
AT&T January 1985 Vol. 64 No.1 Part 2 

=rE C r~ N ~ CP\l 
JOURNAL 
A J()URNAL OF THE AT&T COMPANIES 

System 75 
Digital Communications 
System 



EDITORIAL COMMITTEE 

M. M. BUCHNER, JR.1 

R. P. CLAGETT2 

R. P. CREAN 2 

B. R. DARNALL 1 

B. P. DONOHUE, 111 3 

A. A. PENZIAS,1 Committee Chairman 
R. c. FLETCHER 1 

D. HIRSCH 4 

s. HORING 1 

R. A. KELLEY 1 

J. F. MARTlN2 

J. s. NOWAK 1 

B. B. OLlVER5 

J. W. TlMK03 

V. A. VYSSOTSKY 1 

1 AT&T Bell Laboratories 2AT& T Technologies 3 AT& T Information Systems 

4 AT & T Consumer Products 5 AT & T Communications 

EDITORIAL STAFF 
B. G. KING, Editor L. s. GOLLER, Assistant Editor 
P. WHEELER, Managing Editor A. M. SHARTS, Assistant Editor 

B. VORCHHEIMER, Circulation 

AT&T TECHNICAL JOURNAL (lSSN 8756-2324) is published ten times each year by AT&T, 
550 Madison Avenue, New York, NY 10022; C. L. Brown, Chairman of the Board; T. O. Davis, 
Secretary. The Computing Science and Systems section and the special issues are included as 
they become available. Subscriptions: United States-1 year $35; foreign-1 year $45. 

Back issues of the special, single-subject supplements may be obtained by writing to the AT & T 
Customer Information Center, P.O. Box 19901, Indianapolis, Indiana 46219, or by calling (800) 
432-6600. Back issues of the general, multisubject issues may be obtained from University 
Microfilms, 300 N. Zeeb Road, Ann Arbor, Michigan 48106. 

Payment for foreign subscriptions or single copies must be made in United States funds, or by 
check drawn on a United States bank and made payable to the AT & T Technical Journal and 
sent to AT&T Bell Laboratories, Circulation Dept., Room 1E335, 101 J. F. Kennedy Pky, Short 
Hills, NJ 07078. 

Single copies of material from this issue of the Journal may be reproduced for personal, 
noncommercial use. Permission to make multiple copies must be obtained from the Editor. 

Printed in U.S.A. Second-class postage paid at Short Hills, NJ 07078 and additional mailing 
offices. Postmaster: Send address changes to the AT&T Technical Journal, Room 1E335, 101 
J. F. Kennedy Pky, Short Hills, NJ 07078. 

Copyright © 1985 AT&T. 



AT&T 
TECHNICAL 
JOURNAL 
VOL. 64 JANUARY 1985 

CopyrightO 1985 AT&T, Printed in U.S.A. 

NO.1, PART 2 

SYSTEM 75 DIGITAL COMMUNICATIONS SYSTEM 

C. D. Weiss, Guest Editor 

Introduction and Overview 145 
A. Feiner, E. J. Rodriguez, and C. D. Weiss 

Communications and Control Architecture 153 
L. A. Baxter, P. R. Berkowitz, C. A. Buzzard, J. J. Horenkamp, 
and F. E. Wyatt 

Physical Architecture and Design 175 
A. S. Loverde, H. D. Frisch, C. R. Lindemulder, and D. Baker 

Switch Services Software 197 
W. Densmore, R. J. Jakubek, M. J. Miracle, and J. H. Sun 

System Management 213 
H. K. Woodland, G. A. Reisner, and A. S. Melamed 

Maintenance Architecture 229 
K. S. Lu, J. D. Price, and T. L. Smith 

The Oryx/Pecos Operating System 251 
G. R. Sager, J. A. Melber, and K. T. Fong 

Project Development Environment 269 
T. S. Kennedy, D. A. Pezzutti, and T. L. Wang 

Software Development Tools 287 
T. J. Pedersen, J. E. Ritacco, and J. A. Santillo 

GAMUT: A Message Utility System for Automatic Testing ,305 
C. J. Lake, J. J. Shanley, and S. M. Silverstein 

Introduction Activities and Results 321 
M. A. McFarland and 1. A. Miller 

ACRONYMS AND ABBREVIATIONS 333 





AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Introduction and Overview 

By A. FEINER, E. J. RODRIGUEZ, and C. D. WEISS* 

(Manuscript received July 11, 1984) 

In 1980, a group of system designers at AT&T Information Systems 
Laboratories (then a part of AT&T Bell Laboratories) was asked to 
produce a new communications system for the intermediate-size busi­
ness office (40 to 400 users), to complement a larger system already 
under development-System 85. The new system was named the 
System 75 office communication system. Its purpose was to meet the 
competitive challenge for a high-function digital communication sys­
tem whose integrated technology could address the evolving needs in 
office communications and automation. The proposal developed by 
our designers was based on an all-new hardware and software archi­
tecture. 

In this intermediate-size range, the existing Feature Package 15 of 
the Dimension@ PBX already had provided a challenging standard. Its 
more than 150 PBX features would have to be included in any new 
AT&T offering. Like the larger System 85, it would also provide 
integrated data switching capabilities, including 64-kb/s transparent 
switching; and simultaneous voice/data transmission using the Digital 
Communications Protocol (DCP)t that supports two 64-kb/s voice 

* All authors are members of AT&T Information Systems Laboratories, an entity of 
AT&T Information Systems, Inc. 

t Acronyms and abbreviations used in the text are defined at the back of the Journal. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

145 



and data channels and one 8-kb/s signaling channel at a single 
interface. With a significant fraction of customers requiring efficient 
multilocation service, it was recognized that the System 75 switch 
should also support multilocation networking services available in the 
current-generation Dimension systems and in System 85. These in­
clude Distributed Communication System (DCS) operation-permit­
ting significant feature transparency between locations, a DS1 Inter­
face to T1 facilities, Electronic Tandem Network support, and Cen­
tralized Attendant Service (CAS). AT&T Information Systems Archi­
tecture provided standards with regard to customer-system interac­
tions, terminals, adjuncts and interfaces. 

In mid-1983, an internal prototype with partial feature content 
underwent trials at AT&T Information Systems Laboratories. The 
first commercial customer received service early in 1984 and the 
product was publicly announced on April 26, 1984. The system's initial 
features are listed in the Appendix A to this introduction. 

Customer systems haye come of age insofar as complexity and 
sophistication are concerned. Based on the technologies of micro­
processors, modern software engineering, and VLSI, products such as 
System 85 and System 75 have a range and extent similar to the much 
larger switching systems designed for central office use. Since we felt 
that there was much of interest to be reported on their design, 
development, and project methodologies, early in 1984 we decided to 
produce this special issue of the AT&T Technical Journal on System 
75. This collection of papers was therefore assembled to serve as an 
example of modern design in customer communication systems. 

There are four major groupings of papers in this issue. The first two 
papers deal with the switch and control architecture-realized in 
hardware and firmware-and the physical architecture of the overall 
product. The next group of four papers describes those functional 
components realized in software: switch services (a generalization of 
what is traditionally known as "call processing"); system management, 
including database aspects and user interface; maintenance for all 
hardware and software elements; and the real-time operating system. 
The third group of three papers treats project methodology and soft­
ware tools upon which the methodology and firmware/software devel­
opment rests. The first of tllese papers provides a project management 
overview and explains how designs from each development community 
are coordinated and integrated. The tools paper focuses on the software 
development methodology and tools environment. The test tool is 
described in a separate paper. Testing was a critical aspect of system 
development requiring a unique computer-based capability. The final 
topic deals with bringing the product- to the people it serves-cus­
tomers, and sales and service personnel-those who ultimately judge 

146 TECHNICAL JOURNAL, JANUARY 1985 



the acceptability of the product. The paper describes how the product 
is introduced to these users, how their reaction is measured, and how 
corrective measures are taken where necessary. 

An important theme throughout these papers is the degree of overall 
design and development unity and coordination that was required and 
achieved. Tools, for example, were specified jointly by tools builders 
and end-user developers. Although an early version of the operating 
system had been built to support some exploratory call processing 
development prior to the start of this project, its evolution and 
optimizations reflected the needs discovered by those developing serv­
ices for System 75. All maintenance design required significant support 
in hardware and device design, firmware (on port boards and in the 
common control) and, of course, in the software. Specification, design, 
integration, and testing spanned all project areas. System test, per­
formed by a separate test group, depended on an intimate knowledge 
of software and software-firmware interfaces, and on quick turnaround 
from developers for fixes to permit testing to progress beyond the 
curent trouble area. These are but a few examples of intra-project 
development coordination. The last paper of this issue illustrates the 
same broad coordination tasks involving all of AT&T Information 
Systems and its customers. 

ACKNOWLEDGMENTS 

Only a few of the many people contributing to the design and 
development of System 75 are authors in this issue. To the other 
creative and dedicated individuals who had a part in its successful 
development, we are most thankf1}1 and appreciative. Although this 
group of papers stresses the development aspects of System 75, cen­
tered in one organization, the project received outstanding support 
and product contributions from other AT&T Information Systems 
and AT&T Bell Laboratories organizations. Specific individuals and 
the areas in which they led are: D. A. Keller and R. S. Breen (Systems 
Engineering); D. B. James (architectural consultant); R. S. Berryman 
(selected software tools); and C. o. Riddleberger (AT&T Bell Labo­
ratories Power Systems). 

APPENDIX A 

System 75 Features 

Standard System Features 
Advanced private line termination 
Automatic route selection 

Restrictions 
Code restriction 

Code calling access 
Direct department calling 
Direct inward dialing 

Inward restriction 
Manual originating line 
Manual terminating line 

INTRODUCTION 147 



Direct outward dialing 
Emergency transfer 
Flexible numbering of stations 
Foreign exchange central office access 
Intercept treatment 
Intercept with lockout 
Listed directory number service 
Loudspeaker paging 
Modem pool 
Multiple call appearances of extensions 
Multiple listed directory numbers 
Music-on-hold access 
Off-premises stations 
Outgoing facility management 
Outgoing trunk queueing 
Personal central office line 
Primary extension 
Recorded telephone dictation access 
Remote access 

Miscellaneous trunk restriction 
Origination restriction 
Termination restriction 
Toll restriction 

Serial calls 
Simultaneous voice/data communication 
Station busy indication 
System management 

Administration 
Maintenance 
System parameters 
Traffic measurements 

Tandem tie trunk switching 
Terminal dialing 
Through dialing 
Tie trunk access 
Touch-Tone calling 
Touch -Tone sending 
Touch-Tone to dial pulse conversion 
Uniform call distribution 
WATS access 

Standard Terminal Features 
Abbreviated dialing 
Personal, group and system lists 
Automatic callback 
Bridged call 
Call answer from any station 
Call coverage 

Caller response interval 
Consult/return 
Coverage information display 
Temporary bridged appearance 

Call forwarding-follow me 
Call park 
Call pickup 
Call status indication 
Call waiting 
Called party identification (with display) 
Calling party identification (with display) 
Common audible alerting 
Conference 
Conference/transfer 
Data handlers from voice terminal 
Dial access to attendant 

Dialed number display (with display) 
Distinctive alerting 
Elapsed time display (with display) 
Exclusion 
Hold 
Hot-line service 
Hunting 
Intercom 
Integrated directory service 
1-U se indication 
Leave word calling 

Message retrieval (with display) 
Manual signaling 
Preference 
Preselection 
Priority calling 
Recall signaling 
Repertory dialing 
Station-to-station calling 
Station -to-station -only calling 
Time of day and date display 
Transfer 

Standard Digital Modem Features 
EIA RS-232C interface 
Speeds up to 19,200 b/s 
Synchronous or asynchronous operation 
(300 or 1200 b/s) for pooled modem oper­
ations 
Full or half duplex operation 
Keyboard dialing (ASCII) 

Automatic answer 
Automatic speed and mode detection 
Automatic and manual self-test 
Odd, even or no parity 
Other data set like options (e.g., loss of 
carrier disconnect) 

Standard Attendant Specific Features 
Alternate console position(s)-up to 6 
Attendant call waiting 
Attendant direct extension selection with 
busy lamp field 
Attendant display 

Central attendant service 
Direct trunk group selection 
Night service 
Release loop operation 
Splitting-one way automatic 

148 TECHNICAL JOURNAL, JANUARY 1985 



Class-of-service display 
Incoming call identification display 
Trunk identification display 

Attendant lockout 
Attendant transfer-all calls 

Splitting-auto-manual 
Straightforward outward completion 
Trunk group busy/warning indicators to 
attendant 
Trunk -to-trunk connections 
Two-party hold on console 

Message Center Agent Features 
Display shows: 

Called person's name and telephone number 
Reason for call coverage (busy, no answer, send all calls, go to coverage) 
Messages for callers from called person (such as status information) 
Calling person's name and telephone number (if internal call) 

Can record messages for intended called person or multiple people (causes their auto­
matic message waiting lamp to light) as requested by caller 
Has access to directory service to provide caller with additional information (like room 
number or supervision) 

Terminals 
Single line voice terminals 

2500 

Peripheral Equipment 

7101 A with two fixed feature buttons 
7103A with four fixed feature buttons and 10 programmable feature buttons 

Multiappearance voice terminals 
7300 Series 

7303S with six fixed feature buttons and ten buttons each programmable to 
either activate features or as call appearances 
7305S Same as 7303S plus 24 programmable feature buttons 

7400 Series 
These terminals provide simultaneous voice and data transmission. Addition of a 
Digital Telephone Data Module to the 7403D and 7405D models provides an RS-
232C interface, allowing the connection of data equipment (data terminals, etc.) to 
the voice terminal. 

7403D 
7405D (also supports an optional40-character numeric display and call coverage 
module) 

Video Terminals 
Data Terminal 

513 Business Communications Terminal (data only) 
Voice/Data Terminals 

515 Business Communications Terminals Integrated with digital telephone 

Data modules 
These modules allow data equipment, such as terminals and computers, to be connected 
to System 75. 

Digital telephone Data Module 
Provides an RS-232C interface for data equipment when used in conjunction with a 
digital terminal (see above) 
Processor Data Module 
Provides an RS-232C interface to a host computer or standalone terminal 
Trunk data module 
Provides an RS-232C interface to a private data line or Digital Data System@ data 
service unit to a remote computer or terminal 

Attendant console 
The attendant console includes a 40-character alphanumeric display, command keys, 
feature status indicators, alarm indicator, and a direct extension selector with busy 
indicators. The console plugs into any standard telephone wall jack. 

Applications processor equipment 
500 Business Communications Terminal 
A data terminal, with a video display and keyboard connected to an Applications 
Processor via hard-wired 56-kilobit/second links 

INTRODUCTION 149 



Printers 
A family of printers is offered to work with applications processing services. The 
printers have varying speeds, print quality, and cost. 

443: Low-speed, draft-quality matrix printer 
445: Medium-speed, draft-quality line printer 
460: Medium-speed, draft-quality matrix printer 
450: Low-speed, reproduction-quality printer 

Station Message Detail Reporting (SMDR) 
Processing Options 

COMMSTOR II & Teleseer@ series 
Stores details of all calls made and does SMDR processing using tariff tables 
Local Storage Unit (LSU) 
Stores details of all calls made for MDR processing 
Applications Processor 
The Call Detail Recording and Reporting feature provides SMDR processing on 
the associated System. 
Printers 
Local associated printer may be used to print formatted data 

System Access Terminal 
513 Business Communications Terminal 
Optional 470 printer 

APPENDIX B 

System 75 Specifications 
Switch Cabinet 

70"h x 32"W x 24"d 
(large) 

42112"h x 32"W X 24"d 
(small) 

System Limits: (First Release) 
Time Slots 512 
Circuit Switch 64 Kb/s 
Calling Rate 1800/hr 
Traffic Limit 7200 CCS 
Stations 400 
Data Modules 200 
Trunks 200 
Trunk Groups 50 
Pooled Modems 32 
Attendant Consoles 7 

Cabling Limits: 
Analog 
Hybrid, MET 
Digital, Data 
Modules, 515 BCT 
513 BCT 

AUTHORS 

6000 ft. 
1000 ft. 

3400 ft. 
5000 ft. 

Thermal Output 
Maximum-1250 watts (4250 BTU's/ 
hr) 
Typical Average-875 watts (3000 
BTU's/hr) 
[Cabinet is equipped with forced air 
cooling] 

Power Requirements: 115V 60 Hz 50A 
Dedicated un switched outlet located 
within 10 feet. Approved grounding 
essential. 

Environment: 
Temperature-40° -110°F 
Relative Humidity-l0-95% up to 

78°, decreasing to 35% at 110° 
Well-ventilated area free of corrosive 
gasses and excessive dust or dirt. 

Alec Feiner is the Executive Director at AT&T Information Systems respon­
sible for the development of office automation products. He started his 
engineering career with Bell Laboratories in 1953 and was a member of the 
team that developed the first stored program controlled electronic switching 
systems. Since 1969 he has been involved in customer premises telephony 
contributing toward the creation of numerous systems, among them, Dimen­
sion@ PBX, Horizon@ communication system, and System 75. A graduate of 
Columbia University, Feiner holds 40 patents and is the author' of numerous 
articles on switching. He was awarded the Bell Laboratories Fellow Award in 
1982 and in 1983 was elected to the National Academy of Engineering. 

150 TECHNICAL JOURNAL, JANUARY 1985 



Ernesto J. Rodriguez, B.S. (Mathematics), 1967, Michigan Technological 
University; M.S.O.R., 1970, New York University; Bell Laboratories, 1967-
1983; AT&T Information Systems Laboratories, 1983-. At Bell Laboratories, 
Mr. Rodriguez worked on computer access for Picturephone® service and was 
involved in developing software planning aids for the Digital Data System. He 
was also responsible for the software design and development of the Trans­
action Network and the Bell Packet Switching Network. Presently, Mr. 
Rodriguez is a Director at AT&T Information Systems Laboratories with 
responsibility for System 75 development. 

c. Dennis Weiss, B.S. (Electrical Engineering), 1961, Stanford University; 
M.S. (Electrical Engineering), 1962, Columbia University; Ph.D. (Electrical 
Engineering), 1966, Columbia University; Bell Laboratories, 1972-1982; 
AT&T Information Systems Laboratory, 1983-. Mr. Weiss taught at Johns 
Hopkins University from 1966 to 1972. At AT&T, he has been involved with 
exploratory and development work on business communications systems. 
Currently, he is Director of the Integrated Systems Laboratory, responsible 
for System 75 development. 

INTRODUCTION 151 





AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Communications and Control Architecture 

By L. A. BAXTER,* P. R. BERKOWITZ,* C. A. BUZZARD,t 
J. J. HORENKAMP,* and F. E. WYATT* 

(Manuscript received July 11, 1984) 

The System 75 office communication system uses a unique communications 
and control architecture that provides great flexibility and a minimum of 
overhead for small configurations while growing smoothly to larger line sizes. 
A distributed communication network provides 64 kb/s connectivity for both 
voice and data. It consists of a pair of time division multiplexed buses and 
intelligent port circuits. Flexible conferencing and gain adjustment are sup­
ported as an integral part of the network. The control complex supports an 
operating-system-based software structure. 

I. INTRODUCTION 

The System 75 office communications system hardware architecture 
consists of a control complex and a communications network, which 
are connected by a pair of Time Division Multiplexed (TDM)* buses, 
as shown in Fig. 1. Part of the bandwidth of the TDM buses is used 
as a control channel between the control complex and the intelligent 
port circuits in the communications network. 

* AT&T Information Systems Laboratories, an entity of AT&T Information Systems, 
Inc. t AT&T Information Systems Laboratories; present affiliation, Bell Communica­
tions Research, Inc. 

i Acronyms and abbreviations used in the text are defined at the back of the Journal. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

153 



TO REMOTE MAINTENANCE 
~ __ CENTER 

JtllS ~~~1~AL 

TOM ~---'------------nr----------~-------,I 

BUSES 

~ ~ 
TO CENTRAL OFFICE, o / ~ OTHER PBXs,ETC. 

-:..---=--=-.:-~ 

SERVICE 
CIRCUITS 

CONTROL 
COMPLEX 

COMMUN ICATION 
NETWORK 

Fig. I-System 75 communication and control architecture. 

One of the main architectural features of System 75 is the distributed 
switching network. This was chosen to allow as much complexity as 
possible to be transferred to the port boards, thereby reducing the 
amount of common circuitry required and minimizing the getting­
started cost (often referred to as the intercept cost). At the same time, 
aggressive use of VLSI devices in the port circuits allows the per-port 
cost (slope) to remain low. This combination of low intercept cost and 
moderate slope allows the System 75 network to remain cost-effective 
over a wide range of line sizes. 

Another key architectural feature is the universal slot concept. All 
circuit pack slots in System 75 port carriers are identical (with the 
exception of a unique address for each slot). Every port slot has the 
same interfaces to the TDM buses, I/O access to outside devices, and 

154 TECHNICAL JOURNAL, JANUARY 1985 



power supplies. This freedom to plug any port circuit into any slot 
allows customers to flexibly configure their system, so that it is 
optimized to their particular needs. 

This highly distributed and modular architecture has allowed Sys­
tem 75 to meet the following design objectives: 

1. Provide a digital network which efficiently supports both voice 
and data communication. 

2. Serve customers up to four hundred lines with a single-cabinet 
hardware configuration. 

3. Provide support for an operating system-based software struc­
ture. 

4. Maintain high-reliability operation with complete self-diagnosis 
and alarming. 

5. Utilize a flexible architecture so that future needs may be easily 
accommodated, and the system may be gracefully upgraded as tech­
no logy advances. 

6. Provide the above functions at a competitive price. 
The following sections describe the architecture in more detail. 

II. COMMUNICATION NETWORK 

2.1 TDM buses 

System 75 has two parallel TDM buses, each of which is 8 bits wide 
and runs at 2.048 MHz. Functionally, the dual-bus structure is equiv­
alent to a single 512-time-slot bus. Separating the bandwidth into two 
physically distinct buses has two advantages. First, it lowers the speed 
of each bus, which eases the timing requirements on VLSI interface 
devices. Second, the redundancy provided by two buses improves 
system reliability. If one bus fails, the architecture permits continued 
operation at reduced capacity on the other bus. 

The buses are implemented as printed paths on the backplane. The 
geometry of these printed paths has been carefully designed to main­
tain the proper characteristic impedance. Several carriers may be 
daisy-chained together within a cabinet. Each bus path has a resistive 
termination at each end. 

A novel current-source bus transceiver was designed for this appli­
cation. Up to 100 port boards may be plugged into the bus in a simple 
party-line fashion. These transceivers have been specifically designed 
with low signal levels and controlled rise times to minimize radiated 
noise. They are designed to allow nondisruptive insertion and removal 
of boards with the system power on and to isolate port boards from 
the bus during failure conditions. 

Voice signals on the buses are encoded in J.L-255 PCM (Pulse Code 
Modulation) formatI for domestic systems, while A-law PCM could be 
provided for international applications. Data signals utilize the Digital 

COMMUNICATIONS AND CONTROL ARCHITECTURE 155 



SPECIFIC ADDRESS 

MSB LSB 

7 6 5 4 3 2 0 

I 
0 

I 
A6 A5 A4 A3 A2 Al AO 

AO - A6 = ANGEL ADDRESS 

GROUP ADDRESS 

MSB LSB 
7 6 5 4 3 2 0 

I I 
G3 G2 Gl GO T2 T1 TO 

GO - G3 = GROUP ADDRESS 
TO - T2 = SCAN/COMMAND TYPE 

Fig. 2-Addressing modes of TDM bus control channel. 

Communications Protocol (DCP).2 Several time slots are reserved for 
tone distribution and for the control channel. 

2.2 Control channel 

The first five time slots on each bus are reserved for a control 
channel between the control complex and the port circuits. In essence, 
the control channel is the backbone for a network of microprocessors. 
It provides a communication path between the control complex and 
the microprocessor on each port circuit pack (commonly referred to 
as the angel). On each port board a custom VLSI device known as the 
SAKI (Sanity and Control Interface) provides address recognition, 
buffering, and synchronization between the angel and the five control 
time slots. The control channel is active on only one bus at a time. It 
can be moved to the other bus in the event of a bus failure. 

The control channel operates strictly in a polled mode, with the 
network control (often referred to as the archangel) as master, and 
the angels as slaves. The first time slot of each frame (TSO) carries 
the control address, while the following four time slots (TS1 to TS4) 
contain control data. The archangel grants bus usage to a particular 
angel or group of angels by transmitting a specific address in TSO. 
The direction of transmission during the control data time slots (TS1 
to TS4) is dependent on the message type. 

Each port slot in System 75 contains seven address pins that are 
hard-wired to define a unique address. During initialization, the angel 
reads in this address and writes it to the address-detection portion of 
the SAKI. This seven-bit address fixes a limit of 127 angels (plus one 

156 TECHNICAL JOURNAL, JANUARY 1985 



null address) in the archangel's address space. This restriction is well 
above the physical limitations on the number of port circuit packs in 
a single cabinet. 

There are two modes in which the archangel can address an angel, 
as shown in Fig. 2. To differentiate between these two modes, the 
SAKI inspects the Most Significant Bit (MSB) of the control address 
which appears in TSO. If the MSB = 0, then the archangel is addressing 
the specific angel whose address is given in the remaining seven bits. 
If the MSB = 1, then the archangel is addressing the group of eight 
angels whose address matches bits 3 through 6 of TSO. In this case, 
the three Least Significant Bits (LSB) indicate the type of scan or 
command. 

2.2.1 Group addressing 

The group address mode is used in two ways: to collect status 
information (called short-scanning) and to send certain commands to 
a group of eight angels simultaneously (group commands). In a short 
scan, each angel in the addressed group responds with a single bit of 
information in TS2. The bit-position assignments on the TDM bus 
are determined by a binary decoding of the lower three bits of the 
angel address. (In other words, the angel whose lower three address 
bits ate 000 responds on TDM bus bit 0, etc.) Using short scans, the 
archangel can gather status information from a full complement of 
angels an order of magnitude faster than if each angel were polled 
directly. Thus, short scanning reduces the latency period before a 
stimulus is reported to the control complex. 

The archangel obtains two types of status information via short 
scans. Activity scans determine which angels have messages waiting 
for uplink transmission. Those angels will be individually polled to 
collect the messages. Sanity scans collect state-of-health information 
from the angels. 

The sanity control circuitry in the SAKI gives the control complex 
the ability to identify and isolate insane angels quickly. When the 
archangel sends a sanity scan to a group of eight angels, each SAKI 
in the group checks the sanity of its angel by verifying that its angel 
has updated a special sanity bit latch in the SAKI since the previous 
sanity scan. If its angel has cleared the sanity bit, the SAKI notifies 
the control complex of its angel's health by driving its bit low during 
TS2. If the angel has not cleared the sanity bit, indicating angel 
insanity, the SAKI sends no response in TS2, notifying the Switch 
Processing Element (SPE) of the angel's insanity. Simultaneously, the 
SAKI resets its angel, holding it idle, and forces the bus transceivers 
into a receive-only mode, preventing the port board from errantly 
transmitting onto the TDM bus. The SAKI waits for the restart 

COMMUNICATIONS AND CONTROL ARCHITECTURE 157 



instruction from the control complex before allowing the angel to 
begin running again. 

Unlike traditional watchdog circuits where each processor must 
update a local timing circuit periodically to indicate sanity, System 
75's sanity control gives the control complex total control over the 
sanity scanning rate, the number of times an insane angel is restarted, 
and the ability to shut down an individual angel at will. 

Each SAKI also protects the control channel by monitoring trans­
mission onto the TDM bus during the control time slots. When it 
detects transmission during a control time slot by anyone other than 
itself, it disables its angel and Network Processing Elements (NPEs) 
and waits for the control complex to send the restart command. 

2.2.2 Specific addressing 

When the control complex wants to send a message to a specific 
angel, or retrieve a message from an angel that gave a positive response 
to an activity scan, the archangel must use the individual addressing 
mode. In this mode, a message may span a number of frames. 

Messages sent across the control channel use a well-defined format 
known as the Control Channel Message Set (CCMS). The CCMS 
provides a combination of stimulus and functional messages that are 
common across all types of ports. Downlink (network control to port 
circuit) messages allow the control complex to control the ringer and 
LEDs on stations; seize, release, and outpulse on trunks; set up and 
tear down network connections; execute various maintenance tests, 
etc. Uplink (port circuit to network control) messages allow the port 
to report state changes, such as switchhook and button pushes on 
stations and seizure of incoming trunks. Control channel messages are 
protected by a checksum, and are retransmitted in the event of an 
error. 

2.3 Network processing element 

2.3.1 Switching functions 

In conventional digital switches, each port is permanently assigned 
a time slot on which to talk and another on which to listen. A 
centralized mechanism called a Time Slot Interchanger (TSI) is used 
to enable, reorder, and transfer time slots from talking to listening 
ports. Conventional TSIs require additional centralized equipment to 
perform gain adjustment or form conferences, features that require 
arithmetic processing of voice samples. However, intelligent TSIs have 
been designed to perform these operations.3 

Whether intelligent or not, a centralized TSI that is sized to accom­
modate the full capacity of the communications system represents a 
cost burden on small-size customers who pay for more capacity than 

158 TECHNICAL JOURNAL, JANUARY 1985 



they need. The alternative of providing a family of TSIs optimized for 
several sizes entails extra development effort and complicates growth 
in the field. 

The communications network in System 75 solves these problems. 
Each port board carries with it a modular piece of the network in the 
form of a VLSI chip, the NPE.4 Each NPE serves four ports and is 
resident on each of the port boards. Two are used on each of the eight­
port boards with the exception of the digital line, which uses four 
NPEs to switch the two information channels of each of its eight 
ports. The distributed network architecture and absence of a central­
ized TSI allows customers to buy just the right amount of network for 
their needs and permits smooth growth as needs expand, while the 
VLSI technology provides a low per-port cost even though each port 
has its own dedicated TSI and voice processing logic. 

The NPE provides the functions of time-slot assignment for listen­
ing and talking, gain adjustment, and eight-party conferencing.5 (Sys­
tem 75 actually features a six-party conference limit with the remain­
ing two conferencing slots reserved for tones.) The NPE contains over 
.18,000 transistors, with half of them making up a novel memory 
network for control and processing functions. As an indication of its 
complexity, a Transistor-Transistor Logic (TTL) breadboard of this 
device required six 8- by 13-inch circuit boards. 

2.3.2 NPE operation 

Figure 3 is a diagram of the operation of one of the NPE's four 
channels. A network of memory arrays, the associative conference 
buffer,6 is used both as a control store, written and read by the angel, 
and as a buffer for PCM samples from the time division bus. Memory 
locations are loaded by the angel with time-slot numbers for specifying 

PCM SERIAL 
TO 

PAR­
ALLEL 

P. -LAW 

PCM PAR-
ALLEL 

TO 
SERIAL 

LINEAR 

GAIN 

TO ANGEL 

Fig. 3-Architecture of one of the network processing element's four channels. 

COMMUNICATIONS AND CONTROL ARCHITECTURE 159 



a talking slot and up to seven listening time slots. Companion memory 
locations are loaded with a gain or loss value to be applied to samples 
from listening time slots received from the bus. A talk enable/disable 
bit can also be stored for the talking time slot. The locations holding 
the time slot number also act as a content addressable memory by 
comparing their content against a time-slot counter and individually 
controlling a sample transfer on the specified time slot. The sample 
transfers consist of placing a talking sample from a station onto the 
bus and storing up to eight listening samples from the bus in a sample 
buffer memory array. The sample buffer holds the samples until they 
are accessed with their respective gain values to form a conference 
sum. 

An active port is usually allowed to talk on one time slot and listen 
to from one to seven others. An idle port uses no time slots. When 
multiple listen time slots are selected, their samples are converted to 
linear PCM, multiplied by the stored gain values, summed together in 
an accumulator, and then restored to JL-Iaw for delivery to the station. 
Of course, data samples are passed through the NPE without any of 
the conference processing which would corrupt the data. 

A simple two-party connection occupies two time slots: each port 
talks on one and listens to the other. An N-party conference uses N 
time slots. Tones may be broadcast on a single time slot and received 
by an unlimited number of ports. In System 75 the seven single­
frequency components of the Dual-Tone Multifrequency (DTMF) 
signaling tones are broadcast continuously. Each port requiring access 
to a DTMF tone for dialing out forms a brief conference between the 
two appropriate single frequencies without interfering with other ports 
similarly doing so. 

