
lfu (;1: MARCH 1983 ; n l: VOL. 62, NO.3, PART 3 @
[BELL SYSTEM
lftECCHN~CAfL]JOUR.NAl

~~~~ ~@~ ~rn 
1-------, 

I t-----:-1-tr-=---i 

10 : 
I ~ I I ~ B PERIPHERALS I 

I b u_ I 
I I 
I 3B20D I 

I I 

L_-----~ 

Expanded Capabilities 
With the 3820D Processor 



THE BELL SYSTEM TECHNICAL JOURNAL 

ADVISORY BOARD 

D. E. PROCKNOW, President 

I. M. ROSS, President 

w. M. ELLINGHAUS, President 

EDITORIAL COMMITTEE 

Western Electric Company 

Bel1 Telephone Laboratories, Incorporated 

American Telephone and Telegraph Company 

A. A. PENZIAS, Chairman, M. M. BUCHNER, JR., A. G. CHYNOWETH, R. P. CLAGETT, 

T. H. CROWLEY, B. P. DONOHUE, III, I. DORROS, R. A. KELLEY, R. W. LUCKY, R. L. MARTIN, 

J. S. NOWAK, L. SCHENKER, G. SPIRO, and J. W. TIMKO 

EDITORIAL STAFF 

B. G. KING, Editor, PIERCE WHEELER, Managing Editor, LOUISE S. GOLLER, Assistant Editor, 

H. M. PURVIANCE, Art Editor, and B. G. GRUBER, Circulation. 

Coordinating Editors of TSPS No. 1B: c. M. RUBALD and L. C. STECHER 

THE BElL SYSTEM TECHNICAL JOURNAL (ISSNOOO5-8580) is published by the American 

Telephone and Telegraph Company, 195 Broadway, N.Y., N.Y. 10007; C. L. Brown, Chairman 

and Chief Executive Officer; W. M. Ellinghaus, President; V. A. Dwyer, Vice President and 

Treasurer; T. O. Davis, Secretary. 

The Journal is published in three parts. Part 1, general subjects, is published ten times each 

year. Part 2, Computing Science and Systems, and Part 3, single-subject issues, are published 

with Part 1 as the papers become available. 

The subscription price includes all three parts. Subscriptions: United States-1 year $35; 2 years 

$63; 3 years $84; foreign-1 year $45; 2 years $73; 3 years $94. Subscriptions to Part 2 only are 

$10 ($12 foreign). Single copies of the Journal are available at $5 ($6 foreign). Payment for 

foreign subscriptions or single copies must be made in United States funds, or by check drawn 

on a United States bank and made payable to The Bell System Technical Journal and sent to 

Bell Laboratories, Circulation Dept., Room 1E-335, 101 J. F. Kennedy Parkway, Short Hills, N.J. 

07078. 

Single copies of material from this issue of The Bell System Technical Journal may be reproduced 

for personal, noncommercial use. Permission to make multiple copies must be obtained from 

the editor. 

Comments on the technical content of any article or brief are welcome. These and other 

editorial inquiries should be addressed to the Editor, The Bell System Technical Journal, Bell 

Laboratories, Room 1J-319, 101 J. F. Kennedy Parkway, Short Hills, N.J. 07078. Comments and 

inquiries, whether or not published, shall not be regarded as confidential or otherwise restricted 

in use and will become the property of the American Telephone and Telegraph Company. 

Comments selected for publication may be edited for brevity, subject to author approval. 

Printed in U.S.A. Second-class postage paid at Short Hills, N.). 07078 and additional mailing 

offices. Postmaster: Send address changes to The Bell System Technical Journal, Room 1 E-335, 

101 J. F. Kennedy Parkway, Short Hills, N.J. 07078. 

© 1983 American Telephone and Telegraph Company. 



Volume 62 

THE BELL SYSTEM 
TECHNICAL JOURNAL 
DEVOTED TO THE SCIENTIFIC AND ENGINEERING 

ASPECTS OF ELECTRICAL COMMUNICATION 

March 1983 Number 3, Part 3 

Copyright© 1983 American Telephone and Telegraph Company, Printed in U.S.A. 

TRAFFIC SERVICE POSITION SYSTEM NO. 18 
w. S. Hayward, Jr., Guest Editor 

Overview and Objectives 755 
R. E. Staehler and J. I. Cochrane 

System Description 765 
N. X. DeLessio and N. A. Martellotto 

Real-Time Architecture Utilizing the DMERT Operating 775 
System 

R. J. Gill, G. J. Kujawinski, and E. H. Stredde 

Hardware Configuration 827 
G. T. Clark, H. A. Hilsinger, J. H. Tendick, and R. A. Weber 

Software Development System 859 
T. G. Hack, T. Huang, and L. C. Stecher 

Integration and System Testing 885 
R. Ahmari, R. S. DiPietro, S. C. Reed, and J. R. Williams 

Retrofitting the Processor 907 
J. C. Dalby, Jr., D. Van Haften, and L. A. Weber 

Capacity and Reliability Evaluation 919 
B. A. Crane and D. S. Suk 

Switching Control Center System Interface 941 
J. J. Bodnar, J. R. Daino, and K. A. VanderMeulen 

Long-Range Planning Tools 959 
P. L. Bastien and B. R. Wycherley 

ACRONYMS AND ABBREVIATIONS 979 

CONTRIBUTORS TO THIS ISSUE 985 

753 





Copyright © 1983 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 62, No.3, March 1983 
Printed in U.S.A. 

Traffic Service Position System No. 1 B: 

Overview and Objectives 

By R. E. STAEHLER and J. I. COCHRANE 

(Manuscript received June 30, 1982) 

This paper presents an overview and introduction to the detailed 
technical papers that describe the Traffic Service Position System 
No. lB. The objectives and design philosophy are discussed and the 
overall organization of the system is described. 

I. INTRODUCTION 

1. 1 Background 

In January 1969 the Bell System's first stored program controlled 
operator services system was introduced into the field. This system, 
named the Traffic Service Position System (TSPS) No.1, employed 
a hardware/software architecture designed to permit the addition of 
new features to further automate operator functions as those features 
became technologically and economically viable. 

1.1.1 Initial capabilities 

The initial design l of TSPS No.1 was developed to be used in 
conjunction with most local and toll switching systems in the Bell 
System. The system enabled customers to dial a number of calls 
heretofore only possible with operator assistance and thereby relieved 
the operators of many tedious operations demanded by cord switch­
boards. It automated routine operator functions for coin and noncoin 
calls, such as call timing and recording, recording of originating direc­
tory number, and recording and transmission of customer-dialed num­
bers. 

Customers benefited from the advantages of the higher speed and 
increased accuracy of a stored program controlled system. The auto-

755 



mati on of operator functions was a great improvement over manual 
methods of number recording, timing, charge calculations, and billing. 

Operating companies benefited because the automation and admin­
istrative features enabled operators to handle calls more efficiently 
and effectively, thereby reducing costs. The operator groups could be 
remotely located at convenient sites, and the entire work force could 
be managed more effectively. 

Operators benefited from the more attractive working environment, 
the automatic equitable distribution of calls to their positions, and the 
satisfaction of improving their services to the customers. 

1.1.2 Technological advances 

The decade following the introduction of TSPS No.1 brought major 
advances in technology in the areas of larger scales of integration in 
circuits, semiconductor memories, automated machine speech re­
sponse techniques, microprocessors and miniprocessors, and advanced 
operating systems. A large number of these innovations have been 
incorporated into the operator services system as need and economic 
viability have been demonstrated. 

1.1.3 Additions to initial system capability 

Additional firmware and software2
-

5 were continuously developed 
and introduced into the system (with new technology when applicable) 
to provide new and improved features. These include automation of 
hotel/motel charge quotation; partial automation of international call 
handling; time and charge quotations for noncoin, nonhotel calls; 
recording of charges for directory assistance calls; provision of service 
to remote locations; and automated charge quotation and coin collec­
tion for coin toll calls. 

Two of the newest features introduced in 1979 and 1980, respectively, 
are automated verification of busy lines (with ensured privacy) and 
Automated Calling Card Service, which allows credit card calling 
without operator assistance from telephones using dual-tone multifre­
quency signaling. 

1. 1.4 Rapid nationwide deployment 

Since its introduction in 1969, TSPS No.1 has been rapidly deployed 
throughout the Bell System's nationwide telecommunications network 
to the point where there are more than 157 systems installed. Over 95 
percent of Bell System customers and a large number of customers 
served by other companies are served by TSPS No.1, providing almost 
universal availability of stored program controlled toll and assistance 
operator services. 

756 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



1.1.5 TSPS No. 1 capability 

The continuing growth of operator services system traffic, plus the 
continuing addition of new features, have steadily reduced the remain­
ingreal-time capacity of the TSPS No.1 processor, the Stored Program 
Control No. 1A (SPC 1A) Processor, in sites in the field. Since real­
time processor capacity is a function both of the hardware configura­
tion and of the call mix at an individual installation, a program called 
TSPS Real-Time Capacity Program (TSPSCAP) was developed to 
run on an off-line computer and permit the operating companies to 
verify the remaining capacity at each specific site. 

Site-by-site surveys of the TSPSCAP results conducted in the mid-
1970's indicated that some of the TSPS No.1 sites were at their real­
time capacity. Furthermore, a large number of additional sites would 
soon reach their real-time capacity. 

Finally, this same growth of traffic and addition of features has 
exhausted the memory capacity at many sites because of the increased 
size of the software programs and data tables required. 

1.1.6 Contemplated new network services 

Plans to utilize TSPS in the future5 as an action control point in the 
emerging stored program controlled network dictated a need for new 
processor peripherals, such as a mass memory disk that cannot be 
provided by the current SPC 1A Processor. 

II. TSPS NO. 1 B DEVELOPMENT 

For the reasons given in the previous section, it was projected in the 
mid-1970's that a major evolution of TSPS No.1 was necessary to 
provide continuing operator services for the 1980's and beyond. This 
major evolution was designated TSPS No. lB. 

2.1 TSPS No. 1 B capability objectives 

The basic objective in the TSPS No. 1B development was to increase 
capability compared to TSPS No. 1. 

Studies of network growth and economics led to the conclusion that 
an appropriate call capacity objective for TSPS No. 1B would be a 
design with an initial objective of 1.6 times that of the TSPS No. 1. 
Studies also indicated that to provide adequate office data and program 
storage, a reasonable objective for the physical memory of TSPS No. 
1B would be four times that provided by TSPS No. 1. 

The TSPS No. 1B also had to eliminate those functional restrictions 
in TSPS No.1 that limited its evolution as an action control point in 
the stored program controlled network. This could be accomplished 

OVERVIEW AND OBJECTIVES 757 



by the provision of processor peripherals such as random access bulk 
storage and general-purpose data links. 

2.2 TSPS No. 1 B architecture objectives 

The new features demanded by the utilization of TSPS in the stored 
program controlled network also required that TSPS No. 1B provide 
a flexible architecture for future developments. 

The TSPS No. 1B design had to incorporate a high-level language 
and an advanced operating system not only to expedite introduction 
of new features, but also to maximize the productivity of the software 
developers. 

Since there are over 150 TSPS No. 1 sites in the field, the size of the 
investment in TSPS No.1 software programs and peripheral hardware 
is very large. To preserve the majority of this large investment, the 
existing software and peripheral hardware must be retained. At the 
same time, new high-level software and additional peripheral hardware 
must be added to the system for new features. Thus, the TSPS No. 1B 
design must permit the use of the new high-level language in parallel 
with the continued availability of the existing assembly language 
development environment. 

An important objective was the ability to upgrade the TSPS No. 1 
sites in service that were limited by capability exhaust without inter- . 
rupting call processing. 

2.3 Other objectives 

Besides additional capabilities and a flexible architecture, other 
basic objectives were also set for the TSPS No. 1B development. 

The TSPS No. 1B must provide dependable operator service 24 
hours a day. This requirement was converted to a specific design 
objective of reducing service interruptions that result in a total loss of 
service to an average of less than 3 minutes per year per system. 

To be cost effective, the TSPS No. 1B should take advantage of the 
newest technology and reduce energy consumption and floor space 
usage. 

2.4 TSPS No. 1 B design approach 

To meet these objectives for the TSPS No. 1B, the basic design 
approach implemented was to replace the existing processor with a 
new processor while retaining both peripheral hardware and existing 
software. The most efficient way to retain the software was for the 
new processor to provide emulation capability. Further, peripheral 
interface hardware was needed in order for the new processor to 
execute existing software and control the existing peripheral hardware. 

758 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



Where required, software could be written III the new high-level 
language. 

III. 38200 PROCESSOR 

The 3B20D Processor6
,7 was under development at the time the 

TSPS No. IB development was initiated. It is one of a family of 
general-purpose processors designed not only to meet the real-time 
demands and dependability requirements of switching systems, but 
also to be versatile enough for a broad spectrum of present and future 
telecommunications applications. 

A task force formed in 1976 to evaluate different processors con­
cluded that the 3B20D Processor would meet all of the objectives 
stated in Section II and recommended that the 3B20D be utilized in 
the TSPS No. IB design. 

In brief, the 3B20D Processor is significantly faster than the SPC 
lA Processor and has four times the physical memory capacity of the 
TSPS No.1 processor. It provides additional processor peripherals 
such as random access bulk storage disks and general-purpose data 
links. The 3B20D Processor is designed with a flexible architecture 
and an advanced operating system, the Duplex Multi-Environment 
Real-Time (DMERT) operating system, and supports the high-level 
C programming language and a robust software environment. Finally, 
it provides switching system dependability, and is designed with large­
scale integrated circuit technology, thus reducing energy consumption 
and size. 

IV. ORGANIZATION OF TSPS 

4. 1 TSPS No. 1 organization 

As we see in Fig. 1, TSPS No. 1 bridges an operator or service 
circuits onto a trunk connecting local and toll offices. TSPS No. 1 has 
dedicated specialized trunk circuits and peripherals (including the link 
network, service circuits, signal distributors, and scanners), a Stored 
Program Control No. lA (SPC lA) Processor, and operator consoles. 
Once the connection between customers is established, connections to 
operators or service circuits are released. Such connections are rees­
tablished if additional services are required. 

4.2 TSPS No. 1 B organization 

As we see in Fig. 2, the general architecture of TSPS No. IB is the 
same as TSPS No.1, except that the SPC lA is replaced by the Stored 
Program ControllB (SPC IB). The SPC IB includes a 3B20D Proc­
essor, a Peripheral System Interface (PSI) to interface the existing 
TSPS peripherals to the 3B20D Processor, and various 3B20D Proc-

OVERVIEW AND OBJECTIVES 759 



PUBLIC 
PHONE 

CALLING 
PARTY 

LOCAL 
OFFICE 

TSPS 
TRUNK 

TSPS PERIPHERALS 
(E.G., NETWORK, 

SERVICE CIRCUITS) 

TOLL 
OFFICE 

LOCAL 
OFFICE 

CALLED 
PARTY 

r------------- --, 
I STORED PROGRAM CONTROL NO. 1A I Dj6 
I SPC lA I 
I SPC lA CONTROL UNIT n 
I PERIPHERALS /r,;;;;;J U 

(E.G., TAPE UNIT) _____ 1---+---- U~ 
I STORES ~~ 
I I L _____________ -.J 

SPC - STORED PROGRAM CONTROL 
TSPS - TRAFFIC SERVICE POSITION SYSTEM 

CALLING 
PARTY 

1------1 

PUBLIC 
PHONE 

Fig. I-TSPS No.1 organization. 

LOCAL 
OFFICE 

TSPS 
TRUNK 

TOLL 
OFFICE 

TSPS PERIPHERALS 
(E.G., NETWORK, 

SERVICE CIRCUITS) 1-----....... 

LOCAL 
OFFICE 

TSPS 
OPERATOR 

CALLED 
PARTY 

,-----------------, 0 
I STORED PROGRAM CONTROL 1B I D an 
I 3B200 I CJn 
I 3B200 CONTROL PERIPHERAL ~ U 
I 

PERIPHERALS UNIT SYSTEM 
(E.G., DISK) ____ INTERFACE 1-4----- ~ 

I MEMORY ~~ 

I I L _________________ -.J 

TSPS - TRAFFIC SERVICE POSITION SYSTEM 

Fig. 2-TSPS No. IB organization. 

TSPS 
OPERATOR 

760 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



Fig.3-3B20D Processor in the new TSPS No. IB service installation at Fresno, 
California. 

essor microcode and native-mode software to emulate the TSPS No.1 
environment. 

The articles in this issue covering the TSPS No. IB8
-

16 include 
detailed descriptions of the system, the software architecture and 

OVERVIEW AND OBJECTIVES 761 



hardware configuration, the software development system, integration 
and testing of the TSPS No. 1B, retrofit procedures, capacity and 
reliability evaluation, Switching Control Center System interface, and 
long-range planning for TSPS No. 1B installation and growth. 

V. TSPS NO. 18 STATUS 

5.1 New service installations (cordboard replacements) 

The first TSPS No. 1B was placed in service, in Fresno, California, 
in November 1981. The 3B20D Processor in the TSPS No. 1B in 
Fresno is shown in Fig. 3. The Operator Services Center at Fresno is 
shown in Fig. 4. 

The second TSPS No. 1B was placed in service in San Antonio, 
Texas, in January 1982. 

5.2 Retrofit service installations (processor replacement in an in-service 
system) 

The first TSPS No. 1B retrofit or processor replacement in an in­
service TSPS No. 1 took place in Redwood City, California, in March 
1982. 

5.3 Continuing deployment 

As of December 1982, 37 TSPS No. 1B's were in service. All but two 
of the TSPS No. 1B installations were retrofit installations to provide 
urgently needed expansion of either call capacity or memory capacity. 
Continuing retrofit deployment is scheduled for 1983 and beyond. 

VI. PERFORMANCE 

Performance data from all TSPS No. 1B sites indicate that all design 
objectives have been achieved. More details are covered in later 
articles. 

VII. FUTURE TRENDS 

The increased capacity of TSPS No. 1B will accommodate antici­
pated growth in operator services traffic for a number of years. In 
addition, an advanced operating system and high-level programming 
language will allow TSPS No. 1B to evolve readily to: (1) support the 
evolution of the stored controlled network,5 (2) continue to improve 
operator efficiency, and (3) respond to changes caused by the evolving 
restructure of the telecommunications industry. 

VIII. SUMMARY 

This paper has presented a general background for TSPS No. 1B as 
an introduction to the technical papers that follow. While all design 

762 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



OVERVIEW AND OBJECTIVES 763 



details could not possibly be included, the papers in this issue provide 
a comprehensive overview of TSPS No. lB. 

IX. ACKNOWLEDGMENTS 

The development of TSPS No. IB required the participation of 
hundreds of people in many organizations in Bell Laboratories, West­
ern Electric, AT&T, and the operating companies. All of the authors 
in this issue are indebted to these organizations for their cooperation 
and the team effort that culminated in the successful completion of 
the TSPS No. IB project. The authors of this paper also wish to 
acknowledge the contributions of all the team members whose work is 
summarized here, as well as the support of D. J. Leonard, K. E. 
Martersteck, and C. M. Rubald and L. C. Stecher, the coordinating 
editors. 

REFERENCES 

1. R. J. Jaeger and A. E. Joel, Jr., "TSPS No. I-System Organization and Objectives," 
B.S.T.J., special issue on TSPS No.1, 49 No. 10 (December 1970), pp. 2417-43. 

2. R. E. Staehler and W. S. Hayward, Jr., "TSPS No.1 Recent Developments: An 
Overview," B.s.T.J., special issue on TSPS No.1, 58, No.6 (July 1979), pp. 1109-
18. 

3. E. M. Prell, V. L. Ransom, and R. E. Staehler, "The Changing Role ofthe Operator," 
9th Int. Switching Symp. Rec. (May 1979), pp. 697-703. 

4. J. C. Kylin, E. M. Prell, and R. P. Weber, "Benefits ofIntegrating Data Bases into 
the SPC Network," Internal Conf. on Commun. Rec. (June 1979), pp. 3.4.1-4. 

5. S. Horing, J. Z. Menard, R. E. Staehler, and B. J. Yokelson, "SPC Network: 
Overview," B.S.T.J., special issue on SPC Network, 61, No.7, Part 3 (September 
1982), pp. 1579-88. 

6. N. X. DeLessio, J. R. Kane, M. W. Rolund, J. M. Scanlon, and R. E. Staehler, "The 
3B Processor System and Its Application to TSPS," 10th Int. Switching Symp. 
Rec. 3 (September 1981), Session 33A, Paper 4, pp. 1-9. 

7. J. M. Scanlon, et al., "3B20D Processor and DMERT Operating System: Prologue," 
B.S.T.J., special issue on 3B20D Processor, 62, No.1, Part 2 (January 1983), pp. 
167-9. 

8. N. X. DeLessio and N. A. Martellotto, "Traffic Service Position System No. 1B: 
System Description," B.S.T.J., this issue. 

9. R. J. Gill, G. J. Kujawinski, and E. H. Stredde, "Traffic Service Position System No. 
1B: Real-Time Architecture Utilizing the DMERT Operating System," B.S.T.J., 
this issue. 

10. H. A. Hilsinger, J. H. Tendick, and R. A. Weber, "Traffic Service Position System 
No. 1B: Hardware Configuration," B.S.T.J., this issue. 

11. T. G. Hack, T. Huang, and L. C. Stecher, "Traffic Service Position System No. 1B: 
Software Development System," B.S.T.J., this issue. 

12. R. Ahmari, R. S. DiPietro, S. C. Reed, and J. R. Williams, "Traffic Service Position 
System No. 1B: Integration and System Testing," B.S.T.J., this issue. 

13. J. C. Dalby, D. Van Haften, and L. A. Weber, "Traffic Service Position System No. 
1B: Retrofitting the Processor," B.S.T.J., this issue. 

14. B. A. Crane and D. Suk, "Traffic Service Position System No. 1B: Capacity and 
Reliability Evaluation," B.S.T.J., this issue. 

15. J. J. Bodnar, J. R. Daino, and K. A. VanderMeulen, "Traffic Service Position 
System No. 1B: Switching Control Center System Interface," B.s.T.J., this issue. 

16. P. L. Bastien and B. Wycherley, "Traffic Service Position System No. 1B: TSPS 
No. l/lB Long-Range Planning Tools," B.S.T.J., this issue. 

764 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



Copyright © 1983 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 62, No.3, March 1983 
Printed in U.S.A. 

Traffic Service Position System No. 1 B: 

System Description 

By N. X. DeLESSIO and N. A. MARTELLOTTO 

(Manuscript received June 30, 1982) 

The Traffic Service Position System No. lB (TSPS No. lB) is the 
first field application of the Bell System's new 3B20 Duplex Processor 
(3B20D) in the emulation mode. The 3B20D Processor replaces the 
existing Stored Program Control No. lA (SPC lA), while retaining 
the existing TSPS periphery and software. A key factor is the ability 
to switch between the emulated software and the 3B20D native 
software within a single process with a single instruction. This allows 
the flexibility of adding software in either environment as appropri­
ate. 

I. INTRODUCTION 

The 3B20 Duplex Processor (3B20D), with its associated Duplex 
Multi-Environment Real-Time (DMERT) operating system, meets 
the objectives of Traffic Service Position System No. 1B (TSPS No. 
1B) .1-3 The 3B20D Processor is significantly faster than the Stored 
Program Control No. 1A (SPC 1A) and provides the required increase 
in processor capability. The ability of the 3B20D Processor to emulate 
allows the retention of most of the existing TSPS No. 1 software and 
peripheral hardware. In addition, the 3B20D Processor consumes 
much less energy and is significantly smaller in physical size than the 
SPC 1A. 

II. SYSTEM STRUCTURE 

The 3B20D Processor replaces the existing SPC 1A (Fig. 1) while 
retaining the existing TSPS No.1 periphery and-through emula­
tion-preserving the existing TSPS software. This software preserva­
tion is accomplished by defining (through microcode) one of the four 

765 



SPC lA 
PROCESSOR 

---------
STORES 

I 
I 
I TSPS 

TSPS PERIPHERAL 
PERIPHERY 

I BUSES (E.G., NETWORK) 

I 
L __________ 

SPC lA 
PERIPHERALS 

(E.G., PROGRAM 
TAPE UNIT) 

SPC 1A 

~ 

I 
I 
I 
I 
I 
I 
I 

L __________________ J 
SPC - STORED PROGRAM CONTROL 

TSPS - TRAFFIC SERVICE POSITION SYSTEM 

Fig. I-Existing TSPS system stmcture. 

3B20D instruction sets to be that of the SPC lA, thus emulating the 
old processor and allowing existing TSPS software to be transported 
to the 3B20D Processor almost intact. The ability exists to switch 
between the emulated instruction set and the 3B20D native instruction 
set within a single process with a single instruction. This allows the 
flexibility of adding new software into either environment, as appro­
priate. For example, some new TSPS No. lB software, generated to 
take advantage of the new disk capability and to provide a new 
interface to maintenance personnel, is written in the C programming 
language,4 which compiles into 3B20D native-mode assembly language. 
Both emulated and native-mode software are run under the DMERT 
operating system, allowing operating system services to be available to 
both forms of software. The emulated SPC lA assembly language code 
is structured as a single process executing under DMERT. 

The existing TSPS periphery is retained and interfaced with the 
3B20D Processor through the use of a Peripheral System Interface 
(PSI) circuit. This unit is designed to interface the TSPS peripheral 
buses with the 3B20D Central Control Input/Output (CCIO) bus via 
an Application Channel Interface (ACHI). The PSI duplicates the 
signals, timing, and error checking of the SPC lA. This enables TSPS 
peripheral units to remain unchanged. Future hardware can be added 
to the existing TSPS peripheral buses or can utilize the I/O processor 
of the 3B20D Processor to off-load the main processor and to provide 
fast block data transfers through direct memory access. 

The combination of the 3B20D, PSI, and microcode required to 

766 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



emulate the SPC IA is called the SPC IB (Fig. 2) and is the entity 
that replaces the SPC IA. Because the processor replacement is 
economically attractive both for new installations and for retrofits, 
techniques have been developed to replace an SPC lA with an SPC 
IB in an in-service office. The resultant system provides significant 
increases in call processing and main memory capacities, allows the 
preservation and future growth of existing software and peripheral 
hardware, and adds modern software and hardware architectures to 
facilitate future feature introduction. 

III. PROCESSOR HARDWARE DESCRIPTION 

The 3B20D Processor has been developed as the first member of a 
family of processors designed for a broad range of Bell System appli­
cations. The DMERT operating system provides a comprehensive set 
of functions associated with management of system resources such as 
the real-time, memory, input/output, and software processes. 

The control unit of the 3B20D (Fig. 3) uses a 32-bit architecture 
throughout, including the memory buses to main store and an 8K-byte 
cache. Extensive self-checking logic is employed to ensure immediate 
detection of errors, thus supporting quick and graceful recovery mea­
sures. Hamming correction of all single-bit errors and detection of all 
double-bit errors are performed by the main memory controller. In 
addition, data parity is checked on every refresh operation required 
for the dynamic random access memories (RAMs) used in main 

SPC 1B 
PROCESSOR 

PERIPHERAL 
SYSTEM 

INTERFACE 

I 
3B20D 

CONTROL 
UNIT 

--------

I 
I 
I 

TSPS TSPS 
PERIPHERAL PERIPHERY 

I BUSES (E.G., NETWORK) 

I L __________ 

3B20D 
PERIPHERALS 

(E.G., DISK) 

-l 
I 
I 
I 
I 
I 

MEMORY I I 
I I SPC 1B L ____________________ J 

SPC - STORED PROGRAM CONTROL 
TSPS - TRAFFIC SERVICE POSITION SYSTEM 

Fig. 2-TSPS No. IB system structure. 

SYSTEM DESCRIPTION 767 



MICROCONTROL 
ALU REGISTERS 

STORE DATA CONTROL 
MEMORY MANAGEMENT 

CONTROL 

8M-BYTE 
MEMORY ARRAY 

STORE 
BUS 

CONTROL 

8M-BYTE 
MEMORY ARRAY 

CCIO BUS 

ACHI- APPLICATION CHANNEL INTERFACE 
ALU - ARITHMETIC/LOGIC UNIT 

DMA- DIRECT MEMORY ACCESS 
DSCH - DUAL SERIAL CHANNEL 

CCIO - CENTRAL CONTROL INPUT/OUTPUT 

Fig. 3-3B Processor block diagram. 

ACHI 

19 

TO 
PERIPHERALS 

memory, thus ensuring that even infrequently used addresses are 
periodically checked for integrity. The 3B20D Processor uses a 24-bit 
virtual address, which is converted to a 24-bit physical address using 
a paged segmentation scheme. The 16M-byte address space is divided 
into 128 segments, each having up to 64 pages of 2K bytes each. 
Memory protection can be provided on either a segment or a page 
basis. Physical memory is growable in 512K-byte increments, to a 
maximum of 16M bytes. The main-memory access time is 525 nano­
seconds, while the cache access time is 250 nanoseconds. Memory 
communication provides a byte-addressing capability with byte, half­
word, full-word (32-bit), and move block options as part of the instruc­
tion repertoire. A memory management unit performs virtual-to-phys­
ical address mapping and main-store access protection. A high-speed, 
two-way, set-associative memory called the Address Translation 
Buffer (ATB) is provided to reduce the overhead associated with the 
address translation function. The A TB is divided into eight sections 
that are assigned to processes by software. 

The Central Control (CC) is microprogrammable with the capability 
of executing a variety of instruction sets. Up to four instruction sets 
can be selected dynamically. The microstore uses a 64-bit word length 
with up to 16K words of high-speed, bipolar programmable read-only 
memory (PROM) or RAM available. A variable micro cycle ranging 
from 150 to 300 nanoseconds is employed to optimize execution times. 
The native instruction set of the 3B20D Processor was designed to be 

768 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



compatible with the C programming language. It optimizes the exe­
cution and memory-space utilization of the language while including 
instruction-level support for all C-Ianguage data types and control 
structures. 

Figure 4 is a general block diagram of the 3B20D Processor. Two 
basic connections exist between the duplicated Control Units (CUs). 
One is an update connection that serves to keep the off-line CU's 
memory completely up to date. The second connection is a mainte­
nance channel over which diagnostics of the off-line CU are performed. 
The Central Control and memory are duplicated and grouped as a 
switchable entity. The I/O and disk systems can be accessed by either 
CU through duplex intelligent controllers. The Disk File Controllers 
(DFCs) are normally both active in order to keep the data on the disks 
identical. Thus, under trouble conditions, either disk can support 
system operation. Unlike the SPC IA Processors, the CUs are not run 
in a synchronous matching mode. Instead, both stores (on-line and 
standby) are kept up to date by the memory-update hardware concur­
rent with instruction execution. This is achieved by having the on-line 
memory-update circuit write into both memories simultaneously when 
memory data are written by the CC. Under trouble conditions, when 
control is switched to the standby CU,-its memory will contain up-to-

I/O DMA DMA I/O 

CACHE CACHE 
CONTROL CONTROL 

UNIT MAINTENANCE MAINTENANCE UNIT 

CHANNEL CHANNEL 

M ICROPROG RAM MEMORY MEMORY MICROPROGRAM 
STORE UPDATE UPDATE STORE 

MAIN STORE MAIN STORE 
8M BYTES 8M BYTES 

MAIN STORE MAIN STORE 
8M BYTES 8M BYTES 

DFC - DISK FILE CONTROLLER I/O - INPUT/OUTPUT 
DMA - DIRECT MEMORY ACCESS lOP - INPUT/OUTPUT PROCESSOR 

Fig. 4-General block diagram of the 3B20 Duplex Processor. 

SYSTEM DESCRIPTION 769 



date information without performing a complete transfer from one CD 
to another. 

3B20D Processor peripheral units are connected to the CC via the 
Direct Memory Access (DMA) unit. The DMA does not interface 
directly with peripheral units, but rather communicates with two 
intelligent subsystems, a Disk File Controller, and an Input/Output 
Processor (lOP). The CC builds job blocks for a peripheral unit that 
in turn notifies the CC upon job completion. The parallelism afforded 
by the autonomous processing capabilities of the DFC and lOP frees 
the CC for other work. Communication to both the DFC and the lOP 
is via Dual Serial Channels (DSCH) that allow any peripheral to 
operate with either CC of a duplex pair. Each DFC is capable of 
supporting 16 movable-head disk drives of 300M-byte capacity. Each 
lOP is capable of supporting a wide variety of peripherals, such as 
nine-track tape units, printers, synchronous and asynchronous data 
links, maintenance terminals, scanner/signal distributors, and custom 
network interfaces. Peripherals also may be connected to the Central 
Control Input/Output (CCIO) bus via an interface such as the Appli­
cation Channel Interface (ACHI) used to communicate with the TSPS 
No. 1 periphery that was retained. 

IV. OPERATING SYSTEM DESCRIPTION 

DMERT is the real-time operating system for the 3B20D Processor. 
This operating system was developed concurrently with the hardware 
and uses a multiple-environment approach where time-critical code 
coexists with time-shared software.5 That is, one environment supports 
real-time response while another environment provides a time-shared 
interface similar to that of the UNIX* operating system.6 The archi­
tecture of the operating system is process oriented; this allows appli­
cations to write software at the level most productive for each task. A 
process is an instance of a program executing on the processor and is 
characterized by a separate virtual address space. The multiple envi­
ronments are implemented via a kernel that supports three levels of 
processes, described below. The DMERT kernel provides the most 
primitive virtual machine as it handles hardware interrupts, timer 
interrupts, and operating system traps. In all cases, the kernel saves 
the state of the interrupted process, provides whatever service is 
requested, and then restores the state of the interrupted process. The 
first level of process, known as a kernel process, is offered limited 
services by the DMERT kernel and is dispatched because of real-time 
events such as interrupts. The second level of process, known as 

* Trademark of Bell Laboratories. 

770 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



supervisor, is offered more services by the DMERT kernel in the area 
of I/O and dynamic memory allocation. Supervisor processes support 
a third level of process called a user-level process. An example of this 
is a UNIX operating system process controlled by a kernel-level 
process. In order for processes to cooperate in accomplishing their 
tasks, DMERT provides a set of interprocess communication and 
synchronization mechanisms including messages, events, process ports, 
interprocess traps, and shared memory. These interprocess communi­
cation primitives are fundamental to the DMERT structure. 

I/O is accomplished by a kernel process, known as a driver. A unique 
driver is provided according to the type of I/O device, such as disk or 
lOP. Drivers receive I/O requests in the form of messages. When the 
I/O is completed, the message is returned to the requesting process. 
An intermediate supervisor process known as the file manager stands 
between disk users and the disk driver. This process implements a 
logical file system on the disk for those processes that care to use it. 
Files can be created, opened, closed, grown, and deallocated through 
the file manager. Hierarchical directories of files such as those found 
in the UNIX operating system are supported. 

A set of processes and a special lOP peripheral controller provide a 
modern craft interface for the 3B20D and the TSPS No. lB. A split­
screen cathode ray tube (CRT) and a printer interface are utilized. 
The top portion of the screen is the status and display portion. Various 
status and display pages can be called upon demand. A special page 
that provides basic machine-control features such as initialization 
requests is provided by peripheral firmware. The lower portion of the 
screen is utilized for terminal I/O messages. 

The continuous operation aspects of the 3B20D Processor are sup­
ported by a number of processes that are an integral part of the 
DMERT operating system. These processes handle error interrupts, 
control processor switches, and provide I/O to common peripherals 
such as disks; they also run equipment diagnostics and audit key data 
structures for consistency. Reference 7 contains a detailed description 
of both the 3B20D Processor and DMERT. 

V. SOFTWARE STRUCTURE 

The software structure of the TSPS No. lB system was governed by 
three major design goals. First, the software architecture had to 
maximize the call-handling capacity. Second, steps were taken to 
maintain the SPC lA programming environment as closely as possible 
in order to allow maximum utilization of existing software support 
utilities. Third, the existing TSPS software was to be emulated with a 
minimum of modifications. This guideline precluded unnecessary rede­
signs or restructures of the current field-proven software. 

SYSTEM DESCRIPTION 771 



The emulation of the SPC lA at the instruction level by the 
microcoding of its instruction set and at the system level by the PSI 
has allowed most TSPS programs to be executed on the 3B20D 
Processor with minimal modifications. The TSPS emulated code has 
been incorporated into a single, large, high-priority kernel process 
under DMERT. 

The single process structure was dictated primarily by the existing 
tightly coupled nature of the TSPS software. As on the SPC lA, all 
TSPS data and programs share and have access to the entire address 
space and communicate through data structures that reside in memory. 
Retaining these structures maintained the goal of exact emulation and 
avoided interprocess communication overhead detrimental to achiev­
ing the required performance gain. 

In addition to the emulated code, the TSPS kernel process contains 
native-mode (C-language) code that provides several capabilities. First, 
it provides a standard C-language data structure interface to the 
operating ·system and to other processes. Native code resident in the 
TSPS kernel process also works in conjunction with emulation micro­
code to implement system-level emulation of the SPC lA interrupt 
structure within the actual interrupt structure defir..ed by the 3B20D 
and DMERT. In addition, native code resident in the TSPS kernel 
process has eliminated the need to introduce new instructions, such as 
system calls, not available in the emulated instruction set. 

All entries into the TSPS kernel process are through native code, 
which then calls the emulated code as a subroutine with a single 
instruction. Certain functions exist in the current TSPS software that 
would have required extensive modifications to emulate because of 
machine dependencies. In these cases, new replacement native code 
was written as subroutines that are called with a single instruction 
from the emulated code. In cases where completely new functions were 
implemented, native-mode processes separate from the TSPS kernel 
process were generated. An example of this is the TSPS File System 
Interface, which provides disk file system access as a replacement for 
functions previously implemented using the program tape unit of the 
SPC lA. 

The control structure of the TSPS call processing and peripheral 
maintenance software, being emulated, is almost identical to what 
exists on the SPC lA. The major difference is that rather than running 
continuously as on the SPC lA, the high-priority TSPS kernel process 
voluntarily must give up control of the machine periodically to allow 
lower priority processes to run. This is done by requesting periodic 
time-outs from DMERT. After the specified time has passed, the 
TSPS kernel process is reentered. The native code responds to the 
event and causes the emulated code to resume where it had left off. 

772 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



The real-time breaks are not noticeable to the emulated software. The 
combined DMERT and TSPS priority structure is such that the TSPS 
kernel process dominates control of real time. 

The process structure of TSPS No. IB is summarized in Fig. 5. The 
DMERT operating system running on the 3B20D Processor provides 
a high-level, multiprocess environment for TSPS application processes. 
In this environment, the TSPS kernel process appears to the DMERT 
operating system to be identical to other native-mode processes that 
utilize the facilities of messages, faults, events, and interrupts in 
communicating with the operating system and-through the operating 
system-with other processes. The TSPS kernel process, in some 
instances, also communicates with other TSPS application processes 
through shared memory. An example, noted above, is the TSPS File 
System Interface. Within the TSPS kernel process, the combination 

INTERRUPTS -

38200 PROCESSOR 

OMERT OPERATING SYSTEM 

TSPS APPLICATION 
SOFTWARE 

TSPS KERNEL 
PROCESS 

I 

MESSAGES, FAULTS, 
EVENTS AND INTERRUPTS 

MESSAGES, FAULTS, EVENTS AND INTERRUPTS 

SPC - STORED PROGRAM CONTROL 
TSPS - TRAFFIC SERVICE POSITION SYSTEM 

Fig. 5-TSPS No. IB process structure. 

SYSTEM DESCRIPTION 773 



of emulation microcode, PSI, and native code creates an SPC lA 
environment, thereby shielding the emulated code from the details of 
the specific machine and operating system on which it is running. 

VI. SUMMARY 

The processor capability was increased by replacing the existing 
SPC lA with the 3B20D Processor while retaining the existing TSPS 
periphery and using emulation to preserve the existing TSPS software. 
A key aspect in the software architecture is the ability to execute 
either the emulated instruction set or the 3B20D native instruction 
set, and to switch between the two within a single process with a single 
instruction. Thus, it is possible to add new software to either environ­
ment and thereby increase the future flexibility of the system. Because 
the processor replacement is economically attractive both for new 
installations and for retrofits, techniques have been developed to 
replace an SPC lA in an in-service office. 

VII. ACKNOWLEDGMENT 

The design of the 3B20D Processor and TSPS No. IB required the 
cooperative efforts of a large number of people in Bell Laboratories, 
Western Electric, and AT&T. The authors wish to acknowledge the 
contribution of all of the team members whose work is summarized 
here. 

REFERENCES 

1. R. E. Staehler, "Traffic Service Position System No. 1B: Overview and Objectives," 
B.s.T.J., this issue. 

2. N. X. DeLessio, J. R. Kane, M. W. Rolund, J. M. Scanlon, and R. E. Staehler, "The 
3B Duplex Processor System and Its Application to TSPS," 10th Int. Switching 
Symp. Proc., September 21-25, 1981. 

3. N. A. Martellotto, "An Operating System For Reliable Real-Time Telecommuni­
cations Control," Fourth Int. Conf. on Software Eng. for Telecommun. Switching 
Systems Proc., University of Warwick, England, July 20-24, 1981. 

4. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood 
Cliffs, NJ: Prentice-Hall, 1978. 

5. H. Lycklama and D. L. Bayer, "UNIX Time-Sharing System: The MERT Operating 
System," B.S.T.J., 57, No.6, Part 2 (July 1978), pp. 2049-86. 

6. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," B.S.T.J., 57, 
No.6, Part 2 (July 1978), pp. 1905-29. 

7. J. M. Scanlon, "3B20D Processor & DMERT Operating System: Prologue," B.S.T.J., 
62, No.1, Part 2 (January 1982), pp. 167-9. 

774 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



Copyright © 1983 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 62, No.3, March 1983 
Printed in U.S.A. 

Traffic Service Position System No. 1 B: 

Real-Time Architecture Utilizing the DMERT 
Operating System 

By R. J. GILL, G. J. KUJAWINSKI, and E. H. STREDDE 

(Manuscript received June 30, 1982) 

The Traffic Service Position System No. lB (TSPS No. lB) archi­
tecture was conceived to increase performance significantly for future 
features and traffic growth. The design preserves the TSPS No. 1 
software with minimal changes. At the same time, the 3B20 Duplex 
Processor (3B20D) used in TSPS No. lB provides additional proc­
essor peripherals and a modern programming environment with a 
real-time operating system. This paper describes how the TSPS 
No. 1 software, initially designed to run on the Stored Program 
Control No. lA (SPC lA), executes on the SPC lB of the TSPS No. 
lB. The SPC lB is a 3B20D tailored for the TSPS application and 
provides an SPC lA environment by directly emulating its instruction 
set. The paper also presents major TSPS application processes and 
their interaction with the emulated TSPS process and the Duplex 
Multi-Environment Real-Time (DMERT) operating system of the 
SPC lB. In addition, the paper describes the integration of TSPS 
maintenance software into the DMERT maintenance structure. 

I. INTRODUCTION 

The Traffic Service Position System No. IB (TSPS No. IB) real­
time architecture was designed to meet the project goals discussed in 
Ref. 1. The implementation of this architecture entailed four major 
developments: 

(i) Replacement of the Stored Program Control No. IA (SPC IA) 
of TSPS No.1 with the 3B20D Processor, the TSPS Peripheral System 
Interface (PSI), and microcode to execute the SPC IA instruction set, 

775 



which together comprise the Stored Program Control No. 1B (SPC 
1B) 

(ii) Emulation of most existing TSPS No.1 software structured as 
a process under the Duplex Multi-Environment Real-Time (DMERT) 
operating system 

(iii) Development of additional processes to support the emulation 
(iv) Integration of the PSI and TSPS peripheral maintenance into 

the overall DMERT maintenance structure. 
Before discussing the TSPS No. 1B real-time architecture, this 

paper presents two sections of background information. Section II 
presents an overview of how TSPS operates using the SPC 1A. Section 
III reviews the fundamentals of DMERT, and Section IV describes 
the SPC 1B and the TSPS No. 1B software architectures. These 
sections enable the reader to understand the real-time architecture of 
the TSPS No. lB. More detailed information can be obtained by 
reading the references. 

II. TSPS NO.1 REAL-TIME ARCHITECTURE 

This section presents a brief overview of the TSPS No. 1 operation 
on the SPC 1A and provides a base for understanding how the TSPS 
No. 1 was emulated on the TSPS No. lB. A complete description of 
TSPS No.1 operation on the SPC 1A can be found in Refs. 2 and 3. 

2. 1 SPC 1 A programming environment 

The SPC 1A uses 20-bit addresses to reference approximately one 
million 20-bit words of main memory. The address spectrum consists 
of up to 30 store name codes with each name code containing 32K 20-
bit words. Store name code 0 is not used since low memory addresses 
are mapped into the SPC lA's buffer bus (see Section 2.2). Store name 
code 31 (037) is not implemented. Hence, the maximum physical 
memory size for the SPC 1A is 960K 20-bit words. The SPC 1A does 
not support memory management. Hence, there is no virtual address­
ing; all addresses are physical addresses. All of memory is equally 
accessible (shared) by all programs. 

Write protection can be set on a 2K word boundary within a name 
code. Protected areas within the name code, however, must be contig­
uous, and there can be only one protection change boundary within a 
name code. Memory is unprotected from the high end of the address 
spectrum within each name code. For example, if one fourth of a name 
code is to be unprotected (read/write), then the first three quarters 
would be read only, and the last quarter would be unprotected. 
Protected areas can be unlocked to change programs or fixed data by 
having the processor execute a special unlocking sequence. Typically, 
protected areas are used for office data, read-only tables, and program 

776 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



logic. Unprotected areas are used for volatile data (e.g., call informa­
tion). 

SPC lA instructions are 40 bits wide (two 20-bit words). The odd­
addressed word contains the operation code, while addresses or data, 
when present, are placed in the even-addressed word. There are 
relatively few instructions, but a single instruction can have many 
options and perform several operations. Each instruction takes from 
one to three 6.3-microsecond machine cycles to execute. The execution 
time of each instruction is fixed regardless of the number of options 
specified. Hence, the time a segment of code will execute can be 
precisely determined. 

2.2 Buffer bus 

The SPC lA buffer bus is an internal collection of processor and 
peripheral status and control registers. The buffer bus registers are 
used for such things as peripheral and processor configuration control 
and status indications, interrupt sources, and interrupt masks. The 
buffer bus consists of 24 registers with 20 to 24 bits each. Each register 
has a low-memory address (e.g., 600 or 2200) associated with it. All 
buffer bus registers can be read with Memory to Register (MR) 
instructions. Some registers can be written, set, or reset using Regis­
ter(s) to Memory (RM or RRM) instructions or Constant to Buffer 
Bus (CBB) instructions. Other registers are read-only. 

2.3 Interrupt structure 

2.3.1 Interrupt levels 

There are nine interrupt levels in the SPC lA. These interrupt levels 
are A (highest priority), B, C, E, F, G, H, J, and K. A tenth level, L 
(commonly referred to as base level), runs continuously in the absence 
of any interrupt. Normally, base level is only interrupted every 5 ms 
by J-Ievel. Although, base level is the lowest-priority processing level, 
the bulk of TSPS software (e.g., call processing, diagnostics, audits) 
executes in base level. 

Each interrupt level can only interrupt lower-priority levels with the 
sole exception being that A- and B-Ievel can interrupt each other. An 
A-level interrupt is caused either by a manual action at the Mainte­
nance Control Center (MCC) Control and Display (CD) frame or by 
the execution of an ANOP instruction (used to fill unused instruction 
space). B-Ievel is entered as a result of a processor switch or for 
emergency actions required as a result of system-sanity-check failures. 
C- and K -level interrupts generally occur as a result of processor 
errors. C-Ievel handles SPC lA Processor fault recovery. K-Ievel 
interrupts are only enabled during processor diagnostics for error-data 
recording. SPC lA store errors will generate E- and G-Ievel interrupts. 

REAL-TIME ARCHITECTURE 777 



E-Ievels also result from software errors such as invalid addresses or 
protection violations. E-Ievels provide data for immediate problem 
analysis and necessary store reconfiguration. G-Ievel is used for col­
lecting store-error data for intermittent failures. Peripheral-unit errors 
will generate an F-Ievel interrupt. F-Ievel software is dedicated to 
peripheral fault recovery. J- and H-Ievels perform the system I/O. 

2.3.2 J- and H-Ievel interactions 

The J -level interrupt is generated every 5 milliseconds by a clock 
pulse. Because of its periodic nature, J-Ievel provides the main time 
reference for all application processing. Within J -level there are two 
classes of jobs: high priority and low priority. The high-priority jobs 
are executed first. While they are running, H-Ievel is inhibited. In 
making the transition to low-priority jobs, H-Ievel is enabled. H-Ievel 
programs consist of the high-priority, J-Ieveljobs. An H-Ievel is caused 
whenever J-Ievel executes longer than 5 ms and low-priority 
jobs are being run (see Fig. 1*). This ensures that the high-priority 
jobs are executed every 5 ms, unless H-Ievel runs longer than 5 ms. In 
this case the high-priority jobs would miss an execution, as H-Ievel 
cannot interrupt itself. 

J- and H-Ievels on the SPC lA have two separate interrupt sources 
that are driven by the same clock pulse. The H-Ievel interrupt source 
is only enabled when low-priority J-Ievel is executing. When a return 
from interrupt is performed from low-priority J-Ievel, the H-Ievel 
inhibit bit is set. 

2.3.3 Interrupt handling 

When an interrupt occurs under normal conditions on the SPC lA, 
the processor saves the address of the interrupted program and passes 
control to the first instruction of the interrupt program for that level. 
The address of the interrupt program and the save area (bin) for the 
interrupted program address are known (i.e., hard-wired) by the proc­
essor. The interrupt-handling program for each interrupt, except J­
level, first saves the contents of the seven general-purpose registers in 
memory and then determines what actions to take. Because of the 
frequency of the J-Ievel interrupt (every 5 ms), general-register con­
tents are copied to an auxiliary set of registers by the hardware. The 
overhead of saving and restoring the registers every 5 ms is greatly 
reduced by performing this function in hardware. 

The return from interrupt is normally performed by the Execute Go 
Back To Normal (EGBN) instruction. The one exception is J-Ievel. J-

* Acronyms and abbreviations used in the figures and text are defined in the 
Glossary. 

778 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



LEVEL 

H 

BASE 

o 

HIGH-
PRIORITY 
J~BS , : 

1 
I 

LOW-
/PRIORITY 

/ JOBS , 

5 

-
HIGH 

l I 1- -
HIGH LOW 

I I L HIGH 

I I I 

10 15 

TIME IN MILLISECONDS 

Fig. 1-5-ms input/output processing. 

level uses the Go Back To Normal H- or J-Ievel (GBNHJ) instruction. 
In returning, the interrupt handler (except for J-Ievel) fIrst restores 
the general-purpose register contents from memory (if it were going to 
return to the point of interrupt) and then executes the EGBN. The 
EGBN instruction determines what interrupt level is being returned 
from by looking at the interrupt-level activity flags in the buffer bus. 
It restores the address of the interrupted program from the save area 
for that interrupt and clears the highest interrupt bit in the buffer bus 
interrupt-level activity word, thus dropping to the next highest, pre­
viously active level. If an intermediate-level interrupt is pending, it 
would be serviced at this time. The GBNHJ is slightly different in that 
it causes the general-purpose registers to be restored by hardware from 
the auxiliary set of registers. It also disables the H-Ievel interrupt in 
addition to performing the functions of the EGBN. 

Any interrupt servicing routine can change its point of return by 
overwriting the saved address in the appropriate interrupt bin in 
memory. Also, an interrupt is effectively returned from by merely 
clearing its activity bit in the buffer bus, which essentially erases the 
history of the interrupt. This immediately puts the program into the 
next lower, previously active level. This re-enables that interrupt level 
as well as any intervening levels. 

2.3.4 Interrupt inhibiting 

Interrupts are normally only masked when the program is handling 
a higher-priority interrupt. The interrupt activity bits in the buffer bus 
inhibit lower-priority interrupts from occurring. E-, F-, H-, and J-Ievel 
interrupts can also be individually inhibited by setting the specifIc 
inhibit bits in the buffer bus. The H-Ievel inhibit should always be set 
except when in low-priority J-Ievel. The J-Ievel inhibit can be set for 
brief periods when executing "critical region" code in base level, which 

REAL-TIME ARCHITECTURE 779 



should not be interrupted by J-Ievel activity because of potential 
interference. Similarly, the H-Ievel inhibit could be set in low-priority 
J-Ievel to prevent H-Ievel interference. Some instructions have an 
"inhibit I/O interrupt" option that inhibits H- and J-Ievel interrupts 
until the completion of the following instruction. For some instructions 
this option is implicit (not an option, but always on). The E- and F­
level inhibits can be set manually as well as by software. C-Ievel 
interrupts can be inhibited by software, and A- and B-Ievel interrupts 
can be manually inhibited from the MCC. 

2.4 Program structure 

J-Ievel (and H-Ievel) programs execute under control of the Execu­
tive Control for I/O (ECIO) program. For the most part ECIO passes 
control to a predetermined and fixed set of programs every 5 ms. The 
list of jobs varies from execution to execution, but is cyclical over a 
300-ms interval for high-priority work and over a 200-ms interval for 
low-priority work. Thus, J-Ievel jobs execute with frequencies that are 
multiples of 5 ms, ranging up to 200 or 300 ms. Some program 
executions are permanent (always active) while others are run only on 
demand. 

Similar to J -level, base-level programs are run under control of the 
Executive Control for the Main Program (ECMP) routines. Base-level 
programs execute in one of six priority classes. These priority classes 
are interject (highest priority), A, B, C, D, and E. ECMP passes control 
to jobs in priority classes A through E with a relative frequency of 
15:8:4:2:1, respectively (see Fig. 2). Jobs within each priority class can 
run every execution of the priority class or only as needed on demand. 
Each priority class has a set of task dispensers that pass control to 
individual programs (tasks) when work is to be performed. 

Interject work is requested when certain immediate actions are 
required (e.g., to immediately unload a full input hopper) or at a fixed 
frequency on demand (i.e., J-Ievel-initiated sanity check of interject 
operation). A check for interject requested work is performed at least 
once in every base-level loop (one E-priority class to E-priority class 
cycle) and after every task. Interject should be serviced quickly. Hence, 
all base-level tasks are designed to run in short segments. Figure 3 
illustrates the base-level priority-class execution with the fixed-inter­
ject check and another representative interject job executing in the 
middle of a priority class. 

2.5 System integrity 

The objective of system integrity is to provide an uninterrupted call­
processing environment. The reliability goal for TSPS No. 1 is to 
achieve less than three minutes per year of total system outage 

780 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



B A 

o 

A 

E A 

Fig. 2-TSPS No.1 base-level loop. 

PRIORITY 
CLASS 

C ------. 

0---------.... 

E ------- ----------. 

A 

o 

A 

Fig. 3-TSPS No.1 base-level, priority-class frequency. 

averaged over all systems. This goal covers outages attributable to any 
possible cause. Hence, the term "system integrity" is used in this and 
other sections of this paper to encompass software stability as well as 
the traditional hardware reliability. 

2.5.1 Hardware integrity 

The maintenance strategy for TSPS hardware is based on the 
duplication of all critical units. This hardware redundancy allows 

REAL-TIME ARCHITECTURE 781 



faulty units to be switched out of service with the load being carried 
by the remaining good unit. Maintenance programs are organized on 
priority levels such that the faulty unit can be removed from service 
as soon as possible, and then later, while the system is processing calls, 
the faulty unit is diagnosed in order to isolate the failing circuit pack. 
There are three main types of maintenance programs for the TSPS 
peripherals. These are, in order of decreasing priority, fault-recognition 
programs, diagnostic programs, and exercise programs. 

Fault-recognition programs run when the presence of a fault is 
detected. They determine which of the duplicated units is in error, and 
reconfigure the system around the problem. Before returning to call 
processing, the fault-recognition program initiates a diagnostic request 
on the unit suspected of malfunctioning. The purpose of the diagnostic 
program is to provide resolution of the fault by indicating to the craft 
personnel the smallest replaceable unit (e.g., a circuit pack). This is 
accomplished by running a series of tests on the suspected hardware 
unit and then comparing the actual test results with a set of expected 
values. Another method of detecting faults employs the use of exer­
cises. These programs are similar to diagnostics in that they run 
selected tests on the hardware. They differ in that they are intended 
to find faults in circuits not exercised by normal system operation (e.g., 
by call processing). Unlike diagnostics that are initiated by fault­
recognition programs upon detection of a fault, the exercise programs 
are scheduled periodically. 

2.5.2 Software integrity 

2.5.2.1 Initialization and recovery. Whenever the state of the software 
is such that normal processing cannot continue, call~processing recov­
ery actions are taken in an attempt to restore the system's sanity. The 
least severe actions are taken first. If these fail, the recovery attempt 
is escalated to the next highest level. The five TSPS recovery phases 
are Minor Audits, Major Audits, Selected Audits (miniphases), System 
Initialization A (SIA) and System Initialization B (SIB). Except for 
Selected Audit phases, these recovery phases can be manually re­
quested or automatically generated by the software. Selected Audits 
phases can only be initiated by software, but they can be manually 
inhibited. 

All audits that run during a recovery phase are "stitched" together. 
This means that they are run consecutively. Meanwhile, the normal 
base-level priority-class execution and all call processing is temporarily 
suspended. Minor Audit phases are short and, as a result, they have 
the least effect on call-processing activity. Major Audit phases are 
more extensive, and, hence, have a more disturbing effect. Selected 
Audit phases are run as the result of problems detected by software 

782 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



sanity checks. A specific set of audits are stitched together, depending 
on the error found. SIAs and SIBs run a complete set of audits. An 
SIA also zeroes most unprotected memory and initializes the hardware. 
An SIB is more extensive in that it performs a more thorough hardware 
initialization. If an SIB fails to restore system sanity, another SIB will 
automatically be taken with a different hardware configuration. Loop­
ing SIBs with hardware reconfigurations will continue indefinitely 
until the system is recovered or manual intervention takes place. For 
the Minor, Major, and SIA phases, recovery actions are identical 
whether the phase is software generated or manually requested. On 
the other hand, a manually requested SIB will zero all unprotected 
memory, but it will not cause a hardware reconfiguration. 

2.5.2.2 Reference returns. Under certain conditions, maintenance­
interrupt routines (levels A through K) must return to H-level, J-level, 
or base-level at a reference point in the job administration stream 
when a return to the interrupted point is not warranted. This safe 
transfer of control is called a reference return. The base-level reference 
return will result in the base-level cycle restarting at the end of E 
priority. The H- and J-level reference returns result in the cancellation 
of the job being run at the time of the interrupt, but the remaining 
scheduled jobs are executed. 

2.5.2.3 Sanity. Sane program execution is monitored via a hierar­
chical scheme. Base level checks itself every E-priority class by deter­
mining that the various priority classes have been run the proper 
relative number of times (15:8:4:2:1). Base-level sanity is checked in J­
level by requesting an interject job every 500 ms and monitoring its 
execution. Failure to execute interject suggests a base-level loop. High­
priority J-level (and, hence, H-level) monitors low-priority J-level by 
monitoring the execution of a fixed 100-ms job. High-priority J-level 
(and H-level) has the responsibility to reset a hardware sanity timer 
every 500 ms. Failure to reset the timer within 640 ms or resetting it 
too soon (less than 320 ms) will cause the timer to generate a B-level 
interrupt. Low-priority J-level insanity will result in a minor audit call­
processing phase. Continued interject response failures or base-level 
priority class execution insanity will also trigger a minor phase. High­
priority J -level also monitors system sanity by checking the average 
time of the last three E-E cycles. If this time exceeds a threshold a 
minor phase is taken. Lower threshold crossings will trigger overload 
recovery actions. 

2.5.2.4 Overload strategy. If at any point the elapsed time to run the 
last three E-E cycles exceeds a minimum threshold, phase 1 overload 
actions are taken. These actions consist of gradually busying trunks 
back to the local offices and reducing the rate at which processing of 
new calls is allowed to begin. If during phase 1 overload the elapsed E­
E times exceed another, higher threshold, phase 2 actions are taken. 

REAL-TIME ARCHITECTURE 783 



These actions busy all trunks to the local offices except for a minimum ' 
number and inhibit the processing of any new calls in the system. As 
E-E times return to acceptable levels, the system returns to phase 1 
actions and eventually to normal. The return to normal operation 
(unbusying trunks and increasing the new call-processing rate) is done 
gradually as the overload subsides. 

III. DMERT OPERATING SYSTEM 

The DMERT operating system4 evolved from the MERT5 operating 
system. While MERT was designed to operate on a simplex minicom­
puter, DMERT has incorporated maintenance software to control the 
duplex hardware in order to provide Electronic Switching System 
(ESS) reliability on the 3B20D Processor. 

3. 1 Processes 

An executable entity under DMERT is called a process. A process 
is a collection of programs and data with a distinct virtual address 
space (see Section 3.2) that is executed as a unit to perform a single 
(or set of related) function(s). Once in execution, a process controls 
the scheduling of its internal routines, barring any external stimulus 
such as an interrupt or fault. While the process is executing it appears 
to have an entire (virtual) machine to itself, although it may be 
interrupted by higher-priority processes or even swapped out to disk 
while waiting for some event to occur (e.g., the completion of an I/O 
request). The process address space may be completely protected from 
access by other processes or it may be shared at will. One process can 
communicate with another via several mechanisms supported by 
DMERT, as described in Section 3.6. 

3.2 Memory management 

The basic unit of memory handled by the 3B20D's memory man­
agement system is a page: 2K 8-bit bytes (five hundred twelve 32-bit 
words). A segment consists of 1 to 64 pages that need not be contiguous 
in physical memory. A process in DMERT consists of at least three 
segments, where one segment contains the process stack, another 
contains the process control block (PCB), and at least one segment 
contains executable code. Each process executes in its own logical (or 
virtual) address space, which may be as large as 16M bytes (4M words). 
Memory management swaps processes between memory and disk, 
enabling many processes to coexist even though the sum of their 
memory requirements exceeds the physical memory of the processor. 
It also provides protection from misuse (i.e., writing into read-only 
memory) and unauthorized access by other processes. 

The information required to perform virtual address to physical 

784 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



address translation is maintained by DMERT in segment and page 
tables in memory. Accessing these tables for every address translation 
would take a considerable amount of time (6.8 microseconds each). To 
speed up this process a high-speed associative memory called an 
address translation buffer (ATB) is used to keep the most recently 
used translation data. There are eight 64- X 2-word-set associative 
memories. Four of the A TBs can be dedicated to individual processes. 
One other is dedicated to the kernel. The other three are shared 
dynamically by all other processes. There is one each for kernel, 
supervisor, and user processes. These processes are described in Sec­
tion 3.3. Address translation via the A TB is performed in 150 nano­
seconds. 

3.3 Abstract machines 

DMERT supports four levels of software. Each level provides a 
different abstract view of the machine to the software. These abstract 
machine levels are: 

(i) The kernel 
(ii) Kernel processes 
(iii) Supervisor processes 
(iv) User processes. 

The kernel is the lowest abstract software level under DMERT and 
the core of the operating system. It provides the basic services of the 
operating system, such as interrupt control, process dispatching, sched­
uling, and timing. It essentially extends the set of operations for kernel 
and supervisor processes. 

The kernel-process level is used for those processes that have 
stringent timing constraints and must respond rapidly to real-time 
stimuli such as interrupts. Also, processes that must directly interact 
with hardware devices (such as a peripheral-unit driver) are coded as 
kernel processes. Similar to the kernel, kernel processes can have 
direct hardware access. Kernel processes also share some system data 
(e.g., the kernel stack and message buffers) with the kernel. Other 
system data are accessed via kernel services. Because of their perform­
ance requirements, kernel processes are totally memory resident and 
cannot be swapped out to disk. Some DMERT kernel processes (e.g., 
the process manager and memory manager) are referred to as special 
processes and share the kernel address· space. 

The next highest abstract machine level is for supervisor processes. 
This level is for those processes that neither have stringent timing 
constraints nor require direct access to the hardware or system data. 
Access to hardware (i.e., for I/O) and to system data is provided to 
supervisor processes by the kernel and kernel processes. The hardware 
and system data are completely shielded from supervisor processes. 

REAL-TIME ARCHITECTURE 785 



Because of this layered software structure, errors in supervisor proc­
esses are much less likely to have catastrophic system effects. The 
price for this protection, however, is slower response time and perform­
ance. To improve response time supervisor processes have the option 
of being memory resident and not being swapped out to disk. 

Both kernel and supervisor processes have the option of being 
