T']_[] E DECEMBER 1983
i VOL. 62, NO. 10, PART 1

BELL SYSTEM

TECHNICAL JOURNAL

Time-Compression Multiplexing (TCM) of Three Broadcast-
Quality TV Signals on a Satellite Transponder
K. Y. Eng, B. G. Haskell, and R. L. Schmidt

Synchronization of Noncolocated TV Signals in a Satellite Time-
Compression Multiplexing System
K. Y. Eng and B. G. Haskell

Theory of Reflection From Antireflection Coatings
R. H. Clarke

Equivalent Queueing Networks and Their Use in Approximate
Equilibrium Analysis
A. Kumar

A Model for Special-Service Circuit Activity
D. R. Smith

TELBECC—A Computational Method and Computer Program for
Analyzing Telephone Building Energy Consumption and Control
P. B. Grimado

Recursive Fixed-Order Covariance Least-Squares Algorithms
M. L. Honig

On the Average Product of Gauss-Markov Variables
B. F. Logan, Jr., J. E. Mazo, A. M. Odlyzko, and L. A. Shepp

Series Solutions of Companding Problems
B. F. Logan, Jr.

Bandwidth-Conserving Independent Amplitude and Phase
Modulation
B. F. Logan, Jr.

PAPERS BY BELL LABORATORIES AUTHORS
CONTENTS, JANUARY ISSUE

2853

2867

2885

2893

2911

2935

2961

2993

3007

3053

3063
3071



THE BELL SYSTEM TECHNICAL JOURNAL

ADVISORY BOARD

D. £. PROCKNOW, President Western Electric Company
1. M. ROSS, President Bell Telephone Laboratories, Incorporated
W. M. ELLINGHAUS, President American Telephone and Telegraph Company

EDITORIAL COMMITTEE

A. A. PENZIAS, Committee Chairman, Bell Laboratories

M. M. BUCHNER, JR., Bell Laboratories R. A. KELLEY, Bell Laboratories
R. P. CLAGETT, Western Electric R. W. LUCKY, Bell Laboratories
B. R. DARNALL, Bell Laboratories R. L. MARTIN, Bell Laboratories
1. DORROS, AT&T J. S. NOWAK, Bell Laboratories
S. HORING, Bell Laboratories G. SPIRO, Western Electric

B. P. DONOHUE, I, AT&T Information Systems
). w. TiMKO, AT&T Information Systems

EDITORIAL STAFF

B. G. KING, Editor LOUISE S. GOLLER, Assistant Editor
PIERCE WHEELER, Managing Editor H. M. PURVIANCE, Art Editor
B. G. GRUBER, Circulation

THE BELL SYSTEM TECHNICAL JOURNAL (ISSN0005-8580) is published by the American
Telephone and Telegraph Company, 195 Broadway, N. Y., N. Y. 10007; C. L. Brown, Chairman
and Chief Executive Officer; W. M. Ellinghaus, President; V. A. Dwyer, Vice President and
Treasurer; T. O. Davis, Secretary.

The Journal is published in three parts. Part 1, general subjects, is published ten times each
year. Part 2, Computing Science and Systems, and Part 3, single-subject issues, are published
with Part 1 as the papers become available.

The subscription price includes all three parts. Subscriptions: United States—1 year $35; 2
years $63; 3 years $84; foreign—1 year $45; 2 years $73; 3 years $94. Subscriptions to Part 2
only are $10 ($12 foreign). Single copies of the Journal are available at $5 {$6 foreign). Payment
for foreign subscriptions or single copies must be made in United States funds, or by check
drawn on a United States bank and made payable to The Bell System Technical journal and
sent to Bell Laboratories, Circulation Dept., Room 1E-335, 101 J. F. Kennedy Parkway, Short
Hills, N. J. 07078.

Single copies of material from this issue of The Bell System Technical journal may be
reproduced for personal, noncommercial use. Permission to make multiple copies must be
obtained from the editor.

Comments on the technical content of any article or brief are welcome. These and other
editorial inquiries should be addressed to the Editor, The Bell System Technical Journal, Bell
Laboratories, Room 1J-319, 101 J. F. Kennedy Parkway, Short Hills, N. J. 07078. Comments
and inquiries, whether or not published, shall not be regarded as confidential or otherwise
restricted in use and will become the property of the American Telephone and Telegraph
Company. Comments selected for publication may be edited for brevity, subject to author
approval.

Printed in U.S.A. Second-class postage paid at Short Hills, N. ). 07078 and additional mailing
offices. Postmaster: Send address changes to The Bell System Technical Journal, Room 1E-
335, 101 ). F. Kennedy Parkway, Short Hills, N. J. 07078.

€ 1983 American Telephone and Telegraph Company.



THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 62 December 1983 Number 10, Part 1

Time-Compression Multiplexing (TCM) of Three
Broadcast-Quality TV Signals on a Satellite
Transponder

By K. Y. ENG,* B. G. HASKELL,* and R. L. SCHMIDT*
(Manuscript received June 15, 1983)

We describe how Time-Compression Multiplexing (TCM) might enable the
transmission of three National Television System Committee (NTSC) color
TV signals through a satellite transponder of 36-MHz bandwidth. The input
TV signals are processed such that three fields from each TV source are
compressed into an ordinary field period. This is accomplished by sending one
field as is but time compressed; the other two fields are sent as differential
signals, also time compressed such that all three fit into a single field period.
The resultant compressed waveforms are then time multiplexed between the
three sources and have a combined baseband bandwidth of 7.52 MHz for an
optimal case, or 8.4 MHz for a practical version. In either case, both the
transmitter-multiplexer and the receiver-demultiplexer require only three field
memories for (digital) signal processing. Performance is expected to be of
network broadcast quality (i.e., weighted signal-to-noise ratio, s/n = 56 dB)
for the optimal case of 7.52-MHz baseband if 12-meter receive earth stations
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are employed in a system such as COMSTAR. The practical version, on the
other hand, would yield an s/n ~ 54 dB.

I. INTRODUCTION

The problem of transmitting two or more high-quality TV signals
through a satellite transponder of 36 MHz continues to be a challenge
in optimizing the use of available transponders in current as well as
near-future satellites. It was recently proposed® that by combining the
concepts of Time-Compression Multiplexing (TCM)?? and differential
signals, two or more National Television System Committee (NTSC)
TV signals can be time multiplexed with bandwidth reduction for
transmission with a single FM carrier in a satellite channel. This
avoids crosstalk between the pictures. In fact, straightforward TCM
alone would permit the transmission of two T'Vs in a transponder with
performance close to broadcast quality [i.e., peak-to-peak video signal
to weighted root-mean-square (rms) noise ratio, s/n = 56 dB] if 12-
meter receive earth stations were used in a satellite system such as
COMSTAR. The additional application of time-companded (time-
compressed or expanded) differential signals reduces the TCM signal
bandwidth and thus can enhance the transmitted picture quality or
enable the inclusion of a third TV signal. However, the implementation
of such a system as described in Ref. 1 involves converting the input
TV scan pattern from interlacing to sequential. This would mean
considerable memory needed, particularly in the case of three TVs per
transponder. Here, we describe an implementation that offers signifi-
cant saving in memory, considerable relaxation in timing require-
ments, and easy adaptation to existing hardware. The technique
essentially uses three field memories time shared between the three
simultaneous, but synchronized, input TV signals to produce differ-
ential signals in a proper format for TCM. The receiver, on the other
hand, also requires three field memories to reconstruct all three TV
signals. Practically all the signal processing could be implemented
digitally.

We will describe the details of the present system in the next section.
The performance of this could be of broadcast quality if 12-meter
receive earth stations were used. Finally, we will discuss the inclusion
of audio, up-link synchronization for transmissions from separate
earth stations and possible extensions to non-NTSC TV signals.

Il. SYSTEM DESCRIPTION

Figure 1 shows the block diagram of a transmitting earth station
with three synchronized NTSC TV signals that are combined for
transmission by a single FM carrier. The use of frame synchronizers
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Fig. 1—Transmit earth station for the three TVs per transponder.

is therefore implicit if the three TV sources are not synchronized (the
case of noncolocated TV sources is discussed later in Section IV). The
TV inputs are first digitized individually. The digitized TVs, denoted
by X; (i = 1 to 3), are processed by the differential-signal multiplexer,
where various differential signals are formed and multiplexed in its
three digital outputs Y; (i = 1 to 3). These signals (Y;) are then passed
through the time-compression multiplexer, which combines them into
a single digital stream, Z. The conventional operations of digital-to-
analog conversion, low-pass filtering, and preemphasis are performed
before transmission to the satellite with a single FM carrier. We will
describe the differential-signal multiplexer and the time-compression
multiplexer in detail in the following sections.

2.1 The differential-signal multiplexer

We could use three types of differential signals: line differentials,
field differentials, and frame differentials.*® Each type in turn can be
defined in many ways. They have all been described in the cited
references, and only a brief summary is provided here for the purpose
of subsequent discussions.

Line differentials can be defined as a difference signal between two
successive scan lines in the same field. In their digital implementation,
this would mean a difference between more or less vertically adjacent
picture elements (pels) from two successive lines in the same field,
and they are chosen such that their amplitude is much smaller, on the
average, than the original signal. But most importantly, the difference
signal can be band limited to =3 MHz without degrading picture
quality. Field differentials are defined essentially in the same way as
line differentials except that the difference signal is derived from pels
in adjacent scan lines in two successive fields. The bandwidth of field
differentials can be further limited to =2 MHz without affecting
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picture quality. These results were verified and used in a previous
experiment.’

Frame differentials are merely an extension of the above by using
pels from two temporally adjacent (or spatially coincident) lines from
two successive frames. They have not been studied so far, either by
computer simulation or hardware implementation. Thus, we can only
speculate as to their performance. Their amplitudes may be larger
than field difference amplitudes for pictures containing movement,
whereas for pictures containing no movement they should be smaller.
The bandwidth required for frame differentials should be comparable
to or smaller than that needed for field differentials. In this regard,
much depends on the relative visibility in the picture of distortions
occurring at the field rate and the frame rate in detailed or moving
areas of the picture. In the following discussion, we will use the field
and frame differentials; the use of line differentials will only be a
possible, though unlikely, extension of the system.

Our attention returns now to the differential-signal multiplexer, an
illustrative implementation of which is shown in Fig. 2. The following
explanation will show that the field- and frame-differential generators
in this figure could just as well be replaced by two field-differential
generators with some connections slightly modified. The key charac-
teristic to note in Fig. 2 is that only three field memories are needed
to produce all the differential signals required for the three input TVs.

The three input switches, S;, S, and S3, move in synchronism from
the top position to the middle, to the bottom, and back to the top, etc.

LP — LOW-PASS FILTERING
FIELD FIELD
MEMORY MEMORY Y1

X >— ° |{’7 My M2

$y

N r—-————-- q
FIELD
Xy > ] o .| MEMORY Ya

o > A My

S2

FIELD-|
DIFFERENTIALI
GENERATOR |

VW

X3 > 3(0

S3 R FRAME-DIFFERENTIAL
. GENERATOR

Fig. 2—The differential-signal multiplexer.
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They all change position simultaneously sometime during the vertical
blanking interval in such a way that complete fields of the input video
are routed to either the top, middle, or bottom path.

To demonstrate how this works, we consider Fig. 3, where all the
waveforms are digital. In the top of the figure, the three synchronized
input TV waveforms are shown with T being a field period (=1/60
second) and Fj; being the jth field from the ith TV source (i = 1 to 3).
When Fy; arrives, we assume that S;, S,, and S; are in the top position,
as shown in Fig. 2. Fy, is written onto field memory M, from time zero
to T. The switches then change to the middle positions, and Fy, is
written onto Mj while Fyy, in M;, is being transferred to M,. At the
same time, Fy; is also written onto M,. Consequently, at the end of
2T, Fy, is stored in M,, Fi; in M,, and Fi; in M; before the switches
change position again. Now with the switches in the bottom position,
F; is routed to the bottom path. It is then used to form a frame
differential with F);, from M, denoted by Fi; — Fi3, which is the

X4
F11 Fi12 Fi3 Fia Fis e
X2 e ee
Fa1 Fa2 Fa3 Fas
X3 LY
F31 Fa2 F33
|
T 27 37 4T 5T TIME
Y4 .
Fii Faq F31 tre
1) Fi1-Fiz Fa1-Fa2 Fa1-Faz e
Y3 F11-F13 Fa1-Fa3 F31-F33 e
L ééka
T 2T 3T ar 5T TIME

FiAg. 3—Input/output waveforms for the differential-signal multiplexer.
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output Y;. The original unchanged signal F; is also read out from M,
via Y;. The remaining output Y5, is a field differential derived from
Fy; (from M,) and Fi, (from Ms) and is denoted by Fi; — Fy,. While
all these are taking place, Fs;, from My, is transferred to M, with Fs,
being written onto M;, and F»; is written onto M,. These operations
are repeated for all subsequent fields. The output waveforms are
illustrated in the bottom of Fig. 3, where a processing delay of 27T is
incurred. Such a delay enables the conversion from line-multiplexed
serial inputs into time-multiplexed parallel outputs. Furthermore,
there is flexibility in choosing which of the fields is to be read out as
is and which type of differential signal is to be used. For instance, in
the above example we could just as well send Fy; as is, send Fy; — Fio
as a field-differential signal, and send Fy3 — Fj; as another field-
differential signal. In any event, in every T-second output interval,
there are always one original field plus two differential fields in the
three outputs. The bandwidth of the original field is 4.2 MHz, and
that of the differential signals is assumed to be 2 MHz.

2.2 The time-compression multiplexer

The purpose of the time-compression multiplexer is to combine the
three signals (Y;, Ys, and Y3) from the differential-signal multiplexer
into a single signal, Z. In other words, we would like to time compress
the three inputs over every T-second interval into a single output with
the same duration. This can be achieved by writing the digital words
into a memory (say, a RAM) at one speed and reading them out at a
faster speed (see Fig. 4). The ratio of the read clock to the write clock
is the time-compression factor (>1 for time compression). Since the
time compression is to be done over a T-second interval, we could

WRITE/READ CLOCKS RAM — RANDOM ACCESS MEMORY
Y, >— RAM MULTIPLEXER [t Z

WRITE/READ CLOCKS

PLI
Yy >— RAM MULTIPLEXER éOhAMPAL%%ER

WRITE/READ CLOCKS

i

Yy >——  RAM

Fig. 4—The time-compression multiplexer.
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write all Y;’s into the RAMs for the field period before reading them
out appropriately for multiplexing. But this would require the RAMs
to accommodate entire fields of signals. Instead of this, we propose
that the time compression be done over a line interval (=63.6 us) so
that only line memories are needed. More specifically, let us consider
a line duration T’ within a T-second interval shown in Fig. 5. As
before, Y; is the original 4.2-MHz TV; Y, and Y; are each a 2-MHz
differential signal; and 7 in the output Z is the processing delay. We
time compress the T’-second line of Y; by a factor of a(a > 1) so that
the resultant signal occupies T, seconds (T} < T’). Likewise, Y, and
Y, are both compressed by 8(8 > 1) so that each of their resultants
occupies T seconds (T2 < Ty < T"). We require that these three time-
compressed signals be contained in 7", i.e.,

T 0.837"

—+2—=

[0

T (1)

The factor 0.83 is due to the deletion of the differential-signal hori-
zontal blanking intervals, which are identically zero and need not be
sent. The above simplifies to

1 1.66
2= | 2
- 3 (2)
Ya
1
T T
Y2
L.
T T
1
7
PP R
T;_1__/Lr_/\ﬁ—/T+T' T+ T
Ty T, Ty

Fig. 5—Input/output waveforms for the time-compression multiplexer.
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We further require that the three time-compressed signals have the
same bandwidth. This can be written mathematically as®

afi = Bf: = Bfs, (3)

where f,, f2, and f; are the maximum frequencies of Y;, Y», and Y3,
respectively. In this case, f; = 4.2 MHz, f; = f; = 2 MHz, and the
solutions to (2) and (3) are

a = 1.79; 8 = 3.76. (4)

This yields T = 0.56T" and T = 0.22T'. The maximum frequency of
the combined output is given by (3) and is 7.52 MHz, as compared to
12.6 MHz obtained in a straightforward TCM of the three TVs. We
call the above case optimal because its bandwidth has been minimized
by the deletion of the horizontal blanking intervals in the differential
signals. One obvious drawback, however, is that the compression
factors required are noninteger, as given in (4). To circumvent this
difficulty, we can simply choose @ = 2 and 8 = 4 exactly, i.e., com-
pressing the original signal by two and the differential parts by four,
with all their horizontal blankings retained. This practical case is
much easier to implement with a slightly larger bandwidth of 8.4 MHz.

The last, but not the least, block in the time-compression multi-
plexer is the amplitude compandor (Fig. 4). As pointed out previously,
the differential signals are chosen such that their amplitudes are small
compared to the original signal on the average. The amplitude com-
pandor equalizes the voltage levels for the differential signals in the
combined output so that the FM link performance can be maximized.
This was found to be very useful in a previous experiment?® to suppress
the effect of transmission noise on picture quality.

In summary, the present system takes in three NTSC TV signals
and combines them into a 7.52-MHz (or 8.4-MHz) signal for trans-
mission. The multiplexing technique is TCM, and the bandwidth
reduction is the result of the use of differential signals. The transmis-
sion format is three fields from one TV source compressed into one
ordinary field period. Thus, the transmission to the satellite is switched
sequentially between the three sources at a rate equal to the field or
vertical scanning frequency of ordinary NTSC TV (=60 Hz). If the
three TV sources are synchronized with one another, then the trans-
mitter/multiplexer requires only three field memories. Otherwise, ad-
ditional memory is needed for synchronization. In either case, the
receiver requires only three field memories (see the appendix).

Il. PERFORMANCE

Overall performance of time-compression multiplexing of multiple
TV signals in a satellite link has never been measured experimentally.
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But calculations for estimating TCM performance were shown in Ref.
1. According to these calculations, the optimal case of the present
system, which has a baseband-combined bandwidth of 7.52 MHz for
the three TV signals, would require a receive earth station with a
Gain/Temperature (G/T) of =33.7 dB/K to yield a receive baseband
TV s/n of 56 dB. Such a G/T value is obtainable from 12-meter earth
stations. The practical version (8.4-MHz baseband bandwidth), on the
other hand, would require a G/T of 35.9 dB/K to yield s/n = 56 dB.
Such a G/T is probably not obtainable with 12-meter stations. How-
ever, the degradation in s/n by using 12-meter receive earth stations
is only about 2 dB, i.e., the received s/n would be =54 dB.

IV. DISCUSSIONS
4.1 Audio

With three TV sources, each producing stereo audio, we must
transmit a total of six audio waveforms. We propose sending the stereo
audio from each source along with its video by inserting digital audio
in either the vertical or horizontal blanking periods. As for the optimal
case where the horizontal blanking periods of the differential signals
are deleted in transmission, the audio signals may be included in some
convenient segment of the vertical blanking period. This of course will
lead to a slightly more stringent timing requirement as well as some
additional buffer memory.

As for the practical case where the horizontal blankings of the
differential signals are retained for transmission, then the insertion of
digital audio in these blanking periods can be done quite easily. Within
a group of three video lines (one unchanged original plus two differ-
entials), there are two horizontal blankings from the differential lines
available. We can use one of these two blankings for one audio and
the other blanking for the other audio. Within one of these time-
compressed horizontal blanking intervals (=2.7 us), we must include
the audio samples from three TV scan-line durations. Now each audio
signal requires sampling at =32 kHz, and with nearly instantaneous
companding, 10 bits per sample are sufficient.” Thus, we propose
sampling the audio at exactly twice the TV line-scan rate, yielding a
total of six samples or 60 bits from the three scan lines for transmission
in the prescribed time-compressed horizontal blanking period. For this
we would use twenty multilevel pulses to represent the 60-bit infor-
mation. At a baud rate equal to 9/4 X color subcarrier frequency (=8.06
MHz), the six audio samples from the three lines plus another pulse
for bit timing would just fill the 2.7 us time slot.

There are several ways of mapping the 60+ bits from the three lines
into twenty multilevel pulses. More discussions in this regard are
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provided in Ref. 5. Because the three TV lines are from three different
fields, additional memory is needed to store their audio samples, but
this requirement seems trivial compared to the video counterpart.

4.2 Synchronization for multiple up-links

Use of TCM in satellite systems where up-links are not colocated
requires that the three TV signals be synchronized, at least to the
extent that their vertical blanking periods overlap.? This condition is
not very stringent compared with that of some digital Time Division
Multiple Access (TDMA) systems being proposed or in operation.
Other than the additional synchronization hardware required for the
transmitters, the only minor imposition in the system is that the
receiver be able to demodulate the FM signal subject to short discon-
tinuities in the received carrier at the vertical scanning frequency.
Conventional limiter-discriminator receivers should have no problem
in dealing with this. Phaselock receivers, on the other hand, might
have lockup problems. But then the system is intended for high-
quality transmissions with high carrier-to-noise ratios, and threshold
extension is not needed.

As an aside, let us note that if the three TV sources are transmitted
through noncolocated up-links, then the processing in each transmit
earth station needs only two field memories (instead of three) to
generate the differential signals required. The input switches in Fig. 2
are also unnecessary. A similar saving in receiver memory is possible
too if only one TV is to be received in a down-link earth station.

4.3 Extension to non-NTSC TV signals

Application of this technique to non-NTSC color TV signals may
also be feasible. For example, with Phase Alternation Line (PAL)
color television the color subcarrier phase is not the same as NTSC.
However, with only a slight shift in the sampling pattern from line to
line, the same differential signals can be defined and the same trans-
mission system can be used. The same may be true of Sequential With
Memory (SECAM) color television, but success is not as likely.

V. CONCLUSION

We have described a method to transmit three NTSC TV signals in
a 36-MHz satellite transponder. The technique uses differential signals
to reduce the bandwidth and Time-Compression Multiplexing (TCM)
to combine the three TVs into a single signal. By the use of novel
circuit configurations, the memory requirements are reduced signifi-
cantly compared with the more naive approach of Ref. 1. By com-
panding the differential signals, the effect of transmission noise on
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picture quality is markedly reduced. The estimated performance of the
system is at or close to broadcast quality if 12-meter earth stations
were to be used in a satellite system such as COMSTAR. Finally,
digital audio signals can be sent without interference either to or from
the video TCM signal by placing it in the horizontal blanking period.
Extensions to up-links from separate earth stations and non-NTSC
TVs are also possible.
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APPENDIX
Decomposition of the TCM Signal From Three Video Sources

As Fig. 6 shows, the received FM signal from the satellite is demod-
ulated to recover the TCM baseband waveform. It is then digitized to
produce Z’, which would be identical to Z previously except for the
transmission noise and channel distortion added. An amplitude com-
pandor undoes the companding done to the composite waveform. Now
the three segments in this waveform, namely the original field and the
two differential signals, are then separated by the demultiplexer and
written onto three separate memories. They are read out at slower
speeds to get time expanded to the full scan-line length. The expansion
factors (ratio of write clock to read clock) are precisely the compression
factors used in the transmitter. Approximations to Y;, Y,, and Ys,
denoted here by Y%, Y%, and Y%, are then obtained. The same
predictor as in the transmitter is used to convert the differential
signals into the originals. The three output switches, Sy, S;, and Se,
move in synchronism from the top position to the middle, to the
bottom, and back to the top, etc. Their operations are identical to S,,
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Fig. 6—Receive earth station for three TVs per transponder.

Ss, and Ss in the transmitter, and they route the output digital signals
to their appropriate outputs. The output digital signals may (or may
not) then be converted to analog signals for display or local distribu-
tion.
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Synchronization of Noncolocated TV Signals in a
Satellite Time-Compression Multiplexing System
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We describe here a simple method to synchronize three TV signals origi-
nated from noncolocated up-link stations in a satellite Time-Compression
Multiplexing (TCM) system. In this system, information in three fields of
each TV picture is compressed into a single field time so that the compressed
signals from the three sources can be time multiplexed for transmission. The
up-link synchronization ensures that the Radio Frequency (RF) bursts from
different sources will arrive at the satellite without collision. Our method
employs a dynamic master/slave arrangement whereby the first station signing
on assumes the role of a master. The other stations subsequently can synchro-
nize their transmissions to the master’s by simply monitoring the received RF
bursts from the satellite, measuring their respective delays to the spacecraft,
and then phase locking their local color subcarrier clocks to the master’s
transmitted bursts. When the master station stops transmitting, an automatic
procedure is provided for the second station to take over as the new master.
The worst-case jitter performance is well below 100 ns, and the initial acqui-
sition time can be kept less than one-half second. These are more than
adequate for the present TV application, although further improvements are
possible if necessary.

I. INTRODUCTION

Time-Compression Multiplexing (TCM) is a method of multiplexing
various signals by time compressing their (analog) waveforms into
segments in such a way that the compressed segments from different
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sources can be sent on the same channel in separate time intervals
(time-division multiplexing).? Previous published works®?® have dis-
cussed various properties and ways to implement TCM in the trans-
mission of multiple high-quality TV signals through a single satellite
transponder of 36-MHz bandwidth. More recently, this idea has fur-
ther been refined to the transmission with practical hardware of three
broadcast-quality T'Vs in a transponder® (i.e., the received peak-to-
peak video to weighted rms noise ratio =56 dB.) As with other TCM
systems, one requirement in the latter proposal is that the input three
TV signals be synchronized, at least to the extent that their vertical-
blanking intervals overlap. If the signals are colocated in the same up-
link earth station, it merely implies that frame synchronizers be used.
However, if they are to be transmitted from separate earth stations,
then the up-links have to be synchronized. Of course, the up-link
synchronization is needed to ensure that signal bursts from different
sources would arrive at the satellite without collision. We show and
discuss in this paper how this can be accomplished with simple and
easy-to-implement hardware arrangements.

Synchronization techniques in communications satellite systems
have been studied extensively in past years,”® mostly in connection
with digital Time Division Multiple Access (TDMA) applications.
They could all be used in the present problem of synchronizing three
TV up-links. However, these previous techniques were designed for
performance far exceeding the present requirement and hence tend to
be more complicated than what is needed. More importantly, they
were meant for digital signals and are not suitable for analog TV
where the color subcarrier and various sync pulses must bear strict
phase and frequency relationships and thus cannot be advanced or
retarded with respect to one another arbitrarily. We will show in the
next section how a TV up-link station can synchronize its transmission
by simply monitoring the Radio Frequency (RF) bursts sent by other
station(s) already on the air. Such an approach enables synchroniza-
tion between the three stations without a centrally controlled master
station or clock, without the knowledge of one another’s exact location,
without the demodulation of one another’s baseband video, and with-
out the use of a separate control channel. The only assumption
imposed is that the three up-link stations be within the down-link
coverage of the satellite. This is true for satellites similar to Telstar
III. The hardware implementation is quite simple (Section III) and
can be realized by conventional equipments and digital circuits. Our
timing analysis (Section IV) shows that its performance can cover all
requirements under a variety of worst-case conditions, and simple
procedures for failure recovery are discussed in Section V. Finally, we
will make brief comparisons with other methods by showing a number
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of practical advantages in using the present technique and also discuss
possible extensions to further improve its performance.

Il. SYSTEM DESCRIPTION

We outline in this section the basic concept and operation of the
present method. Detailed parameters and performance evaluation are
left for subsequent discussions. The system configuration is illustrated
in Fig. 1, where three up-link earth stations are to transmit their color
TV signals to a satellite. The TV pictures are assumed to be National
Television System Committee (NTSC) and are to be time compressed
with processing prior to transmission so that TCM can be employed.
More specifically, three fields of each TV are to be time compressed
into one field period, F, (=1/60s) in a manner previously described in
Ref. 6. The resulting waveform of a time-compressed TV contains
successive triplets of a field with picture information followed by two
blank field periods. The RF transmission of each earth station will

SATELLITE

EARTH STATION
A EARTH (S:TATION

¥

EARTH STATION
B

Fig. 1—A three T'V/transponder TCM system.
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then consist of bursts, each having approximately one field duration,
with two blank field periods as separation between successive bursts
(Fig. 2). The synchronization problem at hand is to align these bursts
from the three stations so that they arrive at the satellite without
overlap. All three stations are assumed to be within the down-link
coverage of the satellite.

One could design the system, at least in principle, such that the
entire portion of the vertical-blanking interval (=1.4 ms) within each
TV burst is used for guard time. This would be sufficient to account
for the diurnal drift of the satellite itself (maximum round-trip delay
variation of about 500 us according to Ref. 7). With the exact locations
of the stations known, simple open-loop synchronization is then
possible. The drawback of such an approach is twofold. First, the
deletion of the entire vertical blanking is undesirable in TV transmis-
sion because a variety of test signals and nonvideo information are
frequently inserted in this time period. Second, the exact known
location requirement renders the scheme inflexible for the inclusion
of transportable transmit earth stations.

We feel that the deletion of only a portion of a scan line (during
vertical blanking, say 15 us) for interburst guard time is reasonable
and would not limit or interfere with picture performance. In addition,
we do not assume that locations of the stations are known to one
another. Instead, each station is assumed to know only its own
approximate location, say to within 100 km. Note that the latter
assumption is not imposing at all since every station needs some
location information of its own for antenna pointing purposes anyway.

To illustrate the operation of the present system, the three up-link

ORIGINAL TV

0 F 2F 3F 4F 5F 6F
RF TRANSMISSION OF
TIME-COMPRESSED TV

P—

Fig. 2—Time-compression processing of a TV signal (F = Field period, T = F minus
a small guard time).
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earth stations are labelled A, B, and C. Station A is assumed to be the
first to transmit. It can do so at will because no other transmission is
taking place, and its transmission is simply synchronized to its own
NTSC TV clock.

We now consider the start-up of B after A has been on the air.
Station B first monitors the arrivals of the RF bursts from A and
records their arrival times. Note that B does not have to demodulate
A’s signal; it only needs to detect the RF pulses received. (Indeed, A’s
baseband signal need not be video, as long as its RF timing is otherwise
compatible.) The RF pulses from A occur in one out of three fields,
the period is perturbed mainly by the time-varying propagation delay
between A and B due to the spacecraft motion. Using these arrival
times, B can extrapolate for the immediate future arrivals of A’s
pulses, and with the knowledge of its own approximate location (+100
km), B can compute its propagation delay to the satellite with an
accuracy better than +1.2 ms (including satellite drift). This estimated
delay enables the translation of the arrival times of A’s bursts from
the time reference at B to that at the satellite. Using all this infor-
mation, B can then position the transmission of a narrow pulse so
that it arrives at the satellite in a time window adjacent to a burst
from A, but not interfering with it. This narrow pulse is then received
back by B, and we have an actual delay measurement, done inband,
between B and the satellite. Once the actual delay is obtained, B can
derive a windowing signal (frequency = one-third of the TV field rate)
that denotes the proper transmission times in order to maintain
collision-free synchronization with A.

The derivation of this window signal at B would mean the end of
the problem if the system were for digital transmission. However, for
TV applications, the picture information cannot be arbitrarily ad--
vanced or delayed without regard to the phase and frequency relation-
ships between its color subcarrier and its sync pulses. Therefore, we
propose frame (or field) synchronizing the TV picture at B to a local
color subcarrier clock that is in turn phase locked to the aforemen-
tioned window signal in order to achieve proper transmission timing.
This will be explained further when we discuss the hardware imple-
mentation.

Note that throughout the above procedure of synchronizing B to A,
the up-link delay from A to the satellite remains unknown to B. This
is possible because the timing error of B’s narrow pulse (as will be
shown later) is small compared with the start-up guard time allotted,
i.e., a field period. Subsequent synchronization is maintained by B
monitoring and updating the delay information and making adjust-
ments accordingly. In this way, A is the master by virtue of being the
first comer in the system, and B is locked onto A as a slave.
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When station C wants to join in for its transmission, it has to go
through the same procedure as B did, except it would lock onto B
instead of A. If A drops out of transmission, B would detect that and
take over as the master, using its own free-running clock, and C would
stay locked to B. When A wants to resume its transmission later, it
would have to join in as a slave to C. Therefore, the system assumes
a dynamic master/slave arrangement where the first comer assumes
the role of the master. Although this arrangement, as described, can
only function properly if the three stations join the system sequen-
tially, the time required by a station to establish itself as a slave can
be designed to be well within a second, and thus for all practical
purposes the initialization can be achieved almost instantaneously.
We will show in the next section how all of these operations can be
implemented with simple hardware.

1Il. HARDWARE IMPLEMENTATION

We describe in this section the hardware implementation of the
present method. The following discussion will be divided into two
major parts. The first part outlines the generation of a window signal
that marks the proper transmission time for the time-compressed TV
bursts at the local earth station. This window signal is denoted by
r(t). The second part explains how r(f) can be used to synchronize the
incoming TV picture such that its time-compressed bursts automati-
cally align with the transmission windows.

The window signal, r(t), is a pulse train with pulse width, T, equal
to a TV field period minus the guard time and with a repetition rate
= 1/3F. It is generated by the window processor depicted in Fig. 3. We
assume that an external clock of eight-times B’s color subcarrier
frequency is made available to the window processor. This (=28-MHz)

LABEL
RECEIVED RF
ENVELOPE EDGE-DETECTION
EEEE— DEVICE T-SECOND PULSE |
™1 GENERATOR i)
CENTRAL s 0‘\0——>0UTPUT
CONTROLLER k
o}
@ NARROW-PULSE | |p(2)
28-MHz CLOCK 28-MHz CENERATOR

COUNTER

RF — RADIO FREQUENCY

Fig. 3—Window processor for TDM/TCM synchronization.
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clock is probably necessary for the time-compression operation itself,
and its use here does not impose any additional burden on the system.
The other input to the window processor is the received RF envelope
from the satellite broadcast. In the trivial case of the first station (A)
to go into the system, the window processor does very little because
the transmission is free running. Let us consider the operation when
the second station (B) wishes to start transmission. The received RF
envelope (at B) is simply edge detected, and the arrival times of the
bursts from A are recorded using the 28-MHz counter shown in Fig.
3. (Some accommodation for noise may be required, e.g., first detect
envelope pulse of duration =T, then detect edges.) This information
is supplied to the central controller, which could be a microprocessor
and/or hardwired logic designed to carry out the windowing procedure
outlined in the previous section. After acquiring the initial arrival
times of the bursts from A, the central controller makes a crude
estimate of the future arrival times. Furthermore, based on its location,
it can compute an approximate delay to the satellite. Putting all these
together, the controller produces a narrow pulse (pulse width <T) via
the narrow pulse generator and sends it via the switch S; (in the lower
position) to the transmitter. This narrow pulse will arrive at the
satellite well within a predetermined time slot without collision with
A’s transmission. The return of this narrow pulse from the satellite
completes a round-trip delay measurement that is then used to refine
the arrival-time estimates. After a few cycles of this operation, the
proper transmission time windows, r(t), can be established by gener-
ating a sequence of pulses from the T-second pulse generator with S,
switched to the upper position. Note that the pulse width and repeti-
tion rate of these T-second pulses are both computed using B’s 28-
MHz clock. A representative r(t) is shown in Fig. 4a. The label output
distinguishes the master from the slaves, and will be discussed later.
Before describing the rest of the hardware implementation, we show
in Fig. 4 the conceptual sequence of operations needed to complete
the synchronization. The transmission window is established by r(t)
in Fig. 4a. We use this to align (or phase lock) a composite TV sync
signal, s(t), such that every third, vertical sync pulse in s(t) straddles
the beginning of 'a transmission window (Fig. 4b). The sync signal,
s(t), is then used to synchronize an incoming video, resulting in x,(¢),
as shown in Fig. 4c. Finally, the video, x,(t), can be time compressed
to obtain x.(t) (Fig. 4d), which is in synchronism with the transmission
windows. The complete hardware to do all these is shown in Fig. 5.
Referring now to Fig. 5, the TV signal, x(¢), is passed through a
frame synchronizer (and/or time base corrector) whose reference sync
signal, s(t), is derived from the TCM synchronizer. The frame syn-
chronizer aligns x(t) to x,(¢) (Fig. 4c). The subsequent time compres-
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Fig. 4—Illustration of synchronization procedure. Horizontal sync, color burst, etc.,
are now shown.

sion on x,(t) is done in the time-compression processor previously
described in Ref. 6. In this example, we assume that the time-compres-
sion processor requires three clock inputs in addition to the incoming
video: a four-times color subcarrier clock (=14 MHz), an eight-times
color subcarrier clock (=28 MHz), and the transmission window signal,
r(t). The time-compressed video, x.(t), is ready for immediate trans-
mission through the FM modulator and the rest of the system. The
pin modulator shown after the FM modulator is included to ensure
the proper transmission timing as well as to enable the transmission
of the narrow pulses at start-up.

As for the TCM synchronizer, its output is s(¢), as mentioned
previously, and its input is the received RF envelope from the satellite
broadcast. From the detected RF pulses, the window processor (Fig.
3) generates either r(t) or the narrow pulses, depending on its state.
When it is in the delay measurement mode, i.e., narrow pulses are
being generated, the rest of the TCM synchronizer is free running.
After r(t) is generated, an internal 3.58-MHz color subcarrier is phase
locked onto r(t) via a TV sync generator and appropriate dividers as
shown in Fig 3. This simple scheme ensures that the composite sync,
s(t), is synchronized with the transmission windows, r(t). The label
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output of the window processor causes short RF pulses to be generated
in the guard time in order to distinguish master from slaves. More
discussion of labels will follow.

IV. TIMING ANALYSIS

Two important timing parameters reflecting the performance of the
synchronization method are considered here: the initial acquisition
time and the subsequent timing jitter in steady state. In our case of
TV broadcasting, transmission is usually planned ahead of time and
thus an initial acquisition time of, say, a few seconds should be
adequate. However, faster acquisition is probably desirable in the case
of failure recovery, as will be discussed later.

The guard time needed between bursts from different users is
obviously determined by the timing jitter of the synchronization
method and is a rather critical parameter. In the present system, each
RF burst has the duration of a TV field time minus guard time, and
the TCM synchronizer at the transmit earth station has to detect
these bursts individually in order to start, as well as to maintain, lock-
up. Therefore, we must ensure that some detectable gap always exists
between successive bursts. Since we have the freedom to choose how
to segment the original T'V into three-field groups before compression,
we may as well do it in a way that creates a small gap, and therefore
we propose that the segmentation be done during a line of the vertical-
blanking interval, which contains no information. Furthermore, we
deliberately delete from transmission a portion of that line, thus
generating a gap between bursts that could amount to, say, 15 us. This
deletion during vertical blanking does not affect the video quality
because it is done where there is no information. The resulting benefits
of this are twofold: we have created the necessary time gap between
bursts from different stations; and we have a sizable guard time of
15 us to accommodate the timing jitter (and to include labels to be
described in Section V).

The major causes and their effects on the steady-state timing jitter
in our system are summarized in Table I. We now discuss briefly the

Table I—Summary of timing jitter

performance
Jitter
Parameter (ns)

Delay measurement uncertainty +22
Up-link delay drift +11
Down-link delay drift *1
Clock resolution +17
Field-rate jitter +0
Total +51
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meaning of each entry in the table, while the detailed derivation is left
to the appendix:

1. Delay measurement uncertainty—Delay measurement is made
either via the narrow pulses or by the monitoring of the up-link’s own
returned TV bursts. In either case, a local 28-MHz clock is used to
record the time elapsed, and the clock resolution is limited to half a
cycle. It is implicit that fixed delays through the satellite and earth
station hardware can be calibrated out from the raw measurement.
Since this measurement is done in the communication band, propa-
gation effects are automatically minimized.

2. Up-link delay drift—This refers to the up-link delay variation
from station A to the satellite, which is not known to station B. It is
time varying because of the spacecraft motion. This cannot be elimi-
nated because we assume station B does not know A’s location or have
any ranging information on the propagation from A to B.

3. Down-link delay drift—This refers to the down-link delay vari-
ation between the satellite and station B. It is also time varying
because of the spacecraft motion, but it is trackable via the delay
measurement at B. A simple linear prediction should almost eliminate
this.

4. Clock resolution—This is the limitation in the TCM synchro-
nizer to time itself for the exact instant to start transmission due to
the finite clock resolution (half a cycle in the 28-MHz clock).

5. Field-rate jitter—B and C are trying to lock to the inherent jitter
in the RF bursts from A. However, if A’s TV source conforms to the
NTSC standard, this is so small that it can be dropped for all practical
purposes. Otherwise, this item must be included in the table.

As we saw in Table I, the steady-state jitter is so small compared to
the 15 us guard time that under normal circumstances the system can
be regarded as jitter free.

We now make a worst-case estimate of the initial acquisition time.
It is convenient to make the simplifying assumptions that the system
is jitter free and the satellite is truly stationary. The resulting error
due to these assumptions is only in the order of less than 100 ns, while
the acquisition time, as will be shown below, is in the order of a second.
Again we will treat the case of station B trying a cold start after
station A has already been on the air.

After turn-on at station B, the window processor needs to monitor
a few received bursts from A before it can position its narrow pulses
for delay measurements. Since the bursts from A are arriving every 50
ms, the monitoring takes =150 ms. After this 150-ms listening period,
the narrow pulses are sent for delay measurements, and in order to
allow for two delay measurements, we need a maximum of =500 ms.
Therefore, after =650 ms have elapsed since turn-on, the synchronizer
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has completed the delay measurements and can compute the near-
past, current, and near-future arrival times of A’s bursts at the
satellite. At this point, transmission can commence in the next avail-
able time slot, which in the worst case involves a delay of three field
periods (=50 ms). Putting everything together, we have a worst-case
total of =700 ms between initial turn-on and the first TV transmission.
Such an acquisition time certainly meets our objective of keeping it
below a second. In fact, a potential saving of =250 ms exists if we do
a single narrow pulse delay measurement instead of two. Therefore,
we conclude that our acquisition time is less than one-half second
with a single delay measurement and less than one second with delay
verification.

