cavity case. Figures 5 
through 7 show that this is not the case. In spite of the fact that the 
cavity carries more power in the higher-order modes, Table I shows 
that the cavity losses are generally lower than the fiber losses. The 
cavity loss becomes high only when the highest-order mode has 
relatively low loss. 
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STEADY-STATE LOSSES OF OPTICAL FIBERS 1459 



0.6r--------------------------, 

0.5 

0.4 

0.."" 0.3 

0.2 

0.1 

1', 
I , , 

I ',_CAVITY 
I ./ 

I 'f' 
I \ 

I \ 
I \ 

I \ 
I \ 

\ 
\ 
\ 
\ 

\" 
" ,~ 

6 

Fig. 5-Same as Fig. 4 but with KI = O.5hI = lO-s/X. These curves are practically 
independent of the loss value of as; the curves for as = 36aI and as = lOOOa5 are 
indistinguishable on the scale of this figure. 

VI. CONCLUSIONS 

We have compared the losses and power distribution of a fiber 
with random coupling and of a cavity made of a section of the same 
fiber. We have shown that these two systems behave quite differently. 
While the losses of the fiber increase with an increase of the loss of the 
highest-order mode, the cavity losses decrease as the loss of the highest­
order mode approaches infinity. This behavior has been studied with 
the help of exact numerical solutions of the eigenvalue equations of 
these systems for six modes and is also apparent from approximate 
solutions. 

We may generalize our results for the fiber cavity as follows. We 
have seen that the losses of the solution with the lowest eigenvalue 
are higher than the loss of the lowest-order (uncoupled) mode. The 
approximate formula (46) or (47) shows that the cavity loss is an 
average of the losses of the individual, uncoupled modes. However, 
the last mode, v = 6 in our examples, did not participate in this 
average since its loss far exceeded the coupling strength. This behavior 
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leads us to conclude that the cavity losses are the average of the mode 
losses of all those modes whose (uncoupled) loss values are less than 
the coupling strength of neighboring modes. Modes whose losses 
exceed the coupling strength do not contribute appreciably to the 
cavity loss. 

We have also indicated that two modes are coupled only if their 
propagation constants satisfy relation (16). The likelihood that this 
happens increases with increasing resonator length. In very short 
resonators, most modes remain effectively uncoupled just because 
they fail to satisfy condition (16). In long resonators, more modes 
have a chance to satisfy the additional coupling condition (16), but 
even here effective coupling ceases for modes whose losses exceed the 
coupling strength. 
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We present an approximate theory of loss coefficients for modes of step­
index fibers with various types of distortions and for fibers with lossy 
claddings. The fiber irregularities are assumed to be sinusoidal and random 
variations of the core-cladding interface. Formulas for the loss coefficients 
are presented and plotted for different values of the compound mode number 
M. For fiber lasers, we plot the loss coefficients as functions of the 1nirror 
tilt angles. 

We consider as an example a N d- Y A G fiber laser with refractive index 
ni = 1.8 and a core radius of a = 40 J..Lm operating at a wavelength of 
A. = 1.06 J..Lm. For this example, we find that radiation losses are caused 
by Fourier components of fiber irregularities in the spatial wavelength 
range between O .. ~ and 1.3 J..L1n. Intrinsic losses may be as low as 2a = 10-3 

em-I. It is thus desirable to limit scatter'ing losses to values below 10-3 

em-I. This requirement imposes tolerance restrictions of 0.01 J..L1n on the 
pennissible core radius fluctuations. For core radius fluctuations of this 
order of magnitude, mirror tilts should not exceed approximately 5 degrees. 
Cladding losses are not critical, but their influence on laser losses depends 
on the refractive index ratio of the core and cladding materials. Tolerable 
cladding losses may range fr0711 10 to 300 cm,-I. 

I. INTRODUCTION 

A cavity laser consists of an active medium that provides the re­
quired gain and a (usually open) external cavity furnishing the feed­
back for laser operation. A fiber laser also has gain and feedback, but 
instead of using the resonant modes of an open cavity it employs an 
optical fiber for guiding the radiation back and forth between the 
set of mirrors forming the cavity.I,2 A fiber laser thus might be much 
narrower than a cavity laser since it need not allow space for the 
diffraction-limited beam to spread out in transverse direction. The 
width of the fiber laser is limited only by the loss of the fiber waveguide, 
which increases with decreasing fiber diameter. 
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In this paper we calculate the mode losses of step-index fibers and 
use them to estimate the losses of fiber lasers. The losses are caused 
by scattering from the rough fiber wall and by the presence of a lossy 
cladding. Figure 1 shows a schematic of the fiber laser. We assume 
that plane mirrors are placed at the end of the fiber that also contains 
the gain mechanism for the laser. Figure la shows a fiber laser with 
plane mirrors positioned exactly perpendicular to the fiber axis, 
whereas Fig. Ib shows a laser with slightly tilted mirrors so that the 
wave inside the fiber, indicated schematically by a light ray, interacts 
more strongly with the fiber wall. For simplicity, \ve assume that the 
mirrors and the medium inside the fiber do not cause scattering and 
that only the fiber walls are slightly rough. We also assume that the 
fiber is surrounded by a lossy cladding that causes power loss via the 
evanescent field tail of the guided wave penetrating into the cladding. 
However, we consider these various loss mechanisms separately, one 
at a time. 

It is important to realize that wall roughness or other geometrical 
imperfections of the fiber geometry or inhomogeneities in the fiber 
material do not necessarily cause resonator losses. The electromagnetic 
field inside the cavity adjusts itself to any geometry and forms a 
normal mode. This normal mode of the cavity can be described as a 
superposition of coupled modes of the perfect waveguide. Henceforth, 
we shall refer to modes of the perfect structure as ideal modes or as 
perfect modes. The fiber imperfections provide the mechanism that 

CLADDING n2 

MIRROR I· i CORE "1 • I MIRROR 

~-------------L--------------~ 
(a) 

(b) 

Fig. l-Schematic of the fiber laser with (a) perpendicular mirrors and (b) tilted 
mirrors. 
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couples the perfect modes together. Coupling among the guided modes 
does not introduce losses by itself. However, the perfect modes of the 
fiber suffer losses individually (in the absence of coupling). These 
losses are either caused by dissipative mechanisms in the fiber core or 
in its cladding, or they may be caused by fiber imperfections on a scale 
different from those that couple the guided modes. We may assume 
that imperfections with Fourier components of high spatial frequencies 
couple each ideal fiber mode to the radiation field outside the fiber 
and act as a loss mechanism. In addition, there will probably be im­
perfections with large amplitudes but with low spatial frequencies 
that couple the ideal modes to each other. 

In a companion paper3 we discuss the influence of mode coupling 
on the losses of the normal modes of the fiber cavity. We found that 
coupling among these modes increases the cavity losses compared to 
the losses of the lowest-order ideal fiber mode because neighboring 
modes with higher losses take part in the superposition field that 
forms the cavity mode. We also found that strongly coupled modes 
result in a normal mode of the cavity whose loss is an average of the 
losses of the participatjng coupled modes. However, not all the ideal 
modes of the fiber take part in forming the normal mode of the fiber 
cavity. Modes whose individual losses (radiation losses as well as 
dissipation losses) are relatively higher than the coupling strength to 
neighboring guided modes do not take part in the loss-averaging 
process. Since the losses of the ideal fiber modes tend to increase 
in proportion to the square of their (compound) mode number, modes 
of high order are, of necessity, much lossier than modes of low order. 
On the other hand, it is expected that the coupling strength of neigh­
boring guided modes decreases with mode number. Consequently, 
only modes with relatively low mode numbers participate in forming 
the normal modes of the cavity. 

This theoretical expectation is confirmed by observation of laser 
radiation.2 In fibers supporting a very large number of guided modes, 
only the modes of low order are excited as laser modes. Laser modes 
are identical with the normal modes of the resonant fiber cavity. It 
is thus clear that the loss of the normal mode of the laser (or fiber 
cavity) is an average value of the losses of the ideal modes that take 
part in forming the normal mode of the cavity. If only a very few 
fiber modes are taking part in forming the lasing mode, the loss (in 
the absence of pumping) of this cavity mode is simply the average 
loss of the few fiber modes that are effectively coupled to each other. 
In the presence of coupling among the guided modes, the loss of the 
resulting laser mode is thus somewhat higher than the loss coefficient 
of the fiber mode of lowest order, but mode coupling, even if strong 
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for the lowest-order fiber mode and its neighbor, does not increase the 
loss of the laser mode dramatically. The example studied in Ref. 3 
suggests that the loss of the laser mode may be at most an order of 
magnitude higher than the loss of the fiber mode of lowest order. We 
found, furthermore, that two modes with propagation constants {31 

and {32 can couple effectively only if the relation {31 - {32 = 2n7r/L 
holds to an accuracy on the order of / al - a2/, where a indicates the 
loss coefficient, n is an integer, and L/2 is the resonator length. 

So far, we have assumed that the mirrors at the end of the fiber 
resonator are perfectly perpendicular to the fiber axis. Mirror tilt 
can be taken into account in the following way. Consider a light ray 
that propagates parallel to the fiber axis and strikes the tilted mirror 
of the resonator. After reflection, the ray impinges on the fiber wall 
at an angle that is twice the angle of the mirror tilt. Because scattering 
losses are proportional to the square of the angle between the incident 
ray and the fiber wall, it is clear that this ray, which originally traveled 
parallel to the fiber axis, suffers relatively high scattering loss. On the 
other hand, a ray that strikes the tilted mirror at normal incidence 
will strike the fiber wall at the mirror tilt angle shown in Fig. lb. 
Such a ray suffers less scattering loss. In fact, it would appear that 
the mirror tilt angle is the minimum angle at which rays passing back 
and forth through the cavity may strike the fiber wall. It is not 
obvious that there should be a ray path that closes on itself and still 
impinges at the tilted mirror at normal incidence. But the normal 
mode of a resonator has the tendency to minimize its losses. It will 
thus be composed of rays that make the lowest possible angle with 
the rough fiber walls. Consequently, we shall assume that the field 
in the resonator strikes the fiber wall at the mirror tilt angle. Instead 
of computing mode losses, we use the scattering losses of waves im­
pinging on the rough dielectric interface at the mirror tilt angle to cal­
culate the loss of a cavity with tilted mirrors. If both mirrors are tilted 
differently, the larger of the two angles should be used. 

We limit our discussion to fibers whose diameter is much larger 
than the wavelength of the radiation inside the fiber core. This assump­
tion permits us to use a pseudo-plane-wave analysis. For simplicity, 
it is furthermore assumed that the refractive index difference between 
core and cladding material is so slight that reflectivity differences 
caused by polarization can be ignored; TE and TM modes thus have 
the same losses. When we violate this assumption in some of our ex­
amples, it should be remembered that our loss values apply to TE 

polarization. 
Several types of wall roughness will be considered. The simplest 

imperfection is a sinusoidal variation of the fiber radius. A more com-
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plicated wall distortion preserves the circular shape of the fiber but 
allows the diameter to vary randomly as a function of the longitudinal 
z coordinate. Finally, we consider a type of wall roughness that assumes 
that the Fourier spectrum of the wall distortion function is constant 
over all spatial frequencies of interest and that variations occur in 
both dimensions on the fiber surface with certain short correlation 
lengths. Scattering losses are expressed as functions of the amplitudes 
of the sinusoidal distortion or the variance and correlation lengths of 
the random distortion functions. Mode losses in the fiber and losses 
in the fiber cavity with tilted mirrors are considered for the case of 
scattering losses and the case of losses introduced by the lossy cladding. 

We find that cladding losses do not have a large influence on the 
wave loss in the fiber core, but scattering losses can be very serious if 
the amplitude of the wall roughness approaches the wavelength of 
the radiation. 

Spherically curved mirrors could reduce the losses of fiber lasers 
with larger diameter if they reduce the field intensity at the fiber wall. 
However~ this loss reduction would work only for perfectly straight 
fibers with perpendicular mirrors and very large radii. Our estimates 
of fiber losses associated with tilted plane mirrors are equally valid 
for fiber cavities with tilted curved mirrors if the tilt angle is large 
enough. For straight fibers with perpendicular but curved mirrors, 
our loss results can be regarded as an upper limit. It should also be 
clear that mirror tilt can be translated into an abrupt tilt of the fiber 
aXIS. 

The analysis presented in this paper was performed to provide 
insight into the tolerance requirements of N d-Y AG fiber lasers.2 Our 
numerical examples are thus geared to the parameters of this laser. 
The intrinsic losses of the fiber laser are on the order of 10-3 cm-1 so 
that additional losses caused by fiber irregularities or a lossy cladding 
should remain below this value. 

Exact loss formulas may be expressed in terms of Bessel functions 
so that their numerical evaluation becomes tedious. For this reason, 
we are here deriving simplified formulas that allow reasonable order­
of-magnitude estimates to be readily calculated with the help of a 
simple pocket calculator. Such handy approximations are often more 
useful than the formidable exact formulas and serve the purpose of 
providing insight into the relevant variables of the problem. All our 
loss formulas are immediately applicable to optical fibers that support 
many modes. Their application to the fiber laser is straightforward if 
we can be sure that there is no additional fiber irregularity with low 
spatial frequency coupling the guided modes among each other. 
However, even if mode coupling exists, it is known from theoreticaP 

MUL TIMODE OPTICAL FIBERS 1467 



and experimenta12 evidence that only modes of very low order par­
ticipate in the lasing process. This information allows us to use the 
fiber loss results for the laser if we keep in mind that the loss predic­
tion of the fiber mode of lowest order may somewhat underestimate 
the laser losses. For this reason, we base our discussion of laser losses 
on the mode with compound mode number M = 5. This loss estimate 
for the laser may, in fact, be pessimistic, but it provides the correct 
order of magnitude of the loss coefficient that may be used to derive 
tolerance requirements for the fiber laser. 

II. PLANE WAVE SCATTERING AT A PLANE INTERFACE 

We base our loss analysis on the results of plane wave scattering at 
the rough planar interface between two dielectric media, as sketched 
in Fig. 2. Our analysis uses the theory of coupled modes. In this anal­
ysis, the incident plane wave is coupled to the continuum of modes of 
a medium that is divided into two half-spaces with a plane interface. 
The coupled mode theory is described in Ref. 4. 

To first-order perturbation theory, the scattered power is com­
puted as follows. First, we determine the amplitudes Cj(u z , uy ) of the 
continuum modes that are excited by the incident plane wave inter­
acting with the rough interface 

/

LI//2 fLte 
Cj(u z , uII ) = dy Kjui/(y, z)dz, 

-(LI//2) 0 
(1) 

where the continuous variables U z and U1/ label the continuum modes, 
K jui is the coupling coefficient between incident wave and continuum 
modes, and {3i and {3u are the propagation constants (z components of 
the propagation vectors) of incident and scattered (continuum) waves. 

x 

INCIDENT RAY REFLECTED RAY 

INTERFACE 
/ 

/ 
n2 f 

Fig. 2-Plane wave scattering at a plane, rough interface between two dielectric 
media with refractive indices nl and n2. The y axis is directed perpendicular to the 
plane of the figure. 
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It is assumed that the rough surface with distortion function fey, z) 
extends only over an area LyLz in the y and z directions while the 
remainder of the infinite interface is perfectly flat. The coupling co­
efficient is defined as4 

K - weo (2 2)[ * E ] 
jITi - 4iP nl - n2 8IT:<,ITlIi' i x=o· (2) 

In this formula, w designates the angular frequency of the light waves, 
eo is the dielectric permittivity, Ei is the electric vector of the incident 
and specularly reflected and transmitted waves of the perfect interface, 
while 8 ITZ ,IT y i indicates the electric field vector of the continuum mode. 
Label j designates the different types of continuum modes whose field 
expressions are given in the appendix and P in (2) is a power nor­
malizing factor. The scattered power can now be calculated with the 
help of the formula4 

P sc = P2j- ! !/Ci(O"X, O"y)/2dO"xdO"y. (3) 
s 

The summation extends over the different types of continuum modes, 
while the integration over the area S in the space O"x, O"y extends only 
over propagating continuum modes. 

With the help of the mode fields listed in the appendix, we derive 
the following expressions for the scattered power. For a sinusoidal 
corrugation of the surface 

fey, z) = b sin Oz, (4) 
we find 

P = b2S zK
2k(ni - n~)LzLy 

sc (3i(nl sin CPl + n2 sin CP2) 
(5) 

Here b is the amplitude of the sinusoidal deflection, Sz is the z com­
ponent of the Poynting vector of the incident plane wave, and K 

and {3i are, respectively, the x and z components of the propagation 
vector of the incident plane wave in the medium with index nl whose 
magnitude is nlk. For sinusoidal corrugation, the scattered plane 
waves are emitted in definite directions whose angles are defined by4 

(6) 

in medium 1 and by 

(7) 

in medium 2. 
Next we list the scattering formula for scattering from a random 

corrugation. There is no variation of the surface in the y direction, 
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but the variation in the z direction with variance u2 is random with a 
correlation length Dz that is much shorter than the wavelength of 
light. The total amount of scattered power from an area LyLz is 

Psc = .!LyLzSzDzu21(2k(ni - n~)GI (nl), 
nl n2 

(8) 

with 

( 
nl) _ -V (niln~) - 1 - ~ + (ni/n~) arcsin (n2/ n l) 

G1 -- - ------------~~~~---=------------
n2 71"[ (niln~) - IJ 

~ 0.7162(ndnl) - 0.6830(n2/nl)2 + 0.4312(n2/nl)3. (9) 

The polynomial was obtained as an empirical approximation of this 
function. Each component of the Fourier decomposition of the rough 
surface gives rise to two plane waves, one emitted into medium 1 and 
the other into medium 2. The directions of the two waves are related 
by Snell's law. If the angle (measured with respect to the surface) of 
the wave in medium 1, with the larger refractive index nI, becomes so 
small that the angle of the wave in medium 2 becomes imaginary, no 
wave can escape into medium 2; but there is still a wave emitted into 
medium 1. Equation (8) contains the large-angle contributions from 
waves emitted into both media. However, at small scattering angles 
where the wave in medium 2 disappears, the scattered wave in medium 
1 corresponds to a guided mode in a situation where medium 1 is the 
core of a fiber. Power scattered into guided mode directions is not lost, 
but becomes part of the "new" normal mode that establishes itself 
in the distorted fiber and is not included in (8). 

Finally, we list the expression for the total scattered power when 
the interface is rough in y and z dimensions. The correlation length 
(much shorter than the wavelength) of the distortion in y direction 
is D y , 

Psc = i LyLzDyDzU2SzK2k2(ni - n~)G2 (nl). (10) 
71" nz 

In the previous two cases, radiation was escaping only in the x, z plane. 
In the case of a truly random surface distortion, radiation escapes 
isotropic ally in all directions. When we apply our present results to 
the case of fiber scattering, we want to distinguish between two types 
of radiation. Any ray direction not associated with a guided mode 
belongs to either a refracting or a tunneling leaky wave. Refracting 
leaky waves leave the fiber core because they impinge on the fiber 
boundary at an angle that cannot be contained inside the fiber by 
total internal reflection. Tunneling leaky waves consist of rays that 
should be trapped inside the fiber core by means of total internal 
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reflection. 5,6 However, tunneling leaky waves lose power by a mech­
anism that causes energy to tunnel through an evanescent wave 
region outside the fiber core to an external caustic from which they 
can escape. Refracting leaky rays are very lossy and can be considered 
radiative power. Tunneling leaky rays may have very low losses in 
fibers with large core diameters and may well be part of the "new" 
normal mode of the fiber cavity. It is thus desirable to be able to dis­
tinguish between power scattering into these two types of leaky rays. 
This distinction is made in the factor G2(nt!n2) appearing in (10). We 
write 

(11) 

G2r incorporates only loss to refracting leaky rays, that is, rays scat­
tered in those directions that, in a fiber, correspond to refracting leaky 
waves. G2t incorporates the contribution from those scattering direc­
tions that, in a fiber, would correspond to tunneling leaky rays. Both 
expressions could be represented in closed form but, since the closed 
form formulas would be too unwieldy, we prefer to list them in the 
form of integrals: 

G2 (nl) = /1 V(l - v2) + 2V2~V2 - [1 - (nVni)] dv 
r n2 -Vl-(n~/nil (n~/ni)v + ~V2 - [1 --(nVnD] 

~ 0.2666 (n2/nl) - 0.05359(ndnl)2 + 0.3990(ndnl)3 (12) 
and 

G2t = ! ~1 - (n~/n2) _ n2 
3 I 37rn l[1 - (nVni)] 

X r' ..J ~ 2 [2v + I - 3(nlJnDJdv (13a) 
J (ndnl)2 v v - (n2/nl) 

G2 ~ 0.1364(ndnl) + 0.7926(ndnl)2 - 0.2592(n2/nl).3 (13b) 

The polynomials are again empirical approximations. The functions 
GI , G2r, and G2 = G2r + G2t are plotted in Fig. 3. As a matter of 
curiosity, we note that, disregarding the differences between functions 
GI and G2, (8) and (10) become identical if we set the correlations 
length in the y direction equal to 

(14) 

Of course, this is a purely formal relationship, since (10) does not 
apply for a correlation length on the order of the wavelength. 