nonkillable. A nonkillable process must perform its own internal fault 
recovery. A killable process can be terminated and recreated under 
certain error conditions. 

The highest and most abstract software level under DMERT is the 
user-process level. User processes exist only in conjunction with a 
supervisor process, and in effect are just a unique state of that 
supervisor. The user portion of the process, however, does have a 
separate virtual address space distinct from the supervisor portion. A 
supervisor process can gain access to its user address space, but the 
reverse is not true. As a result, user processes are totally removed from 
the details of the actual machine and operating system under which 
they execute. Hence, the user level is the easiest programming level. 
However, user processes have poorer performance than supervisor 
processes. 

3.4 Interrupt structure 

Interrupts are detected between the execution of two instructions 
and change the sequence of execution. More specifically, an interrupt 
results in the interruption of the current executing process and a 
transfer of control to a specific interrupt-handling process. The state 
of the interrupted process is saved on the interrupt stack so that it can 
be restored at the completion of the interrupt processing and the 
interrupted process can resume execution. There are 32 maskable, 
hardware interrupt sources contained in the interrupt source (IS) 
register. The 3B20D also has four unmaskable interrupt sources. 
Interrupts can be generated by hardware (i.e., clocks and peripheral 
devices), microcode, and software. Corresponding to the IS is an 
interrupt mask (1M) register. The 1M and IS registers are "anded" 
together to determine which interrupts are allowed to occur between 
any two instructions. 

Table I shows the layout of the IS as used in TSPS No. lB. Bit 0 is 
the highest-priority interrupt source. That is, if more than one inter­
rupt source is set and unmasked, the lowest-order bit position will be 
serviced first. Of particular interest are the Program Interrupt Request 
(PIR) sources (bits 17 through 31). There is one PIR per DMERT 
execution level 1 through 15 (see below). A PIR is set in response to a 
process request to send an event or fault (discussed later). The PIR 
corresponding to the execution level of the receiving process is set. 

786 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



Table J-DMERT interrupt source register 

0-1 Hardware errors 
2 Software errors 
3 Unused 
4 PSI errors 
5 Timer (10 ms) 
6 TSPS (5 ms) 

7-9 Unused 
10-13 Direct Memory Access Input/Output (DMA I/O) 
14-16 Non-DMA I/O 
17-31 Program Interrupt Requests (PIRs) 

Since supervisor and user processes always receive their events at level 
1, PIR ° is not required. For user processes, the associated supervisor 
process receives events and faults and deals with them appropriately 
on behalf of the user process. 

Currently, the only use of the unmasked interrupt sources is for 
Operating System Traps (OSTs). The execution of an OST by a 
process causes this interrupt to be set, which results in the kernel 
gaining control of the machine (the kernel services this interrupt 
source) and providing the requested service. In some instances the 
service is provided by a kernel process. UNIX* operating system user­
level services are provided by a DMERT supervisor process. In these 
latter two cases the kernel passes control to the appropriate process 
via its OST entry. 

3.5 Execution levels and priorities 

DMERT prioritizes processes into sixteen execution levels (see Fig. 
4). Execution level 15 is highest in priority. Kernel processes run at 
execution levels 2 through 15. Application kernel processes can only 
use execution levels 3 through 14. Level 2 is reserved for DMERT 
special processes, and level 15 is used by the DMERT Timer and Error 
Interrupt Handler. Supervisor and user processes run at execution 
level 0, and supervisor processes in a critical region run at level 1. 
Running at level 1 prevents any other supervisor process from inter­
rupting the supervisor process while in its critical region. Within 
execution level 0, all supervisor and user processes are further priori­
tized within a 256-level priority structure. Supervisor and user proc­
esses are scheduled on a highest-priority basis by the DMERT sched­
uler. Processes of equal priority are scheduled among themselves using 
a round-robin scheme. 

Kernel processes are dispatched as a result of an interrupt. This 

* Trademark of Bell Laboratories. 

REAL-TIME ARCHITECTURE 787 



"."".----................. 

,," KERNEL " / , 
I ' I \ 

I \ 
I \ 
I I 
\ I 
\ I 
\ I 
, I 

" /I' 

" '" ' ...... _---.",,,,,, 
EXL 15 

EXL - EXECUTION LEVEL 

Fig. 4-Hierarchical organization of DMERT. 

interrupt may be from a peripheral device or simply a PIR indicating 
the reception of an event or fault. Each execution level has a unique 
1M associated with it. The 1M for each execution level inhibits all 
interrupts that are handled at the same or lower execution level. Since 
supervisor and user processes run at execution levels 0 and 1, they are 
always preempted by kernel processes. 

3.6 Interprocess communication 

DMERT provides several mechanisms for interprocess communi­
cation. These include events, messages, faults, shared memory, and 
shared files. 

3.6.1 Events 

An event is a single bit of information having a predefined and 
agreed upon meaning between cooperating processes. When an event 
is sent from one process to another, DMERT will set the PIR interrupt 
for the level at which the receiving process executes. When that PIR 
is unmasked (the current execution level specifies an 1M that has that 
PIR unmasked), DMERT will handle the PIR interrupt and dispatch 
the process for which the event was intended at its event entry. The 
type of event(s) sent is passed as a parameter. 

788 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



3.6.2 Messages 

A message is a mechanism for transmitting multiple words of data 
between cooperating processes. The content of the message must be 
predefined and understood by sender and receiver alike. The reception 
of a message is indicated to the receiving process by a message event. 
Except for kernel processes, the contents of a message buffer (the data 
being passed) is copied from the sender's address space into the 
message buffer and then to the receiver's address space by various 
DMERT operations. All kernel processes include the system message 
buffer segments in their virtual address space. Hence, transmission of 
messages between kernel processes is much more efficient as the data 
is actually passed in shared memory. 

3.6.3 Faults 

Faults are another mechanism for interprocess communication that 
are usually used to indicate an error, system initialization, or other 
emergency-type of communication. A fault consists of an 8-bit (byte) 
fault code that has a predefined meaning between sender and receiver. 
The reception of a fault causes a process to be dispatched at its fault 
entry. 

3.6.4 Shared memory 

Processes can share memory on a segment basis. The entire segment 
(up to 32K words) would be mapped into the virtual address space of 
each process. This is the most efficient means of interprocess com­
munication, but it may result in tight coupling between the sharing 
processes. 

3.6.5 Shared Files 

Sharing a file is very similar to sharing memory except the storage 
is done on a secondary storage device (specifically a disk). This 
mechanism is obviously not as efficient as memory, but provides a 
media for sharing larger amounts of data. 

3.7 DMERT system integrity 

3.7. 1 Structure and strategy 

The DMERT integrity package is based on the duplex, self-checking, 
nonmatching philosophy of the 3B20D Processor, and the hierarchical 
organization of the DMERT operating system. It was designed to 
provide tolerance to both hardware and software faults, so that the 
3B20D Processor running under DMERT meets its reliability require­
ments. The functions provided by the integrity package running under 
DMERT appear in all abstract machine levels. Their placement in the 
hierarchical structure depends upon their complexity, the desired real­
time response, and the services that they require. 

REAL-TIME ARCHITECTURE 789 



The nondeferrable functions are activated when a hardware or 
software fault has been detected or a maintenance request has been 
made via a TTY message. They may initialize one or more system 
components, reconfigure the system, or just generate status reports. 
Some nondeferrable functions (e.g., processor initialization) cannot 
assume operating system sanity and require a fast response time. They 
are placed in the kernel and are initiated by the hardware self-checking 
circuits of the processor. Other functions like the recovery from a fault 
in an on-line peripheral can assume operating system sanity, but they 
must be performed in the minimum amount of time. Consequently, 
they are implemented as kernel processes. 

Some functions such as diagnostics require services provided by 
lower abstract machines and their execution can be defferred. These 
execute under a DMERT supervisor process that provides a UNIX 
operating system environment. The deferrable integrity functions in­
clude the initiation and control of the diagnostics, administration of 
diagnostic requests, and requests to remove or restore a unit to service. 

3.7.2 Software integrity 

3.7.2.1 Overload and sanity. The focal point of the software integrity 
package of DMERT is the System Integrity Monitor (SIM). SIM is a 
kernel process that is responsible for, among other things, system 
overload control, sanity monitoring, and coordination of initialization 
actions. SIM coordinates its actions with an application process called 
the Application Integrity Monitor (AIM). The combined action of 
these two processes defines the overall software integrity strategy. 
Further discussion on overload and sanity is presented below as part 
of the TSPS No. IB system integrity, which includes a description of 
the AIM process. 

3.7.2.2 Initialization levels. DMERT provides six levels of initializa­
tion (levels 0-5). The application can specify sublevels for DMERT 
levels 0-4. Level 0 is for application initialization only. That is, 
DMERT does not perform any initialization; DMERT merely notifies 
the application to initialize. Levell results in DMERT initializing and 
then notifying the application to initialize. In this case, all processing 
in the machine comes to a halt, the kernel and interrupt stacks are 
cleared, interrupt sources are disabled, and all kernel processes as well 
as the currently running supervisor process are faulted. Level 2 is a 
reboot of the system. At this level, however, certain protected segments 
of memory specified by the application are not lost, nor is the system 
Equipment Configuration Data (ECD). A Level-3 bootstrap reloads 
the ECD from disk, while a Level-4 bootstrap reinitializes all of 
memory including the protected application segments. Level 4 can 
only be requested manually. Level 5 is also manually initiated. It 

790 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



reloads the system disk from tape. A manual bootstrap is then required 
to initialize the system. 

IV. THE SPC 1 B 

The SPC 1B Processor is the functional entity that replaces the SPC 
1A in TSPS No. lB. In reality, the SPC 1B is an SPC-like environment 
created on the 3B20D by several components. The Peripheral System 
Interface (PSI), emulation microcode, 3B20D hardware, native-mode 
software in the TSPS process, and the DMERT operating system all 
play a role in realizing the SPC 1B image. This section will describe 
the basic characteristics of the SPC 1B, briefly discuss its components, 
and concentrate on those capabilities required to emulate the SPC 
1A at the instruction level. Other aspects of the machine and the 
cooperation of the components are developed in subsequent sections 
of this paper. 

4.1 SPC 1 B components 

The PSI provides the necessary interface between the 3B20D Cen­
tral Control (CC) and the TSPS peripheral buses. Emulated programs 
communicate with the TSPS peripherals without hardware modifica­
tions to the peripherals themselves. The microprogrammed control 
and the flexibility of the 3B20D architecture make it feasible to 
emulate a machine of vastly different characteristics. Emulated in­
structions are implemented by a microprogram that co-exists with the 
microprogram for the native instruction set. An off-line object code 
post-processor complements the emulation microcode by creating in­
struction formats optimized for execution on the 3B20D hardware (see 
Section 4.5). 

Finally, some functions must be emulated at the system level. 
Functions such as unlocking the write protection on an emulated store 
or requesting a processor switch are handled by native-mode software 
in the TSPS process. It provides services to emulated software not 
easily performed in the SPC 1A environment. In many cases, TSPS 
native-mode code interacts with other processes and the operating 
system to realize other services. Section 5.1.1.1 discusses TSPS native 
code in depth. 

4.2 Basic characteristics 

The characteristics of the SPC 1B are quite different from those of 
the physical 3B20D. In the 3B20D Processor, all data paths, memory 
locations, and registers are 32 bits wide. Memory addressing is byte­
oriented and 24 bits wide, providing a 16-million-byte capability. 
Invisible to both software and firmware is the memory management 
hardware, which provides virtual addressing. A high-speed buffer cache 

REAL-TIME ARCHITECTURE 791 



is also included, which shortens the effective memory access time. The 
Arithmetic/Logic Unit (ALU) provides ones or twos complement 
arithmetic by allowing microprogram control of the carry in bit. A 
Rotate-Mask Unit (RMU) provides right rotates in any amount up to 
31. The rotate amount also selects a mask from 16 mask classes to 
implement shifts and item extraction. In addition to the AND opera­
tion with a mask, the OR with the complement of a mask is possible 
to facilitate operations such as sign extension. There are 16 general­
purpose registers in the 3B20D, although three are reserved for stack 
maintenance. 

On the other hand, the SPC 1B, like its predecessor SPC lA, is a 20-
bit word-addressed machine. The arithmetic is done in ones comple­
ment and emulates a subtractor circuit. The significance of a subtractor 
is that the minus zero result is avoided in almost all cases. Seven 
general registers can be used for indexing, data manipulation, return 
addresses, and peripheral communication. A null (N) register can also 
be specified as a source of a zero operand. Rotates and shifts are 
allowed in both right and left directions. Contiguous bit masks of most 
sizes from 1 to 20 bits can be used for item manipulation. An insertion 
masking operation is also available to allow user-specified, non-contig­
uous bit masks. 

4.3 Mapping the SPC 1 A image 

Since assembly-language programs are designed with an intimate 
knowledge of the machine they are written for, the 20-bit structure of 
the SPC 1A is embedded deep into the TSPS software. As a result, 
operations such as rotation and arithmetic represent a potential source 
of emulation errors. Because of this and the basic goal of emulating 
with minimal changes, the 20-bit architecture of the SPC 1A has been 
retained. Because of the difference in word size between the 3B20D 
and the SPC 1A and other differences described in the previous 
section, an image of the SPC 1B must be mapped onto the physical 
3B20D hardware. 

A 20-bit SPC word is contained right adjusted in a 32-bit 3B20D 
word. The most significant 12 bits are maintained as zeroes in both 
registers and memory locations. Twenty-bit word addresses are con­
verted into 24-bit byte addresses by multiplying each address by four 
and forcing the uppermost two bits to be zeroes. The emulation of 20-
bit addressing retains the limitation of 1 million word addressability as 
on the SPC 1A. Further, the one-million-word emulation address space 
must start at virtual address zero in the four-million-word TSPS 
process address space. 

Registers zero through seven have been chosen as the SPC 1B 
registers. This assignment is identical to the numerical encoding on 

792 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



the SPC lA, thus simplifying the post-processing of SPC object code. 
Although the N register is assigned to be register zero, it requires 
special handling. When used as a source or argument operand, register 
zero must first be cleared. This guarantees a source of zero in the event 
that the N register was modified by specifying it as a destination in a 
previous instruction. The SPC IB also contains an imaginary ones 
register, which may be used in register-to-memory and register-to­
buffer bus instructions. The 'ones' register of the 3B20D is used for 
this purpose. 

4.4 Instruction implementation 

The instruction set of the SPC IB is very similar, but not identical 
to, that of the SPC IA. Maintenance instructions related to the SPC 
IA Processor were deleted for the SPC lB. Other instructions that 
dealt closely with the SPC IA hardware have required slight modifi­
cations. In spite of these changes, an SPC program or emulation mode 
programmer cannot and need not distinguish between the SPC IA and 
IB in most cases. Architectural differences described in previous 
sections are handled by microcode and are invisible to the programmer. 

4.4.1 Related 38200 processor hardware 

To provide a framework for the description of instruction implemen­
tation, that portion of the 3B20D· architecture directly affecting the 
emulation will be presented. A complete description of the 3B20D 
hardware can be found in Refs. 4 and 6. 

As shown in Fig. 5, the CC is structured around a source and 
destination bus. The Data Manipulation Unit (DMU) accepts data 
from the source bus, and gates results to either an internal register or 
to an external register via the destination bus. The DMU contains the 
AL U, RMU, general registers, and parity circuits. Another circuit 
between the buses is the Find Low Zero (FLZ) unit. This circuit 
accepts 32 bits as input and yields the binary value of the bit position 
of the least significant zero. Finally, a direct path between the buses 
exists for fast data transfers between the external registers. 

The store interface consists of the Store Address Register (SAR), 
Store Control Register (SCR), Store Data Register (SDR), and Store 
Instruction Register (SIR). These registers, along with a separate store 
operation field in each microinstruction, allow store operations to be 
done in parallel with 3BCC operations. To facilitate instruction fetch­
ing, hardware is dedicated to increment the Present Address (P A) 
register. A Program Status Word (PSW) bit specifies the P A increment 
amount to be 2 or 4, depending upon whether halfword or fullword 
mode is desired. The output of the incrementer is loaded into the SAR 
and back into the P A when a fetch is initiated. 

REAL-TIME ARCHITECTURE 793 



...... 
(0 
~ 

-I 
:r: 
m 
to 
m 
r 
r 
(J) 

-< 
(J) 
-I 
m 
s: 
-I m 
() 
:r: 
z 
o » 
r 
C-
O 
C 
JJ 
Z » 
.! 
s: » 
JJ 
() 
:r: 
(0 
()) 
w 

SOURCE BUS 

UJ 

~ ,_ -:]1-----... 
I­
en 

UJ 
U 
z 
<t: z 
~ t-4---<J----l 
z 
~ 
~ 

DESTINATION BUS 

Fig. 5-Processor control architecture. 

ROTATE 
MASK 
UNIT 

ARITHMETIC/ 
LOGIC UNIT 



The basic I/O registers are the Channel Address Register (CAR), 
and the Channel Data Register (CDR). The Hardware Status Register 
(HSR) holds status and response information relating to channel 
operations. Channel operations are performed by microcode via the 
Pulse Point Register (PPR). Bits in the PPR are set and reset by 
microcode to form control pulses on the CCIO bus. 

4.4.2 Instruction fetching and decoding 

An opcode on the 3B20D is eight bits wide. Multiple virtual machines 
are implemented by providing four complete sets of 256 opcodes. The 
instruction-initiation operation is a store-field function that operates 
as follows. Fetched instructions are loaded by the store into the SIR. 
When a new instruction is to be started, the contents of the SIR are 
transferred into the Instruction Buffer (IB). The opcode portion and 
two emulation-mode bits in the PSW are used to form a microstore 
address, which is the entry point into the microprogram for that 
instruction. Therefore, the mode bits effectively partition the micro­
store into four segments and, hence, four instruction sets. 

4.4.3 Instruction staging 

As mentioned above, the instruction currently being executed is 
located in the lB. General registers and indices for the I6-way branch 
microinstruction can be indirectly specified by four-bit fields (nibbles) 
in the lB. For single-bit testing, the high-order bit of each nibble is 
available as a condition for the conditional jump microinstruction. 

Similarly, there are three fields defined in the IB for rotate and 
mask operations. For a rotate and mask operation, a microinstruction 
must specify a mask class, a rotate amount, and masking operation. 
The rotate amount also selects which mask in the named class is to be 
used. The three five-bit fields in the IB can be used to specify the 
rotate amount and corresponding mask to be used. 

4.5 Basic operation 

The SPC IB instruction set differs from other sets in that most basic 
operations can be specified as options on many instructions. Hence, 
the instruction set is small in number but rich in data-handling 
provisions. As an example, there is no explicit ADD instruction. 
Addition can be specified as an option on most instructions. This 
section will describe the implementation of the basic operations com­
mon to many instructions. 

4.5.1 Instruction formats 

Instructions on the SPC IA were encoded in a 40-bit double word 
with a four-bit basic opcode. Opcodes were extended by other bits in 

REAL-TIME ARCHITECTURE 795 



STORED PROGRAM 
CONTROL NO. 1A FORMAT: 

39 35 32 29 

R2 

1110 R, 

LOGIC 
OP 

ROTATE 
MASK AMOUNT 

~ 
OP CODE 

SPC 1B FORMAT: 

24 23 20 19 

C 

IR A 
W 
M 

31 23 19 

i 
OP CODE 

19 

SEL R, 

15 

DATA ADDRESS' 

DATA ADDRESS 

MQ 
SEL 

11 9 

Fig. 6-Memory-to-register instruction. 

o 

o 

o 

some instructions, usually in a non-adjacent field. Register fields are 
three bits. Mask size was specified in a four-bit field that was not 
strictly binary encoded. The rotate amount is contained in a five-bit 
field. Options are encoded in multi-function fields within the instruc­
tion. In general, these fields were not aligned with the IB fields 
mentioned above for instruction staging. A bit-for-bit emulation would 
have resulted in a very inefficient result. Since one of the fundamental 
goals was an increase in real-time capacity, new formats were designed 
to provide the most efficient encodings. As an example, Fig. 6 shows 
the SPC IA and SPC IB formats for the Memory-to-Register (MR) 
instruction. 

A post-processor is used to realign the 40-bit SPC IA object code 
word into two 32-bit words suitable to execute on the 3B20D. In 
addition to simple bit shuffling, the post-processor adds information to 
aid the emulation microcode by performing those computations that 
can be done off-line. In the same fashion, bits have been included with 
the basic 4-bit opcode to take full advantage of 8-bit opcode encoding. 
For example, bits specifying an option can be included in the opcode 
to eliminate execution time required to decode that option. The unique 
entry point for each opcode would specify not only the instruction, but 

796 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



also the occurrence of the option. The post-processor is described in 
more detail in Ref. 7. 

4.5.2 Execution protocol 

As mentioned previously, SPC 1B instructions require two 32-bit 
words to hold the 40 bits of information contained in the SPC 1A 
instructions. Even in those cases where all relevant information can be 
held in one word, the spacing of two addresses between instructions 
must be maintained. As an example, indexed transfers into transfer 
tables, a common structure in TSPS software, would have had to be 
recoded had this spacing not been retained. Unlike the SPC lA, which 
has a 40-bit memory bus, two separate fetches are required for each 
instruction. The placement of argument fields in the instruction words 
has to correspond to the logical execution flow for the instruction. SPC 
1B formats are designed to match the flow of execution. Since instruc­
tions are a multiple of 32-bit fullwords, the mode bit in the PSW is set 
for a P A increment amount of 4. In contrast, the 3B20D native 
instruction set operates on 16-bit halfwords, with a P A increment 
amount of2. 

The basic fetch-execute protocol is for each instruction to fetch both 
words of the next i~struction. When an instruction is started, the first 
word is in the IB and the second word is being fetched into the SIR. 
In this way, the processing of information in the first word can be 
effectively overlapped with the fetch of the second word. When the 
first word is no longer needed, the second word is gated from the SIR 
into either the IB or a scratch register as needed. The SIR is now free 
to accept the fetch of the first word of the next instruction. The last 
microinstruction, in addition to requesting that the next opcode be 
decoded, also starts the fetch of the second word of the next instruction. 

4.5.3 Arithmetic 

As described previously, the SPC 1B represents negative numbers 
in ones complement form. A difficulty arises in the end-around carry 
for a 20-bit word on a 32-bit arithmetic unit. The algorithm used is to 
insert ones in the upper 12 bits of one of the operands to propagate the 
carry from bit 19 to the carry-out bit. In addition, a carry-in of one is 
initially assumed. If the carry-out is a one, then the carry-in assumption 
was correct and the operation is complete. If a carry was propagated 
from bit 19 to the carry-out, the upper 12 bits of the result are 
automatically cleared, as desired. Also, this assumption properly avoids 
the minus zero result that would have occurred if the carry-in was not 
made. This is the only case where the carry-in itself forces the carry­
out. If the carry-out is a zero, the operation is repeated without the 
carry-in and with zeroes in the upper 12 bits of both operands. Since 

REAL-TIME ARCHITECTURE 797 



EMULATED 20-BIT SPC PHYSICAL ADDRESS 

19 

23 

I I ~PC 
0MICROCODE 

I 00 ! 101 

24 - BIT 3B/DME RT VI RTUAL ADDRESS 

DMERT - DUPLEX MULTI-ENVIRONMENT REAL-TIME 
SPC - STORED PROGRAM CONTROL 

Fig. 7-SPC IB address translation. 

o 

o 

no carry-out of bit 19 will result, the upper 12 bits of the result will be 
zero. 

4.5.4 Effective address generation 

For those instructions that access memory, indexing of the address 
is performed by adding the address and the contents of the specified 
index register. Any of the SPC IB general registers, including the N 
register, can be used as an index register. Since negative indices are 
possible, the indexing operation is done in the same manner as ones 
complement arithmetic described above. The resulting 20-bit word 
address is then rotated left two bits (actually left 30 bits) and masked 
to clear bits 23 to 22 and 1 to 0 to form a 24-bit byte address, as shown 
in Fig. 7. Since indexing is costly in terms of execution time, the post­
processor detects the specification of N as the index register, and sets 
an indexing bit to indicate that indexing is not required. The indexing 
bit is usually contained in the opcode to provide free decoding. The 
indexing bit, non-existent in the SPC lA, is an example of information 
provided by the post-processor to facilitate efficient on-line execution. 

4.5.5 Shifts and rotates 

In the SPC IB, shifts and rotates are performed over 20-bit data 
words, even though these words physically reside in 32-bit 3B20D 
words. Since the 3B20D RMU only accepts right-rotate amounts, all 
left-direction amounts must be converted by taking their complements 
with respect to word size (i.e., word size minus left amount equals right 
amount). For shifts, the proper mask is applied to inject zeroes into 
vacated bit positions. 

Implementation of the wrap-around from bits 0 and 19 for rotates is 
more difficult. Values less than 12 can be handled by copying the 

798 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



upper or lower 12 bits of the 20-bit data word into the upper 12 bits of 
the 32-bit word. For left rotates, the upper 12 bits are used, while the 
lower 12 bits are copied for right rotates. Rotates greater than 12 can 
be converted to their equivalent value in the opposite direction before 
applying the above algorithm. For example, a left rotate of 15 can be 
effectively realized by a right rotate of 5. It should be noted that rotate 
and shift amounts specified in the instruction can be converted by the 
post-processor and encoded as an adjusted value. Rotates and shifts 
based on the contents of a register must be adjusted during run-time 
by the microcode. 

4.5.6 Data handling 

The SPC 1B provides the capability of reading (unpacking) and 
writing (packing) contiguous data items of almost arbitrary size and 
position within a 20-bit word. A data item is defined by its size, M, and 
its position, Q. The unpacking operation involves reading a data word, 
rotating it right by Q, and applying a mask of size M. The packing 
operation involves applying a mask and then rotating it into position 
by the amount Q. This value is then inserted, using a read-modify­
write sequence, into the target location. 

Since the MQ option is used heavily in TSPS programs, implemen­
tation of the rotation in the manner described previously would be 
very costly. Luckily, in most cases much of this overhead is avoided. 
When the total of the rotate amount plus the mask size is less than or 
equal to 20, no wrap-around actually occurs. The more efficient shift 
operation can be used instead. In TSPS, this is true nearly every time 
an M Q is specified. 

4.5.7 Conditional transfers 

The SPC 1B, like the SPC lA, has no explicit condition flags. 
However, the results of data manipulations can be tested by condi­
tional transfer instructions. Conditional transfers provide the capabil­
ity of testing either the entire contents or a specific bit of any general 
register. The 3B20D condition codes, carry, overflow, zero, and nega­
tive, are used for these tests. It should be noted that like the SPC lA, 
the minus zero value, coded as all ones, is not detected as zero in these 
conditionals. 

A special conditional transfer instruction is the Detect Right Most 
One (DRMO) instruction. This instruction transfers if no ones are 
present in the test register. If a bit is set, the bit position in binary of 
the least significant one is loaded into a result register. The DRMO 
and its variation, the DZRMO, which zeroes the rightmost one, are 
used, for example, by task dispensers to initiate clients based on a job­
activity word. The 3B20D FLZ is used to implement these instructions. 

REAL-TIME ARCHITECTURE 799 



4.5.8 Alternate entry points 

There are two functions in the SPC IB instruction set that are 
unique in that their operation extends across instruction boundaries. 
They are the Inhibit Interrupt (I) option and the Execute (EXC) 
instruction. The I option inhibits the J- and H-Ievel interrupts until 
after the next instruction is completed. Although hardware exists in 
the 3B20D to unconditionally start the next instruction, blocking all 
interrupts if error interrupts are pending is unacceptable. In this case, 
the I option is implemented by raising the execution level to block J­
level and H -level, starting the next instruction, and restoring the 
execution level during the instruction following the I-option instruc­
tion. The EXC instruction calls for the execution of an instruction at 
a target address, followed by an automatic return to the next sequential 
instruction after the EXC. The responsibility of the target instruction 
is to restore the P A to resume sequential execution. 

Since any instruction can follow an I -option instruction or be the 
target of an EXC, every instruction must determine if a special 
operation has preceded it. Explicit tests by microcode at the start of 
each instruction would cause a prohibitive amount of overhead even 
when these operations are inactive. Instead, an alternate instruction 
set is used to force a different entry for the same opcode. The I option 
and EXC microcode forces the next instruction to be entered at its 
alternate entry by setting the appropriate emulation-mode bits in the 
PSW. The alternate entry typically determines which operation to 
unwind, restores the mode bits to their normal value, and transfers to 
the normal entry point to execute the instruction. Since the SPC IB 
does not have condition codes, the PSW condition flags are available 
to specify whether the EXC or I option is in effect. 

4.5.9 New SPC 1 B instructions 

There are four new instructions in the SPC IB instruction set. The 
Register to Buffer Bus (RBB), Buffer Bus to Register (BBR), and 
Ones to Buffer Bus (OBB) instructions have been added to reference 
the buffer bus system. These instructions, along with the buffer bus, 
are described in Section 5.1.4. The remaining new instruction is the 
Switch Mode and Transfer (SMT). 

The SMT instruction allows emulated programs to transfer to the 
native mode ~nd begin executing its instruction set. It is patterned 
after the native-mode CALL instruction to provide a calling sequence 
consistent with the C language. The SMT puts a stack frame, including 
two register arguments, on the stack, switches the mode bits in the 
PSW to specify native mode, and transfers to the address specified in 
the instruction. Two instructions in the native language are also used 
to support mode switching. They are the Call to Emulation (CALE), 

800 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



and Return to Emulation (RETE) instructions. Except for the mode 
switch, these instructions are identical to the standard native CALL 
and RETN instructions. 

The ability to transfer between native and emulated code allows C 
language to be incorporated into the TSPS process. In fact, the TSPS 
process has standard C-coded entry points, as described in Section 
5.1.1.1. Mode switching eliminates the need for new instructions to 
perform operations not possible with the emulated instruction set. 
Examples are Operating System Traps (OSTs), 32-bit data manipula­
tions, and stack accesses. Finally, designers of new features can eval­
uate on an individual basis which language would be most suitable. 
Trade-offs can be made between the necessary degree of coupling with 
existing emulated code and the ease of programming in C. 

4.6 Peripheral orders 

As mentioned in Section 4.1, the PSI provides the necessary timing 
and electrical interface to the TSPS periphery. The function of the 
microcode for peripheral instructions is simply to pass necessary 
information for the PSI to execute the order. At the end of the 
sequence, the PSI passes back an answer word and an indication of 
whether the periphery returned the correct reply signals. A failure 
indication is used to generate the emulated F-Ievel interrupt, as dis­
cussed in Section 5.1.5.1. 

The CC communicates with its channels over the Central Control 
Input/Output (CCIO) bus. An Application Channel Interface (ACHI) 
is provided with the 3B20D processor to allow the PSI limited access 
to the CCIO bus. In essence then, the PSI appears as a main channel 
to the 3B20D processor. Commands and data are sent and data 
received in a parallel fashion to/from the ACHI-PSI via the CDR 
CAR, and PPR. Status information, returned by the PSI into the HSR, 
is used to indicate a failed peripheral order. 

The sequencer in the PSI performs four basic functions. In addition 
to the peripheral order, there are sequences to read a register and 
write a register. These functions are needed not only for buffer bus 
references, but also for diagnostic access. The remaining sequence is a 
pulse sequence, which is used to send special maintenance pulses to 
the periphery. 

All SPC 1A peripheral orders are retained in the SPC 1B instruction 
set. In addition, a set of PSI instructions have been provided in the 
native instruction set to execute the four PSI operations. The native­
mode PSI instructions were originally designed for the PSI diagnostic, 
discussed in Section 5.3, which is written in C and native assembly 
language. They are also used by the Application Integrity Monitor 
(AIM) process for PSI fault recovery and initialization (Section 
5.2.2.1.). 

REAL-TIME ARCHITECTURE 801 



One additional capability provided by the emulation microcode is a 
set of microcode routines to execute peripheral operations on the off­
line processor. These routines accept data from the 3B20D Mainte­
nance Channel (MCR), temporarily release the inhibit on the off-line 
PSI, and execute the order without making any main-store accesses. 
By not interfering with the main-store update mechanism, these 
routines can be executed while the off-line processor remains in the 
standby mode. 

Off-line sequences for pulse and peripheral orders are used by TSPS 
peripheral fault recognition to retry failed orders and provide better 
fault resolution. An off-line PSI initialization routine is used by AIM 
just prior to a soft switch. It is also used periodically by AIM as a 
hardware audit of the off-line PSI. Should this routine indicate a 
failure in initializing the PSI, a diagnostic will be requested by AIM. 
The benefit of this audit is to reduce the latency time for detecting 
faults in the standby PSI. 

4.7 Emulation-dependent software 

Although the majority of SPC lA instructions have been emulated 
on the SPC 1B, there are functions that do not work in the same 
manner as on the SPC 1A. In general, the functions requiring modifi­
cation are in the maintenance programs, which are by necessity more 
processor-dependent. 

The most obvious source of change is the need to recode or eliminate 
those routines that contain instructions not carried over on the SPC 
lB. The most common source of change is recoding buffer bus refer­
ences to use the new instructions. Unmodified buffer bus references 
would simply reference a memory location in segment zero since the 
microcode does not trap the address as a buffer bus address in normal 
memory-access instructions. A third source of change is due to the new 
object-code formats and the difference in size between instruction and 
data words. Since the emulated code can only access 20 bits, instruc­
tions cannot be moved or created via data operations. Similarly, data 
cannot be executed as an instruction because the uppermost 12 bits of 
data words are zeros. On the SPC 1B, the zero opcode is interpreted as 
the ANOP instruction. This protective measure would trap a wild 
transfer into a data area by generating an A-level interrupt. Finally, 
usage of part of an instruction as data may not work because of the 
shifting of fields in the new object-code formats. An example of this in 
TSPS No.1 code is to read the address field of a transfer instruction 
and store it to be used as an address later. 

A more subtle difference is the execution time of instructions on the 
SPC lB. The SPC 1A is a fixed-cycle machine, and instructions are 
made up of a number of these basic cycles. The execution time of an 

802 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



instruction could be determined exactly, independent of the options 
specified. A common dependence on the execution time of an instruc­

. tion is in timing loops. A precise time delay is created by executing a 
loop the correct number of times. 

Since the 3B20D executes emulated instructions several times faster 
than the SPC IA,8 timing constants coded for the SPC IA produce 
delays proportionately smaller on the SPC lB. The modification of 
these constants is not quite as simple as multiplying by a speedup 
factor for the following reasons. First, the SPC IB instruction set is 
microprogrammed, and thus every option must be accounted for when 
calculating the execution time for an instruction. Second, since the 
3B20D employs virtual addressing, memory management delays owing 
to translation are incurred as a function of program flow. The cache 
memory also plays a role by shortening the memory access time when 
the access is contained in the cache. Since the cache is shared by all 
processes in the system, its effect is even less predictable. Finally, 
Direct Memory Access (DMA) activity steals memory cycles from the 
processor and represents an invisible form of interference. 

As a result, timing loops with tight window tolerances cannot be 
guaranteed. In several cases, routines that performed window timing 
required recoding. On the other hand, minimum timing poses no 
problem. Best-case estimates can be made to determine the minimum 
execution time for a program segment by assuming no translation or 
DMA delays and all cache hits. Any delays actually incurred during 
execution serve only to lengthen the program segment time, which is 
acceptable for minimum timing. 

V. TSPS NO. 18 SOFTWARE 

This section describes how the TSPS software was ported to run 
under the DMERT operating system. In addition, it describes the 
system integrity software and other processes required to complete the 
emulation. 

5. 1 The TSPS kernel process 

The emulated TSPS software has been incorporated into a single, 
large, nonkillable kernel process under DMERT. This is due largely to 
the real-time constraints of TSPS software operation and its existing 
structure on the SPC IA. All TSPS code on the SPC IA shares a single 
physical address space. All data and programs are equally accessible 
from any other program. The entire software structure is very tightly 
coupled. Subdividing the software into several processes would have 
required a restructure and redesign of the TSPS software. Also, the 
operational timing constraints of TSPS software (e.g., 5-ms I/O proc­
essing, interject responsiveness and base-level E-E times) require 

REAL-TIME ARCHITECTURE 803 



TSPS to be memory-resident and interrupt-driven at the kernel-proc­
ess level. 

5.1.1 Emulation environment 

Emulation of existing TSPS software on the 3B20D Processor re­
quired the creation of an SPC IA environment. That is, in order to 
work properly the TSPS software had to be shielded from both the 
actual physical machine (3B20D) it was running on and the DMERT 
operating system it runs under. This environment has been established 
with a combination of hardware (PSI), firmware (the microcoded SPC 
IA instruction set), and software (native-mode code within the TSPS 
process). 

5. 1. 1. 1 Native-mode code. Except for the emulated code within the 
TSPS process, all software in the TSPS No. IB system is coded in 
3B20D native mode. Most of the software is coded with the C language. 
Hence, the 20-bit emulated code exists in a 32-bit universe. 

Figure 8 illustrates the structure of the TSPS process. The TSPS 
process is dispatched (given control of the machine by DMERT for 
execution) at either its interrupt, event, or fault entry. These entry 
points are coded in 3B20D native mode. Thus, the TSPS process 
always begins execution in 3B20D native-mode code. These entry 
points determine what type of processing is to be performed and 
transfer, while simultaneously changing instruction sets, to appropriate 
routines within emulated software. 

In addition to the native-mode entry points, the TSPS process also 
contains native-mode routines for communication with DMERT and 
other processes and for performing certain functions which the emu­
lated code is incapable of doing. As a result, the native-mode code 
within the TSPS process completely isolates the emulated code from 
the 32-bit universe surrounding it. Hence, to the rest of the system the 
TSPS process appears to be a typical (albeit very large) native-mode 
kernel process. 

5.1.1.1.1 Interrupt entry. The only hardware interrupt source to 
which the TSPS process is attached is a clock-driven 5-ms interrupt 
for I/O processing. This single interrupt source is used for both J - and 
H-Ievel processing. This same 5-ms clock pulse is transmitted to the 
PSI to synchronize its clock with the processor. The PSI clock trans­
mits clock pulses to TSPS peripherals. When the interrupt source fires, 
the TSPS process is dispatched at its interrupt entry point. The 
interrupt entry is coded in 3B20D native assembly language because 
of its simplicity and need for efficiency: it runs every 5 ms. Its only 
functions are to determine whether this execution is a J - or an H -level, 
set the appropriate bit in the interrupt-level activity flag buffer bus 
word, and transfer to the appropriate emulated routine. 

804 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



• SYSTEM 
INITIALIZATIONS 

• ERRORS 
\ , , , 

DMERT - DUPLEX MULTI-ENVIRONMENT 
REAL-TIME 

SPC - STORED PROGRAM CONTROL 

5 ms 
I 

H, J LEVELS 

SPC VIRTUAL MACHINE 

1 • MESSAGES 
, • EVENTS 

• FAULTS 

Fig. 8-TSPS Process. 

Handling both J- and H-Ievel interrupts with a single interrupt 
source is accomplished by using two execution levels for J-Ievel proc­
essing. When TSPS is dispatched at the interrupt entry to handle a J­
level interrupt, it runs at execution level 12. While at level 12 the 
interrupt source is masked off by the level-12 interrupt mask. Hence, 
the interrupt entry cannot be re-entered. When high-priority J -level 
work is completed, the H-Ievel inhibit bit in the buffer bus is cleared. 
In doing this the microcode for the buffer bus write operation drops to 
execution level 11 for low-priority J-Ievel work. This is possible since 
no other processes in the system run at execution levels 11 or 12. At 
level 11, the 5-ms interrupt source is unmasked and will allow the 
TSPS interrupt entry to be re-entered if J-Ievel does not complete 
within 5 ms. The interrupt entry reads the buffer bus to determine 
whether a particular execution is a J- or H-Ievel. If neither activity bit 
is set, then it is a J -level and the J -level activity bit is set. If the J -level 
activity bit is already set, then an H-Ievel has occurred and the H­
level bit is set. In the latter case low-priority J -level work has been 
interrupted and its state has been saved on the interrupt stack. 

REAL-TIME ARCHITECTURE 805 



Although the interrupt handling begins in the native-mode interrupt 
entry, the return from interrupt is always performed from emulated 
code. At the end of H-Ievel, the last job executes an emulated EGBN 
instruction. The EGBN clears the H-Ievel activity flag in the buffer 
bus and performs a return from interrupt sequence, which causes the 
saved J-Ievel state to be popped from the interrupt stack. J-Ievel then 
resumes execution at the interrupted point. At the completion of low­
priority J-Ievel an emulated GBNHJ instruction is executed. The 
GBNHJ clears the J-Ievel activity flag, sets the H-Ievel inhibit bit, and 
does a return from interrupt. Hence, the process that was executing 
when J-Ievel began is resumed at the point of interrupt. This inter­
rupted process itself may be the TSPS process performing base-level 
work. 

5.1.1.1.2 Event entry. The TSPS process event entry is coded with 
the C language and runs at execution level 5. An event sent to the 
TSPS process causes the process to be dispatched and begin execution 
at its event entry. The primary events sent to the TSPS process are 
for initialization upon creation, interprocess message reception, and 
time-outs requested for real-time breaks in TSPS-base level process­
ing. 

5.1. 1. 1.2. 1. Initialization event. An initialization event is sent to a 
process upon its creation. As TSPS is a nonkillable kernel process, this 
will occur only after a system bootstrap. The native-mode code ini­
tializes the process (i.e., attaches to the 5-ms interrupt source, connects 
to a system port for message reception, etc.) and prepares to take an 
SIA or SIB call-processing recovery phase. 

An important function that is performed during the initialization is 
setting the proper page protection over the emulated-code address 
space. DMERT creates processes with protection set on segment 
boundaries. The TSPS process, however, emulated the SPC lA pro­
tection mechanism. Hence, some segments may have both protected 
and unprotected areas. The protection within these segments must be 
modified by changing the protection on the appropriate pages. TSPS 
uses a DMERT OST for this run-time page-protection change. This 
same OST is used by the emulated recent change programs when 
applying a modification to protected memory. 

5.1.1. 1.2.2 Time-out event. The TSPS process is only one of many 
processes time-sharing the SPC lB. The TSPS process must voluntar­
ily take frequent real-time breaks to allow other processes at execution 
level 5 and below to execute. (Base-level processing is done at execution 
level 5, which is the lowest execution level at which the TSPS process 
runs. This is described in more detail below.) These real-time breaks 
are performed by issuing a time-out request to the DMERT timer* 
and then relinquishing control of the machine. (The DMERT timer is 

806 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



part of the kernel that executes at execution level 15. It runs every 10 
ms as a result of clock-driven interrupt source. The Timer maintains 
the DMERT system clock and provides general-purpose timing for all 
DMERT processes.) At the end of the time-out period the timer will 
send TSPS a time-out event. When TSPS takes the break, it remem­
bers where in emulated code it has left off. Upon receipt of the time­
out event it will resume execution within emulated code at the same 
place where it had left off. A related event is one sent by the scheduler 
when the system is idle to wake TSPS up early, before the time-out 
event has fIred. This is described further in Section. 5.1.6. 

Currently there are fIve areas where the TSPS process takes real­
time breaks. These are during memory zeroing in an SIA or SIB, 
during initialization timing loops that are longer than 10 ms, during 
audit stitching, at the end of an SIA or SIB while waiting for the J­
level portion of the phase to complete, and during the base-level E-E 
cycle. 

s. 1. 1.1.2.3 Message event. The TSPS process receives interprocess 
messages from other processes. TSPS is notified of the message 
reception with a message event. When TSPS fields the event, it will 
process all queued messages and take whatever actions are appropriate. 
Some uses of inter process messages by the TSPS process are discussed 
in the later section describing other TSPS application processes. 

s. 1. 1.1.3 Fault entry. The TSPS process fault entry is also coded in 
the C language. The TSPS process is dispatched at its fault entry as 
a result of a processing error (i.e., a protection violation or an invalid 
address), a system initialization, or a fault sent by another process as 
a means of interprocess communication. The TSPS fault entry runs at 
execution level 12 so that recovery actions can be taken without 
interference from J-Ievel processing. 

s. 1. 1. 1.4 Additional routines. Besides the standard process entry 
points there are other special-purpose native-mode routines included 
within the TSPS process. These routines are used to interface with 
DMERT (e.g., to execute an OST), to use interprocess communication 
mechanisms such as events and messages in order to communicate 
with other processes, and to implement some functions that cannot be 
performed in emulated code. In addition, some new code added to the 
TSPS process was coded using the C language for development con­
venIence. 

S.1.2 Address space 

TSPS is currently designed as a DMERT "small" process. A small 
process can have up to 64 segments, and, hence, a virtual address space 
as large as two million words. Figure 9 shows the TSPS process virtual 
address space as a small process under DMERT. 

REAL-TIME ARCHITECTURE 807 



SEGMENT 

o 

EMULATED 
STORED PROGRAM 

CONTROL CODE 

31 

BUFFER BUS 
32 

3B NATIVE-
MODE CODE 

KERNEL PROCESS 
CONTROL BLOCK 

50 

• KERNEL STACK 
• EQUIPMENT 

CONFIGURATION DATA 
• MESSAGE BUFFERS 

63 

Fig. 9-Virtual address space in the TSPS process. 

5.1.2.1 Emulated code. The emulated code resides in the first 32 
(0-31) segments of the virtual address space. Thus, the emulated code 
resides in the first one million words of the virtual address space. This, 
in fact, is the only part of the virtual address space that is directly 
addressable by the emulated code. As mentioned previously, all ad­
dresses in the emulated code are 20-bit word addresses as in the SPC 
1A. A 20-bit address can only address one million words. Hence, the 
20-bit physical word addresses on the SPC 1A are now 20-bit virtual 
addresses in the TSPS process on the SPC lB. 

All 32 segments are fully allocated to their maximum size of 32K 
words. In effect each segment emulates an SPC 1A store name code. 
The emulated address space, however, includes segments 0 and 31, 
whereas store name codes 0 and 31 do not exist on the SPC 1A. 
Emulated buffer bus references are mapped by the microcode into 
segment 32. As a result, the emulated code within the TSPS process 
has a full 1M word address space. 

5.1.2.2 Native-mode code. The remaining 31 segments are used for 
native-mode code within the TSPS process. Not all of these segments 
are currently used. Those that are used contain TSPS code and data, 
the process control block, and shared DMERT segments such as the 
ECD, the system message buffers, and the kernel stack. 

808 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



5.1.3 Native-modejemulated-code interface 

The TSPS process contains both emulated SPC IA and native-mode 
code. As all processing begins in native code, all emulation-code 
routines are called as functions (subroutines) from the process entry 
points. Similarly, native-mode routines can be called as subroutines 
from the emulated code. 

All processes under DMERT use a program stack to save the state 
of a function when it calls another and to pass arguments. Kernel 
processes (including TSPS) share a common kernel stack with the 
kernel. A standard stack frame must be maintained when calling 
another function. Similarly, a standard return sequence is followed. To 
maintain sanity while transferring between emulated and native code, 
the TSPS process follows the same protocol. The mechanism used by 
the TSPS process was patterned after the structure used to transfer 
between native-mode assembly code and C-Ianguage code. 

5. 1.4 Buffer bus 

As described in Section 2.2, the buffer bus on the SPC IA is ~ 
software-accessible set of hardware control and status registers. Since 
the microcode emulates the hardware action on the SPC IB, accessing 
one of these registers causes the microcode to perform a special action, 
emulating what the hardware would have done. Hence, firmware must 
be aware that a buffer bus location is being accessed, and what action 
is required. To eliminate the overhead required to test each memory 
address in memory reference instructions, new instructions have been 
added to explicitly reference the buffer bus. 

The Register to Buffer Bus (RBB), Buffer Bus to Register (BBR), 
and Ones to Buffer Bus (OBB) instructions are the exact images of 
their SPC IA counterparts, RM, MR, and OM. Converting an SPC IA 
buffer bus reference requires only a change to the instruction mne­
monic. The address and option fields are identical. The addition of 
these instructions has the added benefit of not having to set aside store 
zero as buffer bus images, thus allowing an additional 32K words of 
usable memory. Depending on their function, buffer bus registers are 
mapped into either memory locations outside of the SPC IB address 
space, PSI internal registers, or 3B20D hardware registers. 

Not all registers have been carried over from the SPC IA. Locations 
used only in processor and store maintenance were removed along 
with their corresponding programs. Other locations have been added 
to maintain and access the PSI. Still others are partially retained, with 
individual bits having been removed. The set can be broken down into 
three components: interrupt system, craft interface, and peripheral 
system. 

Locations related to the interrupt system are the Interrupt-Level 

REAL-TIME ARCHITECTURE 809 



Activity Flags (ILAF), Maintenance Interrupt Sources (MAIS), Inter­
rupt Inhibits (PEST), 3B20D Inhibits (3BPEST), and the Millisecond 
Clock State (MSEC). With the exception of the MSEC register, these 
are discussed in Section 5.1.5. MSEC on the SPC 1B is the value of 
the 3B20D Interrupt Timer. The Interrupt Timer is used as the 5-ms 
clock source for the TSPS J-Ievel interrupt. Access to this timer allows 
programs to predict when the next J-Ievel will occur. This function is 
necessary for clients such as diagnostics, which must synchronize their 
actions with J-Ievel. 

Buffer bus locations related to the craft interface are Maintenance 
Control Center Data (MCCD), MCC Interrupts (MCCI), and Emer­
gency Recovery Display (ERD). The hardware of the SPC 1A MCC 
has been replaced by the 3B20D craft interface hardware, and DMERT 
and TSPS craft software. These locations reside in memory locations 
accessible by TSPS native-mode craft software. The craft interface is 
discussed in more detail in Section 5.3.3.1. 

The remaining locations are all related to the peripheral system. 
The PSI hardware directly implements many of these locations. Lo­
cations emulated by the PSI hardware require that microcode send 
the necessary command to the PSI to access data or perform some 
hardware action. 

5.1.5 Interrupt structure 

5.1.5.1 Emulated interrupts. The emulated interrupt structure con­
sists of A-, E-, F-, H-, and J-Ievel interrupts. Of these, only the 5-ms 
H- and J-Ievel interrupts are driven by a 3B20D hardware-interrupt 
source. A-level interrupts are either emulated by native-mode software 
or generated by the microcode as the result of executing an illegal 
opcode or an ANOP instruction. E-Ievels are emulated by native code 
as the result of fault codes received from DMERT, and F-Ievels are 
generated either by microcode or native-mode code. 

The microcode for the ANOP instruction traps to an illegal instruc­
tion routine in the native microprogram that generates an error inter­
rupt. The DMERT kernel handles the error interrupt, and immediately 
faults the TSPS process. The TSPS process fault entry determines 
that an ANOP instruction was the cause of the fault, sets the A-level 
activity flag in the buffer bus and transfers control to the emulated A­
level interrupt-handling routine. 

An A-level interrupt can be simulated by native software through 
setting the A-level activity bit in the buffer bus, which raises the 
execution level to 12 (the level at which A-level runs), filling in the 
interrupt-state bin locations, and transferring to the A-level interrupt 
routine. This is done, for example, to indicate a manual request for a 
recovery phase. The TSPS process fault handler will emulate the SPC 

810 THE BELL SYSTEM TECHNICAL JOURNAL. MARCH 1983 



1A hardware by "generating" an A-level interrupt in the aforemen­
tioned way. When the A-level routine is entered, it appears to the 
software that a hardware interrupt had occurred. 

SPC 1A store-error E-Ievel interrupts are not emulated, as this type 
of error is not seen by the TSPS process. They are handled completely 
by DMERT fault recovery. Software E-Ievels (i.e., protection viola­
tions and bad addresses) are fielded by TSPS as faults. When this type 
of error occurs, the TSPS process is immediately interrupted and 
entered at its fault entry with the state of the machine at the time of 
the error passed as parameters. The fault entry sets the E-Ievel activity 
bit in the buffer bus and transfers to emulated code to handle an E­
level interrupt. Again, to the emulated code it appears just as if a 
hardware interrupt had occurred on the SPC 1A. 

During the execution of an emulated I/O instruction or buffer-bus 
instruction, * any failures will be detected by the microcode. The 
microcode 'generates' an F -level interrupt by setting the F -level activ­
ity bit in the buffer bus, saves the address of the interrupted program 
in the F -level bin, and transfers directly to the emulated F -level 
routine. 

Most PSI errors are detected by the microcode also. An F-Ievel is 
also generated in these cases. This is done so that F-Ievel can perform 
an on-line and, if necessary, an off-line retry before letting AIM take 
PSI recovery actions. In the few cases where a PSI error interrupts 
AIM fIrst, AIM will fault the TSPS process. The fault entry will then 
emulate an F-Ievel in the same way as E-Ievels are handled. There is 
another class of errors that generate 3B20D error interrupts. The 
DMERT Error Interrupt Handler (EIH) will field these and fault the 
running process. In these cases TSPS passes control (via a fault) to 
AIM for recovery actions. 

The microcode and native code must of course be aware of interrupt 
priorities. If TSPS is already in A- or E-Ievel processing, then the 
microcode must only set the F-Ievel interrupt source bit and continue 
processing. An F-Ievel will be generated by the microcode if the source 
is still set when an EGBN is performed from A- or E-Ievel. Also, if the 
F -level inhibit is set in the buffer bus the error must be ignored. Setting 
the J-Ievel inhibit while in base level causes the microcode to raise the 
execution level of the process to 12. The interrupt mask for execution 
level 12 masks off the 5-ms interrupt source. Similarly, the "I" option 
is implemented via the microcode. The microcode guarantees that 
both J- and H-Ievel interrupts are inhibited for the instruction with 
the I option and the next instruction executed. 

* As some of the buffer-bus registers are contained in the PSI, a failure while trying 
to access these registers is considered a PSI error. 

REAL-TIME ARCHITECTURE 811 



5.1.5.2 Returning from interrupts. The emulated EGBN instruction 
works the same as it does on the SPC 1A for A-, E-, and F-Ievel 
interrupts. Because H- and J-Ievel interrupts are driven by a hardware­
interrupt source, the EGBN for H-Ievel and the GBNHJ instruction 
used by J-Ievel operate differently. This difference (described below) 
is undetectable by the programmer. 

When a 5-ms interrupt occurs, the state of the interrupted process 
is saved on the 3B20D interrupt stack. The return from interrupt 
(EGBN for H-Ievel or GBNHJ for J-Ievel) must restore the state from 
the interrupt stack and not from memory-resident bin locations. 
Hence, these two instructions perform the same function as on the 
SPC lA, but the actions taken to restore the interrupted state of the 
machine are different. 

5.1.6 Emulated program structure 

The emulated program structure within the TSPS process is almost 
identical to that which exists on the SPC 1A; the major difference is 
that processing always begins in native code. The native code sets up 
the proper environment and passes control to the emulated software 
for the bulk of the processing. 

H- and J-Ievels still run under control of ECIO. As pointed out 
earlier, the only difference is that a single interrupt source is used on 
the SPC lB. The front-end native code determines whether an H- or 
J-Ievel has occurred by the state of the buffer bus. Different execution 
levels are used to unmask the H-Ievel interrupt source when going 
from high- to low-priority J-Ievel. 

Base-level programs still run under control of ECMP. Base level is 
essentially called as a large subroutine of the event handler. Rather 
than run continuously, as on the SPC lA, base level must voluntarily 
give up control of the machine to allow lower-priority processes (proc­
esses that run at execution levels below 5) to run. Base level requests 
a time-out event from DMERT when at least 10 ms have elapsed, and 
then exits. 

There are two ways for base level to be re-entered in response to its 
time-out request. If during the real-time break there are no processes 
ready to run, the DMERT scheduler will enter its idle loop at the 
lowest system priority. At that point, the scheduler finds that the 
TSPS process has requested, via an OST during its initialization event 
entry, that a specific event be sent by the scheduler whenever the idle 
loop is entered. The event sent by the scheduler causes TSPS to be 
entered at its event entry, thus waking base level up early. If the idle 
loop is never entered during the break, base level must wait until the 
full duration of the time-out request has expired. In this case, receiving 

812 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



(a) 

J-LEVEL 

BAS E LE VEL r-"-----------oL-....... L-Jo ........ --'-__ --'-"""'--......... "'----...L-..I __ 

TIMER 

J-LEVEL 

I/O 
INTERRUPTS 

BASE LEVEL 

(b) 

OTHER ~~~~--------------~-

20 25 30 35 40 45 50 

TIME IN MILLISECONDS 

Fig. lO-Interaction between processing levels of (a) SPC IA and (b) SPC IB. 

the time-out event from the DMERT timer causes base level to resume 
execution. 

This early wakeup mechanism employed by TSPS has a significant 
impact on the real-time profile of the system. By eliminating idle 
system real time, base level executes more E-E cycles. This is especially 
true when the offered call load is light and real time is ample. A higher 
E-E rate improves the execution of TSPS diagnostics, audits, and 
other services that are run as a function of E-E rate. The full impact 
of the early wakeup mechanism is described in Ref. 8. 

Base-level code in ECMP was modified to take its real-time breaks 
between priority classes. There are five breaks per E-E cycle: one after 
each C and E priority class. Figure 10 contrasts the interaction between 
various processing levels on the SPC 1A versus the SPC lB. On the 
SPC lA, base level runs continuously, only being interrupted (in the 
absence of errors or manual actions from the MCC) every 5 ms by J­
level. On the SPC 1B, however, there are other processes executing 
concurrently with TSPS. DMERT I/O processes run at execution 
levels higher than base level, but lower than J-level. J-level executes 
every 5 ms whether or not base level is executing or taking a real-time 
break. Table II shows the execution levels of various DMERT proc­
esses, the TSPS process, and AIM. 

The real-time breaks are not noticeable to the emulated software. 
They merely appear as an additional priority class placed in between 

REAL-TIME ARCHITECTURE 813 



Table /I-DMERT execution levels 
Level Processes 

15 Error Interrupt Handler, Timer 
14 Generic utilities 
13 System and Application Integrity Monitors 
12 TSPS (Fault entry, A, E, F, H and high-priority J) 
11 TSPS (low-priority J) 
10 Disk and lOP drivers 
9 
8 
7 File Manager 
6 
5 TSPS (Base level) 
4 
3 Plant measurements, Field update 
2 Special processes (Scheduler and Memory Manager) 
1 Supervisor processes (critical region) 
o Supervisor/User processes 

15-ms BREAK "- B 

D 

A 

B 

.... 

I 
I 

15-ms BREAK./ 

A B 

Fig. 11-TSPS No. IB base-level loop. 

./ 15-ms BREAK 
./ 

D 

A 

, 
"15-ms BREAK 

the two priority classes separated by the break. Figure 11 shows the 
modified base-level loop with the five real-time breaks. The insertion 
of these breaks, though, has required one minor change to interject 
processing. To guarantee proper interject responsiveness additional 
interject checks have been inserted. A check for interject work is made 
after each real-time break. Hence, interject is serviced within 20 ms as 
a result of a base-level real-time break. Once the interject check is 
made, base-level processing resumes with the next scheduled priority 

814 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



PRIORITY 
CLASS 

I - .... 

D---------- .... 

E------------------ -. 

Fig. 12-TSPS No. 1B base-level, priority-class frequency. 

!~ , 
I 

class. Figure 12 shows the base-level priority-class execution with the 
added interject checks. 

Another important point is the relationship between the DMERT 
timer and J-Ievel execution. As the timer runs at execution level 15, it 
will interrupt J-Ievel. The 10-ms timer interrupt, however, is offset 
from the 5-ms interrupt by 1 ms. Hence, the timer runs every 10 ms, 
1 ms after J -level begins. This guarantees proper operation of the 
Automatic Message Accounting (AMA) data recording. The AMA 
data transfer routine must write data to be recorded to the AMA 
within 1 ms after the 5-ms interrupt occurs. (Recall that the AMA 
tape unit is synchronized with the 5-ms clock pulse.) Since the timer 
will not run until this 1-ms window has passed, it does not interfere. 

5.2 System integrity 

The TSPS No. 1B integrity software consists of three distinct 
software packages. In addition to the software package provided with 
DMERT and the emulated TSPS No. 1 integrity package, a new 
integrity software package was developed. The major functions of this 
software are: 

(i) Interface and coordination of integrity-related activities be­
tween DMERT and the TSPS application (e.g., initialization, overload, 
and processor switch) 

(ii) Sanity and integrity of application processes 
(iii) PSI maintenance. 
These functions have been implemented in the Application Integrity 

Monitor (AIM), the native-mode portion of the TSPS process, and the 
PSI diagnostic process. 

REAL-TIME ARCHITECTURE 815 



5.2. 1 Hardware integrity 

The TSPS No. 1B hardware architecture and, in particular, the 
design of the PSI, made it possible to retain most of the peripherals 
used in TSPS No. 1. As a result, the maintenance strategy for these 
peripherals remained virtually unchanged and the maintenance soft­
ware implementing it was emulated with only minor changes. The 
entire maintenance software for the TSPS peripherals resides in the 
kernel TSPS process and represents a distinct maintenance package. 

Unlike the SPC lA, the SPC 1B does not provide matching between 
the on-line and off-line processors. Instead, both the 3B20D and the 
PSI employ extensive self-checking hardware circuits to detect most 
service-affecting faults. The basic switchable entity is the simplex SPC 
lB. When a fault is detected in the on-line processor, a switch to the 
off-line processor is performed. This switch may be followed by an 
initialization sequence. The faulty circuit pack is then identified with 
the aid of a diagnostic. The SPC 1B hardware is designed such that no 
single fault in either processor can cause a system outage. The TSPS 
