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The 3B20D Processor & DMERT Operating System: 

Prologue 

By J. M. SCANLON 

(Manuscript received June 23, 1982) 

The 3B20 Duplex Processor (3B20D) and its DMERT operating 
system represents a new and very important building block for the Bell 
System's stored program network. The first system to cut over was 
the network control point application in Kansas City, Missouri, on 
September 3, 1981. By year end 1982, the common 3B20D /DMERT 
processor system will have been in service supporting six different 
telecommunication applications across 65 different sites in 17 of the 20 
Bell Operating Companies, including the Long Lines Division of 
AT&T. By year-end 1983, the number of different applications is 
expected to grow to ten and the number of sites to 300, covering all 
Bell Operating Companies. This very rapid buildup from fIrst intro­
duction to substantial deployment throughout the Bell System estab­
lishes the 3B20D/DMERT processor as a key element for the contin­
ued evolution of the Bell System's stored program network. l 

The 3B20D Processor had its origins in exploratory work, begun in 
1976, to establish a successor to the 3A processor deployed with No. 
2B ESS and No.3 ESS.3 At that time, a specialized replacement 
processor for 3A was envisioned, which is the origin of the designation 
"3B." At about the same time, research in operating systems charac-
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terized by the UNIX* operating system4 and MERT5
, and portable 

higher-level languages characterized by C,6 had matured to the point 
that the use of these techniques in real-time telecommunications 
applications became feasible and highly desirable. In addition, it was 
becoming clear that processor capabilities to support the future needs 
of the stored program network would have to be significantly enhanced 
beyond the capabilities of then-deployed ESS processors. These en­
hancements were required to support what was foreseen as the broad­
ening role of the ESS processor from primarily a highly reliable call­
handling and switch-maintenance controller to a sophisticated data 
base manager and terminal/data link controller as well. The use of a 
common processor and operating system throughout the telecommun­
ications network also was seen as providing significant economic 
benefits occurring both from manufacturing and operational standard­
ization, and most importantly, from achieving a high degree of software 
standardization. By early 1978, these factors had crystallized into five 
major development goals to: 

(i) Provide the high degree of reliability and fault tolerance tradi­
tionally expected of ESS processors. 

(ii) Provide efficient support of the high-level language, C, and a 
new real-time operating system, DMERT. 

(iii) Provide the ability to directly execute programs written for 
earlier ESS processors, permitting these ESSs to follow a low-cost 
migration path to new processor and software technology. 

(iv) Provide hardware and software architectural features to effi­
ciently support large real-time data base and extensive data link 
capabilities. 

(v) Provide a highly efficient software-development system based 
on the UNIX operating system as an integrated capability of the 
processor. 

These goals were met successfully by a development program that 
designed the processor, 3B20D, and the operating system, DMERT, in 
parallel. The design approach used to bring the processor and operating 
system into fruition are discussed in the papers included in this issue. 

The issue begins with a paper that discusses the first four applica­
tions of the 3B20D/DMERT system, followed by an overview and a 
discussion of the architecture of the complete system. There are then 
15 other papers, grouped in sequence along the major topics of hard­
ware (5 papers), software (4), maintenance and craft interface (5), and, 
finally, system integration and test (1). While omitting design-level 
details, this collection of papers provides a comprehensive overview of 
the 3B20D Processor and DMERT Operating System. 

* Trademark of Bell Laboratories. 
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It is impossible to adequately acknowledge the contributions of 
everyone involved in a project of the magnitude of 3B20D /DMERT­
people from many organizations of Bell Laboratories, Western Electric, 
AT&T, Long Lines, and the operating telephone companies, all partic­
ipated in important ways. The authors of this volume would like to 
express their gratitude to all of these people for the unity of purpose 
and free communication that overcame the complex organizational 
interfaces and technical problems, and permitted successful project 
completion. 
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The 38200 Processor & OMERT Operating System: 

The 38200 Processor & OMERT As a 8ase for 
Telecommunications Applications 

By R. W. MITZE, H. L. BOSCO, N. X. DeLESSIO, 
R. J. FRANK, N. A. MARTELLOTTO, W. C. SCHWARTZ, and 

R. M. WOLFE 

(Manuscript received March 18, 1982) 

The 3B20D Processor and the Duplex Multienvironment Real-Time 
(DMERT) Operating System provide a versatile processing base to 
fulfill the varied processing needs of telecommunications systems. To 
illustrate the versatility of the 3B20D/DMERT system, this article 
describes the structuring of four diverse telecommunication system 
applications. 

I. INTRODUCTION 

The 3B20D Processor and the Duplex Multienvironment Real-Time 
(DMERT) operating system were designed to provide a base for a 
wide variety of high-availability real-time and time-sharing applica­
tions. The wide applicability of the 3B20D/DMERT combination is 
due to the flexible hardware configuration of the processor coupled 
with the multilevel structure of the DMERT operating system. The 
versatile, intelligent input/output processor and the high-speed dedi­
cated dual-serial channels provide for varying peripheral configuration 
interconnection needs. 1, 2 The microcode support for multiple resident 
instruction sets and the operating system support for application 
software at several different operating system functionality levels 
provide the diverse operating environment needs of teleprocessing 
system applications as well as data processing oriented applications.3 

The combined 3B20D Processor and DMERT operating system can 
be viewed as a hierarchy of capability levels. This is depicted in Fig. 1. 
The lowest capability level is the 3B20D Processor hardware and 
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microcode. This level provides the machine instruction primitives. The 
next level of capability is the DMERT operating system kernel. This 
level provides the basic operating system primitive functions such as 
memory management and interprocess communication and schedul­
ing. The next level of capability is the kernel process level. This level 
provides the ability to directly interface with the hardware for maxi­
mum real-time efficiency. The highest level of capability is the super­
visor/user process level. This level provides full user-oriented input/ 
output capability combined with the powerful and convenient devel­
opment environment available to UNIX* operating system users. 

The combination of a multilevel operating system and support of 
multiple resident instruction sets gives 3B20D/DMERT exceptional 
adaptability. We will describe how these two capabilities can be used 
to provide different kinds of services to applications and illustrate their 
use in four systems applications. 

1.1 Multilevel operating system 

From an application viewpoint the multilevel capability of DMERT 
allows an application to tune its software according to the most 
appropriate trade-off of real-time control versus ease of programming 
and maintainability. The DMERT kernel process interface allows 
applications to attach directly to interrupts in order to support appli­
cation-specific peripherals or other custom hardware. It also allows 
applications to write real-time event software handlers that run at any 
desired hardware priority level in order to provide real-time response 
to events. In effect, the application shares the hardware-scheduling 
decisions with the DMERT operating system. 

If direct hardware scheduling or control is not needed, DMERT 
offers the supervisor/user level of the UNIX operating system for 
time-sharing applications. This level provides a large amount of pro­
gram protection and development support to make writing and main­
taining user-level processes easier. At the user level all access to 
machine resources is controlled by DMERT so that unauthorized 
accesses are prevented and the user is shielded from most of the 
specific hardware details. In most applications, the bulk of the software 
is at the user level and only a small percentage needs to be written at 
the kernel process level. 

The user-level environment of the UNIX operating system supplied 
with DMERT need not be the only user-level environment. Applica­
tions also have the ability to construct additional environments to 
provide specific application services for programmers. This can be 
especially useful as a means of ensuring uniform treatment of appli-

* Trademark of Bell Laboratories. 
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cation-specific resources and as a way to provide a standard develop­
ment base in the situation where multiple systems may be used by a 
single application. 

1.2 Multiple resident instruction sets 

The 3B20D Processor is a microcoded machine that provides suffi­
cient microstore and control to support multiple instruction sets resi­
dent on the processor at the same time. The DMERT operating system 
running in 3B native code is designed to coexist with emulated software 
running on a different instruction set. This allows the 3B20D Processor 
to be used by certain applications to preserve any software investment 
involved in previously released systems. Since the processor dynami­
cally shifts between the emulated and native environment by executing 
a single instruction, new software can be written in either emulated or 
native mode as needed. 

II. NO.5 ESS 

No.5 ESS4 is a Bell System-developed local digital switching system 
designed as a world-class product for both domestic and international 
markets and employing the latest technology. The No.5 ESS system 
can be configured to serve rural offices with as few as 1000 customer 
lines, as well as metropolitan offices with up to 100,000 lines. Early 
applications of No.5 ESS are as replacements of electromechanical 
switching systems. The first such system was placed in commercial 
service in March, 1982. This represents an important first step in the 
evolution of the Bell System's nationwide digital network. 

In the overall No.5 ESS architecture, the 3B20D Processor is used 
as the central processor complex and is responsible for a variety of 
functions including maintenance control, administration, human inter­
face, system integrity, and certain centralized call-processing functions 
such as routing and control of global data. Some of these functions are 
performed by the No.5 ESS application software, some are performed 
by DMERT, and some are joint responsibilities requiring close coor­
dination between the No.5 ESS application and DMERT. In this 
capacity, the 3B20D Processor is playing several different roles, and 
the multilevel hierarchy in DMERT allows the different functions to 
be placed at the most appropriate leveL For each function, the trade­
offs involved were evaluated and the most appropriate capability level 
for No. 5 ESS processes was selected. For example, many functions 
such as administration, recent change, and basic diagnostics are not 
real-time sensitive. Therefore, the performance of the kernel process 
level was not required and the easier development environment of the 
user-process level was considered to be the deciding criterion. On the 
other hand, the call-processing function required the best possible real-
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time performance even at the cost of lesser development convenience, 
so the kernel process level was chosen. 

The No. 5 ESS application added an application-specific environ­
ment having features such as task management, message handling, 
and timing specifically oriented to No.5 ESS call-processing needs. 
This same environment is provided on other processing conlponents 
within the distributed No. 5 ESS architecture. This resulted in a 
uniform interface for No. 5 ESS developers with subsequent advan­
tages in training, portability, and ease of development. Thus, the No. 
5 ESS application demonstrates how the multiple-level architecture of 
DMERT allows applications the capability of making their own choices 
and trade-offs between performance versus flexibility and ease of 
development. Also, this approach shows how the kernel process inter­
face allows an application to implement an environment most suitable 
for its particular needs. 

III. TRAFFIC SERVICE POSITION SYSTEM 

Since its introduction in 1969, the Traffic Service Position System 
No. 15

,6 (TSPS No.1) has been deployed rapidly throughout the Bell 
System's nationwide telecommunications network to the point where 
there are more than 150 systems in the continental United States. 
Over 95 percent of Bell System customers and a large number of 
customers of other telephone companies are served by TSPS No. l. 
The continuing growth of operator services traffic, plus the continuing 
addition of new features, have steadily reduced the remaining real­
time capacity and available memory in the TSPS No.1 Processor. 
Additionally, plans to utilize TSPS as an Action Point in the emerging 
stored program controlled network dictated the need for new processor 
peripherals, such as a mass memory disk that cannot be provided by 
the current TSPS No.1 processor. 

To meet these needs, a major evolution from TSPS No. 1 to a new 
system, called TSPS No. IB, was required. The goals of this evolution 
were to provide substantially increased call capacity, memory, and 
processor peripheral capability. 

The size of the investment in existing TSPS No.1 software programs 
and peripheral hardware is very large. To preserve as much of this 
investment as possible, the existing software and peripheral hardware 
were retained in the transition to TSPS No. lB. At the same time, the 
capability of adding new features using high-level language software 
was provided. 

The 3B20D Processor and DMERT provide the basis for meeting 
the goals of TSPS No. lB. The 3B20D Processor replaces the existing 
TSPS No.1 processor. The existing TSPS No.1 periphery is retained 
and, through emulation, the existing TSPS software is preserved. The 
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retention of existing TSPS No. 1 periphery is achieved through the 
use of a Peripheral System Interface (PSI) circuit designed to interface 
the TSPS buses with the 3B20D Processor. The software preservation 
is accomplished by defining (through microcode) one of the multiple 
3B20D processor instruction sets to be that of the existing processor, 
thus emulating that processor and allowing existing TSPS software to 
be transported to the 3B20D Processor almost intact. The ability exists 
to switch between the emulated instruction set and the 3B20D native 
instruction set within a single process and with a single instruction. 
Thus, new software can be added into either environment, as appro­
priate. Both emulated and native-mode software are run under the 
DMERT operating system, allowing operating system services to be 
available to both forms of software. The emulated existing TSPS No. 
1 assembly language code is structured as a single kernel process 
executing under DMERT. As explained in the No.5 ESS discussion, 
this permits efficient control of real-time resources where required. 
Other administrative and diagnostic functions that are not real-time 
sensitive are implemented as user-level processes. The DMERT op­
erating system provides processor maintenance and administration. 
Thus, both the multilevel operating system and multiple-resident 
instruction set capabilities of 3B20D/DMERT are essential elements 
of the TSPS No. 1B design. 

The first TSPS No. 1B started serving telephone customers in 
Fresno, California in November, 1981. As of September 1982, about 20 
TSPS No. 1B's are in service and, by year-end, it is planned to have a 
total of about 35 in service. Performance data from all TSPS No. 1B 
sites indicate that all design objectives have been achieved. 

IV. NETWORK CONTROL POINT 

The Network Control Poine (NCP) is a new Bell System develop­
ment that adds an on-line real-time data base to the Common Channel 
Interoffice Signaling (CCIS) network. Using the alternate-routing and 
direct-signaling features of the CCIS network, the NCP provides a 
high-reliability, distributed data-base capability. The first applications 
of the NCP are to support 800 Service and Expanded 800 Service and 
to provide billing validation for the Automated Calling Card Service. 

Since the NCP was designed to use the 3B20D Processor and the 
DMERT operating system, the software is written entirely in the C 
programming language. Those portions of the NCP software that are 
real-time critical are implemented at the kernel process level, while 
those portions with less stringent real-time requirements are imple­
mented at user level. Thus, all features of the DMERT operating 
system are used to create an efficient, homogeneous system at a 
significant savings in project development cost. 
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The primary purpose of the NCP is to provide reliable, fast access 
to a data base. Hence, special emphasis is placed on the access to the 
moving head disks and to the communication via data links to the data 
base administration centers. A cache algorithm is implemented that 
allows the most frequently used entries to be queried without access 
to the disk. Multiple copies of the data base, beyond the two copies 
maintained by DMERT, are kept to protect against loss of the data 
base. Special spoolers are provided to aid in the communication 
between the NCP and the data base administration centers. The 
flexibility of DMERT permits these application-specific features to be 
easily implemented and integrated into the system. 

Hardware for the NCP is composed of standard 3B20D Processor 
units except for one special peripheral controller board used to link 
the NCP to the signal transfer point of the CCIS network. The 
DMERT input/output driver module is modified to handle this board, 
and a diagnostic module is integrated with the standard DMERT 
diagnostics. The remainder of the NCP hardware consists of duplex 
processor systems equipped with 10 to 16 megabytes of memory each, 
four input/output processors, five moving head disk units, six to ten 
BX.25 data links, and a magnetic tape unit, making the typical NCP 
one of the larger 3B20D Processor systems in operation. 

The NCP was the first user of the 3B20D Processor and the DMERT 
operating system to go into commercial service. The straightforward 
architecture of the NCP, both hardware and software, and the system 
test capability at the NCP development laboratory allowed sufficient 
operational confidence to be established so that four systems were 
placed into service on September 3, 1981. By November 1, 1981, 14 
systems were in service, handling 15 million queries per business day 
across the United States from all calls prefixed by 800. 

v . ATTACHED PROCESSOR SYSTEM FOR NO.4 ESS AND NO. 1 A ESS 

The lA Processor is the central processing unit of both the No. 4 
Electronic Switching System (No.4 ESS) and the. No. lA Electronic 
Switching System (No. lA ESS).8,9 The No.4 ESS is designed to 
handle toll and tandem switching functions while the No. lA ESS is 
designed to handle local, tandem, and toll switching functions; both 
systems have been in service for more than six years. Currently there 
are about 90 No. 4 ESS and 800 No. lA ESS systems in service. The 
growth of telephone traffic and customer demand for new services on 
these systems established a need to increase processing capacity, 
implement new service features, and expand the memory spectrum. A 
new system architecture involving the attachment of an additional 
processor to the lA Processor configuration was designed to meet 
these needs. The 3B20D Processor with the DMERT operating system 
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was chosen as the appropriate processor because of its low cost, 
reliability, processor and memory resource capacity, and the availabil­
ity of a high-level language in the software development environment. 

The No.4 ESS and No. 1A ESS are designed to use the powerful1A 
Processor for central control and memory. There are three types of 
memory: program store containing the fixed set of software instructions 
for operational functions; call store containing translation data describ­
ing office configuration and parameters; and file store on disk contain­
ing backup copies for both program and call store as well as less 
frequently exercised programs, such as diagnostic routines. The 1A 
Processor file store was the earliest resource to exhaust under the 
pressure of increased traffic load and new feature development. The 
Attached Processor System (APS), with the 3B20D Processor and 
DMERT operating system, has been designed as a replacement for 
the 1A Processor file store. In addition, APS also provides a mechanism 
to deload the 1A Processor of operational and administrative tasks 
which potentially limit its real-time performance at high traffic loads. 
It should be emphasized that the 1A and 3B20D Processor support 
different programming languages and new development software can 
be written in the more appropriate language. 

The APS system includes hardware and software to connect the 
3B20D Processor to the 1A Processor. The hardware includes an 
Attached Processor Interface (API) unit to interconnect the Direct 
Memory Access (DMA) channels of the two processors. The software 
includes an API driver consisting of 3B20D Processor program modules 
and corresponding 1A Processor program modules. Together these 
modules administer and maintain a 10 megabit/second fully duplicated 
interprocessor communication link. The 3B20D Processor modules are 
designed at the kernel process level to meet the stringent real-time 
requirements for processor intercommunication. To maintain integrity 
with the existing No.4 ESS and No. 1A ESS software environment, 
the 1A Processor disk administration mechanisms were provided in 
the APS. The 1A Processor was also provided with full access to the 
3B20D /DMERT File Manager and the entire 3B20D file system 
addressing spectrum. 

The first No.4 ESS with APS was scheduled for commercial service 
in 1982. The first No. 1A ESS with APS is scheduled for service in 
1983. To take full advantage of the 3B20D Processor capabilities for 
future development, several new No.4 ESS and No. 1A ESS features 
are planned to be implemented using DMERT and the high-level C 
language. 

VI. SUMMARY 

The 3B20D /DMERT system has achieved its objective of providing 
a cost and real-time effective base for a wide variety of telecommuni-
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cations systems. The key concepts of multiple levels of functional 
support, emulation microcode support, and versatile input/output 
interfaces as combined in the 3B20D/DMERT system provide an 
adaptable base that can be tailored to many differing needs. In addition 
to the four applications described above, the 3B20D/DMERT system 
is the basis of a number of other telecommunication system designs 
currently under way in the Bell System. This widespread use of 
3B20D/DMERT marks it as a processor/operating system combina­
tion of significance in the Bell System. 
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The 3B20D Processor is designed to meet a broad range of telecom­
munication applications. New features such as memory management 
are incorporated into its design to support a modern operating 
system. Hardware supports are provided to efficiently execute a high­
level language. A major design objective is to meet the stringent 
reliability requirements of electronic switching systems. The proven 
technique of self-checking duplex operation forms the basic architec­
ture structure of the 3B20D Processor. 

I. INTRODUCTION 

The 3B20D Processor is the first member of a family of processors 
designed for a broad range of Bell System applications. Its develop­
ment is a natural outgrowth of the continued need for high availability 
and real-time control of Electronic Switching Systems (ESSs),1-3 in­
cluding existing as well as new telecommunication applications. With 
the rapid growth of integrated-circuit technology, the processor archi­
tecture is evolving to include as many features as possible to signif­
icantly reduce software development and maintenance costs. 

The 3B20D Processor architecture takes advantage of the LSI 
technology to expand its functionality and yet maintain a high relia­
bility standard. Some of the design goals are to: 

(i) Achieve highest performance that is consistent with system 
cost, e.g., provide hardware facilities such as data cache, high-speed 
interrupt stack, address-translation cache, and microprogramming for 
critical functions that require too much time in software. 

(ii) Reduce software complexity, e.g., provide a modern real-time 
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operating system to manage system resources, thereby creating a more 
useful and more reliable programming environment for the user. 

(iii) Reduce programming effort, e.g., provide both an efficient high­
level language, such as the C language,4 and a comprehensive set of 
software development tools. 

(iv) Provide a high level of reliability and fault tolerance, e.g., built­
in error-detection and correction codes, recovery features, and fault 
diagnostics. 

(v) Provide features for system integrity and security, e.g., memory 
management protection and privileged instructions. 

These goals are considered from the viewpoints of both hardware 
and software architecture in order to realize the most cost effective 
system for a wide spectrum of applications. Much of the development 
effort has been directed to achieve these goals. 

II. GENERAL DESCRIPTION 

High availability is one of the major objectives in the design of the 
3B20D Processor. The successful deployment and field operation of 
many ESS systems have demonstrated the simplicity and robustness 
of duplex configuration in meeting the ESS reliability requirements.5 

Hence, duplex configuration forms the basic structure for both the 
hardware and software architecture. Experience gained in the design 
and field operation of the No. 3A Processor provided valuable input 
for the 3B20D Processor design.6 

The 3B20D Processor employs concurrent self-checking design. Ex­
tensive checking hardware is incorporated as an integral part of the 
processor. Faults occurring during normal operation are quickly dis­
covered by detection hardware. This eliminates the need both to run 
the standby processor in the synchronous mode of operation and to 
run the fault-recognition program to identify the defective unit when 
a mismatch occurs. Self-checking implementation simplifies the main­
tenance program. Reconfiguration into a working system is immediate, 
without extensive diagnostic programs to determine which subsystem 
unit contains the fault. Furthermore, the self-checking design will 
permit more straightforward expansion from simplex to duplex, or 
multiple processor arrangements. 

2.1 Duplex configuration 7 

Figure 1 shows the general block diagram of the 3B20D Processor. 
The Central Control (CC), the memory, and the I/O disk system are 
duplicated and grouped as a switchable entity although each CC can 
access each disk system. The quantity of equipment within the switch­
able block is small enough to meet the reliability requirement; there­
fore, the complexity of a recovery program to manage additional 
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working states is avoided. Although each CC has direct access to both 
disk systems, this capability is used mainly to provide a valid data 
source for memory reload under trouble conditions. The processors are 
not run in the synchronous and match mode of operation as is done in 
early systems.1

-
3 However, both stores (on-line and standby) are kept 

up-to-date by the memory update hardware concurrent with instruc­
tion execution. This is achieved by having the on-line memory-update 
circuit write into both memories simultaneously when memory data 
are written by the CC. Under trouble conditions, when the control is 
switched to the standby processor, its memory will contain up-to-date 
information without performing a complete transfer from one proces­
sor to another. The Direct Memory Access (DMA) circuits interface 
directly with the memory update circuit in order to have access to 
both memories. A DMA write also updates the standby memory. 
Communication between the DMA and the peripheral devices is 
accomplished by using a high-speed dual-serial channel (DSCH). The 
duplex dual-serial bus selector (DDSBS) allows both processors to 
access a single I/O device. For maintenance purposes, the duplex 3B 
central controls are interconnected via the Maintenance (MTC) chan­
nel. This high-speed serial path provides diagnostic access at the 
microcode level. It has the capability of transmitting a stream of 
microinstructions to exercise the processor from the on-line processor 
or from an external unit for diagnostic purposes. 
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2.2 Peripheral devices 8,9 

A broad range of general-purpose peripheral devices is provided for 
the 3B20D Processor system. High reliability and maintainability 
continues to be the design philosophy of the 3B20D peripheral system. 

The critical components are duplicated and the software ensures 
that valid data sources are maintained. The DDSBSs permit controlled 
switching of a working standby device for a faulty on-line device when 
duplication of peripheral devices is needed. Some major peripheral 
devices developed for the 3B20D system are: 

(i) Moving head disk system-The disk system provides a reliable 
and flexible mass storage medium for program and data. A backup 
copy of system programs and critical parameters can be reloaded 
quickly in the event of a duplex main-store failure. The disk system 
comprises the Disk File Controller (DFC) and the Moving Head Disk 
drive (MHD). The DFC interprets and executes commands from the 
processor to cause information transfer from and to the MHD. Each 
DFC occupies 1 of 128 channel slots and supports up to 16 MHD 
drives which are available in 80 and 300 megabyte sizes. 

(ii) I/O processor (IOP)-The lOP provides the control for a wide 
range of data-link facilities and is the most flexible of the family of 
devices. An lOP supports up to 16 Peripheral Controllers (PCs) with 
each being a microprocessor-based controller programmed to handle 
a specific terminal or device. For example, one type of PC is the Line 
Controller (LC); each LC can support up to four independent lines 
(data links or terminals). 

(iii) Magnetic tape system-The tape drive accepts the industry­
standard (IBM compatible) 9-track tapes at a density of 1600 bits per 
inch. The tape controller is derived from the basic PC and occupies 
one of the 16 slots of the lOP. 

(iv) Scanner/signal distributor (SC/SD)-This device is useful in 
monitoring and controlling power, equipment states, environment 
conditions, etc. The SC/SD circuit board provides 48 scan points and 
32 signal-distributer points. It occupies one of the PC slots of the lOP. 
When an lOP is fully equipped with 16 SC/SD circuit packs, a total of 
768 scan points and 512 signal-distributor points are provided. 

III. SOFTWARE SUPPORT FEATURES10 

The high cost of designing, updating, and maintaining software 
dominates the cost of producing computer systems. Considerable at­
tention has been focused on providing various types of support, i.e., 
high-level language, operating system, and software test, in the devel­
opment of 3B20D Processor. The combined software and hardware 
effort has yielded an integrated and cost-effective system. 
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3.1 High-level language support 

The most common approach to increasing software productivity and 
reducing software maintenance cost is the extensive use of a high-level 
language suitable for the application. The d~sign of the 3B20D Proc­
essor instruction set was based on the fact that C language programs 
would dominate the programming environment. C is a general-purpose 
programming language featuring economy of expression, modern con­
trol flow and data structures, and a rich set of operators. Many studies 
were directed to measure and determine the characteristics of a large, 
diverse sample of C programs. Based on the result of these studies, the 
instruction set was optimized to be space and time efficient for com­
piled C programs. Some features provided for the instruction set are 
concerned with: 

(i) Symmetrical resources 
(ii) Addressing modes 

(iii) Address manipulation 
(iv) Flexible data structure 
(v) Stack instructions 

(vi) Procedural instructions. 
From the compiler's viewpoint, the most important attribute of a 

processor instruction set is regularity. It is the key feature needed to 
abstract the various processor resources for uniform treatment by the 
complier. The 3B20D instruction set includes a wide range of address 
modes-Le., indexing, direct, indirect-covering various data struc­
tures. The treatment of the addressing modes, applied identically to 
all data types (bytes, half words, full words, and instructions) without 
exceptions, makes it possible to compile compact and efficient codes. 

The subroutine is one of the most important concepts in software. 
The principal idea in modular, structured programming is the parti­
tioning of large programs into many small, understandable procedures 
or subroutines. Efficient instructions have been provided to handle 
subroutine entry and exit in addition to stack manipulation. 

3.2 Operating system support 

Higher productivity in application programming is made possible by 
the high-level, simplified facilities provided by the operating system. 
The Duplex Multienvironment Real Time (DMERT) operating sys­
tem for the 3B20D Processor is a general manager of processor, 
memory, input/output, and software processes. The functional descrip­
tion of DMERT will be described in more detail in the next section. 
This section describes the hardware that has been incorporated into 
the design to reduce the overhead of the operating system. 

As previously indicated, a high-speed address translation cache 

ARCHITECTURE PROCESSOR 185 



memory called the Address Translation Buffer (ATB) is provided to 
reduce the overhead associated with the address translation function. 

Context switching is necessary upon interrupt. A memory stack is 
provided to facilitate the saving and restoring of the hardware context. 
In the 3B20D Processor, a local high-speed 8K-byte RAM is provided 
for this function. The addressing of the stack is part of the kernel 
virtual address space and has been assigned a fixed segment number 
and pages 0 to 3. Whenever the kernel virtual address falls into this 
range, the store operation is directed to the high-speed RAM; other­
wise, the virtual address is translated by the A TB and pointed to the 
main memory. The combination of fixed mapping by special circuit 
and dynamic address translation by ATB allows the high-speed stack 
to be extended into the main memory when the use of the high-speed 
RAM is exceeded. 

3.3 Software test support 

The software test facility is an option provided at both the micro­
program level and the macroprogram level. The Microlevel Test Set 
(MLTS) is attached to the micro control section of the central control. 
It has the capability of direct access to a support computer system for 
assembling and loading the writable microstore through the ML TS. 
The primary purpose of the ML TS used in the development of the 
3B20D Processor is for initial debugging and troubleshooting the 
processor core hardware and, subsequently, the microprogram se­
quences. Features incorporated into the ML TS allow stepping, freez­
ing, examining, and tracing the execution of a microprogram sequence. 

The Utility Circuit (UC), on the other hand, provides a similar set 
of facilities, except at the macroprogram level for software debugging 
and troubleshooting. The UC and its associated software form an 
extensive Test Utility System (TUS) for software testing. A small 
number of matchers are incorporated into the UC for the tracing and 
monitoring of a variety of system conditions so that a programmer can 
observe and follow the execution of a program sequence. Much of the 
program debugging can take place in real time concurrent with pro­
gram execution. The UC thus directly extracts and records information 
such as transfer trace from the internal data buses, thereby "capturing" 
the history of the machine while it is running at normal speed. 

IV. DMERT OPERATING SYSTEM11 

DMERT is a general-purpose operating system. It is structured as 
cooperating processes that provide different levels of virtual machines. 
Protection is built into the structure, preventing these virtual machines 
from destructively interfering with each other. For processes to coop­
erate in accomplishing their task, DMERT provides a rich set of 
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interprocess communication and synchronization mechanisms, includ­
ing messages, events, process ports, interprocess traps, and shared 
memory. By means of these communication primitives, system services 
can be provided easily to a requesting process. 

4.1 Multilayered virtual machines 

DMERT provides four levels of virtual machines. They are the 
kernel, kernel process, supervisor, and user (Fig. 2). Successive levels 
put additional restrictions on access rights of system resources. This 
helps free programmers from the details of the physical machine. The 
higher level may take advantage of services provided by the lower 
levels. 

(i) Kernel-The kernel provides the most primitive virtual ma­
chine. Programs at this low level are closest to the hardware. They 
directly control the system hardware and do not have access to other 
system functions. The kernel services are primitive, yet are efficient in 
their execution. The user cannot introduce code at this leveL 

(ii) Kernel process-Kernel processes are also strongly hardware 
related and are structured to provide time-critical processing in a real­
time environment. DMERT uses this level for the file manager and 
device drivers. In addition, there are several special processes that 
provide scheduling, memory management, and other services. Users 
may add a kernel process that communicates efficiently with other 
kernel processes making efficient use of their services. 

(iii) Supervisor-This third level is comprised of programs that are 
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generally hardware independent. These processes can use all the 
services provided by the kernel and its processes. The process manager 
is implemented in this level. So is a UNIX* operating system super­
visor, which provides time-shared usage of processor hardware through 
services provided by a scheduler. In general, supervisor segments are 
not locked in memory and can be moved out onto the disk. Conse­
quently, supervisor processes take a much longer time to dispatch than 
do kernel processes. 

(iv) User-All applications programs for which time is not a critical 
factor are written at the user level. The user process is linked directly 
with a UNIX operating system supervisor in which DMERT treats 
the supervisor luser pair as a single process. These user programs only 
see the software environment and services of the supervisor and are 
well protected from other user processes. Since user-level code must 
interface its own supervisor to use the lower-level primitives, additional 
overhead is added for user-level processes. 

4.2 Multiple environment support 

An application may add code at the level of the kernel process, the 
supervisor process, or the user. The multilevel structure makes 
DMERT a flexible system for real-time use. In general, the higher the 
level, the more services that are available to an application; the lower 
the level, the more efficient is the program execution. This level 
structure of virtual machines permits DMERT to manage real-time 
applications, while at the same time providing the flexibility of a time­
sharing system for background tasks. Figure 3 shows how telephone 
switching software can be allocated to these different levels. By means 
of this hierarchical execution-level structure, application programs can 
customize their control and distribution of real time. 

The portion of real time that is not utilized by the kernel or kernel 
processes is time shared among supervisor and user processes. Deferr­
able jobs such as traffic reports, recent changes, and diagnostics, as 
shown in Fig. 3, are implemented at the highest user level. The 
DMERT architecture thus simultaneously supports both a real-time 
and a time-sharing environment to fully utilize physical resources in 
the most efficient manner. 

V. MAINTENANCE FEATURES 

Increased support in this area is most appropriate to facilitate a 
more reliable and more maintainable system, thereby reducing the 
maintenance cost. For real-time applications, as in the Electronic 
Switching Systems (ESS), high availability and uninterrupted opera-

* Trademark of Bell Laboratories. 
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tion is essential. This requires the system to function correctly even 
when a fault is present and maintenance is being performed. The 
3B20D is designed to meet the ESS standard so that the expected 
amount of accumulated processor downtime does not exceed an aver­
age of 2 minutes per system per year.5 Software and hardware are 
designed to function jointly to ensure that reliability objectives are 
met. Software features include such components as fault recovery 
programs, audits, and diagnostics.1 2 Hardware features include redun­
dant processors, error-detection circuits, maintenance-access controls, 
and diagnostic microcode. These components contribute to the effec­
tive maintenance design. 

VI. SUMMARY 

The 3B20D Processor is a high-availability system capable of sup­
porting a broad spectrum of applications. A comprehensive set of 
software tools and facilities is provided to improve programming 
productivity and also to reduce the cost of software development and 
maintenance. The hardware architecture is designed to efficiently 
support high-level languages, particularly the C language. 
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A wide range of general-purpose peripherals have been provided 
with the 3B20D Processor. Some of these are the moving head-disk 
system, magnetic tape system, high-speed printer, scanner and signal 
distributor, and data terminals. 

DMERT is the duplex multienvironment operating system for the 
3B20D Processor. It was designed concurrently with the hardware to 
meet the high-availability demands of real-time switching and telecom­
munication systems. DMERT provides a set of procedures that enables 
users to efficiently share the 3B20D Processor and the physical re­
sources such as processor time, storage space, and peripheral devices. 
The multiple environment permits time-critical code to coexist with 
time-shared software as background tasks. 

An important provision in the 3B20D Processor is a complete set of 
maintenance facilities, from error detection through fault recovery and 
diagnostics. Approximately 30 percent of the internal central control 
logic is devoted to self-checking. This allows concurrent error detection 
and immediate recovery. The combined hardware and software fea­
tures give an integrated package of maintenance facilities to meet the 
high ESS reliability requirements. 
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The 3B20D Processor has been developed to meet the need for very 
reliable, real-time control of a variety of Bell System applications. To 
achieve its high-reliability goals, most of the major subsystems within 
the processor are duplicated, including the Central Processing Unit 
(CPU). The CPU uses a 32-bit architecture throughout, including the 
memory and input/output buses. Extensive self-checking logic is 
employed. The 3B20D CPU is microprogrammed to select dynami­
cally up to four instruction sets. The microstore uses a 64- bit word 
with up to 16K words of high-speed bipolar PROM or RAM available. 
This rich emulation capability makes the 3B20D Processor ideal for 
emulating existing instruction sets and porting existing software. 
Peripheral units are connected to the CPU via the Direct Memory 
Access unit (DMA). The DMA controllers provide direct memory 
transfers between the main store and peripheral devices, reducing the 
load placed on the central control to process input/output requests. 

I. CENTRAL CONTROL STRUCTURE 

The 3B20D Processor performs all the functions normally associated 
with a CPU and several unique functions as well. The unique functions 
include the features necessary for reliable duplex operation, efficient 
emulation of other machines, and communication with a flexible and 
intelligent periphery. The processor employs an extensive micropro­
gram capability to minimize the amount of hardwired decoding and to 
simplify the writing of microcode. There is substan~ial flexibility in the 
choice of instruction formats that can be efficiently interpreted. 

The CPU is a 32-bit machine with a 24-bit address. Most of the data 
paths in the Central Control (CC) are 32 bits wide (plus 4 parity-check 
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bits). A fully self-checking philosophy is applied within each CPU 
without dependence upon matching between the duplex CPU's. The 
CC design is based on the register type of architecture, with multiple 
buses to allow concurrent data transfers. Separate I/O and store buses 
provide the capability of concurrent store and I/O operations. 

1. 1 Major subsystems 

A detailed block diagram of the CC structure is shown in Fig. 1. The 
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Fig. I-The 3B20D Processor central control. 
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major subsystems and their associated functions are described in the 
following sections. 

1. 1. 1 Microcontrol 

This subsystem provides nearly all of the complex control and 
sequencing operations required to implement the instruction set. The 
microcode can support up to three different emulations in addition to 
its native instruction set. Other complicated sequencing functions are 
also stored in the microstore (MIS). The Microcontrol (Me) unit 
sequences the microstore and interprets each of its words to generate 
the needed control signals specified by the microinstruction. To opti­
mize the execution of microinstructions, execution time depends upon 
the complexity of the microinstruction. Each is allocated sufficient 
time to implement the microinstruction in multiples of 50 nanoseconds. 
These times are 150, 200, 250, and 300 nanoseconds. The wide 64-bit 
word allows a sufficient number of independent fields within the 
microinstruction to perform a number of simultaneous operations. 
Some common and high-runner instructions are implemented with a 
single microinstruction. 

1.1.2 Data manipulation unit 

The arithmetic and logic operations are carried out in the Rotate 
Mask Unit (RMU) and the Arithmetic/Logic Unit (ALU). These two 
units are connected in series to comprise the Data Manipulation Unit 
(DMU) shown in Fig. 2. The RMU can rotate or shift any number of 
bit positions from ° to 31 through a two-stage barrel-shift network. In 
addition, a selection of AND/OR operations can be performed on bits, 
nibbles (4 bits), bytes, half words, full words, and miscellaneous pre­
defined patterns. The RMU outputs feed directly into the ALU. Any 
bit fields within a word can easily be manipulated and processed by 
the DMU, greatly enhancing the power of the microcode. The ALU is 
implemented using 2901 bipolar 4-bit processor elements (see Fig. 3).1 
Eight such chips provide two key elements: the 2-port (A and B), 16-
word (RAM) and the high speed ALU. Data in any of the 16 words 
addressed by the 4-bit A-address-field input can be used as an operand 
to the ALU. Likewise, data in any of the 16 words defined by the 4-bit 
B-address-field input can be simultaneously read and used as a second 
operand to the AL U. The result can be directed to the RAM word 
specified by the B-field. To take advantage of the above feature, the 
internal 16-word RAM is dedicated as general registers. This enables 
the arithmetic and logical operation involving general registers and/or 
the output of the RMU to be performed at the optimum speed. 

The logic blocks of Fig. 2 reveal the way the RMU-ALU is self­
checked. The rotate unit is checked by word parity, which it preserves, 
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and the mask unit is checked by duplication. The ALU is also dupli­
cated. The data is taken from one ALU and parity is generated from 
the other. The data from one ALU is also matched with the duplicate. 
The underlying self-checking strategy, illustrated here and used 
throughout the CPU, is to use parity checking in those cases where 
parity is preserved and duplication of logic elements where parity is 
not preserved. 

1.1.3 Special registers 

The 16 general registers reside inside the DMU and are available to 
the programmer. A number of Special Registers (SREG) associated 
with the operation of the CC are external to the DMU. Most of them 
are not explicitly specified by the instruction. They are characterized 
by their special dedicated functions with additional inputs from sources 
other than the internal data bus. Their outputs are used to control 
and direct the operation of the processor. Some of the SREG's are: the 
Error Register, Program Status Word, the Hardware Status Register, 
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Fig. 3-The 2901 internal architecture. 

the System Status Register, the Interrupt Register, timers, etc. In 
addition, a 32-word RAM is provided within the SREG block and is 
essentially available only at the microcode level. It is used for scratch­
pad space and preassigned registers to facilitate and enhance the power 
of microprogram sequences. The registers supporting memory man­
agemene are an example of such preassigned registers. 

1. 1.4 Store interface control 

The store interface circuit controls the transfer of data or instruc­
tions from the memory system2 to the CC. Several SREGs are associ­
ated with the store interface. Associated with the Store Address 
Control (SAC) are the Program Address (PA), the Store Address 
Register (SAR), and the Store Control Register (SCR). Associated 
with the Store Data Control (SDC) are the Store Data Register (SDR), 
the Store Instruction Register (SIR), and the Instruction Buffer (IB). 
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The SAC and SDC together make up the store interface that handles 
the memory addressing, the updating of the program counter, and the 
fetching and pre fetching of instructions. The circuit ensures a contin­
uous flow of instructions to be interpreted by the micro control unit. 

1.1.5 Store address translation 

Memory mapping is required in the implementation of a virtual 
addressed multiprogramming system. The Store Address Translation 
(SAT) facility containing the Address Translation Buffer (A TB) is the 
mechanism that provides a mapping between a program-specific vir­
tual address and its corresponding physical address. Address transla­
tion hardware2 is provided to facilitate memory management in a more 
efficient manner. The store address space is divided into 128 segments, 
each having up to 64 pages, with a page containing 2K bytes. Both the 
virtual and the physical address spaces are 24 bits. The complete set 
of virtual-to-physical address translation tables are stored in the main 
memory. A significant amount of time would be required by the CC in 
the repetitive task of dynamic address translation in using the main 
store tables. This translation time is reduced substantially by storing 
the likely-to-be-used physical address translations in a high-speed 
cache-like Address Translation Buffer (ATB). 

1.1.6 Main store update 

The Main Store Update (MASU) unie provides a multiport inter­
face to the memories as both DMA and CC attempt to use the memory. 
The update circuit arbitrates asynchronous requests from the on-line 
CC, both DMAs, and the off-line CC. The cross coupling between the 
memory update units permits the on-line CPU to access either memory 
or both memories for concurrent write operations. 

1.1.7 Input / output interface 

The communication path between the CC and the I/O channels is 
through the CCIO bus. It is a local, high-speed, direct-coupled, parallel 
bus. Direct memory access between the main store and peripheral 
units is provided by a Direct Memory Access Controller (DMAC) that 
communicates with intelligent peripheral units via Dual Serial Chan­
nels (DSCH). I/O channels including user-specific interfaces can be 
connected directly to the CC via the CCIO bus. Two such standard 
interfaces are the DSCH, a high-speed multiport serial interface, and 
the Application Channel Interface (ACHI), a high-throughput, parallel 
bus, peripheral communication path. 

1.1.8 Cache 

The cache2 is an optional circuit equipped to improve the overall 
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system performance by reducing the effective memory access time. 
The cache is a fourway set associative memory containing a total of 
8K bytes. 

1.1.9 Maintenance channel 

This circuit provides diagnostic access to the CC at the microinstruc­
tion level. It also is used to control basic fault recovery and system 
sanity functions in the off-line processor. 

1.2 Major buses 

The processor structure diagrammed in Fig. 1 allows three key 
transfers to proceed simultaneously. The first is a micro control path 
through the Microinstruction Store (MIS). The second is a computa­
tion path through the Data Manipulation Unit (DMU). The third is a 
memory path through the cache. The CPU is pipelined at both the 
microstore and store levels: microinstruction execution is overlapped 
with microstore read and instruction execution is overlapped with 
fetch. In addition, separate transfer paths are provided for maintenance 
and input/output. 

Microaddresses pass from the Microcontrol Unit (MC) to the MIS 
over the I6-bit Microstore Address (MSA) Bus. Microinstructions pass 
from the MIS to the MC over the 64-bit Microstore Data (MSD) Bus. 
Control signals derived from the microinstruction fan out to the 
subsystems that connect to the 32-bit Source (SRC) bus and 32-bit 
Destination (DST) bus. 

The SRC and DST buses are the primary gating paths for compu­
tations. Data and addresses pass from the DMU to the SDC and SAC, 
respectively, over the DST bus. The SREG are also accessed over the 
SRC and DST buses. The Store Bus includes both a 32-bit data field 
and a 24-bit address field. The store can also be accessed by the 
DMAC over the same bus structure. 

The Maintenance Channel (MCH) controls the processor using the 
MSA and MSD buses. The 32-bit Bidirectional gating bus (BGB) and 
Maintenance (MTC) bus are used by the MCH to observe the CPU. 
The BGB is also used to load the writeable microstore. 

The CCIO bus is a bus linking the CC with the I/O channels. 
Operations over the bus are programmed I/O instructions. Control of 
the DMA circuits is exercised over this bus but the data transfers via 
DMA are routed directly onto the main store bus. 

II. I/O FACILITIES 

The I/O facilities3
•
4 are designed to meet a wide range of applications 

with different needs and capabilities. A modular and flexible I/O 
communication structure is provided by means of dedicated point-to-
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point channels. The loose coupling of the processor to the peripherals 
allows considerable freedom to grow and expand the system with 
minimum physical constraints. The I/O architecture is shown in Fig. 
4. Two channels have been designed for the CCIO bus, the dual serial 
channel and the application channel interface. 

2.1 Input/output channels 

2. 1. 1 Dual serial channel 

The Dual Serial Channel (DSCH) (see Fig. 5) is a modular circuit 
that provides high-speed serial links between the CC or DMA and the 
peripheral devices. Direct memory access is only supported on devices 
connected to DSCHs on a DMAC. Transfers for devices directly 
connected to the CCIO bus are completely controlled by CC software 
using specific I/O instructions. 

The DSCH supports word (36 bits) or block (16 words) transfers at 
either of two rates. For peripheral devices located within 100 feet of 
the DSCH a 10-MHz clock rate is used. For devices up to 250 feet 
away a 5-MHz clock rate must be used. 

The DSCH provides a private serial point-to-point data path to each 
of the 16 intelligent devices it supports. Each link uses a five twisted­
pair cable as the transmission media. Two of the pairs are used for 
bidirectional data transmission, two pairs for unidirectional clocks and 
the fifth pair for the peripheral device to set flags in the DSCH. Data 
is transmitted using RS422 compatible signaling. The other end of the 
cable connects to a Duplex Dual-Serial Bus Selector (DDSBS) that 
converts the signals from the DSCH into a parallel format. Each 
DDSBS can interface to two DSCHs allowing the peripheral device to 
be connected to both CPU's of the duplex processor. 

2. 1.2 Application channel interface 

The Application Channel Interface (ACHI) (see Fig. 6) provides a 
differential dc parallel bus and control signals for high-throughput 
programmed I/O. The circuit can only reside on the CCIO bus and has 
no autonomous sequencer. The ACHI's relies on command sequences 
from the CC to carry out peripheral operations. 

The ACHI's CCIO bus interface is similar to that of the DSCH. The 
same data bus, addressing, control, and response signaling is used. The 
parallel bus generated on the peripheral side of the ACHI consists of 
two unidirectional 36-bit data buses and 11 control and response leads. 
One data bus is for input to the ACHI and one is for output with 
concurrent data transfers allowed. 

2.2 Direct memory access controller 

The Direct Memory Access Controller (DMAC) (see Fig. 7) provides 
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Fig. 4-The 3B20D Processor input/output architecture. 
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the facility for moving data between I/O devices and main memory 
without having the processor involved in transferring the data. The 
DMA circuit consists of a DMAC and one to four DSCHs. A DMA 
can accommodate up to 64 devices, all of which may be active concur­
rently. The DMAC supports virtual addressing, word or block (16 
word) transfers, device-initiated transfers, and multiple jobs for a given 
device. The latter function allocates a unique segment in memory to 
each job for a device. This prevents one job from mutilating another 
job's memory. 