V. FAILURE RECOVERY

In any prudent system design the possibility of failure of certain
components must be taken into account. Here, we desire that the
failure of one channel does not disrupt the transmissions of the
remaining channels. In order to facilitate this, we provide for a labeling
mechanism, in which the window processor causes short RF pulses to
be transmitted immediately following the video RF burst, i.e., at the
beginning of the guard time. These pulses are then used to distinguish
the master from the slaves, as well as to detect anomalies.

For example, station A (being the master) could transmit three
pulses. Station B, the next in command, would send two pulses, and
station C, one pulse. Additional pulses could identify the up-link
station or, alternatively, this information could be embedded in the
baseband video.

The window processor keeps track of time and labeling of all received
RF bursts, and is ready to accommodate to any change in operating
conditions. For example, if A finishes its transmission and goes off
the air, B becomes the new master transmitting three pulses, and C
becomes second in command transmitting two pulses.

It is never possible to predict all failure modes. The best we can do
is accommodate the most likely ones. For example, a brief up-link
failure will not be detected at any earth station (including, possibly,
the faulty one) for about 240 ms, and during that time it is possible
for transmission to resume. Moreover, corrective action by the faulty
earth station will not be known to the remaining ones for another 240
ms. Thus, in the case of an up-link failure at master station A, station
B should not try to take over as master immediately. Otherwise, there
would be the possibility of two masters existing at the same time. In
any event, as soon as station A determines that its up-link is unreliable,
it should resign as master. This could be done by not transmitting any
pulses following its video RF burst. The other stations would recognize
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this condition and assume their proper responsibilities, after which
station A would begin transmitting a single pulse designating itself as
last station aboard.

In the case of a down-link failure, continued operation is not possible
unless the faulty station is master. If it were not already the master,
it could take over this role by sending, say, four pulses following the
video RF burst. The other stations would then recognize this condition
and assume their proper responsibilities.

In the case of an earth station power glitch, transmission would
have to cease immediately and the start-up procedure would be rein-
voked, since the window processor would, in all probability, lose its
timing information. Such a restart could be speeded up considerably
if nonvolatile memory were provided, however.

VI. COMPARISONS AND DISCUSSIONS

As mentioned previously, a number of synchronization methods are
applicable to solve the present problem. The most obvious one is
probably that of a centrally controlled station broadcasting a master
sync to all three up-link stations. Within this broad class of techniques,
a large variety of alternatives are possible. As an example, one fixed
station may be assigned as the master and the other stations must
lock their transmissions to the master; a master sync marker may be
broadcast to all stations by a centrally controlled station, and the
marker could contain sufficient information to TV field and color
subcarrier synchronizations, as well as ranging data for extremely fast
open loop acquisition. In fact, only one such master is needed for the
whole satellite system. Its main advantages are that fast acquisition is
possible, and the various up-link stations do not have to monitor one
another’s transmissions, although the hardware implementation at
each up-link station is certainly not simpler than our method. The
key concern, though, is the reliability of the master station—its
maintenance and hardware complexity. A single up-link failure at the
master station would immobilize the whole system. In contrast, our
method would tolerate quite a combination of different failures because
an automatic takeover procedure exists for the master assignment.
Any single up-link or down-link failure at a station can interrupt
service only at that station and has no bearing on the rest of the
system.

It is possible to use a separate channel to perform interstation
ranging as proposed in Ref. 9. The bandwidth requirement for this
ranging channel is critically determined by the rise time of the ranging
pulses, which, in turn, affects the resulting synchronization accuracy.
Therefore, the addition of this ranging channel could be an imposing
requirement in the system.
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Improvements in the jitter performance and the acquisition time in
our system are both possible. The up-link drift could be removed if
the up-link delay information from each station were inserted into
one of the vertical-blanking pulses, and the stations could then de-
modulate for these data. Higher clock frequencies could be used in
the delay measurement, thereby decreasing its uncertainty. This would
also increase the time resolution of system and thus enable the
synchronizer to time the transmissions more accurately. As for the
acquisition time, if an accurate site location plus its up-link delay were
provided by the first (or the master) station in one of its vertical-
blanking pulses, then the other stations could compute their respective
-delays to the spacecraft without performing the narrow pulse mea-
surements, resulting in a significant reduction in the acquisition time.

VII. CONCLUSIONS

We have described a method of synchronizing up-link earth stations
in a TCM system where the stations take turns transmitting TV
information in bursts, each lasting for a field duration. The technique
is simple and requires only that the stations receive their own as well
as others’ transmissions. It has a dynamic master/slave arrangement
whereby the first station signing on assumes the role of a master. The
other stations subsequently can synchronize their transmissions to
the master’s by simply monitoring the received RF bursts from the
satellite, measuring their respective delays to the spacecraft, and then
phase locking their local color subcarrier clocks to the master’s trans-
mitted bursts. When the master station stops transmitting, an auto-
matic procedure exists for the second station to take over as the new
master. As a result, any single up-link or down-link failure can only
affect the station involved, and there is no need to have centralized
control. Most of the hardware in the synchronizer can be implemented
digitally. The worst-case jitter performance in the system is well below
100 ns, while the initial acquisition time can be kept to less than one-
half second. These are more than adequate for the TV application,
and we conclude that the proposed method offers a practical means to
synchronize the three up-links in our TCM system.
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APPENDIX
Parameters for Timing Jitter

We show briefly here the derivations for the various contributions
to the steady-state timing jitter (Table I). The following estimates are,
by and large, worst-case and very conservative.

A.1 Delay measurement uncertainty

The slave stations have to measure their respective delays to the
satellite in order to start, as well as to keep, synchronized with the
master. This is done in the beginning via the narrow pulses, and then
it is updated continuously via the monitoring of its own returned
bursts. The delay is, of course, measured from edge to edge in the
transmitted and received RF bursts. Given a 36-MHz RF channel
bandwidth, the fastest RF pulse rise time is in the order of 30 ns. If
we have to measure delay from one edge to another, an accuracy of
+5 ns seems reasonable. In addition, the clock used for the measure-
ment is resolution limited due to its finite frequency (=28 MHz, or
eight-times color subcarrier frequency). The uncertainty due to this
clock is about +17 ns, yielding a total uncertainty of +22 ns.

A.2 Up-link delay drift

In the absence of any knowledge of the master’s (or A’s) location, a
slave station (or B) cannot predict the up-link delay from the master
to the satellite. Furthermore, this up-link delay is time varying due to
the motion of the spacecraft. The net result is that B’s prediction of
the near-future burst arrivals from A can never be exact, even though
the down-link delay between B and the satellite can be predicted
exactly. To illustrate this point, let us consider a burst transmitted
from A to B at ¢t = 0. The up-link delay (from A to the satellite) is u;
the down-link delay (from the satellite to B) is do; and the delay
through the satellite is conveniently chosen to be zero. The arrival
time of this burst at B is simply
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T() = Uy + d().

Now, at a later instant ¢t = t;, A transmits another burst to B. The
corresponding up-link and down-link delays are u; and d,, respectively.
Again uy # u; and dy # d; because of the spacecraft motion. The
arrival time at B is then

T1=u1+d1+t1.
In order to predict T, at B at the time T\, B has to compute
Ty — To= (w1 — uo) + (di — do) + t1,

where ¢; is known to B because A is transmitting at a fixed rate; (d, —
do) can be extrapolated based on B’s delay measurements; but the
quantity (u; — up) cannot be estimated without knowing A’s location.
In this example, (u; — ug) is simply the up-link delay variation for A
due to the spacecraft displacement in the time interval ¢;. As such, an
easy upper can be written as

|u1 - uol < Cl)tl,

where c is the velocity of light; v is the radial velocity of the spacecraft
toward or away from an earth station; and t;, the time interval, is
understood to be small compared to a day. If we replace v by the
highest radial velocity of the spacecraft, and ¢; by the round-trip
satellite propagation delay (=300 ms), we have a worst-case estimate
on the up-link delay drift. According to an example given in page 149
of Ref. 8 and comparisons to data from more recent communications
satellites,’® a convenient upper bound on the spacecraft radial velocity
in geostationary orbit is 10 m/s. Using this, the worst-case up-link
delay drift is £10 ns.

A.3 Down-link delay drift

With the spacecraft radial velocity limited to 10 m/s and continuous
updates on the delay measurement, we feel that the down-link delay
drift can easily be computed with an accuracy an order of magnitude
lower than the up-link delay drift, or about +1 ns.

A.4 Clock resolution

Using a 28-MHz clock, the resolution is about half a cycle or £17
ns.
A.5 Field-rate jitter

This refers to the jitter in the rate at which the master station is
transmitting its RF bursts. The burst transmission is of course gov-
erned by the TV field rate, and only one burst is sent in every three
fields. The NTSC standard specifies that the color subcarrier fre-
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quency (3,579,545 Hz) must be stable within £10 Hz and cannot vary
more than 0.1 Hz/s. For a worst-case situation, we assume that the
color subcarrier is at the lowest value, i.e., 3,579,535 Hz. It then drifts
at the maximum rate of 0.1 Hz/s. Thus, at the end of a second, the
new frequency is 3579535.1 Hz. The difference in TV field period
derived from these two frequencies is only 7.8 X 107'® s, The net result
is that the TV field rate is jitter free over a short period of time, say a
few seconds. Moreover, this implies that a much less stable color
subcarrier frequency is still quite compatible with our synchronization
system.
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Theory of Reflection From Antireflection
Coatings

By R. H. CLARKE*
(Manuscript received November 24, 1982)

The reflection that occurs when a beam, rather than a plane wave, is
incident normally on a quarter-wavelength matching layer can be of vital
importance in semiconductor laser design. An analysis in three dimensions is
given for the general case of a field of arbitrary form and polarization incident
on the matching layer. The field is represented as an angular spectrum of
plane waves, each component plane wave being modified by the appropriate
Fresnel reflection coefficient to give the field reflected back onto the diode
structure. Brown’s antenna reciprocity theorem is used to determine the
amplitude of the corresponding mode traveling back down the diode.

I. INTRODUCTION

Antireflection coatings are used on one face of superluminescent
diodes' and on both faces of diode-laser amplifiers.” The theoretical
performance of such coatings has been analyzed by Clarke® using the
technique of representing the emerging laser beam as an angular
spectrum of plane waves, as originally applied by Reinhart et al.* and
Gordon® to determine the reflectivity of an uncoated facet. Each plane
wave was modified by the appropriate reflection coefficient of the
uniform coating,® and Brown’s antenna reciprocity theorem’ used to
calculate the amplitude of the wave coupled back into the device. The
previous analysis® was restricted to two dimensions, on the grounds

* Work done while at Bell Laboratories. Now at Imperial College of Science
and Technology, London, England.
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that the active region in the device would be a wide flat stripe, so that
the emerging radiation would be a thin fan-shaped beam. Many
important laser diode ‘structures, particularly of the refractive index
guided type, have relatively narrow active regions, hence the previous
restriction is limiting. This restriction is removed in the present work,
and the fu]l three-dimensional analysis is presented.

II. FIELDS IN THE DIODE

The transverse electric field of a single mode traveling in the
positive-z direction (see Fig. 1) along the length of the active-region
stripe in a diode laser can be written in general as

E}(x, ¥, 2) = [WEu(x, y) + w,Ey(x, y)le 7, (1)

where 3, is the phase constant of the mode and the time variation
exp(jwt) has been suppressed. The field in this mode reflected back
into the diode by the coating is

E: (x, ¥, 2) = plu:Eu(x, ¥) + w,Ey(x, y)le*P. (2)

The objective of this paper is to calculate the reflection coefficient p
for arbitrary thickness h and refractive index n, of the coating.
(Coupling to other modes is ignored here for the sake of simplicity.)
It will be assumed that the beam eventually emerges into air, so that
ns = 1, and that the refractive index of the diode has the effective
value n;, which is that of the active region in which the field is largely
confined. (The surrounding bulk material has a refractive index that
is some 10 percent below n,.! A better choice of effective refractive
index might therefore be a weighted average, as suggested by Kaplan’s
analysis.?)

The field incident at the plane z = 0 can be represented as an

\
COATING
ed

Fig. 1—Diode laser with coating.
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angular spectrum of plane waves by the two spectrum functions
F.(a, B) and Fy(a, ), where («, 8, v) are the direction cosines in the
x-, ¥-, and z-directions.**® Thus, the elemental plane wave incident in
the direction (a, B) is einc(a, B)dadpB, where

eiﬂC(as ﬁ) = Fx(a, ﬁ) (ux - uz %) + Fy(a, 6) (uy - uz g) (3)

with
Fia, ) & Eulx, y)
and
Fya, B) < Ey(x, ¥), (4)

in which < symbolizes a Fourier transform, such as

Fe, B) = }\% f_ 3 J: 3} E..(x, y)exp{jki(ax + Byldxdy. (5)

The phase constant in the diode is & = 27/\; = n,ky, where ky is the
phase constant of free space.

It should be noted for later reference that the above angular spec-
trum corresponds to a radiation far field (assuming that the subscript
1 region continues indefinitely but the active region stops in the plane
2=0), as kyr — o, of1°

exp(—jkir)

E(r, 0, ¢) = oy
1

erad(a) ﬁ)y (6)

where the far-field vector pattern function is given in this case by
erad(a’ 6) = j27r7einc(a, ﬂ) (7
and

o = sin 6 cos ¢
B = sin 6 sin ¢
vy = cos 0, (8)

where 0 is the polar angle to the z-axis, ¢ is the azimuth angle in the
x-y plane, and r is the distance to the point of observation.

III. REFLECTION AT THE COATING

The incident plane wave given by eq. (3) will be reflected by the
coating. The amplitude reflection coefficient for a plane wave incident
on such a uniform layer with its electric vector perpendicular to its
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plane of incidence (see Fig. 2) is®

R = Picos B + jPssin B
* "~ Pscos B + jPsin B

9

and, with its electric vector parallel to its plane of incidence, the
reflection coefficient is
_ @icos B + jQssin B

By = Qscos B + jQssin B’ (10)

where
Pis = no(1 — nis?/nd)" iy F (1 — nis?)"?
Pys = my(1 — nis*)2 F ni(1 — nis’/n}) (11)
Quz = na(1 = n3s*/n)Pm(l = nis?)”* ¥ 4]
@4 = m(1 = nis*/nd) F niy(1 — nis*)"? (12)
with
f=a+p=1-7" (13)
and
B = (2zh/X\2)(1 — nis®/n3)"? (14)

where >\2 = )\o/nz.

Note that when the magnitude of the sine of the angle of incidence
[s] > (n,)7}, the wave will be totally internally reflected. In that case,
the magnitude of the reflection coefficient will always be unity, but its
phase will vary with the angle of incidence. But note also that the
exp(jwt) sign convention adopted here means taking the negative

ny ny nz=1

Fig. 2—Definition of the amplitude reflection coefficients R, and R,. Their phases
are defined at O.
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square root when the round-bracketed quantities in egs. (11), (12),
and (14) become negative.

The elemental plane wave given by the angular spectrum of eq. (3)
consists, in general, of the sum of perpendicular and parallel polarized
components, such that

€inc = €. + . (15)

This resolution can be achieved by noting that the unit vector u,,
which is both normal to the plane of incidence of the plane wave
travelling in the direction («, 8) and also parallel to the bounding
plane surface xQOy, is

1

u, = W [u.f — uya]. (16)
Hence we may calculate
€L = Un[Us-einc) 1
and
€| = €inc — U, (Uy - €inc). (18)

The elemental plane wave e..n(«, 3)dadg reflected by the coating is
thus given by

ereﬂ(a, .8) = RJ.eJ.(a9 :B) + R]|U]|(a, B) (19)

and comes from the direction (—a, —8). (To avoid possible confusion
it should be noted that the argument of e..n(«, 8) denotes the direction
of the incident wave.)

IV. COUPLING BACK INTO THE DIODE

Brown’s antenna reciprocity theorem states that if a plane wave of
vector amplitude e, is incident from the direction u, on a linear,
reciprocal device, which when radiating has the far-field vector pattern
function (see eq. 6) of e;.q(u), then the coupling ratio

2

c= 4nZP, €p-€raa(uy) (20)

gives the complex ratio of the single-mode amplitude when receiving
to that when transmitting a total power Py."' Z and X\ are the
characteristic impedance and wavelength in the radiating medium.
Equation (20) is a precise result, being a consequence ultimately of
the Lorentz reciprocity theorem.

In the present instance the incident plane wave e, is the elemental
reflected plane wave e,sdadf given by eq. (19), and so, integrating
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over all directions in the forward hemisphere, the reflection coefficient
describing the returning mode amplitude is

a j47rZP0f f eren(®, B)-ena(—a, —p)dadp (21)

or

A2 N e
p= 27P, J:m Im {Rj€inc(c, B) + un(RL — Ry)

[un'einc(a, ﬁ)]}'einc(_a’ _ﬁ)'ydadﬁ (22)

with e;n.(a, 8) given by eq. (3) and u, by eq. (16). The total radiated
power Py, when the radiation is specified by the two spectrum functions
F.(a, 8) and F,(«, B), is given by'?

w1

where D is the domain of (a, 8) such that o + 82 = <1.

1
o, B)F +

e, ) |2]dadﬂ, (23)

V. APPLICATION TO A Y-POLARIZED LASER MODE

In order to see what this result means, consider a guided mode in
the laser whose tangential electric field is wholly y-directed, for which
therefore F, = 0. Then

einc(ay B) = Fy(ay 6) (uy - u, g) (24)

and

1
u, = W (0.8 — uya). (25)

Consequently, the reflection coefficient in this case is

= QZP()f f[,.(1+—— fﬁ2>

2
o=+ 62:'7F (o, BYFy(—a, —=B)dadB. (26)

+ R,

Then finally, assuming that the beam spread is vanishingly narrow
in the y-z plane compared to the x-y plane,
MK
p=
2Z P,

YR Fy(a, 0)Fy(—a, 0)da, (27)
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where K depends on the 3-dependence of F,. Equation (27) is the two-
dimensional result used previously.?

V1. CONCLUSIONS

A complete three-dimensional analysis has been presented for the
calculation of reflection from antireflection coatings. It reduces to the
two-dimensional result given previously where the incident beam was
assumed to be narrowly confined in one of the principal planes. The
form and polarization of the field incident on the coating can be
arbitrarily specified.
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Equivalent Queueing Networks and Their Use in
Approximate Equilibrium Analysis

By A. KUMAR*
(Manuscript received March 14, 1983)

Most Markovian queueing networks that arise as models of stochastic
congestion systems (e.g., communication networks and multiprogrammed
computer systems) do not have-a product form in their stationary probability
distributions, and hence are not amenable to the simplicity of product-form
analysis. In this paper we suggest an approach for systematically examining
the validity of a class of approximation schemes that is based on the idea of
equivalent networks and is used for the approximate equilibrium analysis of
nonproduct-form networks. We study equivalent networks, and prove a gen-
eralization of the so-called “Norton’s” Theorem for closed product-form net-
works in order to study and generalize the equivalent flow method for the
approximate analysis of nonproduct-form queueing networks. We then present
the results of a study of the approximation scheme as applied to a type of
network model (called a central-server model) that arises frequently in mod-
eling multiprogrammed computer systems. In this model the central server
uses a priority discipline, so the resulting network is nonproduct form. This
study demonstrates the situations under which the approximation can be
expected to do well or poorly and the kinds of errors it introduces.

1. INTRODUCTION

Mathematical modeling of stochastic systems frequently gives rise
to models in a class referred to as Markovian queueing networks—
specifically, queueing networks whose time evolution can be described
by a discrete-state, regular Markov stochastic process. Markovian

*Bell Laboratories.
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Fig. 1—Notion of an equivalent network; (a) original network, (b) with arrows
indicating flows between @, and its complements, and (c) with arrows indicating models
of flows between @, and its complement.

queueing network models, known as product-form networks, have been
widely studied, owing primarily to their well-understood stochastic
behavior, and the simplicity of their analysis in equilibrium. However,
the class of product-form queueing network models is far from ade-
quate for modeling many simple real-world congestion systems. The
exact equilibrium analysis of nonproduct-form queueing networks is,
in most cases, computationally, and often fundamentally, intractable.
Much effort has, therefore, been directed towards devising approxi-
mation schemes that attempt to reconcile the conflicting requirements
of modeling fidelity and the simplicity of product-form analysis. One
such class of approximation schemes is based on the idea of equivalent
networks. In this paper we systematically study this approximation.
By an equivalent network we mean the following (cf. Fig. 1). Con-
sider a closed queueing network @ constructed from the set of nodes
M and the subnetwork @ consisting of nodes M; C M. Let @, be a
network constructed from M; such that the joint equilibrium (proba-
bility) distribution of @, is the same as the marginal joint equilibrium
distribution of @, in Q. The network Qi is then said to be equivalent
to @1.* Clearly, to study @, in isolation, one needs to account for the

* This notion of equivalence may appear unduly restrictive. Why not establish a
more detailed stochastic equivalence? For the calculation of many performance analysis
criteria, the present notion is adequate. However, it is easy to see that the equivalent
networks we later identify yield equality in distribution for the entire process in
equilibrium.
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influence of the nodes in M — M, on the nodes in ;. When @ is
product form, the influence of the complementary network on @, takes
an especially simple form, and can be determined by analyzing a
modified version of the complementary network in isolation! For the
case where M, consists of a single node, this fact was first recognized
by Chandy et al.,' who called the equivalent network so obtained a
“Norton” equivalent, because of the similarity of this equivalence to
Norton equivalence in electrical circuits.

In Section II we study equivalent networks and demonstrate the
simplifications that arise for product-form networks. The development
yields a generalization of Norton’s Theorem to multinode subnetworks
of closed product-form networks. Essentially, the same extension to
the entire class of closed product-form networks has been obtained
independently and concurrently by Kritzinger et al.?> and Balsamo et
al.,® through an approach based on verification via detailed computa-
tions from the product-form solution. Our approach is substantially
different, in that it derives Norton’s Theorem directly as a special case
of a general result for stochastically equivalent networks. This ap-
proach is concise, conceptually and intuitively appealing, gives the
result a probabilistic interpretation, and shows up clearly the role
played by the product-form solution. It also seems to be the natural
approach for the purposes of this study.

This generalization of Norton’s Theorem motivates the followmg
approximation scheme. Suppose now that @ is a nonproduct-form
network, but for the purposes of studying the subnetwork @, we follow
the equivalence procedure for product-form networks. Suppose also
that in doing so we find that the version of the complementary network
we have to analyze, in order to determine the latter’s influence on Q;,
is product form. Let the equivalent network thus obtained be Qleq.
The approximation scheme, referred to above, approximates the equi-
librium distribution of @; with that of Qleq (1. e. , approximates Q.q by
@1eq). The effort to determine and analyze Qleq will, in general, be
considerably less than the effort to exactly analyze @ in Q.

This approximation scheme is an extension of one (often referred
to in the literature as an equivalent flow approximation) that has been
utilized by several workers, in the field of network performance anal-
ysis, with remarkably accurate results. Sauer and Chandy,* and Chow
and Yu® use this idea as the basic step in iterative schemes for
approximating central-server models in which the central server is not
of product-form type. Schwartz® uses the basic scheme directly to
approximately analyze a model for a multiple-access communication
system. In Section III we draw upon the theoretical development in
Section II to study the validity of the approximation scheme when it
is applied to a simple test-bed model.
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1. EQUIVALENT NETWORKS

Consider a closed Markovian queueing network @ consisting of M
congestion nodes. In this section we study the problem of the equilib-
rium analysis of a subnetwork @, (embedded in ). To simplify the
discussion we shall limit our considerations to networks of First In,
First Out (FIFO) nodes. It is easily recognized that the ideas in this
section can be extended to apply to more general networks. In Section
2.3 we establish Theorem 1, which explicates the structure of equiva-
lent subnetworks of the networks described in Section 2.1. By combin-
ing this result with Theorem 2, we get a generalization of Norton’s
Theorem.

2.1 Network specifications

Q is a closed queueing network consisting of M FIFO nodes (indexed
by i€ {1, ..., M}). There are R classes/types of customers (indexed
byr € R=1{1, ..., R}) with N, customers in the rth class. The M x
M matrix P = [p{] is the routing probability matrix of type r
customers; customers do not change class as they move from node to
node. For each rin {1, - - -, R}, P is a stochastic matrix which, when
considered as a transition probability matrix, leads to a Markov chain,
on the state space {1, ---, M}, with a single positive, communicating
class.

Throughout the following discussion, the network state process is
assumed to be in equilibrium. The state of the ith node (denoted by
S%) is a finite string drawn from the set R. Given a state vector S’, r
€ R appearing in the kth position in the string S* denotes that a
customer of type r is in the kth position, in FIFO order, at the node i.
Thus, by definition, the customer in service is in the first position. S
= (S, ..., SM) denotes the state of the entire network . The ith
node is equipped with an exponential server which, when the state of
the network is S, serves a customer of class r at the rate v;.(S).

@, is a subnetwork of @, consisting of M, (<N) nodes (indexed by
i € {1, ---, Mi}). @, is the complementary network consisting of
M, =M — M, nodes (indexed byi € {M,; + 1, ---, M}).

Some additional notation is inevitable; this we proceed to describe
in the next subsection.

2.2 Notation

N = (Ny, - -+, Ng) is the population vector of the network @, where
N, is the number of customers of class r, r € R.

Let R* = (U211, - -+, R}™) U © where @ denotes the empty string.
For any s € R*, denote by N,(s) the population of class r in the string
s, and let

N(s) = (N](S), Tty Nr(s)7 ct NR(S))'
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For K, a positive integer, let

SE = {(s, ---, s%): (for every i, 1 <i < K, s' € R¥)
K -
and Y N(s') = N}.
i=1

As stated in Section 2.1, S = (S, --., SM) denotes the @-network
state. Let S; = (S, ---, S™) denote the @;-network state and S, =
(SM*1 ... SM) denote the @-network state. Let F&, and F¥ and
F& denote respectively the sets of feasible states, in equilibrium, of
the state process of the networks @, @, and @, respectively.

A network Q. constructed from the nodes {1, - - -, M} is said to be
equivalent to @, if the joint equilibrium (probability) distribution of
the state processes of Q.q is the same as the marginal joint equilibrium
distribution of the state process of @; in Q.

2.3 Construction of Qeq

Let 7 Fg — (0, 1) be the equilibrium distribution of the state
process of the network Q. Let (for every (1 <i< M)(1 <r<R)) (for
every S € F&) v,(S) = »,:(S;) and (for every S; € F¥

pit & 7 {A customer of type r is in service at node
/@ i is in state S;}.

Construct a network Q.q from the nodes {1, ..., M;} as follows:

1. The routing between the nodes in @y, is the same as in Q@ (self
loops around nodes in @) are included in Q.q).

2. When the state of Q. is S1, node j(1 < j < M;) receives an
exogenous arrival stream of class r customers with (state dependent)
rate Eli‘iMﬁl Pfs;ll’ir(sl)PEjr)-

3. A customer of class r, after completing service at node i (1 < i <
M), leaves the network @, with probability ¥y .1 p{y.

Theorem 1: Q1o as constructed above is equivalent to the subnetwork
Q1 of Q.

Proof: The intuitive appeal of the construction is manifest. In Step 2
of the construction, for every i(M; + 1 < i < M), p 1;(Sy) is the
conditional throughput of type r customers through node i, when @,
is in the state S;. A fraction pfj’) of this flow through i finds its way
into node j of @,.

A simple detailed proof can be obtained by summing the Kolmogorov
equilibrium equations for @ over the set {S € Fx:S; fixed}, and
observing that the resulting equations are exactly the equilibrium
equations for @, described above (cf. Ref. 7). O

Remarks: But for the explosion in notation that occurs in setting up
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a detailed proof, it is clear that the construction of Q. described
above extends easily to networks other than those described in Section
2.1. In this work, however, we continue to restrict our attention to
networks of the latter type.

We now turn to the subclass of product-form networks of the class
of networks described in Section 2.1. Since we are concerned here with
FIFO nodes, the service rates cannot be class dependent. We further
assume that the service rates are not state dependent in any way, i.e.,
we now have

(forevery (1 <i<M)1<r<R) and S €& F{)wi(S) = .

Let (for every r € R) C”? C {1, - . -, M} be the subset of nodes of @
that communicate under P (i.e., in queueing-network terminology,
the chain corresponding to class ). Let R, = {rE R: C” N {M, + 1,
..., M} # @} be the set of customer types that visit Q.. Let | Rz|| =
R., |R — R:|l = R; (where || || denotes set cardinality), and reindex
R so that the elements of R, receive the highest indices. Let N? =
(Ng+1, - -+, Ng) and if s is a string in R*, let N*(s) = (Ng1(s), - - -,
Nz(s)), i.e., N?(s) is the population vector, of the string s, restricted to
the classes in R,.

Forevery N’ = (Ng41, - -+, Ng) < N?2 consider the network Q;5(N’)
obtained from @ by replacing all servers in €, with infinite speed
servers (i.e., by short-circuiting the nodes in @), and placing N’
customers in the resulting network. Let wn- be the equilibrium distri-
bution of the state process of the network @;(IN’). Define for every
Mi+1<is M), reR,,

&N A 7N [A customer of type r is in service at node i in @5(N’)}.

2.4 The product-form case

Theorem 2: If Q is a product-form network then

for every (M, + 1 < i< M)(r €R,) and every S, € F
pit = B
(Note: it is obvious that (forevery (M; +1<i< M), r& Ryand S; €
F)pi =0.)
Proof: The proof utilizes a simple lemma and is outlined in the
appendix. O
Remarks: Theorem 2, when combined with Theorem 1, yields a gen-
eralization of Norton’s Theorem' to multinode subnetworks. Even
though the previous development is specific to the class of networks
described in Section 2.1, it is clear that the same approach can be used
to extend Norton’s Theorem to the entire class of closed product-form
networks. The product-form solution continues to play the same role

(o2 as defined earlier).
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as it does in Theorem 2, i.e., it allows the rates of the external arrival
streams in Qieq to be computed from an analysis of @3 for all possible
customer populations in Q3.

I1l. AN APPROXIMATION SCHEME

In an IBM Research Report, Chow and Yu® suggest a somewhat ad
hoc, iterative approximation scheme for a class of central-server
models, with a priority discipline at the central server. As mentioned
earlier, the scheme relies on an inexact application of Norton’s Theo-
rem to such networks. In Section I we described a natural generaliza-
tion of this so-called equivalent flow approximation scheme to more
general nonproduct-form networks. In this section, we present the
results of a detailed study of the application of this approximation to
a simple, test-bed, central-server network.

3.1 The test-bed model

Consider the two-node network @ shown in Fig. 2. There are two
customer classes, namely 1 and 2, with N; and N, customers, respec-
tively (i.e., N = (IN;,Ny)). At node 1, the customers of class 1 (high-
priority) have preemptive priority over class 2 (low-priority) cus-
tomers; after being preempted by a class 1 customer, when a class 2
customer reaches the service station again, it resumes service where it
left off; class 1 and 2 customers have exponential service times with
rates v;; and vy, respectively. Such a service discipline is commonly
referred to as a preemptive resume discipline. At node 2, there is no
priority; customers are served in the order in which they arrive
(irrespective of class), at the class independent exponential service
rate v,. Customers alternately seek service at nodes 1 and 2 and stay
in the network forever. This model belongs to a class of central-server
networks that arise as models of computer systems.

| TYPE 1

Va

1

7 FIFO V2

TYPE 2

Fig. 2—Q.
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3.2 Approximating the test-bed network

The network described in Section 3.1 is nonproduct form because
of the preemptive resume discipline at node 1. In order to approximate
the equilibrium behavior of node 1, we first increase the service rates
at node 1 to infinity, thus effectively short circuiting the node. Denote
the resulting network by @; (Fig. 3). Then for each (k1,k2) < (IN1,N3)
analyze @5 with k; and k&, customers of types 1 and 2, respectively, in
the network. Let (cf. Thm. 2) (for every (k;,k:) < (IV1,Nz)) (for every
r € {1, 2}) £¢8% = Prob {A customer of type r is in service at node 2
when (k;,k2) customers are in Q3}.

This probability will not depend on the sequence in which the (k;,k;)
customers are placed in @;. Since the service rate at node 2 is class
independent, it is clear that, in equilibrium, all possible states, for any
arrangement of the customers, are equally likely. From this we can
directly conclude that

(for every (0, 0) < (ky,kz) < (N1,N3)) (for every r € {1, 2}),

(k) — __Fr )
r ki + ko

Now consider the open network Qleq consisting of the node 1 in
isolation. The service rates and discipline remain the same as in Q.
When there are n; customers of type 1 and n, customers of type 2 in
Q1eq then customers of type r (€ {1, 2}) enter the network at the rate
A2 where

(for every (ni,ng) < (Ny,Np))Almm = gN-wna)y,

When a customer finishes service in Qleq, it leaves the network (Fig.
4).

The evolution of the network Qleq can be described by a regular
Markov process on the state space {(ni,n;) : (ny,n,) < (N1,N2)}. The
idea is to approximate the equilibrium distribution of customers at
node 1 in @ with the equilibrium distribution of customers in Qeq.

At first glance, the approximation technique described above may
seem rather ad hoc. However, we can draw upon the development in

TYPE 1

V2

(kq, k2}{<(Nq, N3)) CUSTOMERS ———»D—@——

€]

TYPE 2

Flg 3—Q2.
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{nq, ng) : d
)\21 2 )
—

Fig. 5—Q1 eq.

Section II to understand the inner workings of the test-bed model,
and to show that, at least in principle, the approximation scheme is
not altogether unreasonable.

It is clear that we can think of node 1, in the test-bed network ), as
comprising two FIFO nodes with service rates that depend just on the
joint state of these two nodes. Consider the subnetwork @; of @
consisting only of node 1. Theorem 1 can now be invoked to determine
the exact equivalent network Qieq. Let

(for every (n1,n2) < (N1,N2)) (for every r € {1, 2}),
pswn2) = rfA customer of type r is in service at node
2/(ny,n,) customers in @, }.

Q1cq 1s then an open network consisting of node 1. When there are n,
customers of type 1 and n. customers of type 2 in 1., then customers
of type r (€ {1, 2}) enter the network at the rate \{™"? where

(for every (ni,ns) < (N,No))Am2 = pindy,

When a customer finishes service in @, it leaves the network (Fig.
5).
The equilibrium distribution of customers in @, is exactly the same
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as the equilibrium distribution of customers in @;. Observe, though,
that the form of @, is the same as that of Qleq, the difference lying
in the state-dependent input rates. It is in this sense that the approx-
imation scheme is reasonable. The idea now is to compare the exact
state-dependent input rates, p{""?y,, with the approximate state-
dependent rates,

N—(nyng), — N, —n,
Eor 4 V2 s
N1 - n + N2 — Ng

i.e., to compare p{"? with

N, —n,
N;i~n +N; - ny

for all (n,n2) T (N1,N2) and for r € {1, 2}.

3.3 Qualitative evaluation of the approximation

In this section, we present a qualitative evaluation of the approxi-
mation scheme as applied to the test-bed model.

Observe that if the service rates for the two FIFO queues comprising
node 1, in @,, were not state dependent (in the priority scheme they
are state dependent), then @; would, in fact, be a product-form net-
work. Theorem 2 would then lead us to conclude that Qleq and Qqeq
were the same. Consider what happens if, in @, v11 is allowed to go to
infinity. Then, effectively, the high-priority customers do not interfere
with the low-priority customers at node 1. With »;; = =, the network
becomes the one shown in Fig. 6, which is a product-form network.
Thus according to our observation above, for values of »;; that are
large, compared to v,, and v,, the approximation can be expected to
yield very good results.

In order to discover the situations in which the approximation can
be expected to behave poorly, one needs to understand what aspects

TYPE 1

\

(Nh N2) crTonERS —’D_-@_-‘

iz FIFO

I TYPE 2

Fig. 6—“Lim” @ *11™.
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of the exact network the approximation fails to capture. If @, were a
product-form network, then, given that (k,k:)(<(N;,N;)) customers
were in node 2, all arrangements of customers within the node would
be equally likely. As it stands, however, at node 1, priority 1 customers
can preempt customers of priority 2. This suggests that given
(k1,k2)(<N1,N,) customers in node 2, some arrangements of customers
would be more likely than others. In fact, we conjecture that priority
1 customers are more likely to be ahead of priority 2 customers, leading
to the (conjectured) conclusion that

(for every (0, 0) < (kyks) < (N3, Np))phi-teohd = _F1__
Ry + ke
and
ks
N—(ky,ko) < —=
p2 Ry + ks

Thus Q1eq uses smaller (resp. larger) state-dependent input rates for
type 1 (resp. type 2) customers than the exact equivalent Qieq. This
idea is suggestive, but it is difficult to draw any immediate conclusions
from this conjecture as to the relationship between exact and approx-
imate performance measures of the network.

Another approach to discovering the direction in which the approx-
imation can be expected to err is to observe that if node 2 in Q is
replaced by a processor-sharing node, with class-independent service
rate vy, then Qleq becomes the exact equivalent of @, (cf. Fig. 7). (This
follows because when node 2 is processor sharing, if (k;,ks)(< (IN1,N2))
customers are present at node 2, then the rate of flow of class r(€
{1, 2}) customers into node 1 is (k,/(k; + k2))v2.) To fix ideas consider
the case N; = n(=1) and N, = 1. The throughput of the class 2
customer is simply the reciprocal of the mean successive passage times
of the (single) class 2 customer through the point X (cf. Figs. 2 and

| TYPE 1

(N4, Ny) CUSTOMERS

4
PROCESSOR
SHARING

Fig. 7—@ with node 2 processor sharing.

TYPE 2
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7). In either network, when the class 2 customer crosses the point X
to enter node 2, it finds all the class 1 customers receiving service at
this node. In the original network, since node 2 is FIFO, the class 2
customer will have to wait for full service completion of the n class 1
customers before it can leave node 2 (and subsequently, at some future
time instant, cycle back through X). Thus, the mean sojourn time of
the type 2 customer, in node 2 of the original network, is (n + 1)/v,.
However, if node 2 is processor sharing, then on entering node 2, the
customer of type 2 starts receiving service immediately at the rate vy/
(n + 1), and continues to receive service at a rate vo/(k+ 1) (0 <k <
n) until it finally leaves. Thus, in this case, the sojourn time of the
class 2 customer at node 2 is stochastically dominated by an exponen-
tially distributed random variable with mean n + 1/v,, and hence has
a mean smaller than (n + 1)/v,. We further expect, intuitively, that,
after completing service at node 2, when the type 2 customer returns
to node 1, it expects to find more type 1 customers at node 1 when
node 2 is FIFO than when it is processor sharing. Given that the type
2 customer finds k(0 < k < n) type 1 customers on its arrival at node
1, its sojourn time at node 1 does not depend on whether node 2 is
FIFO or processor sharing, and increases with increasing k. Thus, we
expect that the mean sojourn time of the type 2 customer at node 1
will be larger if node 2 is FIFO than when it is processor sharing. The
conclusion is that the mean passage time of the type 2 customer,
through the point X, is larger in the original network than in the
approximating network.

To see the magnitude of the error this effect could cause, let N; = 1
and allow v;3 — ®, vy — o, and vy/v1, — 0. Under these assumptions,
in the original network, the class 2 customer will be blocked once (and
only once) at node 1 each time it cycles through the point X. The
average time it spends in the blocked condition is 1/v;;. The rest of
the time in each cycle tends to 0. Hence, the mean response time for
the class 2 customer in the original network is 1/»;;. If node 2 is
replaced by a processor sharing node, then, each time the class 2
customer cycles through X, it is blocked once (and only once) with
probability 1/2. Hence, the mean response time for the class 2 customer
in the approximating network is 1/2»;;, thus yielding an error of 100
percent.

We do not yet have a simple but rigorous argument that would allow
us to say conclusively that the approximation yields higher through-
puts for low-priority customers. However, the arguments presented
above do make the conclusion plausible.

3.4 Numerical examples

To examine how the approximation works with specific examples,
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we wrote a FORTRAN program to solve the equilibrium equations for
Q1eq Using a simple recursive technique.® The program was somewhat
more general, in that it could accept arbitrary state-dependent input
rates and output rates. Thus, the same program could be used to solve
the network exactly, if it were given the exact values of p{3*™ and
p$3um) for the various feasible (ny,n,).

It is not hard to calculate exactly the probabilities p {7 and p "2
for some simple cases. Of course for (n;,n2) # (N1,Na), pSrm? =1 —
p$1vm Consider, for the purpose of illustration, the case N; = 1, Ny =
1. Note that the state of the network Q is completely described by the
state of node 2. The epochs of entry into the state S% = (12) are
renewal epochs. The next state is, inevitably, S? = (2). The next state
is S% = (21) with probability »y,/(v11 + v2) and S? = (©) with probability
vo/(v11 + v2). Because of the preemptive discipline, the next state to be
entered in the set {(12), (21)} will be S = (12), thus completing a
renewal cycle. Since the expected holding time in each state in {(12),
(21)} is 1/v,, therefore

1
(0, 0) Vo _ 1
P21 1 v 1 - v ’
1 1
-+ — 1+
ve vt v v v+ v
and, of course,
pd® =0 and p%Y =1.

In Table I we list the exact expressions for p("l 2 for all (ny,ns) <

(N1,N.), for some values of (N;,N,). These were computed in the same
fashion as in the above example.

In Tables II(a), (b), and (c), we give several numerical examples of
exact and approximate solutions of the test-bed network. The exact
solutions and the approximate solutions were obtained using the
FORTRAN program described above. The program yields the equi-
librium joint-probability distribution of queue lengths at node 1. In
Tables II(a), (b), and (c), we display these joint probabilities and the
node 1 utilizations.

The following observations are immediate and summarize our con-
clusions regarding the performance of the approximation scheme when
applied to the test-bed network.

1. The numerical computations support our earlier observations
that if vy, is large, then the approximation can be expected to yield
excellent results [cf. case (1) in each of Tables II(a), (b), and (c)].