No. 1B hardware architecture, including the PSI, and its maintenance, 
is described in Ref. 6. TSPS No. 1B reliability is covered in Ref. 8. 

5.2.2 Software integrity 

5.2.2.1 Application integrity monitor. The Application Integrity Mon­
itor (AIM) process is the sole application interface to DMERT for 
system integrity issues-initialization, sanity, processor switches, and 
DMERT overload conditions. Primary responsibility for monitoring 
the sanity of the TSPS application and controlling its recovery resides 
with AIM. In addition, AIM performs PSI fault recovery and initiali­
zation. Reports of DMERT recovery actions and resource overload are 
made to AIM, which in turn controls the application response to the 
event. 

AIM is a nonkillable kernel process running at the same execution 
level as the DMERT System Integrity Monitor (SIM), higher than all 
other application processes. It interfaces with SIM via interprocess 
messages. AIM executes briefly every 500 ms at execution level 13 or 
as a result of PSI error interrupt or faults sent from the TSPS process. 
Since AIM is at a higher execution level than the TSPS process, it 
runs immediately when faulted by TSPS. This is done, for example, 
when TSPS requests a phase. TSPS faults AIM with its request, and 
AIM requests the phase of DMERT and reports back to TSPS about 
when to start its initialization. 

5.2.2.2 Initialization. The TSPS call-processing recovery phases were 
integrated into the DMERT initialization levels to provide a coherent 
strategy. In the resulting initialization mechanism, between two and 
four TSPS initialization levels are associated with each DMERT 

816 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



initialization level. Table III shows the mapping of TSPS recovery 
phases to DMERT initialization levels. TSPS minor and major phases 
are not taken after a bootstrap (DMERT initialization levels 2 through 
4). The bootstrap recreates the TSPS process in memory, zeroing all 
its unprotected data areas. Hence, a minor or major phase will not 
initialize the TSPS process; an SIA or an SIB is required. 

The TSPS No. IB initialization mechanism employs a sequential 
escalation for most transitions. In addition, TSPS executes four SIB 
phases, with each using a different peripheral configuration, before 
escalating to the next higher DMERT level. However, in some cases, 
such as manual initialization or an interrupted initialization, the se­
quential escalation may be bypassed. Control of the escalation se­
quence is distributed between SIM and AIM. If the highest automatic 
initialization phase [DMERT level 3 and TSPS level 4 (SIB)] is 
reached and the system still does not recover, the system will loop 
continuously, rebooting the system and taking SIBs with varying 
peripheral configurations until the system recovers or manual action 
is taken. 

A few minor changes were made to the initialization code to allow 
the TSPS process to take real-time breaks during recovery phases. 
Since ECMP is not cycling through priority classes during phases, it 
was necessary to add other breaks during the phases. Continuous 
running of TSPS during a several-minute-Iong phase would cause 
several DMERT sanity and overload checks to fail as lower-priority 
processes would not be run. Thus, during a phase the TSPS process 
will break during memory zeroing, for timing loops greater than 10 ms 
in duration, during audit stitching, and while base level waits for J­
level to signal the end of initialization. The length of the phase is not 
affected by these real-time breaks. The length of the phase is deter­
mined by the amount of peripheral equipment, and hence the number 
of 5-ms interrupts (J-Ievels) that must occur for peripheral equipment 
initialization. Although each interrupt will execute faster, the total 

Table III-DMERT level (EAI command) 
0 (Application Only) 1 2,3,4 (Bootstrap) 

(50) (51) (52,53,54) 

Application parameter 
0 No action Reference return Boot without TSPS 

process 
1 MNA MNA Boot + SIA 
2 MJA MJA Boot + SIA 
3 SIA SIA Boot + SIA 
4 SIB SIB Boot + SIB 
L Limp mode Limp mode Boot + limp mode 
Other values No action Reference return Boot + SIA 
No value (null) No action Reference return Boot + SIA 

REAL-TIME ARCHITECTURE 817 



elapsed time depends on the number of interrupts and not the speed 
at which they execute. 

5.2.2.3 Reference returns. Taking reference returns in the TSPS 
process is more difficult than on the SPC lA. All function calls, 
whether they be between native-code routines or between native code 
and emulated code (or vice versa), maintain a history of the function 
call on the process stack. (Transfers between emulated routines do not 
affect the stack. These transfers work just as on the SPC lA. In fact, 
emulated code cannot explicitly access the stack and is unaware of its 
existence. Only the microcode for the SMT instruction manipulates 
the stack to maintain a proper stack frame when calling a native 
routine.) A function must make a normal return to the calling routine 
to properly unwind the stack. Direct transfers between functions would 
quickly result in an incongruous stack from which the process would 
have no way of properly returning to the calling routines. Hence, when 
taking a reference return, the TSPS process must properly unwind the 
stack. 

To further explain reference returns within the TSPS process, 
consider a fault generated as the result of an invalid address. The 
TSPS process will be interrupted immediately, entered at its fault 
entry, and passed the state of the machine at the time the fault 
occurred. The fault entry then "generates" an E-Ievel interrupt. The 
state information indicates the instruction in error and the contents of 
all the general-purpose registers at the time of the error. Because the 
TSPS process contains both native and emulated code, this error could 
have occurred in either. In addition the error could have occurred at 
a point many levels deep in nested function calls. If a direct transfer to 
a known "safe" reference point is performed, then a later return to the 
original calling function (i.e., the event or interrupt entry) will fail as 
the program stack will not have been unwound properly. To accom­
modate the existence of the stack, slight modifications to the handling 
of reference returns had to be made. 

If the E-Ievel occurs in H- or J-Ievel, an immediate return from 
interrupt (using an EGBN or GBNHJ) will be executed. The return 
from interrupt will clear all of the interrupt's function call entries from 
the stack and allow the interrupted process to resume processing. This 
has the effect of canceling not only the current J-Ievel job in progress 
(as on the SPC lA), but also all jobs scheduled to execute that 5-ms 
entry. 

If the E-Ievel occurs in base level, a similar situation exists with 
respect to the kernel stack. In this case, however, a simple return from 
interrupt will not suffice. Base level must stimulate itself to be re­
entered at some later point in time. (J-Ievel, of course, is re-entered by 
the next 5-ms interrupt.) This is normally done with a time-out request. 

818 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



This is not sufficient here, either, as base level must know that its next 
entry is for the purpose of taking a reference return rather than 
continuing its base-level loop. Hence, base level sends a fault to itself 
and then performs the return from interrupt. As before, the return 
from interrupt will clear the stack of any function call entries made by 
base-level processing. When the fault entry is entered, the fault code 
will indicate that a base-level reference return is to be made. The fault 
entry drops to execution level 5 and transfers to the base-level refer­
ence point. 

The base-level reference-return handling is functionally equivalent 
to that on the SPC lA. The only difference is that a momentary delay 
is experienced while base level relinquishes control of the machine to 
pop its function call entries from the stack and is then re-entered at its 
fault entry before taking the reference return. 

5.2.2.4 Sanity. The integrity of the system is preserved through a 
sanity detection mechanism implemented as a hierarchy of sanity 
timers, integrity checks implemented in native and emulated software, 
and a recovery mechanism implemented as a hierarchy of initializa­
tions. 

Each application process has a built-in set of checks designed to 
detect any abnormal behavior that may lead to insanity. In particular, 
the T8PS process has preserved, through emulation, the hierarchical 
structure of sanity checks between base-level, low-priority J-Ievel, and 
high-priority J-Ievel. Also retained are the critical data structure 
checks and a monitor of the frequency of maintenance interrupts. The 
only sanity check that could not be emulated was the hardware long 
timer, previously implemented in the SPC lA to check high-priority 
J-Ievel sanity. This has been replaced by a software sanity timer 
implemented by AIM. 

At the next higher level, the AIM process is responsible for moni­
toring the sanity of the TSPS process. It does so through the software 
sanity timer implemented as a counter shared between the two proc­
esses. This counter is incremented by high-priority J -level and decre­
mented and then checked by AIM every 500 ms. The expected value 
of the counter is o. Repeated non-zero values indicate an insane 
condition. 

The sanity of AIM is in turn monitored by the DMERT System 
Integrity Monitor (81M), a process responsible for the sanity of the 
entire software system. SIM monitors AIM, and implicitly the entire 
application, by an application sanity timer. AIM activates the appli­
cation sanity timer after successful process creation in a system boot­
strap. AIM must continue to indicate normal operation by sending a 
periodic sanity event to SIM to reset the timer. 

The highest sanity check in the hierarchy is the 3B20D hardware 

REAL-TIME ARCHITECTURE 819 



sanity timer. SIM periodically resets the sanity timer. Hence, the 
sanity of SIM is implied by the failure of the timer to fire. Should the 
timer fire, a stop-and-switch operation will be performed to force the 
off-line processor into the active role. 

5.2.2.5 Overload control. The main objectives of the overload control 
strategy in TSPS No. IB are to: 

(i) Preserve system sanity 
(ii) Maintain a high level of call completions regardless of the load 

applied to the system. 
There are two types of resources that may be exhausted and lead to 

overload: TSPS call-processing resources, used exclusively by the 
TSPS process (e.g., TSPS peripherals, software resources used for call 
processing within the TSPS process, TSPS real time, etc.); and 
DMERTresources, either used exclusively by DMERT or shared with 
TSPS (e.g., kernel message buffers, nonswappable main memory, disk 
swap space, etc). 

The TSPS No. 1 overload control strategy for TSPS resources has 
been preserved in TSPS No. IB, with the software implementing it 
being emulated within the TSPS process. In this strategy, the E-E 
cycle time represents the detection parameter, while the number of 
calls being admitted and the number of active trunks represent the 
load control parameters. As the load increases, the E-E cycle time also 
increases in value. There are three thresholds for the E-E cycle time, 
determining the transitions from normal state, to phase 1 (minor) 
overload, to phase 11 (major) overload, and system initialization. 
During overload, the number of calls admitted and the number of 
active trunks are gradually reduced. As the load decreases, the E-E 
cycle time also decreases in value and the system is returned to its 
normal state. 

The overload control strategy for DMERT resources shared by 
DMERT and TSPS is based on overload detection by the process that 
administers the particular resource, overload monitoring by the SIM 
process, and overload control by the SIM and AIM processes. Upon 
determining that an overload condition exists, SIM notifies the craft, 
attempts to free some resources to alleviate the condition, and then 
notifies AIM. For some DMERT-detected overloads (e.g., kernel or 
supervisor and user-level lockout) an initialization is executed to 
restore resources. Once notified of these overload conditions, AIM 
requests a DMERT Level 1 and TSPS minor audit initialization 
(MNA) initialization. Subsequent overload indications result in esca­
lation of initializations. 

5.2.2.6 Processor switch. An example of the communication between 
DMERT and the TSPS application required for effective control of 
the system is illustrated by the processor switch. The duplex SPC IB 

820 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



normally operates with one processor on-line actively processing calls 
and the other off-line with its memory continuously updated on every 
write operation. The off-line unit is thus ready to be switched on-line 
should the need arise. A processor-switch request can be one of three 
types: recovery, routine, and manual. A recovery processor switch is 
requested when a fault has been detected in the on-line processor and 
processing cannot continue on it. The routine processor switches are 
scheduled periodically, while the manual requests are made by the 
craft when needed. 

Certain time-sensitive activities within the TSPS application, e.g., 
writing on the AMA tape, benefit from an advanced notification that 
a processor switch is about to take place. Such a notification is used to 
complete time-sensitive operations and get ready for the switch. How­
ever, only routine and manually requested switches can be postponed 
until the application has been notified and given its approval. There­
fore, the routine and manual processor switch requests are routed 
through the AIM process. In turn, AIM notifies the TSPS application 
processes of an imminent processor switch and, after their completion 
of time-sensitive operations, returns a switch go-ahead to SIM. As a 
defense mechanism, if the application does not approve the switch 
within 10 seconds, DMERT will proceed with the switch. 

5.3 Other TSPS application processes 

In addition to the TSPS process numerous other native-mode proc­
esses were developed to support the emulation. These processes pro­
vide needed functions for a complete system under DMERT. The 
major processes are discussed below. Figure 13 illustrates the interac­
tion between these major processes. The AIM process has been de­
scribed previously, and therefore will not be included here. The PSI 
Diagnostic Driver and Control processes are detailed in Ref. 6. 

5.3.1 Kernel processes 

5.3.1.1 PSI diagnostic driver. The PSI Diagnostic Driver process is a 
killable kernel process that performs diagnostic tests of the on-line 
PSI. To perform the on-line tests the driver must synchronize its 
operation with TSPS J-Ievel operation in order not to interfere with 
ongoing peripheral I/O. It will execute the tests at execution level 12 
when a non-interfering 3-ms window between J-Ievels is found. Its 
other processing is performed at lower execution levels. The driver 
shares memory with AIM and the TSPS process for synchronization 
of activities and in order to monitor TSPS peripheral equipment 
equippage and status. 

5.3.2 Supervisor processes 

5.3.2.1 File system interface. The TSPS No. IB application has only 

REAL-TIME ARCHITECTURE 821 



Q) 
N 
N 

~ 
I 
m 
to 
m 
r-
r-
C/) 

-< 
C/) 
~ 
m KERNEL 

~ ---
~ 
m 
() 
I 
Z SUPERVISOR 

0 » r-
c.... -----
0 
C USER 
:::0 
Z » 
r 
~ 
» 
:::0 
() 
I 

CO 
OJ 
VJ 

TSPS DMERT 

--- MAJOR COMMUNICATION PATH 

AIM - APPLICATION INTEGRITY MONITOR 
DMERT - DUPLEX MULTI-ENVIRONMENT REAL-TIME 

FSI - FILE SYSTEM INTERFACE 
MTCE - MAl NTENANCE 
MTTY - MAINTENANCE TELETYPEWRITERS 
PBCP - PERIPHERAL BUS CONTROL PROCESS 

PSI - PERIPHERAL SYSTEM INTERFACE 
SIM - SYSTEM INTEGRITY MONITOR 

TPCP - TSPS DISPLAY PAGE CONTROL PROCESS 
TSIP - TSPS SPOOLER INPUT PROCESS 
TSPS - TRAFFIC SERVICE POSITION SYSTEM 

Fig. 13-Interaction between TSPS and DMERT processes in TSPS No. IB process 
architecture. 



one supervisor process, the File System Interface (FSI). The spe lA's 
program tape unit (PTU) was not retained in TSPS No. lB. All 
required operations of the PTU were functionally reproduced with the 
FSI. Examples of such functions include dumping emulated office data, 
protected memory, or program to tape. The FSI shares the emulated­
code address space and interfaces with the DMERT file manager to 
transfer data between the emulated address space and the DMERT 
disk file system. The 3B20D's nine-track tape unit and DMERT I/O 
facilities are used to move the data between tapes and the disk file 
system. None of the FSI functions are time-critical. Hence, the FSI is 
designed as a killable supervisor process that is created· upon demand 
and dies when it has completed its function. Multiple instances of the 
FSI can simultaneously coexist as long as their respective functions do 
not interfere with each other. 

5.3.3 User processes 

The TSPS application has numerous user-level processes. Most of 
these perform demand tasks as the result of craft input. The process 
is created to perform the task and then dies when it is completed. The 
most significant user-level processes are described below. 

5.3.3.1 Craft interface processes. The maintenance center craft in­
terface for the TSPS No. 1B consists of a video display terminal for 
input, output, and status displays, along with an adjacent printer for 
a hard copy of all output messages. The terminal's screen is split into 
four areas, as shown in Fig. 14. The top is for system status information 
and is always displayed. The variable-sized middle section is for 
displays which, for example, may show the status of a particular 
hardware subsystem. The remainder of the screen is for scrolling 
system output messages, and there is a single, dedicated line for input. 
This interface is also remoted to the Switching Control Center System 
(SeeS), described in Ref. 9, for remote maintenance. 

Although the actual I/O to the devices is done by the DMERT I/O 
driver, the data read and written to the devices are formatted and 
interpreted by a collection of user-level processes. The major DMERT 
processes include the input Shell, the Controller of Output Spooler 
Process (eSOP), and the Display Administration Process (DAP). 

The application interface to esop and DAP is designed to be from 
other user-level processes. Hence, TSPS has developed two user proc­
esses that serve as intermediaries between the TSPS kernel process 
and esop and DAP. The TSPS Spooler Input Process (TSIP) shares 
a memory buffer with the TSPS process. TSPS queues messages by 
priority in this buffer. TSIP dequeues these messages and passes them 
to esop via interprocess messages. esop then merges the TSPS­
generated messages into a single, systemwide, prioritized queue for 

REAL-TIME ARCHITECTURE 823 



(X) 
N :a. 

-f 
:r 
m 
OJ 
m 
r 
r 
(JJ 
~ 
(JJ 
-f m 
~ 
-f 
m 
() 
:r z 
a » 
r 
c-
o 
C 
JJ 
Z » 
.! 
~ 
» 
JJ 
() 
:r 
<0 
en 
U) 

BTL-LABX 
SYS EMER 
OVERLOAD 

CMD: 

TSPS 
CRITICAL 
SYS INH 

lBT1,1.0 
MAJOR 

CU 
MINOR 

CU PERPH 

<C> MM/DD/YY HH:MM:SS 
BLDG/PWR BLDG INH CKT LIM SYS NORM 

LINK BASE PU PSS/RTA 
140 -- LOCAL PSS1 - 0 DCN - 00 -

IpSSll 
TTY EJ 

Fig. 14-Maintenance center craft interface for TSPS No. IB. 



printing to the maintenance terminals. The TSPS Display Page Con­
trol Process (TPCP) controls the TSPS application displays. TPCP 
receives change of state information from the TSPS process via 
interprocess messages. TPCP then translates this into the appropriate 
display page control information and directs DAP via interprocess 
messages to change the state of the various display page indicators. 

The above-mentioned processes are potentially subject to being 
killed as the result of a system error or manual action. However, they 
provide a critical service and must have continuous operation. 
DMERT provides a Craft Monitor (CMON) process that monitors the 
operation of craft processes. CMON will immediately recreate any 
craft process that dies, along with any other process that must be 
reinitialized. CMON itself is monitored by the User-Level Automatic 
Restart Process (ULARP). ULARP will automatically restart any 
user-level process under its surveillance should it die. ULARP execu­
tion is monitored by the DMERT System Integrity Monitor process 
(SIM). 

TSPS input message syntax is quite different from that used by 
DMERT. The processing of these input messages is also performed 
quite differently. As such, it was necessary to modify the DMERT 
shell to handle TSPS input as well. When an input message is entered 
by the craft and read by the combined shell, it first checks for a TSPS 
syntax message (the most likely to be input). If the input is a TSPS 
message, it is sent to the TSPS process in an interprocess message. 
The TSPS process will look up the message in its memory-resident 
catalog and act on it accordingly. If the input was not a TSPS message, 
the combined shell handles it in the standard DMERT fashion. That 
is, a disk directory search is performed to find the appropriate user­
level process to execute in response to the command. This process is 
then created and executed to handle the input accordingly. 

5.3.3.2 PSI diagnostic control process. The PSI diagnostic control 
process is a user-level process that controls the execution of diagnostic 
tests on the off-line PSI. The PSI diagnostic was designed similar to 
DMERT common-system diagnostic processes and is woven into the 
DMERT diagnostic control structure. It is reacted and executed on 
demand as a result of a manual request, routine exercise or automatic 
diagnostic request. The PSI diagnostic creates the PSI diagnostic 
driver and communicates with it through interprocess messages to 
coordinate on-line and off-line PSI tests and TSPS process F-Ievel 
interrupt recovery actions. 

5.3.3.3 Peripheral bus control process. Power to the PSI peripheral 
buses is controlled by the 3B20D Processor's scanner/signal distributor 
(SC/SD). The PSI bus-power control points are duplicated with a set 
on a SC/SD controller in each I/O processor (lOP). The Peripheral 

REAL-TIME ARCHITECTURE 825 



Bus Control Process (PBCP) monitors and controls the status of the 
PSI peripheral buses. PBCP interfaces with the DMERT SC/SD 
administrator and the TSPS process via interprocess messages to 
coordinate actions. PBCP is a critical process that must always be 
active. Hence, it runs under the surveillance of ULARP. 

VI. SUMMARY 

This article has described how the characteristics of the TSPS No. 
1 and the 3B/DMERT systems have been combined in the TSPS No. 
lB architecture. Successful emulation of the TSPS No.1 software has 
been accomplished by hardware, firmware, and software in the TSPS 
No. lB. Emulated code, along with associated native code, has been 
structured as a single kernel process running under DMERT. This 
kernel process cooperates with other application processes and 
DMERT to form integrated maintenance and craft interface packages. 
The TSPS No. lB provides a modern, flexible vehicle for the future 
expansion of TSPS services. 

VII. ACKNOWLEDGMENTS 

The TSPS No. lB software described in this article was the result 
of contributions by many people. The authors wish to acknowledge 
their help in the preparation of this article. In particular, the authors 
wish to thank J. M. Aiken, P. S. Bogusz, D. L. Brown, D. L. Hofmockel, 
M. H. Richardson, E. S. Sachs, and M. D. Soneru for their contribu­
tions. 

REFERENCES 

1. R. E. Staehler and J. I. Cochrane, "Traffic Service Position System No.IB: Overview 
and Objectives," B.S.T.J., this issue. 

2. B.S.T.J.,49, No. 10 (December 1970). 
3. B.S.T.J.,58, No.6, Part 1 (July-August 1979). 
4. "3B20D Processor & DMERT Operating System", B.S.T.J., 62, No.1, Part 2 

(January 1982). 
5. D. L. Bayer and H. Lycklama, "UNIX Time-Sharing System: The MERT Operating 

System," B.S.T.J., 57, No.6, Part 2 (July-August 1978), pp. 2049-86. 
6. H. A. Hilsinger, J. H. Tendick, R. A. Weber, and G. T. Clark, "Traffic Service 

Position System No. IB: Hardware Configuration," B.S.T.J., this issue. 
7. T. Hack, T. Huang, and L. C. Stecher, "Traffic Service Position System No. IB: 

Software Development System," B.S.T.J., this issue. 
8. B. A. Crane and D. S. Suk, "Traffic Service Position System No. IB: Capacity and 

Reliability Evaluation," B.S.T.J., this issue. 
9. J. J. Bodnar, J. R. Daino, and K. A. VanderMeulen, "Traffic Service Position 

System No. IB: Switching Control Center System Interface," B.S.T.J., this issue. 

826 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



Copyright © 1983 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

Vol. 62, No.3, March 1983 
Printed in U.S.A. 

Traffic Service Position System No. 1 B: 

Hardware Configuration 

By G. T. CLARK, H. A. HILSINGER, J. H. TEN DICK, 
and R. A. WEBER 

(Manuscript received June 30, 1982) 

The Traffic Service Position System No. IB (TSPS No. IB) was 
developed by replacing the Stored Program Control No. IA (SPC IA) 
with the SPC IB, consisting of a 3B20 Duplex Processor (3B20D) and 
a Peripheral System Interface (PSI). The PSI was designed to inter­
face the 3B20D Processor technology with the existing TSPS periph­
eral system. This article describes the differences in technologies 
between the SPC IA and SPC IB, the hardware design required to 
overcome these differences, and the fault recovery and diagnostic 
software development required to integrate the new hardware into 
the maintenance structure of the TSPS No. lB. 

I. INTRODUCTION 

The 3B20 Duplex Processor (3B20D) was developed as a general­
purpose processor with a set of common system peripherals to support 
a wide range of applications and an instruction set optimized for a 
high-level language compiler. l To allow the 3B20D Processor to com­
municate with the Traffic Service Position System (TSPS) peripheral 
community, a special interface circuit was needed to bridge the differ­
ence in speed, timing, and control protocols between the new processor 
and the existing TSPS peripherals. This circuit is called the Peripheral 
System Interface (PSI) circuit. To bridge the software technologies 
without rewriting all existing TSPS operational code, the Stored 
Program Control No. lA (SPC lA) instruction set was emulated via 
special microcode, and 3B20D native code was used to interface the 
emulated code with the DMERT operating system. With these 
changes in hardware and software came the task of developing a 

827 



maintenance strategy that could integrate the advantages of the 3B20D 
Processor and Duplex Multi-Environment Real-Time (DMERT) op­
erating system with the existing TSPS maintenance strategy. Finally, 
to introduce the 3B20D Processor into in-service TSPS offices, retrofit 
procedures had to be developed to replace the existing TSPS No.1 
processor with a 3B20D Processor. 

The task of incorporating the 3B20D Processor into the TSPS 
system provided a unique set of challenges. This article describes the 
hardware and associated maintenance software required to accomplish 
this task. The emulation microcode, overall software architecture, and 
the implementation of the processor retrofit are covered in Refs. 2 and 
3. 

II. TSPS NO. 18 PROCESSOR AND PERIPHERAL INTERFACE 
DESCRIPTION 

The TSPS No. lB configuration consists of the existing TSPS 
peripheral system and a new processor called the SPC lB. The SPC 
lB consists of the 3B20D central control unit, disk file community, 
input/ output processors, and the Peripheral System Interface unit (see 
Fig. 1*). 

The peripheral architecture for TSPS No. lB remains essentially 
unchanged from TSPS No. 1. The interface between 3B20D Processor 
and the TSPS peripheral communication buses is provided by the 
Peripheral System Interface circuit. In the following sections a short 
description will be given of the SPC lA, and the TSPS peripheral 
system architecture. These sections are included to highlight the 
significant differences in processor design and to identify integration 
requirements. For a more detailed description of the SPC lA see 
Ref. 4. 

2. 1 Description of the SPC 1 A 

The SPC lA consists of a duplicated pair of central control (CC) 
units, a duplicated program and data store complex, a program tape 
unit (PTU), a master scanner, a signal distributor, a central pulse 
distributor (CPD), a maintenance control center, and a duplicated 
peripheral communications bus system (see Fig. 2). 

The CC has a processor cycle time of 6.3 ILS, with an instruction 
execution time of from 1 to 3 cycles. Most register operations require 
a single cycle, while memory writes require three cycles, and most 
peripheral orders require two cycles. The processor performs logic with 
a 20-bit combinational logic subtractor, which also has the capability 

* Acronyms and abbreviations used in the figures and text of this paper are defined 
at the back of this Journal. 

828 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



TSPS NO. 1B 

STATION 
SIGNALING AND 
ANNOUNCEMENT 

ANNOUNCEMENT 
STORE 

TRU~~DLlNK SUBSYSTEM [j 0 
POSITION LINK SERVICE an 

'--------1 NETWORK CIRCUITS CJ~ 

~----~------------I ~C 
OPERATORS 

PERIPHERAL BUS ANSWER BUS 

I-­ - -- - ----------- ------1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

3B20D 
CONTROL 

UNIT 
(0 OR 1) 

INPUT/OUTPUT 
I------~ PROCESSORS 

(0 OR 1) 

MAGNETIC 
TAPE DRIVE 

LOCAL 
MAINTENANCE 

SCANNER/SIGNAL 
DISTRIBUTOR 

TELETYPEWRITERS 

I 
I 

IL STORED PROGRAM CONTROL NO. 1B JI 
------------------ ------

MHD - MOVING HEAD DISK 
TSPS - TRAFFIC SERVICE POSITION SYSTEM 

Fig. I-Traffic Service Position System No. IB. 

of performing the logic operations AND, OR, and EXCLUSIVE-OR. 
Circuits are also provided to perform shift or rotate functions, both 
right and left. There are seven general-purpose registers each contain­
ing 20 bits, which provide internal storage for information manipula­
tion. 

Although the CC arithmetic/logic unit (ALU) operates on 20-bit 
words, the communication between the CC and the main stores is over 
a 47-bit data and instruction bus with a 19-bit address bus. Data are 
physically stored as 47-bit blocks, which consist of either a 40-bit 
instruction or two 20-bit data words, six Hamming error-correcting 
code bits, and an overall parity hit. An additional bit is used internal 

HARDWARE CONFIGURATION 829 



(X) 
w 
o 

--I 
::c 
m 
ro 
m 
r 
r 
(J) 

~ 
--I m 
~ 
--I m 
() 
::c 
z 
o » 
r 
C-
O 
C 
:0 
Z » 
.! 
~ 
» 
:0 
() 
::c 
co 
(X) 
VJ 

TSPS PERIPHERAL UNITS 
1-0UT-OF-N BUS ,...-----.... 

TSPS PERIPHERAL­
UNIT ADDRESS BUS 

PUAB (0 OR 1) 
COMMUNICATIONS [_ 

BUS 
TRANSLATOR 

--------. 

CCIS - COMMON CHANNEL INTEROFFICE SIGNALING 
CPD - CENTRAL PULSE DISTRIBUTOR 
PSS - POSITION SUBSYSTEM 
SPC - STORED PROGRAM CONTROL 

MASTER 
SCANNER 

TSPS 

SCANNER 
SIGNAL 

DISTRIBUTOR 

TRUNK FRAME 

TRUNK 
LINK 

CIRCUIT 

SCANNER ANSWER BUS 

POSITION 
LINK 

CIRCUIT 

SSAS - STATION SIGNALING AND ANNOUNCEMENT SUBSYSTEM 
TSPS - TRAFFIC SERVICE POSITION SYSTEM 
TTY - TELETYPEWRITER 

Fig. 2-Traffic Service Position System No. 1. 

SUPPLEMENTARY 
SIGNAL 

DISTRIBUTOR 

* ITEMS ELIMINATED BY 
TSPS NO. 1B 



to the processor to select one of the 20-bit data words for read and 
write operations. This additional bit provides an effective 20-bit ad­
dressing capability. 

The SPC lA program and data store complex consists of duplicated 
store communities with each community containing up to a maximum 
of 30 store modules with each module containing 16,384 47-bit words. 
These stores are used for both program and data storage. Each 
processor has access to both store communities for increased reliability. 
Normal nonfault operation is for both store buses to be active with the 
active processor accessing both stores and comparing results. For 
processor write operations both store buses are written in order to 
maintain up-to-date copies in both memories. 

The interface of the processor to the peripherals is provided by four 
AC buses. First is the SPC lA peripheral-unit address bus, which is 
dedicated to the units that are common to every SPC lA installation. 
The common equipment includes a master scanner, signal distributor, 
maintenance teletypewriter (MTTY), and a program tape unit (Fig. 
2). The second bus is the Peripheral-Unit Address Bus (PUAB), which 
transmits data to the TSPS peripheral units. The third bus is the 
Central Pulse Distributor Bus (CPDB), and the fourth is the Scanner 
Answer Bus (SAB). A more detailed description of this peripheral 
interface will be given in Section 2.2, since it is this peripheral bus 
architecture that must be interfaced with the 3B20D Processor. 

As mentioned above, a program tape unit, master scanner, signal 
distributor (SD), central pulse distributor (CPD), and maintenance 
control center are the basic set of peripherals required for all SPC lA 
applications. The program tape unit is a nine-track, 200-bit-per-inch 
(BPI) tape unit that provides a bootstrap program loader as well as a 
general-purpose input/output capability. The master scanner is used 
throughout the TSPS No. 1 for data input from the peripheral equip­
ment. The master scanner contains a matrix of scan points connected 
in such a manner that they can be interrogated in groups of 16 to 
determine the state of a particular scan point. The output of the scan 
points is transmitted to the SPC lA on the SAB. The signal distributor 
is accessed via the SPC lA Peripheral Unit Address Bus and provides 
a matrix of latching relay contacts that may be opened or closed on 
command from the processor. The central pulse distributor (CPD) is 
used to provide unit addressing for data transfers over the shared 
system buses. The CPD is a translator decoder that takes a binary 
address from the CPDB and provides a unipolar or bipolar pulse on 
one of a possible 1024 points. The maintenance control center consists 
of the MTTY and the Control and Display circuit. The MTTY 
provides the primary craft interface function. System configuration, 
status, and system diagnostics may be controlled via MTTY input. In 

HARDWARE CONFIGURATION 831 



addition to the MTTY, the Control and Display circuit visually indi­
cates the system status through indicator lamps and allows manual 
control of the system by means of keys and switches. 

2.2 Description of the TSPS peripheral interface 

The primary hardware development for the TSPS No. IB was the 
PSI, which interfaces the 3B20D to the existing TSPS periphery. The 
TSPS peripheral interface is described at this time to provide back­
ground for description of the PSI. 

The SPC IA Peripheral-Unit Address Bus shown in Fig. 2 has been 
eliminated for TSPS No. lB. The units associated with this bus, the 
master scanner, the signal distributor, the MTTY, and the program 
tape unit, have either been eliminated or moved to the TSPS Periph­
eral-Unit Address Bus. The signal distributor was used primarily for 
SPC IA maintenance and control and is no longer needed. A few signal 
distributor points that were not associated with the SPC IA were 
reassigned to signal distributor points in the TSPS periphery. The 
MTTY and the program tape unit were replaced by equivalent func­
tions in the 3B20D Processor, and the master scanner was moved to 
the PUAB because many of the scan points were used by TSPS 
peripheral circuits. 

The peripheral bus structure retained after replacement of the SPC 
IA consists of the Central Pulse Distributor Bus, the Peripheral-Unit 
Address Bus and the Scanner Answer Bus. These three peripheral 
communication buses retained for TSPS No. IB contain four types of 
leads: data, control, error detection, and diagnostics. 

The CPD bus includes 32 enable address bits that select one of the 
possible 1024 enable pulse outputs from the CPD. Control leads include 
a bus sync and four execute pulses that activate the CPD decoding 
logic. Each execute pulse is dedicated to one CPD unit. An additional 
control lead is the "we-really-mean-it" (WRMI) pulse, which is used 
to provide additional signaling redundancy, thereby increasing noise 
immunity. The error-detection leads include parity check bits across 
the data bus, an execute complete signal, an "all-seems-well" (ASW) 
response bit, a bit that indicates single or multiple CPD output pulses, 
and two enable-verify reply signals that indicate reception of an enable 
pulse by the selected peripheral unit. Diagnostic and maintenance 
leads include a master reset, and a bit to diagnose error-checking 
circuits. 

The PUAB leads pass through a Communications Bus Translator 
(CBT) circuit before being transmitted out to the TSPS peripherals. 
The PUAB has 20 bits of data and three control leads. The control 
leads include a CBT reset pulse to clear CBT input registers, a latch 
pulse to load the CBT input registers, and an execute bit that causes 

832 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



the CBT to send translated data to the peripheral units. Error-checking 
leads include a parity bit over the data field, and an ASW bit, which 
is a summary of error checks performed by the CBT. 

The SAB is the input bus to the processor; it includes 20 bits of 
data. Bit twenty is used by some peripheral units as a parity bit; the 
processor provides a parity check on the scanner answer data. Control 
functions for the scanner bus are all provided internal to the processor 
and consist of a window during which peripherals must load answer 
data onto the bus. 

The error-checking leads described above are connected to check 
circuits in the processor or connected directly to a set of hardware 
registers called the Peripheral-Unit Maintenance Summary (PUMS) 
registers. The outputs of the error-checking circuits are also loaded 
into the PUMS register. The data in the PUMS register is compared 
with expected data, and if any errors are detected, the processor circuit 
generates a maintenance interrupt that results in the scheduling of 
TSPS fault-recovery programs. 

Other peripheral interface leads include clock leads and processor­
controlled pulse leads. The clock leads include 91-Jls, 0.5-Jls, and 5-ms 
output pulses, which drive the Automatic Message Accounting tape 
units, teletypewriter buffers, and other circuits that need them. The 
pulse leads are direct processor-controlled leads called "P-position" 
pulse sources. The P-position pulses were provided in the SPC lA by 
special processor hardware called Buffer Bus Registers.4 The purpose 
of these pulse sources is to provide direct processor control of critical 
peripheral units for hardware recovery in the event that the normal 
peripheral communication path is failing. These pulses include: a CPD 
reset; a network reset for trunk-link and position-link circuits, universal 
trunk frames, etc; and an auxiliary reset pulse, which is presently used 
for the TSPS Position Group Gate and the Service-Observing Gate 
transmitter circuit. 

In essentially all cases, the characteristics of the signals transmitted 
and received on these buses are bipolar AC pulses of 0.5-Jls duration 
and approximately 6-volt amplitude. 

All peripheral orders-both distributes(DIST) and scans (SCAN)­
operate with the same basic sequence. An address is loaded onto the 
CPD bus, which activates one of a possible 1024 enable-pulse points 
out of the CPD; immediately after the CPD address is pulsed, binary 
data may be placed onto the PUAB. The enable pulse from the CPD: 
activates receiving circuits in the selected peripheral unit and primes 
that circuit to receive data over the PU AB. The selected circuit 
responds based on the data received and the CPD pulse received. For 
example, if a scanner were being accessed, the binary address would 
specify a group of 16 scan points to be interrogated, and the state of 

HARDWARE CONFIGURATION 833 



the scan points would be gated onto the SAB and returned to the 
processor. By requiring each circuit in the periphery to read the binary 
address only after receiving a CPD enable pulse, a high degree of noise 
immunity and reliability is achieved in peripheral communications. 

In summary, there are greater than 200 data and control leads that 
provide communications between the TSPS peripherals and the proc­
essor. They are AC bipolar pulses and are transformer-coupled to the 
peripheral buses. 

III. GENERAL CHARACTERISTICS OF THE 38200 PROCESSOR 

The central control (CC) of the 3B20D Processor5 is micropro­
grammed, extensively self-checked, and handles 32-bit data words in 
a 24-bit address space. The control unit (CU) consists of the CC, its 
main memory, cache, Direct Memory Access (DMA), and input/ out­
put channels. In the standard duplex processor configuration, two 
control units operate in a nonmatching mode with one designated as 
active, while the other serves as standby-ready. A main memory 
update circuit maintains the consistency between main stores to ensure 
an up-to-date environment in the event of a processor switch. The 
SPC IB Processor and peripheral architecture is shown in Fig. 3. 

The 3B20D Processor supports a wide variety of peripheral devices 
including moving head disks, magnetic tape drives, data links, and 
terminals. Peripherals are controlled in programmed I/O mode directly 
by the processor, or with Direct Memory Access (DMA) through 
appropriate interface circuitry. A Disk File Controller (DFC) unit 
manages the information flow to and from the moving head disk drives, 
and an Input/Output Processor (lOP) unit provides interface control 
for magnetic tape drives, data links, terminals, and other customized 
peripheral controllers. 

The central processing unit of the 3B20D utilizes a 32-bit data 
architecture throughout, including the main memory buses and an 
optional 8K-byte cache memory. Extensive self-checking is used to 
ensure immediate fault detection and possible correction of errors to 
allow graceful recovery and ensure high system availability. Hamming 
correction of single-bit errors and detection of all double-bit errors are 
performed by the main-store controller on each memory read opera­
tion. In addition, on every refresh cycle, a memory word is checked 
such that all words are tested periodically. This capability ensures that 
memory failures occurring on infrequently used addresses will be 
detected quickly. 

Software processes on the 3B20D use a 24-bit virtual address space, 
which is converted by memory management hardware to 24-bit phys­
ical addresses using a paged-segmentation scheme. The memory man-

834 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



I 
» 
JJ 
o 
~ » 
JJ 
m 
() 
o 
Z 
"'T1 

G5 
c 
JJ » 
-I 
6 z 

OJ 
W 
U1 

CENTRAL 
PULSE 

DISTRIBUTOR 

r 

I 
I 

CPD 
BUS 

I r---
I I 
I I 

ACHI 

} 

• ENABLE-
PULSE 

• PAIRS 

PUAB 

COMMUNICATIONS 
BUS TRANSLATOR 

(0 OR 1) 

TSPS PERIPHERAL UNITS 
1-0UT -OF-N BUS 

SCANNER MASTER 
SCANNERS 
(INCLUD­

ING 0) TRUNK FRAMES 

I 
I CENTRAL 

CONTROL I ACHI - APPLICATION CHANNEL INTERFACE 

I 
I TSPS CCIS - COMMON CHANNEL INTEROFFICE SIGNALING 
I MICROCODE CPD - CENTRAL PULSE DISTRIBUTOR 

CU - CONTROL UNIT 

I I MHD - MOVING HEAD DISK 
MAIN STORE PSS - POSITION SUBSYSTEM 

I I PUAB - PERIPHERAL-UNIT ADDRESS BUS 
I 3B20D SC/SD - SCANNER/SIGNAL DISTRIBUTOR I 

I I 
CONTROL UNIT I SSAS - STATION SIGNALING AND ANNOUNCEMENT SUBSYSTEM I 

(CU 0 OR 1) (1) 1 3 TSPS - TRAFFIC SERVICE POSITION SYSTEM 
L ______ ~ TTY - TELETYPEWRITER L ______________________________ J 

Fig. 3-The SPC IB Processor and peripheral architecture. 



agement circuitry is a high-speed, two-way, set-associative memory 
called the Address Translation Buffer (ATB). The ATB reduces over­
head associated with the address translation function, and also pro­
vides main-store access protections on a page or segment basis. Phys­
ical memory can grow in half- or full-megabyte increments to a total 
of 16 megabytes. Memory instructions provide addressing capabilities 
with byte, half-word, full-word (32 bits), or move-block options. 

The 3B20D Processor is a microprogrammed machine where up to 
four instruction sets can be dynamically selected. A variable micro cycle 
ranging from 150 to 300 nanoseconds is employed to minimize instruc­
tion time. The switch able instruction sets allow an application to 
transport current software, via emulation, to the 3B20D while still 
providing a modern operating system in a high-level language (i.e., 
DMERT and C language). The native instruction set is optimized for 
the C programming language and supports all C data types and control 
structures. Additional features within the CC include: duplicated 
Arithmetic/Logic Units (ALUs) for immediate fault detection; exten­
sive bit rotate, mask, and test capability; a real-time clock with one­
millisecond resolution; and internal sanity timers. 

In its duplex configuration, two basic links exist between duplicated 
CU s. The first link is driven by the maintenance channel circuit and 
serves as a communication and control link between the processors. 
This link is used to execute off-line diagnostics, off-line audits, and 
information transfers during a processor switch. The second link 
connects the memory update circuits, which keep both main stores 
synchronized by sending all writes to cache and main store to the off­
line memory controller. This second link also contains a backup 
maintenance channel in the event of a fault in the regular link. 

Peripheral units are connected to the CU via the Direct Memory 
Access (DMA) unit. The DMA does not interface directly with periph­
eral units, but rather communicates with two intelligent subsystems; 
a Disk File Controller (DFC), and an Input/Output Processor (lOP). 
Communications to both the DFC and lOP are via Dual-Serial Chan­
nels (DSCH), which allow any peripheral to operate with either CU of 
a duplex pair. Each DFC is currently capable of supporting 16 moving­
head disk drives of 300-megabyte capacity each. An lOP is capable of 
supporting a wide variety of peripherals such as nine-track tape units, 
printers, synchronous and asynchronous data links, maintenance and 
general-purpose terminals, scanner/signal distributor, and custom net­
work interfaces. Peripherals may also be connected to the processor 
Central Control Input/Output (CCIO) bus via an interface such as the 
Application Channel Interface (ACHI). The ACHI is a 32-bit, parallel­
interface board that provides I/O capabilities for applications needing 
high-speed data transfers with minimal overhead. 

836 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



CENTRAL MAIN 
CONTROL STORE 

01 RECT MEMORY 
ACCESS 

MAINTENANCE CHANNEL 

MAIN STORE UPDATE 

TSPS PERIPHERAL BUSES 

ACHI - APPLICATION CHANNEL INTERFACE 
DFC - DISK FILE CONTROLLER 
lOP - INPUT/OUTPUT PROCESSOR 

SC/SD - SCANNER/SIGNAL DISTRIBUTOR 
TSPS - TRAFFIC SERVICE POSITION SYSTEM 

MAIN CENTRAL 
STORE CONTROL 

01 RECT MEMORY 
ACCESS 

Fig. 4-Duplex configuration of the TSPS No. IB. 

IV. CONFIGURATION OF THE TSPS NO.1 B 

The TSPS No. IB configuration consists of the duplex SPC IB, 
TSPS peripheral units, several printers, terminals, and a duplicated 
link to the Switching Control Center System (SCCS), which serves as 
the remote maintenance center.6 The SPC IB includes the 3B20D 
Central Control Unit (CU), disk file community, Input/Output Proc­
essor (lOP), TSPS emulation microcode, Application Channel Inter­
face (ACHI), and the Peripheral System Interface. The overall TSPS 
No. IB configuration is shown in Fig. 4. 

The 3B20D Processor is equipped with nine megabytes of main store 
for the initial TSPS No. IB program generic. Hardware added to the 
basic processor for the TSPS application includes two boards contain­
ing three kilobytes of Programmable Read-Only Memory (PROM) for 
the emulation microcode, and an Application Channel Interface 
(ACHI) circuit board. The ACHI plugs directly into the CCIO bus and 
provides a high-speed, 32-bit data transfer interface to the PSI. The 
PSI was designed as an interface for the different I/O signaling 
protocols of the 3B20D and the existing TSPS peripheral circuits. A 

HARDWARE CONFIGURATION 837 



detailed description of the PSI is given in Section V. The TSPS 
periphery4 is preserved in its same basic configuration with only minor 
differences.3 

The disk file community for TSPS consists of duplicated DFCs 
including two Moving Head Disks (MHDs) for each disk file controller 
(DFC). One disk on each DFC is physically designated as the system 
disk and contains the DMERT and TSPS programs and data. The 
other disk drive is a spare that is fully diagnosable and contains a copy 
of the system disk. If a system disk does fail, the spare drive may be 
recabled to provide a full-duplex disk configuration once again. 

The lOPs are equipped to provide four scanner/signal distributors 
plus interface boards for a 1600-bpi magnetic tape frame, Craft Inter­
face MTTY, Receive-Only Printer (ROP), an office alarm control 
circuit, a recent change and verify terminal, an auxiliary printer, a 
data-linked Field Update interface/ and remote SCCS data links. The 
additional scanner/signal distributor monitors the PSI power switch 
and also provides duplicated control over +24-volt power to the PSI 
peripheral bus drivers. The MTTY and ROP are separately connected 
to one of the two lOPs through an automatically or manually con­
trolled port switch. This 3B20D feature provides a duplicate path 
between the central processor and the maintenance center equipment 
without requiring recabling or duplicate terminals. Included with the 
common 3B20D equipment is a software package to receive and verify 
software updates at the field site over data links.7 The SCCS interface 
is a duplicated 4800-baud link that provides 14 virtual channels through 
a BX.25 protocol. The channels are used to transmit critical status 
indicators, alarms, processor recovery messages, and normal mainte­
nance channel messages. In the typical configuration, the SCCS is 
used to remotely monitor the TSPS sites and has complete capability 
to control the machine in recovery situations.6 The local MTTY is a 
video display console that shows critical indicators, provides several 
display pages depicting system configuration information, and allows 
craft personnel to enter system input messages. TSPS equipment 
configurations have been incorporated into the MTTY displays by 
providing additional display pages and additional page numbers for 
the a,pplication-only displays. A description of the Craft Interface is 
given in Ref. 2. 

An extensive, non-interfering, field-debugging utility is also available 
by inserting a Dual Utility Circuit (DUC) into the 3B20D. The DUC 
has a dedicated slot in the processor that has access to all the important 
system buses. A Field Test Set (FTS) connects to the DUC via ribbon 
cable to provide a program debugging environment for both high-level 
programming languages and TSPS emulated code. Address and data 
matchers are available, as well as program tracing capabilities. More 

838 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



information about the debugging environment used in the TSPS No. 
lB development is given in Ref. 7. 

v. PERIPHERAL SYSTEM INTERFACE 

5.1 Basic purpose 

The basic purpose of the Peripheral System Interface is to act as a 
data transfer interface with the TSPS periphery identical to that 
provided by the SPC lA. TSPS peripheral units communicate with 
the SPC lA via the PUAB, CPDB, and the SAB. The 3B20D Processor 
communicates with its channels over the CCIO bus. For proper oper­
ation, TSPS units require a precisely timed set of handshaking signals 
in addition to electrical compatibility with the CCIO bus. To avoid 
changing the peripheral units themselves, the PSI was designed to 
interface the TSPS periphery with the 3B20D Processor. In addition, 
an ACHI is provided with the 3B20D Processor to allow PSI indirect 
access to the CCIO bus. In essence then, the PSI appears as a main 
I/O channel to the 3B20D Processor. The overall structure incorpo­
rating the 3B20D Processor and the PSI into TSPS is shown in Fig. 4; 
Fig. 5 is a functional block diagram of the PSI circuit. 

5.2 Overview 

The general flow of information between the 3B20D Processor and 
the TSPS periphery is as follows: 

(i) A command word along with data information is formatted by 
the emulation microcode and sent to the ACHI. 

(ii) The PSI receives the command, decodes the instruction, and 
starts the appropriate handshaking sequence OJ;} the TSPS peripheral 
buses. 

(iii) Once the command has begun, the emulation microcode passes 
a second data word via the ACHI to the PSI. This data is then 
formatted by the PSI and passed onto the peripheral circuits at the 
appropriate moment. 

(iv) Any data sent back from the TSPS periphery along with error 
check signals are verified and then combined with internal PSI fault­
detection information and passed back to the ACHI. 

(v) The CU receives the data and emulation microcode performs 
further post analysis and error checking on the data before the conclu­
sion of the peripheral order. 

5.3 Application channel interface 

The ACHI is a 3B20D Processor I/O channel that provides a high­
speed, parallel, 32-bit interface between the 3B20D and an application 
device. Control signals allow the information transfers to be marked as 

HARDWARE CONFIGURATION 839 



/DATA 

.-
I 
I 
I 
I 
I 
I 
I 
I 

PSI 
I REGISTERS 

/ 

I 
I 

MR 

EA 

RC 

ARA 

ARB 

CPO 

CBT 

OUAT~~ITSI I INTS 
~ '--------,r-----l I 

I 

ALL SEEMS 
WELL 

SANITY ERROR 
CHECK 

INTERRUPT 
I ACHI 
IINPUTS 

I 

CLEAR 
I FLAG 

\ CONTROL 

I 
I 
I 
I 
I 
I 

SEQUENCER 
~~--.---~------~ 

/ 

L ______ _ 
PERIPHERAL 

CLOCKS 

DRIVERS 

I 

I 

I 

I 

I 

---' 
PERIPHERAL 

BUSES 

TSPS PERIPHERY 

ACHI - APPLICATION CHANNEL INTERFACE 
ARA - ANSWER REGISTER A 
ARB - ANSWER REGISTER B 
CBT - COMMUNICATIONS BUS TRANSLATOR 
CPD - CENTRAL PULSE DISTRIBUTOR 

EA - ENABLE ADDRESS 
INTS -INTERRUPT SOURCE REGISTER 

MR - MODIFICATION REQUEST 
PSI - PERIPHERAL SYSTEM INTERFACE 
RC- REPLY CHECK 

Fig. 5-Block diagram of the Peripheral System Interface circuit. 

either data or command information when transmitted over the CCIO 
bus. When the application passes data to the 3B20D, additional control 
signals are used to indicate an "all seems well" or error response. Other 
miscellaneous control signals are also buffered by the ACHI. One such 
control signal used by the PSI keeps the 3B20D Processor and PSI 
clocks synchronized, while another is connected to a high-priority 
processor interrupt to signal when a fatal PSI hardware fault is 
detected. A third lead is an extension of the CCIO bus I/O inhibit lead. 
This signal is asserted in the off-line processor to inhibit all channels, 
thus preventing any off-line channels from interfering with the active 
processor. The PSI uses the inhibit lead in the same manner; it directly 
prohibits all PSI peripheral bus drivers from pulsing even though the 
sequencer may be active. 

840 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



5.4 PSI functional description 

The five major functional areas in the PSI are: 
(i) The ACHI interface 

(ii) PSI registers 
(iii) Peripheral bus drivers/receivers 
(iv) Instruction sequencer and clock circuits 
(v) Maintenance and fault-recognition circuits. 

Each of these areas is described in more detail in this section. 

5.4.1 ACHI interface 

The ACHI interface uses 5-volt, differential dc signaling on 80 pairs 
of leads. There are separate input and output buses, with each bus 
containing 32 data bits, 4 bits of byte parity, and 4 control leads. Data 
transfers from the ACHI to the PSI are accomplished by making data 
available on the PSI's input bus and then raising the appropriate 
command or data flag. This flag starts the PSI sequencer, which gates 
the data into the appropriate register and resets the control and data 
flags. The PSI passes data back to the processor by driving its output 
data bus and then pulsing the normal or maintenance control leads. 
These leads are used internally in the ACHI to latch the new data and 
also to indicate that data is present on the next status interrogation by 
the emulation microcode. 

5.4.2 PSI registers 

The eight registers in the PSI are used to store data from the ACHI, 
the periphery, error-check signals accumulated during an order, and 
to perform maintenance control functions or operations. The CPD and 
CBT registers are used to store data received from the ACHI for the 
currently executing peripheral instruction. The outputs of these reg­
isters are gated through decoder circuits and then pulsed onto the 
peripheral buses at the appropriate time. The two answer registers 
(ARA, ARB) receive data from the duplicated peripheral Scanner 
Answer Buses. This data is typically matched at the end of the 
peripheral order sequence and one set is passed to the processor 
through the ACHI. The Reply Check (RC) register gathers peripheral­
error-response data and is used to determine whether to assert the 
normal or maintenance flag when sending data back to the processor. 
The Maintenance Register (MR), Enable Address Register (EA), and 
the Interrupt Source Register (INTS) are all used by diagnostics to 
provide special maintenance observation and control points during 
diagnostic exercises. 

5.4.3 Peripheral bus drivers/receivers 

The PSI must interface to three main TSPS peripheral buses. All 
peripheral signaling uses 0.5-flS pulses over AC transformer coupled 

HARDWARE CONFIGURATION 841 



buses for maximum isolation and noise immunity. The purpose of each 
bus is described in Section 2.1. The PSI has access to both halves of 
each of the duplicated buses. 

5.4.4 Instruction sequencer and clock circuits 

The PSI sequencer consists of a dual set of timing chains, driven by 
a 10-MHz oscillator, that can be used to provide pulses from 100 ns to 
12 Jls wide. This is accomplished by having the first chain pulse one of 
its ten output leads every 100 ns, while the other chain pulses one of 
its twelve output leads every microsecond. These pulses are then 
logically combined to provide variable-length timing control pulses 
throughout the execution of the PSI commands. 

Four major types 'of instructions are sequenced by the PSI. The 
peripheral order is the most common instruction and has three built­
in options. These options allow orders to set network points and return 
response data with or without odd parity, or to set network points 
only. The pulse order is another instruction that communicates with 
peripheral equipment and is used to reset network points. Finally, read 
and write instructions allow direct access to the PSI's registers. 

A millisecond clock circuit uses countdown logic, from a 10-MHz 
source, to produce a 0.5-Jls pulse every 90.9 Jls, 500 JlS, and 5 ms. These 
pulse chains are used by AMA circuits, TTY buffers, and other 
miscellaneous peripherals. Through a control lead from the ACHI, the 
PSI system clocks are aligned with the 3B20D interrupt timers. This 
feature is necessary to align the AMA data transfers with the clocks to 
physically write the bytes onto the tape. The alignment process is also 
used to detect a faulty PSI clock circuit by comparing the states of the 
3B/PSI clocks every 5 ms and to generate an interrupt if the PSI clock 
appears to be fast or slow. 

5.4.5 Maintenance and fault-recovery circuits 

Since the PSI is considered part of the SPC 1B processor, high 
reliability and availability plus immediate fault detection is provided. 
A considerable amount of circuitry is included for special maintenance 
access for fault resolution and also for immediate error detection 
during peripheral order sequences. Five separate error sources are 
combined to generate a processor interrupt if an internal PSI hardware 
error is detected during the sequencing of an instruction. Command­
field parity, data-field parity, multiple commands, data missing, and 
sequencer sanity checks are made on each order. Sequencer sanity 
checks are made by comparing a predicted bit stream stored in 
Programmable Read-Only Memory (PROM) against the actual se­
quence of pulses. If any error checks fail, an error indication is latched 
in the PSI INTS register and an interrupt signal is pulsed through the 

842 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



ACHI and latched into the 3B20D interrupt source register. At the 
conclusion of the instruction, fault-recovery software is dispatched to 
take appropriate recovery actions. The clock circuit continuously 
drives three system clock chains out on the peripheral buses. In 
addition to possible errors during command sequences, any circuit 
failures or fast and slow clock errors generate an immediate interrupt, 
which is passed onto the 3B20D Processor. 

Additional maintenance features are included to aid the fault-reso­
lution process and to allow major internal portions of the PSI to be 
tested before peripheral drivers are enabled out onto the buses. One 
such feature allows the PSI diagnostic to send data out of the ACHI, 
through the PSI, and back to the ACHI without any PSI sequencer 
actions. This allows the ACHI and interface cable faults to be isolated 
from PSI problems. Another major diagnostic feature allows the pre­
loading of answer and reply check registers before a peripheral order 
is executed. This allows the diagnostic to check nearly all features of 
the sequencer and error check hardware before enabling the PSI 
drivers onto the active peripheral buses. Therefore, this feature helps 
prevent interference problems between the duplicate processors and 
allows faults to be distinguished between internal sequencer problems 
and peripheral interface circuits. 

VI. PHYSICAL DESCRIPTION OF THE SPC 1 B 

The SPC IB consists of a number of different frames, units, circuit 
packs, and interconnections to accommodate the various circuits that 
comprise the system. These are arranged in configurations that allow 
for redundancy and growth to achieve a reliable and repairable system. 

6.1 General 

Most of the wired frames use a newly designed framework developed 
for the 3B20D Processor.s The new framework is 2-ft 2-in. wide, 2-ft 
deep, and 7-ft high. The greater depth, as compared to existing TSPS 
frames, which are l-ft deep, allows for the use of a larger circuit pack 
and still can accommodate backplane interconnections. Frame up­
rights are drilled on four surfaces that allow for mounting units of 
different sizes and dimensions. Some of these holes are used for 
mounting cable brackets, wire guides, and other hardware for support­
ing both intraframe and interframe cabling. BELLPAC* hardware 
was used in the majority of the unit designs. This consists of apparatus 
mountings, mounting plates, and other backplane hardware. Units are 
arranged to accommodate circuit packs of the 8- x 13-inch size. Printed 

* Trademark of Western Electric. 

HARDWARE CONFIGURATION 843 



wiring backplanes range from two-layer battery and ground to multi­
layer arrangements for the more complex circuits. One or more units 
are provided for each frame as required to accommodate the numerous 
circuits that make up the SPC lB. The various units on the frame are 
interconnected with ribbon cable assemblies or similar wiring means. 

The circuit packs use dual in-line package devices for most logic 
functions. Both 200-pin and 300-pin connecters are provided on the 
circuit packs. Some number of these pins is reserved for battery and 
ground potentials. Both double-sided-rigid and multilayer printed wir­
ing boards are used. All packs are equipped with face plates and tabs 
for product-code markings. Circuit packs are mounted on one-inch 
centers in the apparatus mountings to allow adequate cooling. 

The majority of the frames are equipped with their own dc/ dc 
converter units for conversion of central office battery to logic poten­
tials. 

The various frames are interconnected with connectorized switch­
board cables to form an SPC lB. 

6.2 Equipment 

6.2.1 3820D Processor frames 

The SPC lB is composed of two PSI frames, two control unit frames, 
two peripheral control (PC) frames, four Moving Head Disk (MHD) 
frames, a tape unit (TV) frame, a power distributing frame, a Local 
Maintenance Position (LMP), a Recent Change/Verify Position 
(RCVP), and other craft-machine interface hardware. Figure 6 shows 
the frames for the processor and peripherals line-up except for the 
local maintenance position, which is illustrated in Fig. 7. A description 
of the physical design of the 3B20D hardware is given in Ref. 8; 
additional frames required for an SPC lB are described below. 

6.2.2 Peripheral System Interface frame 

The PSI is a single-bay frame, 2-ft 2-in. wide and 7-ft high, arranged 
to accommodate the PSI circuitry (see Fig. 8). The frame consists of 
seven component units. On two of these units up to 20 circuit packs 
that provide the logic functions and the power control functions can 
be mounted. Figure 9 shows one such logic unit for the PSI. A third 
unit at the top of the frame has mountings for transformers, inductors, 
connecters, and terminations that provide the means for interconnect­
ing the PSI to the existing TSPS peripheral buses. On a fourth unit 
dc/dc converters can be mounted. The three remaining units are fuse 
panels. Two of these are for distributing +5V to the logic circuit packs. 
The remaining fuse panel distributes central office battery to the dc/ 
dc converter input, bus controls, and maintenance functions. A frame 
filter unit in the frame base filters the central office battery. The logic 

844 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



Fig. 6-SPC No. IB Processor. 

units consist of BELLPAC mounting hardware. The printed wiring 
backplane consists of battery and ground layers. Other connections 
between circuit pack locations are machine wrapped (see Fig. 10). All 
the circuit packs used in the PSI frame design are of the double-sided, 
rigid construction equipped with 200-pin connecters (see Fig. 11). 

The PSI is duplicated in the SPC lB. Each frame is associated with 
and mounted adjacent to a 3B20D Processor control unit frame (see 
Fig. 6). Connectorized switchboard cables interconnect the PSI frame 
to the CD frame, the Peripheral Control (PC) frame, and to existing 
TSPS frames. 

6.2.3 Maintenance Control Center 

In the TSPS No. IB Maintenance Control Center, three bays 
accommodate the craft-machine interface and related data sets asso­
ciated with maintenance and administration functions (see Fig. 7). 

The Local Maintenance Position (LMP), in two bays, accommodates 
a shelf-mounted maintenance terminal, a receive-only printer, and 
data sets for the Switching Control System and the remote field update 
system7 interfaces. The Recent Change/Verify position, in one bay, 
accommodates a shelf-mounted terminal, and data sets associated with 

HARDWARE CONFIGURATION 845 



Fig. 7-Local maintenance position. 

the remote-maintenance monitor interface and the optional base-unit 
belt-line maintenance TTY. It also contains a pedestal-mounted aux­
iliary printer. The LMP bays are mounted adjacent to the existing 
TSPS No. 1 Control Display and Test frame to facilitate maintenance. 

846 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



· " 

Fig. 8-Peripheral System Interface frame. 

HARDWARE CONFIGURATION 847 



Fig. 9-Peripheral System Interface frame logic unit with circuit packs. 

6.2.4 Power 

A specially designed power distributing frame distributes central 
office battery to the various 3B20D Processor frames using one or 
more pairs of connectorized lO-gauge or 12-gauge feeders. The MHD 
frame requires a larger pair (4-gauge) for the 30M-byte disk drive. The 
PSI frames obtain central office battery from the existing TSPS power 
distributing frames. 

The MHD frame also requires 208V single-phase ac for the normal 
operation of the 300M-byte disk transports. Maintenance terminals, 
printers, and data sets obtain their protected or essentialllOV ac from 
the existing TSPS ac power distributing unit. 

6.2.5 Bus interconnections 

The TSPS peripheral buses are duplicated for reliability. Each PSI 
frame has access to each of the duplicated buses. Connectorized 
switchboard bus cables are provided between PSI frames and other 
TSPS frames. As the PSI frame now forms the terminus for these 
buses, plug-in-terminations are furnished as part of the PSI frame 
design. 

6.2.6SPC 1B floor plan 

The SPC IB frames are arranged to satisfy the design constraints of 
the communication links between the individual frames and to comply 

848 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



- -Fig. lO-Peripheral System Interface backplane. 

with existing TSPS office equipment arrangements. Figure 12 is an 
overview of a typical SPC 1B floor plan arrangement designed to meet 
the constraints described below. The duplicated CD frames must be 
adjacent to each other and the interconnection from a CD to its 

HARDWARE CONFIGURATION 849 



Fig. ll-Typical circuit pack for the Peripheral System Interface frame. 

associated PSI frame must be as short as possible. Therefore, the PSIs 
are located on frames adjacent to the CDs. The MHD frames are 
located near their associated DFC units, which are mounted on adja­
cent PC frames. For maintenance of the MHDs, the aisle spacing is 
increased over the standard TSPS spacing. Location of other units 
such as the tape drive and lOPs is constrained by cable length between 
the CD and peripherals driven by the lOP. The 3B power distribution 
frame is centrally located to minimize length of power feeders to each 
of the other frames. 

VII. PSI MAINTENANCE SOFTWARE 

In addition to the maintenance software provided with the 3B20D 
Processor and the emulated maintenance software carried over from 
TSPS No.1, a maintenance software package was developed for TSPS 
No. lB. The major functions of this package are: 

(i) PSI maintenance 
(ii) Sanity and integrity of application processes 

(iii) Interface and coordination of integrity-related activities be­
tween DMERT and the TSPS application; i.e., initialization, overload 
control, and processor switch. 
These functions have been implemented in the Application Integrity 
Monitor (AIM) process, a portion of the native-mode software in the 
TSPS process, and the PSI diagnostic processes. The following is a 
description of the PSI fault recovery and PSI diagnostics. Descriptions 
of items (ii) and (iii) are provided in Ref. 2. 

850 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983 



"COT LMP I Rcvpl AMA ITOoil 

AMA - AUTOMATI C MESSAGE ACCOUNTING 
COT - CONTROL DISPLAY AND TEST 

CU - CONTROL UNIT 
LMP- LOCAL MAINTENANCE POSITION 

MHO - MOVING HEAD DISK 
PC - PERIPHERAL CONTRO LLER 

MHO MHO M~oIM~JM~oTT- --- -R-- --If-o 
1 3 5 I 7 I 9 I ~ FUTU E ""T 

I I I I T 

