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Reflection, Transmission, and Mode Conversion
in a Corrugated Feed

By C. DRAGONE
(Manuscript received December 14, 1976)

Microwave antennas are often required to carry signals simulta-
neously over a broad range of frequencies—e.g., the combined TD-2 and
TH common carrier bands encompass a total frequency ratio of about
1.8 to 1 as do the combined 18- and 30-GHz bands. To achieve these
bandwidths, an efficient broadband feed horn is required. The corru-
gated (hybrid-mode) horn is a leading candidate, but it is not immune
to some cross-polarization coupling, input reflection, and pattern
asymmetry. These problems are introduced mainly by two phenomena:
variation of the dominant mode shape with frequency and mode con-
version along the horn taper and at waveguide transitions at the horn
input. Simple formulas for computing the magnitude of these phe-
nomena and their effects on return loss and radiation patterns are
given.

. INTRODUCTION

Corrugated feeds (also called hybrid-mode feeds) are widely used in
reflector-type antennas because of their excellent radiation character-
istics.1-16 At the frequency wg at which the surface reactance X, of the
corrugations becomes infinite, the radiation pattern of a properly de-
signed feed is circularly symmetric, is free of cross-polarized components,
and has low sidelobes. In principle these properties can be obtained over
a frequency range of more than an octave. In fact, one can show that the
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Fig. 1—Corrugated horn of Ref. 17.

field over an aperture illuminated by the fundamental mode has the
remarkable property that in the limit, as

ka > ©, (k = 271'/>\)7

where a is the aperture radius, the field distribution becomes indepen-
dent of the surface reactance X, (provided X, 5 0). A corollary of this
behavior is that a feed of sufficiently large aperture will have the above
radiation characteristics over a wide range of frequencies provided only
the fundamental mode is excited in the horn. To verify this behavior,
an experiment, described in a companion article,17 was made. A very long
horn (see Fig. 1) was fabricated carefully, using a special fabrication
technique to minimize geometrical imperfections in the corrugated walls,
and the radiation characteristics were measured from 17 GHz to 35 GHz.
From 17 GHz to 29 GHz the far field was found, as expected, to be es-
sentially polarized in one direction. At frequencies above 29 GHz,
however, a cross-polarized component was found to be caused by a cer-
tain undesirable mode, which will be called the HE};-mode. This mode
was excited primarily at the input, where the corrugated waveguide was
connected directly to a smooth waveguide, as shown in Fig. 1. A calcu-
1ation, given in eqs. (102) and (103) of this article, was therefore made
to determine the total amount of power converted from the TE;;-mode,
incident at the input, to the HE};-mode.

A peculiarity of corrugated feeds is that there is some mode conversion
even in a conical horn of constant surface reactance X, (unless X, = 0
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or X, = «). An evaluation of this effect is given in Section VII. However,
in the experiment, the taper angle « (Fig. 1) was chosen sufficiently small
(a =~ 4°) so that this effect was negligible.

The analysis starts in Section III with a derivation of the asymptotic
properties for large ka of the modes of a corrugated waveguide. The re-
sults provide a simple and accurate representation of the modes in a feed
aperture of more than a few wavelengths in diameter. Then, in Sections
V and VI, a first-order derivation of the scattering parameters of a
junction between two waveguides of slightly different characteristics
is given. A simple relation [see, egs. (83), (84), and (115) to (117)] is found
between the scattering parameters and the coupling coefficients between
the modes on the two sides of the junction. Each coefficient is given,
except for a constant, by an integral of the type

f fs (Ey X Hy*) - i, dxdy,

where S is the junction area, and E; and Hj are the electric and magnetic
vectors of the two modes, respectively. In Section IV, this surface integral
is converted to a line integral, thus reducing the calculation of the cou-
pling coefficients to a straightforward exercise. This result is useful also
to calculate the far field of an aperture S illuminated by a mode Ey, since
the far field at a given observation point is, except for a constant, the
coupling coefficient over S between E; and the field H; of a plane wave
having the direction of the observation point. The far-field calculation
is thus reduced to a contour integration.

The calculation of the scattering parameters is carried out in Sections
IV to VI, using the above contour integral. It is found, for instance, that
the input reflection of a corrugated feed connected to a smooth wave-
guide of the same diameter is simply given by the coefficient

oy = — 81— 6
o+
B: and B; being the propagation constants in the two waveguides. An
identical formula was derived by Brown!® from the principle of conser-
vation of momentum, but that derivation is not applicable to the present
problem, which involves hybrid modes.

Finally, Section VII deals with the problem of spurious mode gener-
ation in a nonuniform waveguide whose parameters (radius and surface
reactance) vary along the axis, as in Fig. 1. The differential scattering
parameters that give, at any point in a nonuniform waveguide, the local
coupling between the incident mode and the spurious modes are ob-
tained from the analysis of Sections V and VI. By solving the differential
equations specified by the above scattering parameters, we can thus
determine the amplitudes of the spurious modes. An example is provided
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of a first-order calculation of mode conversion in a conical waveguide
such as the one in Fig. 1 for z > z;. The result, eq. (154), is again quite
simple.

Il. PRELIMINARY CONSIDERATIONS

For a smooth waveguide, there is a simple relation between the
propagation constant 3 of a mode and the waveguide diameter, but no
such simple relation exists in the case of a corrugated waveguide [see eq.
(20)]. For this reason, the properties of the corrugated waveguide modes
cannot generally be determined as simply as in the case of a smooth
waveguide. Also, the field configuration of each mode varies with
waveguide diameter. There is, however, an important exception. When
the radius a of the corrugated waveguide is sufficiently large, the prop-
agation constant g for some of the modes is simply given by

ﬁ =V (ka)2 — UQm > (1)
where ug,, is the mth zero of the Bessel function Jg of order zero,
Jo(tom) = 0. (2)

For all the other modes except one (for this special mode (3 is independent
of a; see Appendix B) one has

18 =V (ka)2 - u2m ] (3)
where uo, is the mth root of the Bessel function of order two,
J2(u2m) = 0. (4)

Equations (1) and (3) are valid provided a > \, a condition which is
satisfied to a good approximation by most feed apertures. Thus, the
case

ka > 1 (5)

is of considerable practical interest. One finds that as ka — «, the
properties of a mode become independent of the surface reactance X
of the corrugated walls, except for the mode of Appendix B. Thus, the
field distribution over the aperture of a feed illuminated by a single mode
will be little affected by the surface reactance X (which varies fairly
rapidly with frequency) provided ka is sufficiently large. This result, first
pointed out by Thomas,? is very important for it implies that the aper-
ture field distribution becomes frequency independent for large ka. The
main purpose of this section is to determine the asymptotic behavior of
the hybrid modes for large ka. It is shown that if ka # « there is over
the aperture of a feed a certain undesirable cross-polarized component,
even if the aperture is illuminated by a single mode, unless of course X,
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= =, A simple expression for the amplitude of this component is
given.

lll. ASYMPTOTIC BEHAVIOR FOR LARGE ka

Consider a disk-loaded waveguide centered around the z-axis, as in
Fig. 1, and assume its parameters a, b, and h are independent of z. Let
r, ¢, z be cylindrical coordinates defined by x = r cos¢ and y = r sing.
The separation of the disks, which occupy the regiona <r < b, is as-
sumed to be much smaller than a wavelength A,

kh «< 1. (6)

The region between two consecutive disks forms a radial line whose input
reactance jX atr = a is a function of the radial length l = b — a; for ka
> 1, one has approximately

JX = jZytankl,

where Zg = Vuy/eg - For a finite number of teeth per wavelength, the
value of [ must be corrected.* Because of condition (6) the effect of the
disks can be accounted for adequately by introducing an effective surface
reactance®1219

X=X (1=7), ™

where t is the thickness of the disks, and by requiring that the field for
r < a satisfy the boundary conditions

forr = a, (8)

7 Xs
where E,, Hy, E, are the ¢ and 2z components of the electric and magnetic

field.
Let 3 be the propagation constant in the z direction,

B8 =k cosby, 9)

and assume 6, is real, so that 8 < k. The case where 6, is imaginary is
considered in Appendix B. Assume the ¢ dependence of E, is given by
cos¢. Then, the field components of a mode that propagates in the z
direction with propagation constant 3 are eiven by

E, = AJ(xr) cos¢ e b7 (10)

* See Ref. 17 for the effect of a finite number of teeth per wavelength, which causes a
reduction of the effective depth, /.
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ZoH, = BJ(kr) sing e—/#z, (11)

Ey= —]_ [BJ/1(Kr) + A cost, Jl(Kr)] sing e ~Jfz, (12)
sinf Kr
_ j ’ J].(Kr) -7
ZoHy = — = AdJ{(kr) + B cosf, cos¢ eJBz, (13)
sinf, Kkr
E,=— —J— [B Jalkr) + A cosb; J'l(xr)] cos¢ e Ibz, (14)
sinfy KI"
ZoH, = ——1— [A D) 4 g cosf; Ji(xr)] sing e=/6z,  (15)
sinfly KI
(r =a),
where
k=Fk sin()l.

The boundary conditions (8) givel2
u_ Jyw)

- , 16
costy J1(u) .
cosf; 1 1 Ji(u)
= - + ) 17
y sinfy u vy sinfy J;(u) (un
where
u = ka sinfy,
Zo

== 18
y=- (18)

and v is the ratio between the TM and TE components of the hybrid

mode,

A

Y=g (19)

By eliminating v from eqs. (16) and (17), one obtains the eigenvalue
equation

vy _1 Jiw [(uJa(u) ‘2_1+_u2_]
ka u2udi(u) L\ J1(u) ) (ka)2 )l

which is eq. (10) of Ref. 12.
The solutions of this equation are now studied for large ka. Both u and

y are assumed to be finite. Then, in the limit as ka — =, eq. (20) reduces
to

(20)

Jiw) N2 51
<J1(u)u> 1=0. (21)
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We distinguish two cases:

Ji(wu
TRy 22
J1(w) (22)
and
Ji(uw)u
— = 23
J1(u) (23)

According to eq. (16) (with cosf; ~ 1, since §; — 0 as ka —> =), these two
cases correspond respectively to

y=1 (24)
and
y=-L (25)

Using well known recurrence relations between the Bessel functions and
their derivatives, and using conditions (22) and (23), we find

Jo(u) =0 (26)
and
Jolu) = 0. (27)

We conclude that for large ka, eq. (20) possesses the two sets of solu-
tions

u~ugy, (m=1,2 etc.) (28)
and
u~uy, (m=1,2, etc.), (29)

Uom and usp, being respectively the mth root of Jo(«) and Jo(u). Solu-

tions (28) and (29) are characterized by v ~ 1 and y ~ —1; the corre-

sponding modes will be designated,* respectively, HE;, and HE{,,.
Asymptotic series for u and v in terms of

1
— (30)
ka

* This mode classification differs from the one by Clarricoats!? and it was chosen for the
following reason. Here, and in Ref. 17, we are mterested in horns whose inner radlus a varies
gradually with z, while the wall susceptance y is approximately constant, as in Fig. 1, from
zotoz;. Con51der therefore a mode propagating in Fig. 1 from z towards 21 Clarrlcoats
classification assigns in some cases a different name to this mode in different regions of
the horn, even though there will be no discontinuous variation of the mode-field config-
uration, as it propagates in the horn. On the other hand, our classification based on the
Bessel function roots Upm and usy,, assigns a single name everywhere in the horn. If instead
the frequency is gradually changed the mode of a waveguide of given dimensions will retain
the same name with Clarricoats’ classification, whereas this is not always true with our
classification. To understand better these considerations, see also Ref. 25.

CORRUGATED FEED PERFORMANCE 841



are derived in Appendix A under the assumptiony # «. For the HE,
modes, characterized by v — 1 as ka — «, it is found that

1 1 2 12
u=um=u0m(l—glj—a—g[l—yz(l'f-ugm)] (E)

+§[1—§(7u%m+1)] (k—1a>3] (31)

and
yl y? 1
=1-ude (2= -L (4 +ud, (——)
Y “o {2ka 8( 0 ka
y 1 2 y? 2 ]<1>3 ]
-2l1-=u2 —= +2) | (—) ---1. (32
2[1 St = Gud+2) | (o (32)

For the HE},,-modes, characterized by vy — —1, u is given by

, ly
= Uom |1 ==L
u Us [ 5k (33)
and
ly
= -1 - 2m‘——... .
Y uj 2 ka (34)

The x and y components of the electric field are now derived. First
consider the HE;,, modes. One finds from egs. (10) to (15), with cosf;
=1 and « given by eq. (32), that for large ka the transverse component
of E is given by

EtZ—j@A[J()(ﬁu)ix
u a

1 y r
+ el 2 -~ — - . .
1 u b Jo (a u> (cos2¢ i, + sin2¢ 1y)], (35)

omitting the factor e ~/82. Amplitude A is determined by power P carried
by the mode. From eq. (67) with du/dy given by eq. (92) and n; = A

1Tl ]

Al ==
4] a ¥ 7 aBkaJHu)

(36)

if P=1,
For the HE],, modes with vy =~ —1, on the other hand,

.k
E ~j —aA [J2 (5 u) (cos2¢ i, + sin2¢ i,) +--- ], (37)
u a
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where the dots represent terms that vanish as ka — «. The amplitude
|A| for P = 1 is still given by eq. (36).*

An important property of the field distribution (35) is that E, — 0 as
ka — «. Thus, in the limit'as ka — «, the field becomes polarized in one
direction, regardless of the value of the surface reactance X, (unless,
of course X; = 0). From eq. (35), the amplitude of E,, is porportional to
the ratio

y

e (38)
Therefore, in order that E, be negligible over the aperture of a feed, it
is sufficient that the aperture diameter be large and the thickness ¢ of
the disks (see Fig. 1) be small compared with their separation.” The far
field of an aperture illuminated by the fundamental mode, the HE;;
mode given by eq. (35) for u = ug; = 2.4048, is discussed in Ref. 17. From
a comparison of the radiation patterns of £, and E,, we find that the
ratio C2 between the maximum value attained by |E,|?and |E, |2 (which
occurs on axis) is given by

2
C2=0.14 (l = 0.14 , (39)

ha [(1 — t/h)ka tan gi]z

wo

where w denotes the frequency for which y = 0. One can easily verify
using this formula that C2 remains less than 0.000316 (—35 dB) over a
frequency range w; < w < 1.93 wy, provided ka > 10 and ¢/h < 0.1.

Thus, good performance over a wide frequency range is possible,
provided all the power incident at the input of the feed is converted to
the HE{; mode. If, however, some of the input power is converted into
some of the HE],, modes, then, according to eq. (37), the field over the
feed aperture will contain a cross-polarized component whose amplitude
is essentially independent of the ratio y/ka. The resulting cross-polarized
cemponent of the far field is discussed in Ref. 17. If w; < w < wg denotes
the frequency range over which only the fundamental mode (HE;)
propagates, it is pointed out in Ref. 17 that the largest value that wo/w;
can assume is 1.6839; this value is attained for b/a = 1.8309. Cutoff fre-
quency formulas are derived in Appendix D.

In Appendix B, the properties of a surface-wave mode that can exist
in a corrugated waveguide, in addition to the modes of eqs. (35) and (37),
are briefly described.

* In eqs. (35) and (37), only the leading terms for the symmetrical, asymmetrical, and
cross-polarized components are retained.
t Note that from egs. (7), (8), and (18), y increases with ¢/h.
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IV. COUPLING COEFFICIENT BETWEEN TWO MODES

Suppose the electric field E; at the input of a corrugated waveguide
is known, and we want to determine the resulting amplitude of one of
the modes excited in the corrugated waveguide. We have to evaluate a
surface integral of the form

f fs (Ey X H) - i, dxdy, (40)

where Hs is the magnetic field of the mode whose amplitude is to be
determined. This integral, identical to that involved in determining the
far field radiated in a given direction by an aperture containing the field
E,, is in general difficult to evaluate. However, in many cases, we can

assume that
oE, _ .
— = —jBEy, (41)
0z

where (; is a constant. This condition is approximately satisfied,* for
instance, in the case of a feed aperture illuminated by a single mode
propagating in the z direction with propagation constant 8;. We will show
that the above surface integral can be reduced to a line integral which
can be evaluated straightforwardly. We use the symbol (E{, Hs) for the
integral (40), and call it the scalar product of the two modes E; and
H,.
If Ey, H; and Eq, H; are two solutions of Maxwell’s equations, in free
space,29
V-(E;XxHy; +E;XH;)) =0 (42)
in the absence of sources. Now, let the z dependence of the two solutions
be given by
e~JB1z  and e~Jhx, (43)
Then, in eq. (42)
V=V, —JjB1 — Boi, (44)
where V, is the transverse part of V. Therefore eq. (42) gives
Vi(E; X Hy + E3 X Hy) = j(81 — B2)[(E; X HY) -1, + (E5 X Hy) - 1, ].
(45)

Next, consider a new solution Ej, H} with propagation constant 8; =
—B; and with z components given by

E\,=-Ey (46)
* Of course, condition (41) is satisfied exactly by a mode in a cylindrical waveguide.
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Hllz = +H12- (47)

Then the x, y components of E;, H; simply coincide?! with the x, y
components of E;, —Hj,

E’lx = Elx; E’ly = Ely; (48)
H,lx = _Hlx) Hlly = —Hly- (49)

Therefore, replacing in eq. (45) 81, E1, H; with —8;, E;, H; and making
use of eqs. (48) and (49), we obtain

V:- (Ey X Hy + E; X H}) = —j (81 + B2)[(E; X HY)
- (B3-Hy)] X i, (50)
By adding eq. (45) to eq. (50), we obtain
(B; XxH3) i, =V,-F, (51)
where
j ’ * * ’
F=—""—[E, XH;+E;, XH
281 + Bo) [E 2 2 1]
j * *
————[(E; X H;) + (E; X Hy)]. (52
261 — Bo) [(E; 2) + (B, vl (62)

We now integrate eq. (51) over a finite area S of the plane z = 0, making
use of the divergence theorem,

IL(EIXHZ)-idedy=.¢;F-nds, (53)

where C is the contour of S and n is the outward normal. T'o determine
F . n, let 7 be a unit vector tangent to C,

r=1i, X n. (54)
Then, if A and B are two arbitrary vectors,
(AXB) -n=A.B, —A,B, (55)
where A,, B, are the components of A and B in the direction of 7.
Therefore, from eq. (52), taking into account eqs. (46) to (49),
B2
Bt — B3

F'n=_j [EITH;z'l-E;rHIZ]

B1

2 2
.31_ 2
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Finally, from eqs. (53) and (56), we obtain the desired result,

(E1,Hy) = f fs (E; X H}) - i, dxdy

= —j f (E1,H, + E3Hy,)ds

tig f (E1.H3, + E3.H1,)ds. (57)

Thus, the scalar product (couphng coefficient) of two modes E; and
E; can be determined straightforwardly from the values of E; and E,
on the contour of the aperture S. This result has a number of applica-
tions. It can be used, as already pointed out, to determine the far field
radiated by an aperture S with known field distribution E;, in which
case Hj is the magnetic field* of a plane wave with propagation vector
k and eq. (57) gives, except for a constant independent of k, the field
component radiated in the direction of k with the polarization of Hy. In
this article, we are interested in the special case where S is a circular area
of radius a, in which case we can replace in eq. (57) 7 with ¢, since

T=i¢.