III. LOSS DUE TO POWER DISSIPATION IN MEDIUM 2 

In preparation for computing the fiber losses caused by a lossy jacket, 
we consider the plane wave reflection problem shown in Fig. 2 when 
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0.1 

1.0 

Fig. 3-The functions G1, G2, and G2r defined by (9) and (11) through (13) plotted 
versus ndn2' 

nl is lossless and the interface is perfectly plane, but medium 2 is lossy. 
The reflection coefficient for total internal reflection from the plane 
interface is expressed by the formula7 

" + i'Y (15) r=--.-, 
" - 't'Y 

with 

" = ..Jnik2 - i11 (16) 
and 

"I = ..Ji11 - n~k2. (17) 
Using 

n2 = n2r - in2i (18) 

and the amplitude loss coefficient for plane wave propagation in 
medium 2, 

(19) 

we obtain from (15), (17), and (18) 

4a2n2r" 
R = 1 r 12 ~ 1 - (ni _ n~) !k2 

(20) 

We have assumed that n2i« n2r and used "12 = (ni - n~T)k2, an ap­
proximation that holds for incident waves whose angle (with respect 
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to the interface) is far below the critical angle. When we apply our 
results to optical fibers, this assumption means that we limit ourselves 
to modes far from cutoff. The amount of dissipated power in an area 
LyLz is now 

(21) 

Sx is the x component of the Poynting vector. We use the relation 
Sx = (K/{3i)Sz and obtain, from (20) and (21), 

(22) 

The real part of the refractive index has again been replaced by the 
symbol n2, and we used the approximation (3i = nlk. 

IV. APPLICATION TO MULTIMODE FIBERS 

The guided-mode field in optical fibers can be approximated as4 

Ey = AJv(Kr) cos v¢e-ifJz . 

The power density flowing in the z direction is thus given by 

1 P 
Sz = -2 -2 cos2 v¢, 

'Ira 

(23) 

(24) 

where P is the total power carried by the guided mode. Since the 
fiber radius is a, we obtain the power density P / ('lra2). The factor! 
appearing in (24) accounts for the fact that half the total power is 
carried by a wave traveling toward the core boundary while the other 
half travels away from the boundary after reflection. The factor 
cos2 v¢ follows in an obvious manner from (23). Averaging over the 
entire circumference of the fiber, we obtain 

- 1 P 
S =--. 

z 4 'lra2 (25) 

The mode losses are now obtained from the plane wave formulas of 
the last two sections by identifying Ly = 2'1ra, replacing Sz with 
Sz of (25) and using the formula (for heat losses, P Be is replaced by P d) 

(26) 

We can thus immediately compile the following list of power-loss 
coefficients for the various fiber loss mechanisms. 

Sinusoidal radius variation of amplitude b: 

b2K2 (ni - n~) 
2a = . 

2anl (nl sin ¢l + n2 sin ¢2) 
(27) 

The angles ¢l and ¢2 are defined by (6) and (7). 
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Random radius variation with correlation length D z and variance iJ2: 

2a = ~ D ziJ2K2k(ni - n~)Gl (nl). 
nla n2 

(28) 

Random surface variation with correlation length Dc/> (formerly 
called Dy) in the cp direction and Dz in the z direction and variance iJ2 : 

2a = ~ Dc/>D ziJ2K2k2(ni - n~)G2 (nl). 
~a n2 

(29) 

Functions Gb G2, and G2r are plotted in Fig. 3. Whether G2 or G2r 
is to be used depends on the length and size of the fiber. If tunneling 
leaky modes are only slightly attenuated in the length of fiber under 
consideration and can be regarded as guided modes, we must use 
G2r ; if tunneling leaky waves are very lossy, G2 must be used; in inter­
mediate cases, an average value may be appropriate. For a discussion 
of the losses of tunneling leaky waves, see Refs. 5 and 6. Finally, we 
list the power loss coefficient for a multimode fiber with lossy cladding 
(but lossless core) with cladding power-loss coefficients 2a2: 

2 _ (2a2)n2K2 
a - nla(ni - n~)!k3 (30) 

It remains to specify the values of K that must be inserted into formulas 
(27) through (30). In fibers supporting only one or very few guided 
modes, K would have to be obtained as the solution of the eigenvalue 
equation. However, our formulas hold only for large fibers supporting 
many modes that are mostly far from cutoff. In this case, it is possible 
to approximate K as4* 

(31) 

The compound mode number M is a combination of the azimuthal 
mode number v and the radial mode number p" 

M = v + 2p, = 2, 3, 4, .... (32) 

If we are interested in the losses of a fiber cavity with tilted mirrors, 
Fig. Ib suggests that we use the expression 

(33) 

In this case, the field impinges on the fiber wall not at the natural 
mode angle applicable for perfectly straight fibers but at a larger angle 
(J that is imposed by the gross deformation of the fiber or mirror 

* Eq. (31) holds for small values of P. For large P, we must replace (Ka)2 ~ U2 - p2 
[see Ref. 4, p. 90, eq. (2.5-6)J and obtain U as the solution of Jp(U) = O. 
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geometry. For fiber lasers, it seems reasonable to associate 0 with the 
mirror tilt angle. For fibers with abrupt tilts, 0 would be the fiber tilt 
angle. 

Our derivation of formulas for the fiber loss coefficients was based 
on the properties of plane wave interaction with a plane interface. 
It is thus clear that our equations are only approximately valid. In 
particular, they do not incorporate interference effects between 
directly scattered rays and rays that leave the fiber after repeated 
reflections inside the fiber core. Such effects are particularly pro­
nounced for scattering from purely sinusoidal core radius variations 
because, in this case, the radiation leaves at a definite angle and may 
be enhanced or reduced by interference effects.8 Our equations give 
an average over the maxima and minima of the loss fluctuations as a 
function of scattering angle. The formulas for scattering from random 
surface effects or heat losses in the cladding are more reliable because 
diffuse scattering causes radiation to escape in all directions and inter­
ference effects tend to cancel out and are unimportant in the case of 
power dissipation in the cladding. The formulas derived here are handy 
order-of-magnitude approximations of the precise expressions con­
taining Bessel functions. 4•8 

V. DISCUSSION AND NUMERICAL RESULTS 

In this section, we present loss coefficients in graphic form. We 
begin with a fiber with sinusoidal core radius variations of amplitude b 
and spatial frequency n. Scattering losses occur only if the radiation 
can escape into the cladding. The spatial frequency range that results 
in scattering losses is thus obtained from (7) as 

(34) 

where we have assumed that {3i ~ nlk. If we introduce the length of 
the spatial period as A = 271" In, we obtain from (34) and k = 271" lAo 

AO > A > "0 
nl - n2 nl + n2 

(35) 

These formulas apply, of course, also to the spatial frequency range 
that contributes to random scattering, discussed below. 

Figure 4 shows curves plotted from (27). On the horizontal axis, we 
have plotted the normalized spatial frequency nln1k and also the 
scattering angle q,2 at which the radiation escapes into medium 2. 
Beyond nln1k = 1, the curves form the mirror image of the section 
shown in the figure and were consequently omitted. Figure 4 was 
computed for Y AG with nl = 1.8 and n2 = 1. The parameter of the 
curves in Fig. 4 is the compound mode number M defined by (32). 
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n/n,k 

Fig. 4-Normalized scattering loss coefficient for a cavity with perpendicular 
mirrors (relative to the fiber axis) and sinusoidal core radius variation of amplitude 
b and spatial frequency n. M is the compound mode number. For this set of curves, 
nl = 1.8, n2 = 1.0. 

To obtain a feeling for the magnitude of the normalized loss coefficient 
and for the tolerance requirements, we assume that the fiber reso­
nator has an inherent loss of 2a = 10-3 cm-1 and a core radius of 
a = 40 ~m. Scattering loss begins to be of concern if its magnitude 
equals the already existing cavity losses. Allowing for the possibility 
that a few fiber modes of low order are tightly coupled by some fiber 
deformation of large amplitude but with a spatial frequency below 
range (34), we use an average value of 2aa3/b2 = 10. If we are willing 
to tolerate a loss of 2a = 10-3 cm-1 for a = 40 ~m, we find as the 
maximum permissible ripple amplitude the value b = 2.5 X 10-2 ~m. 

Figure 5 shows curves that are similar to Fig. 4 except that we have 
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assumed that the YAG fiber now carries a cladding with refractive 
index n2 = 1.5. It is apparent that the cladding causes a reduction of 
the scattering loss by roughly a factor of 2 so that we can now tolerate 
a ripple amplitude that is larger by V2. 

Figure 6 still describes a cavity with a fiber with sinusoidal core 
radius variation, but in this case we h~ve assumed that the mirrors 
are tilted by an angle £J. The tilt of the mirrors causes the field inside 
the cavity to impinge on the fiber wall at an angle that is roughly equal 
to the tilt angle. It is interesting to consider the intrinsic mode angle 
to obtain a feeling for the severity of tilt angles introduced externally. 

101 

n1=1.8 

\ "----- ___ M=20 _ 

~15 
~:O ____ 

~: --------

<1>2 

I I I 
0.2 0.4 0.6 0.8 

.I1/n1 k 

Fig. 5-Same as Fig. 4 but with n2 = 1.5. 
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nl = 1.8 

Fig. 6-Normalized scattering loss coefficient for a cavity with tilted mirrors, tilt 
angle 0, and sinusoidal core radius variation of amplitude b and spatial frequency 12 
(nl = 1.8 and <1>2 = 45 degrees). 

By equating (31) and (33), we find for the mode angle 

(
7r(M -.!») 

() M = arcsin 2n
1
ka 2 • (36) 

For a = 40 ILm, Ao = 1.06 ILm, and nl = 1.8, we find () M = 0.32 
degree for the fiber mode of lowest order, with M = 2 and ()M = 2 
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degrees for M = 10. We have assumed that mirror tilt can be con­
trolled fairly accurately and extended our curves only to () = 7 
degrees. It is now more natural to normalize the loss coefficient as 
2aa(AO/b)2. At a tilt angle of () = 5 degrees, we may expect for ndn2 
= 1.8 the normalized loss 2aa(AO/b)2 = 0.25 according to Fig. 6. 
With 2a = 10-3 cm-I, a = 40 j.Lm and AO = 1.06 j.Lm, we find the ripple 
amplitude b = 4.2 X 10-3 j.Lm, which is a more stringent tolerance 
requirement than the value found for straight mirrors. 

N ext we consider a cavity with a fiber with randomly varying core 
radius. The case of a cavity with perpendicular mirrors is plotted from 
(28) and (9) in Fig. 7. It is assumed that the rms amplitude of the 
random core radius variation is if and that the correlation length Dz 
is much shorter than the wavelength of light. If the cavity loss is an 
average value of fiber mode losses corresponding to Al = 5 in Fig. 7, 
we have 2aa3AO/ D zif2 = 200. With a = 40 j.Lm and 2a = 10-3 cm-I , 

we obtain D zif2 = 3.4 X 10-5 j.Lm3. For want of more information, we 
assume that if = D z , so that we have Dz = if = 3.2 X 10-2 j.Lm. This 

101~ ____ ~~ ____ ~ ______ ~ ______ ~ ______ ~ ______ ~ ____ ~ 
2 16 

M 

Fig. 7-Normalized scattering loss coefficient for a cavity with perpendicular 
mirrors and random core radius variations with variance u2 and correlation length 
Dz• M is the compound mode number, nl = 1.8. 
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nl = 1.8 

Fig. 8-Normalized scattering loss coefficient for a cavity with tilted mirrors, 
tilt angle 8, and random core radius variation for nl = 1.8. 

value is quite comparable to the value b = 2.5 Jlm that we found in the 
case of a sinusoidal core radius variation. 

Figure 8 gives the normalized scattering loss for a cavity with 
random core radius variation for the case of tilted mirrors. For n2 = 1 
and () = 5 degrees, we find from Fig. 8 2aa~3/ Djj2 = 4. With a = 40 
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pm, we obtain a loss of 2a = 10-3 cm-1 for D zif2 = 1.2 X 10-6 pm3 or 
Dz = if = 1.1 X 10-2 pm. 

Figures 9 and 10 pertain to fibers with random core-cladding interface 
perturbations. Figure 9 describes a fiber cavity with perpendicular 
mirrors. At M = 5 we find, from Fig. 9, 2aa3A5/Dq,Dzif2 = 600. With 
the usual values for loss, core radius, and light wavelength, we have 
DiJ!D zif2 = 1.2 X 10-5 pm4 or DiJ! = Dz = if = 5.9 X 10-2 pm. If 
we let the two correlation lengths equal the rms variation of the inter­
face, we find that the tolerance requirements are a little less stringent 
for a totally random surface compared to a surface that maintains its 
circular cross section and only allows the radius to vary along z. 

Figure 10 shows the normalized loss coefficient for random core­
cladding interface perturbations (in two dimensions) for a cavity 
with tilted mirrors. For a mirror tilt of () = 5 degrees, we obtain from 
Fig. 10 approximately 2aaX6/DiJ!Dzif2 = 12. With a = 40 pm, a loss 
of 2a = 10-3 cm-1 is obtained for DiJ!D;2 = 4.2 X 10-7 pm4 or DiJ! = Dz 
= if = 2.5 X 10-2 pm. 

a2X8 
2ua-­

Dqpz(j2 

nl = 1.8 

M 

Fig. 9-Normalized scattering loss coefficient for a cavity with perpendicular 
mirrors and random core-cladding interface perturbations with correlation length 
D", in azimuthal direction, Dz in z direction, and variance (j2. The solid lines apply to a 
fiber whose tunneling leaky waves may be regarded as lossless guided waves; the 
dotted lines belong to the case in which tunneling leaky waves are so lossy that they 
cannot be regarded as guided waves. M is the compound mode number, nl = 1.8. 
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The remaInmg figures, 11 and 12, describe the normalized loss 
coefficient for a geometrically perfect fiber core surrounded by a 
lossy cladding. The power loss coefficient of a plane wave traveling 
in the material of the cladding is 2a2. Figure 11 gives the mode losses 
of the fiber as a function of the normalized frequency parameter 

A6 
2aa -­

Dqpz(j2 

V 27ra (2 2)1. = To nl- n2 2. (37) 

n1 = 1.8 

8 

Fig. lO-Similar to Fig. 9 except that the cavity in this case has tilted mirrors with 
tilt angle o. 

1482 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1976 



v 

Fig. ll-Absorption loss coefficient of a fiber with lossy cladding (cladding loss 
coefficient 0:2). This set of curves applies to the case of a cavity with perpendicular 
mirrors. The normalized frequency V is defined by (37). 

For Ao = 1.06 J,Lm, a = 40 J,Lm, nl = 1.8, and n2 = 1, we obtain 
V = 355 from (37). For M = 5, we obtain from Fig. 11 approxi­
mately nlcxI/n2cx2 = 10-6• The mode losses are thus much less than 
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the cladding losses. For 2a = 10-3 cm-I and ndn2 = 1.8, we could 
tolerate a cladding loss of 2a2 = 1.8 X 103 em-I. If we use n2 = 1.5, 
we have V = 236 leading to nla/n2a2 = 4 X 10-6 at M = 5. With 
ndn2 = 1.2, we can now tolerate 2a2 = 300 em-I. 

Figure 12 applies to a cavity with tilted mirrors and lossy jacket. 

Fig. 12-Absorption loss coefficient of a fiber with lossy cladding (loss coefficient 
0:2). These curves apply to the case of a cavity with tilted mirrors, tilt angle o. 
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Table 1-Results of numerical evaluations of cladding losses. 

V 

355 
236 

The cladding loss, 2c% gives rise to a mode loss 
of 2a = 10-3 cm-1 

2a2 

ndn2 
M =5, 8 = 0 8 = 5° 

1.8 1.8 X 103 cm-1 56 cm-1 

1.2 300 lOA 

For (} = 5 degrees and V = 355, we find aA5(nIn2a2a2) = 7 X 10-9• 

With ni = 1.8, n2 = 1, a = 40 .urn, and 2a = 10-3 cm-I, we can tol­
erate 2a2 = 56 cm-I . If V = 236 and n2 = 1.5, we can tolerate 2a2 
= lOA cm-I • These results are summarized in Table r. 

VI. CONCLUSIONS 

We have studied the losses of fibers and fiber resonators that are 
caused by perturbations of the core-cladding interface and by absorp­
tion losses of the cladding material. Formulas for the loss coefficient 
were derived by using plane wave techniques, and representative ex­
amples were displayed in the form of normalized curves. The theory 
presented here is not precise, and its application to practical cases is 
hampered by lack of knowledge of coupling among the guided modes. 
We have seen in a previous paper3 that mode coupling tends to increase 
the cavity losses above the minimum value of the fiber mode of lowest 
order. However, the loss increase due to mode coupling results only 
in an average loss of a few of the lower-order modes that are coupled 
particularly tightly. We have thus concentrated on an average loss 
corresponding to mode M = 5 when we considered explicit loss values. 
Our results are useful to gain insight into the order of magnitude of 
fiber tolerances that must be maintained and into the amount of 
cladding losses that can be tolerated. We found that the tolerances of 
core-cladding interface perturbations are on the order of 0.01 .urn, 
while cladding losses can be allowed to be as high as 10 cm-I in the 
worst case of a cavity with mirrors tilted by 5 degrees, or as high as 
300 cm-1 in the case of a cavity with perfectly perpendicular mirrors. 
Mirror losses were lumped in with the "background losses" of the 
cavity, which were assumed to be 2a = 10-3 cm-I in all the numerical 
examples we have considered. All curves independent of mirror tilt 
can be used to obtain the losses of optical fibers because they show 
plots of fiber mode losses without being tied to an application to fiber 
resonators. 
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APPENDIX 

For the calculation of scattering losses of a plane wave impinging 
on an irregular dielectric interface, we need to know the radiation 
modes of a space consisting of two dielectric media with refractive 
indices nl and n2 separated by a plane interface. There are several 
types of such radiation modes. In each case, we list only the E z and 
Hz components of their electric and magnetic fields, since all other 
field components follow from these longitudinal components by differ­
entiation.9 The time dependence of the modes is understood to be of 
the form 

(38) 

We place our coordinate system so that the interface between the 
media with nl and n2 lies in the y-z plane. We assume that nl > n2 
and let the medium with index n2 be in the half space x > O. 

There arc radiation modes whose fields decay exponentially in 
positive x direction for x > O. These modes can be grouped further 
into modes with E:z; = 0 and H:z; = O. 

(i) Evanescent modes with E:z; = 0: 

0z = A le-Axe- i (uVy+(3z) } 

Jez = i ~ A le-Axe-i(uvy+(3z) 
W}.LoU y 

for x ~ 0 (39) 

0z = Al (cos uxx - i ~ sin u:z;x) e- i (ully+(3z) ) 

Jez = i (3u:z; Al [sin u:z;x - Ll cos u:z;x] e-i (uvy+(3z) 
for x ~ O. (40) 

W}.LoUy U:z; 

The parameters entering these equations are related by 

nik2 = u; + u; + {32 
and 

n~k2 = -/12 + u; + {32. 

The fields are normalized with respect to a delta function, 

(41) 

(42) 

~ f f (0:z;Je; - 0yJe;)dxdy = PO(u:z; - u~)o(Uy - u~), (43) 

so that we obtain for the amplitude coefficient 

(44) 
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with V defined by (37) and J.Lo indicating the magnetic permeability 
of vacuum. 

(ii) Evanescent modes with H x = 0: 

0z = A2e-dXe-i(<Tllv+l3z) } 

Xz = i n~k20"y A 2e-dXe-i (<Til v+l3z) 
wJ.Lo(3A 

0z = A2 (cos O"xX + ~~ C;; sin 0" xX ) e- i (<TIIII+l3z ) ) 

Xz = 1, _2 __ Y A2 cos O"xX - --i- SIn O"xX e- 2 (<Tllv+l3z ) . n2k2
0" ( n2 

A. ). 
WJ.Lo(3A n2 0" x 

for x ~ 0 (45) 

for x ~ o. (46) 

Equations (41) and (42) still apply, and the amplitude coefficient is 

2 _ 2wJ.LoniO";A2(3P ( ) 

A2 - 7r2k2 (niO"; + niA2)((32 + O"~) 47 

These first two types of modes are valid only in a limited range of 
0" x and 0" Y that is determined by the requirement that A, defined by 
(42), must be a positive real quantity. 

(iii) Full standing wave modes with Ex = 0: 

0z = A3j(COS PxX + R j sin pxx)e-i(<Tllv+l3z) } 

Xz = i (3px A3j(sin PxX - R j cos pxx)e-i(<Tlly+fJz) 
WJ.L 0 O"y 

forx~O (48) 

0z = A3j (cos O"xX + ~: R j sin 0" xX ) e-i(<Tllv+fJz ) ) < 

( ) 

for x - O. (49) 
Xz = i (30" x A3j sin O"xX - Px R j cos O"xX e-i (<Til y+fJz) -

WJ.LOO"y O"x 

Equation (41) applies in this case, too, but (42) is replaced by 

n~k2 = P; + O"~ + (32. (50) 

The coefficient R j is arbitrary, but it is convenient to choose two values 
Rl and R2 so that the two resulting modes become mutually orthogonal. 
We choose for convenience 

(51) 
and 

R2 = 00. (52) 

The corresponding amplitude coefficients are 

(53) 

and 
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(iv) Full standing wave modes with H x = 0: 

8z = A4j(COS pxx + Sj sin pxx)e- i (tT II Y+{1z) } 

3Cz = -i w~~;n~ A4j(sin pxx _ Sj cos pxx)e-i(tTIIY+{1z) for x ~ O. (55) 

8z = A4j (cos O"xX + :: Sj sin O"xx) e- i (tTlIy+{1z) ) 

• W EOO" n 2 
( • n~ 0" x ). 3Cz = -1, ; 1 A4j sIn O"xX - 2 - Sj cos O"xx e-~«(1l1y+{1z) 

O"x nl Px 
for x ~ O. (56) 

Equations (41) and (50) determine the relations among the compo­
nents of the propagation constant. The ranges of 0" x and 0" yare limited 
to the regions where Px is real and positive. This remark applies also 
to case (iii). 

Two sets of mutually orthogonal modes result if we choose 

(57) 
and 

(58) 

(59) 

and 

2 2 2niO" xP;.y J.l.o/ Eo{3P 
S2A 42 = ~~~=-~--~~~~~~ 

1r2n~k(n~O"x + nipx)({32 + 0";) 
(60) 

EO is the permittivity of vacuum. 