A DMA transfer is a two-step operation. Half the time is spent with 
the channel and peripheral device passing data and half with the 
channel-DMAC-main store passing data. While the former operation 
is in progress, the DMAC can be loading or unloading another channel 
from main store. The DMAC has a hardware priority circuit that gives 
channel 0 priority over channel 1, which has a higher priority than 
channel 2, etc. The devices on a given channel are prioritized in the 
same manner, i.e., device 0 having the highest priority and device 15 
the lowest. The channel does not permit interleaving devices on less 
than a block or word boundary. Once a transfer of a block or word is 
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initiated to a device, that transfer must be completed before another 
device on that channel can be serviced. 

A DMA transfer is initiated by the device passing the DMAC the 
starting virtual address and, optionally, a transfer count. The DMAC 
translates the address into a physical address as described below. The 
transfer count is used as a check verifying that the device and DMAC 
are in agreement as to the number of transfers to take place. 

The address-translation process used by the DMAC is the same as 
that used by the CC with both using the translation-page tables that 
are stored in main memory. Each page has protection bits defining 
DMA read/write access capability. The maximum size transfers that 
can be accomplished with a single address setup is one segment or 64 
2K-byte pages. As part of the initialization process for the DMAC, the 
processor passes a unique page table pointer to the DMA for each of 
its active devices. The DMAC uses the page table pointer and the 
virtual address to obtain the desired physical page pointer. As the 
DMA transfer crosses a page boundary, the DMAC automatically 
accesses the page table to obtain the next physical page pointer. 

After setting up the DMAC the device initiates the transfer by 
sending a transfer request. The DMAC will ask for the data from the 
device or send the data to the device in a word (32 bits) or block (16 
words) mode. The device then sends another transfer request and the 
handshaking continues until the entire job is completed. 

III. MAINTENANCE FEATURES 

The 3B20D places great emphasis on maintenance features. A 
complete, fully developed package of such features includes self-check­
ing, fault recovery, and diagnostic capabilities. 
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Self-checking is implemented in the 3B20D design for concurrent 
error detection. The maintenance philosophy is to provide a sufficient 
amount of hardware to enable detection of nearly all service-affecting 
single hardware faults. 5 To minimize the potential sources of errors in 
the main memory,2 single-bit Hamming correction and double-bit error 
detection are employed. Most software faults such as memory-protec­
tion violations, illegal instructions, and out-of-range addresses also are 
detected. Some of the fault-detection techniques used in the 3B20D 
Processor are: 

(i) Parity per byte on data paths throughout the internal CC, 
memory buses, and peripherals 

(ii) Single-bit Hamming correction and double-bit error detection 
on the main store data 

(iii) Duplicated arithmetic and logic unit and other control logic 
(iv) "Watchdog" sanity timers for software faults. 

Faults detected by the processor check hardware are collected together 
into a single error register. The action taken for a particular fault 
depends on its impact on the system. These actions range from 
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micro interrupts handled in firmware to a stop-and-switch response 
where control is transferred to the standby half of the duplex processor. 

3.2 Hardware fault-recovery features 

Fault detection is the first and most important step in realizing a 
highly reliable system. Almost of equal importance is the rapid recov­
ery by the system. Recovery is achieved by a coordinated combination 
of hardware, microcode, and software actions. As soon as an error is 
detected, immediate action takes place to reconfigure the system into 
an error-free working system. The recovery process involves two steps: 
reconfiguration and initialization. To facilitate this rapid recovery from 
system faults, the 3B20D Processor provides the following. 

3.2.1 A memory update unit 

This unit couples the on-line memory to the off-line memory. The 
off-line processor's memory is updated on each memory write opera­
tion, whether CC or DMA originated, to provide continuous agreement 
with the on-line memory. 

3.2.2 A maintenance channel 

This unit directs the off-line processor to initialize and recover when 
the on-line processor has detected critical error conditions. 

3.2.3 Initialization microcode 

This nondestructive microcode makes critical recovery decisions 
when error conditions are detected. This microcode is particularly 
important if total software sanity is lost. 

3.3 Diagnostic features 

Hardware has been incorporated into the design of this system to 
permit a systematic approach for identifying failures via software. This 
diagnostic software6 depends heavily on the maintenance channel and 
its associated circuitry. The primary function of the MCH is the 
diagnosis of one CPU by the other. The MCH is an autonomous 
portion of the processor which, under control of the other CPU, can 
provide information about the state of the machine. The MCH thus 
exercises the machine at its most basic level by direct access to the 
microprogram controL The MCH characteristics are like those of the 
DSCH, and the access protocols are compatible with each other. 

IV. MICROCODE FEATURES 

The large microstore address space in the 3B20D Processor provides 
a relatively inexpensive means of specifying complex instructions and 
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special system functions. These can be added or modified with little 
difficulty compared to hardwired functions. 

4.1 Types of features 

Microcode can reside in either PROM or in writeable control store. 
The following sequences have been implemented in the 3B microcode: 

(i) Microboot-This sequence of code initializes the processor 
and loads both the Writable Control Store (WCS) and the first-level 
bootstrap program from disk. If it is unable to load from the primary 
disk, it automatically tries to load from the backup disk. 

(ii) Tapeboot-This sequence of microcode initializes the proces­
sor and then copies data from a standard nine-track magnetic tape to 
the disk. The microboot routine can then be used to initiate program 
execution. 

(iii) Basic instruction set-This set of microcode implements the 
native instruction set and special instructions that are specific to the 
3B20D Processor. 

(iv) External interrupt routine-This sequence is invoked only 
upon the completion of an instruction with an interrupt pending. The 
microcode saves the state of the system, then transfers to an interrupt 
event handler routine. 

(v) Error interrupt routine-This section of microcode is entered 
in case of a hardware or software error. The microcode saves the state 
of the machine and then transfers control to a routine that attempts 
to recover processing without switching to the other machine. This 
interrupt can be encountered between any microinstructions. 

(vi) Memory management trap-This sequence of microcode is 
entered if the virtual address of the memory fetch cannot be translated 
directly to a physical address by the address-translation hardware. 
The microcode reads the segment and page tables of the active process, 
loads the hardware translation unit with the translation information 
and then reactivates the memory access. 

(vii) Maintenance channel instructions-These instructions allow 
the processor to communicate with its duplex mate via the mainte­
nance channel. 

(viii) Diagnostic sequences-A section of the WCS is reserved for 
the diagnostic programs to load and then execute special microcode 
sequences. 

(ix) Miscellaneous routines-There are several miscellaneous mi­
crocode routines that are used for functions such as to load the writable 
control store and to load the hardware matcher registers in the utility 
circuit. 

(x) Emulation routines-Up to three additional sets of microcode 
can be loaded that allow the 3B20D to emulate other machines. 
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4.2 Microcode development 

Several software and hardware tools were developed that allowed 
microcode to be generated and debugged with relative ease. Of prin­
cipal importance are the MICA7 bit-sliced assembler and the Micro­
level Test Set (MLTS).6 These tools allowed a laboratory utility 
computer to be used to assemble microcode, and to control the 3B20D 
via a link to the ML TS. The facility was used to load writable 
microstore, access main store, access registers and control sequencing 
at the microcode level, set breakpoints and provide trace capability. 

During the development phase of the 3B20D processor, substantial 
advantages were realized by the fact that the system was micropro­
grammed. Major improvements in the instruction set architecture 
were accommodated by microcode changes. Features have been added 
to enhance error recovery, to permit transferring bootstrap programs 
from magnetic tape to disk, and to improve system performance. 

V. SUMMARY 

The 3B20D CPU is a 32-bit machine with 24-bit addressing. Hard­
ware features have been provided to support a modern general-purpose 
operating system, e.g., virtual-to-physical address translation. Other 
features include microprogram implementation, emulation capability, 
high-speed data cache, high-speed interrupt stack, self-checking cir­
cuits, extensive diagnostic access, and high-availability duplex opera­
tion. 

The standard I/O communication between the CC and the periph­
erals is by means of a DMA controlling dual-serial channels, capable 
of transmitting an effective rate of 2M-bytes/s. The DMA can operate 
in a word-transfer mode or a block mode of 16 words per block. The 
loose coupling of the channels between the processor and the periph­
erals permits considerable freedom in expanding a system. 
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The memory system supplied with the 3B20D Processor provides a 
high-reliability, high-performance, main-frame memory for use by the 
3B20D Central Control and Input/ Output system. The memory system 
is designed using a collection of high-speed, static and dynamic 
memory devices and appropriate logic controllers. In addition to 
providing basic on-line storage for program text and data, the mem­
ory system provides hardware assistance for virtual-to-physical ad­
dress translation, access protection, memory resource arbitration, 
and performance enhancement utilizing a high-speed cache memory. 
The technology used in implementing these functions includes state­
of-the-art 64K dynamic random access memory devices and high­
speed TTL-compatible gate-array integrated circuits. 

I. INTRODUCTION 

The memory system associated with the 3B20D Processor! includes 
a I6-megabyte memory, a high-speed cache memory, and hardware 
assistance for the virtual-to-physical address translation process, ac­
cess protection, and memory resource arbitration functions. 2 The 
memory system utilizes high-speed, static and dynamic memory de­
vices and appropriate logic controllers. 

The block diagram shown in Fig. 1 highlights the major components 
and interconnections of the 3B20D Memory System. The diagram 
indicates the memory system related control, address, and data paths, 
including the interconnection to the fully duplicated system. Internal 
central control data paths associated with the Store Address Transla­
tor (SAT) are not shown. 

As indicated, the 3B20D Memory System is comprised of a 16-
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Fig. I-Block diagram of the 3B20D Processor memory system. 

megabyte main store, a Main Store Update (MASU) circuit providing 
interconnection control between the duplicated memory systems, a 
store address translator, and an optional Cache Store Unit (CSU). The 
subsystems that use the memory system are the central control and 
the Direct Memory Access Controller (DMAC). Memory operations 
are initiated by either of the duplicated central controls or DMACs. In 
the DMERT environment, one CC/DMAC combination has control 
of the system and initiates all memory operations. The MASU circuit 
performs write operations to both duplicated main stores. In this way, 
both main stores are kept up to date with currently· executing pro­
grams, data, and I/O transactions. If a central control switch is needed, 
it can be accomplished quickly since the off-line central control can 
immediately use a fully updated main store.3 

The 3B20D Processor supports memory management that allows 
programs to be written using virtual addresses without regard to where 
they actually reside in memory. An address translation hardware 
assistance circuit, the SAT, is provided in the 3B20D. The SAT 
provides high-speed access to the most recently used address-transla­
tion and access parameters. It serves as a cache memory for the 
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translation parameters that apply to the software processes executing 
in the central control. The same address-translation mechanism im­
plemented by the SAT is used by the DMAC.4

,5 Thus, processes 
executing in the central control can share virtual address spaces with 
peripheral devices communicating through the DMAC. In addition, 
once this address-translation mechanism is established by the operat­
ing system, the central control or the peripheral devices may initiate 
memory operations independently. 

The remainder of this paper discusses, in more detail, the major 
components of the memory system. The discussions cover the opera­
tional aspects of the design, self-checking, error reporting, error recov­
ery, and diagnostic features6 provided in the memory system design. 
Other topics addressed include performance, reliability, device tech­
nology, and environmental considerations. 

II. STORE ADDRESS TRANSLATOR 

In any computer system, the main memory is an expensive resource 
and has to be efficiently managed for improved system performance. 
Because the 3B20D Processor supports a multiprogramming environ­
ment, the memory may be shared by several user programs, each 
having access to the full virtual memory spectrum. Hence, a mecha­
nism for relocation and protection of a user's address space (text and 
data) is required. The 3B20D translates the virtual addresses used 
within the processor and I/O subsystem to a real or physical address 
used within the main store. To reduce the overhead associated with 
the address-translation and protection mechanism, the 3B20D uses an 
SAT that contains a high-speed address cache called the Address 
Translation Buffer (ATB). 

2.1 Address space partitioning 

For the purpose of sharing, relocating, and protecting, the 24-bit 
address space is partitioned into "segments." A segment is a contiguous 
block of sequential virtual addresses the size of which may range from 
1 byte to 128K bytes. To reduce memory breakage due to fragmenta­
tion, each segment is further partitioned into 2K-byte blocks called 
"pages." A segment has up to 64 pages and an address space can have 
up to 128 segments. The virtual address generated by the processor is 
divided into a 7-bit segment field, a 6-bit page field, and an II-bit byte 
offset (displacement) as shown in Fig. 2. 

2.2 Address translation process 

The SAT translates the 24-bit virtual address to a 24-bit physical 
address used by the CSU and the main store. This translation is 
conceptually a two-step table-lookup operation and is controlled by 
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the Program Status Word (PSW), the segment base register (SBR), 
and two main store resident tables (the segment table and the page 
table). The resident operating system manages these registers and 
tables. Recently used translation information is kept in the high-speed 
A TB and is accessed concurrently with the CSU. 

2.3 Segment base register 

The currently executing process's2 address space is defined by the 
SBR. The SBR is a 32-bit register that contains the physical address 
pointer to the beginning of the process's segment table and its length 
(which is equal to the number of segments allocated to the process). 
There are eight such SBRs in the processor to accommodate eight 
independent address spaces at any time. These eight address spaces 
are assigned by software, and in a DMERT environment, a minimum 
subset of four is allocated to the kernel, a kernel process, a supervisor 
process, and a user process. The fields in an SBR are allocated as 
follows: 

(i) Segment table address (22 bits)-This field points to the begin­
ning of the segment table in main store. 

(ii) Unused (3 bits)-This field is presently not used. 
(iii) Segment limit (7 bits)-This field designates the length of the 

segment table. 

2.4 Segment table 

The segment table (one exists for each process) contains a descriptor 
for each segment of the process. Each entry is 4 bytes long and resides 
on a full word boundary in the main store. It is partitioned into three 
fields as follows: 

(i) Page table address (22 bits)-This field points to the beginning 
of the page table. 

(ii) Page table length (6 bits)-The length of the page table is one 
more than the value in this field. 

(iii) Protection bits (4 bits)-Three of these bits indicate whether 
the segment is readable, writable, or executable. One bit indicates the 
validity of the entry. 

2.5 Page table 

The page table (one exists for each segment) contains a descriptor 
for each page in the segment. Each entry is 4 bytes long and resides on 
a full word boundary in the main store. The entry has four fields that 
indicate: 

(i) Relocation Address 
(ii) DMA usage 
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(iii) Protection 
(iv) Unused. 
The process of virtual to physical address translation is described in 

the following sections. 

2.5.1 Segment table lookup 

The segment field of the virtual address is first compared against 
the segment limit field of the SBR to establish whether the addressed 
entry is within the table. If the segment limit is less than the segment 
field, a "segment length error" exception is recognized and control of 
the processor is transferred to handle the exception. If there is no such 
error, the segment field of the virtual address and the segment table 
address in the SBR are used to index into the segment table in the 
main store and access an entry. 

The fetched segment table entry is checked for validity. If the entry 
is invalid, control is transferred to exception handling microcode. If 
the entry is valid, the page field of the virtual address is compared 
against the page table length field in the segment table entry. If the 
value of the page field is greater than the maximum number of pages 
in the segment, the control is transferred to a microcode routine to 
handle the error. In case of no such error, a page table lookup is 
initiated. 

2.5.2 Page table lookup 

The contents of the page-field of the virtual address and the page 
table address field of the fetched segment table entry are used to index 
into the page table to fetch a page table entry. The protection bits 
obtained from the segment table entry and the page table entry are 
ANDed, and a check is made for a possible protection violation. In 
case of such an error, an error-handling routine is initiated. If there is 
no protection violation, then the physical address is generated by 
concatenating the relocation address field of the fetched page table 
entry and the byte offset field of the virtual address. 

2.6 Address translation buffer 

The Address Translation Buffer (ATB) is provided to reduce the 
overhead associated with the address-translation mechanism. The 
ATB is capable of holding 128-page table entries for eight different 
address spaces (for a total of 1024 entries) and is organized as a two­
way set associative memory. When the processor initiates a store 
access, the A TB checks whether the corresponding physical address is 
available in its memory. If the physical address is available (called a 
"hit"), it is sent to the main store. But, if the physical address is not 
available (called a "miss"), an "ATB Miss" processing microroutine is 
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initiated which does the segment and page table lookups and loads the 
obtained physical address into the ATB. The access is then restarted. 
Subsequent access to the same page results in hits. 

2.7 A TB control bits in PSW 

The PSW contains a field that provides control for the memory 
management. The A TB functions can be enabled or disabled. When 
disabled, address-translation and protection check functions are disa­
bled, and the virtual addresses are directed to the CSU and the main 
store as physical addresses. 

The PSW also controls process communication capabilities between 
virtual address spaces. The PSW designates the Primary Segment 
Base Register (PSBR) and the Secondary Segment Base Register 
(SSBR). Each of these registers defines a virtual address space. Gen­
erally, the PSBR is used to select one of the eight blocks of the ATB 
for address translation. Under PSW control, however, the SSBR can 
be used for read, write, or both read and write memory operations. All 
instruction fetches use the PSBR irrespective of the contents of the 
PSW. Special instructions are provided to manipulate the PSW. This 
hardware feature can be used to move data between two address 
spaces very efficiently. 

2.8 ATB operation 

Figure 2 shows the block diagram of the A TB. When an access is 
initiated by the processor, the ATB is accessed using 3 bits of the PSW 
(selecting one of eight address spaces), low order 3 bits of the segment 
field, and low order 3 bits of the page field of the virtual address. The 
address tag fields of the A TB are matched against the corresponding 
bits of the virtual address. Simultaneously, the two relocation address 
fields are directed to the cache. A hit is generated in case of a successful 
match. 

If a hit is detected, then a check is done to see whether the access is 
allowed on that page. The processor and the cache are informed in the 
case of any protection violation. 

If a miss is detected, the cache ignores the relocation addresses. An 
"ATB Miss" microroutine is initiated by the processor and the new 
A TB entry is loaded into one set of the A TB using a defined replace­
ment algorithm. The access is then restarted. 

As mentioned before, the A TB is capable of handling translations 
for eight tasks at any instant. But, when a new task is allocated to a 
block of the ATB, the entries associated with the previous task have 
to be invalidated. A dedicated 8-bit counter is provided to do this 
invalidation with minimum microcode overhead. 

The address translation mechanism provided by the SAT is com-
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patible with that provded by the DMAC. In this way, processes 
executing on peripheral controllers can share virtual address spaces 
with processes executing on the central control. 

2.9 Redundancy 

The ATB hardware is completely self-checked. Parity is checked 
over the Store Address Register (SAR), the ATB entries and the ATB 
related bits in the PSW. Parity bits are regenerated for the physical 
addresses to be checked at the cache and main store. The hit and 
protection check logics are duplicated and matched, and can be exer­
cised under maintenance control. In case of any hardware faults in the 
circuit-pack, the access is aborted and control is transferred to a fault­
handling routine. The A TB memory can be written and read over the 
source and destination buses of the processor. 

III. CACHE STORE UNIT 

The Cache Store Unit (CSU) reduces the effective access and cycle 
time of store operations for the 3B20D Processor. Combining a rela­
tively small, high-speed "cache" memory with a large main store 
results in a system with an average access time approaching that of 
the high-speed cache but with the low cost per bit and storage capacity 
of the Main Store. 

The concept of a cache takes advantage of a general programming 
characteristic of locality of reference. Most references to memory tend 
to be highly localized or clustered into small groups at any given time, 
and regions tend to change relatively slowly during the course of 
program execution. Thus, a relatively small, high-speed CSU contains 
the most often used words from the main store and thereby reduces 
the average access time of the reference. 

3.1 Organization 

The CSU is organized into two sections: an interrupt stack section 
and a cache section. Since the main store contains a much larger 
storage capcity than the CSU, a mapping function is required to 
compress the main store address range into the much smaller CSU. 
The compression is achieved by adding a tag which contains the 
physical page address to each word of cache data storage. To increase 
the probability that a main store word is in the CSU (a "hit"), the 
cache is organized as a four-way set-associative memory. Each one of 
the four cache modules contains 2K bytes of high-speed storage. The 
interrupt stack section also contains 8K bytes of memory. 

Since the cache is four-way set-associative with the main store, there 
is a one for one correspondence to the page offset address but full 
associativity for the page portion of the address. Thus, word 0 from 
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any of the four cache modules may correspond to word 0 from any 
page in main store. 

3.2 Operation 

Since the cache section of the CSU functions as an associative 
memory, a match search in the cache is performed in parallel with the 
translation of the virtual-to-physical address by the ATB. This hard­
ware parallelism is illustrated in Fig. 2. An access causes the low 11 
bits of the virtual address to select a unique page offset on each of the 
four cache modules. The page portion of the virtual address (high 13 
address bits) is translated by the two-way set-associative ATB. Each 
of the four cache tag modules is matched to the two translated physical 
page addresses. The ATB will indicate to the cache which of the two 
translated addresses is valid. If one of the four cache tag modules 
matches this translated page address, the CSU will generate a hit 
signal to the CPU and gate the associated word onto the cache data 
bus. 

Functionally, the CSU interconnects the CPU and main store. The 
CSU connects to the CPU via the cache address bus, cache data bus, 
and control leads. Because the CSU interconnects the CPU and main 
store, DMA transfers to main store will not prevent the CSU from 
being accessed by the CPU. Thus, CPU contention for the main store 
is reduced since most references will result in a CSU hit. 

During system initialization, all locations in the CSU are invalidated. 
When the CPU references the memory system and a cache miss 
results, the referenced word is automatically copied into the CSU. If 
a word needs to be copied from the main store and all four cache 
modules contain valid data, a random replacement algorithm selects 
the cache group in which a word will be replaced. Once the cache has 
been initialized by the system, the operation is transparent to the 
software with the exception of enhanced performance. 

The CSU contains arbitration and sequencer control logic to auto­
matically update its data and arbitrate between CPU and DMA write 
operations. When the DMA writes into the main store the CSU checks 
if the DMA reference is in the cache. If the word is in the cache, it is 
automatically invalidated by the CSU sequencer. While the CSU is 
checking for a DMA write hit, the CSU indicates a busy condition to 
the CPU. DMA reads from the main store do not result in any 
operation from the CSU. 

3.3 Interrupt stack 

The CSU also contains an 8K-byte high-speed memory which is 
used by the CPU to reduce the interrupt response time when the CPU 
is in the kernel operating mode. When the CSU is in the interrupt 
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stack mode, the CSU will generate lOO-percent hits for both read and 
write operations. 

3.4 Software support 

The CSU is designed to support the software organization of the 
DMERT operating system and the "C" programming language. Call 
and Return are frequent operations with the C language. The CSU 
has built-in hardware algorithms to function as a high-speed data 
stack. A stack write operation (CSAV) will force the data to be copied 
into both the cache and main store. A stack read operation (CRET) 
will cause the data to be read from the cache and then invalidated. 
This location in the cache is then available for use by new data. The 
data stack is part of the cache section and is totally separate from the 
interrupt stack. 

3.5 Self-checking 

The self-checking philosophy of the CSU is to provide immediate 
detection of faults that cause errors and nonimmediate detection of 
faults that affect the performance of the CSU. The CSU has built-in 
self-checking hardware that monitors the operation of the CSU. Faults 
detected by the self-checking hardware include CSU sequencer errors, 
multiple writes into the CSU, multiple cache hits, accessing errors in 
the tag memories, and cache write errors. 

A multiple hit is an example of a catastrophic fault since it would 
result in the contents of two or more cache words being ORed onto the 
cache data bus. This type of failure is prevented by duplication of the 
hit logic and by providing multiple hit detectors that monitor the hit 
logic and the module enable logic. The cache also generates and checks 
parity over the tag and address bits. 

The CSU also provides diagnostic access to the "internals" of the 
circuit. When the CSU is configured in the maintenance mode, the 
normally associative memory tages are configured to function as 
conventional RAM memories. In addition, special access is provided 
to the counters, CSU sequencer, and various status bits. 

IV. MAIN STORE 

4. 1 Configuration 

Physically the main store can consist of one or two modules. Each 
module contains one Main Store Controller (MASC) and up to sixteen 
Main Store Arrays (MASA). The central control can directly address 
16 megabytes of text or data. 

The preproduction design of the main store was based on the initial 
use of 16K Dynamic Random Access Memory (DRAM) devices. The 
design was organized to allow evolution to higher-density devices. The 
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production design initially used a Western Electric 64K DRAM7 that 
utilized two power supply voltages. The current design uses a newer 
Western Electric 64K DRAM that permits denser packaging. This 
design is implemented using a single circuit pack main store controller 
and a I-megabyte MASA circuit pack. Thus, all 16 megabytes of 
addressable memory are contained in one module. 

4.2 MASU operational aspects 

The MASU circuit provides control of main store bus communica­
tion between duplex Control Units (CU), allowing the MAS in the 
standby CU to be kept up to date. The MASU also controls the use of 
the main store buses by the central control, DMA, and other CUs. 
The MASU in the active CU in a duplex configuration gives the 
highest priority to the central control followed by DMA 0, DMA 1, 
and operations from the other CU, respectively. 

Communication with the Main Store is over the address bus, data 
bus and the command bus. The command leads indicate whether the 
operation to be performed is a write, read, clear, byte, halfword, or 
maintenance operation. Valid operations to the MAS include: 

(i) Write full word 
(ii) Write halfword/byte 

(iii) Read word 
(iv) Read and clear fullword 
(v) Read and clear halfword/byte 

(vi) Maintenance write (nonmemory operation) 
(vii) Maintenance read (nonmemory operation). 
The MASU communicates asynchronously with the MASC by the 

use of the Store Go signal (SGO) and Store Complete signal (SCM). 
Prior to issuing the SGO to the MASC, the MASU issues an address 
and data bus enable to the requesting unit with the highest priority. 
The MASU then issues the SGO to the MASC. The MASC upon 
receiving the SGO begins a timing sequence that selects the addressed 
MASA and issues a GO signal (GOI) to the MASA. The selected 
MASA then allows data to be read or written at the specified address 
depending upon which main store operation was decoded by the 
MASC. 

The MASe performs various error checks during the timing se­
quence to ensure the integrity of the MASe and MASA. In the event 
an error does occur, the MASe sends an error signal to the requesting 
unit. Depending upon the operation being performed and the state of 
the error sources, the MASe at a specific point in the timing sequence 
issues an SeM to the MASU to indicate that the operation has been 
completed. The MASU can then grant the main store buses to the 
next requesting unit with the highest priority. . 
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4.3 Self-checking 

The 3B20D main store was designed with a significant amount of 
self-check circuitry. The partitioning of the circuitry on the circuit 
packs also was designed to improve fault detection. For example, the 
data bus transceivers on the memory array have only one bit from 
each parity field partitioned in each device. In this way a fault affecting 
either one of the bits or all the bits in the device will be detected by a 
simple parity check. Similarly the address, RAS, and CAS drivers for 
the memory devices on the MASA were partioned so that a fault 
associated with one of these drivers would affect at least two bits in 
each of the data-parity fields. By affecting more than one byte the 
probability of detecting the error by failing a byte-parity check in­
creases. 

To ensure bus integrity the MASC checks the address, data, and 
command bus parity between the MASC and the MASU. If the 
address parity check fails during a write cycle to the memory, circuitry 
in the MASC prevents the writing of data into the addressed memory 
location. Thus, invalid information will not be written into the memory. 
If the other parity checks fail, an error is signaled but an undesired 
memory operation may take place. The MASC internally monitors the 
timing sequencer and refresh address counters to ensure that they are 
functioning properly. Circuitry also checks the SGQ and SCM signals 
between the MASC and MASU to ensure that "handshaking" that 
takes place between the two units is functioning properly. The MASC 
by checking four selected responses from the MASA also can check 
communication to the MASA. The MASC can determine from the 
select responses whether an MASA was selected or not, and it can also 
detect if more than one MASA responded. 

4.4 Error correction 

The 3B20D main store performs error detection and correction. 
Error correction circuitry on the MASC and Error Correction Coding 
(ECC) of data in the MASA result in the correction of all single bit 
errors. This circuitry also flags all double and detectable multi-bit 
errors. 

In the 3B20D central control, byte parity is maintained over each 
byte of the data word. The main store uses the existing byte-parity 
bits in a modified form of the Hamming code.8 By adding four addi­
tional ECC bits (in addition to the byte-parity bits) the main store can 
then perform single-bit correction and double-bit failure detection. 
When presenting data to the system the MASC maintains byte parity 
by gating the byte parity bits to the MAS A from the MASU, and vice 
versa. On the MASC five gate arrays are used to implement the error­
checking and correcting circuitry. One gate array code is used for each 
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of the four bytes. The fifth gate array code is used for the additional 
four ECC bits. 

The MASC issues an error signal when it detects a location in MAS 
in need of correction. The MASC presents the corrected data to the 
system but will not automatically rewrite correct data at the location. 
The actual rewriting of data is handled by the software error interrupt 
handler. In the event of a noncorrectable error, the error interrupt 
handler reads the data from the standby CU-if it is in a duplex 
configuration-and uses that data to rewrite the faulty location. 

4.5 Diagnostics 

The 3B20D MASC provides maintenance access to a significant 
portion of the circuitry in the main store. This maintenance access is 
used by microcode to initialize the MASC and by diagnostics to test 
the functional operation of the MAS. 

The MASC issues various maintenance commands within the MAS 
when the maintenance command, address, and SGO signal are pre­
sented to the MAS. The maintenance operation is decoded off the 
address and is only valid for one MAS cycle. By using an address 
decoded maintenance command, the state of certain data bits can be 
latched, providing the latched maintenance state until cleared. The 
MASC under diagnostic control uses the various maintenance com­
mands and states to perform the following operations: 

(i) Control address loop-around (address returns on data bus) 
(ii) Control the refresh circuitry 

(iii) Control the error correction circuitry 
(iv) Control the error detection/reporting circuitry. 
By using the maintenance capability, the diagnostics can verify the 

integrity of the bus structure, the MASA, and the MASC. The data 
integrity of each MASA is tested by performing a series of data pattern 
tests on each MASA equipped. 
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The 3B20D Processor is built using a broad range of complex and 
high-performance integrated circuits. These integrated circuit de­
vices are packaged and interconnected utilizing Bellpac ™ packaging 
system technology. Used throughout the processor are high-density 
multilayer printed wiring boards with high pin-out connectors. The 
elements of the technology were combined using computer-aided 
design tools to assure optimized system thermal and electrical per­
formance. 

I. INTRODUCTION 

The cost, performance, and schedule objectives of the 3B20D Proc-
essor and the overall complexity of the design required: 

• A full spectrum of circuit integration 
• Common integrated circuit specifications 
• A broad range of semiconductor memory devices 
• A standard hardware packaging technology 
• Quick turnaround prototype circuit packs 
• High interconnection capability at the circuit pack level 
• A hierarchy computer aided design (CAD) process 
• Comprehensive design audits in the CAD process. 

The use of Bellpac* packaging system technology provides a dense, 
high performance packaging system. l This includes a substantial in­
crease in the number of devices allowed per circuit pack and the 
number of contacts per pack over previous technologies. The use of 
Bellpac packaging technology also allowed a low system cost since the 

* Bellpac is a trademark of Western Electric. 
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hardware is Bell System standard and manufactured in high volume. 
Complex integrated circuits from a variety of vendors were employed 
throughout the 3B20D Processor. A wide variety of integrated circuits 
and comprehensive specifications were used to optimize processor 
performance, cost, and reliability. Bellpac packaging technology and 
the integrated circuits were coupled together through a sophisticated 
CAD system. The CAD system is comprised of design, analysis, 
simulation, and audit tools at device, circuit pack, unit, and frame 
levels. 

II. INTEGRATED CIRCUITS AND APPARATUS PERFORMANCE 

2. 1 General device requirements 

The integrated circuit device family used in the 3B20D Processor 
consists of approximately 280 codes of TTL (Transistor-Transistor 
Logic) compatible SSI (Small-Scale Integration), MSI (Medium-Scale 
Integration), and LSI (Large-Scale Integration) devices. These codes 
were selected to optimize the cost and performance of the wide range 
of processor functions included in the central control, memory, and 
peripherals. Device performance range varies greatly from the high­
speed, speed-selected, bipolar Schottky TTL parts in the central 
control to relatively slow metal oxide semiconductor microprocessor 
peripherals in the I/O area. The scale of integration varies from SSI 
devices driving heavily loaded buses to VLSI (Very Large-Scale Inte­
gration) memory and microprocessor devices. Whenever possible, 
where system performance and/or cost was not jeopardized, the same 
parts were used in several different areas of the design to minimize the 
number of unique integrated circuits. Where the same device could be 
used for multiple functions, the device specification was written to 
cover the extreme needs of all applications. 

To assure that all of these devices would interface with each other, 
common device specifications were established. The temperature range 
for the devices was specified as 0-95°C to accommodate central office 
equipment requirements and to keep cooling costs low. Supply voltage 
limits were established at 5 volts ± 10 percent to minimize power 
generation and distribution costs. The interface levels were established 
based on TTL standards (i.e. Vol ::5 0.4 volt, Voh ;::: 3.4 volts) consistent 
with the temperature and supply standards described above. Other 
common standards included dual in-line package (DIP) dimensions 
and lead finish specifications to ensure manufacturability and reliabil­
ity. 

As the project progressed through its phases, the reliability require­
ments for devices varied. For the initial system models, high-reliability 
devices with good electrical performance were essential to minimize 
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interference with software/hardware integration. This was particularly 
true with devices on prototype wire-wrap hardware, which generate 
substantially more noise and crosstalk than the production multilayer 
designs. Since much of the prototype hardware was built before final 
device specifications could be negotiated with vendors, high-quality 
military grade parts were procured wherever possible and special 
screens were imposed where high-reliability parts could not otherwise 
be obtained. For production units, reliability requirements were estab­
lished based on system availability objectives.2 For most of the codes 
this worked out to a 100 FIT* objective per device. This objective was 
translated into specific packaging, burn-in, screens, and life-testing 
requirements in the device specifications. 

Special devices required creation of a number of expanded specifi­
cations. For example, to simplify circuit pack testing or to provide a 
low-cost method for changing information contained in PROMs, reli­
able socketing was required which, in turn, required special gold lead 
finishes on the devices. A small number of other devices, for cost or 
availability reasons, were specified at reduced temperature and/or 
supply voltage ranges. 

2.2 Small-scale and medium-scale integration devices 

There are about 160 codes of devices that can be classified as having 
small-scale integration (SSI) or medium-scale integration (MSI). 
These consist of two basic device groups: LSTTL and STTL. The 
LSTTL gates are typically characterized as having 10 ns, 2 m W parts, 
and the STTL gates as having 5 ns, 20 m W parts. Both families meet 
industry standards and are widely available. The identical functions 
are generally available in both families. Due to the much lower power 
of the LSTTL devices, they were preferred except where speed was 
critical. To maximize the use of the LSTTL devices a special output 
current drive requirement was specified that effectively doubled their 
capacitive drive performance under worst-case conditions. Since the 
STTL devices were used in the speed-critical paths, their performance 
had a major part in establishing system performance. On a subset of 
these devices, special speed screens at high-capacitive loads were 
specified. The increased cost of these screens on these few device codes 
was minimal at the system level, but the system performance gain was 
substantial. 

In addition to the standard logic devices in the SSI and MSI 
category, there were a variety of special devices such as delay lines (10 
codes) and oscillators (10 codes). These devices generally had STTL 
and LSTTL interfaces to the other devices. 

* FIT is defined as one failure in 109 operating hours. 
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2.3 Memory devices 

The semiconductor memory device requirements for the various 
processor functions were broad. They included dynamic RAMs, static 
RAMs, PROMs, Electrically alterable PROM (EPROM), and First In 
First Out (FIFO) memories in a variety of functional organizations and 
speed ranges. 

The dynamic RAMs used in the 3B20D for main storage are 64K­
bit chips manufactured by Western Electric. They are organized 64K 
words by 1 bit and have an internal redundancy that was used to 
increase yield. 

Static RAMs are used in a variety of applications including cache, 
microstore, memory management, and the address/data storage for 
the microprocessor-based circuits. The first three applications require 
high-speed memory, while the address/data storage requires high 
density at moderate speed (16K bits at 200 ns). There are 10 codes of 
static RAM in the 3B20D Processor. 

The programmable memories (PROM, EPROM) are used in the 
microstore and as program memory in microprocessor-based designs. 
In addition, smaller PROMs have been used in sequencer designs. In 
many designs these parts are used interchangeably with static RAMs. 
Again organization, speed, and power requirements are varied and 
result in 17 codes of programmable memories. The FIFO memories 
used in the 3B20D Processor are moderate-speed devices, primarily 
used for data buffering. 

2.4 Large-scale integration logic 

Because of the low cost per gate available with LSI logic its use was 
chosen wherever available parts could meet performance and func­
tional requirements. The parts that were chosen provide large general­
purpose functional blocks, such as microprocessors and associated 
peripherals, protocol controllers, dynamic RAM controllers, etc. Be­
cause of the relatively long development time and high development 
cost for LSI parts, new custom LSI designs were not undertaken during 
the initial 3B20D development stages. Cost reduction and new feature 
designs completed after the initial design phase have tended to use 
LSI gate arrays. There are a total of 30 catalog LSI codes and 16 LSI 
gate array codes in the 3B20D. 

2.5 Circuit packs 

The smallest replaceable module of the 3B20D is the circuit pack. 
Each pack consists of a collection of integrated circuits, in dual in-line 
packages, interconnected on circuit boards using the Bellpac packaging 
system (see Fig. 1). Typical circuit boards use a multilayer printed 
wiring board structure, which consists of six layers with plated through 
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Fig. I-The 3B20D Processor circuit pack. 

holes to interconnect the layers. The structure of the printed circuit 
board is as follows: a component surface/signal layer, a signal layer, a 
power layer, a ground layer, a signal layer, and a wiring surface/signal 
layer. Board design used a standardized 0.100-inch grid to facilitate 
computer aided design and also to permit automated assembly and 
test. Protection for surface-layer printed wiring is provided by a cover 
coat that is applied prior to component assembly. The circuit pack 
multilayer board is normally 7.67 by 13.375 inches (although a few 7.67 
x 9.375-inch boards are also used). All boards are 0.062 inch thick. 

The circuit pack designs use either a 200-contact or 300-contact 
connector to interconnect the pack to a unit backplane. The connectors 
consist of a matrix of contacts contained in a plastic housing soldered 
to the edge of the printed circuit board. These contacts are bifurcated 
and selectively gold plated to provide a low-resistance, low-cost con­
nection that will perform well over a 40-year design life. The circuit 
pack connector mates with a matrix of 0.025-inch-square pins mounted 
in the backplane on a 0.125-inch grid. The mating of the circuit pack 
contact with the backplane pin results in a loading of the bifurcated 
contact with a minimum normal contact force of 100 grams at the end 
of a 40-year life. The backplane pin is also selectively gold plated to 
provide a high-reliability, low-cost contact. 

2.6 Frame unit 

The next level of circuit packaging is the frame unit. Circuit packs 
mount into a frame unit that consists of a backplane printed wiring 
board with pins and apparatus mountings to support the packs. The 
backplane board is a~proximately 8.00 by 22.55 inches in size and 
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typically interconnects 21 circuit packs. Three apparatus mountings 
mount across the backplane to guide and support the circuit packs. 
The structure of the printed wiring backplane consists of six circuit 
layers that are interconnected with plated through holes. Pins are 
staked into the plated through holes on a O.125-inch grid to match the 
circuit pack connector. These pins have low assembly cost and make 
highly reliable contact with the circuit boards. 

The apparatus mounting provides circuit pack support and align­
ment with the backplane pins (Fig. 2). The apparatus mounting is 
designed to provide minimum impedance to air flow moving vertically 
through the unit. A designation strip is located at the top front of the 
mounting identifying the appropriate circuit packs. Matching the 
designation strip with the plastic faceplate of each circuit pack ensures 
proper installation. 

The pins in the backplane extend on both sides of the printed wiring 
board. On the side of the backplane away from the circuit packs, 
additional connections between circuit packs can be made by wire, 
automatically wrapped to the pins. The majority of circuit pack 
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interconnections are made by signal paths within the backplane mul­
tilayer board; wires are used for changes or for connections that could 
not be routed in the printed circuit board. Also this side of the 
backplane is used for interconnecting different frame units or frames 
via connectorized cables. Many different connectors are used varying 
in size from 6 contacts to 24 contacts. This cable connector family 
supports both discrete wire (or switchboard) cable as well as multicon­
ductor tape cable. The cable connectors are guided and retained on 
the backplane with special cable connector apparatus mountings that 
are attached to the backplane. 

III. 38200 UNIT PHYSICAL DESIGNS 

3. 1 Control unit frame 

The 3B20D control unit frame is the core of the processor. Its 
modular equipment design permits the equipage of optional hardware 
features suitable to support a wide range of applications. The control 
unit frame in its maximum configuration contains the following units: 
central control, main store module 0 and 1, direct merrlOry access 
input/output, cooling, and power. Figure 3 shows a maximally confi­
gured frame and denotes those units not required in a basic 3B20D 
Processor. 

The 3B20D Processor frame units are mounted in a 7-foot-high, 24-
inch-deep, 2-foot 2-inch-wide framework as shown in Fig. 3. Optional 
units and/or circuit packs are simply omitted where host system 
requirements do not require them. Subsequent paragraphs provide a 
description of the control unit frame units and their functions. 

3. 1. 1 Central control unit 

The central control unit is 10 inches high by 2 feet 2 inches wide. It 
contains the following required circuit functions: 

(i) Central processing unit 
(ii) Microstore 

(iii) Main store update 
(iu) Maintenance channel. 

It has circuit pack positions allocated for the following optional fea­
tures: 

(i) Two input/output channel boards 
(ii) Growth microstore 

(iii) Cache 
(iu) Utility circuit. 

Also a circuit pack position has been reserved for the connection of 
a test set. The unit includes a fuse block, extending the full width of 
the unit, which provides individual fusing for each pack.3 
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Fig. 3-The 3B20D Processor central control frame. 

3.1.2 Main store unit 

The main store units are each 10 inches high by 2 feet 2 inches wide 
and may be equipped with a maximum of 16 megabytes of memory. 
The unit is minimally equipped with store controller packs and with 
one array pack. Additional main store array packs can be added one 
at a time to form a maximum complement of 16 array packs per 
module. When a unit is using 512K-byte arrays, two main store units 
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may be used per frame to provide up to 16 megabytes of memory; 
when 1024K-byte arrays are used, only one memory unit is required 
for the maximum addressable 16 megabytes of memory.4 

3. 1.3 Direct memory access unit 

The Direct Memory Access (DMA) unit is 10 inches high by 2 feet 
2 inches wide and is used for expansion of I/O channel requirements 
beyond the two positions provided in the central control unit. It also 
houses the DMA controllers and their associated I/O channels.3 A 
total of five positions are available for I/O expansion. I/O channels 
that can be equipped in these positions include the dual-serial channel, 
serial channel, and applications channel interface packs. There is room 
in the unit for two DMA controllers, although normally only one is 
equipped. Each DMA controller is equipped with a dual-serial channel 
with the option to add up to three additional dual-serial channel packs. 

3. 1.4 Cooling unit 

The cooling unit is 8 inches high by 2 feet 2 inches wide and provides 
forced air cooling to keep device temperatures within specifications. 
The cooling unit is divided into three replaceable fan module assem­
blies, each with a fan and filter. 

3.1.5 Frame power system 

Power for the control frame is provided by the power unit located at 
the base of the frame. The power unit includes bulk power converters, 
a reference supply, and a power distribution/fusing system. Two to 
four -48 to +5 volts dc power converters are tied in parallel to provide 
power to all frame units via a frame and fuse panel bus bar system. 
The +12 volt power required by the devices used on the 512K-byte 
store arrays is supplied by a -48 to + 12 volt dc converter located in 
the power unit. The power unit is also equipped with input fuses for 
each of the converters and for the reference supply. The power switch 
for the frame is implemented as a common design circuit pack which 
provides control and power sequencing for the frame and is located in 
the main store unit. 

3.2 Peripheral control frame 

The Peripheral Control Frame (PCF) houses those units which 
provide the interface communications between the 3B20D Processor 
and its periphery. This frame in its maximum configuration is equipped 
with an Input/Output Processor (lOP) basic unit, lOP growth unit, a 
Disk File Controller (DFC) unit, and a cooling unit. A port switch unit 
is also provided in one of the peripheral control frames. The frame is 
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a framework 7 feet high, 24 inches deep by 2 feet 2 inches wide. The 
following paragraphs describe the various units within this frame. 

3.2. 1 Input/ output processor basic unit 

The lOP basic unit is 16 inches high by 2 feet 2 inches wide and has 
a self-contained power system. This unit is subdivided into a processor 
section and two peripheral controller (PC) communities; each of the 
latter can be equipped with up to four PC circuit packs. The power 
switch circuit pack provides power control and sequencing functions 
to this unit and to the growth unit if present. DC to DC converters 
and a fuse system similar to the one used in the control frame complete 
the power system.5 

3.2.2 Input/ output processor growth unit 

The lOP growth unit can be added to the basic unit to provide 
additional PC communities. It is 10 inches high by 2 feet 2 inches wide. 
This unit provides two communities of up to four PCs each to meet 
additional host system peripheral requirements. The self-contained 
power system for this unit is controlled by the power switch in the 
lOP basic unit.5 

3.2.3 Disk file control unit 

The DFC unit is 16 inches high by 2 feet 2 inches wide and includes 
a self-contained power system. The DFC is used to interface the 
3B20D control unit with the disk memory system.6 Control and data 
communications are provided for the moving head disk drives. 

3.2.4 Cooling unit 

The cooling unit used in the PCF is the same design as used in the 
control unit frame (see Section 3.1). This unit is located below the lOP 
basic or growth unit as appropriate to provide forced air cooling. 

3.2.5 Port switch unit 

The port switch unit is 4 inches high by 2 feet 2 inches. This self­
powered unit provides one or two communities of up to three port 
switches each and also has positions for up to five scan and signal 
distribution interface circuits. One community is required for the port 
switching of the maintenance terminals. 

IV. ELECTRICAL AND PHYSICAL DESIGN PROCESS 

The electrical and physical design of the 3B20D Processor was based 
heavily on the application of a computer aided design process and the 
use of design standards and audits. Design standards were established 
and used to control the design process and to assure commonality 
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among separate design activities. The design audits were used to 
provide a predicted measure of system performance based on a given 
design and thus allowed feedback for making design changes to maxi­
mize system performance. 

4. 1 Circuit pack, unit, and frame design 

The fundamental hardware building blocks (circuit packs, units and 
frames) were designed and tied together with the assistance of a CAD 
system. After the initial paper design, a circuit pack design file was 
created in the CAD system that contained all connectivity information. 
The design file represents the official record for the circuit. Circuit 
board manufacturing information, schematic drawings, design audits, 
and system connectivity can be created from these files. As the design 
progressed and various information was created, such as board routing, 
schematic representation, etc., it was added to the file. This circuit 
pack design file was also used to generate the software simulation files 
which were used to functionally verify the design and generate circuit 
pack test information. 7 

Fundamental to the CAD system were the design standards used 
throughout the 3B20D Processor. The design standards include a 
project library with integrated circuit and circuit board topology 
information, fixed power and ground pinouts for circuit packs, and 
common hardware definitions. The standards also provided specific 
rules for electrical design (fanout, crosstalk, etc.) that could be audited 
by the CAD system. 

