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Anticausal Analysis of Feedback Amplifiers

By F. D. WALDHAUER
(Manuscript received February 11, 1977)

This paper discloses a technique for the direct analysis of linear-
active circuits, avoiding the solution of simultaneous equations. This
is done by representing the circuit in such a way that the signal vari-
ables (currents and voltages) are determined sequentially: we only allow
a signal variable to depend upon previously determined signal vari-
ables, not upon signal variables yet to be determined. Such a circuit
is representable by a cascade signal flow graph, a graph containing no
feedback loops. Not all circuits can be so represented, of course, but the
number which can is expanded by the technique to be described to in-
clude most feedback amplifier configurations. This simplification in
linear amplifier analysis allows us to trace a clear path from rough
design approximations to exact computer analysis. The extension of
the analysis to include the effect of nonsaturating nonlinearities is
indicated but not developed here.

I. INTRODUCTION

Feedback regulators as human artifacts have been here for a long time.
An early one (perhaps the first!) was a furnace temperature control in-
vented by Cornelius Drebble (1572-1633) who used it in several versions
including an incubator for chickens. The flyball governor may have
originated with Huygens? in the seventeenth century, and was used for
speed control of windmills by Thomas Mead and steam engines by James
Watt, both in the early nineteenth century. In the same period, a much
more diffuse feedback system was promulgated by Adam Smith in his
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Wealth of Nations, which proposed that economic self-interest of in-
dividuals would automatically assure equilibrium of the economic sys-
tem, without central control.l

Mathematical development of governors began with Maxwell, who
determined stability conditions for systems up to the third degree. He
“hoped that the subject would obtain the attention of mathematicians.”
Routh, Lyapunov, Hurwitz, and others responded, extending the sta-
bility analysis to systems of higher degree. Still the focus was on sta-
bility, that is, preventing the system from being useless. The engineer
was pretty much on his own to make the system useful. Minorski was
such an engineer. He developed an analysis for the design of a ship
rudder servo in the early 1920s.5

In the same period, Black and Dickieson were working together on
amplifiers for carrier transmission of telephone signals. Their design
problem was to reduce nonlinearities in electronic amplifiers so that the
several voice channels would not interfere with one another by modu-
lation. Black’s first entry in this area was his invention of feedforward,?
a technique reinvented by many workers in the 1960s, and inspired, as
Black relates, by “an approach to another problem, I don’t remember
what it was, in a lecture by Steinmetz.” Black worked out the invention
on the night of the lecture, and he and Dickieson got it working in six
hours the next day.” The second invention was that of feedback,3? which
came out of the first invention in the sense that Black understood that
it would do the same job of reducing nonlinearity. An appreciation of
stability problems came later. Nyquist, with his paper “Regeneration
Theory”'0 (unfortunately titled, according to Black), dealt with stability
analysis or preventing oscillations—making sure that Black’s invention
would work. Dickieson has been quoted as saying about this theory of
stability, “At last we knew what we were trying to achieve.”11 Bode later
set down the theory of feedback amplifier design, which remains a
landmark to this day.12

In the middle decades of this century, feedback amplifiers received
much attention.!314 A recent library search turned up some 750 articles
on the subject, indicating that the theory is hard to understand. By
making the stability problem the central focus, and in solving it superbly
well, Nyquist and Bode relegated the design problem to a position of
lesser importance. What was the design problem? To reduce modulation
products in frequency-division multiplex systems. What was the solu-
tion? T'o maximize the magnitude of the feedback signal, consistent with
the stability constraint.

This paper questions the usefulness of feedback as a conceptual tool
for design.!® The physical connection of a portion of the output signal
of an amplifier to the input is agreed to be a beneficial measure for many
applications. The analysis of such a physical structure can be made
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without recourse to the concept of feedback by a conceptual leap, one
which has already been made by many engineers who design circuits.
That leap is to reverse the direction of time, and think in terms of the
input signal which is required to produce a given, preassigned output
signal. The technique is old, having been applied to passive ladder cir-
cuits by many workers, although the origin is unclear.!¢ Penfield refers
to it as the “Guillemin trick,”'? but many others of the era used it. Its
application to active circuits has been much more limited, consisting of
a few papers by the present author,!8 Beddoe,!¥ and in control theory,
by Rosenbrock.20

People working in computer-aided design have-already rejected the
concept of feedback in favor of general circuit analysis programs that
calculate the performance of quite complex circuits by various matrix
methods. These programs are most valuable in checking the performance
of a circuit after it has been designed and before it is committed to pro-
duction. They tend to be neutral with respect to circuit concepts, giving
mostly correct answers as to how circuits, previously given to them by
design engineers, will work. When a circuit doesn’t work, the design
engineer has difficulty tracing the source of the difficulty from the
computer results, The CAD expert, on the other hand, complains that
he is not brought into the design process early enough. The design, ac-
cording to him, has been set in concrete. The problem is sometimes cast
in terms of interpersonal relations, but I think that it is structural, in that
there is a poor match between the intuitive thought process of the design
engineer and the general analysis method of the CAD expert. The design
method discussed in this paper should help to resolve this question, since
it is at home as much on the computer as it is in the mind (potentially)
of the designer.

The focus of this paper is on the design problem of feedback ampli-
fiers. Sections IT and III are tutorial, because the material is old, and may
be unfamiliar to many who might like to understand the rest of the paper.
Sections IV and V describe the new theory, and Sections VI and VII are
concerned with applying it to familiar problems. Section VIII considers
the stability question. While the substance of this paper is theoretical,
it was derived from practical design experience with several amplifier
configurations, the most recent of which is an operational amplifier with
1-GHz unity-gain bandwidth and 1 volt per nanosecond slew rate, to be
reported upon later. The conceptual difficulties were discussed quite
thoroughly in an in-hours course taught by the author at Bell Labs.

Il. CAUSAL AND ANTICAUSAL ANALYSIS—SINGLE SIGNAL VARIABLES
REPRESENTING CAUSE AND EFFECT

Two elementary examples will serve to define what is meant by
feedback and its relationship to the choice of independent circuit vari-
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ables. In Fig. 1a, a Thevenin source is connected to a load conductance:
a first equation is written taking the cause, eg, as the independent
variable, giving rise to a loop gain or return ratio, —G R, and a return
difference, F = 1 + G Rg, as shown in the signal flow graph.?! A second
equation is written taking the effect, v,, as the independent variable,
and the cause, eg, as the dependent variable, in which case no loop gain
appears, giving unity return difference. In Fig. 1b, the elementary
feedback amplifier circuit of Black’s feedback patent is shown with a
similar set of causal and anticausal equations, showing again that loop
gain does not appear under the anticausal formulation. Clearly, then,
return ratio is a property of the mathematical description of the circuits,
and not of the circuits themselves.

Feedback is seen to be associated with the departure from unity of the
denominator in the circuit equation. Since circuit expressions are easier
to evaluate (and think about) without denominators, a circuit description
which avoids them is conceptually easier to deal with. In general circuit
analysis, denominators (or return difference) cannot always be unity,
of course, but in many active circuits it will be shown that they can be
made to approximate it by appropriate choice of independent vari-
ables.

The word feedback is generally employed in a broader sense than
Bode’s strict definition of it as return difference. It connotes coupling
from output to input of an active circuit, or portion of a circuit, and in
this sense can exist, as in Figure 1b with its anticausal equation, without
any loop gain. We shall employ the term feedback in this sense even
though the description may include no return ratio.

H. Seidel, whose work on feedforward has been of substantial help to
the author in clarifying amplifier input-output time relationships, has
pointed out that the title of this paper might be interpreted (incorrectly)
as describing a physical violation of the principle of causality. No such
violation should be inferred. Rather, it is the analysis of the causal
physical system, proceeding from output to input in a direction from
effect to cause, which gives rise to the title of this paper.

Ill. TWO-PORT ANALYSIS USING THE TRANSMISSION MATRIX AND
TRANSMISSION MATRIX SIGNAL FLOW GRAPHS

Much useful theory is based on single signal-variable analysis, in-
cluding some introductory control theory and circuit analysis. For
practical circuit work, however, we need to consider at least two signal
variables in order to given an adequate, simple description of an am-
plifier made up from basic parts, such as transistors and passive devices.
The simplest of such amplifiers will have an input port and an output
port, and we are concerned with the current and voltage at each of these
ports, four variables in total. The most general way to assign indepen-
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4 Fig. 1—One-dimensional analysis showing causal and anticausal functional depen-
encies.

dence and dependence to these four variables, necessary in most cases,
is to choose two independent variables and two dependent variables.
There are six possible assignments of port currents and voltages as in-
dependent and dependent: one is to choose the port voltages as the set
of independent variables. The port currents, then, are the dependent
variables, related to the port voltages by an admittance, or y matrix. The
choice can profoundly affect the nature of the analysis of the amplifier.
In what follows, we use five of the six choices as it suits the occasion, but
the basic analysis is involved with the choice of the output current and
voltage, the output signal vector, u, = v,,i;, as the set of independent
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Fig. 2—Signal flow graph of an amplifier represented by its transmission parameters,
and the equivalent transmission matrix signal-flow graph (TMSFG).

variables, and the input signal vector u; = v,,i;, as the set of dependent
variables. The dependent variables are related to the independent
variables by the transmission matrix, or ABCD matrix:22:23

[i1=[e o]1%] 0

u = Tuo

or

These equations are shown in signal flow graph form in Fig. 2. In Fig. 2a,
eq. (1) is represented by the usual signal flow graph, a graph of directed
branches. For each branch, the tail originates at the independent circuit
variable, and the nose points toward the dependent variable. The branch
value multiplies the value of the independent variable at the tail, and
adds the result to the dependent variable value at the nose.

Signal flow graphs are particularly useful in establishing and clarifying
functional dependencies in circuits. They are not widely used in circuit
analysis and design, however, because of their complexity, even in circuits
of quite modest proportions.

In Fig. 2b, a simpler graph, a transmission matrix signal flow graph
(TMSFG)* connects the output signal vector, u,, to the input signal
vector, u;, through the matrix branch T'. The TMSFG is simply a short-
hand way of depicting the graph of Fig. 2a. While signal flow graphs
having matrices for the branches were envisioned by Mason2¢ and have
been studied elsewhere,25 the application to transmission matrices is new.

* A glossary of terms is given at the end of the paper.

1342 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



In the transmission matrix signal flow graph, each graph node represents
a signal vector consisting of a current and voltage at some point in a
circuit, and each branch represents a transmission matrix. The corre-
spondence between the graph and the circuit is direct, with the graph
nodes having a direct counterpart in vector nodes of the circuit. A circuit
vector node is defined as a node of the circuit with only two connections
to it, allowing us to define uniquely the node voltage (to ground) and the
node current, which together form the signal vector of the corresponding
TMSFG node. The definitions of the transmission parameters are implicit
ineq. (1):

ov; . .. .
= a—v' , thereciprocal of g1, the open circuit voltage gain
Vo
ov; . . ..
B= b_ , the negative reciprocal of ys;, the short circuit
Yo transadmittance (2)
di; . ..
C= a—‘ , the reciprocal of z4,, the open circuit
Yo transimpedance
oi;

=—, the negative reciprocal of hsy, the short circuit
Olo current gain

Note that the ABCD parameters are all reciprocals or negative* recip-
rocals of familiar forward transfer or gain parameters.

Equation (1) can be written with the transmission matrix taken as a
Jacobian matrix, making the equation suitable for analysis of an im-
portant class of nonlinear problems:

ov; )

du; 3 > dv,
v Io
- b'o ol (®)
i i
d'- __1 .1 d.
K dv, Oi, fo

The partial derivatives can be expressed as nonlinear functions of the
instantaneous output current and voltage, allowing us to find the input
voltage and current as nonlinear functions of a preassigned output
voltage and current. For a desired sinusoidal output, for example, we can
find the input predistortion required to achieve that output. The study
of transistor nonlinearities expressed in terms of the partials of eq. (3)
is beyond the scope of this paper, and is mentioned here to indicate the

* The parameters which involve i, are negative reciprocals because of differing sign
conventions between the ABCD parameters, in which the positive direction of current
is taken to be outward from the output port, and the b, z, y, and g parameters, in which
the reverse is true.
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Fig. 3—Connection of a two-port amplifier to source and load, with appropriate sig-
nal-flow graphs.

direction of future efforts. For the remainder of this paper, we shall
confine our attention to the small-signal case, where the partial deriva-
tives are constants defined at a dc operating point, and are generally
functions of frequency.

The calculation of the circuit properties of an amplifier connected as
shown in Fig. 3a between a Thevenin source and load conductance is
particularly simple if we retain the anticausal direction of analysis that
finds the input for a given output. Thus, defining the loss ratio, L, as
eg/v,, we simply add all of the paths from v, to e in Fig. 3b, or, alter-
natively, perform the matrix multiplication indicated in Fig. 3c.

Thus,
A B 1
L=urel[g ] [GL] @
= A+ BGL + RqC + RgDGy, (5)

The graphs of Fig. 3 do not include any feedback loops (closed paths).
Such a graph is termed a cascade graph and has the property that the
graph gain (in this case representing the loss ratio since the graph source
node corresponds to the circuit output) is the sum of all path products
from the graph source node to the sink node, from v, to eg. With no
feedback loops, no denominator appears in the expression for the loss
ratio.
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Fig. 4—Loss ratio calculation for a voice-frequency operational amplifier connected
between source and load.

Two examples serve to illustrate the loss ratio calculation. In Fig. 4,
a voice-frequency operational amplifier is connected between source and
load, with the positive input grounded. The transmission matrix of this
amplifier can be approximated over most of its frequency range by a
single parameter: A = —200s, where s is the frequency variable in units
of gigaradians per second.* (The low frequency value of input signal is
over 100 dB down from the output, and is ignored.) Thus, the loss ratio
is —200s, as shown in Fig. 4, and is seen not to depend upon the source
or load immittances within the range of accuracy of the simple model.

In the signal flow graph of Fig. 4b, the zero value elements in the active
path (operational amplifier) transmission matrix are represented by
dotted lines; when these are ignored, only a single path exists between
the v, and e nodes. The TMSFG is shown in Fig. 4c.

* To save writing powers of 10, we shall adopt the following system of units throughout:
the volt, milliampere, and nanosecond are taken as our fundamental units, leading to the

derived units of kohms, mmhos, microhenries, picofarads, gigaradians per second (Gr/s),
and GHz.
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Fig. 5—Loss ratio calculation for a common emitter stage employing a type 87A tran-
sistor.

The second example, shown in Fig. 5, is a common emitter transistor
stage using the Western Electric type 87A transistor. Accurate charac-
terization of the transmission parameters of this transistor is under way;
for purposes of the illustration, we approximate the transmission matrix
as shown in Fig. 5b, accurate in magnitude to 1 GHz but somewhat de-
ficient in phase. The transistor parameters are determined at a collector
current of 5 mA, and a collector-to-emitter voltage of 3 volts, and are

r. = emitter resistance 0.008 kohm
Ccp = collector-to-base capacitance 0.55 pF
6 = 1/hs., the reciprocal current gain 0.01
77 = 1/27f7, the current gain time constant 0.025 ns
C.. = collector-to-emitter capacitance 0.7 pF

1346 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



These parameter values yield the transmission matrix shown in Fig. 5b,
whose elements are entered on the signal flow graph of Fig. 5¢. The
TMSFG is shown in Fig. 5d. The calculation of loss ratio, shown in Fig.
5e, can be made by adding all path products of the signal flow graph, or
by performing the matrix operations indicated in the TMSFG. The loss
ratio is seen to be a binomial in the frequency variable, with a cutoff
frequency of 1 Gr/s, or 0.16 GHz.

This second example points to an advantage of the anticausal ap-
proach in determining circuit sensitivities. With feedback loops absent,
the input signal is simply the sum of all paths from output to input of
the signal flow graph, so that the sensitivity of the loss ratio to r., for
example, is simply the proportion of the input contributed by r.. At low
frequencies, the r, contribution is 0.08 out of a total input of 0.09, so that
the sensitivity to r. is 0.08/0.09, or 0.89.

The advantages of the anticausal approach for the simple circuits
studied so far are implicit in the removal of feedback loops and therefore
denominators from the transmission expressions. It remains to be shown
that a method may be developed for retaining these advantages in more
complicated circuits with more than mere ladder or cascade coupling.

IVv. “FEEDBACK”: THE EFFECT OF SPANNING NETWORKS

We define a spanning network as a two-port network which is con-
nected between a pair of nonadjacent circuit vector nodes of a cascaded
network. In the circuit of Fig. 6a, for example, the conductance G will
be considered to be a spanning network around the transistor, and in Fig.
6b, the upper transistor will be considered to be a spanning network
around the lower transistor. The choice at this point is arbitrary as to
which is the spanning network and which is the cascade network. The
consideration of active spanning networks is beyond our scope here, but
in the case of the circuit of Fig. 6a, the reason for the choice will become
clear. The conductance can be represented by its two-port dependent
generator equivalent circuit as shown in the figure. Four separate effects
are introduced by G, corresponding to the four elements of its y-pa-

rameter matrix:
G -G
y= [ —G G] (6)

Clearly, y11 and yss load the input and output circuits by shunt con-
ductances equal to G. The generator y150, = —Gv, augments the input
current by an amount proportional to the output voltage upon which
it depends. This y12 augmentation is usually the reason for connecting
G to the circuit, and the other three effects (of y11, 29, and y9;) are side
effects, usually deleterious. The fourth effect, introduced by the gen-
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Fig. 6—Two types of spanning networks: (a) input signal augmentation, or feedback
type, and (b) output signal augmentation, or feedforward type.

erator yo10;, is direct feedthrough. Where the transistor has high gain,
e.g., where v; « v,, this effect is incidental, and can often be neglect-
ed.

The method of treating a spanning network in anticausal circuit
analysis is (i) to represent its two-port characteristics by one of the four
sets of network parameters whose dependent generator equivalent cir-
cuits and signal flow graphs are shown in Fig. 7, and (i) to decompose
its four network parameters into four separate transmission matrices,
corresponding to the four effects of input and output circuit loading,
input augmentation (or “feedback”), and output augmentation (direct
feedthrough).

The four two-port representations of Fig. 7 correspond to the four
well-known feedback configurations. The h parameters are chosen to
represent a spanning network which provides series-input/parallel-
output feedback, the main effect of which is to augment transmission
parameter A by his of the spanning network. We shall term this A
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Fig. 7—Signal-flow graphs and equivalent circuits for two-ports corresponding to the
h, z, y, and g parameter representations.

feedback. The z parameters augment B by z19, and are appropriate for
series-input/series-output, or B feedback. Similarly, y; augments C,
providing C feedback, and g12 augments D, giving D feedback. We shall
consider all four types of feedback in the following section. In this section,
we shall consider C feedback (parallel-input/parallel-output feedback)
in detail.

A signal-flow graph for the circuit of Fig. 6a is shown in Fig. 8a. The
four branches labeled A, B, C, and D represent the transmission pa-
rameters of the transistor. The other four (nonunity) branches represent
the effect of the four y parameters of the spanning network. Three of
these latter branches, corresponding to y11 and ysg, the input and output
loading by the spanning network, and y2;, the direct feedthrough to the
output through the spanning network, are shown as dashed lines to in-
dicate their lesser importance.

In Fig. 8b, a TMSFG for this circuit is shown. The active path trans-
mission matrix, T, includes the four transistor transmission parameters
of Fig. 8a. The four branches of Fig. 8a which represent the spanning
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Fig. 8—Development of the signal-flow graph and the TMSFG for the circuit of Fig. 6a.
(a) Signal-flow graph, with direct feedthrough and input and output feedback loading
branches shown with dashed lines. (b} TMSFG.

network y parameters yield four separate transmission matrices, 8y,
F,, Hy, and J,, defined as follows: 8, is the input augmentation or
feedback matrix, given by

0 0 0 0
= = 7
by [3’12 0] [—G 0] @
F, is the direct feedthrough, or feedforward matrix, given by
0 0 0 0
F, = = 8
Y [y21 0] ["G 0] ®)
H, is the input loading matrix, given by
1 0 1 0
H, = = 9
Y [y n 1 ] [ G 1 ] ©)
Jy is the output loading matrix, given by
1 0 1 0
J, = = 10
Y [}’22 1] [G 1] (10)

In these four equations, the matrices containing G were obtained by
substituting the y parameters of eq. (6) into the general expressions.

The transmission matrix for the C-feedback amplifier of Fig. 6a can
be obtained by evaluating the graph gain of the TMSFG. As shown in
Appendix A, this transmission matrix is
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T = H,[B, + T — FyT2)"1]J, (11)

The matrix F, T, will be called the return ratio matrix, and (I — F,T,)™!
will be termed the return difference matrix inverse. These two matrices
arise from the presence of a feedback loop in the signal flow graph and
in the TMSFG, one which arises from the incidental direct feedthrough,
or feedforward from input to output through the spanning network.
Where the y2; branch can be ignored, Fy can be considered a null matrix,
and the graphs become cascade graphs. The transmission matrix of eq.
(11) can also be written

T=8,+H,T.(I—F,Ty)1J, (12)
since
HyByJy = By

This equation states that the transmission matrix of the amplifier is the
sum of the 8, matrix and the matrix of the active path, which itself is
the transmission matrix of the transistor, modified by input and output
loading and direct feedthrough. Our next step is to calculate the effect
of these modifications of the active path transmission matrix.

To evaluate the effect of direct feedthrough, we begin by finding the

return ratio matrix:
0 0
F,T, = [ ] (13)
v yo14 ya1B

whereupon the return difference matrix inverse becomes

1 [1 —yle 0]

(I = FyT,)1 =
Y 1—yaBlyxaA 1

(14)
The effect of direct feedthrough is a small modification of the trans-
mission parameters of the active path. Thus,

1 A B
Ty = Toll = FyT,) = ———— 1
¢ o vTa) 1—yng[C+y21Af D] (15)

where At = AD — BC is the determinant of the transmission matrix of
the transistor. Ordinarily, |y21B| < 1 and |ys1Af| <« C, so that the active
path remains essentially unaffected by the direct feedthrough.

The loss ratio between a Thevenin source and a load conductance is
found as in eq. 4:

L=[1 Rg|T [éL] (16)

Using eq. (12) for T, and substituting the matrix element values of egs.
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(7) to (10), we obtain

L=Rava+ll Ral|}  T]7o[] e ] o

yu 1 yee 111GL

=Royuu+ 1+ Rayu RalTw' [, ] as)
GL + y22
The term 1 + Rgy11 is a potentiometer term arising from the voltage
divider action between the source resistance, Rg, and the spanning
network input loading admittance, y11, and the term G, + 2o represents
the total output load admittance, including the spanning network output
loading. Letting Pg = 1 + Rgy11 and GL’ = G + Y99, We can write

1
L= Ray12 + [PGA + PgBGL/
1 —-yuB

+ RgC — Rgyz1At + RgDG’]  (19)

We can recapitulate the above development by identifying each term
of this equation with the relevant spanning network effect, comparing
it with eq. (5) for the loss ratio without the spanning network. The first
term is the input augmentation, or “feedback,” which is of course absent
from eq. (2-5). This is the reciprocal of the familiar Rr/Rs gain ap-
proximation for this circuit, with Rr = 1/G. The remaining terms are
divided by the return difference, 1 — y9:B, which is ordinarily close to
unity. The first term in the brackets, PgA, is the same as that of eq. (5),
except that it is magnified by the input loading factor, Pg = 1 + y11R¢.
The second term is magnified by this term as well as by the increased
output loading provided by ys9. The third term is unchanged from eq
(5). The fourth term is new: ordinarily very small, it constitutes a rev-
erberation of the signal back and forth through the circuit. The fifth term
in the brackets is the D term of eq. (5) magnified by the increased load
conductance.

The main difference between the two equations is the feedback term,
R¢G. The loading has a lesser effect but it is not normally negligible. The
direct feedthrough effect is normally negligible.

As examples of the use of the above equations, consider the circuits
of Figs. 4 and 5 with feedback conductances connected between input
and output, as shown in Fig. 9. The loss ratio for the operational amplifier
circuit consists of only two terms of eq. (19), since we have assumed that
B, C, and D are zero. Hence, A? is also zero, and

L=—-RsG + PgA (20)
Since Pg = 1.1 and A = —200s, we have
= —(.1 + 220s) (21)
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Fig. 9—Examples of loss ratio calculation with spanning network.

Direct feedthrough and output loading are of no concern by our as-
sumption that B and D of the active path are zero. Feedback, or input
augmentation, gives the low-frequency value of .1, and the value is A
magnified by the input P¢g term.

A more substantial example is provided in Fig. 9b, in which the com-
mon emitter stage of Fig. 5 is modified by connecting a 1 mmho con-
ductance from input to output. With R¢ = .1 k, we have Pg = 1.1, and
with G, = 10 mmho, we have G1’ = 11 mmho. From eq. (19), the loss
ratio of the transistor stage is

1

———— [01ls +.0968
1~ 0.008 10118

L37A =-1

+.055s + .00043s + .011 +.0275s] (22)

in which the terms are in the order given in eq. (19). The value of At is
taken as .0043s, ignoring the s2 coefficient, since it affects the result only
at frequencies higher than the range of approximation of the transistor
model (1 GHz). Thus,

Lg7a = —.209 — .0947s (23)
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When the direct feedthrough is ignored, the denominator in eq. (22)
becomes unity, and the RgG At term (.00043s) drops out, giving

L87A ~ —.208 — .0935s (24)

an approximation of which a circuit designer can be proud. When input
and output loading are ignored, Pg becomes unity and G’ reverts to
(1, 10 mmbho. This approximation is rougher, but still valuable for circuit
thinking:

L87A ~ —.19 — .090s (25)

A still rougher approximation is obtained by ignoring certain of the less
important transistor parameters (for this case), such as 6 and C¢.. With
these assumptions, the transmission matrix of the transistor becomes

.0044s .008 ]

26
.5bs .025s (26)

Tgra =~ —[

and the loss ratio becomes
Lgia = —(.18 + .084s) 27

which is roughly 10 percent below the true value. A much rougher ap-
proximation is obtained by ignoring the contribution of the active path
entirely, a good strategy where the loss ratio is controlled primarily by
the feedback. For the case of the 87A, we would obtain Lgya = .1, a poor
approximation, since r, contributes to the low frequency loss ratio, and
C.» and 77 provide most of the high-frequency loss. In the case of the
op amp, this strategy accurately predicts the low-frequency loss ratio,
but obviously cannot account for the increase in loss ratio at high
frequencies. The significance of ignoring the active path contribution
is that it defines the transmission matrix of the active path as the null
matrix. This provides us with a convenient reference condition for a
feedback circuit. Where Bode defined a reference condition for a feed-
back circuit as the circuit in which the “tube [active path] is dead,” we
stand the definition on its head, and take our reference condition as one
in which the active path is very much alive—an ideal two-port ampli-
fier—to be discussed in the next section. The approximation is widely
used in operational amplifier applications such as active filter design.
The analysis of the C-feedback amplifier in this section shows that
the essential character of the simple anticausal analysis of the circuits
of Section II is retained when the y-parameter spanning network is
added to the circuit. The cascade nature of the signal-flow graph is es-
sentially retained because the loop gain of the inevitable feedback loops
is below unity, and for usual feedback circuits, negligible. The sensitiv-
ities to circuit elements are easily evaluated. The low-frequency sensi-
tivity of loss ratio to r. in the 87A feedback circuit, for example, is seen

1354 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



from eq. (22) to be .0976/.209 = .47, compared with the previously cal-
culated value of .89 for the stage without the spanning network. The
contribution of r, to the input voltage has not been reduced—it actually
has increased slightly because of the output loading by the spanning
network and by the input Pg term—but the total generator voltage has
been increased by the input signal augmentation of the spanning net-
work, tending to swamp out the effect of r,.

In this approach to active circuit analysis, the functional dependencies
have been chosen in such a way that the increase in bandwidth and re-
duction in sensitivities usually ascribed to feedback are accounted for
without the presence of denominators associated with feedback.

V. NOTES ON FEEDBACK THEORY

Equation (12) for the C-feedback stage neatly separates four essentials
of a feedback amplifier. The two terms of the equation separate the
feedback or spanning network and the active paths. The feedback net-
work matrix, §8,, contains one nonzero element which augments the
current at the amplifier input in proportion to the output voltage, as we
have seen. The active path consists of four matrices, including T, the
transmission matrix of the active path, H and J, the matrices repre-
senting the circuit loading by the spanning network at the amplifier input
and output respectively, and (I — F,,T,)~1, the return difference matrix
inverse representing direct feedthrough. This equation permits a clear
definition of the 3-matrix; by setting T, equal to zero, that is, making
T, the null matrix, the second term in the brackets drops out, so that
the transmission matrix of the amplifier becomes 8,. We shall define
the reference condition for the amplifier by setting T, = [0]. Thus, 8,
is the transmission matrix of a C-feedback amplifier whose active path
has been set in the reference condition. Later, this definition will be
extended to A-, B-, and D-feedback amplifiers.

The concept of an amplifier whose input voltage and current are zero
for all finite output signal vectors is a serviceable one which is fairly
widely used in making rough calculations of gain of feedback circuits.
Calling such an amplifier an ideal two-port amplifier* we can state the
following.

Theorem: An ideal two-port amplifier is an amplifier whose trans-
mission matrix is the null matrix.

Proof: From equation (5), we have
L=A+BG,+RgC+ RgDGL=0 (28)

since e4/v, = 0 by definition. Since the terminations are arbitrary and
* To distinguish it from an ideal operational amplifier, which is a three-port.
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Fig. 10—Dependent generator equivalent circuit for a two-port represented by its
transmission parameters.

nonzero, 4, B, C, and D must be zero individually. Note that the input
and output impedances are indeterminate, since

A+ BGp,

Zin=""T1"
C+ DGy, (29)
and
_ B + DRg
°" A+ CRg (30)

Impedances will be determined solely by externally applied spanning
networks. An ideal two-port amplifier (I2PA) is a circuit element having
no parameters to specify it (much like the nullator and norator),26 and
represents a limiting value for an active two-port. It is often useful in
drawing equivalent circuits and in modeling; it can, for example, allow
us to draw a dependent generator equivalent circuit for a two-port de-
scribed by the transmission parameters, as shown in Fig. 10.

We can apply the concept of the I2PA to investigate the properties of
various feedback configurations. With the active path of a feedback
amplifier set in the reference condition, the resulting transmission matrix
is simply the 8 matrix, without the complicating effect of a nonideal
active path. In Fig. 11, the circuits of four unitary feedback amplifiers
and their associated transmission matrices are shown. A unitary feed-
back amplifier is defined as one whose 8 matrix has but one nonzero
element. Figures 11a and d employ permutative feedback—feedback
obtained when the active device leads are permuted.2” When the active
path consists of a transistor, these are the common collector and common
base stages, respectively. The transmission matrices shown are obtained
by inspection, bearing in mind that the input current and voltage of the
12PA are zero. The circuits of Figures 11b and ¢ are duals, with the
transmission matrices likewise obtained by inspection.

We can obtain a good approximation to the actual transmission matrix
of each of the four circuits of Fig. 11 with a nonideal active path by simply
adding the transmission matrix of the active path, with due attention
to the sign change introduced in Fig. 11a and d by the permutation of
the device leads. This amounts to approximating the transmission matrix
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Fig. 11—Transmission matrices of four unitary feedback amplifiers whose active path
is in the reference condition. (a) Common collector stage (example of A feedback); (b)

emitter resistor feedback (example of B feedback); (c) collector-to-base feedback (example
of C feedback); (d) common base stage (example of D feedback).

by the equation
T~B+T, (31)

In the case of the common collector stage, this amounts to approximating
the transmission matrix as

1-A -B
TCC ~
[_ . _D] (32)

Since permutative feedback is lossless, there are no input and output
loading terms, so that the approximation involves ignoring the direct
feedthrough. The exact transmission matrix for this stage is derived in
Appendix B, and is

1 8 -B
Te=1-D [—C —D] (83)
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where § =1 — A — D + A?, a quantity close to unity which will recur
below. Where D « 1, that is, well below f7, the approximation of eq. (32)
is quite close.