If E;, H; ({ =1, 2) represents a mode of a corrugated waveguide of radius
a,sothat forr =a

Eiy=0, ZoHiy=—JyiEs, (58)
then eq. (57) simplifies to
1
(Ey, Hy) = — - 62 5 02— ) EuEs. ds (59)
Since the modes are characterlzed forz =0andr =a by
Ei; = nid1(w;) cos, (60)
where 7; is the coefficient A of the ith mode, then
aw .
(Er,Hy) =~ =P ()~ yommshiw)diwa. (6D
Zo B} — 63
Note that
a?(8}— B3 = uf —ui. (62)
If we assume
y2 =y1 +dy, (63)
us = uy + duy, (64)

N * There are two cases (two polarizations) that must be considered, for each value of
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from eq. (61) we obtain for the power carried by the mode E;

1 * Biad dy
Py==(E;, Hy) = — —————n¥J}u). 65
1 2( 1, Hy) 2% 2u; dulm i(u1) (65)
The derivative dy/du,, which appears in this expression, is calculated
in Appendix C. In the following sections, we choose

(E;, H;) =1, (66)
in which case from eq. (65)
2Z0 u; du,- 1
=1\ — — . 67
[l a’r Bia | dy | JHu;) (67

These results are now applied to the problem of a junction between two
different waveguides.

V. JUNCTION BETWEEN TWO WAVEGUIDES OF DIFFERENT SURFACE
REACTANCE

Let two waveguides of different surface reactance, but the same di-
ameter, be jointed at z = 0. Assume a single mode incident on the plane
of the junction from the region z < 0 and let E;, H; denote the transverse
field components. To determine the amplitudes of the reflected and
transmitted modes, we expand E; and H; on either side of the junction
in an infinite series of modes, and then require continuity of E; and H;
at the junction. A simple solution for the amplitudes of the scattered
modes is then obtained assuming the difference in surface reactance is
small. This result will be extended in Section VI to the more general case
of two waveguides of slightly different diameter.

Let the transverse fields for z < 0 be represented by a superposition
of the modes of the waveguide occupying the region z < 0,

E, = Aje; =812 + 5" R;e;ef, (2 <0) (68)
1

H, = Athje=if — i:jRih,-efﬁlz, (z <0), (69)
where
Ajee~ib1z,  Athje~ifz (Re(By) > 0)
are the transverse field components of the incident mode, and
R;e;eiBiz, —R;h;eifiz .
are those of the reflected modes.
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Similarly, for z > 0,

E, = % Tiele=ifiz, (z>0) (70)
1

H, = Y Tihje=i%z, (2 >0), (1)

where T; are the amplitudes of the transmitted modes.
We assume that e;, h; are normalized so that

(ei, hy) = j fs (er X h) - iy dxdy = b (72)

Similarly,
(e;, hy) = in. (73)
Since (e;, h;) represents twice the power carried by the ith mode e;, this

power becomes imaginary if the mode is cutoff, in which case eq. (73) for
i = 1 should be replaced with

(e;, h;) = .
However, in this article the calculation of R;, T; is restricted to the modes

that are not cut off by the two waveguides.
From eq. (61) with 7;, n, given by eq. (67),

i, Ny, 4
(ei, hy) = 261 e Y)\/IB,B iaura@yia ™
and

(e}, hy) = ‘; (e:, 1), (75)

where (e;, h,) and (e,, h;) are scalar products defined as in eq. (72)
and

uf = (ka)? — (B;a)?, (76)

a being the radius of the two waveguides. In eq. (74) 1/y and 1/y’ are the
normalized surface reactances of the two waveguides.
Now assume y’ — y is very small and let

oy=y —vy. (77)

To determine R;, T;, we require continuity of E, and H; for z =0,

Are1+ Y Ruen = Tiel + 3. The, (78)
1 2

Athy = ¥ R,hy, = Tthi + 3 T, h) (79)
1 2
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Take the scalar product of the first equation with h; and of the second
with e;. One obtains, taking into account eq. (73) and assuming that the
mode e; is not cutoff, so that 3; is real,

Aq(ey, hj) + Ri(e;, h)) + ¥ R,(e,, h) =T, (80)
n=li

Ai(e;, hy) — Ri(e;, hy)) = ¥ Ry(e;, h,) =Tt (81)
n=1,

Now, assume for the moment that y, y’ % «. Furthermore assume none
of the modes under consideration is at cutoff. Then

(e;, hY), (ejhn) (i #n) (82)

are small quantities of the same order of §y. Furthermore, as we show
below, this is true also for R,,. It follows that the two sums involving R,
in egs. (80) and (81) are of order higher than dy. Therefore, subtracting
these two equations and neglecting terms of order higher than éy,

o (e, hj) —(ej, hy)
Ri= = e )+ (b)) ®3)

Adding egs. (80) and (81), and neglecting terms of order higher than
oy and solving for T}, we obtain

(e, h) + (e}, hy)

T; = A 5 (84)
Using eqs. (74) and (75), we rewrite eqgs. (83) and (84) in the form

6 ulﬂz |dy/dui

Ri = - B 85

5 + 5: ulﬁ1 \/ dy/duy (85)
1 1 ul; 1

T, =4A,— - (y—y y —. (86)

g - TY) \/m | (dy/duy) (dy'/du?)|

The derivatives dy/du; and dy’/du; are derived in Appendix C.

It is interesting to note from eq. (85) that the reflection coefficient for
the mode i = 1 is simply

=t Bzh 87)
Ay B+ B8y

which coincides with a formula derived by Brown!8 from a principle of
conservation of momentum. However, that derivation is not applicable
to the present problem, which involves hybrid modes. Measurements
of p; described in Ref. 17 show that this formula, although derived as-
suming y’ ~y, is quite accurate even for relatively large differences be-
tween y and y’.
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It is also interesting to note that the following interpretation can be
given to eq. (86). If E; for z = 0 were known, we could determine T;
simply using the formula

T;= (E, h), (2=0), (88)

which follows from eq. (70), in view of the orthogonality relations (73).
Now, if y — y' ~ 0, E; does not differ much from A;e; and, therefore, we
might be tempted to write in eq. (88) E; ~ A;e;, in which case we would
get

T; = Ay(ey, hy). (89)
Alternatively, since from eq. (71) we also have
T; = (e;, H) forz=0, (90)
we might be tempted to assume H; ~ A1h, for z = 0, in which case
T; = Ay(ej, hy). (91)

Neither of the two formulas is correct* even if 5y ~ 0. However, according
to eq. (84), a correct expression for small dy is obtained by taking the
average of the two formulas. We now treat two special cases.

5.1 Limiting case ka > 1 »
Assume that both y and y’ are finite, but the radius a is very large,

ka > 1,

a condition which is often satisfied near the aperture of a feed. From egs.
(31) and (33)
du 1lu
lim —=—~—. 92
,WIEL dy 2 ka ©2)

Furthermore, for large ka,

lu2
~ka—>— 93
Ba a 2 ha (93)
since (8a)2 = (ka)? — u2. Therefore,
lu?—u? _1 ju;\2
SRR L el N AR 94
afi = afi ™ == 2<ka) Y ©04)
since from eq. (92)
- 1u
wiN U= o 0y. (95)

* They are often used, however.22
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Using these results, from eqs. (85) and (86) we obtain
wu; (Y —y)

T, = —A, — - S 96

=AM (66)
Luu, y -y

Ri=A,- LYY 97

T 4 (ka)? ka ©7)

One can show that these formulas are valid even if 6y is not small, pro-
vided both

are small.
An application of eq. (96) is considered in Section 7.1.

5.2 Case 1/y =0

At the input of the feed of Fig. 1, the corrugated waveguide is con-
nected to a smooth waveguide (1/y = 0) of the same diameter. We now
wish to calculate the reflection and transmission coefficients of such a
junction. Thus, assume y ~ « for z < 0. For y ~ », there are two types
of modes: TE modes, in which case v ~ 0, and TM modes, in which case
v ~ «. In the former case, from eq. (179) of Appendix C

dy kau

lim =% = —y2(u2—1) —— | =0). 98
y—’l o AU y (u ) (ka)2 - u2 (’Y ) ( )
In the latter case, from eq. (180)
dy _ u 9 _
oY -2 =~ »). 99
du " ra? (v ) (99)

Now let the incident mode be a TE;; mode. We distinguish two cases
depending on whether the ith mode is a TM mode or a TE mode. In the
former case, from eqs. (85) and (98)

Bi — Bi BiB1 1

lim R; = —-A : , (100)
yome "B+ B Y wi-1)k
where u is the first root of J(u1) = 0,
up = 1.8411. (101)

If, on the other hand, the ith mode is also a TE-mode, from eqs. (85)
and (99),

. — R 2 _
lim R,‘ = —Ai 61 61, ﬁulz L )
y—e B1+B; " Biui—1

(102)
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Fig. 2—Reflection, transmission, and coupling coefficients for input junction of Fig. 1.

From eq. (86) we obtain, using eq. (98),

. 1 Blu} 1
lim T;= A ; ; p— (103)
y— Yapr—aB; ¥ kapiui-1) \/ dy’
du;

where dy’/du; can be determined using eq. (178), unless y’ > 1, in which
case we can use eq. (98) or (99) with y,u replaced by y’,u;.

Equations (100) to (103) have been used to calculate the behavior of
a junction with b = 1.8309a. Consideration has been restricted to the
TE;; mode and the TM;; mode of the smooth waveguide, and the cor-
responding modes (HE;; and HE};) of the corrugated waveguide. The
results are shown in Fig. 2, where i = 2 refers to the TM; mode (or the
HE}; mode),

&2

i= 104
1=, (104)
is the input reflection,
=5 (105)
Ay
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gives the power converted into the TM; mode, and
Ty
Ag

gives the power converted into the HE}; mode. In Fig. 2, w, is the fre-
quency at which y’ = «. The corrugated guide at this frequency behaves
like a smooth guide and, hence,

p1=p2=1t2=0. (107)

The curves of Fig. 2 are useful in determining the practical bandwidth
of the junction of Fig. 1.

2

3= (106)

VL. JUNCTION BETWEEN TWO WAVEGUIDES OF DIFFERENT DIAMETER

For some applications, to minimize the input reflection of a corrugated
feed, it may be convenient to choose for the smooth waveguide a diameter
different from that of the corrugated waveguide. In this section, the
analysis of Section V is extended to the general case of a junction between
two corrugated waveguides of different diameter. Let a and a’ be the two
diameters for z > 0 and z < 0, respectively, and assume again a single
mode is incident on the junction, from the region z < 0.

If E; for z = 0 were known, then the transmission coefficients T; which
appear in eqgs. (70) and (71) could be determined at once using the for-
mula*

T; = fj; (E, X h})-i, dS, forz =0, (108)

which follows directly from eq. (70) in view of the orthogonality of the
modes e;, h; [see eq. (73)]. In eq. (108) S’ denotes the circular area
0<r<a’.

Now, for z = 0, E; is given by eq. (68) inside the area

0<r<a, (109)
and it vanishes for a < r < a’. Therefore, eqs. (108) and (68) give
Ti = Al(eb h;) + Z Rn(en’ h;)) (110)
n=1
where
(en b)) = . eax b)) icds, (111)

S being the circular area (109), which corresponds to the waveguide of
the region z < 0.

* Here we are only interested in calculating T; and R; for 8; > 0, 8; > 0.
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Equation (79), which was obtained by requiring continuity of H; for
z = 0, must be satisfied over the area S. By multiplying this equation
with e, and integrating over S, we obtain for n = 1

—R, =5 Tien h) (ns1). (112)
1

If the coefficients T in this relation are expressed in terms of the coef-
ficients R; using eq. (110), we get for n > 1

“R, = (A1 +R) ¥ (e1, h)(en, h))+ Rn 3 (e, h))?
' i=1

=1

+ ¥ R S (e, hj)(en, h)). (113)
=1

s#n,1 )

For n = 1, the second sum of the right-hand side should be omitted and,
furthermore, —R,, should be replaced with A; — R;.

We have thus obtained a system of equations in the unknowns Ry, R,
etc. We solve* them in the limiting case where botha’ —a and y’ — y are
very small, in which case

(e,, h;) =0 forn #s
R, =0

, , 114
(en h) =170 (114)

and therefore the first two terms of the right-hand side of eq. (113) for
n # 1 are respectively equal to

Ai[(en, h}) + (eq, hy)]

and R,,. The last term can be neglected. Therefore, eq. (113) gives for
n#1

1 , ,
Rn ~ = 5 [(ely hn) + (en> hl)]Al (n # 1)‘ (115)
Similarly, forn = 1,
1 , ,
R, :5 [1 - (e1, h))2]A; =~ [1 — (e1, hp]A;. (116)

The transmission coefficients can now be determined using eq. (110).
We find forn # 1

T, zé[(el, h.) — (en, h)JAL (0 % 1), (117)

which is a generalization of eq. (84).

* This derivation is not rigorous, for we neglect to examine the question of convergence
of the summations in eq. (113). However, the validity of the results appears to be confirmed
by the experimental results.
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The coefficients (e;, h),) can be calculated using eq. (57). If y’ — y and
a’ — a are very small, we can proceed as follows. The field components
e, and h,, of the nth mode are considered to be functions of the coordi-
nates r,¢ and of the two waveguide parameters a,y. Therefore,

ah oh,
oa ¥
where h,,, 0h,,/0y and dh,,/0a are evaluated fora’ =a, y’ =y, and 6y

are da denote y/ — y and a’ — a. a similar relation can be written for e,
It follows from eq. (118) that (e;, h},) for i  n is a sum of two terms,

, n h,
(e;, h,) = (e,-, oh, ) oy + (ei Q0 ) 5a, (119)
oy oa

since (e;, h,;) = 0. The first term is simply the coefficient (e;, h},) cal-
culated for a’ = a; it corresponds to a junction between two waveguides
of the same radius, but different surface reactance. The second term can
be interpreted as the coefficient (e;, h},) relative to a junction between
two waveguides having the same surface reactance but different radii
a and a’. Since the term has already been treated in Section V, only the
latter need be considered. If one sets

oh 0
shy =2 5, be, = —on 5q, (120)
oa oa
and if the ¢ variations of both modes are of the type considered in Section
I, then, taking into account that e;, = 0 for r = qa, using eq. (57) we
get

. Bn h ben¢
i:ahl‘l = 5 . h —90°
(o0 $hn) ”“[’6?—62< =

h;l = hn(ry ¢) a,) y/) :hn

(118)

% 30 | oa 9=

. Bi Ohn¢ aenz ]
+ N + Lz > | a2t
T87 -2 (e + o gz | 020

As an application, consider y = «, in which case (e;, h,,) can be in-
terpreted as the coefficient (e;, h},) relative to a junction between two
smooth waveguides of radii a and a’ = a + éa, respectively. Assume e;
is a TE mode and e,, is a TM mode, so that forr = a

Ohn,

€ip = €z = T 0, (122)

where the last term vanishes because h,, is a TM mode. Then eq. (121)

gives
1 de, ne
62—ﬂ2[ ’B”< 2a >¢§9°°

de;,

+jB; ( - hi.p)ﬁ,::;)c]. (123)

(e;, 6h,) = wada
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Similarly, interchanging n < i in eq. (121) and taking into account that
forr=a

oe;
baz =e€ngp = €nz = hn: =0, (124)
we obtain
(en, 0h;) = 0. (125)
Now, the two modes are characterized by
1 r .
hiz = i1 <" ui) sing, (126)
Z() a
. ﬁ Jl (£ u;
J a a
hig = — 2= m; = ——— cose, 127
P Z " u cos¢g (127)
Ly
and
€nz = Mpd1 (2 un) coso, (128)
60’ (o)
eny = Jln Enf =~ sing, (129)
Unp r
Zu,
a

where the amplitudes n; and 7, are, because of the requirement (72),
given by

_a/2Z01 u} 1 1 L (130)
i ra a VB Vul =1 |J1w)| V (ka)
Np = 2Ll un L ! (131)

ma a VB, |J1(u,)| (kRa)’
From eqs. (123) and (126) to (131), taking into account that J;(u,) = 0,
we obtain the final result

ka 1 da
VaBiaB, Vui—1a

(e, 6hy) = 2 (132)

Note that in deriving this relation it has been assumed that éa is suffi-
ciently small so that
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If this condition is not satisfied, we should replace 8, with 3, in eq.
(132).

Of special interest is the case where e; and e, represent the TE;; mode
and the TM;; mode, respectively. In this case u; = 1.8411 and, letting
i = 1 and n = 2 for these two modes, we get

k B
(e1, 5hs) = 1.2937 ——o2 (133)
apiaBs a
From eqs. (115), (117), (125), and (133) we then obtain for the conversion
coefficients T's and Ro
k b
Ty~ —Ry~ 0.646 ————="2 X A, (134)
afiraBza
where |A1]2, | Ts|?, and |R2|2 represent the incident power, and the
powers transmitted and reflected in the TM;; mode. We can verify* that
T’ is smaller by a factor of 2 than the conversion coefficient given in Ref.
22, which is due to the fact that the assumptions of Ref. 22 imply

Tn ~ (el) h:l)y (135)

rather than eq. (117).
Note that for 82 — 0, we have a8, — usVv/éa/a , and therefore

Ty~ 0.646 \/aﬁ1 ( )3/4 (136)

Note T's remains finite even when the TM;; mode approaches cutoff
in the first guide.