The interconnection of the different circuit packs within a unit was 
captured in a unit design file in the CAD system. These files contained 
all connectivity information and, like the circuit pack files, provided 
the basis for developing and storing detailed wiring information for the 
unit backplanes. 

Frame drawings were a composite of design information from the 
unit files, with connectivity between the units added. Also included in 
the frame drawings was power distribution information. 

4.2 Designing for system crosstalk and noise margin 

The rapid switching transitions in TTL logic made noise and 
crosstalk performance a critical design criterion. For the system to 
operate successfully, noise had to be kept well below the switching 
thresholds of the integrated circuit devices used over a wide range of 
device temperature, supply voltage, and packaging variations. The 
large number of signal nets and the difficulty of tracking down subtle 
noise problems in a system as complex as the 3B20D dictated a set of 
design rules based on worst-case conditions. Comprehensive audits 
were made to assure compliance with these rules. 
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Two major noise audits were provided for the 3B20D. The first was 
a crosstalk audit (parallelism audit) that searched the circuit pack and 
backplane routing files to identify for each net all signal nets immedi­
ately adjacent and parallel to the net of interest and sum the exposures. 
Through theoretical calculations and experimental results a maximum 
safe exposure limit was established for each device type. All nets 
exceeding this crosstalk exposure limit were referred for further anal­
ysis to the circuit designer. The designer's analysis would determine 
whether rerouting was required to assure that system performance 
was not adversely affected. The second major noise audit was for 
current shuttling. Analysis for this audit is a complex function of the 
device types and detailed routing information. Using a device param­
eter library and the circuit pack routing files, the current shuttling 
audit generates a list of all nets with potential noise problems. These 
nets were then reviewed by the circuit designer. 

A fanout audit also was provided. This audit is based on detailed 
device drive and loading information in the device library and on the 
circuit pack and unit connectivity files. Violations of the fanout rules 
can result in reduced noise margins, or in extreme cases, malfunction 
of the logic. 

4.3 Timing analysis 

Timing analysis consisted of computing the minimum and maximum 
delay for each device in a path of interest under actual load conditions. 
The delay consists of an intrinsic component through the device itself 
and an interconnection component that depends on the wiring param­
eters, fanout, and the output drive capabilities. CAD programs and 
libraries were developed to extract the interconnection data to com­
pute the device and path delays. 

4.4 Thermal analysis 

Computer aided tools also were used for thermal analysis. In partic­
ular they were used to predict device temperatures on certain heat­
sensitive devices in the frame environment. The tools used an experi­
mentally determined heat transfer coefficient and integrated circuit 
power dissipations to calculate device temperatures. In addition to 
confirming the adequacies of the design, these tools were used to 
specify temperatures for selected heat sensitive devices where device 
cost, performance, and temperature were important trade-offs. 

v. FLEXIBLE FLOOR PLAN 

Because the 3B20D Processor was designed as a cost-effective proc­
essor for a wide range of Bell System applications, it usually will be 
installed as a group of frames within the host system environment; in 
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other cases, such as retrofit environments, the processor frames may 
have to fit into the space available. The 3B20D has been designed to 
support both of these situations. From an environmental standpoint, 
no special air-conditioning diffusers are required for the 3B20D equip­
ment. However, sufficient cooling and ventilation must be provided so 
that the aisle air temperature does not exceed 37° C on a long term 
basis or 49°C for a short term. 

The recommended typical floor plan for the 3B20D is shown in Fig. 
4. This plan depicts a basic processor with its most likely growth 
patterns and satisfies most system applications. Moving head disk 
cables and associated duct work have been designed to support the 
typical plan. Other floor plans are permitted providing cable length 
restrictions are observed. These cases may require special cables and/ 
or duct work which would have to be engineered as part of the host 
system. 

VI. TECHNOLOGY PERFORMANCE 

6. 1 Rapid development 

To assure a rapid development of the 3B20D Processor, standardized 
hardware components and special prototype hardware were used. The 
basic Bellpac packaging system hardware building blocks were used 
wherever possible to reduce availability intervals. Quick-turnaround 
wire-wrap boards were used for prototype circuit packs and back­
planes. The use of a CAD system allowed the transition from wire­
wrap to multilayer design to be a minimal design effort. The net result 
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of the use of off-the-shelf hardware, computer aided designs, and wire 
wrap models was that the objective project development schedule was 
achieved. 

6.2 System electrical performance 

The electrical performance of a system is best measured by the 
successful achievement of system performance objectives and the lack 
of timing and noise problems. Using the technology system described, 
all 3B20D performance objectives have been met. Further, despite the 
high degree of complexity, few noise and timing problems were en­
countered in the actual hardware. This successful result was achieved 
by the coordinated and comprehensive set of device and packaging 
specifications and design aids and audits. 

6.3 Thermal performance 

The 3B20D Processor is designed to operate in a normal environ­
ment of less than 37°C and at a maximum elevation of 6000 feet above 
sea leveL In the event of a building cooling failure, the processor will 
remain operable in air temperatures of up to 49°C. During these 
building cooling failures, the circuit board temperatures do not exceed 
the design goal of 95°C in the control frame and DFC. In the lOP 
units there are a number of critical LSI devices, which are kept below 
70°C to maintain good timing margins. All peripheral equipment (disk 
drives, tape drives, printers, and terminals) is tested by the respective 
vendor for operation up to 49°C. 

Final thermal acceptability of each 3B20D system to be shipped is 
verified in a factory heat test where each processor system, with 
peripherals, is heated to 49°C for a 6-hour functional test. 
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The 3B20D file memory system employs microprocessor-based in­
telligent Disk File Controllers (DFC), each supporting a complement 
of one to eight 300-megabyte disk drives. The DFC communicates 
with the system via a high-capacity dual-serial channel link to the 
Direct Memory Access Controller (DMAC) that accesses the proces­
sor's main memory. The DFC communicates with its disk files via an 
industry standard interface. The disk power system is also micro­
processor based. The system operates disk drives on commercial ac 
power until a power failure occurs. The disks are then switched under 
microprocessor control to inverter power until the commercial ac 
fault is cleared, at which time the disk is returned to commercial ac 
power. 

I. INTRODUCTION 

The 3B20D file store consists of a microprocessor based Disk File 
Controller (DFC) plus one to eight 300-megabyte disk files. The files 
are powered by a microprocessor-based power system consisting of an 
inverter, a cycloconverter and a static switch. The DFC communicates 
via the 3B20D Dual-Serial Channel (DSCH) and through the Direct 
Memory Access Controller (DMAC) to the processor's main memory 
(see Ref 1). The DFC communicates with its disk files via a disk 
interface that utilizes the industry standard Storage Module Drive 
(SMD) interface. 

The DFC provides for stand-alone processing of disk accesses via 
approximately 30,000 bytes of code stored in its PROM memory. Also 
stored in the PROM memory are 30,000 bytes of diagnostic code.2 

The DFC uses a bit-sliced bipolar microprocessor to manage the 10-
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MHz serial data streams to/from the disk files, the disk control 
functions, and the system interface. In addition, the processor runs a 
disk exerciser program to test disk drives during periods when no 
system accesses are in progress. 

II. SUBSYSTEM COMPONENT DESCRIPTION 

The disk file memory system for the 3B20D Processor consists of 
three major elements: a DFC, 300M-byte moving head disk memories, 
and a 20B Vac power-control system for the disk memory units. The 
power system consists of a Power Control Unit (PCU) and an emer­
gency -4B Vdc to 20B Vac Disk File Inverter (DFI). 

2. 1 The 3OD-megabyte disk drive 

The disk drives used in 3B20D Processor are high-speed, random­
access, data-storage devices (Fig. 1) supplied by Century Data Systems 
and the Control Data Corporation. The disk drive unit consists of two 
physical parts. The basic drive assembly contains the chassis, power 
supply, air-filtration system, read/write head assembly, control circuit 
cards, and the input/output interface. The second part is the remov­
able disk pack upon which data is recorded. 

The disk pack contains 12 stacked platters. The inner ten are coated 
on both sides with the recording medium, ferrous oxide. The top and 
bottom platters are only for disk pack protection. The remaining ten 
platters have a total of 20 recording surfaces, of which 19 are used for 
recording data while the other contains prerecorded servo information 
that is used for head positioning and timing. Each disk pack is capable 
of storing 300M bytes (unformatted) of information. Each read/write 
head may be positioned over B15 different cylinders. The 19 read/write 
heads plus the servo head are mechanically attached together on a 
single carriage arm. Therefore, all heads are moved in parallel such 
that all heads are always positioned over the same cylinder. By 
selecting one of the 19 data surfaces, an individual track is selected. 
Each track is divided into 32 sectors or blocks of 512 bytes each. A 
sector is the smallest quantity of data written or read by a disk file 
controller. 

Communication to and from the drive is via the industry-standard 
SMD type of interface. Two cables interconnect the drive to the disk 
file controller. One contains the control and status signal lines while 
the other contains the read and write data signal lines. The disk drive 
is powered from 20B-volt single-phase power. Starting current is a 
maximum of 50 amperes, with running current of approximately 9 
amperes. The disk pack is rotated at approximately 3600 RPM; thus 
the average rotational latency is B.5 ms. The average head positioning 
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Fig. I-Moving head disk frame. 

(seek) time is 30 ms. Data is transferred to and from the disk drive at 
a 9.67-MHz serial data rate. 

The disk units are designed to meet Bell System environmental 
requirements. Acoustical noise generated by a disk unit is less than 65 
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dBA. RFI gasketing material was used extensively to limit electromag­
netic radiation from the units and reduce the susceptibility of the units 
to external electromagnetic radiation sources. 

2.2 Disk power control and backup power system 

The PCU and the -48 V dc to 208 Vac DFI are used in combination 
to supply uninterruptable power to a single 300M-byte disk. The units 
interconnect with each other and the disk as shown in Fig. 2. 

Inputs to the PCU are -48 V dc, two sources of 208 Vac, and control 
signals from the DFI. Power for the logic circuitry is derived from the 
-48 V dc. One source of the 208 Vac is from the commercial power grid 
or the essential ac grid in a central office. The other source of 208 Vac 
is from the DFI. Status and control functions also are received by the 
PCU from the DFI. 

Cooling for the DFI is provided by two fans. The fans are active 
only when the unit is supplying 208 Vac. The power dissipated by the 
DFI under a load condition is 500 watts when supplying 2000 watts to 
the disk. Normally power to the disk is supplied by the commercial or 
essential ac. Under this condition, the inverter dissipates no more than 
150 watts. 

Even though nominally continuous, commercial power is subject to 
minor interruptions of short duration. Since the disk pack has sub­
stantial inertia it is possible to power the motor from the commercial 
ac mains despite such interruptions. The disk drives used in the 3B20D 
Processor have ferroresonant supplies for their own internal dc power, 
and these supplies are tolerant of minor interruptions in input voltage. 

The 3B20D disk power system takes advantage of these character­
istics to deliver power to the disk drive from the most efficient source. 
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Fig.2-Interconnections between the control panel, inverter, and disk transport 
cabling units. 
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The DFI powered from the battery plant supplies the power for the 
disk drive when the ac mains are not available or out of tolerance in 
voltage or frequency. A silicon controlled rectifier static switch pro­
vides the changeover within two cycles of the time the ac mains are 
found to be out of tolerance. The inverter is phase locked to the ac 
mains voltage when it is present so that the transient due to the 
switch over to battery power is minimized. The operation of the disk 
drive is unaffected by the switchover between ac and inverter power. 

The standby inverter (Fig. 3) operates at 600 Hz; its output is 
converted to the required 60 Hz ac by means of a tap-changing 
cycloconverter. This provides a piecewise approximation to the desired 
60-Hz sine wave (Fig. 4). The inverter frequency was chosen high 
enough to allow the use of a small, efficient inverter transformer and 
also to allow a sufficient number of intervals in which the output 
voltage could be selected to make a good approximation to a sine 
wave. The cycloconverter output has the same peak and rms values 
and same average value over a half cycle as the sine wave it replaces. 
The third and fifth harmonics are also reduced to small values by 
appropriate choice of cycloconverter parameters. 

The disk power system is controlled by a microprocessor housed in 
the inverter. This processor administers the operation of the inverter, 
cycloconverter, and static switch so that the proper power source is 
connected to the disk drive. The choice of power source is made on 
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the basis of sampling the ac mains for voltage above the programmed 
threshold value ten times per half cycle. If the mains voltage supply is 
found to be deficient for two samples in any half cycle, the static 
switch disconnects the ac mains and the cycloconverter supplies power 
to the disk drive. When the mains voltage has been determined to be 
within acceptable limits in voltage and frequency for a sufficient time, 
the cycloconverter output is inhibited and the static switch again 
allows the mains to power the disk drive. 

While operating from the battery plant, the inverter regulates its 
output voltage to compensate for battery variations. A reflex regulator 
circuit uses some of the 600-Hz inverter output voltage in a phase­
controlled rectifier to control the apparent input voltage to the inverter 
to maintain it constant at -52.2 volts in the face of battery voltages in 
the range of -42.75 to -52.5 volts. The microprocessor controls the 
operation of the regulator so that the peak current demands on the 
inverter transistors are not increased by the operation of the regulator. 
The regulator operation is inhibited during the times the peak output 
current is delivered to the load, and regulator operation is only allowed 
when the 60-Hz output is in the part of the cycle where the output 
voltage, and therefore the inverter load current, is near zero. 

Since it may be necessary to change the disk pack while ac power is 
not available, the inverter must be able to start the drive motor. The 
current required to start the disk drive motor is much larger than the 
current required to run the motor. Since it would be uneconomical to 
size the inverter to carry the starting load, the microprocessor controls 
the cycloconverter output voltage during the time the motor is starting 
so that the starting current is greatly reduced. This power reduction is 
done at the expense of starting time; the time required to start the 
drive motor is 45 seconds on battery and 15 seconds on the commercial 
maIns. 

With the inverter always powered up even while the disk is being 
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powered by commercial ac, the possibility exists that the power-han­
dling components could suffer a failure that would be undetected until 
the inverter was required to supply power. A diagnostic triggered by 
a disk being out of service is available to detect this failure. The 
microprocessor continually monitors the state of the power switch to 
detect when the disk has been taken out of service. When this condition 
is detected, the microprocessor starts the diagnostic routine, which 
causes the inverter to supply power to the disk drive for a few minutes 
while monitoring the cycloconverter output voltage for the correct 
levels. Thus, any failure of power-handling components will be de­
tected during the regular daily diagnostic exercise of the disk frame. 

2.3 Moving head disk frame 

The Moving Head Disk (MHD) frame (Fig. 1) is the frame config­
uration used to mount a disk, PCU and DFI. 

The PCU and DFI share a common interface cable for transmitting 
status and control information. The DFI 208-Vac output is connected 
to the PCU via a flexible conduit. The disk unit is in turn connected 
to the PCU via a flexible power cord. The -48 V dc input for the PCU 
is connectorized at the top of the frame. However, the DFI -48 V dc 
input is routed directly to a power-distribution frame due to the wire 
gauge and currents involved. 

The disk drive is rolled onto and secured to a metal base plate 
fastened in the base of the MHD frame. The drive protrudes out the 
front of the frame 18 inches. The base plate is hinged and is raised or 
lowered by jackscrews on both sides of the base plate. 

The I/O cables between disks and the DFC are routed in a rectan­
gular duct at the rear of the MHD frame. The duct serves to provide 
additional electromagnetic shielding and physical protection for the 
cables. In multiple, adjacent MHD frame applications, the cable ducts 
form a continuous trough for the I/O cables. 

2.4 Disk growth and floor plan 

The MHD frame was designed to provide for growth in a modular 
fashion. Depicted in Fig. 5 is a typical floor plan for the 3B20D 
Processor. The Peripheral Control (PC) frame is situated between two 
sets of MHD frames. Each PC frame contains a DFC (Fig. 6). 

The total cumulative control cable bus length between a DFC and 
all disks controlled by the DFC is 100 cable feet. Thus, all MHDs 
controlled by a particular DFC are placed adjacent to each other so as 
not to exceed the 100-foot limit. 

2.5 3820D disk file controller 

The 3B20D Disk File Controller (DFC) is a high-performance, 
microprogrammed processor whose design provides efficient control of 

FILE SYSTEM 241 



r -I TU CU CU PD ~ I-
I ~----~----~----~----~----~ 
I 
I 
I 
I 
I 

10-6 
I 
I 
I 
I 
I 
I 

-I 
I 
I 

L 

MAINTENANCE AISLE 

3 1 0 2 
MHO MHO PC PC MHO MHO 

(DFC1) (DFCO) 

DIRECTION OF GROWTH-

Fig. 5-Typical floor plan of the 3B20D Processor. 

MHD drives and data transfers between the 3B20D Control Unit (CU) 
and MHD units. Each DFC supports a maximum of eight MHD units 
and utilizes a standard 3B20D input/output peripheral interface. The 
following sections discuss the hardware architecture and functionality 
of the DFC. 

2.5.1 3820D DFC architecture 

2.5.1.1 DFC communications bus. A DFC with its associated MHD 
units-as shown in Fig. 7-consists of a processor, MHD interface, and 
the two circuit boards that provide the interface to the 3B20D Proc­
essor. These are linked together via a common communications bus. 

The bus, which is dc coupled, provides 16 data bits plus 2 parity 
bits, 5 bits for source address, 5 bits for destination address, and 1 
synchronization clock line. The source/destination addresses are bi­
nary encoded allowing a maximum of 32 unique hardware registers to 
be addressed on the bus. The DFC's processor and the 3B20D Proc­
essor interface each utilize 8 address codes, and the remaining 16 codes 
are assigned to the MHD interface. Since the bus provides unique 
source and destination address buses, only one bus cycle, which is 
defined by the synchronizing clock, is required to transfer a 16-bit data 
word from one hardware register to another. All data transfers on this 
bus are initiated and controlled by the DFC's processor. The period of 
the synchronizing clock may be 150, 200, 250, or 300 ns and is dependent 
on the instruction being executed by the processor, the capabilities of 
the hardware, and the timing requirements of specific firmware rou­
tines. 

2.5.1.2 DFC/MHD interface. Each DFC will support a maximum of 
eight MHD units equipped with an SMD interface. As depicted in Fig. 
7, each MHD is connected to the DFC via two cables, one of which is 
common to all MHDs and is daisy chained from one unit to the next. 
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Fig. 6-Peripheral control frame. 

This cable provides a communication path between the DFC and 
MHDs for command and status information. The transfer of data 
between the MHDs and the DFC occurs serially over a private path 
provided by the other cable. The data transferred is in a Non-Return 
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to Zero (NRZ) format and a synchronous bit clock accompanies the 
data to simplify the circuit requirements within the DFC and MHD. 

Because the MHD units may be located up to 100 cable feet from 
the DFC, signaling paths in both cables are implemented as twisted 
pairs, and both the DFC and MHDs interface with the cable using 
differential line drivers and receivers. 

2.5.1.3 DFC/3B20D control unit interface. The DFC communicates 
with the 3B20D CU via a DSCH interface consisting of the Duplex 
Dual Serial Bus Selector(DDSBS) in the DFC and DSCH in the 
3B20D CU. The communications path between the DDSBS and the 
DSCH consists of five twisted-pair dc-coupled signaling paths. The 
pairs are divided into two bidirectional data pairs, two unidirectional 
clock pairs, and a single pair used to transmit service requests to the 
DMAC and interrupt requests to the 3B20D CU. 

U sing the clock and data pairs, the minimum amount of information 
that is transferred is 32 data plus 4 parity bits. The data is transmitted 
serially on the two data pairs (16 data plus 2 parity on each pair) in an 
NRZ format. A synchronous bit clock is transmitted on the appropriate 
clock pair by either the DDSBS (DFC to CU transfer) or the DSCH 
(CU to DFC transfer). The interface does support a block transfer 
mode where 16 words of 32 bits may be transferred as a single block 
between the DFC and CU. This mode of operation is useful in mini­
mizing the overhead associated with transferring large blocks of data 
between the DFC and CU. 

The DFC's processor does not access the DDSBS directly, but 
rather has read/write access to several registers in the Bus Interface 
Controller (BIC). The BIC functions as a buffer between the DDSBS 
(32 bits) and the DFC's processor (16 bits). The BIC buffers data and 
commands for the processor and performs the necessary handshaking 
to communicate with the DDSBS. 

2.5.2 DFC processor 

The DFC's processor consists of the Peripheral Interface Controller 
(PIC) and its associated Microinstruction Control Store (MCS). The 
PIC is a 16-bit, bit-sliced microprocessor that is capable of performing 
all the common arithmetic, logic, and sequencer flow-control opera­
tions found in many 16-bit minicomputers. The PIC contains a micro­
program data register, Arithmetic Logic Unit (ALU), 8K bytes of RAM 
that serve as a temporary data store, vectored interrupt control, and 
microprogram address generator. 

The MCS stores instructions that the PIC executes in Programmable 
Read-Only Memory (PROM) devices. Each MCS circuit pack has the 
capability of storing a maximum of 4K microinstructions. A total of 
three MCS circuit packs are utilized. In addition to functioning as a 
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store, the MCS also generates the synchronizing clock for the PIC and 
DFC communication bus based on bits stored with each microinstruc­
tion. 

On the rising edge of each synchronizing clock signal, the PIC 
generates a new microprogram address that is sent to the MCS. The 
MCS provides the PIC with the instruction stored at the requested 
address before the next synchronizing clock, at which time the PIC 
loads the instruction in its microprogram data register and sends a new 
address to the MCS. The PIC then executes the registered instruction 
while the next succeeding instruction is being fetched from the MCS. 
This pipelined operation that is provided by the microprogram data 
register allows a higher instruction execution rate than would other­
wise be possible and contributes to a higher level of DFC performance. 

Each PIC microinstruction is 40 bits wide and is divided into several 
fields as shown in Fig. 8. The PIC registers bits 0 through 31 in its 
microprogram data register while bits 32 through 35 are used by the 
MCS to verify parity on each instruction that is fetched, and bits 36 
through 39 determine the period of the synchronizing clock generated 
by the MCS. Bits 0-4 and 5-9 are the source and destination address 
bus fields, and since these bit fields are dedicated, each PIC instruction 
specifies the movement of data from one register to another. Bit 12, 
when set, disables all hardware interrupts. The capability to disable 
interrupts on a per-instruction basis is required for the proper func­
tioning of instructions that implement "JUMPS" and also allows the 
programmer to construct code segments that are critical from a real­
time viewpoint and cannot be interrupted. Bits 10 and 11 determine 
how the overlay field, bits 13 through 31, are to be interpreted by the 
PIC. 

2.5.3 MHD interface 

The MHD interface consists of three circuit packs that allow the 
PIC to communicate with its MHD units. These circuit packs are the 
MHD Control (MHDC), MHD Data/Clock (MHDDC), and Parallel 
Serial Data Interface (PSDI). 

2.5.3.1 MHO control. The MHDC consists of four registers, varying in 
width, whose outputs drive the control bus of an MHD with an SMD 
interface. These registers may be loaded and read by the PIC via the 
internal DFC communication bus. In addition to these registers, the 

39 36 35 32 31 13 12 1110 9 5 4 o 
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Fig. 8-Microinstruction of the peripheral interface controller. 
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circuit pack also provides a port that allows the PIC to sample 8 bits 
of status information from the MHD that is currently selected by the 
DFC. The output of each register drives the input of the differential 
line driver whose outputs drive the control cable to the MHD units. 
Likewise, the 8 bits of MHD status are driven onto the cable by the 
selected MHD unit and differential line receivers in the MHDC pack 
translate the differential voltage to a TTL level. 

The device-enable register is a single bit register that is reset by the 
DFC during a power-up sequence, thus disabling the interface between 
the DFC and MHDs. The PIC writes this register to a one, enabling 
the interface, after executing its power-up microcode. 

The unit-select register is a 4-bit register that contains the address 
of the MHD unit communicating with the PIC. 

The data register is II-bits wide and its outputs form the data 
portion of the control cable. This register is used with the disk tag 
register to transfer command information to the MHD unit consisting 
of cylinder number, read/write head number, and read/write/initiali­
zation commands. 

The tag register's outputs form strobe signals that cause the MHD 
units to use information present on the data portion of the control 
cable. For example, bit 3 going active causes all MHDs on the control 
cable to compare the state of the unit-select bits with the MHD's 
address code. If a match occurs, then that MHD becomes selected and 
honors commands sent using bits 0 through 2 of the tag register. Since 
each MHD connected to a DFC has a unique address code, only one 
MHD may be actively communicating with the DFC at a given time. 
time. 

2.5.3.2 MHO data/clock. The MHDDC interfaces the serial data and 
clock between the MHDs and the PSDI, and provides the PIC access 
to a select acknowledge signal generated by each MHD. The select 
acknowledge signal is made active by an MHD whenever it is selected, 
and by providing one acknowledge signal per MHD allows the PIC to 
verify that the correct disk volume has been selected for use. With 
respect to the serial data and clock signals, the MHDDC functions as 
a voltage level translator (differential signaling to TTL and vice versa) 
and signal multiplexer, routing the data/clock signals between the 
selected MHD and the PSDI. 

2.5.3.3 Parallel serial data interface. The PSDI allows the PIC to 
transmit data to and receive data from the MHD. A block diagram of 
the PSDI is shown in Fig. 9. 

Data exchange between a DFC and an MHD drive takes place over 
a IO-MHz serial data path. During a disk write, the PSDI performs 
parallel to serial data conversion, checks data parity as the data is 
being shifted out serially, and computes a 32-bit cyclic ECC that is 
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also transmitted to the disk after a predefined block of data has been 
transmitted. During a disk read, the PSDI performs serial-to-parallel 
data conversion, computes data byte parity, and evaluates the ECC 
read from disk to determine if any errors are present in the data. While 
the PSDI itself does not perform the error-correction function, it does 
provide the PIC with the following information about each data block 
read from the disk: (i) The presence of errors, (ii) whether the error is 
correctable or uncorrectable, (iii) the location of the error relative to 
the start of the block, and (iv) an II-bit correction mask that is to be 
exclusive ORed with the received data to affect the correction. 

2.6 Disk read and write operations 

2.6.1 Disk read operation 

The PSDI functions as a serial data interface between the PIC and 
an MHD drive. During disk reads serial data and clock transmitted by 
the disk drive are assembled into I6-bit words in the disk input shift 
register, and stored in the data FIFO. Simultaneously, the serial data 
is also presented to the input of a parity generator where data byte 
parity is assigned and stored in the FIFO together with the data, and 
to cyclic code generator A where a 32-bit code word is computed to be 
utilized .during the error correction search process. In addition, this 
cyclic code generator searches the incoming data stream for the 
presence of data synchronization bits. The generator searches the 
synchronization characters following the preamble to locate the begin­
ning of the address/ data fields in the serial data stream. Once sync is 
found, the read/write disk sequencer begins assembling I6-bit words 
and storing them in the data FIFO. The only information stored in the 
FIFO is the address and data bytes. Once the ECC field from disk has 

. been input to the code generator, the contents are serially transmitted 
to a second code generator C. Then, to start error correction genera­
tion, the first code generator begins its search for synchronization 
characters again. 

Cyclic code generator C and the error correction sequencer function 
together to determine the presence and location of an error in the 
received serial data stream. Code generator C is a 32-bit shift register 
which has several feedback paths around it. The error correction 
sequencer supplies shift pulses to generator C and if after each shift 
the contents of the low-order 21 bits of generator C are zero, the 
correction sequencer stops and indicates that a correctable error has 
been found. If they are nonzero and both the bit and word location 
counters have not reached their maximum counts, the sequencer will 
generate another shift pulse. If the 21 bits remain nonzero and both 
the bit and word location counters have reached their maximum 
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counts, the sequencer stops and indicates that an uncorrectable error 
is present in the data stream. 

An uncorrectable data error is one where the first and last data bits 
in error are separated by more than nine consecutive bits. A correctable 
data error is one where the first and last data bits in error are separated 
by nine or less consecutive bits. The first case of no error is distin­
guished from the error case by the value of the upper-order 11 bits for 
code generator C. With no bits in error, these 11 bits will all be zero. 

As mentioned earlier, the PSDI does not perform the error correction 
function, but does provide the PIC access to the information necessary 
to perform this task. The correction mask code generator C high-order 
11 bits, the bit location counter, word location counter, and correction 
sequencer status (correctable or uncorrectable data error) are made 
available to the PIC through the output data multiplexer whose 
outputs are the PIC data bus. The error correction code contained in 
each section of the disk is utilized together with code generators A and 
C, and the error correction sequencer are designed to detect and locate 
errors in the address, data, and the error correction code fields recorded 
on disk. 

2.6.2 Disk write operation 

When writing the disk, information contained in the FIFO is loaded 
into the disk output shift register where it is serialized and transmitted 
to the disk drive under the control of the read/write disk sequencer. 
Simultaneously, the serial data stream is applied to the input of the 
parity check generator and cyclic code generator B. Although each 
data word in the FIFO has two parity bits associated with it, they are 
not transmitted to the disk, but are loaded into the parity check 
generator each time the output shift register is loaded from FIFO. In 
addition to the parity bits, each data word also has associated with it 
a parity check control bit, which is loaded into the parity check 
generator during the FIFO to output shift register transfer. The parity 
check control bit either enables or disables the parity generator on a 
per-word basis allowing words with known bad parity to be transmitted 
without causing parity errors. 

Cyclic code generator B computes the 32-bit ECC field to be written 
on disk based on information transmitted in the address and data 
fields. Since writing a sector on disk requires all fields shown in Fig. 6 
to be written, code generator B also searches for the synchronization 
characters. When sync is found, the read/write sequencer configures 
code generator B to operate as a feedback shift register to compute 
the ECC field for the address and data fields that follow the sync 
characters. In addition, at sync time, the read/write sequencer begins 
counting the words it loads into the output shift register from the 
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FIFO. After the last data word has been serially transmitted from the 
output shift register, the read/write sequencer disables all the code 
generator B feedback paths, enables the contents of the generator to 
be shifted out to the disk, and then redirects the serial stream back to 
the FIFO/output shift register to transmit the post-amble characters. 
Once the ECC field is transmitted, both the read/write sequencer and 
code generator B revert back to their initial states searching for 
synchronization characters. 

For diagnostic purposes it is useful to be able to write an invalid 
ECC field when writing a sector on disk. Setting a bit in the PSDI 
command/status register prevents the read/write sequencer from 
transmitting the contents of code generator B to the disk. Instead, the 
read/write sequencer continues to transmit information to the disk 
contained in the FIFO. This scheme allows any two 16-bit words to be 
written in the ECC field in place of the normally computed value 
provided by code generator B. 

2.6.3 Data FIFO 

A 32-word FIFO memory is loaded by the read/write sequencer and 
read by the PIC during a disk read operation, with the reverse being 
true during a disk write operation. Each word in the FIFO is 19 bits 
wide: 16 data, 2 parity, and 1 parity check enable bit. As explained 
earlier the parity check enable bit is significant only during a disk 
write operation. FIFO write access is controlled by the mode bit in the 
PSDI status register. Depending on the state of this mode bit, data is 
written into the FIFO by the read/write sequencer or by the PIC. 
Because the FIFO requires that valid data be present for 70 ns after 
the write pulse makes its low-to-high transition, two input data buffer 
registers are provided for use by the read/write sequencer and PIC. 

Associated with the FIFO are four status flags. The FIFO ready and 
FIFO half full/empty flags provide the PIC information to load or 
unload the FIFO properly and efficiently. When the PSDI is in the 
read mode, FIFO ready low/high controls whether the PIC mayor 
may not read a word from the FIFO. Likewise, when FIFO half full/ 
empty occurs, it allows or prevents the PIC from reading 16 words 
from the FIFO. 

In write mode, these flags function similarly with FIFO ready low, 
indicating that the PIC may load a single word in the FIFO, and FIFO 
half empty low, indicating that the PIC may load 16 words in the 
FIFO. In addition to these FIFO status indicators, FIFO underflow 
and overflow error flags have been provided. A FIFO underflow error 
occurs whenever the read/write sequencer or PIC reads data from the 
FIFO when the FIFO is empty or valid data is not present at the 
bottom of the FIFO. FIFO overflow occurs when either the read/write 
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sequencer or PIC writes the FIFO when it is already full or data in the 
top memory location has not rippled down to a lower memory cell. 
Both of these errors are latched into individual flip-flops that can only 
be cleared when the PSDI is master cleared. 

2.7 DFC firmware structure 

2.7.1 Introduction 

The disk file controller firmware provides the interface between the 
3B20D Processor and the moving head disk for storage and retrieval 
of information. The firmware can make certain decisions of its own 
regarding the integrity of the MHDs or of itself, but will not take any 
actions on data content. It has a routine diagnostic exercise to check 
itself and a disk exerciser to check disk data format integrity. It also 
has sanity timers on data transfers to/from the processor and timers 
on disk accesses. Data is transferred between the DFC and the proc­
essor at an average rate of 1 megabyte per second. The DFC can 
handle up to 8 MHDs on a single controller. There are two job­
processing options that may be invoked by the 3B20D. The DFC will 
process jobs on either a first-in/first-out basis or by a modified elevator 
algorithm. The elevator algorithm is used to keep the number of long 
head seeks to a minimum. There is also an autoread retry to help in 
recovering marginal data· from the media. 

The firmware will do as much as possible to guarantee the data 
integrity on a disk pack and will not allow data with bad parity to be 
written either to the disk or the 3B20D. The DFC will try, as much as 
possible, to perform 'overlapped' seeks. That is, if there are two or 
more requests, each to a different disk, the DFC will issue a seek to 
each disk before trying to do the job on anyone of the disks. Thus, if 
a seek requires a long time to complete, and another disk has completed 
its seek, then the job for the disk which has completed its seek will be 
done. 

To assure the operational capabilities of a disk, a disk exerciser is 
run periodically. The disk exerciser assures that the data within a 
given area of the disk is usable. By sequentially addressing various 
areas of the disk with the exerciser, eventually all areas of the disk will 
be verified for data integrity. 

2.7.2 Timing considerations 

The time it takes to get or put data on a disk file is determined 
primarily by how far away the data block is from the current position 
of the disk heads. The majority of disk accesses are less than 20 blocks 
in length, thus the rotational latency and seek times of the disk file 
become the determining factors in data transfer. In the optimal case, 
there is about 2 milliseconds of delay from the time the disk file 
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controller gets the command until it is through transferring the data. 
This is the sum of verifying the disk head location, doing error 
correction, and reading the requested block from a disk back to the 
processor. The worst case, assuming no DMA contention problems, is 
74 milliseconds: the sum of the maximum seek time plus one rotation 
of the disk. The average time is 41 milliseconds. 

2.7.3 Firmware tables 

The DFC maintains an orderly record of data within the controller 
by using six tables: SYSGEN data table, circular queue table, Active 
Job Table (AJT), read data buffers, write data buffers, and the disk 
verify data table. 

SYSGEN is a programmed input/output command received by the 
DFC. This command contains the address in 3B20D main memory of 
the SYSGEN table. The SYSGEN data table contains information for 
the DFC. The information includes the: 

unload pointer 
load pointer 
disk driver queue address (virtual) 
maximum cylinder allowed 
optimization data 
maximum number of jobs in disk driver's queue. 

The job queue is an image of the data from the disk drivers queue. 
There are 16 bytes in each disk job description. There can be a. 
maximum of 64 such jobs in the DFC at anyone time. 

The AJT has a series of entries to describe to the firmware the 
status of a particular drive. There is one such entry for each disk 
allowed on the controller. There are 32 words associated with each 
disk entry in the AJT. Some of the more important items in the list 
are: command, current disk maintenance state, current cylinder num­
ber, and where on the disk to start the job. 

There are eight buffers set aside for the storage of data to be 
transferred to or from the disk. Each buffer is 263 words (16 bits each). 
There are seven status words and 256 data words in each buffer. 

The disk verify routine checks the validity of data on the disk. This 
is done by reading a sector and determining if the header and data are 
correct. If they are not, then that disk block number is recorded in the 
disk verify buffer. Up to 64 such bad blocks are allowed before the 
verify routine will terminate. 

III. SUMMARY 

The 3B20D file memory system provides a maximum formatted 
storage capacity of 2,030 megabytes of storage on eight 300-megabyte 

FILE SYSTEM 253 



disk drives. The disks are managed by a disk file controller using a 
high-speed bit-sliced microprocessor, which utilizes 30,000 bytes of 
microcode to asynchronously process data transfers to and from the 
3B20D main store via DMA. The disk controller interface to the 
3B20D processor is via the high-speed dual-serial channel. 
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The 3B20D Input/ Output system supports a large number of pe­
ripheral devices of various types. The 3B20D Input/Output Processor 
was designed for maximum flexibility because of the diversity of the 
peripheral interface requirements. Because of this diversity the basic 
structure was developed around a high-speed bipolar multiplexor. 
This multiplexor interfaces with a standard microprocessor bus to 
numerous specialized one- or two- board computers, which interface 
to the peripheral devices. Power and unit designs of the input/ out­
put processor also provide flexibility in power control and ground 
isolation of the peripherals. The variety of peripheral units include 
slow- and medium-speed tape drives (including streamers), low- and 
high-speed data links, medium to very-high-speed printers, and scan­
ner and signal distributor circuits. 

I. INTRODUCTION 

The 3B20D Input/Output system was planned from conception to 
be very flexible, and to support a large number of different peripheral 
devices. To accomplish this, several difficult system and design-level 
problems had to be solved. 

(i) Processor real time-Previous experience in system input/out­
put had shown that even low-speed input/output could be very real­
time intensive. Terminal input/output, in particular, requires consid­
erable per-character processing. The 3B20D Input/Output system, 
therefore, had to provide for front-end processing. 

(ii) Lack of interface standards-Input/output standards at the 
physical, electrical, and protocol levels for certain peripheral devices, 
even those of the same functional class, i.e., tapes, floppy disks, and so 
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on, are relatively nonexistent. Where there are standards, such as 
Electronics Industries Association's RS 232 (electrical and physical 
standards for data link and terminal access), they often are interpreted 
differently by various vendors, cover only a portion of the market for 
a class of devices, or are subject to periodic revision. The input/output 
system, therefore, had to provide a standard interface that could easily 
support a wide range of nonstandard interfaces and power/ground 
systems. 

(iii) Variations in operation and maintenance processing-Error 
handling, as well as operational processing, is significantly different for 
each peripheral device. 

(iv) Noninterruptive growth and maintenance-The input/output 
system had to permit easy addition of new or replacement devices 
without interrupting service. 

The sheer number of various devices available, their mismatch in 
performance to the central processing unit bus structures, and their 
often low cost and rapid obsolescence required an extremely flexible 
and adaptive interface structure. 

II. THE 38200 INPUT jOUTPUT PROCESSOR 

The 3B20D input/output processor resolves the many problems 
stated above with five major hardware components, and a modular 
software structure in the host. The hardware coniponents are: dupli­
cated access to each 3B20D half over the two dual-serial channel 
interfaces; a common high-speed memory access multiplexor, the 
peripheral interface controller; communities of single-board com­
puters, called peripheral controllers, which provide preprocessing in­
telligence and specialized device input/output interfaces; the input/ 
output microprocessor interface bus, which provides a common Pe­
ripheral Controller interface to the Peripheral Interface Controller; 
and unit power design structured for flexibility and growth (see Fig. 1). 

2.1 Circuit partitioning 

The dual-serial channel is described in detail in this issue including 
the Duplex Serial Bus Selector.1

•
2 The duplex serial bus selector acts 

in concert with the bus interface controller circuit pack to communi­
cate with the peripheral interface controller. The bus interface con­
troller buffers processor data and commands to the peripheral interface 
controller, as well as data and status information from the peripheral 
interface controller. It also performs the mandatory "handshaking" to 
communicate with the duplex serial bus selector. The bus interface 
controller allows the 16-bit peripheral interface controller to transmit 
and receive data from the higher-capacity 32-bit duplex serial bus 
selector at a rate the peripheral interface controller is able to accept. 
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Fig. I-The 3B20D peripheral interface. 

The bus interface controller verifies the integrity of data transferred 
between the duplex serial bus selector and the peripheral interface 
controller via per-byte data-parity checks. The bus interface controller 
uses a 16-word by 32-bit data first in-first out register that can be 
alternately accessed by the peripheral interface controller and duplex 
serial bus selector for the transfer of data. The bus interface controller 
contains a 32-bit command register that records 3B20D processor 
commands to the peripheral interface controller, and a 16-bit status 
flag register and a 16-bit error flag register. The status flags are used 
to request and interrupt direct memory access service from the 3B20D 
Processor, and inform the peripheral interface controller of 3B20D 
commands or requests for data transfer. The error flags record the 
occurrence of errors and aid in fault resolution and recovery. Peripheral 
interface controller sanity and interval timing functions are also pro­
vided by the bus interface controller. 

The peripheral interface controller is a simplex, high-speed, bipolar 
microprocessor. The peripheral interface controller, with its associated 
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bus interface circuits, handles all common maintenance and opera­
tional input/output functions between the various peripheral control­
lers, and the 3B20D direct memory access. 

The peripheral interface controller consists of two circuit packs, a 
controller and one 8K-word micro control memory. The peripheral 
interface controller contains an arithmetic and logic unit, a I6-word 
general register file, a 4K-word data store, an 8-level interrupt con­
troller, a micro controller sequencer, and a pipe-line register. The 8K­
by 40-bit micro control memory pack stores the peripheral interface 
controller operational and diagnostic firmware. 

The input/output microprocessor interface circuit serves to interface 
the I6-bit peripheral interface controller with up to four communities 
of four peripheral controllers each. The interface between the input/ 
output microprocessor interface and each community consists of a 16-
bit memory address, an 8-data plus I-parity-bit bidirectional data bus, 
and eight control pulses. Figure 2 details the input/output micro­
processor interface bus structure. In addition, a private peripheral 
controller select signal is connected to each of the 16 peripheral 
controllers. The selected peripheral controller acknowledges the re­
ceipt of a control pulse by setting its control signal acknowledge. The 
16 control signal acknowledge bits are compared to the 16 peripheral 
controller select signals to indicate to the peripheral interface control­
ler when the acknowledgment has been received. 

Each peripheral controller also has three request leads that are 
employed to report errors or to request service. Each peripheral 
controller request lead is assigned a bit in each of three I6-bit request 
registers: peripheral controller error, interrupt, and service request. A 
summary bit is provided over the interrupt register contents to trigger 
a peripheral interface controller interrupt whenever any peripheral 
controller interrupts are set. The peripheral interface controller can 
read each of the request registers to resolve requests to the peripheral 
controller level. 

The four fanout branches of data, address, and control signals (one 
per community) are driven from three common registers. The I6-bit 
address register is implemented using binary up/down counters to 
allow autoincrement and autodecrement capability. The mode of op­
eration is specified by bits in the control signal register. Special input/ 
output microprocessor interface circuitry has been provided to guar­
antee address setup and hold times of the peripheral controller meIJ?ory 
read and write control signals. 

The peripheral interface controller data register is segmented by the 
input/ output microprocessor interface into high and low bytes to be 
shipped a byte at a time to and from the 8-data and I-parity-bit 
peripheral controller data buses. A flag in the control register selects 

258 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



Z 
""0 
C 
--i 

......... 
o 
C 
--i 
""0 
C 
--i 

I\) 
0'1 
(0 

PIC INTERFACE 
I 

/ ---, 
INT DATA BUS SRC DST 

l' t, 
16 

4 

15 0 CSA 4 

'\. / 

ER - ERROR REGISTER 
INT - INTERRUPT REGISTER 

MEM ADD - MEMORY ADDRESS 
P - PARITY 

I 
INTERFACE TO FOUR PC COMMUNITIES 

PC - PERIPHERAL CONTROLLER 
PIC - PERIPHERAL INTERFACE CONTROLLER 
SR - SERVICE REQUEST REGISTER 

Fig. 2-Microprocessor interface. 



the high or low byte as the source or destination of the data transfer 
between the input/output microprocessor interface and the selected 
peripheral controller. An additional bit in the control register is used 
to toggle the data byte selector flag after a peripheral controller 
memory read or write cycle. The circuit incorporates a delay timing 
chain to guarantee data hold time during peripheral controller memory 
write operations. 

The control register is partitioned into two fields; an 8-bit register, 
the outputs of which directly drive the control signal buses; and an 8-
bit field that controls internal functions in the input/output micro­
processor interface. 

An out-of-service bit is provided for each of the four peripheral 
controller communities. This 4-bit register in the input/output micro­
processor interface can be read and written by the peripheral interface 
controller. Additionally, a power-down condition within a community 
will automatically set its out-of-service flag. When out of service, the 
interrupt requests of the four peripheral controllers within that com­
munity are not ORed into the interrupt register summary. 

2.2 Peripheral controllers 

The peripheral controller is a microcomputer system that serves as 
an intelligent interface between the peripheral interface controller and 
the slow- to medium-speed peripheral units. The peripheral controller 
is responsible for all device-specific front-end processing and per-byte 
interrupt handling. This relieves the 3B20D central processing unit 
from low-level tasks and greatly increases the number of peripheral 
devices the 3B20D can support. Figure 3 shows a typical one-board 
peripheral controller design. Up to four sub devices can be separately 
addressed within a peripheral controller by the peripheral interface 
controller. 

2.2.1 Peripheral interface controller-to-peripheral controller 
communications 

Sub devices are capable of initiating several types of work requests. 
A peripheral controller may initiate a service request that results in 
the peripheral interface controller reading service-request status infor­
mation to determine the type of work required. A sub device activates 
a service request to transfer data to or from 3B20D main memory or 
to indicate a job is completed. In addition to service requests, a 
sub device may at a high priority level, initiate an interrupt request 
that results in interrupt-request status information being read by the 
peripheral interface controller. The peripheral controller interrupt 
request is activated by a sub device to transfer high-priority informa-
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tion to or from 3B20D main memory or to report a high-priority job 
has completed. 

All operational communication between the peripheral interface 
controller and the peripheral controller is done through a dual-access 
memory resident on each peripheral controller. Dedicated memory 
locations are reserved within the dual access memory that contain 
pointers used by the peripheral interface controller to locate each 
subdevice data buffers, data transfer parameters, and status and com­
mand areas. The dual access memory also contains memory locations 
that contain information at the peripheral controller level such as 
service and interrupt request data and peripheral controller command 
area pointers. 

Each of the peripheral controllers is an independent single-board 
microcomputer. The hardware is specialized to handle the particular 
interface and is not necessarily the same as any other peripheral 
controller. However, all peripheral controllers have a functionally 
common front-end design and maintain the same communication 
protocol with the peripheral interface controller. The input/output 
processor has been designed to allow the peripheral controllers to exist 
as autonomously as possible. This capability will enable future periph­
eral controller designers to use state of the art microprocessors and 
microprocessor-controlled peripherals. 

2.2.2 Peripheral controller hardware architecture 

Although peripheral controllers designed for specific interfaces are 
different, all peripheral controllers have the following components: 
microprocessor, read-only memory, random access memory, service 
and interrupt sources, isolation circuitry, error detection logic, and 
scan back circuitry. 