In the case of B-feedback, for which the z-parameter description of
the spanning network is appropriate, the approximation of eq. (31)

gives
A B-R
T, ~ 4
[c °5"] @

The exact value, derived in Appendix C, is
1 [A +CR B-—Rf ]

(35)

* 1+CrlC D+CR

In comparing this expression with that of eq. (34) we note that the de-
nominator and the multiplication of R by 8 are due to direct feedthrough;
the CR term added to A comes from input loading by the spanning
network, and the CR term added to D comes from output loading by the
spanning network. These modifications are small, but may become im-
portant at high frequencies, since C represents the (negative) admittance
of the collector capacitance, a determining factor in high-frequency
performance.

The transmission matrices for the four circuits of Fig. 11 with nonideal
active paths are given in Table 1. These expressions are intended for
computer implementation, since they are complex, and their complexity
arises from relatively small corrections on the approximations discussed
here. The approximations can be used in the design process.

Table I also includes the transmission matrix of one nonunitary
feedback amplifier, a hybrid feedback amplifier, incorporating both B-
and C-feedback. As can be seen from the table, the matrix for the ref-
erence condition includes nonzero elements in all four positions of the
matrix. The matrix was obtained by using the transmission matrix ele-
ments of T, as a set of active path elements for the computation of
Ty.
As noted above, a spanning network is represented by one of the four
parameter sets of Fig. 7. Any one of these parameter sets contains four
parameters, each of which generates a transmission matrix; these have
been termed 8, F, H, and J matrices corresponding to the four effects
generated by the spanning network; input augmentation, direct
feedthrough, and input and output loading, respectively. Each of the
four types of unitary feedback can be represented by the same TMSFG,
shown at the top of Table II. The rows of Table II define these four
transmission matrices for each of the spanning network parameter sets
of Fig. 7. Signs are a problem, since the sign conventions for two-port
parameters are different for the parameter sets of Fig. 7 and for the

1358 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



6S€L SISATVYNV TVSNVOILNY

Table | —Transmission matrices for useful special cases

Circuit Transmission matrix Reference condition
A B [0 0]
T, =
c D K 0]
0 -B [1 0]
1
Tee=1=D
~C -D |0 0|
CA + CR B—R0 [0 R
T, =
z=1+CR
R | ¢ D +CR_| 1 0 0
—-
A + BG B [0 0]
o=l
¥ 1+BG|c_gs  Dp+BG ¢ o]
. -A -B (o 0]
Tep=1=3Z
L-C ] L 0 0]
G
A+ CR +BG - RGO B— R0 RG R
_ 1 1
Tz/y = T+ CR + BG — RGO 1= RG
c-Go D +CR+BG - RGO G RG
B 0=1—-A-D+A?



Table |1 — Matrix element values for the four types of unitary
feedback

af
Ta
u’ p ub Uc 7 u,
aF
TMSFG
Type of
feedback « F H J

0 0 0 1 A
A -1
L0 h,, 0o 1

[0 =,

.yll

©c © © ©

- 0
(Y23
821

LY 11

Fl

L&,

T
s T ] :2 2(2)1: _<1) 21_ [
] |

[

transmission parameters. This is accounted for in Table II by introducing
the parameter o, which is —1 for the i and z parameter sets and +1 for
the y and g parameter sets. The signs of the parameter values are all
consistent with conventional practice.

The cascode stage of Fig. 12a illustrates a situation in which the
common-base stage effectively removes or reduces certain active pa-
rameters of the common emitter stage. The transmission matrix of the
cascode stage is

Tcascode = al(ﬁD - Ta2)
= Ta1Bp — Ta1Ta2 (36)
0 Bl]
= — T T 37
[0 Dl alt a2 ( )

The first matrix of eq. (37) is the transmission matrix of the common
emitter stage with A; and C; removed, the primary effect of which is to
remove C;, the (negative) susceptance of the Miller capacitance. The
second term is the negative of the cascaded pair of transistors in the
common emitter configuration, a matrix whose elements are much
smaller than those for a single stage up to frequencies at which the
common emitter gain becomes small.

The process of sorting out the unique character of amplifier configu-
rations is helpful for circuit design. Consider the cascades of unitary
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Fig. 12—Cascode stage.

feedback amplifiers of Fig. 13.28 In Fig. 13a, the cascade of a B feedback
amplifier with a C feedback amplifier has a transmission matrix given
by T, T, of Table 1. When both transistors are placed in the reference
condition, we observe that the elements of the 8 matrix of the combi-
nation are all zero except for the factor RG in the A position, so that the
combination is itself a unitary A-feedback amplifier. Reversing the order
of the stages, in Fig. 13b, gives a D-feedback amplifier. If we cascade two
C-feedback stages (or two B-feedback stages) we find that the 8 matrix
of the combination is null. In Fig. 13c, we note that the C feedback of the
second stage augments the input current of that stage, but not the
voltage. Since the 8 network of the first stage senses the input voltage
of the second stage, which is zero in the reference condition, no overall
feedback arises. The overall loss ratio increases as a result of the input
augmentation of the individual stages; the increased input current of
the second stage increases the contribution of B; and D1 to the loss ratio,
and the feedback around the first stage increases the effect of A, and
B, but the 8 matrix for the combination is null.

VI. EQUIVALENT LADDER CIRCUITS FOR FEEDBACK AMPLIFIERS

The circuit of any amplifier whose two-port characteristics are sought
may be drawn as an equivalent ladder circuit, that is, a cascade of active
and passive network elements, by the direct expedient of representing
circuit couplings among nonadjacent nodes of the ladder by one or more
of the dependent generator equivalent circuits of Fig. 7. This will be il-
lustrated by deriving an equivalent ladder circuit for the A-feedback pair
of Fig. 14, in which the output voltage of the second stage is divided down
in a resistive divider and applied to the emitter of the first stage, where
it augments the amplifier input voltage. Since the 8 network augments
A of the active path transmission matrix, the 8 network is properly
represented by its h parameters. The relationship of the h parameters
to circuit elements Rg and Ry is given in Fig. 14b, which also defines a
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Fig. 13—Cascades of unitary feedback amplifier.

more convenient set of feedback parameters, R4, G4, and n4, where R4
is the parallel combination of R and Ry, G4 is the conductance of the
series combination of Rg and Rp, and n, is Rg/(Rg + Rp), which can
be considered the turns ratio of the ideal transformer in the network
shown. The application of the spanning network is shown in Fig. 14¢c. The
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Fig. 14—The A-feedback pair. (a) Circuit; (b) analysis of spanning network; (c) appli-
cation of dependent generator equivalent circuit of spanning network; (d) eqmvalent ladder
network.
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final equivalent circuit of Fig. 14d removes the n4v, gererator from the
emitter circuit of the first stage, replacing it by two generators, one in
series with the base lead of the first stage, and one in series with the
collector lead. This completes the transformation to the ladder config-
uration, except that we have left R4 in the emitter of the first stage. The
reduction to a ladder of elementary active and passive devices would
strictly require that the local B feedback of the first stage be represerted
by a separate z-parameter spanning network. To save work, we shall take
the single-stage circuits of Table I as elementary building blocks, so that
the first-stage active path will be represented as 7’,. Thus, there is no
need to reanalyze the single-stage circuits of Table I each time they arise.
In computer evaluation, the properties of T, are derived from T, in a
subroutine. We note that when the transistors of the circuit of Fig. 14
are placed in the reference condition, the transmission matrix is

_fna O
m—[o 0] (39)

so that the A-feedback pair is a unitary feedback amplifier.

The ladder equivalent circuit for the D-feedback amplifier of Fig. 15a
is derived in an exactly analogous manner, and is shown in Fig. 15b. In
this case, the g parameters of Fig. 7 are the appropriate set, since g1
relates the input current to the output current. When the transistors are
placed in the reference condition, the transmission matrix of the circuit

is
BD=[O 0 ] (39)

0 -np
so that this, too, is a unitary feedback amplifier.

Simultaneous application of A- and D-feedback is shown in Fig. 15c¢,
and the ladder equivalent circuit is shown in d. The circuit is an extension
of the two unitary feedback circuits from which it is derived. When the
transistors of this circuit are placed in the reference condition, the ex-
pression for the 8 matrix is complicated. It can be simplified by sepa-
rating out the effects of Gp and G 4, which we would normally associate
with the source and load immittances, respectively. The remaining
matrix may be written by inspection, and is the middle matrix of:

1 0 na RAGLlRD] [1 0]
= 40
ﬁA/D [GD 1] [0 np GA 1 ( )

If G is eliminated (by bootstrapping or by use of an active current
source to provide dc for the first stage), the 8 matrix consists essentially
of the two ratios, n4 to establish the voltage gain and np to establish the
current gain.

This configuration is another instance of a hybrid feedback amplifier
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Fig. 15—Further development of equivalent ladder circuits. (a) A D-feedback amplifier
and (b) its equivalent ladder circuit. (c) A hybrid-A/D-feedback amplifier and (d) its
equivalent circuit.
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(the first was encountered as the last entry of Table I). Hybrid feedback
can be used to provide a desired input and/or output impedance without
incurring the power loss associated with build-out resistance or con-
ductance.?? At the amplifier output, such a build-out incurs a loss of
power output capability, while at the input it increases noise. In the
present instance, the two generators establish both the input current
and voltage, and therefore the input impedance, and contribute only an
incidental amount of noise (associated with the input loading of the
spanning networks, which could be eliminated by making the spanning
networks lossless, by use of transformers rather than voltage dividers).
This leads to the surprising thermodynamic conclusion pointed out by
Nyquist that such an amplifier cools down the source, since the source
pumps noise power into this noiseless resistance, and receives no noise
power in return.

At the beginning of this section, we stated that any amplifier for which
the two-port characteristics are sought may be represented by a ladder
network with (shunt) current generators and (series) voltage generators
which are dependent upon voltages or currents at nonadjacent circuit
nodes. Where parallel active paths are involved, a choice must be made
as to which of the two paths is to be taken as the spanning network
represented by its h, 2, y, or g parameters. Where an active spanning
network is involved, such as in feedforward circuits, it is advantageous
to assign the role of spanning network in such a way that the loop gain
arising from feedforward or direct feedthrough is minimized, since this
most closely realizes a cascade graph representation. This procedure is
beyond the scope of this paper, but will be treated in a subsequent
publication. ’

When active spanning networks are admitted, it is clear that any ac-
tive, linear network can be represented as a ladder in the sense defined
here. It also appears to be true, in looking ahead to the analysis of active
spanning networks, that the direct, intuitive understanding of active
circuits which comes from the elimination or gross reduction of return
ratio can be substantially retained when active spanning networks are
used.

Vil. WRITING THE TRANSMISSION MATRIX EQUATION FROM THE
EQUIVALENT LADDER CIRCUIT

When the feedback amplifier circuit has been redrawn in equivalent
ladder form with spanning networks represented by dependent gener-
ators, a TMSFG can be drawn directly from the circuit by inspection. As
a mechanical aide, a set of circuit vector nodes are placed on the circuit
between each element of the ladder. These become the graph nodes of
the TMSFG. Branches connecting these nodes in sequence from circuit
output to circuit input (from graph input to graph output) define the
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Fig. 16—(a) Equivalent ladder circuit, (b) TMSFG, and (c) transmission matrix array
for a unitary C-feedback amplifier.

main transmission path. Each dependent generator will create a branch
which spans one or more of these nodes: either a 8 branch in a direction
from the circuit output toward the circuit input, or a direct feedthrough
branch (an F branch) in a direction toward the circuit output. An ex-
ample already examined in Section III is the C-feedback amplifier whose
ladder circuit and TMSFG are shown in Fig. 16. The transmission matrix
equation for the circuit is obtained as the transmission or graph gain of
the TMSFG.

7.1 The transmission matrix array

Writing the transmission matrix equation of the amplifier is facilitated
by putting the TMSFG into matrix form. Such a matrix form will be
termed a transmission matrix array (TMA) which is itself a matrix re-
lating the signal vectors at the nodes which receive signals to the signal
vectors at the nodes which transmit them. The matrix elements are the
branch values of the branches which connect these nodes in the TMSFG.
In Fig. 16, for example, u;, up, and u, are nodes which receive signals;
the signals at these nodes together form the received signal vector.
Similarly, up, u., and u, are nodes which transmit signals, which together
form the transmitted signal vector. The matrix relating these two vectors
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is the transmission matrix array, having a nonzero entry at any element
position where a TMSFG branch transmits a signal from a component
of the transmitted signal vector to a component of the received signal
vector. Figure 16¢ shows the transmission matrix array for the circuit.
It is evident that elements along the principle diagonal are matrices of
the ladder network of cascaded circuit elements: elements above or to
the right of the principle diagonal are 8 matrices, and elements below
or to the left of the principle diagonal are F (direct feedthrough or
feedforward) matrices.

Where all elements below the principle diagonal are zero or can be
ignored, the transmission matrix equation relating u; to u, can be written
by inspection. Thus, ignoring the direct feedthrough element in the TMA
of Fig. 16, we can write

u; = By + HyTodylu, (41)

To obtain the exact expression including direct feedthrough, the set of
simultaneous equations represented by the TMA must be solved.
Thus

u. = Fyup + Jyu, (42)
=FyTouc + Jyu, (43)
so that
I = FyTo)ue = Jyu, (44)
and
ue = (I = FyTo) Wyu, (45)

In this equation, J, is premultiplied by the return difference matrix
inverse, which, for small values of the elements of the return ratio matrix,
F,T,, is essentially the identity matrix. In any case, substitution of
(I = FyT,)~'J, for J, in the TMA of Fig. 16c removes the direct feed-
through element from the TMA, allowing us to write the transmission
matrix equation by inspection:

u; = [By + HyTo(I — FyTo)" Jyu, (46)
The TMA can be written directly from the circuit diagram, allowing us
to dispense with the TMSFG, its graph equivalent. In the more compli-
cated feedback amplifiers to be discussed below, the TMA gives a clearer
picture of signal dependencies than does the TMSFG.

7.2 Examples: feedback pairs

Figure 17a gives the equivalent ladder circuit for the A-feedback
amplifier of Fig. 14. In Fig. 17b, we review the process of drawing the
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Fig. 17—The A-feedback pair. (a) Equivalent ladder circuit from Fig. 14d; (b) TMSFG;
(c) TMA; (d) transmission matrix equation, ignoring direct feedthrough, written by in-
spection.

TMSFG. The input node, u;, is identically the up; node except for the
voltage-controlled voltage source, n4v,, so that u; receives signals from
two branches: the identity matrix branch from u;; and the 84 branch
from u,. B4 is given by eq. (38). Next, up; is totally controlled by the
transmission matrix of the transistor with R4 in the emitter, which we
represent as T, of Table I. Next, u.; is equal to upe modified by the
first-stage load conductance, G, represented by the matrix

[z o0
GLI_[GLl 1] (40

which appears as a TMSFG branch from ugs to u.;. In addition, the
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voltage-controlled voltage source, —n4v,, adds branch —84 to u.1 from
u,. Node upa = Touco. Node u,s has three inputs, G4 from u, and the
two F4 branches from up; and u,; representing direct feedthrough of
first-stage emitter current to the second collector. This completes the
TMSFG.

The TMA can be constructed by exactly the same reasoning, and is
shown in Fig. 17c. The columns of the TMA correspond to the trans-
mitting nodes, and the rows to the receiving nodes. Where a node of a
given row receives signal transmitted from a node of a given column, the
branch transmission matrix is entered at the intersection, as shown.

The approximate transmission matrix equation, ignoring direct
feedthrough, is written by inspection of the TMA as shown in Fig. 17d.
This equation shows the overall input voltage augmentation by the first
term, Bau,, and shows that the first stage incorporates local B-feedback,
implicit in the transmission matrix, T’,. These are well-known charac-
teristics of this feedback pair. What is less generally realized is that the
second stage also incorporates local feedback, in this case local A-feed-
back, apparent from the additive —84 term in the parentheses, a term
which is important to the high-frequency behavior of the circuit. (The
input current from this cause alone is approximately —Cina = n4Ccp1s.)
The output loading of the feedback divider network is G4 = 1/(Rg + RF).
If this is reduced by scaling R and Rr upward, the local feedback of the
first stage is increased, since R4 = RgRp/(Rg + Rr) is scaled up by the
same factor, so that in the design of an A-feedback pair, a balance must
be sought between these two effects.

The exact expression including the effect of direct feedthrough is
useful as a final check, usually performed on the computer. It is obtained,
as before, by solution of the simultaneous equations. We first reduce the
TMA by direct substitution of the cascade portion of the TMA, that is,
the portion containing no entries to the left of the principle diagonal.
The TMA, thus condensed, is

[Ui ] _ [TszTa (I —T:)Ba ] [uc2

48
—Fa(I = T,)GpiTe Ga —FaT.84l Lu, ] “8)

Uc2

Next, we remove the direct feedthrough term by removing the self-loop
at node u.9:

I M(éi_—T;:g‘:ﬁA)] 7] e

Where M is the return difference matrix inverse, given by
M= [I + Fq — TZ)GLlTa]"l (50)

The transmission matrix equation can now be written by inspection:
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u; = [(I - TZ)BA + Tz GLlTaM(GA - FATZBA)]U'O (51)

which reduces to the equation in Fig. 17d when F4 = 0.

The D-feedback pair whose equivalent ladder circuit is given in Fig.
15b can be analyzed by exactly similar means, with 8p given by eq. (39),
Gp placed in shunt across the input terminals accounting for input cir-
cuit loading, and Rp in series with the emitter lead of the second tran-
sistor accounting for output loading by the spanning network. For this
spanning network,

Fp = [SD g] (52)

Writing the TMA and transmission matrix equation for this circuit is left
as an exercise for the reader.

7.3 Hybrid feedback: the A/D hybrid feedback pair

Analysis of the A/D hybrid feedback pair demonstrates the utility of
the transmission matrix array, as compared with the TMSFG. The TMA
is essentially an incidence matrix of the TMSFG, presenting the same
information in a better-ordered form. In Fig. 18a, the equivalent ladder
circuit of Fig. 15d is repeated, and the TMSFG and TMA for this circuit
are given in Fig. 18b and ¢. The TMSFG includes eight spanning branches;
even if the four direct feedthrough branches are ignored, the tangle of
8 branches makes the writing of the graph gain (the transmission matrix
of the circuit) hazardous. In the TMA, the role of each of these spanning
branches is clarified, at least allowing us to write the approximate
transmission matrix equation (in which the direct feedthrough branches
are ignored) by inspection, proceeding row by row. Thus, the transmis-
sion matrix of the A/D feedback pair is written from the TMA as follows,
in which the matrices Gp and G4 are first factored out, and the elements
are considered row by row, starting from the right-hand end of the first
row:

u; ~ Gal[Ba — Bp + BpT.2 + To1(—Ba + GL1T:2)|Gauo
or
u; = Gp[I = T;1)Ba — Bp( — Tz2) + T;1G11T20)Gau,  (53)

The first term on the right in the brackets represents the A-feedback,
the second term the D-feedback, and the third term the transmission
matrix of the active path itself, modified by the series loading of the two
spanning networks.

Equation (53) ignores the effects of the direct feedthrough branches,
or the TMA entries below the principle diagonal, and is therefore ap-
proximate. The effect of the feedthrough branches is often to add excess
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Fig. 18—The equivalent ladder circuit, TMSFG, and TMA for the A/D hybrid feedback
pair.

phase to the active path, and is therefore of importance in investigating
stability in the vicinity of the crossover frequency (the frequency at
which the magnitudes of the contributions to the loss ratio from the 8
path and the active path are equal). The complete transmission matrix,
including the effect of direct feedthrough brances, is obtained by direct
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but tedious algebra from the TMA:

Tam=U—T:1)Ba — BoMa(W +1—FpBa)
+ (T>1Gr1 + Bp)[M1Fp(I — T;1)Ba + M T,2M,
(W+1I—FpBa)] (54)

where
M,=(I—-FpT,GL)™!
My = [1+ [Fs(I = T.1) — FpT1|GriM:T,o] ™!
and
W =[Fall = Tz1) + FpTlll — GLiM1Fp( — T:1)]84

A polynomial matrix manipulation computer program is of significant
help in carrying out the indicated matrix operations. In such a program,
currently in process of realization,* the elements of each of the matrices
are put in a polynomial file, and the matrix operations indicated in eq.
54, for example, are carried out by simple commands. When the exact
values of the transmission matrix elements have been found, the loss
ratio and impedances can be found and automatically plotted.

While eq. (54) is far more complicated than (53), only two new matrices
need be entered into file, namely Fp and F4. Hence, the additional
correction for the effects of direct feedthrough can be computed rela-
tively easily, since most of the work involved in the computation is in
entering the polynomial coefficients for the transistors and circuit ele-
ments into file. The instruction set for the computation consists essen-
tially of the transmission matrix equation itself.

VIil. STABILITY

The above methods yield the transmission matrix of a feedback am-
plifier from which we derive a scalar measure of amplifier performance,
such as loss ratio, in which we obtain the combined effect of the four
matrix elements and the amplifier source and load immittances. For a
linear, lumped-parameter circuit, the loss ratio will consist of a poly-
nomial in the frequency variable, and may include a denominator
polynomial, although this denominator often approximates unity. The
condition for stability is that there shall be no roots of the (numerator)
polynomial in the right-half plane of the complex frequency variable,
since this would imply that, in the time domain, a growing exponential
at the output could be supported with no input signal. The investigation
of stability of distributed circuits, those containing transport delays, for
example, is beyond our scope here, but these can be represented as

* By A. J. Osofsky
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lumped systems by use of polynomial approximants for delay, such as
the Padé approximants.3° Hence, in the transmission matrix approach
to amplifiers, stability is ascertained by direct investigation of the
properties of what the conventional approach calls the closed-loop gain,
or, in the present analysis, its reciprocal.

There are two aspects to the study of stability: investigation of the
stability of a given amplifier, and design of an amplifier to be stable. A
more restrictive form of the latter is to require the amplifier to have a
prescribed transient response, since an amplifier which is merely stable
may exhibit such damped oscillatory behavior as to be useless. The ad-
justment of the response of an amplifier to attain satisfactory transient
response is termed frequency compensation, and involves adjustment
of the coefficients of the loss ratio polynomial. In what follows, we shall
study the case in which the loss ratio denominator is essentially
unity.

Consider the loss ratio polynomial

L= }E apsk (55)
k=0

We begin by normalizing the polynomial, to make the first and last terms
unity, first by dividing throughout by a¢:

L=aq <1+ i %sk> (56)
k=109

Next, we change the frequency variable so that the coefficient of the
highest-order term in the brackets is unity by letting

9n n = pn
ap
or
k/n
sk = <@> pk (57)
an
Thus,
L=ao(1+% ——%—pk pn (58)
=ao < hgl ank/n aol-—k/n p p )

The loss ratio is now in the desired form for investigation of stability and
transient response. It may be written

L=ao(l1+bp+byp2+...+b,—1p" 1+ pn) (59)

All information about the stability and transient response is contained
in the values of the coefficients by to b,—;. In a cubic polynomial, for
example, two coefficients, b1 and bs, determine the transient response.
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Table I11— Pascal-like triangles for normalized coefficients of the
loss ratio polynomial

n Multiple pole Butterworth Thomson

0 1 1 1

1 11 11 1 1

2 1 21 1 141 1 1 173 1

3 1331 1 2 2 1 1 247 243 1
4 146 41 1 2.61 341 261 1 1 3.20 4.39 3.12 1

For a given set of polynomial coefficients, the roots are investigated to
see if any lie in the right-half plane, in which case the amplifier is un-
stable. (For this determination, the normalization is unnecessary.) This
is the only stability criterion necessary, since the design focuses on the
performance of the amplifier, not a feedback loop. In traditional analysis,
the focus was on the feedback loop and its analysis and design, so that
an additional step, that of relating the closed-loop performance to the
loop gain, had to be taken. The Nyquist criterion and its many later
reinterpretations were worked out to ease this step. In the present
method, these rather elaborate procedures are unnecessary. The loss
ratio is found as the sum of the active-path and $-path contributions,
and since the active path is usually expressible as a polynomial rather
than a ratio of polynomials, the addition is simply made by adding the
polynomial coefficients of the two paths. Denominators do arise. In the
active path, these come from direct feedthrough and sometimes from
frequency compensation networks which are used to adjust the poly-
nomial coefficients to secure a prescribed transient response. In the 3
path, denominators arise when this path is used for equalization and
filter applications. In these cases, we have no choice but to do the nec-
essary multiplications to put both path polynomials over a common
denominator.

In amplifier design where the denominators are incidental, prescribed
transient response is obtained by designing the circuit such that the b
coefficients of eq. (59) satisfy the performance criteria. Conversely, we
may take the b coefficients as a performance specification for the am-
plifier. Examples of such criteria are given in Table III, which lists the
b-values for an amplifier having either Butterworth or Thomson re-
sponse characteristics.3! Circuit methods for the adjustment of the b
values to agree with a set of values such as those of Table III are beyond
our scope in this paper, but a few comments are in order. The value of
ag in eq. (59) is primarily established by the 8 path where the benefits
of feedback (input augmentation) are to be obtained. The original reason
for this was to reduce distortion introduced by the active devices, since
the § path is linear and the active path is not, so that the -path contri-
bution was arranged to swamp out the smaller nonlinear contribution
to the input signal. The second coefficient, agby, as well as the remaining
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frequency-dependent coefficients are ordinarily supplied by the active
path, although it may be advantageous to have the 8 path supply and
even dominate agb;. In the case of C-feedback, for example, the agb;
term is augmented by connecting a capacitor (a linear capacitor) between
the output and the input in parallel with the 8-path conductance. The
apbs coefficient is adjusted upward by connecting capacitive feedback
internal to the active path such that the capacitive current thus gener-
ated is multiplied by one of the active device matrix elements which is
proportional to frequency, thereby augmenting the second-order coef-
ficient, and so on through the set of b coefficients.

IX. DISCUSSION AND CONCLUSIONS

Viewed from both practical and theoretical standpoints, the process
of analyzing, designing, and even thinking about active two-port circuits
is simplified by taking an anticausal approach to the functional depen-
dencies in the circuit. It does this because the importance of feedback
or loop gain is greatly reduced, and with it denominators of the circuit
expressions, which no longer depart greatly from unity.

The specific method described here for anticausal analysis of circuits
is to base their transducer characteristics on the transmission matrix.
This matrix puts cascades of two-ports into anticausal form directly,
leaving the problem of how more remote circuit coupling is to be ac-
commodated. In the method described here, such coupling is taken to
be the property of spanning networks, which are described by the ap-
propriate set of two-port parameters (h, z, y, or g). Each such spanning
network parameter set yields four separate transmission matrices, each
containing one of the four spanning network parameters, and each cor-
responding to one of four effects which are to be accounted for when the
spanning network is applied to modify the amplifier characteristics. The
11 parameter and its associated transmission matrix corresponds to input
circuit loading by the feedback network; the 12 parameter and its asso-
ciated 8 matrix represents the input signal augmentation corresponding
to the feedback signal of conventional analysis; the 21 parameter yields
a transmission matrix which accounts for direct feedthrough of signals
from circuit input to output through the spanning network; and the 22
parameter represents output circuit loading by the spanning network.

With all circuit element characteristics expressed as transmission
matrices, it is desirable to be able to describe the whole circuit in these
terms. The transmission matrix signal-flow graph, with its one-to-one
correspondence between circuit vector nodes and graph nodes, provides
a means for writing the transmission matrix equation of the whole circuit
from the individual transmission matrices and their topological rela-
tionships. The transmission matrix array is a clearer way of showing the
functional dependencies established by the transmission matrix sig-
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nal-flow graph. From either of these two artifices, the transmission
matrix equation for the whole may be written directly. This transmission
matrix equation can be used for an initial look at a circuit to establish
the basic properties of the configuration, by making suitable approxi-
mations such as that obtained by placing the transistors in their reference
condition, through more accurate intermediate levels of approximation,
by including the more important transistor parameters. Finally, an exact
transmission matrix for the whole circuit may be derived, within the
accuracy of the transistor and circuit element characterization available,
traceable from initial approximation to final result.

Many problems remain, the most immediate of which is to complete
the computational tools for linear analysis, and beyond that, the ex-
tension to quasilinear analysis and distortion, for which the present
approach appears to offer substantial benefits. Active device charac-
terization should be done in terms of anticausal functional dependencies:
for linear analysis, we require transmission parameters of the active
devices, an example of which is shown in Fig. 5. Nonlinear character-
ization of the partial derivatives of eq. (3) expressing the input signal
vector as a function of the output, is needed. The noise of a two-port can
be expressed as an equivalent input noise network including a series
voltage generator and a shunt current generator.?2 It should be conve-
nient to express not only the noise, but the predistortion, the dc¢ input
offsets, and the variation of the input signal vector due to transistor
parameter variations, as an “input uncertainty network” consisting of
a series voltage generator and a shunt current generator which in sum
include all of these effects.

Beyond the two-port analysis discussed here, there are many instances
where multiport analysis is needed. As a simple example, the operational
amplifier with its positive and negative input leads can be considered
a three-port (leaving out the power supply leads, which in most appli-
cations are at signal ground). The circuit partitioning resulting from the
separation between the device supplier and user requires a three-port
characterization, and with it, resolution of the question of functional
dependencies of the six signal variables involved, comprising the two
input signal vectors and the output signal vector.

It may be time to rid ourselves of the notion of feedback as a central
concept in analysis of electronic amplifiers and other deterministic
physical systems. As it applies to mercantile or social systems, where the
reaction to a given event is barely predictable, the idea may still be of
use, as for example, in the Club of Rome report.33 Even in this area, an-
ticausal analysis may supplant it. In project management, the PERT
system, originally applied to the Polaris submarine, starts with the
project goal and its projected date of completion, and works back to
distinct events which must have happened to reach the goal.3* In a sense,
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the PERT chart is a TMSFG, without feedback loops. In comparison, the
flow diagram of the world model (Fig. 26 of Ref. 33) is a feedback-loop-
filled diagram inaccessible to human understanding. Were the projected
goals introduced in that report used as flow graph inputs, the complex
interrelationships among the variables might have been more readily
understood. The mathematical description of feedback came out of the
development of electronic amplifiers for carrier transmission, and has
been widely adopted in other areas. The alternative suggested here might
also find use in other areas.
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GLOSSARY

Several terms have been introduced in this paper. For convenience,
they are gathered here with brief definitions and the section number
where they first appear.

Transmission matrix signal flow graph (111). A signal flow graph having
signal vectors at circuit vector nodes for graph nodes and transmission
matrices for branches.

Vector node or circuit vector node (I1I). A circuit node having only two
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connections to it, allowing us to define uniquely the node voltage (to
ground) and the node current, which together form the signal vector
at the corresponding TMSFG node.

Loss ratio (IIT). The ratio of the generator voltage, e, to the output
voltage, v, of a two-port circuit connected between a Thevenin source,
ea, Rg, and a load conductance, Gy..

Cascade graph (III). A signal flow graph or TMSFG having no feedback
loops.

Spanning network (IV). A two-port network connected between two
nonadjacent pairs of circuit vector nodes of a cascaded or ladder
network. A spanning network is represented by oneé of the four sets
of two-port parameters, h, z, y, or g.

Input signal augmentation or feedback (IV). The increase in input signal
voltage or current (at constant output) due to the action of the span-
ning network; in particular, input augmentation is due to the 12 pa-
rameter (such as y1s) of the spanning network.

Direct feedthrough or feedforward (IV). The increase of change in the
output signal voltage or current due to the action of the spanning
network; in particular, direct feedthrough is due to the 21 parameter
(such as y91) of the spanning network.