2. The low-priority utilizations are consistently higher, again sup-
porting our earlier observations regarding the direction in which the
approximation can be expected to err.
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Table I—Exact expressions for p{7""? in the test-bed network Q.
(cf. Thm. 1 and Fig. 2)

N Comparé_sgn
N N (n1,nz) p;:l"'z) with p,,
1 1 (1,0) 0
(0,1) 1
(0,0 ! =
1+ —2
vy + v
2 1 (2,0) 0
(0,1), (1,1) 1
(1,0 ! >}
1+ i + Ve . Y11
v + v m + v v + v2
14+ —2
(0,0) i + Ve 2%
1+ 1 + ( i )2
v + v v+ v
+ V2 . i 2
1531 + 123 Y11 + Ve
1 2 (1,0),(1,1) 0
(0,2) 1
©,1) ! >
1+ V2 . Vi1 + V12
12 + 1 2] r + V2 V12 + V2
. V1 + V2 V11
mtrve wtrva vntor
(0,0) L =}

V11 V11
+
vi + v2 vy + v

20 v 2
. [1 =42
vig + vz rz  vet oy

) — i . oW = =
(o =1 = pf? if (myng) # (N Na); o™ = o™ = 0).

1+

3. When vy, v12 and v, are comparable, then the approximation
yields good results with errors in the utilizations in the neighborhood
of 10 percent.

4. Considerable errors in the low-priority utilizations can arise,
however. Witness case 3 in each of the Tables II(a), (b), and (c). With
a very large low-priority service rate at node 1, the approximate low-
priority utilization suffers from an error of 20 to 50 percent.

5. For the range of examples studied, the equilibrium probabilities
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Table Il—Numerical comparisons of exact and approximate
solutions of the test-bed network

Equilibrium State Probabili-
ties at Node 1

Node 1 Utilizations

Approxi- Approxi-
Exact mate* Exact mate*
Case State  Proba-  Proba- Utiliza-  Utiliza-
No. m vig vz (ng,ny) bility bility  Class tion tion
(a) N;=1,Ny=1)
1 10 1 1 (0,0) 0.614 0.606
(1,0) 0.029 0.028 1 0.064 0.063
(0,1) 0.322 0.331 2 0.322 0.331
(1,1) 0.035 0.036
2 1 S5l (0,0) 0.231 0.222
(1,0) 0.077 0.056 1 0.462 0.444
(0,1) 0.308 0.333 2 0.308 0.333
(1,1) 0.385 0.389
3 1 100 2 (0,0) 0.393 0.488
(1,0) 0.196 0.163 1 0.601 0.504
(0,1) 0.0059  0.0081 2 0.0059  0.0081
(1,1) 0.405 0.341
) (N;=2,N;=1)
1 10 1 1 (0,0) 0.681 0.676
(1,0) 0.044 0.043
(2,0) 0.002 0.002 1 0.0754 0.0748
0,1) 0.244 0.249 2 0.244 0.249
(1,1) 0.027 0.027
2,1) 0.003 0.003
2 1 5 1 (0,0) 0.179 0.171
(1,0) 0.083 0.065
(2,0) 0.024 0.016 1 0.631 0.618
0,1) 0.191 0.211 2 0.191 0.211
(1,1) 0.250 0.260
2,1) 0.274 0.276
3 1 100 2 (0,0) 0.170 0.217
(1,0) 0.116 0.109
(2,0) 0.050 0.036 1 0.827 0.780
(0,1) 0.0022 0.0033 2 0.0022 0.0033
(1,1) 0.187 0.188
(21) 0474  0.447
(c) (N;=1,N;=2)
1 10 1 1 (0,0) 0.464 0.457
(1,0) 0.015 0.014
(0,1) 0.316 0.319 1 0.0495 0.0487
(1,1) 0.016 0.016 2 0.487 0.494
0,2) 0.170 0.175
(1,2) 0.019 0.019
2 1 5 1 (0,0) 0.116 0.109
(1,0) 0.028 0.108
0,1) 0.177 0.182 1 0.437 0.418
(1,1) 0.070 0.055 2 0.447 0.473
(0,2) 0.270 0.291
(1,2) 0.340 0.346
3 1 100 2 (0,0) 0.473 0.584
(1,0) 0.167 0.130
(0,1) 0.008 0.010 1 0.517 0.404
(1,1) 0.115 0.090 2 0.0101 0.0123
(0,2) 0.002 0.002
(12) 0235  0.184

*Based on Norton’s Equivalent.
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are never drastically wrong, and follow trends similar to the exact
values.

The test-bed model is hard to analyze exactly for population sizes
larger than the ones considered. We have run detailed simulations of
the test-bed model for larger population sizes, and the results of these
simulations continue to support the qualitative observations we have
made above.

IV. CONCLUSIONS

We have demonstrated an approach for systematically analyzing
the equivalent flow approximation. Our investigations have (1) re-
vealed the conceptual basis for the approximation scheme, and (2) led
to an understanding of the reasons for, and directions of, the errors
that such an approximation scheme could introduce when applied to
a class of prioritized central-server models. The approximation as
described in the paper is of more general applicability, and much work
remains to be done to discover its validity (accuracy and computational
tractability) for more complicated, nonproduct-form networks. Our
work, we think, provides the theoretical understanding and motivation
for pursuing more detailed investigations.

V. ACKNOWLEDGMENTS

We are indebted to J. S. Kaufman for introducing us to the problem.
We are grateful to him and to B. T. Doshi, B. Melamed, and B.
Sengupta for making themselves available for several helpful discus-
sions.

REFERENCES

1. K. M. Chandy, U. Herzog, L. Woo, “Parametric Analysis of Queueing Networks,”
IBM J. Res. and Develop. 19, No. 1 (January 1975), pp. 36-42.
2. P. S. Kritzinger, S. Van Wyck, A. E. Krzesinski, “A Generalization of Norton’s
Theorem for Multiclass Queueing Networks,” Performance Evaluation, 2 (July
1982), pp. 98-107.
3. S. Balsamo and G. lazeolla, “An Extension of Norton’s Theorem for Queueing
Networks,” IEEE Trans. Software Eng., SE-8, No. 4 (July 1982), pp. 298-305.

. C. H. Sauer and K. M. Chandy, “Approximate Analysis of Central Server Models,”
IBM J. Res. Develop., 19, No. 3 (May 1975), pp. 301-13.

. W. Chow and P. S. Yu, “An Approximation Technique for Central Server Queueing
?Iygzggl)s with a Priority Dispatching Rule,” IBM Res. Rpt. (1980), RC8163 (No.

6. M. Schwartz, “Performance Analysis of the SNA Virtual Route Pacing Control,”
IEEE Trans. Commun., COM-30, No. 1, Part II (January 1982), pp. 172-84.

. A. Kumar, unpublished work.

. J. S. Kaufman, unpublished work.

. F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open, Closed and

Mixed Networks of Queues with Different Classes of Customers,” J. ACM, 22,
No. 2 (April 1975), pp. 248-60.

APPENDIX

Proof of Theorem 2: Index the nodes of §; in the same order in which
they were indexed in §. We need the following lemma.

(<A

[{eXe XN
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Lemma: Let T denote the class r routing probability matrix for the
network Q3. Partition P as follows:

M, M,

e, —

o M { PQ Py .
M, { P Py

Then
(1) r€Ry= T = P} + PY[I - P'PY;
(€1 If AV solves APP™ = AD then, partitioning A" as
A(lr) Ag)
A(r) = L~
M, M,
(@) ifrg€ Rythen A =0
(b) if r € Ry then AL = APT™.
Proof of Lemma: Conclusion 1 follows readily from the fact that, for
each r ER, P? is the transition probability matrix of a finite Markov
chain with a single, positive communication class that has a nonempty
intersection with {M; + 1, ..., M}. For details see Ref. 7.
Conclusion 2 follows directly from Conclusion 1. O
Returning to the proof of Theorem 2, we let = F& — (0, 1) be the
equilibrium distribution of the state process of network @.* It is now
well known (cf. Ref. 9) that «(-) is of the form

1M ;
T8 =g EII fi(SY,

where (G is a normalization constant and, for each i € {1, ..., M}, f; -
depends only N(S?), »; and (for every r, (1 < r < R))A\", where A® =
(A, - -+, As7) is any solution of AVP® = A®,

Hence, (for every S; € F&) (for every i, r, My + 1 < i < M), re
R,)

M .
o B s L)
S — {S:SEFR,(SY, - ., 8M)=5,,8'(1)=r} j=1
Pir = M
IT £;(S%)
{S:SEFR,(SY, .- ,$M)=85y} j=1
M .
DR | T
1S2:SEFRNSYE yois,SH1)=r] j=M;+1
—1 M ,
I fi(SY)

1S2:,EFRNSNE_poisyl T=Mi+1

*For notation see Section 2.2.
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(where F& N S¥z <. is the set of feasible states of Q. when
N2-NZ%(S;)

N2 — N%(S,) customers are in ),

which, using the above lemma and the fact that the equilibrium
distribution of the @3 network state process is still product form,

= £N2_N2(Sl)
ir .

Remarks: Some care is needed in asserting the last equality in the
case where there are classes r; and ro, such that the submatrices of
the communicating classes under 7V and T“? are the same permu-
tation matrices (i.e., members of classes r; and r, cannot overtake
each other). In this case the equality follows because for each N, £/
and £}, are independent of the order in which members of these classes
circulate in the network 3. O
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We describe a model for special-service circuit activity to assist in forecast-
ing, provisioning, and “churn” studies. We assume that customers order a
random number of circuits for an exponentially distributed period of time and
that the rate of new connect orders grows exponentially with time. These
assumptions yield simple formulae giving the means and variances of the
number of active circuits at a future time and the total number of connected
and disconnected circuits during a future period. Distributions of these vari-
ables can, in principle, also be computed. There are three important parameters
characterizing the model: growth rate, disconnect rate, and batchiness; we
describe their physical meaning and discuss methods to estimate them. This
document describes the analytical portion of an effort to develop a model
based on the physics of special-service circuit activity.

I. INTRODUCTION

The purpose of this paper is to describe a model for special-service
circuit activity to assist in forecasting, provisioning, and “churn”
studies, which can be summarized by a few parameters that have a
physical interpretation. The calibration and measurement of the fit of
this model to data in a New Jersey Bell database is being pursued
simultaneously and will be reported elsewhere.

The model treated here is derived from a priori consideration of the
physical behavior of customers. It is based on the assumption that the
number of active circuits, although growing, is in some sense in
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equilibrium as well; that is, certain characteristics of the system are
not changing. This is to be contrasted with a model proposed by Nucho
in which transient analysis is fundamental.! The primary difference
between these models is that the demand rate for new circuits is a
function of the number of active circuits in the Nucho model, whereas
it is considered to be an exogenous variable here. In the Nucho model,
the variance to mean ratio of the number of active circuits increases
indefinitely with time (since fluctuations tend to feed on themselves);
in the model considered here this ratio remains constant. Another
difference between the models is that the model described here allows
an order to be for more than one circuit.

Here, we assume that (1) the arrivals of special-service circuit orders
are given by a nonhomogeneous Poisson process with exponentially
growing intensity, (2) each order is for a random number of circuits (a
batch) with arbitrary distribution, and (3) the lifetime of an order is
an exponentially distributed random variable, during which time the
number of held circuits per order remains constant. Note that the last
assumption implies that an order lifetime and a circuit lifetime have
the same distribution.

We use three important parameters in special-services modeling,
each with its own physical interpretation. These parameters may be
described as growth rate, disconnect rate (per circuit), and batchiness.

The growth rate summarizes the rate at which the mean number of
active circuits increases with time. It may be expressed in terms of
proportion increase per unit of time; we denote it 8. Thus the mean
number of circuits at time ¢ is proportional to e®. We actually assume
that connect activity grows at rate 8, but it turns out that the number
of active circuits, the total connect rate, and the total disconnect rate
are all proportional to e® in this model. Of course, for small growth
rates or short periods of time, exponential growth is very close to
linear growth.

The disconnect rate, denoted g, is the ratio of the number of
disconnects per unit time (i.e., the total disconnect rate) to the number
of active circuits. The mean circuit lifetime is then 1/u. The distribu-
tions of circuit lifetimes have been shown to be well approximated by
negative exponential distributions;? thus the disconnect rate does not
vary with the age of a circuit.

The batchiness of the arrival process is related to the tendency of
special service circuits to be ordered in multiples greater than one. We
call the batchiness parameter » and define it to be the ratio of the
second moment to the first moment of the number of circuits in an
order.

The ultimate goal of this modeling process is to provide a tool that
can be used to predict special-services needs in the future. The model
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contained herein should be very useful in this regard. One should
remember that the underlying process is stochastic so that there is a
fundamental uncertainty even if one has exact specification of the
parameters of the model. The standard deviation of future require-
ments can be quite large compared to the mean for small circuit
groupings, and this presents a major problem for provisioning at the
most detailed level. This problem cannot be surmounted with a better
model and/or additional data collection. The present analysis allows
quantification of the fundamental uncertainty of forecasting, an in-
sight which is difficult to obtain purely by statistical methods. The
only possible method to further decrease relative uncertainty is to
aggregate demand, or to obtain advance knowledge of connect or
disconnect activity (sometimes called “deterministic events”).

The rest of the paper is organized as follows: Section II summarizes
the important results of the paper, giving formulae for the means and
variances of the number of active circuits in the future, the total
number of connects in a future interval, and the total number of
disconnects in a future interval; and giving statistical methods to
estimate the fundamental parameters of the model such as growth
rate, disconnect rate, and batchiness. The reader not interested in the
derivation of these results may stop at this point.

The predictions (summarized in Section II) of the model are derived
in Section IV. These derivations are primarily substitutions into
formulae given in Section III. Section III describes and analyzes a
much more general model than the one described in this introduction
(we refer to the latter simply as “the model”). We have chosen to
introduce this generalized model for two reasons. First, the analysis
required for the treatment of the generalized model is little different
in complexity from that required for treatment of the specific model.
Second, the general results of Section III allow rapid exploration of
the consequences of changes in assumptions of the model. For example,
one can explore the effects of linear growth of demand, or the super-
exponential growth in demand which follows introduction of a new
service. However, we do feel that the original assumptions are appro-
priate in most circumstances. Thus, the consequences of this model
are the only ones summarized in Section II, and it is this specific
model which is being verified with respect to the New Jersey Bell
Telephone Co. database. Thus, Section III is provided for reference in
case of non-typical special service applications.

Section V derives the statistical methods (summarized in Section
II) for estimation of the fundamental parameters of the model. Section
VI is a summary.

Appendix A gives background information on the compound Poisson
random variable, and Appendix B gives background information on
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the non-homogeneous Poisson process. These results are needed in
Sections III and IV.

Table I presents values of a function useful in estimating growth
(see Section II) and Table II lists the notation used in the paper.

1I. SUMMARY OF KEY RESULTS

This section provides a summary of the important results of the
paper derived in Sections IV and V.

2.1 Churn

Our model depends on three physical parameters: growth rate (3),
disconnect rate (u), and batchiness (v). The meaning of these param-
eters is described in Section I. Another physical parameter is “churn,”
which has been defined in many different ways. For any reasonable
definition, the churn is determined by the growth and disconnect rates
of the model. We define the churn to be the minimum of the disconnect
rate per circuit and the connect rate per circuit, and denote it by +.
With this definition, it can be shown [see (75)] that

v = min(g, g + B). (1)

The values of churn under other definitions are also readily available.
For example, if one defines churn to be the ratio of the average total
connect rate to the average rate of change of net active circuits, then
this value of churn is (1 — )™’ Under still another definition, the
churn equals u/(u + B8).

2.2 Mean and variance of total active circuits at a future time

Here we give the mean M(t) and the approximate variance V(¢) of
the number of circuits in service at a given time t in the future. The
mean and the variance depend on the present (at time ¢ = 0) number
k of circuits in service, the present instantaneous rate D, of circuit
demand due to new orders, and the three key parameters described
previously: 8, u, and ». We give these two relationships below:

M(t) = ke™ + u?—oﬁ (Pt — e™), (2)
and
Vi) = [ke"“‘(l —e™) + D, (e — e""‘)]. 3)
p+ B

It is interesting that (2) and (3) together imply the relationship
V(t) = v(M(t) — ke™™), (4)
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which relates the variance of a forecast to the mean of the forecast,
the number of circuits currently active, k, and the parameters v and p.

2.3 Mean and variance of the total number of connected or disconnected
circuits in the future
Similar results are available for the mean and variance of the total
number of connected circuits (variables subscripted with a C) and the
mean and variance of the total number of disconnected circuits (sub-
scripted with a D) in an interval of length t beginning immediately:

Me(e) = 22 (e ~ 1), )
D,

Ve(t) = v 3 (e — 1) = vMc(2) (6)

= - pTHt —D"” Bt
Mp(t) = k(1 — e™) + 3 + B)
D, _., D,
+ m e g s W)
and
= —ut, — p—Mmt __DL Bt Do —at _ &}
Volt) V{ke (- )+ﬁ(u+ﬂ)e +u+ﬂe 8

v(Mp(t) — ke ), 8)

In this case, the total numbers of connected and disconnected
circuits are dependent random variables.

We may also obtain the coefficient of correlation p between the
number of active circuits at different times

plY(t), Y(t + 7)] = e~ W+b/27, 9)

where Y(¢) is the number of active circuits at time ¢.

2.4 Estimation of the model parameters

To use results such as (2) through (9), we must be able to estimate
the parameters 8, D,, v, and u. These questions are addressed in
Section V; we provide a brief summary here. Suppose that the system
has been observed over the interval [—0, 0] and n connect orders are
observed at times ¢, ..., t,. Form the statistic

3

S =) t/nd + 1, (10)
1
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and then the maximum likelihood estimator J for the growth rate £ is

L1
B=51") (11)

where f is the function given in (79). Values of f™* are available in
Table I. Once 3 has been obtained from (11), the estimator D, for the
instantaneous present demand D, (assumed to be at the end of the
interval of observation [—0, 0]) is

R S
D, = 1oV (12)
where N is an estimator for the average number of circuits per order
and is equal to the average number of circuits actually observed per
order. The estimator » for the batchiness v of the order size is

M8

K%,
p=0 (13)
Y ki

k=1

-

where i, is the observed number of existing orders of size k. The
estimator 4 for the parameter u can be obtained as the average
disconnect rate for observed circuits
p=2, (14)
T

where m is the total number of disconnects observed, and 7 is the sum
of the observed connection times for all circuits; u can also be obtained
from estimators of the churn and growth rate through the use of (1).

Estimation of these parameters from data supplied by New Jersey
Bell Telephone Co. is being investigated. Estimates of the disconnect
rate i by service family are available in the Reed and Smith paper,?
in which it is shown that the lifetimes of special-service circuits are
well approximated by exponential functions with means dependent on
the service families.

I1I. A GENERALIZED MODEL

This section treats a model that is more general than that which we
propose for special-service activity in most cases. The analysis pre-
sented here will be applied to the specific model in Section IV.
3.1 Description of the generalized model

We examine an arbitrarily defined category of special-service cir-
cuits (for example, circuits of a particular service family in a given
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wire center) and divide the active circuits into independent groups.
Possibly, each group is the demand from a single user, since it is
reasonable that the activity of one user does not affect another. To
facilitate this method of thinking we shall refer to the groups as
“orders.” Each order becomes nonzero for the first time at some point
in time (referred to as the arrival or connect time of the order) and
. then has some history of changing size in some arbitrary manner
before possibly becoming zero again indefinitely at some time (the
departure or disconnect time of the order). The length of the interval
between the arrival and departure of an order will be called the lifetime
of the order. Obviously, the number of active circuits at any time
equals the sum of the sizes of the existing orders at that time.

We assume that there is a large pool of customers (or potential
orders) so that the arrival of an order has little effect on the potential
arrival of others. Thus, the arrival of orders can be modeled by a
nonhomogeneous Poisson process, whose intensity at time ¢ is given
by some function \(t). For background on this process see Ross® or
Karlin and Taylor.* Denote the probability that an arriving order at
time ¢ is initially of size m as q,(¢), and let P}, (t, x) be the probability
that an order arriving at time ¢ of initial size m as becomes size n at
time x = t.

3.2 Distribution of the number of active circuits at a given time

Since the orders are noninterfering it can easily be seen (see Appen-
dix B) that the number of orders of size n at time x is Poisson
distributed with mean «,(x), where

an(x) = X J: NOgm()Prn(t, x)dt, (15)

and that the numbers of orders of different sizes at time x are
independent of each other. If Y(x) is the total number of active special-
services circuits in the category of interest at time x, then Y(x) has a
compound Poisson distribution (see Appendix A), and

E(Y@] = 3 nauta), (16)
and
var[Y(x)] = 2_: nlo(x). aam

3.3 Distribution of future active circuits due to present orders

The transient behavior of this model is easily derived if one has
knowledge of the distribution of order sizes at a given time. We treat
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this case first and then consider the more difficult case where only the
total number of active circuits at a given time is known. In either case,
we will find the distribution of the number of active circuits at time y
resulting from the orders observed to be active at time x. The total
circuits active at time y is the sum of this with the number of circuits
at time y resulting from orders arriving between x and y.

Case 1: Order sizes known

Given an order is of size n at time x, the conditional density that it
arrived as an order of size m at time t is pnn(t, x), where

At)gm(t)Prn(t, x)
an(x)

Pmn(t, x) = (18)
and if several orders of size n are present at x their arriving times and
sizes may be considered to be conditionally independent (see Appendix
B). Thus an order of size n at time x becomes an order of size [ at time
y = x with probability r.(x, y) where

ru(x, ¥) = az'(x) 2=1 J: _ MO Prnlt, £)qmn(t, x, y)dt,  (19)

and g (t, x, y) is the conditional probability that an order arriving as
size m at time t which is of size n at time x becomes size [ at time y.
Note that g, is not available solely from P*.

Equation (19) allows us to compute the distribution of the total
number of circuits at time y that were due to orders observed at time
x, since all orders behave independently. Evaluating these distributions
explicitly can be quite difficult. We can, however, easily evaluate the
moments. Let M,(x, y) be the mean order size at time y for an order
observed to be size n at time x, and let V,(x, ¥) be the mean order size
at time y for an order observed to be size n at time x, and let V,(x, y)
be the analogously defined variance. Then

Mn(x’ y) = 121 lrnl(xy y)a (20)
Vn(x9 y) = 121 l2rnl(xa y) - M?z(xy y)- (21)

If i,(x) is the number of orders of size n observed at time x, and
M(x, y) and V(x, y) denote the mean and variance of the number of
circuits at time y due to orders observed at time x, then

M(x, y) = X in(x)Mu(x, y), (22)

n
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and

V(x, y) = X in(x) Valx, ¥). (23)

Note that there is a potential problem if orders can become size zero

and then become nonzero later, since determination of i, the number
of active orders of size 0, may be an impossible task.

Case 2: Order sizes unknown

We now examine the more difficult case where we observe the total
number of active circuits at time x (call this k), without observing the
distribution of the order sizes. The conditional probability that there
are j, orders of size 1, j» orders of size 2, etc., given that k total circuits
are observed at time x, written 6;.(j1, je, .--.), is easily found to be

IT; [ei(x)/jid]

Ore(J1y Joy -..) = —, 24

el T2 o) = T e ] -
Ji# gt o=k i

provided that j; + 2js + --- = k. Let the conditional first and second

moment of the number of circuits at time y due to orders observed at
time x, given that a total of k circuits were observed at time x, be
M, (y) and M?, () respectively. Then

M;(y) = X E(WJ)Mi(x, y), (25)

where ¢J; is a random variable with the same distribution as the
conditional number of orders of size i at time x, so that the expectation
is the expectation with respect to the probability distribution given in
eq. (24). Also,

M2(y) = 3 EW:)Vilx, y) + E(E J:Mi(x, ¥))?), (26)

where the expectation is in the same sense as before. Needless to say,
these expectations with respect to the distribution in (24) are very
difficult to evaluate for substantial k.

Things simplify somewhat if

Mi(xy y) = ia(xr y)’ (27)

that is, if the conditional means are proportional to the size of the
order. In this case, (25) and (26) give

Mk,x(y) = ka(x’ y): (28)

and

M2(y) = 3 EWJ)Vilx, y) + E0%(x, y), (29)
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so that
Vk,x( y) = E E(Jt) Vi(x’ y)’ (30)

where V,,.(y) denotes the conditional variance. Equation (30) can be
approximated by using the following approximation which is intui-
tively reasonable for & near Y, io;(x),

a;(x)
Y do(x)”
In this case, (30) and (31) give the following useful approximation:

2 ai(x) Vi(x, y)
Y lai(x)

3.4 Distribution of future active circuits due to future orders

EWJ) =k (31)

Viily) = k (32)

In section 3.3, we found the mean and the variance of the number
of circuits at time y from orders observed at time x. To obtain the
total number of circuits at time y, we need to add to this the (inde-
pendent) number of circuits due to orders arriving between time x and
time y. The number of orders of size n at time y that arrived between
times x and y is easily seen to be Poisson with mean o, (x, y), where

a9 = 3 f NE)Gn(OPEn(t, ), (33)

and the number of orders of different sizes are independent of each
other (see Appendix B). Thus, the number of circuits at time y due to
arrivals occurring between x and y has a compound Poisson distribu-
tion (see Appendix A) with mean and variance denoted M*(x, y) and
V*(x, v), where

M*(x, y) = X naa(x, ¥), (34)

and
V¥(x, y) = ¥ nPaa(x, y). (35)

3.5 Mean and variance of future active circuits

To find expressions for the mean or variance of the total number of
active circuits at time y, we merely add together the appropriate means
or variances from the circuits active at time y due to orders observed
at time x and from the circuits active at time y due to arrivals between
x and y, since these are independent. For example, eqs. (28) and (34)
give

MEy) = ki(x, y) + X, nan(x, y), (36)
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where M7 .(y) is the total mean number of circuits observed at time y

given k circuits are observed at time x [and assuming relationship

(27)]. Also, egs. (32) and (35) give the following approximation:

Y ai(x) Vi(x, v)
2 tai(x)

where V7,(y) is the similarly defined variance.

Vidy) = k + X nan(x, y), (37

3.6 Churn

We have previously defined churn as the minimum of the disconnect
rate per circuit and the connect rate per circuit. Values of churn from
other definitions are also easily obtained. We will here derive the
churn, which happens to be a function of time in this case. To compute
churn we need to know the probability measure for the individual
order histories. Let U,(t, x) be the expected number of connects
for an order of size m arriving at time ¢ in the interval [t, x] (thus
Un(t, t) = m). The expected total connect rate at time x, denoted
U(x), is then found to be:

Ux) = d% <2 f ME)gm(t) Un(t, x)dt>, (38)
and similarly for the disconnects using the variable D,
d X
D(x) = i (2 J: A(t)gnm(t) D, x)dt>, . (39)

and thus we obtain the churn at time x, v (x):
v(x) = min{D(x)/E[Y (x)], U(x)/E[Y(x)]}, (40)
where E[Y(x)] is given by (16).

IV. THE MODEL FOR SPECIAL-SERVICE CIRCUIT ACTIVITY

Here, we assume that the demand rate grows exponentially and that
the behavior of orders is not dependent on the time of arrival. Specif-
ically, we assume,

AE) = e, (41)
gn(t) = qm, (42)

and
Pin(t, x) = Pon(x — t). ' (43)

Later we will assume a specific form for P,,,.
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Assumptions (41) through (43) are equivalent to:

1. exponential growth in the rate of new orders at rate 8 (new orders
occur as a nonhomogeneous Poisson process),

2. the probability that a new order is for m circuits is g, and

3. an order initially for m circuits requires a total of n circuits after
2 units of time with probability P,..(z). We will shortly further specify
P, to represent unchanging orders of exponential lifetime.

We now explore the consequences of (41) to (43) in the analysis
presented in Section III. Substituting into (15) we find that the number
of orders of size n at time x is Poisson distributed with mean o,(x),
where

an(x) = ane™, (44)

and

a, =X, 2 dm f e—ﬁmen(y)dy- (45)

(The total number of circuits required at any time has a compound
Poisson distribution, see Appendix A.) Thus, the mean and variance
of the number of circuits at time x, Y(x), are growing exponentially at
the same rate, and the ratio remains fixed:

E[Y()] = e* 3, na, (46)
n=1
var[Y(x)] = e* i nla,, 47
n=1
or
var[Y(x)] = vE[Y(x)], (48)
where
E: n’a,
=2} ) (49)
Y na,
n=1

Further results are possible if the behavior for orders over time is
specified. We assume that the order size does not change over its
lifetime, which has a common distribution with c.d.f. F independent
of size. Later we will assume that F is an exponential distribution.
Although in practice the number of circuits per order does change
with time, it is conceivable that this movement is relatively unimpor-
tant; or even if important, that the general form of egs. (2) and (3)

2922 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983



will hold, although the parameter x may then have a different physical
meaning than we will associate here. In the model suggested here,
Pro(y) = F(3); Pum(y) =1 — F(y); Pma(y) =0, n # 0, n # m. In this
case we may compute «, more explicitly. Substituting into (45), we
obtain

tn = gn (% - F(ﬁ)]), (50)
where

F‘(ﬁ)=f e ™dF(y). (51)

When the lifetimes are exponentially distributed with mean 1/u, i.e.
Fx)=1-e™,

op = er>\a(/-‘ + ﬂ)—l' (52)

Also, the batchiness » is related to the order-size distribution;
substitution into (49) yields

Y n’qn
V= """-:.
2 Nngn

The assumption that the order size does not change throughout its
lifetime also allows more explicit representation of the mean and
variance of the future requirements for circuits. Our development here
parallels that of Section III. We first compute the probability that an
observed order will change size during the period of observation. Recall
that ¢...(t, x, ¥) is the conditional probability that an order is of size [
at time y given that it was of size n at time x and arrived as size m at
time ¢. We easily obtain:

(53)

_Fy-1 ,
qmmm(t, xa y) - F(x _ t) ’ (54)
and
Qmma(t; X, y) = ]- - qmmm(t; X, y)’
where

F(x) =1 - F(x),

and @um(t, x, ¥) = 0,1 # 0, ! # m. The value of q is irrelevant for
n # m. k

We next find the probability that an order of size n at time x
becomes of size [ at time y, which we denote r,(x, y). Substitution into
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(19) gives

rux, y) =0, n #l, n # 0; (55)
ran(x, ¥) = G(y — %), (56)
where
e PF(z + t)dz
G(t) = —= ; (57)
f e P F(2)dz
and

rnO(x: y) =1- G(y - x)-
Note that in the exponential-lifetime case, where F(z) = ™2,
G(y) =e™. (58)

We next find the mean and variance of the number of circuits in an
order at time y, which was observed to be of size n at time x, denoted
M., (x, y) and V,(x, y), respectively. Substitutions of (55) and (56) into
(20) and (21) give:

M,(x,y) = nG(y —x), and (59)
Valx, y) = n’G(y — x)[1 — G(y — x)]. (60)

Notice that the conditional means are proportional to the size of the
order, i.e., (59) implies (27).

We now focus on the mean and variance of the number of circuits
at time y due to orders which were observed at time x, given that &
circuits were observed at time x. These quantities are denoted M, .(y)
and V,,(y) respectively. Equation (28) gives

M, (y) = kG(y — x). (61)

We also conclude that, given the approximation in (32),

WAw~kmy—wu—Gw—xn§”f (62)

thus
Vie = v[1 — Gy — )My (y), (63)

where use has been made of (53) and (61).
We next find the expected number of orders of size n at time y that
arrived during the interval (x, y) denoted a,(x, ). Use of (3.3) yields
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y—x
an(x, ¥) = Ae™qy f e P F(2)dz, (64)

where use is made of the fact P%.(t, x) = Qmmn(t, t, x), which follows
from (54). When the lifetime distribution for orders is exponential,
(64) becomes

1-— —(B+p)(y—x)
_J;__> (65)

an(x, y) = Ae™g, ( 5t

The mean and variance of all circuits at time y due to orders arriving
in the interval (x, y), M*(x, y) and V*(x, y), respectively, can be
obtained by substitution of (64) into (34) and (35) yielding

M*(x, y) = X\, ¥ ngpe™ j; o e F(z)dz, (66)
and
V¥x, y) = vM*(x, y), (67)
while for exponential lifetimes,
M¥(s, 3) = =2 (e — &), (68)
B+u
where
D, = X\e” ¥ ngn, (69)
and
t=y—ux.

Note that (61) and (68) [or (36)] give eq. (2), and (63) and (67) [or
(37)] give (3), since the total number of active circuits at time y is the
sum of the number of active circuits due to orders present at time x
and the number of active circuits due to order arrivals between times
x and y, and these random variables are independent. Equations (5)
through (9) can easily be derived by the methods described in the
paper, although we omit the details here.

Next, turning our attention to churn for the specific model of this
section, we find that the expected number of connects in the interval
[t, x] for an order arriving at time ¢ of size m, denoted U,(t, x), is
given by

Un(t, x) = m, (70)
and similarly,
Dn(t, x) = mF(x — t), (71)

SPECIAL-SERVICE CIRCUITS 2925



where the variable D represents disconnects. The total connect rate,
total disconnect rate, and churn rate at time x, U(x), D(x), and v(x),
respectively, can be obtained from (38) through (40), yielding

Ux) = Ne™ T mgm, (72)
D(x) = Noe™ 3 mgnF(B), (73)
and
v(x) = v =R/ - FB), B=0;
y(x) = v = /(1 - F(B)), B <0. (74)
In the special case where lifetimes are exponentially distributed,
Y= B=0;
y=urt+8 B<0. (75)

V. ESTIMATION OF THE PARAMETERS OF INTEREST

In this section, we describe the methodology that can be used to
estimate the three key parameters of the model; 8, the growth rate; ,
the disconnect rate; and », the batchiness.

5.1 Estimation of 8

Suppose that we wish to estimate 8 on the basis of observed arrivals
of orders, which by assumption occur according to a nonhomogeneous
Poisson process with intensity \,e”. Suppose that the system is
observed over the interval [—0, 0] and arrivals have been noted at
times ¢y, ..., t,. We show how to obtain the maximum-likelihood
estimator for 8. (For a discussion of maximum-likelihood estimation,
see any elementary book on statistics such as Mood & Graybill.)® The
log-likelihood function, In L(n, t,, ..., t,), is easily seen to be

i=1

n 1— e
InL(n, ty,...,t.)=nlnh, + 8 X & — X 3 . (76)

Differentiating with respect to A, and 8 we find the necessary
conditions for a maximum:

— p—Be
n/N = lTe (77)
n — p—Be
Yti— % e+ ), <1—Bf—> =0. (78)
i=1

Using (77) to eliminate A, in (78), we obtain

xe*—e*+1
=—x—(e—;:'17‘=f(x), (79)
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where
S = —Z—t' +1 (80)
no®

and
x = (0. (81)

The function f defined in (79) can be seen to be strictly monotonic
with range between 0 and 1. Therefore, eq. (79) allows us to solve for
B0 as f71(S), where S is the statistic defined in (80) equal to the
proportion of the interval (after — ©) at which the average time of
arrival occurs. Thus, the maximum-likelihood estimator for 8, written
B, is given by

s [7US)

B=—"%"" (82)

The function f has the properties:
f(=2) =0,f(0) =1/2,f(0) =1, and f(x)+f(-x)=1.
Thus,

F710) = o,
f1/2) =0,
Q) = o,

and
f11/2 = x) = —f7(1/2 + x).

The function f! is tabulated in Table I.
For small x, f(x) may readily be expanded in the power series:

f(x) =1/2 [1 + (1/6)x — L x3.. ]

360
so that
FH1/2 + y) = 12y + 28.8y3. ... (83)
Similarly, a large f expansion yields
1= 1/y) = y — y%™. (84)

We may also determine the mean and variance of the statistic S
given the correct parameter 8 and the number of observed arrivals. It
is well known that the distribution of the arrival times for a nonho-
mogeneous Poisson process, conditioned on a given number of arrivals
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Table |—Values of the function =" useful in
estimating the growth rate 8, and several
approximations for the function
[see eq. (79) and following]

Approxima- Approxima-

X FU(X) 12X(-6 tion in (83) tion in (84)
0.50 0.0000 0.0000 0.0000
0.52 0.2402 0.2400 0.2402
0.54 0.4819 0.4800 0.4818
0.56 0.7263 0.7200 0.7262
0.58 0.9751 0.9600 0.9747
0.60 1.2299 1.2000 1.2288
0.62 1.4926 1.4400 1.4898
0.64 1.7654 1.6800 1.7590
0.66 2.0507 1.9200 2.0380
0.68 2.3517 2.3280
0.70 2.6721 2.6308
0.72 3.0168 2.9467
0.74 3.3920
0.76 3.8060
0.78 4.2703
0.80 4.8010 4.8316
0.82 5.4219 5.4362
0.84 6.1691 6.1746
0.86 7.1010 7.1025
0.88 8.3164 8.3166
0.90 9.9954 9.9955
0.92 12.4994 12.4994
0.94 16.6667 16.6667
0.96 25.0000 25.0000
0.98 50.0000 50.0000
1.00 © ©

in the interval, is the same as the order statistics from n i.i.d. random
variables with probability density proportional to the arrival rate.
Thus S has the distribution of the average of n i.i.d. random variables,
Y; on [0, 1] with density g(p), where

glo) = 22—
and
x = (0.
It is easily seen that
E(Y) = f(x) (85)
and
var(Y) = 12 S S . (86)

X e*+e =2

Equation (86) is valid if x # 0; when x = 0, var(Y) = 1/12, the limit
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of (86) as x goes to 0. The expression for the variance is symmetric in
x and takes its maximum value at x = 0.

Thus, for a given value of the growth rate 8, and a (large) given
number of observations n, the observed statistic S is approximately
normally distributed with mean f(x) and variance less than or equal
to 1/12n. This observation can be readily translated into confidence
intervals through the use of elementary statistical theory. For example,
a 95-percent confidence interval for f(x) (assuming normality of the
statistic) is

1 1
S ~ 1.96 \/% <f(x) < S+ 196 \/;-n (87)

which translates to

-1 —_ —1— < < 1 _—L
f (s 1.96 \/;J\ﬁe\f (S+ 1.96 \/;) (88)

If S is close to 0.5, then we can use f*(x) = 12x — 6 [see (83)] to
obtain for the 95-percent confidence interval for 30
6.79

ﬁ®=12S—Gi-ﬁ. (89)

5.2 Estimation of v

There are several possible statistics for the measurement of the
batchiness ». We shall take as our starting point eq. (49) which defines
the batchiness in terms of the distribution of the order size at (any)
point in time. This is preferable and is more robust than using the
distribution of the order size on arrival, although the two happen to
equal when order sizes do not change with time. Thus, if » is to be
estimated based on observation of the system at a given point in time
at which i, orders of size n are observed, then a reasonable estimator
for v, which we write , is:

Y niy
S i, (90)
When the number of circuits does change during the lifetime of an
order, it is possible that the form of (3) still holds. In this case, it is
likely that the parameter » which multiplies each of the two terms in
(3) is different. Equation (90) is a reasonable estimator for the multi-
plier of the second term. The multiplier of the first term should be
estimated by other methods.

p =
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Table Il—Notation

D,
D(x)
D,(t, x)

in(x)
Ji

M(x, y)
M*(x, y)

MI.(y)
Mka(y)

MZ(y)

M (x, y)
Pr(t)
Pr.(t, x)
qm

gm(t)
qmnl(ty X, y)
rnl(x) J’)

U(x)
Un(t, x)

Vix, y)
V¥, y)
Vidy)
Vialy)
Valx, )
Y(x)

n
an(x)
an(x, y)

8
Y

Okcljny Jor - - -

0(x, y)
0

Ao
A(t)
I

v

Pmnlt, X)

Present (¢ = 0) circuit demand rate due to new orders.
Expected total disconnect rate at time x.

Expected number of disconnects in the interval [¢t, x] for an order
of size m arriving at time ¢.

Observed number of orders of size n at time x.

Conditional number of orders of size i due to orders observed at
time x given that k circuits were observed at time x.

Mean total number of circuits at time y due to orders.

Mean of the total number of circuits at time y due to orders arriving
between x and y.

Mean of the number of circuits at time y given k are observed at
time x.

Conditional expectation of the number of circuits at time y due to
orders observed at time x given that k circuits are observed at time
x.

Conditional second moment of the number of circuits at time y due
to orders observed.

Mean order size at time y for an order observed to be of size n at
time x.

Probability that an order of initial size m becomes of size n, t time
units after arrival.

Probability that an order arriving at time ¢ of initial size m becomes
of size n at time x.

gm(t) when there is no dependence on ¢.
Probability that an order at time ¢ is initially for m circuits.

Conditional probability that an order arriving as size m at time ¢
and of size n at time x becomes of size [ at time y.

Probability that an order of size n at time x becomes an order of
size [ at time y.

Expected total connect rate at time x.

Expected number of connects for an order of size m arriving at time
t in the interval [¢, x].

Variance of the total number of circuits at time y due to orders
observed active at time x.

Variance of the total number of circuits at time y due to orders
arriving between x and y.

Variance of the number of circuits at time y given that k are observed
at time x.

Conditional variance of the total number of circuits at time y due
to orders observed at x given that & circuits are observed at time x.

Variance of order size at time y for an order observed to be of size
n at time x.

Total number of active special service circuits at time x.
Constant of proportionality for the exponential growth of a,(x).
Mean number of orders of size n at time x.

The number of orders of size n at time y which arrived between
times x and y.

Growth rate.
Churn.

Conditional probability that there are j; orders of size 1, j, orders
of size 2, etc., at time x given that k total circuits are observed at
time x.

Defined in (27).

Length of observation period.

Present (¢t = 0) arrival rate of orders.
Instantaneous arrival rate of orders at time £.
Disconnect rate (per circuit).

Batchiness.

The conditional probability density that an order arrived at time ¢
of initial size m given that it is of size n at time x.




5.3 Estimation of p

The estimation of u is relatively straightforward. The maximum-
likelihood estimator is given in (14) and further details including
estimated values by service family are given in Reed and Smith.?