2.3.3 Conferencing algorithms 

The forming of a gain -adjusted conference sum can be thought of 
as a sequence of arithmetic operations. (In the following discussion, 
conversions between linear and JL-Iaw PCM are neglected, since they 
are required in all cases.) Each recipient of the conference sum must 
hear the composite of the other conferees' samples minus his or her 
own. The sample received by the kth member of an N-party conference 
is: 

N 

Rk = L gikTi - gkkTk, 
i=l 

where 
Rk = Receive sample for port k 
Tk = Transmit sample for port k 
gik = Gain coefficient from port i to port k 

160 TECHNICAL JOURNAL, JANUARY 1985 



Ti = Transmit sample for port i 
gkk = Gain coefficient from port k to itself. 
There are conceptually two algorithms for generating a conference 

sum. One method is to hold the gik constant for all k. Then: 

N 

Rk = L giTi - gkTk, 
i=l 

where gi = Transmit gain for ith port. First a conference sum of all 
gain-scaled transmit samples is formed, a task requiring N multiply 
and accumulate operations. Then the receive samples are generated 
by subtracting out the receiving port's scaled transmit sample, an 
additional N operations, for a total of 2N operations per conference. 

The chief advantage of the "2N" algorithm is its efficient execution, 
an important property in a centralized, intelligent TSI where process­
ing throughput may be a constraint. A disadvantage is the inflexibility 
it imposes on conference call transmission gains, since all conferees 
must listen to a given port with the same gain. Often this results in 
loss in excess of that required for stability or optimum intelligibility. 

The second method allows individually chosen interport gains be­
tween all conferees but requires considerably more processing effort 
for large conferences. It builds each receive sample Rk separately: 

N 

Rk = L gikTi. 
i=l 
i~k 

Samples from the other N-1 conferees are individually multiplied by 
the appropriate transmission gain coefficient and added to the partial 
sum as it is built up. This requires N-1 multiply operations. Since the 
sum must be formed separately for each receiving port (a total of N 
times), N X (N - 1) = N 2 

- N operations are needed to form the 
conference. The advantage of this "N-squared" algorithm is the free­
dom it allows in choosing transmission gain coefficients. Each party 
can listen to the other conferees with an individually tailored gain. 

System 75 achieves an N-squared conference algorithm since each 
of the N NPEs in a conference perform the required N-1 operations 
with individually chosen gain coefficients. The necessary processing 
throughput is obtained as a natural benefit of the parallelism inherent 
in the NPE-based network. 

The importance of N-squared conferencing is illustrated by a three­
way call involving two telephone line ports and a central office trunk 
port. PBX line ports optimally require about 6 dB of loss between 
them to simulate losses normally encountered in the loop plant, while 
trunk connections should have O-dB transmission loss between them, 

COMMUNICATIONS AND CONTROL ARCHITECTURE 161 



as shown in Fig. 4. This combination of loss relationships can only be 
achieved with an N-squared algorithm since a 2N method would 
subject the trunk to the same 6-dB loss that is applied between lines. 
The NPE implementation of this three-party conference is illustrated 
in Fig. 5. 

2.4 Intelligent port circuits 

Figure 6 is a block diagram of a generic System 75 port circuit. The 

CENTRAL 
OFFICE 

Fig. 4-Example of System 75 gain plan for three-party conference. 

A 

TSi 

A INSERTS 
B LISTENS 
C LISTENS 

• · · 
TSj 

A LISTENS 
B INSERTS 
C LISTENS 

TSk 

A LISTENS 
B LISTENS 
C INSERTS 

Fig. 5-System 75 implementation of three-party conference. 

162 TECHNICAL JOURNAL, JANUARY 1985 



TDM 

.---- 0~ ~ 

CONTROL 

PCM 
INTERFACE 

(SAKI) · CONFERENCE 
• AND GAIN · (NPE) 

- t-

VOICE/ 

B 
DATA 

0 1-1-

STATI ONS R TDM BUS BUS 
OR . 

S TRANSCEIVERS . 
TRUN KS· C A BUS 

1-1- f--

H 
T r 

-I- MICROPROCESSOR 

CONTROL (ANGEL) 

Fig. 6-Architecture of a System 75 generic port board. 

circuit pack interfaces to the TDM buses via the custom bus trans­
ceivers. Time-slot information, which may be either PCM voice sam­
ples or data, is handled by the NPEs (Section 2.3). The interface to 
the control channel is handled by another VLSI device, the SAKI 
(Section 2.2). 

The BORSCHT circuitry contains whatever is necessary to interface 
to a particular type of line or trunk. (BORSCHT is an acronym for 
Battery feed, Overvoltage protection, Ringing, Supervision, Codec, 
Hybrid, and Testing.) In general, this block of circuitry is different for 
every type of port circuit. 

The heart of the port circuit is the on-board microprocessor, or 
angel. Every port board in System 75 has an angel that controls the 
operation of the circuit pack. The angel is implemented as a single­
chip microcomputer with up to 8K bytes of firmware. The firmware is 
divided into two sections: a common portion, which is essentially the 
same for all circuit packs, and an application portion. 

Both the NPE and the SAKI are operated as peripherals to the 
angel. When setting up a network connection, for example, the follow­
ing actions occur. The control complex formulates a down-link mes-

COMMUNICATIONS AND CONTROL ARCHITECTURE 163 



sage and sends it over the control channel. The message is received 
by the SAKI and passed to the angel. The angel sends an acknowledg­
ment (via the SAKI) and examines the message. It then loads the 
proper time slot and gain values into the NPE so that the desired 
connection is established. 

The distributed intelligence of the angels is a key element which 
makes a common control channel message set possible. The angels 
also play an important role in the maintenance strategy. The angel's 
responsibilities include: 

1. Scanning the station/trunk and reporting any state changes 
uplink to the control complex. 

2. Interpreting received (down-link) control channel messages and 
taking the proper action. For example, when a 'ringer-on' message is 
received, an analog line-circuit angel must close a relay to provide 90-
volt ringing, do ring-cycle timing, etc. A digital line circuit angel, 
however, would format a command to the station set and send it, using 
the DCP signaling channel. 2 

3. Handling all short-duration timing functions. Examples include 
ring cycle and LED cadence timing for stations, outpulsing for trunks, 
and interdigit timing for DTMF receivers. 

4. Performing a variety of maintenance tests. In addition to tests 
which are run on command from the control complex, the angel does 
extensive in -line error testing during the normal operation of the 
circuit pack. Error pegs are kept and reported uplink. 

In summary, the angel provides the intelligence necessary to isolate 
call processing software from port-specific differences and to off-load 
the control complex from having to do real-time intensive port scan­
ning functions. These are reflected in the virtualization provided in 
the control channel message set. 

This cleanly defined, message-based control interface, coupled with 
the universal slot concept provides yet another benefit. It is relatively 
straightforward to design new types of port circuits and integrate them 
into System 75. Our current family of port circuits includes five types 
of line circuits (analog, hybrid, Multibutton Electronic Telephone 
[MET], digital, and data); five types of trunks (central office, direct­
inward-dial, tie, auxiliary, and DS-17); and four types of service circuits 
(tone/clock generator, tone detector, pooled modem, and speech syn­
thesis). Most port boards provide eight port circuits. In the case of the 
digital line circuit, this results in 16 network appearances, since each 
port supports two information channels in the digital communications 
protocol. 

Many of the station types are supported across the product family. 
Analog sets are supported on all AT&T Information Systems PBXs. 
The hybrid set was adapted from the Merlin ™ communications system 

164 TECHNICAL JOURNAL, JANUARY 1985 



and is also supported by the Dimension ® System 85 communication 
system. The MET set provides an economical migration path for 
customers who already own Dimension or Horizon® communications 
systems. The digital stations provide advanced voice/data features 
using the digital communications protocol and are common with 
System 85. This variety of ports and stations allows the system to be 
tailored to the specific needs of each customer in a cost-effective 
manner. 

2.5 Digital line circuit 

To illustrate the concepts previously mentioned, a particular circuit 
pack, the digital line circuit, is discussed in this section in more detail. 
Like all System 75 port circuits, the digital line circuit makes extensive 
use of custom VLSI devices and performs many functions in firmware 
rather than hardware. The digital line circuit, which terminates eight 
DCP lines, is an. evolutionary step towards an Integrated Services 
Digital Network (ISDN).8 Like the proposed ISDN interface, each 
DCP line provides two information channels and a separate channel 
for signaling, thereby supporting simultaneous integrated voice/data 
communication. Thus, this circuit pack supports sixteen endpoints­
a density unmatched by any of the other port boards. 

2.5.1 Hardware configuration 

Figure 7 is a photograph of the digital line circuit. The major 
functional blocks are indicated on the figure. The five integrated 
circuits at the upper left are the bus transceivers. The SAKI device, 
which provides hardware support for the control channel, is at the 
right of the bus transceivers. Note that the SAKI, like several other 
devices on the board, is packaged in a 68-pin surface-mount chip 
carrier. (Physical design considerations are explained in more detail 
in Ref. 9.) To the right of the SAKI are four NPEs, which provide 
access to the TDM buses for the 16 information channels that this 
circuit pack supports. The angel microprocessor that controls the 
operation of the circuit pack, and its associated RAM are at the right 
side of the circuit pack. All of the components mentioned above are 
common to all System 75 port circuits, and are also shown in the 
generic port board diagram (Fig. 6). 

The remaining circuitry (called the BORSCHT in Fig. 6) interfaces 
directly to the DCP lines. The bottom half of the circuit pack contains 
eight identical blocks of circuitry. The Digital Line Interface (DLI) 
device contains a complete 160-kb/s modem packaged in a 40-pin DIP 
(Dual In-line Package). It provides full-duplex operation over up to 
5000 feet of 26-gauge cable, and includes circuitry for framing, scram­
bling (to reduce radiated noise), clock recovery, and automatic equal-

COMMUNICATIONS AND CONTROL ARCHITECTURE 165 



ELECTRONIC 
POWER 
FEED 

Fig.7-Photograph of System 75 digital line circuit with major functional blocks 
indicated. 

ization. The two SIPs (Single In-Line Packages) immediately below 
the DLIs contain the external resistors and capacitors needed by the 
D LIs. A pair of transformers provides the actual interface to the DCP 
lines. The use of a transformer-coupled interface has a couple of 
advantages: it protects the board against longitudinal surges, and it 
allows power to be supplied to the station over the same pairs of wire 
(via a technique known as "phantom powering"). 

The Electronic Power Feed (EPF) chips which are in the middle of 
the circuit pack control station power. An EPF is a microprocessor­
controllable electronic circuit breaker. The EPFs automatically shut 
down when an overcurrent condition is detected and can also be turned 
on and off by the angel. In addition, the angel can read the status of 
each EPF and determine (1) whether it is supplying a normal amount 
of current to the station, (2) whether it is not supplying any current 
to the station (this normally means that the station is unplugged), or 
(3) whether it is in overcurrent mode, which indicates a fault condition 
in either the station or wiring. 

The DCP formatters are custom integrated circuits that provide 
link-level hardware support for the DCP signaling channel. Since most 
of the DCP signaling channel protocol is implemented in firmware, 

166 TECHNICAL JOURNAL, JANUARY 1985 



further discussion of the DCP formatters will be deferred until the 
next section. 

2.5.2 Firmware interactions 

The digital line circuit angel firmware has three main functions: 
1. It processes control channel messages to and from the archangel, 

as described in Section 2.2. 
2. It translates between the control channel (CCMS) protocol and 

the DCP signaling protocol. 
3. It performs a number of maintenance functions, such as logging 

and reporting transmission errors. 
The digital line circuit angel firmware is built around a task dispenser 
known as APEX (Angel Processor Executive), while real-time I/O to 
the SAKI and DCP formatters is interrupt driven. Processing DCP 
messages will be described in more detail, since it is the most complex 
of the above functions. 

The DCP provides an 8-kb/s signaling channel that uses a simplified 
High-level Data Link Control (HDLC) protocol. In particular, the 
framing, bit stuffing, Frame Check Sequence (FCS), and link initiali­
zation commands (SABM, DM, and VA) are identical to HDLC.10 

The DCP formatter devices each provide link-level hardware sup­
port for four DCP links. In the uplink direction (station to PBX), the 
formatters provide flag detection, bit de-stuffing, and message demar­
cation. They generate an angel interrupt when a message byte has 
been assembled (approximately every millisecond during a message 
transfer). The angel stores the received bytes in a buffer until the 
formatter indicates that the complete message has been received. 

The completed message is processed at base level in the next APEX 
task cycle. The angel calculates and verifies the FCS, checks the 
sequence number, and transmits an acknowledgment-called a Re­
ceive Ready (RR)-to the station. The message is then converted to 
CCMS format, and moved to a different buffer to await uplink trans­
mission over the control channel. 

In the downlink direction, messages received over the control chan­
nel are converted to DCP format during an APEX task cycle. This 
includes prep ending the correct header and sequence number, and 
calculating and appending the correct FCS. The message is delivered 
to the DCP formatters one byte at a time via an interrupt-driven 
routine. The formatters take care of flag generation and bit stuffing. 
The angel retains the message in its buffer until an acknowledgment 
is received from the station. As in HDLC, if none is received within a 
specified period, the message is retransmitted a maximum of two 
times. If no acknowledgment is received after the third try, the angel 
attempts to reinitialize the link. 

COMMUNICATIONS AND CONTROL ARCHITECTURE 167 



The two information channels on a DCP link use different logical 
channels for signaling. Thus, the angel must maintain 16 HDLC-like 
protocols simultaneously. The angel has responsibility for all link­
level functions, including link initialization, sequence numbering, FCS 
generation and checking, acknowledgments, and retransmissions. As 
mentioned previously, this allows the call-processing software to main­
tain a uniform message-based (CCMS) interface to all types of end­
points. 

2.6 Digital signal processing technology 

Digital signal processing technology is used extensively on all the 
System 75 service circuits. The AT&T Digital Signal Processor (DSP) 
integrated circuitll is used to implement the signal processing algo­
rithms in System 75. Its advantages include small size, high reliability, 
low cost, low power consumption, and the availability of numerous 
development tools. 

Some of the many uses of the DSP within System 75 are: 
1. The tone/clock circuit pack uses two DSPs to digitally generate 

all the various tones used by the PBX (e.g., dial tone, ringback, busy 
tone, intercept tone). 

2. The tone detector uses DSPs to implement both Dual-Tone 
Multifrequency (DTMF) receivers and general-purpose tone detectors 
(for detecting dial tone, modem answer tone, maintenance tones, etc.) 
on a single circuit pack. 

3. The pooled modem circuit pack contains conversion resources to 
convert 212A modem signals into DCP format.2 DSPs are used to 
implement two 212A-compatible modems on the circuit pack. The 
advantages of this circuit pack over conventional modem pools include 
lower cost, uniform administration, better maintenance, and reduction 
of PBX-room clutter. 

4. The speech synthesis circuit pack uses DSPs both for DTMF 
receivers and for generating Multiple Pulse Linear Predictive Coding 
(MPLPC)12 speech samples from stored coefficients. 

III. CONTROL COMPLEX 

The System 75 control complex is shown in Fig. 1. The control 
complex is often referred to as the Switch Processing Element (SPE). 
It consists of a processor, memory, and I/O connected by a single­
master Memory Bus (MBus). This configuration meets the cost, 
performance, and reliability goals for basic service and it can be 
expanded to support optional services. 

168 TECHNICAL JOURNAL, JANUARY 1985 



3.1 Processor 

The processor consists of a commercial 16-bit Intel* 8086 micropro­
cessor and a Memory Management Unit (MMU) implemented in 
custom gate arrays. The microprocessor and the MMU functionality 
were chosen to provide good performance for the largest system 
configurations and minimum cost for the smallest configurations. 
Specific constraints are: 

1. To minimize equipment cost, the processor and MMU are imple­
mented on a single circuit pack. 

2. For maximum performance, most memory accesses are accom­
plished with only two wait states, including memory management and 
error correction overhead. 

3. Multiple contexts and fast context switching are supported to 
achieve maximum operating system performance. 

4. A high degree of self-checking and protection is provided for call 
processing applications. 
Design trade-offs were made between hardware and software to meet 
these constraints. The result is an MMU which supports 16-bit virtual 
to 24-bit physical address mapping, 15 segments of up to 64K bytes 
each, and the following protection features: 

1. Two levels of execution privilege (system and user). 
2. Bounds checking on any access, with an overflow stack to aid 

recovery from stack exceptions. 
3. Illegal instruction detection (e.g., HALT instruction). 
4. Segment write-protect capability. 
5. Distinction between text and stack/data segments to prevent 

execution of data and to provide execute-only access of text. 

3.2 Memory 

Because System 75 is software-intensive, the memory can have a 
significant impact on system cost, reliability, and performance. To 
meet the system design objectives, the memory uses 256K Dynamic 
Random Access Memory (DRAM) devices and Error Detection and 
Correction (EDC) logic. Each memory circuit pack provides 2M bytes 
organized into 22-bit words (16 data bits + 6 check bits). The EDC 
circuitry provides single-bit error correction and double-bit error de­
tection and therefore dramatically improves the system's mean time 
to critical failure. The memory uses VLSI devices to incorporate all 
refresh, control, and maintenance functions on each pack, thereby 
eliminating any external memory control function. 

* Trademark of Intel Corporation. 

COMMUNICATIONS AND CONTROL ARCHITECTURE 169 



3.3 Input/output 

The I/O functions are implemented with intelligent interfaces which 
off-load the processor and shield call processing software from real­
time-critical tasks. The processor communicates with the interfaces 
through dual-port memories on the MBus. 

3.3. 1 Network control 

As previously discussed, the network control circuit pack provides 
the bridge between the control complex and the communication net­
work. It is the master of the TDM bus control channel and, in addition, 
provides a time-of-day clock with battery holdover, a system clock 
failure detector, and four switched data channels used for dial-up 
maintenance/administration and printer output. 

3.3.2 Tape interface 

The tape interface circuit pack with associated tape drive provides 
20M bytes of storage on a 1/4-inch cartridge tape for program load, 
patches, and translation. The tape drive provides an intelligent mem­
ory-mapped interface. It supports both streaming and edit modes and 
provides extensive error detection and correction capabilities, includ­
ing the ability to correct very long burst errors. 

3.3.3 Maintenance 

The maintenance circuit pack uses microprocessors, VLSI, and 
digital signal processors to provide the following: 

1. An RS-232-C interface to a hardwired maintenance/administra­
tion terminal (known as the system access terminal), and a low-level 
user interface in firmware that supplements the high-level interface 
in software. 

2. A tip/ring interface to the remote maintenance center via the 
central office for automatic alarm reporting. It includes an autodialer, 
212A modem emulation, and Level 2 X.25 protocol termination. 

3. Cabinet environmental monitoring. If the temperature rises too 
high, the system is switched to power-fail transfer mode. When the 
temperature gradient across the cabinet increases to a predefined 
threshold, the user is reminded (via the system access terminal) to 
clean the air filters. 

4. Power supply and battery holdover monitoring and control. The 
battery charger and power supplies are constantly monitored and 
controlled. On ac power failure, the entire system is powered from the 
batteries for ten seconds. Then the port carrier supplies are shut down 
and the control carrier is held over an additional ten minutes. Thus, 

170 TECHNICAL JOURNAL, JANUARY 1985 



most commercial power outages are bridged without any interruption 
in service. 

5. Power fail transfer control. As explained above, after ten seconds 
of battery holdover, the port carriers are shut down. At this time, 
selected voice terminals are connected directly (via relays) to central 
office trunks to provide emergency phone service. 
The maintenance architecture is described in more detail in Ref. 13. 

3.4 Extensions 

The control complex can be extended by adding an interface to a 
multimaster System Bus (SBus), as shown in Fig. 8. In System 75, the 
SBus supports an additional processor with I/O that terminates the 

MEMORY BUS 

TAPE 

NETWORK 
CONTROL 

MEMORY 

PROCESSOR 

... 

S ~ 
TO CENTRAL OFFICE, o OTHER PBXs, 

ETC • 
. .::.::~=-= 

CONTROL 
COMPLEX 

COMMUNICATION 
NETWORK 

Fig. 8-System 75 communication and control architecture with I/O processor. 

COMMUNICATIONS AND CONTROL ARCHITECTURE 171 



switched X.25 channels. These channels connect to adjunct systems 
such as the applications processor, or other nodes in a Distributed 
Communications Service (DCS) network.14 

The I/O processor has its own 16-bit microprocessor plus 128K 
bytes of RAM and an SBus interface. It connects to the I/O interface 
through another short MBus. The I/O interface provides additional 
flexibility because it connects to the TDM buses and terminates the 
X.25 protocol and the underlying DCP protocol on all four channels. 
This permits the use of standard data switching, cabling, and termi­
nation features for a wide variety of system arrangements. 

IV. SUMMARY 

System 75 provides a digital communication network that serves 
the voice and data communication needs of medium-sized customers. 
Conferencing and a flexible gain plan are integral parts of the network. 
The control complex efficiently supports a modern operating-system­
based software package, and can be expanded to support additional 
optional features. A wide range of station equipment is supported so 
that the system can be configured to fill the customer's needs in a 
cost-effective manner. 

To protect the customer's investment, System 75 uses a flexible and 
highly modular architecture so that the system may be expanded to 
meet future needs. In addition, the modularity allows economical 
upgrading of the system as technology progresses. 

REFERENCES 

1. Bell Telephone Laboratories, Transmission Systems for Communications, Fifth 
edition, 1982, Chapter 28. 

2. G. M. Anderson, J. F. Day, and L. A. Spindel, "A Communications Protocol for 
Integrated Digital Voice and Data Services in the Business Office," Proc. Sixth 
Int. Conf. on Computer Communication, London, September 1982, pp. 367-72. 

3. H. G. Alles, "The Intelligent Communications Switching Network," IEEE Trans. 
Comm., COM-27 (July 1979), pp. 1080-7. 

4. L. A. Baxter, P. R. Berkowitz, and C. A. Buzzard, "Distributed Digital Conferencing 
System," U.S. Patent No. 4,389,720, June 21, 1983. 

5. B. S. Moffitt and A. R. Ross, "Digital Conference Time Slot Interchanger," U.S. 
Patent No. 4,382,295, May 3, 1983. 

6. B. S. Moffitt and A. R. Ross, "Multiport Memory Array," U.S. Patent No. 4,395,765, 
July 26, 1983. 

7. "Digital Channel Bank Requirements and Objectives," AT&T Technical Reference 
PUB43801, December 1978. 

8. "Integrated Services Digital Networks," Special Issue of IEEE Comm. Magazine, 
22, No.1 (January 1984). 

9. A. S. Loverde et aI., "System 75: Physical Architecture and Design," AT&T Tech. 
J., this issue. 

10. A. Meijer and P. Peeters, Computer Network Architectures, Rockville, MD: Com­
puter Science Press, 1982, Chapter 4. 

11. Special issue on "Digital Signal Processor," B.S.T.J., 60, No.7, Part 2 (September 
1981). 

12. B. S. Atal and J. R. Remde, "A New Model of Pulsed LPC Excitation for Producing 
Natural Sounding Speech at Low Bit Rates," Proc. ICASSP '82, Paris, France, 
May 1982, pp. 614-17. 

172 TECHNICAL JOURNAL, JANUARY 1985 



13. K. S. Lu, J. D. Price, and T. L. Smith, "System 75: Maintenance Architecture," 
AT&T Tech. J., this issue. 

14. R. S. Divakaruni, G. E. Saltus, and B. R. Savage, "New Directions in Enhanced 
Voice Networking," Proc. Sixth Int. Conf. on Computer Communication, London, 
September 1982, pp. 362-6. 

AUTHORS 

L. A. Baxter, B.S.E.E., 1975, Rochester Institute of Technology; M.S.E.E., 
1977, University of Delaware; Bell Laboratories, 1977-1982; AT&T Informa­
tion Systems Laboratories, 1983-. Mr. Baxter was initially involved with the 
exploratory design of office communication systems. Since 1980 he has worked 
on the design of the System 75 communications network. He currently is 
Supervisor of the System 75 Digital Switching Hardware group. Member, 
IEEE, Tau Beta Pi, Phi Kappa Phi. 

P. R. Berkowitz, B.S.E.E., 1974, Columbia University; M.S.E.E., 1975, 
Columbia University; Bell Laboratories, 1975-1982; AT&T Information Sys­
tems Laboratories, 1983-. Mr. Berkowitz is Supervisor of the System 75 
Circuit Design group. He was previously a member of the design team for the 
Horizon® communications system. 

c. Alan Buzzard, B.S.E.E., 1964, M.S.E.E., 1965, Cornell University; Bell 
Laboratories, 1964-1982; AT&T Information Systems Laboratories, 1982-
1983. Present affiliation Bell Communications Research, Inc. Mr. Buzzard's 
past responsibilities have included development of modems, data networks, 
and voice/data PBXs. His present interests are in speech coding, speech 
synthesis, and automatic speech recognition. Member, IEEE. 

J. J. Horenkamp, B.S.E.E., 1964, St. Louis University; M.S.E.E., 1966, 
Columbia University; Doctor of Engineering Science, 1973, Columbia Univer­
sity; Bell Laboratories, 1964-1982; AT&T Information Systems Laboratories, 
1983-. Mr. Horenkamp is Head of the System Design department responsible 
for hardware and firmware development and maintenance planning of System 
75. He has been involved with exploratory development and final design of a 
variety of PBXs and customer premises telecommunication systems. 

Frank E. Wyatt, B.S.E.E., 1969, M.S.E.E., 1970, University of Illinois; Bell 
Laboratories, 1971-1982; AT&T Information Systems Laboratories, 1983-. 
Mr. Wyatt has worked on a variety of business communication and manage­
ment information systems. Since 1980 he has supervised the group that 
developed the control complex for System 75. Member, IEEE. 

COMMUNICATIONS AND CONTROL ARCHITECTURE 173 





AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Physical Architecture and Design 

By A. S. LOVERDE, H. D. FRISCH, C. R. LINDEMULDER, and 
D. BAKER* 

(Manuscript received July 11, 1984) 

This paper discusses the physical architecture, the rationale for design 
choices, and the physical design of the System 75 office communication system. 
The design features a single equipment cabinet housing up to 720 ports, a 
display-enhanced attendant console, and a modular-jack-based station-admin­
istration facility. The architecture minimizes the small system cost while 
providing modular building blocks for feature additions and growth. Customer 
participation in maintenance and administration is encouraged by attention 
to human factors in design and labeling details. 

I. OVERVIEW OF PHYSICAL ARCHITECTURE 

The main goals of the physical architecture of the System 75 office 
communication system are to maximize the amount of service that 
can be provided by a single-cabinet system, to provide a modular, cost­
effective design over a broad range of sizes and needs, and to provide 
an aesthetically pleasing functional design that will enhance customer 
participation in system maintenance and administration. 

A single cabinet (Fig. 1) houses all equipment needed to support up 
to 720 ports with any mix of station types or trunks. The common 

* Authors are employees of AT&T Information Systems Laboratories, an entity of 
AT&T Information Systems, Inc. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

175 



PORTS POWER SUPP!-Y 

PORTS GROUNDING LATCH 

MAINTENANCE 

CONTROL COMPLEX FAN UNIT 

PORTS 

NOMENCLATURE PANEL LEOs 

PORTS 
BLANK FACEPLATE 

BATTERY CHARGER" TAPE UNIT 

POWER DISTRIBUTION 

Fig. I-Equipment cabinet. 

equipment complement including the control complex (processor, 
memory, tape interface, and maintenance circuit packs), fan unit, tape 
unit, battery charger, and other power-distribution equipment occupies 
only a small fraction of the cabinet; this leaves ample room for the 
addition of port carriers, power units, and port circuits. 

A new modular-jack-based station-administration facility (Fig. 2) 
and a new attendant console (Fig. 3) enhance system flexibility and 
complement the powerful software-based administration and mainte­
nance features. 1

,2 

II. CABINET-LEVEL DESIGN 

A key trade-off in PBX design is balancing the amount of common 

176 TECHNICAL JOURNAL, JANUARY 1985 



\ 
\ 
\ , 
\ , 

SYSTEM 75 CABINET ",25-PAIR CABLE TO 
SYSTEM 75 CABINET 

/ 
'I 

MODULAR-JACK 
// CROSS-CONNECT 

// FIELD 

\ 

MODULAR 
-- PLUG-ENDED 

PATCH CORD 

" CABLE-SLACK 
MANAGER 

Fig. 2-Station administration facility. 

equipment needed to get started (intercept cost) with the amount of 
modular equipment required to meet a particular set of customer needs 
(slope). In addition, the designer must carefully balance the costs of 
ordering, stocking, maintaining, and administering the system with 
the cost of the hardware elements themselves. Since the System 75 
market spans a large range of sizes and features, minimizing the 
impact of this trade-off was a major challenge at each step in the 
design process. 

To minimize ordering complexity, simplify installation, and maxi­
mize production volume, all common equipment was designed to 
function over the full range of system configurations. To this end, all 
wiring required to support the full complement of port carriers is 
provided in a connectorized manner in all cabinets. The cooling fans 
are designed to accommodate the maximum equipment load under 
worst-case conditions. The automatic monitoring and maintenance 
elements likewise are sized to accommodate any mix of equipment, 
while detailed configurations are specified in the translation software. 
Power cabling and battery capacity are similarly designed for worst­
case maximum load. With this strategy, the special engineering of 

PHYSICAL ARCHITECTURE 177 



(a) (b) 

Fig. 3-(a) Basic service attendant position console. (b) Direct extension selection 
console. 

power and cooling normally associated with a PBX of System 75's 
complexity is virtually eliminated. Cost of the hardware elements is 
also minimized by eliminating factory handling of multiple design 
options and special orders. 

2.1 Cabinet 

A new welded steel cabinet that uses side panels as structural 
members was developed. This monolithic design eliminated nearly 32 
feet of EMI gasketing as well as the expense of handling removable 
side panels. A new structural foam door assembly complements the 
new cabinet. Both cabinet and door have a tough, durable, textured 
finish, which masks surface imperfections and scratches. A simple pin 
hinge mechanism with a detent permits the door to stay in an open 
position for ease of maintenance and allows multiple cabinet lineups 
where the system is installed together with other product family 
members. EMI integrity is provided by a gasket contacting conductive 
paint on the cabinet body. The rear is EMI-sealed by inexpensive 
metal plates screwed directly to the cabinet frame. 

The full-size System 75 cabinet is 32 inches wide, 24 inches deep, 
and 70 inches high. Fully equipped it weighs approximately 800 
pounds. To accommodate smaller customer needs, a 42-inch-high 
cabinet was designed for up to 240 ports (Fig. 4). 

2.2 Equipment cooling 

Customer premises systems encounter a wide variety of operating 
environments. In addition, the configuration flexibility of System 75 

178 TECHNICAL JOURNAL, JANUARY 1985 



STRUCTURAL 
FOAM DOOR ---

AIR INLET 

Fig. 4-Small and medium cabinet configurations. 

presents a wide range of thermal loads. In keeping with the common 
equipment philosophy, the fan unit was designed to cover the maxi­
mum anticipated load of 2500 watts under the worst-case design 
criteria of 120°F at 10,000-foot elevation. Early analysis confirmed by 
laboratory measurements indicated that a three-fan unit using avail­
able de fans operating at 48V would fit within the height of a carrier 
module and could effectively cool up to three fully loaded carriers. By 
placing two such units (six fans) in a central location, one directed 
upward and the other downward, a full cabinet could be cooled. 

Additionally, the thermal design combined alarms for high-temper­
ature fan failure, clogged filters, and other maintenance needs together 
with a fan-speed controller to adjust fan speeds automatically to 
compensate for varying thermal loads and operating environments. 
The resultant design (Fig. 5) is a 9-inch-high integrated module 
housing all six fans; removable, washable air filters; fan-speed con-

PHYSICAL ARCHITECTURE 179 



FAN-SPEED 
CONTROLLER 

troller; and connectorized wiring to mate with power and alarm leads 
in the cabinet wiring harness. 

Secondary design benefits include cleaner inlet air than is available 
at the base of the cabinet, low acoustic fan noise when full fan power 
is not required, and a separately testable unit that can be quickly 
replaced in the field. 

The small cabinet uses the same design with three fewer fans at 
reduced cost. 

2.3 Cabinet wiring 

The system architecture includes a Time Division Multiplexed 
(TDM)* bus and distributed power, which allows simple internal 
cabinet wiring. The TDM bus is terminated at each end by a paddle­
board-mounted bus terminator and is interconnected from carrier to 
carrier using inexpensive flat cables terminated on paddle boards that 
plug directly onto the backplane pins. 

Field installation of additional carriers is accomplished through the 
addition of a flat cable and reuse of the bus terminator. The remaining 

* Acronyms and abbreviations used in the text are defined at the back of the Journal. 

180 TECHNICAL JOURNAL, JANUARY 1985 



intercarrier wiring consists of leads for power unit status and carrier 
identification. These terminate on a single connector at each carrier 
position, again allowing for simple replacement or additions in factory 
or field. The power unit ac/dc input is wired to the front of each unit 
to permit addition or replacement of modular power supplies without 
removal of back panels or carriers. All cabinet wiring, independent of 
size or configuration, is contained in a single connectorized cable 
harness designed to simplify factory assembly. 