The peripheral controller employs a microprocessor to administer 
the transfer of data between its peripheral units and 3B20D main 
memory. There are no requirements dictating the use of a specific 
microprocessor type. The intent is to allow a peripheral controller 
design to take advantage of the microprocessor that most efficiently 
handles a particular peripheral unit. 

The peripheral controller houses a bootstrap program stored in read­
only memory that is entered when power is initially applied or when 
the peripheral controller reset function is activated by the peripheral 
interface controller. The bootstrap program causes the microprocessor 
to initialize its periphery and to recognize peripheral interface control­
ler commands. In addition to the bootstrap program, the read-only 
memory may contain operational and diagnostic programs. 

The peripheral controller uses random access memory to store the 
operational program, and buffer transient data, and to provide storage 
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for peripheral interface controller communication parameters. The 
portion of random access memory containing the data buffers and 
communication parameters is accessed by both the peripheral interface 
controller and peripheral controller microprocessor. Therefore, this 
portion of random access memory must provide dual-access capability. 

To prevent an insane microprocessor condition from babbling on the 
common bus, the peripheral controller is provided with an isolation 
state. In this state, isolation circuitry removes all response signals 
generated by the associated peripheral controller from the bus. In 
some peripheral controller applications the isolation state also prevents 
data transmission to the peripheral units connected to the peripheral 
controller. 

2.2.3 Service and interrupt request generation 

The peripheral controller generates a service request or an interrupt 
request whenever a data transfer to or from 3B20D main memory is 
required, or to indicate that a command completion response is avail­
able. The peripheral controller provides a separate pulse source for 
the interrupt request and service request indication. The peripheral 
controller must refrain from sending a service request or interrupt 
request until the previous one has been recognized by the peripheral 
interface controller. The peripheral interface controller indicates rec­
ognition of a service request or interrupt request by clearing the 
associated request pending flag in the peripheral controller dual-access 
memory. 

Each subdevice within the peripheral controller is assigned 4 bytes 
of dual-access memory, which contain the status information for the 
associated subdevice. The status information is comprised of generic 
and user-defined data, and is read as a result of subdevice initiated 
service requests and interrupt requests. 

2.2.4 Hardware error detection 

The peripheral controller provides parity checking and generation 
for data contained in the dual-access memory. Since most micro­
processor and microprocessor peripherals available today do not carry 
parity within the device, routine diagnostics must take over the re­
sponsibility of error detection for these devices. Parity over read-only 
memory data is not a requirement. This enables peripheral controller 
designs to take advantage of the available large, 8-bit-wide, read-only 
memories. However, a program sanity check must be provided to 
detect a read-only memory data failure. A parity error flip/flop is used 
to store the indication of a dual-access memory parity failure. The 
peripheral controller also provides control logic to invert parity gen­
eration in order to check the parity circuits. 
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Peripheral controllers operate autonomously with regard to periph­
eral interface controller activity and, therefore, provide their own 
system clock. A system clock check circuit is provided by the peripheral 
controller to detect clock activity abnormalities. A clock error flip-flop 
is used to store the clock failure indication. The error lead is employed 
to report the detection of such failures. 

Due to the complexity of the peripheral controller and the limited 
amount of parity checking provided, the peripheral controller uses 
routine maintenance diagnostics to enhance error-detection capabili­
ties. Redundant software, rather than redundant hardware, is em­
ployed to detect fault conditions. The peripheral controller micro­
processor periodically executes routine maintenance diagnostics during 
nonpeak data transmission time intervals. A routine maintenance 
diagnostics error flip-flop is provided to store the routine maintenance 
diagnostics failure. 

To assure program execution sanity, the peripheral controller pro­
vides a sanity check mechanism. The sanity check complexity is 
directly proportional to the destructive powers of an insane periphera~ 
controller microprocessor. A sanity failure flip-flop is used to store the 
sanity failure indication. 

2.2.5 Scan back circuitry 

The peripheral controller provides four directly addressable read­
only functions: status and error information, address lower loop-around 
data, address upper loop-around data, and peripheral controller type­
identity code. 

The peripheral interface controller uses the scan back address data 
in a loop-around mode to check the integrity of the direct memory 
access address and data buses and to verify that a particular peripheral 
controller is receiving all the address information. 

III. PERIPHERAL INTERFACE CONTROLLER AND PERIPHERAL 
CONTROLLER FIRMWARE AND SOFTWARE 

3. 1 Peripheral interface controller firmware 

The functions performed by the peripheral interface controller are 
carried out at two levels: base level and interrupt level. Deferrable 
tasks are performed during base level processing and nondeferrable at 
interrupt level (see Fig. 4). 

Peripheral controller service requests are handled during the periph­
eral interface controller base level loop. The peripheral interface 
controller interrogates the peripheral controller service request register 
to ascertain which peripheral controllers are requesting service. The 
peripheral interface controller then reads the peripheral controller 
status bytes in dual-access memory to determine the type of job to be 
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Fig. 4-Peripheral interface controller fIrmware structure. 

performed and executes that job. Job sizes are restricted to a maximum 
transfer size of 256 bytes to guarantee the maximum time the periph­
eral controller is held out of dual-access memory. The peripheral 
controller breaks the transfer of a large block into small blocks to 
satisfy this requirement. Reports of completed jobs are buffered in an 
area of the peripheral interface controller data store. 

After servicing peripheral controller requests, the peripheral inter­
face controller compares the load and unload pointers in a job queue 
stored in 3B20D main memory. If the queue is not empty, the periph­
eral interface controller unloads up to eight jobs and issues them to 
the appropriate peripheral controllers or to the peripheral interface 
controller itself. 

The peripheral interface controller next scans for changes in the 
peripheral controller community out-of-service status. A power con-
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verter out of tolerance causes an out-of-service indicator to be auto­
matically set in the input/output microprocessor interface. A high­
priority error response is issued to report such a condition. 

The peripheral interface controller next scans for peripheral con­
troller error reports. Again, the peripheral interface controller reports 
this via a high-priority error response. The loop is complete at this 
point and the peripheral interface controller begins scanning for pe­
ripheral controller service requests once again. 

Interrupts are employed to initiate time-critical tasks. A timed 
interrupt routine is entered at a fixed rate. The sanity timer is serviced 
at this time. Additionally, the job-completion queue is interrogated 
and, if not empty, is loaded into the response buffer in 3B20D main 
memory. The peripheral interface controller then interrupts the 
3B20D. 

High-priority jobs are handled using the interrupt mechanism. Upon 
registration of the message in the high-priority buffer in the peripheral 
controller dual-access memory, the peripheral controller interrupts the 
peripheral interface controller. The peripheral interface controller 
moves the buffer contents into 3B20D main memory. This process 
continues until the entire message has been transferred into 3B20D 
main memory. The peripheral controller then enters a job-completion 
report into the appropriate entry in the peripheral controller dual­
access memory and again interrupts the peripheral interface controller. 
The peripheral interface controller then moves the report into the 
high-priority response buffer in 3B20D main memory and interrupts 
the 3B20D. 

Programmed input/output commands arriving from the 3B20D also 
trigger a peripheral interface controller interrupt. The peripheral in­
terface controller decodes the command to determine its type. New 
entries in the 3B20D main memory job queue are reported to the 
peripheral interface controller in this manner. A portion of the com­
mand contains the 3B20D load pointer for the job queue. The periph­
eral interface controller records this entry into the peripheral interface 
controller random access memory to be used during base level proc­
essing. 

The 3B20D also uses programmed input/output commands to alert 
the peripheral interface controller of the presence of a high-priority 
job awaiting execution in the 3B20D main memory high-priority job 
register. The peripheral interface controller retrieves the command 
and immediately issues it to the specified peripheral controller. 

Additionally, short jobs can be transferred to the peripheral interface 
controller via programmed input/output. Jobs of this sort are con­
strained to contain no more than 28 bits of command information. 
Only a single 32-bit programmed input/output command is used. 
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3.2 Peripheral controller software 

3.2. 1 Initialization 

Peripheral controller initialization is initiated by a 3B20D Processor 
resident input/output processor fault recovery program. The fault 
recovery program can direct the peripheral interface controller, via a 
configuration command, to generate a clear signal for anyone of the 
16 addressable peripheral controllers within the input/output proces­
sor. The peripheral controller responds to the clear signal by transfer­
ring control to a bootstrap program resident in on-board read-only 
memory. Execution of the bootstrap program results in initialization 
of address pointers, flags, timers, interrupt control circuitry, and other 
parameters as required. In addition to the above mentioned items, the 
peripheral controller must initialize associated work pointers. On­
board peripheral controller diagnostics are downloaded from the cen­
tral processing unit during this stage. 

Upon completion of initialization the peripheral controller micro­
processor monitors sanity and responds to any commands placed in 
the peripheral controller work queues. 

3.2.2 Peripheral interface controller/peripheral controller 
microprocessor command execution 

A peripheral controller microprocessor can be directed to perform 
certain tasks through the use of a command queue system. A peripheral 
controller can have as many as 15 queues, three of which are for 
generic type commands. The remaining queues are double ended 
(deques) and provide communication to peripheral controller subde­
vices. Each of the four peripheral controller subdevices has a transmit, 
receive, and asychronous report deque. Jobs are sent to the transmit 
and receive deques informing the peripheral controller sub device to 
send and receive data respectively. Unlike the transmit and receive 
deques the asychronous report deque only sends subdevice reports, it 
never receives jobs for execution. The command queues and their 
associated pointers-load, unload, and current-reside in the periph­
eral controller dual-access memory. The peripheral interface control­
ler, after entering a command in the queue, informs the peripheral 
controller by updating the queue load pointer. The peripheral control­
ler detects the entry, processes the job, and inserts a completion report 
in the queue. The completion report includes a 2-byte completion 
code. The peripheral controller receives knowledge of the completion 
report via a service request. Retrieving the report, the peripheral 
interface controller sends it to 3B20D main memory and updates the 
unload pointer. The peripheral controller maintains a current job 
pointer, which allows the peripheral interface controller knowledge of 
which peripheral controller job is currently running. 
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A unique completion code has been reserved as an indication of an 
invalid command. Upon detection of this condition, the microprocessor 
immediately loads the invalid-command completion code byte into the 
appropriate field in the command/response entry and signals a job­
completion report via a service request or interrupt request. At this 
point, the microprocessor is ready to accept the next entry in this 
command deque. 

For high-priority command entries, the microprocessor may set an 
interrupt request indicator instead of setting a command completion 
service request indicator. The peripheral interface controller recognizes 
and responds to all peripheral controller interrupt request work before 
responding to peripheral controller service request work. 

3.2.3 Peripheral controller microprocessor base level and interrupt 
level work 

There are three modes of communication between the peripheral 
controller microprocessor, subdevices, and peripheral interface con­
troller: 

(i) Demand interrupt mode-The peripheral interface controller 
interrupts the peripheral controller microprocessor to indicate a high­
priority command has been placed in the high-priority work de que. 
The peripheral controller microprocessor immediately responds to the 
command interrupt by accepting the command and executing the 
associated code as required. The subdevice may interrupt the periph­
eral controller microprocessor, indicating receive data is present. In 
this mode the microprocessor checks the dat~. for errors and, if none 
are found, moves the data to an associated input buffer. When the 
input-buffer-full threshold is reached, the microprocessor uses a com­
mand address pointer to locate a receive command. The receive 
command contents are required to permit the peripheral controller 
microprocessor to initiate a direct memory access transfer of data. 

(ii) Base level polling mode-In the base level program, all subde­
vices are polled in sequence for status and any required processing is 
performed. The status of all currently active direct memory access 
transfers is updated and new direct memory access jobs are initiated 
as required. Typically, all subdevices transmit data, and low-priority 
maintenance work is done during the base level loop. 

(iii) Time interrupt mode-A real-time clock provides periodic 
interrupts to the peripheral controller microprocessor for the purpose 
of handling low-level periodic functions. Some examples of the func­
tions processed in this mode are: checking sub device status, mainte­
nance of a sanity timer, and administration of routine maintenance 
diagnostics. 
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3.3 Peripheral interface controller firmware development tools 

Available for development of peripheral interface controller firm­
ware are (i) the Read-Only Memory Emulator and Trace Control Unit 
circuit packs and (ii) the Read-Only Memory Emulator and Trace 
System software system. These function jointly to support the periph­
eral interface controller as a test tool during hardware and firmware 
debugging. The read-only memory emulator and trace system has 
hardware control over the peripheral interface controller and provides 
program single-stepping and breakpointing capabilities. Program 
memory can be examined, modified, and downloaded, via a commercial 
microprocessor based system. A trace system is provided with three 
16-bit by 256-word trace memories. 

IV. INPUT/OUTPUT PROCESSOR UNIT AND POWER 

The input/output processor unit and power is structured around the 
peripheral interface controller and the four communities of peripheral 
controllers as separate items. Each is located within its own housing 
and is separately powered. An overall power control switch is provided 
with the peripheral interface controller; and each peripheral controller 
community may be individually switched without affecting the others 
(see Fig. 5). Although several standard voltages are supplied in the 
backplane, other voltages can be supplied as part of the peripheral 
controller design, if required. 

Since several of the problems of interfacing to various peripherals 
are related to the wide range of electrical and physical interfaces 
required, the input/output microprocessor interface bus connector 
field was separated from the peripheral device defined connector area 
for each peripheral controller slot. The entire upper half of each 
peripheral controller's backplane connector was reserved for definition 
by the particular application. Standard Bell System connectors are 
then used to generate a cable or harness that performs the translation 
to the specific connector of each physical device. The foundation 
peripheral controller for No. 5 ESS and the programmable link con­
troller for the signal transfer point system used in the Common 
Channel Interoffice Signaling network are two examples of application 
peripheral controllers made possible by the flexibility of the input/ 
output processor. Multiple board peripheral controllers have also been 
designed for special applications using connectorized straps in the 
upper connector area to interconnect the circuit packs that comprise 
the multiple board peripheral controller. Circuit pack slots are thus 
system defined, depending upon the peripherals needed by each appli­
cation. 

Because all four peripheral controller communities are on separate 
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Fig. 5-Input/output processor power diagram. 

power systems, peripheral controllers with special grounding or power 
requirements can be assigned to separate peripheral controller com­
munities, effectively isolating them from the remaining communities, 
and providing separate power control. 

V. 38200 PERIPHERALS CURRENTLY SUPPORTED 

The peripheral controllers and peripheral devices available on the 
3B20D Processor are discussed in the following paragraphs. 
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5. 1 Nine-track magnetic tape controller 

Up to four 25-inches-per-second (IPS), 1600-bits-per-inch (BPI), 
phase-encoded (PE) nine-track tape transports can be accommodated 
per peripheral controller (only one transport may be accessed at a time 
via a shared formatter). The drive accepts up to 10.5-inch-diameter 
reels (2400 feet by 0.5-inch tapes). The interface is an RS422 differ­
ential bus up to 250 feet long using an industry standard data and 
control format. The controller can read and write any block size up to 
2K bytes long, write file marks, seek forward or reverse, and can 
rewrite and reread blocks of data that exhibit errors. The instantaneous 
data rate is 40K bytes per second. The average data transfer rate for 
2K data blocks is 26K bytes per second. 

5.2 Scanner-signal distributor controller 

Forty-eight scan points and 32 signal distributor points-which may 
be located up to 1000 feet away (assuming 26-gauge twisted pair}-are 
provided by this controller. Scanning is carried on autonomously or it 
is directed. A change of a scan state must remain in the new state for 
two consecutive scan cycles before it is recognized. The signal distrib­
utor can operate or release a point, or it can flash a point indefinitely 
or for a timed period. Both the scanner and the signal distributor are 
self protected to 140 volts, and can detect a foreign potential in the 
same range. A point scanned must be a floating contact or saturated 
transistor switch. Points are scanned once every 48 ms. The signal 
distributor can supply up to 5 rnA into a floating load or loop. The 
scanner signal distributor was designed primarily to operate optical 
couplers and low-power relays. Scan or distribute points that are 
remote to the 3B20D Processor are interfaced through an optical 
coupler isolation circuit. 

5.3 High speed nine-track magnetic tape controller 

Up to four 12.5- to 125-IPS, 1600-BPI, phase encoded, start-stop 
transports, or up to four 25-IPS streaming transports with embedded 
formatter, in any mix, may be accommodated per peripheral controller. 
Access is via an RS 322 bus limited to 20 feet using an industry 
standard data and control format. Only one transport may be accessed 
at a time. The controller can write or read any block size up to 6K 
bytes as well as perform the same control functions as the peripheral 
controller described in 5.1. The instantaneous data transfer rate is 
200K bytes per second. The average data transfer rate when reading 
6K blocks of data is 150K bytes per second. 
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5.4 Synchronous data link peripheral controller 

This circuit pack is a BX.25 level-2 synchronous link arranged for 
full duplex private line or dial backup operation, and it provides two 
independent channels at bit rates up to 9.6K b/s. The channels differ 
in that one supplies an automatic call unit port for dial-up and dial-in 
operations. The backup configuration is supported when equipped 
with Dataphone II generation data sets. The peripheral controller 
capacity is 9600 b/s full duplex. Each of the two BX.25Ievel-2 channels 
has an associated level-l interface that is RS449/RS232C compatible. 

5.5 Asynchronous data link peripheral controller 

This peripheral controller provides two independently programma­
ble full-duplex or half-duplex, asynchronous or isochronous channels 
at data rates up to 9.6K b/s. It can communicate with a local terminal 
directly or via a "null modem" connection, with a remote terminal via 
a modem and private line, or with a remote terminal via a modem and 
the public switched telephone facility. The user can specify the data 
rate, parity and stop code format in addition to input, output, and line 
discipline processing options. Each channel drives an optically isolated 
EIA RS232C standard port. 

5.6 Maintenance teletypewriter peripheral controller 

This peripheral controller is designed to permit manual intervention 
and control of the 3B20D control unit and peripherals through the 
maintenance terminal. It contains sufficient code in read-only memory 
to allow control of the system during routine or emergency mainte­
nance procedures. Read-only memory code performs memory and 
device initialization, parsing of the 3B20D emergency action interface 
input and support for the maintenance terminal display and a remote 
maintenance center data link using BX.25 protocol. Down-loaded 
random access memory code provides additional functions such as 
support for teleterminal input/output syntax and other teleterminal 
display capabilities. 

5.7 BX.25 data link interface 

The data link controller provides a general-purpose high-speed 
synchronous BX.25 level-2 interface and a special high-capacity soft­
ware interface to the 3B20D. The peripheral controller is equipped 
with an RS232C and a CCITT V.35 interface having data rates of up 
to 56K b/s. 

VI. SUMMARY 

The 3B20D Processor's input/output structure was designed around 
a high-speed direct memory access input/output channel, a high speed 
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multiplexor and direct memory access interface, and single- and mul­
tiple-board intelligent controllers, which provide device-specific front­
end processing and interrupt handling. These components, associated 
with a common driver with device-specific handlers in the 3B20D 
Processor's operating system, successfully provide a flexible and effec­
tive interface to a wide range of peripheral devices. 
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The 3B20D Processor software development system is an integrated 
collection of tools and procedures that is used in the development and 
administration of all 3B20D Processor software. This article de­
scribes the tools and procedures and their use in developing the 
3B20D Processor software. These tools and procedures include com­
pilers, assemblers, and loaders, as well as change-administration 
and load-building procedures. The most important characteristic of 
the development system is the balance between the enforcement of the 
project standards and the flexibility offered to developers. 

I. INTRODUCTION 

The software that comprises the operating system, diagnostics and 
fault recovery, configuration data base, field utilities, and craft inter­
face for the 3B20D Processor has been undergoing development and 
change over several hundred developer years. Without a strict change­
administration strategy and a productive development environment, 
the tight schedules and reliable deliveries characterizing this system 
would not have been possible. 

This paper presents a description of the software-development en­
vironment used by the project's programmers and those administrating 
3B20D Processor subsystems. Without the administrative control, 
these developers might otherwise be limited to simply compiling or 
assembling programs and attempting to test software with an ad hoc 
version of the total system software. The emphasis presented here is 
that of the roles of those involved in the software change process, the 
tools they each use, the flexibility offered by the tools and administra­
tion structure, and the standards and strategies enforced in the devel­
opment environment. 
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II. THE ADMINISTRATION OF SOFTWARE DEVELOPMENT 

The 3B20D Processor project started with relatively small teams of 
engineers, compilation tools, and a primitive testing environment. The 
project has grown to a size that now requires considerable machine 
support, sophisticated tools, and administrative control. Over 100 
developers are responsible for nearly 8,000 source files resident across 
eight support computers. Compilation of all of these files into a full 
load takes over 24 hours of machine time on a commercial I6-bit 
minicomputer. This large amount of software has been partitioned 
into 23 logically manageable subsystems, the basis for administration 
and testing. 

The 3B20D Processor is the target for output from a software 
development and administrative environment that resides on the host 
support computers. All object code for the target is archived, edited, 
and cross-compiled on the host and then transported by tape or data 
link for testing on target 3B20D Processors. This separation of host 
and target ensures a stable development environment as the target 
machine evolves with new features and performance improvements 
that may consist of changes in hardware, software, or firmware. 

The software administration and development strategy can best be 
described as one of well-defined and closely tracked data movement 
between nodes on development host machines and it requires a specific 
scenario dictating when the data movement takes place. The data are 
requests for software changes and program files, and the nodes are 
instances of the software structure reflecting some portion of the total 
software in one of several development states. Development activity is 
spread across the host machines by partitioning the software into 
nearly independent subsystems. 

In the development environment, a file system structure containing 
copies of controlled software source and generated object is referred to 
as a node. When a node is populated with source, object, and target 
products-all in a like state of development or approval-the node is 
called ~ view of the software. For each major release, the development 
system supports three views of the software. 

(i) The official view, or node, contains all of the official source, 
object, and target products released to customers. 

(ii) The approved view contains those source, object, and target 
products that have been released as emergency corrections to the last 
major release. The approved view is an incremental addition to the 
official view. 

(iii) The under-test view contains those source, object, and target 
products that will be sent out with the next major release. The under­
test view contains everything from the approved view and is otherwise 
an increment from the combination of the official and approved views. 
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A final view, that of the developer, may include a mixture of the 
above views in combination with privately modified versions of various 
files undergoing a development change. 

The approval of a software change submitted by a developer involves 
the successful integration of that change into a known stable software 
base. The data movement and approval strategies have a common 
thread: the incremental modification of a known good software base to 
produce the next iteration of that base. 

An important decision made in the design of the 3B20D Processor 
development environment was the centralization of the activities used 
to construct the collection of libraries and objects for installation (i.e., 
the load) on a machine isolated from development activity. This 
allowed efficient load-building techniques to be developed that do not 
interfere with developer activity. The implication of centralized load 
building is that developer changes must be collected and moved to a 
common point where official load building takes place. In fact, it is 
only source changes that are moved for load-building purposes. All 
changes to products are then reconstructed from changed source. 
Results are then redistributed back to the appropriate development 
machines. 

III. MAJOR SOFTWARE DEVELOPMENT SYSTEM COMPONENTS 

It is the interaction of four distinct software administration and 
generation systems that creates the 3B20D Processor Software Devel­
opment System (SDS). This section presents an overview of these 
systems; Section IV describes their use; and Section V describes the 
major standards that contribute to the environment and are enforced 
by the project's tools. 

3. 1 The Modification Request System 

The Modification Request (MR) data base system is a general­
purpose hierarchical system tailored to 3B20D Processor change-track­
ing requirements. The MR is the entity that identifies all requests for 
3B20D Processor software changes and tags all source changes made 
by developers and administrators to official 3B20D Processor software. 
The MR system serves as a central master data base from which 
administrators control and track all software changes and generate 
appropriate tracking and status reports .. 

As implemented for this project, the MR data base is actually a 
three-level data base comprised of an MR level, one or more release 
levels per MR, and one or more subsystem levels per release. The 
higher the level (the MR level is highest), the more global the scope of 
the information maintained. 

The MR level information includes an identification number, origin-
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ator information, problem description, priority, severity, and due date. 
At the release level, the data base includes due date, feature engineer 
and developer, and priority. Subsystem level data includes responsible 
developer, modified source files, status, solution description, and load­
building instructions. The majority of the information is automatically 
generated and stored in response to developer and administrator 
actions. For the most part, direct data entry is not necessary. 

The MR system includes a high-level query language and report­
formatting facilities for producing reports from the data base. The 
query language is very powerful in that it allows for selection specifi­
cation and sorting levels. The reporting facilities process the output of 
the query language. Additional capabilities exist that cause brief re­
ports, called synopsis reports, to be generated automatically and sent 
to appropriate administrators, supervisors, and/or developers in re­
sponse to particular status changes. For example, when an MR requires 
a change in a particular subsystem, the responsible developer receives 
a synopsis report. When the responsible developer submits changes in 
response to an MR for system test, appropriate administrative person­
nel receive synopsis reports. 

3.2 The Change Management System 

The Change Management System (CMS) is a facility compatible 
with the UNIX* operating system aimed at controlling the activities 
of both developers and administrators related to software change and 
change approval. The CMS uses the UNIX operating system Source 
Code Control System (SCCS) and its own relational data base to track 
and relate each change made in a source file to an MR.l 

All official 3B20D Processor source files are maintained via CMS on 
a per-subsystem basis. A CMS instance is defined to be a set of SCCS­
controlled source files and the relational data base tracking the MR­
based changes. Each subsystem is a unique instance of CMS. There 
are, therefore, one or more CMS instances on each development 
machine (see Fig. 1). This strategy was chosen over a strategy having 
only one CMS instance per machine for the following reasons: 

(i) Corruption of a CMS data base would only affect one subsystem. 
(ii) The majority of the developers need access to the official source 

files for only one subsystem. 
(iii) Separate CMS instances per subsystem allow load balancing on 

the development machines to be more easily implemented. Instead of 
having to extract a portion of a large data base and move it with' 
developers to another machine, an entire CMS data base can be 
moved. 

* Trademark of Bell Laboratories. 
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Fig. I-Diagram of the state changes in the Modification Request System. 

3.3 The Software Generation System 

The software development system is geared to construct executable 
software for the following three target environments: 

(i) A 3B20D Processor running the DMERT operating system.2 

This is the primary target for official system software construction. 
(ii) A PDP 11/70 running a real-time version of the UNIX operating 

system. This is the recognized 3B20D test laboratory support proces­
sor. 

(iii) A PDP 11/70 running the UNIX operating system. This is the 
primary machine and operating system for development and official 
software construction. 

The primary target for which the SDS generates code is the 3B20D 
Processor. A Software Generation System (SGS) containing a com­
piler, assembler, and link editor is provided for generating and sup-
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porting 3B20D Processor binary executable object modules on the 
development and load-building machines. 

3.4 Building software views 

The major tool used by both developers and administrators in 
conjunction with the SGS for generating 3B20D Processor loads is the 
build tool. This tool invokes the minimum number of commands 
necessary to create a requested object incorporating selectable states 
of related software from its components. It determines, according to a 
specified set of dependency information, exactly which objects must 
be rebuilt (because they may be out of date) and which objects are 
current with respect to the changes desired in the requested object to 
avoid unnecessary compilation steps. This dependency information is 
automatically generated by a utility from the software components. 
This ability to create an object with particular versions of software 
that reflect its state or submitted MR software changes is known as 
building a software view. 

IV. THE SOFTWARE DEVELOPMENT PROCESS 

All software in the DMERT environment is created, corrected, or 
enhanced in conjunction with an MR. With this association of an MR 
to every software introduction or change, all development on the 
project can be adequately monitored. The assignment of an MR allows 
a developer to make modifications to official project source and to 
ultimately submit the changes for approval by project administrators. 
The development activities that occur and the tools used in the process 
between the assignment of an MR and the submission of changes are 
described in this section. 

4. 1 MR handling 

The MR system maintains modification requests in a variety of 
states (see Fig. 1) that reflect the activity being taken on the request. 
An MR is created by other developers or applications and then initially 
reviewed by administrators. It may be found that an MR is a duplicate 
of a previously resolved MR; it may be required to be placed under 
study; it can be deferred for later consideration; or it may be found to 
be no problem in which case the MR is ultimately closed. The under 
study or deferred MRs eventually will be either closed or affiliated 
with generics for action. Once the MR level state is affiliated, then 
generic level action is allowed. 

MR assignment is made to one or more subsystems, as many as are 
required to implement a solution. When an MR is assigned, a developer 
then creates a development node in which to maintain copies of source 
to be created or modified in response to the modification request and 
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to build a view of the subsystem affected by the MR. This private 
development node gives the developer the freedom to make any 
changes with any set of tools on local copies of source files. The 
developer is now free to experiment with solutions to satisfy the MR, 
while official source remains protected by CMS. Source files intended 
to be modified by the developer for the MR are requested via CMS 
commands that associate the changes with the MR and the release to 
which the MR is being applied. The association of MR to source files 
changed is kept in the CMS data base to allow administrators or other 
developers to request versions of software containing solutions to 
particular problems. While a developer has copies of official source to 
be worked on in a private node, all other developers are prevented by 
CMS from obtaining copies of the same source to avoid creating 
unsynchronized changes. Using private source copies, the developer is 
ready to make changes and create new subsystem objects for testing. 

4.2 Languages and tools 

Software for the 3B20D Processor target is written primarily in the 
high-level programming language C with occasional use of the 3B20D 
Processor assembly language. The C language contains many modern 
control and data structures found in languages such as PASCAL. It is 
characterized by its brevity of expression, direct access to data type 
representation, and operations and declarations available to the pro­
grammer to enhance the generation of efficient assembly level code. 
The 3B20D Processor assembly language is a member of 1S25, a 
3B20D family standard specifying: 

(i) Activation stack format 
(ii) Data type representations 

(iii) Registers 
(iv) Operations and addressing modes for accessing and manipulat­

ing data objects ranging in size from a single bit to 32-bit words. 
The tools used to compile C programs and assemble assembly code 

into user level objects are modeled after the tools used with the UNIX 
operating system and for the development of the BELLMAC*-8 mi­
croprocessor.3 An additional complement of tools is used to create and 
modify special process files and prepare the developer with information 
that will be very valuable in the testing environment. 

A single command can be used to control the C program compilation 
process. This command invokes a source code preprocessor, the C 
compiler and optimizer, assembler, and link editor. These four tools in 
turn convert a collection of C programs into a single object with 
addresses that are either relocatable or absolute (Fig. 2). 

* Trademark of Western Electric. 

SOFTWARE SYSTEM 281 



HEADER FILES C SOURCE FILES 

SPECIAL PROCESS OBJECT FILES 

ASSEMBLY FILES 

USER LEVEL 
EXECUTABLE 
OBJECT FILES 

Fig. 2-Compilation tools. 

The preprocessor provides a macro expansion facility and directives 
for sharing common source (or header) files. Header files typically 
contain data and macro declarations shared by many programs. This 
mechanism ensures that common definitions are consistent across all 
programs using them because they are accessed from the same source. 

The C compiler and optimizer are based on the portable C compiler4 

and a similarly structured portable code improver. The compiler 
generates assembly code from preprocessed C source using syntax­
directed parsing (from YACC 5

) and modified Sethi-Ullman6 and Aho­
Johnson7 tree-matching and expression-optimization techniques. The 
generated assembly code can then optionally be passed through an 
optimizer (or, more correctly, code improver) that eliminates unnec­
essary branching, removes redundant register loads, and converts 
certain instructions or sequences of instructions into simpler or more 
efficient, yet semantically equivalent ones. Both the compiler and 
optimizer leave their result in the form of an assembly language file. 

From assembly language source, the assembler creates an object file 
containing object code text and data (with optional relocation infor­
mation), symbol and source line number tables to communicate with 
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testing tools, and a section layout dictionary that provides information 
on the structure of the fIle. 

The link editor is capable of combining a collection of object files 
into a single object by resolving interprogram symbol references and 
binding symbols to virtual or absolute addresses as specifIed. The 
object file for the 3B20D Processor may contain multiple text and data 
sections. This facility is used in the creation of special process fIles and 
libraries. 

Process files for the DMERT operating system are generated using 
a special tool that uses the link editor to create special data sections 
used in process communication and entry. All kernel, supervisor, and 
special DMERT processes require use of this tool as a fInal construc­
tion step. User level processes require only the normal link edit step 
for completion. 

4.3 Building a view of a subsystem 

The object construction tool, build, (based on the UNIX operating 
system make command), exists to create objects according to a previ­
ously specifIed set of object construction commands and a list of 
dependencies. This specifIcation is used to identify which software 
components are needed to construct others. 

Using modifIcation time-stamps provided by the file system, build 
determines which objects are current and which need to be rebuilt. 
When an object needs to be rebuilt, its specifIcation must be examined, 
and so on down the line until all necessary objects are rebuilt or 
current. These object construction instructions constitute a makefile 
for the particular DMERT subsystem. 

The advantage that build offers over make is that the developer in 
a private development node need only have copies of the source being 
changed and can access the remainder of the objects, header fIles, or 
C or assembler source files from other nodes as specified in the 
developer's view path. A viewpath is an ordered set of directory names 
indicating the nodes to be searched for missing software components. 
The viewpath is an extension of the UNIX operating system search­
path variable that contains a list of directories containing commands. 
By specifying a viewpath, a developer can create a desired view of a 
subsystem product to be tested. The view may be, for example, that of 
the developer's changes integrated with only offIcially approved soft­
ware or with any other software currently submitted to the test team. 

4.4 Preparation for testing 

Once a subsystem has been changed in response to an MR within a 
developer's node and is ready to be taken into the laboratory for 
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testing, there are listings that can be prepared to aid in the software 
testing process. A set of SGS utilities exist to generate these listings. 
A C program breakpoint source listing contains a source listing of all 
the functions in a file augmented by line numbers indicating C source 
lines at which a breakpoint can be set during testing. This listing is 
important due to the fact that object code may have· been significantly 
rearranged during the optimization step of the compiler rendering 
certain C source lines shuffled in a semantically equivalent, but non­
obvious, fashion. The listing helps a developer in a test laboratory who 
needs to correlate high-level C source to 3B20D Processor assembly 
code. 

A namelist utility creates a listing of all the C language symbols 
residing in the object file's symbol table with their addresses and types. 
Not all symbols associated with an object need reside in the symbol 
table since they can be removed during object creation by another 
SGS utility. 

A developer can obtain assembly source listings associated with an 
object file in either of two ways. The listing can be generated by the 
compiler during compilation or it can be created by a disassembler 
from the object file. This latter listing will contain C program source 
information in terms of symbols, labels, and line numbers if they have 
not been stripped from the object. This listing can be of particular 
interest after software has executed on the machine to determine 
where text and data may have been accidently altered by a process 
out of control in a development laboratory. 

With these listings augmenting the original source files, the devel­
oper is prepared to enter the testing environment. 

4.5 Submitting changed files for approval 

When all desired changes have been made and unit or subsystem 
testing has convinced the developer that the modification request has 
been satisfied, the files extracted from the official CMS data base (and 
any files newly created as a result of the MR) are submitted to the test 
team through the use of CMS commands (refer again to Fig. 1). The 
activity of the developer on the files in question can be temporarily or 
permanently suspended by other CMS commands that place the 
changes made into the CMS data base and allow other developers 
access to the same files for editing if necessary. 

The software approval process in the SDS is initiated when the 
developer submits an MR-related software change for inclusion in the 
next release. The developer submittal begins a three-step approval 
process: 

(i) Independent Certification-The source change is used by ad­
ministrators to reconstruct the changed products. This is done in such 
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a way as to not affect anything currently approved or under test. The 
changed products are then independently tested (certified) by a mem­
ber of the project's system test group. Certification failure implies 
rejection of the MR and further work for the developer. 

(ii) Integration-Those changes passing certification are incorpo­
rated into the under-test view where they are integrated with the rest 
of the under-test changes. This integration is performed by members 
of the project's integration group. Failure during integration also 
implies MR rejection, as well as recertification following additional 
development. 

(iii) Approval-When all certified changes have been integrated and 
soak tested, the under-test view will be approved. This implies releas­
ing a software update to 3B20D customers, updating all the nodes, and 

. approving MRs. 

V. DEVELOPMENT ENVIRONMENT AND STANDARDS 

The software development system must establish a balance between 
the flexibility given to developers and administrators to enhance their 
productivity and restrictive standards so that administration is man­
ageable and effective. Considerable development flexibilities already 
have been identified. Among these are: 

(i) The capability to select a particular version of a source file by 
specifying one or more MR numbers whose related source changes are 
applied to the last released version of the source file. 

(ii) The use of any editing facilities once a source file has been 
obtained from CMS. 

(iii) The C language, which encourages programmer optimization 
and functional modularization. 

(iv) The protection from concurrent source changes by independent 
developers ensured by CMS. 

(v) The independent, private development node allowing experi­
mentation that does not interfere with other development activity. 

(vi) The flexible capabilities for view construction provided by 
build. 

(vii) The ability administrators have through CMS to back out 
changes associated with particular MRs and return to previous soft­
ware states. 

The software environment and its SDS tools also impose an impor­
tant set of standards on development activities that guarantee safe, 
productive, and orderly administration of all change activity. 

5. 1 Host machine configuration 

The host machines used in software development and administration 
are each standardized with respect to the activities that occur on the 
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machines. This standard ensures that all development activity can be 
monitored adequately and that the proper tools can be made available 
to those needing them. With a fixed set of machines, updates to the 
software tools can be synchronized making sure that all development 
is compatible. 

The 3B20D Processor software development system resides on a 
network of eight general-purpose, l6-bit minicomputers, all of which 
run the UNIX operating system. The functional configuration of these 
eight machines is shown in Fig. 3. 

(i) Developer activity is confined to the six machines labeled SD 
(software development). Here developers utilize CMS, the SGS, and 
the build facility, as well as the standard tools available with the UNIX 
operating system. 

(ii) The machine labeled SC (software control) is for administrative 
use only. This machine contains the modification request data base 
system from which all change activity is controlled. 

(iii) The SP (software production) machine is an administrative 
machine. All official product construction takes place on this machine. 

The test environment combines a 3B20D Processor and a support 
machine running a real-time version of the UNIX operating system as 
its support processor. 

SOFTWARE 
CONTROL 

SOFTWARE 
DEVELOPMENT 

SGS 
CMS 

BUILD 

MR 
SYSTEM 

SGS 
CMS 

BUILD 

SOFTWARE SGS 
PRODUCTION BUI LD 

TEST TEST 

MR - MODIFICATION REQUEST 
SGS - SOFTWARE GENERATING SYSTEM 
CMS - CHANGE MANAGEMENT SYSTEM 

TOOLS 

Fig. 3-Host machine configuration. 
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5.2 Software configuration 

A standard UNIX operating system directory structure configura­
tion has been established for the 3B20D Processor software subsys­
tems. This configuration is repeated in each CMS node so that file 
access and object construction techniques are fully repeatable no 
matter where the view building activity takes place. 

The 3B20D software is logically partitioned into distinct subsystems. 
Typical subsystems include the operating system, diagnostics, and 
peripheral unit drivers. Software development for the subsystems is 
evenly spread over the six SD machines described in the previous 
section. A single subsystem is fully contained on one of the SD 
machines. Each SD contains the software development activities for 
one or more subsystems. 

The only machine on which the full directory structure combining 
all of the subsystems exists is the SP machine where official load 
construction takes place. Subsystem development can take place on 
the individual SD machines, independent of other subsystems, because 
the following software construction standard is enforced: the only 
source files shared between subsystems during load construction are 
global header files (common definitions required by more more than 
one subsystem) or global libraries (collections of common object mod­
ules). 

Global header files and global libraries have fixed, standard positions 
in the SD machines' directory structure. These shared resources are 
distributed from the SP machine to the various SD machines after 
validation by administrators. In this way, all SD machines are kept 
synchronized with respect to this critical data. 

Other top level directories or directory structures are used during 
the load-construction process as installation points for revised tools, 
tool usage descriptions in manual page format, and 3B20D Processor 
core software components. 

5.3 Interactions between eMS and the MR system 

The major strength of CMS and the MR system lies in the stan­
dardization of source-change administration. The following major 
standards are enforced with these tools: 

(i) Every incremental change is tagged with an MR number. 
(ii) The developer cannot modify official source until an MR has 

been assigned to him or her by an administrator. This assigning 
capability can be used by project administrators to funnel developer 
activity. 

(iii) Once a developer is satisfied with a change, it is submitted 
against the corresponding MR for independent verification. Once 
submitted, no further source changes for the MR are allowed. 
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The MR data base system on the SC machine and the various CMS 
instances, each identified via a subsystem name, on the six SD ma­
chines are connected in the SDS via a high-speed network and a 
remote job-execution facility. Specific actions on the SC machine cause 
remote jobs to be sent to one of the SD machines and executed for a 
particular CMS instance. The reverse is also true. The major triggers 
interconnecting the MR system and the CMS instances are: 

(i) When an MR is assigned to a particular subsystem for a 
particular generic, a remote job is sent to the SD machine on which 
that subsystem's development is based. When the job is executed on 
the SD machine, a sequence of CMS commands is executed that cause 
the MR to be assigned to the particular generic in the correct CMS 
instance. The developer can then officially edit the source files to effect 
the change. 

(ii) When the developer is satisfied with changes, they are submit­
ted for verification. The CMS status is set to submitted to prohibit 
any further editing for this MR, and a remote job is sent to the MR 
system on the SC machine. This job will cause the MR status for the 
particular generic and subsystem to change to submitted. 

(iii) A remote job to reject an MR can be sent to CMS on an MR 
status change of under-test to assigned or submitted to assigned. In 
CMS, the MR would again be available for editing with a subsystem 
status of being-fixed. 

These are the only MR/CMS interconnections necessary. All other 
control functions require only MR system actions. 

5.4 Product construction standardization 

A major ingredient of the 3B20D Processor SDS is the standardi­
zation of the format and content of the makefiles used by build. The 
standards are enforced by allowing developers to create only a skeleton 
makefile and providing a makefile generator to produce the full 
makefile. The advantages accrued by standardized makefiles are the 
guaranteed correctness and completeness of object dependency lists 
and the ability to create cross-reference listings of dependencies to 
determine changed file impacts. 

VI. SUMMARY 

Software development for the 3B20D Processor is administered with 
an important set of standards and a powerful set of tools to track 
development efforts and enforce these standards. The developers have 
at their disposal a flexible system for the generation of C programs 
and utilities to adequately prepare for debugging and efficiently con­
struct object programs. The resulting 3B20D Processor software de­
velopment system strikes a critical balance between offering freedom 
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and flexibility to programmers while managing and monitoring orderly 
software change procedures. 
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A process-oriented operating system, the Duplex Multiple Environ­
ment Real Time (DMERT) operating system, was designed for the 
3B20D Processor and offers both real-time and time-shared opera­
tion, with emphasis on high availability. The design objectives and 
architecture of the DMERT operating system and an explanation of 
how the system performance is characterized are presented. A com­
panion article describes in depth the DMERT operating system 
design. 

I. INTRODUCTION 

The direct predecessor of the 3B20D, the 3A Processor, included a 
real-time monitor known as the Extended Operating System (EOS).l 
Experience with EOS demonstrated that applications could develop 
their software with less effort and that synergy resulted between the 
hardware and software developers. Hence, the hardware is optimized 
to support the software and the software, in turn, uses the hardware in 
the most effective manner. The success of EOS led to the decision to 
support 3B20D applications with a more extensive operating system 
than EOS. The operating system that resulted is known as the Duplex 
Multiple Environment Real Time (DMERT) operating system. 

The basic architecture of DMERT is based on an earlier system 
named MERT,2 which was derived from the UNIX* operating sys­
tem.3 Both the UNIX and the MERT operating systems were origi-

* Trademark of Bell Laboratories. 

291 



nally developed to execute on commercial equipment; today UNIX 
operating systems are used widely for time-sharing on a variety of 
computers. The "D" in "DMERT" reflects one of the characteristics 
that distinguishes it from the previous two operating systems, namely 
that DMERT is designed to execute on a duplex 3B20 Processor. 
Thus, the DMERT architecture draws upon concepts from EOS, 
MERT, and UNIX operating systems. 

The applications using the 3B20D Processor have been described in 
detail in a previous article.4 Notice that while different, they have 
several common characteristics. First, a major component of the 
application is software. Second, the major mission of this software is 
real-time oriented with response times as short as several milliseconds. 
Third, each application has a need for continuous operation 24 hours 
a day, 7 days a week and hence stringent processor availability require­
ments. Fourth and finally, each application is to be operated over a 
long period of time, which requires extensive software for monitoring 
and reporting on system status as well as changing and upgrading the 
system while it is in operation. 

This paper describes the development objectives of DMERT, which 
were chosen to satisfy the above application characteristics. The 
operating system architecture used to achieve these objectives is next 
described. Finally, this article describes the performance characteri­
zation of DMERT. The design details of DMERT are presented in 
depth in the next article5 in this Journal. 

II. DMERT DESIGN OBJECTIVES 

2. 1 Support multiple real-time applications 

It is necessary for the DMERT operating system to support many 
applications, each with different real-time demands. Some applications 
include data bases that need many disk jobs serviced quickly. Others 
control telecommunication equipment requiring rapid response to an 
event such as an interrupt and dedicated processing capacity for an 
interval thereafter. To satisfy these diverse needs, a design objective 
was established to provide modularity in the operating system to allow 
a high degree of application tailoring. 

2.2 Improve application development productivity 

The real-time applications of the 3B20D Processor often have major 
software components that are not time critical. The "rule of thumb" 
stating that 80 percent of the time is spent on 20 percent of the 
software generally applies to these applications. Hence, a design ob­
jective of DMERT was to support a feature-rich operating system 
environment for the non-time-critical software while retaining real­
time responsiveness for the rest. 
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To increase productivity of the developers, an objective of efficiently 
supporting a programming language at a level substantially higher 
than assembly language was established. (See the previous article6 for 
further details.) 

To allow technology upgrading of the 3B20D Processor without 
impacting the application software, an objective of shielding applica­
tion programmers from hardware implementation details, such as 
memory protection7 and I/O devices,8,9 was established. 

2.3 Error tolerant design 

To meet the reliability objectives of the 3B20D Processor, it is 
necessary to support software packages for error checking and recov­
ery. Some of these are described in subsequent articles. 1O

-
12 To reduce 

the complexity of both the operational and recovery components of 
the system, a design objective was established to separate recovery 
software from the core of the system. 

An objective of incorporating extensive internal consistency and 
integrity checks within all software components was established to 
ensure that critical software modules protected themselves from errors 
in other parts of the system. 

III. DMERT ARCHITECTURE 

3. 1 Processes 

One of the basic design goals for DMERT was to build modular and 
independent processes, each having localized data known only to itself. 
Hence, the notion of a process is fundamental to the DMERT archi­
tecture, which is essentially composed of a kernel and a collection of 
cooperating, concurrent processes. The following sections define what 
a process is, how processes communicate with each other, and how 
they are used by DMERT applications. 

3.2 Definition of a process 

A process is a collection of related, logical segments (programs and 
data) that can be brought into memory to form an executable entity. 
A segment is the basic memory entity in DMERT. A segment is 
composed of 1 to 64 pages, each 512 32-bit words in length. Segments 
can grow dynamically in increments of a page. A process consists of at 
least three segments: code or text, a stack used for temporary data, 
and a special type of data segment called a process control block (pcb). 
The pcb segment contains unique information that identifies the 
process to the operating system. This information includes the process 
number, type of process, priority, and address space qualifiers that 
define the virtual address space for a process. Each process has its own 
virtual address space of up to 128 segments. These virtual addresses 
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are mapped to physical addresses by 3B20D hardware under the 
control of the DMERT operating system. 