REFERENCES 
1. P. W. Smith, "A Waveguide Gas Laser," Appl. Phys. Lett., 19, No.5 (September 

1971), pp. 132-134. 
2. J. Stone, C. A. Burrus, A. G. Dentai, and B. 1. Miller, "Nd:YAG Single-Crystal 

Fiber Laser: Room Temperature CW Operation Using A Single LED as an 
End Pump," Appl. Phys. Lett., 29, No.1 (July 1976), pp. 37-39. 

3. D. Marcuse, "Steady-State Losses of Optical Fibers and Fiber Resonators," 
B.S.T.J., this issue, pp. 1445-1462. 

4. D. Marcuse, Theory of Dielectric Optical Waveguides, New York: Academic Press, 
1974. 

5. A. W. Snyder and J. D. Love, "Tunneling Leaky Modes on Optical Waveguides," 
Opt. Commun., 12, No.3 (November 1974), pp. 326-328. 

6. A. W. Snyder, "Leaky-Ray Theory of Optical Waveguides of Circular Cross 
Section," Appl. Phys., 4, 1974, pp. 273-298. 

7. D. Marcuse, Light Transmission Optics, New York: Van Nostrand Reinhold, 1972, 
p. 18, eq. (1.6-14). 

8. D. Marcuse, "Radiation Losses of the HEll Mode of a Fiber with Sinusoidally 
Perturbed Core Boundary," Appl. Opt., 1/,., No. 12 (December 1975), pp. 3021-
3025. 

9. Ref. 7, pp. 12-13, eqs. (1.4-16) through (1.4-19). 

1488 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1976 



Copyright © 1976 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 55, No. 10, December 1976 
Printed in U.S.A. 
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Profile of Optical Fibers 
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A novel technique for measuring the refractive index profile of optical 
fibers is demonstrated, which offers substantial advantages over alternative 
methods. The method consists of illuminating a small area of the fiber core 
and measuring the total transmitted power. The transmission of leaky 
modes is accounted for in the manner reported previously by other authors. 
The index profiles of germanium-doped fibers obtained by this technique are 
compared to interferometric measurements. The resolution is shown to be 
lilnited by wave optics effects to about "Xo(4n-{2il)-t, where il == iln/n. 
The distortion of the index profile as the wavelength varies and wave­
optics effects are investigated. 

I. INTRODUCTION 

The accurate measurement of index profiles at various wavelengths 
may help design multimode fibers whose transmission capacity would 
go well beyond what has been presently achieved. Indeed, numerical 
calculations and theoretical analyses1,2 show that there exist index pro­
files (usually not power-law profiles), which, for quasi-monochromatic 
sources, provide transmission capacities of about 1.61 ~2 Mbls X km, 
where il == ilnln. Measured transmission capacities are about 10 times 
smaller. To determine the optimum profiles, it is indispensable to know 
the variation of dnl d"xo (where "Xo is the operating wavelength) as a 
function of n for the class of materials considered with an accuracy 
of about 1 percent. The required variation of dnl d"xo as a function of 
n can be obtained, in principle, from measurements on bulk samples 
(e.g., Ref. 3). We question, however, whether measurements on bulk 
samples are applicable to the fiber material with sufficient accuracy. 
For that reason and also because the fabrication and measurement of 
bulk samples is time-consuming, the direct measurement of index 
profiles at various wavelengths is highly desirable. Once the optimum 
profile applicable to the class of materials considered has been deter­
mined, we measure the departures of the profile nCr) of the fabricated 
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fiber from optimum. Very small deviations may degrade considerably 
the transmission capacity. 

An interesting experimental technique for measuring circularly 
symmetric index profiles has been proposed by G10ge and Marcati1i.4 

The index profile is obtained by measuring with a pin hole the radial 
distribution of intensity in fibers excited by Lambertian (e.g., thermal) 
sources. In a series of careful measurements, Sladen, Payne, and 
Adams5 have shown that good agreement can be obtained between 
the intensity in the fiber core and the index profile obtained by inter­
ferometry provided the non-zero transmission of the leaky modes is 
accounted for. If this correction is made, the fiber samples need not be 
larger than about 1 meter, and may be as small as 1 cm. 

The technique that we describe in the present paper, which we 
call the transmission technique, is related to the near-field technique 
discussed above, but it differs from it in many significant ways. Arnaud6 

has shown that, if we illuminate a small area of the fiber core (perhaps 
of the order of (A~ at x, y, the total transmitted power is, for sufficiently 
long fibers, proportional to n2(x, y) - n~, where n(x, y) denotes the 
refractive index at x, y, and nC, the cladding index. The proof is 
straightforward: The rays radiated from the illuminated area have an 
almost uniform distribution in the plane kx, k y, where kx, k y denote the 
transverse components of the wave vector k. Because of the relation 
k?x + k; + k; = k2(X, y) == (w/c)2n2(x, y), which holds between the 
rectangular components of k, and because only rays whose kz is larger 
than ks are transmitted without loss, the power transmitted through 
long fibers is proportional to 

k?x + k; = k2(X, y) - k~ == index profile (1) 

(see Fig. 1). The rays in the dotted area in Fig. 1b leak away if the 
fiber is sufficiently long. Otherwise their contribution to the total 
transmitted power needs to be subtracted in the manner reported in 
Ref. 5. If the spot size is less than Ao, we may use as a source either a 
(coherent) laser or a (spatially incoherent) LED. If, however, the spot 
size is significantly larger than Ao, it is essential to use near-Lambertian 
sources such as LEDs. Indeed, coherent beams of large cross section 
would excite predominantly paraxial rays. This would require intro­
ducing additional correction factors. 

In the present paper, we discuss the principles and limitations of 
the method, and we present experimental results. The transmission 
method gives results that are, in principle, identical to the near-field 
measurements described in Ref. 5. The main advantage of the trans­
mission method, compared with alternative methods, including the 
near-field technique, is that it is extremely easy to implement. The 
results are highly reproducible to better than one part in 1000. 
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(a) 

(b) 

Fig. l-(a) In the transmission method, the microscope objective illuminates a 
small area of the fiber end of the order of A~. (b) The intensity is assumed uniform in 
the kx, k y space. For long fibers, only the rays in the shaded area are transmitted. 
For short fibers, the rays in the dotted area may also be transmitted (leaky rays). 
T denotes the power transmission. 

II. EXPERIMENTAL CONDITIONS 

To implement the proposed technique, all we need is an ordinary 
microscope, a high-radiance LED (or a laser), and a detector. The 
numerical aperture (NA) of the microscope objective should be at 
least twice as large as that of the fiber. One end of the fiber is properly 
broken or polished and centered approximately under the microscope 
objective at focus. When the microscope eyepiece is replaced by a LED, 

a small spot of infrared radiation illuminates the fiber end. As we have 
indicated in the introduction, the power detected at the other end of 
the fiber is proportional to n2(x, y) - n~, where n(x, y) denotes the 
index at the point x, y of the fiber where the light is focused, and nc 
the cladding index. To obtain the index profile, we may scan either the 
fiber, with a total motion of about 100 ,urn, or the source, with a total 
motion of about 3 mm. The arrangement shown in Fig. 2 incorporates 
a beam splitter (1) to allow the fiber to be observed during scanning. 
(A second beam splitter, which combines the light from two LEDS, is 
shown in Fig. 2. It is used only for dispersion measurements.) Some 
infrared LEDs radiate red light with sufficient intensity for direct visual 
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Fig. 2-Experimental setup of the transmission technique. The fiber is scanned 
mechanically and its motion is recorded with a gauge. Two LEDs are used for disper­
sion measurement. 

observation. For LEDs at longer wavelengths, an image converter is 
necessary. Note that the focal length of microscope objectives may be 
slightly different for the red light and for the infrared light. In the 
arrangement in Fig. 2, it is convenient to have the distance between 
the LED source and the microscope objective equal to the distance 
between the focal plane of the eyepiece and the microscope objective. 
This avoids the need for refocusing when the objective is changed 
from low to high magnification. To obtain good resolution, it is de­
sirable that the LED act as a point source; that is, that the apparent 
size of the LED, demagnified by the microscope objective, be smaller 
than the diffraction-limited spot ';::::fAo/NA, defined by the numerical 
-aperture of the microscope objective. An apparent emissive diameter 
of 25 JLm (before demagnification) is adequate. The experimental set­
up is shown in Fig. 3. The LED source (not visible) is supported by the 
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xyz microscope stage at the left. The angular orientation of the fiber 
under the microscope obj ective can be varied. Figure 3 shows the 
differential micrometer that drives the fiber and the gauge that mea­
sures its displacement with respect to the microscope objective. 

The advantages of the proposed technique compared to the more 
conventional near-field technique are many: 

(i) In the near-field method, the source is required to be Lam­
bertian and uniform over the full cross section of the fiber core. 
As pointed out in Ref. 5, this condition is in fact difficult to 

Fig. 3-Photograph of the experimental setup. The LED (not seen) is supported by 
the xyz stage on the left. 
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achieve with LEDs. The authors in Ref. 5 thus found it necessary 
to use thermal sources instead of LEDs. Thermal sources (e.g., 
tungsten wires) provide poor signal-to-noise ratios when the 
spectral width is restricted by narrowband interference filters. 
In the transmission method, we require the NA of the micro­
scope objective to be significantly larger than that of the fiber 
(at least for coherent sources), but the requirement concerning 
the spatial uniformity of the source is relaxed. In some sense, 
the requirement of spatial uniformity is transferred from the 
source, where it is difficult to achieve, to the detector, where 
the condition is easily met. 

(ii) The optics are much simplified. Only a single microscope 
objective is needed instead of (typically) three. Thus, the 
signal-to-noise ratio is improved. 

(iii) Near-field measurements provide the shape of the index 
profile, but not the absolute value of ~n(r) = nCr) - n c, where 
nc denotes the cladding index. In the transmission method, we 
can calibrate ~n by measuring the intensity radiated axially 
by the microscope objective. This calibration technique will 
be discussed in more detail in the next section. 

(iv) The transmission method can be combined with the Fresnel­
reflection technique (for a recent report of the Fresnel-reflection 
technique, see Ref. 7). To implement this modification, we 
replace the microscope eyepiece in Fig. 2 with a detector. 

An important drawback that applies to both the transmission and 
near-field methods is encountered when the fiber exhibits a low-index 
region near the cladding. In that case, some modes (besides the so­
called weakly leaky modes) are leaking very slowly, and the inter­
pretation of the measurements becomes ambiguous. The resolution 
offered by these methods may be marginal when the fiber profile 
exhibits very fast fluctuations. Note also that, for noncircularly 
symmetric profiles, the correction factors for leaky rays have not 
been worked out. If the deviation from perfect circular symmetry is 
small, however, the correction factor given in Ref. 5 may be used. 

III. INCIDENT BEAM PATTERN AND INDEX CALIBRATION 

To make precise measurements, the radiation from the microscope 
objective should approximately obey Lambert's law, at least for angles 
a to the axis that are less than ~. To verify that this law is approxi­
mately obeyed, we translate the detector in front of the microscope 
objective at some distance d» Ao from the focal point. Ideally, the 
variation of the detected power as a function of the distance r from 
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Fig. 4-The curve shown is the desired radiation pattern from the microscope 
objective. It is sufficient if this law be obeyed from rid = 0 to the value correspond­
ing to the .d of the fiber (e.g., rid < 0.3 if .d = 0.02). The experimental points were 
measured using a Leitz UD 20, NA = 0.57 microscope objective. 

axis should be 

(2) 

The desired variation of P with r in (2) is shown in Fig. 4. The maxi­
mum value of r / d corresponding to a particuhl,r .!l is given by 

rid = (NA-1 - l)-! 

NA = no~. 

(3a) 

(3b) 

The values of r / d are shown in Fig. 4 for typical values of .!l and 
no = 1.45. 

Let us now consider the problem of calibrating .!In. This is done by 
measuring the intensity radiated axially by the microscope objective. 

* This result can be obtained by inverting eq. (5.246) of Ref. 6 and noticing that 
when the radiation is uniformly dense in the kx, k y plane (the transverse components 
of the wave vector), it remains uniformly dense after refraction at any plane interface 
perpendicular to the z axis. To show that, set in eq. (4.167) of Ref. 6: dkx/4z = dkyldz 
= 0 (Descartes-Snell law) and find thatf(kx , ky, x, z) = g(kx, ky)h(x, z) is a solution 
of the Liouville equation for any differentiable functions g and h. Thus, if f is inde­
pendent of kx and kyat z = 0, as we have assumed (Lambert's law), it remains inde­
pendent at kx, k'IJ after any number of refractions. 
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Let the power detected in front of the microscope obj ective be denoted 
Pc and the power transmitted through the fiber for near-axial excitation 
be denoted P. If the detector radius is denoted p and its distance from 
the microscope objective focal point is d, the NA = no~ of the fiber 
is given by 

NA = (p/d)~P/'YJPc, (4) 

where 
(5) 

accounts for the Fresnel reflection at both ends of the fiber. This ex­
pression for 'YJ is not rigorous, but it is sufficiently accurate for our 
application. With sufficient accuracy, we can set no = 1.45. Then, 
'YJ = 0.93. Convenient values for d and pare d = 10 mm and p = 1 mm, 
respectively. We thus obtain from (4) and (5) 

NA = 0.104-VP/Pc 

A = 0.00255(P/Pc). 

(6a) 

(6b) 

It is, of course, necessary to have good breaks at both ends of the 
fiber. We have assumed that the fiber loss is negligible; this is the 
case for most fibers if the length is 1 m or less. * 

A more conventional technique for evaluating A consists of measur­
ing the far-field pattern when the fiber is illuminated on or near axis. 
We have 

(7) 

where NA denotes the sinus of the maximum radiation angle in air, 
defined typically at the -3 dB point from maximum intensity. 

The core radius, a, of the fiber is best obtained by observing the 
fiber tip with a microscope. From the values of A, a, and 'A o, the 
V -number is calculated according to 

(8) 

IV. CORRECTION FOR LEAKY RAYS 

If the fiber is not very long, the leaky modes excited by the source 
are not completely attenuated. They can be accounted for in the 
manner described in Ref. 5. Specifically, the index profile n2 (r) - n~ is 
obtained by dividing the detected power P (r) by the correction factor 

* With some high NA objectives (NA ~ 0.8), spurious peaks are observed in the 
far-field pattern due to diffraction effects, even with LED sources. Thus, the calibra­
tion of ..1 should be made with lower NA objectives, e.g., NA ~ 0.5. These spurious 
peaks do not appear to affect the profile measurements, but they prevented us from 
making a precise comparison between the two techniques described here for mea­
suring ..1. 

1496 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1976 



1.6 
0.1 

1.5 

N 1.4 

U 
a:: 
0 0.2 f-
u 
~ 1.3 

z 
0 
i= 
u 
w 
a:: 1.2 a:: 
0 
u 

0.5 
1.1 

0.2 

NORMALIZED RADIUS ria 

Fig. 5-Correction factor for leaky rays.5 The X parameter is defined in the main 
text as X = V-I loge (Lja), where V denotes the V-number of the fiber, L, the fiber 
length, and a, the core radius. The measured power should be divided by C. These 
curves are applicable to near-square-Iaw fibers. 

C(r) given in Fig. 5. 5 In this figure, the parameter X is defined as 

X = V-1}oge(L/a), (9) 

where L denotes the fiber length, and V the fiber V-number defined 
in (S). 

Note that the correction is negligible near the fiber axis, but may 
be as large as 30 percent at r ~ O.Sa for typical fiber lengths. Strictly 
speaking, the correction factor depends on the profile of the fiber. 
The curves in Fig. 5 are applicable to near square-law profiles. How­
ever, the correction factor turns out not to be very sensitive to the 
exact profile. Thus, for most high-transmission capacity fibers, the 
square-law-profile correction factor may be sufficiently accurate. If 
greater accuracy is required, we may use an iteration procedure. 
Because this procedure is rather involved, it will not be discussed here. 

V. REFRACTIVE-INDEX PROFILE MEASUREMENTS 

The measurement technique described in previous sections has been 
applied to graded-index fibers. Let us first make a few general com­
ments concerning the experimental technique and the results. The 
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results obtained are highly reproducible to better than one part in 
1000 even after a few hours if the fiber tip is protected by a glass 
plate and an index-matching fluid. The axial index dip characteristic 
of germanium- (or phosphor-oxide-) doped fibers is very useful to define 
the fiber center and achieve optimum focusing. 

5.1 Comparison with near-field and interferometric measurements 

Near-field measurements5 were made on a graded-index fiber. The 
setup is shown schematically in Fig. 6a. A Burrus-type high-radiance 
LED with an apparent emissive diameter of 50.um is imaged with unity 
magnification on the end of the fiber under test with a pair of micro­
scope objectives (20X, NA = 0.4). The other end of the fiber is 
imaged with a microscope objective (40 X, NA = 0.65) on a scanned 
small-area detector. The magnification, measured with a reticle, is 
equal to 54. Focusing is adjusted to make the details of the index 
profile as sharp as possible. The variation of detected power as a 
function of the transverse displacement of the detector is shown in 

LED 

CHOPPER 

L = 720 m 
Ao=0.79 pm 

DETECTOR 

[}-

l--- L --~ 
X40 I 
~-- 240mm -~ 

(a) 

n2(r)-n~, ARBITRARY UNITS 

-5 

rlNpm 

(b) 

Fig. 6-Near-field measurement on a germanium-doped, graded-index fiber. 

1498 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1976 



n(r)-nc 
,... __ MEASUREMENT 

-- - BEST FIT C/ = 2.05 
AO= 0.55 pm 

-5 15 

r INpm 

Fig. 7-Interferometric profile of the fiber in Fig. 6, AO = 0.55 ,urn. NA = 0.21, 
~ = 0.0107.8 

Fig. 6b for a fiber length L = 720 m. For such long lengths, the 
leaky-ray correction is small. Because of evaporation of germanium 
during the collapse of the preform, the material on axis is probably 
almost pure silica. The observed reduction of Lln is, at most, i. This 
discrepancy reflects the inherent limitation in resolution of near-field 
and transmission techniques. We attribute small oscillations on each 
sides of the central dip to wave-optics effects. They are qualitatively 
similar to the ones calculated for a dielectric slab in Appendix A. 
The slow modulation reflects the presence of diffused steps. The 
interferometric measurement8 is shown in Fig. 7. 

OPTICAL FIBER INDEX PROFILE 1499 



n2(r) - n~ (ARBITRARY UNITS) 
L = 1.6 m 
Ao = 0.79 f.lm 

rlNf.lm 

Fig. 8-Profile of the fiber in Figs. 6 and 7 obtained with the transmission tech­
nique. Uncorrected: solid line. Corrected for leaky rays: dashed line. Interferometric 
measurements from Fig. 7: dots. The measured .1 at Ao = 0.79 jLm is 0.0104. 

The index profile obtained with our transmission technique is 
shown in Fig. 8. The .1 of the fiber was measured from the far-field 
pattern, as described in Section III. We measured .1 = 0.0104, in good 
agreement with the value obtained by interferometry. From a core 
radius a = 24 ,urn, we calculate from (8) a V-number: V = 40. The 
fiber length is 1.6 m. Thus, the X-parameter in (9) is X = 0.28. The 
corrected profile, obtained by dividing the measured power by the 
correction factor C in Fig. 5, is shown as a dashed line in Fig. 8. The 
result of interferometric measurements is shown by dots for com­
parison. Aside from the depth of the central dip, a significant difference 
between the dashed curve (corrected transmission profile) and the 
dots (interferometric measurement). Such a discrepancy may be in 
part attributed to the lack of perfect circular symmetry of the fiber. 

5.2 Measurement of the lack of circular symmetry 

The (uncorrected) transmission profile of germanium-doped fiber 
was measured in two perpendicular azimuthal directions, labeled 0° 
and 90°, respectively. These two profiles are shown in Fig. 9 as solid 
lines and dashed lines, respectively. The measured .1 and NA param­
eters are given in the figure caption. We conjecture that, for the 
small deviations from circular symmetry exhibited by the fiber in­
vestigated, the correction factor in Fig. 5 is applicable. 
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Fig. 9-Uncorrected profile of a germanium-doped, graded-index fiber in two azi­
muthal planes (0 0 and 90 0

). The measured NA is 0.202, ~ = 0.00974, L = 1.6 m. 

5.3 Measurement of a double-hump profile fiber 

An attempt was made by MacChesney9 to suppress the central 
index dip of germanium-doped fibers by increasing the amount of 
germanium halides during the final stage of fabrication of the preform. 
The profile of a fiber of that type was measured by interferometry8 

and by our transmission technique. Both techniques clearly show that 
there is a large peak of index near the center of the fiber. However, 
the transmission technique shows that the dip in the center did not 
disappear (hence, the name "double-hump" given to the profile of 
that fiber). This central dip is not seen on the interferogram. The 
combination of a peak and a dip is unlikely to improve the fiber 
transmission. A much better compensation of the central dip will be 
reported later in this paper. 

5.4 Measurement of noncircularly symmetric profiles 

The theoretical result in (1) shows that the transmission technique 
is applicable, in principle, to noncircularly symmetric profiles, as well 
as to circularly symmetric profiles. A preform that accidentally 
collapsed fiat10 has been pulled at our request into a fiber and mea­
sured. The uncorrected profiles are shown in Fig. 10. Because the 
correction for the leaky rays has not been made, the curves in Fig. 10 
are only indicative of the index profile. 
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Fig. lO-Profile of a fiber with near-elliptical core (uncorrected). 