~~~-~-~-~--------~: 
5~O

EQUIPMENT AISLE MINIMUM
I ____________ J

11': I ':' I C,U I COU I ';' I ;: II ____ '~'~~ ____ J~
PO - POWER DISTRIBUTOR

PSI - PERIPHERAL SYSTEM INTERFACE
RCVP - RECENT CHANGE/VERIFY POSITION
TOO - TIME OF DAY

TU - TAPE UNIT

Fig. I2-Typical floor plan for TSPS No. IB.

The PSI maintenance strategy is based on hardware duplication,
fast detection and recovery from service-affecting hardware faults, and
the use of deferred diagnostics for the identification of faulty circuit
packs. The 3B20D CU and its associated PSI represent a basic switch­
able entity. This architecture makes the PSI an integral part of the
processor. As a result, its maintenance strategy is tightly coupled with
the maintenance of the 3B20D Processor.

7. 1 PSI software data structure integration

All information about the SPC IB hardware configuration, status,
error counts, and other pertinent data is contained in the Equipment
Configuration Database (ECD). The ECD cQntains a unit control
block (UCB) for every equipment entity known or controlled by
DMERT. These UCBs are linked data structures that form a hierar­
chical tree structure representing the physical hardware configuration
and the unit interdependencies.9 This structure links the PSI to the
3B20D hardware architecture and links the PSI to the DMERT
maintenance software control structure. The PSI UCB defines the PSI
to be a critical CU unit, thus binding the PSI and CU as a single
switch able entity. Besides describing the configuration, the UCB also
contains error counters and corresponding threshold values for fault
recovery, equipment information for service status, and hardware
options for diagnostics.

7.2 Description of PSI fault detection and recovery

Detection of PSI faults relies on the 3B20D and PSI self-checking
circuits, the TSPS microcode, and the TSPS peripheral-check circuits.
Once the fault has been detected, three different fault-recovery pro­
grams may be triggered to restore a working system by means of fault
resolution and reconfiguration. The fault-recovery program activated

HARDWARE CONFIGURATION 851

by a fault depends on where the fault is detected. Recovery programs
activated may include the TSPS AIM process, the emulated peripheral
maintenance program (F-Ievel), or the DMERT Processor Control
Process Error-Interrupt Handler (PCPEIH). The following paragraphs
will describe the various fault-detection and recovery strategies.

7.2.1 Fault detection

Most PSI faults are detected by the PSI internal-checking circuits.
These errors activate an error-interrupt lead to the 3B20D Processor,
which is connected to a processor interrupt source register (ISR) bit.
The fault-recovery program triggered by this fault depends on what
process is active at the time of the error. A fault that occurs during
execution of an emulated PSI peripheral order is detected by the
TSPS microcode. The microcode generates a maintenance interrupt
(F-level) to the TSPS process. The TSPS F-Ievel program, after
establishing whether the fault is transient or hard (e.g., after retry of
the failing order), informs AIM of the failure by sending a fault event
to the AIM process with a fault code indicating whether the fault is
transient or hard.

Faults that occur during execution of native-mode PSI instructions
and faults that are detected by the 3B/PSI clock-check circuits, cause
an ISR bit to be set and result in the dispatching of AIM at the PSI
Error-Interrupt Handler (PSIEIH) entry. For these fault types
PSIEIH may interrupt and fault the running process to inform it of
the failure of the PSI I/O instruction. The decision to fault the running
process is made on the basis of its identity. If the running process is
TSPS or the PSI Diagnostic Driver (PSIDGDR), it will be faulted.
Since no other processes perform I/O with the PSI, there is no need to
fault them. Therefore, they will be allowed to continue execution from
the point of interrupt after completion of processing by PSIEIH.

Another class of faults are those that are detected by the PSI
peripheral order-checking circuits. In most cases this type of fault is a
TSPS peripheral-unit fault, but some may be faults in a PSI driver or
receiver that are indistinguishable from faults in the TSPS peripheral
unit. For these faults, a retry of the failing order through the standby
3B20D CU /PSI is performed. If the off-line retry succeeds, TSPS
informs AIM of a PSI fault through a fault code. If the retry fails,
TSPS recovers from the peripheral-unit hardware fault by switching
TSPS peripheral units.

Finally, certain types of faults in the PSI or the ACHI will result in
parity errors on the processor CCIO bus. This type of error appears as
a channel error to the CU by activating an ISR. The ISR activates the
DMERT fault-recovery process PCPEIH.lO PCPEIH will then fault
the interrupted process. When such a fault occurs while the TSPS

852 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

process or the PSIDGDR process is running, it will send a fault to
AIM. AIM will reinitialize the PSI and ACHI, and make a reconfigu­
ration decision.

7.2.2 Fault recovery

Once the fault has been detected and resolved to the PSI, it is the
responsibility of the AIM process to perform the required recovery
action. If the PSI fault is a transient fault, and the PSI/ ACHI reini­
tialization completes successfully, AIM calls DMERT configuration
manager functions, which cause error counters in the PSI DCB to be
incremented and compared with threshold values. If either counter
exceeds its threshold value, removal of the faulty PSI is requested by
means of a processor switch. In the case of a hard error, or if the PSI/
ACHI reinitialization fails, no error counting is done, and a processor
switch is requested immediately. The processor switch is performed
by a DMERT service routine.

7.2.3 Off-line PSI fault-detection and recovery

AIM also periodically exercises the off-line PSI. If the exercise fails,
the unit is placed out-of-service and diagnostics are scheduled.

7.3 PSI initialization

The PSI must be initialized following a PSI power up, as part of a
processor switch, and for certain levels of software initialization in
TSPS and DMERT. Initialization of the PSI includes the selection of
the Scanner Answer Bus, clearing of the PSI maintenance register,
and clearing of the Application Channel Interface (ACHI).

7.4 PSI diagnostic

Diagnostics for the 3B20D CD and the TSPS microcode are included
in the common DMERT maintenance package. The SPC 1B mainte­
nance package contains the PSI diagnostic.

7.4.1 Operation under DMERT diagnostic control structure

Since the PSI is tightly coupled to the 3B20D Processor and forms
a single switchable entity with a 3B20D CD, the PSI diagnostic is
designed to operate under the DMERT diagnostic control structure.
Diagnostic results are handled by an output message process called
the "spooler." A simplified block diagram of this overall software
structure is shown in Fig. 13. The PSI diagnostic is initiated and
executed under control of the maintenance input request administrator
(MIRA) and the diagnostic monitor (DIAMON) process. l1

Elements of the PSI diagnostic which are unique to the PSI are the
Diagnostic Control Process (PSIDC), a Diagnostic Phase Table

HARDWARE CONFIGURATION 853

ECD

* DMERT PROVIDED
PROCESSES

USER-LEVEL PROCESS

ACPDL - APPLICATION CONTROL PROCESS DATA LIBRARY
DGDL - DIAGNOSTIC DATA LIBRARY

OlAMON - DIAGNOSTIC MONITOR
DMERT - DUPLEX MULTI-ENVIRONMENT REAL-TIME

ECD - EQUIPMENT CONFIGURATION DATABASE

KERNEL PROCESSES

MIRA - MAINTENANCE INPUT REQUEST ADMINISTRATOR
PCPMD - PROCESSOR CONTROL PROCESS MAINTENANCE DRIVER

PSI- PERIPHERAL SYSTEM INTERFACE
TSPS - TRAFFIC SERVICE POSITION SYSTEM
UCB - UNIT CONTROL BLOCK

Fig.13-Maintenance software structure for the Peripheral System Interface.

(DPT), phase data tables (one per phase), task routines, and off-line
test routines. Although unique for the PSI application, the implemen­
tation of the above diagnostic structure is similar to other 3B20D
control unit diagnostics, and a detailed description of the architecture
can be found in Ref. 11. Figure 13 provides a high level description of
the diagnostic control structure.

7.4.2 Off-line execution

Since the PSI and 3B20D Processor form a single switchable entity,
the active processor does not have direct access to the off-line PSI.
Therefore, most of the PSI must be diagnosed by test routines which
run in the off-line 3B20D Processor.

The off-line tests are divided into two categories of functional tests.
Internal PSI functional tests are those which exercise the PSI register
logic and sequencer circuits. These tests d~ not require access to TSPS
peripherals and are executed with the I/O inhibit lead activated. The

854 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

I/O inhibit lead disables all outpulsing from the PSI to TSPS periph­
erals. External PSI tests are those that diagnose the drivers and
receiver circuits that interface directly with the TSPS periphery. All
off-line tests are loaded and executed under the control of the PSI
Diagnostic Control (PSIDIAGC) Process with the aid of DMERT
library routines that handle communication with the off-line processor.
These library routines are provided by the Processor Control Process
Maintenance Driver (PCPMD) as described in Refs. 10 and 11.

7.4.3 On-line execution

Some diagnostic routines must also run on the on-line 3B20D
Processor. These routines include the PSI power control tests, the
TSPS peripheral bus power tests, and the on-line retries.

The PSI +5V power and the TSPS peripheral bus power are
controlled and monitored by a 3B20D common system Scanner and
Signal Distributor (SC/SD). The off-line 3B20D Processor cannot
communicate with the SC/SD, therefore the on-line processor must
perform these tests. The peripheral bus (CPDB and PUAB) power
monitoring and control are also connected to the SC/SD. Diagnostic
tests of these controls are performed from the on-line processor.

On-line retries of failing off-line tests are performed when it becomes
necessary to isolate a fault between the PSI and a TSPS peripheral
unit. This situation occurs in the case of a PSI bus driver fault or a
fault in a corresponding receiver of a peripheral unit.

7.4.4 PSI diagnostic tests

The PSI diagnostic test phases are designed to test the hardware in
a layered approach such that initial tests start with data bus integrity
between the 3B20D and PSI, simple PSI and 3B20D handshaking
tests, and then progressing deeper into the PSI hardware until all
peripheral driver and receivers have been tested. The test phases of
the PSI are divided into internal logic circuit test phases and peripheral
driver and receiver test phases. In the following sections the diagnostic
test phases are described to show how the layered diagnostic design
was implemented.

7.4.4.1 Internal PSI diagnostic phases. The internal diagnostic phases
are responsible for detecting faults in the PSI sequencer, registers, and
check circuits. These tests are executed with the peripheral bus drivers
and receivers disabled to avoid interference with TSPS peripherals.
The internal phases can be divided into three sets of tests. The first
set of tests relies on maintenance control circuitry to test the basic
data paths and ACHI/PSI communication protocols. This phase of
testing requires minimal sequencer activity by the PSI, thus providing
a high degree of circuit pack resolution by limiting the number of

HARDWARE CONFIGURATION 855

circuits under test. The second set of internal tests are the tests of the
,circuit operational functions. All PSI commands are executed to verify
proper operation. During these tests error checks are ignored and the
commands are tested for proper operation by checking data results.
Finally, the remaining test phases of the internal tests are designed to
test all internal error detection and matching circuits. Completion of
the internal tests provides coverage over most of the PSI logic circuits.

7.4.4.2 External PSI diagnostic phases. After the PSI internal cir­
cuitry has been tested, the last layer of circuitry, the peripheral bus
transmitters and receivers, must be tested.

During these tests the PSI communicates with TSPS peripherals in
order to verify operation of drivers and receivers. Therefore, the PSI
diagnostic must have access to the equipage and status tables of the
TSPS peripherals to check on availability of particular peripheral
units. The PSI diagnostic control process provides this access by
sharing the memory space of the TSPS emulated process to directly
access the office data and status tables for the peripheral units.

Another capability required of the external bus testing is the ability
to resolve faults to the PSI or to the peripheral unit used in performing
the test. This capability is provided by a special-purpose, on-line
diagnostic driver c~lled the PSI Diagnostic Driver (PSIDGDR), which
executes the same tests on the on-line processor that were executed in
the off-line processor. If the off-line results of the PSI indicated some­
test-failed (STF), the on-line test is executed to determine if the fault
truly implicated the off-line PSI. The PSI diagnostic control then
matches the off-line and on-line results. If the results match, the TSPS
peripheral unit is at fault; if the results do not match, the off-line PSI
is assumed to be faulty.

7.4.5 Isolation from TSPS process

The structure of the TSPS No. IB software architecture creates a
time-shared environment in which diagnostic execution is performed
in time segments that are multiplexed by the DMERT operating
system with the TSPS kernel process and other UNIX* processes.
This creates a potential for interference between segments and also
creates the possibility of simultaneous execution of an off-line diag­
nostic routine and on-line TSPS process peripheral orders. Potential
interference in these areas requires that the diagnostic control be
designed to eliminate interaction. Therefore, a number of capabilities
have been developed to provide isolation between the PSI diagnostic
and the TSPS emulated process.

* Trademark of Bell Laboratories.

856 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

7.4.5.1 I/O inhibit control. The 3B20D Processor provides an input/
output inhibit control lead on the CCIO bus. This lead is active on the
off-line processor and is used by CU I/O channels to block transmission
of control signals to the peripheral units. In the case of the ACHI/PSI,
the I/O inhibit lead is used to inhibit outpulsing by the PSI drivers.
The purpose of the lead is to protect the TSPS peripherals from a
faulty PSI sequencer and to allow the diagnostic to execute peripheral
orders in the PSI without interfering with the TSPS peripherals.

7.4.5.2 PSI diagnostic-TSPS process synchronization. The external
PSI tests must utilize the TSPS periphery to test the PSI interface
drivers and receivers. Therefore, to ensure that the diagnostic periph­
eral tests do not interfere with on-line TSPS activity, the PSI diag­
nostic will be synchronized with the TSPS process. No off-line test
routines run while the TSPS emulated process is running. This capa­
bility is provided by DMERT library routines, which execute programs
in the off-line processor. The library routine checks the TSPS J-Ievel
timer (which is generated by the 3B20D clock) and will only initiate
execution in the off-line processor when a minimum of 2.5 ms remains
prior to the next J-Ievel interrupt. In addition, the routine will retain
control of the 3B20D Processor and inhibit all I/O interrupts, timed
interrupts, and DMA activity. The 3B20D Processor will not return to
TSPS base level during this interval.

VIII. SUMMARY

A special hardware unit, the Peripheral System Interface, was de­
veloped to interface the existing TSPS periphery with the 3B20D
Processor. The addition of the PSI required a corresponding develop­
ment of new maintenance software to integrate the 3B20D mainte­
nance strategy with the TSPS No. IB maintenance strategy. This
article has described the constraints imposed by the differences in
technology, and the hardware and corresponding maintenance soft­
ware required to integrate the 3B20D processor into the TSPS system.

IX. ACKNOWLEDGMENTS

Many individuals have contributed in a significant way to the design
and implementation of the PSI and its maintenance software. In
particular, the authors wish to acknowledge the contributions of D. A.
Peterson and D. J. Kloc for their part in developing the PSI hardware,
and W. J. Proetta for his contributions to the PSI physical design. The
following people contributed to the development of the PSI mainte­
nance software: D. L. Brown, K. R. Kulhanek, and J. J. Labut for the
PSI diagnostic, E. S. Sachs and M. D. Soneru for the PSI maintenance
software.

HARDWARE CONFIGURATION 857

REFERENCES

1. R. E. Staehler and J. I. Cochrane, "Traffic Service Position System No. IB: Overview
and Objectives," B.S.T.J., this issue.

2. R. J. Gill, G. J. Kujawinski, and E. H. Stredde, "Traffic Service Position System
No. IB: Real-Time Architecture Utilizing the DMERT Operating System,"
B.S.T.J., this issue.

3. J. C. Dalby, D. Van Haften, and L. A. Weber, "Traffic Service Position System
No. IB: Retrofitting to TSPS No. IB," B.S.T.J., this issue.

4. G. R. Durney, et al, "Stored Program Control No. lA," B.S.T.J., 49, No. 10
(December 1970), pp. 2445-2507.

5. M. W. Rolund, J. T. Beckett, and D. A. Harms, "The 3B20D Processor & DMERT
Operating System: 3B20D Central Processing Unit," B.S.T.J., 62, No.1, Part 2
(January 1983), pp. 191-206.

6. J. J. Bodnar, J. R. Daino, and K. A. VanderMeulen, "Traffic Service Position
System No. IB: Switching Control Center System Interface," B.S.T.J., this issue.

7. T. G. Hack, T. Huang, and L. C. Stecher, "Traffic Service Position System No. IB:
Software Development System," B.S.T.J., this issue.

8. S. H. Kulpa, J. M. Brown, and A. W. Fulton, "The 3B20D Processor & DMERT
Operating System: 3B20D Packaging and Technology," B.S.T.J., 62, No.1, Part
2 (January 1983), pp. 221-34.

9. R. H. Yacobellis, J. H. Miller, B. G. Niedfeldt, and S. S. Weber, "The 3B20D
Processor & DMERT Operating System: Field Administration Subsystems"
B.S.T.J., 62, No.1, Part 2 (January 1983), pp. 323-39.

10. R. C. Hansen, R. W. Peterson, and N. O. Whittington, "The 3B20D Processor &
DMERT Operating System: Fault Detection .and Recovery," B.S.T.J., 62, No.1,
Part 2 (January 1983), pp. 349-65.

11. J. L. Quinn, R. L. Engram and F. M. Goetz, '''The 3B20D Processor & DMERT
Operating System: Diagnostic Tests and Control Software," B.S.T.J., 62, No.1,
Part 2 (January 1983), pp. 367-81.

858 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.3, March 1983
Printed in U. S.A.

Traffic Service Position System No. 1 B:

Software Development System

ByT.G.HACK,T.HUANG,andL.C.STECHER

(Manuscript received June 30, 1982)

This article describes the Software Development System for the
Traffic Service Position System No. IB (TSPS No. IB). It discusses
the modern, multicomputer software generation and test facilities
that were provided to concurrently support both C-Ianguage and
emulated, assembly-level software development. The computing en­
vironment, software generation and test tools, and standard devel­
opment process that were developed for the TSPS No. IB provide a
rich, robust programming environment for future network operator
services.

I. INTRODUCTION

The development and testing of the software for the Traffic Service
Position System No. IB (TSPS No. IB) was a complex undertaking.
In addition to emulating the existing TSPS No. I assembly-level
program, 3B20 Duplex Processor (3B20D) native-mode (C-Ianguage)
software was developed to interface to the Duplex Multi-Environment
Real Time (DMERT) operating system and to provide the' necessary
system integrity functions for the TSPS No. IB.l.2

To support software development and testing in this mixed emula­
tion/native mode, it was recognized early in the project that a robust
Software Development System (SDS) and a rigorous set of standard
software development procedures (or methodology) were necessary.
Thus, basic requirements for tools, documentation standards, and
control procedures were established for the software development
environment for the TSPS No. lB. These requirements specified that:

(i) A simple, interactive user interface to the SDS must be devel­
oped. Where possible, commands and procedures for emulation or

859

native-mode software development should be the same to minimize
the complexity of the programming task.

(ii) The SDS for emulation-mode software development must be
upwardly compatible from the existing TSPS No.1 SDS. In parallel
with the development of TSPS No. lB, new generic features were
being developed and deployed for TSPS No. 1 (such as Automated
Calling Card Service).3 To offer universal service, these features would
also have to be concurrently emulated on the TSPS No. lB.

(iii) Complete software change procedures and tools must be estab­
lished to support the parallel development of TSPS No.1 and TSPS
No. lB. These procedures and tools would have to support the early
development phase of the project when programmers were initially
developing code, as well as later phases of the project when system
testing is converging to a certified, production software release.

(iv) Finally, a set of test facilities was needed to support the
integration and system testing of the software. Special tools would be
required to test the emulated, assembly programs, as well as the high­
level, native-mode software executing under the DMERT operating
system.
The following sections of this article describe how the TSPS No. lB
Software Development System was implemented to meet these re­
quirements.

II. COMPUTING ENVIRONMENT FOR TSPS SOFTWARE DEVELOPMENT

Before discussing the specific software generation tools and test
facilities of the TSPS No.lB SDS, this section describes the computing
environment for TSPS development and gives an overview of the
development system.

2.1 Overview

TSPS No. lB software development is supported by a multiproces­
sor computing system. The system consists of five computers: one
remote IBM 3033 processor located at Bell Laboratories in Columbus,
Ohio; and four Digital Equipment Corporation (DEC) PDP-ll/70
minicomputers co-located with the TSPS development organization at
Bell Laboratories in Naperville, Illinois. A variety of data links support
interprocessor communications. Figure 1 * illustrates the configuration.

The IBM processor and the two PDP-ll/70 computers (labeled
PSSI and PSS2) constitute the Programmer Support System (PSS).
It is on these systems that source modification, load building, and

* Acronyms and abbreviations used in the figures and text are defined at the back of
this Journal.

860 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

EMULATED
ASSEMBLIES

LOADS
POST­

PROCESSING

BLlCN- BELL LABORATORIES
I NTE R LOCATION
COMPUTING NETWORK

CB - COLUMBUS, OHIO
LAB - LABORATORY
LSS - LABORATORY SUPPORT SYSTEM

MVS - MULTIPLE VI RTUAL STORAGES
NAP - NAPERVILLE, ILLINOIS

OS - OPERATING SYSTEM
PSS - PROGRAM SUPPORT SYSTEM LAB 1

(NAP)

PROGRAMMERS

LAB 2
(NAP)

Fig. I-Software Development System for TSPS No. lB.

software administration are done. The remaining two PDP-llj70
computers reside in the TSPS system laboratories and are part of the
Laboratory Support System (LSS). Each is paired with a 3B20D
Processor and is used to support developer, integration, and system
testing for 3B20D-based generic programs.

2.2 Local interactive development environment

TSPS programmers use the PSSI and PSS2 computers to modify
source files and create executable versions of software. These com­
puters run the UNIX * time-sharing operating system, which provides
a general-purpose, multi-user, interactive development environment.4

The UNIX operating system has a number of characteristics that
make it attractive for software development. First, it is extremely easy
to learn and use. The command-line interpreter (the "shell"), the
interactive editor, and the hierarchical file system are particularly
simple in nature. Second, the shell and C-language programming
environment provide powerful and flexible facilities to create and
combine software tools to support the generation and administration
of software. Many of the tools used in TSPS have been created in this

* Trademark of Bell Laboratories.

SOFTWARE DEVELOPMENT SYSTEM 861

environment. Finally, the Programmer's Workbench facility,5 available
with the UNIX operating system, offers:

(i) A sophisticated document preparation system to prepare doc­
umentation supporting the development process

(ii) A Remote Job Entry (RJE) subsystem that transmits jobs to
other computing systems and returns output to appropriate users

(iii) A complete Source Code Control System (SCCS) for control­
ling and maintaining multiple versions of source code.
The software development is partitioned so that C-Ianguage developers
use the PSSI system and emulated, assembly-language developers use
the PSS2 system. * System load building makes use of both PSSI and
PSS2. C-Ianguage development is solely supported on the PSSI sys­
tem. Emulated development, on the other hand, is accomplished
through the interaction of the PSS2 system and the remote IBM 3033
processor.

2.3 Remote batch environment for emulated development

TSPS emulated software is developed in a part interactive, part
batch-oriented computing environment. Much of the SDS for emulated
code has been upgraded and carried over from the previously existing
batch-oriented SDS for the TSPS No. 1.6 The PSS2 system was added
to the previously existing SDS for the TSPS No.1 and provides the
front-end user interface to the SDS for emulated programs. When the
PSS2 system was added, the programmers gained a modern set of
interactive commands that allow them to initiate the various software
generation jobs for emulated code. Developers log into PSS2 and
modify "edit files" that contain edit statements to be applied against
the emulated source files, which are stored on the remote IBM system.
The application of edits and all software-generation steps run under
the Multiple Virtual Storages (MVS) operating system in a batch
mode on the IBM processor.

For example, once a programmer has finished modifying the edit file
on the PSS2 system, a single swap command can be issued to construct
a Job Control Language (JCL) script designed to invoke, through the
UNIXRJE facility, a remote emulated assembly on the IBM processor.
The job file is sent via the Bell Laboratories Interlocation Computing
Network and queued to be executed on the IBMjMVS system at
Columbus. When the assembly is complete, the listing file is printed
locally. Commands similar to swap are provided for link editing and
other functions. These commands are described in more detail in
Section III.

* Subsequent references to "emulated, assembly" language will be shortened to
"emulated" language.

862 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

From the programmer's point of view, all activity takes place on the
PSS2 system. The commands that create the remote batch jobs look
very much like local commands. Since required output data (tapes,
files, or listings) are returned to the local users, the use of the IBM/
MVS system is transparent to the user.

2.4 Local interactive environment for C-Language development

The PSS1 system provides the computing environment for C-Ian­
guage program development. It can support as many as 36 simultane­
ous interactive users, although prime-time usage is typically about 25
users. For the most part, terminals are connected through a dial-up
arrangement. There are, however, a few "hard-wired" terminal con­
nections into the TSPS System Laboratories to guarantee access to
programmers using laboratory test facilities.

Software tools that support C-Ianguage development on the PSS1
system include: the text editor, the 3B20D Software Generation Sys­
tem (3BSGS), the Change Management System (CMS), and the
Source Code Control System. The text editor is used to modify C­
language source flies. The 3BSGS is a cross-compilation and link­
editing system that generates executable files for the 3B20D Processor
from source code. CMS and SCCS control and track the development
process and provide the mechanisms to maintain multiple versions of
source and object flies.

From the programmer's perspective, the development scenario is
quite simple. A source flie is retrieved from SCCS, modified with the
editor, compiled to produce an executable flie using the 3BSGS, and
data-linked to the Laboratory Support System computers for testing
in the TSPS System Laboratories. With the exception of testing, all
work takes place interactively on the PSS1 system.

2.5 Laboratory support processor

The support processor used in the TSPS Laboratory Support Sys­
tem (LSS) is a PDP-11/70 computer running under the UNIX oper­
ating system. The flexible environment of the UNIX operating system
can support multiple testers simultaneously. For TSPS development,
there are two system laboratories that are used to create the laboratory
environment for field support and to enable realistic system testing of
TSPS software. Section V describes the LSS in more detail.

2.6 Networking facilities

As we can see in Fig. 1, the processors within the TSPS computing
environment are interconnected by a variety of data links that create
a reliable, secure computer network. Each PSS computer is connected
by two separate links to the other PSS computer and the two LSS

SOFTWARE DEVELOPMENT SYSTEM 863

computers. One of the connections is a 9.6-kb link designed to be used
with the cu command. (The cu command gives a user on one system
the appearance of being logged into another.) Commands can be
executed on the remote system and files can be transferred in' both
directions. The second type of connection is a 56-kb link that uses
DEC DMC-ll hardware as the primary intercomputer file transfer
mechanism. It can support effective file transfer rates of up to 2000
bytes/second. The remaining data link is a component of the Bell
Laboratories Interlocation Computing Network connecting the N aper­
ville and Columbus locations. The primary connection is established
through 56-kb private lines between two IBM 3033 processors running
the MVS operating system, the remote IBM system at Columbus, and
a local interface system. The two TSPS PSS computers are connected
to the local IBM/MVS system with special-purpose 9.6-kb hardware.
Using the RJE subsystem, batch jobs can be sent through the local
IBM/MVS system to the IBM/MVS system at Columbus. The capa­
bility also exists to return files to the PSS system or generate local
output tapes or listings.

III. SOFTWARE GENERATION TOOLS

3. 1 Overview

The primary function of a software generation system is to transform
symbolic source language statements into a format executable by the
target processor. For TSPS No. IB, the target processor is the 3B20D
Processor. A software generation system is usually a collection of tools
that perform this transformation in phases. The compilation (or assem­
bly) phase translates the source module containing symbolic instruc­
tion and data statements into machine-readable form, called a
"relocatable object file." This file also contains symbol definitions and
relocation information to be used in the'linking-Ioading phase. The
linking-loading phase enables separately compiled modules (relocata­
ble object files) to be combined into a single executable unit, called a
"load file." A final process-loading phase is used to transform the load
file to a process-file format.

3.2 Emulated software generation

During the development of the TSPS No. IB, special-purpose mi­
crocode was written for the 3B20D processor to emulate the Stored
Program ControllA (SPC lA) assembly language used in TSPS No.
1. This allowed a large portion of the existing TSPS software to be
transported to the 3B20D Processor without modification. In this
approach, the emulated source statements were kept identical to the
SPC lA assembly-language statements. However, the object form (the
machine-equivalent form) was modified to take advantage of the

864 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

powerful micro-instruction set of the 3B20D. This was done to maxi­
mize the real-time processing capability of the TSPS No. IB system.

To ensure commonality between TSPS No. 1 and TSPS No. IB
assembly-level programs, the existing SPC lA assembler and loader
were retained. The new 3B20D object format for the TSPS No. IB
was produced by two new software generation tools-a "load post­
processor" and a "listing post-processor." The load post-processor
transforms an SPC lA load file into a 3B20D load file, and the listing
post-processor reformats the assembly listing to reflect the new, emu­
lated instruction formats. In addition, many of the existing SPC lA
SDS tools were retained and significantly upgraded by the addition of
the PSS2 system. Figure 2 shows the steps involved in emulated
software generation.

STORED PROGRAM CONTROL
LOADER

LOAD POST- PROCESSOR

Fig. 2-Basic steps in emulated, assembly-language software generation.

SOFTWARE DEVELOPMENT SYSTEM 865

3.2. 1 The TSPS assembler and loader

The assembly process for TSPS emulated code combines both an
editing and an assembly operation. Editor statements are prepared on
the PSS2 system and transmitted to the remote IBM/MVS system.
These editor statements are then processed and applied to the emu­
lated source file by the Advanced Processor Editor (APE) running
under MVS. APE is a simple, line-oriented editor with the basic
"insert," "replace," and "delete" functions. It is specifically designed
to work with the assembler, passing the edited source as input to the
assembly process.

The assembly operation is performed by the powerful SPC-SW AP
(Switching Assembly Program) assembler,7,8 which also runs under
MVS. Besides performing the standard source-to-object conversion, it
has a sophisticated macro capability and a variety of useful pseudo­
operations for controlling listing format and establishing symbol defi­
nitions. In addition, there is a mechanism for creating and maintaining
special-purpose "library" files. Library files of symbol or macro defi­
nitions can be created in one SPC-SW AP run, then later accessed by
subsequent source module assemblies for the purpose of symbol or
macro resolution. This is not only a convenient mechanism for sharing
global symbol definitions between source modules, but also allows a
single source file to be assembled in different environments, resulting
in different object modules. The latter technique is used in TSPS to
develop code for multiple generics from a single source file and is
discussed further in Section 4.1.

To perform an assembly, TSPS developers invoke the swap com­
mand on the PSS2 system. This command creates a Job Control
Language script, which is executed on the remote IBM/MVS system.
The primary outputs of SPC-SW AP are an object module, which is
retained on the IBM file system, and an assembly listing, which is
printed locally.

After the assembly process, the next step in producing an executable
file for the 3B20D Processor is to combine the SPC-SW AP object
modules for a given generic using the SPC loader. This loader uses a
special set of control statements that specify what areas of emulated
address space are available for loading object modules, which modules
are to be loaded, and, optionally, what their load addresses are. The
output of the SPC loader is a file or magnetic tape containing the
relocated, fully bound, generic load file. At this point, however, the
load file is suitable only for loading into an SPC lA used in TSPS No.
1. Further post-processing (described in Section 3.2.2) is then done to
produce a 3B20D-compatible format.

In addition to a full generic load, the SPC loader also has the
capability to produce what is called a "partial-load" file. During the

866 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

generation of a full generic load, the SPC loader is directed to create
a special fIle on the IBM/MVS system called a HISTORY. This
HISTORY fIle contains the information necessary to completely char­
acterize the generated load file. This includes the load image itself; the
names, starting addresses, and sizes of the object modules; free space;
and all external symbol definitions and references. Once a HISTORY
fIle has been created, any TSPS developer on the PSS2 system can
reassemble a selected subset of generic source modules and issue the
ppload command to build a partial load on the IBM/MVS system.
The items input to the ppload command identify the HISTORY fIle
and the reassembled object modules. The partial-load process con­
structs a new load image from these input fIles, then compares it to
the image contained in the HISTORY file. The fInal output is a
magnetic tape containing the changed instruction or data words. This
tape, after post-processing, can be taken into the TSPS system labo­
ratory and overlaid on the full generic load fIle. The partial-load
capability is used extensively in the early stages of TSPS generic
development. It is a very flexible and convenient means of creating a
developer's private software version for testing.

3.2.2 Post-processing- format conversion from SPC 1 A to 3820D
format

To convert from SPC lA format to 3B20D format, a load post­
processor was developed to transform the output of the existing SPC
loader into the new 3B20D encoding. In addition, a listing post-proc­
essor was developed to convert program listings to account for the
changes in the order encoding and also to provide address and data
fields in hexadecimal, which is the native number base for the 3B20D.