A process can be dynamically created to perform a set of functions 
and then to gracefully terminate itself when its task is finished. 
Processes that continuously perform work remain "alive" at all times; 
however, they may sleep or be inactive until an interrupt fires. These 
features allow main memory to hold only the processes necessary, at 
a given point in time, to support the application. 

3.3 Process types 

DMERT has four, basic types of processes: kernel, kernel process, 
supervisor, and user. DMERT may be viewed as a hierarchy of virtual 
machines, where successive levels put additional restrictions on access 
rights and further remove the programmer from the details of the 
physical machine. However, the higher levels may take advantage of 
services provided by the lower levels. In general, the higher the level, 
the more services available to the application programmer; the lower 
the level, the more real-time-efficient the program execution. This 
level structuring of virtual machines permits DMERT to manage real­
time applications, while at the same time providing the flexibility of a 
time-sharing system for background tasks. This approach avoids con­
tention for system resources with the high-priority tasks and simplifies 
the implementation effort for lower priority tasks. 

3.3.1 Kernel 

The DMERT kernel provides the most primitive virtual machine. 
The kernel handles hardware interrupts, timer interrupts, and oper­
ating system traps. In all cases, the kernel saves the state of the 
interrupted process, provides whatever service is requested, and then 
restores the state of the interrupted process. The kernel services are 
fairly primitive but they execute efficiently. 

Also part of the DMERT kernel are special processes that provide 
scheduling, memory management, and other services. For example, 
the memory manager and the scheduler are two of the special processes 
in DMERT. The memory manager loads processes into main memory, 
selects segments to be swapped out to disk when additional main 
memory is required, and provides routines that may be called by the 
kernel. The scheduler controls the execution of time-shared processes, 
that is, supervisor and supervisor-user processes. Special processes 
behave as kernel processes, except that they do not have their own 
virtual address space, but rather reside in the kernel's address space. 
These special processes communicate with the kernel through function 
calls instead of operating system traps, and they have access to global 
system data. 
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3.3.2 Kernel processes 

Kernel processes comprise the next virtual machine layer in 
DMERT. They are completely interrupt-driven and are designed to 
provide time-critical processing in a real-time environment. Kernel 
processes have their own virtual address space. However, they share 
the kernel's stack and the kernel's message buffer segment. Swapping 
is not necessary with kernel processes because their segments are 
locked in memory to ensure rapid response to events such as interrupts. 
The various peripheral device drivers and the fIle manager, which 
implements a hierarchical file system, are examples of kernel processes. 

At process build time, kernel processes are set up to share the 
operating system's stack and message buffers. This design was chosen 
for quick access to arguments of operating system traps and fast 
message communications between processes. Since kernel processes 
use the kernel's stack, they must run until they complete their task 
and then return control to the kerneL 

3.3.3 Supervisor and user processes 

Supervisor processes form the third layer of virtual machine. These 
processes can use all the services provided by the kernel and kernel 
processes. Supervisor processes provide time-sharing services that can 
be considered background tasks. They share the real time of the 
processor with each other according to priorities administered by the 
scheduler, which is a special process. In general, supervisor segments 
are not locked in memory, but can be swapped out. Thus, supervisor 
processes take much longer to dispatch than either special or kernel 
processes. 

Supervisor processes can be designed to run "stand-alone" or they 
may be used to implement a fourth virtual machine layer called user 
processes. The DMERT process manager is a supervisor process that 
does not support a user leveL However, the UNIX supervisor provides 
a user environment identical to that seen by a UNIX program. This is 
done through code at the supervisor level that calls upon the services 
of lower virtual machine layers. DMERT can simultaneously support 
multiple supervisors, each supporting its own user processes. It should 
be noted that while DMERT treats a supervisor/user combination as 
a single process with a dual address space, both levels exist concep­
tually. Also, supervisor-level code executes more efficiently than user­
level code because a supervisor has direct access to the lower level 
primitives, while the user interface to these primitives is coordinated 
by the user's supervisor. 

3.3.4 Interprocess communication 

DMERT provides a rich set of interprocess communication and 
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synchronization mechanisms including messages, events, interprocess 
traps, and shared memory. These interprocess communication primi­
tives are fundamental to the DMERT structure. Most of the system 
services are requested by an exchange of events and messages between 
a requesting process and either a system process or the kerneL 

3.3.4.1 Messages. Processes are in general separate and distinct 
entities. Two processes working together on a task must be able to 
exchange information. To satisfy this need messages may be sent from 
any level process to any other level process. These messages can be up 
to several hundred bytes long. The sender need only know the target 
process number and a pre-agreed format of the message. An optional 
acknowledgment capability is provided so the sender can synchronize 
actions with the receiver. 

3.3.4.2 Events. Communications between processes may occur us­
ing an event mechanism. An event is a single bit that is set by DMERT 
or a process and can be interrogated by the receiving process. Pres­
ently, 32 bits are available of which the DMERT operating system 
reserves 16 bits for its use. Thus, two or more processes can commu­
nicate internal states using events. 

3.3.4.3 Interprocess traps. A mechanism exists in DMERT to allow 
a lower-level process to support a higher-level process. A user-level 
process may trap to a supporting supervisor and a supervisor may trap 
to a kernel process. Trapping implies a transfer of control from one 
process to another with the passing of input parameters to the target 
process. The lower-level process returns status and control back to the 
trapping process after it has completed the required support work. 

3.3.4.4 Shared memory. Processes are built with a view of their own 
virtual address space and in general cannot access any other process's 
process's address space. This affords protection; however, sharing large 
amounts of data is difficult. Cooperating processes that must exchange 
information at rates higher than those supported by messages or 
events can share segments. A shared segment is a part of the virtual 
address space of several processes simultaneously. The application 
must control access to the shared data. 

3.4 Multiple environment support of applications 

DMERT simultaneously supports both a real-time and a time­
sharing philosophy. Kernel and kernel processes operate in a real-time 
environment and have fIrst call on the available real time of the 3B20D 
Processor. The remaining time is shared among supervisor and user 
processes. 

Most telecommunication applications build their own virtual ma­
chine or "operating system" as a kernel process that can respond to 
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the time-critical stimuli characteristic of telecommunications. This 
kernel-process approach also allows fine tuning of the telecommuni­
cations operating system, independent of the DMERT operating sys­
tem. In at least one case, the application specific virtual machine is a 
kernel process that runs in emulation mode. Being a microcoded 
machine, the 3B20D Processor can efficiently execute another ma­
chine's instruction set. By using the emulation mode, existing debugged 
application code, including operating systems, can be carried forward 
to the 3B20D Processor and DMERT with little additional software 
development effort. 

Some applications spread their functions over the existing DMERT 
virtual machines. For example, the time-critical functions related to 
disk and data link usage are implemented as kernel processes, and the 
administrative and postprocessing functions are implemented as su­
pervisor and user processes. An application of this type is normally 
used as a data base management system and/or a data communications 
system. Generally, an application fine tunes its system by moving 
processes to different execution levels within the virtual machines. 

IV. PERFORMANCE 

The 3B20D /DMERT system is capable of providing computing 
services in a stand-alone mode; however, usually it is utilized by 
surrounding it with application hardware, firmware, and software. The 
application hardware may include additional units identical to those 
already a part of the processor complex (e.g., additional memory, disk, 
data links), or it may include hardware unique to the application 
system (e.g., bus controllers, or time- and space-division switches). 
The application software frequently includes drivers, schedulers, and 
fault-recovery facilities, as well as the more usual "application pro­
grams." As a result of this diversity of software interfaces to DMERT, 
the performance modeling and measuring of the application system 
requires an extensive performance characterization ofDMERT, rather 
than the more traditional benchmark approach used in general-pur­
pose, computer-performance evaluation. The following sections de­
scribe the approach taken and the type of performance data made 
available to DMERT applications. 

4. 1 Performance characterization 

Since the application software may interface DMERT at all levels 
of the virtual machine (hardware, firmware, and the software levels of 
kernel, kernel process, supervisor, and user process), the performance 
characterization of the system must include data for all of these levels. 
In addition, the application can make use of a variety of DMERT 
system resources such as memory, peripheral devices, message buffers, 
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etc, and hence these resources must be accounted for in the perform­
ance characterization as well. 

The 3B20D performance characterization addresses four areas: the 
operating system, input/output, DMERTservices, and DMERT over­
head. Each of these areas will be discussed in more detail, and the sum 
of these areas covers all significant aspects of DMERT performance, 
as well as providing some models for the application developers to use 
in the analysis of the application system performance. 

4. 1. 1 Operating system characterization 

The goal of the performance characterization of the operating system 
was to identify the cost in resources for every service available at every 
level. The predominant service interface in DMERT is the Operating 
System Trap (OST), and hence every significant OST in DMERT was 
characterized with respect to its central processing unit (CPU)-time at 
the various modes and execution levels available in DMERT. 

The kernel, supervisor, and user OSTs cover a broad range of 
DMERT services: 

(i) Timing: clock reading and setting, single and repetitive time­
outs, and process sleeping requests. 

(ii) Memory management: locking and unlocking of memory seg­
ments, growing and shrinking of memory segments, and swapping of 
memory segments. 

(iii) Scheduling and interrupting: protecting against interrupts 
(critical region), priority changing, and fielding of interrupts. 

(iv) Interprocess communication: interprocess message sending 
and receiving, and sending and fielding of interprocess events. 

(v) Process switching and other functions: switching from one 
process to another, changing the execution level of a kernel process, 
creating another process, faulting another process, routing and rerout­
ing of standard inputs and outputs. 

4.1.2 Input/output system 

The input/output (I/O) system ofDMERT is characterized from an 
internal point of view; that is, each of the kinds of I/O services are 
characterized with respect to their primary resource consumption. The 
various I/O services are all measured with respect to the CPU-time 
consumed for each transaction and the maximum throughput rate 
based upon the elapsed time for each transaction. 

A basic set of operations can be performed on most I/O devices: 
open, close, read, and write. Seeking is a disk-only service, and rewind­
ing is a tape-only service. Except for data links, read and write 
operations can be invoked in several ways, depending on the physical 
organization of the data on the device. Most file operations can be 
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invoked directly or through the file manager. The devices supported 
by DMERT include disks, tapes, terminals, and data links. Finally, the 
disk I/O services can be invoked in several modes: normal (synchro­
nous, buffered I/O), asynchronous (which allows the invoking process 
to continue running while the I/O request is being serviced), physical 
(no buffering constraints, or services) and synchronous writes (which 
guarantee an immediate write to the disk, rather than the potential 
delayed write possible in the normal mode). 

Most of these I/O services are available to kernel, supervisor, and 
user processes via separate OSTs. Each OST is characterized with 
respect to CPU-time and maximum device throughput for each of the 
applicable cases. 

4.1.3 DMERT applications services 

Application software may utilize high-level services from DMERT 
as well as the more primitive OST-invoked services. The Craft Inter­
face12 is an example of this general category covered by the term 
DMERT services. The Craft Interface system provides an extensive 
and sophisticated set of terminal-oriented facilities that are used by 
both DMERT and the application software. Additional examples of 
DMERT services are the diagnostic and audit facilities that are a part 
of DMERT, but also may be invoked by application software. 

Of these DMERT services, the Craft Interface has been character­
ized for performance owing to its importance to early DMERT appli­
cations. The performance characterization chosen was to measure the 
CPU-time usage of the three most important application services: the 
Program Documentation Standard (PDS) Shell, the Control and Dis­
play Administrator, and the Output Spooler. Each of these services 
was measured with a range of appropriate job sizes. 

4.1.4 DMERT overhead 

The final category in the performance characterization of DMERT 
is the system overhead. While system overhead is not invoked explic­
itly as a service, it provides the essential services of the operating 
system. There are several types of system overhead: 

(i) Functional: provides for the capability of a multi-environment, 
real-time operating system by handling the timing-based facilities for 
interrupt servicing, scheduling, craft terminal polling, and data link 
polling. 

(ii) Sanity: provides for sanity and overload monitoring by reset­
ting hardware sanity timers, monitoring DMERT and application 
sanity timers, and checking for process lock-out conditions. 

(iii) Preventive maintenance: provides for routine preventive main­
tenance exercising and running routine software audits. 
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(iv) Fault maintenance: provides for fault detection, location and 
recovery, including removing faulty units from service, and testing and 
restoring replacement units. This overhead is incurred only when a 
fault occurs. 

(v) Services: provides for other non-electable services not covered 
by the previously described types, such as Craft Interface services and 
Plant Measurements services invoked in providing the processor sys­
tem. 
The DMERT operating system overhead is characterized in terms of 
CPU time and is expressed as a percentage. The first two types of 
overhead (functional and sanity) constitute the "continuous" overhead 
seen by the application, and cannot be controlled or throttled by the 
application. This component of the overhead is less than 5 percent for 
DMERT. The preventive maintenance overhead can be controlled in 
two ways: routine software audits can be throttled so that their peak 
resource usage is limited to a desired value, and the routine diagnostic 
exercising can be scheduled during times of light load. The fault 
maintenance overhead is measured as a single-fault, worst-case sce­
nario for the fault detection, isolation, and recovery, as well as the 
testing and restoral, of the repaired unit. The total resource usage is 
averaged over the specified two-hour repair interval. The services 
overhead includes the normal administrative activities necessary to 
maintain and administer the processor complex. The total system 
overhead for functional, sanity, preventive, and fault maintenance and 
services is less than 15 percent for DMERT. 

4.2 Performance measurement techniques 

The key resource in the 3B20DjDMERT system, and in the appli­
cations systems built upon it, is CPU time. It is shared among many 
processes, both DMERT and application, in four execution modes, at 
16 execution levels and 256 priority levels. The sharing is interrupt 
driven, with preemption from processes at higher priorities and at 
higher execution levels. While it is relatively simple to measure CPU 
time in an overall sense, it is a very complex job to measure the CPU 
time used by a particular process, function, or service. To solve this 
problem, the DMERT kernel was instrumented. Finally, hardware 
monitors were used to measure the performance of the processor 
complex, and also to verify the correctness and accuracy of the software 
performance measurement instrumentation. 

4.2.1 Kernel instrumentation 

The DMERT kernel was extended to provide detailed accounting of 
the CPU time usage (by execution mode and level) for the system as 
a whole, and also for each process. To keep the overhead low enough 
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to allow the instrumentation to be a permanent part of DMERT, a 
statistical sampling approach was used. Each 10 milliseconds the 
kernel records the process currently executing, together with the 
execution mode and level, assigning the previous 10 milliseconds to 
that process. Over a reasonable period of time (seconds or more) these 
statistical sampling results will converge arbitrarily close to the actual 
CPU time usage. 

V. SUMMARY 

An overview has been given for the objectives of DMERT based on 
its goal of providing a high-reliability, real-time processor system for 
telecommunications applications. This overview has indicated some of 
the development objectives of DMERT and has given the approach 
for the performance characterization of the whole system. Also in­
cluded is a description of the various kinds of operating system 
overhead, including measured values for DMERT, and a description 
of the performance measurement instrumentation within the DMERT 
kernel. 
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General operating system services in Duplex Multiple Environment 
Real Time (DMERT) are provided by a kernel and a set of cooper­
ating processes. These services support a multitude of process-ori­
ented features that include a rich set of inter process communication 
mechanisms and a sophisticated collection of memory manipulation 
primitives. The operating system provides processes with two sched­
uling alternatives and various creation and termination options. The 
cooperating processes include input/output drivers and device han­
dlers that enable processes to communicate with a variety of periph­
eral devices. Another set of processes simulates a UNIX™ operating 
system and file system. 

I. INTRODUCTION 

This article describes the design of the DMERT operating system 
nucleus. The reader should be familiar with the basic architecture of 
Duplex Multiple Environment Real Time (DMERT), which is de­
scribed in a companion paper.l The operating system nucleus is com­
posed of: the kernel, which supports interprocess communication 
mechanisms, the system clock, and interrupts; the special processes, 
which perform memory management and scheduling; two supervisor 
processes, which handle process management and the UNIX* oper­
ating system environment; and three kernel processes that control 
communication with peripherals and the file system. 

In general, DMERT applications view the operating system nucleus 

* Trademark of Bell Laboratories. 
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as one entity rather than a set of cooperating processes. Thus, the 
interrelationships between these processes are hidden from them. This 
article describes the design of DMERT's nucleus from the user's 
perspective; that is, it is feature oriented rather than process oriented. 
After finishing this paper, however, the reader should be familiar with 
both the feature set and the internal design of the cooperating proc­
esses. 

In order for a process to use any of the operating system's features, 
it must interface to the operating system with Operating System Traps 
(OSTs) or Interprocess Communication (IPC) mechanisms. OSTs were 
discussed in Ref. 1, and Section II describes IPCs. Sections III, IV, and 
V define the image and life cycle of processes by describing how 
memory is handled, the scheduling options, and how processes are 
created and terminated. Section VI summarizes the characteristics of 
a special type of process, namely a user process. Section VII discusses 
the input/output (I/O) and disk interfaces, and Section VIII describes 
DMERT's file systems. 

II. INTERPROCESS COMMUNICATION 

As stated in the previous paper, DMERT provides an extensive set 
of interprocess communication and synchronization mechanisms, in­
cluding messages, events, process ports, faults, interprocess traps, first 
in-first outs (FIFOs), and shared memory. These interprocess com­
munication mechanisms are described below. 

2.1 Events 

An event is a one-bit piece of information that may be sent, received, 
and recognized by a process. DMERT has 32 event bits, several of 
which are reserved for special meanings by DMERT. Those not 
reserved may be used in any manner agreed upon by a set of cooper­
ating processes. DMERT provides several event-type OSTs that en­
able one process to send an event to another process or to a class of 
processes. 

Processes have multiple entry points for start, event, OST, and fault 
entries. The purpose of the event entry is to allow the system to direct 
the process's attention to an event that has just occurred. Thus, when 
any of the process's event bits are set, control is passed to its event 
entry. 

Additional control over events is given to a kernel process. It has 
the ability to mask and reenable the bits that comprise its event flag 
word. This gives a kernel process the capability to more precisely 
control its flow by only allowing certain communications to occur. 

To provide timely response to events, the process receiving the event 
is interrupted and the state of its activities is saved by the kernel. After 
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the event is acted on, the process is restored to its original state and 
continues from the point where it was interrupted. 

2.2 Messages 

Messages are the primary method of communication between co­
operating processes in the operating system. The DMERT kernel 
provides a variety of OSTs for allocating, sending, receiving, canceling, 
auditing, and freeing messages for individual processes. 

A message consists of a fixed-size header followed by a variable-size 
block of data, called the message body. The header contains routing 
directions, status indicators, and other administrative information. 
The message body's contents and structure are determined by the 
cooperating processes using the message. 

A reserved event is used to notify a process that it has received a 
message. Hence, when a process receives a message, control is passed 
to its event entry. Waiting messages are queued in a message buffer 
segment in the kernel's address space and are directly accessible by 
kernel processes. However, kernel processes do not manipulate mes­
sages directly without first de queueing them by using one of the 
message de queueing OSTs. Supervisor processes do not have direct 
access to the message buffer segment. Messages must be copied into 
and out of this segment from and to the supervisor's own space. 

2.3 Ports 

Communications by messages require the knowledge of the target 
process's Process Identifier (PID). Since processes can be created and 
terminated dynamically, PIDs also are generated dynamically and a 
process typically knows only its own PID. Process ports permit proc­
esses to communicate with each other without knowing each other's 
PID. A process port is a globally known "device" to which a process 
may attach itself for receiving messages. Other processes may com­
municate with a process connected to a port by sending a message to 
that port rather than to a specific PID. Thus, process ports permit 
unrelated processes to communicate with each other. 

2.4 Faults 

Faults are very similar to events. A fault is a one-bit piece of 
information that may be sent, received, and recognized by a process. 
DMERT has 32 fault bits, some of which are reserved for special 
meanings by DMERT. When a process's fault bits are set, control is 
passed to its fault entry. 

Faults are used to inform processes of error and overload conditions 
and take precedence over events. If a process has both events and 
faults pending, control will be passed to its fault entry first. 
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2.5 Interprocess traps 

As mentioned in Ref. 1, an OST is generally used to transfer control 
to the kernel to perform some service on behalf of the requesting 
process. As such, an OST does not constitute a form of interprocess 
communication. An interprocess trap is a generalized notion of the 
OST, where a process can trap to some other process rather than the 
kernel to have some service performed. Because this interprocess trap 
can communicate service requests or other data between two processes, 
it is a form of IPC. 

Interprocess traps are more restrictive than other IPC mechanisms. 
A process can trap to another process only if the former process's 
execution level is lower than the latter's. Control is passed to the 
trapped process's OST entry. 

2.6 FIFOs 

Unrelated processes can use FIFOs for character stream communi­
cation. Conceptually, a FIFO is a queue of characters; characters flow 
through in a first in-first out order (hence, the name). The queue is 
fixed in length and may become filled if writers write faster than 
readers read. When such a condition occurs, further writes are pre­
vented. Similarly, reads are prevented when the queue is empty. 

Each FIFO has a name; that is, each is a special file in the file system 
(described in Section VIII). This naming characteristic distinguishes 
it from a pipe,2 because only processes spawned by a common ancestor 
can communicate using a pipe. Naming allows any process that knows 
a FIFO's name to use it, regardless of its ancestry. 

Any process level may use this mechanism. The FIFO is a suitable 
replacement for messages where communication is a character stream. 

2.7 Shared memory 

A segment is the basic unit of shared memory. It can be shared 
between different processes, or between multiple instances of the same 
process. A segment also can be shared among any number of arbitrary 
processes by assigning a global name to it and allowing any process to 
access it that has been given the global name. 

Since it is completely managed by the cooperating processes, shared 
memory is the form of interprocess communication most susceptible 
to error, but it is also the most efficient. Within the operating system, 
shared segments are used wherever reliability will not be sacrificed 
and where real-time response is paramount. 

III. MEMORY MANAGEMENT 

DMERT memory management centers around the segment. A 
segment is a set of logically related pages. A page is 2048 bytes of 
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contiguous main memory that always begins on addresses that are 
multiples of 2048. A segment is a collection of pages that do not have 
to be physically contiguous. All segments in the system are unique, 
that is, no page can belong to more than one segment. (Reference 3 
contains a detailed description of pages, segments, and memory trans­
lation.) 

3.1 Segment attributes 

Segments are created in main memory by the operating system on 
demand and disappear when they are no longer needed. When the 
initial image of a process is created, its segments are loaded into main 
memory by the memory manager. Although a segment of a user or 
supervisor process can be swapped out to a swap area reserved on the 
disk if additional main memory is needed for a process of higher 
priority, the segment remains known to the system until it is not 
required by any process. 

A segment is identified internally by its Segment Identifier (SID), 
which is the virtual address of its entry in the kernel's segment 
description table. A segment of a supervisor process also can be 
referenced by a segment number that indexes into the process's seg­
ment list. The segment list specifies the segments that are known to 
the process, including those that are not necessarily in the current 
virtual address space of the process. 

A process has segments that may be private or shared by other 
processes. Text segments are shared when possible to avoid duplication 
of commonly used functions. Data segments are usually private since 
most processes want sole access to their own data. However, a data 
segment can be shared with another process for implementing inter­
process communication (see Section 2.7) and can have a global name. 
Segment sharing increases the efficiency of memory management since 
a process needing to use a shareable segment already in main memory 
need only attach the segment to its virtual address space, thus reducing 
segment swapping. 

A segment can be defined as executable, readable, writable, or some 
combination thereof. Two different processes sharing a segment can 
have different access rights to it. So, for example, an "owner" of the 
segment could have read and write access, while another "user" of the 
segment would only be allowed to read it. 

A segment also can be designated as swapp able or nonswappable. If 
nonswappable, the segment will not be swapped from the main memory 
to disk memory. If it is imperative that the segment not be moved 
around in main memory as, for example, when I/O is being done in the 
segment, it can be locked in main memory. In addition, a segment can 
be blocked (that is, made unavailable) to other processes while it is 
being initialized. 
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Finally, segments can be either active or inactive. If inactive, the 
segment is not presently a part of the address space for each process 
that owns it. 

3.2 Process images 

The executable image of a process consists of a set of segments. 
Originally, a kernel process had its segments completely specified at 
link time. Later enhancements allow kernel processes to dynamically 
add or drop segments using messages to the memory manager. A 
supervisor process can use OST calls to create or destroy segments, 
make copies of segments, request named segments, attach or detach 
segments to its address space, grow or shrink a segment, lock a segment 
in main memory for I/O, or make a segment swappable or nonswapp­
able. 

A kernel process starts with at least four segments: the Kernel 
Process Control Block (KPCB) segment, the stack segment, the system 
message buffer segment, and the process's text segment. The KPCB 
segment contains the process-dependent information. The stack and 
system message buffer segments are shared with all other kernel 
processes and the DMERT kernel while the process's text segment is 
shared only with other invocations of the same kernel process. (Most 
kernel processes have only one invocation active at a time.) 

A supervisor process starts with at least three segments: the Process 
Control Block (PCB) segment, which contains the system's tables for 
the process; the stack segment; and the text segment. The process's 
data may be combined with its stack into a single segment or it may 
be placed in a separate segment. The access modes for the PCB and 
text segment are read-only and read-execute, respectively. The process 
may never write its PCB. The stack segment of a supervisor process is 
never shared, while a text segment is usually shareable between 
multiple invocations of the same process. 

IV. SCHEDULING 

DMERT simultaneously supports both a real-time and a time­
sharing environment. The kernel and kernel processes operate in a 
real-time environment and have first call on the available time of the 
3B20D processor. The remaining time is shared among special, super­
visor, and user processes. 

4.1 Real time 

Any process that must satisfy a real-time requirement should be a 
kernel process. DMERT maintains a process hierarchy based on 16 
execution levels. A kernel process can belong to levels 3 through 15. 
(Levels 0 through 2 are reserved for time-sharing environment.) 
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DMERT bases its real-time allocation strategy on three concepts: 
execution levels, round robin scheduling, and preemption. DMERT 
dispatches processes at the highest execution level first. For example, 
a process belonging to execution level 15 is dispatched before a process 
belonging to level 14, which is dispatched before a process at level 13, 
and so on. For each execution level, DMERT maintains a lis~ of 
waiting processes. When a process requests servicing, it is added to the 
appropriate list in a round robin fashion. As the operating system 
descends the hierarchy, it dispatches all the waiting processes at each 
level. 

Generally, a kernel process executes until it exits. However, if 
another kernel process at a higher execution level is awakened, 
DMERT preempts the executing process. Upon completion of the 
preempting process, if no other higher level processes are awakened, 
the operating system resumes the suspended process. 

DMERT's management of real time is straightforward and adds 
only a minimal amount of overhead. In fact, preempting one kernel 
process and dispatching another takes only about 320 microseconds. 
At the same time, applications are allowed to assign their own process's 
execution levels, which customizes their control and distribution of 
real time. This approach has proved to be quite flexible and permits a 
variety of applications. 

4.2 Time sharing 

As stated previously, the portion of real time not utilized by the 
kernel or kernel processes is time shared among supervisor and user 
processes. Processes supporting the time-sharing environment, such as 
the scheduler and the memory manager, are special kernel processes 
that reside at execution level 2. These processes are at the bottom of 
the real-time hierarchy and gain control of the processor only after all 
other real-time work is completed. 

Supervisor and user processes normally execute at level o. Levell is 
reserved for when they need to lock each other out. Within execution 
level 0, the scheduling hierarchy of supervisor and user processes is 
based on priority. The major difference between priority in the time­
sharing environment and execution levels in the real-time environment 
is that DMERT adjusts priorities dynamically, whereas execution 
levels are fixed. 

Priority adjustment is based on two factors: state and age. A time­
sharing process can be in one of three states: sleeping, waiting, or 
executing. As a process enters a new state, it begins to age (from zero) 
until it changes state. Processes in different states age at different 
rates. 

DMERT uses age and state to adjust the process's scheduling 
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priority. In particular, the priority of a sleeping or executing process is 
reduced as it ages and the priority of a waiting process is increased as 
it ages. The result is that a low-priority process waiting to run will 
eventually move above higher priority processes that have been exe­
cuting. 

DMERT selects the time-sharing process to execute by searching 
down a priority list until it finds a process waiting to run. The selected 
process continues to run until it changes state or is preempted by a 
kernel process. It cannot be preempted by a higher priority time­
sharing process. A time-sharing process can leave the executing state 
for one of the following reasons: (i) it roadblocks (enters the sleeping 
state); or (ii) it uses up its allotted time slice and is returned to the 
waiting state; or (iii) it terminates. When a process times out, it is 
chained to the end of the list of waiting processes at the appropriate 
priority. Then, DMERT searches the priority list to find the next 
time-sharing process that is waiting to execute. 

V. PROCESS CREATION AND TERMINATION 

The DMERT operating system supports the dynamic creation and 
termination of kernel, supervisor, and user processes. A process can be 
created on demand from a process load file maintained in secondary 
memory and can be terminated and recreated at will. Process creating 
and termination can be requested via messages, OSTs, or commands 
executed at a terminaL 

5. 1 Process creation 

The load file of a process is generated by means of the process 
loader, which is part of the software development system.4 A process 
load file contains the text and data segments that comprise the initial 
image of the process. It also specifies a variety of basic process 
attributes, such as the execution level, stack size, instruction privileges, 
entry points, and, for time-shared scheduling, priority and time slice. 

The creation of a process involves the identification of each of its 
segments in the kernel memory management tables, the formation of 
its initial image in main memory, and the identification of the process 
itself in the operating system scheduling tables. Start-up of a created 
process is generally accomplished by sending it a special initialization 
event, in which case control is passed to the process's event entry. In 
the case of supervisor and user processes, control is passed to the 
process's start entry. 

5. 1. 1 Process creation mechanisms 

There are three distinct mechanisms for creating a process. The 
system bootstrap mechanism creates a set of processes that constitute 
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the nucleus of the operating system and are essential to its operation. 
These include a process, called the process manager, whose principal 
function is the creation of other processes from process load files. The 
process manager can be instructed to create processes via the mecha­
nism, and of sending it a message containing the name of the process 
load file and other relevant information. The third mechanism is the 
execution of a "fork" system call by a user process that results in the 
creation of a copy of the process executing the fork. The copy, called 
a child process, can subsequently execute another file via the "exec" 
system call, i.e., exchange its text and data for that of another process 
load file. 

The creation of processes during system bootstrap is carried out by 
the kernel in a very efficient manner utilizing full access to the memory 
management tables and functions. The process manager is imple­
mented as a swapp able supervisor process that calls upon the services 
of the memory manager through OSTs and the file manager through 
messages. The fork mechanism is carried out within the process 
executing the fork and avoids the overhead associated with loading in 
the process manager. 

5. 1.2 Process creation features 

Certain features are provided by the process creation mechanism. 
These include a distinction between single-copy and multiple-copy 
processes, the sharing of segments, and the use of shared libraries. 

Single-copy processes are not replicated in main memory by succes­
sive creations. Instead, the operating system increments a usage count, 
which is decremented whenever the process is terminated. The process 
remains in the system so long as its usage count is at least 1. Device 
handlers that are repeatedly opened and closed are typically single­
copy processes. 

Successive creation requests for a multiple-copy process results in 
processes with distinct PIDs that have independent existences. As 
mentioned earlier, the text segment is usually shared among the 
invocations of a multiple-copy process. Data segments are typically 
private. 

Processes that have a parent-child relationship may conveniently 
share segments as part of the creation process. The process load files 
of the parent and child processes define the segments that are share­
able. When the parent process requests the creation of the child via a 
message to the process manager, it identifies the segments to be shared 
and specifies the access permissions for the child process. A process 
can share segments with any number of different child processes. 

Shared libraries consist of segments of text and data that can be 
incorporated into any number of processes. A shared library is formed 
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by the process loader, and its process load file is maintained in 
secondary memory. If a process wants to use a shared library, the load 
file of the process need only contain the name of the library. The 
segments of the library are loaded into the process when the process 
is created unless they have already been loaded to satisfy the creation 
of another process. Symbolic references are resolved when the process 
load file is formed. The use of shared libraries decreases the size of the 
text segments in the process load file. 

5.2 Process termination 

Any process running under DMERT may elect to terminate itself or 
may be terminated by request of another process or the kernel. 
Exceptional cases are allowed; that is, the operating system has the 
capability of declaring processes to be essential or nonterminable. In 
particular, the processes that provide the basic operating system 
services are essential and cannot be terminated short of another system 
initialization. A kernel or supervisor process may be declared to be 
nonterminable as an option of the process loader. For such processes 
termination requests are always denied. 

The operating system supports a variety of mechanisms for request­
ing process termination, as described below. However, regardless of 
the specific request mechanism used, the operating system takes the 
same basic actions. 

5.2.1 Termination actions 

All requests to terminate a process eventually result in a message 
being sent to the system scheduler specifying the PID of the process 
to be terminated. The termination request will result in the removal of 
the process from the system, unless it is a single-copy process with a 
usage count greater than 1, in which case the usage count is decre­
mented. Removal of the process entails deleting its entry in the 
scheduling and segment tables. Shared segments that are needed by 
other processes for execution are retained in the system. The other 
segments are removed from the memory management tables and any 
associated secondary memory uses for swapping are freed up. 

The operating system also takes some actions on behalf of the 
terminating process to free up other system resources that may have 
been allocated to it. Messages still queued up for the process are 
deleted or returned to the sender with a special acknowledgment. The 
process is detached from system ports and interrupts. For a supervisor 
process, the operating system issues close requests for any files it may 
have in the open state. 

The message sent to the scheduler to terminate a process may 
optionally request a memory dump of the process. In this case, the 

312 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



operating system produces a file in secondary memory similar to a 
process load file, which includes a copy of each of the process's 
segments at the time of termination. Such dumps are often useful for 
debugging purposes. Another option frequently exercised to coordinate 
the interactions of processes is to have the parent process notified 
when one of its child processes is terminated. 

5.2.2. Process termination request mechanisms 

A process may send a message to the system scheduler to terminate 
itself or another process. In certain situations, the operating system 
will terminate a process automatically. For example, a process that is 
faulted but that does not have a fault entry is terminated by the kernel. 

A user process typically executes an exit system call to terminate 
itself. The exit system call is converted into a terminate message to 
the scheduler. 

The operating system provides various OSTs to terminate a group 
of processes. One OST can be used by supervisor or kernel processes 
to terminate all processes having the same Utility Identifier (UID). 
(The UID is an identifier of a process that is selected at process load 
time and is administered to be unique to each process load file). This 
OST terminates all invocations of a multiple-copy process, since mul­
tiple invocations have the same UID. Another OST can be used by a 
kernel process to terminate all processes belonging to a specified 
process class. DMERT supports the optional grouping of processes 
into one of several classes, with each class chosen at load time. The 
capability of terminating all processes in a given class is useful in 
overload control schemes. Another termination OST available to ker­
nel processes is specifically designed to handle system message buffer 
overload. This OST terminates processes that are using more than a 
specified percentage of the system message buffer resources. The 
actions of this OST also can be restricted to processes with a specified 
execution level or process class. 

Several commands are provided to permit process termination from 
a terminal. One command will force the termination of any process 
with a specified PID and also will cause a memory dump of the process 
to be created. Another command is provided to terminate all processes 
with a specified UID. It also has the special feature of clearing the 
names of all shared segments used by the processes. This feature is 
used in conjunction with the updating of a process.5 

VI. SIMULATED UNIX OPERATING SYSTEM 

The time-sharing environment supported by DMERT simulates a 
UNIX operating system2 implemented via a supervisor process called 
the UNIX Supervisor Process (USP). The USP supports standard 
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UNIX software including system calls from C programs, file operations, 
process communication through pipes, and interpretation of terminal 
commands through the "shell" process. 

Processes controlled by the USP are called user processes. The USP 
partitions its address space into a user area and a supervisor area and 
appears as a single process to the DMERT kernel. Thus, the user and 
supervisor are physically combined into the same process, having the 
same PID, scheduling priority, PCB, etc. Each time a user process 
forks, another USP is formed. 

The role of the USP is to supply services to its user portion. It 
accomplishes this through supervisor OST calls and through commu­
nication with other DMERT processes. For example, file system 
capabilities are provided by the USP sending the appropriate messages 
to the DMERT file manager process. 

The availability of a simulated UNIX operating system in DMERT 
allows UNIX programs from other processors to execute on the 3B20D 
Processor. DMERT provides some capabilities to user processes not 
currently supported by the standard UNIX operating system. These 
include asynchronous I/O directly to or from the user's address space 
and memory management of user process segments. In addition, there 
are a number of file system capabilities, such as contiguous files, that 
are provided through the DMERT file management facilities discussed 
in Section VIII. User processes also have access to the DMERT IPCs 
such as messages and events. 

DMERT's memory management capabilities allow a user process to 
manipulate and share portions of its address space on a segment basis. 
In particular, a user process can create a new segment in its address 
space and can specify the virtual address of the segment. It can acquire 
an existing and named segment into its address space and also remove 
segments from its address space. Segments listed in a user process's 
PCB can be activated or deactivated through OSTs to the USP. OSTs 
permit it to share up to three segments with a process it creates via 
the DMERT process creation functions described earlier. 

VII. I/O FACILITIES 

The operating system supports communication with peripheral de­
vices through a set of drivers and device handlers. These drivers isolate 
most processes from the details of the peripheral system, and they 
ensure efficient use of the peripheral devices by scheduling access to 
them on an equitable basis. 

The architecture of the I/O software closely resembles the I/O 
hardware architecture.5 The I/O Processor (lOP) driver and the device 
handlers manage the lOPs, the Peripheral Controllers (PC), and the 
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Peripheral Controller Sub devices (PCSDs). The disk driver manages 
and controls the disk file controllers and the disks. 

7.1 Input/output processor driver 

The lOP driver is a kernel process that administers all lOP trans­
actions in the 3B20D DMERT system. The driver is responsible for 
normal I/O activities fault recognition and recovery, configuration 
management, and diagnostic access. 

The lOP, from a software standpoint, can be visualized as a three­
level structure (see Fig. 1). The "front-end" Peripheral Interface Con­
troller (PIC) controls up to sixteen peripheral controllers (PCs), and 
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each PC controls up to four sub devices (PCSDs). The subdevice 
provides the interface to the end device, such as magnetic tape unit, 
teletypewriter (TTY), data link, etc. Four PCs are combined to form 
a PC "community" with each PC community having a separate power 
supply. 

Each element in the lOP (PIC, PC, and PCSD) has a corresponding 
element in the driver called a handler and corresponding unit control 
and option blocks in the Equipment Configuration Data (ECD) data 
base.6 The handler for the PCSD is referred to as the device handler. 
A handler for a PC is called the generic PC handler or application PC 
handler. The handler for the PIC is called the generic PIC handler. 
The term generic implies that the handler is capable of performing all 
required handler functions for more than one PC type (that is, TTY, 
magnetic tape, data link, etc.). 

Handlers are collections of C-Ianguage functions that have well­
defined interfaces with the driver and are responsible for carrying out 
all maintenance (excluding diagnostics), recovery, and normal mode 
operations for their respective elements in the lOP. Handlers contain 
the necessary specialized logic to deal with a given unit type. 

The handlers' service routines, input routines, control routines, and 
associated libraries form a single lOP driver process (IODRV). 

10DRV can be subdivided into the following functional areas: 
(i) Common service routines: routines that are frequently called 

from numerous points within 10DRV and the handlers. 
(ii) Configuration control: routines that maintain proper configu­

ration of lOP units (inverted tree structure). 
(iii) Input routines: routines that process primary inputs from the 

DMERT operating system and pass them off to 10DRV configuration 
control or handlers. 

(iv) Application and generic handlers: the operational interface 
between the user and physical device (magnetic tape, terminals, etc.). 

(v) Maintenance handler: the diagnostic interface to the lOP 
units. 

(vi) Archive libraries: system routines used by 10DRV and other 
kernel-level processes. 

Normal mode activities are carried out through the input routines, 
common service routines, and the operational handlers. All commu­
nications within the driver are through function calls. 

I/O messages enter 10DRV as message events and pass through the 
message input routines. Similarly, operating system traps enter 
10DRV at the OST entry point and pass through the OST input 
routines. Typically, I/O messages and OSTs contain a Logical Device 
Identification Number (LDIN) that identifies a logical (or virtual) 
device with which a user wishes to do I/O. 10DRV maps the LDIN to 
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one or more physical devices. Once a physical device is identified, the 
IODRV can identify the corresponding handler via the ECD and pass 
control to it. 

Completion reports, or responses, are deposited in the IODRV 
response queue by the lOP. If responses have been added to the 
response queue within a certain batching interval, the lOP will inter­
rupt the 3B20D, causing IODRV to be entered. IODRV pops each 
queued response and, based on the PC and PCSD identifier in the 
response, maps to a physical unit, and passes control to the handler. 

Maintenance and recovery activities are coordinated through 
IODRV configuration control routines, which, in turn, call on the 
handlers at appropriate points in time to carry out specialized main­
tenance operations at the subdevice level. Diagnostics for the PIC and 
PC are handled exclusively by the maintenance handler. 

7.1. 1 Handler applications 

Peripheral devices supported by the lOP include TTY terminals, 
Maintenance TTY (MTTY) terminals, magnetic tape drives, data 
links, and the Scanner and Signal Distributor (SCSD). Interfaces to 
these devices are provided by IODRV and device handlers. IODRV is 
responsible for initializing units upon bootstrap and removing and 
restoring units upon manual requests or faults. Each handler-periph­
eral device combination determines the interface mechanism and the 
set of features to be supported. The following sections give a brief 
description of the facilities supported by each peripheral device type. 

7.1.2 Terminal devices 

The Craft Interface Handler (CIH) provides access to terminal 
devices. The CIH communicates with two types of controllers: Main­
tenance Terminal Controllers (MTTYCs) and Terminal Controllers 
(TTYCs). MTTYCs support four subdevices: a Maintenance Terminal 
(MTTY); a Receive-Only Printer (ROP); a Switching Control Center 
(SCC) interface; and an Emergency Action Interface (EAI).7 TTYCs 
support terminals (TTY). 

The MTTY, TTY, and ROP are known as terminal devices. The 
SCC and EAI devices are not terminal devices and are accessed via 
other handlers (see below). All standard terminal operations supported 
by the UNIX operating system are available to TTY devices, including 
read, write, open, and close requests, which are supported through a 
message interface. The ROP does not support reads. 

7. 1.3 Data links 

The Communication Protocol Handler (CPH) provides access to 
synchronous data links. The CPH is designed to communicate with 
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two types of peripheral controllers: (i) the MTTY controller, and (ii) 
the synchronous data-link controller. In the case of the MTTY, access 
is available only to the SCC peripheral controller subdevice, which 
supports synchronous data link communication between the 3B20D 
and an SCC office using the BX.25 protocol. 

The synchronous data link controller supports the BX.25 link layer 
(level 2) communication protocol and the Digital Data Communication 
Message Protocol (DDCMP) through the use of different versions of 
peripheral controller software. The CPH software supports two access 
methods: link-layer protocol access (level-two-onlyaccess) and BX.25 
packet-level (level 3) protocol access. The use of a link-layer protocol 
(BX.25 and DDCMP) assures the integrity of data transmissions on a 
physical link. The use of a packet-layer protocol (BX.25) allows the 
added capability of multiplexing multiple users on a physical link. Flow 
control procedures also are used on both protocol layers. 

In addition to the the two different access methods, the handler 
supports both a simplex and a duplex link configuration. In the duplex 
configuration, two physical links make up a logical communication 
path between the 3B20D and another system. The CPH automatically 
routes data through the currently active physical link. Link switching 
is done automatically when the active link fails. 

7. 1.4 Magnetic tape drives 

The magnetic tape peripheral controller handles up to four 9-track 
800 or 1600 bits per inch (bpi) tape drives. The magnetic tape handler 
provides the interface to this controller and supports open, read, write, 
seek, and close requests through a message interface. Seeks are not 
supported for write operations. 

7.1.5 Scanner and signal distributor 

Administration and control of the Scan and Signal Distributor 
(SCSD) points currently involves two DMERT kernel processes: the 
SCSD administrator and the SCSD handler. The latter is an integral 
part of the I/O driver process. The primary function of the SCSD 
software is to provide an interface enabling client processes to manip­
ulate distribution points and receive information about the state of the 
scan points (i.e., autonomous scan state transition and directed scan 
reports). The SCSD administrator allows a client process to identify 
SCSD points by logical or physical addresses; logical addressing allows 
applications to code software independently of physical cabling. 

The SCSD handler translates messages from the administrator into 
SCSD controller commands and receives responses from the controller 
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and forwards these responses to the administrator through a message 
interface. 

7.1.6 Direct user interface 

For some applications the current method of communication with 
the peripheral controller sub devices through 10DRV is not efficient 
enough to meet their needs. Therefore, the Direct User Interface 
(DUI) exists to expedite data transfers between an application process 
and a specialized 56-KB BX.25 data-link controller. 

The DUI handler is an integral part ofIODRV. In the normal mode 
of operation, the only functions of the DUI handler are to set up and 
clean up the DUI table, which is in a common area of memory and is 
used for passing commands and status information between the appli­
cation process and the peripheral controller. Using the DUI table, jobs 
are passed directly to the peripheral controller by the application 
process without any intervention from 10DRV. 

A secondary function of the handler is to administer the fault 
recovery strategy for the peripheral controller subdevice. If the sub­
device has to be removed or restarted, the handler will tear down the 
DUI table and send a message to the application process. 

7.2 Disk driver 

The disk driver is a kernel process that handles all normal disk I/O 
and all maintenance disk I/O. Only system initialization I/O bypasses 
the disk driver and transfers information directly from the system boot 
device to main memory. The disk subsystem consists of the disk driver, 
the Disk File Controller (DFC), and the Moving Head Disk (MHD) 
drives. The 3B20D supports a maximum of eight DFCs, each having 
up to eight MHDs. The DFC and MHDs are described in Ref. 8. 

MHDs may be used in a simplexed or duplexed configuration. In 
simplex mode the MHD stands alone. Should a file become damaged 
it will be irretrievably lost. In duplex mode two MHDs are maintained 
such that each is an exact copy of the other. Should one disk fail the 
other can be used in simplex mode. 

7.2.1 Operational characteristics 

The disk driver handles open, close, read, and write message re­
quests. Open and close messages are passed from the file manager (see 
Section VII) to the disk driver, while read and write requests may be 
sent directly from any process or routed through the file manager. 
Before the kernel attaches the read or write message to the disk 
driver's message queue, it verifies that the segment is locked in main 
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memory (see Section 3.1). It also verifies that the I/O transfer is within 
the bounds of the segment. 

When the disk driver processes the I/O message, it translates the 
LDIN contained in the message to one or more physical devices. The 
request is then placed in one of three circular job submit queues in 
main store associated with the DFC for each specified physical device. 

The three types of disk job queues are high-priority, base-priority, 
and special. Special commands sent by maintenance processes or 
originated in the disk driver are immediately executed by the DFC 
from the special job queue. High-priority jobs can be sent by any client 
process and will be processed by the DFC before base-priority jobs. 
All other jobs are placed in the base-priority queue. 

Whenever the DFC completes a job requested by the driver, it 
returns a response indicating the outcome of the job. All job responses 
are placed in a single main store response queue, regardless of the 
priority of the original job. The DFC generates an interrupt to the 
driver after each response is added to the queue. The driver only clears 
the interrupt after processing the last entry in the response queue. 