5.5 Profile distortion 

One of the most interesting and intriguing questions is whether 
index profiles get significantly distorted as the wavelength varies 
(independently of possible changes of scale). Fleming's measurements 
on bulk samples of germanium-doped silica3 clearly indicate that pro­
files get distorted significantly as the wavelength varies. This effect, 
however, has not been observed before on fibers. We report here 
preliminary measurements of profile distortion. The necessary for­
mulas are relegated to Appendix B. 

Figure 11 shows the profiles measured with the transmission method 
at two wavelengths: A. o = 0.79 JLm and A. o = 0.9 JLm, on a germanium­
doped, graded-index, large NA fiber. Note first that the resolution 
(indicated by the depth of the central dip) is slightly poorer at the 
longer wavelength. When the scanning is made slightly off-center to 
avoid the central dip and the two profiles are normalized to unity on 
axis, the differences between the two profiles are found to be extremely 
small yet significant. To exhibit this difference with good accuracy, 
we have combined the light from the two LEDs with beam splitter 
in Fig. 2 number 2. Square pulses are applied to the LEDs. The 
positive parts of the pulses drive one LED and the negative parts drive 
the other. The levels are adjusted to have equal detected powers on 
the fiber axis, and therefore, zero signal on the lock-in amplifier. The 
difference between the two normalized profiles is plotted in Fig. 12 
(curve b). More precisely, we have plotted in Fig. 12 the "profile 
distortion" d == A.oa'r//aA.o, where n == N /2d and N == 1 - n2/n~, as a 
function of r / a. The accuracy of this curve is difficult to ascertain at 
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Fig. ll-Profile of a germanium-doped, graded-index fiber at two wavelengths (a): 
AO = 0.79 }.Lm, (b) AO = 0.9 }.Lm, (c) AO = 0.79, scanning slightly off-center (obtained 
with the transmission technique and an objective NA = 0.85). 

the moment. Part of the observed change of the shape of the index 
profile may be attributed to the dependence of the leaky-ray correction 
factor on wavelength. 

The variation of d as a function of r / a can also be calculated from 
Fleming's measurements on bulk samples, as explained in detail in 
Appendix B. The result of this calculation is shown in Fig. 12 (curve a). 
There is no close agreement between curve a and curve c. However, 
they are comparable in magnitude. Thus, measurement of very slight 
changes of profile with wavelength, such as are shown in Fig. 12, are of 
great practical importance. 

VI. CONCLUSION AND PROPOSALS FOR FUTURE WORK 

We have proposed and demonstrated a novel technique for mea­
surement of the index profile of multimode fibers. Conceptually, this 
technique is related to the near-field technique previously demon­
stra ted by Sladen et al. 5 (near-field technique). From a practical 
point of view, however, our technique is quite different, since it does 
not require Lambertian sources. In particular, lasers can be used. We 
have found that the measured profiles are highly reproducible, to 
better than one part in 1000 over periods of hours. Index profile 
measurements can be obtained in a few minutes including fiber-end 
preparation. The agreement between our technique and interferomet­
ric measurements leaves something to be desired. The discrepancy, 
however, may be attributed to the lack of perfect circular symmetry 
of the fibers investigated. Theoretical considerations show that the res-
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Fig. 12-Profile distortion. Curve (a) is calculated from Fleming's measurements 
on bulk samples as reported in Ref. 3 (Fig. 1, curve labeled A = 0.9 J,tm). Curve (b) 
is the difference between the normalized profiles at AO = 0.79 and 0.9 J,tm. Curve (c) 
is the same as curve (b) corrected for the leaky rays. 

olution is about A/4{2'i. For a typical value A ~ 0.015, this resolu­
tion is about the free-space wavelength AD ~ l,um. This appears to be 
sufficient for most practical purposes. 

Comparison of depths of central-index dips suggests that the trans­
mission technique (and the near-field technique as well) provides 
better resolution than interferometric techniques. We have pre­
sented preliminary evidence for the distortion of the index profile as 
the wavelength varies (profile distortion), an effect that was inferred 
previously only from measurements on bulk samples. Theories that 
neglect profile distortion may be in considerable error. 

We shall now make a few suggestions for improvement of the 
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measurement technique. Oil-immersed microscope objectives would 
be useful to prevent interference effects between the obj ective and the 
fiber tip when monochromatic laser sources are used. The processing 
of the experimental data can be considerably improved if the lock-in 
amplifier and the gauge have digital readouts. The correction factor 
C, given approximately in Fig. 5, should be recalculated and supplied 
in digital form. A better approach would consist of calculating C from 
the apparent measured profile and iterating. These iterations, pre­
sumably, can be effected with modest computing time. N oncircularly 
symmetric profiles can be corrected, in principle, but the correction 
problem has not been solved yet. Finally, we attempt to deconvolve 
the wave-optics effects (discussed in Appendix A) that are most 
conspicuous in regions where the index varies rapidly. The possibility 
of performing this deconvolution is intriguing, but the analytical 
problem remains, to our knowledge, unresolved. The case of fibers 
with an index barrier between the core and the cladding requires 
further analysis. 

Among all the index-profile measurement techniques that have been 
proposed so far, the transmission technique that we have described 
here appears to be the easiest to implement and the most reliable. 
Improvement in data processing should make the results quite accurate 
in most cases. 

APPENDIX A 

Wave Optics Effects 

The result (given in the main text) that the intensity distribution 
in the cross section of long multimode fibers is proportional to 
k2(X, y) - k;, where k(x, y) == (w/c)n(x, y) denotes the core wave 
number and ks == (w/ c)nc the cladding wave number, is based on ray 
optics (WKB approximation) and on the assumption that rays whose 
axial wave number (kz) is less than ks are radiating away and do not 
contribute to the total intensity. Because the number of trapped modes 
carried by real fibers is finite, the intensity distribution does not follow 
the fine details of the index profile. This is because the optical field 
cannot vary in transverse directions faster than (sin kx maxX) where 
kxmax = (w/c)no~ denotes the maximum value of the transverse 
wave number, no the index on axis, and ~ ~ ~n/n. According to the 
above formula, the smallest distance between nodes and peaks of the 
irradiance in the fiber core is 

(10) 

Equation (10) provides an estimate of the resolution afforded by the 
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method. For example, if Ao = 1 ,um, no = 1.45, and Ll = 0.01, the reso­
lution is, according to (10), LlX ~ 1.25 ,um. 

To get a more precise estimate of the error at discontinuities of the 
index profile, let us consider, as a model, an oversized dielectric slab. 
When the origin of the x axis is taken at one of the slab boundaries, 
the normalized field of H.-modes of order m is (see, for example, Ref. 
6 with a slight change of notation) 

J - Ji sin (Y mX - arcsin Y m), 

1 ;1 exp (-,11 - Y;,X) , 

Em (x) 

where 

Y m = (m + 1) (7r/2) V-I 

and X, V are normalized distances and frequencies 

X=k~x 

V = k~d. 

For trapped modes, we require 

Ym < 1. 

x ~ 0, 

x ~ 0, 

(11) 

(12) 

(13a) 

(13b) 

(14) 

When the fiber is excited by a Lambertian source, the intensity I (x) 
in the slab cross section is obtained by adding the intensities, E!t(x), 
of all the trapped modes. Because the slab is highly oversized, we can 
replace the summation over m by an integral. We obtain 

1
2 1011"/2 sin2 (sin ex - e) cos ede x ~ 0 

lex) = 
(11"/2 

2 J 0 sin2 e exp (-2 cos ex) cos ede, x ~ o. 
(15) 

For X ~ - 00 and X ~ + 00, we have as expected, I = 1 and I = O. 
At the discontinuity (X = 0), an elementary integration of (15) gives 
I = j. The intensity profile defined in (15) is shown in Fig. 13. We 
notice an overshoot of the irradiance equal to 14 percent. This over­
shoot is somewhat similar to the Gibbs effect encountered with Fourier 
series. If we keep the slab thickness a constant but increase the optical 
frequency, the region where the irradiance departs significantly from 
the ray-optics value becomes narrower and narrower. The amplitude 
of the overshoot, however, remains the same. The curve in Fig. 13 
provides understanding of the limitation in resolution of the method 
discussed in the main text. This limitation is caused by wave-optics 
effects that have been ignored in eq. (1). 
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Fig. 13-Wave-optics effect in highly multimoded slab (a). The curve in (b) 
exhibits the departure from ray optics. Note the overshoot of 14 percent, which is 
independent of wavelength. 

APPENDIX B 

Profile Distortion 

In this Appendix we derive formulas relating to the change of shape 
of the index profile of a fiber as the wavelength varies (independently 
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of a possible change of scale). These formulas relate the distortions 
measured directly on the fiber to measurements on bulk samples. 

Let us assume that we have normalized the profiles to unity at r = o. 
The ordinate of the curve is 1 - TJ, where TJ = N /26., N (r) == 1 
- n2(r)/n~ and 26. = 1 - n~/n~. From the normalized profiles at two 
closely spaced wavelengths, we evaluate the profile distortion d(r) 

d (r) == AoaTJ/ aAo. (16a) 

This may be written as 

d = C-l[Ao(ap/aAo) + p(x/C)(ac/aX), (16b) 

where P (r, Ao) is the normalized (but uncorrected) Siber transmission, 
C(r, X) the leaky-ray correction factor, and X is the parameter 
defined in (9). 

C and the differential correction term (x/C)(aC / aX) can be 
obtained from Fig. 5. 

Let us now consider the curve S (n) where S == - Aonan/ aAo that 
can be obtained from measurements on bulk samples. From the value 
of 6. and the cladding index nC, we calculate the index on axis no. It 
is not difficult to show [e.g., from eq. (14) of Ref. 11J that the dis­
tortion parameter d defined in (16) is related to the dispersion param­
eter S defined above by 

d(TJ) = [Do/ 6.(n~ + So)J[8(TJ) - TJ8(1)J, (17) 

where we have defined 

(18) 
and 

8 == Sen) - S(no) (19) 

is considered a function of TJ. In particular, 8(1) == Sene) - S(no). It 
is clear, from its definition and from (17), that 

d(O) = d(l) = O. (20) 
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A newly developed technique for directly measuring fiber dispersion 
in the frequency domain as a function of wavelength is described. Spec­
trally filtered white light fr01n a xenon arc lamp is sinusoidally modulated 
in the range 0 to 1 GHz by an electrooptic modulator and injected into 
a fiber. The procedure is to vary the modulation frequency and measure 
the corresponding sideband output power with a photomultiplier and 
spectrum, analyzer. Ratio measurernents between the test fiber and a short 
reference fiber give the baseband f1'equency response. A number of ger­
manium- and boron-doped fibers have been examined. The least dispersive 
borosilicate graded-index fiber has a 1 dB bandwidth of 1 GHz, after 1.07 
km, of propagation at A = 908 nm. The width broadens gradually with 
increasing wavelengths up to A = 1100 nm. 

I. INTRODUCTION 

Optical fiber waveguides are potentially useful for transmitting 
analog signals as well as digital pulses in communication systems. The 
information-carrying capacity of such a waveguide is determined by 
its impulse response in the time domain or equivalently in the fre­
quency domain by the spectral transfer function, which is the Fourier 
transform of the impulse response. Most of the previous studies! of 
fiber dispersion have analyzed the fiber response to short laser pulses. 
In these studies we are limited to wavelengths for which pulsed laser 
sources are available. The frequency domain method described here 
allows accurate measurements of fiber response to be made over a 
wide range of wavelengths using an incoherent broadband source, such 
as a xenon arc lamp. 

The simplicity of the method rests on the observation2 that for an 
incoherent optical carrier the fiber response behaves quasi-linearly in 
power. The implication for the optical power p (t) and its transform 
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pew) is 

(1) 
or 

Pout(t) = g(t)*Pin(t), (2) 

where G(w) is the power transfer function of the baseband frequency 
w, 9 (t) is the power impulse response and * denotes convolution. This 
quasi-linear behavior results when fluctuations in the optical carrier 
frequency are sufficiently large and rapid. Thus, the phase of an 
incoherent optical source of width AA = 1 nm fluctuates on average 
through one cycle in 3 X 10-12 s for A = 1000 nm, but the characteristic 
time required to observe intensity modulation of the carrier at fre­
quencies less than 10 GHz is greater than 10-10 seconds. Hence, the 
power-linearity approximation holds for most practical measurement 
methods utilizing sources whose spectral bandwidth (AA) is greater 
than 1 nm. Although (1) and (2) have been derived rigorously by 
Personick,2 we present a simple physical derivation later in this paper. 

Modern multimode fibers are fabricated with smoothly graded 
refractive index profiles that have a maximum on the core axis and 
decrease gradually with an approximately power law variation until 
they merge into the cladding region. The optimal profile, at a particular 
wavelength, is the one for which the group velocity variation from 
ray to ray most nearly compensates for the corresponding path length 
variation.3 Dispersive refractive index differences between material 
constituents (B20 3 and Si02 for borosilicate fibers; Ge02 and Si02 
for germanium-doped fibers) causes modal group velocities to depend 
not only on the index profile but also on the wavelength (profile 
dispersion). Consequently, the exponential parameter, ex, which 
characterizes the optimal profile, may deviate from ex = 2 and is 
wavelength dependent.4-6 Recent experimental investigations have 
shown that graded-index fibers can reduce intermodal dispersion by 
almost two orders of magnitude from what it would be in a step 
ungraded-index multimode fiber. 7 

This paper describes a newly developed technique for directly 
measuring fiber baseband frequency response in spectrally filtered 
incoherent light. The spectral test set is particularly suitable for 
wavelength-dependent studies over a wide range of wavelengths 
without resorting to a multitude of monochromatic mode-locked laser 
sources. Instead of injecting pulses to measure a fiber's impulse response, 
we inject an incoherent cw optical carrier that is intensity-modulated 
by a frequency-tunable sinusoidal signal. Then, we compare the intensi­
ties of the sine wave envelopes at the input and output ends of the 
fiber. Sideband power is detected by a photomultiplier and displayed 
on a spectrum analyzer. The receiver dynamic range is sufficient to 
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measure transmission through kilometer-long fibers with an accuracy 
of ±10 percent over an electrical bandwidth of dc to 1 GHz and is 
equivalent to measuring 20" ~ 0.1 ns full rms impulse response widths. 
Measurement precision is better in the frequency domain than the 
time domain, because the deconvolution process, for removing signal 
distortion caused by the limited detector bandwidth, is simply an 
arithmetic division of output by input frequency response rather than a 
cumbersome deconvolution integral of pulse shapes. One shortcoming 
of the present technique is that we do not measure the input to output 
phase change of the sinusoidal modulation and therefore cannot 
construct the impulse response directly from the power frequency 
response data. However, approximate mathematical methods are 
available for determining the phase from the magnitude of a transfer 
function. Measurement of the phase change may also be feasible. 
Nevertheless, unless the phase distortion is extreme, the information 
capacity of the fiber will be indicated by the magnitude of the transfer 
function. 

Previous dispersion measurements in the frequency domain were 
made by comparing the best spectra of longitudinal modes from a 
free-running laser before and after transmission through a fiber 8, by 
externally modulating a laser9 or by directly modulating a light­
emitting diode (LED).lO One disadvantage of the technique described in 
Ref. 8 is that the fiber frequency response can only be measured at 
discrete frequencies corresponding to integral multiples of the longi­
tudinal mode spacing of the laser (lOO-MHz increments for a 1.5-m 
cavity length). The other techniques ·were used to make frequency 
response measurements only at one wavelength from dc to several 
hundred MHz and had less dynamic range than our system. Personick 
et a1. used wide bandwidth LED light (L\A ~ 40 nm at A = 900 nm) to 
measure primarily material dispersion effects in a l-km fiber.lO Our 
technique uses narrow spectral width incoherent light to measure pri­
marily intermodal dispersion effects in kilometer-long fibers. 

1.1 Technique and apparatus 

The measuring apparatus is illustrated in Fig. 1. The xenon arc 
lamp output passes through one of a set of narrowband interference 
filters and is focused into a LiTa03 electrooptic intensity modulator. 
The modulated beam is then refocused into either the fiber under test 
or a short length (2 m) of reference fiber. The fiber output is then 
detected by a sensitive broadband photomultiplier and the baseband 
modulation components are displayed by a spectrum analyzer. The 
component at modulating frequency w from the reference fiber is taken 
as Pin(W) and the component from the test fiber as Pout(w). 

The LiTa03 modulator was designed ll for use with a 1.06-,um laser 
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Fig. 1-Experimental arrangement for making spectral dispersion measurements 
in the frequency domain. 

and has too small an aperture-to-Iength ratio to pass the focused 
incoherent beam completely. Nevertheless, it has proved adequate 
for these early measurements, while a more-suitable modulator was 
being built. The LiTa03 rod is 0.25 mm by 0.25 mm by 10 mm and its 
low-capacity coaxial housing allows for modulation frequencies above 
1 GHz. Typically, 3 W of drive power from the rf sine wave generator 
is needed to provide 40-percent modulation. An Ehringhaus compen­
sator biases the modulator in its linear region at the operating wave­
length. The intensity transmitted by the LiTa03 crystal and compen­
sator placed between crossed polarizers is proportional to sin2 r /2, 
where r is the phase retardation of crystal and compensator, consisting 
of a dc bias plus time-dependent term. Dispersion of the optical bias 
over the spectral width ilA of the input filter is an important considera­
tion in system performance. For LiTa03 at A = 800 nm, 

drde/dA = 2~L (dB/dA - BIA) ~ -1.9 X 10-27rL, (3) 

where r de is the phase retardation bias, A is the wavelength in nm, 
L is the modulator length in mm, and B is the difference between 
extraordinary and ordinary refractive indices. For L = 10 mm and 
ilA = 1.5 nm, the bias point is smeared by as much as 0.297r radians 
(neglecting the smaller effect of opposite sign due to the compensator). 
Thus, wavelengths at the spectral band edges will have somewhat 
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different modulation indices and phases compared with the band center. 
It was found that bias ranges Ar de corresponding to AX > 10 nm could 
give erroneous results, for example, P(w)/P(O) > 1. 

Observed fiber output power levels are on the order of 1 nanowatt. 
The Varian VPW-154/2 static crossed-field photomultiplier tube* 
is particularly suitable for our broadband low light level application. 
Due to the crossed electric and magnetic fields formed by applied 
voltages and integral magnets, detected photoelectrons travel a 
cycloidal path and are multiplied by six dynodes before being collected 
at the anode. These short tightly focused electron paths result in the 
high 0 to 2.5-GHz detection bandwidth necessary for our measure­
ments. The tube has an InGaAsP photocathode sensitive to far 
infrared wavelengths up to 1100 nm and its six dynode stages provide 
3 X 105 gain. The resultant anode sensitivities yield high signal-to­
noise ratios with 10-KHz spectrum-analyzer bandwidths. Additional 
problems of rf interference from the high-power rf oscillator picked 
up on the spectrum analyzer were eliminated by carefully shielding 
the modulator circuitry and the photomultiplier housing. 

1.2 Frequency domain measurements 

Input-to-output power-transfer functions nave been measured from 
dc to 1 GHz in a variety of germanium and boron-doped kilometer­
length fibers. Wavelength-dependent measurements were made by 
filtering the white arc lamp light through a series of interference 
filters whose center wavelengths ranged from X = 650 nm to X = 1100 
nm. To reduce modulator errors and material dispersion effects,12 the 
filter bandwidths were less than: 1.5 nm for 650 nm < X < 908 nm, 
2.4 nm for 920 nm < X < 980 nm, and 10 nm for 1040 nm < X 
< 1100 nm. 