Input circuit loading (IV). Shunt or series loading of a ladder network
by the 11 parameter (such as yi; or z11) of the spanning network.
Output circuit loading (IV). Shunt or series loading of a ladder network

by the 22 parameter (such as ya9 or zgs) of a spanning network.

B8 matrix (IV). A transmission matrix containing one nonzero element
equal to the 12 parameter of a spanning network. Usually carries a
subscript indicating which parameter set it is associated with, as in
eq. (7).

F matrix (IV). A transmission matrix containing one nonzero element
equal to the 21 element of the spanning network. Also called the direct
feedthrough matrix. See eq. (8).

H matrix or input loading matrix (IV). A transmission matrix which
is the sum of the identity matrix and a matrix having one nonzero el-
ement equal to the 11 parameter of the spanning network, as in eq.
(9).

J matrix or output loading matrix (IV). A transmission matrix which
is the sum of the identity matrix and a matrix having one nonzero el-
ement equal to the 22 parameter of the spanning network, as in eq.
(10).

Return ratio matrix (IV). A transmission matrix equal to the loop gain
of a feedback loop in a TMSFG.

Return difference matrix inverse (IV). A transmission matrix which
postmultiplies the active path transmission matrix to account for the
effect of a feedback loop.
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Reference condition for a feedback circuit (V). A feedback circuit in
which the active element(s) is (are) replaced by ideal two-port am-
plifier(s).

Ideal two-port amplifier (V). An amplifier whose transmission matrix
is null.

Unitary feedback amplifier (V). An amplifier whose transmission matrix
contains but one nonzero element when its active elements are placed
in the reference condition.

Hybrid feedback amplifier (V). An amplifier whose transmission matrix
contains more than one nonzero element when its active elements are
placed in the reference condition.

Equivalent ladder circuit (VI). An equivalent circuit, drawn in ladder
form, with remote couplings expressed by dependent generators.
Transmission matrix array (VII). An incidence matrix of the TMSFG
which relates the received signals at a set of nodes to the transmitted

signals at a set of nodes.

Received signal vector (VII). The set of signals at all nodes of a TMSFG
which receive signals.

Transmitted signal vector (VII). The set of signals at all nodes of a
TMSFG which transmit signals.

APPENDIX A

In what follows, we solve the simultaneous equations for the C-feed-
back amplifier of Fig. 6a. The TMSFG of Fig. 8b is repeated in Fig. 19a
from which we can write (leaving out loading matrices H, and J,, for the
moment,)

w; = Byuo + up (60)
up = Tauc (61)
uc = Fyup + u, (62)

Substituting (61) in (63), we form a self-loop at node u., as shown in Fig.
19b:

ue = FyTouc + u, (63)

in which the matrix F, T,, will be called, following Bode’s notation, the
return ratio matrix. Solving for u., we have

Uc = (I - FyTa)_luo (64)

The matrix I — F, T, corresponds to Bode’s return difference, so that
we term (I — F, T,)~! the return difference matrix inverse. Substituting
(64) in (61), and thence in (60), we obtain

u; = [ﬁy + ToI — FyTa)_l]uo (65)
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Fig. 19—Alternative TMSFG reductions of the C-feedback amplifier. (a) TMSFG from
Fig. 8b; (b) creation of a self-loop at node u.; (c) creation of a self-loop at node up. The
preferred form is that of (b).

The transmission matrix for the stage is obtained by premultiplying by
the input loading matrix, Hy, and postmultiplying by J/,,:

Ty =H,[By + TaI — F,T,)"1)Jy (66)
which is eq. (11) of the text.
Alternatively, we could solve the simultaneous equations by substi-

tuting (62) in (61), forming a self-loop at node up, as shown in Fig.
19c¢:

up = TaFyub + Tou, (67)

where T, F), is the new return ratio matrix. Solving for up, we also obtain
a new return difference matrix inverse:

up = (I - TaFy)_lTauo (68)
from which we obtain
u; = [6y + I - TaFy)_lTa]uo (69)

Clearly, T, F, # F,T,, since, as anyone knows who has tried to clean his
glasses and blow his nose with the same tissue, the order in which the
operation is carried out is important. It should not disturb the reader
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(b)

Fig. 20—Common collector stage. (a) Circuit and (b) TMSFG representing the trans-
mission matrix equation derived in the text.

that the return ratio and return difference are dependent upon the way
in which we solve the simultaneous equations, since these quantities are
not invariants of the circuit, but depend entirely upon how we view the
circuit.!> On the other hand, comparing eqs. (65) and (69), T,(I —
FyTo) 1 = (I — ToF,)™ 1Ty, so that the transmission matrix of the active
path is invariant. For linear analysis, we are free to use either formula-
tion. When we consider the extension to nonlinear analysis, however,
eq (65) is preferred, since it preserves the actual signal level at u., the
output node of the active device.* We therefore adopt a rule of procedure
for solving simultaneous circuit equations: Always preserve the output
node. This is done by placing the self loop at the output of a device ex-
hibiting direct feedthrough, and allows a straightforward calculation
of the waveform at the output of a nonlinear device. As a matter of
practice, the node equation for a node nearer the input should be sub-
stituted into the node equation for a node nearer the output.

APPENDIX B
Common collector stage

The common collector stage is shown in Figure 20a. The circuit
equations are written starting at the input:

U; = Uy + Vo (70)

i =1

* The advantage of the formulation of eq. (65) over that of eq. (69) was pointed out to the
author by C. A. Desoer.
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or

u; = up + Bau, (71)
where
1 0
Ba = [ 0 0] (72)
Next,
up = Tau, (73)
and
Vee = —Uo (74)
le=—lp+1p
or
Ue = —Uy — Faup (75)
where
Fy= [?) _(1)] (76)
Substituting (73) into (75), and solving for u., we have
U= =+ FaTo) u, (77)

By successive substitution, we obtain the input vector as a function of
the output:

u; = [ABA - Ta (I + FATa)_l]uo (78)

To evaluate the matrix of the common collector stage, we obtain the
return ratio matrix:

0 0
FuT,=— 79
4 [c D] ()
The return difference matrix inverse is
1 1-D 0
- =
I+ FaT) = —— [ . 1] (80)

and the matrix for the stage is

oo L [1—A—D+At —B]
“"1-D -C -D

as given in eq. (33). From eq. (78), we can draw a TMSFG for the stage as
shown in Fig. 20b.

(81)
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5 1o 1] B o o * e o B lo o B |o 1

(d)
Fig. 21—Emitter resistor feedback analysis. (a) Circuit. (b) Circuit redrawn using de-
pendent generator equivalent circuit of Fig. 7. (¢) Redrawn circuit, interchanging position
of series elements. (d) TMSFG with definitions of the matrices.

APPENDIX C
Emitter resistor feedback

A transistor with unitary B feedback is shown in Fig. 21. In (a), the
circuit is divided into an active path and a resistive spanning network,
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and in (b), the spanning network is represented by its dependent gen-
erator equivalent circuit from Fig. 7b. A common ground does not exist
between the input and output loops, but the circuit as drawn in (b) is
nevertheless a two-port, since i1 = —i, and i = i, with the current di-
rections given in the figure. An equivalent representation is given in (c)
of the figure, in which elements in series have had their circuit positions
interchanged. The TMSFG for the circuit of (c) is given in (d), in which
Hp and Jp represent the series input and output resistances, —fp rep-
resents the generator in series with the input lead, and Fg is the direct
feedthrough supplied by the generator in series with the output lead.
From the TMSFG, the transmission matrix equation is

Tz = HB[_BB + Ta (I + FBTa)_I]JB (82)

With the element values of the matrices given in the figure, the return
ratio matrix is

CR DR
FgT, = 83
B [ 0 0 ] (83)
and the return difference matrix inverse is
1 1 —-DR
+ FgT, 84
U+ FpTa)™ 1+CR[ 1+CR] 84
from which the active path matrix without loading becomes
1 A B —RAt
-1 =
T.(I + FgTy) T+ CR [C D ] (85)

Adding the input augmentation from z;2 = R, we have
1 [A —R(1+CR)+B- RAt]
1+CRIC D

—Bp+ To(l + FpT,)1 =

(86)
Finally, we premultiply by Hg and postmultiply by Jg, and obtain
T = 1 [A+CR B—R(l.—A—D+A”)]
* 1+CRLC D+ CR

as shown in eq. (35).

(87)
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Vibrations of a Lithium Niobate Fiber
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We discuss wave propagation along a crystalline piezoelectric fiber
composed of lithium niobate or some other material in the trigonal 3m
crystal class. The crystalline ¢ axis is aligned with the fiber axis. We
obtain an analytical description of all the vibrational modes. The
method used is to make perturbation expansions about the modes of
a hexagonal 6mm piezoelectric fiber, for which exact solutions are
known.

I. INTRODUCTION

A single crystal of lithium niobate, grown in the form of a long fiber,
has been considered for use as a low-loss acoustic delay line. Lithium
niobate is of special interest because it is piezoelectric: it becomes elec-
trically polarized when strained and, conversely, becomes strained when
placed in an electric field. This piezoelectricity provides a means for
electrically generating and detecting acoustic signals.

In this paper we study mathematically the vibrational properties of
a LiNbOj crystal fiber, with the crystalline ¢ axis aligned along the fiber
axis. The problem is by no means simple. We illustrate this by giving a
brief history of related problems for which exact solutions have been
obtained. The elastic, or acoustic, wave equations for an infinitely long
circularly cylindrical isotropic rod were solved exactly by Pochhammer!
in 1876 and independently by Chree? in 1889. Even for an isotropic
medium, exact solutions for a rod of finite length have not been obtained.
It was not until 1965 that the next full exact solution was found. This
was done by Mirsky,3* who determined the vibrational modes of a cir-
cularly cylindrical rod consisting of a nonpiezoelectric medium which
is transversely isotropic. Such a medium belongs to the hexagonal system
of crystals; the crystalline c axis was aligned along the rod or fiber. Cer-
tain of the modes obtained by Mirsky, i.e., those which are azimuthally
symmetric about the fiber axis, had also been obtained earlier.56 Re-
cently, the author and J. A. Morrison were able to solve the coupled
acoustic and electromagnetic wave equations, in the customary quasi-
static approximation, for piezoelectric transversely isotropic crystals
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belonging to the hexagonal 6mm, 622, and 6 crystal classes.” Exact so-
lutions were obtained for all the vibrational modes. The author is una-
ware of any other exact solutions, either for other crystals, or for other
orientations of transversely isotropic crystals.

The difficulty lies in the acoustic wave equations which, for a general
anisotropic medium, consist of three coupled wave equations for the
three vector components of displacement. If piezoelectricity is added
via the quasistatic approximation, for which the electric field is repre-
sented by the gradient of a potential, there are four coupled equations
for four unknown functions. The boundary conditions may also involve
all four functions coupled together. For the general anisotropic case, no
method has been discovered to decouple the equations. For the specific
crystals and orientations discussed above, it was possible to express the
elastic displacements (and electric potential) in terms of three (or four)
potential functions for which the wave equations decoupled.

Unfortunately, such a serendipitous situation does not exist for the
lithium niobate fiber. It belongs to the trigonal 3m crystal class; we
cannot expect to find an exact description of the vibrational modes. It
will be possible, though, to find an approximate description by means
of an infinite series perturbation expansion. We use a technique which
is an extension of one used by the author to describe waves travelling
along a sapphire fiber.8 Sapphire is a nonpiezoelectric material belonging
to the trigonal 3m crystal class. It is characterized by a stiffness matrix
(used in the stress-strain relations) which has almost the same form as
that for a transversely isotropic material. There is one additional stiffness
coefficient. Since it turns out to be small in magnitude compared to the
other stiffness coefficients, it is possible to describe the vibrational modes
of a sapphire fiber (with the crystalline c axis aligned with the fiber axis)
by means of perturbation expansions about the modes of a transversely
isotropic fiber.

The situation for LiNbQj3 is similar, albeit somewhat more compli-
cated. We will make an infinite series perturbation expansion about the
known solutions for a hexagonal 6mm crystal. The same techniques,
incidentally, can be used to describe vibrations of crystals in the trigonal
32 classes. We restrict ourselves to a discussion of trigonal 3m crystals
only to keep the analysis from appearing extraordinarily complicated.

For the sapphire fiber, numerical results are available for the low-
est-order torsional mode of vibration; they are presented in a paper by
the author and M. A. Gatto.? A low-frequency asymptotic analysis for
that mode was also performed by R. N. Thurston and the author.10 Ex-
cellent numerical agreement between the results of the two independent
theories provides a check on the rather complicated analyses involved
and encourages us to extend the perturbation technique to a study of

LiNbOs.
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In Section II we write down the basic equations of motion and
boundary conditions. In Section III we apply the perturbation technique
and introduce potential functions. In Section IV we solve the differential
equations, and in Section V we sketch how to apply the boundary con-
ditions.

Although it would be desirable to present numerical results as well,
we shall not do so. Numerical results are not yet available for the un-
perturbed (hexagonal 6mm) problem. The computational effort required
to describe quantitatively the vibrations of a lithium niobate fiber would
be even greater than the considerable effort expended to present results
for a sapphire fiber.

Il. FORMULATION

Consider a single crystal of LiNbOj3 (or some other member of the
trigonal 3m crystal class), grown in the form of a fiber of circular cross-
section, with the crystallographic c axis along the fiber axis. We shall
assume that the fiber is infinitely long and has radius R. We adopt a
cylindrical coordinate system whose z axis coincides with the fiber
axis.

In the quasistatic approximation, where the rotational part of the
electric field is neglected, the basic differential equations arell

o%u
V-T=,>% 1
P (1)
vV-D=0, (2)

where T is the stress, D is the electric displacement, u is the elastic dis-
placement, and p is the density. The properties of the specific crystal are
introduced by means of the constitutive relations

T=-e-E+c¢S, 3)
D=¢-E+eS, (4)
where
E=-V%, (5)
S =vV,u (6)

Here E denotes the electric field, S the strain, and ® the electric poten-
tial. The crystal is described by means of the elastic stiffness matrix ¢,
the piezoelectric stress matrix ¢, and the dielectric permittivity at con-
stant strain matrix e. For a crystal in the trigonal 3m class, these matrices
have the following forms in cylindrical coordinates:12
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c1 ci2  ci3 cuuC  c1aS 0

C12 cu c13 —cuC —cS 0
C13 C13 C33 0 0 0
c=| cuC —cuC O m 0 —c14S , (7
6148 —6148 0 0 C44 014C
0 0 0 —cuS cuuC  ces
with
ces = Yhlci1 — c12), 8
C =cos 30, S =sin30. 9)
—ey2S €S 0 0 ep —enC
e= —eyzc ey2C' 0 €x5 0 eyQS (10)
e:1 e;1 ez 0 0 0
&y 0 O
€=l 0 ¢, 0} (11)
0 0 e

Let n denote a vector normal to the fiber surface, i.e., in the radial
direction. For the three mechanical boundary conditions,!3 we shall
specify either that the surface tractions vanish:

T-n =0atr =R (free surface), (12)
or that there is no displacement at the surface:
u = 0 at r = R (clamped surface). (13)

The free surface condition is the natural one to consider for an acoustic
delay line; it is equally simple to show how to solve the problem for the
clamped surface condition, so we include it, too.

For the electrical boundary condition,13 we take either

® = 0 at r = R (short-circuit), (14)
or

D-n =0atr =R (open-circuit). (15)

The problem is to solve the four differential equations (1) and (2), in
conjunction with egs. (3) to (11), subject to four boundary conditions
chosen from (12) to (15). Since we are concerned with waves travelling
down the fiber, we assume the solution has an exp [i(wt — 82)] depen-
dence, where w is the angular frequency and 8 is the propagation con-
stant; 3 will depend upon w.
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We begin by writing the differential equations and boundary condi-
tions in dimensionless form. Let

&j = cijle, ¢ =max [,
L]

é;j = e;j/e, e=max |e;],
ij
%i}' = eij/e’ € = max (e, €). (16)

Normalize u with respect to R, ® with respct to Re/e, 8 with respect to
R~1, and w with respect.to (c/p)1/2/R. To simplify notation, we use the
same symbols as we used for dimensional quantities, except for the hats
on ¢jj, e;;, and ¢;. Upon substituting egs. (3) to (11) into (1) and (2), we
can write the dimensionless differential equations in cylindrical coor-
dinates as

. 1 1 L1 R
én <u,r tou -5 u) + Co6 5 Uoo t (w2 — B2844)u
r r r

1 . 1
— 2iB¢14 cos 30 = up — 2iBé 14 sin 30 (u, —~ ;u)
r

A L1 . L 1
+ (é12 + égs) U0~ (611 + Cee) V0
o 1 o 1
— 218614 cos 30 <u, -2 v> + 2ifé145in 30 vy
s oA R . 1 1
—16(é13 + Eag)w, + 2814 cos 30 <; Wrg — r—2— LU()>
1 1
+ 614 sin 36 (wr, =T Wy — —2ZU9()>
r r
o A . . 1 1
—iB87(8y5 + €,1)P, — 276, cos 30 (; &, — ﬁ cI>,;>
A 1 1
— 7éy9sin 30 <<I>,, R ‘Paa) =0,
r r
. L1 . NN ! o 1
(¢12 + Ceo) ~Urg + (€11 + Ces) U0~ 2iB¢14 cos 30 <u, - u)
U | ) 1 1 1
+ 2iB8é148In 30 —ug + Cep <v,, +-v,— - v) + ¢11 —5 Voo
r r r r
o 1 e 1
+ (w2 — B2844)0 + 2iB¢14 cos 30 — vy + 2i3¢14 sin 30 (v, - v>
r

o o1 . 1 1
— iB(E13 + C44) ~wy + 14 cos 30 <wrr - wy — -2wee>
r r r
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. 1 1 . 1
- 2@14 sin 30 <_ Wrg — —2 w()> - tﬁT(éx5 + ézl) =&y — Téyz
r r r

1

1 1
X cos 30 <‘1’rr R L ‘1’06) + 278, sin 30 <— by — 1 ‘Im) =0,
r r2 r r2

. 1 1 2
—iB(é13 + ¢44) (u, + —u) + 2é14 cos 36 <— Urg — —2u9>
r r r

. 1 3 3
+ €14 8in 30 (u,, — 5 Uas ——u,+—5u)
r r r

YN A 1 3 3
- 16(013 + C44) —vg+ €14 cos 30 < Urr ——2000 -~ Uy +—20>
r r r r

PO 1 2 R 1 1
— 2€14 sin 30 (— Urg — — vo> + Gy <w,, +-w,+ _wgg>
r r2 r r2

1 1
+ (0 — B2%gg)w + 76,5 <4>,, 20+ cpm,) — 1828,5% = 0,

. 1 1 2
—1B(éx5 + é.1) <u, + - u) — 28,9 cos 30 <— Urg — —Zu(;)
r r r
. 1 3
— éy9sin 30 <u,, ——Uugg——u,+ iu)

r2 r r2

. 1 -1
- Lﬁ(éxg, + ézl);vg - éyg cos 30 <U,-r — 5 Ugpo — §l),- + "3_l)>

r2 r r2
. 1 2 1 1
+ 2éy2 sin 36 (‘ Upg — — l)g) + éxs (w,, +-w,.+— Wgo)
r r2 r r2
n u 1 1 .
— B% 3w — &y ((I)rr + ; ¢, + 9 (1)00> + 8%, =0, (17)
r
where
2
T= < , (18)
€C

and u, v, and w are the radial, azimuthal, and longitudinal components
of the displacement vector u.
In dimensionless form, the boundary conditions (12) to (15) are

Free surface:

éuur + élz(u + Ug) - iﬁélgw - iBTézl(b + cos 30[614(—iﬁv + wg)
- Téyz‘i’g] + sin 30[614(—i6u + w,) - Téyz‘i’r] = 0,

Ces(ug + v, — v) + cos 30[¢14(—iBu + w;) — 1é,9%,]
—sin 30[614(—iﬂv + LUo) - TéyQ(I)o] =0,
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C44(—iBu + w;) + 7é,5P, + ¢14 cos 30(uy + v, — )
+ ¢148in 30(u, —u —vg) =0atr =1.

Clamped surface:
u=v=w=0atr=1.
Short-circuit:
¢=0atr=1.
Open-circuit:

— & ®r + é,5(—1fu + w,) — éy9 cos 30(ug + v, — v)
+éy9sin 30(u —u, +vg) =0atr=1. (19)

lll. PERTURBATIONS AND POTENTIALS

At any given frequency w, we wish to solve the differential equations
(17) and boundary conditions (19) for the elastic displacement compo-
nents u, v, and w, and for the electric potential ®; these are functions of
r and 6. We also need to determine the propagation constant 8. Unfor-
tunately, we have been unable to obtain an exact solution. We shall find
an approximate solution by combining two techniques which were ap-
plied successfully in earlier papers.”8 First, we observe that egs. (17) and
(19) have an exact solution if 14 = é,2 = 0.7 In this case, the crystal is
a member of the hexagonal 6mm class. We make an infinite series per-
turbation expansion about any modal solution to that problem. This
results in systems of differential equations and boundary conditions for
the perturbation contributions to the elastic displacement and electric
potential. Second, we write these perturbation contributions in terms
of certain potential functions. The differential equations then decouple.
With the aid of the boundary conditions, the potential functions can be
determined; perturbation contributions to the propagation constant can
also be found.

The perturbation technique has been used to describe vibrations of
a sapphire fiber.8 The equations describing that crystal can be obtained
from egs. (17) and (19) by setting ® and the components of the piezo-
electric stress matrix e to zero.

The potential function technique used here is the same as the one used
in obtaining an exact description of the vibrations of a fiber in the hex-
agonal 6mm class.”

For lithium niobate, we find from the definition (16) and the numerical
values for the stiffness coefficients!? that é;4 ~ 3.6 X 1072, We will use
é14 as a perturbation parameter. This is reasonable since it is small
compared to one. Instead of treating é,, as a separate perturbation pa-
rameter, we write it as a constant multiple of é,4:
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éyo = £C14. (20)

For lithium niobate, it turns out that é,, ~ 6.8 X 10~1and £ ~ 18.12 The
perturbation scheme would work better if é,5 were smaller than this. It
effectively is, in three out of four differential equations and in all but the
open-circuit boundary condition, for it is then multiplied by the di-
mensionless constant 7 ~ 1.4 X 1071, In the remaining differential
equation and boundary condition, however, é,5 is not multiplied by a
small constant in this fashion. How rapidly the perturbation series ac-
tually converges will have to be determined numerically.

We first make a perturbation expansion for the propagation con-
stant:

6= (¢10)™Bm. (21)

0

i[\']a

When we make a perturbation expansion for the elastic displacements
and electric potential, it is convenient also to make a Fourier expansion
in 6. Because of the three-fold symmetry of the crystal about the z axis,
the Fourier expansion only needs to include multiples of 30, rather than
6. With Z used to represent u, v, w, or ®, we assume that

Z(r,0) = ¥ (&1d™ X eilN0eidni Zmn(r), (22)
m=0 n=—w
To begin the perturbation scheme, we choose (for m = n = 0) u%9(r)
eiNo . 300(r)eiN? and By to be a modal solution to the unperturbed
problem, i.e., that for a hexagonal 6mm crystal. N can be any integer.
It determines which type of modal solution is being considered. N = 0
corresponds to an azimuthally symmetric mode, |N| = 1 to a flexural
mode, and |N| > 1 to a higher-order flexural mode. Form = 0 and n =
0,setu®n, ..., ®%" tozero. The problem then is to determine ™" (r),
..., ®™"(r), and B,, for m > 0. We will see that the displacement and
electric potential contributions vanish when |n| > m. The functions thus
need only be determined in the “triangular” regionm =0, 1,2, 3, ... and
In| < m.
We next write the perturbation contributions to the elastic displace-
ments and electric potential in terms of certain potential functions:

d 3
umn(r) = 3 PP —Symn(r),
re=1 r

omnr) =i [2 £ g - 0],

W) =i S (),
£=1
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3
dmn(r) =1 fgl NP (r), (23)
with
s=3n+ N. (24)

The u, and 5., £ = 1, 2, 3, are constants (independent of m and n) which
must be determined.

Substitute the potential functions defined in (23) into the perturbation
expansions. Substitute these, in turn, into the differential equations (17).
After considerable algebra, we find that the terms multiplied by
(é14)meiBn+N)0 yield the following system of differential equations for

R

d 3 .
o > {eu VP
re=1
+ [(@? — B3Caa) + Bore(é13 + E44) + Bone7(éxs + &,1) ¢}

S
— [Ce6 VYT + (0 = BiCa)¥"] = FT(r), (25)

S 3 A 2,1, m,n
- 2 {euViyd®
re=1

+ [(w? — B§4a) + Bore (613 + €44) + Bone7(éxs + &0 ]V}

d A F-1 m,n m,n
~ [CeeVEYT™ + (w? — B3esd¥P"] = F5™(r), (26)
3 A 5 4 4 2
ZZ_ZI [weCag + meréys — Bolé1s + C1d) VoY "
3
+ 3 [(w? = Biesg)ue — Bié.smn W™ = F"(r), (27)
f=1
3 5 5 5 2
egl [xxme + Bo(8xs + é21) — Exsue | VY P"

3
+ Zl [—B8tz2me + Bdeosue W™ = FPo(r), (28)
o=
with

Vi (29)

The functions F7*"(r), j = 1, ..., 4 are written in the Appendix. They
are written in terms of functions which have been determined in earlier
stages of the iterative procedure. When n = 0, they also involve the
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constant 3,,, which must be found. The functions vanish when m =0
orwhenm > 0and |n| > m.

In a similar fashion, the perturbation procedure yields a system of
boundary conditions.

Free surface:

3 > . /d . .
2 [611 —+ 12 <— - 82) + Bolisme + ﬁo‘rezme] 7"
/=1 dr? dr

— 26ees (i - 1) ypn=Kpratr =1,
dr

d d?2 d
A 2 = -1 mn __ —_— ——+ 2) m,n]=Km,n t =1’
ce6 [ZE:I g <dr ) d (dr2 dr AL 2 arr
3 L 1 4 .
e¥1 [E4aue — Bo) + ne7éys) dar VPt 4 Bolaasy P = KPtatr = 1;
(30)
Clamped surface:
3 d
> Yt —syPi=0atr=1,
¢=1dr
3 dym™n
s X Pt — V& atr=1,
¢=1 dr
3
S opFt=0atr=1. (31)
£=1
Short-circuit:
3
2 neYp=0atr=1, (32)
=1
Open-circuit:
3 2 5 d‘p’ln’n A m,n m,n
égl [—&xxne + éx5(e — Bo)] dr + Boérssy” = K atr = 1.
(33)

The constants K", j =1,. .., 4 are written in the Appendix. Like the
F7*(r), they vanish when m = 0 and are known when m > 0; whenn =
0, they also involve §,,.

IV. SOLUTION OF THE DIFFERENTIAL EQUATIONS

We now show how to decouple the differential equations (25) to (28)
and solve them. First, let
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3
Hp(r) = 321 {11 VP + [(w? — B5Esa)
+ Bore (G153 + E44) + Bome7(éxs + E:0) W5, (34)
HP™Mr) = EeaVHT" + (w2 — B3P (35)

Then by using (25), (26), and procedures similar to those exhibited in
Ref. 8, we can show that, except in a certain special case to be discussed
later,

HP () = Yrs j; "= [FP(x) + Fpn(x)] de
+ Yyps f " xs[Fpo(x) — Fpo(x)] dx,  (36)
4]
HE"(r) = Yrs j; xS [FPR(r) + FPr(x)] dx

~r= [ Fpn) - Fprolds, ()

Now consider egs. (27), (28), and (34). They are equivalent to the three
decoupled equations

VP +p et =" £=1,2,38, (38)
provided that
P? = [(w? — B3¢4s) + Bore(C13 + 4a) + BomeT(6xs + €21)]/811, (39)
from (34),

— D7 [ebaa + ng7és5 — Bo(C1z + E44)]
+ [(w? — B§ess)ne — Bgé.3mn,] =0, (40)

from (27), and, from (28),

— D7 [&exne + Bolbxs + &,1) — éxspe] + [—B3ezens + B3éza1e] = 0.
(41)

These imply that the p? satisfy the cubic equation
(&xxp% + B36:2)[(1107 + B3Css — @) (Easp? + Bess — w?)
— piB3(E13 + 4a)?] + 7(8x5pf + B3e.3)[(€110F + BCas — w?)

X (6x5p% + B36,3) — 2p3B8(¢13 + Caa)(8x5 + é;1)]
+ 7p7B3(éx5 + €,1)2(E4ap? + Be33 — w?) = 0, (42)
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and that
te = Bo{(E11p? + B5Cas — w?) (81385 — Ex5tsz)
— Pi(lxs + 6,1 [1845(8x5 + &,1) + &2 (13 + E44)]}
X {63(613 + é44)(éz3%xx - éxt')gzz) - Téx5(éx5 + ézl)(éx5p(2 + 6(%‘:’23)
— &xx (8x5 + €,1)(Caap? + Bicss — 0?1 (43)
and
ne = [611PF + Bias — w2 — 1eBo(C1 + ¢40))/[BoT (x5 + €,1)]. (44)

Furthermore, by eqgs. (34), (27), and (28), the f3**(r), £ = 1, 2, 3, must
satisfy

¢ é;l fer=Hpn (45)
3
E,l [neaa + neréss — Bo(1s + Caa)lfP" = F5", (46)
3 A A A A
lgl [exxne + Bo(éxs + €,1) — ysuelf 7" = P (47)

These equations can be solved for the f7-"(r). By (35), eq. (38) also holds
when £ = 4, provided that

pi = (w? — B3ts4)/Cos, (48)
fir = HP"ége. (49)

The next step is to solve the uncoupled differential equations (38).
The functions f[*"(r), j = 1, ..., 4, are either determined completely (n
# 0) or else involve 3, in a known way (n = 0). Using the fact that "
is bounded at r = 0 to evaluate an integration constant, we have as a
solution to (38)

1
Yyrr(r) = [A}”m +g j: x Y (pjx)f"(x) dx] Jy(p,r)
+§ j(‘)’ xd (pjx)f™"(x) dx Ys(p,r) if p? > 0,
.;n’"(r) = [A_;'n’n - ‘I:lsz(ij)f}"»"(x) dx] Is(q]r)

- j; *I,(q)fr™(x) dx Ko (q;r) if p? = —q% < 0. (50)

For any values of m and n, there are four constants A", j =1,...,
4, which remain to be evaluated. When n = 0, 8,, must also be found. In
the next section, we will show how to apply the boundary conditions to
evaluate these constants.
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It appears from (36), (37), (50), and (61) that a double integration must
be performed computationally to obtain H*"(r) and H5""(r). Use of (38)
and integration by parts, however, can reduce this to a single integra-
tion.

There is one special case for which the above analysis is not quite
correct. By using arguments similar to those in Ref. 8, we can show that
if p? = 0 for some ¢, then

HPn(r) = Crnps + Yyps j; "x=s[Fpn(x) + Fo(x)] dx
+ Tpr—s j; " oS[FPn(x) — FRn(x)] dx,
HPr(r) = Cmonps + Yyps f " -S[PPr(x) + FPn(x)] dx
1

— s fo "W [Fpx) — Fpo(x)] dx,  (51)

if n % 0. Here C™" is a constant which remains to be determined. (When
every p?is nonzero, C™" is arbitrary in the sense that changing it merely
changes the constant by which the entire solution is multiplied.) Also,
in this special case we have when n = 0,

1
HPO(r) = O = [~ Fpo(x) dx,

1

HPO() = Cpr = [~ Fpo(x) d, (52)
r

where CT*" and C3" must be determined. Now it can be shown that if

the fiber is vibrating in the lowest-order torsional mode (with v%° pro-

portional to r and u%° = w00 = $0.0 = N = 0), then p? = p? = 0. For this

case, the solutions of (38) for j = 1 and 4 are

1 1
yrn(r) = [AS'"’" =55 ) TR dx] re
S r

1
— = (T xstipmae) dursifn %0, (53)
2s Jo

ymo(r) = f "x In xfP0(x) dx + j; xfPx) dx Inrifn =0. (54)

In eq. (54), an integration constant has been set to zero because it does
not affect the final solution. It follows from egs. (23), (43), (44), and (48),
that when p? = p? = 0 and n 5 0, the constants A7*" and A" appear
in the displacements and electric potential only in the combination A"
— A" Thus for n = 0, the constants to be evaluated are AT7»" — AP",
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B A" and C™" When n = 0, we must find AJ*°, A*° CT°, CJ+°,
and Bp,. In the next section, we show how to use the boundary conditions
to determine these constants.