2.4 Power distribution and tape unit 

System 75 is equipped with a high-capacity tape recorder to back 
up the volatile memory. This unit, along with the standard system 
battery plant and all required power distribution, filtering, and power 
factor correction hardware, is housed in a modular unit at the bottom 
of each cabinet. This unit occupies the vertical space of a single circuit 
pack carrier (9 inches high) and supports the entire range of system 
configurations. 

III. POWER ARCHITECTURE 

In keeping with the overall cost optimization strategy, the power is 
divided into common elements (battery, power factor inductors, EMI 
filters, main circuit breakers, etc.) and modular, carrier mounted, 
switching type rectifiers. 

The modular rectifiers use a five-pin connector designed to accept 
either commercial quality 110 Vac or 144 Vdc from the battery back­
up unit as inputs. Regulated outputs of -48, -5 and +5V are provided 
directly to power buses on the carrier backplanes. Additional voltages 
or regulation are supplied on the circuit packs, thus creating a standard 
circuit pack to backplane power interface. In addition, the attendant 
console and the cooling fans are powered from a modular rectifier. As 
a result, the entire system requires only one standard 110V, 50A outlet 
for installation and a single, self-contained battery plant for backup. 

This modular architecture readily accommodates international ap­
plications since pin-compatible rectifiers that accept different input 
voltages and frequencies can readily be designed. Similarly, any back­
up system providing 110 Vac or 144 Vdc can be accommodated. 

3.1 Maintenance and recovery 

The use of individual power supplies to power each carrier ensures 
that the failure group associated with any given supply is minimized. 
In addition, the power units contain software-resettable circuit break­
ers. This combination, when coupled with software-driven mainte­
nance, virtually eliminates the need for craft or customer intervention 

PHYSICAL ARCHITECTURE 181 



to replace fuses or reset circuit breakers tripped by an accidental 
overload or transient conditions. Fusing is used only to meet Under­
writers Laboratories requirements and to protect against fire or per­
sonnel safety in the event of a catastrophic failure such as damage to 
the insulation on the power cord. 

Since the individual rectifiers are only three inches wide and nine 
inches high and weigh roughly nine pounds, additions or replacements 
are easily accommodated. 

3.2 Battery holdover 

For protection against transient power outages such as those fre­
quently encountered during lightning storms, System 75 uses a 144 
Vdc, 2.5 ampere-hour battery plant. This dc power together with the 
ac line power is distributed by five conductor cables to all switching 
power supplies within the cabinet. 

As described by Lu et al.,2 holdover strategy is under system software 
control to ensure optimal use of the available battery power. 

3.3 VL and CSA qualification 

As System 75 will be competing for sales in many new markets, all 
elements of the system were listed with both Underwriters Laborato­
ries (USA) and the Canadian Standards Association (Canada). 

IV. CARRIER DESIGN 

A basic building block for System 75 is the newly designed circuit 
pack carrier shown in Fig. 6. A single structural foam plastic molded 
part forms the carrier guides and backplane support. The draft angle 
of the guides, used to allow proper removal of the part from the mold, 
is also used to introduce a slight bow to the guides when the foam part 
is attached to the backplane. This inward bow gives just enough 
pressure to the circuit pack to provide comfortable tactile feedback as 
the circuit pack is inserted into the carrier. 

A formed steel frame is used to provide the structural integrity 
needed to support a combined circuit pack load of up to 60 pounds. 
The frame also provides the alignment of the circuit pack in the lower 
rail of the slot as well as the rigid surface required to accommodate 
the forces generated by the latch as the circuit pack connector engages 
and disengages the backplane pins. 

A molded plastic part is placed over the steel frame when the carrier 
is installed in the equipment cabinet to facilitate the alignment of the 
circuit pack in the upper rail of the slot, to provide a slanted surface 
for labeling of the carrier, and most importantly, to give a clean, 
aesthetically pleasing visual surface to the assembled unit. 

182 TECHNICAL JOURNAL, JANUARY 1985 



183 



Unique carrier codes are created by associating different backplanes 
with the generic building blocks described above. 

A single connector brings the carrier identification and alarm leads 
from the wiring harness to the carrier. 

Each port slot is connected to the building wiring by a 25-pair 
connector terminated directly on the backplane. Through the imple­
mentation of the AT&T Information Systems Architecture (ISA), pin 
assignments for terminals, cross-connect fields, system cables, back­
planes, and circuit packs have been coordinated to ensure compatibil­
ity with all present and future AT&T Information Systems products. 
This standard interface allows any of the many unique codes of port 
circuit to be installed in any port slot. This universal port-slot concept 
is of considerable value in both the factory and the field. 

For System 75, two codes of backplane are required: one providing 
the dedicated slots for the common equipment along with 10 port slots 
and a second code housing 20 port slots. Up to four of these port 
carriers plus one common equipment carrier may be installed in a full 
cabinet. Field or factory installation simply requires mounting the 
carrier (four screws), connecting the already provided wiring harness 
connector, and snapping the molded frame in place. A molded blank 
is provided where carriers are not required to contain cooling air and 
to enhance the appearance. 

V. CIRCUIT PACKS 

5.1 Common design parameters 

All circuit packs use the 8-inch by 13-inch Fastech ™ board outline 
and the 200-pin Fastech connector. Faceplates are sized to fill the 
width of the slot (typically 3/4 inch) and present a standard pattern 
of three Light-Emitting Diodes (LEDs) (red, green, and yellow) for 
uniform maintenance. A special grounding latch protects the circuits 
from electrostatic discharge during installation. 

Manufacturing considerations-such as orienting components for 
machine insertability, providing lands for automatic testing, and com­
plying with the requirements associated with aqueous cleaning of water 
soluble flux-also apply to all designs. 

5.2 Control circuit design 

Control circuit packs include processor, memory, network control, 
tape control, protocol interfaces, and maintenance. These circuits are 
uniqu·e functional entities occupying dedicated slots in the control 
carrier and, thus, do not conform to the universal slot concept. High 
functional density and critical design parameters dictate the use of 
multilayer board technology. Since each circuit type represents a 
unique design, details will not be presented. 

184 TECHNICAL JOURNAL, JANUARY 1985 



5.3 Service and port circuit design 

Service circuits (pooled modems, tone generator, and tone detector), 
as well as port circuits (lines and trunks), are designed to meet the 
universal slot interface criteria. This criteria ensures that unique 
customer configurations can easily be accommodated, but imposes 
constraints on the circuit pack designer since signal, power, and ground 
leads must be uniform over a wide variety of functional designs. 

Circuit density is another important parameter on System 75 high­
volume line and trunk circuits. Achieving this density required exten­
sive use of surface mounted VLSI, interconnection of components on 
Hybrid Integrated Circuits (HICs) used both in Dual In-line Package 
(DIP) and Single In-line Package (SIP) configurations, and the use of 
multilayer board blanks. 

The final design consideration for all port and service circuits is to 
take advantage of the basic hardware architecture. To this end, all 
port circuits contain three sections: a system bus interface section 
that ties the circuit to the time division system bus, a port control 
processor (angel) section that interfaces this port to the main processor 
complex, and a functional section that provides the unique interface 
required for that particular circuit pack's function. Some broad design 
considerations for each of these sections is given below. A typical 8-
port circuit pack is shown in Fig. 7. 

5.3.1 System bus interface section 

The system bus interface section of each pack, located adjacent to 
the backplane connector, consists of five custom-designed bus buffers 

SYSTEM BUS 
INTERFACE SECTION 

I 

TYPICAL PORT SECTION 
(ONE OF EIGHT) 

HIC PACKAGED 
AS A SIP 

PORT CONTROL 
PROCESSOR SECTION 

HIC PACKAGED 
AS A DIP 

Fig. 7 -Central office trunk circuit pack. 

ANGEL 

PHYSICAL ARCHITECTURE 185 



that interface the circuit pack to the switch. These buffers are then 
coupled to custom VLSI devices designed to interface the bus. The 
devices are located in the same position on each circuit pack to 
eliminate noise coupling with sensitive analog voice-path circuitry on 
adjacent circuit packs and to ensure consistent performance. 

5.3.2 Port control processor section 

Each port circuit pack contains a port control processor (angel) 
complex, which adapts the system bus interface section to the station 
interface section. This section, based on the 8051-8052 microprocessor 
family, performs all required functions to service both the system bus 
and the station interface, as well as perform automatic maintenance 
functions. 

5.3.3 Functional interface section 

Each pack also contains a station, or trunk, or service interface 
section that provides the interface to an individual type of terminal, 
trunk, or service. These functional interface configurations are repli­
cated on a port by port basis on each pack to ensure consistent, quiet 
performance. Designing in this manner allows increased efficiency in 
noise-reduction efforts, since analysis done on a single port can then 
be applied to all others. To further reduce audible noise-especially in 
view of the fact that all circuit packs interfacing analog facilities are 
designed using double-sided circuit boards-all critical circuit paths 
on the packs are surrounded by substantial amounts of printed ground­
ing for noise suppression. 

VI. ATTENDANT CONSOLE 

The attendant console is the most visible and most active station of 
a PBX. Its design must combine human factors, rugged functional 
design, and asthetics with efficient, cost-effective manufacture and 
ease of maintenance. 

The functions and operations of the System 75 attendant console 
are similar to the highly successful Dimension® PBX and Dimension 
System 85 consoles to preserve product family architecture and mini­
mize attendant training. Other features such as providing both tactile 
and audible feedback on button pushes, right- or left-handed handsetj 
headset mounting, and individual tone controls have also been pro­
vided in the new design. 

Important new functionality includes the use of the standard ISA 
four-pair wiring plan and Digital Communications Protocol (DCP) to 
interface the console to the system. This feature allows the attendant 
console to plug into any modular jack since the console interface to 
the switch is identical to any other digital station. 

186 TECHNICAL JOURNAL, JANUARY 1985 



An additional new feature is the incorporation of a 40-character 
alphanumeric display, which, when coupled to the software-based 
functionality, both facilitates and enhances message retrieval, calling/ 
called party identification, and oth~r critical attendant functions. 

6.1 Console physical design 

An exploded view of the attendant console (Fig. 8) shows the details 

DISPLAY 
HOUSING 

ASSEMBLY 
\ 
\ 
\ 

DISPLAY 
FACEPLATE -'" 

TO HANDSET 
OR HEADSET 

I 
I 
\ 
\ 

BASIC CONSOLE 
/"~ FACEPLATE 

----END CAP 

Fig. 8-Attendant console, exploded view. 

PHYSICAL ARCHITECTURE 187 



of the console physical architecture. All components, keys, and LEDs 
are mounted on independently testable and replaceable units for ease 
of assembly and repair. The entire unit snaps together for easy 
assembly. Product family identity with other System 75 terminals is 
preserved. All interconnection cables are keyed to prevent inadvertent 
damage. A heavy rubber-footed steel base keeps the console in place 
as keys are jabbed by the user. 

VII. FACILITIES INTERFACE 

The main function of any PBX is to connect various facilities (lines, 
trunks, terminals, host computers, etc.) to one another. A secondary 
need is to connect auxiliary equipment (music sources, Station Mes­
sage Detail Recording [SMDR] recorders, etc.), the system adminis­
tration terminal, and remote maintenance centers to the switch. The 
range of System 75 interconnection is shown in Fig. 9. 

To accommodate this wide spectrum of needs System 75 conforms 
to the AT&T Information Systems architecture and the four-pair 
uniform station/terminal wiring plan. This conformance ensures that 
building wiring, terminals, and most adjuncts installed for use with 
other AT&T Information Systems products can be used or reused 
directly with System 75. 

The facility interface can further be divided into three areas: the 
interface between the switch cabinet and its adjuncts, the interface 
between the stations and the switch, and the interface between the 
external Central Office (CO) facilities and the switch. 

7.1 Switch cabinet interFace 

Figure 10 shows the external interfaces of the System 75 cabinet. 
As can readily be seen, the universal port concept and the hardware 
architecture greatly simplify this interface. 

7.2 Station interFace 

The most important customer need in administration is to perform 
station moves, upgrades, or installation of additional stations. Com­
plementing the software-driven user-friendly administration terminal 
is a modular-jack-based cross-connect field (Figs. 2 and 11) human­
engineered to accommodate the user with minimal training. Key 
elements include a cable-slack manager to organize the 25-pair port 
cables, modular molded plastic cross-connect modules, and modular 
plug-ended patch cords. 

7.2.1 Hardware 

The basic hardware building block is a two-piece, hinged, molded 
plastic column housing small circuit modules containing 25-pair cable 

188 TECHNICAL JOURNAL, JANUARY 1985 



-c 
I 
-< 
(fJ 

n » 
r 

» 
~ 
n 
I 
=i 
m 
n 
-I 
C 
~ 
m 

..... 
CO 
~ 

C I co TRUNK CKT 
0 

T CO, TIE, DID, TRUNKS 
R ANALOG OFF PREM LINES 
U 

1 N 
K 

~
O EXT NETWORK W 

NETWORK INT ~ 

'---...---..... DDS 

I DCP • • 
AUX TRUNK 

AUXILIARY 
CUSTOMER 
EQUIPMENT 

I I· ... I .... 
L _____ ~--
TEST TRUNK 

cY 

-+- INTERCONNECTION THROUGH CAP 
... INTERCONNECTION THROUGH CROSS-CONNECT 
- THROUGH CAP OR CROSS-CONNECT (SEE TEXT) 

SYSTEM 
75 

(PORTS) 

D A 
C N 
P A 

L 
o 
G 

D 
C 
P 

~I ~ 
A T 
L 

ALARMS 

RS232C 

RS232C 

E 
I 
A 

MAJOR 

S 
S 
I 

BCT 

~ 
(i=.a~ 

PRINTER 

7403,7405 

g,------- r~ 
CUSTOMER 

HOST 
COMPUTER 

~ 7303,7305 

MJ MET 

-~ 2500, 7101,7103 

Fig. 9-Facilities interconnection. 



25-PAIR PORT 
CONNECTORS 

SYSTEM 
ACCESS 
TERMINAL 

25-PAIR PORT 
CONNECTORS 

110V CONVENIENCE 
OUTLET 

Fig. lO-Equipment cabinet external interfaces. 

connectors together with modular jacks. Port circuit modules expand 
a 25-pair port cable into eight ports consistent with System 75 circuit­
pack density, and station modules expand a 25-pair cable into six jacks 
consistent with the Information Systems Architecture four-pair sta­
tion wiring plan. Each column accommodates three port-circuit mod­
ules and four building-cable modules for a total of 24 stations. Columns 
attach with interlocking tabs; thus, only the first unit need be accu­
rately installed and leveled. All connecting cables in a column are 
accessible via a vertically hinged section specially designed to reduce 
any stresses on the cables induced by opening and closing the unit. 
The modular patch cords used for the connections are modified by the 

190 TECHNICAL JOURNAL, JANUARY 1985 



SIX COLUMN CROSS­
CONNECT FIELD 

Fig. ll-Modular-jack-based cross-connect field. 

CABLE CONNECTOR 
RETAINER 

HINGED JACK 
PANEL ROTATED 
OPEN TO SHOW 
ROUTING OF 
25-PAIR CABLES 
TO STATIONS 
(TOP FOUR) AND TO 
SWITCH CABINET 
(BOTTOM THREE) 

MODULAR PLUG­
ENDED PATCH 
CORDS 

GUIDESAND 
RETAINERS 
FOR ONE 
25-PAI R 
CABLE 

addition of triangular wings intended to protect the tab on the modular 
plug and serve as an anti -snag feature when removing cords. 

7.2.2 Labeling 

To further facilitate customer participation, a labeling plan employ­
ing graphic symbols to represent items such as jacks, carriers, and 
circuit packs is used. Identical designations (Figs. 12 and 13) appear 
on the cabinet, carriers, cables, cross-connect, and station wall jacks 
making rapid station moves or upgrades possible. In addition, the 
traditional blue and purple PBX colors are used to denote station-side 
and switch-side connections, respectively. 

PHYSICAL ARCHITECTURE 191 



DESIGNATION 
SYMBOL FUNCTION SEQUENCE 

B CABINET 1,2,3, ... , n 

§ CARRIER A,B,C,D,E 

11111 SLOT 1,2,3, ... ,20 

r:J JACK 1,2,3, ... ,400 

[J SITE A, B,C .•. 

L FLOOR 

Q BUILDING 

Fig. l2-Symbolic nomenclature system. 

" 

TO STATION 
/WALLJACKS 

// 19 THROUGH 24 PORTION OF 
CROSS-CONNECT 

/COLUMN " PART BUILDING 
/" I' WIRING FOR STATIONS 

_ PORT 
\ -CIRCUIT 1 

\ , 
\ \ '-- SLOT 1 
\ \ 

I 
I 
I 
\ 
\ 
\ 

\ \ 
\ ' __ CIRCUIT-PACK 

\ CARRIER B , , 
' .... CABINET 1 

Fig.13-Equipment labels. 

WALL 
,JACK 

I FOR 
I STATION 22 

I 

The labeling plan was devised with several human factors consid­
erations in mind. Combinations of letters and numbers are used to 
identify items since alphanumeric sequences are easier to remember 
than strings of numbers. Graphic symbols were chosen to represent 

192 TECHNICAL JOURNAL, JANUARY 1985 



items to remove all language association and make the labeling plan 
suitable for international use. 

7.3 External facilities 

Consistent with FCC regulations and the uniform building wiring 
plan, all external facilities present 25-pair connectorized appearances. 
In principle, these could be connected directly to the switch. In 
practice, it is essential to fan out these interconnections to provide 
maintenance and test personnel access to the individual pairs. Since 
this activity is generally performed by a trained technician and since 
these connections are seldom rearranged once installed, traditional 
insulation displacement cut-down blocks are used. In System 75, these 
blocks along with emergency transfer relays are housed in a factory 
wired module housed in an inexpensive structural foam housing. This 
easy-to-install cable access panel is shown in Fig. 14. Trunk rearrange-

Fig. 14-Cable access panel. 

FIELD INSTALLED 
JUMPER PAIR 

25-PAI R 
CABLES TO 
SYSTEM 75 
CABINET 

FACTORY INSTALLED 
JUMPERS (REMOVE 
ONE PAIR FOR 

_n-.._BIDI RECTIONAL 
TEST ACCESS TO 
AN INDIVIDUAL 
CO TRUNK CIRCUIT) 

PHYSICAL ARCHITECTURE 193 



ment and special circuit termination is accomplished by removing 
straps and wiring directly to the blocks. 

Auxiliary customer equipment (music sources for music on hold, 
paging amplifiers, etc.) is housed in a separate cabinet. Interconnection 
to System 75 is either by a dedicated cable or by passing through the 
interconnect hardware. 

7.4 Alternate arrangements 

While facility-interconnection arrangements have been designed to 
optimize System 75 installations, the uniform wiring plan assures that 
System 75 can be connected to existing wiring or to the hardware 
recommended for larger Dimension system 85 installations should 
such facilities already be in place and/or the customer have such a 
preference. 

VIII. SUMMARY 

The goals of maximizing the amount of service housed in a single 
cabinet while providing a modular physical architecture that can be 
tailored to the customer's size and feature needs have been met. The 
software-based administration and maintenance features are effec­
tively complimented by user-friendly hardware ranging from the mod­
ular-jack-based station cross-connect field to the simple modular 
power units. New technology such as surface-mounted VLSI, struc­
tural foam carriers, and modular switching regulators is combined 
with familiar hardware such as modular jacks to provide a user­
friendly, cost-effective, manufacturable design. 

REFERENCES 

1. H. K. Woodland, G. A. Reisner, and A. S. Melamed, "System 75: System Manage­
ment," AT&T Tech. J., this issue. 

2. K. S. Lu, J. D. Price, and T. L. Smith, "System 75: Maintenance Architecture," 
AT&T Tech. J., this issue. 

AUTHORS 

Donn Baker, M.E. (Engineering), 1953, Stevens Institute of Technology; 
Bell Laboratories Communications Development Training Program, 1956; 
Bell Laboratories 1953-1982; AT&T Information Systems Laboratories, 
1983-. From 1953 to 1961, Mr. Baker worked on key telephone system 
development including circuit design, feature definition, logic design, and 
system integration of exploratory electronic key systems. From 1961 to 1965 
he supervised system, circuit, and physical design of electronic PBXs. During 
1965 to 1968, he was an author and editor of the four volume text: Physical 
Design of Electronic Systems and was an instructor for parts of a four semester 
in-house course on this subject. Since 1968 he has supervised groups respon­
sible for physical, circuit, and software design of a variety of business customer 
systems. He is currently supervising the System 75 Physical System Arrange-

194 TECHNICAL JOURNAL, JANUARY 1985 



ments group, which includes design of cross-connect subsystem. Member, 
IEEE; Professional Engineer, New Jersey. 

Howard D. Frisch, B.S.M.E., M.M.E., M.B.A. (Finance/Operations), Cor­
nell University, in 1979, 1980, and 1981, respectively; Bell Laboratories, 1981-
1983; AT&T Information Systems Laboratories, 1983-. At both Bell Labo­
ratories and AT&T Information Systems Laboratories, Mr. Frisch has con­
tributed to the system physical design and system architecture of AT&T 
System 75 and associated hardware. 

c. R. Lindemulder, B.S.M.E., 1960, New Mexico State University; M.M.E., 
1963, New York University; Bell Laboratories, 1960-1982; AT&T Information 
Systems Laboratories, 1983-. Mr. Lindemulder began his career with Bell 
Laboratories as a mechanical designer on the Nike-Zeus and Sentinel radar 
systems. He was promoted to Supervisor and worked on the development of 
the Safeguard missile site radar. In 1975 he was transferred to Holmdel to 
work on PBX development. Past assignments include responsibility for the 
physical design of the Horizon® communication system. He is currently 
responsible for the physical design architecture and development of the switch 
portion of System 75. 

Albert S. Loverde, B.S. (Mechanical Engineering), 1961, Purdue University; 
M. S. (Engineering Mechanics), 1963, New York University; Bell Laboratories 
Communications Development Training Program, 1964; Bell Laboratories, 
1961-1982; AT&T Information Systems Laboratories, 1983-. From 1961 to 
1971, Mr. Loverde worked on military system development, including missile 
guidance, radar, nuclear weapons effects, and system integration and test. 
From 1971 to 1977, he supervised the design of digital transmission systems 
for use on paired cable, coaxial cable, and optical fiber. From 1977 to 1983, he 
was the head of the Customer Premises Physical Design department, which 
developed hardware for a variety of systems, including Horizon® and System 
75. He is currently Head of the Engineering Information and Standards 
department. Member, Pi Tau Sigma, Tau Beta Pi. 

PHYSICAL ARCHITECTURE 195 





AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Switch Services Software 

By W. DENSMORE, R. J. JAKUBEK, M. J. MIRACLE, and 
J. H. SUN* 

(Manuscript received July 11, 1984) 

The switch services software of System 75 provides the basis for an exten­
sible office communication system, supporting a wide variety of voice and 
data-switching services. This paper presents the software architecture of the 
System 75 switch services. The concepts of user, group, and process-per-call 
form its foundation. We introduce the architecture by stepping through a 
simple station-to-station phone call, and proceed to the derivation of a call 
model based on the topology of a call. This call model is realized as a layered 
set of cooperating processes that execute under the Oryx/Pecos Operating 
System on the System 75 switch processor. The software layers and processes 
are discussed and a call walk-through is used to illustrate the process inter­
actions. 

I. INTRODUCTION 

The System 75 software supports a wide spectrum of terminals that 
range from a single line station to a sophisticated digital station for 
simultaneous voice and data communications. It also supports more 
than 150 features for office and business communication needs. Among 
them are the station features for handling multiple, simultaneous calls, 
features used for covering unanswered calls, routing features to select 

* All authors are members of AT&T Information Systems Laboratories, an entity of 
AT&T Information Systems, Inc. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

197 



the least expensive network facility, capabilities that allow messages 
to be left for the called party automatically, and terminal dialing and 
modem pooling features for data communications services. 

This paper describes the switch services software architecture of 
System 75, a framework that supports a wide variety of features and 
terminals. Section II states the design challenges and Section III 
illustrates a basic call scenario leading to the derivation of an essential 
call model. The concepts of user, group, and call are introduced, and 
are mapped to a basic software structure. In Section IV, this structure 
is generalized to a layered software architecture consisting of a set of 
cooperating processes. A call walk-through is used to illustrate the 
interactions among processes. 

II. DESIGN CHALLENGES 

The challenges in building switching software for an office com-
munication system include: 

• The vast number and variety of features to be supported 
• The need to integrate different office services 
• A wide variation in the capabilities of existing and future terminals 
• Stringent real-time response criteria 
• The asynchronous and concurrent nature of the external world. 

Our design began with an analysis of the feature operations and 
resource management requirements of a switching system. Then, the 
essence of the feature and terminal operations were extracted into 
functional modules and the basic primitives of the system were defined. 
Next, we formulated a call model by analyzing the dynamic behavior 
of a call and the relationships between the functional modules. The 
functional modules were then layered into a set of cooperating proc­
esses, with the primitives of the system provided through message­
based interfaces. Finally, information hiding and synchronization 
techniques were applied to simplify the software structure and to 
enforce stronger partitioning of functions. 

A primary goal of this modular and disciplined architecture is to 
minimize the effort required to add new terminals and features. This 
architecture should also be easy to understand by software developers 
so that the architectural integrity is preserved over the product life. 
Moreover, the architecture should simplify the integration of more 
data-processing-like functions in the future. 

Trade-offs exist between implementing the design goals and meeting 
the real-time requirements of a switching system. For 'example, a 
virtual terminal interface provides for uniform implementation of 
features across all terminal types at the expense of access time to the 
terminal. The primitives of the system are carefully defined to balance 
between generality and efficiency. 

198 TECHNICAL JOURNAL, JANUARY 1985 



'W 
..r'DIAL 

CONNECT 
DTMF RECEIVER 

1 

ROUTE AND 
ALERT DESTINATION 

I/O 
PRO­

CESSOR 

TERMINATING 

USER 

RINGING 

.... 1 ___ • RING ~ 
ATTACH RINGBACK 

TO ORIGINATOR 

RINGBACK .... _----.... 1 
DFF-HDOK ~ 

I ANSWER J 
STOP ALERTING I ~ 
..s-STOP-RING ,iJ ~ 

STOP-RINGBACK MAKE CONNECTIONS TALK J 
Fig. I-Basic call example. 

III. ARCHITECTURAL MODEL 

To introduce the design of the switching software, we will step 
through a basic telephone call and develop a call model. Then the 
System 75 realization of this call model will be presented. 

3.1 Basic call example 

A user originates a call by going off-hook on his/her phone. This 
change is detected by an I/O peripheral and an off-hook signaling 
message is sent to the switch processor (see Fig. 1). On receiving this 
message, the resources for processing this call are allocated and mes­
sages are sent to the switch network for connecting a Dual-Tone 
Multi-Frequency (DTMF)* receiver and giving dial tone to the user. 

* Acronyms and abbreviations used in the text are defined at the back of the Journal. 

SWITCH SERVICES SOFTWARE 199 



The call processing software interprets each digit dialed by the user 
and routes the call to the terminating station when all the digits have 
been dialed. The call is signaled to the terminating user with ringing, 
and the call progress is indicated to the originating user with ringback 
tone. When the terminating user answers the call, the switching 
network is instructed to remove the ringing signal and the ringback 
tone, and establish a talking path between the originator and the 
terminator. Finally, when either the originator or the terminator goes 
on -hook, the call processing software tears down the circuit connection 
and deallocates all the resources associated with the call. 

This example illustrates the major functions of System 75 in proc­
essing a basic call: 

• Terminal Handling 
The voice terminals supported by System 75 range from a single­
line analog station to a simultaneous voice/data station with 
display, multiple call appearances, feature buttons, and data mod­
ule. A variety of trunks are used to interconnect with other 
switching systems or a central office switch. 

• Resource Management 
In addition to terminals, there are other resources in the system 
that need to be managed. These include the DTMF receivers, the 
time slots for circuit connections, tone generators, and the internal 
software records for call processing, messaging, measurements, 
and call detail recording. 

• Call Sequencing Control 
Of the more than 150 features suported, many involve complicated 
sequencing logic to bring a call from one state to another. For 
example, the call coverage feature specifies the selection of new 
call destinations (coverage users) if no answer occurs in a specified 
time interval at either the principal destination or the current 
coverage destination. A conference call is another example where, 
in response to a user's conferencing request, the internal records 
and the circuit connections of the two initially distinct calls are 
merged to establish a common talking connection for all the 
parties. 

• Routing and Termination Selection 
Routing and termination refer to the selection of a terminating 
endpoint or set of endpoints for a call. There are a wide variety of 
algorithms for routing and termination selection, such as hunting, 
bridging, coverage, least-cost routing, and routing data calls 
through pooled modem resources. 

3.2 Call model 

By analyzing the dynamics of the software functions in the above 

200 TECHNICAL JOURNAL, JANUARY 1985 



list of functions, we can derive a call model that contains three major 
components: the call, the group, and the user. Highest in the hierarchy 
is the call, which ties all the parties of a connection together. Next is 
the group, which appears as a party on the call and contains a set of 
users. The user is an entity that models a terminal or a set of terminals 
that belong to a system user. This hierarchy is illustrated in Fig. 2. 
Let's examine the call, group, and user concepts in more detail. 

3.2.1 The call 

The call is associated with a set of connected parties. It is defined 
by a record of these parties plus the sequencing control logic of the 
call. It resolves asynchronous actions of various parties and directs 
the system's responses to these actions for the various feature opera­
tions. The call abstraction separates the common sequencing logic and 
information of a call from the group feature operations and the 
terminal handling. 

3.2.2 The group 

The group models a collection of users who are associated to provide 
special call and feature operations for the customer. There are several 
group types in System 75; each one contains special algorithms for the 
operations of that group type. For example, the hunt group specifies 
how a user should be selected from a group to receive a call. The group 
abstraction hides the internal operation of group features from the 
call, and provides a uniform structure for handling such group-oriented 
features as hunting, bridging, multiple attendants, and trunk groups. 

3.2.3 The user 

The user models the end user in the system, who may have a single 
telephone instrument or possibly a collection of interacting terminals. 
The user abstraction is a terminal handler that provides a set of 

Fig. 2-Basic call model. 

SWITCH SERVICES SOFTWARE 201 



resources for which the different services compete: voice and data 
channels, status indicators, displays, ringers, etc. Trunks and data 
lines are also modeled as users. The intent of the user abstraction is 
to hide the terminal-specific operations from both the group and the 
call operations. 

3.3 Realization of call model 

The functional modules and dynamics of the call model are mapped 
into a software realization consisting of a layered set of cooperating 
processes. The processes execute under the Oryx/Pecos operating 
system! on the switch processor of the System 75 control complex.2 

The call is realized by a call record and a single, transaction-oriented 
process that controls a call from origination to completion. A set of 
call processes exist to handle multiple calls in the system. 

The group and user are realized by a group-manager and a user­
manager process. Conceptually, there is a process per instance of each 
different group or user; in practice a single group-manager and a single 
user-manager process are multitasked to handle all instances of groups 
and users. The group-manager and user-manager processes provide a 
set of primitives that are independent of the group and user types of 
the system. These primitives serve as the building blocks for the 
upper-level software (e.g., the call process), where the feature sequenc­
ing is implemented. 

This call model is a hybrid of both the process-per-call, or transac­
tional structure,3 and the process-per-terminal, or functional structure 
of switching systems.4 The call process uses a process-per-call ap­
proach, whereas the group and user managers support the process­
per-terminal approach. This hybrid design permits synchronizing the 
interactions of various terminals, as in the process-per-call approach, 
and permits isolating and distributing the terminal processing soft­
ware, as in the process-per-terminal approach. 

IV. SWITCH SERVICES SOFTWARE STRUCTURE 

SO far we have presented the call-process, and the group-manager 
and user-manager processes. There are additional processes that pro­
vide messaging and station services and the network and resource 
management functions of the switch. To organize the software, we 
define a service-control layer, a resource layer, and a driver layer of 
software (see Fig. 3). Within each layer, the various processes provide 
further information hiding and separation of functions. 

4. 1 Service control layer 

The Service Control Layer contains a Service Dispatcher (SD) 
process and a process for each of the different services of System 75. 

202 TECHNICAL JOURNAL, JANUARY 1985 



I 
PORT CI RCUITS 

Fig. 3-Switch services software structure. 

r 
SERVICE 

CONTROL 
LAYER 

I 

RESOURCE 
LAYER 

I 
DRIVER 

LAr 

The service processes execute concurrently under control of the service 
dispatcher. User actions are translated into service commands by the 
resource layer and these commands are executed by a service process 
through primitives supplied by the resource-layer processes. Attention 
is given to the proper synchronization of user actions to guarantee 
that out-of-sync situations and deadly embraces cannot occur between 
concurrent transactions. 