The disk driver handles job responses each time it is entered at its 
interrupt entry. The job response indicates the status and identity of 
the job being reported. If the job was successful, the driver sends a 
successful job completion acknowledgment to the client using the same 
message buffer that requested the I/O. In writing to duplexed disks, 
the driver guarantees that both disks were written successfully before 
acknowledging the job. In reading from duplexed disks, the driver 
reads from a single disk, alternating disks between requests. 

If a job failed, the driver determines whether the device should be 
removed from service or if it should retry the job. 

When the driver wishes to retry a failed job, it sets up a retry request 
in the main store retry queue. The format of an entry in the retry 
queue is the same as that of a job in any of the other queues. After 
writing the entry in the queue the driver wakes up the DFC with a 
programmed I/O command. The DFC then takes this job, even if the 
other submit queues contain work. When the driver handles the 
response from the retry request, it knows the queue is available for 
reuse. 

7.2.2 Reliability characteristics 

The disk driver also has a message interface for maintenance com­
mands. Once the device (MHD or DFC) is taken out of service by the 
disk driver, the device can be reserved for maintenance access and the 
disk driver provides the maintenance client processes unlimited access 
to the device. During maintenance, specific areas of a MHD can be 
read or written by bypassing many of the operational checks performed 
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on normal I/O requests. This allows the creation of a disk and the 
system update of a disk with a new software generic.6 

VIII. FILE SYSTEM 

All accesses to the file system are done through the file manager, a 
DMERT kernel process. In addition to maintaining file system security 
and integrity, the file manager translates read and write requests 
within the file system to physical I/O requests on the disk. 

The DMERT file system is similar to the file system provided by 
the UNIX operating system and features a hierarchical structure, byte­
oriented files, and uniform access to files, directories, and periphery. 
In addition to regular files, which are scattered throughout the disk 
and can grow dynamically, DMERT also provides contiguous and 
extent files, which are contiguous on disk but have limits on their 
growth. Contiguous and extent files are optimum for data base and 
object files, where large, fast I/O transfers are needed. For field update, 
DMERT provides a "windowless move" facility, which automatically 
moves an updated object file over the old one, thus eliminating any 
possibility that the file be used or the system initialized while the file 
is in an inconsistent state. 

To meet DMERT's reliability requirements, DMERT file systems 
are crash resistant. In particular, a crash does not jeopardize file 
system integrity, the file systems do not need manual repair, and they 
are available within seconds after a crash. 

The file manager uses two techniques to ensure crash resistance. 
First, it orders all writes to disk to maintain a consistent file system 
state. To create, link, or write a file, the ordering is: 

(i) Write the data blocks 
(ii) Write the indirect i-node blocks 

(iii) Write the i-node* 
(iv) Write the directory entry, if necessary. 

To unlink or truncate a file, the ordering is: 
(i) Write the cleared directory entry, if necessary. 

(ii) Write the cleared i-node. 
(iii) Free the blocks. 

Second, to ensure that no block is allocated to more than one file, the 
file manager rebuilds a file system's free-block list before it is used 
following a crash. Doing this for the 50-000 block, 2048-i-node root file 
system adds about 10 seconds to DMERT's boot procedure. 

These two techniques are sufficient to ensure crash resistance, and 
we have found no problems with these in the field. 

* An i-node describes a file and contains its block addresses. An indirect i-node block 
extends the i-node and contains more block addresses. 
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IX. SUMMARY 

This article has described the DMERT nucleus, which consists of 
the kernel, the special processes, the I/O drivers and file manager, the 
process manager, and the UNIX supervisor. The major services pro­
vided by this nucleus include a multitude of interprocess communica­
tion mechanisms, a sophisticated set of memory allocation features, 
both real-time and time-shared scheduling, dynamic process creation 
and termination, a simulated UNIX environment's communication 
with terminals, magnetic tape drives, data links and disks, and powerful 
real-time and time-shared file system capabilities. The operating sys­
tem has been continually evolving since DMERT was conceived, and 
is expected to continue to evolve over the next few years. This article 
has described the first official version of DMERT, which entered 
service in the Bell System during September 1981. 
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This article describes the field administration facilities of the 
Duplex Multiple Environment Real Time (DMERT) operating sys­
tem, as provided on the 3B20D Processor. These facilities are: Recent 
Change/Verify, the subsystem that allows manipulation of office­
dependent configuration information; Field Update, the software 
change mechanism; and System Update, the component used to 
install a new generic program in an office. The article also includes 
information on how these capabilities fit into the overall scheme of 
field support in an in-service office environment. 

I. INTRODUCTION 

An integral part of high-reliability applications of the Duplex Mul­
tiple Environment Real Time (DMERT) operating system is the 
administration of system hardware information and of software. This 
includes both the initial delivery of the system as well as subsequent 
upgrades. In DMERTI there are three commonly used capabilities to 
apply, track, and administer such changes. These are Recent Change/ 
Verify, Field Update, and System Update. They are listed in this order 
according to decreasing frequency of field use and increasing impact 
(typically) on the overall system. Each of these capabilities is designed 
to permit display of some aspect of the current status of the system, to 
change that status in a simplified and highly reliable way, and to either 
reverse such changes or make them permanently a part of the system. 
This article discusses each in turn, and provides examples of their use. 
Each capability may form the base for an application-dependent 
version of its function. These functions are discussed briefly in the rest 
of this introduction. 
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The 3B20D Recent Change/Verify (RC/V) system provides the 
ability to change and manipulate various aspects of office-dependent 
information. This capability is focused on the system hardware and 
software configuration and is based on the Low-Level Access (LLA) 
Data Base System, whose operation is normally hidden from field­
site administrators. RC/V is used manually or automatically to verify 
and change the hardware and software components known to the 
system, and the ways in which they are interconnected. 

Field Update is used to correct problems in the operation or func­
tionality of the system. Field Update is the official fix mechanism for 
DMERT. Rapidly installed emergency fixes, as well as more routine 
trouble corrections, may be installed into the software or other files in 
DMERT via Field Update. 

Finally, System Update, also known as Generic Update, changes a 
major portion of the entire DMERT or application generic program. 
In doing so, System Update may write oyer old generic information or 
provide a completely restructured generic program image. Typically, 
a new generic release will involve a new structure for RC/V information 
as well, so RC/V may be involved with such an update. The following 
sections provide more details on these fundamental administrative 
capabilities of DMERT. 

II. RECENT CHANGE/VERIFY-LOW-LEVEL ACCESS DATA BASE 
SYSTEMS 

The 3B20D /DMERT System has provided a data base management 
capability as part of the DMERT operating system. Built upon a Low 
Level Access (LLA) data base system are the Equipment Configuration 
Data Base (ECD), System Generation Data Base (SG), and the 3B 
Recent Change/Verify (RC/V) and Data Base Evolution Systems. 
This section describes these systems and their relationship to the field 
administration environment. 

2. 1 Low-Level Access Data Base System 

The Low-Level Access Data Base System organizes and manipulates 
data in a C-Ianguage environment. The name low level implies that 
the system places minimal restrictions on its users: decisions about 
data organization and retrieval are left to the application. LLA trades 
user convenience for greater flexibility in data base design and per­
formance tuning. 

LLA gives the user latitude in defining both data units and data 
models and provides a powerful set of primitives to access the data. 
System characteristics include: 

(i) Data definition via a hierarchy of abstract types 
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(ii) Specification of data mapping from the data base to the user's 
buffers 

(iii) Ability to select various access methods, i.e., logical organization 
of subsets of data 

(iv) Data access through a library of functions 
(v) Isolation of operating system dependencies in a small number 

of program modules. 
Figure 1 gives a simplified schematic of the operation of an LLA 

application. 

2. 1.1 Data definition 

The Data Definition Language (DDL) is used to define the "shapes" 
of records, the LLA data type for retrieval and storage. It also allows 
user-defined "views" of the data base via data mapping, and the 
specification of data models by associating records with access meth­
ods. The recognizer for the DDL, the Data Definition Language 
Processor (DDLP), has many C-compatible features, such as common 
syntax for preprocessor lines, comments, identifiers, constants, and 
type definitions. The DDLP generates C code to implement data 
mapping and C definitions, and a data dictionary to describe data 
types. 

2.1.2 Data manipulation 

The Data Manipulation Language (DML) is a library of functions 
that perform actions on instances of the data types defined by the 
DDL. The DML provides the following facilities: 

(i) Creation and deletion of instances of data types 
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Fig. I-Low-level access application. 
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(ii) Retrieval and update of existing instances of data types 
(iii) Gathering of information about existing data instances. 
These categories exist for instances of data bases, sets, and records. 

Generally, the lifetime of an instance of a data type starts with creation, 
proceeds through several retrievals and updates, and ends with dele­
tion. 

LLA is not used directly by a field administrator. Instead, the 
creators of various LLA data bases, be they 3B20D/DMERT system 
programmers or 3B20D application designers, provide appropriate 
higher-level access to their particular LLA data base application. 

2.2 3B200 Data Base Recent Change and Data Base Evolution Systems 

2.2.1 3B200 data bases 

The 3B20D/DMERT operating system has two major LLA data­
bases. The Equipment Configuration Data Base (ECD) describes the 
processor and peripheral hardware configuration, while the System 
Generation (SG) Data Base describes the system parameters, boot 
processes, and disk image and ECD administration information. The 
concept of a data base was adopted to eliminate redundant device 
information, provide a unified approach to handling and accessing that 
information, and provide easy methods for generating and changing it. 

Records in the ECD data base represent the hardware devices in 
the 3B20D Processor system, such as the Control Unit (CU) and 
Input/Output Processor (lOP), and are logically linked in a manner 
analogous to the physical linkages (see Fig. 2). In addition, records are 
provided to organize physical devices as logical devices and to maintain 
error counts for each physical device. To provide rapid access, the 
ECD is always kept in main memory. 

The information in the ECD and SG data bases is used by several 
classes of users. The DMERT operating system, itself, forms one set 
of using processes and includes the device drivers, processor and 
peripheral diagnostics, and processor and peripheral fault-recovery 
programs. The second class of users of these data bases is the human 
user, whether that person be a Bell Laboratories' application designer 
adding new peripherals to the ECD or an operating company craft 
preparing to add more memory to an on-line 3B20D in the field. Two 
types of access have been provided for these two classes of users: The 
DMERT operating system processes access the ECD through a collec­
tion of LLA primitives that provide rapid access to those specific items 
required, for example, by the device drivers. Human users- utilize~the­
Recent Change/Verify system, which provides a forms-oriented input, 
via a cathode ray tube (CRT) terminal. The user may create, change, 
delete, or merely review the forms. Error and consistency checking is-­
provided at the time of initial entry and before storage into the data 
base. 
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Fig. 2-Prototype 3B20D configuration. 

2.2.2 38200 Recent Change/Verify 

The Recent Change/Verify system is built upon the LLA data base 
management system and utilizes the LLA primitives for accessing and 
managing its two DMERT data bases. There are three basic compo­
nents of 3B20D RC/V (see Fig. 3). The first is the front-end form 
processing system. This component is known as the On-line Data 
Integrity (ODIN*) subsystem. ODIN allows the various forms to be 
specified through a series of CRT screen mask definitions and for each 

* ODIN is a product of Western Electric Company. 
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Fig. 3-Components of Recent Change/Verify. 

of these definitions to contain certain syntactic information to be 
checked upon entry. For the ECDjSG data bases there are 36 different 
form types, each of which has an associated mask definition. Most 
forms are either ECD or SG forms, but there are a few that are 
directives for the RCjV or Evolution systems. For each form type 
some error checking is provided. The second fundamental component 
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of RC/V is the Form Translation and Mapping subsystem. This takes 
the output of ODIN and transforms it into LLA record definitions and 
access functions. Then the LLA functions are used to actually manip­
ulate the data in the ECD and SG data bases. The third component is 
the transaction block-integrity check subsystem. This provides a mech­
anism for checking consistency between forms. RC/V has implemented 
the concept of a "transaction." Two special forms delimit a transaction. 
Upon processing a transaction-end form, RC/V invokes the integrity 
checks as well as linking the new information into the data base. 

As we stated earlier, the ECD that describes the running 3B20D is 
always in main memory; however, there is also a copy on the disk. In 
order for a change to be made permanent it must be applied to the 
disk as well as the memory version. To maintain the integrity of the 
ECD, changes are soaked on the memory version (test state) before 
they are applied to the disk version (active). A special form has been 
provided to perform this final step of activating changes to the disk 
copy of the data base. Upon processing of this form, RC/V copies the 
main memory copy of the ECD to the disk. To facilitate error checking 
and correction, a journal file of all transactions is kept on-line and can 
be printed on the Receive-Only Printer (ROP) at the request of the 
office craft. Also, an error log file is maintained and a periodic audit of 
the ECD structures is performed. 

2.2.3 Data Base Evolution System 

Because the release of a new 3B20D /DMERT generic is anticipated 
to be associated with changes to the ECD or SG forms or the LLA 
primitives, a system for transforming these data bases has been pro­
vided. The Data Base Evolution system (DBEVOL) allows this trans­
formation to occur in a regular and uniform manner without special 
programs needing to be written. DBEVOL allows old data to be 
restructured, new data fields to be added to existing forms, and old 
data to be deleted or changed. DBEVOL also provides semantic hook 
functions that allow applications to tailor some specific information 
before completing the data base evolution. 

DBEVOL has two types of steps. The first set is characterized as 
pre-processing. Here a translation data base (also an LLA data base) 
is built on a host support processor. The inputs are the old and new 
form specifications (as used by RC/V) and a specification of the 
changes in Form Translation Language. These inputs are supplied 
with the new DMERT generic program. If semantic hook functions 
are required by the application they are also an input to the final 
translation data base. A translation data base matching the required 
changes in the standard DMERT ECD is also released with new 
DMERT generics. 
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Fig. 4-Evolution of 3B20DjDMERT Data Base Management System. 

The second set of actions are run-time steps that produce a new, 
evolved ECD/SG data base pair (see Fig. 4). The first step is a dump 
of the old ECD using the "old" existing generic RC/V. This is produced 
using one of the special forms provided by the RC IV system. Then 
this snapshot of the old data base is translated into a snapshot of the 
new data base. The "new" RC/V is then used to load the new data 
bases into the proper LLA format for the 3B20D. 

DBEVOL runs on both the support processor and the 3B20D giving 
the using applications considerable flexibility in choosing a strategy 
for performing data base evolution. The evolved data base is actually 
put in place on the running 3B20D during the generic update scenario 
described below. 

III. FIELD UPDATE 

Field Update, which is typically called "overwriting" in traditional 
Electronic Switching Systems (ESSs), is the problem correction mech­
anism for DMERT. While overwriting usually applies specifically to 
program bugs, Field Update may be used to correct any file on the 
3B20D disk. Such files may contain human-readable text or binary 
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tables, for example. (In DMERT, files are structured like a UNIX* 
operating system file system.2

) Field Update must perform this updat­
ing without disturbing call processing or other critical system functions. 
Since operating systems do not normally support this style of updating, 
some difficult technological problems had to be overcome in designing 
and implementing Field Update. Some of these problems and their 
solutions are described below, followed by a more general discussion 
of the overall structure and use of Field Update. 

3. 1 Problems and solutions 

Like most modern operating systems, DMERT supports the concept 
of a process, which is a collection of tightly coupled executable pro­
grams. Programs are in turn broken down into units that perform 
specific activities, called functions. Processes can communicate with 
each other, generally at "arms-length," and are normally protected 
from each other by DMERT software and the 3B20D hardware and 
microcode. Since Field Update runs as a cooperating set of processes 
within DMERT, some highly specialized operating system interfaces 
were required to break through this protection. Furthermore, the real­
time critical processes in DMERT or its applications must run contin­
uously [they are termed "non-killable" (NK)], so that they are always 
available to process events quickly. The running process images of 
such processes must be accessible and changeable in main memory, 
again via special operating system functions. 

Since a process is a collection of functions, the C-Ianguage3 function 
was chosen as the unit of update. The implementation of field update 
specified that there be a single reference point for each changed 
function, so as not to require changes everywhere such a function was 
involved. To solve this, the concept of a Transfer Vector (TV) used in 
ESSs was implemented within a process image. Figure 5 is an example 
of a simplified process image showing this. In Fig. 5, the TV area 
contains a list of the addresses of the process's functions. When a 
change is made to function f, the new version f' is written into a special 
"patch" area provided with the process, and the particular address in 
the TV area is switched to point to f' (see Fig. 6). This solution also 
allows the fix to be backed out by changing the address in the TV 
back to its original value. When the fix has been tested and is ready to 
apply permanently, the space occupied by f can be made available for 
future fixes (Fig. 7). While this concept is simple, introducing TV s to 
DMERT had operating system implications down to the microcode 
level. With TV s, the impact of introducing a new or changed function 

* Trademark of Bell Laboratories. 
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Fig. 5-Simplified DMERT process image. 
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Fig. 6-Function f replaced by function f'. 
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Fig. 7-Reclaiming the space occupied by function f. 

has been restricted to a small, well-defined area of the process, making 
this activity inherently more reliable. 

Traditional operating systems do not have the ability to change a 
critical function or process while the system is running. Since DMERT 
is derived from such an operating system, many challenges were 
encountered in providing the field update capability. Some specific 
areas included: 

(i) The ability to change a file both instantaneously and in a 
temporary way. This is used in updating both non-killable processes 
and more routine processes that can be terminated and restarted; 

(ii) Retention of sufficient symbolic information to properly update 
the 3B20D disk-resident versions of processes ("pfiles"); 

(iii) The ability to update C functions even though the old versions 
of the functions had been suspended while field update was running; 

(iv) The ability to change data contents or the structure of data 
used by a continually running process; 

(v) The ability to coordinate changes to functions within a process. 

3.2 The use of field update 

Field Update is an end-to-end concept within DMERT; that is, it is 
involved with the development, distribution, installation, and tracking 
of changes. When a process is first introduced into DMERT, or when 
its subsystem architecture changes, the process developer must com-
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municate its characteristics to personnel who administer the DMERT 
source programs. The developer also must create a script of commands 
to be executed at a field site, which will be used to install, back out of, 
or make permanent a fix to the process. Generally, this will be simple 
to do because there are categories of existing process scripts, and new 
processes will fit into an existing category (or a simple modification to 
one will suffice). Once these steps are taken, the developer can depend 
upon the DMERT administrative system4 and specific Field Update 
change development commands to remember these details. This ap­
proach standardizes the development of fixes so that each is handled 
the same way, as opposed to being a unique activity. The primary 
advantage comes when an emergency fix must be created quickly 
without the extra burden of collecting procedural information. 

When a developer has created a fix and tested it, the standard 
change development mechanisms produce a package called a Broad­
cast Warning Message (BWM), which is used to transmit and install 
the fix (see Fig. 8). System Test personnel use this package to test the 
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field updatability of the fix as well as its impact on the system in the 
same way it will be installed at a field site (see the article on "System 
Integration and Test" in this issue of the Journal). When testing is 
completed, the fix can be packaged together with other fixes via 
automated tools into an official BWM for delivery to application 
project personnel, who will intermix it with application-specific BWMs 
and send it on. During this packaging, the particular order of instal­
lation of specific fixes is indicated both within and across BWMs. 

A BWM consists of a set of files in a UNIX operating system 
directory, and can be transmitted via magnetic tape to a site. The Bell 
System is standardizing on the Software Change and Notification 
System (SCANS-II) as the official change distribution network, and 
the files in a DMERT BWM are also compatible with SCANS-II. 
DMERT also provides file reception software for use with SCANS-II. 
Typically, personnel at a Switching Control Center (SCC) will inter­
rogate SCANS-II, recognize that a change is pending for one of their 
associated field sites, and initiate transmission of the change to the 
field site. 

Once a change reaches a field site, it is stored in a staging area on 
disk until it is manually installed. The developer-produced script of 
commands is sent as part of the BWM (see Fig. 8), and is used by 
office personnel to install the change. With a short sequence of 
DMERT Field Update commands, the fixes can be: 

(i) Installed 
(ii) Tested 
(iii) Backed out or made permanently a part of the system. 

While a fix is being installed, an internal system error will result in 
automatically backing it out; once it is soaking in a temporary state, it 
may be backed out manually, or automatically if the system undergoes 
a major recovery action. 

Each field site maintains an on-line log of all Field Update activity 
since the last System Update (see Section IV). This may be used to 
verify the current state of the office as far as installed BWMs are 
concerned, and is used each time a new change is installed to guarantee 
proper sequencing of changes. Other Field Update-related utility pro­
grams in DMERT can be used to print out a C function-to-process 
address map, and to verify that the main memory (executing) copy of 
a process matches its image on the 3B20D disk (see Section 3.1). 

By the facilities mentioned above, Field Update allows fix creation 
in a style compatible with normal program development, prepackaging 
of developer-approved installation scripts, fix coordination both within 
and across BWMs, automated delivery and installation mechanisms, 
and detailed change tracking. These capabilities make Field Update a 
truly end-to-end DMERT change mechanism. 
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3.3 Field update example 

Let us presume for this example that a problem has been found in 
the DMERT disk driver program, whose pfile is called dkdrv.o in 
directory /bootfiles. The developer has constructed a fix and tested it, 
and further system impact testing has verified it. The fix is given a 
DMERT official BWM name of BWM82-0028 (the first two digits are 
the year, and the last four a sequence number), and is passed to 
personnel in an application of DMERT, who approve it and send it 
out as application BWM, BWM82-0037. Once the fix has arrived at a 
field site, it is installed via the commands shown in Fig. 9. The 
descriptions below explain the commands: 

(i) Request a printout of change information that field update has 
logged against process dkdrv.o. 

(ii) Prepare the site to receive the BWM. After SCANS-II receives 
a command to send the BWM (not shown), it is transmitted automat­
ically to the site with data error detection and positive reporting. 

(iii) Install the fix into the system. 
(iv) Test the fix (coupled, perhaps, with manual actions). 
(v) Make the change permanent and remove the BWM files from 

the system. In this particular case the DMERT boot image is rebuilt 
as part of making the fix permanent, because the changed process is 
one of the system boot processes. 

(vi) Once again display the change status of dkdrv.o. 
(vii) Print a map of C functions and their addresses for drdrv.o. 
(viii) Reclaim the space occupied by old versions of C functions in 

dkdrv.o. 
The installation command mentioned above causes an entire set of 

commands to be executed, those in the "install" section of the script 
originally provided by the developer. An example of that script is 
shown in Fig. 10, which shows the Messages (MSGS) file for BWM 82-
0037. 

(i) UPD:DISPLAY; FN "/bootfiles/dkdrv.o"! 

(ii) IN:REMOTE:START! 
VFY:BWM: 82-0037! 

(iii) UPD:BWMNO 82-0037! 
UPD:EXEC 82-0037: CMD APPLY! 

(iv) UPD:EXEC 82-0037; CMD SOAK! 

(v) UPD:EXEC 82-0037; CMD OFFICIAL! 
CLR:BWM:ALL! 

(vi) UPD:DISPLAY; FN "/bootfiles/dkdrv.o"! 

(vii) UPD:TRC; FN "/bootfiles/dkdrv.o" : ALL! 

(viii) UPD:AUD! 

Fig. 9-Commands to Receive and Incorporate BWM 82-0037. 
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APPLY. 
MRs: d8200002; DMERT BWM82-0028 

UPD:UPNM BWM82-0037;FN" Ibootfiles/dkdrv.o' ':UF" letc/bwm/82-0037/0ne.m"! 
SOAK. 

BKOUT. 

The fix(es) should soak for at least 1 days 00 hours 00 minutes. 
It will be apparent that the fix(es) have been applied: 
When no disk restore failures occur, 
commands to soak the fix appear here. 

If the fix results in the need to reboot the system, the fix will 
have been backed out automatically. If the fix does not result 
in a reboot but otherwise does not work correctly, it can be backed 
out by entering the command [s]: 

UPD:BKOUT;UPNM BWM82-0037! 
OFFICIAL. 

UPD:UPNM BWM82-0f)37;OFC! 
This will update the bootfile APPDMRT. 

Fig. lO-MSGS file for BWM 82-0037. 

IV. SYSTEM UPDATE 

DMERT System Update provides a safe, reliable mechanism for 
field personnel to introduce new versions of DMERT and application 
software into 3B20D/DMERT systems, while minimizing service dis­
ruption. System Update differs from Field Update in the magnitude of 
the program and data changes being installed. Normally, a system 
update will replace all the software in the system with the release of a 
new generic program, which is a complete reissue of DMERT and/or 
application software and/or data. For this reason, system updates 
always include a memory reinitialization with a full bootstrap (reini­
tialization of all processes and data from disk). Only the contents of 
protected application segments, special memory areas where applica­
tion systems may retain critical information, are retained across the 
boot. Since a system update includes a reinitialization, only the version 
of the software on the 3B20D disk is updated. The main memory 
images of system processes will then be re-read from the disk during 
the bootstrap. This section describes how this disk updating is done 
within DMERT, and gives an overview of the overall System Update 
process. 

4.1 System Update concepts 

The DMERT System Update Program (SUPR) provides a way to 
replace the entire contents of the 3B20D disk with a new version of 
those contents from a magnetic tape. SUPR deals with masses of data, 
and changes the disk contents section by section rather than file by 
file or logical data base updates. These sections are called partitions. 
To do this, SUPR takes advantage of the fact that the 3B20D disks 
are duplexed for reliability, writing the new system information onto 
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only one of a pair of disks. This is the off-line disk method of system 
updating. It derives its name from the fact that one of a pair of disks 
must first be removed from active service (taken off-line) before writing 
the new system onto it. With the off-line disk method the amount of 
redundant disk information is kept to a minimum during the update, 
and the disk structure may be completely changed. There is some 
increase in system vulnerability during the time that the disks are not 
running in duplex mode. 

Certain aspects of the system update procedure have caused unique 
requirements and changes within DMERT. The key to the off-line 
disk method is protecting both generic programs from being overwrit­
ten during the update procedure. Since these generics reside on duplex 
disk mates, an off-line disk must never be restored to service. (The 
restore process includes a copy from the on-line to off-line disk.) The 
attributes of the "off-line" device state in the ECD were expanded to 
provide this capability. After a bootstrap on a new generic disk image, 
the disk copy of the old generic must similarly be marked off-line, and 
hence protected from restorals. This was accomplished by having each 
generic's ECD record the disks containing the other generic as off-line. 

It was also necessary to be able to access partitions on an off-line 
disk, in order to read or write partitions on an off-line disk, to transfer 
files from the old generic to the new generic, and to perform recent 
changes on the new generic ECD (for example, in marking old generic 
disks as off-line). This was done by having the disk driver program 
access the Volume Table of Contents (VTOC)-the directory of the 
disk's contents-on the off-line disk during the update process. This is 
a special case, since the VTOC on an off-line disk may be different 
from that of its mate disk, or may not even be sane. When updating 
multiple disks, SUPR uses a special disk identifier added to the VTOC 
to ensure that the disk image being written corresponds to the infor­
mation on that disk. As another safeguard, System Update uses 
checksums (special numbers computed from the data in a file) on the 
generic tape to check the new generic data for damage before writing 
it to the disk. 

4.2 System update scenario 

SUPR provides a complete update scenario, including a means to 
reverse the update and re-establish the original system. Because of the 
major impact on the application during a system update, the complete 
update procedure is broken down into several distinct steps, and allows 
the craft to choose the best time to begin each successive step of the 
update. The update may be canceled at any step of the procedure. 
Application-dependent processing may be introduced at any step. 
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Under favorable conditions only the forward steps of SUPR would 
be used, resulting in a successful update. These steps are: 

(i) Enter new generic-Read all the new generic data onto the off­
line system disk. 

(ii) Proceed with new generic-Make final preparations prior to 
booting the system from the new generic. 

(iii) Boot from new generic-Manually boot the system using the 
new generic. 

(iv) Commit to new generic-Complete propagation of the new 
generic into the system after the soak period by removing all aspects 
of the old generic. 

If the new generic does not work as expected, the craft would not 
commit to it, but would start a backout procedure to return to the 
original system. 

SUPR also provides a convenient mechanism to allow application­
dependent processing at each step of the update procedure. This is 
accomplished by transferring control to an application process that 
can perform whatever actions are appropriate. The types of actions 
most likely to be done as part of the application processing would be 
to transfer data (files, data bases, office-dependent information) from 
the old generic to the new generic or to save call registers and billing 
information in protected application segments prior to suspending call 
processing and booting from the new generic. 

V. SUMMARY 

This article has dealt with the subsystems of DMERT that admin­
ister changes to system data. Recent ChangejVerify is used to change 
system configuration data and its underlying data base, Field Update 
allows "bug fixes" and logical file changes, and System Update will 
install an entirely new version of the operating system. These subsys­
tems were described and examples given of their use. In each case 
DMERT provides change application, testing, and rejection or accept­
ance capabilities in a context very similar to that of typical operating 
systems, but in a highly reliable way. 
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The term ({field utilities" describes a number of tools used by 
telephone company craft and support staff as well as Western Electric 
and Bell Laboratories field support personnel for trouble-clearing 
and routine maintenance activities on the 3B20DjDMERT system. 
This complementary set of tools provides debugging coverage for the 
system regardless of load or system functionality. In addition, it deals 
with the challenges and complexities posed by the concepts of parallel 
processing, virtual addressing, and swapping. This article describes 
the various field utilities and discusses their capabilities. 

I. INTRODUCTION 

The term "field utilities" includes a number of tools used by tele­
phone company, Western Electric, and Bell Laboratories support 
personnel to perform trouble-clearing and routine maintenance activ­
ities. Currently, software debugging and investigation tools include the 
Field Test Set (FTS), the Generic Access Package (GRASP), and 
IBROWSE, an interactive tool used to "browse" through the contents 
of main memory. In unusual cases, a Micro-Level Test Set (MLTS) 
may be used in a troubleshooting mode. The Program Documentation 
Standard (PDS) Field Maintenance Commands are a collection of 
tools used to perform more routine operational maintenance on the 
operating system. Each of these capabilities will be described in this 
article. 

II. TROUBLESHOOTING AIDS 

The nature of large, evolving software projects is such that, despite 
multiple levels of testing by developers, integration teams, system test 
groups, and field site acceptance teams, some software "bugs" escape 
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Table I-Comparison of 3820D/DMERT debugging tools 
Attribute/Tool FTS GRASP IBROWSE MLTS 

Interference None Small, self- Small, not Extreme 
regulated regulated 

Scope of capabil- Medium High Low Medium 
ities 

Debugging level Assembly Assembly Assembly, Microcode, as-
source sembly 

Limitations Limited on No special No break- Difficult with 
kernel processes points, no supervisor or 

or kernel trace user proc-
esses, no 
data break-
points 

Language C-like PDS,MML ADB-Like Terse 

Target users Bell Labs, Operating Bell Labs, Bell Labs, WE 
WE Co., Bell WE 

Labs, WE 

Target software None DMERT DMERT Microcode 
needed 

Support proces- UNIXOper- None None None 
sor software ating Sys-
needed tern (FTS) 

Hardware FTS, DUC, UC orDUC Terminal MLTS, termi-
needed terminal (optional) nal 

Theater of use Limping or Running, Running, Lab, dead field 
loaded field non over- nonover- site 
site loaded field loaded field 

site site, off-
line 

detection and are included in field releases of software. In the real­
time systems used in switching, the bug may be so subtle that it may 
surface only under equipment configurations, telephone user actions, 
and/ or traffic loads not easily reproduced in a system laboratory 
environment. System debugging tools must be available in a field site 
carrying live traffic to solve these problems when they arise. 

The 3B20D/Duplex Multiple Environment Real Time (DMERT) 
operating system employs advanced computer technologies that re­
quire equally sophisticated tools to isolate errors. Parallel, time-sliced 
execution of processes, virtual addressing, and swapping all contribute 
to the need for a variety and diversity of system debugging tools. Table 
I is a comparative summary of these various troubleshooting tools 
available to field sites. 

2.1 Field test set 

In rare cases, a system problem could occur that leaves the system 

342 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983 



Fig. I-Field test set. 

functionally inoperative. In other cases, the traffic level may be so high 
that system overload mechanisms become active when unexpected 
results in the system indicate a software error. In either case, on-line 
utility systems, which assume basic functionality and nonoverload 
conditions, are not appropriate to isolate the problem. The Field Test 
Set (FTS) was designed specifically to meet this need in the field. It is 
strictly a monitoring device and therefore does not affect processor 
performance or rely on system operability. This non-interfering char­
acteristic is extremely important when maintenance personnel are 
trying to isolate problems at a field site carrying a heavy traffic load. 

The FTS is a small, portable unit (see Fig. 1) that is easily trans­
ported and connected to the 3B20D Processor through the Dual­
Access Utility Circuit (DUC). The DUC contains hardware matchers 
and a 2048 entry trace memory and provides access to the processor 
for the FTS and GRASP (see Section 2.2). The external FTS unit 
connects to the DUC through an eight-foot cable. The FTS intelligence 
is contained in this external unit that includes a microprocessor with 
memory management, one megabyte of random-access memory 
(RAM), and a cassette transport. User access is provided through a 
local or remote terminal with phone access provided by the FTS. 
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The UNIX* operating system was chosen as the FTS operating 
system. There are many advantages to using an operating system on 
the FTS and in particular the UNIX system. The FTS resident 
software was developed and tested as individual modules written in 
the high-level C language. This substantially reduced the software 
development time and effort. Also, the UNIX operating system com­
mands provide substantial portions of the functionality required for 
the FTS software. Although the UNIX system requires disk storage 
for its file system, a disk system was not considered rugged enough for 
portability. Therefore, a "virtual disk" is supported as part of system 
memory. The UNIX operating system is booted into the system from 
cassette tape by resident erasable programmable read-only memory 
(EPROM) software. The EPROM also contains the unit's self-diag­
nostic software. 

The FTS/DUC system supports a rich variety of trace and data­
matching options. The lowest level trace, a so-called transfer trace, 
records program addresses of all transfers executed by a program or a 
range within a program. An intermediate-level function trace records 
program function call/return sequences. At a higher level, a record 
may be kept each time a different process begins execution. Multiple 
trace mod~s can be active simultaneously. Information is recorded into 
the trace memory under control of a variety of sophisticated matcher 
circuits. Masking capability is provided so that a matcher can look for 
a particular value of a single bit or groups of bits as well as word 
values. Matchers are included for address, address range, data, access 
type (e.g., read, write, or read/write) and process ID matching. When 
a matcher or a combination of matchers is triggered, a signal is 
produced that causes a "snap" of information into the trace memory. 
The matchers and matcher combinations allow very selective trace 
memory recording. This reduces both the size of the trace memory 
required and the amount of post-processing necessary to interpret the 
trace data. 

The trace memory is operated in either a pre-trace or a post-trace 
mode. In the former case, the trace memory records information until 
it receives a stop trigger. The trace data represent program flow 
leading up to a particular event. In the post-trace mode, the trace 
memory starts recording upon receiving a trigger and stops when the 
trace memory is full. This provides a history of program flow after a 
particular event. 

The DMERT operating system software is predominately written 
in the high-level C language. C enables the programmer to work with 
function-level rather than machine-level operations. To support this, 

* Trademark of Bell Laboratories. 
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the FTS includes matching and tracing capabilities for software func­
tions and process IDs. Function tracing records the program address 
and the data parameters passed on the stack to a selectable function 
or range of functions. Process ID matching and tracing becomes 
necessary in a virtual memory machine since processes are dynamically 
relocatable in physical memory. Processes are assigned unique ID 
values when they are created. The active process ID value is presented 
to the FTS process ID matchers and trace memory. These matchers, 
combined with the virtual address matchers, permit matching and 
tracing on virtual rather than physical addresses. 

Since the FTS is an external system, it is the appropriate choice 
when problems must be investigated in code that has tight timing 
constraints or in a system that is heavily loaded. Its most attractive 
features are its excellent trace facility and the fact that the FTS 
operates in a mode that does not interfere with 3B20D operation. 
Although it was not designed to access machine registers or write 
memory, the FTS is a powerful tool in the hands of support personnel 
to isolate difficult system problems. 

2.2 Generic access package 

The concept of an on-line software debugging mechanism in real­
time machines is not new.1 Software problems may occur when the 
system is functional and processing traffic in a non-overload environ­
ment. Such problems can be solved in the 3B20D by use of the Generic 
Access Package (GRASP). 

GRASP is an on-site tool for software debugging. Since it supports 
an interface to the DUC, GRASP provides a set of trace and data­
access trap functions similar to those provided by the FTS. In addition, 
it provides the capability to place multiple breakpoints in code, to 
print the contents of memory and many machine registers, and (with 
some restrictions) to write memory and registers regardless of whether 
the DUC is available or operating correctly. GRASP has a self-regu­
lating mechanism designed to prevent itself from taking too much real 
time and thereby interfering with traffic processing or driving the 
system into overload. 

Since GRASP is "just another process" running on the machine, the 
design presents some unique challenges. GRASP needs to be able to 
identify the target process, assure that it is in main memory, and be 
able to gain access to its address space. 

A logical process is specified by a logical tag (called a "utility ID") 
that is compiled into the process. All incarnations of a logical process 
will have the same tag since they all originate from the same object 
file on the disk. The tag is stored in system tables when the process is 
brought up and is available throughout the life of the process. 
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Upon a request from GRASP, the operating system searches the 
tables, prepares a list of real process tags (called "process IDs") for 
processes whose utility IDs match GRASP's request, and sends the 
list to GRASP. Translation between the utility ID, which is known to 
the craftperson, and the process ID, which is known to the operating 
system, is thus accomplished. 

GRASP relies on cooperation with the target process to be informed 
when the target process is in main memory. All processes that GRASP 
may need to monitor must have two function calls compiled into the 
code, which form the run-time communication mechanism with 
GRASP. One is placed in the process's initial entry routine; the other 
is placed to execute "on demand" by GRASP. 

After a process has been selected, it is forced into main memory 
through cooperation with the process. GRASP sends an agreed-upon 
event to the process; its only response to that event is to call the 
associated library function. That function identifies the process and 
notifies GRASP that it is in main memory. 

Access to the target address space is then accomplished by using 
address translation hardware called Address Translation Buffers 
(A TBs). The Program Status Word (PSW) for each process is con­
structed to be able to handle two address spaces at one time. The 
identity of the address translation buffers being used by a particular 
process are included in that process's PSW. Instructions are provided 
in the instruction set to indicate which of the two address spaces to 
use. In addition, a special breakpoint instruction has been provided. 
When the breakpoint is executed by the target process, GRASP's PSW 
is modified so that GRASP is given access to the address space in 
which the breakpoint fired. This presupposes that GRASP and the 
target process are using different address translation buffers; that 
assumption is enforced by the operating system. 

GRASP is especially useful when multiple breakpoints are needed 
(GRASP can handle up to 20), when breakpoints must be planted in 
several processes simultaneously, where register information is needed, 
or when investigation must be done remotely from a central mainte­
nance facility. 

2.3 IBROWSE 

Neither the Field Test Set nor GRASP provides a mechanism to 
examine the kernel address space. IBROWSE, an interactive tool used 
only by Bell Laboratories and Western Electric support personnel, can 
be used to peruse the address space of any DMERT process in main 
memory; it fills the need to be able to view the operating system tables 
and message buffers in the kernel address space. IBROWSE also can 
be used on an off-line support processor to analyze tape dumps of main 
memory taken at field sites. 
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IBROWSE can display the contents of virtual or physical memory 
in a user-specified format. The user can direct that the raw machine 
data be represented as any combination of null-terminated strings, 
characters, or one-byte, two-byte (short), or four-byte (long) data types 
in octal, decimal, or hexadecimal format. This flexibility to specify the 
translation of raw data is immensely helpful when viewing DMERT 
data structures. IBROWSE supports the concepts of current address, 
next address, and current format, which are useful in displaying 
consecutive memory locations. It can view any process in memory, 
from kernel through kernel processes, supervisors, and user processes. 
It has the ability to search forward or backward for a specified data 
pattern, in either virtual or physical addressing modes. IBROWSE 
also supports a user-defined macro facility and I/O redirection. 

The main strengths of IBROWSE are its ability to view the address 
space of any process in main memory and its capability to analyze data 
from an off-line Control Unit (CU). Since use of IBROWSE requires 
relatively detailed knowledge of DMERT, its users are intended to be 
specialized Bell Laboratories or Western Electric support personnel; 
for that reason, no attempt has been made to make IBROWSE part of 
the official DMERT release. Each time the support teams need it, 
they load it into the target machine. 

2.4 Micro-level test set 

Should a problem result in a "dead" system or one that is continually 
attempting automatic recovery actions and is unable to start the 
operating system, the Micro-Level Test Set (MLTS) is used. The 
ML TS is a low-level test system aimed primarily at hardware register 
and microcode access. It consists of an interface circuit that plugs into 
the 3B20D like any other board and an external control circuit. Since 
the ML TS is equipped with an RS232 interface and a 212A data set, 
it may be configured with a terminal on-site or may be operated from 
a remote location. 

The ML TS is the only field utility tool that provides read/write 
access to all internal hardware and firmware registers and is the only 
one that facilitates access to the processor's microcode. The MLTS 
provides microcode breakpoints, can read and write microstore and 
main store locations, and can read and write machine registers that 
are not accessible to other troubleshooting tools. Although its primary 
use is in a laboratory environment, there are infrequent cases where 
such capabilities are required to solve problems during field tests. 

III. OPERATIONAL UTILITIES 

Since DMERT supports a hierarchical file system as well as the 
concept of processes, some types of problems must be dealt with and 
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resolved at the process or file-system level. For example, a process may 
be running when it should not be or the file system may contain some 
transient files that should have been cleared. The UNIX operating 
system itself provides many utilities for process control and file system 
maintenance; these same capabilities are needed in the Program Doc­
umentation Standard (PDS) syntax for Electronic Switching System 
(ESS) applications. 

PDS field maintenance commands can be described in three cate­
gories: 

(i) File system manipulation and maintenance 
(ii) Process control 

(iii) Magnetic tape operations that are support-processor compat­
ible. 

PDS commands are provided to allow the craft or support person to 
determine what files exist on the disk and what their access permissions 
are; the craft may alter the access permissions, add new files, or remove 
existing files. A basic text editor is provided to facilitate creation or 
modification of ASCII files. In addition, tools are provided to start a 
process, stop a process, and to determine what processes are known to 
the system. 

Although these utilities do not fall into the class of "debugging" 
tools, they nevertheless provide a window into the system at a high 
level that is very useful to solve certain types of system problems. 

IV. SUMMARY 

Because of its architecture and technology, the 3B20D/DMERT 
system presents a number of challenges to those who must isolate 
problems in a running system in the field. Problems may be caused by 
hardware failures, software deficiencies, microcode errors, or opera­
tional overloads and inconsistencies. A set of tools has been developed 
to isolate problems that may occur in the field. Together, these utilities 
provide a continuum of system trouble identification capabilities for 
the 3B20D/DMERT system in the field. 
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The 3B20D Processor is designed to be a high-availability system 
for utilization in electronic switching systems. This high availability 
translates into the development of numerous features and capabilities 
for the 3B20D that distinguish it from other processors. The reliability 
objectives for the processor are described and related to the subsys­
tems that have been developed to meet each objective. This article 
discusses processor and peripheral fault recovery, system integrity, 
and other software subsystems that provide the high availability and 
maintainability for the processor. 

I. INTRODUCTION 

The 3B20D Processor has extensive maintenance subsystems asso­
ciated with it and is designed to meet the high-availability standards 
of Bell System electronic switching systems. This implies that the 
processor must perform within an objective of not more than two 
minutes downtime per service year when used in an electronic switch­
ing application. The many subsystems that have been developed to 
provide the high-availability capability are described in this article. In 
particular, software and hardware fault recovery are discussed along 
with the microcode assists for the recovery. 

Much evolution has taken place in recovery architectures for elec­
tronic switching systems.1

,2 Earlier processor systems used extensive 
hardware-matching algorithms that resulted in intricate software re­
covery.3,4 More recent hardware technologies have enabled the cost­
effective design of processor systems with unique fault-detection ca­
pabilities.1

,5,6 These capabilities have led to much simpler recovery 
software. This article describes the detection mechanisms for the 
3B20D and the software maintenance architecture. 
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II. SYSTEM RELIABILITY REQUIREMENTS 

The reliability objective for the 3B20D Processor system, as with 
other similar systems, is to keep the overall system unavailability­
i.e., the time that the system cannot be utilized by operational (call 
processing) functions-below 2.0 minutes per year.7 In keeping with 
the ESS processor tradition, the total system downtime is allocated to 
four general categories: hardware, software, recovery, and procedural. 

The processor has 0.4 minute per year allocated to malfunctions in 
the system hardware. Like other highly reliable systems, the 3B20D is 
equipped with redundant hardware units. Thus, failures must occur in 
both redundant units before the system is unable to establish a working 
configuration. In the case of simultaneous failures in both units, until 
one is repaired and system integrity is reestablished, the system is 
considered unavailable. This portion of the overall system downtime 
is a function of the failure rates of the various components (FIT rate), 
the system architecture, and the mean time to repair (MTTR). The 
hardware reliability model for the 3B20D Processor within a given 
application is dependent on the hardware configuration used and the 
maintenance technique used (this determines the repair time). 

The processor has 0.3 minute per year allocated to malfunctions in 
the processor operational software. This is a classification of software 
faults that can render the system features inoperative. This allocation 
includes cases such as software faults that require a bootstrap to 
recover the system. As in the case of other high-availability systems, 
the 3B20D /DMERT system has a design objective of having no 
software failures the system cannot recover from. To help recover the 
system against software failures, DMERT has three levels of defenses 
that attempt to recover the system from such faults: hardware protec­
tion, system integrity monitor, and audits. The 3B20D Processor has 
several levels of hardware protection that detect the sanity of the 
system software. The system integrity monitor in the DMERT system 
has an elaborate scheme of software and hardware sanity timers as 
well as overload detectors that protect the system against software 
"resource hogs." DMERT audits include all of the explicit audits in 
the system as well as the defensive checks built into the common 
processor software. The intent of the audits is to help defend important 
processes against data mutilation. 

The processor has 0.7 minute per year allocated to limitations in 
fault-recovery programs. These failures are classified by the inability 
of fault-recovery software to achieve a working configuration of the 
system due to some hardware failure condition even if a working state 
of the hardware is possible. These cases are characterized by the 
necessity for manual intervention to reestablish system integrity or by 
an automatic initialization to regain system integrity. 
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The 3B20D has a comprehensive fault-recovery scheme that at­
tempts to recover the system from all foreseeable single hardware fault 
conditions. In several cases, recovery mechanisms are generated for 
multiple fault situations (e.g., memory failures) when that is considered 
to be a probable situation. 

Finally, the processor has 0.6 minute per year allocated to procedural 
errors. This category covers cases where a craft person uses an im­
proper maintenance procedure or follows a poorly designed procedure 
that results in a machine outage. The 3B20D is designed with a 
defensive craft interface using the PDS (Program Documentation 
Standards) and MML (Man Machine Language) languages.8 The craft 
interface also includes emergency action and display-page capabilities 
that attempt to simplify the complexities of maintaining the 3B20D. 