V. EVALUATION OF THE BOUNDARY CONDITIONS

For any pair (m, n), there are four boundary conditions, three of which
are either eqgs. (30) or (31), and the fourth of which is either (32) or (33);
there are also four unknown constants to be found. When n = 0, 8,,, must
be determined, too.

When the solutions 87" to the differential equations (38) are substi-
tuted into the appropriate boundary conditions from egs. (30) to (33),
a system of equations results which can be written in matrix form as

JnAmn = Ymn (55)

We will not write down here the specific components of these matrices
and vectors, although it is straightforward to do so. The important things
to know are the following: The 4 X 4 matrix J” involves Bessel functions.
It depends upon By, but is known once this is determined. The vector
A™7 consists of the four unknown constants to be determined. The
vector V™" contains known constants: K", Bessel functions, integrals
involving f7". When n = 0, it also contains ,, linearly.

Incidentally, from a computational viewpoint, it is never necessary
to differentiate the functions " numerically, either for substitution
into the boundary conditions or into the functions listed in the Appendix.
Equation (38) can be used to eliminate all second derivatives of " with
respect to r. Differentiation with respect to r of the solutions (50) and
the use of standard relations between Bessel functions and their deriv-
atives result in analytical expressions for dy"/dr.

The procedure for solving the differential equations and applying the
boundary conditions is an iterative one. We start with m = 0. We choose
amodal solution when n = 0 and set all %" to zero when n = 0. The y°
satisfy eq. (38) with f%° = 0. The boundary conditions for this case
are

JOAC0 =, (56)
From this we obtain for a nontrivial solution the frequency equation

det J0 =0, 57
which determines Bo as a function of w. This, of course, is the same as the
dispersion relation for the hexagonal 6mm case about which we are
perturbing.

As we iterate on m, we can see from the equations in the Appendix that
F7»"* = K" = 0 whenever |n| > m. It follows that V™" = 0 in this case
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and, since det J” # 0, that A™" = 0. Thus all ¢}*" = 0 whenever |n| >
m.

If 0 < |n| < m, V™7 is in general nonzero. Since det J™ > 0, we can
immediately obtain A™” from eq. (55).

If n = 0, the analysis is slightly more complicated. It was explained
in detail in Ref. 8, so we merely give the results here. To obtain 8, re-
place any column of J° by V™. and set the determinant of the resulting
matrix to zero. The unknown vector A™.0 can be written as

Am0 = C,,A00 + Dm0, (58)

where D™0 has three unknown components and D*° = 0 for some j for
which AJ? 5 0. Then the equation

JODm0 = 0 (59)

can be solved for D™.0, Furthermore, C,, is arbitrary in the sense that
varying it varies the constant by which the full solution is multiplied.
WesetC,, =

In this manner, the functions Y/*" can be determined iteratively,
starting with m = 0. For any given value of m, nontrivial results are ob-
tained only when |n}| < m. The perturbation contributions to the elastic
displacements and electric potential are then found from eq. (23). The
full solution is given by egs. (21) and (22).

APPENDIX
Let
s=3n+N,
s+=3(n+1)+N,
s—=3(n—1)+ N, (60)

where n and N are integers. Then

Fpa(r) + Fpo(r) = (i =) rmestua | £ i v

dr r/ j=o

- Bm-; [(013 + Ea)ue + 7(6x5 + E:0)me] ¥

_[v§+_2_(1_:_i+_)( S |[E 2 | wirn -]

F Y (rkne = woVE 1”“}
£=1
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Fpo) - Fpe) = ($45) [tmeitaa | X v =i

r/ j=o0

3 ‘
= Bm—j X [(13+ Caa)ue + 7(8x5 + E,0)me] ¥y

w72 - HEER () ('S e [ i i

r dr r

+ 3 b= w0

o =5 (5 d_5) gy 2EEs)

X [Vf_ - 2_(1_:—3‘) (dir - %:)]]L%l yp-ieel g ‘“n—1,n—1:|

e e

X [ 23: ~Latl _ ym= 1n+1] + Z [Bm—,-(613+é44)V2 % wir
¢=1 £=1

3 .
+ Ym—j ZZI (Easme + Téz3ne)\lf’é"],

s__> v2. 2(2+s-)

r

FEne) = =g (5 -

X [VZ_ _2(1+s-) (i _ 3;)]][ % yp-ln=ly l//‘r‘n—l,n—l]

r dr r =1

e (S r2) o, - B -2zl (2,29 )

dr r r r

3 m—1 3 A
x| £ vt = prmo | 4 E | Bnosens + 202 £ v
p2 >

=1

3 N
+ Yy 3 (e = ezzmw] 61)
o=

where
Ym = 3 B 62)
e s (o) et
_ (é!; + S+> [é g = ,,H]]
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(i ) ]

m—1 3
- _Z%) Bm—j Z (G131 + Ex1mme )y at r = 1,
J=

50 b () -]

j=0 dr
d 3 . )
ey Lntl _ .y jn+l
* (dl‘ * s+> [€Z=:1 v vi ]]
— l 3 —_ ii_ — m—1n-1
2e§1 (e — 1) [ dr S—) 12

d
+ (— + s+> W-L"H] atr=1,
dr

K" = ¢4y Z Bm—j l % [Stl/jg" + (% - s) Mn] - syl/{'f”}

£=1

3 [vz_ - 20450 (G-sn) [ £ vt v

£=1

s [ -2=s0 (Fs) [[ £ vt - g -1,
=1

#a[ v -2 (5o ) | £ et e v ]

£=1

— 1t [ - 2(1 —sy4) < + S+> ][ % e ¢T—1,n+1]

o=1
atr=1. (63)
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A Descent Algorithm for the Multihour Sizing of
Traffic Networks
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Multihour engineering is a technique for designing trunk networks
when the hours of peak traffic loads between various pairs of offices
do not coincide. A new descent-type computational algorithm for the
multihour engineering problem is derived. This algorithm obtains the
unique solution to the minimization of the multihour cost function,
which is strictly convex but only piecewise differentiable. The nonin-
teger minimume-cost solution is subsequently rounded to the nearest
allowable integer solution to give a realizable network. The new algo-
rithm is applied to three numerical examples from the California
network. The results are compared with the nonoptimal, nonunique
solutions obtained with an earlier algorithm, and with the traditional
single-hour solutions.

I. INTRODUCTION

This paper describes a numerical algorithm which obtains the unique,
optimal noninteger solution to the multihour traffic network engineering
problem. This solution is subsequently rounded to the nearest allowable
integer solution to yield a unique, near-optimal realizable network.

As described in Ref. 1, multihour engineering is a procedure whereby
a least-cost traffic network is engineered for more than one set of
point-to-point loads, subject to the constraint that blocking on any
last-choice trunk group not exceed a specified value. For networks which
exhibit noncoincident traffic patterns,’ the multihour engineering
method has been shown to achieve significant capital-cost savings over
the conventional single-hour engineering procedures.!

The results reported in Ref. 1 were based on an algorithm which op-
timizes the high-usage trunk group sizes! one at a time, in a fixed but

t Traffic loads between different pairs of offices are said to be noncoincident if their
highest average values occur in different hours, or at the same hour but in different sea-
sorxlgi.-ligh-usage groups are direct groups which carry the majority of the load between those

pairs of offices which have a large enough community of interest to warrant direct trunk-
ing.
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arbitrary sequence, until no further cost reductions can be obtained. This
algorithm is called a “coordinate-search” algorithm here. Such an al-
gorithm has the undesirable property that it does not generally converge
to a unique solution of the multihour problem. It can converge to any
one of a family of suboptimal solutions, depending on the initialization
of the algorithm, and on the specific order in which the calculations are
performed.

The practical reasons for obtaining the optimal—and hence (as shown
in Section III below) unique—solution to the multihour problem are as
follows: First, the periodic re-engineering of the network in response to
new load forecasts is facilitated. (In the Bell System, most networks must
be re-engineered at least once each year.) A unique solution guarantees
that changes in trunk-group sizes from one forecast period to the next
reflect only changes in the loads. In contrast, the coordinate-search al-
gorithm can produce changes in trunk-group sizes which are as much
a function of nonuniqueness as they are of actual alterations in the loads.
Tt is not possible to distinguish between these two effects, and thus use
of the coordinate-search algorithm could lead to excessive rearrange-
ments. Second, capital-cost savings with respect to the coordinate-search
solutions can be realized in most cases.

The essential difficulty of the multihour engineering problem arises
from the fact that the network cost function is not differentiable ev-
erywhere in its domain. The algorithm presented here, however, is as-
sured of convergence to the minimum-cost noninteger solution by the
convexity of the cost function and by the particular mechanism for ex-
ecuting the search process.

Il. MULTIHOUR ENGINEERING—THE MODEL AND ITS COST FUNCTION

The model of the network considered in this paper is shown in Fig. 1.
Traffic which is destined from the single originating office to one of n
terminating offices is first offered to the appropriate one-way high-usage
trunk group. If all the trunks in that group are busy, the traffic overflows
and is offered to a final group which routes this parcel to a tandem switch,
from where it is sent to its destination via a tandem-completing group.
The final and tandem-completing groups are sized so that the blocking
probability on each is 0.01 during its respective busy hour. The object
of the engineering process is to determine the high-usage trunk group
sizes which minimize the cost of the network subject to the blocking
constraints on the alternate routes.

The cost of the network can be divided into four components, which
are defined below:

(i) The direct-route cost: It is assumed that the cost of each high-usage
trunk group is directly proportional to the number of trunks in the
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— = =HIGH USAGE GROUPS
FINAL AND TANDEM-COMPLETING GROUPS

Fig. 1—Network model.

group.t If the cost per trunk of the ith high-usage group is c4;, and there
are x; trunks in this group, then the total cost for high-usage trunks in
this network is given by

n
Ca= X caixi. (1)
=1
In the theory which follows, as well as in the algorithm based on this
theory, x; is treated as a nonnegative real variable.

(z1) The final-route cost: Let # = {1, 2, . .. ,H} be the set of hours for
which the network is to be engineered, and let h < #. Let a;;, be the load,
in erlangs, offered to the ith high-usage group in hour A. Then the ov-
erflow from this group in hour h is given by

ain = ainB(x;, ain) (2)

where B(-, a;,) is a strictly convex and continuously differentiable
function of x; which agrees with the Erlang loss function on the integers.!
The overflow parcels from all the high-usage groups are combined and
offered to the final trunk group. It is assumed that, in addition to the
overflow traffic, the final group also has offered to it a first-routed load
in hour h, designated by Ay.

t Such an assumption is necessary, since the eventual realization of the network in terms
of facilities is not known at the time that the groups are sized. Thus, average costs per trunk
are used in approximating the eventual cost of each group.

1 Such an interpolating function can always be constructed since B(n — 1, a) — B(n, a)
>B(n,a)—B(n+1,a),n=1,2,....2
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In sizing high-usage trunk groups, it is customary to approximate the
number of trunks required in the final group by dividing the total load
offered to this group by its so-called “marginal capacity.” 13t If the cost
per trunk of the final group is ¢; and its marginal capacity vy, then the
cost of sizing the final to carry only its hour-h load is approximated
by

Cm = i (Afh + > aih)- (3)
Yf i=1

Since the final group must be engineered for its busiest hour, its ap-
proximate cost is

C; = max Cp,. (4)
he&#
The actual sizing of the final group (which takes place only after all the
high-usage groups have been sized) is done more precisely, of course.
(iii) The switching cost: It is assumed that the cost of switching is
proportional to the load, with a unit-cost per erlang of ¢;. Let As, denote
the load switched by the tandem in hour h, excluding the overflows from
the n high-usage groups. (The first-routed load on the final in hour A,
Agn, is included in Agp.) Ignoring the blocking on the final group, the cost
of switching only the hour-h load is

Csh = cs (Ash + i aih)- (5)

=1

The cost of the tandem switch, when engineered for its busy hour, is
then

C; = max Cg,. (6)
h € H

(iv) The tandem-completing costs: The total load offered to the ith
tandem-completing group in hour h is A;; + a;n, where a;p, is the overflow
from the ith high-usage group (neglecting the blocking on the final group
and at the tandem) and A;;, is the remaining load destined to the ith
terminating office via the tandem. As in the case of the final group, the
size of the tandem-completing group is not computed exactly, but rather
approximated by dividing its offered load by its marginal capacity. Let
v be the marginal capacity of the ith tandem-completing group, and
¢s; its cost per trunk. Then the cost of sizing this group to carry only its

hour-h load is

t While the marginal-capacity assumption is not appropriate for determining actual
trunk requirements on the final group, it is sufficiently accurate for the comparative
purpose to which it is put here.
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e (Ain + o), (7

T

Ciin =
and sizing this group for its busy hour results in a cost

Cii = max Cyp. (8)
he %

The cost of providing trunks for all tandem-completing groups is thus
n

Ci= Zl Cy. 9)
iz

The total cost of the network is simply the sum of these four compo-
nents:

Clx)=Cq+Cr+Cs + C;

n < n
=3 cgix; + max (Afh + 3 aih)
i=1 Yfh € % i=1

n
+ ¢; max (Ash + > aih)
hE # i=1

+ 3 % max (A + am), (10)
i=1Ytih E H#
where x = {x1,...,x,} is the n-vector of high-usage group sizes. This
function is called the “multihour cost function.” Note that the final,
switch, and tandem-completing costs may attain their maxima for dif-
ferent values of h, since each of these alternate-route components may
be busy in a different hour.
The object of multihour engineering, then, is to minimize the cost
function defined by eq. (10) with respect to the high-usage trunk group
sizes, 1.e., to determine x = x* such that

C(x*) = min C(x) (11)
xEX

where the set X is defined by
X={x:2; >0, i =1,...,n. (12)

From the point of view of the (continuous) multihour cost function,
any x is “feasible” if x & 6. Of course, an actual network is realizable
only in whole trunks (or, in the presence of modular engineering rules,t
in terms of whole modules of trunks). Thus, the noninteger solution x *

t The uncertainty in load forecasts and the inherent modularity of some facilities have
recently led to the engineering and administration of some networks in modules of
trunks.
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is subsequently rounded to an integer (or modular) solution, as discussed
in Section IV.

ll. MINIMIZATION OF THE MULTIHOUR COST FUNCTION
3.1 A reformulation

Equation (10) expresses the cost of the network as the sum of a linear
term and n + 2 maxima of sets of nonlinear terms. For the analysis which
follows, it is convenient to rewrite this cost function in terms of a single
maximization operator.

Let M be a vector-valued index set with elements u = (uq, p2, . . . ,4n+2)-
Each component of g, in turn, is a member of the set # = {1, 2, ... ,H},
Le, M={u=(ug, ... uos2) i & FH) Let{C,(x): p € M}be a new family
of cost functions, called “elementary cost functions,” which are defined
by

C(x) 2 Ca(x) + Cpupyy(2) + Copn o) + ;1 Ciplx).  (13)

In this equation, Cy;,,; (x) is the cost of sizing the ith tandem completing
group for its hour-y; load, Cy,,,,(x) is the cost of sizing the final for its
hour-pn+; load, and Cs,,,,(x) is the cost of sizing the switch for its
hour-u,+9 load, as defined by eqgs. (7), (3), and (5), respectively; the
functional dependence upon the trunk-group-size vector x is explicitly
indicated. It follows from eq. (10) that the multihour cost function is
obtained from eq. (13) by maximizing each term on the right-hand side
with respect to the appropriate component of u:

C(x) =Cq(x) + max Cf,,, (x)
o+l € H

n
+ max Cgyio(x) + 2 max Cyy(x). (14)
pnt2 € H i=1p & H
This term-by-term maximization, however, is equivalent to maximizing
C.(x) over all possible choices of u:

C(x) = max C,(x). (15)
pe M
In other words, the multihour cost function can be viewed as the point-
wise maximum of the elementary cost functions defined by eq. (13). The
multihour engineering problem now has the following form: Determine
the vector x* & X with the property that

C(x*) = min max C,(x). (16)
xEXpeEM
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Fig. 2—Level curves of the multihour cost function.

3.2 Some properties of the multihour cost function

The multihour cost function has two fundamental properties on which
the algorithm for finding its minimum is based: (7) it is a strictly convex
function of trunk group sizes; (i) it is only piecewise differentiable in
these variables. Each member of the family of functions C,(x), u € M,
is the sum of differentiable, strictly convex functions plus a linear term,
and is therefore itself strictly convex and differentiable.? Since the
multihour cost function is the pointwise maximum of a family of strictly
convex functions, it is also strictly convex,* but not necessarily differ-
entiable everywhere. In particular, if two or more elementary cost
functions are maximal at some point (and hence their graphs intersect),
the multihour cost function is generally not differentiable at that
point.

Figure 2 illustrates the possible nondifferentiability of the multihour
cost function for an example with two high-usage groups, and in which
only two distinct elementary cost functions [denoted simply by C(x)
and Co(x)] are maximal anywhere. The dashed curve separates the two
regions in the x; — x4 plane in which C1(x) > Cs(x) and Ca(x) > C1(x),
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respectively. The solid lines are the level curves of C(x), i.e., the loci of
points for which C(x) = £, where £ is a constant. The location of the
minimum, x*, is indicated by the circled point. Clearly, the multihour
cost function is not differentiable anywhere along the dashed curve,
where the graphs of the two elementary cost functions intersect.

This simple example also illustrates why a coordinate-search algorithm
may fail to converge to the minimal solution. Figure 3 shows the same
level curves as Fig. 2, together with three typical paths which a coordi-
nate-search algorithm might follow: Path I (0-a-b) and Path IT (0-c-d-e)
start at the same initial point, but their orders of search are reversed.
Path III (0’-f) starts with a different initial solution. Note that the three
paths terminate at three different locations (b, e, and f), none of which
is the minimal solution. In this example, the algorithm stops whenever
it reaches a point x for which C;(x) = Cs(x) and at which no further
decrease in the function C(x) can be achieved by changing only one
coordinate at a time.

3.3 A feasible search direction

The principle of the algorithm presented in this paper is to perform
a sequence of searches through G, in “feasible directions of descent.”
A feasible direction of descent is the direction of any vector y(x) with
the property that if x € 96, there exists some A > Osuch thatx + Ay & X%
and C(x + A\y) < C(x). Whenever such a direction exists, a step size for
the search is chosen to maximize the decrease of the multihour cost
function in that direction, while maintaining the feasibility of the solu-
tion.

In order to determine a direction of descent, we use the concept of the
one-sided directional derivative of C(x) with respect to a vector
y € Y(x), where Y¥(x) = {y € R": for x € X and for some A > 0, x +
Ay & X}. This derivative is denoted by C’(x; y) and is defined as fol-
lows:

Cx+Ay)—C(x)
" .

C’(x; y) is thus the rate of change of the function C(x) in the direction

of y, multiplied by ||y ||, where |-| is the Euclidean norm. If C(x) is con-

vex, C’(x; y) exists and is a convex function of y for every x at which C
is finite. If C(x) is actually differentiable at x, then

C'(x;y) = (y, VC(x)) (18)

where V is the gradient operator and (-, -) denotes the scalar (or inner)
product of two vectors.*
Substituting eq. (15) into the definition of the directional derivative

C'(x;y) £ lim (17)
A0
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Fig. 3—Typical paths for a coordinate-search algorithm.

we have

max C,(x + \y) — C(x)

C'(x;y) = EE“GM N : (19)

Let J(x) = M be the set of indices of those elementary cost functions
which are maximal at x:

J(x) & fu: Culx) = Clx)} (20)

For each p € M, C,(x) is continuous for all x & X%. Consequently, for
each x € X and for each y € ¥ (x), there exists a A’ > 0 such that for
all A with 0 <A <N,

Clx+ Ay)= max C,(x+ \y). (21)
u € Jx)

In words, there exists a neighborhood of x in which no elementary cost
function can be maximal which is not also maximal at x. Therefore, the
maximization over p € M in eq. (19) can be replaced by a maximization
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overu & J=J(x):

max C,(x + Ay) — C(x)
e J

C'(x;y) = lim (22)
A0

A
Since C,(x) = C(x) for each u € J,
C,lx+ \y) — C“(x)]
A

C.lx + \y) — Cu(x):l
A

C'(x;y) =1lim max[
Nopeyg

= maxlim[
pE I NO

= max C,(x; y), (23)
reJ

where C,(x; y) is the directional derivative of C,(x) with respect to y.
(The order of the lim and max operators can be interchanged since J is
finite and C, is continuous for each u € J.) Since C,(x) is differentiable
for eachu € M,1

C’(x;y) = max (y, VC,(x)). (24)
reJ

Thus, the rate of change of C(x) in the direction of y is negative (i.e., the
direction of y is a feasible direction of descent) if and only if

max (y, VC,(x)) <0, y & Y(x) (25)
e J

or, equivalently,
(¥, VCyu(x)) <0, forallpy € J(x),y € Y (x). (26)

A point at which no feasible direction of descent for C(x) exists must
be the location of the minimum of C(x). In fact, a convex function C(x)
defined over a convex domain attains its global minimum at x = x* if
and only if C(x) is finite and

C'(x*;y) =0 forally & Y(x*). @27
Furthermore, x* is unique if C(x) is strictly convex.* Since 0 & ¥ (x),
eq. (27) is equivalent to

min C’(x*;y) =0, (28)
yE Y(x*)

¥ If x is on the boundary of %, VC,(x) is defined as the limit of ail sequences VC,[x 1],
VC,[x®],...,such that x® € % and x ) — x.
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or, with eq. (24) substituted,

min max (y, VC,(x*)) = 0. (29)
Yy E Y(x*) p € I(x*)

3.4 The descent algorithm

Inequality (25) gives the condition for y to be in a feasible direction
of descent for C(x). Such a y is generally not unique, and it is necessary
to select a particular direction of descent at each iteration of the algo-
rithm. A logical choice is the direction of steepest descent for C(x), i.e.,
the vector y* such that

C'(x;¥*) = min  C'(x;y) (30)
yESNY
where & is the unit sphere in R™:
S={:lyl =1} (31)

A solution for y* can be obtained in explicit form, as shown in the Ap-
pendix, provided J(x) contains either one or two elements, and ¥ (x) =
R™ (i.e., x is not on the boundary of ).

While it is possible, at least in principle, to solve for the steepest-
descent vector in the general case (see the Appendix), the computation
is cumbersome for three or more elements in J(x), or if boundary con-
straints are active. In this case it is more practical to choose a feasible
search direction based on computational simplicity. For example, if &
is chosen to be the set

S=ly: |y =1, i=1,...,n}, (32)
the min-max problem expressed by eq. (30) can be converted into a linear
program:

min o
subject to
(5, VC,(x)) =6 forallp € J(x)
|y,~| <1, i=1,...,n
y; 20 whenever x; = 0. (33)

This linear-programming problem is solved by standard methods. Al-
though the vector y* which solves that linear program may no longer be
in the steepest-descent direction, the algorithm can still be shown to
converge.t

t It can be shown that the algorithm will converge with y* chosen according to eq. (30) as
long as & is any convex, compact subset of R" containing the origin in its interior.?
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In principle, the descent algorithm consists of alternately computing
a search direction according to eq. (30) and performing a one-parameter
search to locate the minimum of C(x) along that direction. (Each such
combination is called an iteration.) While this procedure results in a
sequence of feasible solutions with strictly decreasing costs, there is still
no guarantee that this sequence will converge to the minimal solution.
It is possible, as the result of a phenomenon known as “jamming” or
“zig-zagging,” for the sequence of solutions to converge to a point which
does not satisfy eq. (29).6

The device used here to prevent jamming (and thus assure conver-
gence to the minimal solution) is similar to that used by Zoutendijk.6
This device consists of expanding the set J(x) to include all those ele-
mentary cost functions which are “nearly” maximal at x. Let ¢ > 0 and
define the new index set

J(x) £ {u: Cx) = Culx) < €. (34)

The direction-finding subproblem thus takes into account the directional
derivatives of all those elementary cost functions which are within ¢ of
being maximal at x. Similarly, the feasibility conditions are modified
to prevent the algorithm from attempting to reduce any further those
trunk-group sizes which are already “nearly” equal to zero. To this end,
let & > 0 and define the set

Ys(x) 2y € Y(x): y; =20 whenever x; <34} (35)

For notational consistency, the original sets 7(x) and ¥ (x) are hence-
forth denoted by Jo(x) and ¥ ¢(x), respectively.

The original problem of determining a search direction y* as expressed
by eq. (30) is now replaced with the problem of finding y = 9 which solves
the min-max problem

D(x)% min max (y, VC,(x)). (36)
y (S $ N yﬁ n e T e

In this definition, the new symbol D(x) replaces the symbol C’(x; ¥),
since the quantity which it denotes is no longer a directional derivative
in the sense of eq. (17). Note, however, that if 7.(x) = Jo(x) and ¥ 5(x)
= Yo(x), then ¥ = y* and D(x) = C’(x; y*).

Since the inclusion of any additional necessary conditions may overly
constrain the direction-finding subproblem, the values of ¢ and 6 are
reduced adaptively throughout the progress of the algorithm, so that e
— 0 and 6 — 0. The use of this procedure also serves a computational
purpose, in that ¢ and 6 can be viewed as the tolerances within which
elementary cost functions are deemed maximal and within which
trunk-group sizes are considered to be zero, respectively.
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The descent algorithm is now specified as follows:

Step 1 Let k be the iteration counter, and set k& = 0.
Select an arbitrary initial solution x© & 9.
Select € and 6.

Step 2 Compute C[x *)].

Step 3 Determine the feasible search vector y*) = ¥ and compute
D[x®].

Step 4 If D[x™®)] < —¢, go to Step 6.
If —e < D[x®)] <0, go to Step 5.
If D[x®)] = 0, but J [x ®)] 5 Jo[x ®)] or Y 5[x ®)] 5= Y o[x ®)],
go to Step 5.
If D[x®] = 0 and J [x ®] = Jo[x ®)] and Y 5[x B)] = Y o[x ®)],
stop. The solution x*) = x* has been found.

Step 5 Set e =¢/2 and 6 = §/2; go to Step 3.

Step 6 Determine a scalar A(*) such that

Clx® + A®Wy®] = min Clx® + ry®)]
A E AR

where
AR = {x: x®) + Ay &) & ).
Set x B+1) = x (k) 4+ \(k)y (k) get k = k + 1, and go to Step 2.

The adaptive reduction of ¢ and é is contained in Steps 4 and 5.
Whenever |D[x®)]| becomes sufficiently small (perhaps even zero), e
and § are divided in half. If this reduction results in a decrease of the
number of near-maximal elementary cost-functions or near-active
boundary constraints, the direction-finding subproblem may be less
constrained, and a new search direction may be found. If, on the other
hand, the sets 7.(x) and ¥ ;(x) remain unaltered after ¢ and é are divided
in half, D[x )] remains unchanged as well, and the algorithm proceeds
directly to Step 4.

It can be shown that this algorithm generates a sequence of solutions
{x®;k=0,1,2, ...} which is either finite, with its last term x* satisfy-
ing

C'(x*; y*) = 0, (37)

or infinite, with any accumulation point x* satisfying eq. (87).5 It was
shown earlier, however, that eq. (37) is a necessary and sufficient con-
dition for x * to be the unique, minimal noninteger solution to the mul-
tihour engineering problem.

t A practical stopping rule is suggested in Section 4.3.
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IV. NUMERICAL RESULTS
4.1 The model

Three offices from the California network (Gardena, Compton, and
Melrose) were engineered with the descent algorithm developed in
Section III. For each office, the loads in two distinct hours (a morning
hour and an evening hour) were considered. For the sake of simplicity,
the loads A, Ash, and Ajp, i =1, . .. ,n (hereafter called “fixed loads,”
since they do not depend on the variables x;) were assumed to be zero
in both hours. All trunks were assumed to cost $1000, and the switching
cost was $62/ccS.T The final and tandem-completing groups were as-
sumed to have a common incremental capacity of 30 cCS/trunk. There
were 37 high-usage groups in the Compton office, 43 in Gardena, and 35
in Melrose.

These three offices, together with the loads and costs, are the same
as those used by M. Eisenberg;! they are used here again in order to allow
direct comparisons with his results. While the simplifying assumptions
in these cases certainly influence the numerical results, they preserve
the essential properties of the multihour cost function and thus can be
expected to demonstrate convergence characteristics similar to those
which would occur in general.

4.2 Implementation of the descent algorithm

The assumption of zero fixed loads on the switch and on the tan-
dem-completing groups allows the multihour cost function to be sim-
plified considerably. Under this assumption, the busy hours on the
tandem-completing groups are known a priori: the busy hour on the ith
tandem-completing group is the same hour in which the load offered to
the ith high-usage group is largest. Thus, only the final group and the
switch have busy hours which may be functions of the high-usage group
sizes. Furthermore, in the absence of fixed loads, the loads offered to the
final group and to the switch are identical. Consequently, at most two
of the elementary cost functions associated with each of these networks
can ever be maximal.! For the sake of notational simplicity, these two
functions are denoted by C;(x) and Ca(x), respectively.

The feasible search vector for each iteration was chosen by specifying
the set & to be the unit sphere. For experimental purposes, two distinct
initial feasible solutions were used for each of the three offices:

11 erlang = 36 cCS (hundred call-seconds per hour).

+ There are H"*2 elementary cost functions associated with a network with n high-usage
groups which is engineered for H hours. Recent experience with more extensive data, in-
cluding fixed loads, indicates that the busy hours of the tandem switch and of the tan-
dem-completing groups are usually not affected by the sizes of the high-usage groups of
the office which is being engineered.” Thus, one may need to consider only H elementary
cost functions in a practical situation.
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= maxay i=1,...,n (38)
he #H

and
2z©®=0 i=1,...,n (39)

At each iteration, the optimal step size A(%®) was determined by a simple
parameter search: First, the location of the minimum of C(x) along the
search direction was bracketed between two points whose largest com-
ponent-difference was 0.01 trunks. The minimal point was then com-
puted more precisely, either by a quadratic approximation or by a linear
interpolation, depending on whether 7(x) contained one or two elements
‘at that point. The Erlang-B function for noninteger trunk-group sizes
was evaluated by an approximation due to Rapp,® and its partial deriv-
atives were approximated by central differences with a step size of 0.01.
The initial values for ¢ and & were set equal to 1073C[x©] and 0.1, re-
spectively, and in all cases the algorithm was arbitrarily terminated after
25 iterations.

4.3 Convergence of the descent algorithm

The behavior of the algorithm was similar for all three of the offices
and for both starting points. For each office, the final solutions obtained
with each of the two starting points differed by less than 0.003 trunks
on any high-usage group. Figures 4 to 7 summarize the convergence
characteristics of the algorithm for the Gardena office, with the starting
point given by eq. (38).

The cost of the network at each iteration, C[x ()] (or simply C®)), as
a function of the iteration number, k, is shown in Fig. 4. The cost de-
creased monotonically with k, and the rate of change became very small
after the first few iterations (e.g., C¥) = 1.0003 C(29),

Figure 5 shows the magnitude of D[x®)] (or simply |D®)|, and the
value of ¢, as functions of k. As this figure indicates, |[D®)|, ¢, and 6 all
approach zero as k — = (recall that e < |[D®)| for all & > 0, and that §
~ ¢€). Thus, it is evident that the algorithm was converging to the minimal
solution when it was terminated.