5.4 Estimation of D,
Equation (77) allows the MLE estimator of A,

~ nﬁ

A = 1= oo’ (91)
where the estimator 3 has been previously described in (82). The
estimator of D, (the instantaneous demand at the end of the obser-

vation interval of length 0), D, then is
D = AOI\J, (92)

where N is an estimate of the average batch size. The previous
expectation can be estimated from the order sizes at arrival epochs, or
more crudely from the general distribution of order sizes at an arbitrary
point of time.

Interestingly enough, D,/(u + 8) can be estimated solely from the
number of active circuits at a point of time. For simplicity, we assume
that the orders are solely of size one, although the analysis could be
repeated for other distributions. In this case, the following analysis is
applicable.

Suppose that the number of active circuits at time ¢ is a Poisson
random variable with mean \e®. The time that the mean is between

x and x + dx is dx/xB. The expected time that the mean is between x
k

and x + dx and a total of k active circuits are observed is d—ﬁ % e*.
Thus, if k active circuits are observed, the conditional distribution
of the mean (in our case this is D,/(z + 8)) has density proportional
to x*"le7* or is a standard gamma random variable with k degrees
of freedom. This random variable has mean and variance equal
to k. Thus, if k circuits are observed, the conditional distribution of
D,/(u + B) has mean k and variance k, and is approximately normally
distributed if k is large. This information can be used to modify egs.

(2) and (3), to take into account the variability of D,/(u + 8) to obtain:
M, (t) = ke™, (93)

and
Vi(t) = vk[e® — e + k[ef — e, (94)

where the subscript k on the variables on the left-hand side indicates
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conditional means and variances knowing 3, u, and » but not knowing
D,. Note that the variance-to-mean ratio is unbounded for increasing
t, since errors in estimation of D, accumulate indefinitely.

VI. SUMMARY

We have described a model for special-services activity useful in
forecasting special-services requirements. It requires three physical
characterizations of the process (growth rate, disconnect rate, and
batchiness) and two instantaneous measurements (the current number
of active circuits and the instantaneous rate of new connects). We
give means and variances for the numbers of active circuits at a given
point in the future and for the total number of connects or disconnects
during a future period. The distribution of these variables can be
computed by the methodology described in the paper. We also describe
general techniques for estimation of the required parameters.

Work is being undertaken to verify and calibrate the model with
the New Jersey Bell Telephone Co. database and will be reported
elsewhere.
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APPENDIX A
The Compound Poisson Random Variable

Briefly, a random variable is said to be a compound Poisson random
variable if it can be thought of as the sum of a Poisson number of
independent identically distributed positive integer-valued random
variables. Thus Y is a compound Poisson random variable if

N
Y = 2 Xi,
=1
where N is a Poisson random variable with mean «, N and the X; are
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independent and
P{X; = n} = px.
We have rather easily
E(Y) = aE(X) = a Ynp.
Var(Y) = aE(X? = a Yn’p,.

An alternative (and equivalent) way of specifying a compound Poisson
random variable is

where

Z; are independent Poisson random variables with E(Z;) = ap; = «;.
In this case it is convenient to think of Z; as the number of batches or
orders of size n that are aggregated to give the total number denoted
Y.

APPENDIX B
The Nonhomogeneous Poisson Process

A process which counts events is a nonhomogeneous Poisson process
(see, for example, Ross, Ref. 5) with intensity A(¢) = 0 if the number
of events in the interval [x, y] is a Poisson random variable with mean
J2 M(¢t)dt, and the number of events in disjoint intervals are independ-
ent.

Fact: If events from a nonhomogeneous Poisson process are of two
types, and an event at time ¢ is of Type 1 with probability p(t), then
the process which counts Type 1 events is a nonhomogeneous Poisson
process with intensity A(¢)p(t), and it is independent of the counting
process which counts Type 2 events [which is a nonhomogeneous
Poisson process intensity A(t)(1 — p(t)].

Fact: Suppose that a nonhomogeneous Poisson process is observed
over the interval [x, y] and n events are observed. If the times of these
events are arranged in random order, their distribution is identical to
that of n independent identically distributed random variables whose
density at ¢ is

At)

f Nz)dZ

if t € [x, y] and is zero otherwise.
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TELBECC—A Computational Method and
Computer Program for Analyzing Telephone
Building Energy Consumption and Control

By P. B. GRIMADO*
(Manuscript received February 2, 1983)

Telephone Building Energy Consumption and Control (TELBECC) pro-
gram has been developed to accurately and efficiently analyze environmental
control and energy use in telephone company buildings. The program simulates
various operational plans to determine the relative energy and cost savings.
By analyzing the operation of the heating, ventilation, and air conditioning
system as it regulates a changing environment, TELBECC calculates the
heating and cooling load, dry-bulb temperature, and relative humidity in the
building. The user specifies the building’s dry-bulb temperature limits, which
are the control variables for the program analysis. The simplified computa-
tional procedure of the program incorporates a recursive scheme using time
series to perform the necessary calculations. The results of the computations
can be obtained for different periods: the quarter hour, hour, day, or month.
Energy consumption and control in several equipment buildings located in
three different geographical areas have been analyzed by TELBECC. Analysis
and comparison of the resulting data demonstrate the advantages of the
program.

I. INTRODUCTION

An ambitious energy-cost savings program has been instituted to
reduce energy use in telephone company buildings. In recent years,
telephone companies have saved energy mainly by redesigning and

* Bell Laboratories.
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any other portion of this paper must be obtained from the Editor.
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retrofitting buildings to operate and maintain environmental control
equipment at peak performance, to turn out unneeded lights, to reduce
heating and cooling losses, and the like. Further energy and cost
savings, although requiring additional capital investment, could be
achieved through modification of environmental control systems, pur-
chase of sophisticated microprocessors for more efficient control of
building Heating, Ventilating, and Air conditioning (HVAC) systems,
and installation of alternative energy sources, such as solar power and
wind power. Before adopting any conservation plans that require
appreciable capital investment, however, we should make a thorough
economic evaluation. Such an evaluation can be carried out by corre-
lating the changing operating characteristics of a building with selected
energy conservation plans. This procedure would enable us to pinpoint
the most economical operating strategies.

There are several commercially available computer programs to
perform this type of analysis, such as DOE II, ESP, and BLAST;!?
most, however, are proprietary. These complex programs can analyze
any of a broad spectrum of commercial, industrial, and residential
buildings. But, because of their versatility, they require large computer
systems, extensive data preparation, and high costs. The use of energy
in the majority of telephone company equipment buildings, which are
small, single-story structures varying in area from 1500 to 10,000
square feet, can be best evaluated by a more focussed computer
program.

This paper describes a new computational method and computer
program called Telephone Building Energy Consumption and Control
(TELBECC). This program simulates building operations and quickly
evaluates numerous energy conservation plans and cost-saving strat-
egies under variable weather conditions [according to standard hourly
Test Reference Year (TRY) weather data®). The program can evaluate
energy consumption for intermittent or proportional HVAC plant
operation, economy cycle operation, enthalpy cycle operation, and
wideband temperature operation with no heating or cooling between
preset room temperature limits. Also, the program can calculate the
optimum building orientation and U factor (heat transmission char-
acteristics) of the outside walls and roof, chiller and heater plant size,
dry-bulb temperature and Relative Humidity (RH) variations, and
quantity of water required to maintain 20-percent minimum RH
during economy cycle operations.

Il. PROGRAM DESCRIPTION

We can derive the heating or cooling load in an enclosed building
from the following considerations:
1. Conduction of heat through the building walls and roof.
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2. Permeation of outside air through the building envelope.

3. Internal heat generation from equipment, lights, and people.

4. Direct solar radiation through windows and skylights (fenestra-
tion).

Since most operating company equipment buildings have few win-
dows, the program does not consider item 4 in the present version.

A Constant-Air-Volume (CAV) supply fan system typically controls
the air temperature of a building. The building engineer normally sizes
the fan system using the elementary steady-state heat balance, which
takes into account the internal heat loads, outside air temperatures,
and solar radiation in conjunction with the U factor of the building
envelope. In general, this conservative approach produces fan systems
that are oversized and therefore inefficient. To find a smaller, and
perhaps more efficient, fan capacity, a TELBECC user selects different
fan capacities for analysis by the program. The program generates
data on the space temperatures, relative humidity, peak heating and
chiller loads, and the hours of system operation for the different fan
capacities that can be used to find an optimum air supply fan system.

For comfort, a limit is imposed on the difference between HVAC
supply and return air temperatures. For cooling, this temperature
difference is —20 degrees F; for heating, +40 degrees F. These default
values may be overridden by the user. With an environmental dry-
bulb temperature standard specified, the program computes the re-
quired operation of the HVAC.

The user can specify one of two basic ways to operate the HVAC:
intermittent operation or proportional control. With intermittent
operation, the HVAC does not supply any heating or cooling when the
dry-bulb air temperature is within the wideband temperature range.
Reaching or exceeding either wideband temperature limit activates
the HVAC. The HVAC stays on and does not deactivate until the dry-
bulb air temperature reaches 3 degrees F above the lower limit of the
wideband temperature range for heating and 3 degrees F below the
upper limit of the wideband temperature range for cooling. The TEL-
BECC user can reset the numerical values of the throttling range if a
different range is appropriate. The proportional control plan operates
by continuously adjusting the supply and return air temperature
difference in increments of 1 degree F to satisfy the instantaneous
building heating or cooling load. This plan follows the building load
to closely track the lower and upper limits of the wideband temperature
range with essentially no throttling. When selecting a dual or extended
wideband temperature standard (that is, one with different wideband
limits for occupied and unoccupied times), the HVAC activates before
occupancy in order to reach the preset temperature standard.

TELBECC calculates the heat added or removed by the HVAC
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system in controlling the dry-bulb air temperature every quarter hour.
In particular, when cooling is required, the sensible and latent loads
on the chiller plant are simultaneously computed by incorporating any
of three standard methods of fan system operation:

1. Conventional operation, which is chiller operation with no econ-
omizer.

2. Chiller operation with a dry-bulb economy cycle.

3. Enthalpy cycle.

In conventional operation, the minimum quantity of outside air needed
for ventilation is circulated. This mode is also used as a benchmark
for the program. The dry-bulb economy cycle uses outside air for
cooling whenever the outside dry-bulb air temperature falls below the
maximum value. The default value is 55 degrees F, but the user can
reset the value. The enthalpy cycle checks the enthalpy of the inside
air and the outside air. If the outside air enthalpy is lower, 100 percent
outside air is circulated to reduce the load on the chiller regardless of
the relative humidity. Otherwise, only the minimum quantity of out-
side air required for ventilation is circulated.

System control is based on dry-bulb air temperature and is not
predicated on maintaining a particular value of relative humidity.
Nevertheless, the program computes changes in relative humidity for
the three methods of fan-system operation discussed above. The
program summarizes the variation in relative humidity for the time
period chosen by giving the number of hours the relative humidity is
less than 10 percent, between 10 and 15 percent, between 15 and 20
percent, between 20 and 55 percent, between 55 and 60 percent, and
greater than 60 percent.

In addition, since dry-bulb economy cycle operation generally calls
for bringing in winter air with low humidity, the program calculates
the quantity of water required for humidification. The operating
company minimum standard of 20 percent RH in the inside air for
dry-bulb economy cycle operation in winter is the basis for calculating
the amount of water added to the air.

HI. TRANSIENT HEAT CONDUCTION THROUGH THE BUILDING
ENVELOPE

Weather conditions influence the heating and cooling load of a
building by heat conduction through the structural and decorative
materials of the exterior walls and roof, as well as by permeation of
outside air and direct absorption of solar radiation through window
areas. Since, as previously mentioned, most operating company equip-
ment buildings have few windows, only heat conduction and permea-
tion are treated in the computer program. The program must account
for the heat storage effects of the structure, as well as the daily and
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seasonal variation of the outside air temperature and solar radiation.
We can account for these influences on the building by considering
the building envelope elements as one-dimensional flat slabs or plates.
We then obtain a solution to a partial differential equation with time-
dependent boundary conditions. A classical analytical solution of this
equation® produces a set of equations that require an inordinate
quantity of computational effort and time, rendering the whole idea
of performing the analysis impractical and uneconomical. However,
the analytical solution can be recast into a simpler, though effective,
computational scheme with a method first introduced by Mitalas and
Stephenson,® which is ideally suited to calculation by computer.

The inside-wall and roof-surface temperature Tge(t) and the air
temperature of the building T.(t), which are dependent on time,
determine the environmental load due to convection.* Tgg(f) is rep-
resented in the form of the following time series:

m-1 m m ,
TBE, = - '21 biTBE,-; + _21 (liToH_l + '21 a; Tat—i—l’ (1)
i= i= i=

where

= current time,
Tgg, = inside-wall temperature of the building at the current time,

TsE, ; = inside-wall temperature of the building i time units prior
to ¢,
To,., = outside sol-air temperature® / time units prior to ¢, and

T,,_, = air temperture of the building ¢ time units prior to t.

For hourly temperature calculations, the number of terms, m, will
rarely exceed 5, and for quarter-hour calculations, m will generally be
less than 15. The recursive properties of the calculation make it
extremely efficient and economical, especially when the operating
characteristics of the building may need to be tracked for an entire
calendar year. The coefficients b;, a;, and a/in eq. (1) are determined
from the thermophysical properties of the structure. Only six values
are needed to uniquely specify these coefficients: wall thickness, wall
U factor, wall-weight density, effective heat-transfer coefficient of the
inside- and outside-wall surface, and the time interval between
successive calculations. The appendix presents the mathematical pro-
cedure to evaluate these coefficients. Figures 1 and 2 show the math-
ematical and physical models for deriving the coefficients.

We can validate this simplified computational approach by compar-

* Radiative interchange between inside building-wall surfaces is not included in the
present version of the program.
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Fig. 2—Homogeneous flat slab.

ing it with an exact solution given in the literature.” We can see this
in Figs. 3 and 4 for several values of the inside-wall dimensionless
convective heat-transfer parameter B; = h;L/k and two limiting values
of the outside-wall convective heat-transfer parameter Bo = hoL/k. In
Fig. 3 the outside-wall convective heat transfer parameter Bo = 0; i.e.,
the surface x = L is insulated. In Fig. 4 the solution corresponds to Bo
approaching o; i.e., the surface x = L is maintained at a constant
temperature. The initial and boundary conditions are indicated in the
figures. The solid curves represent the exact condition given in Ref. 7,
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Fig. 3—Temperature response of front face of plate, 0 < x < L, with back face 0 < x
=< L, with back face x = L maintained at To = 0 degree F after sudden exposure to
uniform-temperature convective environment T, = 1 degree F at x = 0. Sampling
interval A is one min.

and the dots represent the numerical values computed by the time
series in eq. (1). The sampling interval for this example is A = 1 min.
or, in terms of dimensionless time, kA/L* = 0.001. We can see that
after some time has elapsed the exact solution and the time-series
solution match identically. For the problem considered here at ¢ = 0,
the ambient convected temperature T, is suddenly raised from T, = 0
to T, = 1; i.e., the boundary condition is a step function. However,
since the development of the time series assumes a linear variation
between time intervals, as stated in the appendix, the solution resem-
bles an initial ramp followed by a constant value, as shown in Fig. 5.
Once the effect of the initial ramp input diminishes after about 10
sampling intervals, the solution coincides with the exact solution. This
characteristic of the time series is not a problem here, since instanta-
neous changes of air temperatures inside and outside the building do
not occur.

IV. CALCULATION OF BUILDING AIR TEMPERATURE AND ENERGY
USE

The air temperature of the building is obtained through the following
equation for the heat balance within the building:

qair(t) = Qequipt(t) + q1ights(t) + Qpeople(t)
+ Qinﬁltration(t) + qwalls(t) + qHVAC(t), (2)
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Fig. 4—Temperature response of front face of plate 0 < x = L, with insulated back
face x = L after sudden exposure to uniform-temperature convective environment T, =
1 degree F at x = 0. Sampling interval A in one min.
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Fig. 5—Convection temperature environment at inside boundary surface x = 0.

where g, (t) (Btu/hr) represents the sensible thermal-energy convec-
tion rate of the inside air, resulting in a change in the overall dry-bulb
air temperature. The other terms on the right represent the rate at
which heat is convected to the air from the following: equipment heat
dissipation; lighting; people; inadvertent infiltration of outside air; the
exterior walls, floor, and roof of the building; and the building’s HVAC
control system.

To evaluate the air temperature T,.(t) from eq. (2), each term is
expressed as the difference in temperatures between the air and the
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heat-convecting medium. We can determine T,(t) from the following
differential equation:

dT.(t)

pev— = HerAgi[TeL(t) — Ta(t)] + pem[To(t) — Ta(t)]

+ HggAgpe[Tse(t) — Ta(t)] + pcQ[DTsp(t)], (3)
where

T.(t) = average building dry-bulb air temperature;
TeL(t) = combined average temperature of the equipment, lights,
and people;
To(t) = outside dry-bulb air temperature;
Tre(t) = inside surface temperature of the building envelope;
DTsp(t) = difference between the air-supply temperature and the air
temperature of the building;
p = air density;
¢ = air specific heat;
v = volume of the building space;
Hgzr, = heat-transfer coefficient between the air and equipment;
AgL = average surface area of equipment;
m = rate at which outside air infiltrates the building;
Hpgg = heat-transfer coefficient between the building envelope
and air;
Apg = surface area of the building envelope; and
@ = air-supply rate of the HVAC system fan units.

Only one of the temperatures in eq. (3) is presumed known: the out-
side-air dry-bulb temperature, To(t). The other four tempera-
tures—T,(t), TeL(t), Tre(t), and DTsp(t)—are coupled; therefore, ad-
ditional equations are needed for their resolution.

We can consolidate our terms into two other equations. When we
combined the heat gain generated by the equipment, lighting, and
people into a single term for heat dissipation per unit of building floor
area W(t)(W/ft?), one additional equation can be written as

dTgL(t)
dt

CrL = 3.41 A W(t) + HeLAgu[Ta(t) — Teu(t)], (4)

where

CeL = heat capacity of the equipment, lights, and people;
Ay = building floor area; and
W(t) = combined heat dissipation of the equipment, lights, and peo-
ple per unit of building floor area.

A third equation coupling the building envelope temperature Tgg(t)
and the building air temperature T.(t) is needed. A likely equation
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would be the time series given by eq. (1). But before this can be
applied, both egs. (3) and (4) must also be recast in the form of time
series. This is easily done by using the properties of the z transform
and the procedure already delineated in the appendix. The time-series
solution of egs. (3) and (4) assumes the form

At + s —

To, = sTs , + < A ) [reLTrL + T0To + 788TBE + 75D Tsp):

1—s(Ar + 1
+ (_L—)) [7eLTEL + 70To + 78eTBE + 7sPDTsple-1, (5)

Ar?
and
“ AT + §

TEL: = STELt—l (_I__A__— [TWW + 7a a]t
1—-3sA7 +1)] .. .
[—_(AA—ZJ [ WW + TaTa]t—h (6)

e
where

A = sampling time interval,
7eL = HeLAgL/pcv,

T0 &= m/U’
e = HpgAge/pcv,
Tsp = Q/v,
7=7gL+ 70 + TBE + Tsp,
s =EXP(—AT),
Tw= Af/CEL,

7a = HrrAgL/Ce,
7T =74 + t,, and
§ = EXP(-A7),

and the subscripts ¢ and ¢ — 1 indicate that the temperature is evaluated
at times t = nA and t = (n — 1)A.

The calculation of the humidity ratio in the space is also formulated
in terms of a first-order linear differential equation in time similar to
egs. (3) and (4). This equation is also recast in the form of a time
series [see egs. (5) and (6)]. Knowing the humidity ratio and the dry-
bulb air temperature, we can find the relative humidity by employing
standard psychometric formulae.®

As previously noted in Section II, the system of egs. (1), (5), and (6)
permits controlling the dry-bulb air temperature in two basically
different ways, intermittent operation and proportional control, and
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determines the hours of operation. We use these equations for inter-
mittent HVAC operation where we assume that the HVAC system
holds the supply and return air-temperature difference constant at
DTsp = —20 degrees F whenever cooling is required and at DTsp = 40
degrees F whenever heating is required. The hours of operation, and
hence the total quantity of heat removed or added to satisfy the
imposed dry-bulb temperature standard, can then be determined. For
the proportional control plan, egs. (1), (5), and (6) are also used to
calculate not only the hours of HVAC operation but also the numerical
value of the supply and return air-temperature difference DTgp(t),
which in general varies continuously for this mode of control. The
variation in time of the numerical value of DTsp(t) is determined by
just satisfying the instantaneous building environmental load. When
the HVAC system is activated, the proportional control plan closely
follows the lower limit (for heating) or the upper limit (for cooling) of
the building wideband temperature range.

Once DTsp(t) and the hours of operation are known, the program
calculates the heat added or removed from the building by the HVAC
system during every quarter hour and for whatever other period is of
interest, e.g., monthly. As a corollary, we can estimate the environ-
mental control system energy use, assuming the following HVAC
system characteristics:

1. For chiller operation, a constant Coefficient Of Performance
(COP) supplied by the user, together with the quantity of heat removed
from the building air, characterizes its energy requirements.

Table I—Equipment buildings analyzed

Energy Consumption and Control

Wideband Temperature
(°F)

Occupied  Unoccupied

Case Times Times Control Geographic Location
1 65-80 65-80 Intermittent New York City
2 65-80 65-80 Proportional New York City
3 65-80 60-85 Intermittent New York City
4 65-80 65-80 Intermittent New Orleans
5 65-80 65-80 Intermittent Phoenix

Building Parameters

Factor Parameter
Size (L X W X H) 60 ft X 40 ft X 13 ft
Average heat transmission U = 0.25 Btu/hr — ft?
Occupancy time 8 am. to 6 p.m.
Fan support rate 7400 CFM
Ventilation capacity 150 CFM
Static fan pressure 2 in. of water
Internal heat load 15W/ft?
Economy cycle temperature limit <65 degrees F
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Table lla—Intermittent control of building space air temperature—New York City, case 1 in Table |
Max Load Total Load

Degree-Days  Space Temp (tons) (MBtu) Number of Hours  Heating Cooling (kWh) Water (gal) to
(kWh Maintain 20%
Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) NoEcon Econ Min RH

Jan 858 0 76.1 80.5 0.0 133 0.0 49.2 0 319 314 0.0 5291.2 1229.3 1352.7
Feb 797 0 76.3 80.5 00 133 0.0 44.2 0 256 -281 0.0 47544 1114.7 1143.5
Mar 703 0 76.5 80.5 00 13.3 0.0 56.1 0 361 356 0.0 6021.7 1391.1 1026.2
Apr 358 0 76.6  80.6 00 13.6 0.0 65.1 0 414 334 0.0 6967.9 2582.9 321.7
May 118 38 76.6  80.6 0.0 139 0.0 77.5 0 486 179 0.0 8271.2 5901.2 101.2
Jun 23 147 76.6  80.9 0.0 14.2 0.0 83.1 0 512 36 0.0 8833.2 8348.4 0.0
Jul 0 325 76.7 80.8 0.0 14.2 0.0 92.6 0 563 0 0.0 9819.7 9819.7 0.0
Aug 0 268 76.7 8l.1 0.0 14.2 0.0 90.4 0 550 0 0.0 9590.8 9587.5 0.0
Sep 32 116 76.8 80.9 0.0 141 0.0 80.1 0 495 42 0.0 8521.6 7960.9 20.2
Oct 192 21 764 80.6 0.0 139 0.0 71.7 0 450 207 0.0 7659.2 4928.8 79.3
Nov 625 0 76.1 80.6 00 13.6 0.0 53.7 0 344 306 0.0 5755.8 1764.3 1124.1
Dec 793 0 764 80.5 0.0 134 0.0 50.2 0 323 292 0.0 5385.9 1593.2 1245.5

Totals 4499 915 76.1 8l.1 0.0 142 0.0 814.0 0 5107 2351 0.0 86873.0  56222.0 6414.0

Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F,
economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760.




2. For fan operation, fan power is calculated from the following
equation:

Fan power (kW) = 2.487 X 107" X Q X AP, (7
where

Q(CFM) = air flow delivered by the fan; and
AP = static pressure head of the fan in inches of water.

By multiplying the fan power by the total hours of fan operation, we
can obtain the total energy use (kWh).

3. Humidification costs are based on supplying energy at the rate
of 1000 Btu per pound of water added to the supply air stream. Costs
are derived from the unit cost of energy, such as electricity ($/kWh),
natural gas ($/1000 ft3), and fuel oil ($/gal), which is supplied by the
user. An 80 percent efficiency rate is assumed for these energy sources.

4. Heating costs are similarly calculated by the unit cost. An 80
percent efficiency rate is also used in these calculations.

V. ILLUSTRATIVE EXAMPLES OF ENERGY CONSUMPTION AND
CONTROL

Different geographic loctions of equipment buildings, dual or ex-
tended wideband temperature limits, and the method of HVAC control
(intermittent or porportional) are considered in several variations.
Table I gives this information along with some of the more salient
building parameters. The results of the calculation are summarized by
month in Tables II through VI for the cases specified in Table 1. We
assume here that a conventional cooling system, consisting of a chiller

Table llb—Intermittent control of building space air temperature—
New York City, case 1 in Table |

Number of Hours at Specified Relative Humidity (No Humidity Control)
<10% 10-15% 15-20% 20-55% 55-60% >60%

Conv (no econ) 697.00 1090.00 1086.75 5886.25 0.0 0.0

Economy 815.25 1048.75 1029.75 5866.25 0.0 0.0
Enthalpy 697.50 1101.00 1144.00 5817.50 0.0 0.0

Estimated Operating Cost for Cooling at $0.10/kWh for Electricity
(Chiller COP = 3.50)

Conv (no econ) $9687 for 86870 kWh  (Fans = 18669 kWh, chiller = 68201 kWh)

Economy $8622 for 56221 kWh  (Fans = 18669 kWHh, chiller = 37552 kWh)

Enthalpy $7534 for 75342 kWh  (Fans = 18669 kWh, chiller = 56673 kWh)

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10/kWh for
Electricity

Humidification $1959 for 19580 kWh

Heating $0 for 0 kWh

Notes: Min space temp occurred on day 300, max space temp occurred on day 213,
max cooling load occurred on day 224.
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Table llla—Proportional control of building space air temperature—New York City, case 2 in Table |
Max Load Total Load

Degree-Days  Space Temp Number of Hours Heating Cooling (kWh) Water (gal) to

(tons) (MBtu) (kWh Maintain 20%
Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) No Econ Econ Min RH
Jan 8.58 0 789 80.0 0.0 78 0.0 44.7 0 744 741 0.0 6465.4 2734.1 4261.7
Feb 797 0 79.9 80.0 0.0 8.3 0.0 40.4 0 672 667 0.0 5839.7 2487.0 3737.9
Mar 703 0 79.9 80.0 0.0 8.5 0.0 52.6 0 744 744 0.0 7126.1 2719.8 2885.7
Apr 358 0 799 80.0 0.0 10.0 0.0 62.3 0 720 652 0.0 7855.6 3182.1 837.9
May 118 38 79.9 80.0 0.0 114 0.0 75.4 0 744 434 0.0 9034.2 5461.4 262.5
Jun 23 147 79.9 - 80.0 0.0 12.2 0.0 81.4 0 720 139 0.0 9451.8 8252.0 0.0
Jul 0 325 79.9 80.0 0.0 13.0 0.0 91.0 0 744 0 0.0 10342.3  10342.3 0.0
Aug 0 268 79.9 80.0 0.0 123 0.0 88.9 0 744 10 0.0 10172.1  10080.5 0.0
Sep 32 116 79.9 80.0 0.0 114 0.0 78.2 0 720 135 0.0 9187.3 8078.6 76.3
Oct 192 21 79.9 80.0 0.0 11.2 0.0 69.2 0 T44 514 0.0 8520.7 4672.8 241.7
Nov 625 0 79.9 80.0 0.0 8.6 0.0 50.1 0 720 696 0.0 6828.1 27974 33124
Dec 793 0 79.9 80.0 0.0 8.5 0.0 46.1 0 744 731 0.0 6584.7 2806.8 4105.5
Totals 4499 915 799 80.0 0.0 13.0 0.0 780.3 0 8960 5466 0.0 97408.0  63615.0 19721.0

Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F,
economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760.



and air-handling unit, provides cooling. By comparing the different
cases, we find some interesting results.

Case 1 differs from case 2 in that the HVAC is intermittently
controlled in case 1, but proportionally controlled in case 2. We see
from Tables IIb and IIlb, for example, that the maximum cooling
loads for both cases occur close in time [August 12 (day 224) and July
31 (day 212)]. However, the maximum cooling load of 13 tons for the
proportional control plan (Table IIla), which compares favorably with
the load of 14.2 tons for the intermittent control plan (Table Ila),
reduces the required size of the chiller plant by 9 percent. We would
expect such a reduction from using a control sequence that follows the
load closely and minimally overshoots the dry-bulb air temperature.
Also, a control plan that matches the fan capacity to the load would
compare favorably in energy use with on-off fan operation.

We can see in Table IIla (in the column labeled “Space Temp”)
that the proportional control plan regulates the temperature to within
one-tenth of a degree of the wideband temperature limit for the entire
calendar year. For the economy cycle operation, the yearly electrical
use of case 1 in Table IIb is 56,221 kWh, and that of case 2 in Table
IIIb is 63,614 kWh. The chiller energy consumption for case 1, 37,522
kWHh, is larger than that for use 2, 31,591 kWh. The proportional
control plan, which modulates the air-supply temperature, requires
the fan to run continuously at maximum power for the entire year.
This maximum use of the fan creates larger overall energy require-
ments in spite of lower chiller energy use. However, a variable-air-
volume system that modulates the fan supply rate to match loads
should decrease the required fan power and significantly reduce total
energy use.

Table Illb—Proportional control of building space air temperature—
New York City, case 2 in Table |

Number of Hours at Specified Relative Humidity (No Humidity Control)
<10% 10-15% 15-20% 20-55%  55-60% >60%

Conv (No Econ) 869.75 1090.75  1118.756  4393.26  1011.25  276.50
Economy 911.256  1092.50  1110.50  4354.00 1015.00  276.75
Enthalpy 869.75 1095.50  1134.50  4337.75 938.75  383.75

Estimated Operating Cost for Cooling at $0.10/kWh for Electricity
(Chiller COP = 3.50)

Conv (no econ) $9741 for 97400 kWh  (Fans = 32023 kWh, chiller = 65383 kWh)

Economy $6361 for 63614 kWh  (Fans = 32023 kWh, chiller = 31591 kWh

Enthalpy $8930 for 88296 kWh  (Fans = 32023 kWh, chiller = 56273 kWh)

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10/kWh for
Electricity

Humidification $6022 for 60219 kWh

Heating $0 for 0 kWh

Notes: Min space temp occurred on day 100, max space temp occurred on day 10,
max cooling load occurred on day 212.
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Table IVa—Intermittent control of building space air temperature—New York City, case 3 in Table |
Max Load Total Load

Degree-Days  Space Temp tons MBtu Number of Hours  Heating Cooling (kWh) Water (gal) to
¢ ) ( ) (kWh Maintian 20%
Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) NoEcon Econ Min RH

Jan 858 0 747 854 0.0 132 0.0 46.8 0 304 299 0.0 5033.1 11711 1590.2
Feb 797 0 75.1 854 00 133 0.0 42.2 0 274 268 0.0 4534.1 1074.7 1341.3
Mar 703 0 76,0 854 0.0 133 0.0 53.8 0 347 343 0.0 5776.8 1326.7 1302.5
Apr 358 0 76.3 85.6 0.0 13.6 0.0 62.8 0 400 326 0.0 6725.0 2452.0 446.6
May 118 38 76.3 85.6 00 139 0.0 75.4 0 473 225 0.0 8047.1 5073.1 158.9
Jun 23 147 76.3 85.6 0.0 141 0.0 81.3 0 502 70 0.0 8643.7 7711.2 0.0
Jul 0 325 76.3 85.7 0.0 142 0.0 90.7 0 553 0 0.0 9625.4 9625.4 0.0
Aug 0 268 76.2 85.8 0.0 14.2 0.0 88.6 0 541 3 0.0 9406.7 9356.9 0.0
Sep 32 116 75.7 85.6 0.0 141 0.0 78.3 0 485 72 0.0 8336.3 7384.6 45.6
Oct 192 21 76.0 855 0.0 13.9 0.0 69.5 0 437 245 0.0 7422.9 4189.6 148.0
Nov 625 0 75.1 85.5 0.0 13.6 0.0 51.7 0 332 307 0.0 5545.3 1556.7 1332.1
Dec 793 0 755 854 0.0 134 0.0 48.0 0 310 285 0.0 5152.6 1457.1 1429.6
Totals 4499 915 74.7 858 0.0 142 0.0 789.0 0 4962 2447 0.0 84249.0 52379.0 7795.0

Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied times = 65° to 80°F, wideband temperature
limits for unoccupied times = 60° to 85°F, economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760.



Tables IVa and IVb display monthly energy use for case 3 of Table
1. Differing from case 1, this plan imposes dual wideband temperature
limits. The wideband temperature limits for unoccupied times increase
to 60 degrees F and 85 degrees F. Tables IVa and IVb show that this
simple change with economy cycle operation reduces annual cooling
energy use by 7 percent, from 56,222 kWh to 52,379 kWh. We can
attribute this saving mainly to the lower chiller energy requirement,
from 37,552 kWh to 34,237 kWh, and to a lesser extent to the smaller
fan energy requirements, from 18,669 kWh to 18,141 kWh.

Tables V and VI show the results of the simulation for the buildings
located in New Orleans and Phoenix, cases 4 and 5 of Table I. We can
see that the maximum chiller load, 14.4 tons, is the same for these
diverse locations. The total energy required in these buildings for
economy cycle cooling is also nearly equal, 85,027 kWh and 85,123
kWh. Since the cooling load includes both sensible and latent energy,
we can surmise from the degree-day totals that the dominant load on
the system for Phoenix is sensible heat, and on that for New Orleans
latent heat. The distribution of the relative humidity and the costs for
humidification shown in Tables Vb and VIb tends to support these
observations.

We can see the advantages in running the TELBECC program to
compare different control plans. For example, although the intermit-
tent control plan appears to use less energy overall, the proportional
control plan actually reduces the size of the chiller plant by 9 percent
in the same locale under similar conditions. The higher overall costs
can be attributed to continuous operation of the fan, which, if operated
to match the load, would consume much less power and make the

Table IVb—Intermittent control of building space air temperature—
New York City, case 3 in Table |
Number of Hours at Specified Relative Humidity (No Humidity Control)
<10% 10-15% 15-20% 20-55% 55-60% >60%

Conv (No Econ) 857.50 1205.75 1213.00 5483.75 0.0 0.0
Economy 976.75 1115.75 1138.25 5529.25 0.0 0.0
Enthalpy 857.50 1241.00 1212.00 5449.50 0.0 0.0

Estimated Operating Cost for Cooling at $0.10/kWh for Electricity
(Chiller COP = 3.50)

Conv (no econ) $8425 for 84247 kWh  (Fans = 18141 kWh, chiller = 66106 kWh)

Economy $5238 for 52378 kWh  (Fans = 18141 kWh, chiller = 34237 kWh)

Enthalpy $7278 for 72776 kWh  (Fans = 18141 kWh, chiller = 54635 kWh)

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10/kWh for
Electricity

Humidification $2380 for 23802 kWh

Heating $0 for 0 kWh

Notes: Min space temp occurred on day 22, max space temp occurred on day 224,
max cooling load occurred on day 224.

TELBECC 2951



€861 ¥3AWIDIA “TIYNINO! TVYIINHDIL WILSAS 1139 IHL TS6T

Table Va—Intermittent control of building space air temperature—New Orleans, case 4 in Table |
Max Load Total Load

Degree-Days Space Temp tons MBtu Number of Hours  Heating Cooling (kWh) Water (gal) to
( ) ( ) (kWh Maintain 20%
Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) NoEcon Econ Min RH

Jan 502 0 76.4  80.6 00 135 0.0 60.8 0 388 341 0.0 6518.0  2044.9 386.5
Feb 465 0 764 80.6 00 138 0.0 55.9 0 356 287 0.0 5984.1 2231.2 865.2
Mar 204 8 76.6  80.7 0.0 14.0 0.0 72.8 0 458 223 0.0 7776.9 4836.3 74.3
Apr 21 133 76.6 80.9 0.0 14.2 0.0 81.1 0 499 36 0.0 8624.8 8136.8 0.2
May 0 296 76.7 811 0.0 143 0.0 91.7 0 555 2 0.0 9716.7 9690.2 0.0
Jun 0 459 768 81.1 0.0 144 0.0 95.7 0 570 0 0.0 10103.2 10103.2 0.0
Jul 0 457 76.8 81.1 00 144 0.0 98.3 0 583 0 0.0 10369.4 10369.4 0.0
Aug 0 477 76.7 80.8 0.0 144 0.0 98.6 0 586 0 0.0 10402.5 10402.5 0.0
Sep 0 397 76.8 81.0 0.0 144 0.0 92.8 0 553 0 0.0 9797.1 9797.1 0.0
Oct 25 147 76.7 80.9 0.0 14.1 0.0 83.9 0 516 31 0.0 89154 8503.2 0.0
Nov 123 62 76.6 809 00 142 0.0 73.5 0 456 141 0.0 7824.2 5953.5 83.7
Dec 383 1 76.1 80.6 00 139 0.0 64.6 409 300 0.0 6909.0  2960.9 228.1
Totals 1723 2437 76.1 81.1 0.0 144 0.0 969.7 0 5934 1364 0.0 102941.0 85029.0 1638.0

Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F,
economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760.



Table Vb—Intermittent control of building space air temperature—
New Orleans, case 4 in Table |
Number of Hours at Specified Relative Humidity (No Humidity Control)
<10%  10-15%  15-20%  20-55% 55-60% >60%

Conv (No Econ) 14.25 395.50 441.25 7909.00 0.0 0.0
Economy 60.0 383.00 474.75 7842.25 0.0 0.0
Enthalpy 14.25 419.00 455.25 7871.50 0.0 0.0

Estimated Operating Cost for Cooling at $0.10/kWh for Electricity
(Chiller COP = 3.50)

Conv (no econ) $10294 for 102939 kWh (Fﬁ%hT 21693 kWh, chiller = 81246

Economy $8503 for 85027 kWh wi%h? 21693 kWh, chiller = 63334

Enthalpy $9295 for 92949 kWh (Flil\}&sfh)= 21693 kWh, chiller = 71256

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10/kWh for
Electricity

Humidification $500 for 5002 kWh

Heating $ 0 for 0 kWh

Notes: Min space temp occurred on day 345, max space temp occurred on day 147,
max cooling load occurred on day 165.

proportional control plan much more attractive. We can conclude that
TELBECC has great potential for pinpointing significant energy
reductions and cost savings before a building’s HVAC system is
purchased.

VI. CONCLUSIONS

The TELBECC program analyzes more efficiently and quickly than
any method used heretofore the possible telephone building environ-
mental energy use and control options. To pinpoint the most econom-
ical energy-conservation plan, the program analyzes multiple plans at
minimal cost and with minimal expenditure of time. The program
calculates the energy consumed every quarter hour by the HVAC in
regulating the environment under changing weather conditions. It
computes the required energy from the physical characteristics of the
building envelope, such as the U factor, internal heat generation,
geographic location, orientation of the building, and the dry-bulb
temperature standard. In order to make it feasible to calculate by
computer, we employ a simplified recursive computation procedure
using time series. For each of the illustrative problems in Tables II
through VI, the procedure produced monthly projections; yet it took
less than 40 seconds to calculate results on an IBM/3033 computer.
From the examples, we see the advantages and disadvantages of both
the intermittent and proportional control plans, as well as the signif-
icant savings obtained from increasing the range of the dual or

TELBECC 2953



€861 YIAWIDIA “TYNINOI TVIINHDIIL WILSAS 1799 IHL +S6T

Table Vla—Intermittent control of building space air temperature—Phoenix, Ariz., case 5 in Table |
Max Load Total Load

Degree-Days  Space Temp (tons) (MBtu) Number of Hours  Heating Cooling (kWh) Wa.ter (gal) to
(kWh Maintain 20%
Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) NoEcon Econ Min RH

Jan 432 0 76.3 80.6 0.0 135 0.0 62.8 0 401 300 0.0 6724.2 2812.0 1132.0
Feb 257 1 76.5 80.7 0.0 136 0.0 61.5 0 390 249 0.0 6578.6 3313.1 455.0
Mar 139 12 766 80.7 00 135 0.0 74.0 0 468 212 0.0 79080  5125.0 1705.1
Apr 38 122 76.6 81.1 0.0 13.7 0.0 79.6 0 497 104 0.0 8486.9 7105.4 336.4
May 16 403 76.7 81.2 0.0 139 0.0 92.1 0 570 38 00 9807.0 9301.8 64.9
Jun 0 560 76.7 81.1 0.0 141 0.0 95.8 0 589 2 0.0 10181.0 10148.0 256.0
Jul 0 847 76.9 81.2 0.0 144 0.0 109.5 0 657 0 0.0 11574.5 115745 0.0
Aug 0 679 76.7 81.2 0.0 144 0.0 104.1 0 626 0 0.0 11016.5 11016.5 0.0
Sep 0 521 76.8 80.8 0.0 14.2 0.0 94.4 0 574 0 0.0 10010.3 10010.3 0.0
Oct 14 201 76.6 81.0 0.0 14.0 0.0 84.5 0 525 86 0.0 9003.7 7860.2 12.0
Nov 196 0 76.5 80.6 0.0 13.6 0.0 67.8 0 428 236 0.0 7243.1 4138.2 161.3
Dec 413 0 76.5 80.6 0.0 134 0.0 63.0 0 401 307 0.0 6742.1 2719.4 458.0

Totals 1505 3346  76.3 81.2 00 144 0.0 989.0 0 6130 1536 0.0 105276.0  85124.0 4582.0

Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F,
economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760.