Vil. MODE CONVERSION IN A NONUNIFORM WAVEGUIDE

Typically, a corrugated feed is made of one or more sections of non-
uniform waveguide whose surface reactance and radius are functions
of z. Since a nonuniform waveguide does not in general possess a natural
mode of propagation, an incident mode will be scattered in forward and
backward modes. This is true even for a conical waveguide of constant
surface reactance (except when y = 0 or y = «). The analysis of Sections
V and VI gives the differential scattering parameters which allow the
local coupling into forward and backward modes to be determined at any
point in a uniform waveguide. We can thus obtain a set of differential
equations, whose coefficients are given by the above scattering param-
eters, and which can be solved, at least in principle, for the mode am-

* In Refs. 22 and 23, the TM;; mode was cut off to the left of the junction, and for this
reason there is poor agreement between those measurements and eq. (134), which is not
applicable in this case. However, numerical calculations by Masterman and Clarricoats
agre well with eq. (134) at frequencies well above the cutoff frequency of the TM;; mode,
as we may verify from Fig. 11 of Ref. 24.

CORRUGATED FEED PERFORMANCE 857



plitudes. We confine ourselves to a first-order treatment assuming the
total scattered power is much less than the incident power, since this is
the most interesting case if the feed is well designed. It is convenient to
assume for the moment that only y varies with z, in which case the
waveguide can be approximated by a succession of junctions of the type
considered in Section V. Let the HE;; mode be incident at the input (z
= z;). We wish to determine the resulting amplitude T5(z) of the HE};
mode for z = zo. If the variation of y is sufficiently slow, we can neglect
reflections and determine T3 assuming the amplitude A, of the HEy;
mode is nearly constant. The transverse field of the fundamental mode
is then

Alele‘fq’l(z), (137)
where
dd
Uf = ;. (138)

The effect on the HE}; mode of a small variation 8y at z = £ is to produce
at z ~ z9 a component,

dTs = to(£)5yA e /P10 —j[Pa(z2)~2(8)] (139)
where
dd
—2 =gy, (140)
dz

and from Eq. (86),

-1 Uil 1
_ . 141
ta(£) afL— aps \/a25152 | (dy/duq)(dy/dus)| -

Note that both 3, and 3, are functions of z. From eq. (139), integrating
from z1 to 2o,

To(29) = fZQ dTs = Aje P22
z1

dy

X f Z to(2)etiln@-n Y g, (149)
z dz

1
which assumes a very simple form when ka > 1, as discussed in the fol-
lowing section.

7.1 Conical horn with ka >> 1
Suppose the radius a varies linearly with z, as shown in Fig. 1 for z >

21, that the flare angle « is very small, and
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ka(z) > 1

for z; < z < z5. It was shown in Section III that for ka >> 1 the properties
of a mode are entirely determined* by y/ka and, therefore, a mode will
propagate without variation of its transverse field distribution if y/ka
= constant. For this reason, it is reasonable to assume that mode con-
version will be negligible if

5 <i> = 0. (143)

Under this assumption, the effect on the amplitude of the HE}; mode
for z = z5 of a small variation é(y/ka) occurring at z = £ can be expressed
in the form

ATy = 79(£)0 (%) Aqe—i1Bg—ilé2(zD—62() (144)
a

where, since eqs. (144) and (139) must agree in the particular case a =
constant,

72(8) = kata($). (145)
From eq. (96),
To= —— 2 (ha > 1). (146)
ug —Uu;

Therefore,

Tolzs) = —Aqe—ivaten 112 f Z eilbio-2a0]g (l) (147)
ui—u? Ja ka

Note that, since ka > 1,

1u?
~ka — ——. 148
ap a 2 ka (148)
Therefore, from eqs. (138) and (140)
d kuf—ui
— |® - & =— . 14
M CORLICIEE S (149)
Now, a varies linearly with z,
a = (z — zp) tang, (150)

* Since now we are dealing with a conical waveguide, each mode is a spherical wave
centered at the apex A of the waveguide, and the field distribution over a spherical
wavefront is given to a first approximation (small «) by egs. (35) and (37). To obtain the
field distribution over a plane z = constant, we must therefore introdce in egs. (35) and
(37) a factor of exp (—j¥), ¥ = k(x2 + y2)/2R, R being the distance of the plane from the
apex.
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where z¢ is the value of z at the apex of the waveguide. Therefore, from
eqs. (149) and (150)

luj—ufy
P1(2z) — Po(z) = — = . 151
1(z) — @2(2) 2 y tana ka (151)
Of particular interest is the case
y = constant. (152)

Then eq. (147) can be readily integrated. Taking into account eq. (151),
we obtain

4uiuly? tana®

(uf — ud

2 __,,2 2
l—exp['luQ—Lﬂ—y—o—ﬂ)]l, (153)

/ 2 y tana ka; as

| To|? = |A;]?

X

where a; = a(z;). Therefore,

16ufuy? tana?
W —upt 7

where it is recalled that us = 5.1356 and u; = 2.4048. For o = 4°, which

is the value chosen in the experiment of Ref. 17, this inequality gives for
y=1

| Ty|? = |Aq)? (154)

2
|72 = 0.6636 104, (—41.8 dB), (155)
|A1]?
which is a very small value for most aplications. For « = 16°, on the other
hand, we obtain —29.8 dB, which may no be negligible.
Note that | T'5|2 and | A;|? are, respectively, the powers carried by the
HE}; mode and the HE;; mode.

Viil. SUMMARY

In the feed of Fig. 1, when a TE;; mode is incident at the input, some
of the incident power is in general reflected. Furthermore, some power
may be converted to unwanted modes if the corrugated waveguide
supports more than one mode at the input. Additional mode conversion
may take place inside the feed if the variation of the radius and of the
surface reactance is not gradual enough. As a result, a feed will have a
nonzero input reflection and, at some frequencies, unwanted modes may
illuminate the aperture of the feed. The consequences of these unwanted
modes on the radiation characteristics—e.g., enhanced cross polariza-
tion—are pointed out in Section IIT and in Ref. 17, where the theory is
compared with experiment.

These effects can be evaluated to good accuracy using the expressions
derived in this article, as highlighted below. For large ka, eq. (35) ex-
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presses the field shape for all copolarized hybrid modes of various radial
harmonics with the same ¢ dependence, while eq. (37) corresponds to
the cross-polarized modes. Equation (36) gives the mode amplitudes
required to normalize the power carried by the modes.

A property of corrugated feeds is that the aperture field distribution
does not remain constant with frequency, as in the case of a feed with
smooth walls, but varies because of the frequency dependence of the
surface reactance X,. Thus, although the desired mode has no cross-
polarized component at the resonant frequency of the corrugations, at
other frequencies the desired mode does radiate some cross polarization.
The ratio, C2, between the maximum value of the cross-polarized power
in the radiation pattern and the maximum value of the copolarized power
(which occurs on axis) is given by eq. (39). From eq. (39), it follows that
with large ka and thin disks one can maintain low cross-polarized power
in the radiation pattern from the desired mode over an octave or
more.

At a junction between waveguides of the same diameter but of dif-
ferent surface reactance, eq. (85) gives the general expression for the
mode coupling coefficient to modes reflected from the transition, and
Eq. (86) gives that for modes transmitted forward from the transition.
Equations (97) and (96) are simplifications of eqs. (85) and (86), re-
spectively, which apply for ka >> 1. When the input waveguide is smooth,
the mode coupling coefficient is given by eq. (100) for reflected TM
modes, by eq. (102) for reflected TE modes, and by eq. (103) for hybrid
modes transmitted forward from the transition. Since the transition from
smooth to corrugated waveguide is a major source of unwanted modes
in a corrugated horn, eq. (103) is very useful in determining mode purity.
Another important formula is eq. (87), which determines the reflection
coefficient of the dominant mode (return loss) for any transition in X
and any ka.

Another source of generation of undesired modes is the mode con-
version occurring along the conical taper of a corrugated horn. Equation
(154) gives the mode-coupling coefficient for the transmitted undesired
mode due to a conical taper.

In some cases a step in diameter may be used to match transitions
between different surface impedances; eq. (134) determines the mode-
coupling coefficients at a step in diameter.

APPENDIX A
Asymptotic Series for u and <y in Terms of 1/ka
We determine the asymptotic series for u and v in terms of
1
—, 156
ra (156)
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under the assumption y > 0. It is convenient to introduce in eq. (20) the
quantity!2

_udiw) _ Jow) _

u (157)
J1(uw) J1(u)
Note that
dF _ Jy(u) J1(u) Jo(u)
e T e e (158)
du Ji(u) J1(u) J1(u)
But from eq. (157)
Jow) _F, 1
Jl(u) u u
Therefore, eq. (158) gives
d—F=—1F2+<1—u). (159)
du u u
It follows that
ug+F2—1+u2=0, (160)
du
d?F dF
—+—(1+2F)+2u= 161
u s (L 2F) +2u =0, (161)
d3F d2F dF\ 2
ot (1+F +2<—> +2=0, 162
“as Tl MO T2, (162)
etc.
In terms of F, eq. (20) can be rewritten
1 1\2
yuZ—F—F2+1—u2(—> =0, (163)
ka ka
or, using eq. (159),
1 dF 1\2
—F+=— -(=) | =0 164
yukaF+du+u[1 (ka)] 0 (164)
Now assume
1 1\2
u=u0m[1+a1—+a2<—> +] (165)
ka ka
Develop F in a Taylor series about the point u = ug,,,
dF
F = F(uom) + (—) W = tiom) + -+ (166)
du U=uom

From eqs. (160) to (162), with u = ug,,, taking into account that
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F(uom) = -1, (167)

we obtain for the derivatives appearing in eq. (166),

(2)
o5 = —Uom
du u=uom
d2F
- = —3. 168
<du2>u=u0m ( )
d3F 1+ u,
— = —2=—"% etc.
(du3>u=u0m Uom ete

Substituting eqgs. (165), (167), and (168) in eq. (166) one obtains F as a
series of powers of 1/ka; the coefficients of this series are algebraic ex-
pressions in ug,, and a1, ao, ete. Similarly, by developing dF/du in a
Taylor series about the point u = ug,,, and then using eqgs. (165), (167),
and (168), we obtain dF/du as a series of powers of 1/ka. Substituting
eq. (165) and the above series expansions of F and dF/du in eq. (164),
we can solve for the coefficients «q, as, etc. We obtain eq. (31). Substi-
tuting eq. (31) in eq. (166) we obtain an expansion of F in powers of 1/ka.
Using these results, from

y=- = -, (169)

we get eq. (32).

Equations (31) and (32) have been obtained assuming eq. (165), which
corresponds to the limiting case of eq. (28). If, instead of assuming eq.
(165), we assume

, 1 1\2
U=t = o, [1 + 6 <E> + 6 (22) T ] (170)
we obtain egs. (33) and (34).
APPENDIX B

Surface Wave Mode
In addition to the modes considered in Section III, there is a mode for
which 8 > k. Thus, since for this mode cos §; > 1, it is convenient to re-
place 01 with jf; in egs. (16) and (18). Since
cos j# = cosh 6

sin jO; = J sinh 6
J10x) = jl1(x),
J1Gx) = I1(x),
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where I,(x) is the modified Bessel function of order 1, we obtain from
eqs. (16) and (17)

_ L u

_—, 172
I, (u) cosh 0 (172)
y 117(w)  cosh ;1 1]

R s et 173
ka [u Ii(u) u yu (173)

where u = ka sinh ;. We can verify from these two equations that u —
© as ka — «. Now, for large u,
u

, e
ILw)=~Ii(u)~ . 174
Therefore eq. (172) gives
y—©, aska—> o,
From eq. (173), for large u and ka,
y 1
—< -, 175
ka u (175)
Therefore, since u = ka sinh 61,
1
sinh 6; ~ — ; . . (176)

We now examine the behavior of the field components for ka — .
Taking into account eq. (171), from egs. (10) to (15), after replacing 6,
with j#;, we find for v = — (i.e., for B = 0) that the only nonzero com-
ponent of the magnetic field is H, and

1 , r .
—ZoH, = ——— Al ( —) —ifz,
¢ ™ sinh 01 A a cosg €

Therefore, for kr >y

~ZoHs~ A’ \/a: cos¢ explk(r — a) sinh 6; — jBz],

where A’ is a constant. This shows that the field is confined to the near

vicinity of the wall, decaying approximately exponentially from the
wall.

We can show that ka > 1.81, the surface wave mode in combination
with the HE;,, and HE;,, modes comprise the complete set of propa-
gating modes whose E, azimuthal dependence is cose.

APPENDIX C
Derivation of dy/du
From eq. (163),
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lﬂPLF+Q£V_59%'

where

- LLJ/l(u)
Ji(u) .

Furthermore, from eq. (164)

Therefore,

G T

For the case y — «, we now determine
. dy
lim —.
For y ~ = there are two types of modes: TE modes, in which case vy~ 0,
and TM modes, in which case ¥ ~ «. In the former case from eq. (169)
we have F' ~ 0 and, therefore, eq. (178) gives

. d 1 ka)2—u? 1
Jim = D
= —yUut- 1) i, (R0 4T
since from eq. (163) for F ~ 0
lim F = — ka2 u?
Yy y  kau?

In the latter case (y ~ «) from eq. (169), we have F' ~ «, More precisely,
from eq. (163)

u?

F=—y,
kay
and therefore from eq. (178)
dy _ka ., _ u —
=X —F2K - —y2 ~ ), 180
du e e (y~ ) (180)
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APPENDIX D
Cutoff Frequencies of the Modes of Equations (35) and (37)
From eqs. (16) and (17) we get
Y24+ yw—1=0,
where
yu?

w=-——"_.
ka cosf

Therefore, either

—w+Vel+d
,Y=w—‘ﬂ (181)
2
or
— — V(2
7=w__2“i4_’ (182)

respectively, in the two cases of egs. (35) and (37) (which correspond,
respectively, toy — 1 and v — —1 for ka — =). At cutoff 8 — 0; i.e., cosf;
— 0. For cosf; ~ 0, y # 0, we have |w| — « and, therefore, from eq.
(181)

9{0 ify>0

w ify<0’ (183)

(184)
whereas from eq. (182)

N 8 ify>0
v [Q ify<o0’

If v = 0, the mode is of the TE type. Now, for a TE mode at cutoff, the
only nonzero component of the magnetic field is H, and therefore the
surface reactance X has no effect on the cutoff frequency. This means
that the cutoff frequency can be determined by replacing the corrugated
wall with a smooth wall of radius a, and therefore the cutoff frequency
is determined by the condition:

J1(ka) = 0.

If ¥ = =, on the other hand, the mode is of the TM type and the only
nonzero component of the electric field at cutoff is E,. It follows that if
the disks are very thin (¢ ~ 0), they can be removed without affecting
the field. Thus, the cutoff frequency can in this case be determined by
replacing the corrugated waveguide with a smooth waveguide of radius
b. It is thus determined by the condition

866 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1977



J1(kRb) = 0.

Wheny =0,y = +1, and from eq. (16), J1(ka) = 0 for cosf; = 0. Thus,
when y = 0 both types of mode have the same cutoff frequencies.
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Characteristics of a Broadband Microwave
Corrugated Feed: A Comparison Between
Theory and Experiment

By C. DRAGONE

(Manuscript received December 14, 1976)

A corrugated feed with nearly ideal radiation characteristics from
17 GHz to 29 GHz has been built using a novel fabrication technique.
The bandwidth of single-mode operation was maximized by properly
choosing the input parameters of the feed. As a result, only the fun-
damental mode can propagate at the input from 19 GHz to 28.8 GHz.
In this frequency range, the far field is essentially polarized in one
direction. At frequencies higher than 28.8 GHz, there is a cross-polar-
ized component caused by an unwanted mode. An approximate cal-
culation of the power in this mode is given. A simple formula for the
input reflection coefficient is provided. Results are included that show
how to compute mode conversion in a conical taper, cross polarization
from a corrugated horn, including contributions from spurious modes,
and the reflection coefficient from the smooth-guide to corrugated-
gutde transition. Comparison of theory and experiment shows good
agreement.

I. INTRODUCTION

It has been shown by Thomas! that under certain conditions the field
over the aperture of a corrugated feed is virtually constant over a very
wide frequency range. For this behaviour to occur, the radius a of the
aperture must be much larger than a wavelength, i.e.,

ka >>1( =27”) Q)

and furthermore, the aperture must be illuminated by a single mode. If
both conditions are satisfied, we can show that the field distribution is
essentially independent of the surface reactance of the corrugated horn
wall, X, and, as a consequence, it is little affected by the variation of
X, with frequency. This result is very important, for it implies that it
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Fig. 1—Dimensions of the corrugated horn.

is possible to design a feed so that its radiation pattern is circularly
symmetric and polarized in one direction over a very wide frequency
range!=? (an octave or more). The most difficult condition to satisfy to
obtain such large bandwidth is the requirement that a single mode be
excited in the feed. This requirement is discussed in a separate article.*
Here, after summarizing certain results of that article, we describe the
results of an experiment. A long feed, with a flare angle of only 4°, was
fabricated using a special technique described in Appendix D. At the
input of the feed, which is shown in Fig. 1, the waveguide dimensions (the
corrugated depth [ and the radius a; see Fig. 1) were optimized so as to
maximize the bandwidth of single mode propagation. As a consequence,
unwanted modes were cut off (at the input) over the frequency range

w; < w <1.6839w;, 2)

where w; = 19 GHz and 1.6839w; = 28.8 GHz. The input reflection and
the far field were then measured from 17 GHz to 35 GHz. The input re-
flection agrees very well with a simple formula given in eq. (42) and de-
rived in Ref. 4. Over the frequency range (2), the far field is essentially
polarized in one direction. At frequencies higher than 28.8 GHz, however,
a strong cross-polarized component is caused by an unwanted HE};
mode, which is excited primarily at the input of the feed. A simple ex-
pression for the power converted into this mode is given in Ref. 4.
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Il. PRELIMINARY CONSIDERATIONS

In the experiment described in Section V, the feed is excited at the
input by a linearly polarized TE;; mode. Therefore, consideration will
be restricted to the modes arising for this particular excitation.2-8

Consider a disk-loaded waveguide centered around the z axis as in Fig.
1, and let r, ¢, 2 be cylindrical coordinates defined by x = rcos¢ and y
= r sin¢. Assume for the moment that the waveguide parameters h, q,
b, and ¢ are independent of z. The separation h of the disks, which oc-
cupy the region a < r < b, is assumed to be much smaller than a wave-
length A

kh « 1. (3)

The region between two consecutive disks forms a radial line whose input
reactance jX atr = a is a function of the radial length { = b — q, for ka
> 1,

JX ~ jZytankl, (4)

where Zy = Vuy/eo - Because of condition (3), the effect of the disks can
be adequately accounted for by introducing an effective surface reac-
tance?