Unlike C®), |D®)| did not decrease monotonically. As the algorithm
reduced ¢, there was an occasional iteration (k = 0, 2, and 6) at which the
solution point x ) lay outside the region for which |C{®¥ — C{" | < e. As
aresult, J.[x ®)] contained only one element at these iterations, and y
was given by —Vimax [C{®, C§’]}. (The dotted lines in Fig. 5 show the
magnitudes of the gradients VC; and VCs as functions of k.) For the
remaining iterations J[x *)] contained both indices, so that y and D*)
were computed via eqs. (61) to (63) in the Appendix. Note that since ¢
— 0 as k = = and J[x®)] contained both elements for all £ > 7, the
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Fig. 4—Convergence of descent algorithm: network cost.

solution point x* must be located on the intersection of the graphs of
the two elementary cost functions.

The relative change in the solution from one iteration to the next, as
measured by the Euclidean “distance” ||x =1 — x )| is shown in Fig.
6. Note that this quantity also tended to zero as k increased, although
not monotonically. In particular, this plot shows that for each iteration
(except the first one) at which J.[x )] contained only one element, the
corresponding step size was small. Thus, the algorithm generated a se-
quence of solutions which tended to follow the intersection of the graphs
of C1(x) and Cs(x) toward the minimal solution x*. Whenever the so-
lution point moved too far from this intersection, a small step was taken
to get back into the region defined by |C;(x) — Ca(x)| < ¢, and the search
along the intersection was resumed.

Figure 6 also suggests how the norm of the change in trunk-group sizes
can be used as a measure for a practical stopping rule. Let O be a prese-
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Fig. 5—Convergence of descent algorithm: |D[x®)]| and e.

lected threshold. Then the algorithm is deemed to have converged, and
is terminated, if k > 2 and [x ®) — x ®*—D|| < 6 for two consecutive iter-
ations. The last solution x %) is then an approximation to the exact so-
lution x*.

Figure 7 shows how the solution point x ) converged. For this purpose,
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the Euclidean distance between x () and x(25), ||x %) — x(25)||, is plotted
as a function of k. Note that x %) reached a small neighborhood of x(25)
in relatively few iterations (e.g., within one trunk after only four itera-
tions, and within 0.1 trunks after ten iterations).

4.4 Further results

Table I shows the offered loads for the Gardena office (in cCS), and
the trunk-group sizes (optimal, and rounded to the nearest integer)
obtained by the descent algorithm. For the purpose of comparison, the
following other sets of trunk-group sizes are included:

(i) For each high-usage group, the smallest and the largest number
of trunks (in integers) selected from a set of solutions generated by the
coordinate-search algorithm with 20 combinations of starting points and
trunk-group orderings.
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(it) The number of trunks in each high-usage group (again in integers)
as determined by the so-called “cluster-busy-hour” method.t

This table illustrates the trunk-group-size variability when a coordi-
nate-search algorithm is used, relative to the optimal—and hence
unique—solution. Note that some groups varied by as many as eight
trunks, while only six groups showed no variability. In view of the
practical problems associated with such an uncertainty, as discussed in
the Introduction, the need for obtaining a unique solution is clear.

Table II lists the costs! of the optimal solutions for Compton, Gardena,

t Cluster-busy-hour engineering is a traditional method for sizing traffic networks, in
which trunk-group sizes are chosen to minimize an elementary cost function whose al-
ternate-route costs are all evaluated in a single, time-consistent hour. The hour selected
is that hour in which the sum of the first-offered loads to all the high-usage groups which
overflow to a common final group, plus the first-offered load to that final group, is larg-
est.

+ All costs are computed via eq. (3), and thus include the marginal-capacity approxi-
mation. The costs of comparable networks reported in Ref. 1 reflect the actual required
sizes of the final groups as determined after the high-usage groups have been sized.

DESCENT ALGORITHM 1423



and Melrose. For the purpose of comparison, the table also lists the costs
of the following other networks:

() A network with the optimal trunk-group sizes rounded to the
nearest integers.

(i) The two networks with the lowest and highest costs, respectively,
selected from the set of 20 solutions generated by the coordinate-search
algorithm,

(zit) The cluster-busy-hour network.

These results show that while some combinations of starting points and
trunk-group orderings for the coordinate-search algorithm yielded so-
lutions whose costs were only a fraction of a percent higher than the
optimum, other combinations led to substantially higher costs (up to
5.5 percent in the case of Compton).

Since a network is realizable only in integer trunk-group sizes, the
optimal (noninteger) solution must be rounded in some way. As indicated
by the results in Table II, rounding of optimal trunk-group sizes to the
nearest integers is an attractive alternative: It is simple; it yields an es-
sentially unique solution; and, although it generally does not lead to the
optimal integer solution, it yields networks whose costs are only slightly
higher (from 0.2 to 0.44 percent in the three cases examined) than those
of the optimal, noninteger solutions. (Subsequent studies® have shown
that, among several practical approaches, rounding the optimal solution
to the nearest integers, or to the nearest multiples of the module size,
is indeed the policy most likely to minimize cost.)

The cluster-busy-hour networks are included to provide some per-
spective. It is evident that while the cost of any solution obtained by the
coordinate-search algorithm is substantially lower than the cost of the
cluster-busy-hour solution, additional nonneligibile capital savings may
be obtained by computing the optimal solution via the descent algo-
rithm.

A comparison of the rounded optimal solution with the cluster-
busy-hour solution reveals that these two networks are not very different.
(The average absolute difference in high-usage group sizes is only 0.8
trunks, while the average group size for the rounded optimal solution
is 7.1 trunks.) The cost of the cluster-busy-hour network, however, is 11.7
percent higher than that of the integerized optimal solution. The sen-
sitivity of the cost to relatively small changes in trunk-group sizes is a
consequence of the “shape” of the multihour cost function. As Fig. 2
suggests, the contours of this function are long and narrow, and the slope
is steep in directions normal to the intersection between the two ele-
mentary cost functions.

In contrast, C(x) is much less sensitive to changes in x along the in-
tersection of the graphs of C1(x) and Cy(x). It is for this reason that the
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Table | — High usage trunk group sizes—Gardena

Number of Trunks
Coordinate-
Offered loads Descent search
Trunk (css) algorithm algorithm Cluster-
Group Hour 1 Hour2  Optimal Rounded Low High busy-hour
1 60 140 4.42 4 4 6 3
2 119 9 5.25 5 2 6 6
3 82 20 3.78 4 2 4 4
4 305 76 11.97 12 10 12 12
5 30 0 1.47 1 1 2 2
6 59 7 2.81 3 1 3 3
7 102 56 4.64 5 5 5 5
8 256 161 10.32 10 9 11 11
9 366 230 14.10 14 12 15 15
10 469 310 17.57 18 14 18 18
11 115 115 5.37 5 5 5 5
12 144 34 6.20 6 3 7 7
13 206 335 10.81 11 10 13 9
14 310 650 18.58 19 16 22 13
15 284 319 12.14 12 12 13 12
16 93 152 5.43 5 5 6 4
17 17 24 1.08 1 1 1 1
18 74 325 8.92 9 6 13 4
19 102 158 5.74 6 5 7 5
20 137 322 9.36 9 8 13 6
21 222 247 . 978 10 10 10 9
22 252 390 12.58 13 7 15 11
23 445 194 16.73 17 12 17 17
24 176 86 741 7 6 8 8
25 83 29 3.83 4 2 4 4
26 98 21 4.43 4 4 5 5
27 158 74 6.75 7 6 7 7
28 124 36 5.44 5 5 6 6
29 54 25 2.64 3 2 3 3
30 38 1 1.86 2 1 2 2
31 31 17 1.60 2 1 2 2
32 140 46 6.06 6 6 6 6
33 96 30 4.35 4 3 5 5
34 122 62 5.40 5 4 6 6
35 163 57 6.92 7 5 7 7
36 163 72 6.93 7 5 7 7
37 296 238 11.84 12 11 12 12
38 33 28 1.77 2 2 2 2
39 240 3 9.70 10 6 10 10
40 136 7 5.90 6 4 6 6
41 54 4 2.59 3 2 3 3
42 52 35 2.61 3 2 3 3
43 206 9 8.48 8 3 9 9
Table Il — Network costs
. Cost ($000)
Descent algorithm Coordinate-search
Optimal Integerized —algorlthm Cluster-

Office solution solution Low High busy-hour
Compton 402.9 403.7 406.8 425.0 488.6
Gardena 385.5 386.6 388.2 397.9 431.9
Melrose 271.7 272.9 273.7 276.0 305.3
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largest cost difference between the 20 sample solutions generated by the
coordinate-search algorithm is only 4.5 percent.-(As suggested by Fig.
3, all termination points for the coordinate-search algorithm lie on this
intersection in this particular example.)

The high sensitivity of network cost to trunk variations in some di-
rections is not, of course, a consequence of engineering a network to a
multihour (minimum-cost) solution. The cost function C(x) as defined
by eq. (10) represents the actual cost of the network. The multihour
method is simply the one which recognizes this actual cost during the
sizing process.

The imposition of modular engineering rules tends to diminish the
capital savings of multihour engineering over single-hour engineering,
by blurring some of the fine structure of the networks. A substantial
portion of the savings can still be realized, however, as long as the module
size is not large relative to the average group size. For example, in the
three networks studied here, where the average group size is 7.4, rounding
the high-usage group sizes to the nearest multiples of six trunks resulted
in a reduction of the original savings by approximately one-fourth.

V. SUMMARY

The cost of a traffic network which gives a minimum specified grade
of service on the last-choice routes in more than one hour can be ap-
proximated by a strictly convex, although possibly nondifferentiable,
function of the high-usage trunk-group sizes. A descent algorithm, which
can be shown to converge to the unique, noninteger minimum-cost
network, has been developed. The noninteger solution is subsequently
rounded to the nearest allowable integer (or modular) solution to yield
a realizable network. The main advantage of this algorithm relative to
the coordinate-search method is that the uniqueness of the solution
prevents unnecessary, expensive rearrangements from being undertaken
as traffic loads change with time. A secondary advantage is a small
possible additional saving in network capital cost.

The results obtained from applying the descent algorithm to three
numerical examples (and to others not discussed here) demonstrate that.
even after only a few iterations a sufficiently high degree of precision can
be achieved to ensure the reproducibility of the results and hence the
stability which motivated the design of the algorithm.
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APPENDIX
The steepest-descent direction for the multihour cost function

Consider the problem of finding a vector y*¥ & R™ with the property
that

C’(x,y*) = min C’(x;y)
Iyl <1

= min max (y, VC,(x)) (40)
lyls1up € Ix)

where C’(-;-), C,(x) and J(x) have all been defined in Section III.
Without loss of generality, let J(x) = {1, . .. ,m} and let Z be the convex
hull of the set of all the inner products (y, VC;(x)),j =1,...,m:

Z= Iz: 2= 3 N3 VCE), BN =1, N2 o}. (41)
Jj=1 j=1

In other words, Z is the shortest closed segment of the real line which
contains all the inner products (y, VC;(x)),j = 1, ... ,m. Consequently,
the maximal inner product is also the maximal element in Z:

max (y, VCj(x)) = max z. (42)
jE I(x) =4

Since the inner product is a linear operator, the elements z defined by
eq. (41) can be rewritten as

z= <y, f NVCi(x) ), f Aj=1, N =0. (43)
Jj=1 j=1

Now define a new set, &, as the convex hull of the gradients of the ele-
mentary cost functions:

g= {g:g= f \VCi(x), f A=1, N\ 20L (44)
Jj=1 Jj=1
The relationship between the sets & and Z is evidently
Z=1{zz2=(y,8),8 €S} (45)
and thus
max = max (y, g) (46)
2 EZ gE9

Combining egs. (40), (42), and (46) yields

C’(x; y*) = min max(y, g). 47
lylstge ¢
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Since the two constraint sets on the right-hand side of eq. (47) are convex:
and compact, the minimization and maximization operations can be
interchanged:®

C’(x; y*) = max min (y, g). (48)
g€ ¢ lyls1

Forany g € ¢ withg = 0,
min (y,g) = (—i,g>
lyl<1 lgll
= —|zll. (49)
If g =0, then

min (y,g) = 0. (50)
lyl=1

Equation (48) is then equivalent to

C’(x; y*) = max (—|lgll)
SRS

= —min |lg|| (51)
gee

Let g* be the vector with minimum norm in 9, i.e.,

lg* = min [ig]l. (52)
geS

The desired result is now given by

C'(x; y*) = —llg*| (53)
0 ,8%5=0
yr={ g (54)
— £ gx 0.
P

The set ¢ and its elements g are called the “subdifferential” and the
“subgradients,” respectively, of the convex function C(x).4 The steep-
est-descent vector y* is then in the negative direction of the minimum-
norm subgradient of C(x). Note, incidentally, that C’(x*; y*) = 0—the
necessary and sufficient condition for C(x*) to be the minimum—is
equivalent to the condition that 0 € ¢ at x*.

Explicit solutions for y* can now be found for the cases m =1 and m
= 2, as follows:

@) m=1
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In this case we simply have
g = VCi(x) = VC(x) = g*. (55)
@@i) m=2:
The subdifferential is now given by
§=1g:g=BVCi(x) + (1 - BVCa(x), 0=<p=<1}. (56)

If0 € ¢,then y* = g* = 0. Suppose now that 0 & ¢. The unconstrained
minimum of [|g|| is found by setting its derivative (with respect to )
equal to zero:

d
— = (. 57
a8 lel (57)
Since
lgl?= (g &), (58)
the relationship
d d
= gl === g, 59
2l 2 lell = (6.0 59
is obtained. Thus, since ||g|| 5 0, eq. (57) is equivalent to
d
a5 (g,8)=0. (60)

Let 8 = f satisfy eq. (60). Expanding the inner product, taking the de-
rivative, and solving for § yields

IVCsll = (VCy, VCs)
IVCylI2 + [VCa|2 — 2(VCy, VCy)

However, since 8 is constrained by 0 < 8 < 1, the minimum-norm
subgradient g* is given by

b= (61)

g* = p*VC, + (1 - *)VC, (62)
where
ge=|% P<O 63)
B, 0=p=<1
1, B>1
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On Blocking Probabilities for Switching
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We study the blocking probabilities of multistage switching networks
through their linear graphs using Lee’s model. We give results which
allow us to compare the blocking probabilities of various classes of linear
graphs. In particular, we derive techniques for deciding when the
blocking probability of one linear graph does not exceed the blocking
probability of another linear graph under all possible traffic loads. This
allows us to compare the blocking performances of corresponding
switching networks containing these linear graphs. Our results apply
not only to series-parallel linear graphs, but also to the more general
“spider-web” linear graphs, which have recently attracted substantial
interest in the theory of switching networks.

. INTRODUCTION

A network N consists of a set of switches, a set of links, and two sets
of terminals denoted by I and ©, and called, respectively, the set of input
terminals and output terminals. The union of all paths that can be used
to connect one call between an input terminal © and an output terminal
v is called the linear graph determined by u and v, and is denoted by
G(u,v). (A linear graph is also called a channel graph.19) Let P* be the
union of all paths connecting input terminals to output terminals. A state
of N is a subset S of P* such that no two paths in .S have a common link.
For a given state S, a link is busy if it is on a path in S. Otherwise it is
idle.

Many existing switching networks consist of several stages. We say
that N is an n-stage network if the set of switches of N can be partitioned
into n sets, called stages, and links exist only between a switch in stage
i and a switch in stage i + 1, for 1 <i < n — 1. All input terminals are
connected to switches in the first stage and all output terminals are
connected to switches in the last stage.

1431



(a) (b)

Fig. 1—(a) Series combination. (b) Parallel combination.

In order to simplify the analysis of the switching networks under
consideration we will employ Lee’s model in Ref. 8. We will also use Lee’s
independence assumption, namely, that the probabilities of being busy
for links in successive stages are independent. Thus, we will assume all
links between stage i and stage i + 1 have some probability p; of being
busy and some probability ¢; = 1 — p; of being idle, foranyi,1 <i <k
— 1. Let P(u,v), u € I, v € Q, denote the probability that there does not
exist a path connecting u and v which consists of idle links. P(u,v) is
called the blocking probability for u and v. Note that because of the in-
dependence assumption, P(u,v) actually only depends on the linear
graph G (u,v) between u and v. Furthermore, we will assume all switches
in the same stage are of the same size (i.e., for any switch in stage i, there
are r; inlet lines and r; outlet lines).

A network is said to be balanced if all the linear graphs G(u,v), u € I,
v € Q, are isomorphic. It is said to be partially balanced if there are
only relatively few nonisomorphic linear graphs. We can then compare
the blocking probabilities of two partially balanced switching networks
by comparing the blocking probabilities of the corresponding linear
graphs.

A linear graph is said to be a series-parallel linear graph if it is either
a series combination or a parallel combination of two series-parallel linear
graphs of smaller sizes (see Fig. 1a,b). A linear graph is said to be a spi-
der-web linear graph if it is not series-parallel. In Fig. 2 we give examples
of a series-parallel linear graph (Fig. 2a) and a spider-web linear graph
(Fig. 2b). A linear graph G (u,v) is said to be a multilink linear graph if
there exist two switches in G (u,v) which are connected by more than one
link. Any linear graph which is not a multilink graph is said to be a
simple-link linear graph.

In this paper, we present several general methods for comparing
blocking probabilities of various classes of switching networks. These
methods generalize and improve previous results in this area.?” These
results can be applied not only to series-parallel linear graphs but also
to more general spider-web linear graphs. We also consider the general
case in which two switches can be connected by more than one link.
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(a) (b)
Fig. 2—(a) A series-parallel linear graph. (b) A spider-web linear graph.

Il. LINEAR GRAPHS IN THREE-STAGE NETWORKS
We denote an n-stage network by the following:

(i) The switch set
O bstijr1<j=td
im

where the stage i consists of ¢; switches which are labeled by s(i,j), j =
1,2,...,¢t;
(i) The link set

LGk 1SSt 1Sk < tiyy)
i=1

where L (i,j,k) denotes the set of links connecting s(i,j) and s(i + 1,k);
(Zii) I and Q, the input and output terminals, respectively. We note
that for fixed i we have

ti— ti—
S -1k =5 £G-1,kj)=r
k=1 k=1
tiv1 tivg . ,
S LG4k =3 LG kR) =T
k=1 k=1
for any j,j’, 1 < j, j/ < t;, where £(i,j,k) denotes the cardinality of
L(i,j,k). '

An n-stage linear graph G(u,v) can then be characterized by the
following:

(i) The switch set is
n ’
U s;
i=1
where s; is a subset of the switch set in stage i and s = {u}, s, = {v}. (We
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s(2,1)

s(1,1)=u v=$(3,1)

s{2, mz)

Fig. 3—Three-stage linear graphs.

relabel switches if necessary so that s; = {s(i,j): 1 < j < m;} for some m;
<t,mi=m,=1);

(ii) Thelink setis {L(i,j,k):s(i,j) and s(i + 1,k) are in the switch set
of G (u,v)).

Let G’ (u’,v’) be an n-stage linear graph with the set of switches
n ’
U ls’@):1<j<my
i=1
and the set of links {L’(i,j,k)}. We say G (u,v) and G’(u’,0) are isomorphic
if the following conditions are satisfied.

(@) mi=m;forl1<i<n;
(i) The set of switches in each stage can be properly relabeled such
that the following holds:
£(i,j,k) = €'(i,j,k).
Now, we consider a three-stage linear graph as shown in Fig. 3 (where
switches in middle stages are labeled s(2,1), ..., s(2,m5)).

Theorem 1: Let G (u,v) be the linear graph with the set of switches
3
U {s@j):1=j<m
i=1

and the set of links {L(i,7,k)).
Let G’ (u’,v”) be the linear graph with the set of switches

3 ’
U /G 1< j < m

and the set of links {L’(i,j,k)}. Moreover, suppose G (u,v) and G’ (u’,v’)
satisfy the following conditions (see Fig. 4a,b):
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s(2,1) s (2,1)

5(2,2) 5" (2,2)
(a) (b)
Fig. 4—Graphs for Theorem 1.

@) me=my=2

@) ¢(1,1,1) = £(1,1,2) = £/(1,1,1) = £/(1,1,2)
Giin) 2(2,1,1) + £(2,2,1) = £(2,1,1) + ¢/(2,2,1)
(iv) If(?,l,l) —-£(2,2,1) I < |£’(2,1,1) - f'(2,2,1)|

where £(i,j,k), £/(1,j,k) denote the cardinalities of L (i,j,k), L’(i,j,k), re-
spectively. Then we have P(u,v) < P(u’,v’).

Proof: Let p; denote the probability of a link being busy between stage
land stagei + 1,i = 1,2. Let

a=1/¢(1,1,1)=¢(1,1,2) = ¢’/(1,1,1) = ¢/(1,1,2)
and
c=4£(2,1,1)+ ¢£(2,2,1) = ¢£/(2,1,1) + £'(2,2,1).
We may assume without loss of generality that
b=1¢(2,1,1) <4£(22,1),
b =¢(2,1,1) < £(2,2,1).

It is easy to verify that b’ < b < ¢/2. Define the function f(x) as fol-
lows:

fR)=1-10=-pH A -pP][1-01-p}H 1 —ps™]

We note that P(u,v) = f(b) and P(u’,v”) = f(b’). Furthermore, f attains
its minimum at x = ¢/2 and f is a convex function. Thus we have

f(b) = f(b')

and
P(u,v) < Pu',v’).

We note that the number of paths connecting u and v in G (u,v) is ac,

which is also equal to the number of paths connecting v’ and v’ in
G'(u'v').
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s(2,1)

5(2,2)
(a) (b)
Fig. 5—Graphs for Theorem 2.

The following theorem can be viewed as a special case of Theorem 1.
Because it is very useful in comparing linear graphs, we will state it
here.

Theorem 2: Let G (u,v) be the linear graph with the set of switches
3
Y fs(j):1<j<m}

and the set of links {L(i,j,k)}, and let G’ (u’,v’) be the linear graph with
the set of switches

3
U s’ 1 <j < mj}
i=1

and the set of links {L’(i,j,k)}.
Suppose G (u,v) and G’(u’,v’) satisfy the following conditions (see Fig.
5a,b):

(i) me=2,m5=1,
@) £(1,1,1) = ¢(1,1,2) = £'(1,1,1),
i) €(2,1,1) + £(2,2,1) = ¢/(2,1,1).

where ¢(i,j,k), ¢'(i,j,k) denote the cardinalities of L(i,j,k), L’(i,j,k),
respectively.
Then we have

P(u,v) < P(u’,v’)
Theorem 2 can be proved by taking b’ = 0 in Theorem 1.

In the following corollary, we give a short proof for the main theorem
in Ref. 4, which asserts that a multilink linear graph can always be re-
placed by a simple-link linear graph having smaller blocking probability
whereas the total numbers of paths in the two linear graphs are the
same.
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s (2,1)

s (2,mn)
(a) (b)
Fig. 6—(a) A single-link linear graph. (b) A multilink linear graph.

Corollary: Let G’(u,v) be a three-stage linear graph with the set of
switches {u,0} U {s(2,i):i=1,...,mn}and ¢(1,1,1) = £(2,;,1) =1 for 1
<i < m (see Fig. 6a). Let G(u’,v") be a three-stage linear graph with the
set of switches {u,v,5(2,1)} and satisfying ¢(1,1,1) = m, £(2,1,1) = n, (see
Fig. 6b). Then we have
P(u,v) < P(u',v’).
Proof: We let G”(u”,0”) have the set of switches {u”,0”} u {s”(2,i):1 <
i < m} and satisfying £7(1,1,/)) = 1for1 <i<m, £7(2,i,1) =nforl <
t < m (see Fig. 7).
By using Theorem 2 (repeatedly), we have

Pw”v”) < Pu'v).
Similarly, we have

P(u,v) < Pu”v”).

s (2,1)

s (2, m)

Fig. 7—An intermediate linear graph.
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(b)

Fig. 8—Parallel combinations for n-stage linear graphs.

Thus, we have
P(u,v) < P(u’,v’)

and the corollary is proved.

lll. LINEAR GRAPHS IN MULTISTAGE NETWORKS

In Section II, we presented several methods to compare blocking
probabilities of small linear graphs. In fact, large linear graphs can be
compared in very much the same way. The following two theorems show
how to extend these methods to multistage linear graphs with a com-
paratively large set of switches.

Theorem 3: Let G1(u1,01), Go(ug,v32), G3(us,vs) be three n-stage linear
graphs. We suppose the blocking probability P(u;,v1) is smaller than
or equal to the blocking probability P(us,v2). Let G (u,v) be an n-stage
linear graph obtained by a parallel combination of G1(u,v1) and
G3(us,v3) (see Fig. 8a). Let G’(u/,v’) be an n-stage linear graph obtained
by a parallel combination of Ga(us,v9) and Gs(us,vs) (see Fig. 8b). Then
we have

P(u,v) < P(u’,v’).

Similarly, if G (ux,0x) is a (2n — 1)-stage linear graph obtained by a
series combination of G1(u1,v1) and G3(us,vs) and G’ (Ly,v%) isa (2n —
1)-stage linear graph obtained by a series combination of Ga(u,v2) and
G3(us,v3), then we have

P(ux,Ux) < P(uy,Uy).
Proof: 1t is easy to see that
P(u,v) = P(u1,v1)P(us,vs)
P(us,vs) =1—[1 = P(ug,vp)] [1 = P(us,vs)],
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and
P(u’,v’) = P(uz,v2)P(us,vs)

P(uy,v%) = 1= [1 = P(ug,vs)] [1 — P(uz,vs)].
Thus we have

P(u,v) < P(u,0'), P(Ux,Ux) < P(us,U%).

The following theorem is a generalized version of Theorem 2. Theorem
1 and Corollary 1 can be generalized similarly but will not be stated
here.

Theorem 4: Let G(u,v) be an n-stage linear graph with the set of
switches

O s 1< <m

and the set of links {L(i,j,k)}. Let G’(u/,v’) be an n-stage linear graph
with the set of switches

ics

U G 1<j<mj)

l

and the set of links {L’(i,j,k)}.
Suppose G(u,v) and G’(u’,v’) satisfy the following conditions.

(@) mi=m;foranyi = w, 1 <i < n (for a fixed w).

(17) There exist ky,koks such that the linear graph G(u,v) —
{s(w,k1),s(w,k2)} is isomorphic to the linear graph G’(u’,v’) — {s’
(w’k3)}'

(tit) s(w,kq), s(w,ko) and s’(w,k3) are connected to other switches so
that the following conditions hold:

[(w - 1;j)k1) = e(w - lyj)kQ) = el(w - 1Jj)k3) for 1 Sj = my-1,
C(w,k,k) + £(w,ka,k) = €' (w,ke,k) for 1 <k <my41.

where £(i,j,k), £'(i,j,k) denote the cardinalities of L (i,j,k), L’(i,j,k), re-
spectively.

Then we have
P(u,v) < P(u',v’).

We note that (iif) could be replaced by (iii’) because of symmetry:

(") €(w—1,j,k1) +£(w—1,jkg) =’ (w—1,j,kg) for1 <j <myy,
L(w,k k) = L(wke,k) = €/ (wks,k) for 1 <k < myqq.
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(a)

G,
(b)

Gy %
(c)

Fig. 9—Examples of linear graphs and corresponding balanced switching networks.

Proof: We may assume n = 4 because of Theorem 2. Thus, we may as-
sume without loss of generality that w > n — 1. Therefore m; = m; for
i # w, and in particular, m,—; =m,_; Let Abeasubsetof{j:1<j <
mp—1}. Let Ga(u,v4) be an (n — 1)-stage linear graph which can be
viewed as the union of all paths in G which connect u and a switch s(n
— 1,j), where j € A and all switches in A have been identified. (It can
be viewed that all switches in A are condensed into one switch.) In other
words, G (u,v4) has the set of switches {vg =s4 (n — 1,1)] U {s4(i,7):1 #
n — 1 and s(i,j) is on a path which passes through a switch s(n — 1,j)
where j € A}. G4 has the set of links {L 4 (i,j,k)} where

eA(n - 2)]y1) = Z g(n - 2’j’k)
ke A
and £4(i,j,k) = £(i,j,k) fori = n — 2. Let G 4(u’,v;) be the linear graph

similarly obtained from G’ by identifying all switches in A. By the in-
duction assumption, we have

P(u,vg) < P(u',v}y).
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Gyq

(d)

(e)

o

Gg

(f)
Fig. 9 (continued)

Moreover, P(u,v) can be written as follows:
P(u,v) = ¥ plAl (1 = pp—1)n=17141P(u,0,)
A

where A ranges over all subsets of {j: 1 < j < m,_4}.
Since P(u’,v’) has the similar expression

P’ ,v') = ¥ plAl (1 — pp_y)mn-1-141 P(u/,v}y),
A

then we have
P(u,v) < P(u’,v)

In Ref. 2, the present authors consider a special class of linear graphs
G (u,v) with m,,—; = m;, n odd and m; dividing m;, fori = 1,2,..., [n/2].
It can be easily seen that the linear graphs in the class can be compared
by using Theorem 4.

In Fig. 9a to £, we give several examples of linear graphs together with
their corresponding balanced switching networks.
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8
5(2,2) s(3,2)

Fig. 10—A four-stage linear graph.

Let P, denote the blocking probability for the balanced network N;
with linear graph G;. It is easy to verify that Pg, < Pg, by taking w =
3, k1 =1, ke = 3,k3 = 2. Similarly, it is easy to see that

PG1 < Pc,‘2 < PG3 < PG4 < PGS,
and
Pg, < Pg, < Pg,.

We note that the numbers of crosspoints in N;,i =1, ..., 6, are the
same. Thus we know that the switching network N is “better” than the
switching network N and so forth.

IV. SERIES-PARALLEL LINEAR GRAPHS

In this section, we consider series-parallel linear graphs. Series-parallel
linear graphs are sometimes preferred to spider-web linear graphs® be-
cause of the conditions for implementation and control. The following
two theorems treat the blocking probabilities of series-parallel linear
graphs.

Theorem 5: We consider the following four-stage linear graph G, , (see
Fig. 10).

@) mo=mgz=2

@) £(1,1,1) = £(1,1,2), £(2,1,2) = £(2,2,1) = 0, £(3,1,1) = £(3,2,1),

(tii) €(2,1,1) = x, £(2,2,2) = y.

If there are integers ¢ and b withx +y=a+ b, x <a < b <y, then
we have

PGab < Pny

The proof of Theorem 5 is quite similar to the proof of Theorem 1—by
setting f(x) = [1-(1—p) 1—p3) A —pa)] [1-(1—p1)) 1 —p§*) (1
— p3)]—and is omitted.

Remark: The above theorem can be extended to multistage linear graphs
by replacing each link by a linear graph under the condition that all links
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(a) (b)
2; (c) %
(d) (e)

Fig. 11—Examples.

between stage i and stage i + 1 are replaced by copies of a linear graph
or by linear graphs with the same blocking probabilities.

In Fig. 11, some examples are illustrated. The linear graph in Fig. 11b
has a smaller blocking probability than the linear graph in Fig. 11a by
Theorems 3 and 5. The linear graph in Fig. 11¢ has a smaller blocking
probability than the linear graph in Fig. 11b by Theorems 3 and 4.

Theorem 6: We consider the following linear graph G.,., (see Fig.
12):

(l) m; = mj = 2.

(i1) u and s(i,1) are connected by a linear graph N. v and s(i,2) are
connected by a linear graph No. N1 and N, have the same number of
stages and Py, = Py,

(#ti) v ands(j,1) are connected by a linear graph Ns. v and s(j,2) are
connected by a linear graph N,. N3 and N4 have the same number of
stages and Py, = Pn,.