4.1.1 Call service 

The Call Process (CP) provides the control and sequencing logic for 
call set-up and take-down and for a variety of feature operations in 
the system. Since a process-per-call is costly in terms of system 
resources, only a limited number of call processes exist to serve all 
calls. A call process is allocated to each call in a transient (e.g., dialing) 

SWITCH SERVICES SOFTWARE 203 



state and is deallocated from calls that have reached a stable (e.g., 
talking) state. The information is saved in a call record in the service 
dispatcher. The service dispatcher manages the pool of call processes, 
creating, allocating, suspending, and resuming them to/from calls. 

There are many primitives supported by the resource-layer proc­
esses. The function of the call process is to invoke these primitives in 
the proper order and thereby produce the required response to the 
external user. It does this by analyzing the service-command message 
together with the current call state (e.g., idle or talking), and then 
invoking the appropriate sequencer code for that phase of the call. A 
call sequencer handles a special set of operations such as routing, 
answer, or drop (see Fig. 4). The operations are performed by invoking 
the primitives of the resource layer, which results in the driving of the 
hardware circuitry. 

In addition to managing the call processes, the service-dispatcher 
process receives the signaling messages from the network and forwards 
them to the appropriate terminal handler process for interpretation 
into service commands. The appropriate service process, e.g., the call 
process, is then dispatched to execute the service command. 

4.1.2 Message service 

The control for the messaging services such as leave-word-calling 
and manual-message-waiting is provided by the Message-Service 
(MSG) process. The message service is a permanent server process, 
providing service for all users in the system. Message services can be 
invoked from a call by user terminal input or by other services. When 
message services are accessed via a call, the message-service process 
interacts with a call process. The message-service process accesses the 

SERVICE 
CONTROL 
LAYER 

RESOURCE 
LAYER 

ROUTE TERMINATE ANSWER 

Fig. 4-Examples of resource layer primitives. 

204 TECHNICAL JOURNAL, JANUARY 1985 



resource-layer processes for terminal input/output and translation 
data access. 

4.1.3 Station service 

The Station-Service (SSV) process provides miscellaneous station 
services such as integrated directory service, time-of-day display serv­
ice, and programming some translation data from the user's terminal. 
The station-service process is a permanent server, handling all users 
in the system, similar to the message-service process. The station­
service process accesses the resource-layer processes for terminal I/O 
and data access. When station services are accessed via a call, the 
station-service process also interacts with a call process. 

4.2 Resource layer 

The resource layer provides general resource management for the 
services, service-specific functions, and the line/terminal signaling. 
The system resources managed include the switch network, DTMF 
receivers, tones, trunks, telephone terminals, data terminals, groups, 
and databases like the system dial plan and the name/number direc­
tory. Call routing, queueing, terminal administration and mainte­
nance, and feature activation primitives are some of the service­
specific functions provided. 

The software at the resource layer is functionally organized around 
the user and group concepts, the switch network, and the routing and 
directory database. A process exists for each of these main functions. 
Primitives are provided to the services by these processes for resource 
access. These primitives use the synchronous message facilities of the 
operating system to support the processing of user actions. 

4.2.1 Group management 

The Group-Manager (GM) process has all the translation data for 
group membership and group properties, and it maintains the state of 
the group and its members. Service-specific functions are provided by 
the group manager to manipulate the groups for the different services 
and features of the system. The group executes the service command 
on the users or members in the group according to the type of group. 
For example, in response to a call service terminate command, the 
coverage group would sequence the termination to each idle member 
in the group (an alert-all algorithm), while the uniform-calI-distribu­
tion hunt group would select the longest idle member to receive the 
call. 

4.2.2 User management 

The User-Manager (UM) process contains both the user and ter­
minal management software and status information. It presents an 

SWITCH SERVICES SOFTWARE 205 



abstract user or virtual terminal interface to the upper layers of 
software, while handling the signaling with terminals at the Driver 
Layer. Terminal access contention between the switch services, main­
tenance, and system administration is arbitrated by the user manager. 

The user manager provides service-specific primitives to manipulate 
the users and terminals in the system. For example, the terminate 
primitive would, for a user with a multibutton telephone, select an idle 
call button, update the button -status lamp to flashing, and start 
ringing the telephone. The lamp and ringer operations are performed 
by sending signaling messages to the port circuit that interfaces the 
telephone. 

Signaling-message interpretation is done by the terminal-handler 
functions in the user manager. Low-semantic-Ievel messages, e.g., off­
hook or button-push, are interpreted into service-level commands like 
originate and answer. A service-control-layer process then executes 
these commands by invoking the corresponding primitive provided by 
a resource-layer process. 

4.2.3 Data management 

The Dial-Plan-Manager (DPM) process provides access to and 
interpretation of translation databases in the system, including the 
system dial plan, the name/number directory, user permissions, least­
cost routing patterns, and speed-calling numbers. Customized access 
to the data is provided for the call service. For example, digit analysis 
and the choosing of the initial routing destination are performed by 
the dial plan manager in response to a request from a call process. 

4.2.4 Network management 

The Connection-Manager (CM) process is responsible for the man­
agement of the network resources and for network control signaling. 
It abstracts the physical characteristics of the switch network and 
provides network connection primitives. Primitives to access the net­
work resources like the DTMF generators and receivers are provided. 
Contention between the switch services, system maintenance, and 
system administration for the network resources is arbitrated here. 

The communications network in System 75 is distributed onto each 
port board.! Network control messages to do time-slot assignment for 
listening and talking, gain adjustment, and six-party conferencing are 
sent by the connection manager to the port boards. 

4.3 Driver layer 

The driver layer encompasses the operating system drivers and the 
firmware in the intelligent port circuits of the System 75 communi­
cations network. The drivers include the Switch Control Channel 

206 TECHNICAL JOURNAL, JANUARY 1985 



Driver (SeD), asynchronous data channel drivers, a timer driver, and 
bus drivers. The SeD interfaces the switch processor to the network 
control channel of the Time Division Multiplexed (TDM) bus (see 
Fig. 5). The network control (or archangel) acts like a full-duplex 
message switch between the switch processor and the microprocessors 
in the port boards (commonly referred to as angels). Error correction 
is provided between the SeD and the angels and flow control is 
managed by the archangel. 

A functional message set is used between the switch processor and 
the angels. Signaling and network control messages are sent from the 
user and connection manger processes to the port circuits. The sig­
naling messages are common across all types of ports. This helps to 

NETWORK 
CONTROL MESSAGES 

SWITCH PROCESSOR 

TOM 
BUSES 

SIGNALING MESSAGES 

Fig. 5-Communications network control. 

SWITCH SERVICES SOFTWARE 207 



isolate the user manager from terminal-specific differences, providing 
the first level of terminal abstraction. 

The angels off-load the switch. processor by executing the low-level 
port-scanning, driving, and timing functions. This includes the ringer, 
tone, and lamp cadences, button scanning, and the timing for trunk 
signaling. 

4.4 Call walk-through 

A high-level walk-through of a call to aid in understanding the 
operation of the switch services software is presented here. The call is 
a station-to-station call between multifunction stations. 

4.4.1 Origination 

A station user goes off-hook with an idle call button selected, 
indicating the user wishes to "originate" a call. The off-hook signaling 
message is received by the service dispatcher, which forwards this 
signaling message to the user manager for interpretation. The user 
manager examines the terminal and user state and returns a call 
service originate command for the user back to the service dispatcher. 
The service dispatcher then allocates a call record, assigns an idle call 
process to this new call, and forwards the service command to the call 
process. 

The call process enters the call setup mode, first requesting the 
connection manager to reserve network resources for the new call and 
then commanding the group manager and user manager to originate 
for the user. The user manager requests the connection manager to 
connect the originating user to the call and handles the lamp indica­
tions to the originating user. The origination message sequences are 
shown in Fig. 6. 

Next, the call process requests the group and user managers to 
collect digits, or get a destination for the call. The user manager 
determines how to collect digits for this type of user and starts the 
collection, typically by requesting a DTMF receiver from the connec­
tion manager. Finally, the connection manager is requested to connect 
dial tone on the call. This finishes the setup part of the call and the 
user is now in a digit-collection state. 

4.4.2 First digit 

When the digit is received by the service dispatcher, it is forwarded 
to the connection manager, which has data about the call that the 
DTMF receiver is connected to. The connection manager returns a 
message that indicates a digit and the call number the digit is for. The 
service dispatcher forwards this message to the call process allocated 
to this call. The call process removes dial tone from the call and then 

208 TECHNICAL JOURNAL, JANUARY 1985 



OFF-HOOK 
SIGNALING 
MESSAGE 

SWITCH CONTROL 
CHANNEL DRIVER 

Fig. 6-CaU origination sequence. 

o RESERVE NETWORK 
RESOURCES 

requests the dial plan manager to route the call based on the collected 
digit. The dial-plan manager returns data on how many more digits 
need to be collected. The call process then waits for the required 
number of digits or for an interdigit time-out or a hang-up. 

4.4.3 Last digit 

The last digit of a call is the signal that triggers the selecting and 
alerting of a destination. When the required number of digits have 
been received by the call process, it requests the dial plan manager to 
route the call based on the dialed digits. Permission checking is also 
done on the routing attempt. If enough digits have been dialed and 
the dialed destination is valid, the dial plan manager responds with 
the initial destination user. The call process then stops digit collection 
and the user manager releases any digit-collection resources from the 
call, such as the DTMF receiver. 

Next, the call process attempts to terminate (i.e., bring in) the call 
to a destination user by requesting the group manager to terminate 

SWITCH SERVICES SOFTWARE 209 



the call. If the destination is simply a user, no further routing need be 
done, so the group manager requests the user manager to terminate 
the. call. The user manager alerts the local user to the incoming call 
and replies to the call process that the user accepted the call. The call 
process then requests the connection manager to apply ringback tone 
to the originating user and "feeds back" the state of the termination 
and the identity of the destination to the group manager, which passes 
the information to the user manager-this results in the originating 
station receiving a display update if the user has a display. 

The call is now in the terminating state, awaiting either an answer 
by a destination, an abandon by the originator, or a time-out to trigger 
the next stage of routing. Because the call is in a stable state, the call 
process is deallocated from the call. 

4.4.4 Answer 

The call is answered when a destination party goes off-hook. The 
off-hook is handled like the origination off-hook, except that the user 
manager determines that the user is now answering a ringing call. The 
service dispatcher allocates an idle call process and passes the answer 
command to it. The call process retrieves the call record from the 
service dispatcher and enters the call answer sequencer. First, any 
routing timers are canceled, ringback is removed from the connection, 
and the call process informs the originating user, via the group 
manager, that the call has been answered. Next, the call process 
commands the group manager to answer the call for the user. The 
group manager handles all users being alerted for the incoming call 
and commands the requesting user to answer the call. The user 
manager handles the answer command from the group manager by 
stopping the alerting indications at the user's station and commanding 
the connection manager to connect the answering port to the call. 

Since the calling user was connected in the origination phase, the 
calling and called parties now have a two-way connection. The call is 
in a stable state so the call process is deallocated from the call. 

4.4.5 Drop 

The call is dropped when a user hangs up. The on-hook signal is 
processed in the same way as the off-hook, with the user manager 
interpreting the on-hook (or a button push) into a drop command. 
The call process receives the drop and commands the group manager 
to drop the user off the call. The gruop manager forwards this to the 
user manager, which then handles the lamp indications to the user 
and also commands the connection manager to remove the port from 
the connection. 

Since there is only one party left on the call, the call process 

210 TECHNICAL JOURNAL, JANUARY 1985 



sequences the teardown of the call by sending drop commands to the 
group manager. The drop commands are forwarded to the user man­
ager' which again changes the user's indications and commands the 
connection manager to remove the port from the connection. Since all 
parties have been dropped, the call process informs the connection 
manager that the call no longer exists. The connection manager idles 
its connection and resource records for that call. The call process then 
cleans the call record and tells the service dispatcher to free it and the 
call record from the call. 

V. ACKNOWLEDGMENTS 

The System 75 switch services software architecture reflects the 
efforts of many people within the AT&T Information Systems Labo­
ratories. Many ideas were the fruits of exploratory work that preceded 
the development phase. 

REFERENCES 

1. G. R. Sager, J. A. Melber, and K. T. Fong, "System 75: The Oryx/Pecos Operating 
System," AT&T. Tech. J., this issue. 

2. L. A. Baxter et al., "System 75: Communications and Control Architecture," AT&T 
Tech. J., this issue. 

3. Wing H. Huen, "What Is Different About Operating Systems for Telephone Sys­
tems," IEEE Reprint CHI515-6/79/0000-0179. 

4. L. E. McMahon, "An Experimental Software Organization for a Laboratory Data 
Switch," Proc. ICC '81 (June 1981). 

AUTHORS 

Wayne Densmore, B.S. (Electrical and Computer Engineering), 1975, Clark­
son College of Technology, M.S. (Electrical and Computer Engineering), 1976, 
Clarkson College of Technology; AT&T Bell Laboratories, 1976-1983; AT&T 
Information Systems Laboratories, 1983-. Mr. Densmore has been involved 
with software development for the Horizon® communication system prior to 
working on System 75. He is currently involved with enhancements to the 
System 75 architecture. Member, IEEE. 

Ray J. Jakubek, B.S. (Electrical Engineering), 1967, Manhattan College; 
M.S., 1968 and Ph.D. (Electrical Engineering), 1973, New York University; 
Bell Laboratories, 1968-1982; AT&T Information Systems Laboratories, 
1983-. Mr Jakubek has been involved in the design of a wide range of 
customer premises support systems and products. He contributed to the 
software development of the CNCC, NCOSS and RMATS II support systems. 
Subsequently he has supervised the software development of many of the call 
processing features of System 75. Since December 1982, he has been Head of 
the Software Applications department. Member, Eta Kappa Nu, Tau Beta Pi. 

Michael J. Miracle, B.S. (Electrical and Computer Engineering), 1979, 
University of Wisconsin; M.S. (Electrical Engineering), 1980, Stanford Uni­
versity; AT&T Bell Laboratories, 1979-1982; AT&T Information Systems 

SWITCH SERVICES SOFTWARE 211 



Laboratories, 1983-. Mr Miracle worked on System 75 switch software 
development in the areas of call processing and data switching and is currently 
working on System 75 enhancements. Member, IEEE, Eta Kappa Nu, Phi 
Kappa Phi, and ACM. 

John H. Sun, B.S. (Electrical Engineering), 1972, National Chiao-Tung 
University, Taiwan; M.S. (Computer Science), 1977, University of Connecti­
cut; Taiwan Telecom Research Laboratories, 1974-1975; ACCO-Bristol Com­
pany, 1978; Bell-Northern Research, 1979; AT&T Bell Laboratories, 1980-
1982; AT&T Information Systems Laboratories, 1983-. Mr. Sun has contrib­
uted to System 75 switch services software architecture, design and implemen­
tation both as a developer and in his current supervisory capacity. 

212 TECHNICAL JOURNAL, JANUARY 1985 



AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

System Management 

By H. K. WOODLAND,* G. A. REISNER,* and A. S. MELAMEDt 

(Manuscript received July 11, 1984) 

System management is the task of installing, administering, and maintain­
ing a communications system. Customer and technician access to software­
based administration and maintenance capabilities in the System 75 office 
communication system occurs through an on-line video display terminal called 
the System Access Terminal (SAT). With the SAT, the user may install, test, 
rearrange, and change equipment and services. The SAT hides the internal 
complexity of the system while presenting all the capabilities in as simple a 
manner as possible. A layered software architecture is used to perform data 
view mapping from the user view to the internal data representation. 

I. INTRODUCTION 

An integral part of System 75's enriched feature set is its capability 
of allowing the user to install, test, rearrange, and change equipment 
and services, and select a large number of per-user and system feature 
options. The user accomplishes this by entering and modifying data 
in the system's distributed, translation database. Also available are 
system -generated measurement reports, translation data backup on 
cartridge tape, and bulk data transfer (translation data and program 
updates) to AT&T Information Systems Operations Support Centers. 

* AT&T Information Systems Laboratories, an entity of AT&T Information Systems, 
Inc. t AT&T Bell Laboratories. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

213 



SYSTEM 75 

DIRECT 
CONNECT SAT 

CENTRAL 
OFFICE 

SWITCHED 
LOCAL SAT 

Fig. I-System management access. 

AT&T OPERATIONS 
SUPPORT CENTER 

SWITCHED 
REMOTE SAT 

One objective of the system management task of System 75 is to 
allow customer participation by providing an interface that can be 
used by customer personnel as well as AT&T Information Systems 
technicians. This interface hides the internal complexity of the system 
while presenting all the capabilities in as simple a manner as possible. 

This article discusses the key concepts of this user interface and the 
layered architecture that makes reliable translation database manage­
ment possible. 

II. TERMINAL USER INTERFACE 

2.1 System access 

System 75 operations and training are simplified by providing a 
single system-management user interface. Customer and local tech­
nician access occurs through an on-line video display terminal called 
the System Access Terminal (SAT).* The SAT (the 513 or 515 BCT) 
may be: 

1. Directly connected to an RS-232C EIA port, 
2. Switched through a Digital Communications Protocol (DCP) 

dial-up port, or 
3. Switched through a modem dial-up port for off-premises access 

(Fig. 1).1 

The local SATs operate at 9600 baud while the remote SAT­
connected via a Direct Distance Dialing (DDD) line-operates at 1200 
baud. In addition to the SAT interface, a 1200-baud, X.25, host-to-

* Acronyms and abbreviations used in the text are defined at the back of the Journal. 

214 TECHNICAL JOURNAL, JANUARY 1985 



host interface is provided to accommodate the remote AT&T Infor­
mation Systems Operations Support Center. 

2.2 Terminal user access 

Access security, an important aspect of any shared access system, 
is maintained through the use of login names and passwords. Repeated 
invalid passwords will cause the system to drop the line and increment 
a security violation count. 

Multiuser access is also important. System 75 allows two SAT users 
and one remote operations host to be logged in at the same time. User 
contention is managed on a per-command basis and only one user at 
a time may execute a command that changes the database. This 
eliminates the confusion that exists when two users interact with the 
same data. These design requirements greatly simplified the architec­
ture and implementation. 

2.3 Terminal interface screen layout 

A simple, consistent, easy-to-understand screen layout is an essen­
tial element of a good user interface. The System 75 terminal interface 
screen is divided into four regions (Fig. 2): 

COMMAND HISTORY LINE (REVERSE VIDEO) 

ACTIVITY WINDOW 

(20 LINES) 

HELP/ERROR MESSAGE LINE (REVERSE VIDEO) 

COMMAND LINE 

Fig. 2-Terminal interface screen regions. 

SYSTEM MANAGEMENT 215 



1. A command path or command history line 
2. A 20-line command output or activity window 
3. A help/error message line 
4. A command line. 
Reverse video is used in alternate regions to partition the screen 

layout without wasting valuable screen lines. 

2.4 Command entry 

Command organization is another important aspect of a good user 
interface. Upon logging in, the System 75 user is placed in a single­
level command entry state. All commands are directly accessible from 
this state. There is no tree structure to traverse or mode keys to 
depress to move among administration and maintenance commands. 

Commands are logically divided into ten "administrable" categories. 
Each user login name is allowed or denied permission to execute 
commands on a per-command category basis. Confusion is eliminated 
because a user only sees those commands that he has permission to 
execute. As the need and desire for customer participation increases, 
the customer may be given permission to execute more commands. 

The commands utilize English -like phrases. The format is action, 
object, qualifier. For example, the command to add a station set with 
the extension number 3261 is: 

add station 3261, 

where add is the action to be performed, station is the object being 
acted on, and 326 1 is the qualifier. Complete or partial commands 
may be entered providing the user enters enough characters of a 
parameter to distinguish it from other legal parameters. For the 
example above, the command could be entered as: 

a s 3261. 

The system prompts the user with on-line messages and, at any time, 
the user may request assistance by depressing the help key. The 
response from the system depends on the parameter type to be entered: 
if an action or object, then a list of valid actions or objects is displayed; 
if a qualifier, a message is displayed describing the format and type of 
data to be entered. For example, if the command was 

add station 20, 

the system would respond with the message 

20 is an invalid entry-Please Press Help. 

If the help key were depressed, the system would respond with the 
message 

216 TECHNICAL JOURNAL, JANUARY 1985 



Enter a number between 100-9000, 

where 100-9000 are valid extension numbers. This sort of prompting 
greatly reduces training time and paper documentation. Other actions 
include display, change, and remove. 

2.5 Command output 

Three basic types of output appear in the activity window: 
1. A status report, 
2. A data entry form, and 
3. A restricted form. 
A status report is produced when a dis P lay command is entered, a 

data entry form is produced when an add or change command is 
entered, and a restricted form is produced when a remove command 
is entered. In the data entry form state, the user may modify the data 
and then store away the changes by depressing the enter key. In the 
restricted form state, the user is prohibited from modifying the data 
on the screen. The data are displayed only to allow the user to verify 
that the correct data are being removed. The user may depress the 
cancel key to abort any operation. 

2.5.1 Data entry form state 

The data entry form state allows formatted, forms-based data entry. 
Forms are associated with a specific task. For example, the station 
form is used to display the precise data required to add a station set 
(Fig. 3). Fields are added or removed from the form dynamically, as 
required. When the data entry form state is invoked, a form appears 
in the activity window with data fields defaulted to the most commonly 

add station 3261 

Extension: 2000 
Name: 

FEATURE OPTIONS 
LWC Reception? y 

LWC Activation? y 
Redirect Notification? y 

ABBREVIATED DIALING 
List1 : 

BUTTON ASSIGNMENTS 
1: call-appr 
2: call-appr 
3: call-appr 

;:---

STATION 

Station Type: 7303S 
Coverage Path: 
Security Code: 

Page 1 of 1 

Port: 

Coverage Msg Retrieval Permission? y 
Data Restriction? n 

Idle Appearance Preference? n 

List2 : 

~:--­
~:---

10: __ _ 

List3: 

Fig. 3-System management station form. 

SYSTEM MANAGEMENT 217 



used values. The command entered and the number of form pages 
appear on the command history line. 

Standard cursor control keys (arrow, next/previous field, clear field, 
next/previous page, and refresh screen) allow the user to move about 
the form in a prescribed way. In the station form, the next field key 
moves the cursor left to right in the upper part of the form, and down 
the columns in the bottom (button assignment) part of the form. This 
guides the user to complete the form in an orderly manner. However, 
the arrow keys provide the flexibility to move the cursor in any desired 
direction. 

2.5.2 Data validation 

In some systems, data are validated only after all data have been 
entered. Where possible, System 75 performs validation immediately 
as data are entered or changed (see Section 3.4). This allows immediate 
response to many user errors, thereby decreasing the overall user time 
required to enter and validate a given form. 

2.6 Special commands 

Two special commands were added to assist the user in adding 
objects to the system. One handles the case when the user wants to 
add an object and does not know the next available qualifier. For this 
case, the add object next command is provided. For example, if add 
station next is entered, the system searches the database, selects 
the next available extension number, and invokes the data entry form 
state with the selected extension number. 

The duplicate station command speeds the addition of a station by 
copying data from an existing station. For example, if duplicate 
station 3261 is entered, the system invokes the data entry form state 
and displays a station form with data identical to those of station 
3261, except that the extension, port, and name fields are blank. These 
differentiating fields may then be entered to create the new station. 

In summary, the SAT provides a simple, easy-to-understand user 
interface that may be used by the AT&T Information Systems tech­
nician and trained customer personnel. 

III. SYSTEM MANAGEMENT ARCHITECTURE AND DESIGN 

The system management software provides four functions, all of 
which are available through the SAT: 

1. Measurement collection and reporting 
2. Maintenance testing and reporting 
3. Translation data backup on tape 
4. Translation database management. 
The measurement collection and reporting capability provides 

218 TECHNICAL JOURNAL, JANUARY 1985 



hourly traffic data on engineered resources, e.g., trunk groups, which 
are made available through formatted reports. Maintenance reporting 
and testing capabilities include the demand testing of circuit packs 
and terminal equipment and the display of system error and alarm 
logs. Translation data backup on tape provides system translation 
data backup on a secondary storage medium. Underlying all system 
management functions is translation database management. The re­
mainder of this article concentrates on this topic, and the software 
designed to support it. 

Translation database management software provides four important 
functions: data view mapping, database validation, form transactions 
and concurrency control. Data view mapping allows a user to display 
and change all translation data related to a single task (e.g., station 
installation), while hiding the complexities of the internal data orga­
nization. Database validation ensures that data entered into the sys­
tem are individually correct and consistent with respect to other data. 
For example, validation ensures that extensions assigned to stations 
are consistent with the dialing plan. Transactions ensure that all the 
translation data entered on a system form are either valid and accepted 
or inconsistent and rejected. Concurrency control allows there to be 
multiple SAT users and, at another level, ensures that switch services 
software will not use critical data that are being changed. Before 
describing how these functions are accomplished, we provide a brief 
overview of the system management software structure. The software 
consists of three layers: 

1. User interface and control 
2. Command execution and validation 
3. Data access and storage. 
The user interface and control layer provides users with access to 

the system, through either the SAT or the X.25 remote link. The 
command execution and validation layer and the data access and storage 
layer provide a single, record-based interface to the user interface and 
control layer, independently of the access method. Figure 4 shows a 
block diagram of the essential software layers and components. 

The command execution and validation layer consists of four soft­
ware modules, each of which supports the different logical functions 
described above: (I) measurement collection and storage, (2) admin­
istration database update/validation, (3) maintenance command exe­
cution, and (4) translation backup on tape. 

The data access and storage layer consists of the administration 
database access module and all processes which store translation data. 

3.1 Data view mapping 

Translation data in System 75 are distributed. They are contained 

SYSTEM MANAGEMENT 219 



1 
SYSTEM 
ACCESS 

TERMINAL 

.-- ---l 
I I 
, LOGIN & USER I 

'

CONTENTION ,USER 

, CONTROL ,INTERFACE 
AND 

I FORMS I CONTROL 
I DEFINITION I LAYER 
, DICTIONARY I 

L---------I---------~ 
,---------- ----------~ 

I ICOMMAND 
MEASUREMENT ADMINISTRATION MAINTENANCE TRANSLATION 'EXECUTION I COLLECTION DATABASE COMMAND BACKUP ON lAND 

I AND UPDATE/ EXECUTION TAPE VALIDATION 
STORAGE VALIDATION !LAYER L___ ____ ____ _______ _J 

,------- ------------, 
I , 
I I DATA 
I IACCESS 
I lAND 

'

STORAGE 
PROCESSES WITH I LA YE R 

, TRANSLATION DATA I 

I • • • , 
L _____________________ J 

Fig. 4-System management layered software. 

in the local data space of the processes that access them in order to 
meet real-time requirements for voice and data switching. This results 
in the fragmentation of logically related data. System management 
software maps the data entered on forms (the logical view of transla­
tion data) into the internal view of data, as required by the switch 
services architecture.2 

3.1.1 Low-level view of data 

The administration database access module distributes and retrieves 
translation data using a record-based interface. This is accomplished 
by a set of C language library functions that are supported by each 

220 TECHNICAL JOURNAL, JANUARY 1985 



process storing translation data. This interface is akin to the data 
manipulation language of database management systems. At an ab­
stract level, however, this interface is designed to be less powerful 
than a true database management system (e.g., relational manipula­
tions on internal tables are not supported). The reason for this choice 
of design is to reduce complexity and generality of access methods, 
thereby increasing the speed of data retrieval. 

A simplified view of low-level data view mapping is shown in Fig. 5. 
It consists of two parts: mapping external identifiers to internal 
identifiers and distributing data values to the processes storing trans­
lation data. This concept is illustrated by looking at some of the data 
associated with a station set (see Fig. 6). The external identifier for a 
station is its extension, i.e., the number dialed to call the station. 
Some of the data associated with this station are the type (digital), 
name of the person assigned to the station (John Doe), and various 
buttons. 

The internal identifier for the station is an ordered pair (TYPE, 
INDEX), where TYPE=STATION identifies the station table. This 
internal identifier is generated by finding the first empty slot in the 
station table. The internal identifier is then used as a key to identify 
other data for the station in the button table and the miscellaneous 
data table. The mapping from extension to internal identifier is 
contained in the extension table (this extension-to-internal identifier 
table is used whenever a station extension is dialed). 

In summary, the mapping between internal and external identifiers 
is accomplished completely within the data access and storage layer. 

INTERNAL IDENTIFIER 
~~-------'-
DATUM 1 

EXTERNAL IDENTIFIER 
DATUM 1 
DATUM 2 

. 
DATUM N 

J...NlE!!!'l~ L..!.D.!.r:IT 1£1 Sf!. 

DATUM 2 

DATUM 3 ••• 

ADMINISTRATION 
OBJECT 

DATUMN 

INTERNAL 
RECORDS 

Fig. 5-Simplified low-level data decomposition. 

SYSTEM MANAGEMENT 221 



STATION INFORMATION 

E~~~~~~ __________ _ 

STATION TYPE: plGITAL 

NAME: JOHN DOE } 

STATION 
OBJECT 

I-B-U-T-TO-N-'-: -L-EA-V-E-W-O-R-D-CA-L-L-IN-G--------1'L BUTTON 

BUTTON 2: PIRECTORY ) OBJECTS 

INDEX , 

I 

400 

STATION 
TABLE 

STATION TYPE 

DIGITAL 

STN 

I 
I 

BUTTON 
TABLE 

BUT.NO. DATA 

, LWC 
2 DIR 

LOCK 

NO 
NO 

EXTENSION 
TABLE 

EXT INTERNAL ID 

326' (STATION, I) 

Fig. 6-Data decomposition for a station. 

MISCELLANEOUS DATA 
TABLE 

INTERNAL ID NAME ... 

(STATION, I) JOHN DOE 

The upper layers of system management software use external iden­
tifiers exclusively. 

3.2 Concurrency control 

As in any database system with multiple users, System 75 must 
provide a means of managing concurrent updating and a means of 
managing simultaneous reading· and writing of translation data. The 
first concern, concurrent updating, is handled at a very high level in 
the user interface and control layer. The login and user contention 
control module tracks each user logged into the system and each 
command executed. In this way, it assures that only one user at a time 
is trying to update translation data. It performs this control by allowing 
only one add, change, or remove command to be executed at a time. 
Thus, the problem of multiple concurrent database updates is elimi­
nated. 

3.2.1 Locking of internal records 

The second problem, managing simultaneous reading and writing of 
data, is handled in the data access and storage layer. To solve this 
problem System 75 implements read/write locks on internal records. 

222 TECHNICAL JOURNAL, JANUARY 1985 



In any system using locks, there is a trade-off between speed and 
the overhead of the locking mechanism. Because System 75 is a real­
time switching system, and because data retrieval involves the very 
same processes that are accomplishing switch services, locks are used 
with a small, selected subset of internal records, thereby eliminating 
unnecessary performance penalties. 

The mechanism for locking is illustrated in Fig. 6, the station data 
decomposition example. A read/write lock is associated with each 
button in the database. This lock serves two purposes. First, it prevents 
the switch services software from using button data while the button 
is being changed. This assures that the status data maintained for 
each button/lamp is consistent with the translation state. The conse­
quences of inconsistencies could manifest themselves, for example, in 
a lamp that is stuck in the lit state permanently (for a button that no 
longer has a function associated with it), or until the station is reset 
by unplugging and reinstalling or until fixed by an internal system 
audit. The second purpose allows changing an individual button on an 
active station as long as that particular button is not in use. This 
granularity of locking provides a great deal of user flexibility in 
changing data while also guaranteeing a high degree of data protection. 
Locking also supports a database transaction mechanism described in 
the next section. 

3.3 Database transactions 

Administration of the application database takes place during nor­
mal system operation. System 75 uses a database transaction mecha­
nism to guarantee that the user command associated with a form is 
either processed to completion or not at all. In database terminology, 
transaction management maintains the database consistency, perma­
nency, and atomicity.4 The capability to abort transactions exists. 
When one of the requests of a transaction cannot be performed, an 
automatic rollback of the partially completed transaction occurs. The 
same procedure is followed in case of system recovery, provided a 
database transaction was in progress. 

The system management software places exclusive locks and the 
switch services software places shared locks on data. The first request 
in a transaction encountering a locked resource causes the system to 
back out of the transaction, thus avoiding deadlock. A two-phase 
locking protocol is used. All the internal records required by a trans­
action are locked before any locks are released. The locks are released 
only after the entire transaction has been processed. 