X, =jx (1-7), 5)

where ¢ is the thickness of the disks, and by requiring that the field for
r < a satisfy the boundary conditions

E, <0
¢ forr = a, (6)

- L
71X

where E,, H,, E, are the ¢ and z components of the electric and magnetic
field.

2.1 The HE,, and HE' ,,, modes

The properties of the hybrid modes?-8 of a corrugated waveguide are
determined by the radius a and the surface reactance X of the wave-
guide. In general, there is no simple relation2 between the propagation
constant 3 of a mode and the two parameters a and X;. If, however,
condition (1) is satisfied and furthermore

y
&1, 7
ra < (7)
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where

Zy
=—-—, 8
=% (8)
then we can show?4 that for all the modes except one, described in Ap-
pendix B of Ref. 4, the propagation constant is independent of X, and
is simply given by

Ba~/(ka)> - u?, 9
where u is a constant that is either the mth root of Jo(1) = 0, or of Jo(u)
= (. Thus, either

U= Up, Joum) =0 (10)
or

U=, Jo(uy) = 0. (11)

The modes to which eq. (10) applies will be called HE},;, modes and those
corresponding to eq. (11), HE}, modes. The HE,,, modes approach
asymptotically, for large ka, the field distribution2-

E=J, (5 u> e~ibe iy, (12)
a
whereas the HE,, modes approach the distribution
E=J, (f u> (cos2¢iy + sin2¢i,)e /4=, (13)
a

The absence of a z component in eqgs. (12) and (13) is due to the fact that
this component vanishes like 1/ka, as ka — .

The HE),, modes, which are given by eq. (12), have the important
property that the electric field is polarized in one direction. Of special
interest is the fundamental mode (m = 1) characterized by

u =u; = 2.4048. (14)

Note that both egs. (12) and (13) are frequency independent.

Thus, over the frequency range in which both conditions (1) and (7)
are satisfied, the field distribution of an aperture illuminated by the HE{;
mode is essentially frequency independent.l2 If, however, only condition
(1) and not condition (7) is satisfied, then we must add? to the right-hand
side of eq. (12) a component of the type (13), so that

E~J, (5 u> i -r=1, (5 u> (cos2piy + sin2¢i,),  (15)
a 0% a

where the factor e 7762 has been omitted. Both v and u are functions of
ka and X, and, therefore, they vary with frequency. If one develops v,
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u in power series of y and 1/ka one finds*

1 1
u=um‘1—-§y<a>u-] (16)
2 112
y=1-u [gé—%u%(4+u,2n <EE> ] (17)

2.2 Mode conversion in a conical horn®

Consider a conical horn of constant surface reactance and flare angle
a, as shown in Fig. 1, from z = z; to 2z = zo. If « is sufficiently small, and
if the input of the horn is excited in the HE{; mode, then the resulting
field inside the horn is very nearly a spherical wave!-® originating from
the apex of the horn and given by

Ee—ikR (18)

where E is given by eq. (15) and R is the distance from the apex of the
horn. Since « is small,

r2
R=z+—, (19)
2z

r being the radial distance from the axis and z the axial distance mea-
sured from the horn apex. From eq. 17, the parameter v which appears
in eq. (15) is a function of both y and ka; assume |y| # «, 0. Then, since
ka increases with z, we have from eq. (17) that v varies with z, and
therefore the field distribution (15) does not remain constant with z. This
variation is accompanied by generation of unwanted modes, an effect
that will be negligible only if « is sufficiently small.

To determine how small « should be, consider the special case ka(z;)
> 1 treated in Ref. 4. Let P, be the total power converted from the de-
sired mode into the HE}; mode and let P, be the power incident at the
input. Then, we find that for z = z,

P, = Py X 3.393 (1073)y2 tan2a|1 — e/¥| 2, (20)
where
" vianataten (" aten) @)
Therefore,
P. = Py X 1.357(10~2)y? tanZa, (22)

where the equality sign is attained for ¢ = (2n + 1)7. In the experiment,
a = 4°, in which case for y = 1 we find P, = 6.636 X 1075 (—41.8 dB),
which is negligible for most practical purposes.
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1ll. RADIATION CHARACTERISTICS267

Let the aperture of the horn be of sufficiently large diameter that the
far field is simply proportional to the Fourier transform F of the aperture
field. Also let a be so small that we can neglect the phase variation caused
over the aperture plane by the variation of R in (18). Then, by taking the
Fourier transform of eq. (15), we obtain for the field distribution at a
great distance D from the aperture, for example, using the contour in-
tegral method of Ref. (4),

F = No(u,0)i, + %Ng(u,v) (cos2¢i, + sin2¢i,), (23)
Y
where
v = ka(zs) sind, (24)
2
Ni(uw) = 20_ 2 [vdk (W) 1(v) = udy(v)J1(w)], (25)

and ¢, 0 are spherical coordinates defined by x = D sinf cos¢, y = D sin
0 sing. Equation (23) gives, except for a factor independent of ¢, 6, the
far-field pattern. For small y/ka we have

u = uy = 2.4048.

In this case, from egs. (23) to (25) the cross-polarization ratio C between
the maximum value of | E, |, which occurs for v = 3.67, and the maximum
value of |E, |, which occurs for v = 0, is given by

|E Ima — 1\2
2 = P
C2= AN = (0.26)2 (7 " 1) (26)

From eq. 17, the asymptotic value of C2 for large ka is
2
C2—0.14 ( > (27)
ka

If ka > 1, but y/ka is not small, C2 has the behaviour of Fig. 2.

Equation (23) assumes that the aperture of the horn is illuminated
by the HE;; mode. If, in addition to this mode, there is also some HE};
mode of power P, then we have in addition to the component in (23),
a component?

v x \/ £ Jl(” = Na(@o) (cosgis + singiy), (28)

where P,, P are the powers carrled by the two modes and ¢ is their dif-
ference in phase for z = zo. For ka > 1,

~u; = 5.1356. (29)
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Fig. 2—Cross-polarization peak versus normalized surface susceptance.

Therefore, from eq. (25) with Jo() = 0,

aZu

N @) = ( Jg(u)Jl(m)2 (30)

L,2 — zzQ
whose maximum value occurs for v ~ 4.356 and is
1.271 X 1073 X a4J ¥ (u)u2 (31)

Because of the component (28), we have for ¥ = 1 that the ratio C2 be-
tween the maximum value of |E, |2, which now occurs for v = 4.4 and
the maximum value of |E,| is

P
C2=0.194—". 32
P (32)
Note from eq. (23) that the normalized radiation pattern of the HE;;
mode for ka > 1 is simply given by

QM]Q

SR (33)

P@) = [u

with u = u; = 2.4048 and v = ka sin 8. If 6; and 65 denote the values of
f for which P(8) = 0.5 and P(#) = 0.1, then from eq. (33)

ka sin 0; = 2.078 (3-dB point) (34)

and
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ka sin 8 = 3.597 (10-dB point), (35)

respectively.

IV. FEED DESIGN?%®

The feed of Fig. 1 is now described. Its measured characteristics are
discussed in Section V. Let {wo, w1} be the frequency range over which
only the dominant mode, the HE;; mode, propagates at the input (z ~
0). Let wg be the frequency at which the surface reactance is infinite at
the aperture; then

b(zs) — alzs) = % at wo. (36)

At the input, the ratio between the radii b and a is optimized for maxi-
mimum ws/w;. This is shown in Appendix A to require

b(0) 7.0155

20 L2299y gapg. 37

a(0)  3.8317 (87)
Then*

w2 _ <32> = 1.6839, (38)

wq w1/ MAX

and the surface reactance can be shown to vanish for v = wo,
y=owforz =0,at w = wo. (39)

In the experiment, the frequency w; was chosen equal to 19 GHz, which
gives wo = 28.8 GHz, a(0) = 0.556 cm, and b(0) = 1.161 cm, as we obtain
from eqs. (37) and (38) and the condition

kb = 7.0155 at w = ws, (40)

shown by Fig. 9 of Appendix A.

From Fig. 1 the feed consists of two parts joined at z = z1. From z =
0to z = z1, the outer radius is kept constant, so the cutoff frequency of
the HE|; mode remains constant, as shown in Appendix A, where the
relations between a, b and the cutoff frequencies of the various modes
of egs. (12) and (13) are derived. Note that from z = 0 to z = z; the radius
a increases, which implies that at any given frequency the surface re-
actance decreases with z. The importance of this requirement was first
realized by Bryant8. From z = z; to the aperture, the surface reactance
remains constant with z. The frequency wg at which it is infinite was
chosen in the experiment

* To put this ratio in perspective, the highest frequency of the 6-GHz (TH) common
carrier band is 1,732 times the lowest frequency of the 4-GHz (TD-2) band; similarly, for
the 18- and 30-GHz bands, the ratio is 1.695.
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wo = 1.21 w;. (41)

Over the frequency range {w;, wo} only the HE;; mode is excited at the
input, other modes being cut off. Therefore, since the variations of a(z)
and b(z) from the input to the aperture in Fig. 1 are sufficiently gradual
to ensure negligible generation of unwanted modes, we have that the
aperture is essentially illuminated by a single mode, the HE;; mode, over
the above frequency range. The radiation characteristics for w; < w <
ws are, therefore, given accurately by eq. (23) with a = a(z2) and u given
by eq. (16) for m = 1.

From eq. (39), the input surface reactance vanishes at wo. Therefore,
since the corrugated waveguide is connected at the input to a smooth
waveguide of the same diameter, the input reflection is essentially zero
at w = wq. For w # w9, however, there is a reflection which, as we shall
see in Section V, is given accurately by

ol = (B2, (42)
61+ 84
where 8 is the propagation constant of the TE;; mode and £] is that of
the HE;; mode. Equation (42) is derived in Ref. 4.
At frequencies higher than ws, some of the incident power is converted
into the HE}; mode. If P, denotes the converted power and Py denotes
the incident power, then

P _ 1 ]2 B1

Py [a(61-69y Bou?—1)’
where u = 1.841 and f; is the propagation constant of the HE|; mode.
Some of the incident power is also converted into the TM;; mode of the
smooth waveguide. If P, denotes this power, which is reflected by the
junction, we have!

(43)

ﬂ;: (B2—B2)? BBy 1
Py (B4 fo)u® — 1 k%’

where 3s is the propagation constant of the TM;; mode. The above
coupling equations are derived in Ref. 4 assuming |y| > 1.

In the experiment described in the following section, the corrugated
waveguide is connected at the input to a smooth waveguide whose radius
gradually increases from a relatively small value a’ to the final value a(0).
The initial value a’ is sufficiently small so that the TM1; mode is cut off
and, as a consequence, the power P, is reflected back towards the junc-
tion where it is converted into the HE}; mode of the corrugated wave-
guide. The total power converted into the HE;;mode is thus in general
different from P,. It varies approximately between the two values

(VP, —VP)?and (VP, + V'P})? (45)

(44)
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Fig. 3—Return loss of corrugated horn of Fig. 1 vs frequency.

depending on the phase angle of the TM;; mode incident on the junc-
tion.

V. EXPERIMENT

A corrugated feed of the dimensions shown in Fig. 2 was built using
a technique described in Appendix C. Its measured reflection coefficient
agrees™* very well with eq. (42), as shown in Fig. 3. Its radiation charac-
teristics are shown in Figs. 4 through 6. From 17.5 GHz to 32 to GHz, the
radiation patterns are in good agreement with eq. (33), as shown in Fig.
4, which compares eq. (33) with two measured patterns of |E, |2 in the
plane ¢ = 45°. Furthermore, from 17.5 GHz to 32 GHz, there is little
difference between the patterns of |E, |2 in the two principal planes (¢
= 0 and ¢ = 90°) and the pattern for ¢ = 45°. The difference is altogether
negligible at wg = 23 GHz, which is the frequency for which y = 0 at the
aperture. Figures 5 and 6 show a few examples of patterns measured in
the two principal planes. The variations with frequency of the beam-
widths 260, and 20, (respectively, the 3-dB and 10-dB beamwidths) agree
very well with egs. (34) and (35), as shown in Fig. 7, where the measured
beamwidths in the plane ¢ = 45° are compared with the calculated
values.

Finally, the cross-polarized component E, is very small over the fre-
quency range of eq. (2), as shown in Fig. 8. For w > 28.8 GHz, however,

* Note that the measured reflection coefficient includes a small reflection due to a
transition from rectangular to circular waveguide, which was connected at the input of
the feed during the measurement.
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251~
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35—

401~

50
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Fig. 4—Calculated and measured radiation patterns vs normalized angle at ¢ = 45°.

the normalized peak C? of E, increases rapidly with frequency as ex-
pected because of the HE|; mode, which is excited at the input for » >
28.8 GHz. The solid curves and the dashed curves in Fig. 8 correspond
to egs. (27) and (43), respectively. The agreement with the measurements
is satisfactory, taking into account that eq. (43) is not expected to give
exactly the total power converted into the HE); mode, for several reasons.
In the first place, eq. (43) assumes a very large number of disks per
wavelength,

h <A,
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whereas in the experiment, h =~ 0.137\ at 30 GHz; the effect of a finite
number of teeth is briefly discussed in Appendix B. In the second place,
eq. (43) assumes that only the TE;; mode is incident at the input,
whereas in practice also the TM;; mode is incident, for the reason
pointed out in Section IV. The total power carried by the TM;; mode
is approximately given by eq. (44).

0

¢=0°
——— =90
ok
23 GHz
—
/:}17.5 GHz
—
20
9 /:}31 GHz
w
@
2 V
o
-30- \
—40|-
—-50 1 | 1 ] ] ]
-60 —48 -36 -24 12 0 12 24 36 48 60

BEAMWIDTH (0) IN DEGREES

Fig. 5—Measured radiation patterns at ¢ = 0° and ¢ = 90° (principal planes).

Note, finally, that even if the total power converted into the HE}; mode
is calculated accurately, to determine the resulting cross-polarization
peak C2, the difference in phase between the HE;; and HE[; modes must
be determined.
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-30—

—40}-

|
—60 —48 —36 —24 -12 0 12 24 36 48 60
BEAMWIDTH (0) IN DEGREES

Fig. 6—Measured radiation patternat ¢ = 0° and ¢ = 90° for 32 GHz (effect of HE;; mode
on pattern symmetry is evident at upper frequency limit of operation).

VI. CONCLUSIONS

Using a novel fabrication technique, described in Appendix C, which
can be applied at very high frequencies, a corrugated feed of small flare
angle was fabricated. Its input reflection, found to be given accurately
by the simple formula

o _ (BL—B1\?2
|p| - ’ > )
B1+ B
remained less than —30 dB from about 24 to 32 GHz. Over the frequency

range w; < w < wy, the far field was essentially polarized in one direction;
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Fig. 7—Calculated and measured 3-dB and 10-dB beamwidths.

its pattern is simply given by

PO) = (w2 520"

u2—yp2

At frequencies higher than 28.8 GHz, the far field contained a cross-
polarized component, as predicted by the theory of Ref. 4.

It was shown that a maximum bandwidth, expressed as the ratio we/wy,
of about 1.68 can be achieved for the type of corrugations considered
here. By using the corrugations of Ref. 10, which, however, are difficult
to realize at high frequency, greater values of we/w; may be achieved.

Both the input reflection and the cross-polarization ratio can be im-
proved by increasing the thickness ¢ of the disks at the input. Curves of
[p]2 and C? as a function of frequency for different values of ¢/h are given
in Fig. 2 of Ref. 4. In the experiment, t/h was kept constant for reasons
of simplicity, since our main concern was to verify the results of Sections
IT through IV and of Refs. 1 and 4, and to demonstrate the feasibility of
the fabrication technique described in Appendix D.
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polarization (see Section 111, eq. 26).
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APPENDIX A
Cutoff Frequencies of the HE,,, and HE ',,,, Modes

To determine eqgs. (37) to (40) it is necessary to establish the relation
between a, b and the cutoff frequencies of the various modes of eqs. (12)
and (13). Assume the thickness of the disks is very small. Consider first
the cutoff frequencies w., of the HE|, modes, which are characterized
for large ka by the field distribution of eq. (12). In the vicinity of the
cutoff frequency w.n,, we have, for any one of the above modes,

cos 0,, =0, (46)

where k cos 0,, is the propagation constant in the z direction,

2
cosl,=V1- m (47)

(ka)?
For w™~ w;,, we can show?* that the mode degenerates into either a TE
mode or a TM mode according to the following rule:
TE mode, if y > 0,
TM mode, if y < 0,}'

(48)
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Fig. 9—Region where only the HE;; mode propagates. Note: As w varies for agivena, b,
a point ka,kb moves along a straight line through the origin.

In the former case, since the only nonzero component of the magnetic
field of a TE mode near cutoff is H,, we have H; = 0, and therefore the
second of the two boundary conditions (6) can be ignored, which implies
that wc,, is independent of y. The corrugated waveguide can be replaced,
therefore, with a smooth waveguide of the same diameter whose cutoff
frequencies for the TE modes are given by the roots of J;(ka),

Ji(ka) = 0 for w = wem (y > 0).

(49)
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Fig. 10—Aluminum and brass disks assembled on mandrel. (a) Before machining. (b) After
machining exterior surface. (c) With electroformed wall of copper. (d) After machining
interior surface. (e) After etching away aluminum disks.

In the latter case, y < 0, the only component of the electric field for
© = wem is E, and, therefore, the very thin disks can be removed without
affecting the field. The cutoff frequencies therefore coincide with those
of the TM modes in a smooth waveguide of radius b, and are given by
the roots of J1(kb),

J1(kb) = 0 for w = wem, (y <0). (50)

Analogous considerations* are valid for the HE;,;modes, except that
now, instead of the rules (48),

TM mode, if y > 0,
TE mode, if y <0, )’
and therefore the cutoff frequencies w.,, are given by the conditions
Ji(ka) = 0 for w = w;m, ify<0

(51)

, (52)
J1(kb) = 0 for w = wep, if y > 0.
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Fig. 11—Modification of assembly to obtain strong attachment to teeth of electroformed
wall.

These results are illustrated by the diagram of Fig. 9 showing in the ka,kb
plane the region* where only the HE;;-mode can propagate. We can see
that we/w; is maximum when b/a = 7.0155/3.8317 = 1.8309, in which case
wol/w; = 1.6839, as pointed out in Section I before eq. 2.