(iv) There exist (j — i + 1)-stage linear graphs G1,G 5 such that s(i,1)
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Fig. 12—Linear graph for Theorem 6.

and s(j,1) are connected by x copies of G and y copies of G4 and s(i,2)
and s(j,2) are connected by z copies of G and w copies of Gs.

Suppose x + y =z + w = ¢ and x + z = d for some constants ¢ and d.
We alsosupposex’+y ' =z"+w’ =c,x'+2’=d wherex’ <x <z <z’
Then we have

PGy = PGy
Proof: Let a = (1 — Pn,) (1 — Pn,).
Define the following function f(x):
fx) = [t — a(l — Pg, P§;9)] [1 — a1l — PE* PE;29)].
It is easy to see that Pg,,,, = f(x), Pg,.,,., = f(x’). Now,
df

dx (x) = a(1 - &) (log Pg, — log Pg,) (P§, P&;" — P& PG;**)

ey

= a(1 — a) (log Pg, — log Pg,) P§, P&," (1 — P& PE9).

If Pg, = Pg,, we have f(x) = f(x"). If Pg, # Pg,, f(x) attains its minimum
at x = d/2. Since f(x) is convex, then

f(x) 2 f(x)forx’ <x =<

b |

Thus we have

Pnyzw < P(;x,y,z,w,.

Theorem 5 and Theorem 6 essentially say that the more regular (i.e.,
evenly distributed) the linear graph, the better it is. Of course, all these
results are based on the Lee model and the related independence as-
sumption. In some existing networks, irregular linear graphs might
sometimes be desirable because of the preference schemes in rout-
ing.!
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(b)
Fig. 13—Linear graphs for Theorem 7.

In Fig. 11, the linear graph in 11d has a smaller blocking probability
than the linear graph in 11¢ by Theorem 6. By Theorem 5, the linear
graph in 11e has the smallest blocking probability. We note that 11e is
the most regular linear graph in Fig. 11.

Theorems 5 and 6 can be generalized to a class of spider-web linear
graphs. We will state the generalized version of Theorem 5.

Theorem 7: Let Gqp and 6xy be two n-stage linear graphs satisfying the
following properties (see Fig. 13).

(i) There existsk,2 <k <n — 2, such that G, — {s(k,1),5(k,2),s(k
+ 1,1)s(k + 2,2)} is isomorphic to @xy —{s’(k,1),5"(k,2),s" (R + 1,1),s"(k
+ 2,2)}, where {s(i,j)}, {s’(i,)} are the sets of switches of G45,Gxy, Te-
spectively.

@) ¢(k—1,1)=¢(k—-1,,2)=¢(k—1,,1) = ¢/ (k— 1,,,2) for 1
<i<mp-pandf(k+11)=¢k+12)5)=¢(k+1]1,j)=¢'(k+1,2,))
for 1 <j < my4,, where £(i,j,k) and £'(i,j,k) are the cardinalities of links
of Gap, Gy, respectively.

(ii7)
) a ifj=1
2(k,1,j) =
(k. 1J) lO otherwise
0k 2) = [b iy =2
0 otherwise
Similarly,
: x ifj=1
(k1)) =
(k,1.7) lO otherwise
f’(k}2)j) = [y lfj B 2-
0 otherwise
(iv)

xt+y=a+bx<a=<b=y.
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Then we have
Paab = Paxy'

Proof: The proof is by induction on the number of stages. Suppose n =
4. Following the notation in Theorem 5, we note that G, is the parallel
combination of G, and G. Thus by Theorem 5, we have

Paub=PGabPG SPnyPG=P6xy,

For n > 4, we apply the same reduction scheme which is used in the
proof of Theorem 4. The theorem is then proved by mathematical in-
duction.

V. CONCLUDING REMARKS

Lee8 first proposed the concept of a linear graph in connection with
his study of the blocking probabilities of switching networks. Since then
his model has been widely used. However, a systematic study of linear
graphs is still far from complete. There are some results in extending
Lee’s method®? or for studying the blocking probabilities for certain
classes of series-parallel linear graphs2. Takagil®!! has defined a class
of spider-web linear graphs and finds the optimal one in that class. Some
of his results have been obtained earlier by Le Gall3. Van Bosse!213 ex-
tends results in Refs. 3, 10, and 11 in the sense that the occupancy dis-
tribution for links can be arbitrary. In this paper, several new methods
for analyzing blocking probabilities of certain classes of switching net-
works are presented. We hope it will lead to more research in this di-
rection.
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Coupled Surface-Acoustic-Wave Resonators

By P. S. CROSS and R. V. SCHMIDT
(Manuscript submitted March 18, 1977)

Coupled Surface-Acoustic-Wave (SAW) grating resonators are in-
vestigated analytically with a transmission-matrix technique, and the
measured frequency responses at ~145 MHz of devices on YZ-LiNbOg
with Ti-diffused gratings are compared with the theoretical results.
Coupled-mode theory is applied to derive the two-by-two transmission
matrix relating the acoustic wave amplitudes at the input and output
of a surface wave grating. Using the transmission matrices, the external
transmission through a SAW resonator is found by matrix multiplica-
tion. Some fundamental aspects of resonator passband synthesis are
introduced by considering the transmission through several acoustically
cascaded resonators. Resonator filters where the transducers couple
directly to the resonant cavities are treated by developing a description
of the transducer that is compatible with the transmission matrix of
the grating. The analysis technique is then applied to the familiar
two-port resonator-filter. Next, coupled resonator-pairs with a
transducer in each cavity are considered in detail for: (i) collinear
acoustic coupling, (i) multistrip coupling, and (iii) transducer cou-
pling. Experimental results are presented for each configuration
considered and good agreement with the analytical description is found
in each case.

I. INTRODUCTION

Surface-acoustic-wave resonators are now well established as one-pole,
narrowband filters in the frequency range 30 to 1000 MHz.1:2 Recent
work3-19 has shown that multipole filters can be formed by coupling
several resonators. In general, multipole filter responses can be syn-
thesized by using one or more of the three established coupling mecha-
nisms: ({) collinear acoustic coupling,3-° (if) acoustic directional coupling
(multistrip coupler),57 or (iii) electrical coupling using trans-
ducers.8-10

Examples of two-pole resonator filters using the three types of cav-
ity-coupling mechanisms are presented in Fig. 1. In each configuration,
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there are two resonant cavities with a transducer in each cavity for
coupling to the external circuitry.

In the collinear cascade structure the central grating, common to both
cavities, is the coupling element. The strength of the central grating
determines how much power can “leak” from one cavity to the other.

When either multistrip or transducer coupling is employed, each cavity
has a distinct set of gratings, and the resonators are conveniently ar-
ranged in parallel with the acoustic power flowing in two separate
“tracks.” Coupling with the multistrip is effected by simply extending
the electrodes of the coupler into both cavities. The degree of multistrip
coupling is determined by the length or, equivalently, the number of
electrodes of the coupler.

In the transducer-coupling configuration, a second transducer is
placed in each cavity. The cavities are then coupled by connecting the
transducers together, either directly or through an external electrical
network. The external network provides a means for adjusting both the
strength and phase of the cavity coupling.

In order to design a filter using coupled grating resonators it is nec-
essary to be able to relate the frequency response of the filter to the pa-
rameters describing the gratings, transducers, and coupling elements.
We present here a general technique for obtaining the frequency re-
sponse of coupled resonators. In addition, the technique yields closed-
form expressions for the insertion loss, out-of-band response and the
near-in-band shape which aid in filter design.

The approach taken in this paper is to first develop the transmission
matrix of a uniform grating and use it to analyze the external trans-
mission response of a single resonator. Next, the properties of coupled
resonators are introduced by studying the external transmission response
of acoustically cascaded resonators.

We then present a description of the interdigital transducer which is
compatible with the transmission matrix description of the gratings.
With this description one can calculate the transmission response of any
resonator structure which includes internal transducers.

The technique is applied to the familiar two-port resonator-filter.
Then coupled-resonator pairs are treated in detail for each of the three
cavity-coupling mechanisms. Experimental results at ~145 MHz are
presented for each configuration considered, and the good agreement
with theory that is found in each case substantiates the analytical
models.

Il. GRATING TRANSMISSION MATRIX

In this section, the transmission matrix of a surface-wave grating is
derived. A transmission matrix relates the forward and backward trav-
eling-wave-amplitudes at the left side of an element to those on the right
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side. It is therefore useful to establish a compact notation by introducing

the vector
+
W, = [w‘ ] (1)

Wi
which represents the complex amplitudes of the forward-, w{, and
backward-, w;, traveling waves at the right-hand reference plane of the
ith element of a filter structure. The amplitudes have dimensions of
v'Power . Thus, the transmission characteristics of the ith element of
the structure are described by the matrix equation

W= m;W; (2)

where ; is the 2X2 transmission matrix of the ;th element.

The transmission matrix of a grating is derived using a plane-wave,
coupled-mode analysis which was originally applied to thick holograms!!
and subsequently to distributed feedback lasers'213 and acoustic grating
reflectors.? The grating to be analyzed is taken to have constant period
A, and to extend from x = —L to x = 0. Near the Bragg frequency, only
the fundamental Fourier component of the grating perturbation provides
phase-matching between the forward- and backward-traveling waves.
Thus, in the analysis, a lossless grating is mathematically modeled by
a sinusoidal velocity perturbation given by

v(x) =vg— %cos (Kx) (3)

where K = 2%/A. Furthermore, we assume that the surface wave prop-
agation can be represented by the scalar wave equation
EA + w?
dx?  v2(x)
where w is the surface-wave radian frequency. The scalar ¥ represents
the quasistatic electric potential at the surface of the piezoelectric crystal
associated with the surface wave. The general solution!! of eq. (4) is

¥=0 (4)

V(x)=wt(x) +w(x) (5a)
where

w*(x) = ¢t (x)e=shox (5b)

w™(x) = Y~ (x)etibox (5¢)

are respectively the forward and backward wave amplitudes in the
grating and By = 7/A is the propagation constant of the surface wave at
the Bragg frequency wg = mvo/A. By appropriately combining egs. (3)
through (5) and dropping higher harmonic terms one obtains the coupled
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wave equations

B

ix oyt =j 8 kY (6a)
dy~ ... _ .8
dr JoYT =] 8 xpt (6b)

where 8 = w/vg, k = (B8/4)-Av/vg is the grating coupling coefficient
and
2 _ 32
;o826 -
280
is a measure of the frequency deviation from the Bragg frequency. For
high-@ resonators, we are particularly interested in a limited frequency
range such that 8/8y =~ 1 and the coupled wave equations can be sim-
plified by setting 8/8¢ = 1 and letting § = (@ — wo)/vo. In the remainder
of this paper we use this narrowband approximation. The exact forms
of (6) must be used if responses over large bandwidths are required.
Solving egs. (3) through (7) for the wave amplitudes at x = —L in terms
of the wave amplitudes at x = 0 yields the following transmission rela-
tion

W(-L) = $W(0) (8a)

where the transmission matrix ¢ for a grating an integral number of
periods long is given by

Ny cosh (¢L)

§=ED U
I:\/lTA_2 + jA tanh (¢L) J tan}'l (L) ] (8b)
—j tanh (L) v1-AZ — jA tanh (¢L)
where
N, = L/A, (8c)
6=VK2—§2=xV1— A2 (8d)
and
A =6/ (8e)

is the normalized frequency deviation.
The reflection coefficient, T, at the plane x = —L for a wave incident

from the left is

w(=L) _ —J

ra) = w*(=L) V1= A% coth (¢L) + jA

9
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and at the Bragg frequency, A =0,
') =—jp (10)

where p = tanh («L).

The grating transmission matrix and reflection coefficient have been
derived by postulating a sinusoidal velocity perturbation grating. The
final expressions are, however, in terms of a coupling coefficient, «, which
describes the strength of the perturbation that forms the grating. By
appropriately identifying the coupling coefficient of other grating types
(such as surface corrugations), the grating transmission matrix (8b)
describes the behavior of surface-wave gratings formed with any per-
turbation mechanism.

Equations (9) and (10) provide a means for experimentally deter-
mining the coupling coefficient for a particular physical grating. It has
been found!? that « can be obtained by either measuring the reflectivity
at & = 0 and using (10) or by measuring the fractional bandwidth Aw/w,
between reflection zeros and calculating « from the expression

T Aw\ 2 2A\2
-5V - )
obtained from (9). The first method is most suitable for weakly reflecting
gratings while the second method works best on highly reflective grat-
ings.

For the specific case of shallow-groove gratings, one can use, in addi-
tion to the above techniques, the results of Li et al.15:16 to determine the
coupling coefficient which gives x = h/3A2 for corrugations of depth h.
The various second-order effects associated with stored reactive energy
have been neglected here for simplicity.

The phase of the reflection coefficient and the off-diagonal terms of
the transmission coefficient depend on the choice of grating reference
planes. In Appendix A, the question of specifying reference planes is
treated in detail, and it is shown that reference planes can be found for
any grating such that the transmission matrix in (8b) is applicable.

If the ith element of the structure is a transmission line extending from

x = —L; to x = 0, it is described by the familiar transmission equa-
tion
Wi_1=&W; (12)
where
ejﬂLi 0
d; = [ 0 e—jﬁL.] . (13)

Thus far, the surface-wave gratings have been treated as lossless.
However, in many circumstances, small grating losses have a significant
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influence on the grating filter transmission response. In Appendix A,
the transmission matrix of a lossy grating with a distributed attenuation
coefficient, «, is given in eq. (82). This matrix is unnecessarily compli-
cated when only frequencies near the Bragg frequency, |A| < 1, are
considered. An approximate transmission matrix for a lossy grating can
be considered when «/x << 1 and A « 1 by decomposing the lossy matrix
(82) at A = 0 as follows:

9~ AFA (14a)
where
=) o
A = ‘ (14b)
ap
0 (-%)
exp 2k
A2
A2 _=2 . .
¥ = <1 + -2—> cosh (xL) 1 9 +ide P (14¢)
. Az
=Jp 1- o JAp

where, as before p = tanh (kL) and A = §/k. This decomposition is
equivalent to placing a lumped, frequency-independent loss!? at each
side of the grating. The matrix ¥ is the lossless grating transmission
matrix (8b) simplified for the condition |A| « 1 and N, even. The de-
composition of ¢ in (14) has two advantages. First, other loss mechanisms
(such as bulk radiation loss) that are localized in nature can be mathe-
matically included as a component of «. And, second, the important
frequency dependence of @ is all contained in ¥ so that the simplified
matrix F can be used to obtain closed-form expressions for the resonant
passband shape of a given structure.

lll. TRANSMISSION RESPONSE OF CASCADED GRATING STRUCTURES

The transmission matrices derived in Section II provide the means
to calculate the properties of cascaded structures of gratings and
transmission lines. As an example of the application of the transmission
matrices, we first consider a grating resonator as illustrated in Fig. 2a.
The resonator consists of two identical gratings each of length L, which
are separated by a quarter-wave transmission line. The wave amplitudes
W, and Wi, at the left and right reference planes respectively, are related
by the matrix equation

WO = 91<D293W3 = ﬁW3 (15)

where §1 = 93 are the transmission matrices of the first and third ele-
ments (gratings) and &, is the transmission matrix of the second element

SURFACE-ACOUSTIC-WAVE RESONATORS 1453



ELEMENT 2 |
A/4 LINE )

~ < ELeMENT3

GRATING

ELEMENT 1
GRATING

| AXIXT § TACK AL S
gasynerscsapll
LA AT A Po=
oAt
1 % Q2N -
[ \_)(g\ /i
LY A W] A alid
FREQUENCY (150 kHz/div.) NORMALIZED FREQUENCY, A
(b (c)

Fig. 2—(a) Diagram of a grating resonator in the external transmission configuration.
(b) The transmission spectrum at ~145.5 MHz for a resonator on YZ-LiNbOj3 using Ti-
diffused gratings with A = 12 um and L = 6.48 mm. (c) The calculated transmission
spectrum for the device in (b) using x = 3.74 cm~! and a = 0.036 cm™1.

(in this case a quarter-wave line). The matrix R is the transmission
matrix of the resonator.

In the laboratory, the external power transmission, |w#/w¢|2, through
the structure of Fig. 2a is the most conveniently measured quantity. A
typical experimental transmission spectrum for a resonator formed by
Ti-diffused gratings!* in YZ-LiNbOQj is shown in Fig. 2b. Far off reso-
nance, where the gratings are transparent, the transmission is near unity.
Inside the grating stopband, the gratings are highly reflective and there
is a deep transmission minimum. Near resonance, there is once again
near-unity transmission.

The theoretical transmission response can be obtained by applying
the boundary condition w3 = 0 to eq. (15). The external power trans-
mission is then

wilz__ 1
5 =
Wy R11R11*

where Ry is the 11 element of the R matrix of (15). In Fig. 2¢c, the cal-
culated spectrum is given for the structure of Fig. 2b where « and « are

(16)
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Fig. 3—(a) Diagram of a cascade of N identical resonators. (b) The transmission spec-
trum at 145.5 MHz of a cascade of three identical resonators with A = 12 ym and L = 3.84
mm. (c) The calculated transmission spectrum for the device in (b) using x = 3.55 cm™!
and a = 0.027 cm™L,

chosen to fit the insertion loss and stopband width. The complete grating
transmission matrix of eq. (82) in Appendix A is used in the calcula-
tion.

In many cases, only the frequency response near resonance is of in-
terest and the external power transmission can be found using the ap-
proximate grating transmission matrix (14a). Under the conditions |6|,
a < k and 2 cosh (xL) =~ exp (kL), eq. (16) simplifies to

g L (17)

52 2
1+ ¢ exp (2«L) +
K

w3

n
w
0 2 exp (4«L)

x2

From (17), an analytical expression for the unloaded resonator quality
factor, @, can be obtained and is given by

1 1 1
—_—=—4— (18)
Q. & Q
where
= ke ~
Q- y sinh? (kL) A exp (2«L) (19)
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is the @ associated with radiation loss from the ends of the gratings

and
iy

Qg=m

is the @ associated with the distributed internal grating loss (material
losses, surface imperfections, and diffraction).

The distributed internal grating loss can be determined from the
resonant transmission loss through the resonator. From eq. (17) the
resonant transmission is

(20)

w2 1

= (21)

[1 + lgexp (2:<L)j|2
2«
from which « can be determined.

The transmission matrix analysis technique is easily extended to more
complicated structures such as those that are encountered in multipole
filter-synthesis applications. The simple case of a collinear cascade of
identical resonators shown in Fig. 3a provides an illustrative example
since such a cascade has been shown to have a near-resonance trans-
mission response described by a Chebyshev polynominal.34:18 The
transmission matrix of a cascade of N lossless, identical resonators is
given by ()N where R is the transmission matrix of a single resonator.
If the lossless grating transmission matrix (8b) is used, the following
expression for R is found:

2
24 2SC—j[1—2 4 SQ]

we

vi-a 1- a2
R = 98¢ = o
—j S2
1- A2 o
; 2
TT S
24 A 22
— 22 _sc+jf1-2 s2
V- Az J[l 1— A2 ]

where S = sinh (¢L) and C = cosh (¢L). Equation (22) is applicable over
the region of validity of the coupled-mode approximation, |A| «
w/kA.

Using the results of Storch!® to evaluate ()", one can obtain the
following expression for the transmission response through the cas-
cade:

t12
wa|* L (23)
o [1+2 A sy (g:)]2

1+a2° 0N
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where

2A
Ve

and Uy is the Chebyshev polynominal of the second kind of Nth order.
Near the resonant frequency the response is simplified to
2 1

1+ Q2U%(Q) (24)
where Q = 2Q, (v — wp)/wp and @, is the radiation € of a single resonator.
In Fig. 3b the experimental transmission response of a cascade of three
coupled resonators is presented, and in Fig. 3c, the theoretical frequency
response calculated using the lossy grating matrix (82) is given. The
theoretical description again provides an excellent fit to the data.

The comparisons made in this section between the experimental and
theoretical transmission spectra of cascaded grating structures provide
a quantitative verification of the analytical model and approximations
presented in Section II. In particular, over the frequency range used in
the measurements (AB/B 2 1 percent), the excellent agreement between
the calculated and experimental responses justifies both the use of the
coupled mode equations and the narrow-band (8/89 =~ 1) simplification.
It should also be noted that the loss coefficient required to theoretically
fit the data is only about twice the surface wave propagation loss of
LiNbOs. Thus, the titanium diffusion process!* produces a low-loss
surface perturbation that is ideal for high-@ resonators.

Wy

w§

IV. INTRACAVITY TRANSDUCERS AND THE TWO-PORT RESONATOR

In the preceding sections, coupled-mode theory has been applied to
derive a transmission matrix description of SAW gratings and resonators.
The resonators become useful bandpass filters with low out-of-band
transmission, when the transducers are placed inside the cavity.20-22 In
Fig. 4 an interdigital transducer (IDT) is depicted schematically and the
various physical quantities associated with the IDT are indicated. The
quantities w¥ and wi , are the local amplitudes of the various acoustic
waves as previously defined, and a; and b; are the amplitudes of the
electrical waves incident and emanating from the transducer, respec-
tively.

The terminal amplitudes at the transducer can be related by a di-
mensionless matrix 7, such that

Wi—1 LU?
b; a;
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Fig. 4—Diagram of an interdigital transducer.

where T is given by

tin t12 13
T=|—tiz to tos (26)
st13 —sto3 t33

and s is a symmetry parameter expressing whether the transducer has
an even (s = 1) or odd (s = —1) number of electrodes.

The transducer description of eq (25) has the useful property that the
acoustic amplitudes are expressed in transmission matrix form. As a
result, (25) is conveniently decomposed into two equations:

(i) The acoustic amplitudes at the transducer reference planes are
related by

Wi_i1=tW;+a;7; 27)
where t; is the transmission matrix
t t
£ = ( 11 12) (28)
—t12 Loo/i

and 7; is the input coupling vector

=), o

1458 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



—
W; Gy Dyl Ty D, Ts |Pe Gy 7V>7
re————
(a)
145.5MHZ~\\
0
2 L
o
e Js L
Sasnroals
, ; X ]
: % A € 0 U:S B
P 8 [
IV SRR T
L L N T TN U N NN NN W
—4 0 .
FREQUENCY (170 kHz/div.) NORMALIZED FREQUENCY, A
(b) ©

Fig. 5—(a) Diagram of a two-port resonator. (b) The electrical transmission spectrum
for a two-port resonator on YZ-LiNbOg with gratings 9.6 mm long and 12 um period, op-
timally placed transducers with N; = 5, Z, = 50 2, and an acoustic aperture of 50 wave-
lengths. (c) The calculated spectrum for the device in (b) using « = 4.5 cm™1, a/k = 0.01,
R, =11 Q, ¢ = 0.04, and ¢4 = 9.98 7 on resonance.

(i) The electrical signal leaving the transducer is expressed by

bi = 7;+ W; + a;(t33); (30)
where 7; is an output coupling vector
’ t
Fi=s < 13 ) (31)
v —tog/i

The symbol - in (30) indicates the scalar (dot) product.

As shown in Appendix B, egs. (27) and (30) allow the analysis of res-
onators and coupled-resonators to be reduced to a simple, matrix-mul-
tiplication algorithm.

The elements of the matrix T are evaluated by using an appropriate
transducer model.2324 The accuracy of the matrix elements depends on
the degree of sophistication of the model used. For example, the Mason
equivalent circuit model first used for interdigital transducers by Smith23
et al. has proven very useful in practice. The complete matrix 7 based
on the Smith-Mason model is given in Appendix B.

In many resonator applications, however, only a first-order analysis
is required. Thus, by neglecting the static transducer capacitance and
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the frequency dependence of the propagation phase-shift through the
transducer, 7 is given by

1+g+gs —& — & sV'2g
(T)first-order ~ S g+ 8 1-g- 8s S\/EE (32)
Vg -V2g s
where
g=G.Z, (33)
g = G.R; (34)

and G,, Z,, and R, are the transducer radiation conductance, load re-
sistance, and series electrode resistance, respectively. The first-order
matrix in eq. (32) is sufficient for calculating the near-resonance prop-
erties of many SAW resonators, but the more complete matrix in eq. (84)
is required for wideband descriptions.

As a first application of the transducer matrix in (32) and of the ma-
trix-multiplication algorithm in Appendix B, consider the two-port
resonator in Fig. 5a. Ideally, the transducers are optimally-placed?® (¢
= ¢g = w/4), and the cavity is resonant at A = 0 (¢4 = m«). Thus, from
eq. (32) and egs. (96)—(103), the electrical power-transmission factor Ps3
of the optimal two-port is given by

= (35)

where, r = jT', T is the frequency-dependent reflection coefficient of each
grating (G is assumed to be identical to G7), and g and g, are given in
egs. (33) and (34), respectively.

The total loading on the cavity can be separated into two components:
(i) the power coupled to external circuit and (iZ) the power lost in the
filter structure.

Thus, eq. (35) can be written in the more intuitively recognizable
form

Ps3 = ’ = (36)
% e + ur
where
uc = 8¢ 37)

1460 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



p — — OUT-OF-BAND Ve ~ %
ol TRANSMISSION e e
{ / / /
- / / /
o V2 / /S
g [ <0 S S
: A A
%’30" 1 yd / / / ’
L 003,/ / // //
F ol /
_40— / // / 0%/ / /
- / / / / 0003/ //
- / yd / /S 0.001
-sor O A A A Sy
-/ / / / /
-/ / / / / /
so__ /1 il A il /o |/4_1I0 I L1 1100

Ke/thr

Fig. 6—Nomogram giving the resonant and out-of-band transmission for two-port,
surface-acoustic-wave grating resonators and matched grating resonator pairs. The res-
onant transmission is determined by the ratio of the transducer cavity loading uc to the
cavity loading yy, due to all other mechanisms. The out-of-band transmission is only a
function of pc. The dashed curves are contours of out-of-band transmission for constant
cavity loss. The resonant and out-of-band transmission can be found from pc and uz, or
vice-versa. The nomogram is directly applicable to single resonators and matched colli-
nearly coupled resonator pairs. To use the nomogram with matched multistrip-coupled
pairs, multiply the ordinate by 4v2,|T'|2 (see Section VII) and for matched transducer-
coupled cavities, multiply the ordinate by (v:/4)? (see Section VIII).

is the single-transit, fractional power coupling to the external circuit
and

uL =8gs +4(1—r)/(1+7r) (38)

is the single-transit, fractional power loss due to all other mechanisms
(ohmic loss, bulk scattering, intrinsic propagation losses, and trans-
mission through the gratings). Note that in the optimal resonator de-
scribed here, the transducers are spaced an integral number of half
wavelengths apart so that coherent interactions take place that allow
uc to be greater than 1 for strong-coupling transducers.

On resonance (A = 0), for highly reflective gratings [exp (2x<L) > 1],
eq. (38) becomes

wL ~ 88 + 2¢ + 2a/k + 4 exp (—2«L) (39)
where ¢ is a localized!? excess loss that accounts for mode-conversion

losses. By dividing the numerator and denominator in eq. (36) by u7, the
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resonant power transmission through a resonator is described by the
single parameter uc/ur.

Figure 6 is a nomogram for finding the resonant and out-of-band
transmission of grating resonators. The solid curve is the resonant in-
sertion loss versus uc/ur. Plotted with dashed curves is the out-of-band
transmission with the cavity loss u;, as a parameter. Using the nomo-
gram, the resonant and out-of-band transmission can be found knowing
pc and uy, or vice versa. The nomogram is also applicable to coupled
resonators as described in the caption to Fig. 6 and in Sections VI, VII,
and VIII. Coldren and Rosenberg®17 have used similar diagrams for the
resonant insertion loss of single and multistrip-coupled resonators as
a function of coupling and loss parameters.

Equation (35) can also be used to find the loaded electrical @, QL.,,
of a single-cavity, two-port resonator. For exp (2«L) > 1, it is found
that

N S
kA (uc + pr)

where 7/kA is the single-transit cavity phase-shift.

The algorithm used to derive eq. (35) provides a flexible tool for in-
terpreting experimental device performance, since a large number of
electrical, mechanical, and geometrical properties are explicitly con-
tained in the analysis. For example, consider the transmission response
in Fig. 5b of a two-port resonator with Ti-diffused gratings on YZ-
LiNbOg. The resonant insertion loss is 10 dB, and from eq. (36) or Fig.
6,

QLel = (40)

Ll T (41)
KL

Next, the transducers each have five electrodes 50 wavelengths long, and,
from eqs. (33), (93), and (94),

uc = 0.062 (42)
for Z, = 50Q. From (41) and (42), it is found that
ur, = 0.112 (43)

The transmission minima on each side of the resonance occur near the
first reflection zeroes of the gratings. Thus, eq. (11) can be used to esti-
mate x, with the result

k~ 4.3 cm™t (44)
The gratings are each 0.96 cm long (800 A), and from eq. (44),
e~ 2L = 0.00026 (45)
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From external transmission measurements on resonators (see Sections
II and III), the loss a/k associated with diffused gratings is found to be
~0.01. Thus, from (39)-(45), the remaining loss is probably associated
with the transducers and is given by

2
88, + 2 = py, — = — de~2L = 0.092 (46)

The electrode resistance (RBs; = 11 Q) is calculated from the metal
thickness (2700 A of aluminum),

gs = 0.0014 (47)
and, finally, from eqs. (46) and (47)
e = 0.040 (48)

The 4 percent excess loss € is probably due to bulk mode conversion by
the transducer electrodes. Both loss mechanisms associated with the
transducers (series resistance and bulk mode conversion) should be less
significant on low-coupling materials such as ST-quartz due to the in-
creased transducer length.

In order to complete the description of the resonator in Fig. 5a, the
phase-shifts ¢o, ¢4, and ¢g must be specified. It is observed in practice
that the velocity of propagation is very sensitive to surface perturbations
(piezoelectric-loading, mass-loading, and reactive energy storage). As
a result, the separation between the gratings must be empirically ad-
justed to compensate for the velocity variations in the structure. For the
device of Fig. 5b, the appropriate empirical values are ¢3 = ¢4 = 7/4 and
¢¢ = 9.98 7 on resonance.

The parameters estimated in (41)—(48) have been used with the al-
gorithm in Appendix B to calculate the complete transmission spectrum
shown in Fig. 5c.

V. COUPLED GRATING-RESONATORS—GENERAL CONSIDERATIONS

Multipole filters are formed by coupling together two or more cavities.
The general configuration for a cascade-coupled multipole resonator-
filter is shown in Fig. 7. Acoustic energy is launched by the transducer
in the input cavity, propagates through the coupling structure Cs, and
is detected by the transducer in the output cavity. The coupling structure
C; consists in general of some combination of gratings, phase shifts,
transducers, and multistrip couplers. The overall filter response is de-
termined by the properties of Cs as well as the properties of the input
and output cavities.

In order to better understand the various elements that can be used
in the coupling structure Cs, two-pole resonators formed by acoustic
collinear coupling, multistrip coupling, and transducer coupling are
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Fig. 7—Diagram of the configuration for cascade-coupled SAW grating resonators with
an arbitrary coupling element, Cs.

discussed individually in the next three sections. It is shown for each
coupling mechanism that the important, near-resonance properties of
the coupling structure are expressed by the matrix @

é _ 1 ej25Leff j\/]_ — p2
_j‘/]_ — 2 o —J208Lefr

14
where v is a real parameter < 1, and L is the effective contribution to
the cavity length by the coupling structure.

The parameter v is the magnitude of the amplitude transmission
coefficient through the coupling structure and is a measure of the degree
of coupling between the cavities. The quantity exp (j26L ) is a propa-
gation phase factor that accounts for the phase shift through the coupling
structure. ’

The degree of coupling between the cavities (specified by ») largely
determines the transmission characteristics of the resonator pair. For
example, using the method outlined in Appendix B, the resonant
transmission of a pair of cavities is found to be

(49)

vpc (50)

1
al o 44 <uc + uL>2_ =5 [1 _ (uc+ m)?]
4 4

where the quantity (uc + up) is the single-transit, fractional power
loading on the combined resonator pair. Equivalently, (uc + 1) can be
interpreted as the round-trip power loading on each cavity.