The least-dispersive test fiber was a graded borosilicate fiber with 
a rv 1.8, which had a I-dB bandwidth of 1 GHz after 1.07 km of 
propagation at X = 908 nm. Figure 2a illustrates its sideband output 
power normalized to dc, P(f)/P(O), plotted versus modulating 
frequency for six wavelengths in the range 650 nm < X < 1100 nm. 
The frequency bandwidth increases with increasing wavelength. This 
trend is clearer in Fig. 3a, which shows relative sideband power 
plotted versus 14 wavelengths for a fixed modulation frequency, 
f = 990 MHz. The 25-percent increase in bandwidth in the range 
650 nm < X < 1100 nm is partially due to material dispersion effects, 
which decrease as the wavelength increases. Material dispersion should 
cause a I-dB amplitude roll-off after 1 GHz for l.S-nm source spectral 

* Varian/LSE Division, Palo Alto, California. 
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Fig. 2-Power transfer function amplitude vs. modulation frequency with optical 
wavelength as parameter. (a) Boron-doped graded-core fiber. tb) Germanium-doped 
graded-core fiber. 

bandwidths centered about wavelengths between 650 nm < A < 750 
nm. If the sideband amplitudes were increased by 1 dB between 650 
nm < A < 750 nm to compensate for material dispersion, then the 
resultant data points in Fig. 3a would be independent of wavelength 
for 650 nm < A < 1100 nm. 
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Figure 2b illustrates power transfer functions for a graded ger­
manium-doped fiber with ex ~ 1.9, which does not have a near-optimal 
profile for minimum modal dispersion. As a result, it has a relatively 
narrow I-dB bandwidth of 150 MHz after 0.9 km of propagation at 
a wavelength of 908 nm. Material dispersion effects should be negligibly 
small here because amplitude roll-offs are much faster than in Figs. 2a 
and 3a. Hence, profile dispersion is responsible for the wavelength 
dependence of the bandwidth broadening in this fiber. The wavelength­
dependent broadening is much greater for this germanium-doped fiber 
than for the previously described boron-doped fiber. Figure 3b shows 
relative sideband power plotted versus 14 wavelengths for a fixed 
modulation frequency, f = 100 kHz. The bandwidth more than doubles 
for 650 nm < A < 1100 nm. Comparison of curves a and b in Fig. 3 
suggests that wavelength variation of profile dispersion is significantly 
greater in germanium-doped fibers than in boron-doped fibers. This 
observation is qualitatively consistent with recent refractive index 
profile measurements by interference microscopy on thin polished fiber 
samples.13 

1.3 Equivalence of impulse and frequency domain measurements 

We can prove (1) and (2) neglecting material dispersion for the 
simple case of a multimode fiber transmitting an incoherent optical 
beam without mode mixing as follows. Although a general proof is 
given by Personick,2 the following proof is more relevant to our 

a) 8 2°3 - Si02, f = 990 MHz, L = 1.07 km 

b) Ge02 - Si02, f = 400 MHz, L = 0.9 km 
1.0 
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Fig. 3-Power transfer function amplitude vs. optical wavelength with modulation 
frequency as parameter. (a) Boron-doped graded-core fiber. (b) Germanium-doped 
graded-core fiber. 
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measurement technique. Assume an input amplitude pulse defined by 

ein(t) = v (t)e iwot, 

and corresponding power pulse defined by 

(4) 

(5) 

where wo(t) is the fluctuating frequency of the incoherent optical 
carrier and vet) is the envelope of a short pulse with peak at t = O. If 
the input pulse excites N modes of the fiber such that the fractional 
power in the v-th mode is lev /2, then the output is 

N 
eout(t) = L cvv(t - Tv)eiwo(t-TV) (6) 

v=1 

N N 
Pout(t) = L L cvc:v(t - Tv)V*(t - Tp.)eiwo(Tp-Tp), (7) 

v=1 p.=1 

where Tv is the delay for v-th mode and 

(8) 

Now Pout(t) is measured by a detector with response time Tl that is 
usually comparable with the output pulse width, say T 2 > 10-10 s. The 
incoherent optical carrier at t.. ~ 103 nm with At.. r-..J 1 nm has a 
frequency bandwidth Awo = 27rCAt../t..2 ~ 27r X 3 X 1011 Hz that can 
be regarded as arising from a random frequency modulation of the 
carrier with modulation frequency Wm and deviation frequency Wd 
both roughly equal to Awo. But, dwo/ dt = WmWd ~ (Awo)2 for an FM 
signal. Then, the phase factor Wo(Tp. - Tv) will fluctuate through a 
phase range A¢ of at least 

A¢ = (dwo/dt)(Tp. - Tv)Tl~ (Awo)2(Tp. - Tv)T1 

~ (Awo)2TlTdN radians (9) 

during the characteristic measuring time Tl for an N-mode fiber. If 
(Tp. - Tv) is the minimum delay difference between adjacent, equi­
spaced modes, then T need not be smaller than N(Tp. - Tv), a lower 
bound on the output pulse width as assumed in (9). Thus, we find 
A¢ > 1007r for N = 100 and T 1 = T 2 > 10-10 s, so that all terms in 
(7) for v ¢ Jl vanish on averaging over T. In the present experiment, 
T = 10-4 s as determined by the spectrum analyzer band\vidth so that 
A¢ » 1007r. Spatial incoherence of the input beam further reduces2 the 
crossterms in (7). 
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The observed power is then 

N 

Pout(t) = L ICvl2lv(t - Tv) 12, (10) 
v=1 

and if we let Iv(t) 12 be the unit impulse uo(t), we have the impulse 
response 

N 

get) = L Icvl2uo(t - Tv). (11) 
v=1 

The Fourier transform of the impulse response yields 

N 
= L 1 Cv 12e-iwTV, (12) 

v=1 

where w is the frequency of the envelope of the modulated carrier and 
G(w) is the complex power transfer function. 

N ext, consider a sinusoidally intensity-modulated incoherent carrier 
incident on the fiber. This is the experimental method used here. We 
wish to show it to be equivalent to the impulse response method. For 
sufficiently small modulation index In, the electrooptically modulated 
input to the fiber is 

ein (t) = (1 + In cos wt)!eiwot 

pin (t) = (1 + In cos wt). 

(13) 

(14) 

Since we employ a spectrum analyzer in the measurements, we are 
concerned only with the term at the fundamental frequency w in (14). 
As before, the input excites N modes of the fiber and the output is 

N 

eout(t) = L cveiwo (t-T,>[l + In cos wet - Tv)]! (15) 
v=1 

N N 
Pout(t) = L L cvc:eiWO(TJ.I-TV) 

p=1 v=1 

X [1 + 1n cos wet - Tv)]![l + 1n cos wet - Tp)]!. (16) 

But we can use our earlier argument for the random carrier to eliminate 
all terms for v ~ /-L in (16). If we retain only the term at the funda­
mental frequency, we obtain the observed power 

Pout(t) = m .~. 1 c.I' cos wet - r.) = Re 1 m J. 1 c. 1 'e-""'e'" , ) . (17) 
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Then, with Tv = 0 for Pin(t), 

Pout(w) = G(w) = f IcvI2e-iwT. 
Pin(W) v=l 

(18) 

as in (12), which completes the proof of equivalence for no mode 
mixing. With mode mixing, T. becomes a continuum,2 and we must 
simply replace the sum in (12) and (18) by an integral over the range 
of T, i.e., 

G(w) (19) 

where 
T = TO + T', (20) 

and TO is the (large) average delay, T' is the deviation from TO, and 
- Ta < T' < Tb is the range of allowed modal delay. In a similar way 
for (18), we can let 

Tv = TO + T:. (21) 

At present our measurements yield only 1 G(w) I. The phase angle 
(J(w) is required to obtain the impulse response get) from 

1 fOO get) = - G(w)e~·wtdw. 
271" -00 

(22) 

Direct measurement of (J(w) is difficult because a l-km long fiber con­
tains many modulation wavelengths. However, if we assume that the 
fiber behaves like a minimum phase network, i.e., G(jw) has no zeros 
in the right half of the complex plane, then we can calculate (J(w) from 
1 G(w) I. The average delay factor e- iWTO is not a minimum phase func­
tionY However, G(w)e iWTO in (18) and (19) appears to exhibit approxi­
mate minimum phase behavior in some, but not all cases. In the next 
section we illustrate the approximate minimum phase behavior as ob­
tained from a comparison of the get) calculated from 1 G(w) 1 with the 
measured g (t) for a particular fiber. A later publication will treat the 
minimum phase approximation in more detail. 

On the other hand, the measured get) is real so that G(w) may be 
obtained directly from pulse measurements using (12) without any 
assumptions as we also show below. 

1.4 Correlation with time domain measurements 

The impulse response gU) was measured by injecting narrow im­
pulses (20- = 0.4 ns) from a GaAs laser and observing the broadened 
output. Time domain measurements were fast-Fourier-transformed to 
produce the solid curves shown in Fig. 4a and b for the boron and 
germanium-doped fibers described in Figs. 2 and 3. Time domain data 
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Fig. 4-Frequency domain measurements (0 data points) are compared with fast­
Fourier transformed impulse response measurements [get) vs. tJ at A. = 908 nm, 
LlA. ~ 1.4 nm. The dashed curves are gaussian fits to the solid curves (computed 
transforms). (a) Boron-doped graded-core fiber, 20" = 0.19 ns/1.07 km. (b) Ger­
manium-doped graded-core fiber, 20" = 1.8 ns/0.9 km. 

for the low dispersion borosilicate fiber (inset Fig. 4) was deduced from 
shuttle pulse measurements after nine trips through the fiber. Fourier­
transformed time domain results are compared in Fig. 4 with directly 
measured frequency domain data points measured in incoherent light 
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at the same wavelength, }.. = 908 nm. The qualitative agreement is 
quite good and the quantitative agreement is generally within 20 
percent. Dashed curves in Fig. 4a and b show gaussian approximations 
to the computed solid curves given by 

(23) 

where 20" is the full rms pulse width of the measured impulse responses, 
g(t), illustrated in the insets of Fig. 4a and b (20" ~ 0.19 ns/1.07 km 
for the boron-doped fiber a; 20" ~ 1.8 ns/0.9 km for the germanium­
doped fiber b. Thus, the gaussian fit to I G(w) I can give an estimate 
of the pulse width 20" without knowledge of O(w). 

In both cases a and b, the gaussian approximations to I G I are 
accurate down to the 0.7S-amplitude point in the frequency domain. 
The approximation does not fit the germanium fiber b data, when 
I G(w) I < 0.7S, because its impulse response is asymmetric with a long 
leading edge. 

The usefulness of the minimum phase approximation, for inverting 
frequency domain amplitude spectra back into the time domain, was 
tested on data in Figs. 2b and 4b for a germanium-doped fiber. A 
Hilbert transform was used to compute the minimum phase function, 
O(f), from the In I G(w) \ = -'I7(w),14 

O(f) = - 1 fCXl ~ ~o) dfo· (24) 
7r -00 fo :F 

Hilbert transforms are particularly easy to evaluate when the given 
function, '17 (f), is a piecewise-linear function consisting of a series of M 
straight-line segments. In that case its second derivative consists of a 
sum of impulses and the integral formulation of (24) can be replaced 
by a summation.14 

O(fm) = - ~ £ B(K)[(fm - fK) In Ifm - fK\ 
7r K=l 

where 
+ (fm + fK) In Ifm + fK I ], (2S) 

B(K) = A(K + 1) - A(K) 

A (K) = '17 (fK+l) - '17 (fK) . 
fK+l - fK 

Figure Sa uses the data in Fig. 4b to compare: curve 1, the measured 
impulse response shown in Fig. 4b, with detector distortion decon­
volved (20" = 1.81 ns), and curve 2, the time pulse obtained by taking 
the Fourier transform of 1 and using its amplitude spectrum and 
assumed minimum phase to compute the impulse response (20" = 1.77 
ns). Curve 3 shows the time pulse calculated from frequency measure­
ments in Fig. 4b and the corresponding piecewise linear minimum 
phase function (20" = 1.89 ns). The rms pulsewidths and qualitative 
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Fig. 5-Time domain impulse responses computed from amplitude spectra in the 
frequency domain. (a) A measured impulse response at A = 908 nm (1) is compared 
with (2) its minimum phase response, and (3) the response using frequency domain 
measurements in Fig. 4b and minimum phase function assumption. (b) Wavelength­
dependent time pulses computed from frequency domain measurements in Fig. 2b. 
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structure of the three pulses in Fig. 5a agree very well, which implies 
that the minimum phase function can be used to construct a good 
facsimile of the actual impulse response. 

Minimum phase functions were also calculated for data in Fig. 2b 
and used to construct the wavelength-dependent impulse response 
shapes in Fig. 5b. The results show that the impulse response becomes 
wider and more asymmetric when the signal wavelength is reduced 
from "A = 1100 nm (20" = 1.2 ns) to "A = 650 nm (20" = 2.5 ns). 

II. CONCLUSIONS 

The baseband frequency response of kilometer-long graded index 
fibers have been directly measured over a 0 to 1 GHz frequency range 
for wavelengths extending from the visible ("A = 650 nm) into the 
infrared ("A = 1100 nm). The accuracy of individual sideband measure­
ments is approximately 10 percent, which is equivalent to a time 
resolution of 20" = 0.15 ns (assuming a gaussian frequency roll-off 
function e[-(wu)2/2j at f = 1 GHz). By contrast, full rms pulse width 
measurements in the time domain would require a precision of 
-V (0.15)2 + (20"i)2 - 20"i ~ 0.02 ns to achieve the same resolution 
from measurements deconvolved from detector-limited input pulse 
widths with 20" i ~ 0.4 ns. 

The major advantage of the spectral technique described here is 
its convenience for making wavelength-dependent measurements with 
a tunable source of incoherent light. 

The least-dispersive-measured fiber, with NA ~ 0.14 and graded 
borosilicate core, had an 80-percent transmission band"width, F (1 dB) 
~ 1 GHz/1.07 km ("A = 908 nm, Ll"A ~ 1.4 nm), which is approxi­
mately equivalent to a full rms pulse width 20" = 0.2 ns/km. The fiber 
bandwidth broadened by about 25 percent over the wavelength range 
650 nm < "A < 1100 nm. However, a significant fraction of that 
increase between 650 nm < "A < 820 nm can be attributed to material 
dispersion effects, which are insignificant for "A > 820 nm. For com­
parison, a germanium-doped fiber with NA ~ 0.2 had a bandwidth 
F (1 dB) ~ 0.15 GHz/0.9 km ("A = 908 nm, Ll"A ~ 1.4 nm), which is 
approximately equivalent to a full rms pulse width 20" = 2 ns/km. 
Fiber bandwidth broadened by about 250 percent due to profile 
dispersion over the wavelength range 650 nm < "A < 1100 nm. Less 
than 5 percent of this wavelength dependence can be attributed to 
material dispersion caused by the 1.5 nm spectral bandwidths of the 
filtered incoherent signal light. The fact that germanium-doped fibers 
exhibit much more profile dispersion than boron-doped fibers is in 
good agreement with interference microscopy measurements on thin 
fiber samples.13 
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The rms pulse width 20" can be estimated from the transfer function 
amplitude I G(w) I by assuming a gaussian distribution (23). In some 
cases, the shape of the pulse can be obtained by assuming a minimum 
phase transfer function. This latter method was used to compute 
wavelength-dependent time pulses from frequency response measure­
ments in the germanium-doped fiber described. Profile dispersion made 
impulse response shapes wider and more asymmetric when the signal 
wavelength was reduced from A = 1100 nm (20" = 1.2 ns) to 
A = 650 nm (20" = 2.5 ns). 
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Geometrical Uniformity of Plastic Coatings 
on Optical Fibers 

By H. M. PRESBY 

(Manuscript received May 14, 1976) 

The concentricity and uniformity of nearly concentric transparent 
plastic coatings extruded onto optical fibers are determined by a sensitive, 
nondestructive optical technique. The method is based on the location of 
unique fringes in the backscattered light arising front a beam that is inci­
dent at right angles to the fiber's axis. Results fr07n both uniform and dis­
torted coatings are shown, and instrumentation suitable for on-line coating 
diagnosis and correction is presented. 

I. INTRODUCTION 

The use of plastic coatings in optical-fiber technology is multi­
faceted. The refractive index of many polymer materials is less than 
that of fused silica, enabling them to be used directly as the cladding 
for fused silica cores. 1- 3 The resulting waveguides, suitable for many 
communication applications,4,5 are relatively easy to fabricate, possess 
low loss and large numerical aperture, and are LED-compatible. 

Plastic coatings are also applied as an overcoat to glass-clad optical 
fibers. They reduce microbending 10ss,6,7 maintain the pristine strength 
of the fibers,8 and provide for abrasion and mechanical protection of 
the fibers during cable-manufacturing processes. In yet other appli­
cations, coatings have been proposed as a method of decreasing cross­
talk between optical fibers9 and as a way of improving the long-term 
stability of fibers in uncontrolled environments. 

To be most effective in all of the above applications, the coating 
must be applied uniformly and concentrically around the fiber. This 
is a necessity for routine handling and splicing as well as for optimum 
strength and transmission characteristics. 

The coatings are applied by various methods, and techniques have 
been proposed and implemented with varying degrees of success to 
aid in their concentric application. In general, micropositioning and 
microscopic observations are necessary to align the fiber at the start 
of each application 5 and only by preparing and microscopically 

1525 



examining sections of the fiber after the run can the quality of the 
coating be assessed. In addition to being time consuming and destruc­
tive, microscopic examination may not detect certain problems, such 
as geometrical nonuniformities that can seriously impair the trans­
mission characteristics of the fiber. More importantly, real-time 
information to enable the fabricator to make corrections, evaluate 
various applicators or stop the process completely, is not available 
as the coating is being applied. 

We present here a sensitive new method for analyzing transparent 
coatings on optical fibers. The technique is optical in nature being 
based on the location of unique fringes in the backscattered lightlO 
arising from a beam that is incident at right angles to the fiber axis. 
As such, it is inherently nondestructive and noncontacting. Most 
importantly, it is capable of providing in-line information on coating 
concentricity and uniformity as the coating is being applied. 

II. MEASUREMENT THEORY 

Consider the two rays of light, I and II in Fig. 1, incident upon a 
coated optical fiber. Let the index of refraction and the radius of the 
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Fig. I-Paths of rays of minimum deviation in a coated optical fiber. The situation 
is symmetric for rays incident upon the lower half of the fiber. 
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Fig. 2-Location of minimally deviated ray I as a function of the index of refrac­
tion of the coating n2. 

coating be n2 and a, respectively. For the purposes of the current 
analysis, the internal details of the fiber (indicated by the broken 
circle), which can be either an unclad, step-index, or graded-index 
variety, are neglected, and we let its index of refraction be n1 and its 
radius be b. We also neglect multiple internal reflections. 

Ray I is refracted, traverses the coating, and is then reflected at the 
coating-air interface and exits making an angle of minimum deviation 
CPr with its incident direction given bylO 

. _ [ 2 ( n~)!] . _ [2 ( n2)!] CPr = 4 sm 1 n2\'3 1 - 4 - 2 sm 1 \'3 1 - 4 . (1) 
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Fig. 3-Location of the minimally deviated ray II, as a function of n 2b/a for 
ndn2 = 1.02, 1.04, and 1.06. 

A plot of <PI versus 112 is given in Fig. 2. A maximum of intensity 
dependent only upon the refractive index of the coating, n2, exists at 
this angle. Beyond <PI, the backscattered pattern cuts off into a low 
level continuum. 

Ray II, after being refracted by the coating, traverses the fiber, 
emerges into the coating, and is reflected by the coating-air interface. 
The ray then again enters the fiber and emerges into the coating and 
from there leaves the fiber, making an angle of minimum deviation <PH 
with its incident direction. <PH is a function of several angles and of n1 

and n2. 11 

Plots of <Pn determined by computer as a function of n 2b / a with 
ndn2 as a parameter are shown in Fig. 3 for ndn2 = 1.02, 1.04, and 
1.06. For these calculations, n1 was held fixed at the fused-silica value 
of 1.457. 
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Figure 4 presents CPu as a function of coating thickness (a - b) for 
nl = 1.457 and n2 = 1.400. It is seen that a l-lLm variation in thickness 
corresponds to an approximately O.l-degree shift in CPrr. 

It is important to note that ray I does not see the fiber at all. For a 
given n2, however, a critical fiber radius be (or alternatively, coating 
thickness) will exist beyond which ray I will no longer exist. This 
condition is given byll 

(2) 

The disappearance of ray I is thus a very sensitive indication of a 
specific coating thickness. For example, if b = 50 ILm, a typical value, 
ray I will not be observed if the coating (n2 = 1.4) is less than 20-ILm 
thick. In general, the status of ray I is only an additional indicator, 
and coating-thickness measurements are based on the location of ray 
II. It is also important to note that distortions of the coating or fiber 
from the ideal circularity assumed here can have a significant effect 
on the location of CPr and CPU.12 

III. MEASUREMENT TECHNIQUE AND RESULTS 

The experimental arrangement to observe the backscattered pattern 
is shown in Fig. 5.11 Light from a cw H e-N e laser strikes plane 
mirror Ml which reflects it to oscillating mirror 11;[2. This serves to 
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COATING THICKNESS a-b IN MICROMETERS 

Fig. 4-Value of <Pn as a function of coating thickness a - b for a concentric 
and geometrically uniform fiber. 
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CAMERA 

Fig. 5-Experimental arrangement to observe the backscattered patterns. 

transform the approximately 1-mm circular beam into a line 1-mm 
wide, with length determined by the amplitude of oscillation, thus 
allowing for observations on an extended length of coated fiber, upon 
which the light impinges after passing through a slit in the observation 
screen. The fiber is held in a rotatable mount and the backscattered 
light falling on the screen is photographed with a 4 X 5 framing 
camera. All of the results to be presented were obtained in this manner 
with stationary fibers. 

A series of patterns, observed on the screen arising from a severely 
nonconcentric coated fiber, is shown in Fig. 6. The patterns are ob­
tained as the fiber is rotated in 30-degree increments. The approxi­
mately 150-JLm-diameter glass fiber, also displayed in Fig. 6, is coated 
with a silicone resin which varies in thickness from a maximum of 
approximately 85 JLm to a minimum of 8 JLm. In this and all subsequent 
results, there is a one-to-one correspondence between a region in the 
backscattered pattern and a region in the approximately 65-mm 
illuminated length of fiber. The main fringes arising from rays I and 
II are labeled in the 0- to 150-degree orientations. The O-degree origin 
of the rotational increments in this case was arbitrarily chosen to 
coincide with a maximum visibility of rays I and II. The light distri­
bution exhibits large variations as the fiber is rotated due to the 
nonconcentricity of the coating. For example, in the 30-degree orien­
tation, only one of the fringes corresponding to ray I appears; at 120 
degrees, only the other one appears; and at 60 degrees both of them 
are absent. In all orientations, the fringes corresponding to rays II 
vary in location and in some positions in visibility. If observations of 
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the backscattered pattern were made for two mutually perpendicular 
orientations while such a fiber ,vas being pulled, it would be readily 
ascertained by the visual appearance of the light distribution alone 
that the coating was nonconcentric and corrective measures could be 
taken. 

An optical fiber with a somewhat improved coating concentricity 
is shown in Fig. 7 along with the resulting backscattered patterns 
taken at 30-degree increments. In this case, the silicone-resin coating 

CROSS SECTION OF FIBER 

SCALE: j---j 40 11m 

Fig. 6-Silicone-resin-coated fused-silica fiber with large non concentricity and 
associated backscattered patterns. 
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Fig. 7-Silicone-resin-coated fused silica fiber with coating thickness varying 
from 24 J,tm to 52 J,tm and associated backscattered patterns. 

on the approximately 145-,um-diameter fiber varies in thickness from 
24 ,urn to 52 ,urn. The fringes arising from rays I and II are labeled 
in the 0- to 150-degree orientations. The light distributions exhibit 
considerably fewer variations compared with the previous fiber. Visual 
observations again are sufficient to detect nonconcentricity. 