APPENDIX B
Effect of a Finite Number of Teeth Per Wavelength
In Section IV, we assumed an infinite number of teeth per wave-
length—i.e.,
h KA,

a condition which seldom holds in practice. For instance, in the experi-
ment
h > 0.13716X
for w > 30 GHz. The effect of a finite number of teeth is not difficult to
evaluate approximately if
ka > 1,
In this case, in fact, the field in the vicinity of the corrugations can be

considered to be locally the field of a plane wave reflected by a corrugated
plane tangent to the actual corrugated surface. The angle of incidence

* In Fig. 9 we have not indicated a region for kb < 3.8317 where mode propagation can
occur, since that region is of no interest to us here. (The HE;; mode is cut off for kb <

3.8317).
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is 90° — 604, where

c0501=&.

k

Thus, from Ref. 9, we find that a corrugated waveguide of radius a >
A\ with a finite number of teeth is equivalent to one with h << A, but with
slightly larger inner radius a’,

a’:a+ln—2h,
s

and the same outer radius b. Although this result is strictly valid only
if a > A\, measurements!! have shown that it is valid approximately even
for ka ~ 4.

APPENDIX C
Fabrication Technique
Even if the aperture of a feed is illuminated by a single mode, the far
field contains a cross-polarized component with amplitude proportional
to [egs. (4), (5), and (27)]
[l = 1
ka (1 — t/h) ka tankl|’
To minimize this cross-polarized component, it is important that the
thickness ¢ of the disks be much smaller than their separation A,
t < h. (54)

Since h is always appreciably smaller than A/4, and since typically the
depth [ of the grooves is not much different from A\/4, condition (54)
implies

(53)

t << N4 (55)
t <« . (56)

Corrugated feeds are difficult to fabricate. When a corrugated feed
is electroformed, a mandrel of aluminum or other material is first pre-
pared, and then the corrugated feed is electroformed around the mandril,
which is then removed with a solvent. However, at high frequencies, say
at frequencies higher than about 10 GHz, condition (55) demands that
t be very small (much less than 0.318 cm). Then, taking into account (56),
the above technique cannot be used.

Figures 10 and 11 illustrate a technique that can be used at very high
frequencies, as high as 100 GHz, and which allows very small thicknesses
t to be realized. First a set of disks of aluminum and brass is assembled,
as shown in Fig. 10a, to form a single block whose outside surface is then
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machined as shown in Fig. 10b. The central rod shown in Figs. 10a and
b defines the axis of the corrugated waveguide. The surface S; corre-
sponds to the bottom of the grooves, as shown in Fig. 10e. The thickness
of the brass disks is t and, that of the aluminum disks, h — t. After the
surface S; is machined, a wall of copper (or other metal) is electro-
formed, as shown in Fig. 10c. The central rod is then removed, and the
inside surface Sp, which corresponds to the tops of the grooves (see Fig.
10e), is machined as shown in Fig. 10d. Finally, the aluminum is removed
with a solvent and the final product is the corrugated waveguide of Fig.
10e. An important feature of this technique is that the two surfaces S,
and S can be machined very accurately.

If the brass disks are too thin, their mechanical adherence to the
copper wall in Fig. 10e may not be satisfactory. In this case, we may
modify the above procedure by adding, after step b, an extra step b’ in
which the brass disks of Fig. 10b are replaced with disks of somewhat
larger diameter, as shown in Fig. 11b’. The exact dimensions of the new
disks are not important. The final result, after the aluminum is removed,
is shown in Fig. 11e’. The disks are now embedded in the copper wall.
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Acoustic Properties of Longitudinal
Displacement in Vocal Cord Vibration

By K. ISHIZAKA and J. L. FLANAGAN
(Manuscript received January 12, 1977)

We examine the acoustic significance of longitudinal displacement
in the self-oscillatory behavior of the vocal cords, and inquire into the
need for representing this detail in speech synthests. We use computer
techniques and a previously derived model of the vocal cords to study
the contribution of longitudinal displacement to the total acoustic
volume velocity generated at the vocal cords. This volume velocity is
the effective sound source for production of voiced speech. From com-
putational results, and from speech sounds synthesized by the pro-
grammed model, we find that the contribution of longitudinal dis-
placement is not significant perceptually, and is not essential for
modeling the dominant acoustic properties of voiced speech.

I. VOCAL-CORD MODEL

In earlier work!2 we derived an analytical model for the self-oscillatory
motion of the human vocal cords. We consider the displacing tissue of
each cord to be approximated by two stiffness-coupled masses (see Fig.
1). For normal (nonpathological) conditions of phonation, the oscillator
is bilaterally symmetric, and the mechanical constants of the opposing
cords are identical. The left-hand mass pair (denoted m1, m}) constitutes
the bulk of the firm cord tissue, while the smaller right-hand mass pair
(mo, ms) represents the more flaccid mucous membrane covering of the
firmer tissue. Each mass has associated with it a restoring stiffness and
a resistive loss. All the stiffnesses and resistances are substantially
nonlinear,! and in the original work, these elements act to oppose lateral
motion (x-direction) only. The restriction to lateral motion still permits,
of course, phase differences in the motion of the coupled masses. Lateral
displacement of each mass pair determines the cross-sectional area of
opening at each position. If the length of the cords, or glottal opening,
is taken as ¢, then the cross-sectional glottal areas are taken as rec-
tangular shapes whose areas are Ay = 2€,x;, i = 1, 2, where the factor
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Fig. 1—Two-mass model of the vocal cords. Translational displacement is permitted in
lateral (x) and longitudinal (y) directions.

2 arises from the bilaterally symmetric cord configuration. These
cross-sectional areas determine the acoustic properties of the glottal
volume current U, which enters the cord orifice (from the subglottal
system), and that which leaves it Uj, (to pass into the larynx tube). The
latter volume velocity is the effective sound source for all voiced speech
sounds. The air pressure just to the left of (beneath) the vocal cords is
the subglottal pressure Py, and the pressure just to the right of (above)
the cords, at the entrance to the vocal tract, is P;. The differential
pressure (P, — P;) is the potential that creates the glottal volume cur-
rents.

The resulting volume currents depend upon serial acoustic impedances
dictated by Az and Ao and, hence, upon the cord motion, which, in turn,
is conditioned by the intraglottal pressure distribution in the orifice and
by the transglottal pressure (Ps, — P;). These serial acoustic impedances
also are nonlinear (and flow dependent), and represent the mass (in-
ertance) of air contained within the glottal orifice and the associated
resistive flow losses.!

Additionally, there is another potential influence upon the glottal flow,
namely, the volume of air displaced by the vibrating mass pairs. In
general, this volume displacement can have components associated with
lateral and longitudinal motion. In the original work, components of
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Table | — Values of impedance components of Fig. 2

= 13721l = (2 -)
R, 1372T Ri2 5 Z-g ZTI {Ugsl
Serial
: 2 A
: a4
Impedances R, 5 ApAr 1- [ Ul
Ryy = 12u6%d,/A3,, sz = 12# 2dal/Ad
Lgi = pdi/Agy, Lga = pda/Ags
A _ dy _ dy
Longitudinal Uyi = 28,(d1 + do) =, Uys =28,(dy + do) —
Components dt dt
Ua = dl (Ag1) Usa = d2—— (Ag2)
= 20,d1dy,/dt, = 20gdy dyo/dt
Lateral
Components Cg1 = Aqrdi/pc? Cy2 = Agads/pc?
o n—1 Awo Q. N 1 Awo
Gi=5 pc? ¥ 2cpp’ Gz2= 5 pc? 2cpp
S1=2(fg+2x1)d1 Sg=2(£’g+2x2)d2
p = 1.14 X 10~3gm/cm?, air density
Constants u = 1.86 X 10~*dyne-sec/cm2, kinematic-coefficient of viscosity.
(for vocal ]
system, ¢ = 3.5 X 10%cm/sec, sound velocity
moist air n = 1.4, adiabatic constant
?;E;O)ga- A = 0.055 X 10~ 3cal/cm-sec-deg, coefficient of heat conduction
ture)* wo = 2x(1000), mid audio range radian frequency

cp = 0.24 cal/gm-degree, specific heat at constant pressure.

* From J. L. Flanagan, Speech Analysis, Synthesis and Perception, second edition,
New York: Springer Verlag, 1972.

glottal current corresponding to rate of volume displacement (both
lateral and longitudinal) were neglected.

Il. ACOUSTIC CIRCUIT

Recognizing that the cord dimensions are very small compared to
sound wavelengths at the frequencies of interest, and that all mechanical
velocities are small compared to the sound velocity, we derive a one-
dimensional equivalent circuit for the acoustic quantities involved. Its
complete form is shown in Fig. 2. The values of all impedance elements
are given in Table L.

The serial elements (top branch in Fig. 2) are identical to those of our
original work!, and relate to time-variation of the acoustic impedance
of the glottal opening.
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Fig.3—Simplified equivalent acoustic circuit, including longitudinal displacement
currents.

All shunt elements relate to rate of displacement of air volume by the
moving cord masses. The time variation of all shunt quantities is also
determined by the motion of the cord masses.

Lateral motion of the cord masses (normal to the direction of glottal
flow) displaces air volume at the rate of

dx,- .
Uei =24, d; I cm3/s, i =1, 2,

where x; is the lateral displacement and d; is the depth (thickness) of
the cord element (mass). Again, the factor 2 arises from the two bilat-
erally opposing cords. The acoustic compliances, C; and Co, represent
the compressibility of the small air volumes contained between the op-
posing cords and the conductances G; and G, represent the heat-con-
duction loss at the tissue surfaces of the cords.

Longitudinal motion of the cord masses is assumed to occur cophas-
ically and to be translational only. In this regard, consider the y-motion
of the locked masses to be opposed by a nonlinear spring and loss similar
to that of k1 and r;. The effective surface area exposed to the transglottal
pressure difference is taken to be the product of cord length and total
cord thickness, Z;(d; + d2). No cavity compliances or losses are associ-
ated with the longitudinal motion, and the longitudinal contribution to
the total volume velocity is

d
Uy = 26,(d, + do) d—f, i=1,2

In other words, Uy and U, are equal and oppositely poled.

Notice that in the earlier formulation,!-2 the absence of the shunt el-
ements imposes the constraint Uy, = Ug = U, The presence of the
shunt elements (all time-varying with displacements that are determined
by the equations of motion for the mechanical system which, in turn, is
forced by the intraglottal and transglottal pressures to close the feedback
loop of the oscillator) makes the input flow U, and the output Uy,
typically different.
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Fig. 4—Computed mechanical behavior of the vocal-cord/vocal-tract model. The vowel
configuration is A/.

A recent related study® examined the influence of the U,; upon Up,.
The present study considers separately the effects of the U,;. For this
purpose, the circuit of Fig. 3 is a simplification of Fig. 2.

Ill. PURPOSE OF PRESENT STUDY

In the original work,!2 we made estimates of the volume displacement
currents, based upon long-wave assumptions and one-dimensional sound
propagation, together with what we believed to be reasonable physio-
logical estimates of cord velocities (compared with volume velocities
responsive to transglottal pressure). We concluded that displacement
currents are of second order, and in the original work we chose to neglect
them in favor of elucidating dominant principles. The original formu-
lation, therefore, treated only lateral displacement as it affects the serial
glottal impedances. As a matter of completeness, we more recently have
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o

returned to a quantitative examination of these assumptions. A first
study,? now completed, considered the importance of the shunt branches
that represent the lateral components of volume velocity generated by
the displacing masses—that is, from the volume current sources U, and
U, The results of the study support the original assumptions, and show
the lateral components to be second order by comparison to the currents
actuated by the pressure difference acting across the glottal opening.

The present study examines the contributions of the longitudinal
displacement to the total glottal volume velocity (specifically, the con-
tributions of U,; and U,s) and the importance of longitudinal dis-
placement to the self-oscillatory dynamics of the cord model and to
sound perception.

We take the longitudinal restoring stiffness %, typically to be the same
as the lateral restoring stiffness k1, namely 80 kdynes/cm. The longitu-
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Fig. 6—X-Y trajectories for steady-state oscillation of the cord model.

dinal loss (or damping ratio) is also taken to be similar to the lateral one,
namely ¢, = {1 = 0.2 These values are based upon clinical observations.?
We examine these choices subsequently. Further, since the longitudinal
and lateral motions of the cord masses are considered to be translational
only, no rotational behavior is included. Still further, while the lateral
translations of the coupled masses m; and ms can have large (and
physiologically natural) phase differences, their longitudinal translations
are considered to be cophasic, and the internal coupling stiffness is as-
sumed to act only for lateral motion. The lateral and longitudinal mo-
tions are, therefore, coupled only through the acoustic variables that
determine the oscillator forcing functions. In the course of our discussion,
we will indicate comparisons to actual physiological data to assess the
realism of these assumptions.
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Fig. 7—Computed acoustic qualities for the vocal-cord/vocal-tract model. The vowel

is /a/.

IV. RESULTS OF COMPUTER SIMULATIONS

The vocal-cord model, as represented by Fig. 3, was combined with
a transmission-line formulation of the vocal tract that we have used
previously in speech synthesis studies.* The programmed vocal tract
contains 20 sections which, in addition to the classical acoustic elements,
represents the yielding soft walls of the tract and sound radiation from
the yielding walls. This formulation is based upon measurements of
tissue impedances that we reported earlier.> Also included for the present
study is a transmission-line representation of the subglottal system. Six
sections of line represent the trachea, bronchi and lungs, as previously
described.® We implemented the entire system in terms of difference
equations programmed on a laboratory computer by techniques we have
described in detail previously.!2
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Fig. 8—X-Y trajectories observed from excised larynx of dog (after Baer).

Most of the data reported here are for the vocal tract configured in
the shape for the neutral (schwa) vowel /a/. Some data are also included
for the vowels /i/ and /a/.

A first step is to ascertain if the cord oscillator, so arranged for longi-
tudinal motion, performs realistically when compared with observations
on the human larynx. A second step, then, is to determine the acoustic
significance of the volume displacement current arising from longitudinal
motion.

Throughout these calculations, the laryngeal parameters are set to
the “standard” values used earlier for phonation by a man’s voice in the
chest register! (i.e., neutral glottal area A4 = 0.05 cm?2, cord tension
parameter @ = 0.78, d; = 0.25/Q cm, do = 0.05/Q cm). Recall that the
@ parameter scales the values of mass and stiffness and, hence, also the
values of the d;. Phonation is initiated by raising the lung pressure P;
smoothly from zero to the standard value of 8 cm HoO. The pressure is
elevated in a 10-ms interval.

4.1 Mechanical behavior

As the lung pressure is elevated, the model commences a buildup of
oscillation. After four or five transient swings, the oscillation settles into
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Fig. 9—Subglottél pressure variation measured on a human subject (after Sawashima).

a steady state behavior with a fundamental frequency (pitch) determined
by the model parameters (the tension parameter § has the dominant
effect on pitch!). The initial 80 ms of this synthetic phonation is illus-
trated in Fig. 4 for the mechanical variables.

The top two curves show the displacements x; and x 2 of mass pair m;
and mass pair ms, respectively. The first collision of each mass pair is
indicated by the first flat, negative-going portion of the displacement
waveforms. For the Ay, = 0.05 cm? value, this occurs for x; = —0.0178
cm. Note, too, that x; leads x2 in phase by the order of 60°, which is

/a/
20 Y ky =40 kdyne/cm [x—y TRAJECTORIES]

§ 20

o

) ky = 80kdyne/cm

£ o
= I |
zZ 10

2 l
S sl |

<

p}

5 o ! L | il L ! 1 [ |
° 20

ky = 120kdyne/cm

TIME IN MILLISECONDS

Fig. 10—Effect of longitudinal restoring stiffness k, upon the longitudinal displacement,
y. Data show oscillation buildup for a lung pressure P; that is raised smoothly from zero
to 8 cm Hy0.
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Fig. 11—Effect of ky, upon P,.

consistent with observations from high-speed motion pictures of the
human vocal cords. The third trace shows the longitudinal displacement,
y, which bulges upward as P; is raised. The y motion is roughly sinus-
oidal. The lower trace shows the net area of glottal opening A, (namely
the minimum of A,; and Agg). The y-displacement is seen to lead in
phase the A, wave, again consistent with the upward, rolling motion seen
in high-speed photography of the real cords.

An x-y plot of the buildup transient portrays the behavior perhaps
more graphically. Figure 5 shows the x; vs ¥ and the x5 vs y values with
time as the parameter. Imagine pellets fixed to the lower and upper inner
edges of one simulated cord, shown by the inserted anterior-posterior
view of Fig. 5. The trajectories of the two pellets are plotted for the os-
cillation buildup. The y-axis is broken and re-originated at y = (d; +
ds) = [(2.5 4+ 0.5mm)/Q] = 3.8 mm. The flat portion of the tracks, along
the vertical midline, reflect collision with the opposing vocal-cord
mass.

After several initial swings, the oscillator settles into a steady-state
behavior. One cycle of this trajectory is shown in Fig. 6. The steady-state
pitch frequency in this case is Fo = 125 Hz, or a period of T' = 8 ms.

4.2 Acoustical behavior

The corresponding acoustical parameters, calculated for the same
buildup period, are shown in Fig. 7. The acoustic pressure at the input
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Fig. 12(a)—Steady-state X-Y trajectory for &, = 40 kdyne/cm.

to the vocal tract P; is shown in the top trace. It reflects strongly the
eigenfrequency structure of the tract, in this case configured for /a/ and
having formant frequencies of approximately 500 Hz, 1500 Hz, 2500 Hz
... The transglottal pressure (Ps; — P;), which is the forcing function
for the y-motion and the pressure potential for the volume flow through
the glottal opening, exhibits a pronounced pitch-synchronous variation.
Its peak values, in fact, approach twice the lung pressure value of P, =
8 cm H30. Recall that P is the lung pressure input to the simulated

LONGITUDINAL DISPLACEMENT IN VOCAL CORD VIBRATION 901



3

3.8 mm ——— >4

1 1 |

0 mm -

——>i 0.2 mm i‘—

Fig. 12(b)—Steady-state X-Y trajectory for k, = 80 kdyne/cm.

subglottal system, representing trachea and bronchi. But notice that
the mechanical y-displacement (Fig. 4) does not respond with this detail.
(Neither do the x; and x s displacements respond to high-frequency detail
in their forcing functions—that is, the mechanical system, being mass-
controlled, filters out this detail.)