The load post-processor accepts as input a HISTORY fIle produced
by the SPC loader. The HISTORY file contains not only the actual
load image but also specifIes whether an SPC word corresponds to a
program or data instruction. Each 40-bit (double-word) SPC program
instruction is translated into a 64-bit, 3B20D encoding (two 32-bits
words) as required for the emulation.2 The reformatting that is done
depends on the SPC operation code and can completely rearrange the
fields in an instruction. The translation algorithm is encoded into a set
of common routines that are shared by the load and listing post­
processor. This ensures that listing and load translations remain syn­
chronized. Both the load and listing post-processors are run as batch
jobs on the IBM/MVS system and are initiated remotely from the
PSS2 system.

3.2.3 Creating a DMERT process from an emulated load file

The TSPS process is a key component of the TSPS No; IB system
since it has primary responsibility for call-processing functions.2 It is

SOFTWARE DEVELOPMENT SYSTEM 867

a DMERT kernel process made up of both C-Ianguage and emulated
software. The C-Ianguage portion is built in the standard fashion using
the 3B Software Generation System (see Section 3.3.1). The emulated
portion is stored in DMERT data libraries and appears as pure data
to the C-Ianguage software generation process. The data libraries are
stored as separate files on the 3B20D disk and are linked into the
TSPS process address space at process creation time. There are 32
data libraries for emulated software, each being one segment (128K
bytes) in size.

3.2.4 Overwrite generation

In the later stages of the development of a generic, rigorous change
procedures are introduced to tighten control over changes to the
software. This is known as the "frozen" mode of development and
begins normally with the start of system testing.9 In frozen mode,
changes in emulated code are applied in overwrite form rather than by
full reassembly and linking of source modules. An overwrite consists
of just those program and data instructions that are being modified in
a program change. Thus, an overwrite tends to be small in size and the
impact of the change is local rather than global. Overwrites are usually
inserted into a stable program version and tested one at a time in a
cumulative fashion. In this way, the generic program evolves in a
controlled way with each change being tested before the next is
applied.

3.3 C-Language software generation

During the lifetime of the TSPS No.1 system, all software devel­
opment was done in assembly language. However, for the introduction
of the TSPS No. IB, as well as for the development of future operator
services, significant portions of the new software will be developed in
the C programming language. Thus, a new set of software tools was
implemented to support the native-mode development process for the
TSPS No. lB.

3.3.1 The 38 Software Generation System

The 3B Software Generation System (3BSGS) is a collection of
software tools available with the 3B20D Processor.10 These tools
transform C-Ianguage source code into object files that can be loaded
into the 3B20D disk and executed under the DMERT operating
system. The main constituents of the 3BSGS are the C compiler
(3bcc), the 3B20D assembler (3bas), the 3B20D link editor (3bld),
and the 3B20D process loader (3bldp). These programs are designed
to execute in the environment of the UNIX operating system.

The C compiler accepts C-Ianguage source files as input and trans-

868 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

forms them into relocatable object fIles. The 3B link editor, 3bld, can
combine several object files into one by relocating program. and data
instructions and resolving externally defIned symbols. It also provides
the mechanism to resolve references to library routines. (Libraries are
collections of precompiled modules that typically contain commonly
used routines that are shared among many modules.) For TSPS No.
IB, the output of 3bld is passed to the 3B20D process loader for fInal
processing.

The 3B20D process loader, 3bldp, takes as input a collection of
relocatable object files produced by 3bcc or 3bld. By using a special­
purpose specifIcation fIle, it constructs an output, called a process file,
which has a format appropriate for execution under the DMERT
operating system.

3.3.2 The Make Program

For TSPS No. IB, a utility program, Make, is used extensively in
conjunction with the 3BSGS during the software generation process.
The purpose of Make is to automate the construction of a process fIle
when one or more of the source files on which it depends have been
modifIed. The generation process is controlled by a special-purpose
description fIle, frequently referred to as a "makefIle."

The advantages of the Make program are that it:
(i) Ensures that a process file is constructed correctly in that no

commands are accidentally forgotten or specifIed incorrectly
(ii) Regenerates only those files that have been affected by a

change
(iii) Minimizes the programmer effort in building executable proc­

esses.
For these reasons, Make is used extensively in TSPS No. IB devel­

opment. For the initial TSPS No. IB generic, there are approximately
50 makefIles used in building over 300 3B20D processes.

3.3.3 Dependence on DMERT header files and libraries

The TSPS C-Ianguage software runs under the DMERT operating
system. The two chief software mechanisms that support communi­
cation between the TSPS application and the operating system are
header files and libraries. Header fIles are typically used to defIne data
structures that are shared between processes or shared between source
files within a single process. For example, there is a header file that
contains data declarations specifying the layout of a DMERT Process
Control Block (PCB) for a supervisor or user process. Any source file
that references the PCB will include this header file through the
"#include" mechanism provided by 3bcc, by which the PCB data
declarations are made available to the compilation process. Libraries,

SOFTWARE DEVELOPMENT SYSTEM 869

on the other hand, typically contain commonly used functions or
routines. References to libraries are resolved by 3bld during the
software generation process. Libraries are' usually organized on a
functional basis. For example, the craft interface library contains
functions and routines oriented towards applications involved with the
handling of craft input messages or the generation of output messages.

The DMERT operating system contains a large number of header
fIles and libraries to support TSPS development. With each DMERT
release, applications receive not only the latest version of DMERT
software, but also updated versions of the header files, library fIles,
and the 3BSGS. These are installed on the PSSI system to support
TSPS development.

3.3.4 Linking C and emulated software

As previously mentioned, the TSPS process contains both C-Ian­
guage and emulated programs. The emulated code is allocated one
megaword of the available two-megaword-process address space and
contains the bulk of the TSPS call-processing software. Naturally,
there is a need to transfer control between emulated and C-Ianguage
programs. Since these programs require different versions of micro­
code, a processor "mode switch" is required. Two special assembly­
language instructions, cale (call emulated) and smt (switch mode and
transfer), were developed to perform this function. Cale is a native­
mode instruction that effects a mode switch and a transfer to emulated
address space. Smt is an emulated instruction that performs a similar
function but in the reverse sense.

From a software-generation perspective, the interface between em­
ulated and native mode is quite simple. Routines called through cale
or smt are accessed through transfer vectors. An emulated program,
called MADEP, contains a table of transfer vectors, one for each
emulated routine called from native mode. To link from a native to an
emulated routine, the developer defInes a symbol, say etv, equal to the
address of the transfer vector in MADEP. (These defInitions are kept
in a header file dedicated for this purpose.) The emulation routine can
then be accessed by an "spcxfr(etv)" function call in a C program.
Spcxfr is an IS25 assembly-language routine that executes a cale to
effect the transfer.

To transfer from emulated to native mode, the developer defInes a
global symbol, say ntv, equal to the address of the transfer vector for
the desired function. These transfer vectors are forced to specific
locations by special control statements in the loader specification file
of the TSPS process. Thus, their location is known to the programmer.
The transfer is accomplished through the use of the smt instruction.

Although this emulated-native transfer mechanism requires some

870 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

manual coordination between emulated and C-Ianguage fIles, this
effort is only required when a new routine (to be accessed from the
opposite mode) is added. These routines can be modifIed at will
without requiring the referencing programs to be regenerated. Since
these special-purpose routines are added infrequently, emulated and
C-Ianguage development can proceed, for the most part, quite inde­
pendently.

3.4 Overwrite considerations for the C-Language environment

For C-Ianguage software generation, there is no direct analogue to
an overwrite for emulated software. C-Ianguage frozen development
involves full recompilation and link editing of TSPS processes. The
effect of this on TSPS development is discussed in Section 4.3.3.

3.5 Building a 3B20D disk image

Thus far, the mechanisms for constructing DMERT processes files
have been described. To complete the software generation process, it
is necessary to build a 3B20D disk image containing the total collection
of process files, special-purpose boot files, and equipment confIguration
information. To accomplish this, the DMERT operating system uti­
lizes two major data bases: the Equipment ConfIguration Database
(ECD) and the System Generation (SG) database. The ECD contains
records describing the characteristics and status of all processor and
peripheral hardware. The contents of the ECD specify the current
hardware confIguration of the system. This hardware status informa­
tion is placed in a central database, the ECD, to eliminate redundant
device information and to provide a unifIed approach to handling and
accessing hardware confIguration data. The SG database contains
information specifying the structure of the 3B20D disk image as
designed by the application. This includes operating system param­
eters, disk partitioning information, file system names and sizes, names
and types of individual fIles, and the make-up of the operating system
boot image.

A DMERT tool, 3bmkdsk, provides the capability to construct a
disk image from the ECD and SG databases, DMERT process files,
and TSPS process files located on the PSS. This program generates
three 1600-bit-per-inch (bpi) magnetic tapes containing 32M bytes of
data. The image on tape is used to create a 3B20D disk.

IV. THE SOFTWARE DEVELOPMENT PROCESS

The development of the TSPS No. IB with many software tools and
literally thousands of fIles requires a rigorous set of procedures (or
methodology) to allow the development of software to proceed in an

SOFTWARE DEVELOPMENT SYSTEM 871

orderly and controlled fashion. This section describes the methodology
employed for TSPS No. IB development.

4.1 General support environment of TSPS

At the source-language level, the initial TSPS No. IB generic
program comprises approximately 350 emulated source files and 380
C-language source and header files. In executable form, the emulated
software amounts to about 2.3M bytes of program. This excludes
scratch data areas and office-dependent data (describing the particular
line and trunk arrangements of an office), which also reside in the
emulation address space. The C-language source is transformed
through software generation tools into over 300 3B20D process and
data files.

To control development on this large collection of software modules,
official and test versions of both emulated edit files and C-language
source files are maintained under the Source Code Control System.
SCC'S is a collection of programs that can store and retrieve multiple
versions of a file in a space-efficient manner. This not only maintains
a history of changes but allows the retrieval of various versions of
source code that, for example, might represent a recent release, the
current official software, software under system test, etc.

In addition to using SCCS for source control, TSPS also makes use
of a "featuring" concept. Featuring allows developers to maintain a
single source file regardless of the number of program generics under
development. In featuring, lines added, deleted, or replac,ed in a source
file are bracketed by feature-control directives which, during the
assembly of the source file, direct the assembler either to assemble or
ignore bracketed source code. The feature-control directives used in
TSPS emulated development are:

(i) INFOR feature-expression
(ii) OUTFOR feature-expression

(iii) END FOR feature-expression.
Feature-expression is a Boolean combination of feature names. In

an assembly, each feature name, and consequently each feature-expres­
sion, evaluates to a true or false value. If the feature-expression
associated with an INFOR directive is true, the source lines between
the INFOR and corresponding END FOR are assembled. For OUT­
FOR, if a feature expression is true, it causes the bracketed source
lines not to be assembled. A set of feature expressions is associated
with each generic. In this way, a single source file can generate multiple
distinct object files, each associated with a particular generic program
under development. The featuring syntax used for C software is
different, but has the same basic capabilities.

There are two modes of development used in TSPS. The "non-

872 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

frozen" mode is the first stage in the development process when most
of the new feature software for a generic is written. The intent is to
give the programmers as much freedom as possible in writing and
testing their code. When most of the new feature development is
complete, the "frozen mode" is entered. In this mode, tight control is
exercised over changes that are applied to the generic. Each change is
documented and tested individually to assure a controlled evolution of
the generic software. The sections that follow describe in some detail
how development works in these two distinct environments.

4.2 Non-frozen-mode methodology

4.2. 1 Emulated development

4.2.1.1 Creation and modification of source modules. In the non-frozen
mode, programmers have a large degree of freedom in modifying
existing source fIles or creating new ones. To create a new source fIle
for emulated program development, the developer simply uses the
interactive editor to input emulated statements. The new source fIle
can be assembled, put into executable form by the partial load capa­
bility, and tested in the TSPS system laboratories. At the time of the
next "base load" (see 4.2.1.3), the source file will be installed on the
remote IBMjMVS system where all emulated source files are main­
tained.

Most non-frozen-mode activity involves modifying APE line edit
files under the control and administration of the TSPS Subsystem for
Non-Frozen Development (TSPNF).

TSPNF uses a strategy that allows multiple developer teams to
work in parallel in a non-interfering way. The hierarchical nature of
the file system is used to logically group edit files based on generic
name, base-load name, and team name. Thus, several teams may have
edit fIles affecting the same source file. Individual team members can
create edit files within the team directories via the TSPNF commands,
nfget and nfput. The nfget command is used to retrieve from the
TSPNF directory structure, for the purpose of editing, the edit file for
a source module corresponding to a particular generic, base load, and
team combination. If the TSPNF structure has no edit file for the
particular team, nfget retrieves the latest official version of the edit
file. The edit file is placed in the user's current directory (work area).
Once the file is retrieved, the programmer can modify it as described
by interactively adding, deleting, or replacing source lines or feature
control directives. Once the edit file has been changed to the program­
mer's satisfaction, it can be returned to TSPNF for safekeeping by the
nfput command.

4.2.1.2 Generation of private versions for testing. The PSS2 interface
for emulated program development contains a number of commands

SOFTWARE DEVELOPMENT SYSTEM 873

to be used for the generation of IBM Job Control Language (JCL)
scripts and for the submission of these scripts to the remote IBM/
MVS system for execution. Two of these commands, swap and ppload,
playa key role in generating software for testing in the non-frozen
mode of development. The swap command is used to generate and
submit the JCL for a SPC-SW AP assembly.

The swap command allows the programmer to assemble a new
source fIle that has been created on PSS2 or, in the case of a program
whose source is already resident on the IBM/MVS system, to specify
the name of an APE edit file to be applied to the program source prior
to assembly. Options are provided to retrieve the edit file from the
user's current directory, the TSPNF team directory structure, or the
official set of line edit files.

Regardless of the source of the input, a generic-name parameter is
used to establish the proper environment for the assembly. This
includes setting up references to the correct SWAP symbol and macro
libraries, selecting appropriate feature names, and specifying generic­
dependent listing-format options. Typical output files from the swap
command are the assembly listing file and an object module. These
both reside on the remote IBM fIle system with the object module
placed in a special team partitioned data set (a single data set contain­
ing a collection of object modules for a specifIc development team).
The listing fIle can be printed locally in original or post-processed
format.

The ppload command provides the programmer interface to the
partial load capability described in Section 3.2.1. This command will
generate a partial load run using the HISTORY file from the latest
base load (see Section 4.2.1.3) and all of the object modules in a
specifIed set of team data sets. The result is a file on the IBM/MVS
system in post-processed format that contains just the program differ­
ences introduced by the team object modules. Through the use of an
optional parameter, this partial load file can be written to tape. This
then provides a convenient mechanism to create a private, team
version of software that can be taken into the system laboratory,
overlayed on the current official version from the last base load, and
tested.

The non-frozen development scenario from the programmer's point
of view is quite simple. An edit fIle for the source file to be modifIed is
retrieved with the nfget command, and changed with the interactive
editor. Private developer or team test loads can be built by use of the
swap and ppload commands. Once the edits have been tested, the edit
file can be returned to the team TSPNF structure with the nfput
command. All programmer activity with the exception of the testing
itself occurs on the PSS2 system.

874 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

4.2.1.3 Submission and integration of software changes. Periodically,
during the process of developing a new generic, newly developed
software is integrated with the latest approved version of the generic
program and tested. This process is called the "base load" process
because it results in a new, independently certified program load that
serves as the base for future development. For a base load, each team
leader is responsible for submitting a complete description of the team
input. This information includes the list of team edit files to be
incorporated into the base load, the features that are completed with
this submission, and other appropriate documentation as needed.
U sing this input, a new software version is constructed and turned
over to the TSPS Integration Group for certification in the system
laboratory. When certification is complete, the software is made avail­
able to the developer community.

4.2.2 C-Language development

Thus far we have described the non-frozen development environ­
ment for emulated programs. This section addresses the C-language
development environment. The Change Management System (CMS)
plays a key role in both frozen and non-frozen C-language development
in TSPS. To understand how C-language development proceeds, it is
necessary to grasp the basic concepts employed in CMS.

4.2.2. 1 The Change Management System. CMS is a collection of
UNIX programs aimed at controlling the activity of programmers,
test-teams, and administrators engaged in C-language software devel­
opment. In CMS, all development activity is tied to the notion of a
modification request (MR).

An instance of CMS has three main components:
(i) A set of project source files maintained under the Source Code

Control System (SCCS), described earlier. This allows multiple ver­
sions of a source file to be kept (for example, the current official
version, a version undergoing system test, and a developer's private
version).

(ii) A relational database that maintains the status of MRs and
relates MRs to SCCS (version) identifiers. This not only provides the
status of MRs but also permits the retrieval of source file versions that
correspond to particular features or code changes.

(iii) A set of directory structures called nodes, each of which is
identical in makeup (i.e., reflects the generic program's directory
structure) and is capable of holding all source, object, process, and
data files that constitute a generic program.
The use of CMS in TSPS C-language development will be the topic of
the next several sections.

4.2.2.2 Creation and modification of source modules. CMS maintains

SOFTWARE DEVELOPMENT SYSTEM 875

an official source repository that consists of one sees fIle for each
source fIle used in a generic development. For TSPS, this includes e­
language source fIles, header files, and makefiles. These sees files are
stored in a project directory structure, a subtree of the hierarchical file
system, organized so that files making up a single process typically are
found in a single directory, while the files associated with related
processes are grouped in directory structures that are subtrees of the
overall project directory structure.

As previously mentioned, the sees fIles can contain multiple ver­
sions of the corresponding source file. To modify a source file, the
programmer fIrst extracts the latest version of the file to be modifIed
from the sees file in the offIcial repository. The programmer then
edits the fIle with the text editor, builds an executable version of the
affected process file, and tests the resulting product. When satisfIed
with the changes to the source file, the programmer returns the new
version of the file to sees.

All source file change activity is associated with an MR number.
Basically, the MR is a name under which a set of software changes are
grouped. The programmer is quite free to use MRs as necessary during
the non-frozen mode of development. Typically, the programmer will
defIne an MR to represent a feature or subfeature being develope~l.

4.2.2.3 Generation of a private version of software for testing. The
generation of executable process files from e-Ianguage source uses the
3BSGS and makefIles, as descibed in Sections 3.3.1 and 3.3.2. However,
rather than using the make command, an enhancement of make, called
build is employed by TSPS developers. Build is a software tool provided
as part of eMS. It provides a very convenient mechanism to construct
a private version of a process or set of processes. The programmer
executes a single command and only has to deal with those files that
have been modifIed. Other required files are automatically shared from
the official directory structure. This sharing not only saves fIle space,
but also eliminates the need for time-consuming, error-prone copying
of files.

In TSPS, each programmer maintains a private node for develop­
ment. All programmers share the official node. The developer scenario
is as follows:

(i) A command is issued to retrieve the source files to be modifIed.
(ii) The retrieved source files are edited.

(iii) Executable versions of the software are constructed using build.
(iv) The executable files are transported to the system laboratory

for testing.
(v) When changes are complete, the source files are returned to

sees.
There is little chance for error during software construction since build

876 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

automatically generates the commands to reprocess any and all files
that have been affected by the editing. This eliminates the manual
effort to reprocess files, the potential errors caused by forgetting to
reprocess files, and the overhead of unnecessarily reprocessing files.

4.2.2.4 Submission and integration of software changes. In the non­
frozen mode, as developers complete testing of new software associated
with an MR, the code is submitted by executing the CMS submit
command. This changes the status of the MR in the CMS database
from "active" to "submitted." In addition, documentation specifying
the feature(s) covered by this submission and the source and process
files affected is turned over to the TSPS Integration Group.

As with emulated software, (and usually at the same time), C­
language software undergoes a "base load" process. After the load is
tested and certified, the official node is updated with all files in the
test node and the MRs are marked "approved" and "integrated" in
the CMS database. Non-frozen development can then proceed with
the newly tested and approved official node.

4.3 Frozen-mode methodology

4.3. 1 Overview

In the non-frozen mode of development, the emphasis is on giving
the programmer freedom to make large-scale changes to existing
software to facilitate new feature development. As system testing
begins, TSPS software is placed under rigorous change control proce­
dures. Problems are documented in the form of trouble reports, which
are then carefully monitored. The developers submit correction reports
(CRs), which include a description of the fix, as well as the software
change itself. Each CR is tested individually against the existing
approved software version and must be approved by a Change Review
Committee with representatives from all involved project teams before
it is officially incorporated in the generic.

The intent of this method is to evolve the software in a rigorously
controlled manner. Thus, when operational problems arise, they can
be localized more easily to a particular area of software. With this
approach, a high degree of confidence in the evolving software product
is realized.

4.3.2 Emulated development

From a programmer's point of view, the ~cenario for creating and
testing a correction in emulation code in frozen mode is similar to
developing code in the non-frozen mode; however, the unit of change
is substantially different. In non-frozen mode, the unit of change was
the partial load. In frozen mode, it is the overwrite described in Section
3.2.4.

SOFTWARE DEVELOPMENT SYSTEM 877

Special "patch" directives recognized by SPC-SW AP are placed by
programmers in the overwrite source code to ensure that a change
does not cause the entire object file to be relocated in memory.
Replacement of program or data words is permitted, but only by
instruction sequences of equal size. If a change is larger than the
instruction sequence being replaced, a transfer to "patch" area is made.
(Patch area is spare memory space reserved for this purpose.) In this
way, object modules remain the same size and the number of memory
locations whose contents change is minimized.

4.3.3 C-Language development

For C-Ianguage development, there is little difference between the
frozen and non-frozen modes. The same tools are used and the same
basic development scenario is followed. The main difference is that
each MR represents an existing system problem or minor enhancement
rather than a new feature. Therefore, the amount of software associ­
ated with an MR tends to be of a smaller quantity. In addition, as with
emulated software, software change reports are generated and submit­
ted to document the change and must be approved through the same
process.

v. LABORATORY SUPPORT SYSTEM

The Laboratory Support System is a software testing system that
enables users to test their programs in a TSPS system laboratory. It
is generally concerned with the laboratory execution environment of
TSPS programs.

5. 1 System laboratory configuration

To provide sufficient test capabilities for TSPS development, there
are two independent TSPS system laboratories. Generally, both sys­
tem laboratories support parallel execution environments for TSPS
programs. The configuration for a TSPS system laboratory is shown
in Fig. 3.

5.1.1 System laboratory hardware configuration

The TSPS No. IB is controlled by the SPC IB, which consists of a
3B20D Processor and a Peripheral System Interface (PSI). The com­
plete description of the SPC IB is detailed in Ref. 11. In addition to
the SPC IB, a TSPS system laboratory also contains a set of TSPS
peripheral units, operator consoles, and a Laboratory Support System.

5.1.2 Laboratory Support System

The Laboratory Support System is primarily used to support de­
bugging on the SPC IB, for controlling the operations of the SPC IB

878 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

G
R
A
S
P

SPC 1B

SIMULATORS

MICLOB
MOPS
UCG
SLS

LOTS
MESS

CCIO-CENTRAL CONTROL INPUT/OUTPUT
FTS-FIELD TEST SET

GRASP-GENERIC ACCESS PROGRAM
LOTS-LOCAL TOLL SIMULATOR
MESS-MICROPROCESSOR SERVICE

EVALUATION SYSTEM SIMULATOR
MICLOB-MICROPROCESSOR-CONTROLLED

LOAD BOX
MIP-MICRO-LEVEL TEST SET

INTERFACE PROGRAM
MLTS-MICRO-LEVEL TEST SET
MOPS-MICROPROCESSOR OPERATOR

POSITION SIMULATOR
SLS-SINGLE-L1NE SIMULATOR
TUS-TEST UTILITY SYSTEM

PDP 11/70

TUS
MIP

" / I
DATA LINKS

Fig. 3-Laboratory configuration for TSPS No. lB.

in the test environment, and for loading the SPC lB memory. The
LSS consists of a PDP-ll/70 support computer, special laboratory and
generic utility systems, and TSPS call simulators, which support
program testing. The PDP-ll/70 is connected to the SPC lB by a
Central Control Input/Output (CCIO) bus simulator unit. ll

There are four major debugging tools associated with a TSPS LSS.
They are the Test Utility System, the Micro-Level Test Set(MLTS),
the Field Test Set (FTS), and the DMERT Generic Access Program
(GRASP). Each provides a distinct set of debugging capabilities.

5.1.2.1 Test Utility System. The Test Utility System (TUS) is the
principal, high-level, debugging tool for the software developed for the
SPC lB. TUS provides symbolic access to data and a "C"-like utility
language. It resides partially on the LSS and partially on the SPC lB.
The TUS support processor subsystem on the LSS performs TUS
input and output processing and TUS system control. Users log into
TUS on the support processor subsystem; this subsystem converts the
user's utility commands into executable command groups that are then
sent to the TUS test processor subsystem on the SPC lB. The test
processor subsystem executes under the DMERT operating system.
Symbolic references are resolved on the LSS using symbol tables
constructed on the PSS as part of the base load process.

SOFTWARE DEVELOPMENT SYSTEM 879

As the TUS test processor subsystem on the SPC IB receives
command groups to be executed, requested break points or matchers
are set up, and associated utility commands are processed. Any raw
data that result from the utility commands are collected and sent back
to the TUS support processor subsystem to be processed. Output to
the user includes symbolic references and processed data. Commands
are available to: read or write any memory location, display or send a
message to a process or port, enable or disable a program trace, copy
a file from the test processor to the LSS, start or stop a test process,
and send an event or fault to a test process with associated data input.

Because of its symbolic access to data and its "C" -like utility
language, TUS is a powerful debugging tool. In addition, TUS is an
integral part of the system overwrite facility. TUS supports a data link
that is capable of transferring fIles at a rate of 56K baud. Using" TUS,
overwrites are quickly transferred from the LSS to the SPC IB when
requested by the programmer or tester. More'details about TUS can
be found in Ref. 10.

5.1.2.2 Micro-level test set. The micro-level test set connects to the
microbus of the SPC IB and is used for direct access to 3B20D registers
and memory. From a terminal connected to the LSS, simple commands
can be sent to the ML TS to insert breakpoints. After a breakpoint
fires, the SPC IB is halted so that the tester can display or change the
contents of registers and memory locations. Once this is done, the
processor can be restarted. ML TS (unlike TUS) is a stand-alone tool
that is completely independent of the operating system on the SPC IB
and can be used to debug at the kernel level. However, it does not
provide symbolic testing capabilities and is used only for low-level
program debugging.

5.1.2.3 Field test set. The field test set is a portable debugging tool
capable of tracing the execution of processes without interfering with
normal processor operations (Fig. 4). As such, it provides an effective
debugging capability both in the system laboratory and operational
field sites. It interfaces directly with the dual-access utility circuit in
the 3B20D Processor to record information about the execution of
processes in the SPC lB. The tracing capabilities of the FTS are
controlled by simple commands that set up matchers, trigger functions,
and trace memory. The FTS can be used to perform a process trace,
transfer trace, data history trace, simultaneous data history and trans­
fer trace, function trace, and simultaneous data history and function
trace. Like the MLTS, the FTS is completely independent ofDMERT.

5.1.2.4 Generic Access Program. The final debugging tool used in the
development of the TSPS No. IB is the Generic Access Program
(GRASP), which is a standard DMERT utility system resident on the
3B20D. It provides basic, non-symbolic capabilities to dump registers

880 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Fig. 4-The field test set.

and memory, and to set up breakpoints to stop program execution at
desired points. Using the 3B20D dual-access utility circuit, GRASP
also can trace the flow of execution of instructions of a process in a
non-interfering fashion. A typical trace might record the "from ad­
dress" and "to address" of every branch instruction executed. Addi­
tional information, such as the contents of the registers, may also be
obtained. Because it is running on the same processor as the test
processes and requires the support of the DMERT operating system,
GRASP will generally interfere (like TUS) with the normal operations
of a process and is not effective for kernel debugging.

5. 1.2.5 Choosing thf! right debugging tool. As evident in the previous
discussions, the four debugging tools used in the TSPS No. IB devel­
opment were designed for specific applications and have overlapping
utility capabilities. TUS is a high-level, symbolic debugging tool. The
MLTS is a low-level debugging tool. The FTS is a non-interfering
debugging tool in the sense that normal instruction sequences and
timing are not altered when using it. GRASP is a generic tool available
on an operational 3B20D. Within a particular test session, a combi-

SOFTWARE DEVELOPMENT SYSTEM 881

nation of these tools may be used. Whenever possible, TUS is used
because of its powerful debugging capabilities. The ML TS, FTS and
GRASP are used only when needed for a particular problem.

5.2 Laboratory software change facility

When a new TSPS generic is developed, the TSPS system labora­
tories are used to provide a realistic environment to test the new or
changed programs. These new or changed programs are built on the
PSS and then down loaded via the LSS to the SPC IB for laboratory
testing. Changes are often required to correct program problems
uncovered during the lab session. These changes are in the form of
overwrites consisting of program and data instructions being modified.

5.2.1 Emulated program change facility

To modify emulated programs in the system laboratory, the OVGEN
program on the PSS is used to generate an overwrite file. This file is
then transferred to the LSS and used as input to an overwrite assem­
bler on the LSS to produce an overwrite object module. Using TUS,
this module is then transferred to the SPC IB disk and a special loader
program on the 3B20D is run to overwrite the SPC IB emulated
address space. The overwrite assembler and loader used in this process
are described in this section.

5.2.1.1 The overwrite assembler for emulated code. NOVA is a utility
program on the LSS used to assemble overwrites for SPC IB emulated
code. The input to NOVA is the swap overwrite file produced by
OVGEN, and the output is an absolute or relocatable object module
and a relocation dictionary for the overwrite. The information con­
tained in the relocation dictionary consists of pointers into the object
file and addresses to be assigned by the loader. NOVA also produces
overwrite and cross-reference listings to document the change in the
laboratory.

5.2.1.2 The overwrite loader for emulated code. The loader program
(NULOAD) is a relocatable loader for emulation code on the 3B20D.
It provides a means by which NOVA-assembled overwrites are loaded
into the TSPS process address space in memory. During each lab
session, NULOAD automatically monitors the allocation of patch
space and assigns patch space as needed by the overwrites. It allows
the user to combine various overwrites assembled at different times
and by different people without having one patch in one overwrite
loaded on top of a patch from another overwrite. NULOAD also is
used to load a partial load created on the PSS system.

5.2.2 Native-mode program change facility

To modify C-Ianguage programs in the system laboratory, an entire
new process file (pfIle) must be built on the PSS. Once this file has

882 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

been transferred via the LSS and TUS to the SPC lB disk, it is
installed on the 3B20D disk replacing the previous version of the
process file. The next time the process is loaded into memory, the new
pfile is used.

5.3 Laboratory simulators

Program testing in the TSPS system laboratory often requires the
ability to either place a single call or a substantial traffic load on the
TSPS and to automatically handle calls that require operator assist­
ance in a live site. A number of microprocessor-controlled simulators
including the Single-Line Simulator (SLS), Local Toll Simulator
(LOTS), the Microprocessor-Controlled Load Box (MICLOB), and the
Microprocessor Operator Position Simulator (MOPS) have been de­
veloped as part of the LSS to provide these capabilities for the TSPS
No.1 system and were also used to test the TSPS No. lB. These call
simulators are described in detail in Ref. 6.

VI. SUMMARY

The TSPS No. lB Software Development System provides a com­
plete set of facilities for TSPS generic development on the 3B20D
Processor. Software generation tools can compile and link both emu­
lated, assembly-language, and C-Ianguage programs. Administrative
software and a rigorous development methodology control the evolu­
tion of feature development and keep track of the multiple versions of
software that exist during the development process. Special-purpose
software and hardware in the TSPS system laboratories provide a
modern test environment for debugging and certification of the soft­
ware product. These facilities are an effective and productive software
development environment for future network operator services.

VII. ACKNOWLEDGMENTS

Many individuals have contributed in a significant way to the design
and implementation of the TSPS No. lB Software Development
System. In particular, the authors wish to acknowledge the contribu­
tions of K. M. Conness, G. F. Gieraltowski, B. E. Holmes, M. S.
Koehler, B. T. Rovegno, R. J . Welsch, and S. P. Winker, who were
responsible for major components of the Software Development Sys­
tem. In addition, we would like to extend our thanks to D. L. Atkins,
B. T. Rovegno, and E. S. Sachs for their many constructive suggestions
during the preparation of this article.

REFERENCES

1. R. E. Staebler and J. I. Cochrane, "Traffic Service Position System No. IB: Overview
and Objectives," B.S.T.J., this issue.

SOFTWARE DEVELOPMENT SYSTEM 883

2. R. J. Gill, G. J. Kujawinski, and E. H. Stredde, "Traffic Service Position System No.
IB: Real-Time Architecture Utilizing the DMERT Operating System," B.S.T.J.,
this issue.

3. B.S.T.J., 61, No.7, Part 3 (September 1982), special issue on the Stored Program
Controlled Network.

4. D. M. Ritchie and K. Thompson, ''UNIX™ Time-Sharing System: The UNIX
Time-Sharing System," B.S.T.J., 57, No.6, Part 2 (July-August 1978), pp. 1905-
30.

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ''UNIX™ Time-Sharing System:
The Programmer's Workbench," B.S.T.J., 57, No.6, Part 2 (July-August 1978),
pp.2177-2200.

6. J. J. Stanaway, Jr., J. J. Victor, and R. J. Welsch, "Software Development Tools,"
B.S.T.J., 58, No.6, Part 1 (July-August 1979), pp. 1307-34.

7. M. E. Barton, N. M. Haller, and G. W. Ricker, "Service Programs," B.S.T.J., 48, No.
8 (October 1969), pp. 2866-80.

8. M. E. Barton, "The Macro Assembler, SW AP-A General Purpose Interpretive
Processor," Fall Joint Computer Conference, 1970.

9. J. C. Lund, Jr., M. R. Ordun, and R. J. Wojcik, "Implementation ofthe Calling Card
Service Capability-Application of a Software Methodology," Int. Commun. Conf.,
Denver, Colorado, June 1981.

10. B.S.T.J., 62, No.1, Part 2 (January 1983), special issue on the 3B20D Processor &
DMERT Operating System.

11. G. T. Clark, H. A. Hilsinger, J. H. Tendick, and R. A. Weber, "Integration of the
3B20D Processor into TSPS," B.S.T.J., this issue.

884 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.3, March 1983
Printed in U.S.A.

Traffic Service Position System No. 1 B:

Integration and System Testing

By R. AHMARI, R. S. DiPIETRO, S. C. REED, and
J. R. WILLIAMS

(Manuscript received June 30, 1982)

The integration testing and system testing strategies used in the
development of the Traffic Service Position System No. 1B (TSPS No.
1B) are described in this article. It discusses novel methods developed
for the integration and testing of the first embedded application of
the 3B20D Processor and DMERT operating system. The new testing
techniques and project management aides, which were vital to the
achievement of system quality for the Bell System service, are de­
scribed. The first TSPS No. 1B went into service on November 20,
1981, in Fresno, California.

I. INTRODUCTION

The first Traffic Service Position System No. 1B (TSPS No. 1B)
was placed in service in Fresno, California, on November 20,1981. This
newly installed TSPS brought modern Stored Program Control (SPC)
operator services capabilities to telephone customers in Fresno and
other San Joaquin Valley communities, and permitted Pacific Tele­
phone to close the largest remaining Bell System Cordboard installa­
tion in the United States. Modern operator servicesl

,2 are bringing
convenience to telephone customers and increased efficiency and sav­
ings to Pacific Telephone.

Placing the Fresno TSPS No. 1B in service marked the conclusion
of a major testing program that was vital to the delivery of a high­
quality system, capable of meeting all objectives. l This was especially
critical because of the planned, rapid conversion of existing TSPS
No.1 sites to TSPS No. lB. Furthermore, since TSPS No. IB is the
first electronic Stored Program Control system to utilize an embedded

885

3B20 Duplex (3B20D) Processor and its Duplex Multi-Environment
Real-Time (DMERT) operating system,3 confIrmation of its capabili­
ties was essential to the success of the TSPS No. 1B program, as well
as to other systems utilizing the 3B20D Processor.

Following the successful introduction of TSPS No. 1B in Fresno, a
second new start TSPS No. 1B was placed in service in San Antonio
(Southwestern Bell Telephone) on January 30, 1982. Both the San
Antonio and Fresno sites were instrumental in the overall test program.
The first conversion of an existing in-service TSPS No. 1 office to
TSPS No. 1B occurred at Redwood City, California, on March 13,
1982.

The balance of this paper will focus on the overall test program for
TSPS No. 1B, specifically on integration and system testing. These
systemwide test activities are major components of the methodology
used for development of TSPS No. 1B (see Fig. 1 *). Integration testing
specifically includes: the introduction of various system components
(hardware and software) into the development laboratories; the inte­
gration of these components to form a stable operating environment;
and testing to ensure that a sufficient set of capabilities exists to
warrant full, comprehensive, and broad testing. System testing includes
the later testing and, is done to verify the system, as a complete
functional product, before its release to the field.

The integration and system testing of TSPS No. 1B and its compo­
nents-the 3B20D Processor, the TSPS Peripheral System Interface
(PSI), the DMERT operating system, and TSPS application soft­
ware-was a complex effort. Because TSPS was the first user of the
3B20D as an embedded processor, a substantial cooperative effort with
the 3B20D development team was scheduled to identify and solve
processor and operating system problems that were encountered dur­
ing the design, integration, and testing of TSPS No. lB. A tightly
scheduled and controlled series of integration tests were performed by
a team at the Bell Laboratories Indian Hill Laboratory in Naperville,
Illinois, as new hardware and software capabilities were delivered to
the system laboratories. After these new capability packages were
integrated and certified as ready for system test, they were delivered
to the system test teams at Indian Hill, Fresno, and San Antonio. The
use of the two field sites provided settings similar to live TSPS offices
for early identification of site-dependent problems and for verification
of future in-service retrofit procedures with Western Electric engineers.

The system test plan consisted of over 16,000 unique tests of three
general types:

* Acronyms and abbreviations used in this paper are defined at the back of this
Journal.

886 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

80 81 82

10 20 30 40 10 20 30 40 10 20

FRESNO{

PT&T TRUNK TESTS

~
SYSTEM TESTING

'-CUTOVER (11/20)

I~
INSTALL

,
'- ACCEPTANCE TESTS

~

IH INTEGRATION TESTING

INSTALL
1 SPC 1B. 1

---- PROCESSOR REPLACEMENT TESTS---_ l
1----'-'-/-11 ~ SAN

SYSTEM TESTING

IH - INDIAN HI LL
PT&T - PACIFIC TELEPHONE AND TELEGRAPH

SPC - STORED PROGRAM CONTROL
SWB - SOUTHWESTERN BELL

1 ~ ACCEPTA:::r

NIO

SWB TRUNK TESTS T~STS)

\, CUTOVER
(1/30)

Fig. I-Test schedule for system integration.

(i) Functional tests-to verify that design requirements were met
by new features.

(ii) Regression tests-to verify continued proper operation of pre­
viously delivered features.

(iii) Stress tests-to parametrically determine and evaluate system
limits, response characteristics, and overall performance under traffic
overload conditions and fault conditions.

As depicted in Fig. 2, system test responsibilities were allocated to
teams at the three locations with some intended overlap. For example,
most of the DMERT feature system testing was scheduled for Fresno,
to take advantage of the higher simulated-traffic-Ioad capability at
that site. Of these tests, some had been previously run at Indian Hill
and at San Antonio, where exposure to different hardware and system
configurations was critical. San Antonio was selected as the site to
perform exhaustive tests of the existing TSPS periphery and to test
external interfaces, such as to the Switching Control Center System
(SCCS). In addition, a core of tests was periodically selected for all
three system test sites to evaluate key software releases and to regu­
larly assess the performance of a broad spectrum of features. In
general, these "Run-for-Record" tests were a subset of the tests in­
cluded in the system test plan.

Both integration and system testing were pursued for a period of
over one year to completely verify the operation of the TSPS No. lB.

INTEGRATION AND SYSTEM TESTING 887

(X)
(X)
(X)

-i
:c
m
tD
m
r-
r-
en
-< en
-i m
~
-i m
(')
:c z
0 »
r-
c...
0
C
:D
Z »
.r
~
»
:D
(')
:c

co
ex>
w

INDIAN HILL

CCIS SCC/BVA

3B AUDITS

Fig. 2-Test plan overview.

REAL-TIME
MEASUREMENT

BVA - BILLING VALIDATION APPLICATION
CCIS - COMMON CHANNEL INTEROFFICE SIGNALING

CR - CORRECTION REPORT
PSI - PERIPHERAL SYSTEM INTERFACE

SCC - SWITCHING CONTROL CENTER
TLP - TROUBLE-LOCATING PROCEDURES

TSPS - TRAFFIC SERVICE POSITION SYSTEM

Deliverables were phased to provide a smooth work flow. For this
rigorous and demanding test program, tests were conducted ranging
from microscopic tests, aimed at verifying operational status of specific
elements of system capabilities, to global capacity and performance
measurements and evaluations. During the test period, all problems
found were tracked and pursued to their resolution. Performance
criteria were set, performance was measured to ensure convergence to
these criteria, and strong project management techniques were em­
ployed to ensure a timely introduction of a high-quality TSPS No. lB.

The following sections of this article describe how the laboratory
integration and site system testing were conducted. The excellent
performance of the TSPS No. IB system at cutover resulted not only
from good planning and design but from timely integration and com­
prehensive testing supported by appropriate documentation, develop­
ment tools, and change control procedures.

II. INTEGRATION TESTING

2. 1 Overview

A crucial stage of the verification and evaluation process for new
3B20D/DMERT and TSPS capabilities is integration testing. During
the early stages of the process, the development environment was
considered to be "non-frozen," and designers could freely make large­
scale changes to the existing capabilities or introduce new ones. The
design and development of various features were accomplished by
partitioning them into a series of functional units, which were then
tested by the designers to make sure that each unit met the design
requirements. Upon the completion of unit testing by the designers, a
set of integration tests were performed by an independent team to
ensure that each functional unit performed reliably in the total system
environment. Upon successful integration of functional units, they
were considered "frozen," and changes were made only through formal
procedures. The frozen functional units were then ready for system
testing and evaluation, the last stage of the verification process.4

Certain unique characteristics of the TSPS No. IB development
environment required special attention during the integration process.
These characteristics can be summarized as follows:

(i) TSPS No. IB was developed in a multilanguage environment.
DMERT software was primarily developed in the high-level C lan­
guage, while TSPS software was developed in both assembly language
(TSPS emulated software) and the high-level C language (TSPS native
software).

(ii) DMERT software changes were concurrently developed by the
common system organization and had to be integrated with the TSPS

INTEGRATION AND SYSTEM TESTING 889

software changes developed by the application organization. In some
cases a DMERT change required a coordinated change from TSPS or
vice versa.

(iii) 3B20D fIrmware/hardware changes had to be similarly inte­
grated with the TSPS fIrmware, hardware, and software changes, such
as those associated with the PSI.

(iv) A new generation of TSPS No. IB support tools was developed,
resulting in new load generation, installation, and integration proce­
dures.
The above characteristics were taken into consideration to establish
an efficient integration and test strategy, which ensured the quality of
the functional units integrated into the system.

2.2 Integration testing methodology

The integration testing philosophy adopted for TSPS No. IB estab­
lished a rigorous methodology with systematic checks to independently
evaluate all functional units supplied by designers in a single environ­
ment. To meet this objective, it was decided that the integration group
should be independent of the development groups. Independence
provided an unbiased and fresh viewpoint in assessing the functional
units and interpreting the test results.

The integration test plan started early in the development cycle,
subsequent to the availability of feature requirements. The plan took
into consideration the availability sequence of various features and
functional units within each feature. A strategy was established that
guaranteed effIcient handling of all units ready for integration testing
without interrupting the other development activities. Special efforts
were required to coordinate and synchronize the integration testing of
TSPS functional units with 3B20D /DMERT features and capabilities.
This was especially crucial in interface areas where direct interaction
between the two environments existed. Another major consideration
in the plan was that the software, fIrmware, and hardware environ­
ments evolve in a manner compatible with the system test plan, thus
allowing the system testing activities to proceed without any interrup­
tion.

The TSPS No. IB integration tests were generated independently,
following a thorough analysis and review process, which is summarized
as follows:

(i) Feature requirement and design specifIcation documents were
reviewed to identify functional units within each feature.

(ii) Functions performed by each unit, along with its input/output
characteristics, were identifIed.

(iii) Software interfaces with fIrmware and hardware were exam­
ined and reviewed.

890 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

(iv) 3B20DjDMERT interfaces with the TSPS application were
thoroughly analyzed, and expected inputj output responses of the
interface units were identified.

(v) The control flow among various units and their time sequence
description was carefully inspected.

(vi) A general layout and description of data used by each unit
were identified.
Based on these examinations, a set of integration tests were developed
to exercise each functional unit within the total system environment
and to stress 3B20DjTSPS interfaces. These tests were later aug­
mented by the information supplied by the designer(s), upon comple­
tion of unit testing, to start the integration testing process. During this
process it was first verified that each unit correctly performed all
intended functions, including its interaction with other units in a single
environment. The second, more subtle, objective was to ensure that
the unit did not perform any function that, either singly or in combi­
nation with others, would degrade the performance of the system.
Third, each unit was examined to make certain that it met the
standards set for design structure, documentation, and coding.

Problems identified during the process of integration testing were
classified according to their impact on the overall system. Problems
were prioritized and fed back to the designer(s) for corrective actions.
Problems related to the TSPS software were primarily tracked by
Trouble Reports (TRs), while Modification Requests (MRs) were used
to track 3B20DjDMERT problems. Specific corrective action by a
designer was required to close a TR or an MR.5 The list of all open
TRs and MRs was carefully monitored to evaluate the total impact
and to establish a plan for closing each individual TR or MR. The
primary objective of this plan was to ensure that the evolution of the
TSPS No. IB software, firmware, and hardware could proceed on
schedule without any interruption.

2.2.1 DMERT integration testing

The development of DMERT software was done in parallel with the
development of TSPS software. At well-defined points of the devel­
opment, a full DMERT release was generated by the common system
organization and delivered to the various applications after being
tested on a stand-alone basis.6

Upon delivery, each DMERT release was first installed in the
Program Support System (PSS). Subsequently, steps were taken to
incorporate the new DMERT release into the TSPS No. IB environ­
ment (see Fig. 3). These steps can be summarized as follows:

(i) The Equipment Configuration Database and System Genera­
tion Database (ECDjSG) were updated to reflect the latest DMERT

INTEGRATION AND SYSTEM TESTING 891

IDENTIFY
HARDWARE/

FIRMWARE CHANGES

DMERT - DUPLEX MULTI-ENVIRONMENT
REAL-TIME

ECD - EQUIPMENT CONFIGURATION DATA
SG - SYSTEM GENERATION

TSPS - TRAFFIC SERVICE POSITION SYSTEM

RECEIVE NEW
DMERT RELEASE

Fig. 3-DMERT integration testing.

changes. These databases contain data structures necessary to gener­
ate and run the TSPS No. IB software system.

(ii) Those areas of TSPS software that were directly affected by
the new DMERT release were identified. The corresponding TSPS
software changes were then developed on the PSS under the control
of the Change Management System (CMS). More information about
the software generation process may be found in Ref. 5.

(iii) The TSPS official native-mode software was recompiled using
the new DMERT release to update the TSPS programs that were
affected by the DMERT release (such as a library that is shared by
both DMERT and TSPS software and is changed by the new DMERT
release). All TSPS programs that were changed by the recompilation
process were audited for potential impact on the overall system. If
necessary, appropriate TSPS software changes were generated [see
Step (ii)] to compensate for the impact.

(iv) Those areas of DMERT that required changes unique to the

892 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

TSPS application were identified. These changes were also reflected
in the PSS.
Subsequent to these steps, a full TSPS No. IB load was generated on
the PSS and was installed in the system laboratory for load recovery
and integration testing. This load contained the latest DMERT release,
along with changes unique to the TSPS application; a recompiled
version of the TSPS official load; ECD jSG database changes; and the
TSPS software changes required by the new DMERT release.

Any problems in the new load were quickly identified using the
debugging tools associated with the TSPS No. IB,5 and immediate
steps were taken to obtain the necessary changes from the appropriate
designers (DMERT or TSPS). Once the load was cycling, a set of
integration tests were conducted to ensure that each functional unit
performed as expected in the total system environment. These tests
were based upon the ones independently generated by the TSPS
application organization, augmented by those supplied by the 3B20D
common system organization. Special emphasis was given to DMERT j
TSPS interface modules, TSPS areas directly impacted by the new
DMERT release, DMERT changes unique to the TSPS application,
and ECDjSG database changes. Problems identified during the proc­
ess of integration testing were tracked using the strategy described in
Section 2.2.

2.2.2 TSPS integration testing

Modifications to the TSPS software were introduced into the TSPS
No. IB environment via base loads.5 Introduction of a new base load
began with identification of all source file changes that had occurred
since the prior base load. Then a new test load was created, containing
additional software changes and associated ECD jSG database
changes. New software changes were usually grouped in one or more
test packages. The packaging strategy for the TSPS changes took into
consideration many factors including:

(i) Keeping a high degree of resolution in testing of various
changes that have an impact on the same programs.

(ii) Optimizing the amount of time used in the system laboratory.
(iii) Keeping the PSS effort for compiling various changes to a

reasonable amount.
(iv) Optimizing the system capacity for processing software

changes.
Keeping these objectives in mind, all software changes were first
mapped into a series of test packages. Program dependencies played
a key role in determining the number and content of these test
packages. The load of the test packages, along with coordinated
hardware and fmnware changes, were then installed in the system

INTEGRATION AND SYSTEM TESTING 893

laboratory separate from the TSPS official load before the integration
testing could proceed.

Upon installation of the load, a predefined set of integration tests
were used to examine each test package. These tests were aimed at
quickly identifying problems and attributing them to individual
changes. Problems encountered during the testing were classified by
their impact on the normal operation of the system and tracked as
described in Section 2.2. This process was then repeated for all test
packages until the necessary resolution was obtained, and it was
ensured that all changes could coexist and perform as expected in a
single environment. All changes that successfully passed the integra­
tion testing were then installed in the system laboratory as the new
official base load (see Fig. 4).

Upon completion of the integration testing, functional units were
considered "frozen" and ready for system testing. In the frozen envi­
ronment a set of stringent change control procedures were used so that
the TSPS software evolved in a rigorously controlled manner, leading
to a high-quality production release. All problems were documented
and tracked by appropriate trouble reports, which were carefully
monitored. To close a trouble report, a designer was required to submit
a Correction Report (CR), which contained the functional description
of the change, all necessary information relevant to the software
change, and a description of the unit tests used by the designer. Each
change was considered an independent entity and was individually
tested in the total system environment before its approval. All changes
had to be approved by the Change Review Committee (CRC) before
they were incorporated in the official load. The CRC comprised
representatives from each hardware/software design and test organi­
zation on the project.

2.3 Testing of 3820D and TSPS firmware and hardware changes

Firmware and hardware changes associated with the 3B20D were
also tested in the system laboratory environment by the TSPS inte­
gration group to uncover problems unique to the TSPS application.
These changes, along with coordinated software modifications, were
first installed in the system laboratory environment. A series of inte­
gration tests were then performed to stress and exercise the firmware­
hardware-software interfaces. Problems encountered during this stage
of testing were tracked in a fashion similar to that described in Section
2.2.

In cases where 3B20D microcode changes had an impact on the
writable portion of the microstore,7 no firmware change was necessary,
and the microcode change was released in a fashion similar to a
software change described in earlier sections.

894 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

TSPS
SOFTWARE
CHANGES

HARDWARE/
FIRMWARE
CHANGES

ECD - EQUIPMENT
CONFIGURATION DATA

SG - SYSTEM GENERATION
TSPS - TRAFFIC SERVICE

POSITION SYSTEM

Fig. 4-TSPS integration testing.

Changes to the TSPS microcode were administered under control of
CMS in a similar fashion to the TSPS software changes. A change was
fIrst developed on the PSS and was then submitted for integration
testing. The change was transferred to the system laboratory in one or
more fIles and was installed in the writable microstore unique to the
system labs. A series of integration tests were then performed to verify
its integrity in the total system environment. Similarly, all hardware
changes associated with TSPS were tested in the system laboratory
environment using prototype circuits prior to their official availability.
Once it was verifIed that the hardware/fIrmware changes operated as
expected, they were transmitted to Western Electric along with man­
ufacturing and factory test information, and were subsequently in­
stalled at the fIeld sites.

2.4 Distribution of individual software changes

Once a stable TSPS No. IB release was installed in a fIeld site, the
subsequent individual software changes were supplied as individual
packages and were installed using the fIeld update commands.5 A
package typically consisted of the software change, additional files
containing fIeld update commands, and information files required for

INTEGRATION AND SYSTEM TESTING 895

installation, testing, soaking, and distribution of the change to the
field.

For a change in the 3B20D /DMERT software, the 3B20D common
system organization generated a software package that was distributed
to each application organization. Before the release of the package to
the various applications, it was first tested and certified in the common
system environment by the common system organization. Once the
change was received by TSPS, it was examined for compatibility with
the TSPS environment. In some cases a coordinated TSPS software
change was required before actual installation and testing could pro­
ceed. A series of tests were then conducted to ensure that the change
performed as expected within the total system environment. These
tests included those supplied by the common system organization, as
well as an independent set generated by TSPS personnel.

Once a software package was successfully tested and soaked in the
TSPS system laboratory environment, necessary changes were made
to its information files prior to field delivery. These changes were made
to delete the test information unique to the system laboratory envi­
ronment. This information was used by application organizations to
verify the modification and was not applicable to the field environment.

The TSPS application software changes required for distribution to
the field sites were individually tested and approved using the "frozen
environment" methodology described in Section 2.2.2. These changes
were then packaged using the standard format described earlier in this
section. Necessary considerations were given in the packaging strategy
to balancing and optimizing various factors such as the field installation
time and the number of system initializations required to install the
changes. Also, if necessary, these changes were retested to ensure that
no problems were introduced in the final packaging.

III. SYSTEM TESTING AND EVALUATION

3. 1 Overview

System testing also represented a crucial and essential part of the
overall verification process. During this stage a complete set of func­
tional tests were written and executed to independently evaluate all
TSPS and DMERT operational and maintenance capabilities from a
system viewpoint. These tests were systematically performed with the
objective of ensuring that the requirements for each feature were met.
Special emphasis was given to evaluating the interaction between the
new features and the existing features that were emulated from the
TSPS No.1 environment. Furthermore, regression tests were per­
formed to ensure that previous tested capabilities were not being
adversely affected by the introduction of new ones. All problems

896 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

identified during the system testing interval were documented by
appropriate trouble reports.

The system testing effort was divided into several areas with differ­
ent objectives. They are listed below with the primary objective for
each area and are further discussed in Sections 3.2 to 3.5.

(i) Call-processing objective-Verification of all emulated call­
processing features.

(ii) TSPS maintenance software objective-Verification of fault
recognition, routine exercises, and diagnostics.

(iii) External interfaces objective-Verification of external inter­
faces such as the Service Evaluation System (SES), Switching Control
Center System (SCCS), and Billing Validation Application (BVA), etc.
(see Refs. 1, 8, 9, and 10).

(iv) DMERT and 3B20D system testing objective-Verification of
DMERT and 3B20D features, DMERT and 3B20D/TSPS interfaces,
and sample faulting of 3B20D and its periphery in the TSPS environ­
ment.

(v) Regression testing objective-Determination of impact of new
TSPS and DMERT /3B20D releases on previously tested capabilities.

(vi) System evaluation runs objective-Analysis of overall system
stability and quality at various loads.
System tests were performed both in the system laboratory and the
field sites. The field test plan consisted of functional tests, environ­
mental tests, and an overall acceptance test, and was used as a final
check that the system met its functional objectives at specified envi­
ronmentallimits. Over 16,000 individual functional system tests were
written and executed during the system test interval at the San
Antonio and Fresno test sites. The first execution of all system tests
was scheduled and accomplished by early in the third quarter of 1981
(see Fig. 5). This timely execution enabled identification of problems,
management, resolution, and closure by turnover (see Fig. 6). All
significant system tests passed prior to the turnover of the Fresno site
to the operating telephone company. The environmental tests verified
system performance at the limits of high temperature and low voltage.
The functional-site testing effort validated system performance in a
fully equipped TSPS office that has been engineered by an operating
telephone company with hardware supplied and installed by Western
Electric.