Transaction requests are generated by the command execution and 
validation layer, and the actual transaction mechanism is implemented 

SYSTEM MANAGEMENT 223 



in the administration database access module. A typical transaction 
consists of multiple requests. For example: 

BEGIN_TRANSACTION 
UPDATE STATION (3261) 
UPDATE STATION-BUTTON (3261, BUTTON 1) 
UPDATE STATION-BUTTON (3261, BUTTON 2) 
END_TRANSACTION 

A single request from the command execution and validation layer 
may map into multiple operations on internal records. When a single 
request is received, the administration database access module dynam­
ically allocates an instance of an internal record execution table, which 
depends on both the object of the request (e.g., station) and the action 
of the request (e.g., update). Figure 7 illustrates the transaction exe­
cution table for the transaction above. The execution table consists of 
a dynamic and a static part. The static part describes the sequence of 

BEGIN TRANSACTION - TRANSACTION IDENTIFICATION 

STATIC DYNAMIC 

INTERNAL PREIMAGE IMAGE 
RECORD OPERATION POINTER POINTER 
TYPE 

.... STATION WRITE RECORD 

REQUEST 1: 
UPDATE STATION (3261) 

EXTENSION 
WRITE RECORD 

r-- MISC. DATA WRITE 
RECORD 

REQUEST 2: 
UPDATE BunON (3261,1) 

~ BunON WRITE 
r-- RECORD -( 

REQUEST 3: 
UPDATE BunON (3261,2) 

~ BUTTON WRITE 
RECORD -( 

END TRANSACTION 

Fig. 7-Transaction execution table. 

224 TECHNICAL JOURNAL, JANUARY 1985 



operations for this request (object, action) pair. The dynamic portion 
contains pointers to the preimages and images of the data to be 
changed. The preimages are used for possible recovery actions, i.e., for 
backing out of a transaction. 

The instances of the execution tables (one per command execution 
and validation layer request) are stacked on behalf of a transaction. 
For each transaction in progress, the current pointer points to the last 
entry processed. When a transaction terminates successfully, all the 
tables are deallocated. The tables are used to perform transaction 
back-out and recovery. 

3.4 Database validation 

As we have seen, the data access and storage layer distributes system 
data to internal records, and this function is guaranteed to be robust 
because form transactions and a locking mechanism are utilized. To 
help simplify the software in the administration database access 
module, these functions are accomplished in a data-independent fash­
ion wherever possible. The function of ensuring the correctness (i.e., 
semantics) of the database is accomplished in the administration 
database update/validation module. 

Validation is accomplished as early as possible in the data entry 
process. Each field on a form is checked before the user is allowed to 
advance to the next field. This checking can be as simple as a range 
validation or as complex as checking that a station is installed before 
it may be entered into a hunt group, thus ensuring the correct opera­
tion of calls terminating to the hunt group. After all the necessary or 
desired information is typed on a form, the entire form is validated 
when the user depresses the enter key. At this time all interfield 
relationships are examined and verified. An example of this is ensuring 
that a multibutton station has at least two call-appearance buttons 
installed on it. Two buttons are necessary for the correct operation of 
the conference and transfer features. 

IV. TABLE-DRIVEN SOFTWARE STRUCTURE 

System management software in System 75 is a good example of 
the use of table-driven software. This table-driven approach is chosen 
for gains in memory usage and for ease of adding new administration 
objects. At each layer of system management software there are 
examples of modules which use this approach, such as the forms 
definition dictionary, administration database update/validation, and 
administration database access. To illustrate the approach, the soft­
ware structure of the administration database access module, along 
with the tables that are used by this generic software, are briefly 
described below. 

SYSTEM MANAGEMENT 225 



Generic software belongs to the following categories: 
1. Table allocation 
2. Request interpretation 
3. Field conversion 
4. Invocation of internal record library functions 
5. Transaction control. 
These five categories are executed, in the order shown, for any 

request from the command execution and validation layer. The precise 
software used is, for some categories, dependent upon the action (e.g., 
update or add) requested. However, this software is almost completely 
independent of the objects involved. Knowledge of object manipula­
tion, conversion, and storage is contained in the following four major 
types of tables: 

1. Request driver table-Contains all the actions that are valid for 
a particular object, along with pointers to other tables that are used 
for each request (object, action) pair. 

2. Operation table-Provides a sequence of run-time operations to 
be performed on internal records for a given (object, action) pair. The 
order of execution is implicit in the order of operations in this table. 

3. Field map table-Describes the field mapping between the indi­
vidual fields of an object and the individual fields in associated internal 
records. 

4. Internal record location table-Indicates which process contains 
each internal record. 

An example of the use of these tables is shown for (station, update) 
in Fig. 8. Note that in the operation table the station record is listed 
first. This is critical for (station, add) since the internal identifier for 
the station is generated by the insertion of the station record. This 
internal identifier is needed in the other records associated with the 
station. 

For some objects, the object-to-internal record mapping is data 
dependent, that is, the set of internal records that a particular object 
maps to depends on a particular transition of field values. These data­
dependent transformations are handled using a pseudo-object concept. 
The basic idea is that pseudo-objects are used to enumerate all the 
different possible object-to-internal record mappings for a particular 
object. This enumeration enables the administration database access 
module to use the regular tables even for the data-dependent transfor­
mations. The pseudo-object concept is completely hidden from the 
higher-level software. 

v. CONCLUSION 

This article has presented two aspects of System 75 system man­
agement: the system access terminal and the layered software archi-

226 TECHNICAL JOURNAL, JANUARY 1985 



r 
I 
I 
I 
L 

~ 
I 
I 
I 
I 
L 

-

-

REQUEST DRIVER TABLE (FOR "STATIOW) 

ADMINISTRATION 
OBJECT 

STATION 

REQUEST 
ACTION 

UPDATE 

ADD 

OPERATION TABLE (FOR "UPDATE STATION") 

INTERNAL 
RECORD TYPE 

STATION 

EXTENSION 

MISCELLANEOUS 
DATA 

OPERATION ON 
INTERNAL 
RECORD 

WRITE 

WRITE 

WRITE 

FIELD MAP TABLE (FOR "UPDATE STATIOW) 

INTERNAL 
RECORD 

TYPE 

STATION 

EXTENSION 

MISCELLANEOUS 
DATA 

CONVERSION 
FUNCTION 

NO 
CONVERSION 

CHARACTER TO 
PACKED NIBBLES 

NO 
CONVERSION 

POINTER TO 
OPERATION 

TABLE 

CD 

SOURCE 
LOCATION 

POINTER TO 
FIELD MAP 

TABLE 

DESTINATION 
LOCATION 

Fig. 8-Example of table-driven software. 

tecture. The system access terminal provides a vehicle for the simple 
presentation of a complex database. The layered software architecture 
makes this all possible by providing data view mapping, database 
validation, transactions, and concurrency control. Moreover, it pro­
vides a structure that allows expansion to new functionality. 

REFERENCES 

1. L. A. Baxter et aI., "System 75: Communications and Control Architecture," AT&T 
Tech. J., this issue. 

2. W. Densmore et aI., "System 75: Switch Services Software," AT&T Tech. J., this 
issue. 

3. C. J. Date, An Introduction to Data Base Systems, 3rd edition, Reading, MA: 
Addison-Wesley, 1981. 

AUTHORS 

Anna S. Melamed, B.S.E. (Electronical Engineering), 1969, Warsaw Poly­
technic; M.S.E. (Computer Information and Control Engineering), 1972, The 

SYSTEM MANAGEMENT 227 



University of Michigan; M.S. (Mathematics), 1974, The University of Michi­
gan; Ph.D. (Computer Information and Control Engineering), 1977, The 
University of Michigan; Bell Laboratories, 1978-1982; AT&T Information 
Systems Laboratories, 1983-1984; AT&T Bell Laboratories, 1984-. Ms. 
Melamed has been involved in the definition, design and implementation of 
various software systems such as a Test Language Parser, a database restruc­
turing system for the AT&T 3B20-DMERT (Duplex Multiple Environment 
Real-Time) applications and system management for System 75. She is 
currently involved in performance analysis of a distributed computer system. 

Gerald A. Reisner, B.S. (Applied Mathematics), 1967, New York University, 
School of Engineering; M.S. (Applied Mathematics), 1970, Adelphi University; 
Ph.D. (Mathematics), 1974, University of Minnesota; Hazeltine Corporation, 
1968 to 1970; Bell Laboratories, 1974 to 1983; AT&T Information Systems 
Laboratories, 1983-. At Bell Laboratories, Mr. Reisner's initial assignment 
involved characterizing network blocking under various conditions, including 
retrials. He also provided performance measurement requirements for local 
switching systems. In 1978 he moved to software development for the Network 
Control Operations Support System, a minicomputer-based system used to 
install and maintain private networks. Since 1980 he has designed Switch 
Services Software for System 75, and since 1983 has been a Supervisor for 
System 75 Switch Services Software. Member, Tau Beta Pi, ACM and MAA. 

Harold K. Woodland, B.S. (Physics), 1971, Morgan State University; M.S. 
(Engineering), 1973, Cornell University; Bell Laboratories, 1973-1983; AT&T 
Information Systems Laboratories, 1983-. At Bell Laboratories, Mr. Wood­
land's work has included design of special trunk circuits and software devel­
opment for the Horizon® communication system Customer Access Unit, the 
Enhanced 911 Emergency Reporting System (E911), the Horizon ACD and 
System 75 System Management. Since 1981, he has been Supervisor of the 
System 75 System Management and Administration group. 

228 TECHNICAL JOURNAL, JANUARY 1985 



AT&T Technical Journal 
Vol 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Maintenance Architecture 

By K. S. LU,* J. D. PRICE,t and T. L. SMITH* 

(Manuscript received July 11, 1984) 

Reliable service has been a cornerstone of customer premises communica­
tions systems for years. System 75 office communications system hardware 
and software have been designed to continue that high degree of reliability 
and availability. The hardware has been designed to detect and correct errors 
as they occur, to minimize the number of components that cause system 
outage, and to simplify fault isolation to a replaceable component. The 
software has been designed to recover from intermittent failures and to 
continue providing service with a minimum of disruption. These features have 
been implemented in the software as a group of processes running under a 
real-time operating system, which simplifies building and testing the software 
and makes it easy to extend its functions. 

I. INTRODUCTION 

Reliable service is one of the most important features of a customer 
communication system. Aspects include reliable hardware design, au­
tomatic system reconfiguration in the event of a hardware fault, 
defensive programming to minimize the impact of intermittent hard­
ware failures or obscure program bugs, and a repair strategy that 
quickly corrects any hardware problems in the system. System 75 is 

* AT&T Information Systems Laboratories, an entity of AT&T Information Systems, 
Inc. t AT&T Consumer Products. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

229 



based on previously proved designsl
-

3 to ensure reliable service. It 
includes some new features as well. Major enhancements include a 
CRT-terminal-based, human-engineered interface to simplify repair 
activities; a maintenance system that provides systematic organization 
and flexibility to system maintenance activities; and features to im­
prove the reliability of the communications network by maintaining 
connected equipment such as stations, terminals, and trunks. 

This paper describes various aspects of system maintenance includ­
ing objectives, the plans for hardware and software maintenance, the 
maintenance software architecture, a discussion of how the system 
handles critical failures, the human interface to the maintenance 
features, and the remote maintenance capabilities. 

II. DESIGN OBJECTIVES 

A clear set of objectives was required to build a consistent and 
integrated set of maintenance features in a timely way. Some of these 
were external objectives, observable by people who use or repair the 
system: 

1. The system must be highly reliable. Any component failure 
should affect the smallest possible piece of the system, and the time 
between system outages caused by a single component failure should 
be several years. Automatic recovery from hardware and software 
problems should be achieved as well. 

2. The system, not the users, should detect failures. The system 
should be fully self-testing with tests run frequently enough to detect 
failures before the user. False alarms should be avoided; alarm only 
those faults requiring repair. 

3. The system must be simple and quick to repair. Trouble analysis, 
testing, and direction of the repair activity should be provided by the 
system, not the repair person. The system should have an interface 
that can be used with little training, permitting the customer to 
participate in maintenance. 

4. The scope of the maintenance should extend to the entire cus­
tomer communication system. The system should help maintain sta­
tions, terminals, trunks, and other connected equipment. 

In addition to the external objectives, there are several objectives 
which, though not directly visible, impact maintenance performance: 

1. The system should have a common set of tests for each piece of 
the system. By using the same test for system fault diagnosis, periodic 
testing, and technician testing, test results are reproducible and the 
possibility for confusion is reduced. 

2. The maintenance system should have the flexibility to deal with 
a wide diversity of objects. By using a maintenance operating system 

230 TECHNICAL JOURNAL, JANUARY 1985 



approach, maintenance of each piece of the system can be written 
independently while using common structure and functions. 

3. The system should be easy to extend. As the features and func­
tions of the system increase, the maintenance must also expand with 
minimal revisions to existing features. 

4. The system should have minimal maintenance interactions be­
tween parts of the system. This makes it easier to identify the part of 
the system that is failing and permits inherently simpler maintenance 
strategies to be developed. 

III. MAINTENANCE OBJECTS 

Maintenance programs for System 75 run under the Oryx/Pecos 
operating system.4 (See Fig. 1.) The collection of processes that per­
form the maintenance activities is called the maintenance subsystem 
and is written as a maintenance operating system. Each part of the 
system to be maintained is called a maintenance object and is handled 
independently by the maintenance operating system. Maintenance 
objects 'are selected to be independent from each other, reducing the 
number of interactions inside the maintenance system and simplifying 
the maintenance strategies. Each object in the system has its own 
maintenance strategy. This strategy can include tests for detecting 

Fig. I-Maintenance object organization. 

MAINTENANCE ARCHITECTURE 231 



and diagnosing problems, and recovery, reconfiguration, and repair 
activities. The maintenance operating system provides common func­
tions such as scheduling, alarming and terminal interfaces. 

There are three general categories of maintenance objects. The first 
category is hardware, including circuit packs, stations, and trunks. In 
general, each circuit pack or each separately replaceable unit is a 
separate maintenance object, but there are exceptions where several 
circuit packs belong to one maintenance object or where one circuit 
pack contains several maintenance objects. Hardware maintenance 
objects can be tested, alarmed, and removed from service. When a 
problem has been isolated to a hardware maintenance object, the 
object is replaced. 

The second category of maintenance objects is software processes. 
Each process running under the Oryx/Pecos operating system is a 
separate maintenance object. If a process encounters trouble, it can 
be recovered or restarted. 

The third category of maintenance objects is data relationships. 
Each group of data that has some internal structure or redundancy 
can be maintained. Data relationships can be audited and corrected. 

IV. HARDWARE MAINTENANCE 

4.1 Principles 

4.1.1 Scope 

Hardware maintenance covers all the equipment inside the cabinet 
including all the circuit packs (the processor complex, trunks, lines, 
and service circuits), the tape drive, the power converters, and cabinet­
level functions such as power supplies, batteries, and environment (see 
Section 4.4.4). In addition the system maintains attached lines and 
trunks. 

4.1.2 Error detection 

Whenever possible, the system will detect and report errors auto­
matically. Error detection is done through a variety of methods, with 
the particular method determined by weighing the severity of the 
problem against the cost of the method. The following methods of 
error detection are used: 

1. Error detection hardware is added to the system, monitoring the 
operation and detecting errors immediately. This is cost-effective in 
only the most critical applications. An example is the error detection 
and correction circuitry on the processor memory. When a faulty 
memory location is accessed, the failure is detected immediately. 

2. In-line errors are detected using software or firmware. Each time 
a circuit performs its function, additional software checks are run to 
ensure that the circuit is functioning correctly. This is useful in 

232 TECHNICAL JOURNAL, JANUARY 1985 



important applications where quick detection of errors is worth the 
cost of processor real-time consumption. The checksum on control 
channel messages is an example. 

3. Periodic tests are the most widespread testing strategy. Tests 
that run quickly or detect important troubles are run frequently, 
typically once an hour; a comprehensive set of tests is run once every 
24 hours. 

4. A few error-detection tests are potentially so service disruptive 
that they are not run on a periodic basis. A comprehensive memory 
test falls into this category. As long as memory is working correctly, 
no comprehensive test is run. However, if the system has experienced 
several crashes, additional time will be taken on the reboot to run a 
complete memory test. 

4.1.3 System alarms 

If a maintenance object consistently fails the error-detection tests, 
the system will automatically generate an alarm. This is a call for 
technician action to repair the system and restore it to a normal 
condition. There are three levels of alarms. 

1. Warning alarms for failures that cause no noticeable degradation 
in the customer service. Also included are failures whose cause might 
be external to System 75 but need no immediate action. 

2. Minor alarms for failures that cause marginal degradation of 
customer service while not rendering a crucial portion of the system 
inoperable. This condition requires action, but its consequences are 
not of a global or immediate nature. Problems might be impairing 
service to a few trunks or stations or causing problems to only one 
feature across the entire system. 

3. Major alarms for failures that cause critical degradation of cus­
tomer service and require immediate action. Processor faults and 
failure of an entire trunk group fall in this category. 

Alarms are made visible in several different ways. 
1. If the failing component is a circuit pack, a red lamp is lit on 

that circuit pack. This guides the technician in replacing the faulty 
circuit pack. 

2. If the system detects any major or minor alarm conditions, they 
will be reported to the Operations Support Center computer.5* The 
system will automatically place a call and report the problem (see 
Section IX). 

3. The system alarm status is displayed in lamps on the mainte­
nance circuit pack alarm panel. A second lamp indicates the status of 

* A typical centralized Operations Support Center computer system is RMA TS 
(Remote Maintenance Administration and Traffic System). 

MAINTENANCE ARCHITECTURE 233 



attempts to notify the Operations Support Center computer of the 
problem. 

4. If the system has any major or minor alarms, an alarm lamp on 
the attendant consoles will be lit. 

5. A list of all alarms currently in the system is kept in an internal 
alarm log. This can be displayed on command from a system admin­
istration terminal (see Section VIII) or can be requested through the 
remote computer interface. 

In addition to automatically raising alarms, the system will also 
automatically retire alarms. Sometimes a problem that is causing an 
alarm will disappear without human intervention. Since testing con­
tinues on an alarmed maintenance object, tests will begin to pass after 
the problem disappears, causing the alarm to be retired. This strategy 
eliminates needless repair activity to retire alarms for temporary 
faults. In addition, no technician activity is required to retire an alarm 
after repair. 

The maintenance strategy is to eliminate intermittent alarms and 
to alarm only consistent, reproducible faults. This is done by requiring 
an error to be seen several times before it generates an alarm. Similarly, 
once a maintenance object is alarmed, it must pass its tests several 
times before the alarm is retired. 

To generate alarms in a reasonably short interval of time, the system 
uses intensive testing. Once an error is detected on a maintenance 
object, that object goes into a tes~ing mode where tests are run much 
more frequently. Either these tests will fail several times in a row and 
quickly generate an alarm on the maintenance object, or they will pass 
and remove the maintenance object from further suspicion. Intensive 
testing continues as long as any errors are being detected on a 
maintenance object, whether it is alarmed or not. This testing is done 
at low priority to avoid interfering with normal system operation. 

All alarms lead directly to a specific repair activity such as replacing 
a circuit pack, changing a power supply, or repairing a station set. 
Such repair activities have a good chance of fixing the problem and 
retiring the alarm automatically. 

4.1.4 System recovery and reconfiguration 

The major recovery and reconfiguration strategy is to take selected 
pieces of equipment out of service (maintenance busy) to preserve 
good service for the remaining equipment. Faulty trunks and service 
circuits are removed from service, but care is taken to avoid disabling 
all the trunks in a trunk group or all the service circuits. Stations are 
not removed from service except when they have totally failed and 
cannot provide any service or when the failure mode may disrupt other 
parts of the system. If any failure prevents the system from processing 

234 TECHNICAL JOURNAL, JANUARY 1985 



calls, emergency transfer stations are connected directly to trunks. 
Loss of ac power, continuous rebooting, and complete loss of the time 
division bus are examples of conditions that invoke emergency trans­
fer. 

All systems are provided with battery backup for the entire system. 
If the power outage is short (up to 10 seconds) the batteries will 
support the entire system. If the power outage is longer than 10 
seconds, the system is put into a standby mode where battery power 
is supplied only to the control complex. All calls are dropped and 
emergency transfer is invoked. The batteries can power the memory 
for an additional ten minutes. This shortens the time required to bring 
the system back to an operational state since it takes several minutes 
to reload the memory from the backup tape. 

4.1.5 System repair 

The particular type of repair activity used depends upon which type 
of maintenance object has failed. Failures in circuit packs connected 
to the time division bus, including station, trunk, and service circuit 
packs, are easiest to repair. They can be replaced with minimum 
impact on the system since it is not necessary to turn off power. The 
faulty board, indicated by a red LED, is just unplugged and replaced; 
only those calls using the board are affected. Two additional LEDs 
are used to guide this repair activity. A yellow LED shows the pack is 
in use and a green LED shows the pack is under test. 

Repair of control circuit packs requires system power down, board 
replacement, and system reboot. Station repair activities include lo­
cating the trouble, wiring repair, and station replacement. Trunk 
repair activities include verifying the trouble, fixing trunk wiring, and 
reporting troubles on connecting switching systems. 

4.2 Processor complex 

The critical boards required to provide system service are the 
processor, memory, and interface to the switching network.6 

4.2.1 Processor board 

A sanity or watchdog timer, which must be reset periodically, 
monitors major failures of the processor. If the software fails to attend 
to this function, the processor is reset and the maintenance circuit 
pack, an independent processor, is notified. Major system outages are 
covered in Section 6.2. 

Several functions of the processor adjunct circuits are periodically 
tested, including software interrupts (such as divide by zero), memory 
management operations, privileged instruction detection, bus time-out 
exceptions, and initialization and bootstrap ROM checksums. 

MAINTENANCE ARCHITECTURE 235 



4.2.2 Memory 

The memory has full multibit error detection and single-bit error 
correction circuitry. It can be reconfigured to run even if every memory 
access detects a single-bit error. The advantage of this feature is that 
single failures in the memory do not result in any increase in system 
outage. 

Full, destructive memory tests are run on system initialization 
(before reboot), including a horizontal and vertical partition test and 
stuck-at-zero/stuck-at-one test. The following tests are run during 
system operation: 

1. Read all memory test. Read every word in memory to correct soft 
errors and to force an error report. 

2. RAM checksum test. Check that the text segments of all proc­
esses have not been modified. 

3. Memory error correction test. Check that the error correction 
and detection circuitry is working and generating the correct failure 
reports. 
If several uncorrectable errors are detected, the system initiates a 
reboot, memory is fully tested, and the corruption is corrected. 

4.2.3 Network control 

The network control circuit pack includes both an interface to 
supervise the port boards and four interfaces for data communication 
with peripheral devices. These are referred to as the control channel 
and data channels, respectively. 

The control channel is monitored using several in-line error-detec­
tion mechanisms, since it is a critical link in switch operations, with 
all messages to and from the port boards flowing over it. Error­
detection hardware immediately reports failures of the Time Division 
Multiplexed (TDM)* bus clocks. The control channel protocol pro­
vides error detection using sequence numbers, checksums and ac­
knowledgments, and error correction using retransmissions. The con­
trol channel driver checks the consistency of the interface and main­
tains a sanity handshake. The control channel interface processor also 
checks its own internal RAM and ROM for faults during operation. 

Several periodic tests check operation of the control channel. The 
control channel test verifies communications with several port boards 
that are installed in all systems. The control-channel processor loop­
around test verifies operation between the main processor and the 
control channel processor. Finally, for severe problems, the reset test 
is used to reset the control channel processor and trigger local initial­
ization tests without affecting the port boards. 

* Acronyms and abbreviations used in the text are listed at the back of the Journal. 

236 TECHNICAL JOURNAL, JANUARY 1985 



The data channels are similar to other port boards, except that the 
data side of the port talks to the processor instead of a terminal. Tests 
include a loopback through one channel, a data loopback between 
channels, and a dual-port RAM test of the processor interface. When 
problems escalate, a data channel processor reset is forced. 

4.3 Port boards 

Some maintenance features apply to all port boards. Except the 
tone/clock board, all can be replaced with the system powered and 
running, and only those calls using the replaced board will be dis­
rupted. The system automatically detects the removal and insertion 
of port boards. Inserted boards are put into service and tests are run. 
Removed boards are taken out of service and alarmed. 

The first priority for port board tests is to protect service. All port 
tests, including trunks, stations and service circuits, will not run if the 
port is busy. In addition, all tests will be aborted if an attempt is made 
to seize the port externally (off-hook on a station or seizure on a 
trunk) or if a call attempts to terminate on a port (someone calls that 
trunk or station). If tests must be run on a busy port, the port can be 
busied out using the system access terminal to force it idle. 

4.3.1 Common port maintenance 

The port board processor, bus buffers, and control channel interface 
are common to all port boards. When a port board processor is 
initializing, it runs a test of its RAM, ROM, and I/O devices and stops 
if there is any failure. During normal operation many of these tests 
continue and report in-line errors. The main processor tests the control 
channel to each board and audits the network connectivity. 

4.3.2 Trunks 

The tests listed below are run on most trunk types. 
1. Seizure test. On trunks that are outgoing, the trunk is seized to 

verify the trunk signaling and provide good assurance of a working 
trunk. This tests dial tone reception on those trunks that provide dial 
tone. 

2. Signaling diagnostic tests. Usually the trunk port board processor 
can exercise signaling mechanisms and detect correct operation of 
such items as ground detectors, ring detectors and battery feed. In 
many cases, special circuitry is used to simulate incoming seizures. 

3. Tone loop-arounds. This tests that the trunk is able to transmit 
voice information successfully in both directions. The trunk is put 
into a loop-around mode, tones are sent, and the returned signal is 
tested for level and noise. 

MAINTENANCE ARCHITECTURE 237 



4.3.3 Stations 

The tests listed below are run on stations. 
1. Signaling channel test. Digital stations and multibutton stations 

have a data channel that transmits control information to and from 
the station. This channel is tested for correct and reliable data. 

2. Station present and overcurrent tests. These tests determine if a 
station is present and test for shorted or open wiring by measuring 
battery current flow. 

3. Tone loop-arounds. These tests are made in the same way for 
stations as for trunks (see Section 4.3.2). 

4.3.4 Service circuits 

Service circuits are tested by hooking two circuits together and 
testing them against each other. For example, tone generators are 
connected to tone detectors and both are tested at once. Another 
example is connecting two pooled modems back to back so that the 
data are converted from digital to analog and back to digital. The 
faulty service circuit is identified by testing against known good service 
circuits. 

4.4 Miscellaneous components 

4.4.1 Maintenance circuit pack 

The maintenance circuit pack is periodically tested using a sanity 
handshake test and tests of the alarm-origination circuitry. If the 
handshake test fails, a dual-port RAM test is run to test the interface, 
and the maintenance circuit pack is reset. During reset, the mainte­
nance circuit pack executes a complete set of initialization tests. 

4.4.2 Tape 

Most error detection for the tape subsystem occurs during normal 
use. Periodically the processor interrogates the tape subsystem for 
status and runs data loopbacks through the interface boards. Every 24 
hours the tape subsystem self-diagnostics are started and read/write 
tests on unused tape areas are run. If errors are encountered, a test 
reads the entire tape and checks the consistency of data stored on the 
tape. Finally, warning alarms are raised if the tape is not installed or 
is write-protected. 

4.4.3 Power supplies 

The distributed power supplies in each carrier are monitored via the 
maintenance circuit pack, and all but the control carrier power supply 
can be recycled or shut down. A carrier supply is recycled if it fails; if 
this does not restore operation, alarms are raised. The battery charger 
monitors itself and the batteries for problems. Problems such as a 

238 TECHNICAL JOURNAL, JANUARY 1985 



nonworking charger or an open cell in the batteries can be detected. 
In addition, worn out batteries that no longer hold a charge are 
detected if the charger does not shift from a high-charge rate to a low­
charge rate within the time normally required to charge the batteries. 

4.4.4 Environment 

Temperature sensors in the cabinet monitor high temperature and 
lack of airflow. Alarms are raised when these conditions are detected. 
Airflow monitoring directly detects dirty air filters, eliminating the 
need for periodic inspection. 

V. SOFTWARE MAINTENANCE 

In a computer-based system, most features are provided using soft­
ware. Software maintenance becomes as important as hardware main­
tenance, since the system can lose functionality when the software 
malfunctions. This section describes the principles and techniques 
used in maintaining the software. 

5.1 Software maintenance principles 

Software failures are fundamentally different from hardware fail­
ures. First, reliability of a software component does not change with 
use; it cannot break. Bugs are discovered and removed over time; but 
before the bug is found and fixed, the system must be able to recover 
and operate with the existing software package. Secondly, a bug in a 
software package does not necessarily prevent the software from 
performing its task. Only when the bug is exercised by a specific 
combination of events can the bug cause failure. 

Software may also fail if the hardware executing the software has 
an intermittent error. Intermittent hardware errors may occur if a 
particular device has low noise margins or if the hardware deteriorates 
through aging effects. These intermittent errors may have symptoms 
similar to software bugs. 

Although restarting software execution often permits the system to 
recover from a software failure, this should be done infrequently and 
with the least possible service disruption. The system has several 
levels of recovery to deal with software errors, including single-process 
restart, system-warm restart, system-cold restart and system reboot. 
More drastic recovery actions are more likely to be effective but are 
also more service disrupting. This leads to the following strategy: 
When the maintenance subsystem detects a system failure without 
knowing the specific reason, it tries a recovery action that has less 
impact on the system services. Only if that does not cure the problem 
is more drastic and service-disruptive recovery action invoked. If the 
cause of a system failure is known, the right recovery level is invoked 

MAINTENANCE ARCHITECTURE 239 



immediately, avoiding the risk of the escalation scheme slowing down 
system recovery. 

5.2 Data audit 

Auditing is a technique to ensure that system resources have inter­
nally consistent states and to check data consistency periodically. 
Errors detected by data audits are used to start automatic recovery 
and provide clues to the system developers for debugging purposes. 
System resource inventories (e.g., message buffers, path descriptors, 
etc.) are also audited to detect lost resources. Hardwares status (e.g., 
circuit port status) is audited against the data kept by software to 
detect any state inconsistency. 

5.2.1 Audit philosophy 

The fundamental audit philosophy is to find lost resources before 
the system performance is adversely affected. When an error is de­
tected, the data are restored to a safe system state, one that has the 
highest probability of not denying service. For example, a trunk or 
line found in an erroneous state is restored to the idle state. Another 
basic principle is that if one error is found, all actions taken to restore 
that resource do not use any other status data associated with that 
resource because they may be incorrect or inconsistent. 

5.2.2 Audit types 

5.2.2.1 Data relation audit. Many audits have been developed to check 
the consistency of internal system status. For example, an audit ch~cks 
the user station list stored in the user manager process. If a station is 
shown as on a call, then the service dispatcher process is checked to 
see if that user is still active on the call. If not, then the user station 
is marked idle by the audit. Another audit checks the call record list 
stored in the service dispatcher process. If there is no user on that 
call, the call record is released to terminate the stranded call record. 

Another example is the audit of the touch-tone receiver status which 
is kept in the connection manager. The audit will check a call to see 
if an allocated receiver is still active. If not, the audit will release the 
receiver. 

5.2.2.2 Defensive programming. The data used by a process may be 
obtained from other processes. To prevent erroneous data from prop­
agating through the system, processes typically check input data before 
using it. Sometimes a process will check for abnormal local data. 
However, defensive programming must be used wisely so that it does 
not introduce significant real-time overhead. 

5.2.2.3 Process sanity audit. The hardware sanity timer monitors the 
sanity of the operating system, which monitors the sanity of the 

240 TECHNICAL JOURNAL, JANUARY 1985 



maintenance control process, which, in turn, monitors all other appli­
cation real-time processes. 

5.2.3 Audit control 

Data audits are programmed as a set of functions, and each one can 
be invoked independently of other system operations. When an appli­
cation process is restarted, it will invoke the path index audit in 
addition to other process-specific data audits. A central maintenance 
control process regularly invokes the data audit functions on a time­
available basis. 

VI. MAINTENANCE CIRCUIT PACK 

One circuit pack in the system is devoted strictly to maintenance 
functions. As long as the processor is running correctly, the mainte­
nance circuit pack serves as a peripheral device for the processor (see 
Fig. 2a). In this mode, the maintenance circuit pack is used to provide 
maintenance access to the system and auxiliary maintenance func­
tions. It is not responsible for testing any pieces of the system on an 
ongoing basis. However, if a fault makes the processor complex unable 
to run programs effectively, the maintenance circuit pack will assume 
overall control and intervene to attempt recovery (see Fig. 2b). 