The subglottal pressure P;, (the pressure just beneath the vocal cords)
also exhibits a pitch-synchronous fluctuation, but of somewhat less
amplitude, namely about £20 to £30 percent of the mean subglottal
pressure. Its positive peaks correspond to the closing epochs of the glottal
port. The calculated volume velocity passing the glottal opening Uy,
(bottom trace) appears as a traditionally shaped, pulsive waveform. This
wave is similar to that calculated in previous work (without longitudinal
motion) but differs in that its values are modified by the effects that U,
and Uy couple into the pressure variables. That is, U, and U, can
influence P,; and P; and, hence, Ug,. The latter three variables, in turn,
close the oscillator feedback loop by constituting the forcing functions
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Fig. 12(c)—Steady-state X-Y trajectory for k, = 120 kdyne/cm.

for the lateral displacement. As was the case in the mechanical variables,
the U, flow does not reflect a temporal fine structure comparable, say,
to the (P, — P;) waveform. The resistive and inertive components of
the glottal impedance (i.e., the serial components in Fig. 3) act effectively
as a low-pass filter. It is not unusual, however, to see pronounced tem-
poral structure that corresponds to the lowest eigenfrequency of the vocal
tract, especially for low, back vowels (such as /a/), or for tightly articu-
lated sounds.

A next question, then, is how do these mechanical and acoustical
quantities, resulting from the model with longitudinal displacement,
compare with physiological data.

4.3 Comparisons to physiological observations

One qualitative comparison can be made for the mechanical dis-
placement behavior. Baer? performed studies on the excised larynx of
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Fig. 13—Oscillation buildup without subglottal system.

a dog in which he fixed pellets to the displacing tissue and made optical
observations under stroboscopic illumination. While his pellet positions
do not correspond exactly to our mass-pair corners, we can roughly
compare his observations with our data. Figure 8 shows x—y trajectories
for one set of conditions for the dog larynx that approximates values used
in human phonation (namely P; = 8 cm H20, U, = 275 em?/s, and Fo
=100Hz). Particles (pellets) 2 and 3 are of interest. While the vibratory
excursions of the excised dog larynx are larger than those we calculate
with the model, the qualitative motions are gratifyingly similar. One
question that arises is how much does the longitudinal (vertical) dis-
placement depend upon the choice of longitudinal stiffness constant.
We shall examine this question in more detail subsequently.

Another comparison can be made in the acoustic domain—namely,
to the subglottal pressure variation Py, shown previously in Fig. 7. Sa-
washima® has measured the subglottal pressure during phonation in a
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Fig. 14—Steady-state oscillation without subglottal system.

human subject. One of his results is shown in Fig. 9. The qualitative
correspondence to the model calculation appears relatively good, and
the acoustic interaction among the simulated cords, vocal tract, and
subglottal system is realistic.

4.4 Effect of longitudinal stiffness constant

In view of uncertainties in the measurement of the stiffness constants
in physiological preparations, it is important to examine how critical the
value of &, (the longitudinal restoring stiffness) is to the oscillatory be-
havior of the model. ’

For the bulk of our studies, we have taken k, equal to our typical
“standard” value of k1, namely 80 kdynes/cm.! We have also used the
standard value for the damping ratio, {, = {; = 0.2. This choice is based
upon the physiological measurements on cord tissue conducted by Ka-
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Fig. 15—Effect of vowel configuration upon longitudinal displacement.

neko,? who found the stiffness constants for lateral and for longitudinal
displacement to be similar. Both stiffnesses are also taken to have the
same nonlinearity, namely, a cubic nonlinearity in the restoring force
(see Ref. 1).

To assess the model’s sensitivity to large variations in k,, we calculated
the buildup of synthetic phonation for k,, = 40, 80, and 120 kdynes/cm.
The resulting y-displacements for these values is shown in Fig. 10, and
the sound pressure at the entrance to the vocal tract is shown in Fig. 11.
Also, the x-y trajectories are shown in Fig. 12a, b, and c.

As would be expected, the greatest influence in this variation is re-
flected in the y-displacements. The “softer” k, gives larger dc dis-
placement and smaller peak-to-peak vibratory excursions. The P; data
indicate that the variations in acoustic behavior and glottal excitation
are very small. The fundamental pitch is sensibly the same for all cases,
namely 125 Hz. This factor is almost completely dominated by the lateral
motion. In auditory assessment of the output synthetic sound, the dif-
ferences are virtually imperceptible, suggesting that the longitudinal
displacement current is insignificant for speech synthesis.

4.5 Effect of subglottal system

A side issue, of some interest in passing, is the effect of acoustic in-
teraction between the subglottal system and the cord oscillator. If the
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Fig. 16(a)—X-Y trajectory for the vowel /o/.

trachea-bronchi-lung system is removed and the lung pressure applied
directly to the cord input (as a zero-impedance source; i.e., Ps; becomes
a pressure “battery” equal to P;), then the temporal structure previously
reflected in Py, is eliminated, the transglottal pressure excursions simply
equal Py, and the longitudinal component of cord displacement is less-
ened. This is illustrated by the x-y trajectories for oscillation buildup
and steady state shown in Figs. 13 and 14. For this case, k, is reset to the
typical value 80 kdynes/cm. Note the slight lowering of the fundamental
frequency to 123 Hz.

4.6 Effect of vowel configuration

It also is instructive to consider the influence of vowel configuration
upon the cord model, as presently formulated. Such studies were made
in detail in the original work.! We therefore compare synthesized results
for the vowel /s, a and i/. (In this case the longitudinal stiffness constant
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Fig. 16(b)—X-Y trajectory for the vowel /a/.

was set to k, = 88 kdynes/cm through an inadvertent keypunch error.
Because the differences are so small, it did not seem worthwhile to re-
compute the data for k, = 80 kdynes/cm.)

The y-displacements are shown in Fig. 15, and the x-y trajectories for
one period of steady-state oscillation are shown in Fig. 16a, b, and c. The
longitudinal displacement is not greatly affected by vowel configuration,
but the constricted articulations /a, i/ clearly lead to slightly greater
longitudinal peak-to-peak excursions than does the open-pipe (neutral)
vowel /o/. This typically is owing to the greater acoustic interaction at
the eigenfrequencies for the configurations with higher acoustic im-
pedance levels, which in turn leads to greater transglottal pressure dif-
ferences. This is well reflected in the acoustic variables resulting from
this calculation. The corresponding acoustic quantities are shown in Figs.
17 thru 20. In these data, note especially how the tract eigenfrequencies
are manifest, including in the synthetic output sound pressure from the
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Fig. 16(c)—X-Y trajectory for the vowel /i/.

mouth, P,y Note, too, that the resulting steady-state pitch frequencies
are about 125 Hz for /a/ and /a/ and about 120 Hz for /i/.

V. SIGNIFICANCE OF LONGITUDINAL DISPLACEMENT

Having established that the cord oscillator (with lateral and longitu-
dinal degrees of freedom) appears to behave realistically, we consider
the next questions:

(1) Is the longitudinal motion significant or necessary for proper
self-oscillatory operation of the model?

(t1) Is the acoustic volume velocity contributed by the longitudinal
motion physically or perceptually significant?

So far as the purposes of speech synthesis are concerned, we answer both
of these questions in the negative.

What we wish to do, therefore, is compare the mechanical and
acoustical behavior with and without longitudinal displacement. Because
the longitudinal effects are coupled only through U, and Uy, the lat-
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Fig. 21—Computed mechanical behavior of the cord/tract model without y-displace-
ment.

eral-motion-only condition (that is, the original formulation of the
model) is conveniently realized by setting U,; = Uy,s = 0. This condition,
with no longitudinal displacement flow, yields the mechanical results
shown in Fig. 21. These results are essentially identical (at least to three
significant figures) to the corresponding quantities in Fig. 4. In particular,
note that the crucial A, waveforms are virtually identical.

We can now examine pertinent acoustic quantities. Calculation of the
conditions with y-displacement yields the result shown in Fig. 22. The
figure shows one cycle of the steady-state oscillation. Recall that Uy, is
the total volume velocity at the larynx tube entry to the vocal tract. Uy
is the flow component through the actual opening of the glottis. Note
that Uy, is non-zero during the time the cords are actually closed, cor-
responding to an upward (vertical, longitudinal) displacement of air
volume that adds positively to Uy. Similarly, later in the cycle, downward
longitudinal displacement subtracts from U,. The difference between
these volume velocities is

(Ug€ - Ug) = Uy2 = Uyl

by virtue of the assumption of cophasic longitudinal motion. This dif-
ference is plotted on an X10 enlarged scale in Fig. 22. The peak value
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Fig. 22—Glottal volume velocities calculated with y-displacement (refer to Fig. 3).

of the difference for this condition is on the order of 10 cm3/s, or about
Yo of the peak value of the total Uy,. This result is not just peculiar to
this range of volume velocity, but rather it scales comparably at louder
and softer phonation. For example, if the lung pressure Ps is doubled
say to 16 cm H,0, the longitudinal displacement current increases be-
cause the transglottal pressure and the longitudinal displacement in-
crease. But the U, flow also increases and remains far and away the
dominant quantity.

The amplitude spectra of these quantities provide convenient corre-
lation with auditory percepts. The spectra for Uy, and U, are shown in
Figs. 23a and b. A close comparison shows the differences to be less than
2 dB, an amount that is not significant perceptually. The more relevant
comparison is obtained when the effect of y-motion is eliminated (by
removing U,; and Uys). The corresponding glottal waveform for no y-
displacement is illustrated in Fig. 24. It is denoted U, ;. Also reproduced
is the U,, with y-displacement. Further, the difference between the
longitudinal displacement and lateral-only conditions (Uy, — U,7) is
shown on an X10 enlarged scale. During the glottis-closed time, this
difference is identical to the (U,, — U,) difference of Fig. 22, because
U, = 0. During the glottis-open time, the (Uy, — U,}) difference differs
from the (U,, — U,) difference. In other words, U, differs from Ug’}
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Fig. 23(a)—Amplitude spectrum of Uy, which includes the effects of y-displacement.

essentially by the influence that Uy, and U, have upon the transglottal
pressure difference (Pyy — P,).

Again, the more perceptually relevant comparison is to the amplitude
spectrum. The spectrum of U, is given in Fig. 25. A close comparison
to the Uy, spectrum of Fig. 23 shows the differences to be less than about
2 dB. Auditory assessment of the output synthetic vowels shows them
to be indistinguishable even in close comparison.

VI. CONCLUSION

In view of these results, we conclude that realistic acoustic behavior
(which is needed in speech synthesis) can be obtained in the cord model
without the additional complexity of longitudinal displacement. Lon-
gitudinal displacement is not necessary for realistic self-oscillation of
the model. The important vertical phase differences in the two-mass
motion are adequately duplicated by lateral displacement only, as is the
significant acoustic interaction between vocal tract and vocal cords.
Further, the rate of volume displacement owing to longitudinal motion
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Fig. 23(b)—Amplitude spectrum of Uy calculated with y-displacement.

is clearly perceptually not significant and need not be represented with
added detail.

These conclusions about the mechanical and acoustic behavior have
a corollary in a companion study on the rate of displacement of air vol-
ume owing to lateral motion only.? This contribution was examined by
making use of the shunt branches in Fig. 2 that include U,;, Uys. Cal-
culations and computer simulations showed that the contribution to
glottal volume velocity of the air extruded from the glottal port by lateral
tissue displacement is barely discriminable in a differential auditory
comparison. In fact, the perceptual effect for the lateral volume dis-
placement is just slightly larger than for the longitudinal displacement.
Both are quite second-order in importance.

We have found in the present study that proper acoustic and oscilla-
tory behavior of the model does not depend significantly upon longitu-
dinal displacement. The longitudinal motion is relatively insensitive to
acoustic loading and to changes in longitudinal stiffness. The longitu-
dinal motion influences fundamental frequency only slightly. What,
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Fig. 24—Comparison of waveforms for Uy, which includes y-displacement current,
and U,%, which 1s calculated without y-dispfacement.

then, are the critical and sensitive parameters of the cord model? In other
words, what parameters are most influential upon the perceptual at-
tributes of U,,, since the end product—the output sound—depends
directly upon Uy,? The results of our earlier work can be combined with
the insights obtained here to consider this question.

The original study showed that the intra-glottal pressure distribution,
and the fluid flow laws used to deduce it, are quite important to proper
oscillatory behavior, to proper generation of the Uy, flow, and to realistic
acoustic interaction between the vocal tract and vocal cords. To a large
extent this pressure distribution determines how the pitch frequency
varies with subglottal pressure and with articulatory configuration. The
mass-stiffness product (i.e., the natural frequency of the mechanical
system) is quite dominant in determining pitch range. Subglottal pres-
sure, assuming it to be above an initiation threshold of several cm H50,
is primarily correlated with sound intensity, a relatively noncritical factor
for voiced sounds. Mechanical parameters such as cord thickness,
damping ratio, and nonlinearity are relatively noncritical except as they
influence duty factor and “flow chopping” at collision (which yields a
broad-spectrum Uy, function). None of the mechanical variables, lateral
or longitudinal, reflects the temporal fine structure of the acoustic
variables, but both must and do reflect the open-close cycles of the vi-
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ment.

brating cords. The realistic phase differences in motion of the upper and
lower edges of the cords (ms and m; in the model) allow phonation
smoothly over a wide range of input impedances to the vocal tract (both
inductive and capacitive), and this behavior can be obtained satisfac-
torily by permitting lateral displacement only of the stiffness-coupled
masses. The computational complexity of anything more detailed does
not seem necessary from the standpoint of duplicating realistic acoustic
behavior, which is the objective in speech synthesis.

On the other hand, if the objective were a detailed study of tissue de-
formation (as might be the case in simulations for clinical diagnosis or
for representing pathological conditions) then the computational com-
plexity of longitudinal displacement might be considered. In such a case,
the vocal-cord model should be treated as a more distributed system.
For the representation and synthesis of normal speech, however, these
details do not appear perceptually significant and are not needed to
represent the dominant properties of vocal-cord vibration.
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A class of algorithms for detecting abnormally short-holding-time
trunks has been developed that utilizes individual trunk data available
in EADAS/ICUR (Engineering and Administrative Data Acquisition
System/Individual Circuit Usage Recorder). This data consists of a
two-dimensional statistic that compresses the raw trunk measure-
ments—the state of the trunk (busy or idle) sampled every 100 or 200
seconds—into a manageable form. Because this data is essentially a
sufficient statistic for the stochastic process used to model the (unob-
servable) trunk state measurements, one of the algorithms developed
is Wald’s sequential probability ratio test. Two of the algorithms de-
veloped have been implemented in ICAN (Individual Circuit Analysis
Program), and are currently being used to test trunks associated with
the No. I crossbar, No. 5 crossbar, crossbar tandem (1XB, 5XB, XBT),
and step-by-step switching machines. The focus in this paper, however,
is on the modeling and analysis aspects of the problem, and only slight
attention is paid to the various trade-offs and real-world constraints
encountered in implementing the algorithms.

I. INTRODUCTION

A message trunk, the basic connecting link in the switched telephone
network, provides the communication path between switching machines
as well as certain call setup capabilities, such as supervision, signaling,
and ringing. For an important class of trunk faults that cause call failure,
the trunk is released by the switching system upon customer abandon-
ment and is again available to fail another call. As a result, a single un-
detected faulty trunk of this type can fail a significant fraction of the
offered attempts to a group and will characteristically have an abnor-
mally short holding time.

Because of their potential service impact, significant efforts have been
made to understand and quantify the impact that such abnormally
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short-holding-time trunks have on central office and network service.14
It is now widely understood as a result of these studies that this generic
trunk fault results in a fraction of service attempts “killed,” which is out
of all proportion to their number in the trunk population. Consequently,
traffic data available from new and existing traffic data-acquisition
systems has been viewed in the light of increasing interest in trunk-fault
detection. In particular, with the advent of the Bell System EADAS/ICUR
(Engineering and Administrative Data Acquistion System/Individual
Circuit Usage Recorder) system,® it was natural to ask whether the new
individual trunk data available could be used to detect such “killer”
trunks.*

This paper discusses the theoretical aspects of a class of killer-trunk
detection algorithms that utilize the individual trunk traffic data
available in EADAS/ICUR. These algorithms were designed for, and
practical versions of them are presently implemented in, the ICAN'
portion of the EADAS/ICUR system. We focus here, however, on the
problem formulation, modeling, and analysis aspects of the algorithms
without bringing in many of the diverse factors and trade-offs encoun-
tered in the actual implementation.

Because the holding time of a trunk affects the statistical properties
of the trunk data in EADAS/ICUR, it is natural to formulate the killer-
trunk detection problem as a problem in the testing of statistical hy-
potheses. In this context our modeling effort is basically an attempt to
precisely define the state of a trunk (normal or killer) and expose the
relevant underlying distributions. Well-known aspects of the theory of
hypothesis testing are then applicable and immediately suggest a number
of different tests. Sequential tests are naturally considered since the
EADAS/ICUR data evolve sequentially in time. Questions about the ro-
bustness of the models, and the structure and performance of statistical
tests, are addressed using standard analytic tools.

The material in this paper has been organized into six major sections,
whose content we briefly describe. After considering the data available
in EADAS/ICUR (Section II), we proceed to model a trunk (Section 3.1),
motivate an appropriate set of statistical hypotheses suitable to our
problem (Section 3.2), and briefly review several classical tests for de-
ciding between statistical hypotheses (Section 3.3). With these prelim-
inaries out of the way, we develop individual trunk algorithms based
solely on individual trunk data. Proceeding in a heuristic manner, we
use the individual trunk data to “derive” an ad hoc killer-trunk-detection

* The term killer trunk has been widely adopted in referring to a faulty switching-
machine-accessible trunk in a group whose average holding time is substantially smaller
than the average group holding time.

T Individual circuit analysis program—a software program that analyzes much of the
EADAS/ICUR traffic data and maintains the system data base.
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algorithm (Section 4.1). Although the insight gained in proceeding in
a heuristic fashion is significant, we shift our emphasis in Section 4.2 and
rigorously derive an optimal test statistic. It is interesting to find that
the ad hoc statistic is essentially one of two symmetric statistics which
comprises the optimal test statistic. The relationship between these
individual trunk statistics is further explored in Section 4.3.