3.2 Call-processing testing

The call-processing software in TSPS consists of a set of programs
that provide the logic and control for processing telephone calls. These
programs supervise the state of the call, transmit and receive signals

INTEGRATION AND SYSTEM TESTING 897

20,000.....-------------------------,

15,000
0
w
I-
::J
U
w
X
w
Ul
I-

10,000 Ul
w
l-
LL.
0
cc
w
co
~
::J
Z 5000

O~_~ __ ~~ __ ~ __ ~ __ ~ ___ ~ __ ~ __ ~

1980 1981

Fig. 5-TSPS No. IB test schedule.

3000.....-----------------------~-~-~

2000

1000

O~ __ ~~ __ ~&-__ ~ __ ~ __ ~_~~---~---~

10 40

1980 1981

Fig. 6-TSPS No. IB problem closure.

to and from other switching systems, send information to and receive
signals from operators, and record billing details on the calls.

In most cases the call-processing programs were directly emulated
from the TSPS No. 1 environment without any structural or code
changes. Because the call-processing software was preserved in the
TSPS No. IB, the strategy for testing was mainly to verify the proper

898 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

emulation of the existing capabilities. This objective was accomplished
by using system test facilities to generate simulated call inputs to
exercise various call-processing capabilities, including those involving
customers and operators. These capabilities were tested both on a
single-call basis and under call loads simulating the normal traffic
environment of the system.

3.3 TSPS peripheral fault recognition, diagnostics, and exercise

TSPS No.1 peripheral maintenance programs such as fault recovery,
diagnostic, and exercises were also preserved in the TSPS No. IB
environment. These maintenance programs were emulated from the
TSPS No.1 environment, after necessary code and structural changes
were made to provide interfacing compatibility with 3B20D hardware,
fIrmware, and maintenance software capabilities. The function of fault
recognition is to analyze failure conditions and quickly reconfIgure the
system to a working state with a minimum interruption to operational
call processing. Testing in this area verifIed that faults were success­
fully detected and appropriate actions were taken.

Diagnostics are used in TSPS to test the various equipment units in
response to fault-recognition requests or manual requests. These ca­
pabilities resolve hardware malfunctions by providing trouble-locating
messages for use by maintenance craft to repair the faulty hardware.
Testing in this area verifIed that the diagnostics properly detected the
presence or absence of troubles and produced messages consistent with
expected results without adversely affecting system operation.

SpecifIc routine exercises are used to periodically examine the cor­
rect operation of the hardware and to detect various failures that may
not show up in normal system operation. In general, exercises utilize
the diagnostic capabilities described above to verify the condition of
the equipment units on a periodic basis. Testing in this area demon­
strated that the exercise routines operate in the expected manner.

3.3.1 Test strategies

Sample physical fault insertion, power faulting, and data faulting,
combined with manual actions initiated at the Local Maintenance
Position, were the major means of verifying the proper operation of
system maintenance functions. These techniques were used to develop
specifIc tailored test strategies for each peripheral unit. Initially, tests
were conducted in the absence of call load to verify the proper
response. Subsequently, maintenance capabilities were tested in the
presence of varying call loads to ensure proper interaction of call
handling and maintenance functions.

Physical fault insertion was one of the primary methods of testing
t.he operation of maintenance software and hardware. Physical fault

INTEGRATION AND SYSTEM TESTING 899

insertion verified proper cooperation of fault recognition, system re­
configuration, and diagnostics. It further provided a test of the Trouble
Locating Manual (TLM) used by the craft to identify faulty circuit
packs. It was impractical to do exhaustive fault insertion, such as that
utilized in TLM generation. However, it was necessary to develop
sample faults to verify that the maintenance software performed within
the existing requirements.

Power faulting was the second major means of introducing hardware
faults. Power faults were introduced selectively by blowing fuses or
intentionally removing power to verify the ability of the system to
detect the fault, take the appropriate equipment out of service, and
produce the proper alarm and output messages to enable craft person­
nel to restore the system.

Data faulting was the third faulting technique used in testing main­
tenance actions. Data faulting is the application of erroneous data to
the system. It measures the sensitivity of the system, the adequacy of
defensive program checks, and the efficiency of data consistency
audits. This type of faulting was useful, for example, in testing response
to transmission irregularities between the base and remote subsystems,
such as the Remote Trunk Arrangement and Position Subsystem No.
2.11

Various manual actions at the Local Maintenance Position were also
used to verify the proper response of the system in areas such as
reconfiguration, diagnostics, measurements, control and display capa­
bilities, and exercises. These types of actions are usually taken by the
craftspeople both on a routine basis and in emergency-action condi­
tions.

3.3.2 TSPS peripheral test sequence

Communication between the SPC lA and peripheral equipment is
accomplished by the Central Pulse Distributor (CPD), Communica­
tions Bus Translator (CBT), Master Scanner (MS), Universal Trunk
Scanner (UTSC), and Universal Trunk Signal Distributor (UTSD).
Maintenance testing verified that the emulated maintenance programs
detect malfunctions in the above units and take appropriate recovery
and diagnostic actions.

The TSPS periphery consists of a number of functional entities or
subsystems (see Table I) that are administered by duplicated control­
lers that interface with the SPC bus system. Extensive tests were
performed to verify the operation and maintenance of these functional
units under control of the TSPS No. IB software.

In TSPS, trunks and service circuits provide the interface between
the TSPS and external systems. For maintenance purposes, access to
these circuits is required to evaluate performance and localize or

900 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Table 1-TSPS peripheral subsystems
Position and Trunk Link Network
Position Subsystem No. 1
Peripheral Control Link
-Position Subsystem No.2
-Remote Trunk Arrangement
Station Signaling and Announcement Subsystem
Common Channel Interoffice Signaling Links

isolate a trouble to a particular faulty unit. Comprehensive tests were
required to ensure proper operation of these trunk and service circuit
routines. Table II lists the TSPS trunks and service circuits for which
maintenance routines were tested.

3.4 TSPS external interface tests

A number of systems external to TSPS provide operator adminis­
trative functions, or interact with TSPS for services and maintenance.
In general, these are self-contained systems, but rely on communica­
tions with TSPS over data links and/or channels, thus requiring
coordinated testing between the two systems. The communications
generally rely on specific protocols or message types. Testing of exter­
nal interfaces verified that the necessary protocols, message handling,
and maintenance states were operational in the TSPS No. 1B environ­
ment. Some of the external interfaces include:

(i) External administrative centers
(ii) The Hotel Billing Information System (HOBIS)8

(iii) The Service Evaluation System (SES)9
(iv) The Billing Validation Application (BVA)l
(v) The Switching Control Center System (SCCS).lO

The interfaces in items (i) through (iv) above required only verification
that TSPS No. 1B had not introduced operational or maintenance
problems. The SCCS interface [item (v) above] required substantive
testing because of new interface hardware and software (see Ref. 12).
This interface was functionally tested between the system laboratories
of the SCCS and TSPS development organizations. Field-site testing
verified these functional capabilities and stressed load-related features
that could not be tested earlier.

3.5 3B20DjDMERT system testing

3B20D/DMERT testing evaluated 3B20D/DMERT hardware and
software in the application environment. The 3B20D /DMERT tests
concentrated on interfaces, resource utilization, and system response
characteristics in the TSPS application environment. As such, over­
load response, resource audits, and software fault tolerance were
extensively tested. The combined craft/machine interface and

INTEGRATION AND SYSTEM TESTING 901

Table II-Tests of TSPS trunk, service circuit, and
maintenance circuits

Service Circuits
-Dial-Pulse receivers
-Multifrequency receivers
-Multifrequency outpulsers
-High-Impedance, Multifrequency receivers
-Coin Control and Ringback circuits
-Reorder Tone and Announcement circuits
-Audible Tone trunks
-Coin Detection and Announcement circuits-Type 1
-Coin Detection and Announcement circuits-Type 2
-Dual Tone Multifrequency Detection and Announcement circuits
-Multifrequency Announcement and Detection circuits
Trunk Test Panel
AMA maintenance
Recorded Announcement equipment
Tone and Interrupter circuit
Time of Day circuit

DMERT administrative functions (field utilities and field update, for
example) were also extensively exercised.

3.5.1 Fault recovery, initialization, diagnostics, and overload

The TSPS No. IB maintenance strategy is based on the 3B20D/
DMERT maintenance design augmented by additional capabilities
unique to the TSPS application. These additions are mainly in areas
where TSPS software directly interacts with the DMERT software, or
when specific hardware interfaces are required for the TSPS applica­
tion.

Specific fault-recovery strategies were developed by TSPS for the
PSI, the interface between the 3B20D and the TSPS periphery.12 In
addition, the TSPS Application Integrity Monitor (AIM) was devel­
oped to directly interact with the DMERT system integrity monitor
(SIM) to ensure the system integrity of TSPS No. lB. DMERT system
initialization and overload features were augmented by TSPS to es­
tablish an overall system initialization and overload strategy for the
TSPS No. IB.13 These areas were tested extensively to determine the
proper system response.

The 3B20D and PSI diagnostics, Trouble-Locating Procedures
(TLP), and Routine Exerciser (REX) were tested by sample faulting
techniques. Manual requests for removal/restoral were also used for
verification of capabilities.

The TSPS No. I maintenance craft interface was replaced in TSPS
No. IB with a combined 3B20D Processor and TSPS maintenance
craft interface. Testing in this area concentrated on combined craft
response, software and hardware alarm interfaces, and an assessment
of process priorities to provide sufficient terminal response time under
load.

902 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

3.5.2 Administrative functions
Testing in this area concentrated in the areas of 3B20D recent

change/verify (for equipment and system configuration database
changes), system update (for installation of a "point" issue of a current
generic or installation of a subsequent generic), and field update (for
installation of one or more broadcast warning messages).
3.6 System evaluation runs

3.6.1 Purpose and definition

One goal of system testing was to monitor a set of quantified
performance criteria to measure overall system quality and to ensure
that system design goals were met. Of particular importance for TSPS
No. 1B was the evaluation of system behavior at full-load call handling
(maximum capacity). This was particularly important since a substan­
tial number of TSPS No.1 to TSPS No. 1B live in-service retrofits
were scheduled for 1982 for offices at or approaching real-time overload
of the SPC 1A. Since the Fresno site had a large amount of peripheral
equipment, sufficient microprocessor-controlled call simulators and
operator simulators were installed on a temporary basis to permit
stressing the new TSPS No. 1B above the capacity design objective.
This additional performance margin simulated variation among sites
with respect to call mix and peakedness in the busy hour(s).

In the first quarter of 1981, a series of weekly System Evaluation
Runs (SERs) were begun at both Fresno and San Antonio to measure
system performance in an environment approximating post-cutover
conditions. Typically, these SERs were executed on weekends and
were 24 to 48 hours long. During these SERs the following conditions
were met:

(i) Operating telephone company maintenance craft were assigned
to monitor and maintain the office, performing all TSPS peripheral
maintenance and trunk cutover testing simulating an in-service office.

(ii) Bell Laboratories and Western Electric site staff had instructed
the maintenance craft in the use of normal 3B20D Processor and SPC
1B peripheral maintenance procedures. When craftspeople were trou­
bleshooting equipment faults or potential design problems, normal
field repair tools and techniques were used.

(iii) A simulated call load was applied to the system. At Fresno, the
first quarter 1981 SER was condu~ted at a load equivalent to 25
percent of the system call capacity. This was gradually increased so
that by mid-1981, SERs were conducted above the call-capacity design
objective of the TSPS No. lB.

3.6.2 Measurements and objectives

A team of designers, testers, and system analysts defined a set of
eighteen measurements that were tracked as part of the SER each

INTEGRATION AND SYSTEM TESTING 903

Table III-Fresno Service Acceptance Test
Performance* (9/27/81-10/5/81)

Call Load (Percent of SPC 1A)
Mishandled Calls
Plug-in Replacements
System Initializations

System Per­
formance

175%
0.04%
o
o

First-Site Turn­
over Objective

160%
<0.05%

<1/10 days
0.02/wk

* Includes normal maintenance and PT + T trunk testing.

week to summarize system stability and maintainability. For each
measurement, a turnover objective was specified. If several results

. deviated widely from the objective, a high priority was placed on
resolution of these problems. When the measurements in those areas
approached the turnover objective, resources were redirected to im­
proving other areas of system performance. Statistics were kept on the
frequency and cause of initializations, interrupts, audits, and overloads.
The duplex performance of the processor and its disk subsystem was
tracked and the degree of automatic fault recovery and identification
was evaluated. Hardware failure rates were closely monitored and
compared with reliability models. All initial service objectives were
achieved prior to cutover. Table III shows Fresno Service acceptance
test performance versus key first-site turnover objectives.

IV. SUMMARY

The strength of the integration and system test plan for the suc­
cessful field introduction of the TSPS No. IB involved the use of
complementary techniques to set objectives and monitor progress. The
comprehensive functional and regression testing, close tracking of
correction and modification requests, and prompt integration and
delivery of a diverse set of software changes were essential to the
steady progress summarized by the periodically executed System Eval­
uation Runs.

An immediate benefit of this approach was the customer satisfaction
expressed by Pacific Telephone and Southwestern Bell Telephone at
turnover, cutover, and subsequent operation of their new TSPS No.
IB systems. Furthermore, the implementation of the comprehensive
test program described herein is responsible for the excellent perform­
ance of the 37 offices now in service (35 of which were live in-service
retrofits in high-traffic sites). Current Bell Laboratories and Western
Electric efforts involve the continued coordination and support of the
large number of TSPS No. IB live in-service retrofits planned for the
next few years.

904 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

V. ACKNOWLEDGMENTS

The authors would like to acknowledge the dedicated efforts and
innovative technical contributions of their staff and the test coordi­
nation provided by J. C. Dalby and his staff. Special recognition is also
given to the 3B20D Development team, particularly J. H. Miller and
her staff, for their valuable participation in the TSPS No. IB testing
program.

REFERENCES

1. R. E. Staebler and J.1. Cochrane, "Traffic Service Position System No. 1B: Overview
and Objectives," B.S.T.J., this issue.

2. E. M. Prell, V. L. Ransom, and R. E. Staebler, "The Changing Role of the Operator,"
Int. Switching Symp., Paris, France, May 1979.

3. Special issue entitled "3B20 Processor & DMERT Operating System," B.S.T.J., 62,
No.1, Part 2 (January 1983).

4. J. P. Delatore, D. Van Haften, andL. A. Weber, "System Verification and Evaluation
Procedures," B.S.T.J., 58, No.6, Part 1 (July-August 1979), pp. 1335-46.

5. T. G. Hack, T. Huang, and L. C. Stecher, "Traffic Service Position System No. 1B:
Software Development System," B.S.T.J., this issue.

6. W. F. Klinksiek and H. L. Mitchell, "3B20D Processor and DMERT Operating
System: System Integration and Test," B.S.T.J., 62, No.1, Part 2 (January 1983),
pp.399-41O.

7. M. W. Rolund, J. T. Beckett, and D. A. Harms, "3B20D Processor & DMERT
Operating System: 3B20D Central Processing Unit," B.S.T.J., 62, No.1, Part 2
(January 1983), pp. 191-206.

8. S. Michael and J. Vizcarrondo, "HOBIS: New Designs on Hotel Billing," Bell Lab.
Rec. (January 1980), pp. 11-18.

9. T. R. Lehnert, "A Better Way to Measure the Quality of Telephone Service," Bell
Lab. Rec., 59, No.6 (July-August 1981), pp. 186-9.

10. J. J. Bodnar, J. R. Daino, and K. A. Vandermeulen, "Traffic Service Position System
No. 1B: Switching Control Center System Interface," B.S.T.J., this issue.

11. S. M. Bauman, R. S. DiPietro, and R. J. Jaeger, Jr., "Remote Trunk Arrangement:
Overall Description and Operational Characteristics," B.S.T.J., 58, No.6, Part 1
(July-August 1979), pp. 1109-18.

12. G. T. Clark, H. A. Hilsinger, J. H. Tendick, and R. A. Weber, "Traffic Service
Position System No. 1B: Hardware Configuration," B.S.T.J., this issue.

13. R. J. Gill, G. J. Kujawinski, and E. H. Stredde, "Traffic Service Position System No.
1B: Real-Time Architecture Utilizing the DMERT Operating System," B.S.T.J.,
this issue.

INTEGRATION AND SYSTEM TESTING 905

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.3, March 1983
Printed in U.S.A.

Traffic Service Position System No. 1 B:

Retrofitting the Processor

By J. C. DALBY, JR., D. VAN HAFTEN, and L. A. WEBER

(Manuscript received June 30, 1982)

At the end of 1981, over 150 Traffic Service Position System No.1
(TSPS No.1) offices were in service, equipped with Stored Program
Control No. lA (SPC lA) processors. Some of these sites had reached
the system capacity with respect to real time or memory. The new
SPC lB, which contains a 3B20 Duplex (3B20D) Processor and a
Peripheral System Interface (PSI), provides the TSPS No. lB with
additional processor capabilities for additional capacity and future
features. This article discusses the techniques used for achieving a
smooth retrofit from the TSPS No.1 to TSPS No. lB with virtually
no interruption of call processing. Special procedures and tools were
developed to introduce the SPC lB onto existing buses and to verify
the interfaces with existing peripherals by means of a cycle-stealing
mechanism, while the SPC lA continues to handle call processing.
These procedures were used successfully at the first such retrofit in
Redwood City, California, on March 13, 1982. During 1982, 34 addi­
tional sites will be retrofitted by Western Electric to accomplish the
initial phase of the planned retrofits to TSPS No. lB.

I. INTRODUCTION

Over 150 Traffic Service Position System No.1 (TSPS No.1) officesl

are in service in the United States. These systems give fast, efficient
toll operator services to over 95 percent of the Bell System main
stations. The TSPS No. 1 consists of a Stored Program Control No.
lA (SPC lA) and numerous peripheral units. The SPC lA has per­
formed well since its initial introduction into service in Morristown,
New Jersey, in 1969.2

The development of the TSPS No. IB introduced a modern 3B20

907

Duplex (3B20D) Processor with its peripherals and a Peripheral Sys­
tem Interface (PSI) into TSPS.3 The 3B20D Processor and the PSI
together are called the SPC 1B.4 The PSI connects the 3B20D to the
existing TSPS peripherals in such a manner that the interface to the
SPC 1B is the same as the interface to the SPC 1A.

Since many TSPS No.1 sites are approaching real time and memory
exhaust and the new processor capabilities are necessary for new
features, a procedure has been developed to allow in-service TSPS
sites to retrofit to the SPC lB. This procedure requires advanced
planning for floor space, connectorization of existing buses, and some
hardware modifications. Special procedures and tools are used to
ensure that the SPC 1B can properly interface with the existing
periphery before the new processor is in control of call processing.
After cutover and following sufficient soak time on the SPC 1B during
which assurance tests are run, the SPC 1A can be removed from the
office.

Unlike commercial processor upgrades, where the system is taken
off-line, the replacement of the SPC 1A with the SPC 1B must be
performed with virtually no interruption of call processing. For this
reason, special procedures and tools were developed to prepare the site
and check the new equipment and interfaces while the existing system
continues to handle telephone traffic. These procedures had to be
thorough and be able to completely verify the hardware configuration,
since upon cutover the new system must be able to handle a large
volume of traffic. Furthermore, since the existing peripherals are
maintained, and the new processor does not control the peripherals
until cutover, the final cutover procedures must be straightforward
and fast. During the retrofit, the operator traffic is interrupted for only
approximately the length of a system initialization on the new system.

This article discusses the techniques used to achieve a smooth
retrofit from the TSPS No. 1 to TSPS No. lB. These procedures were
successfully used at the fIrst such retrofit in Redwood City, California,
on March 13, 1982. During 1982 34 additional sites will be retrofitted
by Western Electric to accomplish the initial phase of the planned
retrofits to TSPS No. lB.

II. SITE PREPARATION

The fIrst step in retrofitting an in-service site is to make the site
compatible with the SPC lB. Site preparation can be planned by the
operating telephone company for any time prior to the actual retrofit.
The site preparation, both bus modifications and auxiliary unit relo­
cation, is performed according to Western Electric procedures. These
procedures do not require special-purpose, processor-replacement soft­
ware in TSPS No. 1.

908 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

STORED
PROGRAM 1-------'
CONTROL

0,1

CPO MAINTENANCE
LEAD SIDE 0

STORED
PROGRAM
CONTROL

0,1

"-
" " " " "

BTR - BUS TERMINATION RESISTOR

(a)

BTR

(b)

Fig.l-(a) Simplex configuration for CPD maintenance lead. (b) Duplicated CPD
maintenance lead.

2. 1 Modifications of peripheral buses

The TSPS No.1 peripheral buses are modified to be compatible
with the SPC lB and to simplify introducing the SPC lB. During this
bus modification, call processing continues uninterrupted.

The Central Pulse Distributor (CPD) maintenance leads must be
split to allow each of the 3B20DjPSI complexes access to the entire
set of leads. At present the CPDs are daisy-chained along these
complex CPD maintenance leads (see Fig. la*). These leads are
duplicated by separating them and then feeding the EXCLUSIVE-OR
of the two sets back to the processor (see Fig. lb).

A set of miscellaneous leads are bundled into miscellaneous buses
and are rerouted to the Communication Bus Translator (CBT). Each
miscellaneous bus has a network reset lead, an auxiliary reset lead, a
maintenance scanner lead, and three clock leads. The rerouting enables
the clock leads to be disconnected from the SPC lA when it is removed
from the office.

Most TSPS No.1 peripheral buses must be connectorized to allow
insertion of the SPC lB and the removal of the SPC lA (see Fig. 2).

* Acronyms and abbreviations used in the figures and text of this paper are defined
at the back of this Journal.

PROCESSOR RETROFITTING 909

1--1
SPC MASTER PROGRAM TO OTHER
SD SCANNER 0 TAPE UNIT SPC PERIPHERY

SPC lA
PUAB 0

I COMMUNICATIONS I
liN BUS

PUAB 0

I BUS TRANSLATOR BINARY BUS

} TO TSPS
r--- SCANNER ANSWER BUS 0 PERIPHERY

- MISCELLANEOUS BUS 0

-r- CPDB 0

I I
" I CENTRAL PULSE I ICENTRAL PULSEI

DISTRIBUTOR DISTRIBUTOR
00-0 01-0

" I I I ~ SPC
0,1 CPD MAINTENANCE I I LEADS

I CENTRAL PULSE I I CENTRAL PULSE I
DISTRIBUTOR DISTRIBUTOR

00-1 01-1

" CPDB 1 I I
r--+- MISCELLANEOUS BUS 1

r-- SCANNER ANSWER BUS 1

-
PUAB 1 I COMMUNICATIONS I

SPC lA
I BUS TRANSLATOR I

PUAB 1
SPC I- I MASTER I

" I PROGRAM I
SD I I SCANNER 0 I I TAPE UNIT I

CPDB - CENTRAL PULSE DISTRIBUTOR BUS
PUAB - PERIPHERAL-UNIT ADDRESS BUS

SAB - SCANNER ANSWER BUS

SD - SIGNAL DETECTOR
SPC - STORED PROGRAM CONTROL

TSPS - TRAFFIC SERVICE POSITION SYSTEM

Fig. 2-TSPS No. 1 peripheral buses.

This is the most time-consuming activity of the processor replacement
activities since 346 pairs of wires are involved. Connectorization is
transparent to the SPC 1A operation. It requires a transition panel
unit to be installed on site. The transition panel provides bus continuity
for each pair of connectors that result. The panel is normally mounted
on top of a cable rack near the location of the PSI frames or in an
empty frame adjacent to the PSIs. The connectorization procedure is
fIrst run on one bus and then repeated for the mate bus.

In addition to the buses for the 3B20D Processor being connec­
torized, the SPC 1A Peripheral-Unit Address Bus (PUAB) and the
one-out-of-N (liN) bus must be connectorized to accommodate the
relocation of Master Scanner 0 (MSO).

2.2 Relocation of auxiliary units

The SPC 1A Signal Distributor (SD), the Program Tape Unit
(PTU), and MSO reside on the SPC 1A PU AB. This bus is not utilized
by the SPC 1B because the SD and PTU are replaced by 3B20D units.

910 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

However, MSO must remain since it monitors TSPS units. This is
resolved by moving the appearance of MSO from the SPC lA PUAB
to the 1/ N bus and by indicating the move in office data.

III. RETROFIT PROCEDURES

After the site-preparation activities are completed, the actual retrofit
procedures can begin. Two special software packages for the SPC lA
and the SPC lB, plus special-purpose circuitry, are used to assist the
retrofit.

3. 1 Loading the SPC 1 A retrofit programs

Special retrofit software is loaded into the SPC lA. It provides the
capabilities for the initialization of TSPS periphery for 3B20D access
tests, the bimodal feature of Station Signaling and Announcement
Subsystem (SSAS) (see Section 3.2), and the ability to time-share
buses with the 3B20D. The SPC lA retrofit load overlays recent
change programs and can be backed out whenever retrofit testing is at
one of many safe stop points. Thus, the operating telephone company
can have access to recent change capabilities when processor replace­
ment programs are not in use.

3.2 Modification of bus access to SSAS announcement stores

Processor replacement also requires the modification of the bus
access to the SSAS announcement stor~s.5 The Announcement Stores
(AST) reside on the SPC lA store bus (see Fig. 3). Since the store bus
is not retained for the SPC lB, the only access to the ASTs for loading
announcements and for maintenance is through the SSAS controller
after the SPC lB retrofit. However, during the retrofit interval, the
store bus access to the ASTs is left intact but not used. This allows
emergency loading of ASTs if mate failures occur. The modification of
bus access to the SSAS announcement stores is accomplished one
SSAS side at a time. Therefore, for a short period, one SSAS side's
AST is accessed via the SPC lA store bus while the other SSAS side's
AST is accessed through the SSAS controller. To handle this unique
access situation, special-purpose bimodal software included in the SPC
lA retrofit program must remain loaded. This software ensures SSAS
integrity during the bus modifications. As part of the modification the
firmware in the SSAS controller is upgraded. This new firmware is
designed to interface with both the SPC lA and SPC lB.

After the SSAS bus access modification is complete, the system is
ready to have the new SPC lB introduced on the buses. Figure 4
shows the site configuration.

PROCESSOR RETROFITTING 911

SPC lA
PUAB

SCANNER ANSWER BUS I }TO

1-_<,;.M..;,.I.:,.SC:.,:E;,,;;;L.:,.LA..;.,N..,;;E;.;;,O..,;.U.:..S ..;.B.:,.US ________ • PE RIPHERY

MAINTENANCE LEADS

CENTRAL PULSE DISTRIBUTOR BUS

SPC
o

SPC
1

PUAB - PERIPHERAL-UNIT ADDRESS BUS
SPC - STORED PROGRAM CONTROL

SSAS - STATION SIGNALING AND ANNOUNCEMENT SUBSYSTEM

STORE BUS

Fig. 3-Connectorized TSPS buses.

3.3 SPC 1 B installation and testing

In parallel with or subsequent to site preparation, the SPC IB is
installed. First, the 3B20D Processor is brought up in a stand-alone
configuration by Western Electric according to standard procedures
using the Duplex Multi-Environment Real Time (DMERT) operating
system6 and 3B20D diagnostics. Next, the PSIs are installed and
connected to both halves of the 3B20D. Standard installation proce­
dures are used to check out the connection. These procedures use the
PSI diagnostic phases that test all internal PSI circuitry up to the bus
drivers.

3.4 Insertion of the SPC 1 B

The SPC IB is now ready to be inserted onto the TSPS peripheral
. buses. This involves removing the bus connectors on top of the
transition panel and then inserting them into the inductor/transformer
area of the PSI frame. As a result, the PSI not only has access to the
TSPS peripheral buses, but also gives bus continuity when idled or

912 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

SCANNER ANSWER BUS

MISCELLANEOUS BUS ,
CENTRAL PULSE DISTRIBUTOR BUS

STORED STORED

I PROGRAM PROGRAM CPD MAINTENANCE LEADS
CONTROL CONTROL ,

PUAB I 1 0
I SPC 1A PUAB I CENTRAL I

COMMUNI- PULSE

- CATIONS DISTRIBUTOR

BUS / ... \ STORE STORED TRANSLATOR
BUS PROGRAM

CONTROL

STORE 1- SIGNAL BINARY
DISTRIBUTOR BUS

· 1/N BUS

· I SSAS I · MASTER I
SCANNER 0

STORE }-

I

CPD - CENTRAL PULSE DISTRIBUTOR
PUAB - PERIPHERAL-UNIT ADDRESS BUS

SPC - STORED PROGRAM CONTROL

PROGRAM
TAPE
UNIT

SSAS - STATION SIGNALING AND ANNOUNCEMENT SUBSYSTEM

Fig. 4-Site preparation.

~ ANNOUNCE-I
MENT
STORE

powered down. The retrofit software ensures that the SPC 1B complex
never accesses the buses at the same time that SPC 1A does. The SPC
1A and SPC 1B operate in a time-sharing mode.

The insertion procedure connects one bus at a time utilizing existing
TSPS diagnostics to verify correct movement. During the insertion
the PSI access to the miscellaneous bus (see Section 2.1) is disabled to
ensure that there is only one processor sending out signals over the
clock and reset leads at anyone time. Not until cutover does the SPC
1B have control of these leads.

3.5 SPC 1 A/3B20D interface hardware and software

Some additional special retrofit hardware and software is required
to provide synchronization between the SPC 1A and the 3B20D for
bus time-sharing. Every 25 ms the SPC 1A allows the 3B20D complete
access to the TSPS peripheral buses for a period of 2 ms. It does this
by sending the 3B20D a "start" (interrupt) signal. During the 2-ms
interval, the SPC 1A keeps itself cycling. At the end of 2 ms, the SPC
lA sends the 3B20D a "stop" signal by disabling the PSI and then
regains control of the buses. The SPC 1A sends out the "start" and
"stop" signals via the unused CPD Execute leads in the office (see
Fig. 5).

The SPC 1A retrofit software controls the bus time-sharing through

PROCESSOR RETROFITTING 913

3B START INTERRUPT
(INTERRUPT SOURCE 9)

PERIPHERAL SYSTEM
INTERFACE ENABLE

EXECUTE EXECUTE
2 3

Fig. 5-Start and stop signals from SPC lA.

the use of a base-level teletypewriter (TTY) message-handler program
and a J-Ievel program with a 25-ms entry rate. For a particular retrofit
test, the SPC lA software checks for the proper system configuration.
If the system is not configured correctly, the retrofit test request is
rejected; otherwise, the SPC lA starts sending the proper start and
stop pulses to the SPC lB. Every 25 ms the SPC lA sends an interrupt
to the 3B20D ("go-ahead" signal) and, at the same time, an enable to
the appropriate PSI frame. After t~e SPC lA has cycled for 2 ms, it
sends a disable to the PSI frame; the SPC lA now has access to the
peripheral buses for approximately 23 ms, and the cycle then repeats
itself. Hence, the 3B20D must run its retrofit tests in 2-ms intervals so
that it does not exceed its allotted time on the buses.

If for any reason the SPC lA encounters a hardware interrupt during
retrofit testing, it automatically stops sending interrupts to the 3B20D
and initializes the SPC lA retrofit software before exiting. The system
must be restored to normal and the problem cleared before retrofit
testing can continue.

The SPC lB retrofit software has three major capabilities: an input
message handler, an output message handler, and the retrofit test and
control software. The input message handler, which is a user process,
interprets the input message typed on the maintenance terminal. It
then sends a message to the retrofit test and control software at the
kernel level, which executes the requested test. Only one retrofit test
can be run at a time. Most tests run in their entirety during the 2-ms
interval. The emulated diagnostics, however, must run a section «2
ms) at a time until completion. The retrofit control software ensures
that this takes place. Finally, the output message handler (a user
process) is used to print out any raw data words generated by the
emulated diagnostics. This printing occurs on the maintenance termi­
nal after the kernel process sends a message to the output message
handler.

914 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

3.6 Testing of the 38200s access to TSPS periphery

A special set of retrofit tests and procedures have been developed to
verify that the processor has been replaced correctly. These procedures
and tests verify the ability of the SPC IB to drive the TSPS peripheral
buses, and check that correct connections are made between the SPC
IB and TSPS peripherals. The system configuration during this testing
is shown in Fig. 6. The retrofit tests include:

(i) SPC lA/3B20D Interface Test-The interface test verifies
numerous capabilities needed for subsequent tests. The SPC lA must
be sending start and stop signals to the SPC IB complex, the time­
share cable containing the CPD execute leads must be wired properly,
and the hardware interface must be properly converting the signals
from the SPC into a 2-ms enable pulse for the PSI.

(ii) CPD Scope Test-The CPD scope test verifies the proper bus
connection and the system's ability to drive each lead. It involves
having the SPC IB send specific patterns of pulses equal to the lead
number over the CPD leads and verifying them.

(iii) Communications Bus Translator (CBT) Scope Test-The CBT
scope test verifies the proper connectorization and driving of the CBT
leads. It involves having the SPC IB send specific patterns of pulses
equal to the lead number over the PUAB to the CBT and verifying
them.

(iv) Central Pulse Distributor (CPD) Diagnostic-The CPD diag­
nostic is divided into two sections. One section runs with the CPDs
inhibited. This section uses diagnostic circuitry in the CPDs to verify
CPD bus input and appropriate responses. The other section runs with

SPC
0,1

SPC STORE
BUS

3B/PSI
0,1

PUAB

SAB

CPO BUS

CPO BUS

CPO MAINTENANCE LEADs

MISCELLANEOUS BUS

SPC lA PUAB

r-----, liN BUS

CBT BINARY
BUS

TO TSPS
PERIPHERY

CBT - COMMUNICATIONS BUS TRANSLATOR
CPO - CENTRAL PULSE DISTRIBUTOR

PUAB - PERIPHERAL-UNIT ADDRESS BUS
SAB - SCANNER ANSWER BUS

PSI - PERIPHERAL SYSTEM INTERFACE SPC - STORED PROGRAM CONTROL

Fig. 6-Retrofit testing configuration.

PROCESSOR RETROFITTING 915

the CPDs uninhibited. It checks the CPD operation by sending actual
orders. This test marks the fIrst time during retrofIt testing that an
actual CPD enable is sent over the buses. If either section fails, it
prints out raw data words identical to the printout of the CPD
diagnostic with the TSPS No.1 generic.

(v) Station Signaling and Announcement Subsystem (SSAS)
Loop-Around Test-The SSAS loop-around test consists of selected
phases of the SSAS diagnostic. The Station Signaling and Announce­
ment Subsystem (SSAS) receives a predetermined pattern via the
CBT and returns the pattern on the Scan Answer Bus (SAB). The
SPC 1B then checks to see if the loop-around was successful. This test
verifIes the integrity of CBT and SAB, and the integrity of all CPD
and CBT bus routes to SSAS.

(vi) Miscellaneous Tests-The miscellaneous tests are required to
check the remaining peripheral bus leads. These tests are run in two
modes: one with the SPC 1A sending out pulses over these leads, the
other with the 3B20D sending pulses. The SPC lA-driven test checks
the correct connections for the miscellaneous leads to the SPC 1B
complex, while the 3B20D-driven test verifIes its ability to send out
proper pulses over these leads.

3.7 Mate SPC 1 B complex

RetrofIt testing must be successful on both halves of the SPC 1B's
(side 0 and side 1) before cutover. Therefore, all of the retrofIt proce­
dures that are run from one side must be executed from the mate side.
This requires installing the SPC 1A/3B20D hardware interface on the
mate SPC 1B complex. Once the hardware interface has been installed,
retrofIt testing can be performed from the mate SPC lB.

IV. OFFICE DATA TRANSFER AND RETROFIT

After the ability of the SPC 1B to interface with the buses is verifIed,
the office data from the SPC 1A must be transferred to the SPC lB.
An on-line method has been developed to do this. Special wiring is
installed between the SPC 1B and the teletypewriter buffer of the SPC
1A. This wiring allows the 3B20D to be viewed as a teletypewriter
from the SPC 1A. After this connection is made, the 3B20D sends
memory-read commands to the SPC 1A. The results of the reads are
checked for correct parity and are reread when errors are found. The
rereading ensures correctness. These reads continue until the entire
office data spectrum is transferred.

After the office data have been transferred to the 3B20D, a special
office data retrofIt program is run. This program performs the required
changes in the data structures and contents to make the data compat-

916 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

ible with TSPS No. lB. It does not introduce new office-dependent
data or modify any assignments specified in office-dependent data.

V. CUTOVER PROCEDURES

Once all retrofit tests are successfully completed and the office data
is transferred, the retrofit hardware interface is removed and the office
data are merged with the official TSPS No. lB generic software. To
begin the actual cutover, the two miscellaneous bus connectors, which
include the system clock leads, are connected to the inactive SPC lB.
The clock in the SPC lA is stopped and the SPC lB is initialized. Call
processing is interrupted only from the time the SPC lA clock is
stopped until the resulting SPC lB initialization is complete, usually
less than 2 minutes. At this point, the 3B20D processors should be
handling the TSPS call load. If any difficulties are encountered at this
time, the SPC lA configuration can still be brought up by powering
down the PSI frames, restarting the SPC lA clocks, and initializing
the SPC lA.

After cutover, a series of system diagnostics and verification tests
are performed. In addition, a recommended soak interval of a few days
is allowed to ensure system operation. Once the operating telephone
company has determined that the TSPS No. lB is performing satis­
factorily, unneeded equipment can be removed by Western Electric.
This removal requires no additional software or hardware capabilities.

VI. SUMMARY

The fIrst live retrofit was performed on March 13, 1982, in Redwood
City, California. No major difficulties were encountered in this retrofit.
During the remainder of 1982, 34 additional retrofits occurred.

VII. ACKNOWLEDGMENTS

A number of people made contributions to the development and
design of these retrofit procedures. Significant contributions were
made by Carl Amodio, Ken Handy, Frank Maesky, and D. A. Wood of
Western Electric and by Mark Koehler, Kevin Kulhanek, Ron Mich­
elsen, J. D. Peterson, Dennis Shank, R. A. Tengelsen, Neil Walgen­
bach, Stan Windes, and several others of Bell Laboratories.

REFERENCES

1. R. J. Jaeger, Jr., and A. E. Joel, Jr., "TSPS No.1: System Organization and
Objectives," B.S.T.J., 49, No.3 (December 1970), pp. 2417-43.

2. G. R. Durney, H. W. Kettler, E. M. Prell, G. Riddell, and W. B. Rohn, "TSPS No.
1: Stored Program Control No. lA," B.S.T.J., 49, No.3 (December 1970), pp.
2445-508.

3. R. E. Staehler and J. I. Cochrane, "Traffic Service Position System No. 1B: Overview
and Objectives," B.S.T.J., this issue.

PROCESSOR RETROFITTING 917

4. G. T. Clark, H. A. Hilsinger, J. H. Tendick, and R. A. Weber, "Traffic Service
Position System No. IB: Hardware Configuration," B.S.T.J., this issue.

5. G. T. Clark, K. Streisand, and D. H. Larson, "TSPS No.1: Station Signaling and
Announcement Subsystem: Hardware for Automated Coin Toll Service," B.S.T.J.,
58, No.6 (July-August 1979), pp. 1225-49.

6. R. J. Gill, G. J. Kujawinski, and E. H. Stredde, "Traffic Service Position System No.
IB: Real-Time Architecture Utilizing the DMERT Operating System," B.S.T.J.,
this issue.

918 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.3, March 1983
Printed in U. S. A.

Traffic Service Position System No. 1 B:

Capacity and Reliability Evaluation

By B. A. CRANE and D. S. SUK

(Manuscript received June 30, 1982)

This paper describes the prediction and evaluation of the call­
processing capacity and reliability resulting from use of the 3B20
Duplex (3B20DJ Processor in the Traffic Service Position System
No. IB (TSPS No. IBJ. The call-processing capacity was predicted
using a processor real-time model whose parameter values were
determined by laboratory and test-site measurements. The system
reliability was predicted using Markov modeling techniques. Per­
forming an evaluation during TSPS No. IB development provided a
means for monitoring progress toward meeting the capacity and
reliability objectives.

I. INTRODUCTION

One of the development objectives of the Traffic Service Position
System No. IB (TSPS No. IB) was to improve the call-handling
capacity of the TSPS No. 1 by replacing the Stored Program Control
No. lA (SPC lA) with the Stored Program Control No. IB (SPC IB).l
The SPC IB consists of the 3B20 Duplex (3B20D) Processor together
with the Peripheral System Interface (PSI) unit, which adapts the
3B20D to existing TSPS peripherals. The 3B20D is microprogrammed
to execute the SPC lA instructions, thus allowing TSPS call-processing
software developed for the SPC lA to be ported to the SPC IB with
minimal changes. This emulated TSPS software executes as a kernel
process under the DMERT operating system. References 2 and 3
contain further details on the SPC IB architecture.

1. 1 Call-processing capacity analysis

The increased speed of the SPC IB in executing the emulated SPC
lA instructions provides the increase in call-processing capacity. The

919

initial objective for capacity increase established for TSPS No.lB was
that the SPC lB call-processing capacity should be at least 160 percent
that of the SPC lA.

Early in TSPS No. lB development, a capacity prediction and
evaluation plan was established for monitoring the progress in meeting
the capacity improvement oqjective. This plan involved formulating a
mathematical model of the SPC lB real-time usage, where the param­
eters of this model represent the various call-processing and overhead
activities performed by the processor. Laboratory and test-site mea­
surements of these parameters during development provided, through
use of the real-time model, estimates of the call-processing capacity.
In this way, any problem areas having an adverse effect on call­
processing capacity could be identified as candidates for improvement
during continued development. This same real-time model, at the
completion of development, has been incorporated into the TSPSCAP
program4 used by the operating telephone companies to determine the
call-processing capacity of specific TSPS No. lB sites. The formulation
of this real-time model, the laboratory and test-site measurement
techniques, and the resulting capacity performance data are described
in subsequent sections of this paper.

1.2 System reliability analysis

An important step in the development of highly reliable switching
systems is the prediction of their reliability. To provide uninterrupted
service, TSPS No. lB has the same reliability objectives as other Bell
System electronic switching systems (ESSs), namely: an average down­
time of less than 3.0 minutes per year. l In TSPS No. lB, most of the
TSPS peripherals are retained and their maintenance strategy remains
virtually unchanged from the TSPS No. 1. Thus, the reliability objec­
tives of the TSPS peripherals will not change in TSPS No. lB from
1.0 minute per year average downtime and, consequently, the SPC lB
reliability must achieve the objective of less than 2.0 minutes per year
average downtime.

To predict the reliability of SPC lB hardware, continuous-time,
finite-state Markov models were used. The Markov model approach
for the reliability calculation of repairable systems is described in Ref.
5. Throughout the development period of TSPS No. lB, the reliability
model was updated to accurately reflect architectural modifications or
design changes in the subsystems. The reliability estimates of various
configurations were compared to monitor the system reliability, to
identify limiting subsystems, and to determine if modifications would
improve the overall reliability. This will be described in subsequent
sections of this paper.

920 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

II. CAPACITY EVALUATION

2; 1 Approach taken

The approach taken to model the real-time usage of the SPC 1B
was to modify the real-time model of the SPC 1A.6 Emulation of the
SPC 1A code by the SPC IB made this approach possible. The
modified model contains parameters that represent the speedup in
SPC 1B instruction execution relative to the SPC lA and, also, the
effects of the DMERT operating system.

These modifications were characterized by making measurements
of real-time usage at various call loads ranging from idle to over 160
percent of the SPC 1A capacity. Call loads were applied through use
of electronic, programmable call generators attached to TSPS trunks.
The response of TSPS operators to these calls was simulated by other
electronic, programmable units. The measurements of real-time usage
were made by non-interfering monitoring equipment, which sampled
and recorded the system execution state every 10 microseconds. Other
measurements consisted of various TSPS traffic counts periodically
printed out on the standard output devices.

2.2 TSPS No. 1 capacity analysis

Because the SPC 1A real-time model forms the basis for the SPC
IB real-time model, it is briefly described here. References 6, 7, and 8
should be consulted for greater detail.

2.2. 1 SPC 1 A software architecture

During normal operation, most of the real-time usage of the SPC 1A
occurs at two priority levels, called J-Ievel and base level. J-Ievel has
the higher priority of the two, and is entered every 5 ms through a
hardware interrupt to perform necessary input/output operations in­
volved in communicating with the TSPS peripherals. Although a
higher-priority H-Ievel is also involved in these operations, H-Ievel and
J-Ievel will hereafter be jointly referred to as J-Ievel except where
distinction is necessary. In the SPC lA, base-level work has the lowest
system priority and is performed whenever there are no higher-priority
interrupts. Most of the call-processing work is performed in base level.

Each base-level program is assigned to one of five classes of work: A,
B, C, D, or E. Each class is periodically visited by a control program
to determine whether there is any work to do and to perform the work
if present. The control program endlessly repeats the following fIXed
visitation sequence:

... ABACABADABACABABACABADABACABAE

We can see that from one class-E visitation to the next, termed an
E-E cycle, the five classes are visited according to the ratio

SYSTEM CAPACITY 921

A:B:C:D:E = 15:8:4:2:1.

Base-level programs are assigned to these classes in accordance with
the acceptable delays in their execution; class A contains those pro­
grams requiring fastest response.

The time duration of an E-E cycle increases with the call load
because, as the call load increases, there is more work to be done
during each class visitation. However, a fixed amount of base-level
work must be performed no matter what the call load is (e.g., deter­
mining if there is any work to do) and this work is referred to as the
E-E cycle overhead.

2.2.2 SPC 1 A real-time model

The real-time model developed for the SPC 1A consists of the
equation

(1)

This equation expresses how a quarter-hour (900 seconds) of processor
real time is shared by three different kinds of processor work: trunk­
seizure work, represented by tNN; constant-rate work, represented by
TCR; and E-E cycle overhead work, represented by tFE. Each of these
three terms is expressed in seconds per quarter-hour.

A TSPS call begins as a seizure (request for service) of a special
TSPS trunk from a local office to a toll office. Most trunk seizures
result in completed TSPS calls, but a few become uncompleted at­
tempts because of customer abandonments, busy circuits, etc. Al­
though these uncompleted attempts do not require as much processor
real time as completed calls, they must be included as part of the
processor real-time load. In the real-time equation, N represents the
number of trunk seizures per quarter-hour; and tN represents the
average amount of processor real time (in seconds) required per trunk
seizure. The value of tN depends on the mix of various types of
completed TSPS calls and uncompleted attempts. About two-thirds of
tN occurs in TSPS base level, and the other third in J-Ievel. The TSPS
call-processing capacity is expressed in terms of trunk seizures per
quarter hour. '

Constant-rate work is the processor work that is performed at fixed
time intervals and is independent of trunk-seizure rate. For example,
one type of TSPS trunk is scanned every 100 ms to determine whether
a trunk seizure has occurred. The value of TCR, in seconds per quarter
hour, depends on the number of TSPS peripherals in use, and most of
this time is spent in J-Ievel.

The E-E cycle overhead work uses all processor real time not used
by trunk seizures or constant-rate work. E represents the number of
E-E cycles that are executed per quarter hour, and tE represents the

922 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

average processor real time (in seconds) spent per E-E cycle in doing
E-E cycle overhead work, which is independent of trunk-seizure load.
By definition, all of this time occurs in base level.

Equation (1) is linear in terms of E and N. Figure 1 plots E as a
function of N for a typical SPC 1A site. Such a plot is referred to as a
load line, which describes how the E-E cycle rate, E, varies with
respect to the trunk-seizure rate, N. The slope of this load line is
-tN/tE and the intercept, corresponding to an idle system (i.e., when
N = 0), is (900 - TCR)/tE.

Also shown in Fig. 1 is a value of E, called EM1N, which is the lowest
E-E rate that can be sustained while still providing adequate system
response. At rates below EMIN the visitation rate to the previously
described base-level classes of work becomes too low and delays in
serving requests become too long to meet service criteria. The trunk­
seizure rate corresponding to EMIN is defined as the quarter-hour
trunk-seizure capacity, NCAP•

2.2.3 TSPSCAP program

TSPSCAP is an interactive, time-shared program used by the op­
erating companies to determine the trunk-seizure capacity of specific
TSPS sites. The user inputs the call mix and hardware configuration
of a site, and TSPSCAP calculates the values of tN, T CR, and EMIN
corresponding to these input values for use with the above real-time
equation. TSPSCAP then outputs the value of NCAP for that site,
together with auxiliary information such as an equation for the E

~ 40~--~
:)

o
:r:
~
w
I-

~ 30
:)

o
~
w
c..
(j)
w
d 20
>­u
Ll;l
w
Cl
z
« 10
(j)
:)

o
:r:
I-

z

CAP - CAPACITY
MIN - MINIMAL
SPC - STORED PROGRAM CONTROL

~ o~ ______ ~ ____ ~ ______ ~ ______ ~ ______ ~ ______ ~
o 2 3 4 6

N IN THOUSAND TRUNK SEIZURES PER QUARTER HOUR

Fig. I-Typical SPC IA load line.

SYSTEM CAPACITY 923

versus N load line. This information is used by the operating telephone
companies in growth planning to determine how close a TSPS No. 1
site is to its capacity limit.

2.3 TSPS No. 1 B capacity analysis

As we mentioned earlier, emulation of the TSPS No.1 software
allows construction of the SPC IB real-time model by modifying the
SPC lA real-time model. The modifications represent the speedup in
instruction execution and the effects of the DMERT operating system.
To understand these modifications the reader should know how the
emulated code executes in the SPC IB environment. This is briefly
described below; Ref. 3 should be consulted for a more complete
description.

2.3.1 SPC 1 B software architecture

2.3.1.1 System execution levels. The DMERT operating system has
sixteen execution levels (ELs), numbered 0 through 15, that determine
the relative priorities for process execution; EL 15 has the highest
priority. Kernel processes can use ELs 15 through 2, and supervisor/
user processes are restricted to ELs 1 and o. The emulated TSPS call­
processing software executes as a kernel process.

Table I shows the ELs for those processes that influence the SPC
IB real-time usage. H-Ievel and high-priority J-Ievel of the emulated
TSPS process execute at EL 12, and low-priority J-Ievel executes at
EL 11. Base level executes at EL 5. The DMERT timer, at EL 15,
provides a timing function for other processes by notifying a requesting
process after a specified time period has elapsed. Processes involved
with I/O, file management, and memory management execute at ELs
10, 7, and 2, respectively. The scheduler at EL 2 schedules the super­
visor/user processes at ELs 1 and o. Diagnostics for the 3B20D and
PSI execute at EL 0, whereas diagnostics for the TSPS peripherals
remain as part of class-E work in emulated TSPS base level at EL 5.
The new TSPS craft interface software, which uses DMERT facilities
to provide maintenance input-output message capability and system

Execution
Level

15
12,11

10
7
5
2

1,0

Table I-DMERT execution levels

Timer
TSPS J-Level
Disk Driver
File Manager
TSPS Base-Level

Process

Memory Manager, Scheduler
SPC IB Diagnostics, TSPS Craft Interface, Other

Supervisor jU ser Processes

924 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

status display, also executes at EL o. Software for the other TSPS
output messages (e.g., for periodic traffic counts) remains as part of
the emulated J-Ievel and base-level code.

A 3B20jDMERT timer hardware interrupt occurs every 10 ms to
service any timing requests. As with the SPC lA, a J-Ievel interrupt
occurs every 5 ms. These two interrupts are synchronized such that
the J-Ievel interrupts lead the timer interrupts by 1 ms. As with the
SPC lA, the emulated base level executes whenever nothing at a
higher EL is executing, with the exception that base level periodically
relinquishes control (goes to sleep) so as to allow processes at lower
ELs to execute.

Just before going to sleep, base level requests that the DMERT
timer wake it after a specified period has elapsed. The low-level
processes at ELs 4 through 0 can then execute, subject to interrupts
by processes at higher ELs. However, if all the low-level processes
complete their work before the timer awakens base level, then base
level is prematurely awakened by a software interrupt and the pending
timer request is deactivated. Thus, any real time not needed by the
low-level processes is given back to base level, which uses this real
time to execute additional E-E cycles.

2.3.1.2 Speedup factors. The increased speed of the SPC lB causes
a net speedup in the execution of the emulated TSPS process relative
to the SPC lA. Not all portions of the emulated code experience the
same degree of speedup, however, because of dependence on dynamic
instruction mix, cache hit ratio, and ATB hit ratio.

The dependence on dynamic instruction mix occurs because some
SPC lA instructions could be emulated more efficiently than others.
Also, in the SPC lB, the execution time of some emulated SPC lA
instructions depends on what instruction options (e.g., rotating and
masking) are exercised, whereas no such dependency exists in the SPC
lA.

To reduce memory access time, the SPC lB employs a cache
memory to contain the most recently accessed words of main memory.
The cache is searched prior to each memory access and, if the word is
in the cache (i.e., a cache hit), less real time is used because main
memory need not be accessed. The cache is shared in common by all
processes in the system.

The SPC lB also employs eight Address Translation Buffers
(ATBs), which speed up the task of translating from virtual memory
address to physical memory address. Each A TB is essentially a cache
memory that contains the physical addresses of the most recently
accessed pages of virtual memory assigned to that A TB (a page is a
5l2-word block of main memory). If the page address is not in the
ATB (Le., an ATB miss), extra time is used in translation, which can

SYSTEM CAPACITY 925

increase an instruction's execution time. To reduce ATB misses,
J-Ievel is exclusively assigned to one ATB and base level is exclusively
assigned to another.

Parameters called "speedup factors" have been introduced to char­
acterize the increased speed of the SPC IB in executing the emulated
TSPS process. Because of the effects of cache and A TB hits, speedup
factors apply to execution of portions of code rather than to individual
instructions. Thus, the speedup factor for a given portion of emulated
code depends on the mix of executed instructions, and on the cache
and A TB hit ratios experienced by those instructions.

2.3.1.3 DMERT operating system. For TSPS No. IB, some real-time
requirements of the DMERT operating system are application inde­
pendent and others are application dependent. The application-inde­
pendent requirements are for those functions that are necessary for
maintaining a stable system environment. For example, the real time
allocated to diagnose the 3B20D Processor would fall into this cate­
gory. The application-dependent requirements are for those TSPS
functions that make use of DMERT -supplied facilities. Two examples
are: the real time required by the new TSPS craft interface, and the
real time required to interface DMERT to TSPS J -level.

Parameters have been introduced that represent the combined
TSPS-independent and TSPS-dependent DMERT real-time require­
ments for TSPS No. lB. One parameter represents the combined high­
level requirements (at ELs 15 through 5), and a second represents the
combined low-level requirements (at ELs 4 through 0). Other param­
eters represent the real time used in handling TSPS J-Ievel interrupts
and base-level sleep requests.

2.3.2 SPC 1 B real-time model

The SPC IB real-time model is formed by adding speedup and
operating system parameters to eq. (1) so as to obtain the new
equation:

900 = tNN' + TCR + tE E' + TH,

where
N' = trunk-seizures per quarter hour serviced by the SPC IB
E' = E-E cycles per quarter hour executed by the SPC IB

(2)

TH = seconds per quarter hour used by high-level processes (at ELs
15 through 5) associated with TSPS-independent and TSPS­
dependent DMERT work

and where tN, TCR, and tE are as defined in the following paragraphs.
The value of tN, the average processor seconds per trunk seizure, is

defined as

926 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

(3)

where
tNB = average processor seconds used per trunk seizure by the SPC

lA in base level
KNB = SPC IB speedup factor for tNB

tNJ = average processor seconds used per trunk seizure by the SPC
lA in J -level

KNJ = SPC IB speedup factor for tNJ.