6.1 Normal operating mode 

Normally the main processor has responsibility for overall mainte­
nance. The maintenance circuit pack provides the interface to several 
maintenance functions, including monitoring the status of the ac 
power, power supplies, battery, and charger. It passes the status of 
this equipment to the main processor and controls this equipment 
under the direction of the main processor. It also provides an interface 
to cabinet temperature and airflow information, external alarms, and 
system control panel lamps. 

6.2 Operation with a critical system fault 

The maintenance circuit pack monitors the operation of the main 
processor, taking control when the main processor becomes completely 
inoperative (unable to load or run Oryx/Pecos code). To prevent this 
control of the system from occurring prematurely, the maintenance 
circuit pack must see several failures over a period of time before it 
will assume control. 

Once it has assumed control, there are some basic changes and 
simplifications to the maintenance strategy. The maintenance circuit 
pack will periodically attempt to restart the main processor. It will 
automatically place a telephone call and alert the Operations Support 
Center computer that a- major problem exists. It will put the system 

MAINTENANCE ARCHITECTURE 241 



(a) 

(b) 

Fig.2-Maintenance board connection (a) in normal mode and (b) in stand-alone 
mode. 

into an emergency transfer mode where some telephones are connected 
directly to the central office trunks to provide basic telephone service. 
And the maintenance circuit pack will continue to directly monitor 
and control and most critical parts of the power system. 

The maintenance circuit pack provides a terminal interface to help 
in isolating and fixing system problems. This is particularly important 
since symptoms of total failure are often the most difficult to diagnose. 
This interface is a proper subset of the commands used when the 
system is fully operational, eliminating the need to learn another 
command language. The commands include displaying the cause of 
alarms and testing critical circuit packs. 

Once the cause of the failure is eliminated, through manual repair 
of a faulty circuit pack or because some temporarily disrupting con-

242 TECHNICAL JOURNAL, JANUARY 1985 



dition has stopped, control returns to the main processor and normal 
operations resume. 

VII. MAINTENANCE SOFTWARE ARCHITECTURE 

7.1 Overview 

The maintenance subsystem is composed of three sections. The first 
section provides system testing and recovery activities, the second 
stores and retrieves error and alarm logs, and the last section provides 
an interface for the technician to request actions and query the status 
of the maintenance subsystem. The relationship of the maintenance 
processes is shown in Fig. 3. 

A central control process called High-Level Maintenance Manager 
(HMM) provides a mechanism for the whole system to use in reporting 
errors. The HMM begins maintenance activities based on in-line error 
reports, technician commands, or time (periodic maintenance). The 
time-consuming testing and recovery functions are performed in sev­
eral different instances of Maintenance Action Processes (MAP). The 
Maintenance Data Manager (MDM) controls the error and alarm log, 
condenses error and alarm records, and services queries of the log. 
The technican can issue maintenance requests through the Mainte­
nance Command Process (MCP). 

7.2 Process description 

7.2.1 High-level maintenance manager 

The HMM is responsible for the strategy of maintenance object 
operations. The HMM will send reported errors to the MDM process 

ERROR REPORTS ERROR LOGGING 

TEST 10 

Fig. 3-Maintenance software architecture. 

MAINTENANCE ARCHITECTURE 243 



for logging and invoke proper recovery actions. Maintenance can be 
active and at different states of completion on many maintenance 
objects simultaneously. For this reason, the HMM multitasks the 
execution of maintenance strategies. 

Errors of all types and severities, some demanding immediate atten­
tion' are reported to the HMM. The particular maintenance object 
strategy determines the priority of the resultant action by dispatching 
the testing and recovery tasks to a MAP of the appropriate priority. 
The HMM manages the various MAPs and allocates a MAP when 
requested by the maintenance object's strategy. Since the MAPs are 
valuable maintenance resources, the HMM has to control the main­
tenance load created by background testing to ensure the availability 
of a MAP should quick testing or recovery response be necessary. 

7.2.2 Maintenance action process 

There is a set of maintenance test and recovery routines designed 
for every hardware or software maintenance object type. These are 
grouped into several different kinds of MAPs, some with multiple 
instances to provide the required level of concurrency. 

1. Initialization MAP (INITMAP). Runs all the critical test and 
recovery routines, including system initialization and recovery, system 
power failure handling, and software process recovery. 

2. Hardware MAP (HWMAP). Tests for most of the hardware 
maintenance objects, including processor, port circuit packs, trunks, 
stations and the tape drive, are grouped into the hardware MAP. 
Instances of this MAP are created at different priorities to provide 
the required responsiveness. 

3. Data Audit MAP (AUDIT). All the data relation audits are 
grouped into one MAP. 

7.2.3 Maintenance data manager 

The MD M is responsible for the error and alarm log. It receives 
error reports and requests to raise or resolve alarms, and maintains 
them in an internal database. It supports queries of this database for 
the maintenance command interface. When alarms are raised or 
resolved, the MDM controls the proper alarm indications. 

7.2.4 Maintenance command process 

The MCP converts external maintenance command requests into 
internal test requests and queries. For example, a request to test a 
trunk group is expanded into a sequence of tests on the members of 
the group. 

244 TECHNICAL JOURNAL, JANUARY 1985 



7.3 Message flow examples 

The following examples help explain the operation of the mainte­
nance subsystem. 

7.3.1 Maintenance command 

This example covers a technician test request on a station. (Refer 
to Fig. 4.) 

The technician's command originates in the administration subsys­
tem, which is responsible for the forms-based human interface.7 The 
command arguments are passed to the MCP, representing the request 
to run a test sequence on a specific extension. The MCP converts the 
station extension to a maintenance object identifier and initiates the 
tests through the HMM. The maintenance object strategy in the HMM 
requests a MAP to execute the tests. The MAP executes the test and 
sends the results back to the HMM, where they are forwarded back to 
the MCP. The MCP formats the output for display by the administra­
tion subsystem. 

7.3.2 Digital station failure 

This example covers the failure of a digital station leading to an 
alarm. (Refer to Fig. 5.) 

Typically a port failure will appear as an in -line error detected and 
reported by the port board firmware. In this case a data link error is 
reported by the digital station board. This error message is routed to 
the HMM, where a threshold counter is incremented for this mainte-

Fig. 4-Craft command message flow. 

MAINTENANCE ARCHITECTURE 245 



Fig. 5-Station link failure. 

nance object. The counter being active causes the maintenance object's 
strategy to dispatch a test to verify the error. 

One test to be run, based on the active threshold counter, is a data 
link loop-around. This test fails since the data link is faulty and causes 
the counter to be incremented again. The object strategy schedules 
more frequent testing while troubles are active on that port. With the 
test failing, the counter soon exceeds its threshold and starts the MAP 
alarming action to raise the alarm with the MDM. 

VIII. PERSON/MACHINE MAINTENANCE INTERFACE 

A CRT terminal was selected to be the system access terminal since 
this provides the best interface for repair personnel. The terminal 
provides a powerful and flexible human interface, with a simple 
command language that is easy to learn and remember. The same 
terminal and command interface is used for maintenance and admin­
istration.7 Some examples best serve to illustrate the ease with which 
maintenance activities can be requested. 

The simple English-like command language can be used to request 
tests of specific parts of the system. A circuit pack can be tested by 
entering: 

test board A 13 

where A 1 3 is the location of the circuit pack in the cabinet. Station 
extension 235 is tested.by the command: 

test station 235. 

246 TECHNICAL JOURNAL, JANUARY 1985 



The need to remember and call for specific tests has been eliminated. 
Each hardware maintenance object has a short test and a long test, 
with the short test as the default. The short tests are not service 
disruptive and complete quickly. The long test causes all tests to be 
run on a maintenance object, it takes longer to complete, and is more 
likely to disrupt service. This complete test is specified by adding the 
word long to the test command. For example: 

test tape long 

The interface also makes use of the terminal forms capability. The 
system has many options that allow the selective display of errors, 
restricting it to errors on specific pieces of equipment, to errors 
occurring over a specific interval of time, or to certain types of errors. 
Rather than complicating the command that displays errors and 
making it difficult to remember, the simple command: 

display errors 

is used, which brings up a form on the CRT screen. Then any display 
restrictions are made using form entries. 

IX. REMOTE MAINTENANCE CAPABILITIES 

System 75 has a complete set of remote maintenance capabilities. 
These capabilities are provided by a dial-up connection to AT&T 
Information Systems Operations Support Center centralized mainte­
nance computer.5 Communication between the system and the support 
center computer can be established in either direction using the X.25 
protocol. This protocol provides error detection and retransmission 
and ensures that error-free information is exchanged between the two 
computers. 

All the components required for this interface are part of the 
maintenance circuit pack, including a 212-compatible data set oper­
ating at 1200 baud, a line interface, and an automatic dialer. This 
integrated design speeds installation since it is only necessary to 
connect two wires from the central office. 

From a maintenance point of view, one of the most important 
capabilities of this remote access is automatic alarming. Whenever an 
alarm is raised, the system will dial up the Operations Support Center 
computer and report the details. 

The Operations Support Center computer allows remote execution 
of all maintenance commands that are supported by the system 
administration terminal. Commands can be issued from the support 
center regardless of which end made the call, allowing trouble analysis 
to begin immediately after a trouble is reported. 

MAINTENANCE ARCHITECTURE 247 



Other capabilities of the Operations Support Center computer in­
clude up-loading and down-loading of translations and remote program 
update. Any changes to the load module are transmitted and added to 
a separate patch area on the tape. A remote command then reboots 
the system, updating the program without a visit to the site. 

These remote maintenance functions provide an advantage over 
strictly on-site maintenance since the remote site can respond more 
quickly and visits to the site can be more carefully planned. This 
results in better, faster service at lower cost. 

X. SUMMARY 

The major objectives in the maintenance design were to make the 
system reliable, self-testing, and easy to repair. Feedback from the 
field has been very positive. Maintenance operations, including the 
terminal interface, alarming methods, error logging, and automatic 
testing have been successful in providing low-cost support. Most 
changes based on field experience have been fine tuning maintenance 
strategies to cover unexpected failure modes or adjusting the sensitiv­
ity of alarming thresholds. Software maintenance capabilities have 
allowed us to weather early software faults and will continue to provide 
insurance against undiscovered problems. 

XI. ACKNOWLEDGMENTS 

The design described in this paper is the culmination of the ideas 
of many people at AT&T Information Systems Laboratories. We 
would like to acknowledge the efforts of all these people, with partic­
ular acknowledgment to M. C. Wei for his contributions to the main­
tenance software design. 

REFERENCES 

1. E. J. Braun, "Maintaining the DIMENSION@ 400 PBX," Bell Lab. Rec., October 
1976, pp. 244-8. 

2. P. W. Bowman et al., "lA Processor: Maintenance Software," B.S.T.J., 56, No.2 
(February 1977), pp. 255-87. 

3. H. J. Beuscher, "No.5 ESS Maintenance Software," IEEE Trans. Commun., COM-
30, No.6 (June 1982), pp. 1386-92. 

4. K. T. Fong, G. R, Sager, and J. A. Melber, "System 75: ORYX/PECOS Operating 
System," AT&T Tech. J., this issue. 

5. J. E. Smathers and N. T. Tsao-Wu, "RMATS-Remote Maintenance System for 
DIMENSION@pBXs," Conference Record-Int. Conf. on Communications, June 
1979. 

6. L. A. Baxter et al., "System 75: Communications and Control Architecture," AT&T 
Tech J., this issue. 

7. H. K. Woodland, G. A. Reisner, and A. S. Melamed, "System 75: System Manage­
ment," AT&T Tech. J., this issue. 

248 TECHNICAL JOURNAL, JANUARY 1985 



AUTHORS 

Kang-sen Lu, B.S. (Physics), 1974, National Tsing-Hua University; M.S. 
(Computer Science), 1976, National Chiao-Tung University; Ph.D. (Computer 
Science), 1981, University of Pennsylvania; AT&T Bell Laboratories, 1981-
1982; AT&T Information Systems Laboratories, 1983-. Mr. Lu developed 
the maintenance control software and system recovery strategy used in the 
System 75 release 1. His current responsibility is on the maintenance software 
architecture of the System 75 release 2. 

John D. Price, B.S. (Electrical Engineering) 1977, Cornell University; M.S. 
(Computer Engineering), 1978, Carnegie-Mellon University; Bell Laborato­
ries, 1977-1982; AT&T Information Systems Laboratories, 1983-1984; AT&T 
Consumer Products, 1984-. Recently Mr. Price has worked on maintenance 
software and product delivery for System 75. He is currently a Supervisor of 
a group designing residential terminals. Member ACM, IEEE. 

Thomas L. Smith, B.S. (Electrical Engineering), 1967 and M.S. (Electrical 
Engineering), 1969, The Massachusetts Institute of Technology; Bell Labo­
ratories, 1969-1982; AT&T Information Systems Laboratories, 1983-. Mr. 
Smith has been involved in the design and systems engineering of maintenance 
features for several systems including 3 ESS,'M No. 5ESS™ and minicomputer 
maintenance support systems. He is currently the Supervisor of System 75 
maintenance and firmware group. Member Eta Kappa Nu, Tau Beta Pi. 

MAINTENANCE ARCHITECTURE 249 





AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

The Oryx/Pecos Operating System 

By G. R. SAGER,* 1. A. MELBER,t and K. T. FONGt 

(Manuscript received July 11, 1984) 

The System 75 Office Communication System is the first field application 
of the Oryx/Pecos operating system, a message-based system which supports 
real-time, distributed applications. Its interprocess communications mecha­
nisms provide a structuring tool similar to monitors, capabilities, and abstract 
data types. This paper describes the principal concepts implemented in the 
operating system kernel, and presents the essential system processes. Support 
for application design techniques is discussed and related to proven software 
engineering principles, including information hiding and modularity. Specific 
examples are drawn from System 75 for call processing and maintenance. 

I. INTRODUCTION 

The Oryx/Pecos operating system provides an environment for real­
time, distributed applications. By the term "real time" we mean that 
the performance of the system is reasonably fast and, above all, easy 
to predict. By the term "distributed" we mean that assignment of 
elements of the application to processors can be made apparent or 
transparent, as befits requirements. 

This operating system is intended to extend the applications imple­
mentation language to include powerful structuring tools-similar to 

* Currently with Sun Microsystems, Mountain View, California. t AT&T Information 
Systems Laboratories, an entity of AT&T Information Systems, Inc. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

251 



monitors/ capabilities,2 and abstract data types3-as active elements 
of the application. 

System 75 is the first Oryx/Pecos field application. In this initial 
application, the operating system runs on a single Intel* SOS6-based 
processor specially designed for System 75. All of the System 75 call 
processing, maintenance, and administration software is built on top 
of this operating system. To provide a responsive, feature rich, and 
extensible Private Branch Exchange (PBX) t with maximum system 
capacity, System 75 requires an operating system that is fast and can 
provide predictable performance. Use of other operating systems, such 
as the UNIX™ operating system, would not have met these needs. 

The Oryx/Pecos operating system is implemented as a kernel (Oryx) 
and a set of essential system processes (Pecos). 

II. THE ORYX KERNEL 

The kernel (or "nucleus") of an operating system is a basic set of 
primitive operations from which the remainder of the system is con­
structed. The Oryx kernel appears to the programmer as an instruction 
set that manipulates processes, messages, and paths. 

A process is the independent, sequential execution of a program. 
Processes may share instruction (I) space, but each process has its 
own stack and data (D) space. D spaces are not shared. The separation 
of D spaces is enforced by a memory-management device. Communi­
cation between processes is limited to messages and data transfers (as 
discussed below). 

Processes are the source of asynchrony; the progress of independent 
but similar computations is modeled by processes with the same I 
space, each at a different stage of execution. Processes can act as 
monitors to solve critical sections and to enforce system policies.4

-
6 

Much of the operating system itself is contained in processes built on 
top of the kernel. Building with processes avoids a monolithic structure 
by enforcing physical separation of the system components. Parts of 
the operating system may be changed without affecting other parts 
(assuming interfaces are preserved). Bugs tend to be isolated. The 
system can be configured by adding or deleting system or application 
processes. Parts of the system or application may be designed to fail 
and recover without widespread repercussions. 

A message is a small, fixed amount of information transmitted from 
a source process to a destination process. The source and destination 
processes may be on the same processor or on different processors. 

* Trademark of Intel Corporation. 
t Acronyms and abbreviations used in the text are defined at the back of the Journal. 

252 TECHNICAL JOURNAL, JANUARY 1985 



Messages are also used to transfer arguments and results between the 
kernel and processes. Message transmission and reception simplifies 
interfaces and allows arguments and results to pass between processors 
for process-kernel interactions and for kernel-kernel interactions as 
they do for process-process interactions. In this respect, the kernel 
bears many similarities to a process. Similarly, device drivers are 
implemented as part of the kernel and interface with processes via 
messages. 

Messages provide synchronization: they request an action or indicate 
that a requested action is complete. Messages are small (16 bytes) to 
reduce time for copying and space for buffering. Messages are fixed in 
size to avoid fragmentation in buffer allocation and disagreements on 
size between the source and destination. 

Processor allocation (dispatching) is controlled by a combination of 
process priority and message transmission. When a message is sent 
from a lower- to a higher-priority process, the processor is allocated 
to the higher-priority process. This, coupled with nearly constant 
message transmission times, allows for greater ease in performance 
analysis of critical message sequences. Execution of a process is 
sequential; blocking occurs only as a result of waiting for a message 
and unblocking only as a result of message arrival. Message reception 
is entirely voluntary; the queueing of messages and ability to selectively 
receive on an "or" condition eliminates the need for signals or events 
and keeps the execution of processes sequential. The kernel translates 
device interrupts into messages and delivers them to device-controller 
processes. If an interrupt unblocks a higher-priority process, the 
currently executing process is preempted and will resume execution 
when all higher-priority processes have blocked. 

Paths are a protection mechanism patterned after "links". 7 Message 
flow over a path is unidirectional: the owner of the path is the source, 
and the creator is the destination. In Fig. la, process A owns a path 
to process B, the path creator. For the path owner, the path represents 
a capability of sending messages; conversely, for the path creator, the 
path represents an agreement to receive messages. Paths may cross 
processor boundaries; this is transparent to both the owner and 
creator. 

Messages can be used to set up new path connectivity. Process A 
agrees to receive messages from process B by creating a path (Fig. lb). 
Process A then passes the path to process B over an existing path 
(Fig. lc). Passing the path changes ownership, thereby enabling proc­
ess B to send to process A. The initial paths among processes are 
controlled by the process manager (as described in Section III). 

Paths have features to enhance their usefulness as a protection 

ORYX/PECOS OPERATING SYSTEM 253 



o o 
A CAN SEND TO B OVER PATH INDEX 3 

(a) 

o 
A CREATES A NEW PATH; ITS INDEX IS 7 

(b) 

A PASSES PATH 7 OVER PATH 3; INDEX 7 IS 
FREED IN A AND INDEX 6 IS ASSIGNED IN B 

(c) 

Fig. I-Passing a path. 

mechanism. Features are selected by the creator at path creation time, 
and they are enforced by the kernel; processes cannot "forge" a feature. 

1. The class allows the creator to be selective in receiving messages. 
The creating process can specify one of seven classes, or can have the 
kernel select a class from a pool of classes not in use by the process. 
In a receive condition, if no messages are available on paths in the set 
of specified classes, the process blocks until one arrives. The kernel 
includes the path class as a part of all messages received over a path. 

2. The tag allows the creating process to encode information con­
cerning the reason for creating the path. The kernel includes the path 
tag as part of all messages received over a path to remind the creator 
of that reason. The tag is often a pointer to a data structure describing 
the state of the conversation on the path. 

3. Properties can be used to prevent an owner from duplicating a 
path, to cause generation of a notification to the creator if the path is 
destroyed, or to limit path use to the transmission of a single message. 
The duplicatable property allows the owner of a path to make a copy 
of the path. Notifications enable the creator to keep an account of 
path sources; whenever an owner explicitly destroys a path with the 
notification property, the creator receives a notification with a count 
of how many copies of the path remain. A process death implies that 
paths owned by the process are destroyed; thus, a notification can 
inform the creator of the death of an owner. Limiting path use to a 
single transmission ensures that the creator can expect exactly one 
message back. 

4. Restrictions limit the ability of an owner to give paths to the 

254 TECHNICAL JOURNAL, JANUARY 1985 



creator. Restrictions help a creator avoid security problems generally 
classed as the Trojan Horse or cloying, i.e., false or unwanted paths.s 

5. Data transfer paths and messages can set up an agreement to 
transfer bulk data in a manner that appears to the user as Direct 
Memory Access (DMA) input/output. The technique is convenient 
and more robust than messages for moving arbitrary amounts of data, 
as it avoids problems of message queue exhaustion and the need to 
sort the data stream from other incoming messages at the receiving 
end; furthermore, the creator of a data transfer path is allowed to 
execute while the data transfer occurs. Local or remote transfer of 
data is allowed. 

Certain combinations of properties and restrictions occur frequently 
and are described below for convenience of discussion: 

request-allows for the passing of reply paths and for the acquisition 
of resource paths. Request paths can be duplicatable. 

resource-notifies the creator if the path is destroyed. It allows 
passing of reply paths and abstracts the allocation of a resource 
to the owner from the creator. Resource paths can be duplicatable. 

reply-destroyed on use or notifies the creator if the path is de­
stroyed. It allows for the passing of resource paths. Reply paths 
cannot be duplicated. 

As an example of how to use processes, paths, and messages, we 
consider how one might implement a File System Server (FSS). In 
Fig. 2, process A is a client of the FSS; it mayor may not be on the 
same processor as the FSS. Process A has the capability of opening 

REQUEST 

O~. __ R_EP~LY8 
(a) 

A USES REQUEST PATH TO 
ASK 'OPEN FILE X'; A REPLY 
PATH IS PROVIDED FOR FSS 
TO ANSWER. 

REQUEST 

RESOURCE 

CLASS: FILE, TAG: 

(b) 
FSS OKAYS THE OPEN, SETS 
ASIDE INTERNAL RECORDS, AND 
USES THE REPLY PATH TO SEND 
A RESOURCE PATH TO A. 

RESOURCE 

CLASS: FILE,TAG: 

(c) 
A USES THE RESOURCE PATH TO 
ASK FOR I/O, AND PROVIDES 
REPLY PATHS TO GET RESULTS. 

REQUEST 

(d) 
A DESTROYS THE RESOURCE 
PATH IN ORDER TO 'CLOSE' 
FILE X. 

Fig. 2-File server example. 

ORYXjPECOS OPERATING SYSTEM 255 



files; this capability is represented by the request path from A to the 
FSS, as in Fig. 2a. Process A opens a file by sending a message over 
the request path that says open file x and providing a reply path for a 
result (Fig. 2a). The FSS acknowledges the request by creating a 
resource path and using the reply path to pass it back to A (Fig. 2b); 
the FSS assigns the class it has reserved to represent open files and 
choos·es the tag to point to a data structure containing data pertinent 
to the state of file x. The resource path represents a capability for A 
to ask the FSS to operate on file x. To operate on file x, A sends a 
message over the resource path and provides a reply path if a result is 
required (Fig. 2c). Note that the FSS relies (1) on the class to indicate 
that the message concerns an open file, and (2) on the tag to determine 
that the file to be operated on is x. Thus, it is impossible for A to lie 
(purposely or accidentally) to the FSS concerning the identity of the 
file to be operated on. Furthermore, A can pass only reply paths to 
the FSS so the FSS divests itself of paths passed from A when it sends 
a result. Process A closes file x by destroying the resource path (Fig. 
2d). Note that closing the file occurs as a result of a destruction 
notification, rather than a message sent by A. Destruction assures the 
FSS that A can no longer communicate regarding file x, and it 
guarantees that the file is closed if A dies without explicitly closing. 

This scenario resembles the control of files in the UNIX operating 
system (see Figs. 3 and 4). Process A's path (file) table is kept in 
protected space and managed by the kernel; paths (files) are referenced 
by an index into the path (file) table, which contains sensitive descrip­
tor information. Automatic clean-up is possible because the informa­
tion is kept in a disciplined fashion by the kernel, rather than in an 
undisciplined fashion by the process itself. UNIX system processes 

PATH 
INDEX PATH 

DESCRIPTOR 

PATH TABLE 
OF A PROC SSOR 

BOUNDARY 
(IF ANY) 

PATH RECORD 

CLASS 

TAG 

CREATOR 

MESSAGE SOURCE, PATH OWNER MESSAGE DESTINATION, PATH CREATOR 

Fig. 3-The Oryx implementation of paths. 

256 TECHNICAL JOURNAL, JANUARY 1985 



FILE INDEX FILE FILE 
DESCRIPTOR 

FILE TABLE 
OFA 

Fig. 4-The UNIX system implementation of files. 

often use files as an abstraction mechanism to control resources. Paths 
are a more basic device to serve the same end in a distributed system. 

It is important to note that the Oryx kernel separates the concepts 
of mechanism and policy. Paths provide a basic protection mechanism 
which processes can use to enforce protection policies. Thus, it is 
possible for process implementors to set and enforce policies according 
to their own requirements. This is important because the System 75 
applications resemble an operating system in that they are concerned 
with the allocation and management of a complex set of resources; in 
many operating systems, these tasks can be accomplished efficiently 
only by implementing parts of the application in the operating system 
itself. Separation of policy and mechanism decoupled implementation 
of the System 75 applications from that of the operating system by 
reducing the need for the application developers to modify the kernel 
or operating system processes. 

III. THE PECOS SYSTEM PROCESSES 

The kernel relies on a set of system processes to provide certain 
maintenance and policy-making functions. In a distributed system, 
both the kernel and essential system processes are replicated on a per­
processor basis. 

The phantom acts on behalf of dead processes. When a process dies, 
processes owning paths that the dead process created execute asyn­
chronously and may transmit messages to the dead process before 
learning of its death. In this case, the kernel delivers the messages to 
the phantom process for cleanup. The phantom destroys passed paths 
in the messages, thereby propagating destruction notifications to the 
creators of the passed paths. 

The Leisure Time Manager (LTM) simplifies the kernel's dispatch­
ing decisions by ensuring that there is always a process to execute. 

ORYX/PECOS OPERATING SYSTEM 257 



Once the L TM is allocated the processor, no other processes will 
execute until an interrupt occurs. The L TM runs at the next to lowest 
priority. Processes set to a lower priority than the LTM never execute, 
but otherwise appear to be normal processes. This is useful for debug­
ging; a process being debugged can be halted without affecting the rest 
of a running system by placing it at the lowest priority. 

The Process Manager (PM) is the first process to execute; it creates 
all other processes. The kernel defers all process creation and destruc­
tion decisions to the PM. The PM creates processes by associating 
memory-resident I spaces with the D spaces it allocates dynamically; 
processes remain in memory until they die. The PM determines the 
set of "standard paths" for a new process. Standard paths playa role 
similar to stdin, stdout and stderr in the UNIX system: a new 
process knows that some path indices can be used to obtain standard 
system services. 

The Network Manager (NM) is created early during initialization, 
and all subsequent processes are created with a path to the NM. The 
NM allows processes to "supply" it paths with associated symbolic 
names and to ask for copies of paths by those symbolic names. This 
name server function allows processes to obtain paths without relying 
on ancestral relationships. The NM also provides a gateway to the 
NMs on other processors, and the NM is therefore useful for estab­
lishing contact with services on those processors. In the case of a 
processor failure, the NMs on functional processors will establish 
contact with the NM on a recovering processor and will provide a 
means to recover communications for the other processes in their 
processors. 

Several other system processes are not essential, but are, nonethe­
less, useful in many applications. The timer manager provides alarm 
clock and time-of-day services. In System 75, the timer manager is 
used to time calls (for accounting records), to provide feature timing, 
to provide route timing (i.e., going to coverage), to recognize "no 
response" situations, and to schedule periodic maintenance activities. 
The console manager provides output to the system console and allows 
an "operator" to inspect the running system; the error logger saves log 
messages that may be useful for later debugging or accounting; and 
the shuffler provides long-term enforcement of the processor allocation 
policy. The console manager, shuffler, and error logger are not used in 
System 75. Finally, optics is a system process with special privileges 
to allow it to act as a debugger for other processes. The role of optics 
as a debugger is enhanced by the fact that it can track and display use 
of the kernel by a process. A more detailed description of optics can 
be found in Ref. 9. 

258 TECHNICAL JOURNAL, JANUARY 1985 



IV. APPLICATION DESIGN 

When designing an Oryx/Pecos-based application, a number of 
structuring techniques can be employed. We will discuss the most 
important and common ones in this section. 

As previously indicated, processes provide asynchrony and modular­
ity. However, these benefits would be limited without the ability for 
processes to communicate. Using paths and messages, it is possible to 
construct applications as a collection of cooperating processes. The 
principles for decomposing an application into processes are analogous 
to those used when designing with subroutines, abstract data types, or 
monitors (for example, see Ref. 10). The judicious use of paths and 
path features can enforce design decisions through a mechanism very 
much like capabilities. 

When using processes for resource control, it is important to observe 
a layering of responsibility which preserves a client-server relationship 
through the layering. At any given instant of time, only request and 
resource paths should point down (from client to server) across layers 
and only reply paths should point up across layers, as in Figs. 5 and 6. 
When properly applied, this structure can make the application free 
of deadlock (Ref. 4 contains an excellent discussion of this). 

Since processes communicate via paths, rather than directly to 
another process, it is possible to effectively hide the implementation 
of a layer consisting of many processes. This technique is used in two 
ways in System 75: (1) to provide multiple threads of execution and 
(2) to provide service through cooperation of servers. 

REQUESTS 
AND 

STIMULI 

Fig. 5-Multiply threaded layer. 

SERVICE 
LAYER 

ORYX/PECOS OPERATING SYSTEM 259 



REQUEST 

PROCESSOR 
BOUNDARY 

Fig. 6-Cooperative servers. 

4.1 Multiple threads of execution 

LAYER 
BOUNDARY 

A PBX must handle many simultaneous phone calls, each poten­
tially in a different stage of completion. This could be designed as one 
large, complex process, but System 75 implements the highest level of 
call control with two types of processes (Fig. 5): the Call Process (CP) 
and the Service Dispatcher (SD). There are many CPs sharing the 
instructions of a program that describes the sequence of steps required 
to control a phone call. The single SD process receives stimuli related 
to calls and directs them to the appropriate CP; when necessary, the 
SD will allocate an available CP to a new call or will make a CP for a 
disconnected call available. This structure allows asynchronous treat­
ment of many phone calls and simplifies the coding of features by 
making feature control a conventional sequential programming task. 
Furthermore, this implementation is transparent to the other layers. 
A detailed discussion of this structuring technique can be found in 
Ref. 11. Details on the implementation of the SD and CP processes 
can be found in Ref. 12. 

4.2 Cooperation of servers 

In several cases, it is possible to subdivide the responsibilities of a 
layer to be shared among processes. This is sometimes useful when 
the coding is divided along similar boundaries. Figure 6 illustrates a 
typical structure for cooperative servers. It is important to note that 
when a request is forwarded to a peer server, the forwarding process 
can divest itself of all further responsibility by forwarding any passed 
paths with the original request. Thus, in Fig. 6, a message with a reply 
path is sent from A to B, B forwards the message and reply path to C, 
and C uses the reply path to respond directly to A when the service is 
complete. This technique will become more important when layers are 

260 TECHNICAL JOURNAL, JANUARY 1985 



extended across processor boundaries; for example, messaging features 
(leave word calling, mail, etc.) may provide for messages stored in 
local memory or in a remote file server. A, of course, has no knowledge 
of whether or not its request is being handled by another processor. 

v. APPLICATION EXAMPLE 

To illustrate some of the concepts described above, this section 
presents a concrete example of how some Oryx/Pecos facilities are 
used by applications software in System 75. The communications 
subsystem is a set of processes that allow for direct data terminal 
communication with the administration and maintenance service 
processes. It consists of two control drivers, six identical data drivers, 
up to six identical Terminal Controllers (TCs), and the Communica­
tions Manager process (COM). The COM provides resource control 
for direct data ports and presents a uniform interface to the various 
service processes. Direct data communications with System 75 proc­
esses is possible through two main processor peripheral devices: a 
maintenance board (providing two data ports), and the data channel 
part of the switch interface board (providing four data ports). The 
service processes are generally unaware of what device they are using. 
Each data port is assigned a data driver, and each board is assigned a 
control driver. The process and path structure for a service process 
accessing port 1 of the maintenance board is shown in Fig. 7; the 
following paragraphs detail how this structure is arranged. 

During initialization, the COM exchanges paths with each driver 
and supplies a path to the NM. All paths from data drivers have the 
same unique class. The tag of each path from the data drivers specifies 
the port being handled by that driver. All paths from control drivers 
have the same unique class. The tag of each path from a control driver 
specifies the board being controlled by the driver. Thus, when a 
message arrives, the COM process can determine the sending driver 
type from the class of the message and can determine which driver of 
that type from the tag of the message. 