The silicone-resin coating on the optical fiber shown in Fig. 8 has a 
fair degree of concentricity, varying in thickness from approximately 
45 ,urn to 65 ,urn. The backscattered light patterns shown in the same 
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CROSS SECTION OF FIBER 

SCALE: I-----i 60 p.m 

Fig. 8-Silicone-resin-coated fused-silica fiber with coating thickness varying from 
45 ,urn to 65 ,urn and associated backscattered patterns at 90-degree increments. As 
in Figs. 6 and 7, a 6.5-cm length of fiber is illuminated. 
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Fig. 9-0n-line use of coating analyzer to improve concentricity. 

OPTICAL FIBER COATING 1533 



figure were taken at 90-degree increments and indicate their sensitivity 
and ability to detect coating nonconcentricity from observations made 
in two perpendicular directions. 

An example of the technique in use is afforded by the results in 
Fig. 9. The approximately 105-llrn-diameter glass fiber shown in Fig. 
9a is a sample from the start of a silicone-resin-coating run. The 
coating thickness varies from 23 Ilm to 36 Ilm. This nonconcentricity 
is apparent in the two scattering patterns, Fig. 9b and c, taken at 
90-degree orientations. After adjusting the coating applicator while 
observing the patterns for symmetry, as depicted by Fig. ge and f, 
the coated-fiber sample appears as in Fig. 9d. The coating thickness 
now varies by less than 2 Ilm, being about 28 Ilm to 30 Ilm thick. 

The arrangement by which the real-time observations are made is 
depicted in Fig. 10. The beam from a 5-m W H e-N e laser, after being 
expanded in a manner similar to that of Fig. 5, strikes a beam splitter. 
A portion is transmitted directly to the fiber while the remainder, after 
reflections at the plane mirrors, impinges upon the fiber at right angles 
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Fig. IO-Setup to monitor coating properties in on-line situation. 
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CROSS SECTION OF FIBER 

SCALE: f--l 40 pm 

Fig. ll-Severely distorted plastic coating and associated backscattered-light 
patterns. 

to the direct beam. The backscattered patterns are visually detected 
on two observation screens. Other components of the scattered light 
overlap the backscattered patterns, but due to their very different 
appearances, lower amplitudes and shifted locations present no 
problems. 

The entire setup is mounted on a plate fastened to an x-y posi­
tioner to allow real-time alignment with the fiber when necessary. 
The patterns are invariant to lateral motions of the fiber within the 
incident beams.lO The position of the apparatus between the coating 
applicator and the take-up drum is determined by the coating state 
(before or after drying or curing) to be monitored. It is readily ap­
preciated that the observation screen can be replaced or supplemented 
with detectors to automate the coating analysis. 

In addition to observations of nonconcentricity, the technique is 
very sensitive to geometrical deformation and nonuniformities. Figure 
11 shows a severely deformed silicone-resin-coated fiber along with 
some of its associated barkscattered patterns. Such patterns indicate 
a problem and if corrective measures are not effective, the entire 
process can be stopped before more time and material were wasted. 

The silicone-resin coating on the fiber shown in Fig. 12a appears to 
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(a) 

(e) 

Fig. 12-N onuniformly applied coatings and associated backscattered patterns. 
(a) and (b) Silicone resin. (c) Semitransparent polymer. 

have been applied in some helical fashion. This is readily detected and 
observed in the associated scattering pattern, Fig. 12b. 

The backscattered pattern of Fig. 12c arising from another coated 
fiber indicates a nonuniform coating. Despite the semicrystalline 
structure of the coating material applied to the fiber in this case, which 
renders it somewhat less transparent than silicone, the pattern is clear 
and can be used to analyze the coating. 

IV. CONCLUSION 

A sensitive, noncontacting, and nondestructive optical technique 
has been developed to evaluate the geometrical quality of plastic 
coatings on optical fibers both in laboratory and on-line situations. 
The method should prove valuable not only in analyzing coatings 
but also in developing the coating facilities themselves. 

The technique has been applied to a variety, but not all, of the 
coatings currently under development. A necessary requirement for its 
implementation is that the coating material should be fairly trans­
parent, a condition found satisfied by most of the plastic materials 
examined. 

The theory of determining coating thickness is applicable only 
to the case of concentric coatings and should therefore be used with 
caution in other situations. 
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While visual observations have been emphasized, it would certainly 
be advantageous to automatically detect and electronically process the 
backscattered-light signal. This can be accomplished by known 
techniques utilizing photodiode arrays or vidicon scanning. 

The method presented should also be applicable to extremely thick 
coatings as might be envisioned in fiber pigtail, jumper, or cabling 
operations and should aid in the production of uniform coatings in 
those areas as well. 
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Ordering Techniques for Coding of Two-Tone 
Facsimile Pictures 
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(Manuscript received June 23, 1976) 

This paper describes some techniques for efficient coding of two-tone 
(black and white) facsimile pictures. These techniques use the two-dimen­
sional correlation present in spatially close picture elements to change the 
relative order of transmission of elem.ents in a scan line. This ordering 
increases the average length of the runs of consecutive black or white ele­
ments in the ordered line, making the data more amenable to one-dimen­
sional run-length coding . We describe several variations of the ordering 
scheme, which differ in complexity and coding efficiency and evaluate 
their coding efficiency. For a variety of 8-1/2 inch by ll-inch typed docu­
ments, road maps, and circuit diagrams scanned with 200 lines/inch, 
these techniques reduce the bit rate by 30 to 50 percent over and above the 
one-dimensional run-length coding along a scan line; for single-spaced 
typed material with 100 lines/inch, this reduction is about 25 percent. 
We cOJnpare one of our techniques with a two-dimensional cOJnpression 
technique recently proposed by Preuss. We show that our technique results 
in an entropy about 10 to 18 percent lower than that obtainable through 
Preuss' technique. 

I. INTRODUCTION 

Transmission and/or storage of two-tone (black and white) pictures, 
such as weathermaps, printed texts, etc., have been receiving con­
siderable attention for some time. The practical importance of this 
problem is evidenced by the number of facsimile communication 
systems that are now available.1 As the cost of electronics decreases 
faster than transmission costs, it is becoming advantageous to use 
sophisticated facsimile terminals to reduce transmission costs and time, 
and, indeed, many of the recent facsimile communication systems have 
resorted to various source encoding techniques to utilize the statistical 
redundancy between the spatially close picture elements to reduce 
the bit rate required for transmission.2- 5 

The picture elements along a scan line of a facsimile picture consist 
of runs of white picture elements (pels) separated by runs of black 
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picture elements. Values of the spatially close picture elements are 
significantly correlated. Source coding techniques, which do not reduce 
the "information content" of the pictures (i.e., it is possible to con­
struct the original picture exactly without any degradation from the 
coded picture) use the statistical redundancy either along a single 
scan line or along many scan lines. One-dimensional run-length coding 
techniques 6 code the runs of black or white elements along a scan line. 
Development and performance of many different codes to code the 
runs have been a subject of many papers. 7- 9 Some of these codes are 
capable of performing close to the entropy of the run-length statistics. 
Extensions of this basic run-length coding scheme have been made to 
include line-to-line correlations. 10-12 Two-dimensional correlations 
have also been used in development of block coding13 as well as blob 
coding14 methods. 

In this paper, we describe techniques which use the two-dimensional 
correlation of the picture signals. Specifically, our techniques consist 
of changing the relative order of transmission of the picture elements 
along a scan line in such a ,yay as to increase the average run length 
of the black and/or white elements. A reference signal is constructed 
from the previously transmitted data, and the data in the present 
line is ordered with respect to this reference signal. A memory is used 
to store the incoming bits of new data in a manner such that the 
address for storing a particular input bit is derived from the reference 
signal. At the end of the ordering period, the information stored in 
the memory is read out in a sequential manner and run-length coded. 
The receiver decodes the run-length coded information and stores it 
for a given ordering interval. The original data stream is then re­
constructed by reading out the stored data in the same order in which 
it was stored at the transmitter. Our techniques can be classified into 
three broad categories. In the first category, described in Section 2.1, 
we order a line of picture data using the previously transmitted line 
immediately above it. Thus, the elements of the previous line are 
taken as the reference signal for ordering. In the second category, 
described in Section 2.2, we predict an element of a line from the value 
of a corresponding element from the previously transmitted line, and 
order the prediction error of the present line using elements of the 
previous line as the reference signal. The third category, which is 
described in Section 2.3, uses several already transmitted elements both 
from the present line and the previous line to define a state. We 
develop a predictor as a function of the state, as one which minimizes 
the prediction error conditioned on that state. We then sort the states 
in terms of probability of the prediction error associated with each 
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state, and order the prediction error (using the state-dependent 
predictor) according to the goodness of the state. During ordering, 
prediction errors corresponding to "good" (states with low probability 
of prediction error) and "bad" states are arranged in a sequence in two 
different parts of a memory. Contents of the memory are then read 
out and run-length coded for transmission. Since prediction errors 
corresponding to "good" states are mostly 0, this technique increases 
the length of the 0 runs and consequently achieves bit-rate reduction. 

1.1 Summary of results 

Our simulations indicate that, for pictures with 200 lines/inch, the 
previous-line-ordering technique reduces the entropy by about 20 
percent over the entropy using one-dimensional run-length coding. 
Using previous-line-element-prediction and previous-line-ordering, 
this reduction is about 30 percent. State-dependent prediction and 
ordering reduce the entropy by about 33 to 50 percent. This reduction 
is about 25 percent for a picture with 100 lines/inch. Our results 
indicate that our state-dependent predictor does not vary significantly 
with pictures and, therefore, may not have to be transmitted for most 
pictures. Also, most of the advantage in using ordering based on 
"good-bad" state-groups is obtained by using only two state-groups. 
Among the algorithms that we compare ours with, is an algorithm 
recently proposed by Preuss. 12 We show that our algorithm is about 
10 to 18 percent more efficient in terms of entropy. 

II. CODING ALGORITHMS 

In this section, we describe each of our coding algorithms in detail 
and present results of our simulations on the computer. The computer 
simulations were done on pictures with 256 lines and 256 elements per 
line. The resolution was either 200 lines/inch or 100 lines/inch. The 
pictures we used included a drawing of a schematic, a map, and the 
inside part of text material (both single- and double-spaced typing). 
Sections of pictures used are shown in Fig. 1. Figures 1a and 1b are 
sections of single-spaced text with 200 lines/inch and 100 lines/inch, 
respectively. Figure 1c is double-spaced text with 200 lines/inch and 
Figure 1d is part of a circuit diagram. In addition to these, we used 
a map which is a section of page 19 from Ref. 15. As a measure of 
performance, we used the entropy of run-length statistics. We com­
puted the entropy of black and white runs and the average black and 
white run lengths. Using, these and eq. (1), we computed the entropy 
in bits/pel (assuming that the number of black and white runs are 
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equal to N /2) by: 

where 
H w is the entropy of the white run statistic (bits/run), 
Hb is the entropy of the black run statistic (bits/run), 
rw is the average white run length (pels/run), 
rb is the average black run length (pels/run), 
H is the entropy in bits/pel. 

2.1 Ordering present line with reference to previous line 

(1) 

This technique orders the present line with respect to the previous 
line. Consider a memory containing 256 cells (equal to the number of 
elements per line). We store in this memory elements from the present 
line. Assume for the sake of explanation that the memory is arranged 
along a line and memory location 1 corresponds to the left-hand 
side and location 256 corresponds to the right-hand side of the memory. 
If the first element of the previous line is white (= 1), then we put 
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the content of the first element of the present line on the left-hand 
side of the memory. If, on the other hand, the previous line element 
is black (= 0), we put the first element of the present line on the right­
hand side of the memory. We then put the second element on the 
right-hand or left-hand side of the memory depending on whether 
the second element of the previous line is black or white. This process 
is continued until the entire present line is ordered and the memory 
is filled. The information stored in the memory is coded as runs of 
black and white elements. It is easy to see that the present line can 
be uniquely reconstructed from the knowledge of the run lengths of 
the ordered line since the ordering information is known to the receiver. 

The entropies obtained using the ordered run-length statistics are 
given in Table 1. This table also shows, for comparison purposes, the 
entropy of the picture using the statistics of simple one-dimensional 
(along a scan line) unordered run lengths. The ordered entropy of the 
run lengths varies between 0.12 bit/pel to 0.24 bit/pel for 200 lines/inch 
resolution pictures. The increase in coding efficiency (= decrease in 
entropy) due to ordering over plain run-length coding is of the order 
of 20 to 25 percent. This increase in efficiency is decreased to 16 
percent for the picture with 100 lines/inch. In Fig. 2, we show the 
original picture (same as Fig. 1a) and its ordered version. It is interest­
ing to note that the picture elements on the left side of the ordered 
picture are mostly white and those on the right side of the picture are 

Table 1-Entropy comparisons for different coding algorithms 

Entropy (bits/pel) 
Picture 

Coding Technique 

1 2 3 4 1 at 100 
lines/in. 

----
(1) One-dimensional run-length coding 0.30 0.16 0.21 0.23 0.38 
(2) Present line ordered with reference to 

previous line 0.24 0.12 0.16 0.17 0.32 
(3) Finite length ordering (length = 64) 0.29 0.17 - - -

of Technique (2) (length = 128) 0.28 0.15 - - -
(4) Run-length coding of prediction error 

using previous line predictor 0.25 0.13 0.15 0.16 0.35 
(5) Technique (4) with ordering using 

previous line 0.21 0.11 0.14 0.15 0.31 
(6) Run-length coding of prediction error 

using state-predictor 0.24 0.13 0.15 0.16 0.34 
(7) Technique (6) with state-ordering using 

2 state-groups 0.20 0.10 0.11 0.12 0.30 
4 state-groups* 0.20 0.10 0.11 0.12 0.30 

16 state-groups* 0.19 0.099 0.11 0.119 0.29 
Technique of Preuss using 2 state-groups* 0.22 0.11 0.13 0.14 0.34 

* These entropy numbers do not include extra bits required to specify number of 
elements in each state-group. 
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Fig. 2-(a) Picture of original. (b) Present line ordered with respect to previous line. 

mostly black. If the vertical correlation between the scan lines was 
perfect, there would be no scattered black and white elements; all the 
white elements would be to the left and all the black elements would be 
to the right. The increase of coding efficiency is intuitively obvious by 
comparing both the original and the ordered pictures of Fig. 2. 

2.1.1 Finite length ordering 

To evaluate the effects on coding efficiency of ordering only a part 
of the line, we simulated finite length ordering. This has the advantage 
to some extent of localizing along the horizontal direction the effect of 
transmission errors. However, vertical propagation of transmission 
errors is still possible. To illustrate this scheme, consider two memories 
of 128 cells each (half the number of samples/line). We then order the 
elements of the present line as before for each half of the line. However, 
in the first memory, we put elements corresponding to black elements 
of previous line to the left side and elements corresponding to the 
white elements of the previous line to the right side; whereas, for the 
second memory we reverse the sides for the black and white elements, 
i.e., elements of the present line corresponding to the black elements 
of the previous line are put on the left side. This minimizes the effects 
of "discontinuity" at the boundary of the two memories. The two 
memories are now arranged back to back, and their contents are read 
out sequentially and are run-length coded. The results of simulating 
this scheme are shown in Table I for different sizes of the memories. 
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The increase in the entropy by dividing the line into two segments is 
significant. Thus, there is a considerable loss in coding efficiency due to 
finite length ordering. This allows us to conclude that by ordering 
two lines instead of parts of a line and arranging them back to back, 
as above, there may be further improvement in coding efficiency. 

2.2 Ordering present line prediction errors with reference to previous line 

This coding technique is similar to the one described in Section 2.1, 
except that now we order the prediction errors of the present line. 
We take the predictor to be the corresponding picture element in the 
previous line. We now order this prediction error as before; i.e., if the 
previous line has a white element, we put the prediction error of the 
pres en t line to the left side of the memory and vice versa. As in 
the previous technique, from the ordered line, it is easy to decode 
uniquely the contents of the present line. 

The entropy of the pictures using the run lengths of the ordered 
prediction error is between 0.11 bit/pel and 0.21 bit/pel for pictures 
with 200 lines/inch, as seen from Table I, and this amounts to a 30 to 
35 percent decrease in entropy over simple one-dimensional run-length 
coding. To calculate the advantage of ordering, we also measured the 
entropy of the picture using the run-length statistics of the prediction 
error with the previous line element as_predictor. The entropy of this, 
which is shown in Table I, varied bet\veen 0.13 bit/pel to 0.25 bit/pel, 
for pictures with 200 lines/inch. Thus, the reduction in entropy due 
to ordering was 7 to 16 percent over and above the entropy of the 
prediction errors. For the picture with 100 lines/inch, ordering the 
prediction errors brought the entropy down to 0.31 bit/pel, which is a 
reduction of about 17 percent over the entropy of one-dimensional 
run-length coding. 

2.3 State-dependent prediction and ordering 

The technique described in this section differs from the two earlier 
techniques in its use of more picture elements spatially close to the 
present element. It uses these elements to define a state of the present 
picture element. We develop a predictor for each state and use the 
state also to order the present line. Using this technique, it is possible 
to separate the process of prediction and ordering. 

To illustrate the technique, consider the picture element configura­
tion shown in Fig. 3. The state of the present picture element X is 
defined by elements A, B, C, and D. Thus, state Z is the four-tuple 

Z = (A, B, C, D). (2) 

Since each of the elements A, B, C, and D can have two possible values, 
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Fig. 3-Configuration for state definition. 

there are 16 states, which we denote by the set {Zd, i = 1, "', 16. 
The development of a state-dependent predictor is our next task. 
Such a development is as old as predictive coding itself.12,16 The 
predictor is developed by the following criterion. We first compute 
P(X = 'Black' I Z = Zi), the probability of the present picture element 
X being Black given the state Z = Zi. The predictor C(Zi) for a 
given state Zi, is then, 

C(Zi) = 'Black' 
= 'White' 

if P(X = 'Black'IZ = Zi) > 0.5 
otherwise. (3) 

I t is easy to see that this predictor mInImIZeS the probability of 
making an error given that a particular state has occurred. We have 
calculated the predictor for each state using several pictures. These 
are shown in Table II. For most states, the predictors do not depend 
upon the picture used, except for a few states that are marked with 
asterisks in Table II; thus, it is not necessary to transmit the predictors 
for each different picture. We shall evaluate the effects of using the 
predictors of one picture for other pictures. 

Having developed the predictor, we sort the states into two groups. 
The probability of correct prediction using the state-dependent 
predictor is shown in Table II. We note that the probability of correct 
prediction is always higher than 0.5 due to our predictor being a 
minimum prediction error predictor. States which have high proba­
bility of correct prediction will be called "good" states. Our ordering 
strategy depends upon the goodness of the state. Let the 16 states be 
divided into two groups: one containing "good" states and one con­
taining "bad" states. Our state-dependent ordering algorithm then 
works as follows: we first evaluate the prediction error for a particular 
picture element in the present line by using the state-dependent 
predictor. Then, if the state is a "good" state, we put the prediction 
error on the left side of the memory, and if the state is "bad", we put 
the prediction error on the right side of the memory. In all our simu­
lations, we used a threshold of 0.8 for the probability of prediction 
error to determine the goodness of a state. Having ordered the predic-
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tion error, we then code the run lengths of the prediction error. It is 
easy to see that the line of data can be uniquely constructed from the 
coded run lengths of the prediction error. The entropy of run lengths 
of such ordered prediction errors for different pictures is given in 
Table I. For pictures with 200 lines/inch resolution, the entropy 
varies between 0.10 bit/pel to 0.20 bit/pel. This represents a decrease 
of between 33 percent and 49 percent over the entropy of simple 
one-dimensional run-length coding. We evaluated, for comparison 
purposes, the entropy of the picture using the run-length statistics 
of the prediction error. This varies between 0.13 bit/pel to 0.24 bit/pel 
for the pictures with 200 lines/inch. It is clear then that state-dependent 
ordering allows us to decrease the entropy by about 16 to 25 percent 
over and above the entropy obtained by using the prediction error 
of the state-dependent predictor. 

We described a scheme in which only two groups of states were used 
for ordering purposes. To evaluate the effect of using more than two 
groups, we divided the states into 16 groups, and ordered the pre­
diction error as before. In the case of more than two groups of 
states, it is not possible to decode the original line of picture data from 
coded run lengths unless extra information about the number of 
elements in each state-group is specified for each line. The entropy of 
the run-length statistic using more than two state-dependent groups 
is shown in Table I. These figures of entropy do not include the extra 
information that is required to be transmitted about the number of 
elements in the group. The increase of coding efficiency by using more 
than two groups is somewhat small and it would be offset completely 
by the extra information mentioned. Thus, most of the decrease of 
entropy due to state-dependent ordering is obtained by using only 
two groups. 

In all of the state-dependent coding algorithms, we have not made 
an effort to optimize several of the coder parameters. Thus, for example, 
when the state-groups are less than 16, we could optimize the groupings 
of the states. The groupings that we used were intuitive and somewhat 
ad hoc. We did vary the groupings in the case of two groups and found 
that the entropies did not change significantly. It appears that optimi­
zation of groupings may not result in any significant entropy reduction. 

2.3.1 Sensitivity to picture variation 

Picture content affects three parameters of our state-dependent 
coding algorithms: the state-dependent predictor, the entropy numbers 
which depend on the statistics of the run lengths, and the definition 
of "good" and "bad" (or the groupings) states. We studied the sensi­
tivity of our coding algorithms by considering the variation of predic-
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tors. The second factor mentioned could be studied by developing a 
specific code based on some run-length statistics (of one of the pictures, 
or some "average" picture) and then using it on all the pictures. We 
did not study this aspect of sensitivity of our algorithm. As mentioned 
in the previous section, we studied the variation of the entropy with 
groupings and found that the variation was "not too sensitive. Thus, 
it appears that the groupings-information need not be computed or 
transmitted for each picture. 