Separate base-level and J -level speedup factors are defined because
base-level and J-level each has its own dynamic instruction mix and,
also, its own ATB and associated A TB hit ratio.

The value of TCR, the processor seconds per quarter hour of con­
stant-rate work, is defined as

, TCRB TCRJ 4
TCR = V- + V- + 18 X 10 tDJ,

.n.CRB .n.CRJ
(4)

where
TCRB = processor seconds per quarter hour used in constant-rate

work by the SPC lA in base level
KCRB = SPC IB speedup factor for TCRB

TCRJ = processor seconds per quarter hour used in constant-rate
work by the SPC lA in J -level

KCRJ = SPC IB speedup factor for T CRJ

tDJ = processor seconds used by the SPC IB in handling each
J-level interrupt.

Separate base-level and J-level speedup factors are defined for the
same reasons stated above.

The value of tE, the processor seconds per E-E cycle to perform
E-E cycle overhead work in base level, is defined as

where

tE -
tE = - + b(tDB + sA),

KE
(5)

tE = processor seconds used per E-E cycle by the SPC lA in
performing E-E cycle overhead work in base level

KE = SPC IB speedup factor for tE .
b = number of base-level sleep periods executed per E-E cycle by

the SPC IB
tDB = processor seconds used by the SPC IB in handling each base­

level sleep-period request
s = average duration (in seconds) of each base-level sleep period

SYSTEM CAPACITY 927

A = average fraction of each base-level sleep period that is avail­
able to low-level processes (at ELs 4 through 0).

In this formulation it can be seen that the real time used by the low­
level processes is treated as part of the SPC 1B E-E cycle overhead.
The value of A decreases as high-level interrupts increase and, there­
fore, A decreases as call load increases.

The values of band s must satisfy the constraint

bsAE* = TL (6)

where
TL = seconds per quarter hour to be allocated to low-level processes

(at·ELs 4 through 0) associated with TSPS-independent and
TSPS-dependent DMERT work

E * = lowest SPC 1B E-E cycle rate at which TL is to be allocated
by base-level sleep periods.

At E-E cycle rates less than E if< , insufficient base-level sleep periods
will occur to satisfy eq. (6). At E-E cycle rates higher than E*, more
than TL can be used by low-level work if necessary.

The value of b is a software parameter, and the value of s is
determined by the value of s, which is another software parameter.
When base level goes to sleep, it requests that it be awakened after s
milliseconds have elapsed. Because this request can be made at any
time relative to the 10-ms DMERT timer interrupt, s is around 5 Ins
longer than s.

Equations (2) through (6) constitute the SPC 1B real-time model.

2.3.3 Determination of real-time model parameters

The newly introduced SPC 1B real-time parameters have been
characterized through measurements made in the TSPS system lab­
oratories and at the test site in Fresno, California, prior to cutover.
The basic measurement technique involved measuring the percentage
of processor real time used at each execution level under a number of
different loads applied to the system. Other auxiliary measurements
were also made.

2.3.3.1 Real-time measurement techniques. Processor real-time usage
at the sixteen execution levels was measured through use of Dyna­
probe* monitoring equipment manufactured by the NCR COMTEN
Corporation. The Dynaprobe, through means of high-impedance
probes attached to the SPC 1B backplane, was used to sample the
execution-level bits of the Program Status Word (PSW) every 10
microseconds to determine the relative frequencies of execution-level

• Registered trademark of NCR COMTEN Corporation.

928 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

occupancies. Other signals were also sampled at the same time to: (i)
distinguish between emulated and native-mode code; (ii) count the
number of times that each emulated SPC 1A instruction was executed
during the measurement period; and (iii) measure the hit ratios
experienced by the cache and by the base-level and J-Ievel ATBs. The
raw counts for all these data were written onto magnetic tape for
subsequent off-line analysis.

During parameter measurement, simulated calls were generated by
means of MICLOB (Microprocessor Controlled Load Box) units at­
tached to the TSPS trunks. The response of TSPS operators, for those
simulated calls that required operator assistance, was simulated by
MOPS (Microprocessor Operator Position Simulator) units. The
MICLOB and MOPS units are described in Ref. 9. Complete parameter
characterization required taking measurements under various system
conditions. Call loads were varied from zero to the maximum applicable
simulated load. Different degrees of low-level activity were obtained
by running processor and memory diagnostics and by causing different
rates of output messages to be generated by the craft interface.

2.3.3.2 Measurement of speedup factors. Values for each of the de­
fined speedup factors were calculated from measurements taken at the
Fresno test site. Figure 2 shows the calculated values for each of the
speedup factors plotted with respect to E', the SPC 1B quarter-hour
E-E cycle rate. The value of E' is inversely related to call load;
E' = 58,000 corresponds to ali idle system and E' = 10,000 corresponds
to the maximum applied. call load.

Figure 2 shows that the two J-Ievel speedup factors, KNJ and KcRJ,

5~------~--------------------------------~

ex:: 4 o
l-
e.> «
u.
0-
:::>
o
:!l 3
0-
en
u.
o
w
:::>
-l

;; 2
K CRJ

1~ ____ ~ ______ ~ ______ ~ ____ ~ ______ ~ ____ ~
o ~

E' IN THOUSAND E-E CYCLES PER QUARTER HOUR

Fig. 2-Speedup factors.

SYSTEM CAPACITY 929

are constant with respect to E'. The value of KCRJ is less than KNJ

because J-Ievel constant-rate work makes heavier use of the instruc­
tions that have relatively low-emulation efficiencies. Although the
cache and ATB hit ratios associated with both of these speedup factors
were observed to slightly increase with decreasing E' (increasing call
load), the effect of these changes was compensated for by a slight
change in the dynamic instruction mix for KNJ and, for K CRJ, a higher
percentage of conditional transfers taken.

For base level, the three speedup factors, K E , K CRB, and KNB are seen
to change with E'. The value of KE, the speedup factor for E-E cycle
overhead work, decreases with decreasing E' (increasing call load)
because of a marked decrease in the base-level cache and ATB hit
ratios as E' decreases. At zero call load, a relatively small portion of
emulated code (the E-E cycle overhead work) is executed for a rela­
tively high percentage of the time, causing the cache and A TB hit
ratios to be at their highest values. The value of K CRB, the speedup
factor for base-level constant-rate work, was not measured directly but
is set equal to KE because this type of work is quite similar to E-E
cycle overhead work and because only a small percentage of real time
(less than 2 percent) is involved.

The value of KNB , the speedup factor for base-level trunk-seizure
work, is seen to increase with decreasing E' (increasing call load) even
though the cache and A TB hit ratios are decreasing. This increase is
caused by a decrease in the number of base-level instructions (exclud­
ing constant-rate and E-E overhead instructions) executed per trunk
seizure as E' decreases. Figure 3 shows this effect. Measured values of
INB, the number of base-level instructions executed per trunk seizure,
are plotted versus E'. The dependence of INB is seen to be approxi­
mately linear with respect to E' over a wide range of values.

Investigation has indicated that this effect is at least partly caused
by queueing for busy facilities (e.g., digit receivers). During each E-E
cycle, if a queue exists, an attempt is made to remove all entries from
the queue. Those entries that cannot be removed remain for the next
E-E cycle, thereby causing extra instructions to be executed. As the
call load increases, the probability of queue formation also increases.
The E-E cycle rate decreases, however, thereby producing a net
decrease in the number of base-level instructions executed per trunk
seizure. This effect also occurs with the SPC lA, but to a lesser degree
because, as will be seen, the E-E cycle rate of the SPC lA is lower
than that of the SPC lB when both are operating at the same trunk­
seizure rate.

Curves were fitted to the calculated values of the speedup factors
shown in Fig. 2 to obtain expressions for the parameters used in the
SPC lB real-time modeL These expressions are:

930 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

12~------------------~----------~~

UJ
a:
::>
~
UJ

11

en 10
:.::
z
:::>
a:
I-
a:
UJ

~ 9
z
o
i=
u
::>
a:
I-
~ 8

Cl
z
«
en
::>
o
J:
I-

~

'" z

6

5~ ____ ~ ______ ~ ______ ~ ____ ~ ____ ~
o 50

E' IN THOUSAND E-E CYCLES PER QUARTER HOUR

Fig. 3-Base-level instructions for each trunk seizure versus E'.

KCRJ = 1.70; KNJ = 3.20
8.2762

KCRB = KE = (2.7929 _ 13.104 X 10-6E')

20.698
KNB = (1 + 45.884 X 10-6E')(2.8649 - 14.179 X 10-6E') '

where, as previously defined, E' is the quarter-hour E-E cycle rate.
2.3.3.3 Measurement of DMERT real-time requirements for TSPS

No. 1 B. Parameters representing the real-time requirements of
DMERT for TSPS No. IB combine both TSPS-independent and
TSPS-dependent work. TSPS-independent DMERT work includes
DMERT functional work (e.g., audits, timer, etc.) and maintenance
work associated with the SPC IB (e.g., 3B20D diagnostics). TSPS­
dependent DMERT work includes the TSPS craft interface work and
work associated with handling the TSPS J-Ievel interrupts and base­
level sleep-period requests. These parameters were characterized by

SYSTEM CAPACITY 931

Dynaprobe measurements of the real time used at each execution level
and under various system operating conditions.

The TSPS craft interface real time is primarily used in producing
output inessages for maintenance purposes, and is a function of mes­
sage rate, message length, and the number of output devices in use.
The message rate is, in turn, a function of call load. Characterization
involved measuring the real-time cost on a per-character basis and
analyzing output messages generated by SPC lA sites to determine
representative message rates and lengths.

Measurements of T H, the parameter combining TSPS-independent
and TSPS-dependent real-time requirements for high-level DMERT
work, yielded

TH = 45.2 + 10-3 N' s/QH,

where N' is the TSPS No. IB quarter-hour trunk-seizure rate. Mea­
surements of TL the parameter combining TSPS-independent and
TSPS-dependent real-time requirements for low-level DMERT work,
yielded

TL = 101.0 + 7.5 X 10-3 N' s/QH.

The value of TL is the amount of real time that should be allocated to
achieve satisfactory execution of low-level activities under worst-case
conditions (e.g., high maintenance activity during call overload). Under
normal conditions, the actual value of TL is considerably less than this
allocated value so that more real time is available to call processing.

To satisfy eq. (6), the values chosen for b, the number of base-level
sleep periods per E-E cycle, and s, the requested duration of each sleep
period, are

b = 5; s = 10 ms.

Dynaprobe measurements also yielded

tDJ = 84 microseconds

for each J-Ievel interrupt [see eq. (4)] and

tDB = 1.5 ms

for each base-level sleep request [see eq. (5)].

2.3.4 Model evaluation

Figure 4 shows measured and predicted values of the quarter-hour
E-E cycle rate, E', plotted versus the quarter-hour trunk-seizure rate,
N', for the Fresno TSPS site. The SPC IB real-time model was used
to predict three different E versus N load lines, each corresponding to
a different low-level activity rate. The separate load lines occur be-

932 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

60

0

MODERATE

a: 50
..... /LOW-LEVEL ACTIVITY

::J
0
J:

a:
w
I-
a:
<t: 40
::J LOW LOW-LEVEL ACTIVITY
a
a:
w
c..
CJ)
w
d 30
>-u

~
w
0
Z
~ 20
::J
0
J:
I-

~

lu 10 HEAVY LOW-LEVEL ACTIVITY--

0~0------~------~-----J------~------~------~----~14

N' IN THOUSAND TRUNK SEIZURES PER QUARTER HOUR

Fig. 4-SPC IB load lines.

cause, as previously described, any real time not used by low-level
processes is given back to base level, which uses this real time to
execute additional E-E cycles.

The upper SPC lB load line shows E versus N behavior when the
low-level activity rate is low. Quarter-hour measurements were taken
under these conditions at zero and the maximum applied load, and
good agreement is seen between measured and predicted values. The
middle SPC lB load line corresponds to moderate low-level activity,
and the lower SPC lB load line corresponds to the condition when the
low-level activity is heavy. Again, agreement between measured and
predicted values is quite good.

2.3.5 SPC 1 B capacity increase

Figure 5 shows two E versus N load lines that indicate the increase
in call-processing capacity provided by the SPC lB. The upper load
line depicts the E versus N behavior for the Fresno TSPS site as
predicted by use of the SPC lB real-time model for a typical low-level
activity rate. The lower load line shows the E versus N behavior of the

SYSTEM CAPACITY 933

50

a:
:J
0
:c
a: 40
UJ
t-
a:
~
:J
0
a:
~ 30
en
UJ
....J
U
>-
U

UJ

.iJ 20
Cl
z
~
en
:J
0
:c
I- 10
~

~

0
0 2 4

MIN - MINIMAL
SPC - STORED PROGRAM CONTROL

6 8

160 PERCENT
SPC 1A CAPACITY

/
I

I ,

10

N' IN THOUSAND TRUNK SEIZURES PER QUARTER HOUR

Fig. 5-Comparison between SPC lA and SPC IB load lines.

12

Fresno TSPS site as predicted using the SPC 1A real-time model,
indicating how the site would perform if it were to use the SPC 1A.
Both load lines assume the same call mix.

The SPC 1A load line shows that the SPC 1A would reach its
capacity at about 5800 trunk seizures per quarter hour, since it is at
that trunk-seizure rate that the E-E cycle rate equals 4180 E-Es per
quarter hour, the SPC 1A value of E M1N• Analysis and experiments
conducted at Fresno indicate that E fvUN for the SPC 1B should be less
than E MIN• Therefore, since SPC 1B measurements were conducted at
Fresno at around 9300 trunk seizures per quarter hour with good
system performance (see Fig. 4), it can be concluded that the capacity
of the SPC 1B is at least 160 percent of the SPC 1A capacity.
Furthermore, because the SPC 1B E-E cycle rate at 9300 trunk seizures
per quarter hour is high with respect to the indicated value of E MIN , it
appears that the SPC 1B capacity is comfortably greater than 160
percent of the SPC 1A. This additional capacity serves as a margin to
accommodate variation among sites with respect to call mix and
peakedness in busy-hour load.

2.3.6 TSPSCAP program for TSPS No. 1 B

A TSPSCAP program was developed for the TSPS No. 1B incor­
porating the SPC 1B real-time model. As has been seen, a load-line

934 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

equation for the SPC lB is considerably more complex than for the
SPC lA, and depends to a large extent on the amount of SPC lB
diagnostic and craft interface activity. Therefore, instead of providing
a load-line equation, the TSPSCAP program provides calculated val­
ues of E' and N' which can be used to plot two load lines for the site
in question. These two load lines, similar to the upper and lower load
lines shown in Fig. 4, define what can be termed as a load-zone of
normal system behavior. That is, the quarter-hour E-E cycle and
trunk-seizure measurements for a site that is experiencing normal
operation should fall within this load zone.

III. RELIABILITY EVALUATION

3.1 Reliability requirements

The SPC lB reliability requirements are similar to those of a
traditional ESS-type processor, having four fault categories: hardware
faults, recovery deficiencies, procedural errors, and software deficien­
cies.1o

Hardware failures are allocated 0.4 minute of downtime per year.
The SPC lB is divided into three subsystems, each of which is
duplicated to achieve high reliability. Thus, one failure in one side of
a subsystem will not cause a system outage. Hardware faults can cause
a system outage only when both sides of a subsystem are experiencing
failures (i.e., before the first failure is repaired, another failure occurs
on the other side of the subsystem). When this occurs, the system is
unable to establish a working configuration until one side of the failed
subsystem is repaired and system integrity is reestablished. The hard­
ware reliability is a function of the failure rates of the subsystems, the
system architecture, and the repair rates of the subsystems.

Recovery deficiencies are allocated 0.7 minute of downtime per year.
When a hardware failure condition is detected, an automatic fault­
recovery action occurs to establish a working configuration. Unsuc­
cessful recovery actions are classified as recovery deficiencies. These
are due to either design errors or limitations in fault-recovery pro­
grams.

Procedural errors are allocated 0.6 minute of downtime per year. An
improper maintenance procedure can cause a system outage. Providing
easy-to-follow documentation and reducing the number of manual
steps help to minimize procedural errors.

Errors in operational programs and data are allocated 0.3 minute of
downtime per year. The amount of bootstrap time required to recover
the system from software deficiencies is considered to be a part of
system downtime under this category. To minimize this source of
downtime, overall software execution is monitored continually, data

SYSTEM CAPACITY 935

integrity is checked using extensive auditing procedures, and thorough
system integration tests are performed after program changes are
introduced.

All four potential causes of system outage are closely interrelated.
For example, improper procedures combined with certain hardware
faults may prevent system recovery. In this paper, only SPC IB
outages induced by hardware faults are considered.

3.2 Reliability estimates

3.2.1 Reliability model

To provide a basis for the relationship between the reliability model
and the system architecture, a brief review of the SPC IB architecture
is presented. A complete description of the SPC IB architecture can
be found in Ref. 11, and a more detailed description of 3B20D archi­
tecture can be obtained from Ref. 12.

As shown in Fig. 6, the SPC IB consists of three subsystems or
communities: a duplicated 3B20D Control Unit and PSI (CU/PSI), a
duplicated Input/Output Processor (lOP), and a duplicated Disk File
Controller with Movable Head Disk (DFC/MHD). Either half of the
duplicated CU /PSI community can access either side of the duplicated
TSPS peripheral bus system. The lOP cominunity has duplicated

r-----,
I
I
I
I
I
I TSPS
I PERIPH­
I ERALS

0,1
I
I
I
I
I
I L ____ ...J

r------.---------r--------,
I CU/PSI I lOP I DFC/MHD
I COMMUNITY I COMMUNITY I COMMUNITY

I I I

PSI
o

PSI
1

r-----, I
I I
I I

I/O II I
PERIPH- I I
ERALS

I I
II

L ____ .J I

I I I L ______ -1 _________ ...L. ________ ...J

CU - CONTROL UNIT MHO - MOVABLE HEAD DISK
DFC - DISK FILE CONTROLLER
I/O -INPUT/OUTPUT
lOP - INPUT/OUTPUT PROCESSOR

PSI - PERIPHERAL SYSTEM INTERFACE
TSPS - TRAFFIC SERVICE POSITION SYSTEM

Fig. 6-SPC IB architecture.

936 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

lOPs, each controlling a number of Peripheral Controllers (PCs). Each
type of PC is designed to control a specific peripheral device, such as
tape drives, teletypewriters, etc. The DFC/MHD community consists
of a pair of DFCs, each capable of controlling one or more associated
MHDs. One MHD on each half of the DFC/MHD community contains
software required to bootstrap the SPC lB.

Certain reliability measures are required to predict the probability
of successful operation of the system. In expressing reliability of a
switching system, "availability" is a more widely used term. Availabil­
ity is defined as the fraction of time, on the average, that a system is
expected to be in an operating condition. The availability of a switching
system is a function of the system architecture and of subsystem
failure rates and repair rates. Estimating availability of a system
requires a mathematical model that can reflect the system architecture
appropriately. The continuous-time, finite-state Markov model was
used for the SPC 1B availability calculation, where an exponential
probability distribution was assumed for the failure rates and repair
rates. Detailed descriptions of how to use the Markov model to
calculate system availability can be found in Refs. 5 and 13.

The reliability model for each of the three communities contains
three states: a "duplex state," a "simplex state," and a "down state."
The duplex state is a state where both halves of the community are
fault-free and operational. Upon detecting a fault in either half of the
community, a transition to the simplex state occurs. The rate of the
transition is determined by the failure rate of the community. While
a community is in the simplex state, one of two transitions is possible.
A transition to the duplex state could occur if the faulty half of the
community is repaired before a failure occurs in the other half of the
community. On the other hand, a transition to the down state may
occur if a new fault is detected in the remaining half before the initial
fault is successfully repaired. A transition from the down state to the
simplex state occurs when one of the faulty halves is repaired and put
back to service. The rates of transitions, from the down state to the
simplex state and from the simplex state to the duplex state, are
determined by the repair rates, which are the reciprocals of correspond­
ing mean time to repairs (MTTRs) for the community.

The probability that a community is in the down state is defined as
the unavailability of the community. The SPC 1B is considered out of
service when any of the CU/PSI, lOP, or DFC/MHD subsystems of
the SPC 1B are in a down state. Hence, the unavailability of the
system can be obtained by calculating the sum of unavailabilities of
these three communities. The expected downtime per year for the
SPC 1B can be estimated directly from the unavailability of the
system.

SYSTEM CAPACITY 937

3.2.2 Availability estimates and modifications

To evaluate the unavailability of each community, the reliability
model was converted to a set of simultaneous equations where the
unknowns are the probabilities of the states. Programs were written to
solve the sets of equations corresponding to various architectural
configurations. When these programs are used, sensitivity of the sys­
tem downtime to the architectural variations as well as to the para­
metric values such as repair rates and failure rates of each community
could be investigated. Coefficients of the equations were determined
by the failure rates and repair rates of each community. Failure rates
of the three communities were estimated from their component failure
rates.

The repair rate of each community is estimated from the MTTR of
mechanical failures, the MTTR of electrical failures, and a craft
dispatch time. The MTTR of mechanical failures is considered sepa­
rately from the MTTR of electrical failures because, for an MHD, the
MTTR of mechanical failures is an order of magnitude longer than
that of electrical failures. To minimize the MTTR, extensive diagnostic
programs are included in the TSPS No. IB, which can locate a fault
within the resolution of three circuit packs. Detailed descriptions of
diagnostic programs can be found in Refs. 11 and 14. A craft dispatch
time is added to the MTTR when determining the repair rates of each
community because the SPC IB can be maintained by craft personnel
located at a remote site. The dispatch time depends on the average
travel time from the remote site and on the ratio between the average
staffed hours and unstaffed hours per day of the TSPS No. IB office.

The failure rates of the CU IPSI, DFC, and lOP are principally due
to electrical failures. On the other hand, the failure rate of the MHD
is due to roughly half mechanical and half electrical failures. Conse­
quently, the MTTR of an MHD is much longer than the MTTRs of
the other units. For the TSPS No. IB application, the MTTR of an
MHD has been improved through use of a spare MHD for each system.

Evaluation of the reliability model using current parameters shows
that the reliability objectives for the TSPS No. IB have been met.

IV. CONCLUSION

This paper has described the prediction and evaluation of the call­
processing capacity and system reliability of the SPC lB. The call­
processing capacity has been estimated through means of a processor
real-time model whose parameter values have been determined by
laboratory and test-site measurements. The system reliability has been
predicted through use of Markov modeling techniques. Performing
this evaluation during TSPS No. IB development to monitor progress
was instrumental in meeting the capacity and reliability objectives.

938 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

v. ACKNOWLEDGMENTS

G. J. Kujawinski and the authors worked together as a team in
evaluating the SPC IB capacity; his contributions were essential to
the success of the effort.

REFERENCES

1. R. E. Staehler and J.1. Cochrane, "Traffic Service Position System No. 1B: Overview
and Objectives," B.S.T.J., this issue.

2. N. X. DeLessio and N. A. Martellotto, "Traffic Service Position System No. 1B:
System Description," B.S.T.J., this issue.

3. R. J. Gill, G. J. Kujawinski, and E. H. Stredde, "Traffic Service Position System No.
1B: Real-Time Architecture Utilizing the DMERT Operating System," B.S.T.J.,
this issue.

4. L. B. Brisson and R. L. Potter, "A Time-Shared Program for Predicting TSPS
No.1 Capacity," Proc. Int. Conf. Commun., Seattle, 1973.

5. J. A. Buzacott, "Markov Approach to Finding Failure Times of Repairable Systems,"
IEEE Trans. Reliability, R-19 (November 1970), pp. 128-34.

6. R. J. Jaeger, Jr. and R. L. Potter, "Analysis of Processor Usage in Stored Program
Controlled Telephone Switching Systems," Proc. Int. Conf. Commun., Philadel­
phia, P A, 1972.

7. Special issue entitled "Traffic Service Position System No.1," B.S.T.J., 49, No. 10
(December 1970).

8. N. Farber, "A Model for Estimating the Real-Time Capacity of Certain Classes of
Central Processors," Paper 426, Proc. Sixth Int. Teletraffic Congress.

9. J. J. Stanaway, Jr., J. J. Victor, and R. J. Welsch, "Software Development Tools,"
B.S.T.J., 58, No.6, Part 1 (July 1979), pp. 1307-34.

10. P. W. Bowman, M. R. Dubman, F. M. Goetz, R. F. Kranzmann, E. H. Stredde, and
R. J. Watters, "Maintenance Software," B.S.T.J., 56, No.2 (February 1977), pp.
255-87.

11. G. T. Clark; H. A. Hilsinger, J. H. Tendick, and R. A. Weber, "Traffic Service
Position System No. 1B: Hardware Configuration," B.S.T.J., this issue.

12. M. W. Rolund, J. T. Beckett, and D. A. Harms, "3B20D Processor & DMERT
Operating System: 3B20D Central Processing Unit," B.S.T.J., 62, No.1, Part 2
(January 1983), pp. 191-206.

13. M. D. Soneriu and D. S. Suk, "Markov Model for Estimating the Reliability of
Duplicated and Repairable Computing Systems," Nineteenth Annual Tech.
Symp., Pathways to System Integrity, Washington, D. C. (June 1980), pp. 87-95.

14. J. L. Quinn, F. M. Goetz, and R. L. Engram, "3B20D Processor & DMERT Operating
System: Diagnostic Tests and Control Software," B.S.T.J., 62, No.1, Part 2
(January 1983), pp. 367-81.

SYSTEM CAPACITY 939

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.3, March 1983
Printed in U.S.A.

Traffic Service Position System No. 18:

Switching Control Center System Interface

By J. J. BODNAR, J. R. DAINO and K. A. VANDERMEULEN

(Manuscript received July 30, 1982)

Over the years, the centralization of the maintenance and operation
of Stored Program Control Systems (SPCS) has proved to be an
economically attractive and effective methodology. At the core of the
centralized maintenance plan is the Switching Control Center (SCC),
which has responsibility for the surveillance and control of a number
of SPCS. This center is supported by the Switching Control Center
System (SCCS), which is a minicomputer-based system that provides
automation of, or mechanized support for, the functions of the SCC.
Since SCCS support for the Traffic Service Position System No.1
(TSPS No.1) was already available, these capabilities needed to be
carried forward to support the operation and maintenance of TSPS
No. lB. In addition, the use of the new 3B20D Processor with a new
craftperson interface allowed for a number of improvements and
extensions. The SCCS interface to TSPS No. IB has made use of new
technology and techniques by incorporating microprocessors, video
terminal interfaces, and BX.25 protocol in the design. The result is a
flexible interface with software-driven craft displays.

I. CENTRALIZED MAINTENANCE-OVERVIEW

Since the early 1970's the Bell Operating Companies (BOCs) have
been taking increasing advantage of the concept of centralized main­
tenance of switching systems. To economically operate, administer,
and maintain electronic switching systems, operations centers were
formed where technical experts equipped with computer-based support
systems can apply their skills to many switching systems. In the case
of the Traffic Service Position System (TSPS), the daily maintenance
and operations functions may be provided by the Switching Control
Center (SCC).

941

If a TSPS is maintained and operated from an SCC, the SCC
manager has overall responsibility for the quality of service provided
by the TSPS and the cost of maintaining the system. To provide high­
quality service at a reasonable cost, a number of functions must be
performed efficiently at the SCC. Since in this environment the TSPS
is unattended, except when field personnel are assigned to specific
tasks in the office, the SCC personnel monitor the real-time status of
the TSPS on a continuous basis. In the event of failure of equipment
in the TSPS complex, the SCC exercises appropriate controls to ensure
service protection. The cause of the failure is then analyzed and
isolated. Finally, when the trouble is identified, field personnel are
dispatched to perform any necessary on-site repair.

To accomplish these functions, a number of work positions have
been established in the SCC and individual craft have been assigned
particular responsibilities.

The Office Controller is responsible for real-time surveillance of
several switching systems and as such has the most frequent interface
to the TSPS. (Most BOCs will maintain several types of electronic
switching systems from each sce.) The controller responds to system
alarms and takes necessary service-protection action. The Analyzer is
responsible for those more complex problems that require sectionali­
zation and trouble identification. The Analyzer interacts with the
TSPS to collect additional data and uses previously reported data to
isolate system troubles. The craftperson at the trunk-maintenance
position is responsible for identifying faulty trunks and directing their
repair. In addition, dispatch and administration functions exist in the
see to identify work for field forces, facilitate proper information flow,
and keep records.

II. TRADITIONAL INTERFACE

The No.2 Switching Control Center System (No.2 SCeS) began
deployment in the mid-1970's as a computer-based support system to
aid the sce personnel in performing their jobs. It has evolved over
time by providing new features and interfacing to Stored Program
Controlled Systems (SPCS) such as TSPS No. 1.1

,2 With the develop­
ment of TSPS No. IB, a parallel sces development was done to
integrate the new system into the existing operations environment
while taking advantage of opportunities afforded by the new 3B20D
Processor.

2.1 The TSPS No.1-SeeS interface

The traditional interface provided by No. 2 sces consists of a
dedicated channel from a TSPS No.1 that parallels the Maintenance

942 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

Teletypewriter (MTTY), plus a dedicated channel that terminates on
an E2A telemetry unit at the TSPS No. 1 Master Control Center
(MCC). At the SCC, the TTY channel is connected to a minicomputer
system, known as the Computer Subsystem (CSS) and the telemetry
channel terminates on a telemetry unit that collects data from many
switching offices. This basic architecture is shown in Fig. 1. The TTY
channel is a 110-baud asynchronous serial communication line. The
data output by the TSPS No. 1 on this channel reports detailed
information in line-oriented output messages suitable for hard-copy
teleprinters. In addition, line-oriented input commands may be sent to
the TSPS No.1 on this channel. The TTY channel data are collected
and stored in the CSS. The data are available for real-time alerting
and long-term analysis.

The telemetry system serves the purpose of reporting real-time
equipment status and allows controls to be activated remotely. At the
TSPS No.1 MCC an E2A remote unit is provided to collect detailed

Isees
I
I
I

MASTER
CONTROL
CENTER

MAINTENANCE
TTY

SPCS

------ ----------,

SWITCHING NETWORK

I
I
I
I
I
I
I
I

,WORKSTATION - - - - -- - - --I I
I I I
I I I
I I I
I I I

CRITICAL I CENTRAL I I
INDICATOR I OFFICE TTY CONTROL I I

DISPLAY I SELECTOR CONSOLE

AND ALARMS I UNIT I I
L _______________ ~ I

L ________________________ ~

CRT - CATHODE RAY TUBE
secs - SWITCHING CONTROL CENTER SYSTEM

SPCS - STORED PROGRAM CONTROL SYSTEM
TTY - TELETYPEWRITER

Fig. I-TSPS No. I-SeeS interface.

SWITCHING CONTROL CENTER 943

status of TSPS No. 1 hardware states. This is accomplished by
connecting discrete scan points in the E2A telemetry unit to individual
lamp displays on the MCC. Control capability is provided by individ­
ually connecting relay contact closures in the E2A telemetry unit in
parallel with the pushbutton keys on the MCC. The interface is thus
hardwired in place.

An E2A central unit in the SCCS polls up to 16 remote E2A units
on a continuous basis. The polling process takes place over a data
network that has a multiport bridge at its hub. The central unit
transmits a request for data along with a unique address of one of the
remote units. The remote units on the network respond only when
their address is contained in the polling request. The message format
used consists of start and stop bits, 16 data bits, and a 7 -bit cyclic
redundancy check sum. This data word contains a summary of the
status of critical hardware units in each office. The data are displayed
in real-time on a wall-mounted status panel called the Critical Indi­
cator Panel (CIP) in the SCC.

To gain access to more detailed status-and-control capability, a
control console at the SCC can be connected to the E2A remote unit
at the TSPS No. 1. This is accomplished by the use of switching
equipment in the SCCS to disconnect the E2A from the multiport
network and connect it on"a point-to-point basis with a control console
at a work station in the SCC. Two types of consoles exist for intercon­
nection with a TSPS No. 1. The original type of console provided was
a wired logic console with a fixed display and keyboard. The display
consisted of status lamps with labels that corresponded to labels
printed on the MCC. Pushbutton keys on a keyboard were labeled
with the same designations as used on the keys at the MCC.

Housed inside the console was an E2A central unit which was
configured to collect all the data available from the remote unit. Its
memory was hardwired to the lamps on the display panel. Such a
console was then limited to functioning only with a TSPS No. 1. Any
changes or additions to the MCC required corresponding changes to
the consoles at the SCC. A second type of console is now provided,
which consists of a CRT and microprocessor. In this type, the micro­
processor communicates with the E2A remote unit to collect status
information. The interface to the craft at the SCC consists of a CRT
display. On this display, the lamps and keys on the MCC are repre­
sented by their labels, as shown in Fig. 2. Active status or controls are
shown by displaying the label in reverse video (black characters on a
white field). Keys are distinguished by preceding the label with a plus
sign. Keys are activated by cursor positioning. This software-driven
display allowed for the use of the same physical equipment with other
types of switching systems.

944 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

CJ)

:E
=i
()
I
Z
G)

()
o
Z
-l
JJ
o
r
()
m
z
-l m
JJ

CD
~
U1

Fig. 2-TSPS No.1 MCC display page.

2.2 Human interface

A number of human interfaces are provided to alert SCC craft to
trouble conditions and to allow for further data collection, analysis,
and control. As data are collected via the telemetry network in real
time, alarms and status of critical equipment units are displayed on a
highly visible CIP. This provides alarm visibility and long-term equip­
ment status information to the SCC managers and craft. TTY mes­
sages are examined in real time as they are received and stored by the
CSS. Messages reporting alarmed events are used to trigger a video
display on an alarm monitor, which is a large CRT device. The identity
of the switching system reporting the trouble and the alarm level are
displayed along with a one-line summary of the condition being re­
ported.

The office controller is responsible for responding to the real-time
events reported on the CIP and the alarm monitor. The controller's
work station is equipped with t~o CRTs that serve as additional
interfaces to the system. One CRT, known as the CSS work station, is
connected to the CSS. Via this device the controller can examine
previously reported data that have been stored by the CSS. In addition,
the CSS work station can be placed in the monitor mode where it is
connected to the TSPS No. 1 via the CSS and becomes the functional
equivalent of the maintenance TTY at the TSPS No. 1. That is, in
this mode the work station receives each character output by the
TSPS No. 1 as it reaches the CSS and any characters typed by the
user are sent directly to the TSPS No. 1.

The second CRT is the microprocessor-driven console described
above, which interfaces to the telemetry network. This equipment
constitutes the control console and is the functional equivalent of the
local MCC lamp and key panel. Thus the office controller has the same
capabilities at the SCC work station that a craft at the TSPS No. 1
has via the maintenance TTY and MCC panel. The control console
and CSS work station functions are provided on separate terminals
and via separate processors and links in order to enhance the availa­
bility of the interface in the face of a simplex outage.

The analyzer work station is also equipped with these devices. The
analyzer, however, makes more use of SCCS programs in the CSS
which analyze large volumes of data and reduce them to summarized
outputs and reports. For example, filtering and patterning capabilities
allow for the identification of repetitive events and aid in the trouble­
sectionalization process. While the office controller uses the control
console for service-protection purposes, the analyzer uses it for more
detailed data collection and observation of system performance under
specific conditions.

It is this operations environment into which the new TSPS No. IB

946 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

was integrated. The new interface serves as the foundation for remote
maintenance of TSPS No. IB as well as other 3B20D Processor
applications.

III. THE TSPS NO.1 B-SCCS INTERFACE

3. 1 Elements of the new local maintenance position

With the use of the 3B20D Processor and the DMERT operating
system came the opportunity for new flexibility at the local mainte­
nance position.3 The MCC and the MTTY of the TSPS No.1 have
been replaced by the Maintenance CRT (MCRT) and a Receive-Only
Printer (ROP).4 The ROP provides a paper history function by record­
ing each maintenance event or alarm condition in the form of line­
oriented output messages.

The MCRT has several modes of operation. The first, the Emer­
gency Action Interface (EAI), can be thought of as the replacement of
the emergency recovery functions of the MCC. Actually, the EAI
provides a hardware control function that is independent of the system
software. It provides recovery capabilities for the TSPS No. IB even
in the absence of software sanity. The MCRT also has a test input/
output mode. This allows the user to input line-oriented commands
and to receive responses to these commands as well as spontaneously
generated output. This is equivalent to the old MTTY input and
output mode. In addition, the MCRT has a Control and Display mode
(C&D), which provides the user with page-oriented displays of system
status and with a menu of commands used to affect the status or
configuration of the system. The C&D mode provides a very effective
human interface for the daily functions of trouble isolation and correc­
tion. Finally, the MCRT provides continuous status information on
the health of the system via a critical indicator display.

These different modes of operation are provided by dividing the
screen into several sections and providing keys for toggling between
modes (see Figs. 3 and 4). The top of the CRT is a header line. The
second and third lines of the MCRT contain critical indicator infor­
mation. The fourth line is reserved for command input. Lines five
through twenty-two are used alternatively to display menus and pages
in the C&D mode or to display the EAI page. Finally, any lines that
are unused by the page that is currently being displayed are used for
text input and output. At least two lines are always available for text
input and output. However, if the currently displayed page does not
use the entire page region, the remaining area may also be used for
output.

The MCRT and the ROP interface to the 3B20D Processor through
a firmware controlled unit called the Maintenance Teletype Controller
(MTTYC). This unit provides the EAI mode and interfaces between

SWITCHING CONTROL CENTER 947

948 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

SWITCHING CONTROL CENTER 949

the terminals and the 3B20D Processor in other modes. The firmware
in the MTTYC is responsible for controlling the MCRT in the EAI
mode to allow access to the system in the absence of 3B20D Processor
sanity. The MTTYC also controls the interface to the sees. All other
modes of operation and information on the MCRT are controlled by
software in the 3B20D Processor.

3.2 Elements of the remote maintenance interface

The allocation of information and modes of operation at the SCC is
consistent with both the local interface at the TSPS No. lB and the
existing SCC functions. The critical indicator information is displayed
on the CIP as was done for the TSPS No. 1. In addition, the text
input/output and the data on the ROP are logged in the ess. This
provides the work station with the Monitor mode and allows the ess
to drive the alarm monitor. This will also allow the existing work
station features for the controller and the analyzer to operate as before.
Also, the EAI interface is available to the Control Console (CC) just
as the MeC functions of the TSPS No.1 were provided there. This
allows the controller to recover the TSPS No. lB when necessary.
Providing this function on the CC gives added assurance that it will be
available in the event that the CSS is unavailable.

Furthermore, to provide consistent operation with the local inter­
face, a CRT display mode essentially identical to that at the MCRT is
provided on both the CC and the CSS work station. The only exception
is that the CC is not provided with the text input/output functions at
the bottom of the screen. This means that both the CSS work station
and the CC have access to the EAI mode and the C&D mode, and the
CSS work station has full TTY input/output capabilities. Also, all the
mechanized features provided by the ess to support the controller,
analyzer, and trunk-maintenance positions remain available.

To communicate between the TSPS No. lB and SCCS in the C&D
mode, a language was defined with which the TSPS No. lB tells the
SCCS what should be displayed on the screen. The sces then sends
each user command to the TSPS No. lB, which processes the com­
mand and sends back a description of the display, complete with all
the up-to-date status information. The SCCS translates that data
stream into one that is understood by the SCC terminal. The language
that is used to communicate this information is known as Virtual
Terminal Protocol (VTP). By this method, the SCCS is not required
to have complete up-to-date information describing each of the many
C&D pages provided by TSPS No. lB. This helps keep the system
relatively independent with respect to changes and enhancements.

With respect to the EAI mode and the critical indicators, however,
much less information is involved and it is less subject to change. The

950 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

EAI consists of a single page, which is controlled by the firmware in
the MTTYC. There are up to twelve critical indicators, the definition
of which is very stable for each SPCS. Therefore, the SCCS is capable
of generating a critical indicator display'as well as an EAI display, and
the TSPS No. IB simply sends the data required to describe the status
of each of the indicators or display components.

3.3 Basic architecture of the interface

Since the existing TTY and E2A interfaces do not have the capacity
to support the amount and form of information that must be exchanged
between the TSPS No. lB and SCCS, a new interface was designed.
In particular, the information necessary to drive the EAI and C&D
modes requires highly reliable transmission of a significant amount of
binary information. The new interface that was designed for commu­
nication between the TSPS No. lB and the SCC, Fig. 5, consists of a
pair of 2400-baud synchronous links between the MTTYC and a new
device at the SCCS called the Protocol Converter (PC). One link is
normally active while the other is, used as a backup and is therefore
normally in the standby state. The link carries seven logical streams
of data under the BX.25 protocol using the virtual channel assignment
capabilities of that protocol. The virtual channels (VC) are assigned as
follows:

VCl-Emergency action interface
VC2-Critical indicator information

138 SPcs ----I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

L _____ .J

CRT - CATHODE RAY TUBE
MCRT - MAINTENANCE CRT

MUL TIPLEXED
LINKS

MTTY - MAINTENANCE TELETYPEWRITER

Isccs--- ---------,

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I L ____________ .J

SCCS - SWITCHING CONTROL CENTER SYSTEM
SPCS - STORED PROGRAM CONTROL SYSTEM

Fig. 5-TSPS No. IB-SCCS interface.

SWITCHING CONTROL CENTER 951

VC3-C&D interface
VC4-TTY input and acknowledgment
VC5-TTY output
VC6-Spare
VC7-Spare
The two links provide simple backup for each other. If either end

detects a link outage at level 2 of the protocol, it will switch to the
other link and establish communication on that link. The function of
the PC is to handle the BX.25 protocol and to divide the virtual
channels into separate physical connections bound for the different
subsystems of the SCCS.

The PC is a fmnware-controlled microprocessor system. Each mi­
croprocessor can support up to three 3B20D-based systems. The PC
is housed in a newly designed cabinet, known as the T -cabinet, which
can hold up to three PCs. In addition, this cabinet contains one spare
PC, which can be manually activated to replace anyone of the three
active PCs, should they fail.

The PC sends the critical indicator information contained on VC2
to another fIrmware-controlled microprocessor called the display
driver, which interfaces to the CIP. The display driver is also housed
in the T -cabinet and can support up to 18 systems.

The PC sends and receives the TTY information contained on VC4
and VC5 to and from the CSS. The interface is a 1200-baud asynchro­
nous serial communication line similar to the MTTY interface in the
previous architecture. Since this is a character-oriented interface and
the BX.25 link to the TSPS No. 1B is a message-oriented interface,
the PC provides for the translation between the two. The fact that the
TSPS No. 1B emulates the TSPS No.1 has allowed the software in
the CSS-used to assist the SCC in the maintenance and operation of
TSPS-to be carried forward to support TSPS No. 1B with only minor
modification. That is, most information received from a TSPS No. 1B,
except that which deals directly with the processor itself, is the same
in form and content as in TSPS No. 1. Thus, all the mechanized tools
provided by the SCCS are still applicable with very little modification.
This fact significantly enhances the ease with which the TSPS No. 1B
can be integrated into the SCC environment as it gradually replaces
the existing TSPS No. l's.

To provide the MCRT function, the PC multiplexes the data con­
tained on VC1, VC2, and VC3 onto a single physical link which can be
connected to either the control console or the CSS, depending on
whether the control console or CSS work station is currently accessing
the office. This interface is also a 1200-baud asynchronous communi­
cation line, and a simplified version of levels 2 and 3 of the BX.25
protocol has been designed for this link. This allows for the three
logical data streams to coexist on this link and also allows for some

952 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

error checking to increase the reliability of the interface. In addition,
this link allows the user to input e&D commands or EAI commands
into the TSPS No. IB through the pe.

In summary then, the interface described in this section permits the
distribution of functions among the subsystems of the sees, which is
consistent with existing operations and allows the see user to access
the TSPS No. IB in the same manner as the user at the local
maintenance position. The control console has access to the EAI,
critical indicator, and e&D information when it is attached to the
office. In addition, the ess work station can "display" the office
information and receive the same view as the MeRT at the TSPS No.
IB, including the text input/output functions at the bottom of the
eRT. Finally, all the status and alarm information output at the ROP
and all the input/output activity on the TTY channel-both from the
see and the local position-are logged in the history files in the ess.
This information then becomes the basis for the alarms displayed on
the alarm monitor and for the sophisticated tools provided by the
sees to support the controller, analyzer, and trunk-maintenance
positions at the sees.

IV. OPERATIONAL IMPACT

The TSPS No. IB-SeeS interface introduces several new features
to the see craft. The use of software and microprocessor technology
at the see and the TSPS No. IB have enabled various design
objectives to be met. The available technology allows the use of the
BX.25 protocol providing a multiplexing arrangement on the TSPS
No. IB-SeeS link. Intelligent control equipment administers the
BX.25 protocol that provides error detection and correction on the
link. Software-controlled video displays replace hardwired control
panels provided on the TSPS No. 1.

The 3B20D Processor will be used in other Western Electric switch­
ing systems, which will permit the development of a common see
interface for all such systems, These, and other new features and
capabilities described below, take advantage of the available new
technology. This section discusses how the features and capabilities of
the architecture described in Section III affect the see operations.

4.1 Consistent operation with local TSPS No. 1 B maintenance terminal

The ess work station operation with the TSPS No. IB is essentially
identical with the on-site TSPS No. IB maintenance terminal. In
addition to all capabilities provided at the on-site TSPS No. IB
terminal, the ess work station has access to the features provided by
the sees computer subsystem. In the EAI and e&D modes, the
control console also has identical operation as the on-site TSPS No.
IB maintenance terminal. Both the see work station and the control

SWITCHING CONTROL CENTER 953

console have full access to the EAI page to monitor and initiate TSPS
No. 1B status and recovery functions. By reducing the differences
between the local and remote interfaces, training requirements are
reduced and craft efficiency is enhanced.

4.2 Consistent operation with existing sec
The design provides the TSPS No. 1B with support which is oper­

ationally similar to other spess interfacing to the sees.
The TSPS No. 1B may be monitored and controlled from the ess

work station with the ess providing the support functions of logging,
sorting, and browsing. All the tools provided by the ess for the
support of TSPS No.1 are extended to TSPS No. lB. This means that
operational procedures that are in place with respect to TSPS No. 1
are still applicable. The alarm monitor display of alarms is also fully
functional.

In the event of a ess failure, the control console provides craft
access to the TSPS No. 1B as it does in other spes-sees interfaces.
Alarms are displayed on the critical indicator panel in a standard line­
up arrangement as with other systems. All ess features operate in the
same manner as with previous systems.

While enhancements have been made to the human interface, the
basic see functions (described in Section II) have been maintained
with the TSPS No. lB.

4.3 Improvements to the human interface

Since the TSPS No. 1B introduces many new features and capabil­
ities in the maintenance terminal, these features are also available at
the ess work station and control console as a result of the new TSPS
No. 1B-SeeS interface.

For example, in addition to the text input/output message capability,
used in the TSPS No.1, the TSPS No. 1B-SeeS interface includes
the e&D mode. The e&D mode provides a series of displays that give
current status of various sections of the system. These displays may
be requested by the craftperson using a menu selection process. The
menu lists several possible display pages with a three-digit-selection
menu number. In addition, the user can initiate many of the typical
maintenance and recovery actions required to operate a TSPS No. 1B
using menu numbers provided on these displays. This provides a
significant improvement in speed and accuracy for frequently used
functions over the text input and output capabilities of the TSPS No.
1 and sees interface.

The EAI page, Fig. 3, follows the same format as other display pages.
From this page the craftperson is able to initiate various recovery
functions using a two-digit menu selection. Also available on this page

954 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

is progressive system status during recovery sequences. This is a
significant improvement over the previous MCC interface of the TSPS
No.1 in several ways. In particular, the EAI provides more informa­
tion-because of the video display-and more consistency between
the emergency interface and other kinds of access to the system.
Consistency between the local interface and the remote interface at
the SCC is also enhanced. In the TSPS No. 1 the local interface was
a hardware panel of lamps and keys and the remote interface used a
video display and keyboard to emulate the local interface. In the new
design the local and remote interface are identical. The system also
provides four special function keys at the video terminal. These keys
are designed to allow the craft fast and convenient use of the capabil­
ities of the human interface. The keys provide one-button operation to
perform the following functions:

(i) Request the EAI page (EA DISP)
(ii) Exit the EAI page (NORM DISP)

(iii) Change between the text input and menu input mode (CMD/
MSG)

(iv) Retire alarms (ALM RLS).
To illustrate the advantages of the control and display operation

available with the interface between the TSPS No. lB and the SCCS,
consider the example of the alerting and analysis of a major alarm
associated with a moving head disk in the TSPS No. lB. As with other
systems, a TSPS No. lB major alarm results in a visual indication at
the critical indicator panel, a one-line alarm summary message is
displayed at the alarm monitor, and, if activated, an audible alarm
sounds. If the controller then connects the CSS work station to the
office in the display mode, the display will indicate the alarm with the
"Major" indication and flashing "CU PERPH" (Control Unit Periph­
eral problem) in reverse video in the critical indicators section of the
display (second line on the screen).

The controller can retire the alarms by depressing the alarm-release
special function key. This will return the major indication to normal
on the screen and result in "CU PERPH" in solid reverse video. The
controller can then select the CU PERPH page from the page index
by entering the three-digit menu number associated with that page.
The CU PERPH page will display the status of the 3B20D Processor
and peripherals. On the display, the moving head disk will be indicated
as out-of-service. Once called in by the controller, the analyzer may
then request diagnostics be run on the disk using either a menu­
selection number (from the menu of commands displayed on the left
part of this display page) or, by using the special function key to
change to the text input mode and typing a text diagnostic message.
The result of this diagnostic should lead the analyzer to further action,
(e.g. dispatch to repair or replace the faulty hardware).

SWITCHING CONTROL CENTER 955

Video displays and menu selection provide an effective human
interface, which results in a low probability for human errors occurring
and a high level of job satisfaction.

4.4 High reliability

To meet the high reliability required of the TSPS No. IB-SeeS
interface for unattended operation of TSPS, the interface is designed
with a highly redundant architecture. The 2400-baud data link between
the two systems is fully duplicated and the BX.25 protocol provides
error detection and correction. The TSPS No. IB components that
control and administer the sees interface (e.g., the MTTye) are
fully duplicated and provide full access both to the local and remote
users in the event of single-unit failures.

The sees components are also backed up. In particular, the T­
cabinet provides for a sparing arrangement in the event of a pe failure,
and the duplication of capabilities at both the control console and ess
work station allows these terminals to back each other up in the event
of failures in either subsystem. Finally, the elP provides alarm and
status information even in the event of a ess failure that disables the
alarm monitor.

In addition, this design provides for some improvement in the
capabilities provided to the see when single-link failures occur. In
previous spes-sees interfaces, the text message data and the E2A
telemetry data containing critical indicator information and emergency
action information were transmitted over separate facilities. Therefore,
if one facility failed, the see lost partial capability. The TSPS No.
IB-SeeS interfaces, using two fully duplicated links, provide the
ability to transmit all the necessary data with no loss of capabilities at
the see in the event of a single transmission-channel failure.

V. CONCLUSION

The sees interface to TSPS No. IB has made use of new technology
and techniques by incorporating microprocessors, video terminal in­
terfaces, and BX.25 protocol in the design. The result is a flexible
interface with software-driven craft displays. At the see, the craft
interface devices are the same physical devices used to interface with
older technology spess, yet they provide new video displays and
menu selection inputs. Thus, the new technology of TSPS No. IB can
be maintained from the see as it is introduced into the network and
can also be used to enhance sees craft interfaces while remaining
consistent with overall see operations.

VI. ACKNOWLEDGMENTS

The authors would like to recognize the efforts of a large number of

956 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

people over a several-year period in the development and testing of
the TSPS-SCC interface.

REFERENCES

1. R. J. Jaeger, Jr. and A. E. Joel, Jr., "Traffic Service Position System No.1," B.S.T.J.,
49, No. 10 (December 1970), pp. 2417-31.

2. R. E. Staehler and W. S. Hayward, Jr., "Traffic Service Position System No.1,
Recent Developments," B.S.T.J., 58, No.6, Part 1 (July-Aug. 1979), pp. 1109-
1367.

3. G. T. Clark, H. A. Hilsinger, J. H. Tendick, and R. A. Weber, "Traffic Service
Position System No. IB: Hardware Configuration," B.S.T.J., this issue.

4. T. G. Hack, T. Huang, and L. C. Stecher, "Traffic Service Position System No. IB:
Software Development System," B.S.T.J., this issue.

SWITCHING CONTROL CENTER 957

Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 62, No.3, March 1983
Printed in U.S.A.

Traffic Service Position System No. 1 B:

Long-Range Planning Tools

By P. L. BASTIEN and B. R. WYCHERLEY

(Manuscript received August 9, 1982)

This article describes the issues involved in operator services
planning and the structure of the computer tools developed to address
these issues. The approach to long-range planning of operator ser­
vices networks is very flexible, and the availability of the Traffic
Service Position System No. lB further enhances this flexibility. This
planning effort is a complex process that has been automated by
computer tools that are both accurate and user-friendly.

I. INTRODUCTION

The planning of Traffic Service Position System (TSPS) installa­
tions and growth is rather different from that usually encountered in
engineering central office equipment. l One of the reasons for this is
the great flexibility that the engineer has in selecting the placement of
operator position subsystems and how traffic will be routed to the
various TSPSs that serve a particular area. The availability of the
TSPS No. IB offers new choices: formerly, when a TSPS exhausted
its call processing capacity the alternatives were to divert the traffic
overload to another TSPS that had surplus capacity or to purchase a
new TSPS and divert load to it. Under the new system a TSPS No.1
can be retrofitted to a TSPS No. IB with much greater call capacity.2
The resulting efficiencies, including avoidance of trunk rearrange­
ments, trunk splintering, and opening of new operator groups, provide
significant economic benefits to the operating telephone company. The
TSPS No. IB also provides the engineer more opportunities to con­
solidate, that is, to retrofit a subset of a group of TSPS No. l's to
TSPS No. IB's and retire some or all of the remaining TSPS No. l's
in the group.

959

The Operator Services Traffic Network Planning System (OSTNPS)
is a tool designed to aid telephone companies in making long-range
plans for TSPS and related network evolution in order to guide short­
range planning activities.3 OSTNPS has been available to telephone
companies since November 1981. Using interactive programs and a
UNIX* operating system environment, OSTNPS lets the user make
the critical decisions while taking over the detailed calculations that
can often severely limit the number of alternatives that a planner
considers. OSTNPS combines maximum user flexibility with fast turn­
around: the user can generate and analyze an alternative satisfying all
the necessary constraints in about two hours of terminal time (CPU
time is negligible). Since a typical alternative may involve 45 nodes
and an associated network configuration over a 20-year period, design
considerations and human factors engineering were of the utmost
importance in developing OSTNPS.

Many of the factors to be considered existed for the TSPS No. 1
before the development of the TSPS No. 1B; the general approach
taken with the program design made addition of the new degree of
freedom relatively simple. This article describes the problems involved
in planning TSPSs, and the software programs developed to guide the
user in this planning.

II. PLANNING ISSUES

2.1 Long-range planning

The purpose of long-range planning is to evaluate the results of the
most likely trends in traffic, services, and technology in order to
optimize the long-term results of short-range decisions. The usual long­
range plan covers a period of 20 years. The procedure consists of
generating a set of alternatives and comparing the economic worth of
each. The alternatives usually include a continue-as-is base plan with
which the other alternatives are compared.

Because 20-year forecasts involve many potential contingencies, the
long-range planner must apply judgment and experience to select the
most reasonable alternatives and to perform appropriate sensitivity
analysis on these alternatives.

2.2 Operator services long-range planning issues

The choices spe~ific to operator services include the following.

2.2.1 Purchase of new nodes

Usually the purchase of a new TSPS, Remote Trunk Arrangement

* Trademark of Bell Laboratories.

960 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

(RTA), or Position Subsystem (PSS) is made to relieve the exhausts
of existing nodes.4 The planner must decide where to place the new
node and where its traffic is to come from. For example, a new TSPS
may be loaded in such a way as to delay its exhaust and that of
neighboring systems for as long as possible, or it may be placed in a
way such that its resultant traffic is routed over facilities that are as
short as possible. Usually a new PSS is placed where there is a large
operator labor market. The issues involved in an RT A purchase will
be discussed in Section 2.2.4.