Service processes obtain a path to the COM from the NM. This 
path is used by service processes desiring data port access. The service 
processes typically send a message (detailing the request) and pass a 
reply path to the COM. The COM exchanges call progress messages 
(OFF-HOOK, ON-HOOK, etc.) with a control driver to establish a 
data call. It then requests creation of a TC process by message 
interchange with the Process Manager. Paths to the appropriate data 
driver are duplicated and passed to the newly created TC. Paths to 
the TC are in turn passed to the requesting service process (over the 
reply path mentioned earlier). 

Thus path connectivity is established between the driver (which 

ORYX/PECOS OPERATING SYSTEM 261 



CLASS: CONTROL 
TAG: MAINT_BD 

CLASS: APPLICATION 
TAG: -

CLASS: DATA 
TAG: PORT 1 

CLASS: DATA 
TAG: PORTO 

Fig. 7 -Communications subsystem processes and paths for a service process with 
access to port 1 of the maintenance board. 

manages the data port hardware), the TC (which provides higher-level 
data communications functions such as echoing), and the service 
process (which interprets the user keystrokes). 

VI. MAINTENANCE FEATURES 

In keeping with the overall system philosophy, the operating system 
attempts to provide mechanisms by which the application itself can 
implement a maintenance policy to detect and deal with extraordinary 
situations. The operating system allows for the provision of a desig­
nated application process to define the application maintenance policy; 
in System 75, this process is called the High-Level Maintenance 
Manager (HMM). If the HMM is not present, the operating system 
uses default rules to govern its behavior. If the HMM is present, the 
kernel and/or certain system processes will direct messages to the 
HMM warning of extraordinary situations and will rely on the HMM 
to take further action to deal with the situation. 

The most basic Oryx/Pecos maintenance function is process death. 
Process death is accomplished when the PM forces a process to execute 
a program which causes it to release all of its system resources. In 
many cases, a process which encounters an error situation can correct 

262 TECHNICAL JOURNAL, JANUARY 1985 



the problem by simply committing suicide. Certain processes are 
considered essential to the well-being of the application, and more 
drastic actions are required if they die. The PM consults the HMM 
before forcing the process to execute the death program; if the HMM 
decides that the process is essential, it will cause more extensive 
application maintenance to take place. A typical action would be to 
attempt to restart the process or a group of processes. Restart means 
that process data are preserved, the process stack is initialized and 
execution is resumed at the beginning, with arguments to indicate that 
a restart is taking place; if properly designed, a restarted process may 
be able to resume normal operation. It is possible to restart some 
processes after the operating system is reinitialized and thereby avoid 
the need to reload process instructions or data. 

The NM supports asynchronous initialization and recovery by al­
lowing processes to request a copy of a named path whenever it is 
supplied to the NM. A process which makes use of this feature will 
receive a fresh copy of the named path whenever it is supplied to the 
NM, and will therefore be in a position to make use of the latest 
version of the service provided over the path. Furthermore, the NM 
keeps copies of all supplied paths and will reissue copies on demand. 

An example of the use of process restart and NM facilities is the 
Board Manager (BM) process. When the BM begins execution, it 
checks its arguments to determine if it is restarting. If it is, it uses a 
kernel audit operation to compare the contents of its path table with 
its internal record of indices of paths it owns. Paths in the path table 
but not in its records are destroyed; an example of a path which would 
be destroyed is a reply path whose index was stored in the stack. If its 
records indicate that a path is missing, a fresh copy of the path is 
demanded from the NM. When reinitialization is complete, the BM 
resumes normal operation. 

Oryx/Pecos interfaces are provided to allow the HMM to estimate 
the overall ability of the system to provide service. For example, the 
kernel notifies the HMM when any available system resource (e.g., 
message buffers) goes below a low-water mark or above a high-water 
mark. The HMM uses low-water marks to detect and recover from 
overload situations; in this case the HMM may lower the priority of 
some work and/or prevent new work from entering the system. When 
a high-water mark is passed, the HMM will cause the system to 
resume normal operation. 

Finally, the HMM directs auditing of operating system resources to 
detect problems in· how the application is using those resources. For 
example, if a process has failed to detect or clean up properly after the 
death of another process, it may own a path which is no longer valid; 
in the kernel, this appears as a path descriptor with an invalid pointer 

ORYX/PECOS OPERATING SYSTEM 263 



to a path record (see Fig. 3). Errors of this type are logged and clean­
up actions are taken. 

More details on the operation of the HMM, BM, and other compo­
nents of System 75 maintenance can be found in Ref. 13. 

VII. PERFORMANCE 

The Oryx/Pecos operating system is designed to support real-time 
applications such as call processing. To provide this support, the 
operating system must be fast, and it must provide facilities so that 
system performance can be easily predicted. 

Performance data are given for an 8-MHz Intel 8086 processor 
running with two memory wait states and equipped with memory 
management hardware designed specifically for System 75. Measure­
ments were taken using a special I/O device; in-line I/O instructions 
output 16 bits of data to the device, which time-stamps the data and 
buffers it for later data reduction. The overhead for this instrumen­
tation is very low and the granularity of the time-stamps is 10 
microseconds. The measurements presented include time for kernel 
entry and exit, argument and result transfer, and process dispatch 
time, as well as time for the kernel operation itself. 

There are variations in the observed message transmission times 
due to different possible states of the sender and receiver processes at 
the instant the message is sent. For example, if the sender unblocks 
the receiver and causes it to execute next, the observed time to transmit 
a message is: 

send 
receive 

0.62 ms 
0.29 ms 

for a total of 0.91 ms. If, however, the sender queues up the message 
and the receiver dequeues it later, the times are: 

send 
receive 

0.50 ms 
0.47 ms 

for a total of 0.97 ms. In many cases, the total time to transmit a 
message is the most important factor in performance, rather than the 
time attributable to either the sender or receiver. As can be seen, the 
total time for the two extreme cases above shows little variation and 
could be modeled as a constant for all cases. 

When a path is passed with a message, the total time to transmit 
the message increases to a range of 1.35 to 1.45 ms. For any message 
sent over a reply path, 0.24 ms must be added to account for the 
implicit destruction of the path. The time required to create a path is 
0.69 ms. 

In practice, a typical application scenario is (see Fig. 2c): 

264 TECHNICAL JOURNAL, JANUARY 1985 



1. A client process creates a reply path (0.69 ms), 
2. The client sends the reply path with a message asking for service, 

causing the server to execute (1.35 ms), 
3. The server sends a result message back over the reply path, 

queueing the message (0.97 + 0.24 ms). 
The total time for the kernel operations involved is 3.25 ms. The 

Oryx kernel provides a specially packaged call operation to replace the 
client operations described above, thereby reducing the total time to 
2.03 ms. 

This type of performance data has been used to create accurate 
models of System 75 performance; these models were used during the 
design and implementation phases of System 75 call processing to 
maximize system capacity. 

In addition to fast operation, other factors help make this operating 
system suitable for real-time applications. Real-time applications such 
as call processing are characterized by having to guarantee response 
times to external stimuli at maximum capacity. Thus, the Oryx/Pecos 
operating system provides facilities for improving response times and 
for making them predictable. Dispatching facilities (process priorities, 
priority preemption, and intimate coupling of dispatching and message 
transmission) enable the application designer to keep the processor 
allocated to the most critical work. Selective message reception using 
classes gives the designer the ability to deal with multiple, asynchro­
nous message sources efficiently; this is important because real-time 
applications often need to respond immediately to stimuli from a 
number of sources, which may come in any order. Messages may be 
sent and received either synchronously or asynchronously. Synchro­
nous operation is generally simpler to design and consumes less 
processor time, while asynchronous operation allows the designer to 
improve response times by breaking complex operations into short, 
non -atomic segments of execution and allowing time-critical requests 
to be handled sooner. Finally, the operating system itself is imple­
mented so that critical operations are fast and "available"; that is, 
complex operating system functions are broken down into smaller 
segments so that the less important work can be deferred until later. 

VIII. SIZE 

The size of the Oryx/Pecos.operating system is difficult to charac­
terize in general terms because, to a large extent, its size is determined 
by the application it services; System 75 gives us a single data point 
from which to work. Thus, we will limit our discussion to the major 
factors which determine system size. 

The application can directly influence system size in the following 
ways. 

ORYX/PECOS OPERATING SYSTEM 265 



1. Use of services. If an application does not make use of a service, 
the process which provides that service can be eliminated (for example, 
the shuffler). 

2. Per-process resources. Every application process requires a cer­
tain amount of system resources (for example, path tables); the number 
and size of these resources can be configured at compile time to suit 
the application. 

3. Drivers. Drivers are included in the system size, but the appli­
cation itself determines which drivers are needed. 

Certain implementation decisions in the operating system influence 
size. In most cases, trade-offs between size and speed were decided in 
favor of speed, especially if the size came in the form of instructions. 
In the per-process and per-path data structures, the implementation 
tends to favor small size. Finally, additional instructions and data to 
serve the maintenance requirements of System 75 tend to increase the 
operating system size. 

The most important Oryx/Pecos contribution to decreasing the 
overall size of an application is shared libraries. Shared libraries permit 
the sharing of a single physical copy of utility functions by all system 
and application processes. For example, any process that needs to 
format an output string does so by executing the same physical 
instructions as all other processes. The potential space savings is large: 
if an application has 25 different instruction spaces for processes and 
each makes extensive use of a 10K-byte shared library, the savings is 
slightly less than 240K bytes over what would be required if each 
process had its own copy of the library functions. The savings is not 
exactly 240K bytes because each process contains a few instructions 
to interface to each of the-functions in the shared library. 

It is not possible to give precise numbers for the space savings due 
to shared libraries in System 75 because the existence of shared 
libraries affects the implementation strategy. Rather than minimizing 
the size of library functions, and perhaps tailoring variants for indi­
vidual processes, it is more advantageous to increase the generality of 
the functions to make sure that the maximum number of processes 
can make use of them. Furthermore, with the decreased size of the 
multiplier, there is a greater tendency to provide functionality that 
would otherwise have been omitted. Thus, a simple computation will 
overestimate the savings. 

IX. CONCLUSIONS 

We expect the use of the Oryx/Pecos operating system to lengthen 
the useful lifetime of System 75 by permitting easier modification of 
the applications, portability to other processor families, and expansion 
of feature content using distributed processing. One advantage of 

266 TECHNICAL JOURNAL, JANUARY 1985 



implementing a PBX on top of an operating system is the potential 
for future integration with other computing environments; for exam­
ple, the Oryx/Pecos operating system can provide a UNIX™ system 
execution environment and access to the rich set of UNIX system 
tools and applications. 

x. ACKNOWLEDGMENTS 

This paper represents the design and development work of many 
people at the Denver and Holmdel locations of AT&T Information 
Systems Laboratories. Many of the ideas used in the Oryx/Pecos 
operating system are adapted from experience with the DEMOS7 and 
Thoth4

,14 operating systems and from experience gained from an earlier 
exploratory project. 

REFERENCES 

1. C. A. R. Hoare, "Monitors: An Operating System Structuring Concept," CACM, 17, 
No. 10 (October 1974), pp. 549-57. 

2. R. S. Fabry, "Capability-Based Addressing," CACM, 17, No.7 (July 1974), pp. 403-
12. 

3. B. Liskov et aI., "Abstraction Mechanisms in CLU," CACM, 20, No.8 (August 
1977),pp.564-76. 

4. D. R. Cheriton, The Thoth System: Multiprocess Structuring and Portability, New 
York: North Holland, 1982. 

5. E. W. Dijkstra, "Hierarchical Ordering of Sequential Processes," in Operating 
System Techniques, C. A. R. Hoare and R. H. Perott, editors, New York: Academic 
Press, 1972, esp. pp. 91-3. 

6. H. C. Lauer and R. M. Needham, "On the Duality of Operating System Structures," 
2nd International Colloquium on Operating Systems, IRIA (October, 1978). 
Reprinted in ACM Operating Systems Review, 13, No.2 (April, 1979), pp. 3-19. 

7. F. Baskett, J. H. Howard, and J. T. Montague, "Task Communication in DEMOS," 
in Proc. Sixth ACM Symp. on Operating System Principles, Purdue University 
(November 1977), pp. 23-31. 

8. T. A. Linden, "Operating System Structures to Support Security and Reliable 
Software," Computing Surveys, 8, No.4 (December 1976), pp. 409-45. 

9. T. J. Pederson, J. E. Ritacco, and J. A. Santillo, "System 75: Software Development 
Tools," AT&T Tech. J., this issue. 

10. D. L. Parnas, "On the Criteria Used in Decomposing Systems into Modules," 
CACM, 15, No. 12 (December 1972), pp. 1053-8. 

11. W. M. Gentleman, "Message Passing Between Sequential Processes: The Reply 
Primitive and the Administrator Concept," Software-Practice and Experience, 
11, No.5 (May 1981), pp. 435-66. 

12. W. Densmore et aI., "System 75: Switch Services Software," AT&T Tech. J., this 
issue. 

13. K. S. Lu, J. D. Price, and T. L. Smith, "System 75: Maintenance Architec­
ture,"AT&T Tech J., this issue. 

14. R. Cheriton et aI., "Thoth, a Portable Real-Time Operating System," CACM, 22, 
No.2 (February 1979), pp. 105-15. 

AUTHORS 

Kenneth T. Fong, B.S.E.E., 1970, California Institute of Technology; 
M.S.E.E., 1971, Stanford University; AT&T Bell Laboratories, 1970-1982; 
AT&T Information Systems Laboratories, 1983-. At AT&T, Mr. Fong has 
been involved with exploratory development of business communications 
systems, development of tools for software development, application of dis-

ORYXjPECOS OPERATING SYSTEM 267 



tributed processing techniques to real-time systems, and development of 
operating systems software. He is presently Head of the Operating Systems 
Development department. Member, IEEE. 

John A. Melber, B.S.E.E., 1971, M.S.E.E., 1975, Polytechnic Institute of 
Brooklyn; Naval Air Development Center, 1971-1974; General Instrument 
Inc., 1974-1976; AT&T Bell Laboratories, 1976-1983; AT&T Information 
Systems Laboratories, 1983-. At the Naval Air Development Center, Mr. 
Melber designed automatic test equipment. At General Instrument, he was 
involved in simulator development, CAD database development, operating 
system support, and computer center operations. His initial AT&T assignment 
involved database and operating system work on the ACD-ESS Management 
Information System (AEMIS) project. In 1980, he moved into operating system 
work for System 75. He is presently Supervisor of the Common Component 
Software development group for System 75. Member, ACM, IEEE. 

Gary R. Sager, B.S. (Mathematics), 1968, M.S. (Computer Science), 1969, 
and Ph.D. (Computer Science), 1972, University of Washington; Colorado 
State University, 1972-1974; Los Alamos Scientific Laboratory, 1978; Univer­
sity of Waterloo, 1974-1979; AT&T Bell Laboratories, 1979-1982; AT&T 
Information Systems Laboratories, 1983-1984; Sun Microsystems, 1984-. At 
AT&T Bell Laboratories and AT&T Information Systems Laboratories, Mr. 
Sager worked on the application of distributed processing techniques to real­
time systems and the development of operating systems software. 

268 TECHNICAL JOURNAL, JANUARY 1985 



AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Project Development Environment 

By T. S. KENNEDY, D. A. PEZZUTTI, and T. L. WANG* 

(Manuscript received July 11, 1984) 

The development of the AT&T System 75 office communication system 
required the coordinated effort of many designers working on a large number 
of individual components of the product. This article describes the project 
environment and methods created to accomplish this task. Emphasis is placed 
on the uncommon aspects of the project: the hierarchy of product specification 
documents that provided great flexibility in design decisions; the concept of a 
feature engineer that allowed for the vertical development of a feature by one 
person from feature specification to software code; the base lining and change 
control procedures that kept decision making at the lowest possible level; the 
tracking of progress so that prompt corrective action could be taken as 
problems arose; and the high reliance on electronic documentation and com­
munication. 

I. THE DEVELOPMENT PROCESS 

1.1 Overview 

The development of the AT&T System 75 office communication 
system spanned almost three years from product definition to intro­
duction. The process consisted of a sequence of steps including require­
ments generation, external and internal design specification, imple-

* Authors are employees of AT&T Information Systems Laboratories, an entity of 
AT&T Information Systems, Inc. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

269 



mentation, integration, system testing, and field validation. The hard­
ware and software components were designed in parallel to shorten 
the development time. Features were developed in phases so that the 
software architecture could be stabilized and refined incrementally. 
This was not unique to the System 75 project-much was learned 
from the experiences of other AT&T projects, such as System 85, Net 
1000, Dataphone® II data communications service, Horizon® commu­
nications system, and the Transport Network, as well as evolving 
theories of software project management. However, in applying the 
theory and experience of others, methods were specifically defined to 
take advantage of a completely paperless office environment, to keep 
decision making at the lowest level, and to allow design flexibility that 
would accommodate innovation as the project progressed. This article 
provides an overview of the development process and emphasizes 
uncommon aspects that began with the project organization. 

1.2 Project organization 

The coordination of the effort of many developers working on 
individual parts of the project contributed to the success of the System 
75 project and required as much organizational and managerial inno­
vation as it did technical innovation. A decision was made at the start 
that the most effective way to organize was to minimize the interor­
ganizational coupling and component deliveries. The functional de­
velopment organization that evolved had three major communities: 
software, hardware (including both circuit and physical design), and 
test (including system test and field support). This organizational 
structure minimized coupling and fostered an entrepreneurial atmos­
phere because it encouraged the ownership of individual component 
designs and promoted innovation. 

Figure 1 shows the simplicity of the component flow. The flow of 
components followed several major routes. (1) Requirements were 
generated jointly between the development organization and the sys­
tems engineering organization. (2) Hardware and firmware designs, 
originating from the circuit designers, passed through physical design 
to the engineering design and information organization, which gener­
ated manufacturing information. The models support group used this 
information to build and deliver circuit pack models to the designers 
for integration with the software. (3) At the same time, the physical 
designers transmitted hardware manufacturing information to the 
factory. (4) The software passed from the software designers through 
the integration and system test groups, and eventually the factory, 
undergoing testing at each step. (5) The factory delivered a complete 
system with both hardware and software for installation at a controlled 
introduction location. (6) The field support group received new releases 

270 TECHNICAL JOURNAL, JANUARY 1985 



Fig. I-Primary information transfer. 

of software from the system test group, soaked the changes in internal 
systems, and then installed the new software in the controlled intro­
duction location. 

The component deliveries remained primarily within community 
boundaries. The transfer of integrated components between commu­
nities was controlled by project documents. The principal documents 
that were generated are described in more detail later in this section. 
These documents were generated through a process of negotiation and 
signature called baselining, and changes to the baselined documents 
(and other components) were closely tracked by a process called change 
control. 

1.3 Planning the development 

The coordination of planned activities at the project level was the 
function of the Project Coordination Group. To assure that all major 
project targets would be met, a Project Development Plan, which 
summarized major project development responsibilities, schedules, 
resources, and objectives, was negotiated with and signed by the 
appropriate management. 

The major part of the plan was devoted to schedules that listed 

PROJECT DEVELOPMENT ENVIRONMENT 271 



important checkpoints or milestones for the project. To simplify the 
project management function, four schedule levels were defined for 
milestones on the project: 

Level I-A high-level view of the internal project development 
containing important checkpoints or milestones. 

Level 2-Intermediate milestones, which represented major deliv­
erables from one community to another. 

Level 3-Detailed milestones, which represented deliverables be­
tween the individual groups within the communities. 

Level 4-Internal milestones, which detailed activities of individual 
developers within the groups. 

A computer-based tool called the Milestone Schedule Tracking 
System (MSTS),* which is described in Section II, was written to 
maintain and update these schedules. 

The Project Development Plan contained Level 1 and Level 2 
milestones, and estimates of the total project resource needs. Each 
community prepared and tracked a Community Development Plan, 
which contained Level 3 and 4 milestones, and detailed community 
resource estimates. The format and content of the community plans 
were tailored to meet the specific needs of the community rather than 
to follow an arbitrary, rigid project standard. By partitioning the 
schedules in this way, the burden of tracking schedules (Le., the process 
of reporting completion of milestones and changes to estimated com­
pletion dates) was distributed. Individual communities retained con­
trol of their schedules and could adjust them as unplanned events 
occurred to meet the project commitments contained in the schedule 
for Levels 1 and 2. 

1.4 Hardware development process 

The hardware effort involved the design of 18 circuit packs; 2 
consoles; and the cabinet, carriers, power, and interconnection ar­
rangements to support these designs. The critical part of the hardware 
effort involved the design of new circuit packs and their integration 
with the firmware and software. The hardware community followed a 
traditional design program of building bread board, brass board, and 
prototype designs of the circuit packs. Typically, each circuit pack 
went through two or three design iterations before manufacturing 
information was transmitted to the factory. 

The hardware community development plan contained Level 3 
schedules for each circuit pack and hardware component. Critical 
milestones tracked deliveries to and from the engineering information 
and design organization for generating circuit pack manufacturing 

* Acronyms and abbreviations used in the text are defined at the back of the Journal. 

272 TECHNICAL JOURNAL, JANUARY 1985 



information, for availability of first circuit pack models, and for dates 
of transmittal of the manufacturing design information. The hardware 
community also held regular teleconference meetings with engineers 
from the factory to support the introduction of the new hardware 
designs into manufacture. 

1.5 Software development process 

A phased development process allowed the software to be built 
incrementally and avoided the pitfalls of a "big bang" integration. A 
total of four phases were planned, each lasting about six months. At 
the end of each phase, the software was delivered to system test and 
underwent rigorous testing. Critical performance factors and data were 
measured and the software structure was reviewed by the designers. 
Each phase was self-contained; as the product was designed and 
stabilized incrementally, the software architecture was refined. 

Software feature completion was scheduled in two parts to avoid 
freezing the design too early. A Level 3 schedule, which defined the 
features and other capabilities to be completed during each phase, was 
baselined at the beginning of the development. A detailed Level 4 
schedule for each phase, which defined the capabilities to be delivered 
per process, was built incrementally as the process design specification 
of each feature planned in the phase was reviewed and baselined. 
When the Level 4 schedules were complete midway through the phase, 
the design of the software components and the implementation effort 
were well understood. 

Software integration was the focal point in scheduling and tracking. 
Both the Level 3 and Level 4 schedules were kept and tracked by the 
integration group and the milestones were established based on the 
integration dates. 

1.6 Defining the product 

A top-down design and planning process was followed throughout 
the development of the hardware and software. A comprehensive 
documentation effort was committed for the software design. The 
documentation hierarchy, shown in Fig. 2, reflects the two-dimensional 
aspects of the design process-system feature/capability specifications 
(external), and system architecture/structure specifications (internal). 
The activities in brackets < ... > represent the relationship of several 
major activities to the documentation hierarchy. 

The technical proposal, which defined System 75 at high level and 
served as the major contract for the development organization, was 
written jointly by the development and the systems engineering orga­
nizations/ The systems engineers provided input on feature content 
and product family planning and used data on market characteristics, 

PROJECT DEVELOPMENT ENVIRONMENT 273 



, 
SYSTEM 

REQUI REMENTS (70) , 
FEATURE 

SPECIFICATIONS (150) 

SYSTEM TEST 
PLANS (150) 

'----""T'"I ---,/ 
EXTERNAL 

DESIGN 

TECHNICAL 
PROPOSAL (1) 

I 
~ 

ARCHITECTURE (3) 

~ 
PROCESS 

SPECIFICATIONS (50) 

l 
PROCESS 

DECOMPOSITION 
SPECIFICATIONS (150) 

~ 
<CODE> 

~ 
<UNIT TEST> 

~ 

''------rj----/ 

INTERNAL 
DESIGN 

Fig. 2-Software documentation hierarchy. 

profitability, and maintainability from the Line Of Business, Business 
Services, and Marketing organizations. The development engineers 
provided the technological content. 

The organization of the technical proposal was structured around 
services and features and created the basic product structure for the 
remainder of the requirements. It specified the feature and system 
capacity at a high level. For example, it defined what terminals would 
be supported by the system and gave one-paragraph descriptions of 
features, such 'as call pickup, attendant recall, etc. This document was 
the first to be baselined, and along with the system requirements that 
followed, it provided the basis for later resource and schedule planning 
activities. 

The next step in the definition of System 75 was generation of 
system requirements. This was a joint undertaking between the sys­
tems engineering and development organizations. The requirements 
expanded the feature definition from the single paragraph contained 
in the technical proposal to a few pages and captured the essence of 
the feature. User interfaces and other visible user details were defined 
with particular attention to achieving commonality with other mem­
bers of the product family such as AT&T Dimension® System 85. 

274 TECHNICAL JOURNAL, JANUARY 1985 



The software designers later prepared detailed external specifica­
tions, called feature specifications, which were reviewed and approved 
by the systems engineering organization for agreement with the re­
quirements. The feature specification provided a user-level description 
of how the feature would be implemented. It included a definition of 
terms used in the feature operation, a description of feature interac­
tions, and a list of administration requirements. 

System test plans were derived from the feature specification and 
contained detailed scenarios for testing the feature operation. 

The architecture document, the highest-level internal design docu­
ment, permitted parallel development by providing conceptual unity 
in the software design by translating the technical proposal into a 
functional description of the system. It listed specific processes, li­
braries, and interface primitives, and defined key relationships be­
tween these software modules. It also described common strategies for 
security, reliability, recovery after failure, performance, and authori­
zations across the various elements of the system. 

The software has a layered structure, with processes as the funda­
mental building blocks to enforce physical isolation. During the de­
velopment, a process engineer was assigned to each process to review 
and enforce internal consistency. The process specification described 
the global aspects of a software process and fully specified all externally 
visible features. It defined how to initialize, invoke, terminate, and 
communicate with the process. The process specification was written 
as a set of manual pages. In general, only a few people were allowed 
to cha,nge the files within a process. 

Each feature or user service required cooperation of many processes 
which in turn required the coordination of many designers, each 
responsible for a particular process. A feature engineer broke down 
each feature into the functionality of the various processes and speci­
fied their interfaces in a document called the process decomposition 
specification. It included a definition of how features map into the set 
of processes or modules, a description of internal process operation, 
lists of key data stored by the process, and sample sequence of message 
and process operation to illustrate the feature operation. The design 
was reviewed by the architecture team for consistency. The detailed 
integration schedule was committed only after the design was approved 
by the architecture team. 

In summary, the feature engineer was responsible for the vertical 
design, and the process engineer was responsible for the horizontal 
implementation. Each was responsible for the software consistency in 
a particular domain and, together, they expanded the software in 
parallel. The software development tools! supported this process by 
allowing multiple developers to work in parallel on the software code. 

PROJECT DEVELOPMENT ENVIRONMENT 275 



1.7 Integrating hardware, firmware, and software 

Several laboratory models of the System 75 were built to support 
the integration of the hardware, firmware, and software. These models 
had the major functionality of the final design. A typical model 
contained a control carrier, a test carrier, interconnection field, power 
supplies, and terminals. The control carrier had carrier slots on wider 
spacings to accommodate nonproduction prototype circuit packs, such 
as wire wrap, and to allow use of adapter and emulators for custom 
Very Large-Scale Integrated (VLSI) devices that were not yet being 
manufactured. 

The basic skeleton of the models-the processing complex, carriers, 
power, interconnection hardware, and terminals-was delivered first. 
Then, the delivery of each new system component, such as a Central 
Office (CO) trunk circuit pack, was coordinated so that the hardware, 
firmware, and software elements would be integrated and tested on a 
single laboratory model before the remaining ones were equipped with 
the new component. At the start of the project, the delivery of the 
laboratory models was loosely controlled. As the project progressed, 
however, the importance of timely delivery of the models became clear 
and a models support group was formed with the primary assignment 
to build, deliver, and support the models. This group controlled the 
models delivery program with a document called the Models Support 
Plan, and used a computer-based inventory database to manage the 
process. 

Figure 3 shows the typical flow of information for a circuit pack 
from the design phase to its use in the controlled introduction loca­
tions. This process was repeated many times as new circuit packs and 
firmware features were added. The models support group played a key 
role in assuring that the laboratory models were equipped with com­
patible versions of the hardware and firmware. The component flows 
followed the major routes outlined in Fig. 1 and show how a simple 
management concept becomes complicated when applied to a real 
problem. 

1.8 Delivering the final product 

Before the system could be made generally available, its quality had 
to be assured. It was stressed to the developers that everyone on the 
project was responsible for quality. However, the burden of proof fell 
on the system test group. 

The goal of the system test group was to find as many faults in the 
system as possible before controlled introduction began. The system 
test group based its test plans on the feature specifications generated 
by the software community. Both manual and automated tests were 
performed on laboratory models.2 This testing was supplemented by 

276 TECHNICAL JOURNAL, JANUARY 1985 



""'0 
A:l 

Q 
m 
() 
--i 

o 
m 
< m 
r-o 
""'0 
~ 
m 
Z 
--i 
m 
Z 
:5 
A:l 

o 
Z 
~ 
m 
Z 
--i 

N 
'-I 
'-I 

SYSTEM 
TEST 

FIRMWARE MANUFACTURING INFORMATION I FACTORY 

,~ __________ -----------------------------10 .~. ------------~ 

Fig. 3-Information flow for circuit pack design. 

0'0 
;('~ 

,:'11l~ 
'=>0. 0-..() 

0"'1 
~ 



providing service to real users on two internal systems. The system 
test group also periodically released software to the factory. The 
factory quality assurance organization complemented the system test 
effort with its own test plans generated from the final product docu­
mentation and performed on systems in production at the factory. 

The quality was evaluated quantitatively by tracking the number of 
validated faults against the number of predicted faults. The number 
of faults was initially predicted using a fault density per lines of 
software code that was determined empirically from prior develop­
ments. This prediction was modified as the actual fault density for 
System 75 was measured. The number of faults found was validated 
from data in the Modification Request (MR) system (described in 
Section II). When the predicted number of faults were found and all 
service-affecting faults were fixed, the software was ready for release 
to the controlled introduction locations. 

The objective of the controlled introduction was to fine tune the 
product design and the delivery/support operations before manufac­
turing large quantities of systems.3 In addition to evaluating product 
performance in a field situation, the controlled introduction was 
needed to test ordering, manufacturing, installation, training, and 
maintenance processes. Based on the actual field experience, particu­
larly the customer reaction to the product's capabilities and the 
opinions of sales and service' personnel, products were enhanced and/ 
or corrected. 

II. THE DEVELOPMENT ENVIRONMENT 

2.1 Overview 

Office automation based on a UNIX™ operating system computing 
environment was used throughout the project. Development support 
tools were written not only to help development work, which is 
commonplace for most projects, but also to improve communications 
and enforce project methods. Project methods were tailored specifically 
to be automated by computer-based tools and integrated with the 
communication services. 

A series of regularly scheduled meetings (described in Table I) 
balanced the electronic communications. The meetings ranged from a 
semiannual project-wide review attended by all developers on the 
project to weekly community status meetings attended only by the 
supervisors. 

2.2 Electronic office environment for project communications 

The development of System 75 was carried out in a fully automated 
office environment. Every person on the project from director to clerk 

278 TECHNICAL JOURNAL, JANUARY 1985 



Meeting 

Project review 

Supervisor review 

Project status 

Software status 

Hardware status 

Table I-Regularly scheduled meetings 
Frequency 

Semiannual 

Bimonthly 

Monthly 

Weekly 

Biweekly 

Attendees/Purpose 

All 
Set and maintain a positive mood for the project, 

make people aware of parts of the project they 
may have little contact with, and reinforce the 
team spirit of the project. 

All supervisors 
Selected supervisors give a short presentation 

that focuses on the status of current and near­
term deliverables with emphasis on informing 
the project community of any changes to pre­
viously disclosed schedules and of any existing 
problems that could affect future commit­
ments. 

Selected representatives 
Review schedule commitments, identify problem 

areas, and make decisions on project-level is­
sues, redistribution of responsibilites, etc. 

Software/system test supervisors 
Discuss and resolve software community issues. 
Hardware supervisors/drafting representatives 
Review drafting status, discuss and resolve hard-

ware community issues. 

had a video display terminal, which became as important as the 
telephone. 

The backbone of the office automation service is a collection of 
services named the Personal Communication Services (PCS). The 
PCS services are simple enough to be learned by casual computer 
users yet contain enough functionality to serve the needs of more 
sophisticated ones. These commands are characterized by a common 
user interface that is oriented towards a good human interface rather 
than one easily manipulated by a program.· Extensive prompting and 
feedback are provided, as well as terse forms for more experienced 
users. Machine-dependent parameters, such as logins, system names, 
and directories, are hidden. The services can be customized to the 
personal preferences of each user. 

The communication services of PCS fall into several broad cate­
gories: electronic mail service, calendar and reminder services, bulletin 
board service, and other miscellaneous services. 