Table VIb—Intermittent control of building space air temperature—
Phoenix, Ariz., case 5 in Table |

Number of Hours at Specified Relative Humidity (No Humidity Control)
<10% 10-15% 15-20% 20-55% 55-60% >60%

Conv (No Econ) 168.50 611.50 1430.00 6550.00 0.0 0.0
Economy 199.00 627.00 1432.25 6501.75 0.0 0.0
Enthalpy 185.50 648.50 1375.00 6551.00 0.0 0.0

Estimated Operating Cost for Cooling at $0.10/kWh for Electricity
(Chiller COP = 3.50)

Conv (no econ) $10527 for 105274 kWh  (Fans = 22412 kWh, chiller = 82862
kWh

Economy $8512 for 85123 kWh (Fans = 22412 kWh, chiller = 62711
kWh)

Enthalpy $9205 for 92054 kWh (Fans = 22412 kWh, chiller = 69642
kWh)

Estimated Operating Cost for Humdification (20% min) and Heating at $0.10/kWh for

Electricity
Humidification $1399 for 13991 kWh
Heating $0 for 0 kWh

Notes: Min space temp occurred on day 18, max space temp occurred on day 225,
max cooling load occurred on day 204.

extended wideband temperature limits for unoccupied times. In the
larger view, we can understand how TELBECC can significantly
contribute toward the operating companies’ energy-conservation plan
for future savings.
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APPENDIX

Calculating Inside-Wall Temperature Time Series Coefficients b;, a;, a} of
Eq. (1)

The basis for computing the time-series coefficients is the z trans-
form,® a discrete function transformation. This transformation is
applied to time functions sampled at regular intervals of time. The z
transform has the same role in discrete systems that the Laplace
transform has in continuous systems analysis.

Let us consider a continuous function of time f(t). When the
function is sampled at regular intervals A, the output consists of a
train of pulses, as illustrated in Fig. 1. We defined the z transform of
this output as a polynomial in powers of z™* in the following:

f0) + f(A)z71 + f(2A)z272 + f(BA)z% + ... )

The successive outputs of the sampler are the coefficients of the
successive powers of 27! in the z transform.

A linear system is characterized when its response to an elementary
input (such as a pulse, a unit step, or, as will be adopted here, a unit
ramp) is ascertained. This is nothing more than obtaining a transfer
function of the system. If both input and output of the system are
expressed in terms of their z transforms, the ratio of output/input is
the z transform of the system. If we assume that such a transfer
function, G(z), can be found and that it can be expressed as the
quotient of two polynomials in 27!, then

Nz a+az' +az?+ .- az”
D(Z) bo + b12—1 + b22_2 + ... pr_p.

It follows that the z-transform of the output O(z) resulting from an
arbitrary input I(z) is represented by

0(z) = G(2)I(z) or (10)
O(2)D(z) = N(2)I(2). (11)

Since both sides of (11) are polynomials, the coefficients of the various
powers of z~! must be the same on beth sides of the equation. If, say,
the coefficients of z™" are equated, eq. (11) yields

G(z2) =

©)

boOn = aoI,, + (11I —1 + (121,,_2 + ... + ajI,,-,-
= [010n—1 + b20n—2 + -+ + b0,p).  (12)

The subscript n on O and I indicates the value of the function at
t = nA; ie., O, = O(n4), the coefficient of z™" in the z transform of
O(z). This expression relates the output at-any time ¢ = nA to the
input at that time and the input and output at earlier times. The
coefficients ao, --- a; and b, --- b, contain all the characteristics of
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the system. With the properties of the z transform described above, a
method for determining the z transform or time-series coefficients for
the inside building wall temperature follows.

If we consider the outside building walls and roof structure as
homogeneous flat slabs (Fig. 2), the temperature in the slab adheres
to the following equations:

) 8T, T,
ox? ot
Ty(x, 0) = 0,

= —ho[T(L, t) = To(?)],

= Tu(9)], (13)

where

Ty(x, t) (°F) = temperature in the slab,
L(ft) = slab thickness,
k(Btu/hr — ft — °F) = thermal conductivity,
k = «/pc(ft*/hr) = diffusivity,
pc(Btu/ft?) = volumetric heat capacity,
ho(Btu/hr — ft? — °F) = outside-wall heat transfer coefficient,
hi(Btu/hr — ft*> — °F) = inside-wall heat transfer coefficient,
To(t) = outside sol-air temperature, and
T.(t) = inside building air temperature.

It is convenient to use the Laplace transform

Ti(x, p) = £ Ty(x, t)e™dt

to eliminate the independent time variable ¢ in eq. (13). Then the
solution for the inside wall surface (x = 0) temperature in terms of the
transform parameter p assumes the form:

hilkq cosh(gL) + ho sinh(qL)]Ta(p) + hoquo(p)
hi[kq cosh(qL) + ho sinh(gL)]
+ kq[kq sinh(qL) + ho cosh(qL)]
(14)

T.(0, p) =

where g = (p/x)"/2

Letting T.(t) and To(t) be unit ramp functions and inverting eq.
(14) back to the real-time domain by using standard residue theory in
the complex plane, the solution for T%(0, t), the temperature of the
inside surface, is expressed as
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T(0, t) = TM(O, t) + T(0, ¢), (15)

where T(0, t) is the portion of the solution dependent on the outside
sol-air temperature, and T (0, t) the part dependent on the building
space-air temperature. These temperatures are explicitly:

2 X .
TM(, t) = Bo [ 1 (t _ L? (3B + BoB: + 3Bo + 6))

Bi + B()Bi + B() 6K (Bl + BoBi + BO)

2L2 el —olkt/L*
T 2 2B, + BoBi + B) — o] ] , (16)
€08 an, — ax(2 + Bo + Bj)sin 01,1}

and

1 L2
2) = . —_
T30, 9 = B, [Bi + BoB; + Bo (ex (3 + Bo)

_ L* (1 + Bo)(3Bi + B;Bo + 3B, + 6)
6« (B; + BoB; + Bo)

+ 1+ Bo)t)

k n=1 o3[(B; + B;Bo + Bo — 2]

_ 2 g [an008 ap + Bosin a,le” " ] , (7
.COS ap, — an[2 + Bo + Bjlsin a,

hoL hL

where By = e B, = Y and «, are roots of the transcendental

equation

a? — BoB;
an(Bo + B;)’

Equations (15) through (17) contain all the ingredients for forming
the z-transform transfer functions for the inside-wall surface temper-
ature. These are obtained by forming the ratio of output/input z
transforms as per eq. (9):

T{(0, 2) @ _ IO, 2)
To 204 7@ ="70;

To(t) and T,(t) were taken as unit ramp functions, and therefore their
z transform from Ref. 8 is given as

cot o, = n=12 ...,

GV(z) = (18)

To@) = Tu(2) = 27 ===+ (19)

The sampling interval is A. The use of the input ramp function
amounts to linear interpolation between the discrete values given by
the z-transform coefficients.
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The z transforms of both TV(0, z) and T®(0, z) are similar in form
and, with the aid of the table of z transforms given in Ref. 8, can be

expressed as
A(12) B(IZ)A o C(12)
T‘gl,Z)(Oy z) = 1 -1 + 2(1 — Z 1)2 E (20)

where

_ 2
AY == B :(‘)’; T By 8Bi + BoBi + 3Bo +6),

Bo

W _
B B; + BoB; + Bo ’
C(l) — _ 2L2B0 1
I K a3{[(B; + BoB; + Bo) — of] ’
-cos a; — «;(2 + Bo + B;)sin o}
AD = B;
B; + BoB; + Bo
L? L? (1 + Bo)(8B: + BiBo + 3Bo + 6)
( 8+ Bo) — & (B; + BoB, + Bo) ’
B(g) = Bl(]- + BO)
B; + BoB; + Bo ’
2B;L? ajcos a; + Bosin «;
@ _ _ i J j o j
G K e3[(B;i + B;Bo + By — )] » and
-cos o — aj(2 + Bo + B;)sin o
5= e—a,Ax/L

Equation (18) can now be expressed in the form of a ratio of polyno-

mials in 271

(1,2)
G(1.2)(z) = ND1(22()2) , (21)

where, from the results of egs. (19) and (20),
NOD(z) = (A(1,2) 2(1 —27") + B(1,2)> 1 1 - sz7Y
A j=1

1 — s—1)2 ©
;A2 S can [ (1 - 5y,

A n=1 Jj=n
D(z) =1 (1 —sz™.
j=1
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Equation (21) is the form of eq. (9); consequently, the b; coefficients
that are derived, as in eq. (12), from the coefficients of the polynomial
D(z) can be generated by a recursive scheme given as

bo=1,b"=0,0""=b" — 5 pb"n=1,.-- N (22

The number of s; terms needed to obtain the desired degree of accuracy
for the b; coefficients is indicated by the index n = N, which in most
instances should not exceed 20. _

The a; and a! coefficients in eq. (1) came from N®(z) and N?(z2),
respectively, by expanding these functions into polynomials in powers
of 27 ie.,

NOz) =gz + a2 + ---
NP@)=qalz '+ atz2 + -.

The desired coefficients are sorted out.
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This paper derives fixed-order recursive Least-Squares (LS) algorithms that
can be used in system identification and adaptive filtering applications such
as spectral estimation, and speech analysis and synthesis. These algorithms
solve the sliding-window and growing-memory covariance LS estimation prob- -
lems, and require less computation than both unnormalized and normalized
versions of the computationally efficient order-recursive (lattice) covariance
algorithms previously presented. The geometric or Hilbert space approach,
originally introduced by Lee and Morf to solve the prewindowed LS problem,
is used to systematically generate least-squares recursions. We show that
combining subsets of these recursions results in prewindowed LS lattice and
fixed-order (transversal) algorithms, and in sliding-window and growing-
memory covariance lattice and transversal algorithms. The paper discusses
both least-squares prediction and joint-process estimation.

1. INTRODUCTION

Computationally efficient recursive Least-Squares (LS) algorithms
have recently attracted attention in applications such as adaptive
equalization,'™ echo cancellation,® and speech analysis and synthesis®’
because of their fast convergence properties when compared to older
least-mean-square or gradient adaptation techniques.®*° Since the
work on computationally efficient LS algorithms by Morf and others
first appeared in Refs. 11 and 12, numerous papers have followed that
produce computationally efficient algorithms that solve different types
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of autoregressive LS estimation problems.'®"’” In general, these algo-
rithms fall into four categories: (1) prewindowed recursive LS, (2)
sliding-window recursive LS, (3) growing-memory covariance recursive
LS, and (4) nonrecursive LS algorithms. Each of the first three
categories has two subcategories: fixed-order, or transversal, algo-
rithms; and order-recursive, or lattice, algorithms.

References 1 and 12 present a prewindowed LS algorithm that
satisfies a transversal filter structure (fast Kalman algorithm). Sub-
sequent Refs. 7, 18, and 19 describe prewindowed and growing-memory
covariance LS algorithms that satisfy a lattice structure. Normalized
prewindowed LS lattice algorithms that involve fewer recursions than
the original unnormalized versions, and which have the important
advantage that all internal variables are less than or equal to unity in
magnitude are presented in the more recent Ref. 13. Reference 14
extends the normalized lattice algorithms to solve the sliding-window
and growing-memory covariance LS problems. The recursive algo-
rithms mentioned so far require order N arithmetic operations per
iteration to update the filter parameters, where N is the order of the
filter. A computationally efficient order-recursive algorithm that
solves the set of linear equations for the covariance LS prediction
problem has been presented in Ref. 11, and extended to the joint-
process-estimation case in Ref. 17. These algorithms require order N?
operations to compute the LS prediction coefficients and are nonre-
cursive in the sense that the solution generated at time interval i is
not used to generate the solution at time interval i + 1.

This paper attempts to unify and extend the previous work by (1)
systematically generating all of the recursions needed to derive all of
the previously mentioned algorithms, and (2) using these recursions
to derive new recursive fixed-order sliding-window and growing-mem-
ory covariance LS algorithms. These new algorithms solve directly for
the prediction- or autogressive-model coefficients, and involve signif-
icantly less computation than both the unnormalized and normalized
versions of the order-recursive or covariance lattice algorithms pre-
sented in Ref. 14. In addition, in some applications it may be advan-
tageous to work directly with the prediction- or autogressive-model
coefficients, rather than the set of reflection coefficients produced by
lattice algorithms. The algorithms mentioned in the previous para-
graph, along with the new ones derived here, are obtained by appro-
priately arranging subsets of least-squares recursions. The geometric
or Hilbert space approach originally used by Lee and Morf?® to derive
the prewindowed LS lattice algorithm is used to derive all of the basic
least-squares recursions in a cohesive manner. In this paper, however,
only scalar-valued data are considered.

The next section defines the sliding-window and growing-memory
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covariance LS problems to be solved. Then Section III reviews the
geometric approach to LS estimation. Fundamental order and time
updates for the least-squares projection operator are given in Section
IV, with derivations in Appendix A. In Section V these projection
updates systematically derive least-squares recursions. Section VI
gives fixed-order covariance algorithms and Section VII extends the
preceding discussion to the joint-process-estimation case. Appendix B
lists subsets of recursions in Sections V and VII that constitute other
LS algorithms.

il. PROBLEM STATEMENT

We start by defining a sequence of data values yo, y1, - - , yi, where
i is the current time index. A linear least-squares forward predictor of
order n chooses the coefficients f;, to minimize

i

n 2
g(iln) = X (ym - ,;1 fjlnym—j) : (1)

m=i’

where i’ to i is the time window of interest. The coefficients fjj,, 1 =
J < n, are called the forward-prediction coefficients. A linear least-
squares backward predictor of order n chooses the backward-prediction
coefficients bj,, 1 < j < n, to minimize
i n 2
&(iln) = Z.’ (ym—n - 21 bjlnym—j+1) . (2)
m=i j=

Minimization of (1) rather than (2) is generally desired for a given
application. The forward and backward prediction problems stated
above are closely related, however, and the LS algorithms to be
presented use the backward prediction coefficients to solve for the
forward prediction coefficients in a computationally efficient manner.

If, instead of estimating future values of the same process, we wish
to estimate another related process {x;}, the least-squares cost function
becomes

i n 2
fx(iln) = Z.I (xm - 21 cjlnym—j+1> ’ (3)
m=i j=

where tap coefficients ¢;;, replace the prediction coefficients f;, and
bjjn. The cost function (3) is relevant to joint-process-estimation
problems such as channel equalization and echo cancellation. In the
case of channel equalization, y; is the ith sample of the channel output,
and x; is the ;th channel symbol.

Setting the derivatives of the cost functions (1), (2), and (3) with
respect to the prediction (tap) coefficients equal to zero results in the
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following linear equations:

Prri-11af@I0) = X ¥j¥j-1im, (4a)
Jj=i’
q)i’,ilnb(iln) = .z’ Yi-rn¥jlIns (4b)
Jj=i
and
®ivne(i|n) = 2 %jYjin, (4c)
Jj=i
where
fT(iln) = [fllnf2|n T fnln]: (5a)
bT(lln) = [bllnbzln te bnln]’ (5b)
c"(i|n) = [c1nCain «++ Cnpnls (5¢)
yJ"II‘n = [y¥j-1 =+ + Yj-nt1l, (6)

and the covariance matrix

i
Biriin = X YiinYjin- (7
J=i

Suppose now that i’ =0, and that y, is the first available data
sample. The least-squares solutions for f, b, and ¢, obtained by solving
(4), are undefined since they depend on the unspecified data values
y—1,y — 2, ..., y_n. The simplest, and perhaps most popular,
technique for circumventing this problem is to assume all data values
¥;, J < 0, are zero. The least-squares solutions resulting from this so-
called prewindowed estimation are then well defined as long as the
covariance matrix is nonsingular. In applications such as speech
modelling, however, where estimates of the prediction coefficient
vector f(i]n) are desired given relatively few data samples, prewin-
dowed estimation may result in undesirable edge effects from assuming
data is zero outside a given window. For these types of applications, it
is desirable to estimate the prediction coefficients without any as-
sumptions concerning the data outside the time window of interest.

Covariance least-squares estimation replaces the lower time limit i’
in (1), (2), and (3) by n, so that only known data values are used to
compute the LS prediction (tap) coefficients. The improved estimates
so obtained are not without cost, however. The resulting covariance
LS algorithms derived in this paper and elsewhere’ involve more
computation than prewindowed LS algorithms. Notice that at each
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iteration I, the prediction coefficients are computed from i + 1 data
values. Because the number of data samples entering the least-squares
computation grows with time, this type of estimation has been called
growing-memory covariance estimation.®

Finally, another windowing technique that has attracted attention
recently is the sliding-window technique, in which the lower time limit
i’ in (1) and (2) is replacedby i — M+ n+ 1,andin 3) byi — N +
n, where M is a predetermined constant. At each iteration the least-
squares prediction coefficients are therefore computed from a fixed
number (M) of data samples. Notice that data samples outside the
time window i — M + 1 to i have no effect on the least-squares solution
for f, b, and ¢ at time i, i.e.,, they are totally forgotten. This is in
contrast to more conventional exponential forgetting techniques that
reduce the effects of past data samples in a more continuous fashion.!®
The sliding window is therefore useful in applications where the
autoregressive model changes abruptly with time, or where undesirable
transients periodically affect the data samples. In the former case,
when the model parameters change, the sliding window eventually
discards data values corresponding to previous model parameters. In
the latter case, the sliding window eventually discards corrupted data
values.

Computationally efficient recursive algorithms that solve the grow-
ing-memory covariance and sliding-window LS estimation problems
will be derived in Sections V through VII. The next section develops
the necessary mathematical background by reviewing the geometric
interpretation of linear least-squares estimation.

IIl. MATHEMATICAL BACKGROUND

Given two vectors X and Y having the same dimension i, the inner
product of X and Y is defined to be

(X, Y) = X"WY, (8)

where W is some prespecified i X { weighting matrix. As an example,
a typical weighting matrix is the exponential weighting matrix

W;=[1lwuw?..- wI, 9)

where I is the i X ¢ identity matrix. For convenience, we will assume
that W is the identity matrix. Modification of the results in this paper
to the case where W is arbitrary is straightforward. The distance
between two vectors X and Y with the same dimension is therefore
the regular Euclidean distance,

dX, V) =Y -X|=(Y-X, Y - X)" (10)

The (nth order) projection of a vector Y onto a subspace (or
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manifold) M, which is spanned by the n vectors {X;, Xs, ---, X}, is
denoted as Py Y. The orthogonal projection of Y onto M is defined as

PHY =Y — PyY, (11)
and is orthogonal to the subspace M. This implies that
(X, Y- PyY) =0, for j=1,..-,n. (12)

Since Py Y lies in M, there exist constants, or regression coefficients
fi, fo, -+ -, f» such that

PyY = j§:1 X; = Sf, (13)
where S = [X; .-+ X;] and f7 = [f; - -- f.]. Using (12) and (13), it is
easy to show that

f=(S7S)7'S”X (14)
and
PyY = S(S7S)7'S"Y, (15)

assuming S”S is nonsingular.
The linear least-squares estimate of Y, based upon the vectors
X,, -+, X, is formed by choosing fi, - - - , f, such that

lel>=1Y — 21 X1 (16)
pa

is minimized. Differentiating this quantity with respect to f; and setting
the result equal to zero gives

Y= ,-g fX; = PuY, (17)
and the vector of estimation errors,
e=Y — ji fX; = PiY. (18)
We have identified the operator P as a least-squares projection.

IV. PROJECTION-OPERATOR UPDATE FORMULAS

In this section some fundamental relationships satisfied by the least-
squares projection operator are presented. These projection updates
fall into two main categories: order updates and time updates. Under
time updates are two subcategories, forward and backward time up-
dates. We point out in advance that a total of three projection-operator
updates will be used throughout this paper: one order update, one
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forward time update, and one backward time update. In addition, one
forward and one backward time update for inner products will be
needed.
4.1 Order updates

Given two vectors, Y and X, and a linear space M spanned by the

vectors X;, Xo, ---, X,, all in R, suppose we wish to calculate the
least-squares estimate of Y based upon the vectors X, - .-, X, and
X. In particular, we wish to find coefficients a;,j =1, .--, n, and b

such that || Y — (T aX; + bX) ||? is minimized. From the discussion
in the last section, we know that the least-squares estimate of Y is

n

2 anj + bX = P[M.,.x;Y, (19)

Jj=1

where {M + X} denotes the space spanned by M and X. We can write
the following orthogonal decomposition of the space {M + X},

M+ X} =M ® {P4X]. (20)

By the Hilbert space projection theorem,” we have that for any vector
Y €R;,

Puix)Y = PyY + PppxY. (21)

Figure 1 illustrates this equation for the special case n = 1. The

projection of Y onto the space spanned by two vectors X; and X; is
shown as the sum of the two projections Px Y and P,pi,lxz,Y.

Y
=
=\
— X IT\PXV
1 ! 1
L/ -7
P{P)l(.‘ Xz}v _—N IL/
/ P{x,+x2}Y
L

Fig. 1—Decomposition of P, +x,Y.
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Equation (21) constitutes a fundamental order update for the least-
squares projection operator. The (n + 1)st-order projection Py.x; is
expressed as the sum of the nth order projection Py, and the first order
projection Ppix;. By subtracting both sides of (21) from Y, we obtain
the following order update for the orthogonal projection operator P+,

P§]M+X]Y = P*,[Y - P{pﬁx;Y. (22)

4.2 Forward time updates

The forward time updates derived in this section compute a least-
squares projection at time i given the same least-squares projection at
time i — 1. These recursions, when combined with the order recursions
in the last subsection, can be used to derive prewindowed LS algo-
rithms. We first consider the following vectors X ; and Y, ;, which are
composed of data samples from time i, to i, i.e.,

XT:= [ xicr - X, (23a)
and
Yif,,- = [yi Yi-1 ++ Vil (23b)

For notational convenience, in this section only we will omit the lower
time subscript on the data vectors and assume it to be 7. Our objective
is to compute the linear least-squares estimate of Y,, given X, in terms
of a least-squares estimate that does not use the most recent value y;.
With this in mind we define the unit vector

u/=[10...00], (24)

which has the same dimension as Y i.e., u; € R7™*!, Associated with
u; is the space spanned by u;, or the space of most recent data values,
denoted as U;. Note that Py,Y; = yu;. For notational convenience we
define a tilde operator as follows,

Yi= PEYi=1[0 yic1 yip « - Yig+1 Yio)s (25)

i.e., Y;is the projection of Y; onto the subspace of past data values.
The basic prediction problem is illustrated in Fig. 2, where Y; is a
vector having its endpoint in back of the plane of the paper and X;
has its endpoint in front of the plane of the paper. We are given the
vector X;, from which the least-squares estimate of Y;, Px,Y;, is to be
recursively obtained. At time i we therefore assume a regression
coefficient @ computed at time ¢ — 1 (ie.,, Px_ Y1 = aXi,, or
equivalently, Px‘Y,- = aX,), which we wish to modify using the most
recent data values y; and x;. Figure 2 therefore shows Px,Y; decomposed
into the two vectors aX; and Px(Y; — aX;). Figure 3 illustrates the
plane spanned by X;, X;, and U,. Since ABC and ADE are similar
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ut
vt X,
Fig. 2—Decomposition of PxY,.
triangles,
AB AC
AD AE % (26)

so that AC = aX. Figure 4 attempts to include vectors not shown in
Fig. 2 and again illustrates the decomposition of PxY;. (Only the
endpoint of Y; is in Fig. 4.)

Assume now that the vector X; is replaced by the subspace M;
spanned by the vectors X ;, Xo,, - -+ , Xp, Let

S = X1 Xo -+ Xa] (27
and
Si=[Xu Xy --- Xl (28)
We define the projection
Py, Y; = S[STS]7'STY,; = Sf, (29)

ili=1
ie., Py, Y; lies in M;, but uses regression coefficients computed at
time i — 1. Referring to Fig. 3, Px,. . Y;= aX, Appendix A shows that

ifi~1

PMiYi = PM 1Yi + PMiu,'<ll,', Pi?[l.Yi)SeC20,', (30)

where

sin®f; = (w;, Pyu;) = || Pyui|®
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Y;

H \F. i AE = X;
PLY; X
Ui 1 AD = X:

= aX.
PUI,(YI._aX,-) 9 !
c N |
aXi l
Py, | |
o T 4 _|
A B D
Fig. 3—Plane spanned by X; and X..
Y;
vl

Fig. 4—Rotated view of Fig. 2.

= (u/S:)(S7S) ' (STwy), (31)
and
sec?; = -t (32)
' 1 — sin%;’

The variable 6; can be interpreted as the angle between the spaces
spanned by the matrices of basis vectors S; and S;. Referring to Fig.
3, the angle 0 is given by

l Xi |2 — x7
I1X:02 X2

sin’d =1 —

(33)
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and measures the unexpectedness of the data received at time i. Notice
that (33) can be rewritten as (31), where M; and S; are replaced by X..

We obtain the following time update for the orthogonal projection
operator by subtracting both sides of (30) from Y,,

P*,{Y, = Pﬁ . Y,‘ - PM.ui(u,-, PhY,-)seczﬂi. (34)
i ii-1 i i

One more relation that will be useful in the following section is a
recursive equation for the inner product (v; P1.Y,), where v; is an
arbitrary vector in R“**, This recursion, which is derived in Appendix
A is

(vi, PiY:) = (¥, Py Y0) + (u;, Piviy(u, P Y:)sec®d;, (35)
where M; is the space spanned by S..

4.3 Backward time updates

Consider again the data vectors X; and Y, defined by (23). Suppose
we wish to compute the linear least-squares estimate of Y; given X; in
terms of a least-squares estimate that does not use the most distant
or past values y;, and x;,. Clearly, this problem can be solved in exactly
the same fashion as the time-update problem stated at the beginning
of the last section. By turning the vectors Y; and X; upside down, and
assuming that y;, and x;, are the most recent samples, one can solve
this problem by using time updates already derived. The same argu-
ment holds when X is replaced by the subspace M; spanned by vectors
X, Xo4 -+, Xp, In this case we wish to calculate the projection
PupY; in terms of a projection onto the space spanned by the matrix
of basis vectors S; in which the bottom row has been replaced by zeros.
This is in contrast to the previous time updates, which expressed
Py, Y in terms of a projection onto the space spanned by S; in which
the top row has been replaced by zeroes (i.e., M,).

In analogy with the notation defined in the last section, we define
the unit vector

=[00---01] € R, (36)

and the space spanned by u;, as U;. We also define the following
asterisk operator in analogy with the previous tilde operator,

Y= Py, Yi= [y Y1 -+ Yigrr 01" (37)
Similarly,
SF=[X}; X3, --- XX (38)

The projection of Y; onto M; using regression coefficients computed
from S#is defined as

Py,

|o|10+l
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The regression coefficients that multiply the basis vectors of M; are
in this case elements of the vector [S¥7S¥]7[S}TY,].

The derivation of (30) can be repeated with u; replaced by u;, tildes
replaced by asterisks, and Py, , replaced by Py, ,, ., to give the follow-
ing projection decomposition,

PyY: = Py, Yi + Pyui(u;, PiY;)sec’f, (40)
where
sin®f} = || Pau;, II?
= (ufS:)(SfS)(STu;)
= (W, Pmu,), (41)
and
sec’0F = -—1—2- . 42)
1 — sin®6¥
Subtracting both sides of (40) from Y; gives
PiY; = Pir,, ., Yi — Paui(uy, PiiYi)sec’s}. (43)

Finally, the following update for inner products is analogous to (35),
(vi, P Yy = (v¥, PiYF) + (i, Pagvi)(u, P Y:)sec’0F. (44)

This completes the presentation of projection-operator recursions
needed to derive the least-squares recursions in Sections V and VII.
All order updates for variables entering the least-squares algorithms
to be presented can be derived from (22). Similarly, all forward and
backward time updates for vectors entering these algorithms can be
derived from (34) and (43), respectively, and all forward and backward
time updates for inner products can be derived from (35) and (44),
respectively.

V. LEAST-SQUARES RECURSIONS
5.1 Notation

Referring to the definition (23), a shift operator 2™ is defined by
29Y L = [Yisj Yic1 - Yigmil (45)
Equations (1) and (2) can now be rewritten as

1) = [ Yions = 3 f1neYiend I (462)
and
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eb(i I n) = " z_"Yio+n,i - 2 bjln(z_j+1Yio+n,i) ”2’ (46b)
Jj=1

where i’ has been replaced by i, + n. A matrix of shifted data vectors
is denoted as

Sivenill, 1) = [27Yigtni 277 Yigni -+ 27" Yianil, 47

where [ < n. The space spanned by the columns of S; (I, n), which
is a subspace generated by past data values, is denoted as M; .. (l, n).
For notational convenience we will omit the lower time index of S and
M and assume that it is always iy + n. Notice that we can write the
covariance matrix defined by (7) as

Bienitn = SI(0, n — 1)S(0, n — 1). (48)

Two types of updates exist for least-squares parameters: order
updates and time updates. The time updates in this section generally
fall into two categories. Given some LS parameter £ (i.e., the forward
prediction vector f or the prediction residual), we wish to find (1) a
recursion for £ computed from the data samples {yi, Yiq+1, -+, ¥} in
terms of £ computed from the data samples {yi, Yiz+1, - - , ¥i-} (for-
ward time update), and (2) a recursion for ¢ computed from the data
samples {yi, Yi+1, + -+, ¥} in terms of ¢ computed from the data
samples {yi+1, Yigt2s -+ » ¥i} (backward time update). Associated with
the variable £ is therefore an order index n and the time indices of the
data used in the least-squares computation. If the data values
{¥ip Yig+1> <+ + » i} are used to compute £, then the indices i, and i must
be specified. This is in contrast to the prewindowed case where only i
need be specified since i, is always zero.

Throughout the rest of this paper, the starting-time index of the
generic parameter ¢ will appear as a subscript, and the current-time
index will appear as a function argument. As an example & (i|n)
implies that the data values {yi, yi+1, -+ -, ¥:} are used to compute
the nth order variable £. The following variables are needed to derive
the LS algorithms in the next section:

1. Forward and backward prediction vectors [from (4)],

£, n) = ®itn-1-11a[ST (1, 1) Yipeni] (49a)
and
b, (i n) = ®iiniialST0, n = 1)z Yipun)]. (49b)
2. Forward and backward prediction residual vectors,
Ef,io(il n) = Yio+n,i - 8d(1, n)fio(il n) (50a)
and
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Eyi(iln) = 27"Y4ni — S0, n — )by (] n).
3. Forward and backward prediction residuals (scalars),
eriiln) = (u,E; (| n)) = yi — LG n)yiciin
and
eb,io(iln) = (u, Eb,io(il n)) = yin = biﬁ(“”))’un-

4., Forward and backward cost functions,

éf,io(i| n) = | Ef,io(iln) ”2, éb,io(i|n) = | Eb,io(i|n) ||2-

5. PARtial CORrelation (PARCOR) coefficient,
Bri(1) = (Epipni(iln — 1), Ep; (0 = 1| n — 1)).
6. Auxiliary variables, or gains,
gi+1(11n) = ®hninYiln,
h; +1(i|n) = O tniinYivtnin
Vi1 (1) = (Wi, Prron-yWs) = YuPikniinYiin
via(ln) = (W, Paon-Wi,) = Yisnin®ighniinYigenin
and
air1(i1 1) = (U, Pron-yW) = YAn®itniiniginin-
Notice that
SA0, n — 1)gi,+1(i| n) = Ppon-nu;

and
S0, n — Dh1(i|n) = Pargon-1li;
and that
Yigr (1) = g1 (@1 n)Yitny
vEa(In) = hla@ | n)Yinin,
and

aipn (il n) = gLa(l | n)Yipnin = B0l n)yin

(50b)

(51a)

(51b)

(52)

(63)

(54a)
(54Db)
(55a)
(55b)

(55¢)

(56a)

(56b)

(57a)
(57b)

(57¢)

Using the notation in the last section, the gains v and ~* are,
respectively, sin®); and sin®f}; where 0; and 0 are, respectively, the
angles between M;(0, n — 1) and M(0, n — 1), and between M0, n —

1) and M#¥0, n — 1).

At each time instant our objective is to minimize the cost functions
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é(1|n) and e, (i| n). From the discussion in Section III it follows
that

E;(iln) =P JMg(l,n)Yio-l-n.i (58a)
and
Eb,io(il n) = PfJ‘-l.‘(O,n—l)(z_nYi0+n,i)~ (58b)

The following variables, which are closely related to the prediction
residuals, are also needed: :

E/,(i|n) = Py amYigeni
= Y, — Si1, (i — 1|n), (59a)
and
E{i(i1n) = Pigy0n-02 " Yigins)
= oY imi — S0, n — Dby(i — 1|n),  (59b)

i.e., Ef and Ej are the forward and backward residual vectors obtained
by using prediction vectors computed at the previous time interval.
The top components of Ef; (i|n) and E;; (i| n) are, respectively,

efiptln) = (uy Ef(0|n))
=y — i — 1|n)yizn (60a)
and
st n) = (u; B (i n))
= Yion — bL(i — 1| n)¥ijn- (60Db)

The nth order forward prediction residual computed at time iy + n
using the tap vector £ (i| n) is

efii|n) = (ui,Er (i n))
= Yigtn — fi(iln)y,-om—m- (61)

The forward residual vector at time i using the forward prediction
vector calculated from the data samples {y;+1, -+, yi} is

Ef,i0|i0+1(i| n) = PJJ‘;!i‘,Uoﬂ(ly")Yio“‘n,i
= Yini — Sil, n)fi11(Z| n). (62)

The variables e¥; (i| n) and Es ;,i+1(i| n) are similarly defined.
Notice that the time indices associated with a residual vector change
in accordance with the projection space, i.e.,

Pitan-1Yigeni =Epiaa(i|n — 1), (63a)
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and
Piran-1(z""Yipeni) = Ep; (i — 1|n — 1). (63b)

The recursions needed to derive the algorithms in the next section
are now generated systematically. By appropriately defining the vec-
tors and subspaces entering the projection order update (22), order
updates are derived for all of the basic variables defined by (49) through
(55). We then use the forward and backward time updates (34) and
(43) to obtain forward and backward time updates for the basic vectors
defined by (49), (50), and (54). Finally, the forward and backward
time updates for inner products (35) and (44) are applied to
kn,i(0), € (il n), and e, (i|n). It would take up too much space to
explicitly define the vectors and subspaces that must be substituted
in the projection update used to derive each recursion. Consequently,
only the results are stated, with a few representative examples worked
out in more detail.

5.2 Order updates

The following order updates are obtained by using the projection
order update (22) [or equivalently (21)]. The Ilth through the mth
component of f; (i| n) is denoted by [f; (| n)],., and [£,({| n)]; is the
Jth component of £;(i| n). The same notation is used for the backward
prediction vector b; (i| n) and the gain vectors g;,(i| n) and h; (i| n).

kn,io(i)
fb,io(i -1 | n— 1)

Ef,,'o(iln) = Ef,i0+1(i| n — 1) -

‘Epi i —1|n = 1), (64a)
. . ki (1
Eb,iﬁ(lln) = Eb,io(l -1 | n — 1) - ql(l%;
ot
'E/,i0+1(i|n - 1), (64b)
o k2i(0)
&i(iln) = eim(iln — 1) i —1ln—1)’ (65a)
. . k2,
oini1m) = esili = 1ln = 1) - W‘:_D (65b)
\igt
(£, | )], = i) (66a)

fb,io(i - 1|I’L - 1)’
£, W hp-1 = £finGln — 1) — [£,Gn)]abi — 1|n — 1), (66b)
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Roip(1)
eipr(iln — 1)’

[bi (I m)]on =bi(i = 1]n — 1) = [by(i| D)hfigr1(Eln — 1), (67D)

[by,(i[ )] = (67a)

_ eni(iln)

[g,Gln + D] = TR (68a)
éb,io(l|n)

[g,G1n + Dlin = g n) — [8,(@n + Dbyl n), (68b)

(i n + D] = Zaln) (69a)
Gf,io(ll n)

(8,1 + Dlon = 8i,(i = 1]n) — [g,(|n + 1] n), (69Db)

et (il n)
fb,io(i [n) ’

[h;,(Z|n + Dlin = hign(@|n) = [hy(|n + Dlsaby(i] n), (70b)

[hiiln + D]psr = (70a)

efi,(i|n)
ef,,-o(iln) ’
[hi(i[n + Dlpper = hy@ — 11n) — [hy(Gln + DL, n), (71b)

(hyiln + D], = (71a)

2. .
voliln + 1) = yie(i | n) + 20D (72)
fb,io(l|n)
-
yililn + 1) = yyli — 1{n) + S (72b)
6f,io(l|n)
*2 (7
ViR + 1) = yEa]n) + ZelD) (73a)
fb,io(lln)
*2(:
Vi + 1) = v — 1| n) + FellD) (73b)
Ef,io(l| n)
il + 1) = aipuliln) + 2L ,”;;’f" n, (74a)
and
wliln + 1) = ayli — 1] n) + Ll [Wehliln) (74b)

éfyio(i | n)

As an example, (64a) is derived from (22), where M is replaced by
M1, n — 1), X is replaced by 27"Y; 4n,;, and Y is replaced by Y.
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By observing that E;; (i — 1|n — 1) is orthogonal to Mi(1, n — 1), it
is clear that

(Yigenis Epipi = 1|n = 1)) = (Egipna(i|n — 1),
‘Eyi(i —1|ln —1))
= Rpiy(1)- (75)

Recursions (65) are obtained by taking norms of (64) respectively.
The recursions (68) through (71) are obtained from (21), where Y is
replaced by u; and u;,, respectively. Making the same substitutions in
(21) and then taking inner products with u; or u,, gives recursions (72)
through (74).

5.3 Forward time updates

The following forward time updates are obtained from the (orthog-
onal) projection operator forward time update (34):

Eyiiln) = Bfi(iln) = [Puanu] 7 ‘z((: |_n)1 = (76a)
Bui (1) = Biyliln) - Proposid 7510, (T6b)
£i(iln) = £(i = 1|n) + i = 1|n) 7= if((z I_n)1 e (7
o
by(ilm) = byti = 11m) + gun(iln) D —, ()
it
b1 n) = b = 1) = gelilm) 7282 (78)
SO oY b __ai(iln)
vililn) = vi(i = 1|n) - T~ = ETE (79)
and
a,(t|n) = y?f,,h,-o(i = 1|n)[1 — v;, (| n)]. (80)

Equation (78) is obtained from (34), where M; is replaced M;(0, n) and
'Y, is replaced by u;. Equations (79) and (80) are obtained by making
the same substitutions in (34) and then taking inner products with
u;, and w;, or by premultiplying (78) by yZ:.-1/» and y7,, respectively.
Taking the inner product of (76) with u; and u;, respectively gives the
following recursions:
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(i n)

efi(i|n) = =G =11’ (81a)
;i = Ei(ln)
el = i (B1b)
. . (i — 1|n)
efi@ln) = efi(i — 1|n) — e, (i| n) T—nli= 1[0 (82a)
)
and
etu(iln) = etyi — 11n) — es(iln) i‘iL;("(—L’il)n—) (82b)
Wt

5.4 Backward time updates

The following backward time updates are obtained from the projec-
tion operator backward time update (43):

Eiqlilm) = Eragimliln) = (Prad TP, (832
L
Euifi1) = Bogiien(i1) = [Puon-ai] TS0 (3b)
o+
Bnilm) = £ufilm) = byl = 11m) ;e L —. G
bioea(i7) = by 1) — higea(i m) —2s__ (84b)
1- ’y,-0+1(l|n)
L ailn)
1) = Bentiln) = ytilm) 245 (85)
— N - AU L)
Yi(E|n) = vign (| n) T— 22 |n) (86)
and
eli11) = Yluns1nBionri | WL = vEG D)) 87

Equation (85) is obtained by replacing Y; by u; in (43). Equations (86)
and (87) are obtained by premultiplying (85) by y/. and ylin-1}s,
respectively. The following recursions are obtained by taking the inner
product of (83) with u;, respectively:

ayli = 1 n)

“ati-1m &

it n) = e (il n) + efi (il n) T
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and
aio+1(i| n)
1= viuGln)’

The recursions that result from taking inner products with u;, will not
be used and are therefore omitted.