2.2.2 Retrofit to TSPS No. 1 B

A TSPS No. 1B has greater real-time and memory capabilities than
a TSPS No. 1. If the TSPS No.1 exhausts real time or memory, then
the savings in rearrangements and/or new node purchases must be
weighed against the costs of retrofit and, in a growth environment, the
eventual purchase of a new node.

2.2.3 Load balancing

Load balancing consists of moving trunks, and hence traffic, from
one node to another in such a way that all exhausts are relieved. Load
balancing eliminates the capital expenditure of a new operator node in
the given year, but the purchase is only deferred and load balancing
can be quite expensive in itself because of trunk rearrangements.

2.2.4 RTA issues

An RT A concentrates trunks and homes them in on a nearby TSPS
via base-remote (BR) trunks.4 The planning issues specific to RTAs
are as follows.

• Direct versus RT A trunking. If a set of local offices is located a
long distance (say 100 miles) from the TSPS on which the offices
are to be homed, one alternative is to trunk them directly to the
TSPS and another is to concentrate these trunks via an RT A. In
the former case, trunk and facility costs dominate; in the latter,
purchase of an RTA is necessary. In general, purchasing an RTA
is desirable if many trunks are involved and the distance to the
TSPS is large.

• Colocated RT A. If a TSPS reaches a condition of trunk exhaust,
an RT A may be purchased and colocated with the TSPS: the
RT A concentrates some of the TSPS incoming trunk calls and
relieves the exhaust. Further, a colocated RT A-TSPS pair gives
more flexibility in load balancing if the TSPS later becomes
exhausted for any other reason: the RT A could then be rehomed
on a nearby TSPS with spare capacity. An RTA rehome is defined
as a move of its base-remote trunks; if the RTA were not there, a

PLANNING TOOLS 961

move of about eight times as many TSPS incoming trunks would
be necessary.

2.2.5 PSS rehoming

TSPS operators are assigned to PSSs, consisting of groups of oper­
ator consoles and the associated intelligence.4 A move involving TSPS/
RT A traffic usually means that position requirements at that TSPS
will change. If a sufficient amount of traffic is moved from one TSPS
to another, one or more PSSs may be rehomed between these TSPSs.
The planner generally has great flexibility in these rehomings except
for mileage constraints.

2.2.6 Impact on toll trunking

Sometimes a move of TSPS/RT A traffic impacts on toll trunking as
well. Since TSPS and RT A incoming trunks are bridged between the
local office and toll switch, a move of these trunks implies a correspond­
ing connect/disconnect of trunks at the associated toll switches. More­
over, such a move will also cause a change in intertoll trunking. Every
local area generates operator traffic that returns to itself via the toll
switch. When TSPS/RTA incoming trunks are moved from one toll
switch to another, the traffic must have a path from the second toll
switch back to the fIrst via Direct Distance Dialing (DDD) trunks.
This path would not have been necessary had the move not taken
place. On the other hand, an RT A rehome does not change toll
trunking since only BR trunks are involved. Detailed examples of
these issues will be considered in Section IV.

2.3 New considerations with TSPS No. 1 B

A TSPS No.1 that exhausts real time or memory can be relieved by
retrofitting a 3B20D Processor in place of the present Stored Program
Control No. lA-a procedure that converts TSPS No.1 to TSPS No.
IB.2 The demand for the 3B20D Processor for TSPSs existed because
real time or memory is the limiting factor on most TSPSs today. From
a planning point of view, this method of relief is easiest because no
traffic rearrangements are needed.

2.3.1 Selective conversionJo TSPS No. 1 B

Because of capital constraints, a planner may convert some but not
all exhausted TSPS No. l's to TSPS No. IB in a given year. This
strategy introduces new effects on planning: a combination of conver­
sion to TSPS No. IB, TSPS/RTA purchases, and load balancing may
take place. Consider the following example. Suppose that both TSPSs
A and B (both TSPS No. l's) exhaust real time in some study year
and that a single conversion to TSPS No. IB is to be made in that

962 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1 983

year. The planner retrofits A, giving it extra real-time capacity. To
relieve B, the planner takes the following steps: two RT As are pur­
chased, colocated with B, loaded with incoming trunks from B, and
homed on A. B is thus relieved and survives real-time exhaust two
more years, at which time B is retrofit and the RT As are rehomed
back to B.

2.3.2 TSPS consolidation

Planning issues are different in low-growth regions: the added real­
time capacity of TSPS No. IB increases the possibility of TSPS
consolidation. First a consolidation candidate must be selected from a
group of nearby TSPSs. It may be the oldest, most centrally located,
or most lightly loaded TSPS of the group. The TSPS is retired by
moving all of its traffic to the other TSPSs in the group. After
consolidation, the remaining TSPSs may have to be converted to
TSPS No. IB earlier than if consolidation had not taken place, since
they will exhaust sooner.

III. USER-CONTROLLED PLANNING TOOL

3. 1 Design considerations

OSTNPS was developed so as to combine extreme flexibility with
very fast turnaround. Extreme flexibility means that the user can
generate any alternative desired-the programs check that no con­
straints are violated along the way. Very fast turnaround means that
the input database and modeling must be both representative and
simple, so that generation and analysis of an alternative can be done
in an hour or two. A typical operator services alternative consists of 5
TSPSs, 8 RT As, 20 PSSs, and a dozen toll switches all evolving as a
function of time with consolidation, purchase of new nodes, or load
balancing. The usual study period is 20 years so that, with a base year,
there may be up to 21 toll-connect and intertoll sets of trunk require­
ments ("trunk fields") associated with the alternative. A typical num­
ber of such solutions is ten.

OSTNPS does not optimize but rather lets users generate their own
alternatives. For a given study area, it is not known how close a given
plan is to the optimum because the optimum is not known to begin
with. However, analysis of all possible alternatives for a given simple
study area suggests that the economic worth of a typical "intelligent"
user plan will be within 5 percent of the optimal plan.

3.2 Modeling considerations

Modeling considerations are as important as design considerations,
because inputs must be at once representative and simple if the
objective of fast turnaround is to be met.

PLANNING TOOLS 963

3.2. 1 Input database

For mechanized long-range planning, it is desirable to obtain reason­
able results using data that are easy for users to collect. OSTNPS
requires comparatively little user input data, and all data come from
standard sources. Implied in the small size of the input data base are
several assumptions-summarized below-used to make forecasts.

The input database contains only three types of call volumes: total
trunk seizures on TSPS (whether or not an operator is accessed), trunk
seizures that reach an operator for any purpose, and trunk seizures
that reach an operator only for Operator Number Identification (ONI)
of the calling party. These three volumes, for every TSPS and study
year, are the primary inputs into all of the forecasting algorithms.

Some of the algorithms are linear regressions based on these vol­
umes. One such regression forecasts required operator consoles (posi­
tions), the independent variable in this case being the product of the
number of attempts reaching an operator and the average operator
work time per call (both input database items). In reality, the relation­
ship is not quite linear because large operator teams are more efficient
than small operator teams. However, this lack of linearity occurs
primarily in lightly loaded TSPSs; for moderately to heavily loaded
TSPSs, a linear relation is sufficient.

Simplifying assumptions are also made in modeling the required
TSPS trunks. First, minor trunk types are considered as a single
category, a simplification that cuts down required input data consid­
erably. Second, for each trunk type considered by the program, it is
assumed that groups are of equal size, and that each group handles the
same number of attempts with the same holding time per attempt.
The average trunk group size is an input item, and the holding time is
derived from input items. These approximations are quite suitable for
long-range planning, and because of them, the input database is made
far easier for the user to create.

3.2.2 Network

Even though OSTNPS is fundamentally an operator node planner,
there must be a way to estimate the cost of trunk movements resulting
from shifts in loads. Trunk movements occur in the toll-connect and
intertoll fields. In the toll-connect field, it is adequate to assume that
when a deload occurs, the appropriate number of trunks are discon­
nected from the deloaded operator node and the same number recon­
nected to the other (if the two operator nodes are colocated, the costs
are different than if they are not, and this is properly taken into
account). This information, together with percentages of 2-wire and 4-
wire bridges, facilities, and average mileages between the local offices
and toll switches before and after, is sufficient to get a good estimate

964 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

of the toll-connect movement costs. Intertoll movement also occurs
after a deload since the load on all toll switches is affected, depending
on community of interest. It would be unnecessarily complex to reen­
gineer the toll network after each deload or purchase. Instead, the
change in offered load between every pair of toll switches is estimated
and converted to trunks. Because intertoll trunk groups are generally
larger and thus more efficient than toll-connect trunk groups, it is
assumed that an intertoll trunk carries twice the load as a toll-connect
trunk.

IV. STRUCTURE OF PROGRAMS

4. 1 Introduction

The job of generating and evaluating a long-range operator services
alternative can be split into four separate tasks, each programmed as
a separate OSTNPS module. Figure 1 shows a general flowchart of the
process, and Fig. 2 illustrates the scope of each of these programs in
the overall operator services network.

(i) Node exhaust. The Node Exhaust program calculates require­
ments for each TSPSjRT A node in each year, informs the user about
possible exhausts, and lets the user relieve the exhausts by purchasing
new nodes, moving traffic, or converting to TSPS No. lB. This program
does not involve itself with the network connecting the nodes-this
task is performed later.

(ii) PSS. The PSS program, given overall position requirements
from the Node Exhaust program, assigns specific PSSs for these
requirements and builds the network joining those PSSs to the TSPSs.

(iii) Remainder of network. The Network program assigns specific
trunk groups between local areas, TSPSjRT A's, and toll switches. As
discussed in Section 4.4, the detailed network can be reconstructed
given the global requirements output by the Node Exhaust program
for each TSPSjRT A.

(iv) Translation for Economic Analysis. The Translator program
combines the output of the preceding two programs and transforms it
into a "network file" for the economic evaluator program T ASP (Toll
Alternatives Studies Program).5 TASP, a very detailed economic eval­
uator based on Capital Utilization Criteria (CUCRIT), requires a user­
supplied "cost file" as well as the above network file.

Following is a detailed description of each of these programs.

4.2 Node Exhaust program

4.2. 1 Summary

The Node Exhaust program is the first module of OSTNPS. Starting
with a set of user-supplied input data describing the operator nodes

PLANNING TOOLS 965

PSS - POSITION SUBSYSTEM
RTA - REMOTE TRUNK ARRANGEMENT

TASP - TOLL ALTERNATIVES STUDIES PROGRAM
TSPS -TRAFFIC SERVICE POSITION SYSTEM

Fig. I-Flowchart of OSTNPS.

(TSPSs and RT As) in the study area, the program generates part of
an alternative interactively. The alternative is refined further in suc­
ceeding OSTNPS modules. Figure 3 shows a general flowchart of the
N ode Exhaust program.

For each study year, the program forecasts requirements for relevant
TSPSjRT A items and compares these numbers with their respective

966 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

TOLL

SWITCH INTERTOLL
FROM LOCAL TSPS INCOMING TRUNKS TRUNKS TO OTHER

TOLL SWITCHES OFFICES

FROM LOCAL
OFFICES

I
/

r---
1
I

/~
/ I I L __ _

r------- ----- ----,
I I

---~ 1
I I

1
I
I
1
1

BASE- 1
SCOPE OF 1

1 NODE EXHAUST
PROGRAM 1 1

\
L _______________ ~

\.
\. r--- ----, ',I ,-.....L-------.. 1 "I I 1 1

I I L ______ --'

RTA INCOMING TRUNKS

SCOPE OF PSS PROGRAM

TOLL

SWITCH INTERTOLL

TRUNKS TO OTHER
TOLL SWITCHES

REMAINDER OF DIAGRAM IS SCOPE OF NETWORK PROGRAM

PSS - POSITION SUBSYSTEM
RTA - REMOTE TRUNK ARRANGEMENT

TSPS - TRAFFIC SERVICE POSITION SYSTEM

Fig. 2-Scope of OSTNPS program.

capacities. If an exhaust occurs, the program prints out the operator
node that is exhausted, along with the cause(s) of exhaust, and a
complete status report on all other operator nodes. The user is given
an opportunity to purchase new nodes, convert to TSPS No. IB, or to
move traffic from one node to another. The program will proceed to
the next study year only if there are no unrelieved exhausts. After
completion of the last study year, the alternative is stored in a data
base to be used by subsequent modules of OSTNPS.

It should be emphasized that the user interacts with the program on
a year-by-year basis while the program is running. It is not necessary
for the user to know exactly what traffic moves and node purchases to
make before the study begins.

4.2.2 Description of exhaust causes

The Node Exhaust program considers TSPS/RTA exhaust causes
of several types. The most common type of exhaust for a TSPS No.1
is real time; with the development of TSPS No. IB and its associated
increase in real-time capacity, a TSPS may exhaust owing to a number
of other causes. Following is a description of other exhaust causes.

4.2.2. 1 TLN terminations and individual trunk types. Various types of

PLANNING TOOLS 967

USER

USER DELOADS:
Y PURCHASE NEW NODES

MOVE TRAFFIC
CONVERT TO TSPS
NO.1B

RTA - REMOTE TRUNK ARRANGEMENT
TSPS - TRAFFIC SERVICE POSITION SYSTEM

Fig. 3-Flowchart of Node Exhaust program.

TSPS trunks terminate on Universal Trunk Frames (UTFs) which in
turn attach to the Trunk Link Networks (TLNs). These trunk types
include: incoming ("universal") trunks, Transfer Centralized Auto­
matic Message Accounting (XCAMA) trunks, Base-remote (BR)
trunks, and all other TSPS trunks considered as a single category.6

968 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

A TSPS becomes TLN-exhausted if, after engineering each TLN
trunk type and fitting these trunks on UTFs, the required number of
UTFs (including an administrative margin) exceeds the hardware
limitation. In addition, a TSPS can exhaust if one of the individual
trunk types exceeds its software, design, or hardware limitation.

4.2.2.2 PLN appearances and positions. The Position Link Networks
(PLNs) contain terminations by which operator positions and various
service circuits (receivers, outpulsers, announcement circuits, etc.)
connect to the TSPS. As in the TLN case, a TSPS becomes PLN­
exhausted if, after engineering positions and service circuits, the total
number of PLN appearances exceeds hardware limitations.

4.2.2.3 TSPS network. TSPS traffic travels between trunks requiring
service and circuits/operators providing service via the TSPS network ..
A given trunk can connect to a given position or service circuit via one
of eight paths composed of" A," "B," and "C" links. The TSPS network
is limiting if its offered Erlang load is sufficiently great to result in a
blocking probability greater than 0.00l.

4.2.2.4 TSPS office data memory. TSPS memory is subdivided into
two types: the generic program and office data. Office data memory
contains information specific to the design and traffic characteristics
of a given TSPS site. Conversion of a TSPS No.1 to a TSPS No. IB
increases the total amount of addressable memory as well as real time.

4.2.3 Input data

The input data to the Node Exhaust program include, for each
TSPS/RT A in the study area, base year requirements for various
trunk types as well as current and forecast call volumes of various
types.

The following data are required:
• Call volumes: trunk seizures, position seizures, and XCAMA trunk

seizures
• Trunks: base and RT A incoming trunks, XCAMA trunks, and all

other trunks except BR
• Real-time capacity in trunk seizures
• Operator Average Work Time (AWT).

4.2.4 Forecast of TSPS/RTA items

For a given study year, the Node Exhaust program uses these input
data to forecast TSPS/RTA items that determine exhausts. The
program uses simple formulas or linear regressions in place of detailed
calculations.

Figure 4a shows a sample printout of these items from an actual
study. At user request, this printout will appear in any study year
while the Node Exhaust program is running.

PLANNING TOOLS 969

TSPl TSP2 TSP3

BASE INC TSZ 5226 11730 8241
XCAMA TSZ 800 1300 1200
RTA RTAl - TSZ 2264 0 0
RTA RTA2 - TSZ 1144 0 0
RTA RTA3 - TSZ 1116 0 0
RTA RTA4 - TSZ 1400 0 0
RTA RTA5 - TSZ 0 0 984
RTA RTA6 - TSZ 0 0 1230
RTA RTA7 - TSZ 0 0 1038
RTA RTA8 - TSZ 0 0 1146

TOTAL NON-XC TSZ 11150 11730 12639
TOTAL TSZ 11950 13030 13839
R-T CAPY (TSZ) 16007 16587 17621

REALTIME - ~ RTC 74 78 78
BASE INC TKS 555 1786 959
XCAMA TKS 24 36 24
RTA RTAl - INC TKS 283 0 0
RTA RTA2 - INC TKS 143 0 0
RTA RTA3 - INC TKS 186 0 0
RTA RTA4 - INC TKS 280 0 0
RTA RTA5 - INC TKS 0 0 246
RTA RTA6 - INC TKS 0 0 246
RTA RTA7 - INC TKS 0 0 173
RTA RTA8 - INC TKS 0 0 191
OTH BASE TKS, EX BR 73 213 68
TLN - TOTAL UTF 5 8 6
POSITIONS (TRAFFIC) 71 80 53
PLN - TOTAL APPR 276 300 251
NETWORK (ERLANGS) 75 92 105
MEMORY (OFC NMCDS) 4 5 5
POSITION SEIZURES 7205 8082 5552

Fig. 4{a}-Node Exhaust printout before user move-1984.

The following forecasts are made:
• Real-time usage
• Trunks of various types
• Memory
• Operator positions
• Service circuits
• TSPS network load.

4.2.5 Exhaust prediction

Once the above items are forecast in a given study year for every
TSPSjRT A in the study, the program compares these numbers with
their respective upper limits. The program thus determines for each
TSPSjRT A whether it is exhausted and for what reasons.

4.2.6 User-specified changes to network

Input commands to the Node Exhaust program allow the user to
purchase new operator nodes or move traffic from one node to another

970 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

TSPl TSP2 TSP3

BASE INC TSZ 5226 11730 0
XCAMA TSZ 2000 1300 0
RTA RTAl - TSZ 2264 0 0
RTA RTA2 - TSZ 1144 0 0
RTA RTA3 - TSZ 1116 0 0
RTA RTA4 - TSZ 1400 0 0
RTA RTA5 - TSZ 984 0 0
RTA RTA6 - TSZ 1230 0 0
RTA RTA7 - TSZ 1038 0 0
RTA RTA8 - TSZ 1146 0 0
RTA NEWl - TSZ 0 2750 0
RTA NEW2 - TSZ 0 2750 0
RTA NEW3 - TSZ 0 2741 0

TOTAL NON-XC TSZ 15548 19971 0
TOTAL TSZ 17548 21271 0
R-T CAPY (TSZ) 26882 26711 0

REALTIME - % RTC 65 79 0
BASE INC TKS 555 1786 0
XCAMA TKS 48 36 0
RTA RTAl - INC TKS 283 0 0
RTA RTA2 - INC TKS 143 0 0
RTA RTA3 - INC TKS 186 0 0
RTA RTA4 - INC TKS 280 0 0
RTA RTA5 - INC TKS 246 0 0
RTA RTA6 - INC TKS 246 0 0
RTA RTA7 - INC TKS 173 0 0
RTA RTA8 - INC TKS 191 0 0
RTA NEWl - INC TKS 0 320 0
RTA NEW2 - INC TKS 0 320 0
RTA NEW3 - INC TKS 0 319 0
OTH BASE TKS, EX BR 97 257 0
TLN - TOTAL UTF 6 10 0
POSITIONS (TRAFFIC) 92 112 0
PLN - TOTAL APPR 349 409 0
NETWORK (ERLANGS) 164 223 0
MEMORY (OFC NMCDS) 5 6 0
POSITION SEIZURES 9920 10919 0

Fig. 4(b)-Node Exhaust printout after user move-1984.

at any time. These steps are mandatory if there is an unrelieved
exhaust; otherwise they are optional (as in the case of TSPS consoli­
dation). The possible options are as follows:

• The user may convert a TSPS No. 1 to TSPS No. lB.
• The user may purchase a new TSPS or RT A.
• The user may move TSPS or RTA incoming trunk seizures from

one node to another .
• The user may rehome an RT A from one TSPS to another.
• The user may move XCAMA trunk seizures from one TSPS to

another.
• The user may retire a TSPS or RT A.
If exhausts are still not relieved after such a series of steps, the

PLANNING TOOLS 971

TSP2

RTA - REMOTE TRUNK ARRANGEMENT

Fig. 5(a)-TSPSjRTA configuration before user move.

program will not proceed to the next study year. The user must start
over with the given study year and try another strategy.

4.2.7 Example

Figures 4 and 5 illustrate the results of a set of moves made during
a run of the Node Exhaust program. Figure 4 lists the relevant forecasts

972 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

RTA - REMOTE TRUNK ARRANGEMENT

Fig. 5(b)-TSPS/RTA configuration after user move.

before and after the moves, and Fig. 5 shows a pictorial representation
of this situation.

The study area consists of three TSPSs: TSP1, TSP2, and TSP3, all
of which are TSPS No. l's. These are the columns in Figures 4a and
4b. Each row represents a given forecast item for the study year, in
this case, 1984. The tables are split into two sections: "User-Controlled

PLANNING TOOLS 973

Items" (trunk seizures which the user may directly move from one
operator node to another) and "Other Relevant Items" (exhaust-de­
termining items which indirectly change as a result of such a move).

To evolve from Fig. 4a to 4b, the user retires TSP3 in the following
way. First, RTAs RTA5, RTA6, RTA7, and RTA8, presently homed
on TSP3, are rehomed to TSPl. Second, RTAs NEWl, NEW2, and
NEW3 are purchased, homed on TSP2, and loaded with all of TSP3's
base incoming traffic. Finally, all of TSP3's XCAMA traffic is moved
to TSPl, leaving TSP3 with no traffic and hence retired. The remain­
ing TSPSs TSPI and TSP2 exhaust real time as a result of the move,
and they are converted to TSPS No IB's.

4.2.8 Completion of run

Once all years in the study period have been covered, the relevant
information for the alternative is printed on the user's terminal. The
information is also organized into an output database for use by the
PSS and Network programs described below.

4.3 PSS program

4.3. 1 Summary

The main function of the PSS program is to establish a schedule for
Position Subsystems (PSSs). This task can be separated from all
others because its only input is the total required number of operator
positions on each TSPS for each study year. Numbers of positions are
established in the Node Exhaust program depending on incoming
traffic to the TSPSs. Once the schedule is established, an additional
task is to obtain facilities between each PSS and its home TSPS.

4.3.1.1 PSS schedule. The schedule is determined by the following
considerations:

o Total number of positions required on each TSPS in each study
year.

o Equipment actually in the field in the base year.
o The absolute and recommended maximum number of positions

per PSS.
o The type of PSS (PSSI or PSS2). *
o Minimization of the number of PSSs in the study, subject to

administrative constraints and operator availability.
The solution consists in presenting to the user a schedule that is

compatible with all the constraints, as in Fig. 6a, and letting the user
modify it as desired by means of interactive commands, as in Fig. 6b.

Following is a description of Fig. 6a. First, equipment in the field

* PSSI positions are no longer being manufactured, and PSSls remain capped at
their present position levels.

974 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

TSPS1
PS11*
PS12
PS13

TSPS2
PS21*
PS22*
PS23

TSPS3
PS31*
PS32*
PS33

TSPS4
PS41
PS42

TSPS1
PS11*
PS12
PS13

TSPS2
PS21*
PS22*
PS23

TSPS3
PS31*
PS32*
PS33

TSPS4
PS41
PS42

1980 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0

~55
~18 23 27 33 34 36 38 40 42 45 48 50 50 28 30 33 35 38 40 43

o 0 000 0 0 0 0 0 000 3 0 0 0 0 0 0 0

rnJ
5 55

47
30 0 0 0 14 14 17 20 23 25 28 32 35 39 0 0 0 0 0 0 0

rnJ
5 55 55 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 28 28 28 0 0 0 0 0 0 0 O' 0 0 0 0 0 0 0 0 0
30

o 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 50 5050 50 50
o 0 0 0 0 0 0 0 0 0 0 0 0 0 27 29 32 34 37 40 43

I

Fig. 6(a)-A fIrst-order PSS fIeld.

1980 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0

55
30 18 23 27 30 30 30 30 30 30 30 30 30 30 28 30 33 35 38 40 43
o 0 0 0 13 4 6 8 10 12 15 18 20 23 I 0 0 0 0 0 0 0

55
47
30 0 0 0 14 14 17 20 23 25 28 32 35 39 0 0 0 0 0 0 0

55 55 55 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 28 28 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30

0 0 0 0 0 0 0 0 0 0 0 0 0 o 50 50 50 50 50 50 50
0 0 0 0 0 0 0 0 0 0 0 0 0 o 27 29 32 34 37 40 43

J

Fig. 6(b)-PSS fIeld after the fIrst move.

(base year) is entered by the user (1980 in this case). PSS1's, for which
positions are capped, are marked with a "*". For the study years
(1981-2000), the scheduler bases its calculations on position require­
ments and purchases new PSSs where needed.

Given this PSS schedule, the user can modify it with the following
interactive commands:

o For a given TSPS, the user may redistribute the number of PSS2
positions.

o The user may rehome a PSS2 from one TSPS to another.

PLANNING TOOLS 975

• The user mayor may not release unneeded PSS2 positions for
reuse.

Consider Fig. 6b. The fIrst move consists in all excess positions
beyond 30 in the base year being moved from PS12 to PS13 for all
study years up to 1994. A possible second move consists of making
PS33, PS13, and PS42 the same PSS by rehoming PS33 (originally
homed on TSPS3) to TSPS1 in 1984, then to TSPS4 in 1994.

4.3. 1.2 PSS facilities. Once the schedule is established, the program
asks the user for facility data between TSPSs and the PSSs. This,
together with the schedule, completely determines the input to the
economic analysis program.

4.4 TSPS/RTA Network program

Besides the network joining TSPSs to PSSs, there is the network
joining local offices and toll switches to TSPSjRT A's. This network
can be divided into three distinct portions:

• Toll connect trunks (local office to TSPSjRTA to toll switch).
• Base remote trunks (RTA to TSPS).
• Intertoll trunks.
Figure 7b shows an example of such a network.
The Node Exhaust program allocated total trunk seizures amongst

the TSPSjRTA's without making any assumptions about the network.
The separation of exhaust planning and network planning allows
simplifIed program design, and allows the user to concentrate on each
issue separately. The method used to model the network allows this
separation to work; the network program guides the user through the
steps of establishing the network corresponding to the alternative
formulated by the Node-Exhaust program.

At the beginning of the study, there is by defInition a one-to-one
correspondence between "local areas" and TSPSjRTAs (Fig. 7a).
User-specifIed traffic moves made during a node exhaust run may
affect the network in the following ways (see Fig. 7b):

• A move of base-remote trunks, also called an RT A rehome (a) in
Fig.7b.

• A move of toll-connect trunks (b) in Fig. 7b.
• Changes in the intertoll network. A certain percentage of operator

traffic leaving a local area must go back to the same local area via
its toll switch. Corresponding to each toll-connect move (b) is an
increase in required intertoll trunks (b/). No such intertoll adjust­
ment is necessary for a base-remote move.

The Network program obtains the following information from the
user:

• Toll switch information: names, types, homing TSPSjRT As.
• Base-remote mileage and facility information.

976 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

RTA - REMOTE TRUNK ARRANGEMENT
TSPS - TRAFFIC SERVICE POSITION SYSTEM

(a) (b)

Fig.7-(a) Relationship of local offices and toll switches to TSPSjRTA's-the
correspondence is one to one. (b) Effect on network of user-specified traffic moves
during a Node Exhaust run.

• Toll-connect mileage and facility information, including the per­
centage of 2-wire and 4-wire bridges.

• Community of interest and intertoll mileage/facility information.

4.5 Economic evaluation and translator programs

Economic evaluation of the alternatives is performed by T ASP,
which has already been mentioned. Telephone company planners are
very familiar with this program, which has been in use for years. T ASP
requires a considerable amount of input, even for studies involving
only a few switches. A fourth program, the Translator program, tran­
scribes the output of the three preceding programs into T ASP format
without user intervention. The PSS and TSPS/RTA Network pro­
grams write files in a compact language which is translated into T ASP
language by the Translator program.

V. RUNNING THE PROGRAMS

The generation and economic evaluation of a complete alternative
with OSTNPS involves the following steps to be taken by the user:

• Run the Node Exhaust program.
• For the above Node Exhaust program alternative, run one or a

few appropriate PSS alternatives.
• Run each of these PSS alternative through T ASP and choose the

best.

PLANNING TOOLS 977

• Run the Network program for the above Node Exhaust program
alternative.

• Concatenate the best PSS alternative with the Network program
alternative, and run this complete alternative through T ASP.

This T ASP output constitutes the economic evaluation of this com­
plete alternative, to be compared with others.

VI. CONCLUSION

OSTNPS is an operator services long-range planning tool. It allows
the user to analyze in a short time different strategies of operator
services network evolution. For high-growth areas, OSTNPS evaluates
various types of load-balancing alternatives versus purchase of new
equipment. For low-growth areas with underutilized nodes, OSTNPS
helps the user determine whether or not to retire those nodes. For
both of these cases, OSTNPS allows the user to easily incorporate the
conversion to TSPS No. IB into the planning process. OSTNPS is not
an optimizer, but instead lets users generate and evaluate their own
alternatives.

VII. ACKNOWLEDGMENTS

The authors wish to thank R. G. Crafton of AT&T, who contributed
in innumerable ways, and the operator services planning organizations
of Mountain Bell Telephone and Bell of Indiana, who helped us during
program development.

REFERENCES

1. R. J. Jaeger, Jr. and A. E. Joel, Jr., "TSPS No.1: System Organization and
Objectives," B.S.T.J., 49, No. 10 (December 1970), pp. 2417-43.

2. R. E. Staebler and J. I. Cochrane, "Traffic Service Position System No. IB: Overview
and Objectives," B.S.T.J., this issue.

3. R. G. Crafton, "Network Planning for Operator Services Systems," Int. Switching
Syrup., Montreal, 1981, Session 21, C Paper 3, pp. 1-5.

4. S. M. Bauman, R. S. DiPietro, and R. J. Jaeger, Jr., "TSPS No.1: Remote Trunk
Arrangement: Overall Description and Operational Characteristics," B.S.T.J., 58,
No.6 (July-August 1979), pp. 1119-35.

5. B. H. Fetz and P. M. Moricz, "Tipping the Scales for No.4 ESS," Bell Lab. Rec., 58,
No.5 (May 1980), pp. 138-45.

6. W. K. Comella, C. M. Day, Jr., and J. A. Hackett, "TSPS No.1: Peripheral Circuits,"
B.S.T.J.,49, No. 10 (December 1970), pp. 2561-623.

978 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

ACRONYMS AND ABBREVIATIONS

3B20D
3bas
3bcc
3bld
3bldp
3BPEST
3BSGS
ACHI
ACPDL
AIM
ALU
AMA
APE
ARA
ARB
AST
ASW
ATB
AWT
BBR
BPI
BR
BTR
BVA
CALE
CAR
CBB
CBT
CC
CC
CCIO
CCIS
CD
C&D
CDR
CDT
CHK/GEN
CIP
CLRFLG
CMON
CMS
CPDB

3B20 Duplex Processor
3BD assembler
3BSGS C compiler
3B20D link editor
3B20D process loader
3B20D inhibits
3B20D Software Generation System
application channel interface
application control process data library
application integrity monitor
arithmetic/logic unit
automatic message accounting
advanced processor editor
answer register A
answer register B
announcement stores
all seems well
address translation buffer
average work time
buffer bus to register
bit per inch
base remote
bus terminating resistor
billing validation application
call to emulation
channel address register
constant to buffer bus
communications bus translator
central control
control console
central control input/output
common channel interoffice signaling
control and display
Control and Display mode
channel data register
control display and test
check/ generator
Critical Indicator panel
clear flag
craft monitor
Change Management System
central pulse distributor bus

979

CPD
CRC
CR
CRT
CSOP
CSS
CU
CUCRIT
CU/PSI
CUPERPH
DAP
DFC
DFC/MHD
DGDL
DIAMON
DIST
DMA
DMERT
DMU
DRMO
DSCH
DUC
DZRMO
EA
EAI
ECD
ECD
ECD/SG

ECIO
ECMP
EGBN
EIH
EL
ERD
ESS
EXC
FLZ
FSI
FTS
GBNHJ
GRASP
HOB IS
HSR

central pulse distributor
Change Review Committee
correction report
cathode ray tube
controller of output spooler process
computer subsystem
control unit
Capital Utilization Criteria
control unit/peripheral system interface
control unit peripheral problem
display administration process
disk file controller
disk file controller with removable head disk
diagnostic data library
diagnostic monitor
distributes
direct memory access
Duplex Multi-Environment Real-Time
data manipulation unit
detect rightmost one
dual serial channel
dual utility circuit
detect and zero rightmost one
enable address
emergency action interface
equipment configuration data
Equipment Configuration Database
Equipment Configuration Database/System Genera-

tion Database
executive control for input/output
executive control for the main program
execute go back to normal
error-interrupt handler
execution level
emergency recovery display
Electronic Switching System
execute
find low zero
file system interface
field test set
go back to normal H-Ievel or J-Ievel
Generic Access Program
Hotel Billing Information System
hardware status register

980 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1 983

I
IB
ILAF
1M
INT
INTS
I/O
lOP
IS
ISR
JCL
LMP
LOTS
LSS
MAIS
MCC
MCC
MCCD
MCCI
MCR
MCRT
MESS
MRD
MICLOB
MIP
MIRA
MLTS
MNA
MOPS
MR
MR
MR
MSEC
MS
MTTR
MTTYC
MTTY
MVS
OBB
ONI
OSTNPS
OST
PA
PBCP

inhibit interrupt
instruction buffer
interrupt-level activity flags
interrupt mask
interrupt
interrupt source register
input/ output
input/output processor
interrupt source
interrupt source register
job control language
local maintenance position
local toll simulator
Laboratory Support System
maintenance interrupt sources
maintenance control center
master control center
maintenance control center data
maintenance control center interrupts
maintenance channel
maintenance CRT
microprocessor service evaluation system simulator
moving head disk
microprocessor-controlled load box
micro-level test set interface program
maintenance input request administrator
micro-level test set
minor audit initialization
microprocessor operator position simulator
maintenance register
memory to register
modification request
millisecond clock state
master scanner
mean time to repairs
maintenance teletype controller
maintenance teletypewriter
multiple virtual storages
ones to buffer bus
operator number identification
Operator Services Traffic Network Planning System
operating system trap
present address
peripheral bus control process

ACRONYMS AND ABBREVIATIONS 981

PC
PC
PC
PCB
PCPEIH
PCPMD
PD
PD
PEST
PIR
PLN
PPR
PROM
PSI
PSIDGDR
PSIDIAGC
PSIEIH
PSS
PSS
PSW
PTU
PUAB
PUMS
RAM
RBB
RC
RCVP
RETE
REX
RJE
RM
RMU
ROP
ROP
RRM
RTA
SAB
SAR
SCAN
SCCS
SCCS
SCC
SCR
SC/SD

peripheral control
peripheral controller
protocol converter
process control block
processor control process error-interrupt handler
processor control process maintenance driver
peripheral device
power distribution
interrupt inhibits
program interrupt request
position link network
pulse point register
programmable read -only memory
peripheral system interface
peripheral system interface diagnostic driver
peripheral system interface diagnostic control
peripheral system interface error-interrupt handler
position subsystem
Program Support System
program status word
program tape unit
peripheral-unit address bus
peripheral-unit maintenance summary
random access memory
register to buffer bus
reply check
recent change/verify position
return to emulation
routine exerciser
remote job entry
register to memory
rotate mask unit
read-only printer
receive-only printer
registers to memory
remote trunk arrangement
scanner answer bus
store address register
scans
Source Code Control System
Switching Control Center System
Switching Control Center
store control register
scanner/signal distributor

982 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

SDR
SD
SDS
SER
SES
SG
SIA
SIB
SIM
SIR
SLS
SMT
SPC
SPCS
SSAS
STF
SWAP
TASP
TLM
TLN
TLP
TOD
TPCP
TR
TSIP
TSPNF
TSPS
TSPSCAP

TU
TUS
UCB
UCG
ULARP
UTF
UTSC
UTSD
VC
VTP
WRMI
XCAMA

store data register
signal distributor
Software Development System
system evaluation run
Service Evaluation System
system generation
system initialization A
system initialization B
system integrity monitor
store instruction register
single-line simulator
switch mode and transfer
stored program control
Stored Program Control System
station signaling and announcement subsystem
some tests failed
Switching Assembly Program
Toll Alternatives Studies Program
Trouble Locating Manual
trunk line network
trouble-locating procedures
time of day
TSPS display page control process
trouble report
TSPS spooler input process
TSPS non-frozen development
Traffic Service Position System
Traffic Service Position System Real-Time Capacity

Program
tape unit
Test Utility System
unit control block
universal call generator
user-level automatic restart process
universal trunk frame
universal trunk scanner
universal trunk signal distributor
virtual channels
virtual terminal protocol
we really mean it
transfer centralized automatic message accounting

ACRONYMS AND ABBREVIATIONS 983

CONTRIBUTORS TO THIS ISSUE

R. Ahmari, B.S.E.E., 1966, University of Tehran; M.S. (E.E.), 1969,
and Ph.D. (E.E.), 1972, Illinois Institute of Technology; Assistant
Professor, Manhattan College, New York, 1972-1973; Bell Laborato­
ries, 1973-. Mr. Ahmari worked on system planning for private
networks, design and development of fault-tolerant systems, and sys­
tem testing and integration for TSPS. He is currently supervising a
group engaged in software design, and development coordination of
TSPS No. 1B Generic 1BT2. Mr. Ahmari is a Registered Professional
Engineer in the State of Illinois. Member, IEEE.

Pierre L. Bastien, B. S. (Physics), University of Montreal; Ph.D.
(Physics), University of California at Berkeley; Bell Laboratories,
1973-. Upon joining Bell Laboratories in 1973 Mr. Bastien first
studied the effects of No. 4 ESS failure on the toll network and local
offices. More recently he has worked on long-range planning tools: The
Operator Services Traffic Network Planning System for operator
services; and the Switching Studies Tool, for toll planning. Currently,
Mr. Bastien is a Member of Technical Staff in the SPC Network
Planning Methodology Group working on development of a planning
tool for long-range toll switch studies and point-of-presence (intercon­
nection) planning for post-divestiture.

Joseph J. Bodnar, B.S.E.E., 1969, Rutgers University, M.S.E.E.,
1971, Polytechnic Institute of Brooklyn; M.S. (Advanced Manage­
ment), 1980, Pace University; Bell Laboratories, 1969-1976; AT&T,
1976-1979; Bell Laboratories, 1979-. Mr. Bodnar worked on the
development of the Switching Control Center System at Bell Labora­
tories. He then joined AT&T Network Operations where he was
responsible for TSPS and ESS operations methods and technical
support. He returned to Bell Laboratories in systems engineering and
is currently Supervisor of the Switching Control Center Systems group;
Member, Tau Beta Pi, Eta Kappa Nu.

G. T. Clark, B.S.M.E., 1952, Bradley University; Western Electric,
1956-1961; Bell Laboratories, 1961-. Mr. Clark was fIrst engaged in
the physical design of step-by-step common control equipment and
later worked on the design of 758C PBX equipment. He has coordi­
nated the physical design of TSPS No. 1 equipment, including detail
design of network, position subsystem, TTY trunk and buffer, the
station signaling and announcement subsystem, Peripheral System

985

Interlace frame, and processor replacement for TSPS No. lB. He was
also engaged in the physical design of AIS equipment, including the
fIle subsystem No.2. He is currently working on physical design of
new features for TSPS No. lB.

J. I. Cochrane, B.S.E.E., 1962, M.S.E.E., 1966, Georgia Institute of
Technology; Ph.D., E.E. (Communication Theory), N.Y.U.; Honey­
well, Inc., 1963-1965; Bell Laboratories, 1966-. From 1966-1969, Mr.
Cochrane worked on the design of prototype signal processors for
ballistic missile defense radars. In 1969 he was appointed Supervisor
of a group responsible for the system design of advanced missile
defense radars. From 1972-1973 he supervised the group responsible
for the Perimeter Acquisition Radar software performance require­
ments. From 1973 to 1976 he supervised the formulation of long-range
plans for the Navy Telecommunications System. From 1976 to 1977
he supervised the determination of the requirements for new features
and equipment to be used in the operations and administration of
voice-grade switched networks for large corporate customers. In 1977
and 1978 he supervised a group responsible for formulating and ana­
lyzing concepts for new services for large corporate customers using
emerging telecommunications technology. In 1978 he was appointed
Head of the Network Operations Planning Department responsible for
formulating long-range plans for computer-based support systems to
support Bell System network operations. In 1981 Mr. Cochrane was
appointed Director of the Network Switching and International Sys­
tems Engineering Center; this center is responsible for the Bell Labo­
ratories systems engineering work on Operator Services systems and
for much of the planning and systems engineering work in support of
AT&T International. Licensed Professional Engineer (NJ); member,
Tau Beta Pi, Eta Kappa Nu.

Bently A. Crane, B.S. (Physics), 1954, M.S. (Physics), 1955, Uni­
versity of Michigan; M.S.E.E., 1959, New York University; Bell Lab­
oratories, 1957-. Mr. Crane was involved in exploratory development
of advanced computers for ballistic missile defense systems until 1972.
He then began Bell System work, which has included exploratory
development of auxiliary processors and voice message systems. Mr.
Crane is currently a Consultant in the Operator Services Project
Planning Department, working on TSPS system performance evalua­
tion. He recently received the Bell Laboratories Distinguished Tech­
nical Staff Award.

John R. Daino, B.S.E.E., 1967, Syracuse University; M.S.E.E.,

986 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

1969, Ohio State University; AT&T, 1977-1980; Bell Laboratories,
1967-1977, 1980-. After joining Bell Laboratories in 1967, Mr. Daino
worked on switching systems development in No.5 Crossbar and No.
3 ESS. In 1972, he transferred to systems engineering to work on
billing systems for electronic and electromechanical switching systems.
Mr. Daino transferred to AT&T Network Design in 1977 where he was
responsible for ESS generic planning as well as individual switching
projects. In 1980, he returned to Bell Laboratories in his present
position as Supervisor of the Suburban and Local Systems Central
Office Operations group.

John C. Dalby, Jr., B. S. (Applied Mathematics), 1968, M.S.E.
(Computer, Information, and Control Engineering), 1969, University
of Michigan; Masters of Philosophy (Computer Science), 1977, Rutgers
University; Bell Laboratories, 1970-. Since joining Bell Laboratories
Mr. Dalby has been involved in TSPS No. 1 development designing
call-processing and maintenance software and writing system devel­
opment requirements for new TSPS No. 1 features. Presently, he
supervises a group doing No.5 ESS Operator Services Position System
Planning. Member, Tau Beta Pi.

Noel X. DeLessio, B.S.E.E., 1960, M.S.E.E., 1961, Ph.D. (E.E.),
1966, Polytechnic Institute of Brooklyn; Bell Laboratories, 1966-. Mr.
DeLessio worked on Safeguard system design and supervised guidance
design for the SPRINT missile system. Subsequently, he. supervised
the Exploratory Development Group of the Operator System Labo­
ratory and is currently Head of the No.5 ESS OSPS Development
Department in the Operator Services and Digital Switching Applica­
tions Laboratory.

Richard S. DiPietro, B.S. (Engineering Science), 1970, Northwest­
ern University; M.S.E.E., 1972, New York University; Bell Laborato­
ries, 1970-. Mr. DiPietro worked on military system performance
evaluation until 1974. He then worked on hardware design and system
testing for the remote TSPS trunk arrangement. Since 1977, he has
been Supervisor of TSPS field support, system test, and call-program­
ming groups.

R. J. Gill, B.S., 1970 (Computer Science), Purdue University; M.S.,
1971 (Applied Mathematics), University of Michigan; Bell Laborato­
ries, 1970-. Mr. Gill began his work at Bell Laboratories on the
Safeguard ballistic missile defense system in the area of software

CONTRIBUTORS TO THIS ISSUE 987

architecture, design, and analysis. From 1974 through 1981 he worked
on TSPS, designing call-processing software, doing exploratory devel­
opment, and then supervising the Processor Application Group for
TSPS No. lB. In 1982 he became Supervisor of the OSPS Architecture
Group for the No. 5 ESS Operator Services Position System.

T. G. Hack, B.S., 1966 (Mathematics), Xavier University; M.S.,
1967, Ph.D, 1970 (Applied Mathematics), Purdue University; Bell
Laboratories, 1966-. Mr. Hack initially worked on software generation
tools for the No.2 ESS and No.3 ESS projects and then in the area
of change management for C-Ianguage-based developments. In 1979,
he became Supervisor of a group responsible for the software devel­
opment environment for the TSPS project. He currently supervises a
group responsible for the development of operational software for No.
5 ESS.

Harry A. Hilsinger, B.S.E.E., 1954, Newark College of Engineer­
ing; M.S.E.E., 1958, New York University; Bell Laboratories, 1954-.
Mr. Hilsinger initially worked on airborne guidance systems for the
Nike Zeus project. In 1961 he became Supervisor of a group doing
physical design for the fIrst electronic PBX system. He has been
participating in switching system physical design since that time and
is currently responsible for physical design associated with Network
Operator Services. Member, Tau Beta Pi, Eta Kappa Nu.

Teddy Huang, B.S. (Electrical Engineering), Purdue University;
M.S. (Electrical Engineering), MIT; Ph.D (Electrical Engineering),
Purdue University; Bell Laboratories, 1972-. Since joining Bell Lab­
oratories, Mr. Huang has been engaged in system simulation, mainte­
nance software, and test utility systems development. He is currently
a Supervisor of a group responsible for the overall integrity of Operator
Services Position Systems.

Gary J. Kujawinski, B.S.E.E., 1975, M.S.E.E., 1977, University of
Illinois; Bell Laboratories, 1977-. Mr. Kujawinski has worked on the
TSPS No. 1B system in the software emulation, performance mea­
surement, and fIeld support areas. He currently supervises the TSPS
Test Facility Group. Member, IEEE.

N. A. Martellotto, B.E.E, and B.S. (Applied Mathematics), 1957,
Georgia Institute of Technology; M.E.E, 1959, New York University;

988 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

M.B.A., 1970, University of Chicago; Bell Laboratories, 1957-. Start­
ing with the Bell System Data Processor project in 1957, where he did
logic design and programming, Mr. Martellotto has been involved with
computers and software development throughout his career at Bell
Laboratories. He worked on EPBX and No. 1 ESS and holds a patent
related to the basic notion of ESS generic programs. In 1966, he
became Head of the Indian Hill Computation Center (IHCC). In 1976,
he resumed design and development of ESS software development
support programs and other related work. In late 1979, Mr. Martellotto
became DMERT project manager and for the next two years was
involved with all aspects of the project, from operating system devel­
opment to field support. He is now Head of the Software Development
Systems Department at Indian Hill. Member, IEEE, Tau Beta Pi, Eta
Kappa Nu.

Sherman C. Reed, B.S.E.E., 1956, University of Okalahoma;
M.S.E.E., 1958, Newark College of Engineering; Bell Laboratories,
1956-. At Bell Laboratories, Mr. Reed had many assignments in
ballistic missile defense activities from 1956 to 1974. He began work on
TSPS in 1974 and has been involved with call programming and
operator actions software design, new feature planning development
coordination and system testing. He is currently Supervisor of the
TSPS No. IB IBT2 System Testing Group. Member, Tau Beta Pi,
Eta Kappa Nu, Pi Mu Epsilon.

Robert E. Staehler, B.S.E.E., 1947, The College of the City of New
York; M.S.E.E., 1948, Polytechnic Institute of Brooklyn; Bell Labora­
tories, 1948-. Mr. Staehler's early work was on No.5 Crossbar, toll
signaling systems, and trainers for guided missile systems. In 1953, he
worked on the development of electronic switching systems, specifi­
cally, the processor memory for the experimental central office in
Morris, Illinois, and the processor logic and call memory for No. 1
ESS. He was appointed Director of the Electronic Switching Projects
Laboratory in 1964 with responsibility for special applications for No.
1 ESS to military and data networks, including No.1 ESS AUTOVON.
In 1968, he became Director of the Electronic Systems Design Labo­
ratory with responsibility for development of the lA Processor for No.
1 ESS and No.4 ESS. In 1976, he became Director of the Network
Operator Services and Digital Switching Applications Laboratory with
responsibility for developing operator services for both domestic and
international applications, along with the No.5 ESS remote switching
vehicles. Senior member, IEEE. Member, Eta Kappa Nu, Tau Beta
Pi, Sigma Xi.

CONTRIBUTORS TO THIS ISSUE 989

L. C. Stecher, B.S., 1967, Loyola University; M.S., 1968, North­
western University; Ph.D., 1972 (Applied Mathematics/Computer Sci­
ence), Northwestern University; Bell Laboratories, 1970-. Mr. Stecher
was involved in the design and development of the No.4 ESS main­
tenance and call-processing subsystems. In 1975, he became Supervisor
of the No. 4 ESS trunk maintenance development effort and later
became Supervisor of an exploratory effort to define new network
services for the evolving Stored Pro~am Controlled Network. In 1980,
he became Head of a department responsible for development of
software for the Traffic Services Position System. This software inter­
acts with operators, customers, and the network to handle toll and
assistance traffic. In addition, the department is responsible for the
Software Development System and Programmer Support Systems
used in the Operator Services and Digital Switching Applications
Laboratory.

E. H. Stredde, B.S.E.E., 1966, M.S.E.E., 1967, University of Illinois;
Bell Laboratories, 1967-. Mr. Stredde has developed maintenance
and operational software for No.1 ESS, the 1A Processor, No.4 ESS,
and TSPS. He is currently Supervisor of the Remote Switch Module
Switch Maintenance Group. Member, Eta Kappa Nu, Tau Beta Pi.

D. S. Suk, B.S.E.E., 1969, Seoul National University; M.S. (E.E.),
1977, and Ph.D. (E.E.), 1978, University of Iowa; Bell Laboratories,
1978-. Mr. Suk has been involved in maintenance software design
and the evaluation of TSPS No. 1B performance and reliability. He is
currently working on project management and software development
methodology. Member, IEEE, Eta Kappa Nu.

James H. Tendick, B.S.E.E., 1977, University of Illinois; M.S.E.E.,
1978 Stanford University; Bell Laboratories, 1977-. Mr. Tendick was
initially involved in the hardware design of the Peripheral Systems
Interface for the TSPS No. lB. He was also involved in system testing
at the first live TSPS No. 1B site in Fresno, California. Other work
activities included speech synthesis and recognition and field support.
Presently, he is supervising a group responsible for system test and
integration of the current TSPS Generic. Member, Tau Beta Pi, Phi
Kappa Phi, Eta Kappa Nu, Sigma Xi.

Kendra A. VanderMeulen, B.S. (Mathematics), 1973, Marietta
College; M.S. (Computer Science), 1977, Ohio State University; Bell
Laboratories, 1973-. Ms. VanderMeulen has participated in the de-

990 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

sign, development, testing, and maintenance of minicomputer-based
operations systems for service evaluation and SPCS maintenance. She
is currently Head of the SCCS Applications Development Department
responsible for the development of SCCS application software, devel­
opment of a world-class switching operations system for the interna­
tional market, and development of an operations maintenance system
for minicomputer maintenance and operations centers.

Daniel Van Haften, B.S., M.S. (Mathematics), 1970, Michigan
State University; Ph.D. (Electrical Engineering), 1977, Stevens Insti­
tute of Technology; Bell Laboratories, 1970-. Mr. Van Haften initially
worked on the Safeguard project. In 1974 he joined the Network
Operator Services Laboratory, where he was involved in TSPS system
testing, field support, call-processing development, and processor re­
placement development. In 1981 he became involved in No.5 ESS site
testing in Seneca, Illinois, and is presently Supervisor of the Factory
Test Software Design Group in the Local Digital Switching Software
Laboratory. Member, Phi Beta Kappa, Phi Kappa Phi, Pi Mu Epsilon.

Laurance A. Weber, B.E.E., 1945, Cornell University; M.E.E.,
1955, Polytechnic Institute of Brooklyn; Bell Laboratories, 1946-. Mr.
Weber was initially involved in the design of signaling circuits. Later
he participated in the design of circuits for crossbar tandem systems.
Following this assignment, he was appointed Supervisor in charge of
designing data sets for the mechanization of TWX service. He was
appointed Head of the 101 ESS Design Department in 1960. He has
had subsequent assignments in No.2, No. 2B, and No. 3 ESS. He is
presently Head of the Operator Services and Digital Switching Appli­
cation Laboratory System Testing and Laboratory Administration
Department. Member, IEEE, Tau Beta Pi, Sigma Xi, Eta Kappa Nu.

R. A. Weber, B.S.E.E., 1970, Iowa State University; M.S.E.E., 1971,
Stanford University; Bell Laboratories, 1970-. Mr. Weber was initially
a member of the Ocean Systems Laboratory, where he worked on
underwater cable systems. In 1974 he transferred to the Operator
Services and Digital Switching Applications Laboratory, where he has
done circuit design and diagnostic programming on the Remote Trunk
Arrangement and the SPC 1B Processor. He currently is the Super­
visor of a group responsible for the TSPS System software, which
interfaces with the DMERT operating system. Member, Tau Beta Pi.

J. R. Williams, B.S.E.E., 1960, Vanderbilt University; M.S.E.E.,
1961, University of Illinois; U. S. Navy Submarine Service, 1961-1964;

CONTRIBUTORS TO THIS ISSUE 991

Bell Laboratories, 1964-. Mr. Williams has had a variety of assign­
ments in Electronic Switching System development. His early work
included assignments in system design, test system development, and
operational software design for No.1 ESS ADF, a store and forward
message switching system. In 1969, he became involved in maintenance
planning and hardware design for No. 4 ESS. Later assignments
included responsibilities in the area of No. 4 ESS maintenance and
call-processing software development. In 1977, he became responsible
for No.5 ESS maintenance planning, and in 1979, joined the TSPS
project with responsibility for operational software development. In
1980, he assumed responsibility for planning future operator system
developments and for system testing new TSPS features. In 1982, Mr.
Williams returned to No. 5 ESS development, with responsibility for
maintenance software.

Bruce R. Wycherley, B.A., 1976, M.A., 1978 (Mathematics), Uni­
versity of Oklahoma; Bell Laboratories, 1978-. At Bell Laboratories,
Mr. Wycherley has worked on the development of TSPS market
models, examined TSPS limiting components, and developed operator
services long-range planning tools for use by telephone companies. He
is presently working in the Operator Services Planning group, inves­
tigating applications of automatic speech recognition and studying the
impact of divestiture on TSPS. Member, Pi Mu Epsilon, Phi Beta
Kappa.

992 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

THE BELL SYSTEM TECHNICAL JOURNAL is abstracted or indexed by Abstract

JoufIlal in Earthquake Engineering, Applied Mechanics Review, Applied Science &

Technology Index, Chemical Abstracts, Computer Abstracts, Current Contents/

fngineering, Technology & Applied Sciences, Current Index to Statistics, Current

1'.JIH'rs in Electrical & Electronic Engineering, Current Papers on Computers &

Control, Electronics & Communications Abstracts Journal, The Engineering Index,

International Aerospace Abstracts, Journal of Current Laser Abstracts, Language and

Language Behavior Abstracts, Mathematical Reviews, Science Abstracts (Series A,

Physics Abstracts; Series B, r/ectric.J! .JIHI 1.lectronic Abstracts; and Series C,

Computer l~' Control l\b~tr.Jch), Scic'nc<' Cit.Jtion Index, Sociological Abstracts,

Socidl Wl'it.lfl', Soci.!ll'ldnning dnd Soci.!I D('velopment, ,wd Solid State Abstracts

loufIld/. Reproductions of the Journal by ye.H~ .He available in microform from

University Microfilms, 300 N. Zeeb Road, Ann Arbor, Michigan 48106.

@ Bell System