The system reliability requirements also include the various aspects 
of maintaining the 3B20D. These maintainability aspects include 
diagnostics, transient error analysis, emergency recovery procedures, 
routine maintenance procedures, growth and retrofit capabilities, sys­
tem and process update capabilities, and field utilities. Diagnostics are 
provided to detect and assist the repair of classical hardware failures 
in the system. The diagnostic requirements include sufficient run-time 
performance so that a rapid repair can be carried out. Diagnostics 
provide greater than 90 percent fault detection. 

The ability to repair circuitry exhibiting transient failures is provided 
through fault-recovery error reports. For example, data about transient 
memory faults is printed out to the craft and includes address and 
pack location where the error was detected. If that circuit pack 
continues to have a history of transient errors, the craft has sufficient 
information to effect a repair. Error analysis capabilities are provided 
on the 3B20D through the use of fault-recovery messages and error 
logs. 

Emergency recovery procedures are provided to reconfigure the 
system when automatic recovery does not succeed. These capabilities 
allow the craft to repair the 3B20D in case of catastrophic failures. 
These procedures include use of the emergency action page, processor 
recovery message analysis, and dead-start diagnostics. Routine main­
tenance procedures are provided to keep the 3B20D in peak operating 
condition. Growth and retrofit procedures allow hardware additions 
and removals without affecting the system service. Finally, various 
utilities are provided with the DMERT system to locate system 
problems in field installations. 

III. GENERAL RELIABILITY AND MAINTENANCE ARCHITECTURE 

In this section, we provide an overview of the 3B20D fault-recovery 
architecture that is described in further detail in later sections. Figure 
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1 illustrates the hardware architecture of the 3B20D. As is indicated 
in the figure, the processor system has very loose coupling between 
any of the mate subsystems. The memory to memory update coupling 
is provided to keep both active and standby memories identical. This 
allows the switching of processors without losing the integrity of the 
software running on the system. 

The other coupling between the processors is through the mainte­
nance channel. The maintenance channel provides two capabilities 
important to the integrity of the processor. First, it provides a control 
and communication bus for the purpose of diagnosing the off-line 
processor from the on-line processor. Second, it provides low-level 
maintenance control for fault-recovery programs so that a switch in 
processor activity can be carried out with no operational interference. 
In addition, other maintenance controls can be exerted over the 
channel to start an initialization sequence on the other processor or to 
stop execution on the other processor. One other coupling, the Dual 
Duplex Serial Bus Selector -(DDSBS), allows either processor to talk 
to any peripheral controller. Thus, no matching techniques are utilized 
between major subsystems or peripherals in the 3B20D for the pur­
poses of fault detection in the hardware. This means that unique fault­
detection techniques are essential in each subsystem of the 3B20D. 
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Fig. I-The 3B20D system architecture. 
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To provide these detection algorithms, extensive use of local match­
ing circuits, parity techniques on all buses, Hamming detection with 
single-bit error correction on the main store, cyclic redundancy codes 
on the disks, and numerous sanity timers throughout the control unit 
and peripherals are used as the primary fault-detection techniques. In 
addition, routine diagnostics are used to detect failures in the fault­
detection hardware itself. Other routine sanity checks are used to 
ensure that peripheral subsystems are healthy. Finally, system-integ­
rity checks catch certain subtle problems that are not caught by unique 
detectors. 

3. 1 Fault-recovery architecture 

When any of the unique detectors determine an error condition, an 
error interrupt (or error report in the case of certain peripherals) is 
registered in the processor. The most severe of these will result in 
automatic hardware sequences that switch the activity of the proces­
sors (hard switch). Less severe errors result in micro interrupts that 
enter microcode and software charged with recovery of the system. 

The microcode and recovery software provides a layered approach 
to the recovery architecture. Figure 2 illustrates this architecture with 
microcode providing low-level access to the hardware while the recov­
ery software provides the high-level control mechanisms and decision 
making. This technique has resulted in several hardware design mod­
ifications requiring minimal change to the recovery software. 

Figure 3 illustrates the principal architecture and features provided 
by the recovery software. The bootstrap and initialization routines 
provide a fundamental set of microcode and software algorithms to 
control the processor initialization and recovery. These actions are 
stimulated by a Maintenance Restart Function (MRF), which repre-
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Fig. 3-Maintenance architecture. 

sents the highest priority micro interrupt in the system. An MRF 
sequence can be stimulated from either hardware- or software-recovery 
sources. 

The fault-recovery and system-integrity packages control fault de­
tection and recovery for hardware and software, respectively. The 
Error Interrupt Handler (EIH) is the principal hardware fault-recovery 
controller. It receives all hardware interrupts and controls the recovery 
sequences that follow. The configuration-management program (CON­
FIG) determines if this particular error is exceeding predetermined 
frequency thresholds. If a threshold is exceeded, CONFIG requests a 
change in the configuration of the processor to a healthy state. Thus, 
CONFIG serves as an error-rate analysis package lO in the 3B20D 
maintenance architecture for both hardware and software errors. 

3.2 Software integrity architecture 

Software fault recovery is very similar in architecture to hardware 
fault recovery. Each major unit of software is expected to have asso­
ciated with it error-detection mechanisms (defensive checks and au­
dits), error thresholds (provided by the system-integrity monitor and 
CONFIG), and error-recovery mechanisms (failure returns, data cor­
recting, audits, and initialization techniques). In addition, both SIM 
(System Integrity Monitor) and EIH oversee the proper execution of 
the process. 81M ensures that a process does not put itself into an 
infinite execution loop or excessively consume some system resource 
(e.g., message buffers). EIH, through the use of hardware and micro­
code detectors, ensures that processes do not try to access memory 
outside of defined limits or execute instructions that are not permitted 
to the process. Each process has initialization and recovery controls 
(analogous to hardware) so that a recovery can be effected. Figure 4 
illustrates the software-recovery architecture. 
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If recovery actions result in the removal of hardware units from the 
system, diagnostics9 are dispatched automatically to analyze the spe­
cific problem. Audits represent the software counterpart for diagnostics 
with the exception that the routine interval is much shorter and 
correction is possible in the case of audits. 

IV. FAULT RECOVERY 

In this section, we describe the fault-recovery strategies associated 
with the 3B20D Processor. In particular, we describe the fault recovery 
and initialization strategy along with the microcode assists required to 
carry out these functions. We also describe the manual control capa­
bilities provided by the processor and software. These control mecha­
nisms are termed emergency mode. Finally, we describe some of the 
software audit and integrity techniques in the DMERT operating 
system. 

4. 1 Fault recovery and system initialization 

Fault-recovery strategies are based on the fault-tolerant architecture 
of 3B20D. Major hardware units are fully duplicated. This duplication 
provides a high probability that a combination of operational units can 
be retained in the face of faults. The mate processors are only loosely 
coupled; interprocessor connections are limited to the maintenance 
channel and memory-update circuitry. This architecture forms the 
foundation of the hardware-recovery strategy employed in the 3B20D, 
namely to isolate an entire faulty processor as opposed to attempting 
fault resolution at the subunit level. 

DMERT is a modular operating system that provides a wide range 
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of protection from various types of classical errors. Examples include 
write-protected memory areas, memory ranges that can be used only 
for text execution, and protected virtual address spaces. Thus much of 
the recovery from these types of errors is built into DMERT directly. 
Those overt recovery actions that are required are greatly simplified 
by the underlying architecture. Hard faults and other conditions 
requiring recovery actions are treated according to their severity. Fault 
categories that will be described individually are hard faults, thresh­
olded faults, configuration faults, sanity time-outs, and software-re­
quested recovery actions. 

The 3B20D has built in self-checking circuitry designed to detect 
hard faults as soon as they occur. This circuitry simplifies recovery 
since early fault detection limits the possible damage done by the 
fault. Faults in this category indicate that the processor is no longer 
capable of proper operation and results in an immediate stop of the 
currently running processor and a switch to the standby processor. 
Since the standby processor does not match the active processor 
instruction by instruction, an initialization sequence is required to 
start execution properly. 

Some types of faults and errors are not severe enough to justify an 
immediate stop and switch recovery action. Examples of errors of this 
kind are hardware faults detected in the standby processor memory 
and software errors such as write-protection violations. Another type 
of error in this category is hardware faults that are handled by self­
correcting circuitry. Although most faults are detected by self checking, 
some units, such as main memories, have fault rates that justify self­
correcting capabilities. Disks also are self correcting through the use 
of cyclic redundancy codes. All errors in this class are reported to the 
recovery system as error interrupts. 

Recovery software classifies the interrupt by type, gathers and saves 
all available information about the interrupt, and reports the error to 
the system configuration-management package. If a particular soft­
ware process is suspect as the cause of the interrupt, such as in a 
software-triggered event, the process that was running at the time of 
the interrupt is faulted and entered at its fault entry after a stable 
system configuration is guaranteed. The fault entry of a process 
contains recovery and initialization sequences that are special to the 
process involved. 

All error interrupts are reported to configuration management. 
Errors are logged against the failing unit and error rates are compared 
to allowed error thresholds. If the affected threshold is exceeded, 
further action is required and is based on several factors. If the faulty 
unit is essential to the system and a mate unit is available, the faulty 
unit will be removed from service and scheduled for diagnostic testing. 
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If there is no available mate unit, the faulty unit will be initialized and 
returned to service since in the case of essential units it is better to 
have a faulty unit than no unit. Nonessential units are removed and 
scheduled for diagnostic testing whenever their error thresholds are 
exceeded. 

Each processor has a sanity timer that will result in an initialization 
if it times out. The active processor maintains both its own and the 
standby sanity timer so that if the active processor is completely dead, 
an initialization of the standby processor will be triggered by a sanity 
timer time-out. 

The system provides an Operating System Trap (OST) for use by 
software to request an initialization. This capability is used by critical 
system processes when they encounter errors that preclude perform­
ance of a critical system function. Initializations occur when an error 
or fault has been detected that cannot be recovered from without a 
change in hardware and/or software status. A stop and switch to the 
other processor mayor may not be associated with any given initiali­
zation. All initializations include actions of varying severity depending 
on what is required to deal with various faults and errors. 

The first event in the initialization sequence is a hard-wired transfer 
to a fixed location in the CU microstore where microcode makes a 
decision as to whether to bring this processor on-line or to switch to 
the other processor. If the current initialization is of level two or 
higher, the appropriate processes and data bases are loaded from disk. 
All available data about the initialization trigger is saved and a decision 
is made to bring this processor on-line or stop for the off-line initiali­
zation. 

The DMERT kernel initialization or bootstrap routine is then called 
to restart system processes or to fault active processes as appropriate. 
The initialization is now complete and the system has returned to 
normal operation. If an initialization does not recover the system to an 
operational state, another and more severe initialization will be trig­
gered automatically. Whether to escalate or not is controlled by the 
initialization interval. Any initialization that occurs during a window 
of time following the previous initialization will escalate to the next 
higher level. The length of the initialization interval is a system 
generation parameter that is established by the application. In addition 
to the DMERT initialization levels, provision is made for an applica­
tion to specify between one and sixteen levels for each DMERT level. 
For example, if the application specifies two levels for DMERT level 
one, the normal execution of initialization levels would be (1,1), (1,2), 
(2,1), ... , where the first number indicates the DMERT level and the 
second number is the associated application level. 

Data about various recovery actions taken by the system are sup-
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plied to provide all possible information about what went wrong and 
to provide data that can be used by maintenance personnel to assist 
them in isolating difficult faults. Recovery data are provided in several 
forms. Each error interrupt is accompanied by a printout containing 
available information about the state of the processor when the inter­
rupt occurred. A more difficult problem is presented by initializations. 
Since they are more severe than interrupts and in fact represent a 
discontinuity in processing, gathering and preserving error data is 
more difficult. Initializations, as well as interrupts, can occur at a rate 
much too fast for data to be printed. The solution is to save all 
pertinent data in a protected area of memory for printing after the 
system has recovered. 

Various kinds of error data are not generally printed as a part of the 
standard system output but instead are saved in error files on the 
system disks. Examples of this kind of data are device-driver errors 
and failing-memory data. One of the more useful pieces of data output 
by the system are Processor Recovery Messages (PRM). These are 
low-level one-line messages that are printed in real time. The PRMs 
thus represent progress marks through the recovery sequences and are 
extremely useful in those cases where stability cannot be achieved or 
postmortem data cannot be gathered. 

4.2 Special microcode for recovery 

A large fraction of the total amount of CD microcode is provided to 
aid in recovery. The bulk of this recovery microcode is in PROM 
because most functions are required in spite of the power history of 
the CD or its boot devices. Functions that are required even if the CD 
is not ready to execute its instruction set include micro interrupt 
processing, maintenance channel assists so that one processor can 
access the other processor and microcode to initialize hardware sub­
systems. Additional recovery microcode that resides in writable mi­
crostore (WMS), extends the processor's instruction set to provide 
convenient diagnostic and recovery software access instructions. When 
diagnostic performance requirements do not justify a special instruc­
tion, a microstore scratch area is available that can be loaded with 
arbitrary microsequences that can then be executed for special tests or 
functions. Before software can run, the WMS must have been loaded 
from disk. This happens initially as part of the processing of the MRF 
micro interrupt. 

4.2.1 MRF and microboot 

When a maintenance restart interrupt occurs, a long sequence of 
microsteps begins to establish system sanity. Both processors may be 
in their MRF sequence at the same time and each one may try to 
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become the active processor. The MRF code fIrst makes decisions on 
whether to do an off-line initialization or an on-line initialization. If a 
processor determines that it has just powered up, it clears main store 
and does an off-line initialization unless forced on-line. 

A number of tests are made on data in the system status register, 
SSR, to select one of four possible actions: microboot, tapeboot, 
processor initialization, or stop and switch. The simplest actions are to 
begin execution of a processor initialization program called PINIT or 
to stop and switch to the other processor. This is accomplished by 
sending a switch command over the maintenance channel to the other 
processor. 

Tapeboot is a complex sequence of microcode that is only done 
when requested manually via the craft interface. Its function is to 
create a new system disk from tape. Using the tape device and disk 
device selected by the craft interface it initializes those I/O units and 
initializes the WMS from tape. A boot program, called load disk from 
tape, is read from tape into main store, and memory-management 
tables are created to allow it to run the hardware complex without the 
operating system. This program then reads the tape to make a 
DMERT disk image. 

Microboot uses information on the DMERT disk to initialize the 
writable microstore and read in the fIrst software boot program called 
little boot. To do this, it must fIrst select the disk drive to use as a boot 
device. If the craft interface has forced either the primary or secondary 
boot device, it uses that device. Otherwise, microboot selects a disk 
drive based on the state of hardware control bits. Alternate boots will 
use alternate devices. Microcode is read from the disk and then copied 
to WMS. Finally, little boot is read from the boot partition and given 
control. 

4.2.2 Microaccess assists 

Although the MRF sequence is the most complex microcode recov­
ery assist, both diagnostics and recovery software have special micro­
code. There are six maintenance channel assists in PROM. They are: 

Write Main Store 
Read Main Store 
Write Writable Microstore 
Read Microstore 
Write Utility Circuit 
Read Utility Circuit 

In addition there is microcode in WMS to support a set of instruc­
tions provided for the diagnostic and recovery software. Diagnostics 
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have instructions to manipulate the maintenance channel and aid in 
I/O diagnoses. They also share instructions with recovery. These 
instructions include groups of instructions for: 

On-Line Main Store Controller 
Off-Line Main Store Controller 
Maintenance Store Operations 

Finally, both diagnostic and recovery software use privileged instruc­
tions (shared with the operating system) to read or write special 
registers. They also can activate unit initialization sequences that are 
used in the various parts of the MRF microcode. 

4.3 Emergency modes 

Emergency mode on the 3B20D refers to the facilities and proce­
dures provided to prevent the system from experiencing a total outage. 
For example, emergency facilities are applied when the system is 
unable to recover automatically. The most characteristic of these are: 
duplex failure of the control unit, duplex failure of the system disks, 
duplex failure of the essential I/O devices, failure of fault recovery to 
find a working configuration of hardware, software faults that will not 
allow the system to operate properly, errors that destroy the integrity 
of the disks, and software overwrites that introduce catastrophic errors 
into the software. 

Emergency mode capabilities are built into the system to address 
these mechanisms that can fail the 3B20D as a system. The emergency 
action interface (EAI) on the 3B20D provides for manual initialization 
capabilities that can recover the system from several of the conditions 
mentioned above. This interface allows the craft to select a processor 
and disk configuration in a case where certain configurations may be 
leading to the problem. The interface also allows the craft to recon­
figure the system to handle maintenance hardware failures. For ex­
ample, the craft can inhibit error sources and sanity timers through 
EAI commands, thus allowing recovery from certain maintenance 
failures even though both processors are affected. The EAI also 
provides capabilities for craft initializations to deal with loss of sub­
system capabilities. 

The 3B20D also provides the craft with other manual capabilities 
through the port switch select, the disk power inverter select, and the 
unit power switches. These can be used to reconfigure the system to 
handle certain problems in the system. In rolling bootstrap conditions, 
the 3B20D outputs diagnostic information through processor recovery 
messages. This information provides a gross diagnostic capability in 
the event of a complete system outage. 
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Tape load boot is an emergency procedure provided for the situation 
where a system has destroyed its only valid copies on disk of the 
generic software. Here the site would have a tape copy of the generic 
and data base, and read the tapes into the disk via the EAI tape load 
boot facility. 

The final backup repair procedure is the dead start diagnostics. 
Primarily used as an installation tool, the dead start diagnostics allow 
for the repair of a completely sick processor by using a remote host 
processor. 

The craft interface provides the mechanism through which the 
status of the system can be determined, the configuration of the 
system's hardware or software can be changed, and special emergency 
actions can be taken during catastrophic failures of system compo­
nent.8 The emergency action interface (Fig. 5) allows the craft in the 
field to access the system during times when a major portion of the 
system is nonfunctional to the point where the normal capabilities of 
the craft interface cannot be used. The limited capabilities of the 
emergency action interface include forcing failing hardware off-line or 
on-line, notification of the status of critical system resources, and 
forcing a reinitialization of the system. 

4.4 Software integrity 

Section III described the architecture of the software integrity 
system. In this section, we describe some of the specific audit and 
overload measures that have been included in the DMERT system. 

The DMERT audit package verifies the validity of critical data 
structures. Most audits exist throughout the system within the proc­
esses that control the data to be audited. In some cases, several audits 
are invoked consecutively to form a sequenced mode audit. Most 
requests for running audits come from an audit control structure, i.e., 
the audit manager. 

Audits in DMERT verify data, not functions. The basic types of 
auditable data are system resources and stable data. Though most of 
the auditable data in the operating system resides in the kernel, 
additional data resides in other critical processes, such as the file 
manager and device drivers. Smaller amounts of auditable data reside 
in supervisor processes, such as in the UNIX* operating system and 
the process manager. 

Some audits, scheduled on a regular basis, are known as routine 
audits; others, scheduled on request, are known as demand audits. A 
partial list of the DMERT audits follows: 

* Trademark of Bell Laboratories. 
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(i) Message buffers-This audit finds and frees lost message buffers, 
i.e., messages that have been on a process's queue for extended periods 
of time. 

(ii) Scheduler-This audit checks for linkage errors in the sched­
uler's ready and not-ready lists. 

(iii) Memory manager-This audit recovers lost swap space and 
corrects any overlap of swap space. 

(iv) File manager-This audit checks all internal file manager struc­
tures: task blocks, buffers, mount table, etc. The audit corrects the 
information and has the ability to back out an aborted task and free 
its resources. 

(v) File system-This audit is demanded by the file manager when­
ever a file system is mounted read/write. It checks and corrects the 
file system's super block free list, and free-block bit map. This audit 
verifies the integrity of the mounted file systems concurrent with their 
use. 

v. MAINTAINABILITY 

The maintainability of the 3B20D system is the second vital com­
ponent that guarantees the overall high reliability required of the 
system. There are conditions where automatic recovery is unable to 
restore the system to a fully functioning state. This is where maintain­
ability is critical to satisfying DMERT's high-reliability requirements. 
The basic premise of maintainability is to provide basic data-gathering 
and data-analysis mechanisms as well as the ability to act on the 
results of that analysis. These mechanisms must be able to collect and 
analyze diagnostic and debugging information from various hardware 
and software components within the system in order to isolate the 
error. These mechanisms must then allow the craft to control and 
modify the configuration of the system based on the diagnostic and 
debugging information collected. Furthermore, these mechanisms 
must yield their information as quickly as possible while disturbing 
the rest of the system as little as possible. 

Maintainability comprises such areas as diagnostics, transient-error 
analysis, routine maintenance procedures, field utilities, and plant 
measurements. Once the error has been isolated and analyzed, the 
problem must then be corrected as quickly and benignly as possible. 
This procedure is termed updatability, and it includes such aspects as 
growth and retrofit for hardware, emergency fixes, function update, 
and system update for software. Maintainability is quite naturally 
partitioned into diagnostics (hardware) and the various field utilities 
(software).ll However, central to the ability of the craft to maintain 
and control the 3B20D hardware and software is the ability to interface 
to the various maintenance facilities provided within the system. This 
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is one of the very important capabilities of the craft-interface system. 
The craft interface provides the craft and others with the means to 
request diagnostics, receive error-analysis reports, initiate emergency­
recovery procedures, gather plant-measurements data, and exercise 
routine maintenance programs. In addition, the craft-interface system 
allows configuration control by providing access to growth and retrofit 
procedures, system- and function-update capabilities, emergency-fix 
facilities, and the various field utilities. This section discusses the 
capabilities of the subsystems, which provide basic maintainability of 
the DMERT system. Diagnostics are discussed in Ref. 9. 

One component of the maintainability required of DMERT -based 
systems is the ability of these systems to accept hardware and software 
changes in a way that does not interfere with their primary tasks. In 
other words, a DMERT-based system must be able to accept changes 
without disturbing call processing, networking, or other critical func­
tions. DMERT supports this through several aspects of updatability. 
The first is growth; the ability to add or remove hardware and related 
software components to the running system. Growth extends from 
physically connecting new equipment-such as memory boards­
through informing the system of its existence, exercising it, logically 
connecting it into the system's configuration, and committing its use 
in the system. Other subsystems-such as a hardware and software 
fault recovery and diagnostics subsystem-then take over to ensure 
that the new system component continues to be sane and usable. 

The second aspect of updatability is retrofit: the ability to replace 
hardware components in the system with similar components of a 
different vintage or with different capabilities or interface character­
istics. Retrofit procedures may "de-grow" or remove old units and 
then grow or add new ones. They also may add the new units first and 
then perform a transition from the old units to the new. Thus, retrofit 
of units may involve extensive periods of time where old and new units 
coexist in the system. Retrofit may also involve substantial software 
changes to interact with new units and to recognize the existence of 
both old and new units. 

The third component of updatability, field update,12 deals exclusively 
with software and data file changes in DMERT. Such changes are 
done logically, on a file-by-file or functional level. Just as with growth 
and retrofit, field update can install or replace system programs or 
files, inform the system about them, logically connect them into the 
system, exercise them in that state, and then commit to or back out of 
them. Field update is intended primarily for installing fixes or small 
features that do not perturb the system's architecture. 

The fourth updatability component, system update, allows program 
and data changes of much greater magnitude, up to complete software 
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system replacement. A bootstrap is required to install the changes for 
any system update. By using disk redundancy or backup copies of 
sections of DMERT's disks, system update can prepare a new, partial, 
or total version of the system on disk and then switch to it (and back, 
if necessary). Where field update performs a logical change of files, 
system update does a physical change of a set of partitions (file systems 
and/ or file partitions). 

VI. SUMMARY 

This article has described the basic architecture of the fault-recovery 
and system-integrity subsystem for the 3B20D Processor. These sub­
systems are tied into the maintainability aspects of the processor. All 
of the features provided are responses to the reliability objective of no 
more than two minutes downtime in each year of service. The features 
and architecture continue in the tradition of former high-availability 
processors. 
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Comprehensive diagnostic tests and multifeatured control software 
designed for execution on several host processors help craft to quickly 
isolate faulty hardware anywhere in the 3B20D Processor. Besides 
meeting the requirements for Bell System switching systems, the 
3B20D diagnostics provide a high degree of modularity and porta­
bility using an operating-system-based structure. The diagnostics are 
used in a wide range of development, production, and maintenance 
activities throughout the project life cycle. Many features of the system 
architecture and hardware are provided to allow thorough diagnosis 
in a time-shared noninterfering manner. Additional features are 
provided in the diagnostic control structure to extend the DMERT 
diagnostic capabilities to application systems based on the 3B20D 
Processor. 

I. INTRODUCTION 

Many of the diagnostic principles and features embodied in the IA 
Processor1 have been incorporated in the maintenance design for the 
3B20D Processor. These design principles include: (i) use of a special­
purpose test-design language that facilitates test interpretation; (ii) 
use of a table-driven control program approach; (iii) use of a common 
test data base covering all hardware versions of the 3B20D Processor; 
(iv) partitioning of diagnostic tests into phases associated with specific 
hardware functions; (v) control features allowing selective test execu­
tion and variable degrees of detail in outputted results; and, (vi) 
optional automatic trouble location. In the 3B20D Processor design, 
however, a more general diagnostic design approach was followed. 
This approach resulted in a more portable diagnostic control structure; 
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it allowed diagnostic execution in several environments: factory testing 
using a support processor, installation testing using a remotely located 
processor, and in-service, on-line testing of a standby mate processor. 

II. OBJECTIVES 

As with earlier processor designs, the 3B20D Processor diagnostics 
must be effective and efficient in fault detection, provide consistent 
test results, protect the contents of memory, be noninterfering with 
normal system operation, allow automatic trouble location, and be 
easy to maintain and update. In addition to meeting these objectives, 
the 3B20D diagnostics were required to be: 

(i) Portable-The diagnostic software must execute in several en­
vironments. Throughout this paper the execution environment is re­
ferred to as the host processor (or computer). 

(ii) Flexible-The diagnostics would test multiple system configu­
rations containing various vintages of circuits. 

(iii) Modular-Standard control interfaces must accommodate dif­
fering test access facilities to the processor under test, input/output 
facilities, and DMERT application processes that are used to diagnose 
application-dependent hardware that interfaces to the 3B20D Proc­
essor. 

(iv) DMERT compatible-Diagnostics must be integral with, rather 
than separate from, the operating system.2

,3 

To meet these design objectives, the diagnostic control structure 
was designed as an integral part of the operating system and had to 
support the evolutionary stages of development. 

III. DIAGNOSTIC ENVIRONMENTS 

As shown in Fig. 1, the 3B20D Processor can be diagnosed from 
several execution environments. During the early phase of processor 
development, a local host computer was used to support hardware, 
software, and diagnostic design. This access arrangement continues to 
be used in factory testing. Later in the development, more efficient use 
was made of the host computer by providing access to a remote target 
3B20D Processor over a dial-up telephone line. Ultimately, in the 
standard duplex-system configuration, the active control unit is capa­
ble of diagnosing its own peripheral controllers and the standby control 
unit. Each of these access arrangements is discussed below. 

3. 1 Local host diagnostics 

Figure 1a shows three local-host access arrangements. In the first, 
diagnostic programs executing in a host computer send test inputs and 
receive test results over a standard communications port to a Micro­
level Test Set (MLTS). The MLTS connects directly to the 3B20D 
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Fig. I-The 3B20D Processor diagnostic environments. 

control unit backplane, and provides complete access and control of 
the processor's microprogram control circuitry. For the second access 
path, a circuit was designed to simulate the Central Control Input/ 
Output (CCIO) internal bus. The CCIO Bus Simulator (BS) is acces­
sible using a standard communication input port. A Dual Serial Chan­
nel (DSCH) connected to the CCIO/BS can then communicate directly 
with a Maintenance Channel (MCH), the circuit designed for control­
unit access. Like the ML TS the MCH can access the central control 
at a low level. However, only the MCH is used in the duplex configu-
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ration (see Section 3.3); it communicates with either another MCR or 
a DSCR. As shown, the CCIO/BS-DSCR access path can also be used 
to diagnose the Input/Output Processor Controller (lOP C) and the 
Disk File Controller (DFC). Notice that when the local host is a 3B20D 
Processor, the path is from the DSCR of the host 3B20D Processor to 
the MCR, IOPC, or DFC of the target machine. 

3.2 Remote host diagnostics 

The DSCR is designed to communicate over distances of approxi­
mately 100 feet. Remote-host (Fig. lb) access arrangements can be 
used for diagnosing over longer distances. Using data sets and a 
telephone line, tests stored and executed on a remote computer can be 
applied through the ML TS to the control unit. Peripheral controllers 
(IOPC and DFC) can also be diagnosed by downloading tests into the 
control unit and executing them. Although remote-host diagnostics are 
useful in cases where a local host is unavailable, execution performance 
is limited by the transmission facilities used. 

3.3 Duplex mode diagnostics 

The primary diagnostic execution environment is the 3B20D Duplex 
Processor (Fig. lc). The active (on-line) processor acts as a local host 
for diagnosing the standby (off-line) processor. An MCR-to-MCR link 
provides the access path for testing the control unit. In the duplex 
mode, the DFC and IOPC are diagnosed from the on-line control unit 
using the operational interface path, a DSCR attached to the Direct 
Memory Access Controller (DMAC). Tests of the links from the off­
line processor to the peripherals also can be run under the control of 
the active processor. As shown in Fig. lc, the duplex system configu­
ration also supports remote monitoring and control of diagnostics over 
a dedicated link to a Switching Control Center (SCC). 

3.4 Multiple-target processors 

Although the target processor is always a 3B20D Processor, it can 
be of many types, versions, and sizes. The diagnostic control program 
accounts for these differences by referencing the Equipment Configu­
ration Database (ECD). All information relevant to the particular 
diagnostic tests that should be applied to each hardware unit is 
contained in the ECD. This information includes the name of each 
hardware unit within a subsystem, subunits, and their logical intercon­
nections, equipage options, and auxiliary information, such as channel 
address and baud rate. Whenever a circuit design is originated or 
updated, diagnostic tests are designed and appropriate ECD changes 
are specified. 
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The diagnostic control structure is depicted in Fig. 2. At the kernel 
process level are the modules that provide access to the ECD or drive 
the communication links previously discussed. The UNIX* operating 
system supervisor resides at the supervisor level,3 and provides a 
protected environment and operating system services for the higher­
level processes. The modules operating under the UNIX operating 
system that pertain exclusively to diagnostics are: the Maintenance 
Input Request Administrator (MIRA), the Diagnostic Monitor (DIA­
MaN), the Diagnostic Control process (DIAGC), and the Trouble 
Locating Process (TLP). Output messsages from the diagnostic struc­
ture are sent to the system spooler for printing. The first three of these 
modules are discussed below; the TLP is described in Section VII. 

4.1 MIRA 

Scheduling and dispatching maintenance requests is the function of 
MIRA, the front-end process of the diagnostic structure. MIRA main-

* Trademark of Bell Laboratories. 
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tains a waiting queue and an active queue to administer each service 
request. Requests are serviced according to priority and resource 
availability; manual requests have higher priority than those initiated 
automatically. For each service request, MIRA spawns a DIAMON 
process and sends it a message. When the request is completed, 
DIAMON sends a message back to MIRA. Interfaces are provided in 
MIRA to administer routine exercise requests and inputs from the 
error-interrupt handler.4 

Nine general types of request are handled by MIRA; they are 
described in Table I. 

4.2 DIAMON 

Execution of each diagnostic is directed from start to finish by 
DIAMON. Specifically, DIAMON will: 

(i) Initiate and control the actual diagnostic processes specified in 
a message from MIRA. 

(ii) Communicate with the Equipment Configuration Database 
Manager (ECDMAN) and the appropriate device driver (the software 
control module for a particular hardware unit) to extract control data 
from the ECD and retrieve path names of related utility files. 

(iii) Build the diagnostic control block containing all the data 
required by a diagnostic. 

(iv) Spawn the appropriate diagnostic control process (DIAGC); 
separate processes are provided for the control unit and peripherals. 

(v) Communicate diagnostic output to MIRA and the output 
spooler. 

(vi) Spawn the remove and restore processes. 
(vii) Interface with the TLP. 

Table I-Description of diagnostic requests to MIRA 

Command 

Diagnose (DGN) 
Remove (RMV) 
Restore (RST) 

Restore Unconditional 
(RSTU) 

Exercise (EX) 

Terminate (STOP) 
Display (OP) 
Inhibit (INH) 

Allow (ALW) 

Description 

Diagnoses the unit specified in the request. 
Removes the specified unit from service. 
Diagnoses the unit and restores it to service if all tests pass 
(ATP). 
Restores the unit to service without running the diagnostic. 

Starts the diagnostic in the interactive mode. This com­
mand allows stepping to a particular test, pausing, or loop­
ing over a diagnostic "phase" (ie., group of functionally 
related tests) segment. 
Stops execution of a diagnostic. 
Displays status of queued requests in MIRA. 
Inhibits diagnostic requests from other processes that auto­
matically or routinely initiate diagnostics. 
Allows diagnostic sources, canceling any active INH re­
quest. 
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4.3 DIAGC 

DIAGC is a generic name that refers to a class of processes. The 
DIAGC is a unit or application-dependent module that controls exe­
cution of tests. Containing all unit-dependent task routines, DIAGC 
translates the interpretive diagnostics and provides the interface with 
DIAMON. A unit's diagnostic phase table (DPT) contains the name 
of a particular DIAGC process to be used in the diagnosis. DIAMON 
imposes no limit on the number of processes that can interface with it. 
The following functions are provided by DIAGC: 

(i) Opens the diagnostic driver 
(ii) Shares the buffer (DCB) provided by DIAMON 

(iii) Initializes the raw data buffer 
(iv) Executes the diagnostic 
(v) Computes the test results 

(vi) Provides interactive control if required 
(vii) Provides an interface to DIAMON for test results and abnor­

mal terminations (aborts). 

4.4 Portability 

All diagnostic control modules are written in the C language and 
execute in the UNIX operating system environment. This facilitates 
the porting of the control structure to other host processors that 
support C and UNIX operating system software. Variations of proc­
essor configuration and hardware vintage can be described in the ECD. 
DMERT application processes can provide additional DIAGCs and 
Data Tables to control diagnostic test execution for interfacing hard­
ware. Several driver processes can be supported to allow diagnostics 
to be executed over standard communication ports, dual-serial chan­
nels, or maintenance channels. 

v. MAINTENANCE FEATURES 

The combination of hardware-access circuits and modular-control 
programs, just discussed, provides the 3B20D Processor with consid­
erable maintenance flexibility. Tests are selected according to the 
vintage of circuit under diagnosis. Displayed in Fig. 3 is a typical 
diagnostic input message in the PDS (Program Documentation Stand­
ards)5 syntax, one of three command languages supported by DMERT. 
Requests can be made to diagnose an entire unit, a particular subunit, 
or all subunits in a specified community. Individual test phases or 
ranges of phases can be executed and the results printed with optional 
amounts of detail. Some diagnostic test phases-because of either 
their long execution time requirements or their dependency on other 
system hardware availability-are restricted to manual initiation. In-
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Fig. 3-Sample input message-diagnosis of main memory. 

teractive features such as stepping, pausing, and looping are provided 
for facilitating difficult repairs. Units can be restored to service auto­
matically if they pass all tests. Several host computer versions are 
supported along with application-dependent interfaces. 

Diagnostics can be initiated either manually or automatically. Man­
ual requests can be entered from either a local maintenance terminal 
or through a work-station terminal associated with a Switching Control 
Center System (SCCS) connected to the 3B20D Processor via a 
synchronous data link. Automatic requests originate from other soft­
ware modules such as the error-interrupt handler, the routine exercise 
scheduler, or an application-software module. 

VI. DIAGNOSTIC TEST DESIGN 

6.1 General 

The stringent availability requirements of Bell System applications 
using the 3B20D Processors had a significant impact on all aspects of 
system design. Diagnostic and maintenance engineers were actively 
involved in meeting these goals commencing with the initial architec­
tural planning and requirements generation. Many hardware features 
are provided to monitor system integrity, to detect errors, to recon­
figure the system, and to facilitate repair of the faulty equipment.4

•
6 

Although some of the features are for fault isolation during pack 
repairs, most are used at the system level to effect repair through pack 
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replacement. Diagnostics, the primary repair capability for the system, 
make extensive use of these hardware features for control and obser­
vation of the circuitry. 

6.1. 1 Circuit pack tests 

The initial factory testing of circuit packs uses test vectors, which 
can be applied at terminals of the pack connector in a commercially 
available computer-controlled test set. Most of the vectors are gener­
ated independently from system-level diagnostic tests. The packs are 
given additional tests in a 3B20D system test bed using diagnostics 
and some operational sequences. 

6.1.2 System-level tests 

All 3B20D Processor diagnostics run under the DMERT operating 
system as user-level processes. To communicate with the unit being 
tested, the user-level process passes the test scenarios to a kernel 
process that interfaces to the hardware. Each of these kernel process 
drivers runs at its standard system priority level to perform the tests. 
If some time-critical tests are necessary, the priority level can be 
elevated to avoid interruption by other system processes. 

Each of the diagnostic programs is structured to avoid any negative 
impact on the normal system functions. Special driver functions allow 
the drivers to handle error conditions generated by the diagnostic 
tests, thereby avoiding the normal error-handling routines. Since many 
fault conditions result in system errors, this capability is especially 
vital to allow thorough testing in the operating system environment. 

In the Control Unit (CU) diagnostic, additional safeguards are 
implemented to assure proper handling of the system recovery and 
integrity hardware. Even with faults in the off-line CU integrity 
circuits, the system will maintain normal functionality during CU 
diagnostics. 

The system diagnostics are organized on a unit basis, for example 
the Control Unit (CU), I/O processor (lOP) or Disk Controller (DFC). 
Each unit diagnostic is structured into test phases that pertain to a 
particular subunit. The phases are organized in a hierarchical fashion 
beginning with the more elemental operations and applying to the 
hard core of a subunit. Subsequent phases expand in complexity and 
in the totality of the circuitry exercised. 

The user-level diagnostic processes, namely the control program and 
the test data tables, contain all of the information necessary for control 
and sequencing of tests. The control program has the interpretative 
routines for decoding each data table test statement. The program also 
can use various system configuration parameters, test results, and data 
table decision functions to modify program flow or to terminate the 
diagnostic. 
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6.1.3 Maintenance channel access 

As shown in Fig. Ic, the primary interconnection between the 
Control Units is the maintenance channel (MCR). This circuit is an 
enhanced version of the dual-serial channel, with special capabilities 
aimed at maintenance access and control of the off-line CU. It provides 
the ability to run, stop, load, clear, and step the CU. The MCR allows 
the active CU to read some off-line CU registers directly and others 
indirectly using microcoded sequences. Diagnostic-test programs can 
be loaded through the MCR to the off-line microstore or mainstore. 
The MCR is controlled by a DMERT kernel process driver that carries 
out the diagnostic test sequences. 

6.2 Control unit diagnostics 

The Control Unit (CU) has seven types of subunits: Central Control 
(CC), Main Memory Store (MAS), Store Address Translation (SAT), 
Direct Memory Access (DMA), I/O Channels (DSCR), Cache (CSU), 
and Utility Circuit (UC). The latter three are optionally equipped; the 
UC is normally used for program testing and is not further discussed 
herein. Some 3B20D Processor applications have special circuits that 
are part of the CU; diagnostics for them are concatenated to the CU 
diagnostic. A pictorial view of the CU hierarchy is shown in Fig. 4, 
which depicts the multiple levels of units as defined in the ECD. 

6.2. 1 Central control tests 

The first CU subunit tested is the CC, which contains the core of 
the CU. The CC diagnostics in turn test the maintenance channel, 
microcontrol logic and memory, registers, data-manipulation logic, 
memory access, timers, interrupts, I/O interface, error-control hard-

, , , , 
r ---"----l 
I APPLICATION I 
I CIRCUIT I L _______ .J 

Fig. 4-Unit hierarchy of the control unit. 
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ware and integrity circuits. The testing uses a series ofMCH operations 
for the basic tests. For the more complex test routines, down-loaded 
microcoded test programs are executed by the CD under test. The CC 
is extensively exercised in tests of the remaining subunits. 

6.2.2 Memory tests 

Initial testing checks out the basic memory-controller operations 
and the control and data paths from CC to the MAS. Tests are carried 
out on the error-detection and correction circuits in preparation for 
using them in array testing. Testing of the memory arrays (up to 16M 
bytes can be equipped) is with down-loaded micro diagnostic routines. 
Since the test-pattern programs are executing autonomously in the 
CD under test, all of its real time is used for testing. Whenever a 
hardware error is generated, control of the CD passes to a diagnostic 
error handler. The combination of self error detection and the micro­
routines allows extensive pattern checking to be executed rapidly over 
the complete memory spectrum. 

6.2.3 Store address translation tests 

Functional tests are performed via MCH on all of the SAT control 
logic. The memory cells are then tested with various microcoded test 
patterns. The remainder of the tests, implemented as micro diagnostics, 
check out the multiplexor, compare logic, matchers, protection logic, 
and SAT to MAS interface. 

6.2.4 Cache tests 

The cache is comprised of a high-speed four-way-set associative 
memory and a 2K by 36-bit interrupt stack. The diagnostic performs 
extensive tests of the memory cells, matchers, and select logic. In 
addition to functional tests, a special diagnostic routine called the 
cache exerciser is used to stress, at high data rates, the cache interfaces 
to CC, MAS, and SAT. This kind of testing is effective at detecting 
marginal fault conditions. 

6.2.5 Direct memory access tests 

The DMA diagnostic checks out the CC-to-DMA communication 
and control paths, the internal DMA functionality and the DMA 
operations to MAS. Many of the tests are coded into ROM (Read Only 
Memory) contained in the DMA. The remainder consist of down­
loaded microcoded tests and off-line, main-memory, resident test pro­
grams. The final sequence of tests verifies the DMA cache 
"handshaking" operations. It is noteworthy that in the DMA diagnos­
tics, except for control and down loading through the MCH, all test 
sequences are executed completely by the CD under test. 
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6.2.6 Channel tests 

The channel diagnostic carries out the remainder of the testing of 
the CU's I/O capability. Basic tests are performed on the communi­
cation and handshaking of the CU to all in-service system peripherals. 
More exhaustive tests (demand diagnostics) can be specified by the 
maintenance personnel for troubleshooting more elusive problems. 
These diagnostic phases require that a peripheral unit be configured 
as a "helper unit" (specified in the diagnostic input message) to allow 
the CU to carry out peripheral operations at a high rate. 

6.3 Peripheral unit diagnostics 

The Disk File Controller (DFC) and Input Output Processor (lOP) 
are described in Refs. 7 and 8. The DFC can control up to eight Moving 
Head Disks (MHD) of various capacities, types and manufacturers. 
The Peripheral Controllers (PC), which are under control of the lOP, 
are special-purpose I/O units described in Ref. 8. The testing for the 
DFC and lOP, which share a common front end, is primarily carried 
out under control of the on -line CU. Since both of these are intelligent 
controllers, many of the specific tests can be executed autonomously. 
The peripheral diagnostics utilize the DMERT kernel process drivers 
to interface to the hardware. Throughout these diagnostics, extensive 
use is made of driver-maintenance orders and special handling of error 
conditions. 

6.3.1 lOP and DFC tests 

The peripheral diagnostics use common-control programs 10DIAG 
and DFDIAG that contain all the CU resident tests and control 
routines. Separate sets of data table and down-loaded microcode files 
are used for each unit diagnostic. The overall sequence of testing 
proceeds from CU / controller interface to complex internal controller 
operations. Most of the latter make use of the operational firmware in 
the controller to carry out the test sequences. The more complicated 
controller tests are part of the resident diagnostic firmware and are 
initiated by special-driver operations. At the successful conclusion of 
DFC or 10PC testing, the unit is restored to service to allow testing to 
proceed on MHD or PC circuits. 

6.3.2 Moving head disk tests 

Relatively limited maintenance capabilities are provided in the 
MHD itself. Most of the testing is carried out by the firmware routines 
in the DFC. To provide an overall check on MHD performance, one 
cylinder is devoted to diagnostic testing of each read/write head. The 
error-detection/ correction capabilities can also be checked using this 
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area. As each MHD is tested successfully it can be updated from its 
mate copy and restored to service. 

6.3.3 Peripheral-controller tests 

Each controller is microprocessor controlled and can carry out most 
of its diagnostics autonomously. Some of the tests are firmware resi­
dent in the PC's. The remainder of the diagnostic routines are down­
loaded into the PCs' RAM (Random Access Memory). Some types of 
PCs also can exercise the units they control, for example a tape 
transport, and report back the results for use by the maintenance 
personneL 

VII. TROUBLE LOCATING PROCESS 

If the diagnostic request specifies the TLP option, the TLP process 
is invoked at the completion of diagnostic testing. The process com­
pares characteristics of the failures with a resident data base of fault 
signatures. In each data table, the designers have partitioned the tests 
into groups. Any test failure in a group will set a flag bit, called a key, 
which is permanently assigned to the group. The TLP search, based 
on the phase and key information, results in a rank-ordered list of 
closest signatures and, ultimately, into an ordered list of suspected 
faulty equipment. This approach makes the data base and process less 
sensitive than earlier methods to circuit or test changes and to marginal 
failures. The data base (TLDB) is generated off-line from the results 
of physically inserting faults into units in a test laboratory. Test 
engineers also can modify the TLDB directly by inserting information 
into the test data tables. Fig. 5 depicts a typical diagnostic output 
message from a faulty memory unit. 

VIII. EVALUATION 

Although many diagnostic tests were generated with the aid of 
hardware logic simulators, many tests were developed manually. To 
assure that the diagnostics met the objective-at least 90 percent of 
the simulated faults detected-an extensive evaluation process was 
carried out. Using physical fault insertion at the DIP (Dual In-Line 
Package) terminals, many thousands of faults were inserted. This 
approach has provided timely and effective design feedback for diag­
nostic test and TLDB development. 

IX. CONCLUSION 

In addition to providing a variety of test-control options, the 3B20D 
diagnostics were designed for multiple execution environments. As a 
result, the diagnostics have been useful throughout the development 
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Fig. 5-Sample output message-diagnosis of memory with TLP option. 

cycle and have supported the design laboratory, factory testing, in­
stallation, normal system operation, application interfaces, and field 
support. These diagnostics are the major tool for validating the 3B20D 
Processor hardware and for isolating any faults. The provision of a 
high degree of hardware self-checking, standby and active redundancy, 
self-diagnosis, micro diagnostics, and remote testing capability all have 
contributed to making the 3B20D Processor a high-availability real­
time system. Coupled with the DMERT operating system, with its 
robust complement of features, the 3B20D Processor meets the needs 
of a wide variety of Bell System projects. 
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The 3B20D craft interface package includes hardware, firmware, 
and software that enables telephone company craftspeople to obtain 
the status of and exert control over the system. Because this package 
consists of one or more standard keyboard-display terminals for 
human-machine interactions, it is flexible and can be adapted to a 
broad variety of applications. Furthermore, the use of standard 
terminals and data link protocols allows for inexpensive remote 
access with capabilities similar to local access capabilities. Finally, 
the use of video displays has made it possible to provide easy-to-use 
menus that guide the craftspeople through some of the complex 
control operations. This article describes the 3B20D craft interface 
capabilities and the internal architecture of the package. 

I. INTRODUCTION 

The "craft interface" is that part of the 3B20D Processor that 
enables people to obtain status information and exert control over the 
system. To those not involved in telephony, the word "craft" may 
seem odd. It has traditionally been used to refer to the people who 
work in and around telephone switching offices performing various 
maintenance functions on the equipment. In this article, the term is 
used somewhat liberally to mean any person who interacts with the 
3B20D to perform administrative and maintenance functions. 