In Section V we factor grouping information (which essentially
identifies all trunks common to a trunk group) into the picture, and
develop detection algorithms tailored to trunks associated with the
No. 5 crossbar switching machine. This development necessitates
modeling the 5XB trunk-group selection procedure, and several results
due to Forys and Messerli? are utilized. In Section VI we shift our dis-
cussion to the performance of the 5XB group algorithms, deriving ap-
proximate expressions for the mean statistic update and mean detection
time in Sections 6.1 and 6.2, respectively. The paper concludes in Section
6.3 with an approximate analysis of the false-alarm probability of the
5XB group algorithms.

Il. EADAS/ICUR DATA

The structure of a killer-trunk detection algorithm is largely de-
pendent on the type of individual trunk measurements available.* In
EADAS/ICUR, the raw (unobservable) data consists of the state of each
trunk (busy or idle) every 100 or 200 seconds. Fortunately, the data ac-
cumulations available essentially summarize all the relevent information
in the raw data.

2.1 Switch-count and transition data

The data available from the EADAS/ICUR system, which can be used
to distinguish between normal and killer trunks, is obtained by sampling
individual trunks at 100 or 200 second intervals. This data consists of
periodic accumulations (typically hourly, two-hourly, or three-hourly)
of both the Busy states, and the State transitions. The busy state accu-
mulation is usually referred to as the switch count. For the 200-second
sampling option with a one-hour accumulation period, the switch-count
is an integer between 0 and 18. A state transition occurs whenever the
state of a trunk (busy or idle) is different at two successive scans. For the
200-second sampling option with a one-hour accumulation period, the
number of state transitions is an integer between 0 and 17.

If we denote the ith scan during an accumulation period in which m
scans occur by x;, and let 0 and 1 correspond to trunk idle and trunk

* Until very recently, almost all trunk-traffic measurements were obtained on a group
rather than on an individual trunk basis.
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Fig. I—ICUR data.

busy, respectively, the available data may be written

(i) n(m) = i x; (switch count)
i=1

m
(i) t(m) =3 |x; — x;—1] (state transitions).
i=2

Thus, the raw (unavailable) data in the form of a binary sequence,
Xm = (xly' * .Jxm)’

is compressed into the two statistics n{(m) and t(m).

Because the holding time of a killer trunk is generally on the order
of a few tens of seconds, it should have substantially more state transi-
tions than a normal trunk, for a given switch count. Figure 1 illustrates
the sampling process on both a normal and killer trunk.* For the pur-
poses of this figure individual calls are represented by rectangles, call
durations correspond to the width of the rectangles, and a half-hour
accumulation period with the 200-second sampling option is used.

We note in passing that for the 200-second sampling option, very little
information is lost by “compressing” the raw data x,, = (x1,- - -,x,,) into
the two statistics n(m) and ¢ (m). Thus, normal conversation lengths tend
to be in the vicinity of 3 to 4 minutes and, hence, with the 200-second
sampling option, we expect that only adjacent samples are significantly

* The realizations shown in Fig. 1 are more or less typical for a 5XB trunk group with a
mean group holding time of approximately 4 minutes operating at about 40-percent oc-
cupancy, and having a killer trunk with a mean holding time of approximately 1 min-
ute.
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correlated. If {x;}™, is Markovian, then [n(m),t(m)] is almost a sufficient
statistic ([n(m),t(m),x1,x,,] is sufficient) for x,,, (see Section 4.2). Note
also that for a trunk in the killer state, succesive samples should be es-
sentially independent (for both sampling options).

2.2 Grouping information

In addition to the switch-count and transition data available from the
EADAS/ICUR system, we are also able to utilize a system map to identify
(i) all trunks common to a trunk group, and (i) the trunk-selection
procedure* associated with the trunk group. It turns out that using this
grouping information,! in addition to the switch-count and transition
data, enhances the detection potential considerably.

Thus, we divide the class of algorithms into two types according to
whether or not grouping information is utilized. The first type, which
uses only switch-count and transition data is referred to as an individual
trunk algorithm. These individual trunk algorithms are applicable to
all trunks—including two-way trunks—independent of the type of
switching machine they are associated with. They do however assume
knowledge of the trunks nominal holding time. The second type of al-
gorithm uses the grouping information in addition to the switch-count
and transition data and is referred to as a group algorithm. Group al-
gorithms are “tailored” to a specific kind of trunk-selection procedure
and, hence, apply to trunk groups associated with specific switching
machines. For the purposes of this paper, the trunk-selection procedure
considered is random selection of idle trunks. This procedure models
the selection procedure of trunk groups associated with the 5XB
switching machine. Group algorithms generally apply only to one-way
trunk groups.

Ill. PRELIMINARY CONSIDERATIONS

In attempting to quantify the intuitive notion that a killer trunk will
exhibit more transitions than a normal trunk (see Fig. 1), for a given
switch count, it is natural to consider the transition probabilities:

Pio= Plxiy . = 0/x, = 1)
and

Py = P{xiy. = 1/x, = 0},

* The map in EADAS/ICUR indicates the type of switching machine that the trunk group
is associated with, and this allows us to model the trunk-selection procedures (see
Ref. 2).

t We will consistently use “grouping information” to refer to both the identification
of all trunks common to the group and the trunk-selection procedure associated with the
group.
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where x; denotes the state of a trunk at epoch t and 7 denotes the sam-
pling interval. Of course, to evaluate these transition probabilities, we
must be concrete about how we model a trunk. :

Before tying ourselves down to any specific model, however, it is useful
to view these conditional probabilities in a canonical form. Thus, suppose
we begin by assuming only that the binary valued process x; is stationary.
We have then the following simple result:

Lemma 1: Let x; be a binary valued, stationary random process and let

p and R(-) denote its mean and covariance function, respectively.
Then,

R
() Prolpr) = 1= p) f1- ﬁo;} 1)
(i6) pPLo(p7) = (1 = p)Por(p,7). @

Proof: Part (i) is a consequence of the definition of R(-). That is,
R(7) = E(x¢x44..) — p?
= P(x; = Ly, = 1) — p?,
where
p=E(x;) = Plx, = 1).
Part (i7) follows from the two identities:
p = pP11(p,7) + (1 = p)Py1(p,7)
and
1= P1,1(p,7) + P1,0(p, 7).

A consequence of this result is that uncorrelatedness and independence
are equivalent:

Corollary 1: For the process in lemma 1, x;,%;+, are independent if and
only if R(r) = 0.

Note that the dependence of R(-) on p has been suppressed for conve-
nience.
3.1 Modeling an individual trunk

A particularly simple way to model a trunk is as the server in a single
server loss* system with a Poisson arrival process and an exponential
service time distribution. This model is commonly denoted by
M/M/1-loss. Let x; denote the state of the server:

* In a loss system, customers who are blocked depart without waiting.
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o = 1 if server is busy at epoch ¢
7 1o ifserverisidle at epoch t
and R(-) the covariance function of x;. It is easily shown7 that for the

M/M/1-loss system,
R(7) = R(0) exp {— (X + u)7},

where X and u are the mean arrival and service rates, respectively. Thus,
P1o(p,7) may be written as:

Piole,7) = (1=p) {1 exp (ﬁ)] 3)
where the trunk occupancy p is equal to A/(\ + u). Throughout this paper
we will be concerned with 7 = 100 or 200 seconds and a nominal holding
time 1/u in the vicinity of 8 minutes. The mean holding time of a killer
trunk 1/u* will always be expressed as 1/ru with r typically in the range
5 to 15. Thus, if we denote ur by S, we may write the transition proba-
bility P{x;+, = 0/x; = 1} for a trunk with mean occupancy p as

Piolor) = (L=p) [ 1=exp (72) | @
1-p
where r = 1 corresponds to a normal trunk. (Since P o =1 — p implies
that x,,x9,,--- are independent, we will assume independence for r
sufficiently large in subsequent sections.)

Figure 2 is a plot of P ¢ vs p corresponding to S = 10/9 (200-second
sampling and a 3-minute mean holding time) for several values of . Py o
is essentially equal to 1 — p for r = 5. Figure 3 is a similar plot of P1 o vs
p corresponding to 100-second sampling and a 3-minute mean holding
time (S = 5/9). In this figure P is essentially equal to 1 — p for r =z
7.5.

Before putting too much emphasis on the transition probabilities in
Figs. 2 and 3, it is prudent to consider the effect of factoring more realistic
assumptions into the single server loss model. Thus, while the Poisson
arrival process assumption is probably a reasonable assumption for a
trunk in a 5XB trunk group (random selection of idle servers), it poorly
models the overflow nature of the traffic offered to trunks in a 1XB/XBT
trunk group.t In the latter case, it is more appropriate to model the input
stream to a trunk as a peaked process.? Figure 4 is a plot of Py vs p
parameterized by the peakedness (z) of the input stream. This figure
is based on an expression for P o derived for a GI/M/1-loss model! with

T The trunk-selection procedure for 1XB and XBT trunk groups is essentially a two-
sided ordered hunt.2

1 GI/M/1-loss denotes a single server loss system with a renewal process input stream
(GI) and an exponential (M) service time distribution.
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0.4
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0 | | | |
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MEAN TRUNK OCCUPANCY IN PERCENT
Fig. 2— 1 — 0 transition probability for the 200-second sampling option.

1.0
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T =100 SECONDS
0.8
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0.6 — r=2
<
o
0.41—
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0 | 1 | |
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Fig. 3— 1 — 0 transition probability for the 100-second sampling option.
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Z2=125 M~ =180 SECONDS

T=200SECONDS

0.8 Z=PEAKEDNESS
Z=1.0

o z=2,5
(INDISTINGUISHABLE
ON THIS SCALE)

0.4
-
////
NORMAL TRUNKS==~
0.2
0 1 - 1 |
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MEAN TRUNK OCCUPANCY IN PERCENT

Fig. 4— 1 — 0 transition probability for the GI/M/1-loss model with a switched Poisson
arrival process—200-second sampling option.

a switched Poisson input stream (commonly used to model overflow
traffic).® Appendix A contains several details on the model and deriva-
tion. It is clear that the effect of peaked traffic on the transition proba-
bility is very small (z = 1 corresponds to a Poisson stream).

Recent data® indicates that the service time distribution of a normal
trunk has a coefficient of variation significantly greater than 1 (the ex-
ponential case). Thus, in Appendix A we derive the covariance function
of the server process x; for an M/G/1-loss! model with a mixed exponential
type of service distribution. Figure 5 is a plot of P1 o vs p parameterized
by the coefficient of variation of the mixed exponential service distri-
bution. We see that increasing the coefficient of variation has a noticeable
effect on the transition probabilities, but the effect is to increase the
discrimination between the normal and killer-trunk transition proba-
bilities.

Thus, it would appear that the transition probabilities based on the
M/M/1-loss model are reasonably robust to perturbations in the trunk
model. In addition, one suspects that using these transition probabilities
in a detection scheme, which exploits the basic differences between killer
and normal trunk transitions, might lead to a conservative design.

1 M/G/1-loss denotes a single server loss system with a Poisson (M) input stream and
a general (G) service time distribution.
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0 | | ] ]
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Fig. 5— 1 — 0 transition probability for the M/G/1-loss model with a mixed exponential

service time distribution—200-second sampling option.

3.2 Testing statistical hypotheses—a basic idea

Suppose a trunk has constant mean occupancy p (Ex; = p) and we
observe it for h seconds during which n switch counts and t19 1 — 0 state

transitions accumulate. We may write

n= i Xk
k=1
and
m
tio= X [trr — x@-1):"
k=2
where
h 0 z=z0
m=—andz" = .
T [1 z2<0
Hence, we have
h
E(n)=p (~>
r

and
h

E(t1o) = (m — DE([xk, — £ge—1ys]™) = (; ~ 1) pP1o.

(5a)

(5b)
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Thus, for example, a trunk at 20-percent occupancy (sampled at the
100-second rate) would accumulate 108 switch counts, on the average,
in 15 hours. The mean number of 1 — 0 state transitions in this time
interval corresponding to a normal trunk is 43, but the corresponding
mean number of 1 — 0 state transitions for a killer trunk (during the
same time interval) is 86. (Referring to Fig. 3, we see that P; o(p = 0.2)
is 0.40 and 0.80 for a normal and killer (r = 7.5) trunk, respectively.)

With this example in mind, it is natural to consider a detection scheme
of the following type:

() Wait until we accumulate ng switch counts on a trunk.

(t1) When n = ng, compare the accumulated 1 — 0 state transitions
t10 to some threshold Ty.

(iit) If t19 > Ty, decide that the trunk is a killer, otherwise decide that
the trunk is normal. [t g is not directly available (see Section 2.1), but
it may be estimated by ¢/2.]

If the trunk occupancy were known and fixed, this scheme would ap-
pear to be very reasonable. The analogy to the usual scheme suggested
for deciding between a fair and a biased coin is clear: ng is the number
of (hopefully) independent experiments (analogous to the number of
coin tosses), with each experiment having just two possible outcomes:
the scan which follows the switch count is either O or 1. Thus, each switch
count is associated with a 1 — 0 state transition (“heads”) ora 1 — 1 state
transition (‘“tails”).

From the point of view of statistical hypothesis testing, we are thinking
of two underlying states:

Null hypothesis Hg: P1,o(p) = P trunk normal
Alternate hypothesis Hy: Py 9(p) = P* trunk killer

Thus, our intuition suggests that a threshold test of the type sketched
above is natural for distinguishing between Hy and H;. We will see
(Section 4.1) that a (nonoptimal) test of this form arises naturally from
pursuing the coin tossing analogy further.

3.3 Problem formulation—sharpening the focus
To simplify matters, assume to begin with that

() The nominal mean holding time 1/u is known.

(iz) The trunk occupancy p is known and constant.

(iii) The switch-count and transition data accumulations n(m) and
t (m) are continuously available (scan by scan).

With these assumptions, it is an easy matter to conceptually describe

TRUNK-DETECTION ALGORITHMS 929



the “optimum” scheme for deciding between the two simple hypothe-
ses,

H: Trunk normal (mean holding time 1/u)
H: Trunk killer (mean holding time 1/ru),

with it understood that “trunk” refers to one of the specific models de-
scribed in Section 3.1 (for concreteness assume the M/M/1-loss
model).

Let x,, = (xy,- - -,x;,) be the sequence of trunk states up to and in-
cluding the mth scan, and let the available data be (as before)

n(m) = *—§1 xi, t(m) = f i — 21

=2
Let
Pim(nt) = P(n(m) =nt(m)=t/H;)i=0or1
and let
Pim(n,t)
mnt)=———"-.
) = )

The joint probability distributions P;,, (n,t), i = 0,1, are well defined
for any specific trunk model, but they may be nontrivial to derive. £,,(.,.)
viewed as a function of the vector random variable [n(m),t(m)] is re-
ferred to as the likelihood ratio statistic and plays a central role in the
theory of statistical hypothesis testing. More specifically, the optimum
test (in a variety of senses) for deciding between two simple hypotheses
involves suitably comparing £,, to a threshold (or thresholds) in order
to make a decision.

We briefly review two optimum tests, the Neyman-Pearson (fixed
sample) test!® and Wald’s sequential probability ratio test (SPRT), using
notation appropriate to our (discrete) problem.

3.3.1 The Neyman-Pearson test

Suppose « and 8 denote the type 1 and 2 errors* of the test,
Choose Hiif €, =T
Choose Hgif £, < T,

and suppose o« and 3’ denote the type 1 and 2 errors of any other test
(requiring m samples) for deciding between Hg and H;. Neyman and

* The type 1 and 2 errors, « and 3, are often referred to as the probability of false alarm
and the probability of miss, respectively (« = probability of choosing H; given Hy is the
true state, 8 = probability of choosing Hy, given H; is the true state.)
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Pearson’s classical result is: if o’ = «, then 8’ = 8. Thus, of all tests re-
quiring m samples and having a false-alarm probability not exceeding
«a, the likelihood ratio test achieves the minimum probability of miss
(maximum probability of detection). Since « = P(£,,, > T/H), choosing.
a sample size m and threshold T to achieve a = oy requires knowledge
of the (conditional) distribution of £,,. Similarly, having chosen m and
T, calculating 8 = P(¢,, < T/H) requires the distribution of ¢,, (con-
ditioned on H1). Note also that with such a fixed sample test, we decide
in advance to accumulate exactly m samples before making a decision.
In many contexts, data accumulates sequentially in time, and rigidly
requiring m samples—independent of the particular realization that is
unfolding—is not an optimal strategy.

3.3.2 Wald’s sequential probability ratio test

Using Wald’s SPRT,lO»l'1 we continue to update £, &k = 1,2,--- and
defer a decision aslong as £;,¢(To,T1). We make a decision the first time
¢, falls outside the interval (T, T';). Thus,

ifTeg<6,<Ty k=12;4--m—1
and £, ¢ (To,Ty),
then choose Hyif ¢, = T
and choose Hyif ¢, = T,

Clearly the stopping time m of the SPRT is a random variable, and the
mean of m (given either hypothesis) is a measure of the time it takes to
reach a decision. (Under a wide variety of circumstances, the SPRT ter-
minates with probability 1.) Let E;(m) (i = 0 or 1) denote the mean
stopping time, given that hypothesis i is in effect. Given a SPRT with type
1 and 2 errors a and 8, and with mean stopping times Eo(m) and E(m),
consider any other test (sequential or not) with type 1 and 2 errors o/
and &, and with mean stopping times Eo(m) and E{(m). The SPRT has
the following optimal character!®

ifo/ =aand B’ =8,
then Eo(m) = Eo(m) and Ej(m) = E1(m).

Thus a SPRT is superior to a fixed sample test, if both tests have the same
type 1 and 2 errors, in the sense that on the average it reaches a decision
more quickly (under either hypotheses).

In sharp distinction to the fixed sample test, the thresholds T, and
T required to approximately achieve specified type 1 and 2 errors are
trivially determined.!! On the other hand, even determining the mean
and variance of the stopping time is often a difficult chore.
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In Section 4.2, we explicitly calculate the SPRT* for the simple hy-
pothesis testing problem described at the beginning of this section.
Before looking at this optimum test, however, we describe an ad hoc
algorithm which is very robust and consequently attractive from a
practical point of view.

IV. INDIVIDUAL TRUNK ALGORITHMS

A basic underlying assumption in this section is that the normal mean
holding time of a trunk is known. Thus, if the algorithms in this section
are designed relative to a normal mean holding time of 3 minutes, they
will not discriminate between normal trunks having a mean holding time
in the vicinity of 40 seconds,! and an actual killer trunk with the same
mean holding time—both of these trunks will be detected as killer
trunks.