(88b)

eipr1(i[ ) = evi(i|n) + ef;(i|n)

5.5 Inner product updates

The following recursions are obtained from the forward time update
for inner products (35):

kn,io(i) = kn,io(i -1+ ef,io+1(i|n - l)eb,io(i -1ln-1)

'1—7,~0+1(i1—1|n—1)’ (89)

€,(iIn) = ¢;(i — 1| n) + e%,'o(il n) 1= ’Yio(:_ 1’ (90a)
and

aililn) = enli = 11n) + edililn) —— (90b)

1 = yigu(iln)’

The following recursions are obtained from the backward time
update for inner products (44):

Enip(t) = knigt1(D) + efiga(iln — Ded; (0 — 1ln — 1)

1
. . , 91
T viaG-1In =1 o1
1
G17) = enn(iln) + R (i - ’
ol n) = eipna(iln) + efi(iln) T Y =1 (92a)
and
e, (i| n) = eviri(i| n) + e3i(i|n) 1 . (92b)
" " " 1 = yhuliln)

Equations (89) and (91) are obtained by using (35) and (44), where v;
is replaced by Y; +n, Y:is replaced by 27"Y +n;, and M; is replaced by
M1, n — 1), respectively. The previous set of recursions (64) through
(92) are complete in the sense that any existing least-squares alogrithm
can be derived by manipulating suitable subsets of these recursions.
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VI. RECURSIVE FIXED-ORDER COVARIANCE ALGORITHMS
6.1 Sliding-window algorithm

Combining (60), (61), (68) through (73), (77), (81a), (84), (90a), and
(92a), gives the following sliding-window LS algorithm for the predic-
tion coefficients. Where unspecified, the order of the variable is
assumed to be N, the order of the least-squares filter. Also, the starting
time index is denoted as i,. If the sliding window contains M data

values, then iy =i — M + 1,
efi(i) = yi — £ — Dy,
£,(0) = £, — 1) + 8,0 — e (D),
erio(1) = efi, ()1 — v (i = D],
efi(i) = Yipn — £20)Yien-1,
€i,(0) = €I — 1) + efi(i)esi (i),

erip(0)

e, (1)’

(8, IN — Dlener = 8,0 — 1) — [8,G| N + 1)]if,(2),
e?fio(i)

(i)’

(hy,CIN + Do = hyy(i — 1) — [hy,((] N + 1)]):£,(0),

(LN + 1)L

(hy(IN + D) =

Y = £ = he (f — efiy(0)
fion@) = 60 = 0l =D 75Ty
; s e*;lgo(i)
eripr(i) = io(i) — i—#l—l). ’

el;,io(i) = Yi-N — biTo(i - Dy,

by (1) = Peli=D et DIE I N+ D]
- 1= el DIgIN+ Dlvar

e (i) = ¥, — bg(i)yzﬁm
gir1(i) = [8,GIN+D]in+ (8, | N+ 1)]nebi (D),
h; (1) = [, (0| N+ D]on+ [bi (| N+ 1) niabi (i),

Yili = 1) + e, (D[, I N + Dl
—ebi, (D8, N + 1)]va
1—eb;, (g, GIN+ Dy’

'Yi0+1(i) =

RECURSIVE COVARIANCE ALGORITHMS

(93a)
(93b)
(93¢)
(93d)
(93e)

(93f£)

(93g)

(93h)
(931)

(93j)

(93k)
(931)
(93m)

(93n)
(930)
(93p)

(93q)
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Yign(@) = vi( — 1) + ef, (D[, |N + D]

— edi[hy (| N + 1)]n, (93r)
and
N N )
bi1(f) = by(i) — hi(D) T vin) (93s)

The recursions (93m) and (93q) were not listed in the previous section,
but are easily obtained by solving (77b) and (68b) simultaneously for
b;,(i), and by substituting (68a), (69a), and (81b) into (72), and solving
for v;+1(i|n). Notice that all data samples in the sliding window
(¥i-m+1, ..., y;) must be stored. This is also true of the order-recursive
sliding-window algorithm presented in Ref. 14. If division is counted
as multiplication, then the algorithm (93) requires 12N + 16 multiplies
and 12N + 12 additions at each iteration. In contrast, the unnormal-
ized sliding-window lattice predictor (see Appendix B) requires 16 N
multiplies and 10N additions per iteration, and the normalized lattice
predictor’® requires 30N multiplies, 18N additions, and 6N square
roots per iteration.

Because sliding-window algorithms have finite memory, initializa-
tion for these algorithms is basically the same as for the prewindowed
case, i.e., the data y; can be assumed to be zero for i < 0. After M
iterations, where M is the window length, these data points are
discarded. The algorithm (93) is therefore initialized by setting the
gains v and v*, and the elements of the vectors f, b, g, and h equal to
zero, and letting

Ef,io(o) = 5, » (94)

where ¢ is chosen to ensure that the algorithm remains stable. It is
easily verified that for time i < M — N — 1, where M is the length of
the sliding window, the algorithm (93) becomes a modified version of
the prewindowed LS transversal (fast Kalman) algorithm."??

6.2 Growing-memory covariance algorithm

The following fixed-order growing-memory covariance algorithm is
obtained by combining (60), (68b), (69), (77), (78), (80), (85), (87), and
(90a). The lower index of the window i, is assumed to be zero. For
notational convenience we define the following variables,

aip(i|n)

T — v 7) (95)

Bi(iln) =

and
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*(3 — Olio(i | n) 95b
BLIm = T2 (95b)
Where unspecified, the lower time index and the order of the variables
are equal to zero and N, respectively,*

efi) = yi =70 — 1)yi, (96a)

£() = £(i — 1) + g(i — 1)e}(i), (96b)

ei) = yi — f7())yi1, (96c)

i) = (i — 1) + ef(i)ef(i), (96d)

[GCIN + 1)) = ff% (96e)
[8(IN + Dlove = g0 — 1) — [gG| N + 1].f(), (96f)
efi) = yi-n — b7 — )y, (96g)

b(i—1)+es()[g@| N+ 1)~
1—eiD)[gGIN + Dlye

g.(Q) = [g@| N+ 1] v +[g(@| N+ 1)]ns1b (), (961)
B = yrh( — 1), (967)
B*(i) = yh-1810), (96k)

_ &) = @OhG — 1)
1-g@ms*@ 7

b(i) = (96h)

g(0) (961)

and
h(}) = h(i — 1) — B()g(). (96m)

Notice that this algorithm can be applied only if i > N. Otherwise,
the least-squares variables of order N are undefined and cannot be
used to compute the same least-squares variables at the successive
time interval. Initialization of this algorithm can be performed, how-
ever, by using an order-recursive algorithm for { < N to increase the
order of the filter by one at each successive time iteration. An order-
recursive algorithm for the prediction coefficients is obtained by
combining (89), (66a), (67a), top components of (64a) and (64b), (66b),
(67b), (65a) and (65b), (82a), (88a), (84a), (92a), (71), (73b), (72), and
(74b). This algorithm is basically the same as the covariance lattice

* The author recently discovered that this algorithm has been independently derived
in Ref. 23 using an algebraic approach.
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algorithm presented in Refs. 7 and 19, except that additional order
recursions for the prediction vectors f and b have been added. It is
not explicitly stated in an effort to conserve space. Order-recursive
computation of f and b requires order N? arithmetic operations per
iteration, rather than order N operations per iteration, as required by
the fixed-order algorithm. Not all N components of the vectors f and
b need to be updated at each iteration for i < N, however. If data is
first received at time i = 0, the recursions listed above can be used for
n=0upton=1i At time i = N all of the variables that enter the
fixed-order algorithm (96) have been computed by the order-recursive
algorithm except for g(i), (i) and B*(i). The gain g(i) is the only
variable needed at the next iteration of the fixed-order algorithm and
can be computed by first using (96j) to calculate 8(i) and then using
(96m) to solve for g(i).

Derivation of initial conditions for the order-recursive initialization
routine is significantly more complicated than for the sliding-window
algorithm. This is because for ¢ = n, the matrix ®,;, is guaranteed to
be singular, and hence all variables are technically undefined. Refer-
ence 14 gives a convenient solution to this startup problem. By using
a generalized inverse of a singular or nonsingular matrix, the least-
squares projection operator P, given by (15), can be defined even when
the matrix S”S is singular. If this generalized inverse is defined
appropriately, it can be shown that the projection updates in Section
IV hold even when the covariance matrix is singular. This implies that
all of the recursions listed in the last paragraph that constitute the
order-recursive initialization routine can be used starting from { = 0
with the following initial conditions:

£(010) = b(0]0) = £1(-1]0) = h(-1]0) = 0, (97a)

k.(—1) =0, 1<sn<N, (97b)
v(=1]0) = v*(=1]0) = a(-1]0) = 0, (97c)
and
" _Jyo for n=0
ej(0|n) = {0 for n> 0. (97d)
At each iteration i < N,
e (i]0) = e(i|0) = y; (97e)
and
(i]0) = e(i]0) = (i — 1]0) + yi. (97f)

Counting division as multiplication, the algorithm (96) requires
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11N + 7 multiplies and 11N + 1 additions per iteration. To compare,
the unnormalized growing-memory lattice predictor (see Appendix B)
requires 22N multiplies and 12N additions per iteration. The normal-
ized lattice algorithm requires 30N multiplies, 18N additions, and 6 N
square roots per iteration. We point out that the fixed-order covariance
algorithm specified by (96) is not unique. In particular, equation (96c)
can be replaced by (81a). The extra recursion (93q) must be added to
compute v, however. This type of modification has been applied to the
fast Kalman algorithm, and has resulted in improved numerical prop-
erties.”

VII. EXTENSIONS TO JOINT-PROCESS ESTIMATION

The algorithms presented so far solve the LS prediction problem
wherein the sums (1) and (2) are minimized. In applications such as
channel equalization, echo and noise cancellation, and adaptive line
enhancement, two processes, {x;} and {y;}, are given, and our objective
is to estimate the {x;} process in terms of the {y;} process. The vector
of estimation errors is denoted as

n—1

Ex,i0+1(i|n) = Xi0+n,i - 2 cj+1|n(z_jYi0+n,i)
Jj=0

= Xi0+n,i - S,‘(O, n-— 1)0,’0+1(i| n), (98)

where X ; is defined by (23a), ¢;+1(i| n) is the n-dimensional vector
of regression coefficients at time i used to estimate X,; [given by
(4c)] where i’ = ip + n), and the lower time subscript of E, and ¢
denotes the time index of the starting value from the y sequence (i.e.,
¥i+1), which is used in the least-squares computation. Our objective is
to choose ¢;+1(i| n) such that

fx,i0+1(i| n) = | E; i+ n) || (99)
is minimized. The discussion in Section III implies that
Exv"o‘*‘l(i I n) = PI-'l:Ii(O,n—l)Xl})+n,i~ (100)

We now use the projection recursions in Section IV to derive order
and time updates for E,; (i| n) and ¢;(i| n). Details are again omitted
since they are basically the same as before. Combining recursions in
this section with the prediction algorithms of the last section results
in recursive algorithms that solve the LS joint-process-estimation
problem.

The following notation, which is analogous to the notation in
Section 5.1, is first defined:

1. Cross-correlation coefficient,

RECURSIVE COVARIANCE ALGORITHMS 2985



k21:,0) = (Xigtnis Boili|n))
= (Eyip1(0[n), Epi(i| n)). (101)
2. Current residual (scalar),
exipiln) = (u; E.; (i]n))
= x; — ¢f({| n)Yiln- (102)
3. Past residual (scalar),

ezipn(i1n) = (Ui, Eyipna(@] 1))

= Xigtn — Chos1(E] )Y igtnin. (103)
4. Oblique residual

eli(iln) = 2 — ¢i(i — 1 n)yiin. (104)

The following order recursions are obtained from (22):
E.. (i|n + 1) = E,u(|n) — ﬁl ‘i’(‘; Es(i| n), (105)

k&)
eip(iln + 1) = e nli|n) — T Ion) (106)
feali|n + 1l = 2000 (107a)
€,io(L ] n)’

and
[ei,(i]ln + Dlin = cira(@ n) — [ey(iln + D]nribi(iln).  (107b)

Derivation of the following forward time updates involves a straight-
forward application of (34) and (35), where Y; is replaced by X ,n,
and M; is replaced by M;(0, n — 1):

cili|n) = (i = 1[n) + eLi(i| n)gi(iln), (108)
. . 1
k1) = 10 — 1) + exipn(i] n)es;(i| n) 1= viuli|n)’ (109)
i+l
1

il = e, (i — 1 + el T — o (i’ 11
(i n) = €0 In) + exi(iln) 1= v,(iln) (1o
e34i1m) = e34i = 11n) = eqylilm) —LD (

1 — 7i(iln)

and
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exip(t] n) (112)

ealtn) =T Gm

Similarly, the following backward time updates are obtained from (43)
and (44):

. . . ex;,(i|n)

. = ¢ . > - , 113
cpiln) = eipnliln) + hi(ifn) 77— vEGIm) (113)
uiali1 1) = exililn) + e2,(if m) —2aldD_ (1)

X,10 Xl »lo 1 - 'Yz(il n) ’

; o g . . 1
kit () = ki) = el n)edililn) 75— TG’ (115)
and
1

w1 11) = ei(i|n) — eXh(iln) — . 116
it (111) = 6P| n) = eZi(iln) 7 T (116)

Combining (104), (108), (103), and (113) (in that order) with the
fixed-order sliding-window algorithm (93) gives the corresponding
sliding-window joint-process-estimation algorithm. Adding these ad-
ditional recursions results in a total computational complexity of
16N + 17 multiplies and 16N + 13 additions per iteration. This should
be compared with 23N multiplies and 14N additions per iteration
required by the unnormalized sliding-window lattice joint-process
estimator. Initialization of these additional recursions is accomplished
in a fashion analogous to the prediction recursions. In particular, the
data y; and x; is assumed to be zero for i < 0, and ¢;(—1|n) = 0.

The fixed-order growing-memory algorithm (96) is extended to the
joint-process-estimation case by adding the recursions (104) and (108).
The order-recursive prediction algorithm listed in Section 6.2 is ex-
tended to the joint-process-estimation case by adding the recursions
(105) (top component only), (109), (107), (111), and (113). In each
case the variable i, = 0. Adding (104) and (108) to (96) results in a
total computational complexity of 13N + 7 multiplies and 13N + 1
additions per iteration. This should be compared with 28N multiplies
and 16N additions per iterations required by the growing-memory
covariance lattice joint-process estimator. The following accomplishes
the initialization of the additional recursions for the order-recursive
algorithm:

kglx)(_l) = 09

1< , (117a)
c(—1|n) =0, Osns

N
N, (117b)

n<
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and

% _Jxo for n=20
ex(0fn) = {0 for n>0. (117c)
The fixed-order algorithm is initialized by using the order-recursive
algorithm for : < N.

VIH. CONCLUSIONS

We have presented new fixed-order algorithms that recursively solve
the sliding-window and growing-memory covariance least-squares es-
timation problems. The fixed-order growing-memory algorithm re-
quires approximately one half the number of multiplies and divides
required by the analogous unnormalized order-recursive or lattice
algorithm. The fixed-order sliding-window algorithm requires approx-
imately 70 percent of the number of multiplies and divides required
by the analogous lattice algorithm. These fixed-order algorithms also
help complete the list of computationally efficient LS algorithms
currently available. In particular, each type of windowing technique
that has been proposed for the LS computation (i.e., prewindowed,
growing-memory covariance, and the sliding window) has resulted in
both computationally efficient fixed-order and order-recursive algo-
rithms. The order-recursive algorithms offer the advantage of being
able to dynamically choose the order of the autoregressive model, while
the fixed-order algorithms require less computation.

Associated with the algorithms mentioned in this paper are per-
formance issues such as the relative convergence speed of each algo-
rithm given different types of stationary and nonstationary random
inputs, and the evaluation of finite word-length effects. As an example,
the relative performance improvement offered by LS covariance al-
gorithms over LS prewindowed algorithms has yet to be ascertained
in applications where the prediction coefficients must be estimated
from relatively few data samples. These issues will play a crucial role
in determining the practical value of the LS algorithms presented in
this paper.
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APPENDIX A
Derivation of (30)

We wish to prove (30). By definition,
PM‘ Yi = PMl.Y,' + PU,'PM‘-“_IYiy (118)

iti-1
where M is the subspace spanned by the column vectors of S;. Pro-
jecting both sides of (118) onto M; gives

PMiPMHi—lYi = PM;PMiYi + PMiPUiPMﬂ i—1Yi‘ (119)
Now Py, Y; lies in M;, and hence
PMiPM;I;_lYi = PM.‘|.‘-1Yi' (120)
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Also,
PuPyiY: = Si(STS:)™(S7S:)(S78)'ST'Y;
= Si(S?Si)_lg?Y;’

= PMi(Yi - PU‘YL) (121)
Combining (118) through (121) gives
PMl.Y,' = PM‘. Y; + PMEPUiP}I;',[i Y,'

li-1 li-1

=PM.

HI

Y + (Pumui)(u;, Py

o O (122)
Subtracting both sides of (122) from Y, and then taking inner products

of both sides with u; gives

(w;, Py Y:) = (u;, Py, Yi)[1 = (u;, Ppus)). (123)

Combining (122) and (123), and using the definition (31) gives (30).
[Ref. 24 gives a purely geometric proof of (30) for the case where M;
is spanned by one vector (as illustrated in Fig. 2).]

To derive the inner product update (35), we first rewrite (34) as
P){,[iY,' = P'(I'/inl\‘,[ili_lY,' + PUI.P]J\:[ lY,’ — PM,.ui( u;, PﬁY,) s'ecz(},-

ili=

= Pt,Py.Y: + ulu;, Py,

ili=1

Y,‘) - PMl,ui(ui, PhiY,-)seczﬂi

= Pt,Py.Y: + Phuiu;, PiY:)sec?;. (124)
Taking the inner product of both sides with v; and using the fact that
(vi, Piu;) = (u;, Pigv;) (125)
gives (35).
APPENDIX B

Other Recursive Least-Squares Algorithms

The recursions in Section V and VII are complete in the sense that
any of the existing computationally efficient LS prediction or joint-
process-estimation algorithms can be derived from suitable subsets of
these recursions. The purpose of this appendix is to illustrate this
point by listing the recursions that enter the prewindowed LS trans-
versal (fast Kalman) and lattice algorithms, the unnormalized sliding-
window and growing-memory covariance lattice algorithms,** and the
nonrecursive LS algorithm presented in Refs. 11 and 17. The list of
recursions presented below does not completely describe each algo-
rithm. For example, initialization is not discussed. Consistent steady-
state algorithms can be formulated, however, by choosing the time
indices and order of the variables in each recursion appropriately. The
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following algorithms apply to the more general joint-process-estima-
tion case (eliminating the recursions from Section VII gives the
analogous prediction algorithm):

1. Prewindowed transversal (fast Kalman) algorithm:! (60a), (77a),
(51a), (90a), (69), (60b), (93m), (68b), (104), and (108).

2. Prewindowed lattice algorithm* (See Refs. 18 and 16): (89), (64a)"
and (64b), (65a) and (65b), (72a), (109) and (105).

3. Sliding-window lattice algorithm:'*'¢ (89), (64a) and (64b), (65a)
and (65b), (72a), (73a), (91), (109), (105), and (115).

4. Growing-memory covariance lattice algorithm:!*'¢ (89), (64a) and
(64b), (65a) and (65b), (82a), (88a), (92a), (72b) and (72a), (73b), (74b),
(109), (105), (111), and (114).

5. Nonrecursive LS algorithm:

The following set of recursions, which represents a modified version
of the algorithm presented in Ref. 17, can be used to compute £(i | N),
b(i| N),and c(i| N), given by (4), in an order-recursive fashion starting
with first-order least squares variables at time i. Initialization consists
of computing these first-order variables via the definitions given in
Section V.

(78) (for computing h(i — 1| n)), (85) (for computing g:(i| n)), (79),
(86), (84a), (77b), (92a), (90b), (53), (66), (67), (65a) and (65b), (51b),
(61), (68), (71), (57¢), (72a), (73b), (103), (113), (101), (107).

Assuming that the covariance matrix ®x;x+; has been computed, a
more convenient form for (53) is

ka(i) = (Yo, Eo(i — 1|n — 1))
=YZL[z"Y.: — S{1,n — Db(i — 1|n — 1)]

11,17

n—1
=R, — X Rujb(i—1|n—-1)]; (126)
=1
where R; = Y2{27Y,;), and is the (1, j + 1)st element of ®,;+1.
Equation (101) can be similarly modified.
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Let x; be members of a stationary sequence of zero mean gaussian random
variables having correlations Ex;x; = 6%p'"7!, 0 < p < 1, ¢ > 0. We address the
behavior of the averaged product g,,(p, ) = Ex; x5 - - - Xgn—1%2,, a8 m becomes
large. Our principal result when ¢® = 1 is that this average approaches zero
(infinity) as p is less (greater) than the critical value p. = 0.563007169 .... To
obtain this we introduce a linear recurrence for the g, (p, o), and then con-
tinue generating an entire sequence of recurrences, where the (n + 1)-st
relation is a recurrence for the coefficients that appear in the nth relation.
This leads to a new, simple continued fraction representation for the gener-
ating function of the ¢.(p, ¢). The related problem with g,(p, ¢) = E|
%1 -+ Xn| is studied via integral equations and is shown to possess a smaller
critical correlation value.

I. INTRODUCTION

The problem that we consider in this paper is as follows: Let {x;}T
be a stationary sequence of zero mean, gaussian random variables with
covariances

pi=Exixj= %", 0<p<1,0>0; §,j=1,2---, (1)
L J

where E(-) denotes mathematical expectation. What is the behavior
of
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qm(p, 0) = Exlxz v Xom—1X2m (2)

as m becomes large?

In other words, the product in (2) is formed from samples of a gauss-
markov process that are taken at regular intervals. Only an even
number of samples is considered in (2) since an odd number would
result in a zero average.

Originally, the problem was conceived as a simple model for averages
of multiplicative structures having infinite memory between the fac-
tors of the product. Such products arise in the analysis of learning
curves for many adaptive systems, and for these problems one encoun-
ters products whose factors are noncommuting matrices. We felt that
the analysis of a simple problem, such as that described above, would
serve as a valuable guide to what results might be achievable for more
realistic situations. However as one may readily imagine, as soon as
the problem described in (1) and (2) was written down it became of
interest in its own right, consisting as it does of a simple question
about long familiar quantities.

Our principal result is that for large m the behavior of the average
product g..(p, ¢) in (2) depends on the relationship of p to a critical
value, p. = p.(c). If p < p., then g,,(p, o) will approach zero exponen-
tially fast; if p > p., gm(p, o) approaches infinity exponentially fast;
finally, if p = p., gulp, 0) — @u(c). We find for ¢ = 1, p(1) =
0.563007169391816 - - -, and g.(1) = 0.50900853 . ... A plot of p.(0) is
given in Fig. 1. All of these results were obtained from a continued
fraction representation for the generating function

Q(z, p, 0) = E;‘.O gm(p, 0)2™. (3)

Since gn(p, 0) = 6*"qm(p, 1), we have

Q(z, p, 0) = Q(z0”, p, 1), (4)

so it is without loss of generality that we will set ¢ = 1, Q(z, p) =
(2, p, 1), and gn(p) = gm(p, 1). By introducing a sequence of generating
functions, we show in Section II that

Q(z, p) = (5)
1-—pz

1-—2p%
1— 3p°z

1-"
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The value p!” is then the smallest p for which @(¢?, p) = , while the
value ¢..(c) is the limit as z — 1 of (1 — 2)Q(z0?, p.).

Since methods are as interesting as results, Section III presents
another approach involving integral equations for discussing the g,,(p)
behavior. Although this method is not rigorously justified for the
present problem due to a non-hermitian kernel, it is applicable to a

10

0.1

T T T T TTT

T

0.01 | | | I |
0 0.2 0.4 0.6 0.8 1.0 1.2

Pe (0?)
Fig. 1—Critical correlation value p.(o2) vs. variance o2
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related problem, the behavior of E | x; - - - x,,| as m — o [still assuming
(1)]. Using the integral equation we show that p., the critical value of
p for this new problem, is strictly smaller than the p. defined above.
This is of interest since it shows that the behavior of g.(p) is deter-
mined both by how large |x; --- x2.| is on the average, and by the
extent of cancellation between positive and negative values of g,.

Although we do not give the details here, it is not difficult to show
that for all p < 1, g.(p) approaches zero with probability one as m
becomes large.

I1. LINEAR RECURRENCES AND GENERATING FUNCTIONS

Given 2m zero-mean jointly gaussian random variables x; of unit
variance and correlations Ex;x; = p;, then a known formula’ states
that

Ex, --- 2om = 2 PiyigPigiy *** Piyyyioms (6)
all
pairs

where the unordered set {i;, ---, iom} is equal to the unordered set
{1, 2, .-+, 2m}. The sum in (6) is over all distinct, unordered pairs of
subscripts. That is, we do not count twice terms which differ only by
interchanging the values within one or more subscript pairs, nor do
we count twice terms which differ only by permuting subscript pairs.
Thus there are (2m)!/(2™m!) terms in the sum (6).

If we denote permutations of 2m objects by ¢(i): t — (i), i = 1,
2, .-+, 2m, then a succinct way of writing (6) when (1) holds is

2 la(2))=a(2j-1)|
j=1

2 p s (7)

2mm! UESzm

am(p) =

the sum in (7) being over all (2m)! permutations of S,,,, the group of
permutations of 2m symbols. Formula (7) shows immediately that
gm(p) >0if p > 0.

Now define go(p) = 1 and write

gm(p) = Z bs(p)qm—s(p), m=1,2 .. 8
s=1
We evaluate a few of the b,(p), writing for convenience b;(p) = b;,

q:(p) = g;. The evaluation is done from (8) by explicitly evaluating the
gm(p) as needed. A partial list of b;(p) follows:

bi=p
bz = 2[)4
b3 = 4p7 + 6p9
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by = 8p' + 24p™ + 18p™ + 24p™
bs = 16p™ + 72p™ + 108p'" + 150p"° + 144p%
+ 96p% + 1200%. 9

Equation (9) suggests the possibility that, for small p, only a few
terms in (8) would need to be kept for an accurate description of g,,,(p).
For example, keeping only one term yields

dm = pPGm-1, (10)

or g, = p™. Since Ex, x, = p, this approximation corresponds to treating
the successive pairs of gaussian variables which determine g, (p), via
(2), as independent. The next step after (10) would be to write

Gm = b1qm-1 + baGm_s. (11)

This equation, involving b, as well, would be a correction to the
“independence assumption,” but one involving only up to fourth-order
correlations, since, from (8) the highest average appearing in b, is
E(x,x:x3x,). Further corrections are obtained by including more terms
of (8), with higher order correlations entering.’

Assuming the b;(p) to be known, the natural procedure would be to
“solve” (8) using generating functions. We define these as follows: if
Yo, Y1, Y2, * - - 1s a bounded sequence of numbers, then the generating
function, Y(z), of the sequence is defined for complex z, |z| < 1, by

Y(2) = io vz (12)

Given Y(z), the y; are, in principle, uniquely determined. We assume
that the reader is familiar with the use of generating functions. If not,
consult Chapters XI and XIII of Feller.?

We define by(p) = 0, go(p) = 1, and call the generating functions of
the b;(p), and g;(p) sequences B(z; p) and Q(z; p), respectively. The p
dependence is explicitly indicated.

If we multiply (8) by z™ and sum from m = 1 to o (treating g, = 0,
m < 0 and b,, = 0, m < 0), we obtain the basic relation

1
1 — B(z; p)’

Equation (13) thus allows us to determine, in principle, the g,, from
the b,,. In particular, we have

Q(z; p) = (13)

*The above interpretation prompts us to advocate consideration of the ideas repre-
sented by (8) for analyzing more complex multiplicative structures, particularly when
connections to some sort of independence approximation are a natural thing to seek.
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el 1
m(p) = Q(L; p) = ———, 14
m2=1 anlp) = Q(L; p) = T—pa— (14)
and the critical value p. will be given by the equation
B(l’ pc) = E bk(pc) =1 (15)
1

Although we could work with the b,,(p) themselves, a more conve-
nient approach for finding p. numerically is to set up a continued
fraction representation for the generating functions Q(z; p), or equiv-
alently, B(z; p). It is this approach that we follow now.

Recall (8) defining b,(p). Since these b, coefficients are a numerical
sequence themselves, we can use the same reasoning that took us from
the g to the b, and use it to suggest going from the b, to a new set of
coefficients, b'?, via the following recurrence

k

bilp) = ¥ b2 (p)brslp), k=23, -, (16)

s=1
where we define by(p) = 0. The recurrence (16) yields

bi(p)z

B(z; p) = 1— B(g)(z; p);

(17)

B®(z; p) being the generating function for the 5% (p). To continue this
procedure with a uniform notation, we define

bP(p) = bs(p)
b (p) =0, m=1,2, ... (18)

and write
k

bi"(p) = T b (o), Ty

s=1

, 2, ..
2L a9
The corresponding sequence of generating functions are related by

b (p)z

(m)( . = — 1 M/Z
B'™(z; p) 1— B(m+1)(z; P).

(20)

We use this repeatedly in (13) and obtain the continued fraction
representation’

*The fact that this continued fraction does not terminate implies that Q(z; p) is not
a rational function of 2, and thus one cannot find a (finite-order) difference equation
for the g.(p). See Ref. 3, Theorem 99.1, p. 400.
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Q(z,p) = (21)

1- b2
1- b2

1-bP2

1-"

In (21) we have, for simplicity, written b{™(p) = b{™.
A relation which will be used later to aid in finding the 4™ follows
by setting k = 2 in (19), to obtain

b5 (p)
b (p)’
We can calculate some of the b!™(p) using the partial list of the

bi(p) given in (9) to derive several b(s'")(p) from (19). Using (22) we
then obtain

bV (p) = (22)

by =»p
b® = 29
b;3) = 3p5
b = 47
by = 5p°. (23)
The obvious guess that
b = mp™t, m=12 --- (24)

follows from a direct proof of the continued fraction given in the
appendix. Assuming (24) to hold yields the simple representation

1

Qz; p) = (25)
1—pz
1 - 2p%
1 - 3p%2
1 —
The accurate numerical value
pe = 0.563007169391816 - - - (26)

was obtained by using this representation along with (14) and (15).
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When P = Pc,

. 1
Go = llm gr(pc) = =—. 27)

; kbi(pc)

Using the computed value of p. and the definition of the b.(p), we
found numerically that

g~ = 0.50900853 - ... (28)
It was quite surprising to us that Q(z, p) turned out to be a new, but

simple, continued fraction.

IIl. INTEGRAL EQUATION METHOD

The purpose of this section is to introduce the integral equation
method and to show that p. < p., where p. is the critical correlation
value for the related problem involving E |x; - - - x,].

We begin by developing an expression for Ex; - - - x,. We have, from
the Markov property of the x; sequence,

Exy -+ x, =f fxnp(xnlxn-l)
- x1p(x1| %0)P(x0)dxp - -+ dxn,  (29)

where
1 2
=— —x%/2 30
d(x) o exp(—x°/2) (30)
is the standard normal density and

oL expl=(y — pp)¥/2(1 —
p(ylx)—mexp[ (y = p2)7/2(1 = p*)] 31)

is the generic form of the conditional densities occurring in (29).
Define a kernel K(x, y) by

K(x, y) = yp(y|x),

Kf(x) = _L K(x, ) f(y)dy.

Then (29) may be written in the inner product notation of Hilbert
Space

Exl e Xp T (Knlv ¢)3 (32)

where ¢ is the normal density (30), 1 is the unit constant fhnction,
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and K" is the nth iterated kernel. Now assume, heuristically, that K"
has the usual expansion

K™(x, y) = §1 A (i () (33)

in terms of eigenfunctions y;(x) and eigenvalues \; of K. Then
Ex, - - - x, would remain bounded, if, and only if, the largest eigenvalue
M = Ai(p) is less or equal to one; thus A(p.) = 1 would determine p..
Unfortunately there is no general eigenexpansion theory available for
K since it is not symmetric and is not symmetrizable.

Fortunately symmetry holds for the integral equation method when
one expresses E |x; - -- x,| via kernels. Define, in analogy to (32),

K(x,y) = | y| p(y|x). (34)
If we further define
Jix, )——((’%K(, ), (35)
where
= Vlx|exp(—x%/4), (36)
then
J(xy)=——le exp[ 11+ (x +y)]
’ V2r (1 = p?) 41— 2
-exp [1 pfypz] (37)
is a symmetric kernel.
As in (29),

Elx; -+ x,] =f fK(xn—la %n) K (%2, %n—1)
- K(xo, 21) ¢(x0)dxo - dxyn

=f...fdx0~--dan(xo,x1)

h(x,)
h(xo)

Y
_(J ) o

GAUSS-MARKOV VARIABLES 3001

- J(xpo1, Xa)7— d(x0)



Since oJ is symmetric and square-integrable, it is a Hilbert-Schmidt
kernel and so has a discrete spectrum. Further its maximum eigen-
value, A, is given by

Y
M= ST

Since JJ(x, y) = 0, we see that the maximum eigenfunction g = g(x) is
nonnegative and A > 0 as well. Further since h and ¢/h are nonnega-
tive, (h, g) > 0 and (¢/h, g) > 0 so that E|x; --- x,| = (J"h, ¢/h) —
o if and only if A > 1.

Define f, by

(39)

fo(x) = Vx| exp(—ax?/4), (40)
and note that from (39),
N> (Ifa, fo)/(fas fo)- (41)
Now
(for fo) = f | x| exp(—ax?/2)dx = 2/« (42)
and

-l
(mefn)_m . _wlxyl

. exp [— St +y?) + L2 2] dxdy, (43)
2 1—p
where
_1{1+ p*
C—2(1_p2+a>. (44)
Set y = xu and integrate over x to obtain
4 ® uldu
U £) = S [ 11—
Vor(l — p?) J-= (c(1 + u?) — Bu)
=2
6 - 1 — p2' (45)

Using Ref. 4 (p. 68, 2.175) we evaluate the last integral as
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N S S i]
(anu fa) m [A + A3/2 tan \/Z ,

(A = 4c® — % (46)

Setting a = 0.5, p = 0.55, we find that ¢ = 1.18369, 8 = 1.57706, A =
3.11738, (Jf., f.) = 4.0824, (f., f.) = 4, so that A > 1.012. Thus for
p=055 E|X; --- X,| = =, and p. < 0.55. We have seen that p. >
0.563 so the claim is proven.
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APPENDIX
Combinatorial Derivation of Continued Fraction

In this appendix we give a direct combinatorial proof of the contin-
ued fraction representation (25) of Q(z, p). This derivation is complete
in itself, but we preferred the method of the text for showing where
the continued fraction comes from. Qur starting point is the formula
(7). Let us define, for o € Sonm,

V(o) = § |a(2t) — o(2i — 1)]. 47)
i=1

Forl<k=<m,let
S(m, k) = {oc € Som:c(2m) = 2m,
c@2m — 2) =2m — 1,
c@2m —4)=2m -2, ...,
o2m —2k+2) =2m — k+ 1}. (48)
For k = 0, we adopt the convention that S(m, 0) = S,,.. We also define

__.1— Vi(s)
2" m — k)! UES;m,k) P (49)

so that u(m, 0) = q,,. (We take u(0, 0) = qo = 1, and u(m, k) = 0 for
k<0 and k> m.) Our key result is:

u(m, k) =

Lemma. If m=1,k =0, then
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u(m, k) = kp* u(m — 1, k — 1) + u(m, k + 1). (50)

Proof. We will prove this for 1 < k < m — 1, as the other cases are
easy. Let

S’ ={e € S(m, k):2m ~ k
€ {6(2m — 1), 6c(2m — 3), ---, a(2m — 2k + 1)}},
S” =8(m, k) — S’. (51)

If ¢ € S”, we construct a permutation ¢* € S(m, k + 1) by changing
the action of ¢ on four letters in such a way that V(s¢) = V(¢*) and
a*(2m — 2k) = 2m — k. To define o* precisely, let p and r be such that
{r, 2m — k} = {¢(2p — 1), ¢(2p)}. Then, if we associate to ¢ the vector
A(o) = (a(1), 0(2), - - -, 6(2m)), the vector A(c*) is obtained from A(s)
by interchanging the pairs {c(2m — 2k — 1), ¢(2m — k)} and {r, 2m —
k} so as to keep the same ordering in the first pair, but possibly
reversing it in the second, so as to have ¢*(2m — 2k) = 2m — k. As an
example,if m=5,k=3,and A(s) = (7,2,4, 1, 6, 8, 3,9, 5, 10), then
A(e*)=(4,1,2,7,6,8,3,9, 5,10). It is clear that ¢* € S(m, k + 1)
and V(¢*) = V(¢). Moreover, every 7 € S(m, k + 1) can be represented
in exactly 2(m — k) ways as v = ¢*, ¢* € S”. Therefore,

___1_.__ Vie)
DT —y GEZS” pV) = u(m, k + 1). (52)
Suppose now that ¢ € S’. Then 2m — k = ¢(2m — 2r + 1) for some
r, 1 < r < k. We now define a permutation ¢’ € S(m — 1, k — 1) as
follows: In A(o), delete a = ¢(2m — 2r + 1)(=2m — k) and b = ¢
-(2m — 2r + 2) and reduce the remaining entries that are between a
and b by 1, and those that are larger than max(a, b) = a by 2. As an
example,if m=5,k=3,and A(s) = (2, 1, 6, 3,5, 8,7, 9, 4, 10), then
A(e)=(2,1,6,3,5,17,4,8). The resulting vector clearly equals A(¢")
for some ¢’ € S(m — 1, k — 1), and each r € S(m — 1, k — 1) has
exactly k such representations. Further, V(¢) equals the sum of
(i) V(e¢"), (i1) a — b for the pair that was dropped, (iii) 2 for each of the
r — 1 pairs (c(2m — 2/ + 1), 6(2m — 2j + 2)) for 1 < j < r — 1, since
in each such pair ¢(2m — 2j + 2) > a, 6(2m — 2j + 1) < b, and finally
(iv) 1 for each of the k — r pairs (6(2m — 2j + 1), 6s(2m — 2j + 2)), r +
< j < k, since in each of them ¢(2m — j+ 1) < b, b < a(2m — 2j + 2)
< a. Hence,

Ve)=V(e')+a-b+20r—1) +k—r (53)

Buta=2m — kand b = ¢@2m — 2r + 2) = 2m — r + 1 from the
definitions of S(m, k), so

V(e) = V(') + 2k — 1. (54)
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Hence, we have
1

T &, P = ke ulm = 1, k= 1), (55)

< oES’

which proves the lemma.
We now can use the recurrence of the Lemma to derive the continued
fraction expansion of the generating function. Let

o

fk = fk(z) = Z u(m; k)zm’ k = 0, 1, ct Ty

m=0

which for the moment we regard as formal power series in z. Then the
Lemma gives us

fl = fO - 17 (56)
and for k = 2,
fr=Yulm, k—1z" = (k= 1)p* 2 Y u(m — 1, k — 2)z"

= fie1 — (B = 1)p™ 2frcs. (67)
Relations (56) and (57) show that for k = 0,
fr = sufo = 14, (68)

where so =5, =1,ro =0, r; = 1, and for k = 2 both s, and r, satisfy
the recurrence

X = xpm1 — (R — 1)p* 32x4s.

Hence the quotients r,/s; are the partial quotients of the continued
fraction R(z, p) on the right side of (25), and s; and r, converge as
k — oo to power series (in 2) s(z, p) and r(z, p), respectively, for which

r(z, p)
s(z, p)
On the other hand, since f; starts with a term involving zx, we conclude

that f;, converges to 0 in the ring of formal power series as k — oo,
Therefore, from (58),

R(z, p) = (59)

=220 g ). (60)
s(z, p)

Since f, = Q(z, p), we obtain the relation (25), at least in the ring of
formal power series in z. However, the continued fraction (25) is
clearly a meromorphic function of z for p fixed, 0 < p < 1, and it is
analytic at 0. Hence (25) holds as an equality among meromorphic
functions, and we can obtain from this the exponential decrease of the
gm(p) for p < p. and the exponential increase for p > p..
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Series Solutions of Companding Problems
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A formal power series solution (i) x(t) = Xym*x.(t) is given for the
companding problem (ii) Bf{x(t)} = my(t), B{x(t)} = x(t), where B is the
bandlimiting operator defined by Bg = (Bg)(t) = [ g(s)[sin A(¢t — s)]/[#(t —
s)]ds and f(t) has a Taylor series with f(0) = 0, f’(0) # 0. Expressions for the
x are given in terms of the coefficients of f, and operations on ¥, and in a
different form in terms of the coefficients of the inverse function ¢, ¢{f(x)} =
x. A series development is given for a bandlimited z(t), Bz = z, such that the
solution of (ii) is given by x = B¢ (z). Also a series development is given for
the “approximate identity”, x = B¢ {Bf(x)}, where x = x(t), Bx = x, which is
shown to be a good approximation to x for fairly linear f(x), not necessarily
having a Taylor series expansion. As an example of one application of the
results, a few terms are given for correction of the “inband” distortion arising
in envelope detection of “full-carrier” single-sideband signals. The results
should prove useful in correcting small distortions in other transmission
systems. Finally, it is shown that the formal series solution (i) actually
converges for sufficiently small | m |. This involves proving that the compand-
ing problem (if) has a unique solution for arbitrary complex-valued y(t) and
complex m of sufficiently small magnitude, the solution x(¢; m)-being, for each
t, an analytic function of the complex variable m in a neighborhood of the
origin. It is a curious fact, as shown by an interesting example, that the series
(i) may converge for values of m for which it is not a solution of (ii).

I. INTRODUCTION

Suppose x(t) is a bandlimited signal whose Fourier transform van-
ishes outside the interval [—), A]. If such a signal is instantaneously
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distorted by a nonlinear (companding) function f(x), the distorted
signal f{x(¢t)} will, in general, have frequency components outside the
interval [—\, A]. If the out-of-band components of the distorted signal
are removed by ideal low-pass filtering, the result is a bandlimited
signal y(t) whose Fourier transform agrees with that of f{x(¢)] over
(—A, ). How, and under what conditions, may x(t) be recovered from
y(t)? When the signals are real-valued, this is known as the compand-
ing problem of Landau and Miranker (Refs. 1 and 2), hereafter referred
to as the r.v. companding problem. Before stating their result, and our
purpose, we introduce some notation.

The symbol %,(\) will denote the subspace of Ly = Ly(—, ) whose
elements are those (square-integrable) functions whose Fourier trans-
forms vanish outside [—A, A]. Associated with this subspace is the
bandlimiting operator B,, defined for g in L, by

Byg = (B\g)(t) = f 2(s) M——S) ds.

— W(t - 3)
The Fourier transforms of g and B,g agree over (=), ), the transform
of the latter vanishing outside [—A, A]. In the language of Hilbert
space, B\ g is the projection of g on %,()), being the best approximation
to g in the subspace %,(N). In case g belongs to %»()\), we have

Byg=g.
It follows that
Big=Bxg, g in L, n=12 ---.

The operator B, may be applied also to functions belonging to L,, 1 <
p < ; i.e., to functions g satisfying

o0 1/p
lgll, = {L Ig(lt)l"dt}> <o (l<p<om).

Here the notation | g, designates the norm of g in L, or simply the
L,-norm of g. The space L. consists of those functions g whose
magnitude is bounded on the real line, their norm | g|. being the
“essential supremum” of | g(¢) |, which for functions we will be dealing
with here, is simply the maximum value of |g(¢)|. The operator B,
may not be applied to an arbitrary bounded function, since the
associated integral may not converge. However, the integral may
converge conditionally for a large class of functions; in particular,
B,g = g, for any constant function g.
The operator B, is a “contraction” operator on L,; i.e.,

I Brgllz < llgla,
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with equality attaining only for g in %»()\). This follows from Parsev-
al’s theorem and the definition of B,.