By differentiating eq. (50) with respect to », it is found that maximum,
resonant transmission is obtained when the coupling structure
“matches” 26 the two cavities according to

pe +up

1
2 2
1+ (#CI#L)

(51)
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Fig. 8—Near-resonance transmission spectra for lossless, coupled resonator pairs that
are: (a) undercoupled, (b) matched, (c) slightly overcoupled, and (d) overcoupled for
maximum 3-dB bandwidth.

Qualitatively, the cavities are matched when the loading on each cavity
due to the coupling structure is equal to the loading due to all other
mechanisms.

The importance of matching the individual resonators in a coupled
structure is illustrated in Fig. 8. If the parameter » is too small, the
cavities are undercoupled and there is a large resonant insertion loss as
in Fig. 8a. When v = v,y from eq. (51), the cavities are matched and
minimum insertion loss is obtained as shown in Fig. 8b. As v is increased
slightly beyond v,pt, the peak flattens and broadens as in Figure 8c. For
still larger values of » the cavities become overcoupled and the resonance
splits into two peaks as in Fig. 8d where the dip between peaks is 3 dB.
Thus, the degree of cavity-coupling, », is a central parameter in deter-
mining the passband shape and insertion loss.

The matched condition (51) has a further interesting consequence.
When the frequency dependence of the transfer function is included in
(50), it can be shown for matched cavities that

b7 pe |2 [ 1 ]
— (52)
as wetprl L1+ Q2U3(Q)

where U = 2Q is the second Chebyshev polynomial of the second kind.
The parameter  is a normalized frequency

2

A
Q=2 = QLez (53)
wo
where @, is the loaded electrical @ of each cavity in the coupled pair.
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The Chebyshev-polynomial form in eq. (52) is the same as the form ob-
tained for a coupled pair of identical resonators in the external trans-
mission configuration [see eq. (24)]. Although it is not rigorously proven
here, eq. (52) indicates that the passband shapes that can be obtained
in external transmission can also be obtained with intracavity trans-
ducers. Thus, the procedure for synthesizing resonant passbands can
be simplified by first investigating the passband in the external trans-
mission configuration, and subsequently including the transducers.

VL. COLLINEAR ACOUSTICALLY COUPLED RESONATORS

An acoustically coupled resonator pair is formed by inserting a section
of grating between the input and output transducers as shown in Fig.
9a. Comparing Figs. 7 and 9a, the coupling structure in Fig. 9a is simply
a section of grating. From eq. (14a), the near-resonance coupling matrix
is given by

C~ AFA (54)

The loss matrix A in eq. (54) has the same form as that given in eq. (14b),
but any excess loss due to the transducers must be included.

The near-resonance behavior of a highly reflective grating, described
by the matrix F, is approximately equal to the coupling matrix @ in eq.
(49) when the identification

vg = sech (xLs) (55)

is made and L. is the effective penetration depth into the grating, 1/2«.
The quantity v, is the coupling parameter for collinear acoustic coupling
and L5 is the total length of the coupling grating.

Including dissipative loss, the matching condition (51) specialized to
collinear acoustic coupling, is given by

(e=*L8)gpy = i(uc + uzg) (56)

where pc = 8g is the transducer loading on the resonator pair, and uz,
is the effective loading on each cavity due to all other mechanisms,

uLg = 88s + deg + 4% + de2l1 (57)

In deriving eq. (57), it is assumed that the outer gratings, G1 and Gg, are
identical.

Comparing egs. (39) and (57), the expression for ur, is similar to that
for uj, (for a single cavity) with the exceptions: (i) the grating-loss con-
tribution is twice as large (4a/k versus 2a/k) because there are four ef-
fective reflection planes instead of two, and (i) the excess loss ¢, is in
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Fig. 9—(a) Diagram of an acoustically cascaded resonator-filter pair. (b) The electrical
transmission spectrum in a 50 @ system for an acoustically cascaded resonator-filter pair
on YZ-LiNbO3 with Ly = Lg = 9.60 mm, L5 = 7.296 mm, A = 12 um, N; = 5 and an acoustic
aperture of 50 wavelengths. (¢) The calculated spectrum for the device in (b) using « = 3.3
em~L a/k = 0.01, Ry = 12 Q, ¢, = 0.018 and ¢ = dg = ¢ = $pg = 0.234 7 on resonance.

general different from the excess loss ¢ for a single cavity. In fact, the
origins of the excess loss can be investigated, by comparing measured
values of ¢, and e. For example, if the excess loss is predominantly caused
by the gratings, ¢; ~ e If, however, the excess loss is transducer-asso-
ciated, ¢, ~ ¢/2 since there is only one transducer in each cavity in an
acoustically coupled pair.

As an aid in design and data interpretation, the nomogram in Fig. 6
is directly applicable to matched acoustically coupled cavities when pup,
is substituted for uy.

The transmission spectrum of an acoustically coupled resonator pair
is shown in Fig. 9b. The transducers and outer gratings are identical to
those used in the single-cavity resonator in Fig. 5b. The experimental
parameters have been estimated as described in the previous section,
and the calculated response is shown in Fig. 9c. It is interesting to note
that the value ¢; = 0.018 ~ ¢/2 is found, providing further evidence that
the excess loss is transducer associated on LiNbOs.

VIIl. MULTISTRIP-COUPLED RESONATORS

Grating resonators can also be coupled using a directional (multistrip)
coupler®7 as shown in Fig. 10a. A detailed analysis of the multistrip-
coupled resonator pair from a scattering-matrix point of view has been
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Fig. 10——(a) Diagram of a multistrip-coupled resonator-filter pair. (b) The electrical
transmission spectrum in a 50 Q system for a multistrip (5 um strips, Ls = 90 um) coupled
resonator-filter-pair on YZ-LiNbO3z with L; = Lg = 9.60 mm, A = 12 um, N; = 5 and an
acoustic aperture in each track of 50 wavelengths. (c) The calculated transmission spectrum
of the device in (b) with ¢ = 0.163, x = 4.3 cm™!, a/k = 0.01, Rs = 10 Q, €, = 0.047, ¢p2 = 0.25
7 and ¢4 = 9.89 7 on resonance.

given by Rosenberg and Coldren.® In this section we derive the coupling
matrix (@5 in Fig. 7) for multistrip-coupled cavities.

The overall structure consists of two resonators in parallel connected
by an ideal, directional coupler?? described by the fourth-order vector

equation
(v)= (o =) () )

where
- )
o= (7’ qu) (©0)
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and
p2+q?=1 (61)

For simplicity, the frequency dependence of the propagation phase shifts
through the multistrip coupler is ignored in egs. (58)-(60).

Comparing Figs. 7 and 10a, the coupling element is the multistrip
coupler in combination with the gratings Ge. The transmission between
W, in the upper track and V4 in the lower track can be treated as a
two-port cascade element. Thus, the 2X2 matrix 2 satisfying

G

becomes the coupling matrix for multistrip-coupled cavities.
To solve for 2D, the appropriate acoustic boundary conditions are

wg =vg =0 (63)
and the resulting matrix is
1
; - 2 _ g2
D= 2—:); Ts (p* = a7 (64)
—-(p%-q?) s

where I'g is the reflection coefficient of the gratings, Gg.
Near resonance (|A| « 1), T'¢ can be expanded as in eq. (14), and for
exp (xLg) > 1, eq. (64) becomes :
[ eld j\/mg;] 4
—jV1-1vZ e—Ja
where vy, is the coupling parameter for multistrip-coupled cavities

vm = 2qV'1 — g2 (66)

and L ~ 1/2k since the length of the multistrip coupler is neglected.
The loss matrix A in eq. (65) has the same form as that given for a single
grating in (14b), but any excess loss due to the multistrip coupler must
now be included. Thus, the matching condition for multistrip-coupled
cavities becomes

1
D=—uA

Vm

(65)

ue + pim
V16 + (uc + prm)?

where uj , is the single-transit power loss of the resonator pair (excluding
transducer coupling):

(67)

Qopt =

L = 88 + dem + 4 = F do—2Ls (68)
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The excess loss ¢, now includes additional losses suffered due to the
multistrip coupler.

As pointed out by Rosenberg,8 far away from resonance (JA| >> 1) the
multistrip-coupled structure has low out-of-band transmission, since
the path connecting input and output requires a reflection from a grating.
Quantitatively, from eq. (64).

Uy

2
5| = 4v?n| I‘(;(A)|2 (69)
Wy

As indicated by eq. (69), the effective cavity-coupling is directly pro-
portional to Tg. Thus, the out-of-band transmission of a multistrip-
coupled pair is low and can be suppressed to arbitrarily small values by
using sidelobe-free apodized gratings.28

The nomogram in Fig. 6 can be used for matched, multistrip-coupled
cavities when uz, is substituted for uz, and the ordinate for out-of-band
transmission is multiplied by 4vZ|T's|2.

In Fig. 10b is shown the experimental transmission spectrum of a
multistrip-coupled device, and in Fig. 10c is shown the spectrum for the
same device calculated using (64) and the parameters given in the cap-
tion. The high resonant insertion loss (15 dB) is due to the large cavity
perturbations (¢, = 0.047) caused both by the transducers and multistrip
coupler. The distortion in the sidelobe response is due to slight nonun-
iformities in the gratings and direct capacitive coupling between the
input and output transducers (RF feedthrough).

Vill. TRANSDUCER-COUPLED RESONATORS

The general scheme for using transducers to electrically couple two
resonators is depicted in Fig. 11a. The coupling structure is topologically
similar to the multistrip-coupled case, but with the important advantage
that an electrical coupling network can be inserted between the reso-
nators if desired. In general, both passive and active electrical circuit
components can be employed so that passband shaping and amplifica-
tion/attenuation can be performed in the coupling network. Thus, the
electrically coupled configuration offers more design flexibility than
either the acoustic cascade or directionally coupled configurations.

To gain an insight into the performance of electrically coupled reso-
nators, we examine the important case®!0 where the coupling network
is simply a shunt susceptance jx. The coupling structure (transducers
Ts in combination with gratings G; and shunt susceptance jx) is de-
scribed by the electrical coupling matrix & satisfying

(o1) = () &

1470 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1977



Using the acoustic boundary conditions (as for the multistrip-coupled
structure)

wi =v7 =0 (71)

and assuming the two coupling transducers are identical, with N; elec-
trodes, the matrix 6 is found to be

_ -z |t (&) i)

(1+r)? e <12;:2> Lt <r(1Q-lt- r)>

where r = jT';, I'7 is the reflection coefficient of gratings G-, and @ is the
effective radiation @ of the cavity-coupling transducers:

Q: = (wCr + x/2)/G, (73)

The quantities Cr and G, are the transducer static capacitance and
radiation conductance, respectively. For clarity of exposition, in deriving
eq. (72), the transducer length is assumed small compared to energy
penetration depth in the gratings (6, = 0) and the series resistance is
neglected (Rs = 0). In eq. (72), the loss due to series resistance in the
cavity-coupling transducers T's can be mathematically included in the
grating loss coefficient as done for the losses in the multistrip coupler
in Section VII.

For the electrical coupling structure, the phase shifts ¢g = 7/4 must
be included between the coupling transducers and the gratings G; in
order to obtain optimum coupling of the transducers to the cavity
standing-wave-pattern. Further, as noted by Matthaei et al.,10 the
coupling transducers introduce a small phase shift due to the finite value
of ;. Thus, expanding (72) for |A| «< 1 and exp (xL7) > @, the matrix
6 is given by

6= —(—I)Ntl.ﬂ (74)

vt

ej(A+¢ex) J 1 '

[ I
-J 1 — vy e—J(A+¢ex)

where the matrices A account for all dissipative cavity losses due to

gratings and transducers T, and the constant excess phase shift ¢y is
given by

Pex = /2 — 2/Qt (75)
The quantity »; is the cavity-coupling parameter for transducer cou-
pling,

2Q;

= Qt2_+—1 (76)

Ve
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Fig. 11—(a) Diagram of a transducer-coupled resonator-filter pair. (b) The electrical
transmission spectrum in a 50 Q system of an electrically coupled, resonator-filter pair
on YZ-LiNbQj with optimally placed transducers with N, = 5, L; = L7 = 9.60 mm, A =
12 um and an acoustic aperture in each track of 50 wavelengths. (c) The calculated spec-
trum of the device in (b) with Q; = 6.69, x = 4.0 cm ™1, a/k = 0.01, R = 11 Q, ¢, = 0.047,and
¢4 = 107 on resonance.

Here again, L in (49) is given by the penetration depth (1/2«) into the
grating since the transducer length has been ignored. The matching
condition for transducer-coupled cavities becomes
4
(Qt)opt =- (77)

e + uLe

where py, is the single-transit power loss of the resonator pair (excluding
loading by the external circuit),

pLe = 88 + de + 4 5 + de=L (78)

The excess loss ¢ accounts for all additional losses due to the cavity-
coupling transducers as well as the excess loss from the input-output
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transducers, and the term 8g; is due to the input-output transducers
Ts.

Outside the grating stop-band (|A| > 1), the power transmission
|vi/w|? through the coupling elements tends to the limit

2 v\ 2
)
The out-of-band transmission of the transducer-coupled configuration
is therefore lower than with collinear acoustic coupling but is still higher
than the out-of-band level for multistrip-coupled resonators [see
(69)].

The resonator nomograph in Fig. 6 can be used for matched, trans-
ducer-coupled resonators when wup, is substituted for uz, and the ordinate
for out-of-band transmission is multiplied by (v;/4)2.

In Fig. 11D, the experimental transmission spectrum of a pair of
transducer-coupled cavities is shown, and the theoretical response of
the same device calculated using (72) and the parameters given in the
caption is shown in Fig. 11c. The excess loss ¢ is about the same as ¢ for
a single-cavity resonator, as would be expected. As for the multistrip-
coupled pair, the distortion in the sidelobe response is caused by grating
nonuniformities and RF feedthrough.

Uy

wi

IX. SUMMARY AND CONCLUSIONS

The major results derived in this paper are summarized in Table 1.
Gratings and small pieces of transmission line are the fundamental el-
ements for SAW resonators. Using coupled-mode theory, gratings and
transmission lines are described by 2X2 transmission matrices. Reso-
nators and combinations of resonators can be analyzed simply by
multiplying together a sequence of transmission matrices. A matrix-
multiplication algorithm is also presented for analyzing bandpass filters
with intracavity transducers.

To form multipole filters, several resonators can be coupled together
using one or more of the three mechanisms: (¢) collinear acoustic cou-
pling, (i) multistrip coupling, or (iii) transducer coupling. Near the
resonant frequency all three mechanisms are mathematically equivalent
and can be used interchangeably in passband synthesis applications. Far
off the resonant frequency, the three mechanisms have quite different
sidelobe suppression characteristics.

The essential properties of the three coupling mechanisms are illus-
trated in Fig. 12. The calculated transmission spectra for three different
coupled resonator pairs are shown. In each case, the cavities are of
identical length and are coupled to the same degree (same value of ») with
only the cavity-coupling mechanism being changed from case to case.
All three spectra have nearly the same passband shape, but the electri-
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NORMALIZED FREQUENCY, A

Fig. 12—The calculated transmission spectra of three equivalent resonator-filter pairs
on YZ-LiNbOQs, each using a different cavity-coupling mechanism. In each case, the devices
are assumed lossless and the outer gratings are 800 periods long with A = 12 ym and « =
3.27 cm™L, The transducers have N; = 5 with an acoustic aperture of 100 wavelengths. The
degree of cavity coupling is the same in each case with vz = v, = v, = 0.077.

cally coupled pair resonates at a higher frequency than the others due
to the phase shift introduced by the cavity-coupling transducers. The
multistrip and electrically coupled cavities have a slightly greater reso-
nant insertion loss than the acoustic cascade because some energy is lost
through the end gratings Gg in Fig. 10 and G in Fig. 11. The sidelobe
levels are highest for the acoustic cascade and progressively lower for
transducer and then multistrip coupling.

For the synthesis of multipole filters each coupling mechanism has
unique advantages so that a combination of two or more coupling
mechanisms will probably be optimal. The acoustic cascade is particu-
larly easy to design because coupling between cavities can be accom-
plished without disturbing the intrinsic cavity properties. That is, there
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are no velocity perturbations, ohmic losses, or spurious reflections in-
troduced into the cavity by the coupling structure.

Transducer coupling allows the flexibility of using an external elec-
trical network in addition to the additional sidelobe suppression men-
tioned above. The external network can be used to contribute to pass-
band shaping and as a convenient means for post-fabrication trimming
of device performance.

Finally, the multistrip coupler offers the lowest sidelobe levels and
the technological advantage that no critical alignment of the coupler
within the cavity is required (as is the case for transducers).

Beginning with the gross properties of the various coupling mecha-
nisms discussed above and emphasized in Fig. 12, the simple matrices
given in Table I can be used to obtain first-order results for a wide variety
of filter configurations. More precise results can then be obtained using
the exact expressions given earlier in the text. Thus, the analytical
techniques presented in this paper should provide a sound basis for
developing a synthesis procedure for multipole SAW resonator filters.
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APPENDIX A—TRANSMISSION MATRIX FOR LOSSY GRATINGS

In this appendix a general grating transmission matrix is derived which
includes a propagation attenuation and allows for an arbitrary choice
of reference planes.

As in Section I, the grating extends from x = —L to x = 0. The velocity
perturbation is now generalized to allow an arbitrary phase shift, 6, of
the grating with respect to the x axis:

v(x) = vy — %cos (Kx + 0) (80)

The scalar wave equation is modified to

d2v < w? . 2wa
dx2 v2(x) ] v(x)
which includes a propagation attenuation coefficient, «. The grating
transmission matrix is found in the manner described in Section II. For

)xp =0 (81)
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Fig. 13—Location of reference planes and phase angles, 6, for YZ-LiNbO3 and ST quartz
surface-deformation gratings: (a) step-down grating with reference plane at the first
down-step, (b) step-up grating with reference plane at the first up-step, (c) step-down

grating with symmetrically placed reference planes; (d) step-up grating with symmetrically
placed reference planes.

the narrowband approximation, /8¢ ~ 1, the transmission matrix be-
comes

9 =% cosh (L)
2

[5 +j <6_%) tanh (aL)] eJbol

K
—jei® tanh (oL )e~iboL

je~J® tanh (gL)eifoL

I:g —-J ((S _Kja> tanh (aL)] e—jBOL,

K

(82)

where
o=[k2— (6 — ja)21/2

This matrix reduces to eq. (8b) when « and 8 are set equal to zero.

It is shown in Section II that the magnitude of the grating reflection
coefficient provides a means of determining the coupling coefficient.
Similarly, the phase of the reflection coefficient specifies the parameter
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0 for a particular choice of reference planes. For a lossless grating an
integral number of periods long, the reflection coefficient at the Bragg
frequency is

I'(0) = —je*i? tanh (xL) (83)

Thus, when the reference planes of a grating are spaced by an integral
number of periods, one need only measure the phase of the reflection
coefficient at the Bragg frequency in order to determine 6. For example,
consider surface corrugation gratings of the step-down and step-up type
as shown in Fig. 13. The experimentally observed optimum transducer
placement has shown for both YZ-LiNbQ32%30 and ST-quartz!73¢ that
the electric potential, ¥, is a maximum at the edge of a step-down grat-
ing, and a minimum at the step-up grating edge. Accordingly, for refer-
ence planes shown in Fig. 13a, § = +#/2 for a step-down grating and in
Fig. 13b, § = —7/2 for a step-up grating. Similarly, for any type of grating
and choice of reference plane, 8 can be determined from knowledge of
the optimum transducer?® location which gives the position of the po-
tential maximum. For the case of step-down gratings, § = 0 corresponds
to the symmetrical choice of reference planes as shown in Fig. 13c. A
symmetrical choice of reference planes for a step-up grating is as shown
in Fig. 13d, which requires # = . In this paper we assume the reference
planes have been chosen such that § = 0 for mathematical simplicity.

APPENDIX [I—TRANSDUCER TRANSMISSION MATRIX AND
RESONATOR-ANALYSIS ALGORITHM

The transmission matrix 7 of an IDT can be found by manipulating
the well-known admittance matrix232¢ based on a Mason equivalent-
circuit model. Using the results of Smith et al.,23 and including an ef-
fective series electrode resistance, R, T is given by

(1 + to)eﬂ’t —to St13
T=s tO (1 — t())e_jB‘ St13€_j0t (84)
t1s —t13e 10 sta3
where
G.(R; + Z,
_Gr (R, +2Z,) 85)
1+ 6,
ti3= M el0i/2 (86)
1+ 0,
270,
taz=1-— . 87
33 1+ 0, (87)
s = (=1)N (88)
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N, = number of electrodes in the transducer

0, = N:Ad (89)
G, = transducer radiation conductance
e = wCr(Rs + Z) (90)
be = (wCr + B:)(Rs + Z.) (91)
Cr= (N — 1)Cs/2 (92)

B, = transducer radiation susceptance

C, = static capacitance/electrode pair

an ()
G, ~ 2Go(N; — 1)? Y (93)

t

For uniform transducers,23:31

2
Go = k2C,w/2m (94)

k2 = electromechanical coupling constant

sin (6;) — 0,

B, ~ 4Go(N, - 1?22
t

(95)

Using the transducer description in eq. (84), we develop an algorithm
for analyzing coupled resonators with intracavity transducers. Consider
the general cascaded-resonator structure in Fig. 7. The input signal is
applied to transducer T's which is separated by phase shift &, from
grating Gi. The output is taken from transducer T which is separated
by phase-shift ®g from grating Gg. The element Cs is a generalized cou-
pling element that can be composed of gratings, transducers, phase shifts,
and multistrip couplers. The coupling element Cs is described by the 2X2
transmission matrix @5. Specific examples of the matrix @5 are given in
the main text for: (i) a single-cavity, two-port resonator, (if) acoustically
cascaded resonators, (iii) multistrip-coupled resonators, and (iv) elec-
trically coupled resonators.

From eq. (27), the acoustic amplitudes associated with transducer T
can be expressed

Wo = t3W3 + asrs (96)

Vector equation (96) is actually two equations with four unknowns w#,
w#. Two further equations are obtained from the boundary conditions
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expressing the fact that there are no acoustic waves externally incident
on the resonator

w=w;=0 97)
Next, the boundary conditions can be referred to the reference planes
of transducer T's:
Wo = 919:W, (98)
W3 = @5Pet7P599Wo (99)
where )it is assumed transducer T+ is connected to a matched load (i.e.,
a7 =0).

Combining egs. (96), (98), and (99), the outward propagating acoustic
waves wg and wj are specified in terms of the electrical input, as,

(:))0_) =M (“2)3> + ay91Bo73 (100)
where J is the overall acoustic transmission matrix
M = §1Pot 3P4C5Pst 7PgG9 (101)
The vector W is next found from W,
W7 = 2399Wo (102)
Finally, from eq. (30) the electrical output amplitude b7 is given by
by =77-Wy (103)

The analysis leading up to eq. (103) is essentially a derivation of a
general algorithm for finding the two-port, electrical-transmission
characteristics of a grating resonator with an arbitrary coupling element
Cs. The algorithm can therefore be applied to single-cavity resonators
as well as more complex, multipole structures.

The analysis can be further simplified by considering transducer Ty
in combination with grating G; as an “input” coupler described by the

matrix @IN
+
()=o)
b3 w3
Similarly, transducer T and grating Gg form an “output” coupler de-
scribed by @OUT
wt b
( E) = @OUT ( 7) (105)
We az
The overall electrical transfer function is then found from
(a3> = NG, @5PeEOUT <b7> (106)
bs an
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For optimal transducer placement and, for simplicity, neglecting R,
and 0;, @IN and @OUT are given by

—(=1)M: [011 012]
N =—+— (107)
V2 lea c22
and
1 c11 —Cg1
@OUT = —— [ ] (108)
V2g L—c12 €22
where
1+ j6.
Ci11= 8 + 1 +Jr (109)
1+ /6
ero= —g + - ; i re)r (110)
1—j6,
co1 = —g+ EETS +]r (111)
ey = g + L 10T 1_:0:” (112)
g§=G:Z.
r=jT

and I is the reflection coefficient of the appropriate grating (G or

Go).
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A Quasioptical Feed System for
Radioastronomical Observations at Millimeter
Wavelengths
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We describe a quasioptical feed system for use with a 7-meter Cas-
segrain antenna at millimeter wavelengths. This system is designed
to take full advantage of low noise, broadband mixer receivers and will
be used for radioastronomical observations at frequencies between 60
GHz and 140 GHz. Two offset parabolic mirrors couple the radiation
fromthe f/D = 5.7 antenna into the receiver feedhorn. A Fabry-Perot
resonator operating at oblique incidence is used to inject the local os-
cillator energy into the signal path and to suppress response at the
image frequency. The loss of the Fabry-Perot diplexer is 0.25 dB for the
signal, while the coupling loss between the mixer waveguide flange and
the main lobe of the antenna pattern should be <1 dB.

I. INTRODUCTION

For optimal use of an antenna for radio astronomy at millimeter
wavelengths, the feed system should provide a number of functions and
must satisfy a variety of stringent performance criteria. These in-
clude

(i) Low loss for the signal over an instantaneous bandwidth of =500
MHz.

(i) A well-controlled antenna illumination pattern which should
remain unchanged over as large a range of frequencies as possible.

(fii) A provision for making accurate absolute calibrations of the re-
ceiver gain and atmospheric attenuation—both of these require sup-
pression of the image frequency response in systems incorporating
mixers.

(iv) A facility for antenna beam switching at a rapid rate to minimize
the sky-noise contribution to receiver noise.

(v) Since mixers are currently the dominant type of receiver at
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frequencies between 60 GHz and 300 GHz, it would be advantageous to
include local oscillator injection as part of the feed system if this can be
done with low loss.

The present feed system has been designed to satisfy all of the pre-
ceeding requirements. In Section II we describe the feed system optics
and analyze the measurements of system performance. In Section III
we discuss various aspects of the Fabry-Perot diplexer including band-
width, image rejection, local oscillator noise suppression, and loss for
the signal and for the local oscillator. In Section IV we discuss the cali-
bration system.

Il. FEED SYSTEM OPTICS
2.1 Antenna

This feed system is designed to operate with the recently completed
Bell Laboratories millimeter antenna located at Holmdel, N.J. The
antenna is an offset Cassegrain with a diameter of 7 meters and a f/D
ratio of 5.7. The overall surface accuracy is approximately 0.01 cm rms,
allowing operation with a moderately high beam efficiency at frequencies
as high as 300 GHz. The main advantage of the offset Cassegrain design
is that there is zero aperture blockage, and a very low reflection coeffi-
cient and low sidelobe levels can be achieved.!

2.2 Gaussian beam theory

We shall discuss the feed system optics in terms of the propagation
of a single gaussian mode. As discussed by Arnaud,? a gaussian beam
propagating in free space has a power distribution perpendicular to the
direction of propagation (taken to be the z axis) of the form

P(r)

P(o0)
The beam half-width (radius) £ depends on z, the distance along the axis
of propagation, as

= e_["/tf(z)P (1)

) = 8+ k:&)z (@)

where £, is the minimum beam half-width (beam waist radius), taken
to be located at z = 0, and k, = 2x/\. The asymptotic angle of beam
half-width growth is seen from eq (2) to be

0: = 1/kok, (3

Equations (1) to (3) apply to gaussian beams of infinite transverse
extent. In any practical system the beam will be truncated at some level,
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Fig. 1—(a) Beam efficiency and spillover loss for an unblocked, ideal antenna with
gaussian aperture illumination, as a function of the edge taper. The edge taper is defined
as the power density at the center of the antenna divided bv the vower densitv at the edge

of the antenna. (b—next page) Beamwidth (full width at half maximum) for the same
conditions. The radius of the antenna is a, and ko = 27/A.

which will produce sidelobes. In considering at what level the beam at
the main reflector should be truncated, we have to balance consideration
of spillover loss, sidelobe levels, and beam efficiency? against those of
beamwidth and on-axis gain. Figure 1a shows the spillover loss and beam
efficiency while Fig. 1b shows the beamwidth as a function of edge taper
for an antenna with a gaussian aperture illumination pattern. The edge
taper is defined as the power density at the center of the antenna divided
by the power density at the edge. We have chosen an edge taper T’ close
to 14 dB as being a satisfactory compromise. All other optical elements
in the feed system truncate the beam at a much lower level (at least 23
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dB below the on-axis power level). We will thus ignore the effects of beam
truncation within the feed system.

The edge taper at the main reflector is related to £4, the antenna il-
lumination beam half-width, by the formula

10
fa=a \/Tln 10 “

where a is the main reflector radius (850 cm for this antenna) and T is
the edge taper in decibels. We find that £4 = 195 cm for T' = 14 dB. Since
£4 is much larger than £,, eq. (2) reduces to

(5)

~ 220 =
amaabe=y o

where f is the focal length of the antenna (3955 cm). The resulting value
for £, at 100 GHz is 0.97 cm.

2.3 Feed system components

The large f/D ratio and resulting large beam waist size of the antenna
makes coupling to the antenna beam waist directly with a feedhorn
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matically.

undesirable, especially for cryogenic receivers. Horn-lens arrangements
were investigated but the losses involved were felt to be a significant
disadvantage, especially when operation over very large bandwidths is
required. In view of these facts, and also because of the desirability of
an even larger beam waist size required for low loss in the Fabry-Perot
diplexer (Section III), a feed system using metal mirrors is preferable.
The arrangement of the feed system components is shown in Fig. 2. The
overall size of the feed system is dictated by the beam waist size and the
desire to minimize the number of mirrors involved.

Mirrors M1 and M2 are offset paraboloids; the offset angle for M1 is
20 degrees and the focal length is 136 cm. For M2 the offset angle is 30
degrees for the signal beam and the focal length is 44 cm. Offset antennas
of this type have been shown to have excellent beam patterns.* The
mirrors used in this work were cut on a numerically controlled milling
machine; the peak deviation from the desired surface contour is ap-
proximately 0.05 mm.

The beam from the antenna expands until it reaches M1, at this point
the beam half-width, denoted £1, is 6.5 cm and is essentially frequency-
independent. The distance from the beamwaist to M1 is equal to the
focal length of the mirror so that in the geometrical optics limit the re-
sulting beam would be collimated. The diffraction effects in the beam
between M1 and M2 are small; in actuality a second beam waist is created
in the large beam at a distance equal to the focal length from M1. Ideally,
the separation between M1 and M2 would be equal to the sum of their
focal lengths (180 cm) but a calculation® of the mismatch due to the
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dicular to the plane of the components in Fig. 2, and passes through the axis of the beam.
Also shown is a gaussian beam with a beam half-width equal to 6.5 cm.

distance being only 140 ¢cm indicates that this is an insignificant ef-
fect.

The difficulty in measuring the power distribution in the beam at the
antenna beam waist can be overcome by utilizing the properties of a
gaussian beam focused by lenses or mirrors; the beam half-width in the
focal plane on one side of a converging lens with focal length f will be
related to the beam-waist radius on the other side by®

i
Foks

In Fig. 3 we show a profile of the beam in the collimated region measured
with a small-aperture (0.4 cm X 0.6 ¢cm) horn and square-law detector.
This measurement, which is well-fitted by a guassian with £ = 6.5 cm,
together with eq. (6) confirms that the beam-waist size at 100 GHz is 1.0
cm, very close to the design value.

A signal passing through the Fabry-Perot resonator is focused by M2
into the feed horn attached to the mixer, located at the beam waist of

Efp (6)
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M2. The beam-waist radius at the feed horn is 0.32 cm at 100 GHz. The
utilization of the Fabry-Perot with a diplexing angle of 8.5 degrees and
M2 focal length equal to 44 cm requires that the dimension of M2 in the
plane of the paper in Fig. 2 be approximately twice as large as would be
required for focusing the signal beam alone.