From Table II, it is clear that for a resolution of 200 lines/inch, the 
predictors are identical for all states for pictures of single-spaced 
typing, double-spaced typing, and schematic. This may be a result 
of our using a predictor based on the local information surrounding the 
picture element. In the case of a map, however, there are two states 
that have a different predictor compared to the first three pictures. 
Both these states were regarded as "bad" states for the coding of the 
map. We used the predictor of the first three pictures for the coding of 
the map; and using two state groups, we found a 3-percent increase 
in the entropy. Also, in the case of the picture with 100 lines/inch, 
there is only one state (state number 8) which had a different predictor 
than the first three pictures. This was again a "bad" state. For this 
picture, we found the increase in entropy of about 2 percent. This 
allows us to conclude that it may not be necessary to compute and 
transmit the state-dependent predictor information for each picture. 

2.4 Comparison with the algorithm of Preuss 

Most coding algorithms perform differently for different pictures. 
To compare our results with other two-dimensional coding techniques, 
we implemented a coding algorithm proposed by Preuss. 7 This also 
allowed us to bring out certain similarities and dissimilarities between 
our algorithm and that of Preuss. Preuss has developed a state­
dependent predictor analogous to our predictor. This predictor is 
shown in Table II. It is seen that his predictor differs from our predictor 
for the first three pictures only for state number 13. Also, it differs 
from our predictor for the first picture (100 lines/inch) for state 
numbers 8 and 13. In our simulation of Preuss' scheme, we used the 
predictor tuned to the particular picture rather than Preuss' predictor. 
Preuss computes the prediction errors analogous to our scheme, and 
then codes the run lengths between the prediction errors for each of the 
state-groups separately, using a different run-length code for each 
state-group. We, on the other hand, use the state-groups to order 
the present line and encode the run lengths of the entire ordered line 
of the prediction errors. Preuss has to specify the number of elements 
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in each state-group;* for K state groups with N elements in each line, 
this may amount to (K - 1) log2 N extra bits/pel. In our algorithm, 
we do not need transmission of such information for K = 2. In Preuss' 
scheme, the run lengths have to be terminated at the end of each 
state-group for each line, but in our algorithm, a run may begin in 
one state-group and extend all the way up to the end of the line, 
crossing several state-groups. Despite these disadvantages, we thought 
that Preuss' scheme may result in lower entropy, since his run-length 
code was matched to the run-length statistics of the prediction errors 
corresponding to each state-group. We simulated Preuss' scheme using 
two state-groups that were the same as those used for our algorithm. 
Results of this simulation are given in Table I. Entropy numbers 
given for Preuss' scheme do not include the extra information required 
for the number of elements in each state-group. It is seen from this 
table that, compared to our scheme using two state-groups, Preuss' 
scheme results in a 10- to IS-percent increase in entropy. Thus, our 
scheme appears, at least for the pictures we used, to be more efficient. 

III. DISCUSSION AND SUMMARY 

We have presented three different algorithms for the coding of 
two-tone pictures. All three algorithms are "information" preserving, 
and, therefore, it is possible to decode exactly the original picture with 
no approximations. We have compared our results (only in terms of 
entropy) with some standard algorithms such as: (i) one-dimensional 
run-length coding, (ii) run-length coding of the prediction errors using 
several different two-dimensional predictors, and (iii) a two-dimen­
sional algorithm of Preuss. We found our algorithm to be 10 to 18 
percent more efficient than the algorithm of Preuss. Admittedly, this 
is not a complete comparison. Other parameters, such as the number of 
samples per line (we used only 256) and varying picture material, may 
offset the comparisons. Also, we did not study many other aspects 
important for a coding system, including the performance in the 
presence of transmission channel errors. 

Our technique can be extended by proper definition of the state to 
the case of two-tone dithered pictures. This will be reported in a future 
paper.17 
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A measurement approach is described which provides the capability 
of detecting traffic congestion in the graded multiples of a step-by-step 
switching system. The basic idea is to measure the load carried on the 
last trunk of each graded multiple and, using the techniques described, 
to· determine the congestion level in each grading. The method, which 
requires only one lead per grading, works because Bell System grading 
patterns, which differ in structure depending on size, all have a common 
last-choice trunk and because the load carried on the last-choice trunk 
increases as the congestion in a grading increases. The basic idea and 
the interpretation of last-trunk-usage data in the presence of day-to-day 
variations in the offered load for configurations with and without rotary 
out-trunk switches are described in detail. Last-trunk-usage measurements 
are compared with other possible traffic measurements on gradings in terms 
of effectiveness in detecting various service impairments. The statistical 
accuracy of load and blocking estimates from last-trunk-usage measure­
ments is also discussed. The result is a simple, effective measurement 
technique with the combined advantage of rapid detection of grad'l·ngs 
with service problems and relative ease of implementation. 

I. INTRODUCTION 

Because of physical limitations, the trunks that connect the succes­
sive switching stages in a step-by-step switching system are arranged 
in sets of partial-access patterns called graded multiples (also called 
gradings, graded subgroups, or subgroups). The Bell System uses 
standard patterns for the gradings; a representative configuration is 
shown in Fig. 1. A call arriving hunts across the 10 trunks marked as 
heavy lines to find an idle trunk; if these 10 are busy, the call is 
blocked with a reorder tone returned to the customer. Details of the 
traffic flow through the system are given in Ref. 1. A long-standing 
problem in step-by-step offices has been the difficulty in detecting 
traffic congestion in the graded multiples, since detailed measurements 
are not obtained. 
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Fig. I-Typical step-by-step subgroups showing limited trunk access for an 
arriving call. 

In this paper, a new measurement approach is described which 
provides an economical and effective means for identifying specific 
graded multiples with substandard blocking levels. The basic idea 
is to capitalize upon the fact that, although the Bell System patterns 
differ in detailed structure depending upon the number of trunks, 
they all have a common last-choice trunk. Thus, the traffic perform­
ance, i.e., fraction of calls blocked, of a graded multiple can be moni­
tored by measuring the load carried on the last-choice trunk (see Fig. 
1). As the congestion in a grading increases, the load carried on the 
last trunk also increases. By properly interpreting the last-trunk 
usage (LTU), it is possible to infer the congestion level of each grading. 
Since only one connection per grading is required, the method makes 
efficient use of measurement equipment. The data can be collected 
by a variety of available usage-measuring equipment. Notice that the 
wiring can be validated by making the last trunk busy during nonpeak 
hours and checking for the correct usage measurement. Also, it is 
possible to detect (and thus avoid possible data misinterpretation) 
whenever subgroup performance cannot be determined due to the 
last trunk having been taken out-of-service, since its usage will appear 
as 36 ees (hundred call seconds) in each hour. 

Notice that this measurement approach is an application of a more 
general concept wherein the traffic performance of a set of servers is 
evaluated by measuring the behavior of one carefully selected element 
of the set. It is possible that this general concept may have broader 
applicability and should be considered in designing new measurement 
techniques. 

Section II provides an overview of the measurement procedure and 
describes the model used to develop the last-trunk-usage procedures. 
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Section III describes the additional considerations required when the 
subgroups access rotary out-trunk switches (ROTS). Section IV dis­
cusses the use of LTU and other possible traffic measurements in detect­
ing congestion problems-general overloads, imbalances between 
subgroups, and imbalances within subgroups. The LTU measurement 
procedure does not detect equipment irregularities. Section V relates 
the statistical accuracy of blocking and offered-load estimates to 
inherent variations in LTU data. Finally, Section VI discusses the 
application of the method. 

II. OVERVIEW OF LAST-TRUNK-USAGE PROCEDURES 

The LTU monitoring procedures were developed using a computer 
simulation model of step-by-step (S X S) graded multiples. l The 
model has the following properties: Poisson arrivals, inherent load-
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Fig. 2-Subgroup average blocking probability versus average last-trunk usage 
for 11-, 17-,25-, 35-, and 45-trunk gradings with low day-to-day variation in offered 
load. 
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balancing, blocked calls cleared, and a negative exponential distri­
bution for holding times. Retrials are not included in the model. A 
representative set of grading patterns was selected for detailed study. 
For each grading, the simulation was initially used to determine the 
equilibrium blocking and last-trunk usage over an appropriate range 
of offered loads. 

Figure 2 shows the relationship between average blocking and 
average LTU for several gradings. In this paper, "average blocking" 
means "average call congestion." The use of average blocking and 
average LTU, rather than their equilibrium values, is appropriate since 
it is assumed that the offered loads will vary on different days accord­
ing to the low day-to-day variation model;2 measurements during a 
time-consistent hour must be averaged over several days to provide 
stable results (and reduce the possible impact of a single long-holding-
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Fig. 3-Average last-trunk usage versus the number of trunks in the graded 
multiple for blocking at B.OlL, B.02L, B.03L, B.05L, and B.WL. 
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graded multiple configurations (non-RoTs accessing) with low day-to-day variation 
in offered load. 

time call). Figure 2 shows that last-trunk-usage data provide a good 
indication of subgroup performance, or blocking level. The LTD­

blocking relation is somewhat dependent on the number of trunks in 
the grading, but for a given number of trunks, is generally not very 
sensitive to the number of accessing selectors. Because of this in­
sensitivity, selector dependence was not studied in detail. Note that 
Fig. 3 uses the same data as Fig. 2, but relates average LTD and number 
of trunks in the grading for fixed average blocking levels. 

The difference in offered load from that required for B.OIL, a 
frequently used objective in S X S systems, is plotted against average 
LTD in Fig. 4 for the same grading sizes as in Figs. 2 and 3. (The 
notation B.XXXV means that "Erlang-B" assumptions were used, 
that the blocking probability for no day-to-day variation or the 
average blocking probability for results with day-to-day variation 
is O.XXX, and that V indicates the amount of day-to-day variation 
with V blank for no day-to-day variation and L, M, or H for low, 
medium, or high day-to-day variation, respectively.) The curves in 
Figs. 2 and 3 show that the subgroup overload increases in an approxi­
mately linear fashion with LTD, up to a blocking of roughly B.IOL. 
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Again, results are not very sensitive to the number of selectors. How­
ever, errors in offered load or subgroup overload estimates may arise 
if certain service-affecting problems exist, but are unknown; these 
will be discussed in Section IV. 

As mentioned, the results indicate that curves of blocking vs LTU, 

constant blocking curves for LTU vs the number of trunks, and sub­
group overload vs LTU are not strongly dependent upon the number 
of selectors that access the grading. Consequently, the general problem 
of studying all 155 standard combinations of selectors and subgroup 
trunk patterns found in the Bell System was simplified by ignoring 
selector dependence and considering only the different grading con­
figurations. Note that the relationship of LTU to offered load, in 
contrast to the overload in CCS, is somewhat dependent upon the 
number of selectors accessing the graded multiples; this occurs because 
the capacities of the gradings are dependent on the number of access­
ing selectors.l 

III. EFFECTS OF ROTS ON L TU PROCEDURES 

Rotary out-trunk switches (ROTS) are used in step-by-step systems 
to concentrate traffic from several graded multiples, hereafter called 
the access subgroups, onto a single outgoing trunk group, whose 
occupancy is higher than those of the access subgroups. The model of 
traffic flow in a graded multiple used in Section II is not appropriate 
in the presence of ROTS for the reasons described. ROTS access sub­
groups are generally engineered at one-tenth the blocking desired for 
the entire ROTS system to ensure adequate access to the outgoing 
trunks. A representative local ROTS configuration is shown in Fig. 5 
for m access subgroups (10-trunk, full-access subgroups in this case) 
going to n ROTS subgroups, each consisting of about 20 to 30 switches. 
The trunks from the access subgroups are spread across the ROTS 

subgroups according to specified patterns to distribute traffic across 
the ROTS trunks and to provide access from a given selector to the 
several ROTS subgroups. If the number of outgoing trunks per ROTS 

subgroup is less than 21 (or 22 in toll groups), the outgoing trunks 
from each ROTS subgroup may be multipled to adjacent subgroups. 

In local ROTS groups, approximately 40 percent of the trunks in the 
ROTS access subgroups are wired directly to the outgoing trunks, 
bypassing the ROTS switches. Thus, certain outgoing trunks can be 
accessed either directly from trunks in the ROTS access subgroups as 
well as indirectly through a ROTS switch. If the latter occurs, the 
directly linked trunk in the ROTS access subgroup is made busy to 
prevent a second call from seizing the outgoing trunk. Subsequent calls 
arriving at the access subgroup that find a directly linked trunk busy 
will use trunks higher in the hunting order (closer to the last trunk). 
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Fig. 5-Representative ROTS group configuration. 

In addition, if all outgoing trunks in a ROTS subgroup are busy, all 
idle ROTS switches in that subgroup are made busy. This has the 
combined effect of forcing traffic higher in the access gradings and, 
if such a switch is connected to the last trunk of an access subgroup, 
of generating busy-back (non-call carrying) usage on that trunk. Any 
call searching for an idle trunk, which progresses to the last-choice 
trunk and finds the last-choice trunk busy from either type of usage, 
is blocked. 

Consequently, the access gradings must carry the actual offered 
load plus the induced busy-back load. Since any calls that are blocked 
in the ROTS system receive reorder tone from the selectors of the access 
subgroups, the blocking observed on the access subgroups equals the 
system blocking, even though the access subgroups are usually engi­
neered at one-tenth the desired system blocking. In addition, the 
intricate access arrangement results in significant interaction between 
the traffic parcels offered to the different access subgroups. The result 
is that the performance of a subgroup is influenced by its own offered 
load, the congestion level on the outgoing trunks, and the performance 
levels of the other access subgroups. 

Therefore, it was not clear whether the relationships between LTU 

and blocking shown in Section II applied in the presence of ROTS. 

To determine this, a computer simulation of ROTS configurations 
modeled by Neal was studied.3 The traffic assumptions of the graded 
multiple simulation model described in Section II are applicable here. 

For the different grading patterns and different ROTS configurations, 
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it was found from simulation that approximately the same relation­
ships between LTU and blocking apply as when the graded multiples 
do not access ROTS, giving acceptable estimates up to ten-percent 
blocking. Figure 6 shows a curve which relates LTU and blocking for 
non-ROTS subgroups, as well as data points from simulation studies of a 
configuration with 15 access subgroups of 15 trunks each and up to 
135 outgoing trunks; the offered loads to the subgroups were equal 
(or balanced). By varying the offered load and the number of outgoing 
trunks, arrangements were investigated in which the access subgroups 
were under-engineered, as well as situations where the outgoing trunk 
group was under-provided. The data points clustered about the 
non-ROTS curve, for blocking levels up to about B.I0_. Significant 
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differences between the data points and the curve occur above ten­
percent blocking because of interactions caused by busy-back usage. 

These ROTS, non-ROTS comparisons are based upon no day-to-day 
variations since substantially more computer time would be required 
to study low day-to-day variations explicitly. However, the relative 
comparisons still hold for low day-to-day variations, and, thus, Fig. 2 
can be used to estimate the average blocking of subgroups which 
access ROTS. 

The same non-ROTS curve is shown in Fig. 7, but the data points 
represent ROTS simulation results where the offered loads to the 
subgroups are unequal (imbalanced). In this case, the data points were 
more clustered about the non-ROTS curve than in Fig. 6. These effects 
were confirmed for additional ROTS configurations of 11-, 21-, 25-, 

0.10r---------------------:*r-----------, 

>­
I-
::::i 
co 
~ 
IlJ 
o 
a: 
a. 

0.08 

~ 0.06 
~ 
u 
o 
...J 
IlJ 
a. 
::J 
o 
a: 
t:l 
IlJ 

~ 0.04 
(I) 
(I) 
w 
U 
U 
~ 

~ o 
a: 

0.02 

/ 

I 
xxI 
xl 

/ 
xl 

I 

I 
I 

I 
I 

x / 
I x 

xl 
x / 

~ / 
~ 

/ ....... _ NON-ROTS RE LATION 
/ FOR 15-TRUNK GRADING 

xx/xx 

If 
Ix 

{" 

15 

LAST-TRUNK USAGE (CCS) 

25 

Fig. 7-ROTS access subgroup blocking versus last-trunk usage for ROTS group 
of 15 subgroups of 40/15 with 105 outgoing trunks and no day-to-day variation in 
offered load-imbalanced loads in access subgroups. 

TRUNK USAGE MEASUREMENTS 1561 



35-, and 45-trunk subgroups with between 34 and 210 outgoing trunks, 
demonstrating that the LTu-blocking relation of Section II could apply 
as well to ROTS configurations under a wide variety of conditions. An 
important feature is that the LTU measurement monitors the blocking 
of the access subgroups, which is, in fact, equal to the blocking for the 
entire configuration, the quantity of interest from a service standpoint. 
The impact of the scatter in ROTS data points on blocking estimates is 
discussed in Section V. 

It is possible to measure the actual last-trunk call usage, excluding 
busy-back usage. This procedure, examined via simulation, did not 
give as good agreement to the non-ROTS LTU-blocking relations for 
general overloads, in that this type of overload affects the call usage 
on the last trunk for a given blocking level. The majority of points 
in the scatter diagram of Fig. 8 for access subgroups of 15 trunks fall 
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to the left of the non-ROTS relation for a I5-trunk subgroup. There was 
less disagreement for the case of load imbalances in accessing sub­
groups. Figure 9 shows that the scatter diagram for I5-trunk sub­
groups follows the corresponding non-ROTS relation, but that the 
simulation points generally fall to the left of the curve, implying a 
small bias. Again, similar results were observed for both general 
overloads and imbalances in simulating other ROTS configurations. 

Last-trunk-busy (LTB) registers on graded subgroups are wired to 
exclude made-busy counts. Thus, the results in Figs. 8 and 9 also apply 
to LTB counts in the presence of ROTS, where the abscissa would be 
measured in LTB registrations rather than call usage on the last trunk. 
Notice that reconnecting the LTB register to include busy-back effects 
complicates data interpretation, since it appears difficult to estimate 
the correct mean holding time when busy-back usage occurs. 
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While the average LTu-blocking relations of Figs. 2 and 3 provide 
acceptable average blocking estimates for ROTS configurations, the 
subgroup average overload-LTu relation of Fig. 4 does not always 
apply. Not only is it difficult to accurately estimate the magnitude 
of the overload, but whether the overload occurs in the access sub­
groups, the outgoing trunk group, or both is not evident. Once the 
LTU procedure detects blockages, additional measurements must be 
taken to determine the cause of the blockage. If the outgoing trunk 
group is adequately engineered, as determined from total carried 
load or all-trunks-busy measurements, the access subgroup is limiting; 
in this case, Fig. 4 can be used to estimate the subgroup overload. 
If the outgoing trunk-group capacity is limiting and additional trunks 
are added, additional LTU measurements should be taken to see if the 
access subgroup capacity is still sufficient after augmenting the out­
going trunk group. 

In summary, the basic LTu-blocking relations apply to ROTS con­
figurations, although some moderate additional estimation uncertainty 
arises from the scatter shown in Figs. 6 and 7. Thus, the LTU procedure 
appears to be an acceptable performance-measurement tool, even 
though it alone cannot determine the source of the congestion problem. 
An additional measurement on the outgoing trunks is needed to 
decide what corrective action is required for a congested ROTS 
configuration. 

IV. STEP-BY-STEP SERVICE-AFFECTING PROBLEMS 

4.1 Overview 

LTU procedures can be used to detect several service-affecting 
problems, namely: general overloads, load imbalances, and out-of­
service trunks. In each case, the problem is described and how LTU 
measurements are effective in detecting the problem is shown; the 
ability of carried load or last-trunk-busy measurements to detect the 
problem is also discussed. First, a general understanding of the 
principles used in engineering S X S subgroups is needed. 

Consider a typical stage in a S X S train (Fig. 10), where the 
incoming traffic load is directed to n groups of selectors. Each selector 
group has access to a set of trunks on each level. In practice, the 
selector grouping for different levels may not be identical. Two basic 
assumptions in S X S engineering are: (i) incoming traffic is dis­
tributed equally between selector groups (i.e., Ll = L2 = ... = Ln) 
and (ii) each selector group offers the same proportion of the incoming 
traffic to a given level j (i.e., alj = a2j = ... = anj). As a result, all 
subgroups on a given level generally have the same number of trunks. 
Based on these assumptions, we need only measure the total carried 
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load on all trunks on a level (e.g., ll) to estimate the carried load for 
each subgroup (e.g., lI/n) and t() determine the number of trunks 
required to meet a stated service objective. 

4.2 General overloads 

A general overload occurs when all subgroups on a level have 
excessive blocking, as indicated by comparing the LTU values with a 
threshold determined from Fig. 2. The amount of overload on each 
subgroup can be determined from Fig. 4 if the subgroups do not 
access ROTS. If the subgroups access ROTS, then additional measure­
ments, such as outgoing trunk carried load or all-trunks-busy counts 
on the ROTS subgroups, are required to determine if the blockage arises 
in the access subgroups or the outgoing trunks. 

Carried-load measurements on subgroups within a S X S train are 
not commonly made because of the excessive number of measurement 
leads required, but are usually made on interoffice trunks. Such load 
measurements should detect a general overload in the non-ROTS case 
and in the ROTS case only if the problem is insufficient outgoing trunks. 
Last-trunk-busy registers, although not generally available, should 
indicate overloads, assuming that the correct mean holding-time is 
used and that the last trunk is in service. With ROTS, LTB counts are 
limited by the effect described in Section III. 
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4.3 Load imbalances 

Load imbalances arise when the incoming loads per selector vary 
over a wide range (e.g., trunks from No. 4A crossbar or S X S offices) 
and the trunks are not uniformly distributed across selector groups, 
or trunks from different offices, which exhibit different calling patterns 
to different levels, are not well distributed. In either of these cases, 
the traffic offered to a level is not the same for each selector group 
(e.g., aljL1 ~ a2jL 2 ~ ... ~ anjLn), causing some subgroups to be 
overloaded while others are underloaded. Imbalances lead to higher 
blocking to selected incoming trunks as well as an increase in the 
average congestion across all trunks. 