Applying Schwarz’s inequality to the integral equation denoted by
B,g = g, we obtain the useful inequality

lglle < VA/m llgllz, & in Za(N).
Also, it is easy to show from the integral equation that
lim g(t) =0, g in %M.

t—t
We shall also make use of the high-pass operator H), defined by
H)\ =1- BM

where I is the identity operator. H, is an identity operator for functions
h of Ly whose Fourier transforms vanish over (=X, A), and it is also a
contraction operator on L,,

IHxgllz < 11812,

with equality attaining only for H,g = g, i.e., for B,g = 0. (In these
operational equations, 0 is interpreted as the null function.)

It is clear from the operator definitions and the associated Fourier
transform relations that any function f in L, has the decomposition

f=g+h,
where
g= B)\f, h = H)\f.

Since A will be fixed throughout the paper, we will, except where
emphasis is desired, simply write B, H, and %, for By, H\, %.(}\),
respectively.

Now, using our notation, we may state the important result of
Landau and Miranker as follows:

Theorem (Landau and Miranker): Let f(x) be a real-valued function of
the real variable x, satisfying
(@) f(0)=0

@) oO<m<sf(x) Sm<ox, (—o0 < x < ).

Then to each real-valued y in %, there corresponds a unique x in %s,
also real-valued, satisfying

(iit) Bf(x) =y.

The solution x of (iit) may be obtained as the limit of the sequence of
approximants {x,} defined iteratively by

(lv) Xn+1 = Xp — CB{f(xn) - y}a
provided only that x; is a real-valued function in %, and the real
constant c is so chosen that
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(v) max|l —c¢f'(x)| <sr<1.

The beauty of this result is that, under the hypotheses on f, every
(r.v.) y in %, has the representation (iii) where x is a unique (r.v.)
function in %,. In some r.v. companding problems of interest, f(x)
may not be defined outside some interval and/or the condition on
f’(x) may not be satisfied over the whole real axis, but rather over
some interval including the origin. Then the conclusion will apply only
to y of sufficiently small norm. In such cases, the companding problem
has two essentially different interpretations. The first is the recovery
problem: y is known to be of the form (ii); recover x. The second is
the design problem: y is a prescribed (desired) signal; find x, if possible,
so that y is given by (iii). In this case, one is faced with the problem
of determining for what y the problem has a solution.

The speed of covergence of the iterative solution of Landau and
Miranker is a matter of practical concern. They show that

| Xne1 = 2 llz < rllxn = Xn1ll2.

Then the constant ¢ in (v) should be chosen to make r as small as
possible. Assuming that equality may attain on both sides in (it), one
should choose

2 giving r me — m
c=——— ivin =,
’ me + m,

my; + me
Thus rapid convergence is assured if (m»/m,) is not much larger than
1. If this is not the case, a large number of iterations are, in general,
required to obtain a close approximation to the solution of the problem.
In a practical implementation of the iterative scheme of solution (Ref.
1), the ideal bandlimiting operator is replaced by an approximate
operator, incurring a certain delay, in addition to (eventually) signifi-
cant spectral distortions, with the result that the sequence {x,} will
not converge to the solution x. Thus, in practice, the number of
iterations to be performed is limited both by practical and theoretical
considerations. The conclusion is that good approximate solutions to
companding problems may be conveniently obtained in practice only
in those cases where the companding function f(x) is fairly linear over
the range of x(t).
We should remark at this point that there is only one known
(nonlinear) r.v. companding problem (see Ref. 3) admitting of an
explicit noniterative solution; viz.,

Bllog(1 + x)} =y, x> -1, x in %,
which has a solution if, and only if, the function®

¥ Here we are applying the B operator to a function not in L, the proper interpretation
being w = 1 + B{—1 + exp(-)}.

3010 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983



w(t) = Blexp 1/2[y(¢) + (1)1},

where ¥ is the Hilbert transform of y, extends as a function zero-free
in the upper half-plane, which will be the case if | ¥ ||; is sufficiently
small. Then the solution is given by

x(t) = |w(t) |- 1.

Motivated by the above considerations, pure curiosity, and the fact
that in many cases of practical interest the companding function and/
or its inverse can be well approximated by a polynomial of low degree
over the range of interest, we are led to consider the case where the
companding function has a Taylor series expansion, allowing the
possibility of developing a corresponding series solution to the prob-
lem. To obtain the terms (1st order, 2nd order, etc.) in the series
solution it is convenient to multiply y by a scalar parameter m, and
consider the problem

Bf(x) = my (1)
to be solved for x in %, given y in %, for companding functions
f(x) = X bex", | x| < Ry (2)
1
by # 0.
For sufficiently small | x|, f will have an inverse ¢,
x = ¢f f(x)}
¢(y) = X ay’, |yl <RE 3)
1

We assume that the solution x = x(¢; m) of (1) has a series expansion
in the parameter m,

x(t; m) = i mPx,(t), (4)

where the x,(t), aptly described as kth order corrections, (not to be
confused with the Landau-Miranker approximants) depend only on
y(t) and f. Presumably, in cases of small distortion, a few terms of the
series would give a satisfactory approximation to the solution.

Explicit expressions for the first five of the x.(t) are given in the
sequel, first in formulas involving the coefficients of ¢, and next, the
coefficients of f, together with certain operations on y. These formulas
reveal how the Fourier transforms of the x,(t) may be calculated from
the Fourier transform of y(¢), if this be given.

Next, we find a series development of z in %,
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AD) = 26 m) = $ mhzy(t) 5)

such that the solution to (1) is given (presumably for sufficiently small
|m|) by

x = B¢(2). (6)

We find that z; = y, 2, = 0, and in case a, in (3), or b, in (2), vanishes,
we have, in addition, z; = z, = 0. That is, under certain conditions,
z = my, implying that Bé{Bf(x)} is an “approximate identity” (=x) for
x in %,, especially if f is odd and fairly linear, or if x(t) is a predomi-
nantly low-frequency function.

To further investigate the approximate identity, we introduce the
parameter m again, and obtain expressions for u, in

BolBf(mx)} = 3 mhuy  x in B 0

To see how interchanging f and ¢ affects the approximate identity, we
compare u;, with v, in

Bf(Bo(mn)} = X mbu,  xin By ®)

As expected from the series development of z, we find u; = v, = x, and
us, = v, = 0. Further comparisons [with the same m in (7) and (8)]
should be made for the case f'(0) = ¢’(0) = 1. For this case, we find
us = v3 = 2b3B(x- Hx?), which may be small if b, is small or if Hx? is
small. In case b, = 0, we find u, = v, =0 for k = 2, 3, 4, and us =
vs = 3b3B(x?%. Hx®).

These series developments of the approximate identity suggest that
it would be useful in obtaining an approximate solution to the r.v.
companding problem for fairly linear companding functions, not
necessarily having a Taylor series expansion, but merely satisfying
f(0) =0 and

0<m < f'(x) my < oo, (—o < x < ), 9)

Compelled by this suggestion, we digress in the Appendix to show for
such f that

lx = Bo{Bf(x)}ll2 < vllxll,  x in B, (10)

where

62 ms

= =T,
+e ° m

(Note that v = 1/8 for my/m; = 2.) Thus in many companding

Y
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problems, B¢(y), involving only one filtering operation, would be an
adequate approximation to the solution x. We go on to define an
iterative procedure, involving both f and its inverse ¢, obtaining
approximants converging to x for v < 1, offering an alternative to the
solution of Landau and Miranker in cases where (my/m,) < 3 + 242,
In any case, B¢(y) is suggested as a good choice for x; in their iterative
solution. We note, in leaving this topic, that the inequality (10) is
invariant to the interchange of f and its inverse ¢.

Returning to the series solution, we apply the results to the problem
of compatible single-sideband transmission (Ref. 4), obtaining a few
terms for correction of the “in-band” distortion arising in envelope
detection of “full-carrier” single-sideband signals.

Although the original intent of the work here was to obtain expres-
sions for the first few terms of the series solution (4), supposedly
adequate for correcting small distortions, the mathematical question
naturally arises in the end as to whether the series actually converges
for sufficiently small |m| (or equivalently, for [m| = 1 and || ¥ |
sufficiently small), or whether it is merely an asymptotic series. It is
indeed a pertinent mathematical question, since the expressions for
the xx(t) were obtained by purely formal manipulations of power series
and application of the operators B and H. The resulting expressions
become progressively cumbersome and complicated, with no obvious
general form, offering no possibility of establishing (from them)
bounds on | xx(t) | which would ensure convergence of the series. The
remainder of the paper is addressed to the problem of establishing the
convergence of the series.

If we suppose in the r.v. companding problem that the series con-
verges for real-valued m of sufficiently small magnitude, then it would
also converge for similar complex m, suggesting that the companding
problem [for fixed y(¢)] would have a solution for all complex m of
sufficiently small magnitude. This, in turn, suggests that the problem
would have a solution for arbitrary complex-valued y(t) in % and all
complex m of sufficiently small magnitude, depending on f and the
norm of y. That this is a fact has been established previously (Ref. 3)
only for complex-valued y(t) whose Fourier transforms vanish outside
[0, A], (or [—A, O]), the Fourier transform of the solution x(t) having
the same property. In this case (with m = 1), the solution is given by
x = B¢(y) for y of sufficiently small norm; i.e., in case the Fourier
transform of x(¢) vanishes outside [0, A], (or [—X, 0]) the “approximate
identity” is an exact identity,

x = Bo{Bf (x)} = o{f(x)}

for x of sufficiently small norm. This result can be explained, roughly,
by the fact that nonlinear (analytic) distortion of such x(t) does not
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produce both “sum and difference” frequency components, but only
“sum” components.

In order to prove that the series solution actually converges for
sufficiently small | m|, we show that the companding problem (1),
where y(t) is an arbitrary complex-valued function in %, has a solution
x(t; m) for all complex m of sufficiently small magnitude, this solution
being, for each fixed t, an anaytic function of the complex variable m,
from which it follows that the solution has a Taylor series expansion
in m; ie.,

x(t;m) = i mFxi(t), |m| < my. (11)
1

To obtain this result, we first have to establish for the complex-
valued (c.v.) companding problem the analogue of A. Beurling’s
uniqueness theorem (see Ref. 1) for the r.v. companding problem.

We then examine in detail a specific problem illustrative of the
theory and some of its nuances; viz., the problem (taking A = 2 for

convenience)
x sin 2t
B{l_x}—m 5F (12)
for which the solution is (at least for sufficiently small | m|)
sin 2t sin t\”
= ‘m) = 2 - B2

x = x(t;m) = 2B o1 B ( ; ) , (13)

where
B8=m/(2 + m).

The rather surprising revelation of this example is that, although the
series expansion in m of x(¢;m) converges, uniformly in ¢, for [m| <
2, it is not a solution of (12) for all such m. Furthermore, one might
reasonably assume that (13) is a solution of (12) for all m other than
—2, but this is not true either. As an illuminating exercise, we deter-
mine precisely the set of m for which (13) is a solution of (12).

Il. THE INVERSE SERIES METHOD

To obtain a series solution to (1), we first think of recovering from
y(t) the out-of-band components of f{x(t)}, so that we might apply the
inverse function ¢ to the whole in order to recover x(t) = x(¢;m). We
have

fx@®)} = my(®) + h(0), (14)
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where h(t) = h(t;m) is some unknown “high-pass” function satisfying
Bh(t) =0 (15)

and hence
x(t) = ¢imy(t) + h(¢)}. (16)

It is convenient at this point to introduce the high-pass operator
defined by

H=1I1-B, 17)
where I is the identity operator. Thus applying H to (16) we have
Hep{my(t) + h(t)} = 0. (18)

We would like to solve (18) for h(t), which we think of as small in
cases of interest.
Now we assume that

&(y) = Y apy® for sufficiently small | y], (19)
1

a # 0
and that in (16)

h(t) = h(t;m) = 2 mPh(t), Hhy, = hy, k=2, (20)

x(t) = x(t;m) = ¥ m*x(), Bu=2x k=1,  (21)
1

where hy(t) and xx(t) do not depend on m.
We want to expand ¢{my(t) + h(t)} as a power series in m. To do
this it is convenient to write

my(t) + h(t) = 3 mPhu(2), (22)
1
where we identify
YO =) in B. (23)
Then we write
p {i mkhk(t)} = Fmit) = 3 m*Fy(t). (24)
1 1

For convenience we suppress the variable ¢ and write simply xx, hx, F.
In terms of the coefficients a; in
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o(y) = 21‘, ay®,

we find, equating coefficients of m* in (24),
F,=ah
Fy, = a1hy + axh?
F3 = ayhs + ax(2hhs) + ash}
Fy = ajhy + ax(2hihs + h3) + a3(3h3hs) + asht
Fs = ayhs + as(2hihy + 2hshs) + as(3hihs + 3h,h3)
+ a4(4h3hy) + ash}
Fs = athe + a2(2hihs + 2hshy + h3) + as(3hihy + 6hihohy

F7 = 01h7 -+ 02(2h1h6 + 2h2h5 + 2h3h4)

+ a3(3hihs + 6hihohy + 3hyh3 + 3h3hs)
+ as(4h3hy + 12h3hohs + 4hyh3)
+ as(5hihs + 10h3h3) + as(6hShs) + a;hl

Fs = ayhg + as(2hahy + 2hshs + 2hshs + hi)
+ a3(38hihs + 6hihshs + 6hihshy + 3h3hy + 3hoh3)
+ as(4hihs + 12h3hohy + 6h3h3 + 12h,h3hs + hi)
+ as(5hthy + 20h3hohs + 10h3h3)
+ ag(6h3hs + 15hih3) + a:(ThShy) + agh?

Fy = a;hg + ax(2hihg + 2hshq + 2hshe + 2h4hs)
+ a3(3h3hy + 6hihghe + 6hihshs + 3hihi + 3h3hs
+ 6hohshs + h3) + au(4hihe + 12h3hohs + 12h3hsh,
+ 12h,h3hy + 12hhoh3 + 4h3hs) + as(5hihs

+ 30h§h2h3 + 20h?hg) + a7(7h‘fh3 + 21h?h§)
+ ag(8hihs) + ash?
Fio = a1hyo + a2(2hihe + 2hohs + 2hsh; + 2hshe + hE)

+ 03(3h%h8 + 6h1h2h7 + 6h1h3h6 + 6h1h4h5 + 3h§h6
+ 6h2h3h5 + 3}1«2,7,2 + 3h§h4) + 04(4h§h7 + 12h%h2h6

(25.1)
(25.2)
(25.3)
(25.4)

(25.5)

(25.6)

(25.7)

(25.8)

(25.9)
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+ 12h%hshs + 6hihi + 12h.h3hs + 24hihohshy + 4hih3

+ 4h3h, + 6h3h3) + as(5hihs + 20hihshs + 20h3hsh,

+ 30h?hih, + 30h%h.hi + 20k h3hs + h3) + ag(6hdhs

+ 30hthohs + 15h1R3 + 60h3h3hs + 15h3hY)

+ a.(Th$h, + 42h%hohs + 35hih3) + as(8hihs

+ 28h%h3) + ao(9h8h,) + aiohi®. (25.10)

In general the coefficient of a,, in the expansion of F,, consists of sums
of products of the h, corresponding to partitions of n into m parts.
The coefficient of the product is m! divided by the product of the
factorials of the exponents of the h, (the multinomial theorem). For
example, in Fyo the coefficient of a5 is found by writing down the
partitions of 10 into 5 parts and proceeding thus (see Table 24.2, Ref.
5):
14, 6 — hihg coef. =51/4! =5

1%,2,5  hihohs 5!/3! =20
1%,3,4  hihsh, 5/3! =20
12,24, 4 hihdh, 51/212! = 30
12,2, 3% hihohi 51/212! = 30
1,253  hhdhs 5!1/3! =20

28 h3 51/5! = 1.

Now we may obtain a formal series solution (21) by successively
solving for the h; by requiring

HFEW(t) = 0, k=12, -.. (26)
and setting
xi(t) = BF(t) = Fi(t), k=12, .... (27)

Recall that hy = y, the given bandlimited (low-pass) function, and all
the other h,, are high-pass functions. We have Hh,, = hy, k = 2 and

HF1 = athl =0 (28.1)
HF2 = a1h2 + ath% =0

hy = — 2 Hp2 (28.2)

(431

 Actually, for k = 2, h, is a bandpass function whose Fourier transform vanishes
over (=), A) and outside [—k\, kA]. This can be seen from (28.1)-(28.k).
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HFa = a1h3 + 202H(h1h2) + (13th1; =0

hs = 212 H(h,-Hh2) — Z—j Hh}
HF, = a1hy + a,(2H(hyhs) + HRE3) + 3a;H(h3hs) + aHhi = 0
he = — @ Hihy-H(hy - HR)] + 222 2“2“3 H(hy- HE)
3(12(13

H(Kh3-HR}) — Hh‘{*

- ("—) H{(HR)Y +
ax
HF5 = a1h5 + a2[2H(h1h4) + 2H(h2h3)] + 03[3H(h2h3)

+ 3H(h,h3)] + 4a,H(hthy) + asHAS = 0

8(1 2 4(1 2(13

hs = — H{h1 H{h,-H(h,- HR)]} —

Hlhy-H(h,- Hh})]

2a2 60203

+ = Hi- (HY] -

Hihy-H(h3-HRD)]

4(12

2“2"“ 2% H(h,-HhY) + —2 H[(th) H(hy-HR))]

2“2"3 2959 pl(HR2)-HR] — 6“2“3 2959 pih3. H(h,- HRY)]

3(13 3(12(13

H(h2 HK) — Hlh,-(HR3)?]

4(12(14

H(h}-Hh?) — Hh?.
a
Now replacmg h, by y we have from (25), (27), and (28)
X, = BF] =my
Xo = BF2 = agBy2
x3 = BF; = 2a,B(yh,) + asBy®
=- % B(y-Hy? + a3By*

x4 = BF; = a3(2B(yhs) + Bh3) + 3asB(y*h,) + a;By*

4a3
— 2% Bly- H(y-Hy")] - 222 B(y. Hy)

(28.3)

(28.4)

(28.5)

(29.1)
(29.2)

(29.3)
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3
3
+ 2 B(Hy)? - R B(y%Hy) + aBy* (29.4)
1

xs = BF5 = as[2B(yhs) + 2B(hshs)] + 3a[B(y*hs) + B(yh3)]
+ 4a,B(y°hs) + asBy®

8 4
= ~ ~% Bly-Hly-H(y-Hy")} + 295% By HyY)

2

- ﬂ Bly-H(Hy)?] + 22 Bly.H(y®. Hy?)]
2a.a

- S Bly-Hy') - ai BI(Hy")-H(y- Hy")]
2a2a3

205% pr(Hy?). (Hy")] + S22 Blye. H(y. Hy)]

3a3 3
0 By Hy') + ‘22;3 Bly- (Hy"?

4(12(14

B(y®-Hy?) + asBy°. (29.5)

If in (29) we replace the H operator by I — B and collect terms we
obtain

X1 = 4y (30.1)
Xo = a2By2 (30.2)
2a} 203
x5 = —2 B(y-By?) + <a3 - ﬂ) By? (30.3)
a a
9 4a] 2a.0, 3
Xy = —% B[y B(y-By")] - 2 B(y-By®)
1 1
+ “—2 B(By?)? — (Gi 3“2“3) B(y*-By?)
ai ay a,
+ (a4 _ 2a:09 5“2) By* (30.4)
a; 01

x5 = 8—"3 Bly-Bly-B(y-By})]) + (4“2“3 8‘“) Bly-B(-By")]

6ala: _ 12a 2a%
+( ) Bly-B(y*-By)] + ¢
ai a1

ax
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By-B(By?"] + (3"2"3 - ‘;i) Bly-(By*?]

ai

2 10a3
+ < Aoly _ 02(13

1002
p pe pe )B( -By*) 2o B[(B %)

-B(y-By%] + (6‘;203

2%) 1y By By

2a§a3 4ai
+ ( e e ) B[(By®) - (By®)]

1 1

4 <3a§ 12a3a; 12a2> B(y*-By")

o a?

+ (4a2a4 _ 2Oa2§a3 ZOaZ) B(5*-By?)
a; ay a

2 14a3
. <a5 _ o | 2alay  laf 3as) By, (30.5)
a; ai a !
Note that if y belongs to %()\/n), then By* = y* fork=1,2, --- , n

In this case we will have x, = a,y". So the sum of all coefficients in
the expressions for x,, must be a,. If ¢ is an odd function these formulas
simplify considerably. It is rather curious that if a, = 0, az # 0, the
coefficient of B(y%-By?) vanishes, whereas the coefficient of B(y?-
By?®) does not. The coefficients in (30) are more simply expressed in
terms of the coefficients in the power series for f as we see below.

Ill. FORWARD SERIES METHOD
We can also solve (1) in the “forward” direction by writing

Bf(mx; + m%t; + m®xs + ---) = my, (31)

where
Fx) = 2 bt (32)

Then applying the expansion (24) and (25) to f(¥ m*x.) we have,
equating coefficients of m*,

Bb1x1 =Y (33.1)
Bb1x2 + Bbzx% =0 (332)
Bb1x3 + Bb2(2x1x2) + Bb3x§ =0 (33.3)

Bb1x4 + Bb2(2x1x3 + x%) + Bb3(3xfx2) + Bb4x‘f =0 (33.4)
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Bb1x5~= Bb2(2x1x4 + 2x2x3) + Bb3(3x%x3 + 3x1x§)

+ Bba(4x3x.) + Bbsx} = 0. (33.5)
Then solving (33) successively for x;, (Bx, = x;), we have
= y/b; (34.1)
by
Xo = — 73 By (34.2)
1
2b%
x3 = —% B(y-By?) — (34.3)
1
b3 2b,b
n = = 5 Bly-B(y-By)] + =5 B(3-By)
(34.4)
3
b B(B 2)2 3b2b3 B( 2, 2) _ b_;B 4
8bs 4b4
% =7 B{y-Bly-B(y-By’)]} + =5 B[(Byz) B(y-By?)]
B[y B(By*?] - bg 2 Bly-B(y-By%]
6b b 2b%b
5 Bly-B(y*By")] — == BI(By")-(By")]
6b2b 3bdb
- = Bly*B(y-By)] = = Bly-(By*)
+ 2b27b4 B(y-By") + 4bsb, B(y*-By?)
b{ bl
+ 3—23 B(y®*.By?®) — b—‘z ByS. (34.5)
b] b8

These correspond to the solutions for the h; in (28) with H and B, and
a’s and b’s interchanged, except here x; = y/b; as compared by h; =
in (28). They agree with the formulas in (30) according to the identities
in reversion of series (see 3.6.25, Ref. 5)

b, =1 (35.1)
adb, = —a, (35.2)
alb; = 223 — mas (35.3)
alby = baia.a; — alay — 5a3 (35.4)
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adbs = 6alasas + 3alal + 14af — adas — 21aia30s (35.5)
allbs = Tadasas + Tadaza, + 84aiada; — atas

— 28a%a.a% — 42a3 — 28a%ala, (35.6)
ai®b; = 8ala.as + 8atazas + 120alada,

+ 180a%a3a? + 13248 — ala; — 36adaias

— 72030030, — 12a3as03a5 — 12a3a3 — 330a,adas.  (35.7)

Of course the a’s and b’s may be interchanged in (35). Actually the
expressions for x; in (34) are analogous in a way to the coefficients a;
expressed in terms of the b, as given by (35) (with the a’s and b’s
interchanged). That is, if it were not for the B operator in eq. (33.k),
we would have simply x;, = a,y* according to the determining equations
for the inverse coefficients. Because of the B operator, successive
solutions for the x, generate powers of y interposed with B operators
and powers of {B(-)} in all combinations so that, for example, in x5 we
have a number of terms with coefficients b3bs/b% that combine only
when B is replaced by I to give —21b3bsy®/b8, corresponding to the last
term in (35.5). Note if all the b, = 1, the sum of the integer coefficients
in x, is (—1)"*! as this is the case y = f(x) = x/(1 — x), x = ¢(y) = y/
(1 + y). Note also that in the expression (34.5) for x5, for example,
there are five groups of functions with common “b” coefficients. These
combine with certain weights, depending only on the coefficients of
f(x), to give x5. Similarly, in the expression (29.5) obtained from the
inverse function, there are again five groups of functions with common
“a” coefficients that combine with certain weights, still depending
only on the coefficients of f(x), to give x5. The interesting and rather
puzzling fact is that the groups are not identical but overlap.

IV. A SOLUTION OF THE FORM x(t) = B{z(t)}, z in B

For the solution to (1) we have x = ¥ m*x,, where according to
(25) and (29), we have

0n=ay
X2 = ayhy + ayy? = ayBy?
%3 = ahs + 202hs + asy® = 20:B(yh) + a:By°.
Since
o(my) = aymy + aom®y? + azm3y® + ...,
we see that x = B¢(my) + .£(m®), m — 0. Then setting m = 1 (with y

sufficiently small) we can conclude that
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x=Bo(y) + 2(y%), y—0. (36)

At least as y — 0, B¢(y) is a better approximation than ¢(y) = x +
H(y?). Also B¢(y) could be a good approximation to x without y being
small, as would be the case if y were a predominately low-frequency
function (compared with its top frequency). This suggests that given
y in (1) we determine a bandlimited function z, perhaps close to y,
such that the solution to (1) is given by

x = Bog(2). 37)

To determine a series solution for z we set

o

zZ = 2 kak, BZk =2 (38)

1

and expand ¢(z) in a power series in m:

dp(mz, + m%2 + m®z3 + --.) = Y m*F,. (39)

~V 8

The F}, are given by (25) with z, replacing h,. The difference now is
that the F), are bandlimited to [k, kA], i.e., ¢(z) is not bandlimited
(in general) with z in %,. However, we must have

BF}, = xp, (40)

where in terms of operations on y the x; are given conveniently by
(29). We have

B(1121 =X1=aq)y (41.1)
Blaizz + a:2%) = x» = a,BY* (41.2)

2 2
B(a12s + 2a2120 + a32?) = x5 = — -a% B(y-Hy? + asBy® (41.3)
1
Blaizs + a2(22125 + 22) + a3(3z%22) + aszl] = x4

4a2 Q203

=— B[y H(y-Hy*] —

B(y-Hy?®)

3
+ % B(Hy2)2 00203 2% By 2 Hy2) + a4By (41.4)
1
Blaizs + as(2z124 + 22023) + a3(3zlz3 + 32423)
8 4
+ ay(d2izy) + as2f] = x5 = - % B{y-H[y-H(y-Hy%]}

4(1 203

Bly-H(y-Hy®)] — — B[y H(Hy*?]
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6(1 203 a2a4

—— B(y-Hy")

Bly-H(y*-Hy®)] —

_ & BI(Hy")-H(y-Hy"] + 2% B(1y%). (Hy")]

6“"’““ 8939 prye. H(y-Hy?)] - 2% B( 2. Hy¥)

3(1 2(13 a2a4

4

Bly-(Hy*?] — B(y*-Hy?) + asBy". (41.5)

Solving these equations successively for z, we find

2=y (42.1)
2= (42.2)
2y = ii B(y-Hy?) (42.3)
2= B[y H(y-Hy)] — a" B(y-Hy") + B(Hy2>2

- 2088 ey + 222 B[y B(y-Hy)l. (42.4)

3

The first and last terms in (42.4) combine (H + B = I) to give 471‘13—2
1

B(y?-Hy?), which then combines with the fourth term to give

2% B(y-Hy?%

1

2z = % (403 — 3a,a35)B(y*-Hy?) —
1

3
+ % B(Hy?)? (42.4a)

2= — % Bly-Hly-H(y-Hy"))

- % Bly-B(y*-Hy")] + % (4a = 3a,00B(y* Hy")

a
+ ;f- (8aia3 — 2a3)B[y- (Hy?)?]
1

20204

4
+ % (3aqa; — a1a4)B(y3-Hy2) - B( Hy‘*)
1
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4a2 2azas

- — B[(Hyz) H(y-Hy%)] + —5— Bl(Hy?-(Hy’)]. (42.5)
The expressions for the third- and fourth-order terms, 23 and z,, are
quite simple, owing to the fact that z; = y, 2z, = 0. Note in eq. (41.n)
the “diagonal” term a,Bz} on the left is cancelled by the term a,By”
appearing in x, on the right. Also in case a; = 0 we have

2=y (43.1)

=0 (43.2)

2=0 (43.3)

2e=0 (43.4)
3 2

25 = — ai; B(y*-Hy?). (43.5)

V. THE APPROXIMATE IDENTITY

The series development in the previous section suggests that as a
practical expedient one might take

x = Bo(y) = Bo{Bf(x)} = ¢{f(x)} =

That is, what appears to be the naive thing to do may in fact be quite
good, especially for odd functions ¢ (or f) that are not severely
nonlinear. The interposition of the bandlimiting operator between a
nonlinear function and its inverse and then subsequent bandlimiting
is an interesting “approximate identity” that we examine further in
the Appendix. One might ask how the interchange in the order of a
particular function and its inverse in the transformation affects the
approximate identity. The series expansion of the approximate iden-
tity may shed some light on the general problem. To keep track of the
various orders, it is convenient to introduce the parameter m as before.
We have

Bf(mx) = E‘, m*b,Bx*, (44)

o{Bf (m)} = 2 mF,, (45)

where the F), are given by (25) with b.Bx* replacing hi, and Bx = x.
Thus,

Fi=abx=x (46.1)
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F2 = alszx2 + azbfxz (46.2)

F3 = albsBxa + 2azb1b2x-Bx2 + asb?xa (46.3)
F4 = a1b4Bx4 + 2a2b1b3x-Bx3 + azbg(sz)z
+ 3a;b2b.x%- Bx? + asbix? (46.4)

F5 = albsBx"’ + 2a2b1b4x-Bx4 + 2azb2b3(Bx2)'(Bx3)
+ 3a3b?byx%- Bx® + 3asb,bix- (Bx?)?

+ 4a,b3byx®-Bx? + azbix®. (46.5)
Now we set
B¢{Bf(mx)} = ; m*ug, (47)
where
u; = BF}. (48)

Now note in (46) that if all the terms in BF} involving x were of the
form Bx* then BF, would vanish identically for k = 2 because ¢{f(x)}
= x. So we will introduce the high-pass operator H = I — B to collect
the terms Bx* that cancel. For example, to collect terms Bx® in BF;
we write

B(x-Bx?) = B(x® — x- Hx?) = Bx® — B(x-Hx?).

Thus,
u, = BF, =x (49.1)
Uy = BF, = a;byBx? + a:b3Bx% =0 (49.2)

u3 = BF; = a;bsBx® + 2a,0,b,B(x-Bx?) + az;b3Bx®
= a;b3Bx® + 2a:b,b,B(x* — x-Hx?) + a3b3Bx®
= —2a,b,b,B(x- Hx?) (49.3)
us = BF; = a;b,Bx* + 2a,b,bsB(x-Bx®) + a-b}B(Bx?)?
+ 3aszb?b,B(x?.Bx?%) + abi{Bx*
= abyBx* + 2a,01b3B(x* — x-Hx®) + axb3B(x? — Hx?)?
+ 3a3b?b.B(x* — x%. Hx?) + a.b}Bx*
= —2a.b,b3B(x- Hx®) — (2a:b3 + 3asb?b.)B(x?. Hx?)
+ a:biB(Hx?)? (49.4)
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us = BFs = a;bsBx® + 2a:b:b4B(x-Bx*)
+ 2a5b:b3B[(Bx?) - (Bx®)]
+ 3azb?bsB(x?-Bx®) + 3agh,b3B[x- (Bx?%)?]
+ 4a.b3b,B(x*- Bx?) + asb3Bx®
= a;bsBx® + 2a:b,b,B(x® — x-Hx*)
+ 2a5b:bsB[(x? — Hx?)-(x® — Hx®%)]
+ 3asb?bsB(x® — x2-Hx?)
+ 3asbb3B[x- (x* — Hx?)?] + 4a:b3b,B(x% — x*- Hx?)
+ asbiBx®
= —2asbb4B(x- Hx*) — (2a:b:b3 + 3asbibs)B(x%- Hx®)
— (2asbobs + 6aszbibi + 4a.bib,)B(x®- Hx?)
+ 2a3bob3B[(Hx?) - (Hx®)] + 3asb,b3B[x- (Hx?)?]. (49.5)
Now in order to assess the symmetry or lack of symmetry in inter-

changing ¢ and f we can use the identities (35) to express the mixed
coefficients of u, in terms of the b, or the a; alone. We have

u=x (50.1)
Ug = 0 (50.2)
Uz = 3ClB(x-Hx2) (503)
Uy = 4C1B(x-Hx3) + 4ch(x2-Hx2) + 4C33(Hx2)2 (504)
us = sC,B(x- Hx*) + 5CoB(x?- Hx®) + 5C3B(x®- Hx?)
+ 5C4B[(Hx?)- (Hx%)] + 5C5B[x- (Hx%)?], (50.5)
where
202 24}
3Cl = —2(12b1b2 = b_; = ai‘; (5033)
2byb 2 4a3
4C1 = —2(12b1b3 = b2% 3 = 22;3 —_ —a%z (50.43.)
4b3  3bsb 2a¢3  3asa
C, = —(2a.b% + 3a:b%b,) = — —= 273 _ _ 402 | Sfels
no (2a:b3 a3bibs) b3 + b2 p: + pr:
3 g3
403—0252_—b—;_a—§
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2b2b4 - _ 10&%(13 + 2&2(14 + 1003

501 = —2a2b1b4 = b% az 0(15 CL% (50.53.)
2
5C2 = —(2a2b2b3 + 3(13b%b3) = - 4b23b3 + 3_1)23
b3 bi
= (203 — 4105)(203 — 3a105)/a}
503 = —(2(12b3 + 603b1b§ + 4a4b§b2)
_ 8_1)% _ 12b%b3 + 4b2b4 _ @ _ 80%(13 + 402(14
bl b3 b? aj al al
2b%bs 2a3a; 4al
i
6b4 3b3b; 3aia
5C5 = 3a3b1b2 b4 bzzli 3 = a2,17 3.
Now if we interchange the order of ¢ and f in (45) and write
Bf{Bp(mx)} = ¥ mPu,, (51)
1

we obtain the v, by replacing u;, by v, in (49.k) and then interchanging
the a’s and b’s. We have u; = v; = x and u, = v, = 0. We should
compare U and vg, k = 3, for f'(0) = 1 = a; = b;. Then we have

w=uv, k=123 (52)
But we have, for example (with a; = b; = 1),
uy = 2bobsB(x- Hx®) + (3bobs — 4b3)B(x?- Hx?) — b3B(Hx?)* (53.1)
Uy = (2bobs — 4b3)B(x- Hx?)

+ (3bobs — 2b3)B(x*- Hx?) + b3B(Hx?)% (53.2)
If, however, b, = 0 (a, = 0) we have
up=uv, =0, k=234, (53.3)
andifa; = b, =1,
us = vs = 3b3B(x%- Hx®). (53.4)
In case by = by = bg = 0, (a2 = a; = ag = 0), we have
up = 31;3;’5 B(x* Hx%) + (5:3';’5 %b;> B(x*-Hx?)

3"3 52 Ble-(HY), (69
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where the coefficients expressed in terms of the a’s are

3bsbs _ 3asas  9a3

b? ad al’
sty _ 91 _ Saas _ 60} _ 33 _ 3ad
b} b a8 & b &

So we do not have, in general, u; = v; for odd functions f(x) with

f'(0)=1.

VI. APPLICATION TO COMPATIBLE SINGLE-SIDEBAND TRANSMISSION

The mathematical problem of compatible single-sideband transmis-
sion was formulated in Ref. 4. Given a signal y(¢) in %, the problem
is to determine m such that the equation

B{V(1 + s(t))® + §(t)*) = my(t) + 1 (55)

has a solution s(t) in %,. In (55) §(t), sometimes called the quadrature
signal, is the Hilbert transform of s(¢), and B is operating on the
envelope of the single-sideband signal. The idea is to transmit a single-
sideband signal that is compatible with receivers designed for double-
sideband (AM) reception. Setting

2s(t) + s*(t) + §2(¢) = x(t), (56)

we may write (55) as

Bf{x(t)} = my(t), (57)
where
flx) =1 +x—1, x =z —1. (58)

Then s(¢) may be found from the solution x(¢) of (57). (This requires
factoring 1 + x(¢) in the form g(¢)g(t), where the bandwidth of g is
half the bandwidth of x.) Then with y = f(x) we have for the inverse

x=¢(y) = 2y + (59)
Setting

x =Y mhx, (60)
1

we have from (29) with a; = 2,a: =1, a. =0 for k = 3,

X1 =2y (61.1)
xo = By® (61.2)
x3 = —B(y-Hy?) (61.3)
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x4 = B[y-H(y-Hy*)] + 1/4B(Hy*)* (61.4)
x5 = —B{y-H[y-H(y-Hy*)l} — 1/4B[y-H(Hy*)?]

— 1/2B[(Hy®)-H(y- Hy®)). (61.5)
Replacing H by I — B we have from (30) the alternate forms
x3 = B(y-By?) — By? (61.3a)
x4 = Bly-B(y-By®)] — B(y-By®) + 1/4B(By*)*
~ 3/2B(y*-By*) + 5/4By* (61.4a)

x5 = B{y-B[y-B(y-By*)l} — Bly-B(y-By®)]
— 3/2B[y-B(y*-By*)] + 1/4B[y-(By*)]
— 3/4B[y-(By®)?] + 5/4B(y-By")
+ 1/2B[By?)-B(yy-By*)]
— 3/2B[y*-B(y-By®)] — 1/2B[(By)*- (By®)]
+ 3/2B(y*-By®)
+ 5/2B(y%-By?) — 7/4By". (61.5a)

The factoring of 1 + x can be avoided by developing a series solution
for s, Bs = s. We have

x=2s+ s+ §°
x=mx; +m®e+ mixz + ...
Then setting
s = ms; + m?s + m3sg + ... (62)
S§=mé+mS+ m + .-, (63)
we have
s? = m%? + m32s15, + m*(2s183 + s%)
+ mb5(2s184 + 28283) + - - (64)
§2 = m%} + m®28,8 + m*(26:5; + $3)
+ mP(25:8s + 28:83) + «--. (65)

Note that if s belongs to %:()\), then the Fourier transform* of (s +
i§) vanishes outside [0, A] and that of its complex conjugate (s — i$)

*Here the Fourier transform of § is —i(sgnw)S(w) where S(w) is the Fourier transform
of s.
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vanishes outside [—\, 0]. Thus the Fourier transform of e=/%(s + i$)
vanishes outside [—(\/2), A/2]. It follows that the Fourier transform
of s + §2? vanishes outside [\, A], and hence that the sums of the
coefficients of m” in (64) and (65) are functions whose Fourier trans-
forms vanish outside [—A, A].

Now we can solve successively for s;. It is convenient to introduce
the Hilbert transform (Quadrature) operator @

£=Qg (66)

to indicate the “hat” of complicated expressions.
Equating coefficients of my in

x=2s + 5%+ §2,

we have
si=x/2=y (67.1)
sg = 1/2xy — 1/2(s} + §%
= 1/2By® — 1/2(y% + %), (67.2)
which may be written, using Bs, = s, as
se = — 1/2By* (67.2a)

s3 = 1/2x3 — (5152 + $152)
= — 1/2B(y-Hy?) + 1/2yB§” + 1/25-QB5%.  (67.3)
Here we may write
yBy* =y-3° — y-Hy*
and then use Bs; = s3 to obtain
ss = — 1/2B(y-Hy®) — 1/2B(y-Hy*) + 1/2B(y-5°) + 1/2B(7-QBy")
= — 1/2B[y-H(y* + 3°)] + 1/2B(y-y*) + 1/2B(y-QBy?).
Then since H(y? + ¥%) = 0, we have
s3s = 1/2 B(y-y*) + 1/2 B(y-QBy?) (67.3a)
Ss=1/2 x, — (5183 + 1/2 s3) — (5,63 + 1/2 §3)
= 1/2 Bly-H(y-Hy")] + 1/4 B(Hy")
- 1/2 yB(y-3*) — 1/2 3@B(y-5°)
- 1/8 (By*)* — 1/8 (QBy*). (67.4)

There appears to be no simplification here. One may prefer the
alternate expression (61.4a) for x; to eliminate the H operator. Note
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that QB can be replaced by the bandlimiting quadrature operator B
where

Be= B0 = | a1 MmD g gy

- w(t — s)

Vil. THE COMPLEX-VALUED COMPANDING PROBLEM

The c.v. companding problem is considerably more complicated than
the r.v. companding problem, even for the same analytic companding
function. For example, if

f(x) = tan"'x + ex, (e >0),

we know from the Landau-Miranker theory that the r.v. companding
problem

Bf(x) =y

has a unique solution x in %, corresponding to every real-valued y in
%,. However, in the case of complex-valued y, this may not be true
because x must then take complex values which, if the norm of y is
not restricted, may be singularities of f. In addition, we are confronted
with the problem of establishing the uniqueness of the solution, which
may require still more severe restrictions on the norm of y.

Beurling’s uniqueness proof (see Ref. 1) for the r.v. companding
problem is elegant and simple: Suppose f(x) = 2(|x|), |x] — 0, and
is monotone increasing, and further that

Bf(x;)=y and  Bf(x;) =,

with x;, x5, (and y) in %,. Then f(x;) and f(x,) belong to L, and B{f-
(x1) — f(x2)} =0, i.e., the Fourier transform of {f(x1) — f(x2)} vanishes
over (—A, A), and therefore {f(x;) — f(x2)} must be orthogonal to
(x1 — x2). But this is impossible unless x; = xs, for otherwise (x; — x2)-
{f(x)) — f(x2)}, which is everywhere non-negative, will be positive
everywhere on the real axis, except at the isolated zeros (if any) of
(21 — x2).