The feedhorn for the receiver, which is the same design as that for the
local oscillator, is a corrugated horn? with a beamwidth between —17 dB
power points of 29 degrees. This type of feedhorn allows waveguide-
bandwidth (90 to 140 GHz for the initial version) operation with high
efficiency and very low sidelobes. For system tests performed at
frequencies near 100 GHz we have, however, used relatively narrowband
dual-mode horns®? constructed in a manner similar to those described
in Ref. 4. The power patterns are very similar to those of the corrugated
horns, although with a beamwidth approximately 10 percent larger. All
feed system characteristics refer to those measured with the dual-mode
horns, but these should differ only in minor ways from those obtained
with the corrugated horns.

2.4 Measurements of feed system efficiency

As discussed in the previous section, measurements of the power
distribution in the collimated region indicate that the feed system will
produce the correct taper in the illumination of the main antenna. In
order to mesure the efficiency of the feed system, a separate collector
was placed at the beam waist of M1, corresponding to the antenna beam
waist. This collector, consisting of an ellipsoidal reflector and dual-mode
feed horn, was independently measured to have a gaussian angular re-
sponse pattern corresponding to a beam-waist size of 0.99 cm. A 100-GHz
klystron with ~50 dB attenuation was used as a signal source. By in-
terchanging a square law detector between the signal-source flange and
the collector output flange (with the signal source connected to the feed
system mixer flange), we determined the loss of power between the signal
source and the collector output flange to be 1.1 dB. It should be noted
that if part of this loss is due to the mode produced by the feed system
not coupling to that accepted by the collector, this will not necessarily
lower the efficiency when used with the antenna, but will only result in
an illumination function slightly different from that anticipated. Thus
the loss measured in this manner is an upper limit to the loss when used
with an antenna. While the losses of the individual elements cannot
easily be measured separately, the symmetry of the system suggests that
half of the measured loss is due to the collector, and half is in the feed
system, with a resulting feed system loss of 0.5 dB.

In Table I we summarize the salient characteristics of the feed sys-
tem.
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Table | — Feed system characteristics at 100 GHz

Characteristic Value

£, collimated beam-waist radius to 1/e 6.5 cm
power point

£, beam-waist radius to 1/e power point 0.97 cm
at antenna beam waist

Tu, edge taper at main reflector 14.1dB

Orwnm, full angular beamwidth to half- 1.8
power points

First sidelobe level relative to on-axis -30dB
gain

¢r, feed system loss (mixer waveguide 0.5dB
flange to antenna beam waist)

Spillover loss 0.14 dB

ep, beam efficiency 0.95

IIl. QUASIOPTICAL DIPLEXER
3.1 Introduction

The limited local-oscillator output power available at shorter milli-
meter wavelengths and the difficulty of fabricating low-loss waveguide
diplexers!0 are incentives to seek an alternative to injection cavities and
directional filters made in waveguide that are currently available. The
use of a Fabry-Perot resonator as a diplexer is not new,1:12 but the re-
alization of a very low loss device to combine two signals differing in
frequency by ~5 percent puts stringent restrictions upon the design of
the resonator. There are a variety of configurations in which a Fabry-
Perot resonator be used as a diplexer, e.g., with the signal in transmission
or in reflection. A desirable characteristic of an ideal diplexer would be
the ability to transmit power at the frequency of either one or both mixer
sidebands. Single-sideband operation is important for accurate cali-
brations at millimeter wavelengths because the atmospheric attenuation
in certain regions of the spectrum is a rapidly varying function of fre-
quency.!314:15 Thus, although data analysis procedures have been de-
veloped which attempt to circumvent this problem,6 the fact remains
that an accurate determination of atmospheric extinction for spectral
line work requires measurement of the attenuation in the sideband in
which the line of interest is located. Also, the gain of a mixer receiver may
well be different in the two sidebands, especially with the relatively high
IF frequencies (4 to 5 GHz) that are now in use. For these reasons, sys-
tems have previously been devised which incorporate a Fabry-Perot
resonator which either can be inserted in the optical path to measure the
gain and attenuation in the two sidebands individually!7 or is perma-
nently placed in front of the feed horn and which, at the expense of a
small loss (~0.4 dB), suppresses the mixer response to the unwanted
sideband.!8 In order to minimize the number of resonant elements and
consequent adjustments required when changing frequencies, we decided
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Table Il — Characteristics of Fabry-Perot resonator at 100 GHz

Image rejection 0.5-dB 1-dB
ratio bandwidth bandwidth
T* (dB) (MHz) (MHz)

0.10 26 220 320
0.15 22 350 500
0.20 19 540 800
0.25 17 620 890
0.30 15 760 1100
0.40 12 1090 1600
0.50 9.5 1500 2200

* T'is the transmission of a single mirror.

to use the Fabry-Perot resonator in transmission for the signal (the local
oscillator is reflected by the resonator, thus providing the diplexing ac-
tion). This design allows us either to operate in a double-sideband mode
with the two sidebands being transmitted in successive orders (for
continuum work) or in a single-sideband mode (desirable for spectral
line observations). Only one adjustment is required to set the diplexer
for operation at a particular frequency, which proves to be a significant
advantage in use.

3.2 Fabry-Perot resonator theory

The analysis of the propagation in a noninfinite Fabry-Perot resonator
has been treated by Arnaud et al.}! Since we will be dealing with a
strongly tapered beam, it is sufficient to use the standard formulas for
a plane wave in a resonator of infinite transverse dimension to calculate
the response. Neglecting absorption in the mirrors, we find1® that the
fraction of the incident power transmitted by the resonator is given
by

r= : )

1+ 4(1T—2T) sin? (k,d cos 8)

where d is the distance between the mirrors, 6 is the angle from normal
incidence of the radiation, T' is the power transmission of a single mirror,
and we have set the phase of the reflection coefficient equal to = which
causes no loss of generality. In this limit we see that the peak transmis-
sion (for k,d cos # = nx, n being the order of operation) is equal to unity.
The peak-to-valley ratio, or contrast factor, which will in our case be the
image rejection ratio, and the 0.5-dB and 1-dB bandwidths for a reso-
nator operating at 100 GHz are given in Table II as a function of T', which
is assumed to be frequency-independent. It also has been assumed that
the free spectral range of the resonator is approximately equal to 4 vip;
this is not a severe restriction since the transmission is only weakly de-
pendent on frequency near the transmission minimum. There is a
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tradeoff between bandwidth and image reflection, as expected for a
simple resonator. This restriction could be eased by using a multiple-
mirror resonator, but only at the expense of easy tunability. Efficient
utilization of the bandwidth of available IF amplifiers (~600 MHz) in-
dicates that T should not be less than 0.2; the resulting image rejection
ratio of 19 dB is certainly adequate to assure proper calibration accuracy.
It should be pointed out, however, that this ratio is not so high that the
leakage of very strong lines from the opposite sideband in a high-sensi-
tivity spectrogram can be entirely ruled out.

The Fabry-Perot diplexer exhibits quite high directivity for local os-
cillator injection. Power coming from the local oscillator feed horn that
directly leaks though the Fabry-Perot resonator does not end up in the
beam waist area at all, and is caught by a sheet of absorbing material.
Only local oscillator power which is reflected from the Fabry-Perot, then
reflected from the mixer feed horn, and which is finally transmitted by
the resonator, can reach the calibration area; the level of this radiation
should be at least 17 dB below that of the local oscillator power reaching
the mixer.

The loss in a Fabry-Perot resonator operated at oblique incidence is
primarily due to a walk-off effect in the finite-sized beam.11 In this ref-
erence, the peak fractional transmission 7 through a resonator (assumed
to be much larger than the beam size) consisting of two mirrors of
transmission T, spacing d, inclined at an angle 6 to a gaussian beam of
beamwaist radius &,, is given by

r=1-G?2
where
2d sin 0
G= (8)
&T

For operation with vir = 5 GHz and vsignaL = 100 GHz, obtaining the
best image rejection ratio requires that the resonator be operated in fifth
order so that d = 5A/2 = 0.75 cm. The exact spacing will be determined
by the resonance condition for the signal frequency; the condition 4»p
= pgigNaL/D will be satisfied only approximately, but d will be close to
the value given above. For'T = 0.2 we find for small angles r =1 — (7.5
0/¢0)2.

A lower limit on 0 of ~4/k,&, is found!! from the condition that the
beams be separable at the —17-dB level when the diffraction of each is
considered. Thus the maximum transmission is (again for T'= 0.2, d =

0.75 cm)
30 \2
™INg = 1 — ( kot 2) (9)
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As seen from eq. (8) the insertion loss, defined in decibels as 10 log;o 771,
can, in theory, be made as low as desired, at the expense of enlarging the
beam-waist radius. The beam waist required for low loss even in the
optimum situation [eq. (9)] is moderately large; at » = 100 GHz and for
the above conditions, £, = 2.6 cm is required to achieve an insertion loss
of 0.2 dB (the beam diameter will be at least 4¢£,). The most straight-
forward geometry (see, for example, Ref. 11) then results in a very large
distance between the Fabry-Perot and the inputs for the signal and local
oscillator; on the order of 1 meter for the above conditions. For this
reason, and due to the simplicity of having the one mirror (M2) serve as
collector for both the mixer and the local oscillator, the geometry of Fig.
2 was adopted. With a room temperature mixer, it would not be difficult
to achieve a diplexing angle close to the theoretical minimum for a given
loss, since the diameter of a dual-mode or corrugated feed is approxi-
mately 5 times the beam-waist diameter of the beam it launches. With
a cryogenic receiver the minimum diplexing angle is set by the size of the
dewar containing the mixer; we have used 6 = 8.5 degree (0.148 radian).
To obtain an insertion loss of 0.15 dB the required beam-waist radius
is approximately 6 cm; this number sets the size of the various mirrors
and the focal length of M1, as well as the size of the Fabry-Perot reso-
nator. The Fabry-Perot is shown in Fig. 4. In principle, one could utilize
the minimum diplexing angle required for a given loss and collect the
two spatially separated beams by mirrors which would refocus the beams
wherever desired (i.e., into a dewar). This approach was not adopted
because of alignment difficulties associated with the additional mirrors
involved.

3.3 Measurements

3.3.1 Fabry-Perot mirrors

Each Fabry-Perot mirror consists of a photoetched copper mesh
stretched on a metal support ring; the latter is similar to those described
by Wannier et al.18 The theory of one-dimensional wire grids2? indicates
that for the wires parallel to the electric field the grid behaves as a shunt
inductance. We expect that a grid with square apertures will behave as
a polarization-independent reflector as long as the angle of inclination
of the incident beam is small.2! For these grids with period p = 1.07 mm,
strip widths s = 0.29 mm, and grid thickness ¢t = 0.08 mm, one expects
the relatively large value of t/s to decrease the equivalent inductance
and thus decrease the transmission, compared to that of an infinitely
thin grid.20 The measured transmission at an incidence angle of 8.5 de-
grees is 0.19 £ 0.02 (at » = 100 GHz) compared to a transmission of 0.13
predicted theoretically; for an infinitely thin grid with the same aperture
parameters, the theoretical transmission is 0.30.
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Fig. 4—The Fabry-Perot resonator. The dial indicator on the right is used to monitor
the mirror separation.

3.3.2 Fabry-Perot resonator

Examples of the frequency response of the Fabry-Perot resonator
are shown in Fig. 5. These curves were obtained by sweeping a Siemens
RWO 110B BWO connected to the mixer horn flange and monitoring the
output from the collector located at the beam waist of M1. A measure-
ment system consisting of a digitizer, log amplifier, and 1024 channel
memory (Pacific Measurements model 1038) was used to first record the
output without the Fabry-Perot. We then used this to correct the output
measured with the Fabry-Perot in place for frequency-dependent
variations in the oscillator output. The following parameters are obtained
from these scans:
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Fig. 5—(a) Transmission of the Fabry-Perot resonator as a function of frequency. The
nominal value of 5 dB per vertical division was determined to be 4.5 dB from measurements
with a precision attenuator. (b) Response near the transmission maximum, for a different
mirror separation. Each vertical division corresponds to 0.5 dB. The ripple pattern is
characteristic of the separation between the transmitter and receiver feed horns used in
making the measurement.

Image rejection ratio = 19 dB
0.5-dB bandwidth = 510 MHz

1-dB bandwidth = 780 MHz
Minimum insertion loss = 0.25 dB

(10

This last number is obtained by averaging over the ripple pattern in the
central 250 MHz of the response pattern. The results presented here,
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when compared to those given in Table II, indicate that the image re-
jection ratio measurement is consistent with a mirror transmission of
0.2, while the bandwidth measurements imply a transmission of about
0.21. The minimum resonator loss predicted by a mirror transmission
of 0.2, 6 = 8.5 degrees, £, = 6.5 cm, and d = 0.75 cm is 0.13 dB. If we allow
for a loss of 0.12 dB from ohmic dissipation and/or other losses in the
resonator, all of these measured characteristics are consistent within the
errors with the expected resonator performance assuming a mirror
transmission of 0.2.

3.3.3 Local oscillator loss

From the response curve of the Fabry-Perot (Fig. 5a), we see that
the fraction of the local oscillator power leaking through the resonator
will be only a few percent. If, for the moment, we consider the local os-
cillator injection process in reverse, we see that the mixer feed horn would
produce essentially a plane wave heading towards M2, after reflection
from the Fabry-Perot. In this case, the M2-local oscillator feedhorn
combination should be considered as an off-axis offset parabolic antenna.
The diplexing angle § = 8.5 degrees requires that the local oscillator
feedhorn be 17 degrees or 24 half-power beamwidths off-axis. For a
symmetric antenna with the same f/D ratio, the loss in gain would be less
than 0.4 dB.22 For an offset antenna, the theoretical loss is approximately
4 dB.23 The measured loss for transmission between the flange of the
local oscillator feed horn and that of the mixer feed horn is 2.7 dB. This
is somewhat better than that achieved with a waveguide directional
filter,? and far superior to results obtained with waveguide injection
cavities.25 If the diplexing angle were reduced by only a factor of two,
the theoretical loss would be less than 1 dB.

3.3.4 Local-oscillator noise suppression

The Fabry-Perot diplexer as used here provides only 3 dB suppres-
sion of local oscillator noise since noise power at the image frequency is
coupled into the mixer essentially as efficiently as power at the nominal
local oscillator frequency. At an IF frequency of 5 GHz, a 3-dB filtering
of the local-oscillator noise from a 100-GHz reflex klystron is sufficient
to reduce the local oscillator noise to the equivalent of a 20 K input signal
as measured with a single-ended mixer.24 This is consistent with our
measurements, in which we were unable to measure any increase in the
diode noise temperature?6 using the Fabry-Perot diplexer, compared
to using a high-Q injection cavity, with equal bias voltages and diode
currents with the local oscillator on. In any case, local oscillator noise
can easily be further reduced by a simple bandpass filter installed in the
local oscillator waveguide.
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3.3.5 Mixer performance

It is difficult to accurately measure the effect of the quasioptical di-
plexer on mixer performance, since most mixers when used with an in-
jection cavity or directional filter are sensitive to signals in both side-
bands, while with the Fabry-Perot resonator in its usual configuration
the mixer in the quasioptical diplexer is sensitive to only one sideband.
If we assume that the mixer is equally sensitive in the two sidebands, a
comparison can be made. A room-temperature mixer with a transistor
IF amplifier, when used with the quasioptical diplexer, was found to have
an SSB noise temperature 0.7 dB better than that implied by a double-
sideband measurement using an injection cavity diplexer. This same
injection cavity was measured to have an insertion loss of 0.74 dB for the
signal at 100 GHz while the quasioptical diplexer insertion loss is ~0.25
dB. The difference in noise temperatures is seen to be larger than the
difference in diplexer losses, a fact which probably reflects the uncer-
tainty in the relative response in the mixer sidebands. We do conclude,
however, that the very low insertion loss for the quasioptical diplexer
will probably be reflected in lower system noise temperatures.

3.4 Discussion

The Fabry-Perot diplexer described here exhibits low loss for the
signal and for the local oscillator. The metal mesh mirrors actually had
a lower transmission (0.2) than was expected (0.25) due to the larger
thickness-to-aperture-size ratio compared to lower-frequency grids.
Examination of Table II indicates that a mirror transmission of 0.27
might be optimum; this would lower the theoretical loss by a factor of

-2. A more elaborate optical system would allow a diplexing angle at least
2 times smaller than that used, which would lower the loss by a factor
of 4, or else would allow the beam and resonator diameters to be halved
for the same loss. Thus it is seen that this technique has not been pushed
to its limit in terms of low loss or compactness.

The use of the Fabry-Perot as a diplexer is also feasible in the sub-
millimeter region. The techniques for making the mirrors are available
and have been used to make resonators, operating at wavelengths be-
tween 80 u and 600 .1927 If the ratio of the IF frequency to signal fre-
quency is held constant, the order of operation of the resonator will re-
main fixed and the mirror separation will be proportional to the signal
wavelength. Then, to obtain a given loss [eq. (8)], the beam size will also
be proportional to the wavelength. If, on the other hand, a fixed IF fre-
quency is used, the beam size required to obtain a given loss will be in-
dependent of the wavelength.

This quasioptical diplexer is also well suited to dual-polarization ap-
plications. The properties of the Fabry-Perot resonator are essentially
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polarization independent. Thus, if the polarization angle of the local
oscillator feedhorn is rotated 45 degrees to that of the mixer feedhorn,
equal amounts of local-oscillator power would be detected in the two
polarizations at the mixer feed horn. Either a dual-polarization feed horn
or two feed horns with orthogonal polarizations fed by a wire-grid po-
larization splitter could be utilized.

IV. CALIBRATION SYSTEM

The calibration system shown in Fig. 6 is designed to provide a con-
venient method of measuring the receiver gain and atmospheric atten-
uation, and to allow various modes of observation. Each of these func-
tions will be briefly discussed.

4.1 Receiver calibration

Not shown in Fig. 6 is a load consisting of truncated pyramids of Ec-
cosorb* VHP-2 absorber which can be inserted into the beam that has
passed from M1 through the rotary chopper. This provides a load at near
ambient temperature. A cold load at liquid nitrogen temperatures has
been constructed from pyramids of Eccosorb VHP-2 absorber in a dewar
of liquid nitrogen. The index of refraction of liquid nitrogen is 1.4 at low
frequencies?® and should not be significantly higher at millimeter
wavelengths. The resulting power reflection coefficient is 0.03. The power
reflected by the absorber at the bottom of the dewar filled with nitrogen
is measured to be approximately 20 dB below that reflected from a metal
plate at the bottom of an empty dewar. We thus conclude that cold load
is likely to be a moderately good calibration standard; its stability and
emissivity have not been measured. By rotating the chopper (with the
movable mirror out of the beam) a temperature difference of approxi-
mately 210 K is produced. It is possible that for very low noise receivers,
this change in total power produced may exceed the limit allowable for
good detector linearity. In this event, a calibrated, computer-controlled
attenuator will be switched in synchronism with the chopper to keep the
total power more nearly constant.

4.2 Measurement of atmospheric attenuation

This function is accomplished by chopping between the sky and either
the ambient temperature or the cold load. The choice of reference de-
pends on the sky temperature; the maximum temperature difference
of ~100 K will probably be small enough to ensure good detection lin-
earity. The atmospheric attenuation is then computed from an assumed

* Registered trademark of Emerson Cuming Inc., Canton, Mass.
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Fig. 6—The calibration system. The cross indicates the location of the antenna beam
waist, while the lines shown approximate the —17 dB contours of the power distribution.
The view presented is with the antenna pointing at zenith; at other elevation angles the
cold load mirror M, pivots about the axis indicated to keep the surface of the liquid nitrogen
parallel to the horizon and perpendicular to the incident beam. Not shown is an ambi-
ent-temperature absorber that can be inserted between the chopper and My; its position,
as well as that of the rotary chopper and movable mirror, is under computer control.

physical temperature (or temperature distribution) for the absorbing
gas.

4.3 Beam switching

For observation of moderately small sources this technique is ad-
vantageous in that fluctuations in atmospheric emission will cancel if
the chopping rate is sufficiently high and the scale size of the inhomo-
geneities is larger than the beam separation.2? The separation between
the two beams is 13’. This large value will be useful astronomically, but
if the separation proves too large for effective noise cancellation, it can
easily be reduced to about 6’. The uncertainty in the power spectrum
of atmospheric fluctuations has led us to make the chopper speed vari-
able between 2 Hz and 50 Hz. Observational experience will be required
to determine the optimum chopping speed at different wavelengths
under different atmospheric conditions.
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V. SUMMARY

We have designed and tested a feed system for use with millimeter
radio-astronomical receivers on a 7-meter Cassegrain antenna. We have
measured that power incident on the mixer waveguide flange is trans-
mitted to the antenna beam waist in the desired mode with a loss less
than 1.1 dB and probably close to 0.5 dB. The antenna beam efficiency
should be 0.95. The feed system incorporates a Fabry-Perot diplexer
which has an insertion loss of 0.25 dB (transmission = 0.94) for a sighal
at 100 GHz and a loss of 2.7 dB for the local oscillator with a frequency
differing by 5 GHz. A calibration system incorporates an ambient tem-
perature load and a liquid nitrogen load, and a rotary chopper to switch
between the two, between either one and the sky, or between two beams
separated by 13’ on the sky.

The low loss and versatility of quasioptical techniques at millimeter
wavelengths are expected to prove advantageous in obtaining well-cal-
ibrated high-sensitivity astronomical data.
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In the exploratory fiber optic cables used in the Atlanta Fiberguide
System Experiment, 12 optical fiber ribbons each containing 12 fibers
are stacked one on top of the other to form a rectangular array of 144
optical fibers. Just prior to sheathing, the array is twisted to a given
period (lay) in order to improve its bending properties. Moreover, good
cable bending properties dictate short lay lengths. However, short lay
lengths result in high longitudinal (axial) stresses and strains in the
optical fibers. To obtain high fiber yield in cable manufacturing, such
strains must be well below 0.3 percent for current 35 kst fibers. A model
which assumes that each fiber follows a helical space curve is used to
calculate an upper bound on the axial stress imparted by the twisting
operation. The intent was to use the results to choose a lay length short
enough to give acceptable bending properties yet long enough to avoid
endangering fiber survival in cable manufacture. Model predictions
based on a cable design similar to the one in the Atlanta Fiberguide
System Experiment lead to the conclusion that the twist period should
be not less than 4 inches.

I. INTRODUCTION

In the exploratory Fiber Optic (F0) cables used in the Atlanta Fiber-
guide System Experiment, 12 optical fiber ribbons each containing 12
fibers are stacked one on top of the other to form a rectangular array of
144 optical fibers.12 Figure 1 shows a representative cross section of a
fiber ribbon and of the 144-fiber optical cable core unit. Just prior to
sheathing, the unit is twisted to a given period (lay) in order to improve
its bending properties. Moreover, good cable bending properties dictate
short lay lengths. However, a short lay length results in high longitudinal
(axial) stresses and strains on the optical fibers. In order to obtain high
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Fig. 1—Representative cross section of fiber ribbon and optical cable core unit.

yield in the cable manufacturing, using current fibers, such strains need
to be well below 0.01 (1 percent). A different strain is experienced by each
individual fiber when the unit is twisted because the helical paths fol-
lowed by the fibers differ in length. The type and amount of strain de-
pend on the positions of the fiber within the ribbon and the ribbon within
the unit.

Strakhov? outlined a model by which the strain introduced in a fiber
due to twisting the stacked ribbons can be predicted. In this paper, his
model is modified to account for slippage between the ribbons; thus, the
net predicted strain on the individual fibers is greatly reduced. The
model predicts upper-bound, twisting-induced, tensile and compressive
stresses. The intent was to use the numerical results to choose a lay
length short enough to give acceptable bending properties, yet long
enough to avoid endangering fiber survival during cable manufacture.

ll. DESCRIPTION OF THE MODEL

The model is geometric in nature in that the helical space curve length
of each fiber is directly related to the strain on that fiber. The underlying
assumptions that accompany this model are as follows:
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(i) With the cable axis straight, the individual fiber axes coincide with
helices of appropriate diameter and pitch.

(i1) All the fibers within a given ribbon are completely coupled to each
other.

(111) Induced stresses are supported entirely by the fibers, i.e., other
ribbon materials are ignored.

(iv) The twisted unit maintains a rectangular cross section.

(v) The fibers are treated as filaments which follow the geometric axes
of the real fibers.

(vi) The tensile and compressive moduli of the fibers are equal.

The rectangular array assumption ignores both geometric distortion of
the cable cross section due to twisting and also dynamic distortion re-
sulting from imparted stresses. We will return to these distortions
later.

Polymeric materials of the ribbon can play either an implicit or explicit
role in the model. Their role is implied in the assumption of complete
fiber coupling within a given ribbon. Explicit participation occurs when
the actual stresses-developed in the polymers are considered. In order
to calculate these stresses, the basic model assumptions can be extended
from the discrete fiber case to the polymer continuum. However, ques-
tions about plastic deformation of the polymers and about dynamic
distortion of the cross section suggest caution against reading more than
upper-bound significance into these results. In any event, the presence
of the polymers tends to decrease the maximum tensile stress on the fi-
bers for the ribbons under consideration. That is, ignoring the polymers
does not disturb the upper-bound nature of the model’s results.

With this in mind, let us refer to Fig. 2 where a ribbon is shown with
respect to the center of the unit. We will now develop analytic expres-
sions for the stresses in a twisted array consisting of N ribbons with M
fibers per ribbon for a total of M-N fibers. To simplify our expressions
M and N are considered to be even numbers. Also, if only one quadrant
is considered (here the upper left-hand quadrant), symmetry arguments
can be used for the others. From the formula for the distance along a
helix, the lengths of the individual fibers can be computed:

m=1,...,M/2
n=1,...,N/2
where L,,, is the length of the mth fiber in the nth ribbon, along a given

length of cable Lg, Cp,,, is the radius of the helical path of the mth fiber
in the nth ribbon, and w is the twisting rotation rate. That is,

Lmn = L0[1 + w2C:r2nn]1/2 (1)

W=7 (2)
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where T is the twisting lay length. The strain and stress on each of the
fibers is given by:

_ Lmn = Lon m=1,...,M/2

€mn =
Lon

Omn = Effmn

(3)

4)

where ¢,, and ¢,,, are the strain and stress on the mth fiber of the nth
ribbon, respectively, Ef is Young’s modulus for the fiber material, and
L,, is the paid-out ribbon length. L,, can also be interpreted as the
unstressed ribbon length in a cable length L,.

The N/2 values of L,, are obtained by dynamically balancing the
forces at each reel at the time of payout. Therefore, the sum of the ten-
sions on all the fibers within one-half the nth ribbon must be equal to
one-half the back tension on the ribbon as it is paid out, that is:

M/2
AEr 3 enm €08Omp = Ty /2 n=1,...,N/2 5)
m=1
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where Ay is the area of each fiber and T, is the back tension at the payout
for the nth ribbon. The cos 0,,, factor takes into account the 6,,, pitch
angle imparted to each fiber by the twisting operation. This factor gives
the fiber tension component opposing the back tension. The torque
produced by each twisted ribbon is ignored and it is assumed to be bal-
anced by the tape binder and/or sheath. An alternate approach is to
balance the torques generated by the individual fibers against the applied
torque while assuming that the axial force is balanced through sheath
friction. We forego this approach because it is mathematically cum-
bersome. With reference to Fig. 3,

L, m=1,...,M/2
Lun n=1,...,M/2

We now have all the relations necessary to determine the o,,, as
functions of cable geometry. Note that all the explicit dynamical con-
siderations are contained in eqs. (3), (4), and (5). As stated earlier, the
fibers in a given ribbon are assumed fully coupled and the ribbons un-
coupled. We start our derivation of the twisting stresses o,,, by substi-
tuting eqs. (1) and (3) into (5) and solving for L,,. This yields:

(6)

cos O, =

Lon=1L, MP2 n=1,...,N/2 (1)

Mz/z (1+w2CL,)" 12+ T
oy 2AE;

Next we substitute egs. (7) and (1) into (3) and (4) to obtain

202 1/2 ,M/2
€mn = [M( Z (1 + w2C?,m)"1/2 + T" > _1] (8)

M/2 m=1 ZAfEf
m=1,...,M/2
n=1,...,N/2

(1 + w2C2)1/2 ,M/2 T

= B | 2T ma) 1+ w2C2,)" V2 4 —2 )—1]
mn = [ M/2 <,,,Z=,( WCnn) B U, ®)
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In practice, T, is developed by braking at the payout reels, and its
magnitude is in the vicinity of 0.11 pounds. To this, a small but un-
measured increment must be added due to friction in the core unit or-
ganizer. In practice, the sum of these two components remains negligible,
then T,, = 0, and eq. (9) reduces to the simpler form:

E
Omn = _M—/'L2 1+ w2C12nn)1/2
M/2 =1,...,M/2
202 V=12 _ | EERE)
sz=1(1+ow,,) ¢ n=1,....N/2 (10)
In general, w2C?,, < 1; therefore, the approximation
(1+W?C2,) 412 ~ 1 & Ypo?Cl,, (11)

can be legitimately used to gain insight into the fiber stresses within a,
ribbon. Equation (10) can now be rewritten in the form:

m=1,...,M/2
n=1,...,N/2

where S, is the same constant for each fiber in the nth ribbon and is
given by:

Omn = %“ﬂcgnnsn + [Sn - Ef] (12)

E;, M/2
Sn =g L (1+6XCE)7M n=1,... N2 (13a)
m=1

Or, to the degree of approximation of eq. (11),
S, = L %;/2 (1-%w?C%,) n=1,...,N/2 (13b)
M/2 m=1
From Fig. 2,
m=1,...,M/2
n=1,...,N/2
where d and ¢ are the fiber diameter and ribbon thickness, respective-

ly. .
When eq. (14) is inserted into eq. (12),

Omn = Tho?(m — 1)2d?S,

Chn = (m —%)2d? + (n — %)%? (14)

m=1,...,M/2
n=1,...,N/2
Only the first term varies with m, and it shows a parabolic dependence
of o, onm. Since T}, = 0, the concave upward orientation of ¢, indi-

cates a longitudinal compression of the inner fibers of a ribbon and a
tension on the outer fibers. Also, from eq. (13a) we see that S; is the

+ [Yow?(n — %)% 2S, + S, — Ey] (15a)
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largest S,,. We can conclude, then, that the parabolic dependence shown
in eq. (15a) is steepest at the center of the core unit; therefore, the stresses -
will be most severe in the center ribbons.

If we use eq. (13b) to take a closer look at the bracketed term in eq.
(12), we find that Ef drops out and the only term remaining is propor-
tional to w2. After some algebra, we find :

2 M2,
=% the?C, (15b)

2
Omn = 1/2wzcmnsn - 2 3
i m=1

Here we see that longitudinal stresses go up as w? to lowest order.

Let us return our attention now to the question of ribbon deformation.
Without a detailed structural analysis involving fibers and ribbons,
numerical predictions of this effect are impossible. Such an analysis is
beyond the scope of this paper. As we shall see, the model still provides
an upper bound for stranding stresses because the ribbon deformation
tends to relieve stresses. The argument goes as follows. The helical path
of each fiber has a curvature, K,,,,, given by

w2Chp, m=1,...,M/2
1+ w2C2, n=1,...,N/2
This curvature, together with the longitudinal stress, results in a
transverse force by the fiber on its local environment. This force is given

by

Konn = (16)

m=1,...,M/2
n=1,...,N/2

where f,,, is the transverse force per unit length exerted by the mth fiber
of the nth ribbon. The sign convention was chosen such that a negative
force means it is directed toward the center of curvature and a positive
force is away from the center of curvature. It turns out that for the out-
side (tensioned) fibers on a ribbon, the force is directed towards the
center of the stack while for the inside (compressed) fibers, the force is
away from the center of the stack. These are the very directions which
lead to a stress-relie