Last-trunk-usage procedures effectively detect blockages arising 
from load imbalances between subgroups, since the congestion level 
of each subgroup is individually monitored and recorded. This results 
in the specific identification of congested subgroups for corrective 
action. 

In some cases, particularly when the larger gradings are used, 
balance within a grading may become a problem. Measuring the LTU 

is also effective here. This follows both from the flatness of the B.OIL 
curve and from the significant spread between the curves in Fig. 3. To 
illustrate, consider a 45-trunk grading. From Fig. 3, we interpret an 
average LTU of 4.5 CCS as about one-percent average blocking under 
the assumption that the offered load is balanced across the individual 
groups of first-choice trunks (legs) of the graded multiple. Suppose 
the maximum imbalance occurs, i.e., all traffic is offered to only one 
leg and the remaining receive no calls. In this case, only ten of the 45 
trunks carry any traffic; the observed average blocking would be about 
2.5 percent (average LTU of 4.5 CCS on ten trunks). Thus, if the LTU 

is controlled so that the indicated average blocking for a 45-trunk 
subgroup with balanced loads is about one percent, no parcel of 
traffic will see more than 2.5-percent average blocking. The difference 
between this value and the average blocking estimate, smaller when 
less extreme types of imbalances occur and when the subgroup has 
fewer than 45 trunks, is important only when a specific group of 
incoming trunks is focused on an overloaded leg. If incoming trunk 
groups are spread across the legs, each group of customers would 
experience about the average blocking (across legs) for the subgroup; 
this average blocking is accurately estimated by the LTU procedure. 
Thus, the LTU procedure provides reasonable control over imbalances 
among the legs, although it cannot assure maximum equipment 
utilization. However, the estimates of subgroup average overload 
shown in Fig. 4 always exceed the true value in the presence of im­
balances within a subgroup. 
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Carried-load measurements are commonly obtained on interoffice 
trunk groups, but are generally aggregated across all subgroups on a 
level for the non-ROTS case or are obtained on the outgoing side of the 
ROTS switches when ROTS are used. In both cases, these composite 
carried-load measurements cannot detect imbalances, since the carried 
load actually decreases as the imbalance increases. As before, LTB 
registers are capable of detecting imbalances although they are not 
usually available in the field. 

4.4 Out·ol-service trunks 

Out-of-service trunks that lead to an increase in subgroup congestion 
can be detected by the LTU procedure. An out-of-service trunk that 
does not lead to undesirable blocking levels (if the subgroup's offered 
load is sufficiently below engineered capacity so that loss of a trunk 
has no service impact) would not be detected by the LTU procedure. 
The shallow slope of the B.OIL curve of Fig. 3 results in the average 
blocking estimate being insensitive to a modest number of made-busy 
trunks. Thus, the LTU procedure can detect such blockage, but not 
indicate the cause of the blockage (i.e., overload, imbalance within 
the subgroup, or made-busy trunks). With out-of-service trunks, the 
overload estimate of Fig. 4 always exceeds the true overload. Measure­
ments of total-carried-Ioad may not indicate a service problem caused 
by out-of-service trunks, particularly if the load measurements are 
aggregated across subgroups. 

4.5 Equipment malfunctions 

Malfunctions leading to abnormally short holding times (the 
"killer trunk" phenomenon) cannot be located with the LTU procedure. 

v. UNCERTAINTIES IN BLOCKING AND LOAD ESTIMATES 

The uncertainty in average blocking estimates is important in 
deciding when corrective action is required. The uncertainty in these 
estimates arises from three effects: variations in single-hour LTU 
measurements, day-to-day variations of offered load, and approxi­
mations used in the LTU procedure. Estimates of blocking and offered 
load from single-hour LTU data cannot be used, because they have a 
large coefficient of variation (cv); this is defined as the standard 
deviation to mean ratio of a random variable and indicates the "spread" 
of values of the variable about its average. Consequently, LTU data 
must be averaged over several hours to provide reliable estimates. This 
section shows that last-trunk-usage procedures using time-consistent 
busy-hour measurements can detect moderate to severe problems with 
acceptable confidence in five days whereas at least 20 days are needed 
for provisioning studies. 
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For low subgroup blocking (B.Ol_), the cv for a single-hour LTU 

measurement is approximately one. The cv decreases to roughly 0.1 
for subgroup blocking above B.I0_. Simulation results for subgroups 
with 11, 21, and 45 trunks indicate that the cv of an LTU measurement 
is not strongly dependent upon grading size or pattern for Poisson 
traffic with no day-to-day variations (Fig. 11). The effects of day-to­
day variation in the offered load and discrete sampling of the last­
trunk usage on estimates of blocking and load were studied using 
procedures formulated by Neal and Kuczura,4 Hill and Neal, 5 and 
Hill. 6 The standard deviation of the average blocking estimate for all 
subgroups (with blocking near B.01L) is approximately 0.01 for LTU 

values averaged over five hours (typically the same hour on five 
consecutive days). Thus, if five measurements give a blocking estimate 
greater than B.02L, we can be 84-percent confident that the true 
blocking is greater than B.OIL. This result assumes a statistical model 
where the error is normally distributed with mean zero. Hence, LTU 

measurements during the busy hour enable relatively quick (i.e., five 
days) detection of subgroups with moderate to severe service-affecting 
problems. If five measurements give a blocking estimate less than 
B.02L, but greater than B.OIL, the adjustment of performance levels 
to a B.01L objective should only be based on longer study intervals 
(e.g., 20 days) and a demonstrated practical need for such adjustments. 

Five days of data are not sufficient to accurately determine the 
number of trunks required to meet a given blocking obj ective. With 
five days of data, the standard deviation in the average offered load 
estimate is about 40 CCS for a 21-trunk subgroup; thus, we can be 
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68-percent confident that the true offered load will be within 40 ees 
of the estimated offered load, which corresponds to a possible deviation 
of two to three trunks from the number required to precisely meet the 
objective. The 68-percent confidence interval can be reduced to within 
one trunk by taking at least 20 days of data. It would seem that this 
is the minimum number of days needed for any provisioning study. 

ROTS subgroups are subject to approximately the same level of 
statistical variations as non-ROTS subgroups. However, the scatter 
of Fig. 6 indicates that there will be some uncertainty introduced by 
using non-ROTS LTu-blocking relations for ROTS subgroups. Fortu­
nately, the effect of possible approximation bias or additional variance 
is negligible when compared to the estimation error arising from other 
sources (measurement variation and day-to-day variations) during a 
five-day study. 

VI. APPLICATIONS 

6.1 Types of trunks 

The preceding discussions have assumed that the graded subgroups 
were either connecting intraoffice selector stages or were one-way 
interoffice trunks. For two-way interoffice trunks, the LTU method 
applies to all trunk groups with ROTS, since the ROTS isolate the effects 
of the trunk selection method (whether from common-control or 
S X S equipment) at the far end from the LTU measurement. The 
LTU method is not applicable where selector subgroups directly access 
(instead of going through ROTS) two-way interoffice trunks, unless, at 
the far end, the trunks are chosen in the same hunting order as at the 
near end. For trunk groups where the procedure is not applicable, total 
carried-load measurements should be used, since these are typically 
small groups that are not susceptible to load imbalance problems 
because they are full or nearly full-access groups. 

6.2 Measurement equipment 

There is a wide variety of measurement equipment available for 
collecting LTU data. However, some Bell System measurement equip­
ment found in small S X S switching entities such as community dial 
offices (CDOS) may not be ideal for LTU measurements. These electro­
mechanical recorders have a relatively small number of output registers 
and are configured to report usage only on a grouped basis rather than 
an individual trunk basis. Last-trunk-usage measurements, requiring 
only one input lead per graded multiple, would utilize this equipment 
inefficiently assuming that a sufficient number of output registers were 
available. For some cases an option to record usage on individual 
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trunks could be added. In general, a more viable alternative would be 
to use other measurement equipment that is suitable for the collection 
of LTU data. 

6.3 Data collection and analysis 

For each level under study at a particular selector stage, last-trunk­
usage data should be collected during the time-consistent level­
congestion busy hour; i.e., the time-consistent hour in which the total 
LTU for the level (obtained by summing over all subgroups on the 
level) is greatest. This hour can be determined by collecting data in 
several candidate hours during a study period and then choosing the 
time-consistent hour in which the total LTU for the level is greatest. 
In some cases, it may be desirable to analyze LTD data outside of the 
time-consistent level-congestion busy hour to detect focused overloads 
which may occur in other time periods. Of course, the data should be 
collected in the busy season to maximize the effectiveness of the 
measurement. 

For the study period, the average busy-hour LTU for each subgroup 
can be calculated and used with Table I to estimate that subgroup's 
average blocking. This table, related to Fig. 2, provides a summary of 
the average last-trunk-usage in CCS at increasing blocking levels 
(B.005L to B.IOL) for bands of subgroup trunk sizes. A last trunk 
that continually appears as 36 CCS is most likely to be out-of-service. 

For a five-day "quick test," any subgroup which exceeds B.02L 
is a candidate for corrective action. For 20 days of data, subgroups 
exceeding B.OIL should be considered for correction. Lower blocking 
thresholds may be appropriate outside the busy season. In all cases, 
additional LTU measurements should be collected after any corrective 
action to ensure that the blockage is eliminated. 

Table 1-Average value of last-trunk usage in CCS for 
different blocking levels * 

N umber of Trunks 
Average Blocking (Percent) 

in Subgroup 
0.5 1 2 3 5 10 

4 to 9 0.5 1.5 2.5 3.5 5.0 10.0 
10 to 14 1.1 2.0 3.5 5.2 7.8 13.0 
15 to 19 1.4 2.5 4.6 6.3 9.3 15.5 
20 to 24 1.6 3.0 5.3 7.2 10.6 17.2 
25 to 29 1.8 3.2 5.7 7.8 11.5 18.2 
30 to 34 1.9 3.6 6.2 8.5 12.4 19.5 
35 to 39 2.1 3.8 6.7 9.1 13.1 20.5 
40 to 45 2.4 4.2 7.3 9.8 14.1 21.7 

• Assumes low day-to-day variations. 
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6.4 Corrective action 

When LTD measurements detect congestion, additional investigation 
is necessary to find the cause of the blockage. Common problems, such 
as general overloads and load imbalances, ,vere discussed in Section 
IV. Estimates of subgroup overload (in CCS) for a given average 
last-trunk-usage may be useful in determining the degree of corrective 
action for all major problems except general overloads on ROTS groups 
and maintenance-associated phenomena. 

VII. SUMMARY AND CONCLUSIONS 

The last-trunk-usage procedures are an application of the general 
concept of observing a subset of the elements of a traffic system to 
estimate the performance of the entire system. The procedures are 
effective because all Bell System standard gradings have a common 
last-choice trunk and because the load carried on that trunk is directly 
related to the traffic congestion in the subgroup. This provides a 
direct measure of subgroup performance, since general overloads and 
imbalances between subgroups or within subgroups, as well as possible 
made-busy trunks that have significant impact upon service, cause 
increases in a subgroup's LTD. In fact, the average load carried on the 
last-choice trunk is directly related to the service level, and in the 
range of primary interest (B.OIL to B.IOL) is not very dependent 
upon the cause of the degradation. These results apply to both non­
ROTS and ROTS applications, although in the latter case additional 
measurements are required on the outgoing trunks to completely 
diagnose a problem detected by LTD measurements. 

A subgroup's mean blocking is estimated from the average of the 
last-trunk-usage measurements in the level busy-hour; an estimate of 
at least B.02L using only five days of data indicates that the subgroup 
has an average blocking greater than B.OIL with 84-percent confidence. 
In addition, the cost of installing the measurement equipment and test 
leads is held to a minimum since only one lead is required per sub­
group. Hence, the method has the combined advantage of rapid 
detection of subgroups with service-affecting problems and ease of 
implementation. 
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CHEMISTRY 

The Chemistry of Pd-Sn Colloid SensitIzing Processes. R. L. Cohen and R. L. Meek, 
J. Colloid Interface Sci., 55 (1976), pp. 156-162. This research uses Rutherford 
backscattering and Mossbauer spectroscopy to characterize the catalytic surface 
produced by commercial "sensitization" processes used for electroless plating of 
plastics. The active agent is shown to be a colloidal Pd-Sn alloy with a particle size 
of about 20 A. 

Dissociative Excitation of H 2 : Spectral Lineshapes and Electron Impact Cross­
Sections of the Balmer Lines. R. S. Freund, J. A. Schiavone, and D. F. Brader, * J. 
Chern. Phys., 64-, No.3 (February 1, 1976), pp. 1122-1127. The Balmer lines 
of H, when produced by electron impact dissociative excitation of low pressure H 2, 

are much broader then the Doppler width of thermal H atoms. Excitation cross­
sections show structure as a function of energy. This helps to identify two groups of 
dissociative states. * Work done while a participant in the Summer Research 
Program at Bell Laboratories in 1975. 

Sensitization with Palladium-Tin Colloids, I: Role of Rinse and Accelerator Steps. 
R. L. Cohen, R. L. Meek, and K. 'V. 'Vest, Plat. Surf. Finish, 63 (1976), pp. 52-55. 
In the commercial "sensitization" processes used in the manufacture of printed 
wiring boards, a step called "acceleration" is normally used. We show that the purpose 
of this step is to dissolve away a layer of stannic hydroxide, which otherwise coats 
and passivates the catalytic sites on the surface. 

Tropospheric Halocarbons: Estimates of Atmospheric Chemical Production. T. E. 
Graedel and D. L. Allara, Atmos. Environ., 10 (1976), pp. 385-388. Selected 
thermal and photochemical atmospheric reactions have been evaluated as potential 
sources for the family of halo carbons recently detected in tropospheric air. Formation 
of CH3CI is extremely slow and that of CCI4, CHCh, CH 3I, CH 3CCl3 and the chlori­
nated ethylenes is negligible, implying that direct emission is responsible for the 
presence of these compounds. 

COMPUTING 

A Survey of Techniques for the Display of Continuous Tone Pictures on Bilevel 
Displays. J. F. Jarvis, Comput. Graph. Image Process., 5 (1976), pp. 13-40. Many 
displays are basically bilevel in nature with individual display elements, all of the 
same size, arranged in a rectangular array. 'Ve present a survey of processing tech­
niques for presenting continuous tone still images on such displays. Four techniques 
are covered in detail while several others are covered briefly. All the techniques achieve 
the subjective effect of continuous tone by properly controlling only the spatial 
density of bilevel display states. 

ELECTRICAL AND ELECTRONIC ENGINEERING 

The Effects of Gold and Nickel Plating Thicknesses on the Strength and Reliability 
of Thermocompression Bonded External Leads. N. T. Panousis and P. M. Hall, 
Proc. IEEE 26th Electron. Compo Conf. (1976), pp. 74-79. Copper leads intended 
for thermo compression bonding are typically plated with Au or a combination of 
Ni and Au. Optimum strength and reliability with the Nil Au system were obtained 
for a Ni thickness of 0.25 to 1.3 ,urn, a Au thickness minimum of 2.5 ,urn, and a 
Au-to-Ni ratio of ~2.5. For Au-plated Cu leads, acceptable bonds were obtained 
with 0.6 ,urn of Au. 

Transmission Electron Microscopy of Cross-Sections of Large Scale Integrated 
Circuits. T. T. Sheng and C. C. Chang, IEEE Trans. Electron. Dev., ED-.~3 (June 
1976), pp. 531-533. Accurate cross-sectional views of large scale integrated 
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circuits are useful for failure analysis and process evaluation. We have successfully 
prepared thin sections of finished devices cut perpendicular to the plane of the chip 
and examined them using transmission electron microscopy. We describe the section­
ing procedure and show some cross-sectional views from memory cells of a CMOS 
RAM with poly-Si gates and tungsten second metal. 

Planar Isolated GaAs Devices Produced by Molecular Beam Epitaxy. W. C. Ballamy 
and A. Y. Cho, IEEE Trans. Electron. Dev., ED-23 (1976), pp. 481-484. This 
paper reports the fabrication of low parasitic capacitance planar beam leaded mixer 
diodes. The material for low parasitic structure is produced by the simultaneous 
deposition of single crystal and poly crystalline gallium arsenide utilizing the molecular 
beam epitaxial process. Diodes measured in a double-balanced down converter circuit 
showed a conversion loss of 5.3 dB at 51.5 GHz and 8 .. 5 dB at 103 GHz. These devices 
exceed the performance of structurally identical devices fabricated on conventional 
non n+ material by about 2 dB. 

GENERAL MATHEMATICS AND STATISTICS 

Estimating Item and Order Information. G. Sperling and M. J. Melchner, J. Math. 
Psychol. 13, No.2 (April 1976), pp. 192-213. In a common psychological pro­
cedure, a subject is presented a sequence of items and asked to recall them in order. 
His response is scored for items reported correctly in their correct positions (position 
score) and for items reported correctly independently of their position (item score). 
Equations are derived to estimate the effects of guessing and thereby to estimate 
"true item" and "true position" scores from observed scores. 

MATERIALS SCIENCE 

Compound-Glass Waveguides Fabricated By a Metal Evaporation Technique. 
S R. Nagel, A. D. Pearson, and A. R. Tynes, J. Amer. Chem. Soc., 59 (January 
1976), pp. 47-49. Glass fiber optical waveguide preforms consisting of a po­
tassium silicate glass core and Si02 cladding were produced by a potassium metal 
evaporation technique. Fibers drawn from such preforms exhibit moderately low 
optical loss. The fabrication technique is described, and a representative loss spec­
trum is presented. 

The Deep Blue Maxixe-Type Color Center in Beryl. K. Nassau, B. E. Prescott, and 
D. L. Wood, Amer. Mineral., 61 (1976), pp. 100-107. Irradiation produces a 
deep blue color center in some natural beryl. Narrow band absorption in the ordinary 
ray and fading on heating or on light exposure distinguished this Maxixe-type beryl 
from aquamarine. Similar, but not identical, beryl was found in 1917 in the Maxixe 
mine in Brazil. 

Investigations of an Electrodeposited Tin-Nickel Alloy: I. Thermal Stability by 
Differential Thermal Analysis and X-Ray Diffraction. J. E. Bennett and H. G. 
Tompkins, J. Electrochem. Soc., 123, No.7 (July 1976), pp. 999-1003. Electro­
deposited equiatomic tin-nickel is a metastable phase which transforms to a mixture 
of the equilibrium compounds Ni3Sn2 and NhSn4. The transition temperature can 
be a deciding factor for certain applications. DTA and XRD showed that on heating 
the alloy decomposed exothermally over the range 350 to 380°C with a maximum 
at 365°C. 

Origin of Surface Defects in Fe = Coj3%V Wire. M. R. Pinnel, J. E. Bennett, 
and K. M. Olsen, Wire J., 9 (April 1976), pp. 73-79. Good glass-to-metal vacuum 
seals are essential to the performance of remreed contacts. Surface defects in the 
magnetic wire at the seal caused problems. The source of the defects was traced to 
the rod surface finish prior to wire drawing. Methods to improve the finish were 
evaluated. 

Ternary Phase Relations in the Vicinity of Chalcopyrite Copper Gallium Sulfide: 
M. Kokta, * J. R. Carruthers, M. Grasso, H. M. Kasper, and B. Tell, J. Electron. 
Mater., 5, No.1 (1976), pp. 69-89. Some of the ternary phase relations relevant 
to the growth of CU1-xGal+X/3S2 chalcopyrite crystals have been determined. Condi­
tions necessary for the growth of stoichiometric crystals which are free of cupric 
sulfide precipitates and the associated green coloration are given. Such compositions 
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are necessary for the generation of luminescence in this compound. * Work 
performed while at Bell Laboratories. Present address: Allied Chemical Corporation, 
Morristown, New Jersey. 

PHYSICS 

Chemisorption of Atomic Hydrogen on the Silicon (110)5 X 1 Surface (Ups and Leed). 
T. Sakurai, K. C. Pandey, and H. D. Hagstrum, Phys. Lett., 56A (March 22, 1976), 
pp. 204-206. Chemisorption experiments show that the Si(110)5X1 surface 
when saturated with H leads to two distinct 1 X 1 phases depending on temperature 
during exposure. vVe suggest that while both phases are characterized by the satura­
tion of surface dangling orbitals, additional hydrogen atoms chemisorbed weakly at 
non tetrahedral sites are present in the room temperature phase. 

Greater Surface Sensitivity of Ion Neutralization Spectroscopy with Respect to 
UV Photo emission Spectroscopy. T. Sakurai and H. D. Hagstrum, J. Vacuum Sci. 
Techno!., 13 (January/February 1976), p. 196. Ultraviolet photoemission 
spectroscopy showed that the dangling-bond surface state disappears when the clean 
surface is exposed to atomic hydrogen. Chemisorbed hydrogen produces two sharp 
peaks in the surface density of states at -10 and -12 eV from the vacuum level, 
in good agreement with the recent theoretical works. 

Spectroscopic Observation of Very Low Energy Excitations in Glasses. P. A. Fleury 
and K. B. Lyons, Phys. Rev. Lett., 36, No. 20 (May 17,1976), pp. 1188-1191. A 
new experimental technique for high resolution, very high contrast light scattering 
spectroscopy has permitted the direct observation of very low energy excitations 
(0-1 K) in a variety of glassy solids. These excitations may be responsible for the 
anomalous specific heat, thermal conductivity, and acoustic absorption previously. 
observed in glasses at very low temperatures « 1 K). 
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