The 3B20D's craft interface is a marked departure from previous 
systems developed at Bell Laboratories because it relies almost exclu­
sively on video displays and keyboard controls instead of the key-lamp 
panels and teletypewriters usually found in the Master Control Center 
(MCC) of electronic switching systems. Status information is presented 
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visually as graphical displays and text messages on various terminals 
and printers. There is also a capability to provide audible status by 
connecting the 3B20D to an audible alarm circuit. System control is 
exerted primarily via a keyboard attached to the video display termi­
nal, although the 3B20D also includes a separate power control panel 
for each major hardware unit. 

Another important enhancement lies in the ability to access and 
control all aspects of the system from remote locations such as Switch­
ing Control Centers (SCCs). In the past, remote access was obtained 
by "piggy-backing" data links onto the typewriter terminals in the 
telephone office and by connecting a telemetry unit to the key-lamp 
control panel. The 3B20D has introduced a more "intelligent" data 
link using the CCITT X.25 communication protocol. This link can 
carry considerably more information and is less vulnerable to noise 
and other data communication failures. Furthermore, the use of the 
internationalstandard message protocol (X.25) will standardize remote 
access to the 3B20D via packet switching networks. 

This article fIrst provides an overview of the 3B20D craft interface, 
primarily concentrating on how the system appears to the craftspeople. 
Then the internal architecture is described and the various 3B20D 
applications usages of the general facilities provided in the common 
system are explained. 

II. OVERVIEW 

This section describes the 3B20D craft interface as it appears to the 
people who use it to administer and maintain the system. 

2. 1 Hardware 

The most frequently used parts of the craft interface are shown 
mounted in two equipment frames in Fig. 1. The left frame contains a 
"read-only printer" or ROP* on which all important status messages 
are logged. The right frame contains a keyboard-display terminal that 
is commonly referred to as the "maintenance CRT," or MCRT. Tele­
phone switching applications of the 3B20D can choose either a frame­
mounted or desk-mounted arrangement for the ROP and MCRT. A 
desk mounted version is shown in Fig. 1. 

2.2 Text messages 

One way in which the 3B20D communicates with the craftspeople 
is via text messages. For example, when the message 

* From the viewpoint of a programmer, it is a "write-only printer," since the program­
mer can only send (i.e., write) messages to it. However, the craftsperson cannot type on 
this device, and so from that viewpoint it is a "read-only printer." 
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DGN:CU 0; UCL! 

is typed, the central processing unit 0 (CD 0) is diagnosed. The DCL 
keyword indicates that the diagnosis is "unconditional," which means 
that all tests will be run even if some of the early tests fail. When the 
diagnosis is complete, the CD diagnostic prints a text message such as: 

DGN CU 0 COMPLETED ATP 

This means that the diagnosis has been completed and all tests passed 
(ATP). For initial 3B20D applications, the text messages conform to 
the Bell System craft interface syntax, commonly known as the Pro­
gram Documentation Standard (PDS) Language. However, all new 
switching systems developments will be adopting a craft interface 
language sanctioned by the International Telegraph and Telephone 
Consultative Committee (CCITT) under the name MML. Since PDS 
and MML are similar, and since the 3B20D is expected to enjoy broad 
use in international applications, the operating system was designed 
so that each application can easily choose the appropriate syntax. 

Text messages are typed on the MCRT keyboard, and the response 
messages are displayed on the MCRT video display and/or printed on 
the ROP. The basic repertoire of messages available with the 3B20D 
covers a broad range of maintenance and administration activities. 
Each application can easily add its own messages to this repertoire. 

Fig. I-Craft interface printer and terminal. 
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2.3 Control and display functions 

As mentioned earlier, previous systems used key-lamp panels to 
display system status and to receive control signals from the crafts­
people. The 3B20D uses the MCRT video screen and keyboard, as 
shown in Fig. 2, in place of such a panel. The upper part of the screen 
always contains a summary of important system indicators, including 
CRITICAL, MAJOR, and MINOR severity alarms and "type" alarms, 
such as CD and BLDG/PWR, which is the indicator for building 
power. The middle part can display a variety of "pages" that show 
system status in a graphical form. Finally, the lower part of the screen 
is used for text input and output. 

The standard 3B20D software includes several display pages related 
to the common processor equipment, and each application can easily 
add its own pages. The "Common Processor Display Page" shown in 
Fig. 3 provides a diagram of the redundant components in the basic 
processor complex. At the left of the diagram is a "menu" listing the 
control operations that can be invoked when this page is displayed. To 
select a menu item, the craftsperson depresses the CMD/MSG key, 
which switches the craft interface from text message mode to command 

Fig. 2-Craft interface video screen and keyboard. 
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Fig. 3-Emergency action interface display page. 

mode. Then the craftsperson types the menu item number, replacing 
"x" with a 0 or 1 where necessary. Finally, depression of the RETURN 
key (or the! key) causes the command to be executed. 

The craft interface stays in the command mode until the CMD/MSG 
key is depressed again. This key is one of four "special function keys." 
The ALM RLS key is used to retire audible and visual alarms. The EAI 
DISP key places the craft interface in the emergency action mode, 
which is described below. When in EAI mode, the NORM DISP key 
returns the screen to its previous display. 

The Emergency Action Interface Page is different from other pages 
because it is directly controlled by a microprocessor in the MTTY 
controller (MTTYC) and, therefore, can be used even when the 3B20D 
software is not operating. As shown in Fig. 4, this page contains menu 
items that enable the craftsperson to re-initialize the system or to force 
the redundant units into a particular configuration. Typically, this 
page is used only when system sanity is suspect. 

2.4 Remote access 

All capabilities of the craft interface except the power control panels 
can be accessed from a remote maintenance center via a dedicated 
data link that is attached to the MTTYC. The standard arrangement 
includes a primary and a backup link, both of which use the CCITT 
X.25 communication protocol. The remote site is usually a Switching 
Control Center (SCC) that contains a collection of computers and 
terminals that interface with these X.25 links and provide the SCC 
craftspeople with sophisticated analysis and maintenance tools. 
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Fig. 4-Common processor display page. 

III. CRAFT INTERFACE ARCHITECTURE 

This section discusses the hardware and software architecture of the 
3B20D craft interface. Figure 5 shows the arrangement of hardware 
units pertinent to the craft interface, while Fig. 6 shows the software 
modules. The discussion of the hardware architecture that follows will 
cover the I/O Processor (lOP) driver and MTTYC handler software, 
as they are the fundamental parts of DMERT required to access the 
hardware. 

3. 1 Hardware architecture 

Referring to Fig. 5, one sees that each of the duplex processors is 
connected to both lOPs, and that each lOP supports up to sixteen 
peripheral controllers (PCs). Various PCs exist for terminals and 
printers, data links, tape units, etc. The lOP driver process, which is 
the part of DMERT responsible for communication with the lOPs, 
contains "handlers" that deal with the specialized functions of the 
PCs. The following handlers are pertinent to the craft interface: craft 
interface handler, X.25 handler, emergency action interface handler, 
general-purpose terminal handler, and alarm handler. 

3. 1. 1 Craft interface handler 

The MCRT, ROP, and X.25 links are attached to a PC known as 
the maintenance teletype controller, or MTTYC. The craft interface 
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Fig. 5-Craft interface hardware overview. 

handler controls the transfer of data to and from the peripheral devices 
associated with the MTTYC. The MCRT and ROP are administered 
directly by the MTTYC, while the X.25 links require the additional 
services of the X.25 handler described later. For each device or data 
link attached to the MTTYC, the handler supports all standard access 
operations of the UNIX* operating system. In addition, this handler 
treats the single MCRT terminal as two "virtual terminals," with the 
upper part of the screen used for control/display functions and the 
lower part used for text messages as shown in Fig. 2. Each virtual 
terminal appears to the higher-level software as a separate device. 

3. 1.2 X.2S handler 

The X.25 handler provides communication with a remote mainte­
nance center via 1200 to 9600 bits per second synchronous data links 
using levels 2 and 3 of the CCITT X.25 protocol. Level 2, referred to 
as the link layer, provides link initialization, error control, and flow 
control on the physical data link and is implemented as firmware 
within the MTTYC. Level 3, referred to as the packet layer, multi­
plexes several independent data streams (logical channels) on the 
physical link and is implemented by the X.25 handler software. In 
effect, the X.25 handler makes the single MTTYC look like a multitude 
of independent communication channels. 

* Trademark of Bell Laboratories. 
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Fig. 6-Craft interface software architecture. 

3.1.3 Emergency action interface handler 

The Emergency Action Interface (EAI) is a processor circuit pack 
that provides basic status information and manual control even under 
extreme circumstances. That is, the EAI circuit gives craftspeople 
limited access to the 3B20D regardless of DMERT software sanity. 
This access is in the form of the EAI page display shown in Fig. 4, 
which is controlled totally by the firmware in the MTTYC. The 
MTTYC interacts with the EAI circuit via the connection shown in 
Fig. 5 to acquire the status information for display on the MCRT. 
Also, when the craftsperson selects a menu item from the EAI display, 
the MCRT delivers the corresponding commands to the EAI circuit. 

The emergency action interface handler only comes into play when 
DMERT is operating sanely. It has two major functions. First, it 
periodically "punches in" with the EAI circuit to indicate that the 
software is operating correctly. If the EAI (and, subsequently, the 
MTTYC) fails to receive this periodic signal, it will automatically 
initiate a system recovery operation to restore software sanity. Second, 
the EAI handler receives some non-emergency commands from the 
MTTYC via the EAI, including non-emergency initialization and 
reconfiguration signals. 

3. 1.4 General-purpose terminal handler 

The craft interface subsystem supports terminals other than the 
MCRT and ROP via the teletype controller, or TTYC. This controller 
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offers all MCRT and ROP functions except access to the EAI circuit. 
Its handler is similar to the craft interface handler used with the 
MTTYC and, in particular, offers the dual virtual terminal mode of 
operation needed to intermix control! display functions and text func­
tions on a single terminal. This capability is typically used for dial-up 
monitoring of a system from a Western Electric or Bell Laboratories 
product support center. 

3.1.5 Alarm handler 

The scanner and signal distributor (SCSD) peripheral controller 
provides sense and control points that are tied into the system power 
controls and alarms. The SCSD handler detects sense point state 
changes and sends commands to change the states of control points. 
Higher-level software uses these capabilities to detect situations such 
as power removal, fuse operation, or thermal warnings and to respond 
by activating audible alarms or power shutdown circuits. The appli­
cation can also tie into the SCSD and configure the higher-level 
software to detect and react to such things as building intrusion alarms. 

3.2 Software architecture 

Figure 6 shows the modules that comprise the standard DMERT 
craft interface software subsystem. Already discussed were the device 
handlers that connect to the modules on the right of the figure. Each 
application usually adds its own modules that tie into the interfaces 
on the left. Also, many other parts of DMERT (e.g., the diagnostic 
subsystem) connect to the craft subsystem via these front-end inter­
faces. The modules in the middle of the figure are the "workhorses" of 
the craft subsystem and provide the internal interfaces used by 
DMERT programmers to interact with the craft personneL 

3.2.1 Text input processing (shell) 

The Shell is the module that interfaces between the handlers and 
the processes that respond to text input command's. The term "shell" 
is borrowed from the UNIX operating system, and DMERT's craft 
shell operates in a manner similar to the other shell. That is, the 
DMERT shell reads an input line, parses it into a command verb and 
a list of "tokens," searches for the command process in the appropriate 
disk directory, creates the command process, and passes the list of 
tokens to it. The command process has access to a "shell library" that 
includes functions to do further parsing of the tokens. 

The major difference between the DMERT shell and the other shell 
is that DMERT must parse commands that are typed in either the 
PDS or MML syntax, where as the UNIX operating system shell uses 
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a more general syntax for a broader variety of applications. * Another 
difference is that the PDS and MML languages include the notion of 
a "locking acknowledgment." That is, an input command process is 
required to give a two-character response (e.g., OK if the command is 
successful, PF if a printout follows) within a few seconds after the 
person types the message, and no other command can be typed until 
the acknowledgment appears. In the UNIX operating system, message 
acknowledgments are not required and command type-ahead is al­
lowed. Therefore, the DMERT shell library includes functions that 
pass the acknowledgment back to the handler in order to unlock the 
terminal. 

Referring again to Fig. 6, note that each text input channel has its 
own instance of the DMERT shell. This allows each channel to operate 
independently of the others, which means that several craftspeople 
can simultaneously interact with the system. 

3.2.2 Text output processing (spooler) 

The DMERT output spooler accepts text strings from higher-level 
processes and directs them to the appropriate output devices. [The 
term "spooler" is a computer science anachronism that comes from 
the days when information waiting to be printed was temporarily 
stored on reels (spools) of magnetic tape.] One might ask why the 
higher-level process doesn't write directly to the device (via the de­
vice's handler, of course). There are two reasons to avoid direct writing. 

First, the PDS and MML languages require that each message be 
enclosed in an "envelope" that clearly delineates the message. This 
envelope generally contains a time stamp, a message priority/alarm 
indicator, and an end-of-message delimiter. The time stamp can be as 
simple as the number of minutes past the current hour, or it can be 
the complete date and time. The priority/alarm indicator shows 
whether the message is a result of a manual or an automatic action 
and whether the action being reported requires immediate attention. 
Finally, the end-of-message delimiter provides for automatic logging 
and browsing of messages by a computer in the remote maintenance 
center. Centralizing the generation of the output message envelope in 
the spooler simplifies the work that higher-level processes must do to 
produce text output. Also, changes or additions to the envelope can be 
introduced easily by modifying only the spooler. 

The second reason for using the spooler approach is that many 
messages must be sent to several places. For example, the usual mode 

* For DMERT applications that require the more general UNIX shell on terminals 
other than the MCRT, it is possible to configure the system in such a way that the 
UNIX shell is automatically activated on some or all general-purpose terminals. In other 
words, both the DMERT and the UNIX operating system shells are compatible with 
the general-purpose terminal handler described earlier. 
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of operation when a remote maintenance center is attached via the 
X.25 links is to send every output message to both the MCRT, ROP, 
and the remote center. However, if the ROP runs out of paper or if 
there are no craft personnel near the 3B20D, messages can be routed 
only to the remote center. To handle these and the diverse message 
routing situations that can arise, the spooler maintains a "map" 
showing where messages are to be routed based on their priority/alarm 
indicator and on a message type code that is received from the process 
that generated the message. The map also can be configured to route 
some message types to disk files instead of or in addition to printing 
them. This feature is useful for keeping a log of messages that are 
sometimes needed for problem analysis but that would overload the 
ROP or X.25 links if sent routinely. Input commands are provided to 
print the contents of these logging files when needed. 

3.2.3 Control/display processing 

The Display Administration Process (DAP) administers the upper 
part of the MCRT (and, possibly, other video terminals) containing 
the displays that replace the traditional key/lamp panels for 3B20D 
applications. DAP's fundamental purpose is to display "pages" from 
its repertoire and to accept commands listed on "menus" associated 
with the pages. Figure 3 shows the Common Processor Display Page, 
which is one of the standard pages delivered with DMERT. Typically, 
the majority of display pages are defined by the specific application 
processes. 

For each page, there is a Page Description File (PDF) containing a 
pseudo-program that describes how the page should be "painted" on 
the video screen and what menu selections are allowed. PDFs are 
constructed like programs and compiled by a page description file 
generator (PDFGEN) program. 

3.2.3.1 Display functions. When DAP begins execution, no pages are 
active. Then, as the various parts of DMERT and the application are 
initialized, they send interprocess messages to DAP requesting that 
specific PDFs be loaded into main memory and activated as display 
pages. A maximum of 64 pages can be active at anyone time. Other 
interprocess messages tell DAP which of the active pages to display 
on each video terminal. 

Each page consists of up to 128 graphical constructs known as 
"indicators," a term reminiscent of the lighted indicators on a key / 
lamp panel. The process that initially informs DAP to activate a page 
becomes the owner of that page and it and other processes can 
subsequently inform DAP (via interprocess messages) to change the 
states of the indicators. For example, one popular type of indicator is 
the rectangle enclosing a few text items, such as the CU-O box in Fig. 
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3. The CPDP page owner can send messages to DAP causing the 
phrase UNAV to change to OOS when control unit 0 (CU-O) changes 
from the unavailable state to the out-of-service state. 

These state changes can be communicated in detail, for example, by 
sending a message to DAP specifying the characters OOS to replace 
UNAV. However, the usual method is to use state numbers instead of 
the actual characters. DAP has access to a table of 256 state entries 
specifying the standard text and video attributes associated with each 
of the 256 possible indicator states. The standard maintenance states, 
such as active, standby, and out-of-service, have predefined state 
numbers, and each application can define additional states for its own 
needs. The advantage of using state numbers is that the text and video 
attributes for each state can be centrally controlled. For example, one 
application could use the text ACT for the active state while another 
application used ACTIVE, and the only difference would be in the state 
table definition entries. 

Video attributes were mentioned above in addition to the text that 
can be associated with an indicator. For the usual black-and-white 
terminals, DAP recognizes the "blink" attribute and the "reverse" 
attribute. The conventional use for the reverse attribute is to show 
that an indicator is, in some sense, active. In other words, a reversed 
indicator is similar to a lit lamp on a key/lamp paneL The blink 
attribute is used to draw attention to a situation that requires imme­
diate action, just like a flashing lamp. In Fig. 3, the SYS NORM 
indicator is reversed to show that the system is operating normally. If 
a major alarm occurs, the MAJOR indicator will blink until the ALM 
RLS key is pressed. 

DAP also includes the capability to deal with color terminals, which 
have a much richer set of attributes. For example, the MAJOR indicator 
could be displayed as white characters against a red background, while 
the MINOR indicator would be white against yellow. It is possible to 
define indicator states in the most general way for color terminals and 
then have the Equipment Configuration Database contain MTTYC or 
TTYC options that "downgrade" the color states for black-and-white 
terminals. In the example mentioned above, both the red and yellow 
backgrounds would be mapped into the reverse attribute. 

3.2.3.2 Control functions. In addition to displaying pages on the 
MCRT screen, DAP also can receive menu commands typed on the 
MCRT keyboard. These commands usually are referred to as "pokes" 
since they are similar to the action of poking a key on a key /lamp 
paneL As mentioned earlier, depression of the CMD/MSG key switches 
the terminal from the message mode to the command mode and vice­
versa. When in the command mode, DAP displays a CMD: prompter 
towards the top of the screen, as shown in Fig. 3, and positions the 
cursor so that the typed characters appear in that line. 
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A command line consists of a number (usually 3 or 4 digits long) 
that optionally can be followed by some text characters. The craft 
interface handler, knowing that the terminal is in command mode, 
routes this input to DAP instead of to the SHELL. DAP examines the 
number to determine if it corresponds to a local or a global menu item. 
Local menu items are associated with the page(s) currently being 
displayed on the video screen. Global items are associated with any 
active page, even if the page is not currently displayed. In other words, 
a globally defined item will always be accepted and acted upon, even 
if its page is not being displayed. 

If DAP successfully locates the menu item corresponding to the 
number that was typed, it usually sends an interprocess message to 
the owner of the page defining that menu item. This message contains 
the item number and the additional text characters typed, if any, as 
well as the originating terminal identification. The owner then takes 
whatever action is appropriate. 

We used the word "usually" above because in some cases the 
response to a command is some simple action such as flipping to a new 
page on the display. In other cases, the PDF can specify a function to 
be executed by DAP upon receipt of the command, thereby bypassing 
the overhead of interprocess messages. One interesting aspect of this 
feature is the ability for DAP to translate a menu command into a text 
message to be passed to an instance of the SHELL, with the additional 
characters substituted in the message. This makes it possible for an 
application to design easy-to-use menus as an alternative to text 
message input, but to handle all terminal inputs internally as if they 
came through the SHELL. 

A final note on commands has to do with locking acknowledgments. 
As with the SHELL, DAP requires a positive response to each com­
mand before another command can be accepted. For a command 
passed to a page owner via an interprocess message, the owner must 
send an acknowledgment message back to DAP within a certain time 
period or be abandoned. For commands handled via the function call 
approach, the function returns an acknowledgment code to DAP. 

3.2.4 Forms processing 

As described above, DAP is typically used for control! display func­
tions related to maintenance activities such as configuration control. 
However, some applications require more general display functions 
than the indicator/menu approach appropriate for these maintenance 
scenarios. The craft subsystem provides facilities for entering textual 
information as part of displays. 

A DAP page can be defined to contain input areas other than the 
standard command input line. When such a page is displayed, depres­
sion of the CMD/MSG key places the cursor at the first input area 
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instead of at the command line. The craftsperson can enter text into 
this area and/or move the cursor, using the terminal cursor control 
keys, to the next input area on the page. When the RETURN key is hit, 
DAP passes the typed information to the page owner via an interpro­
cess message. 

3.2.5 Alarm processing 

The Alarm Control Process (ACP) is the part of the craft subsystem 
responsible for sounding audible alarms and displaying a summary of 
current system status at the top of the video screen. ACP is created 
during DMERT initialization and notifies DAP to activate the page 
known as the System Summary Area (SSA). It also attaches itself to 
the SCSD handler to gain access to the signal distributor points used 
to sound audible alarms. The plant measurements data base is auto­
matically updated for severity-type alarm counts. 

As the spooler and DAP receive messages from the higher-level 
processes, they check for situations requiring audible alarms and/or 
changes in the system status summary. For the spooler, alarm infor­
mation is contained in the message prefix received from the higher­
level process. For DAP, this information is derived from the indicator 
state data. Both cases result in messages being sent to ACP, which 
then operates the signal distributor points via the SCSD handler and/ 
or sends DAP messages to change the states of indicators on the SSA 
page. Application processes also send messages directly to ACP for 
alarms. 

Another message received by ACP from DAP is a notification that 
the ALM RLS key has been depressed. This causes ACP to reset the 
signal distributor point controlling the audible alarms. This key de­
pression is also reported from the MTTYPC directly to the SCSD 
audible alarm retire scan point. 

The Critical Indicator Area (CIA) process is closely related to ACP 
and DAP. Its function is to extract from the SSA page sixteen "critical 
indicators" of system status and periodically send them to the remote 
maintenance center via the X.25 link for alarming and display. The 
remote center can use this periodic "heartbeat" from the CIA process 
as one test that the system is operating sanely. 

3.2.6 Common processor display page 

Thus far we have described the general hardware and software 
modules that comprise the 3B20D's craft interface subsystem. 
DMERT also includes several processes that are, in effect, users of the 
craft subsystem. One of these is the process that owns the Common 
Processor Display (CPD) page that we have frequently used for 
examples (see Fig. 3). This Real-Time Status (RTS) process is created 
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as part of the DMERT initialization sequence and immediately sends 
messages to DAP to activate the CPD page. RTS also attaches itself 
to the Equipment Configuration Data Base (ECD), which it periodi­
cally examines to determine if any units shown on the CPD page have 
changed state. Spontaneous equipment configuration changes are re­
ported to RTS through a library interface (CONFIG) from the various 
device handlers. In either case, appropriate messages are sent to DAP. 

IV. SUMMARY 

The 3B20DjDMERT system has taken a significant departure from 
earlier switching processors in many areas, but perhaps none is so 
visible as the craft interface. The use of flexible video displays makes 
it possible to adapt the 3B20D to diverse applications quickly and 
economically. Also, the introduction of a reliable, secure, high-capacity 
data link for remote maintenance makes the 3B20DjDMERT system 
well suited for unattended operation, with resultant cost savings. 
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This article describes the general approach that was taken in 
integrating and system testing the 3B20D Processor system. Since 
both the system hardware and software were developed simultane­
ously, the goals of the system test and integration plan naturally 
shifted emphasis and expanded their scope from achieving hardware 
stability to establishing software functionality and finally to demon­
strating system stability. This article also overviews some of the 
project management techniques and procedures applied during the 
development of the 3B20D Processor. 

I. INTRODUCTION 

An important aspect of the development of any complex system 
such as the 3B20D Processor is the methodical integration and system 
testing during all phases of the development consistent with the 
experience gained from previous developments. 1

-
4 Since the hardware, 

software, and microcode were designed and developed simultaneously, 
the initial efforts focused primarily on the hardware and firmware 
using stand-alone exercise modules and system diagnostics run from a 
laboratory support processor. After the hardware reached sufficient 
stability, emphasis turned to functional testing of each major software 
subsystem and feature. Finally, as full functionality was achieved, the 
major thrust of testing focused on system integrity and reliability using 
the previously developed tests as a regression test package to assure 
no loss in functionality as problems were cleared. The development 
methodology is summarized in the relative timeline sequence chart 
shown in Fig. 1. 

Also discussed in this article are some of the project management 
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techniques and administration tools used to control the changes and 
new features introduced into the system. 

II. EARLY HARDWARE/SOFTWARE INTEGRATION AND TEST 
STRATEGY 

2. 1 Objectives 

The objective of the initial integration and test effort on the proto­
type hardware was to verify basic instruction execution and memory 
access, establish full diagnostic capability of the hardware,5 prove in 
peripheral access and functionality, and establish stable communica­
tion interfaces. In achieving these objectives, a stable software devel­
opment environment was achieved for the major portion of the soft­
ware development. 

2.2 Stand-alone exercise modules 

The diagnostics were developed to initially run from the laboratory 
support processor in conjunction with the hardware development. This 
simultaneous development of the diagnostics and the processor hard­
ware had the unique advantage of providing individual functional 
verification of each circuit pack or major unit before integration of the 
operational system was attempted, thereby saving much laboratory 
time ferreting out faulty hardware. The initial functional integration 
started with simplistic CPU test modules that afforded stand-alone 
verification of basic operation. Upon reaching acceptable functionality, 
stand-alone test modules were used to establish communication with 
the disk file controller and moving head disks. 

2.2. 1 Central processing unit integration 

Two test modules were used extensively to integrate the early 
Central Processing Unit (CPU) hardware, firmware, and subsequent 
changes. The first test module was designed to test basic main-memory 
access and instruction execution with output to serial channel on the 
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Central Control Input/Output (CCIO) bus.6 Loading this module from 
the laboratory support processor verified the communication link from 
the support processor to the 3B20D Processor. In addition, the exe­
cution of the module not only verified basic hardware functionality 
but also verified the data-link capability to a TTY via the serial 
channel. The second test module, in combination with a primitive 
version of the operating system, established two processes and cycli­
cally sent messages between them. This capability not only tested 
more of the hardware features of the CPU, but also provided a means 
to verify stable operation over long periods of time. This test module 
was then expanded to verify memory update on the off-line Control 
Unit (CU) and "soft switch" capability between the duplex units.7 

2.2.2 File system integration 

Once basic operation of the CPU was verified, attention was pointed 
toward the file-system operation requiring integration of the Direct 
Memory Access (DMA) unit, the Disk File Controller (DFC) unit, and 
the Moving Head Disk (MHD).8 Again a stand-alone test module, 
based on the disk driver software and the primitive operating system, 
was used for the integration of the hardware and firmware. Because of 
the large percentage of the hardware that had to be operational for 
successful execution of this test module, it became an invaluable tool 
not only for the integration of the preproduction hardware but also for 
Western Electric manufacturing, testing, and installation of early 
models of the 3B20D Processor in application'system laboratories. 

2.3 System software 

Once the hardware was integrated and verified to the limits of the 
stand-alone test modules, development of the operating system and 
system-initialization software proceeded rapidly, and the integration 
effort switched emphasis from strictly hardware to system software. 
The strategy was to incrementally integrate-from the primitive op­
erating system-each new capability of the operating system and 
system-initialization software with the hardware until a fully cycling 
stand-alone basic processor system was achieved. 

With the basic capability to initialize the system and cycle the 
operating system, integration proceeded to verify the 3B20D resident 
diagnostic control structure and diagnostics. 

By this time, additional integration tests were necessary to more 
fully expand coverage of the system. Thus, a test process was developed 
that created disk read and write jobs with a variable number of these 
child processes specifiable up to the number of allowable Dispatch 
Control Table (DCT) entries. Because of the large percentage of the 
processor used by this test process and because of the controllable 
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activity, it became an invaluable regression-test vehicle for subsequent 
integration activities as well as a system stress test. 

2.4 Results 

The primary result of this early effort was the establishment of a 
stable hardware and operating software base for the development of 
the features. 

III. INTEGRATION AND SYSTEM TEST 

The 3B20D system-level testing is actually divided into three distinct 
functional groups consisting of System Integration, System Test, and 
System Analysis. A brief historical review of the evolution of these 
groups is perhaps the best way to describe their respective functions. 
In early 1979 a decision was made to delegate the system testing of 
DMERT to Western Electric.9 A Western Electric department was 
formed with the goal of taking over full responsibility for DMERT 
system testing by January 1, 1980. This transition actually took place 
about six months ahead of schedule in July 1979 and the system 
remains a Western Electric responsibility. The goals of the system 
testing group at that time were to release laboratory quality prereleases 
to DMERT applications to allow parallel application software devel­
opment with the DMERT development. The system testing group 
also developed an extensive, documented set of tests that could be 
used not only to test the prereleases but would also serve as a base for 
testing all generic software releases in the years to follow. 

Another group, the System Integration group, was responsible for 
planning and coordinating the building (compiling) of each DMERT 
release, getting the release installed and cycling in the 3B20D devel­
opment labs, and assuring that basic functions worked. Once this was 
accomplished, responsibility for the detailed testing was turned over 
to the system testing group. Thus, the system testing group could 
concentrate more on actual testing and problem resolution and less on 
bringing up the internal loads. 

3. 1 Integration 

System integration controls the flow of software changes from the 
time a developer completes a change through the release of that 
change to a customer. The specific areas of responsibility include: 

(i) Load engineering and planning 
(ii) Benchmark tracking and analysis 

(iii) Integration testing 
(iv) Release-letter generation 
(v) Modification Request (MR) tracking and MR data base integ­

rity. 
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3. 1. 1 Load engineering and load planning 

For each DMERT release, an individual is assigned to be the load 
engineer. This individual serves as the focal point for all load-building 
activities. Specifically, the load engineer analyzes all changes planned 
for the release by the generic engineer, decides in what sequence 
changes should be taken, oversees the building of the load, and 
coordinates installation and integration testing of the load in the 
development labs. 

Members of the integration team report to the load engineer who 
assures that all activities needed to deliver the load on schedule are 
assigned and completed. The load engineer with assistance from the 
integration team resolves daily problems and, as necessary, reschedules 
activities and people. 

The load engineer in conjunction with the program administration 
staff coordinates the actual building of the load. The load engineer 
must thoroughly understand the mechanics of how the system is built, 
what software dependencies exist and how source code is controlled 
via the CMS/M2 system. lO 

3. 1.2 Benchmark tracking and analysis 

Each new generic feature or major software enhancement results in 
a set of benchmarks that identify the date at which major activities 
are scheduled for completion. Benchmarks serve a dual purpose: first, 
as a management tool for measuring how the project is doing relative 
to the plan; and second, as a planning aide for other people or groups 
identifying dependencies for other features, hardware availability, or 
lab installation. 

Several tools have been used for identifying, tracking and reporting 
on feature benchmarks within the DMERT development organization. 

3.1.3 Integration testing 

One of the major objectives of the integration team is to assure that 
the load given to the system testing group is of sufficient quality to 
allow detailed functional testing. To verify that the system is of such 
quality, basic functional tests are run to assure that the major subsys­
tems are operational. These include diagnostics, processor duplex 
operation, disk and I/O capabilities, and Recent Change and Verify. 

3. 1.4 Release-letter generation 

Typically the applications that use the 3B20D Processor want the 
new DMERT software releases as soon as possible after the completion 
of system testing. This has presented a unique challenge to DMERT 
development management: the need to get releases, complete with 
essential documentation, to a number of different customers within 
one day of the completion of system test. 
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One vehicle used to supply necessary timely documentation to the 
customers is the release letter. This letter has evolved into a rather 
detailed document covering: 

(i) Support processor installation procedures 
(ii) 3B20D installation procedures 

(iii) List of all fIle names 
(iv) List of all changed fIles 
(v) List of all required data base changes 

(vi) MR descriptions for all MRs resolved in the release 
(vii) MR exceptions list. 

Of particular importance is the MR exceptions list. The intent of 
this list is to communicate to the customers known problems that exist 
in the release and, when available, action to be taken if it is observed 
on their machines. This communication mechanism saves many hours 
that applications personnel would spend analyzing problems already 
identifIed by the DMERT organization. 

To assure timely distribution of this letter, all sections are put on a 
support computer and support programs are executed to assemble 
them into a document that is available on the day of the software 
release. 

3. 1.5 Detailed MR tracking and data base integrity 

The integration team also was chartered to establish the integrity of 
MR data base, to produce accurate and timely reports, and to respond 
promptly to high-priority problems. Weekly audits of the entire data 
base are performed to assure that MRs do not remain in a transient 
state for an unreasonable length of time. 

3.2 System test 

The primary objective of the 3B20D System Test group is to test 
the DMERT system on the 3B20D Processor in order to validate that 
all advertised features and capabilities perform according to their 
documented requirements. System tests are designed to test all the 
functional capabilities of the processor and its hardware both in no­
load and stress environments. 

In the two and one half years since its inception, the System Test 
group has developed a complete system testing package containing 
over 700 test cases. As new features are developed, test cases are 
developed and each feature is thoroughly tested. Test cases are docu­
mented and in many cases processes are written to automatically 
execute the tests. Once a feature is released for customer use, a subset 
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of the defined test cases is included as part of an on-going regression­
te&t package. 

A concept of certification testing was established to identify prob­
lems early in the development cycle. This allowed more problems to 
be debugged and fixed before release and resulted in a more stable 
system testing environment and higher ultimate product quality. 

Certification testing requires the developers to build in the official 
environment lO and to demonstrate the proper execution of their new 
code to a system tester before it can be delivered to the integration 
team. The system tester has an option to request particular tests to be 
run with the new code and thus certify that the software to be 
submitted has passed some basic tests and can be approved for further 
processing. Software not passing certification is rejected and the de­
velopers have to correct the deficiencies and schedule a follow-up 
certification test. 

3.3 System analysis effort 

The System Analysis Group (SAG) effort was planned as an exten­
sion to Integration and System Testing. As its objectives, SAG was to 
perform tests aimed at measuring the performance and reliability of 
the 3B20D as a system. A separate development laboratory was 
constructed with the primary intention of simulating and functioning 
as a field site. Since this was the only 3B20D laboratory planned to 
run for long periods of time without rebooting, many problems of a 
periodic or long-term nature were first observed there. 

SAG members approached the stability aspect of the job by first 
defining measurable metrics. Objectives were defined based on the 
measured system reliability. The SAG team then identified and inves­
tigated problems that impacted system reliability and reported the 
effects on system stability once the problems were resolved. 

Stability data was collected during weekend testing. The tests in­
volved running a controlled-load package containing system exercise 
processes for specified periods of time, usually several days. These 
tests were generally run unattended to evaluate hands-off machine 
performance. All messages to the Read Only Printer (ROP) were 
stored on disk, dumped at the end of the test and analyzed using a 
program developed for this purpose. 

Three sets of objectives were defined for data analysis: a long-term 
objective for system reliability; a cut objective that identified satisfac­
tory stability levels for first application at in-service offices; and the 
objective of establishing concern thresholds. Any data above the 
concern threshold was clearly unacceptable for even initial in-service 
machines. Data lying in the area between the cut objective and the 
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concern thresholds needed additional understanding in order to make 
a go/no-go decision on cutover. 

An example of one of the metrics used to track stability is shown in 
Fig. 2 for ten releases of DMERT prior to the first machine cutover in 
September 1981. 

IV. FACTORY SYSTEM TEST 

Factory System Tests (FST) and Quality Assurance (QA) tests are 
the final hardware tests run at the Western Electric Company manu­
facturing plants to assure that a quality hardware product is delivered 
to the customer. 

4. 1 Objectives 

The objectives of FST and QA are to test the hardware functionality 
and interconnections of fully assembled systems to assure that the 
processors as built meet design intent. These extensive tests assure 
the highest possible quality in the product when shipped to the 
customer. 

4.2 FST test strategy 

Instead of developing special test software for the FST, the actual 
DMERT operating system is enhanced with additional exercise proc­
esses to form the Factory/Installation Software Test (FIST) package. 
The testing is divided into two phases: the normal operation phase 
and the stressed operation phase. These tests apply to all hardware 
delivered by the factory including the system as ordered, the comple-
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ment of spare circuit packs, growth units and circuit packs, and 
repaired product. 

4.2. 1 Normal operational tests 

The normal operational tests are designed to verify the functionality, 
interconnections, and basic maintenance operations associated with 
each unit under normal operating conditions. Included in these tests 
are the activation of system initializations under all possible minimum 
configurations using the power switch and the craft interface terminal. 
The tests then assure functionality of all units under simulated main­
tenance conditions by removing and restoring each unit using both the 
power switch and the craft-interface terminal. During this test the 
system must remain operational. The next phase of testing requires 
the running and passing of all diagnostics for each unit within the 
system. Finally a series of special exercise processes are used to 
simulate actual operation of the disks, tape units, TTY and other data 
link controllers, and a CD soft-switch process for duplex capability 
verification. 

4.2.2 Stressed environmental operational tests 

The 3B20D Processor is designed to operate under a wide range of 
temperature and battery conditions. To assure that the system meets 
the design intent to operate under these conditions, two additional test 
environments are imposed on the machine before shipment. 

4.2.2.1 Low voltage. The power converters are stressed most under 
conditions of low-input voltage; thus, the system must pass all the 
tests prescribed above at an input voltage of -43.75 ± 0.05 volts. This 
voltage is 91 percent of the nominal -48 volts. 

4.2.2.2 High temperature. High-temperature operation of the 3B20D 
Processor is critical to avoid outages during commercial power or 
mechanical failures that result in the loss of building air-conditioning 
systems. The system tests prescribed above must pass in a system that 
has been operating at a stable elevated temperature of 49°C ± 1°C for 
a period of at least four hours. 

4.3 QA testing 

In addition to the factory system test on all systems, additional tests 
are rerun under the auspices of the Bell Laboratories quality assurance 
organization and the Western Electric quality review organization to 
assure that statistical quality control limits are not exceeded, thus 
maintaining a high level of quality for the customers. 
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4.4 Result 

A major milestone was achieved in March 1980, when the first field 
shipment to the Traffic Service Position System (TSPS) site in San 
Antonio, Texas, was not only delivered on schedule, but passed the 
complete battery of factory system tests. 

v. ADMINISTRATION 

In this section, a brief overview of some of the important aspects of 
project-management and project-control techniques are presented. 

5. 1 Change authorization 

From the beginning of the project, the hardware design was under 
very tight controls. All changes or feature additions had to be approved 
by a management-change committee with representation from Bell 
Laboratories and Western Electric. This committee provided both a 
forum to review designs and design changes and to discern the eco­
nomic impact of each change. This committee then established a joint 
subcommittee, called the Engineering Support Group, to schedule and 
track each change from design through manufacture and ultimately to 
the installation into the various system development laboratories. 

Software change control was less tightly controlled during the initial 
development and relied heavily on the software development super­
visors responsible for each subsystem. Once the software was delivered 
to the application more stringent controls were introduced. At that 
point, feature content, overall coordination, and generic scheduling are 
the responsibility of the Generic Engineer and the Project Manager. 

5.2 Application interfaces 

To assure that the 3B20D Processor system meets the needs of the 
variety of Bell System applications, a group was established to act as 
the single focal point for the applications for all feature requests and 
MRs. 

5.2. 1 Feature content 

To establish feature content of the system, the Application Interface 
group, in concert with the applications, developed a prioritized list of 
feature requests and enhancements for the Project Manager and the 
Generic Engineer to review. Thus, a final list of features and enhance­
ments was established taking into account customer needs, schedules, 
and resource limitations. 

5.2.2 Modification requests 

Initially the Application Interface group also acted as a clearing­
house to prioritize, from the users point of view, the problems that 
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they discovered as the generic matured. This list, in conjunction with 
internally generated MRs, formed the basis for the Generic Engineer 
to approve MRs to be fixed for inclusion in the generic. Once an MR 
was approved, the Load Engineer tracked its progress through devel­
opment, integration, system test, and release. 

Once the first generic was cut into service, a committee was estab­
lished with representation from applications, DMERT development, 
generic engineering, system test, load engineering, and field support. 
This committee's function was to tightly control and adjudicate all 
software changes so as to assure that field service was not adversely 
affected and that real service problems were quickly attended to and 
delivered on a timely basis. 

5.3 Project-tracking tools 

A finite-state MR control mechanism was put into place to track 
and record changes in the status of MRs during the development 
cycle. lO From this data base, various reports were automatically gen­
erated for use by all organizations associated with the project. This 
central source of project-status information was an essential ingredient 
to the determination of areas of concern so that action could be taken, 
as well as a repository of all schedule information relating to MRs. 
This capability formed the nucleus of the automated project-manage­
ment tools. 

VI. CONCLUSION 

The 3B20D Processor is operating effectively in the field since the 
first cutover in September 1981. The rapid field buildup during the 
first six months (24 machines cut into service) could not have been 
possible if all parts of the system were not of the highest quality and 
designed for high reliability. Much of the success of the project is 
attributed to the extensive testing both by the DMERT development 
organization, Western Electric organizations and application organi­
zations during each step of the system's introduction. 
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ACRONYMS AND ABBREVIATIONS 

ACHI 
ACP 
AJT 
ALU 
ALW 
API 
APS 
ATB 
ATP 
BGB 
BIC 
BLDGPWR 
BPI 
BS 
BWM 
CAD 
CC 
CCIO 
CCIS 
CCITT 

CH 
CHAN 
CIA 
CIH 
CMS 
CONFIG 
CPD 
CPH 
CPU 
CRT 
CSU 
CU 
DAP 
DATA TABLE 
DBEVOL 
DBS 
DCB 
DCT 
DDCMP 
DDL 

application channel interface 
alarm control process 
active job table 
arithmetic logic unit 
allow 
attached processor interface 
Attached Processor System 
address translation buffer 
all tests passed 
bidirectional gating bus 
bus interface controller 
building power 
bits per inch 
bus simulator 
broadcast warning message 
computer-aided design 
central control 
central control input/output 
common channel interoffice signaling 
International Telegraph and Telephone Consulta-

tive Committee 
channel 
channel 
critical indicator area 
craft interface handler 
Change Management System 
configuration management program 
common processor display 
communication protocol handler 
central processing unit 
cathode ray tube 
cache store unit 
control unit 
display administration process 
diagnostic data table files 
Data Base Evolution System 
duplex bus selector 
diagnostic control block 
dispatch control table 
digital data communication message protocol 
data definition language 
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DDLP 
DDSBS 
DEV 
DFC 
DFDIAG 
DFI 
DGN 
DIAGC 
DIAMON 
DIO 
DIP 
DMA 
DMAC 
DMERT 
DML 
DMU 
DPT 
DRAM 
DSCH 
DST 
DUC 
DUI 
EAI 
ECC 
ECD 
ECDMAN 
EIH 
EOS 
EPROM 
ER 
ESS 
EX 
FIFO 
FIST 
FPS 
FST 
FTAM 
FTS 
GRASP 
IB 
INH 
10DRV 
lOP 
10PC 

data definition language processor 
duplex dual-serial bus selector 
device 
disk file controller 
disk file diagnose 
disk file inverter 
diagnose 
diagnostic control 
diagnostic monitor 
DMA I/O bus 
dual in-line package 
direct memory access 
direct memory access controller 
Duplex Multiple Environment Real Time 
data manipulation language 
data manipulation unit 
diagnostic phase table 
dynamic random access memory 
dual serial channel 
destination 
dual-access utility circuit 
direct user interface 
emergency action interface 
error correction code 
equipment configuration data or data base 
equipment configuration database manager 
error interrupt handler 
extended operating system 
erasable programmable read -only memory 
error register 
Electronic Switching System 
exercise 
first in-first out 
factory/installation software test 
form processing system 
factory system tests 
forms translation and mapping 
field test set 
generic access package 
instruction buffer 
inhibit 
lOP driver process 
input/ output processor 
input/ output processor controller 
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IPC 
IPS 
KPCB 
LC 
MSGS 
MSI 
MTC 
MTTR 
MTTY 
MTTYC 
MU 
MUX 
NCP 
NK 
NRZ 
ODIN 
OOS 
OP 
OST 
PA 
PC 
PCB 
PCSD 
peu 
PD 
PDF 
PDFGEN 
PDS 
PE 
PFC 
PIC 
PID 
PINIT 
PRM 
PROM 
PSBR 
PSDC 
PSI 
PSW 
QA 
RAM 
RC/V 
RFI 
RMU 

interprocess communication 
inches per second 
kernel process control block 
line controller 
messages 
medium-scale integration 
maintenance 
mean time to repair 
maintenance TTY 
maintenance terminal controller 
mask unit 
multiplexor 
network control point 
non -killable 
non-return to zero 
on-line data integrity 
out of service 
display 
operating system trap 
program address 
peripheral controller 
process control block 
peripheral controller subdevice 
power control unit 
peripheral device 
page description file 
PDF generator 
program documentation standard 
phase encoded 
peripheral frame control 
peripheral interface controller 
process identifier 
processor initialization program 
processor recovery message 
programmable read-only memory 
primary segment base register 
parallel serial data interface 
peripheral system interface 
program status word 
quality assurance 
random access memory 
recent change/verify 
radio frequency interference 
rotate mask unit 
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RMV 
ROP 
ROP 
RST 
RSTU 
RTS 
RU 
SAC 
SAG 
SAR 
SAT 
SBR 
SC/SD 
SC 
SCANS 
SCC 
SCCS 
SCCS 
SCH 
SCM 
SCR 
SCR 
SCSD 
SD 
SDC 
SDP 
SDR 
SDS 
SG 
SGO 
SGS 
SID 
SIM 
SIR 
SMD 
SP 
SRC 
SREG 
SSA 
SSBR 
SSI 
SSR 
STOP 
SUPR 

remove 
read-only printer 
receive-only printer 
restore 
restore unconditional 
real-time status 
rotate unit 
store address control! controller 
system analysis group 
store address register 
store address translator 
segment base register 
scanner/signal distributor 
software control 
Software Change and Notification System 
switching control center 
Source Code Control System 
Switching Control Center System 
serial channel 
store complete signal 
silicon controlled rectifier 
store control register 
scanner and signal distributor 
software development 
store data controller 
software demand paging 
store data register 
Software Development System 
system generation data base 
store go signal 
Software Generating System 
segment identifier 
system integrity monitor 
store instruction register 
storage module drive 
software production 
source 
special registers 
system summary area 
secondary segment base register 
small-scale integration 
system status register 
terminate 
system update program 
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SYSGEN 
TB/IS 
TLDB 
TLP 
TSPS 
TTL 
TTY 
TTYC 
TUS 
TV 
UC 
UID 
USP 
VLSI 
VOH 
VOL 
VTOC 
WCS 
WMS 
YACC 

system generator I generation 
transaction block and integrity subsystem 
trouble locating data base 
trouble locating process 
Traffic Service Position System 
transistor-transistor logic 
teletypewriter or terminal 
terminal controller 
Test Utility System 
transfer vector 
utility circuit 
utility identifier 
UNIX supervisor process 
very large-scale integration 
voltage output high 
voltage output low 
volume table of contents 
write able control store 
writeable microstore 
yet another compiler compiler 
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