For establishing uniqueness in the c.v. companding problem, it
would seem that the weakest analogue of monotocity should be
“schlichtness” of f, i.e., that x should be confined to a region, where
f(x1) = f(x2) implies x, = x,. This suffices to establish uniqueness of
the solution in the special case where x has a one-sided Fourier
transform, but we are not able to see that it suffices in the general
case. We can establish the following analogue of Buerling’s theorem,
where, without loss of generality, we assume f’(0) is positive.
Theorem 1: Suppose f(0) =0, f’(0) > 0, and f(z) is analytic in a convex
region G including the origin, wherein
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Re{f’(2)} > 0.
If x,(t) and x»(t) belong to %, and are confined to G for all real t, then
Bf(x1) =y and Bf(xz) =y
imply
x1(t) = x2(2).

Proof of Theorem 1: Since G is convex, any two points x; and x, in G
can be connected by a straight line segment in G. Suppose (x; — x2) =
re’, where r > 0. Then integrating f’ along the connecting line
segment, we have

f(x1) = flxz) = €” J; f'(x2 + se”)ds,

and hence

Re f(x1) — f(x2) —

X1 — Xg

Re % f f/(x2 + se®)ds > 0.
0

In case x; — x,, the limit is Re f’(xz) > 0.
Now {f[x1(¢)] — flx2(¢)]} belongs to L, and must be orthogonal to all
members of %, in particular to {x;(¢) — x.(¢)}; i.e., setting

g2 L) = fz)

X1 — X2

P(t) = (#1 — %) {f(x1) — flx2)} = | %, —

the integral of P(t) must vanish. However, we see that the real part of
P(t) is non-negative everywhere on the real axis, and vanishes only
where x; = x,. Since the integral of P is zero, its real part vanishes
a.e. Thus the function {x;(¢) — x2(¢£)} in %, vanishes a.e., and hence
everywhere. [

Now we can establish that the c.v. companding problem,

Bf(x) = y,

will have a solution x, which will take values in a disk centered on the
origin, wherein Re{f’(z)} > 0, provided | y |2 is sufficiently small. Then
the uniqueness of the solution follows from Theorem 1.

An objectionable, but inherent, feature of companding problems (as
formulated here) is that a restriction on || y || is not sufficient to give
a corresponding restriction on || x||«. We can, however, establish that
|| x]l2 will be small if || y|; is small, and hence that || x || will be small,
according to the inequality (given in the introduction) for a function
gin %(MN),

lglle < VNl glle. (69)
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In the sequel, we assume, for convenience and without loss of
generality, that f/(0) =1,

fle) =2z + i biz", |z] < R, (70)
2

where R, (perhaps o) is the radius of convergence of the series. We
exclude the trivial case f(z) = z, and define

M(r) = rlnaflf'(z) — 1| < Y klbs|r™,  r<R, (71)
z=r 2

which increases steadily from 0 to o, allowing us to define p uniquely
by

M(p) = 1. (72)
Then it is clear that
Re{f'(z)} >0 for |z| <p. (73)

We are now able to establish the following result.

Theorem 2: Let y(t) be any complex-valued function in %, = %B(N),
satisfying

W wlylls < ;gg;:rll = MM} = roll — M(ro)]. (74)

Then the companding problem
Bf(x) =

has a unique solution x = x(t) in %,.
Proof of Theorem 2: We can use the method of Landau and Miranker
to obtain a Cauchy sequence {x,} converging to the solution x, provided
we restrict ||y]2, in the end, to be sufficiently small that all the
approximants satisfy |x,| < p.

Assuming the norm of y to be sufficiently small, we take

=y = By, (75)

which should be a good approximation to x for small y. Then we set,
following Landau and Miranker,

Xn+1 = X, + ¥ — Bf(x,), n=zl, (76)

so that, by induction, Bx, = x,, i.e., x, belongs to %,. We have, writing
the same equation for n — 1 and subtracting,

Xn+l — Xn = Xp — Bf xn) {xn— - Bf(xn— )}
= B[xn - f(xn) - {xn—l - f(xn—l)}]' (77)
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Now we write
flxn) = 20 = {f(2%n1) — %o} = f {f'(2) — 1}d=. (78)
Then assuming that
|l Sr<p forall n=1 (79)

[and all ¢, suppressed in the notation x, = x,(¢)] we have in (78)

1 f " 1F() - e

M(r) < M(p) = 1.

Substituting in (77) the inequality (80) for the magnitude of the
function in (78), we obtain

”xn+l - xn”2 = M(r) ”xn — Xp1 ”2 (81)

sM(r)lxn_xn—-lly (80)

where

So, under the assumption (79), {x,} forms a Cauchy sequence converg-
ing to x in %, [cf. Landau, Ref. 1]. It follows from (76) that

Bf(x) = y. (82)

Now we would like to see how large || y | may be in order that (79)
hold, giving the conclusion in (82). We write

Xp =21+ (2 — x1) + (X3 — x2) + -+ + (X0 — Xn-1) (83)

from which follows
lxalle < Y ok — xpoallz, (84)
1

where
X1 =Yy and x0 = 0.
Applying (81) to (84), we have

1—-a"

Iy 12, (85)

X =
ol < T

where o = M(r) < 1, provided (79) holds. This will be the case,
according to (69), if

lx.lle < Vw/Ar forall n=1, (86)

which, in turn, will hold if in (85) we have
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Va/n vl < vl = M(r)]. (87)

Here we are free to take the maximum over r. Thus the problem
will have a solution x satisfying the hypotheses, provided the norm of
y satisfies

Va/x I yle < max {r(1 = M()} = ro[1 = M(ro)), (88)

and the solution is unique according to Theorem 1. []

We note that if (88) is satisfied, then the solution x satisfies,
according to (85) and (69),

[x]le < ro < p. (89)

So, in fact, the restriction (88) on the norm of y is too severe. We
obtain a slightly better result later, using a different method.

We now wish to show that if y; and y, are close to each other, then
the corresponding solutions, x; and x,, are also close to each other.

Lemma: Let y, and y, satisfy the hypotheses on y in Theorem 2. Then
the solutions of

Bf(x1) = 3 and Bf(x3) =y,

satisfy
"yl ¥allo
s /=<2 T 90
2 = %2l < — M(ro) /N 1o (90)
_ . < \/—— "yl y2||2 < 2r. 91
|21 — xell — M(ro) (91)

Proof of the Lemma: We have
X1 = %2 = y1 — Y2 — B[f(x)) — 21 — flx2) + x2], (92)
giving
i = x2llz < llyn = wellz + B[z < llyn = yella + II[-1l2.  (93)
Also, since, according to (89),

|| <ro<p and |x2| < re<p,
we have from (78) and (80),
[ f(x1) = %1 — f(x2) + x2llo < M(ro) | 21 — x2]l2, (94)

which with (93) gives

lyr = yells
1- M(ro).

2 = x2l2 <

(95)
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This, with (69) and the assumptions on y; and y,, establishes the
lemma. O
With this Lemma and Theorem 2 we can show that the problem

Bf{x(t;m)} = my(t),

for fixed y in %,, has a unique solution in %, for all complex m of
sufficiently small magnitude, the solution x(¢; m) being a continuous
function of the complex variable m in a certain disk centered on the
origin. To establish for each t that F(m;t) = x(¢t;m) is an analytic
function of m in that disk, we show that F(m) has a derivative
(nondirectional) there. Working with the derivative we are able to
improve on Theorem 2. It is convenient now to set ¥A/x || ylls = 1 so
that | y(¢)] < 1.

Theorem 3: Let y(t) be any complex-valued function in % = %B(\)
satisfying

VM7 |yl = 1.
Then the problem
Bffx(t;m)} = my(¢)
has a unique solution x(t;m) in %, for all complex m satisfying
p
Im|] < a(p) = fo [1 — M(r)]dr, (96)
where M(r) and p are defined in (71) and (72). Furthermore, for each
fixed real t, x(t;m) is an analytic function of m, | m| < a(p), and hence,
since x(t; 0) = 0,
x(t;m) = ¥ mialt), |m|<alp), (-o<t<wx) (97)
1
where the x; (t) depend only on y(t) and f.

We note, before proving Theorem 3, that in Theorem 2, 0 < ro < p,
and in Theorem 3

To P
a(p) = J; (1 — M(r))dr + f [1 — M(r)dr,
where M(r) increases from 0 to 1 over (0, p). Thus
J;O [1 = M(r)]dr > ro[1 — M(ro)],

and hence
ro[l — M(ro)] < a(p) <p. (98)
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Then, according to Theorem 3, the c.v. companding problem

Bf(x) =y
has solutions for y of larger norm than specified in Theorem 2.

Proof of Theorem 3: We first consider the solutions x; = x(t;my), x2 =
x(t;m,), corresponding to y; = myy(t), yo = myy(t), where

me=m + ¢ e=|ele” (99)
and
Imi| + |e]| < ro[l — M(ro)], (100)

so that Theorem 2 and the Lemma apply.
We have

Yo — y1 = ey(1), (101)
and hence, from the Lemma,

N
N A e o H EA TRt toco ST

Now
Bif(z) - flx)) = e, (109

which we rewrite as

xz—x1=y_B{f(x2) "f(xl)—(x2_xl)}.

(104)

€ €

We intend to let e — 0 (with any argument) and show that the quantity
on the left tends to a limit, independent of arg(e); viz., F'' (my;t), where

Flm) = = atm),  m|<rfl - MOOL (105

From (78), (80), and (102) we have

| £(x2) = Fx1) = (x2 — %) ll2 < M(ro) [l 22 — x1 [|2
_ LelVr/AM(ro)

< T MGy (106)

So
flx2) — f(x) = (x2 — x1)

€

belongs to L. (107)
We also have from (102), or the Lemma,
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el
Hm—xmwsl_ﬂﬂm. (108)

Thus we may write
Xo = X1 + €U, (109)
where
u=u(t;my, ¢) belongsto % and |u|
=/(1) as e¢—0. (110)
"Then
flx2) = flx1) = flay + ew) — flxr)
= euf’(x;) + O(fu?).
So (104) may be rewritten as
u=y— Bluf'(x;) — u+ Oeu?)}. (111)

Now letting ¢ — 0 and replacing m; by m and x, by x(¢;m), we obtain,
setting u(t;m, o) = u(t;m), the equation

u(t;m) = y(t) — Blu(t;m)[f’ {x(t;m)} — 1]}, (112)
|m| <A< r()[]. - M(r())]

Here we make the identification
0
u(t;m) = F'(m;t) = m x(t;m), Imj<s A (113)

by verifying that (112) has a solution u(t;m) in %,, in fact, for | m|
larger than ro[1 — M(ro)]. We observe, since x(;0) = 0, and f’(0) = 1,
that

u(£;0) = y(¢). (114)

Actually, we can obtain better estimates for |x(¢;m)| by integrating
its partial derivative from 0 to m.
We consider the equation for u,

u=y— Blu-[f(x) = 1]}, (115)
assuming x = x(¢; m) is known and satisfies
lx]e<r<p, (116)
so that
[f'(x) = 1] < M(r) < M(p) = 1. (117)
Using this inequality in (115) we obtain
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lulle < Iyl + M)l (118)
or

Iyl _ A
1-M@F) 1-M@r)’

The last inequality implies that (115) has a solution u in %
(obtained iteratively), in fact, for || x|l < p, since M(r) < 1 for r < p.
We note further that the inequality (119) is crude, with equality
possible only for r = 0, for we cannot have

[ fix(tm)} — 1] = M(r), (- <t<x)
unless x(t;m) = 0. Therefore, in (115) we have
IBfulf'(x) — 1]ll: < M(Dllulz for 0<|x[.<r<p.
So we have strict inequality in (119) for 0 < r < p. Hence,

lullz < (119)

||u|lm<1—_1A7(r—) for 0<|xlle<r<p. (120)
Now let us set
m = ae”, a>0 (121)
and
r(e) = max | x(t;0€”) [ o. (122)

We want to see how large we can make «a, say a(p), and have r(a) <
p. Using (120) in

x(t;m) = J; " u(t;€)ds, (123)
we obtain the inequality
r(a) < f‘! —-d—g—, 0<a<alp). (124)
o 1—M[r(9)]
Then, after defining
s(a) = f"‘ ___iif__’ 0<a=<alp), (125)
o 1 - M[s(8)]
it is clear, since M(r) is an increasing function of r, that we will have
r(a) < s(a), 0 < a=<alp). (126)

Differentiating (125) with respect to «, we obtain the simple equa-
tion
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s'(a){1 — M[s(e)]} = 1,
or, considering « as a function of s,
da

I 1 — M(s).
Thus
als) = J(; [1 — M(r)]dr, 0<s<p. (127)
We have s(a(p)) = p and r(a) < s(a) for a« > 0. So we will have
[x(tm)]|l- <p for (128)
p
|m| < a(p) = J(: [1 — M(r)]dr. (129)

According to (120) and (128), the partial derivative u(t;m) will exist
for | m| somewhat larger than «(p). This completes the proof of
Theorem 3. O

VIII. AN ILLUSTRATIVE EXAMPLE
It will be shown in a future paper that the r.v. companding problem

B{ z }=y, x<1, xy in BN, (130)

1—x

is equivalent to finding the reproducing kernel for a certain Hilbert
space of bandlimited functions. The specific problem with A = 2 (for
convenience) and

sin 2t

y=m o (131)

is quite easily solved. For real m > —2, the solution is

N g SN2t osin t\*
x(t;m) = 28 o7 B( ; ) (132)
where

B8=m/(2+ m).

We need not be concerned here with the derivation of this solution,
as we will later show directly that it satisfies

_x(tm) | sin 2t
B{l - x(t;m)} -m 2t (133)

COMPANDING PROBLEMS 3041



for all m in a certain region of the complex plane, but for no other m.

We know from Theorem 3 that (133) has a unique solution for
sufficiently small | m |, and that the solution is an analytic function
of m. It follows that (132) is the solution of (133) for all complex m,
| m| < | mg|, for some | my| > 0. Since m = —2 is the only point where
x(t;m) is not analytic, we might suppose | my| = 2. The series expan-
sion of x(t;m) certainly converges (uniformly in ¢) for all
|m| <2, but it is not a solution of (133) for all such m. For example,

we have
™ (28)*
+ —: = — | —
{=5m)-- (%)
and
m= 28
=1z
Then for 8 = + ix/2, we have
m= —2 , and x(i Zr-;m) =1.
.2 2
1+:~-
T
Therefore, the meromorphic function of ¢,
g x(Em)

will have poles at t = & /2 for m = —2/(1 + i2/x). Thus we have here
an example, |m| < 2, for which (132) is not a solution of (133).
However, it is, according to Theorem 3, for all m satisfying |m| <
3 — 24/2. This, as it turns out, is an overly conservative upper bound
for |m].

We now turn to the problem of determining precisely those m for
which (132) is a solution of (133).

First we can easily show that the r.v. problem has no solution for
m < —2 by convolving both sides of (133) with 1/7K(t), where K(t) =
(sin ¢)%/t2 The result is

I _Hsm) L g gds = 7 K@), (134)

w 1 — x(s;m) T

Since x/(1 — x) > —1, and K(t) = 0, we have
f _Hsm) lK(t—s)ds>—lf K(t)dt = —1
— ™ —c0

w1l — x(s;m).w
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This gives, setting ¢t = 0 in (134),
m> =2, (135)

Now to proceed towards our stated goal, we first write
_sin t sin t
1 — x(t;m) = (1 — Be' %) (1 — et %) (136)

Then in order for x(t;m) to be a solution of the problem, the Fourier
transform of the function

x(t;m) sin 2¢

hitm) = 1~ x(t;m) -m 2t

(137)

must vanish over (—2,2). With a bit of manipulation we arrive at the
expression

h(t;m) = g(t;m) + g(—t;m), (138)
where
o2t 1 — eit sin ¢
-2 t
gltm) = 7 5 r (139)
21t (1 - ﬁeit T)
and
_(m/2)
'6_1+(m/2) * L
We now introduce the complex variable 7 = t + iu, and observe that
—2u
lg(t + iw; m)| = ﬁ{ui—m} U— + o, (140)
Then if the denominator satisfies the condition,
(1 — Be” s T) is zero-free for u =0, (141)
T

it is easy to see (by contour integration in the upper half-plane) that
G(w;m) = f gitm)e™™“dt =0 for w<2. (142)
On the other hand, if the function in (141) has zeros 7 in the upper
half plane © > 0, (it must have no real zeros in order for g to have a

Fourier transform) we will have, by the calculus of residues,
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n

Glwym) = Y cre™™™ ¢, # 0, (143)
1

where n, depending on 3, is finite, since it is clear that the function in
(141) can have only a finite number of zeros in the upper half-plane.
Since the Fourier transform of h(t;m) is given by

H(w, m) = G(w;m) + G(—w;m) (144)

it will vanish over (—2,2) if, and only if, the condition (141) is satisfied.

Now the values taken by e’ sin 7/7 in the upper half-plane, u = 0
are precisely those values on the boundary and interior of the cardioid-
like region whose boundary is described parametrically by

. sin ¢t
elt

P -—rT<t<m

(Some values are taken more than once.) Then x(¢;m) will be a solution
to the problem except for those values of m such that 1/8 is a point
on the boundary or in the interior of the cardioid-like region. By the
mapping

x(t;m) is a solution to the problem for precisely those (finite) m lying
in the region to the right of the boundary line described parametrically
by

2
= pr , -—r<t<nw (145)
it -1
t

This region (see Fig. 1) includes the half-plane Re{m} = —4/3, its
boundary indenting more to the left near the real axis, having a cusp
at its leftmost point, m = —2, where it is tangent to the real axis. It is
found that the distance from the origin to the boundary is minimal
(see circle in Fig. 1) at the point m, and its conjugate, where

mo = (=2 + &) + i,

1
E= y = 4895273114 = (2.42786943)7, (146)
0

to is the smallest positive root of sin t/t = cos t + sin ¢,
| mo| = V2 = 1.58781760, arg{mo} = — + ¢
mo—sinto-— . , arglmo} = 7 + to.

So | my| is the largest number such that x(¢;m) is a solution for all m
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—1

| |
-2 -
Re (m)
Fig. 1—Open region in m-plane (unshaded) for which eq. (132) is a solution of eq.
(133). Shown is the largest disk (centered on the origin) contained in the region.

satisfying | m| < | mo|. Also,

| mo| = min Ro(¢),
t

where Ry(t) is the radius of convergence of the series

x(t,m) m sin 2t
1— x(tm) 2t

+ mZhy(t) + mPha(t) + - -,
the minimum occurring for ¢t = +t,.

IX. CONCLUSION

The expressions for the nth order components x,(t) of the series
solution to the companding problem become so complicated that, for
practical purposes, only the first few are of interest. These should be
useful in correcting small distortions in nonlinear transmission sys-
tems which fit the companding model. It would appear that the
corrections applied internally to the inverse function (the z, in Section
V) would be more effective for correcting larger distortions, especially
if the lower frequency components are predominant in the signals. In
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this connection, the simpler “approximate identity” should be quite
effective for correcting small to moderate distortions of a more general
nature, as evidenced by the inequality given in the appendix. Experi-
mental evidence of the effectiveness of these correction schemes would
be desirable.

The question of the convergence of the series solution is a matter
of little practical concern, but the fact that it does attaches more
mathematical significance to the results. To settle this question we
had to show that the complex-valued companding problem has solu-
tions for functions of sufficiently small norm. This generalizes the
result for functions of one-sided spectra; and whether or not the
general result will ever find practical application, it is an interesting
addition to a theory, though still incomplete in many respects. For
example, it is doubtful that the condition that x(¢) be confined to a
convex region G where Re{f’} > 0 is a necessary condition for unique-
ness of the solution. In this connection, one could probably use analytic
continuation arguments to show that the specific problem examined
in Section VIII has solutions only for those values of m for which the
(particular) solution given is the only solution, this being unique for
sufficiently small | m |, and being an analytic function of m having no
branch points. Also there is the difficult question of determining for
what y(t) the companding problem has a solution, where particular
interest is attached to the real-valued problem with analytic compand-
ing functions. It can be shown for the case f(x) = x/(1 — x), x < 1,
that the problem has a solution for every (r.v.) ¥ in %, satisfying
y > —1. This suggests (conjecture) that the r.v. companding problem
with f(x) = x/(1 — x%), —1 < x < 1, has a solution for every (r.v.) y in
%, or more generally for monotone f(x) defined on (—1, 1) having
singularities as strong as poles at +1. In general, it is not enough for
f(x) to increase from — to + over its range of definition in order to
draw the same conclusion; e.g., f (x) = log(1 + x), x > —1. The questions
raised here are certainly worthy of future consideration.

In connection with the series solution, one naturally inquires
whether an explicit formula (albeit complicated and involving parti-
tions of various kinds) can be given for the general term x,. Perhaps
the combinatorics experts will consider this question.

We note that the solution x = B¢(y), valid for y (of sufficiently
small norm) whose Fourier transforms vanish outside [0, A], is verified
by the fact that in (29.n) the expression reduces to x, = a,By", the
other terms vanishing because B is operating on functions whose
Fourier transforms vanish over (—o, A). The same reduction occurs in
the expression (34.n), because, in this case, B is operating on functions
whose Fourier transforms vanish over (—o, 0) and agree over [0, AJ;
ie.,
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B[---]=By"

holds for each term in (34.n), the sum of all the coefficients being a..

Some interesting identities are obtained by equating the expressions
for x, in the series solution of the general problem to those obtained
from the explicit solution (given in the introduction) to the special
problem

B log(1 + x) = my,

which involve y, the Hilbert transform of y, which does not appear in
the more general expressions. For example, we find from (34.3) that
x3 in the series solution of this problem is given by

x3 = 1/2B(y-By®) — 1/3By?,
and, from the series expansion of the explicit solution, by
xs = 1/8yB(y* — 5% — 1/8B(y9") + 1/24 By® + 1/4yB(yy).

It is an interesting exercise to show directly that these two expressions
are identical.

Finally, since truly bandlimited signals exist only as mathematical
abstractions, some attention should be given to developing a mathe-
matical theory of practical companding problems,

J;O flx(s)}k(t — s)ds = y(2),

where k(t) is the (absolutely-integrable) impulse response of a practical
low-pass filter, so that the theory may be extended to signals that are
merely bounded. Here one may not be interested, for various reasons,
in the exact solution of this problem but, instead, a compromise
problem, where the equation is nearly satisfied with both x(t) and y(¢)
being close to bandlimited functions. For example, in many cases
fix(t)} is given (say) by an nth order differential operator acting on
y(t). Then the (exact) solution x(t) = ¢{f(x)} may be far from a
bandlimited function. However, if y(¢) is close to a bandlimited func-
tion there should be an approximate solution which is also close to a
bandlimited function. A case in point is found in Landau’s simulation
of the iterative solution of the companding problem (Ref. 2), where,
in fact, the equation he was obtaining approximate solutions to was
the case y(t) = k(t), (approximately bandlimited) for which the unique
solution is (a multiple of) the Dirac delta function.

X. ACKNOWLEDGMENT
I am grateful to H. J. Landau for helpful discussions, to J. C.

COMPANDING PROBLEMS 3047



Lagarias for aid in preparation of the manuscript, and to A. M. Odlyzko
for the production of Fig. 1.

REFERENCES

1. H. J. Landau, “On the Recovery of a Band-Limited Signal, After Instantaneous
Companding and Subsequent Band-Limiting,” B.S.T.J., 39, No. 2 (March 1960),
pp. 351-64.

. H. J. Landau and W. L. Miranker, “The Recovery of Band-Limited Signals,” J.
Math. Anal. and App., 2, No. 1 (February 1961), pp. 97-104.

. B. F. Logan, “Theory of Analytic Modulation Systems,” B.S.T.J., 57, No. 3 (March
1978), pp. 491-576.

. B. F. Logan and M. R. Schroeder, “A Solution to Problem of Compatible Single-
Sideb5an% Transmission,” IRE Trans. Info. Th., IT-8, No. 5 (September 1962),
pp. 2562-9.

5. M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions, New York:

Dover, 1965.

A W N

APPENDIX

Suppose f(x) is a monotone increasing function of the real variable
x, satisfying

@ f(0)=0
(ii) O<mi<f(x)Smy<ow, (—0<x< o)

Then f has an inverse ¢

(iii) x=¢{f(x)}, (-w<x<w),
satisfying, since 1 = f"(x)¢’{f(x)},

. 1 , 1
(iv) 0<E$¢(y)<a<°°, (—o <y <o),

Now let x = x(¢) be any function in %. We wish to establish

lx — Bo{Bf (x)}ll2 < vl xllz, (147)
2
where ‘Yzzle-}-—e)’ 6=%_1'
Set
y(¢) =y = Bf(x). (148)
Then
fx) =y +h, Bh=0. (149)
Now set
x1 = Bé(y) (150)
so that, since x = ¢(y + h) = Bx = B{¢(y + h)},
x = x1 = Blo(y + h) — 6(y)}. (151)
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. 1
Since |¢(y + h) — ¢(y)| < -~ h, we see that
1

1
lo(y + k) — ¢(¥)o < — [kl
m
and hence that
1
[x = xillo < — [,
m,

but we can improve this inequality by writing

y+h
o(y + h) — ¢(y) = J; {¢(8) — aldt + ah, (152)

where a= 1 (i + i)
2\m; my
Then, since
|¢"(€) — al < % (mil - m%) (153)
we have
¢y +h) = ¢(y) =u+ ah, (154)
where u = u(t) and
|u|sé<mil—mi2)|h|. (155)
Thus
x — x; = B(u + ah) = Bu, (156)
and hence
==l < Juls <5 (mi . ,—n1—> Il 157)

Now we need an inequality of the form |2, < ¢||x .. We have
h = Hf(x), (158)
where H = I — B is the high-pass operator. So, clearly
lhllz< I fx)ll2 < mallxll2.
We can improve this inequality by setting
u(t) = v = f(x) — Ba, (159)
where 8 =1/2(m; + my).
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Then

[v] < 1/2(my — my)| x|, (160)
and, since Hx = 0,
h = Hf(x) = H{f(x) — 6x} = Hv. (161)
Hence
[hllz < vz < 1/2(me — my)| x|z (162)

This, with (157) gives

lx = ul <3 (mi - mi) (mz = m)lxls = yllzl,  (163)
which is the result (147). The number v in the inequality is invariant
under the interchange of ¢ and f in the approximate identity (147), as
we would expect from using only (i) and (iv).

So x; = B¢{Bf(x)} is a good approximation to x if v is small. The
manipulations leading to the inequality (163) suggest an iterative
scheme for solving, given y in %,

BF(x) = v, x in B, (164)

provided v < 1, which will be the case if (mq/m;) < 3 + 2 V2.
We set

*n = Bé(y + ha-i), n=l, (165)
where
h, = Hf(x,), n =0, (166)
and Xo = ho = 0,
giving x; = Bo(y) as in (150).
Now we wish to show that
lx = xallz < ¥"lxlls, n=1 (167)
We have
x — %, = Blo(y + h) — ¢(y + ha1)}. (168)

Following the previous pattern we write
oy + h) — oy + hpy) = up + alh — h,y), (169)

where

'y+h
tn = f (4 (9) — ald,

y+hp_y
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and hence

1{1 1
| unl sg(——g) |k = hpl.

m
Then
x — x, = Blu, + a(h — hp,—1)} = Bu,,
giving
I =zl < 5 (mi - ;37) Ih = Bl
Now

h—h,y=H{f(x) — f(x,-1)}, n=1, with xy=ho=0.

Here we write

fu)—ﬂ%q)=J~{f@)—6WE+ﬁ@—xwﬂ

Xn—1
=v, + .B(x - xn—l)’
where

mz —m

2

|Un|< Ix—xn_l.

Then
h — h,-, = H{v, + 8(x — x,-1)} = Hv,,
giving, with (175),

2 — My

m
[h = hoalle < 5 lx — 252

This, with (172), gives
"x - xn"2 = 'Y”x - xn-—1"2,
whence follows, with xo = 0,

lx = xallz < v"ll 2], n =1

(170)

(171)

(172)

(173)

(174)

(175)

(176)

177)

(178)

(179)

Note that there is a bonus attached to x; = B¢(y), in that only one
filtering operation is required to obtain it. Thereafter, two filtering

operations are required to obtain x,, from y and x,-;.
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Bandwidth-Conserving Independent Amplitude
and Phase Modulation
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Given two baseband signals f(t) and g(t), suitably restricted in amplitude
and bandlimited to [A, u] and [—g, —A], 0 < A < p < o, it is shown how
to generate a carrier signal, s(t) = A(t) cos{ct + ¢(t)}, bandlimited to [¢c — 3,
¢ + 8] and [—(c + B), —(c — B)], where 8 need be only sightly larger than g,
and such that f(¢) and g(¢) may be recovered by bandlimiting log A(¢) and
¢(t), respectively. The restriction A > 0, i.e., that the baseband signals be
bandpass, is not essential but it is a practical constraint in approximating the
required operations. Also a modification is given for conserving bandwidth in
case the signals f(t) and g(t) are of disparate bandwidths.

. INTRODUCTION

Double-sideband amplitude modulation is wasteful of bandwidth,
but it offers the advantage of envelope detection (with full carrier). A
simple way to utilize the same bandwidth in transmitting two inde-
pendent signals, f(¢) and g(t), is the so-called in-phase and quadrature
modulation

Si(t) = f(t)cos ct — g(t)sin ct,

where synchronous demodulation is required to recover f and g. A
modification that allows f to be recovered (approximately) by envelope
detection is

Sao(t) = {1 + f(t)}cos ct — g(t)sin ct.

* Bell Laboratories.
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The envelope of Sa(¢) is
Aq(t) = V{1 + fOF + £@).
Then if g is made small (compared to min{1 + f(¢)}), we have
Aq(t) =1+ f(¢8).
The phase of S; (i.e., the part due to signals) is
gt _ g
L+f(@t)  1+f@)

So making g small allows envelope and phase detection to be used so
as to approximately recover f and g (multiplying the phase output by
the envelope output).

A still further modification is

Sa(t) = {1 + x,(t)}cos ct — {1 + x5(t)}sin ct,
where x; and x, are both small. The envelope of S; is

As(t) = VA + )2 + (L + x2)° = V2 + 2x; + 2x5 + 22 + 32

=~/§(1+x—1+x2)
= > )

¢o(t) = tan™

The phase of S; is

l+x 7 x=-x
t) = tan™ =—+
$alt) = tan™ g = 2
So if
+ —
x12x2=f and x12x2=g’
1e.,
xn=f+g
x2=f_g9

then envelope and phase detection of S; will give (approx.) the desired
independent signals f and g.

An exact result of this type may be obtained using log of the
envelope, rather than the envelope, and then bandlimiting the phase
and log of the envelope to obtain the desired independent signals f
and g. A slight increase in bandwidth is required to allow a guard band
in the filtering operations. Also | f| and | g| cannot be too large if the
increase in bandwidth is to be small. The basic theory is that of
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Exponential Single-Sideband Modulation (ESSB) developed in Ref.
1.

It. THE EXACT METHOD

We assume that the desired signals, f and g, are bounded band-pass
signals whose Fourier transforms vanish (in the sense detailed in Ref.
1) outside [A, x] and [—u, —A], 0 < A < u < », which then (automati-
cally) have bounded Hilbert transforms, f and 4. The band-pass
assumption is not essential to the theory, but affords important
practical simplifications in approximating the Hilbert transform op-
erations as well as in effecting the subsequent analytic exponential
modulation.

Now suppose z;(t) and z,(t) are bandlimited “analytic signals” whose
Fourier transforms vanish outside [0, 8] and which signals are zero-
free in the upper half-plane with

|z12(t + iu)] = ¢ for u=0, —0 < t < o, 1)

Then log z; and log z, are analytic and bounded in the upper half-
plane, and hence their Fourier transforms vanish over (—, 0).
Writing

z1(t) = Ay(t)e™?, Ay = |z] (2)
2(t) = As(t)e®), A, = |z, (3)
we have
log 2:(t) = log Ai(t) + igs(t) (4)
log 2:(¢) = log Aa(t) + iga(t). (5)
Under further assumptions on z, e.g.,

ziot + iu) =1+ 0(e™), u— o, (6)

log A and ¢ will be Hilbert transform pairs:
¢:(t) =log" Ai(),  log Ai(t) = —x(t) (7)
Colt) = log" Ao(t)  log As(t) = —a(t). ®)

Now we consider the product
21(£)ze(t) = Ax(£)Ap(t)e OO,

where the bar denotes the complex conjugate. The F.T. (Fourier
transform) of 2(¢) vanishes outside [0, 8] and the F.T. of 2,(¢) vanishes
outside [—3, 0]. Therefore, the F.T. of z(t)z5(t) vanishes outside
[—8, 8]. Then we form the signal
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s(t) = Re e™z,(t)z(t)

= A(t)cos{ct + ¢(t)}, 9

where ¢ > 3,
A(t) = A1(8)Ax(t) (9a)
#(t) = ¢1(t) — ¢2(t), (9b)

and the spectrum of s(t) is confined to [¢c — 8, ¢ + 8] and [—¢ — 8,
—c + B].

We require
B, .{log A(t)} = f(t) (10)
B, {o(t)} = g(t), (11)

where u < o < 8, and, in general, B,, is any bandlimiting operator
[with passband (—p, p) and cut-off frequency + ¢] defined by

B, {x(t)} = J: x2(8) K, 4(t — s)ds (12)

and

I?p,q(w) = f K, (t)e™™dt = 1, p<w<p

=0, jw| > q. (12a)
0<p<g<oo (12b)
The definition of I>{p,q(w) in the cut-off region (p, ¢q) and (—gq, —p) is

>
not important, but K, ,(w) must be sufficiently smooth to give

f | Kpo(t)|dt < o (12¢)
so that B, {x(t)} is defined for any bounded x(t).
Writing (10) as
B,..{log As(t) + log As(t)} = f(t)

and taking Hilbert transforms of both sides of (10) and (11), using (7)
and (8), we have

B,.[d1(t) + ¢2(t)} = f(t) (13)
B, {#:1(t) — ¢2(t)} = g(t) (14)

or
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B,..{6:(t)} = {f(t) + g(t)} (15)

B...l¢2(t)} = () — g(t)}, (16)

which according to (7) and (8) is equivalent to
B, .{log Ai(2)} = *{f(t) — &(¢)} (17
B,..{log Ax(t)} = 2{f(t) + &(¢)}. (18)

Setting
hi(t) = %{f(t) — 8@t)};  Ru(t) = %{f) +gt)},  (19)

Hi(t) = ha(t) + iha(t), (19a)
ho(t) = Ya{f(t) + &(t)};  hat) = B{f(t) — g(t)},  (20)
H,(t) = hao(t) + iho(t), (20a)

the four equations (15), (16), (17), and (18) are equivalent to the two
equations, implying (6),

Bu.a{log zl(t)} = Hl(t) (21)
B, .{log z:(¢)} = Hy(t), (22)

where H; and H, are given “analytic” band-pass signals whose Fourier
transforms vanish outside the single interval [\, 1] and z; and z, are
bandlimited “analytic” signals whose Fourier transforms vanish out-
side the single interval [0, 8]. The problem of finding z, and z, has
been solved (see Ref. 1):

z1(t) = Baslexp Hi(t)} (23)
22(t) = Baslexp Hao(t)}, (24)

where B, is any bandlimiting operator with passband (—a, a) and
cut-off frequency 8.

Now z; and 2, given by (23) and (24) satisfy (21) and (22), provided
z21(r) and zo(7), T =t + iugare zero free in the upper half-plane u > 0.
The filter characteristic K,s(w) in the cut-off region («, 3) becomes
important, but not critical, in this respect. From theoretical consid-
erations the linear cut-off characteristic is desirable (see Ref. 1):

w

I?a,ﬁ(w) = g ___ " a<w<pB. (25)

For a given « and 8, and a smooth cut-off characteristic, z; and 2, will
be zero free in the upper half-plane provided | H;| and | H| are not
too large. In practice this means that the levels of f and g must not be
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toolarge if a and 8 are not much larger than g, the top signal frequency,
i.e., in the bandwidth conserving case. The results in Ref. 1 may be
used as a rough guide. For example, if « is only slightly larger than p
and 8/« = 1.1 (relatively sharp cut-off), then 2, and 2z, will be zero free
in the upper half-plane if | H;| and | H;| are less than 0.6. (See the
appendix for a modification of signals f and g of disparate bandwidths.)

I1l. IMPLEMENTATION

The block diagram of an implementation is shown in Fig. 1. The
transmitter is shown in Fig. 1a. The inputs are labeled f(t + T') and
g(t + T) to account for a delay T incurred in the Hilbert transform
filters. The delay T need not be more than one or two periods of the
lower signal frequency A to obtain a good approximation to the Hilbert

transforms, f(t) and £(t). (The inputs f(t + T') and g(t + T') must be

delayed accordingly to obtain f(¢) and g(t).) The signals f(¢), f(t), g(t),
and g(t) are summed to obtain

hy =%(f — 8)
by =%(f + g)
hy = %(f + &)
hy = a(f - g)

in accord with (19) and (20). (The gain factor of the summing net-
works, shown as 1/2, may be any constant, which may be simply
reflected as a gain factor on the inputs.) Then these outputs are fed
to two analytic exponential modulators that furnish outputs

X, = eMcos hy = Refexp Hj}
Y, = e™sin Ay = Imfexp Hi}
X, = e"cos h, = Refexp Hy}
Y. = e"sin h, = Imfexp H,}.

A feedback circuit for accomplishing the analytic exponential mod-
ulation is described in Ref. 2. The outputs of the modulators are then
bandlimited with identical low-pass filters LPF, having the character-
istic shown in Fig. 2a to obtain

x1 = Refz}, 1 = Imfz}
Xo = Re{22}, Y2 = Im{fé’z}.

These outputs are then combined to form
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Fig. la—Transmitter.
Fig. 1Ib—Receiver.
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Fig. 2a—Characteristic of LPF;.
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s(t) = Reflx:(¢) + iy1(8)]lxa(t) — iya(t)]e™}
= Ref[xxs + y1y2 + i(y122 — yox1)]e™)
= (x1X3 + Y1y2)cos ¢t — (y1xz — Yyox1)sin ct
= A(t)cosict + ¢(t)}.

The signal s(t) is then transmitted to the receiver, Fig. 1b, where an
envelope detector is used to obtain the envelope A(t), which is then
fed to a device having a logarithmic characteristic to furnish the
output log A(t). This output is then filtered with LPF, to obtain f(t).
A phase detector, e.g., a phase-locked loop, is used to detect the phase
¢(t), which is subsequently filtered with another LPF; to obtain g(t).
The characteristic of the filters LPF; is shown in Fig. 2b.

Note that ¢(¢) is high pass with lower frequency A; so ¢(t) may be
recovered from {¢’(t) + c}, if desired.
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APPENDIX
Modification for Signals of Disparate Bandwidths

Note that the bandwidth of the transmitted signal is the sum (or
twice the sum, counting positive and negative frequencies) of the
bandwidths of the analytic signals z,(¢) and z,(¢), which need be only
slightly larger than the sum of the bandwidths of the analytic signals
Hy(t) and Hy(t). Owing to the linear combinations in (19) and (20),
the bandwidths of H,(¢) and H,(t) will be the same, equal to the larger
of the bandwidths of f(¢) and g(¢). In case the bandwidth of, say, g(t)
is (considerably) larger than that of f(¢), the bandwidth of the trans-
mitted signal may be reduced by setting
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Hy(t) = f(t) + if (t) (26)
Hy(t) = g(t) + ig(¢). (27)

Here we assume that the Fourier transforms of H,(t) and H(t)
vanish outside the intervals [X, u;] and [A,, po], respectively. Now we
set

z1(t) = Bogfexp Hi(t)), m<a<pB (28)

Zz(t) = Baz,gz{exp Hz(t)}, M2 < a < 62, (29)

where 8, and 8, need be only slightly larger than g, and u, (respec-
tively), the top frequencies of f(t) and g(t) (respectively). The Fourier
transform of 2,(t)z2(t) now vanishes outside the interval [—8, 5],
which is smaller than would obtain in the previous scheme. Thus the
Fourier transform of the transmitted signal,

s(t) = Re e“z1(t)za(t), ¢ > B (30)

vanishes outside the interval [¢ — 8;, ¢ + $31] (ard its reflection about
the origin). The price paid for the saving in bandwidth is another
Hilbert transform operation required in separating the signals at the
receiver.

We have

s(t) = A(t)cos[ct + o(t)], (31)
where
A(t) = |z1(t)za()]
d(t) = da(t) — Pat).

Then, assuming as before that z; and z; are zero free in the upper half-
plane, we have

L(¢t) = log A(t) = Li(t) + La(2), (32)

where L (t) = log |21(t)|, La(t) = log | 22(t)| and L(t) is related to ¢(t)
by

d(t) = ¢i(t) — pa(t) = Lu(t) — Ly(t) (33)
B(t) = $i(t) — da(t) = —La(t) + La(t). (34)

In accord with (28) and (29) and the zero-free hypothesis, we have
(as shown in Ref. 1)

B alli(®)} = () (35)
B, {La2(t)} = g(t) (36)
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To obtain 111(t) and Ly(t) from log A(t) and ¢(¢), we need the Hilbert
transform ¢(¢), where according to (32) and (34),

Li(t) = Y2 log A(t) — Yeé(t) (37)
Lao(t) = Y2 log A(t) + Yad(t). (38)

_ However, to recover f(t) and g(t), we may use a modified version of
o(t). We define

qg)x,#(t) = HA,y{¢(t)}: (39)

where H, , is a modified (e.g., band-pass) Hilbert transform operator
defined by

H,,.{¢(t)} = J: ) hau(t — x)¢p(x)dx (40a)

hyu(w) = f hau(t)e™dt = —i sgn w, (40Db)

for 0< A< || <gpu

Now ¢:(t) and ¢,(t) are high-pass functions with lower frequencies
A\ and A, (respectively). Thus, if we require

0 < A < min(Ay, Ag), = max(u, u), (41)

then we have
f(t) = ¥iB,,q,{log A(t) — (2} (42)
8(t) = ¥iB,,q,{log A(t) + dru(t)}. (43)
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