The rationale for studying this type of detection problem is two-fold:
from the practical point of view the simplicity of implementation and
general applicability? of these algorithms is attractive, and EADAS/ICUR
can flag trunk groups which should not be studied by the killer trunk-
detection algorithms (thus preventing false alarms on normal short-
holding-time trunks). From the theoretical point of view, it was natural
to consider this problem before factoring group information into the
picture.

Another modeling assumption used in this section (as well as in sub-
sequent ones) is that the arrival process is stationary within data accu-
mulation intervals, but the mean arrival rate may change arbitrarily from
one accumulation period to another. Since we use equilibrium analysis
(e.g., in calculating P, o) we assume, in effect, that equilibrium is achieved
instantaneously.

4.1 An ad hoc algorithm

The essential idea of the test suggested in Section 3.2, is to decide on
the state of a trunk by comparing the number of 1 — 0 state transitions
(t10) to some threshold Ty, conditional on having accumulated a fixed
number of switch-counts. We heuristically* proceed to derive such a test,
using a standard likelihood ratio formulation, and explicitly take into
account the time-variability of traffic.

Let x,, = (x4, - -x,,) correspond to the (unobservable) binary se-

* Based on the M/M/1-loss model for a trunk.

t Trunks in special-purpose trunk groups (credit checking, weather, etc.) will typically
have mean holding times in the vicinity of 40 seconds.

! The individual trunk algorithms can be used to test any trunk—regardless of the type
of switching machine the trunk is associated with.

* The distributional assumptions made in this section are intuitively motivated, but
cannot be rigorously justified. We examine these assumptions carefully in Section 4.3.
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quence of trunk states during an accumulation period in which m scans
occur. Let t19(m) and n(m) be the number of 1 — 0 state transitions and
switch counts associated with x,,. Denote the conditional probability

P(t10(m) = t/n(m) = n)

for a normal and killer trunk by P(¢/n) and P*(t/n), respectively. These
conditional distributions depend, of course, on the trunk’s occupancy
and on the particular trunk model we have in mind. [P*(¢/n) also de-
pends on the killer parameter r.] However, for the purposes of the heu-
ristic development of this section, we do not precisely define which trunk
model we have in mind.

Since each switch count is associated with eitheral —-0oral —1
state transition with probabilities P; o and Py ; = 1 — Py g, respectively
for a normal trunk, and since we expect successive transition events on
a trunk to be essentially independent,* it seems reasonable to assume
that P[t1o(m) = t/n(m) = n] for a normal trunk is binomially distributed
with parameters n and P; . This same argument applies to a killer trunk.
Denote the binomial distribution with parameters n and p by b(k;n,p)
k =0, --,n, where

bkinp) = (},) P*(L = p)"*
Thus, we may think of a trunk with occupancy p during an accumulation
period as having a conditional distribution
P[tio(m) = t/n(m) = n] = b[t;n,Py(p,r)], (6)

with r = 1 and r = rq corresponding to the normal and killer states of the
trunk. (Recall that Py o(p,r) is essentially independent of r for r = ro with
ro = 7.5 and 5.0 for 100- and 200-second sampling, respectively.) With
these assumptions, we may think of testing the two simple hypothe-
ses:

Ho: P(t/n) = b(t;n,Py0) Py = P1o(p,1)
Hy: P(t/n) = b(t;n,P1o)  Pio= Pyo(p,ro).

If the 1 — 0 transition and switch-count accumulations for two successive
and contiguous accumulation periods are (t1,n1) and (£9,n9) respectively,
we assume that

P(ty,ta/ny,ne) = P(ty/n1)P(ta/ny).

The idea here is that the only dependence between the two successive

* The idea is that if significant correlation extends only one or two scans back, then
successive transition events (events “triggered” by switch counts) should be essentially
independent.
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bit streams x%, = (x1, + +,x) and x4 = (X1, + - X2m) is essentially due
to the dependence between x,, and x,+1.

Thus, if we denote the transition and switch-court accumulations for
the ith accumulation period (in which m; scans oceur) by [t10(m;),n(m;)]
during which the trunk has occupancy p;, we have

Pltio(m1) = ty,e - -, t1o(my) = tr|n(my) = ny,- - ,n(mg) = nj|

Bl

= 1 b[ti;ni’Pl,O(pi’r)]) (7)

i

where p; L = 1,- - -k are the occupancies for the k accumulation periods.
If ¢, = (t4,- - -,tx) and n, = (nq,- - -,n) consider the likelihood ratio:
ko blt;;ni,P1o(piro)]

(ty/ny,) = b LS .
kTR iI=I1 blti;ni,P1,0(pi,1)]
Denote the log likelihood ratiot log £(t./n.) by €(t./n) and note
that

(8)

Ko/ m) = ¥ 8,

where

b[ti;ni,P1,0(pi,ro)]
blti;ni,P1,0(pi, 1)]
The expression £(t;/n;) can be written as

2(t:/n;) = alp)t; — alpo)n;

2(ti/n;) = log

with
_ 1- Pl (](P,l)
alp) = log 1 = Py,0(p,ro) (a)
and
_ P 0(p,ro)
alp) = a(p) + log Pro(p,1) . (9b)
Thus, we have
. k
ot/ my) = Z,l la(pi)t; — alpIni]. (9c)

Unfortunately, the occupancy in the ith accumulation period (p;) is
unknown and hence equation (9c) cannot be used as a test statistic. One
obvious “fix” is to estimate p; by p; = n;/m;, where n; and m; are the

11> T iff g(¢) > g(T) if g is monotone increasing, so the tests£ > T and g(¢) > g(T)are
equivalent.
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switch count and the number of scans, respectively, during the ith ac-
cumulation period. In stationary traffic, the estimate

i i
pi= 2 n; / 2 mj
J=1 Jj=1
would be used [a(p;) = 1/V7 a(p;) if mj = m for all j].
Corresponding to the sequence of accumulations, (¢y,n;,m;) 1= 1,2, -+
we define r; and R;, i = 1,2, - - by
ri = a(pt; — a(p;)ni, p; = ni/m; (10a)
and
Ri = Ri—l +r; with Ro =0. (].Ob)
Thus, we arrive at the sequential test:

() Compute R;,1 = 1,2,- - - and defer making a decision as long as T
<R; <T;

(it) If i = k corresponds to the first accumulation period for which
R; ¢ (To,T;), then

Ry = To= Trunk normal
Ry = T1 = Trunk killer.

If we ignore the fact that we are estimating p; by p;, and by assuming that
the various assumptions made are valid (see Section 4.3), we identify the
above test as Wald’s SPRT and as such Ty and T’; can be calculated as
follows:1! to approximately achieve type 1 and 2 errors, « and 8, re-
spectively, « + 8 < 1, choose

To = log < ) (10c)

11—«

and

T, = log (1 - 6). (10d)

o

Throughout this section, we have assumed that the 1 — 0 transitions
(t10) are available when, in fact, only the total transitions (¢) are available.
It should be clear that t1g can differ from ¢/2 by at most +%. To be pre-
cise, let t19(m), tg1(m) be the number of 1 — 0 and 0 — 1 state transitions
corresponding to a bit stream x,, = (x1, - - -, X,). If n(m) is the switch
count corresponding to Xx,,, then we have

n(m) = tio(m) + t11(m) + xp, (11a)
and

n(m) = to1(m) + t11(m) + x4, (11b)
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where t11(m) is the number of 1 — 1 state transitions. Therefore
tio(m) + xp = tor(m) + x4,
which together with t(m) = tg1(m) + t19(m) yields
. ) 3
ro(m) = 2 t(m) + (——xl 2"”‘) (122)

and

1 —im

tor(m) = = t(m) — (—x‘ g ) (12b)

2 2

Thus, we can write the statistic update (eq. 10a) as
at—an+ (’”“"'") o
2 2

[It is easy to show that E[(x; — x,,)a(p)] = 0.]

We conclude this section with an interpretation of the statistic update.
Rewriting the statistic update as

r=(a—ajtyp—aln—ty)
and using eq. (11a), we obtain
r=(a—a)typ—at;; —axn,. (13)

Now, from egs. (9a) and (9b), it is clear that « > a > 0. Thus, each 1 —
0 transition is weighted positively (evidence of a killer) while each 1 —
1 transition is weighted negatively (evidence of a normal trunk). This
is an intuitive explanation of the fact that the random walk (eq.
(10b))

R =Rp—1+r,

has a positive drift if the trunk is a killer and a negative drift if the trunk
is normal.

The fact that the update assigns a negative weight (—a) whenever the
last bit (x,,) is 1 uncovers a modeling deficiency. Recall that in eq. (6)
we assumed

P(tio(m) = t/n(m) = n) = b(t;n,Pyy),

even though x,, = 1 can not contribute to an observable 1 — 0 transition.
In this way we effectively modeled in a bias towards making “trunk
normal” decisions. We can easily correct eq. (6) by conditioning on
whether x,, = 0 or 1, obtaining:

P(tio(m) = t/n(m) = n) = (1 — p)b(t;n,P10) + pb(t;n — 1,Pq9).

Now, proceeding as before in formulating the log likelihood ratio yields
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a statistic Ry, where
Ry =Rp_1 + s
and
Fp =rp + g,

where ry, is defined by eq. (10a),

Lt (T%Z) (1 - :z_}:) (1 - Pl,t(bk,r0)>

D tr 1
(25 () Cornen)
1 — pn ng/ \1 — Py o(pg,1)

and py, tg, and ny are the trunks occupancy estimate, 1 — 0 state tran-
sitions, and switch count, respectively, during the kth accumulation
period.

Thus, we obtain our original test statistic with the correction term gy,
added on. Note that g, = 0, g, — 0as p, —>0,and g, — aas pp —> 1,
which is just the type of behavior expected, to offset the bias term in
k.

Having heuristically developed an ad hoc sequential algorithm that
is intuitively appealing and easily implementable, it is natural to ask:
how does it compare to the optimum sequential algorithm? In the fol-
lowing section, we rigorously develop an optimum sequential test.

gr = log (14)

4.2 An optimal algorithm

Consider the two simple hypotheses:
Hy: Trunk normal (mean occupancy p, mean holding time 1/u)
Hy: Trunk killer (mean occupancy p, mean holding time 1 /rou).
The optimum test for deciding between the two hypotheses—in the sense
of minimizing the mean decision time—for given type 1 and 2 errors, is
Wald’s SPRT (see Section 3.3), and it is based on the likelihood ratio
statistic ¢,,(¢,n) given by

_ Px(t(m) =t,n(m) =n)
P(t(m)=tn(m)=n)

£ (t,n) (15)

Thus, it is clear that the ad hoc test described in Section 4.1 is not opti-
mal, based as it is on an assumed conditional distribution,

P(tio(m) = t/n(m) = n).

Before proceeding to study eq. (15), we must define the trunk model
precisely. In the developments that follow, we model a trunk as the server
in an M/M/1-loss system (see Section 3.1). The model implies that the
sequence of trunk states x;, t = k7, k = 1,2,- - - is Markovian. Note that
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although this appears to be a reasonable model for a normal trunk with
200-second sampling, it ignores the conditional dependence “2 samples
back,” which is more important for 100-second sampling—e.g., x; given
%:—, is independent of x;—_s, for the M/M/1-loss model. Taking this de-
pendence into account in a trunk model would not be useful however,
since the data needed to implement dependence “two scans back,” is not
available.

Since we are modeling the sequence of trunk states as a binary valued
Markov process xx, k = 1,2,. - -,in equilibrium,iit is clear that this process
is characterized by 6 = (P o,P,1), where P g and Py are the transition
probabilities

P(xt4. = 0/x; = 1) and P(x44., = 1/x; = 0),

respectively. (In general, a binary valued Markov process xp,, k = 1,2, - -
in equilibrium, can be characterized by any two of the three quantities
p, P1,0,Po.1. For our special Markov process (based on the M/M/1-loss
model), both P; g and P ; and hence the process itself is determined by
p alone.) Now having observed any m-tuple of the samples, which we
denote by x,, = (x1, - ,x,,,), it is trivial to show that the statistic

T(xy,) = (t(m),n(m),x1,%m)

is a sufficient statistic for 8. Thus, except for the initial and terminal
states (x; and x,), the transition and switch-count accumulations
summarize all the “relevant information” in x,,.

Our hypothesis-testing problem can now be formulated as follows:
X1,X9, - - is a binary-valued Markov chain in equilibrium with parameter
8 = (Pg,1,P1,0) or 6* = (Pg,1,P1 ). That is, our two states are

Hy: {x;} Markovian, characterized by 8 = (P, 1,P1,0)
Hy: {x;} Markovian, characterized by 8* = (P 1,P] ).

Now, because (t(m),n(m),x1,x,,) is a sufficient statistic for 8, we know
that the likelihood-test statistic based on the raw (unobservable) data
Xm = (x1, - xm) will be expressible in terms of t(m), n(m), x1 and x,,
only. Thus, instead of studying eq. (15), we proceed (for simplicity) to
study the likelihood-ratio statistic:

P*(xm)

P(x,) | (16)

?(x,,) = log
In Appendix B we study £ (t,n) and find that it differs from 2(xp) only
in an end-effect term. In #(x,,) this term depends on x; and x,,, whereas
in £,,(t,n) the corresponding term is a function of ¢t and n.
Since
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P(xy) = P(x1) ﬁz P(xi/xim),

we may write
P(xm) = P(x1) Py° Pi1' P Po
S0

R P(x4) P 1 - Pl
F(xpn) =1 +t10log =2 + ¢, 1 ( )
(Xm) = log Pley ooy Htulog (g

*

P 1-P;
+ toy log P—‘“ + top log < o
01

Note that a trunk with mean occupancy p is busy and idle with proba-

bility p and 1 — p respectively, independently of the state it is in (normal
or killer). Thus,

). 17)

%
log Pr(xy) = 0 and eq. (17) can be written
P(xy)
2(x,,) = [(a — a)t1o — aty1] + [(B — b)tos — btool, (18)
where the parameters b and § are defined by
1— Py
b=1 — 19

Og <1 - P01> ( a)
B=b+log (P(“), (19b)

Py

and the parameters a and o are defined as in Section 4.1 (egs. (9a) and
(9b)). P6,1 and P;,o correspond to Pg 1(p,r) and P o(p,r) with r = r,.

Before discussing the symmetric structure of the optimum statistic
[eq. (18)], we examine the Py,; characteristics for the M/M/1-loss model.
Using egs. (2) and (3), we can obtain Py ; vs mean-trunk occupancy p for
a normal (r = 1) and killer (r = ro) trunk. Figures 6 and 7 are plots for
the 200- and 100-second sampling option, respectively, with a mean
holding time of 180 seconds. It is clear from Fig. 6 that a 0 — 1 transition
is just marginally more likely to occur on a killer trunk than on a normal
trunk with a 200-second sampling rate. Although, the difference in the
0 — 1 transition probabilities between a normal and killer trunk in-
creases substantially with the 100-second sampling rate, it is clear that
these differences are still quite small—compared to the spread between
the P; gand P’{yo plots (see Figs. 2 and 3). Note that egs. (2) and (4) show
that

—ros
P 1—exp1_
—OLI=#~———p>1forro>1 (19¢)
Po1 —s
1—exp
1-p
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Fig. 6— 0 — 1 transition probability for the 200-second sampling option.

1.0
M/M/1 — LOSS MODEL
m-' = 180 SECONDS
7= 100 SECONDS
0.8
0.6
- KILLER TRUNK
Q_d rz7.5
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04} (r=1)
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0 L | I 1
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MEAN TRUNK OCCUPANCY IN PERCENT

Fig. 7— 0 — 1 transition probability for the 100-second sampling option.
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and, hence, we have 8 > b > 0. Using eqs. (4) and (19c¢), we see that
Py1/Po1 = P1 /P10 and, therefore,

B—b=a-a (19d)

Equation (18) shows that the optimum statistic is the sum of two
symmetric statistics:

(1) The statistic [(o« — a)ti9 — atq;], which is essentially the ad hoc
statistic (see eq. (13) and related discussion).

(Z1) An additional statistic [(8 — b)¢o; — btgo], which weights 0 — 1
transitions positively (evidence of a killer) and 0 — 0 transitions nega-
tively (evidence of a normal trunk).

Note that by interchanging the role of 0 and 1 in either of these two
statistics, we obtain the other—b is obtained from a and g is obtained
from « by replacing P; o with Py ;.

By using eq. (11a) and the analogous equation

m —n(m) = too(m) + tor(m) + x5, (x5, =1 — xm) (20)
in eq. (18), the optimum statistic can be written
#(xn) = [atio(m) — an(m)] + [Btor(m) — b(m — n)] + e1(xn),  (21)

where the end-effect term e,(x,,) is given by
e1(xm) = ax,, + bxé,.

To implement #(x,,) with only ¢(m) and n(m) available, necessitates
estimating both t19(m) and tg;(m) by t(m)/2. That is, using egs. (12a)
and (12b) in eq. (21) yields.

i(x,,) = [a %"—) - an(m)] + lﬁ Hm) _ i - n(m)]] +e(xpam),

2
(22a)
where
elertn) = (= B) (F7) +ealxn)
= <“;b) (x1 + %) + bt (22b)
or
o a+
l(xy,) = ( 5 ) t(m) —(a —b)n(m) —bm + e(x1,xn). (23)

tRecall that « — 8 = a — b [eq. (194)].
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In the development of the ad hoc algorithm, we assumed that the
statistics corresponding to successive accumulation periods are inde-
pendent. We conclude this section by examining the independence as-
sumption and with some remarks on implementation.

Thus, turning to multiple accumulation periods, suppose x%,, i =
1,2,- - -,k are the (unobservable) bit streams for & successive (and con-
tiguous) accumulation periods, where xi, = (XG=1)m+1," * »Xim). As-
suming stationary traffic, and noting that {x;}*™ is Markovian, we can
write

k . k=1P(x: .
P(xhe - xh) = [T P(xiy) x T] Dimt1/Xim) (24)
i=1 i=1 P(Xim+1)
and, therefore,
A LI k=1 P*(x'm+1/xim)/P*(xim+l)
fxlye o xh) = 3 B(xi) + X lo { : ] (25)
El i=z1 g P(xim+1/%im)/P(Xim+1)

where P(-) and P*(-) denote the distribution under H (trunk normal)
and H; (trunk killer), respectively. But, as we have seen,
P*(Xim+1/%im) —