The electronic mail service provides for preparing, sending, reading, 
and filing messages between individuals and groups. Addressing is 
done by name (e.g., t.j.watson) rather than by the convention of 
system !login (e.g., hocsh!tjw). A mailing list capability aids individuals 
in sending information to special interest groups or organizational 
mailing lists. 

On the System 75 project, the electronic mail service was used for a 
variety of purposes from a simple reminder to the transfer of technical 
information, either in the form of answers to questions or as a complete 

PROJECT DEVELOPMENT ENVIRONMENT 279 



document transfer. The asynchronous aspect of electronic communi­
cations eliminated "telephone tag," allowing people with busy sched­
ules to exchange detailed technical correspondence in a timely fashion. 

The calendar and reminder services provide for logging and remind­
ing of future events. A project calendar was created to list project 
events. This service was also used extensively on an individual basis 
as a personal time management tool. 

The bulletin board service provides for posting public messages in a 
central location. Many special interest bulletin boards were created to 
list such diverse items as meeting minutes, computer tools news, and 
want ads. The bulletin board was an easy way to distribute information 
project-wide and contributed to the feeling of camaraderie that was 
fostered on the project. 

Other miscellaneous services include a profiler command to custom­
ize user environment, a directory assistance program, and a message 
display program that simultaneously displays mail messages, calendar, 
and a clock in windows on a locked user's terminal. 

2.3 Baselining and change control 

The Project Coordination Group had the responsibility of keeping 
the project on track-both in design content and schedule. The phi­
losophy was to do this in an unobtrusive way and provide as much 
autonomy to the various communities as possible. This was accom­
plished by establishing formal methods for base lining design infor­
mation such as requirements and feature specifications, for controlling 
design changes, and for tracking schedules that balanced the produc­
er's desire for complete freedom of design and flexible schedule dates 
with the consumer's need for unchanging designs and firm schedule 
dates. 

Baselining is the process whereby the current state of a design is 
captured to serve as a baseline against which changes can be made. 
The objective of any baselining process is to ensure that the design 
has been adequately reviewed to minimize future changes. The base­
lining process (and change control process) is not unique to the System 
75 project; it was adapted from the experience of other projects. The 
baselining process (Fig. 4) begins with the assignment of a document 
number, goes through a review process that includes a formal sign-off 
step, and culminates with delivery of the approved document to the 
project library. 

The review process was the key to the baselining process. Two types 
of processes were found to be effective: a design review and a circula­
tion review. Both types of review were held at a peer level. The design 
review consists of a formal meeting that follows a rigid format with 
roles defined for a scribe, moderator, presenter, and reviewers. The 

280 TECHNICAL JOURNAL, JANUARY 1985 



OPTIONAL 

SUBMIT TO 
PROJECT 

DOCUMENT 
SYSTEM 

SUBMIT TO 
PROJECT 

DOCUMENT 
SYSTEM 

~ PRODUCT NUMBER 1J ADMINISTRATOR 

OPTIONAL 

SEND TO 
LIBRARY 

NOT OK 

ENTER 
MODIFICATION 

REQUESTS 
FOR OPEN ISSUES 

Fig. 4-Baselining process. 

SEND TO 
LIBRARY 

circulation review consists of circulating a draft of the document to 
primary and secor.dary reviewers. The primary reviewer consolidates 
the comments from the secondary reviewer. This reduces the writer's 
burden of resolving possible conflicts within a community. 

The purpose of both types of reviews is to determine whether the 
document is acceptable (possibly with some changes), unacceptable, 
or acceptable with some open issues unresolved. In this latter case, 
the document would be baselined and modification requests entered 
immediately to record the open issues. This allows a designer to use 
information in documents that is correct without waiting for all issues 
to be resolved, thereby hastening the development process. 

A project document library was created to serve as a repository for 
all baselined documents for the System 75 project. Both paper and 
electronic copies of these documents were kept and were readily 
available to persons who had a valid need for the information con­
tained in them. 

A computer-based Project Document (PD) system was created to 
retrieve and store copies of the electronic documents and to print a 

PROJECT DEVELOPMENT ENVIRONMENT 281 



report of both paper and electronic documents in the library. A 
database was used to maintain information associated with the project 
documents and to support the change control process. Both base lined 
and draft (under review) copies of documents were stored electronically 
on a single computer system by the PD system. Users on all systems 
had access to these documents over the computer communications 
network, providing quick dissemination of information. 

Once a document or design was baselined, a formal change control 
process began. Requests for changes because of either enhancements 
or errors in the design were tracked via a modification request. An 
MR is simply a record that contains a description of the resolution of 
the problem. 

The resolution process for MRs (Fig. 5) emphasized the importance 
of the individual developer in making decisions. In the majority of the 
cases (the middle route in the figure), MRs were resolved by negotia­
tion between the person assigned and the affected persons-there was 
no separate review team chartered to approve the resolution of the 
MRs. The viability of this approach was proven since, during the 
course of development, developers made few incorrect decisions that 
required subsequent escalation to correct them. 

ORIGINATOR 
(ANYONE) 

PERSON 
ASSIGNEO 

~ TASK 1!1J1t FORCE 

ASSIGN 11 REPORT 

roo 
MANAGEMENT 

TEAM 

REVIEW TEAM 

PERSON(S) 
ASSIGNED 

Fig. 5-Resolution process for modification requests. 

282 TECHNICAL JOURNAL, JANUARY 1985 



Some documents, however, such as the technical proposal and 
system requirements, used the more traditional standing review teams 
to approve the resolution of MRs. Also, as the product design came 
closer to completion, additional review teams were formed, especially 
to assign priorities to fixing bugs and to decide which enhancements 
should be added. Representation on these boards was limited to a 
single individual from the relevant communities. Finally, in certain 
cases, the resolution of MRs was escalated to a management team that 
would resolve the MRs themselves or create a task force to propose a 
resolution. 

All MRs were processed electronically using the Change Manage­
ment Tracking System (CMTS) as a tool to store and track MRs. 
CMTS is a generic system developed by AT&T Bell Laboratories and 
is currently being used by many organizations throughout AT&T 
Information Systems Laboratories and AT&T Bell Laboratories. It 
provides database storage and retrieval of MR information. 

To minimize user training, a collection of commands was written to 
provide a PCS-like interface to the MR database in place of the 
standard CMTS commands. These commands also allowed greater 
local control of the MR distribution, required less administrative 
overhead than the current version of CMTS, operated in a multima­
chine environment, and provided for completely paperless MR distri­
bution. 

2.4 Schedule tracking 

Schedule tracking has received a great deal of attention in the 
project management community, t!nd a large number of computer­
based tools, based on an activity network analysis that calculates 
critical paths, early and late start dates, slack, etc., are available to 
assist this task. These tools provide valuable information at the start 
of a project, such as the dependencies of various activities, but can 
consume large amounts of resources if they are used to track the 
project as plans change. A simpler approach was undertaken to track 
checkpoints or milestones. The Milestone Schedule Tracking System 
(MSTS) was written for this task. 

MSTS provides extensive reporting capabilities that have been 
integrated with the electronic mail service of PCS. The reports can be 
sorted by date or field data and milestones retrieved based on specific 
data values. User-defined reports can be created. A typical section of 
the most common report is shown in Fig. 6. 

The milestone schedules were created on a cooperative basis between 
the various communities. Activity networks, work breakdown struc­
tures, and other scheduling techniques were used to create the initial 
set of consistent milestones. Once the milestones were baselined in 

PROJECT DEVELOPMENT ENVIRONMENT 283 



Sample 

Milestone 

Milestone Schedule Report 
Level 1-2 Milestones 

Issue 2.0 
05/03/84 

-----Completion Dates---- s 
Cont/Prod/Cons Original Previous Current t 

< Hardware Development > 

Interface Circuit Pack 

hw0103 Model Assmbld 
hw0104 Model Tested 
hw0106 EDI 
hw0107 First Ship 

TJW/TJW/ AGB 
AGB/ AGB/ AGB 
TJW/TJW/dr 
TJW/dr/at&t 

04/07/84 04/20/84 --------C 
04/21/84 05/04/84 05/01/84L 
04/28/84 05/11/84 05/08/84 
12/31/84 -------- --------

>=hw0106 + 8 months: 01/08/85J 

Fig. 6-Sample Milestone Schedule Tracking System report. 

the project development plan, they were updated and reviewed on a 
monthly basis at the project status meeting. 

Each milestone had several key attributes: a contact, typically a 
supervisor, who was responsible for reporting the milestone completion 
and any changes to the scheduled date; a description that briefly 
defined what completion of the milestone meant (in practice, some 
incomplete definitions led to disagreement about whether a milestone 
was complete); and three estimates completion dates-baselined, latest 
plan, and current estimate. Prior to each review, the contacts provided 
a current estimated completion date for the milestone. If this date was 
different than the baselined date, the milestone was discussed at the 
meeting and, if all agreed, the new date was called the latest planned 
completion date. If the new date was unacceptable, a solution was 
devised to complete the milestone on time or to create an alternative 
plan. 

This method, however, proved cumbersome in practice because it 
was often difficult to agree on schedule changes. MSTS has subse­
quently been modified to track the original, current, and previous 
completion date estimates for each milestone. Because this requires 
less coordination, the tracking interval was reduced from one month 
to one week to promote faster response to schedule problems. Also, 
the new method called attention to discrepancies between the current 
and previous estimates and thereby provided a timely record of project 
facts. 

III. SUMMARY 

The development of System 75 drew upon the experience of many 
other projects that used formal project management methods. Several 
ideas proved very valuable to the completion of the project: well­
defined goals based on a hierarchy of product design specifications 
and development plans; progress tracked closely so that prompt cor­
rective action could be taken as problems arose; baselining and change 

284 TECHNICAL JOURNAL, JANUARY 1985 



control procedures that stressed keeping decisions at the lowest level 
possible; computer-based tools specifically tailored to augment the 
development process; and the degree and timeliness of communica­
tions obtained from an efficient, paperless electronic information 
management and communication service. These ideas are continuing 
to be used and will be improved for future work on System 75. 

REFERENCES 

1. T. J. Pedersen, J. E. Ritacco, and J. A. Santillo, "Software Development Tools," 
AT&T Tech. J., this issue. 

2. C. J. Lake, J. J. Shanley, and S. M. Silverstein, "GAMUT: A Message Utility 
System for Automatic Testing," AT&T Tech. J., this issue. 

3. M. A. McFarland and J. A. Miller, "Introduction Activities and Results," AT&T 
Tech. J., this issue. 

AUTHORS 

T. Scott Kennedy, B.S. (Mechanical Engineering), 1971, Lehigh University; 
M.S. (Mechanical Engineering), 1972, University of Michigan; Bell Labora­
torie1', 1972-1983; AT&T Information Systems, 1983-. Mr. Kennedy has 
worked on the physical design of key telephone systems and the Horizon® 
communications system, and on the development of computer-based tools for 
project communications. His assignment since 1981 has been as a Member of 
Technical Staff, System 75 Project Coordination, where he is responsible for 
planning and tracking and for the development of methods and tools to 
support these processes. 

David A. Pezzutti, M.S. (Electrical Engineering), 1970, Brown University; 
M.B.A., 1980, Rutgers University; Bell Laboratories, 1969-1983; AT&T Infor­
mation Systems, 1983-. Mr. Pezzutti has worked on circuit design, software 
and firmware programming, and in management. He developed and managed 
the development of a variety of central office maintenance systems for elec­
tronic and electromechanical systems that are part of the CAROT System, 
such as the Remote Trunk Test Unit, Remote Office Test Lines, and Inter­
rogator and Responder technologies. His assignment since 1982 is as Super­
visor, System 75 Project Coordination, where he is responsible for planning, 
tracking, and external product information. Mr. Pezzutti holds five patents. 
Senior Member, IEEE; member, Sigma Xi, Tau Beta Pi. 

Tse-Lin Jack Wang, B.S. (Electrical Engineering), 1964, National Taiwan 
University, Taiwan; M.S. (Electrical Engineering), 1969; Ph.D., 1970, Univer­
sity of South Carolina; Bell Laboratories, 1970-1982; AT&T Information 
Systems, 1983-. Mr. Wang was initially engaged in the exploratory work for 
business communications systems. In 1975, he joined the software develop­
ment group for the initial Horizon communications system development and 
was appointed Supervisor of that group in 1978. Since 1980 he has worked on 
System 75 software development. He supervised switch software planning 
early in the project and led development groups doing call processing and 
maintenance software and software product delivery. Member, Eta Kappa Nu. 

PROJECT DEVELOPMENT ENVIRONMENT 285 





AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Software Development Tools 

By T. J. PEDERSEN, J. E. RITACCO, and J. A. SANTILLO* 

(Manuscript received July 11, 1984) 

Efficient development of high-quality software requires a comprehensive 
set of software development tools. Tools used within the System 75 office 
communication system project support a hierarchical model of development, 
and range from compilers, assemblers, and debuggers to high-level tools that 
drive the software manufacturing process and aid in monitoring software 
quality and performance. Tools are applied in each of the many steps required 
to develop, test, integrate, and maintain product releases. Staff roles and 
procedures for use of these tools encompass a set of development and release­
management cycles that begin with the individual developer and extend into· 
the field support organization. The roles and procedures are flexible and easily 
customized to support various individual and group assignments. Specific tools 
to be described include the Object Generation System, the Local Administra­
tive Tool Kit; the Oryx/Pecos Test, Inquiry, and Control System; tools for 
testing processes in isolation; manufacturing and distribution tools; perform­
ance-measurement tools; source-control and change-management tools; and 
tools for program update and system analysis at field sites. 

I. INTRODUCTION 

Tools play important parts in every aspect of producing System 75 
office communication system software, from initial development and 

* Authors are employees of AT&T Information Systems Laboratories, an entity of 
AT&T Information Systems, Inc. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

287 



unit test to support of systems installed at field sites. A group within 
the System 75 development organization is responsible for acquiring 
and developing . special tools for the project. Tool developers and 
product developers are therefore closely allied and draw upon each 
other's expertise in planning, implementing, adapting, and applying 
tools as project needs are perceived. This paper presents the results of 
that collaboration. 

Section II provides background on the product hardware, program­
ming languages, and host computing environment from a tools per­
spective. Section III gives an abstract description of the software 
development cycle. Section IV describes the software structure that 
models the System 75 product. The remaining sections describe the 
subsystem development, project integration, system test and field 
support stages, along with specific tools and procedures used at each 
stage. 

II. PROJECT ENVIRONMENT 

Certain elements of the System 75 project environment have im­
portant influence on development support. These elements include 
processors and operating systems used in the product, programming 
languages used for product development, computing resources, and 
size and composition of the software development community. 

2.1 Processors and operating systems 

System 75 uses 8086, 8088, and 8051 microprocessors from Intel 
Corporation. The processors serve in different functional roles1 and 
vary in size and complexity. For example, the Switch Processing 
Element (SPE)* is an 8086 with a large main memory, which runs the 
Oryx/Pecos operating system.2 The network control and port circuit 
"angel" processors are 8051's with smaller memories. High-level soft­
ware functions are implemented in SPE application processes; lower­
level functions are implemented in network control and angel proces­
sor firmware. 

2.2 Languages and compilation tools 

The 8086 and 8088 processors are programmed almost entirely in C 
language.3 The compiler is supplemented by a large collection of tools 
that operate on object files. Of particular importance are enhanced 
linkers that produce multisection object files to model the product 
operating system run-time environment. 

The 8051 processors are programmed in SMAL51, an enhanced 

* Acronyms and abbreviations used in the text are defined at the back ofthe Journal. 

288 TECHNICAL JOURNAL, JANUARY 1985 



assembly language. The SMAL (Structured Macro Assembly Lan­
guage)4 syntax resembles C in that its instructions are similar to C 
language assignment statements or "function calls." Higher-level con­
trol constructs (e.g., if-then-else, switch) are also provided. SMAL51 
thus provides a compromise between the clarity of expression of a 
higher-level language and the memory space and run-time perform­
ance advantages of an assembly language. 

2.3 Computing resources 

Figure 1 illustrates the computing resources used in System 75 
development. Software development and laboratory model support 
take place on host computers that run the UNIXTM operating system. 
Computing resources are divided along organizational, and therefore 
functional, lines. A high-speed Local Area Network (LAN) permits 
rapid communication among the host computers, and a shared file 
system arrangement allows large collections of files to be delivered 
and shared efficiently. 

A test environment consists of System 75 laboratory models sup­
ported by the host computers. A laboratory model is an instrumented 
System 75 with a sufficient variety of terminal equipment to demon­
strate feature operation. High-speed data links are used to transfer 
programs between host computers and models and to access symbol­
table information for software testing. 

2.4 Software development community 

The software community is organized into groups of developers. The 
number of developers supporting a given processor ranges from only 

Fig. I-Computing resources. 

SOFTWARE TOOLS 289 



a few people for a typical 8051 processor to several groups for the SPE. 
The SPE groups are organized to correspond to a functional decom­
position of the software. Development takes place simultaneously on 
all components of the system in accordance with a set of product 
specifications and development plans and a schedule.5 Milestones in 
the schedule are planned for collecting, validating, and distributing 
software among the development groups at key intermediate stages. 

Subsequent discussion will center on software development for the 
SPE. Developers of software for other processors apply a subset of the 
tools and methods to be discussed. 

III. THE DEVELOPMENT CYCLE CONCEPT6 

The overall process of software production and maintenance encom­
passes development, integration, system test, and release of a complete 
product. At a more microscopic level, this process can be viewed 
conceptually to take place in a set of cyclic activities. Repeated 
sequences of "develop, integrate, release" steps take place within each 
cycle. Semantics of the terms Develop, Integrate, and Release differ 
somewhat among the different types of cycles, and the term "devel­
opment" is commonly applied to practically any activity connected 
with software production. However, the following definitions apply 
generally to the discussion in this section: 

o Develop-Create or modify code 
o Integrate-Combine and synchronize work of several developers 
o Release-Deliver the results to others. 
Note that transitions between the steps usually imply satisfaction 

of acceptance criteria. The development cycle concept is particularly 
useful because it expresses interfaces among individuals and organi­
zations that deal with the software product. 

A somewhat idealized model of System 75 software production is 
shown in Fig. 2. Stages in the overall process are shown at the left 
side, and microscopic D-I -R cycles are shown within each stage. A 
brief explanation follows; later sections explain activities at each stage 
in more detail. Independent groups of developers build and unit test 
(D) software components and then deliver (R) the components to 
project integration. Project integrators combine delivered components 
from all groups (I), make changes to correct integration flaws (D), and 
deliver the product back to developers (R). Each development group 
"buys back" the integrated software into its own environment (I) to 
test against in producing the next release. Some releases are forwarded 
from project integration to system test, where the D-I-R cycle models 
correction of troubles found during final testing (D, I) and delivery to 
controlled introduction field sites (R). 

290 TECHNICAL JOURNAL, JANUARY 1985 



SYSTEM TEST AND 
RELEASE MAINTENANCE 

PROJECT 
INTEGRATION 

DEVELOPMENT 
GROUPS 

Fig. 2-Development cycle concept. 

IV. SOFTWARE STRUCTURE AND TOOLS 

A software structure, and tools that build and administer compo­
nents within the structure, are introduced in this section. An important 
property of the structure and tools is that they promote, but do not 
rigidly enforce, uniformity. The project environment, the cyclic model 
of software development, and the nature of the product itself all 
influenced the design of these tools. Acceptance of the tools by the 
software development community was fostered by involving product 
developers early in the design. Application of the tools at successive 
stages of software production will be discussed in later sections. 

4.1 Object generation system 

Because build procedures can become as complex as the product 
itself, the same build tool should be used at every stage of software 
production. The primary software build tool used in generating System 
75 software is OGS (Object Generation System), an interface to the 
make7 program supplied with the UNIX operating system. The basic 
components of OGS are conventions for naming files and directories, 
a collection of makefiles, and a set of build commands. 

SOFTWARE TOOLS 291 



OGS assumes that source and object code is organized in a uniform 
directory structure as shown in Fig. 3. The structure has three major 
levels: 

• Book -a directory that contains source and object codes for either 
a process or a library 

• Subsystem-a collection of related books 
• Project-a collection of subsystems. 
Subdirectories within a book, or subbooks, are also supported. Each 

directory level and source file type has a unique suffix. Example 
directory and file suffixes are 

• p j for project 
• s s for subsystem 

· p for process book 
• b for library book 
• d for process subbook 

• db for library subbook 
.0 for object directory 
• c for C source file 
• h for header file 
• 0 for object file 
· a for library archive file. 

OGS allows code within a single directory structure to be built for 

.pj 

(.p, .b) 

(.d, .db) I . 

hdrs 
.h 

(source files) 
.c 

~target>.O 
.0 

.a 

"S..target>.O 
.0 

Fig. 3-Generic OGS directory structure. 

292 TECHNICAL JOURNAL, JANUARY 1985 

.0 



system.ss 
OPERATING 
SYSTEM 

apcap.ss 
SERVICE 
CONTROL 
LAYER 

spe.pj 

recap.ss 
RESOURCE 
LAYER 

gadmn.ss 
ADMINIS­
TRATION 

gmtce.ss 
MAINTENANCE 

11\ ~ 11\ 11\ 11\ 
call_p.p msg_sv.p serv_d.p 
CALL MESSAGE SERVICE 
PROCESS SERVICE DISPATCHER 

PROCESS PROCESS 

Fig. 4-System 75 OGS directory structure. 

several target processors. Object files are placed in target-specific 
object directories. In addition, the structure incorporates header and 
library scoping conventions. The scope of a header file is determined 
by its placement in a book, subsystem, or project "hdrs" directory. 
Similarly, the scope of a library is determined by the object directory 
in which the archive is placed. 

OGS takes advantage of the uniform directory structure by employ­
ing generic makefiles. OGS uses one standard make file per directory 
level. This has two major advantages. First, all directories at the same 
level, e.g., all processes, are normally built in the same way. When 
necessary, build directives can be customized to handle exceptions. 
Second, developers need not be concerned with constructing makefiles. 
Once the generic make file for each level is installed in a standard 
place, the developer just invokes simple build commands. For example, 
ogs rnk (OGS make), executed at the appropriate level, will build a 
process, a subsystem, or the entire project. 

The OGS structure used in developing System 75 software2
,8-10 is 

given in Fig. 4. Since the directory structure models the software 
architecture, a developer can easily identify the major architectural 
components of any subsystem by looking at the directory levels. The 
scoping conventions for shared headers and libraries facilitate methods 
for managing changes that may affect several processes. Further, a 
standard directory structure promotes a generic set of software admin­
istrative tools because, like OGS, these tools can infer their operation 
from the directory level upon which they are executed. 

4.2 Local administrative tool kit 

LATK (Local Administrative Tool Kit) is a collection of tools that 
are applied in various activities in the development and integration of 

SOFTWARE TOOLS 293 



System 75 software. LATK tools operate on OGS directory structures 
to construct developer work areas, reserve file-edit privileges, submit 
completed work to an official area, ensure that all subsystems are 
developed with the same project-level files, verify that OGS structure 
conventions are followed strictly, and place files under change control. 

The functions of the LA TK tools in subsystem development, project 
integration, and system test and field support will be addressed in 
Sections V, VII, and VIII, respectively. Certain developers are assigned 
roles that carry responsibilities for coordinating day-to-day work and 
carrying out routine administrative operations. These roles will be 
explained in the context of the activities. 

V. SUBSYSTEM DEVELOPMENT 

System 75 software is logically grouped into the five sybsystems 
shown earlier in Fig. 4. A subsystem is developed entirely on one host 
computer. Subsystem isolation is important in a project where a large 
quantity of new software is being developed. In this environment, the 
developers of one subsystem are not subject to daily changes in the 
software of other subsystems. A project integration group periodically 
brings together and tests the software of all subsystems. Key technical 
and administrative responsibilities are given to the subsystem coordi­
nator and subsystem administrator appointed for each subsystem. 
Project integrators, together with the subsystem coordinators, approve 
changes to files having project scope, schedule and conduct project 
integrations, etc. 

5.1 Areas 

An area is an OGS structure that has been populated with a 
particular subset of files. Official subsystem areas and work areas (or 
work spaces) exist on each host computer. The official subsystem area 
contains a complete image of the current source and object files for 
one subsystem and object files for the other subsystems in the project. 
Changes to this area are controlled by the subsystem coordinator. A 
work space duplicates a portion of the official subsystem area and 
contains files that an individual developer is modifying. 

5.2 Procedure 

A developer sets up a work space for a process book by invoking an 
LA TK tool. The fact that several developers may be working on a 
given process creates a conflict between the desire to work with the 
latest copy of each other's code and the need for a stable environment. 
The work space setup tool copies all of the object code for the process 
from the official subsystem area, thereby isolating the developer from 

294 TECHNICAL JOURNAL, JANUARY 1985 



changes by others. An LATK tool can be invoked to refresh these 
object files from the official subsystem area at any time. 

The developer uses an LA TK tool to restrict edit permission on 
source files and obtain copies of them in the work space for modifi­
cation. The OGS build tool compiles these source files and loads them 
with other object files for the process in the work space. The final load 
module in the work space can consist of any combination of processes 
from the work space, the official subsystem area, or even other devel­
opers' work spaces. 

The developer tests the code in the work space and then uses an 
LATK tool to submit the work space to the subsystem administrator. 
The subsystem administrator uses an LA TK tool to perform checks 
on the work space (e.g., file-edit permission checks, directory structure 
checks, time/date checks on source and object files) and to merge the 
changed files into the official subsystem area. 

VI. UNIT TESTING 

Developers must unit test their software before submitting it to an 
official area. Tools to support testing and debugging are tailored to 
the product software design. System 75 software consists of the Oryx/ 
Pecos operating system and a collection of application processes that 
communicate via interprocess messages. Unit test tools for System 75 
accommodate testing at both the operating system and application 
level. At the· application level, tools facilitate testing the interactions 
between processes, as well as testing within a single process. 

Three primary test tools are used in System 75 development. They 
are a low-level monitor for operating system and hardware testing, a 
high-level symbolic debugger for applications testing, and a process 
test environment that allows isolated testing of processes in the 
system. 

The monitor and symbolic debugger are part of a laboratory debug­
ging environment pictured in Fig. 5. 

6.1 Monitor 

The monitor is an 8086 debug/test tool that resides in read-only 
memory and runs as a stand-alone package. The monitor contains 
mechanisms for transferring 8086 executable files from and to a host 
computer via either a 9600-b/s asynchronous link or a 50-kb/s syn­
chronous link. It provides a basic software debugging environment 
with capabilities such as the ability to set and display memory and 
I/O locations, registers, and memory management descriptors; soft­
ware instruction execution breakpoints; and single stepping of assem­
bly language execution. As a low-level tool, it supports a simple 
command language and has no symbolic capability. 

SOFTWARE TOOLS 295 



DEBUGGING 
TERMINAL 

6.2 OPTICS 

SYSTEM 75 
MODEL 

(PROCESSES) 

ORYX KERNEL 

MONITOR 

Fig. 5-Debugging environment. 

HOST 
COMPUTER 

The Oryx/Pecos Test, Inquiry, and Control System (OPTICS) is a 
debug/test tool that is part of the Oryx/Pecos operating system. 
OPTICS has a user-friendly command interface that supports line 
editing, command completion, and a help facility. It contains a rich 
set of classical debugging features, such as symbolic referencing, 
software breakpoints, kernel call tracing, and C stack backtrace. 
However, the key aspect of OPTICS is that it allows the user to control 
and monitor Oryx/Pecos processes. Thus, OPTICS can be used not 
only to debug/test software within a process, but also to debug/test 
the interactions among a collection of cooperating processes. OPTICS 
features oriented toward multiple-process debugging include creating, 
halting, and killing of processes; process status display; and display of 
a process' path records, path descriptors, and queued messages. 

As shown in Fig. 5, OPTICS uses a symbol process on the host 
computer for symbol-table lookup. The debugging terminal is under 
control of the OPTICS process when the Oryx/Pecos system is run­
ning, and under control of the monitor otherwise. 

6.3 Process test environment 

The process test environment is a method for testing the internal 
logic of a process under test in isolation from the rest of the processes 
in System 75. A sample process test environment is given in Fig. 6. A 
unit test process and a stub process are available for each real process 
in the system. The labeled arrows in Fig. 6 represent Oryx/Pecos 
paths over which interprocess messages are transmitted. In both the 
unit test and stub processes, program intelligence is replaced by an 
int~ractive interface by which a developer can enter data from a control 
terminal and have it formatted into interprocess messages. A unit test 

296 TECHNICAL JOURNAL, JANUARY 1985 



CALL 

REPLY 

SEND 

Fig. 6-Process test environment. 

process issues the data entered by a developer to the process under 
test as a message. It can issue all the message types that the process 
under test can receive and thus can be thought of as a unit test driver. 
A stub process can be used as a substitute for any process to which 
the process under test sends messages. It prints at the terminal the 
contents of a received message, and prompts the developer to enter 
data to be formatted into a reply message. The functions of the several 
terminals shown in Fig. 6 are performed by a single physical terminal. 

VII. PROJECT INTEGRATION 

The System 75 project integration group performs three principal 
activities. These are combining, manufacturing, and testing software 
delivered periodically by the development groups (referred to as a 
major cycle); controlling changes to files having project scope (referred 
to as a minor cycle); and other functions such as source code quality 
checking, performance measurement, and collection of product statis­
tics. 

7.1 Major cycle 

The major cycle procedure consists of collection from all develop­
ment groups of formally submitted software, along with specification 
of the state of development. The main purpose is to ensure that the 
entire product is consistent, meaning that it can be built with a single 
set of tools and project-level files and that interfaces between inde-

SOFTWARE TOOLS 297 



pendently developed components work correctly. All computable files 
are rebuilt independently on a separate host computer, and the result 
is tested and distributed to each development group. The type and 
degree of testing depend upon the stage of development. In general 
terms, the aim is to ensure that the quality of the integration delivery 
is at least sufficient to serve as a base for development of the next 
stage. 

LATK tools support the major cycle by automating routine opera­
tions associated with submission and delivery of a large volume of 
files. An LA TK structure verifier tool is used to locate files that do 
not conform to OGS conventions, and a structure printing tool can be 
used to get a formatted display of any part of the directory and file 
structure. Other LA TK tools ensure that all submitted software was 
developed with correct project-level files and report discrepancies. The 
verification tools are available to both subsystem administrators and 
project integrators. Serious problems discovered during integration 
testing are fixed by developers prior to distribution. LATK work space 
procedures are the same as those followed for subsystem development. 

7.2 Minor cycle 

Certain software components apply to the entire project and are 
expressed in files that have project scope. For example, structures of 
messages used by applications to communicate with the operating 
system are declared in project-level header files. While it is important 
to define and freeze files that have project scope as early as possible, 
it is also important not to delay or hamper development until all such 
files can be defined completely. Therefore, the minor integration cycle 
procedure was instituted as a formal means for timely collection and 
distribution of these files. All minor cycle deliverables are subject to 
approval by project integration before the distribution takes place. 
The files are delivered by the development groups and distributed by 
project integration via shared file systems. The last minor cycle before 
a major cycle is especially important in that it represents a freeze of 
all project-level files to be used in the subsequent major cycle. 

LATK tools support the minor cycle by assisting subsystem admin­
istrators in accepting distributions, validating changes, and ensuring 
that all components of a distribution are accepted. 

7.3 Other functions 

As mentioned earlier, project integration conducts some specialized 
forms of testing. Unlike unit and system tests, these are not functional 
tests. Instead, they are used to monitor adherence to established 
criteria for source code quality and performance. The tests are con­
ducted by integrators rather than developers or system testers because 

298 TECHNICAL JOURNAL, JANUARY 1985 



of the need to ensure uniform compliance at frequent intervals. Project 
integration also serves as a central point for gathering statistics on 
the product and development process, such as source code and memory 
usage statistics. Two principal types of specialized testing are source 
code quality checking and hardware-assisted performance measure­
ment. 

7.3.1 Source code quality measurement 

A set of lintogs tools, based on the lintll tool supplied with the 
UNIX operating system, are used by project integration to measure 
source code quality. Lint examines C source files and points out 
syntactic, stylistic, and semantic characteristics that may cause bugs, 
waste, or portability problems. Lintogs has additional capabilities to 
analyze C source files in an OGS structure and to report "local" 
characteristics of each file, and "global" characteristics of the collec­
tion of files. Local characteristics include such things as conformance 
to strict type rules and detection of unreachable statements. Global 
characteristics include inconsistent use of function arguments and 
return values. In principle, lintogs could be applied by every devel­
oper. However, the large collection of files makes it more practical to 
apply the tools centrally and report the results back to developers for 
examination and possible correction. 

7.3.2 Performance measurement 

System 75 software is required to meet stringent real-time perform­
ance standards. Performance measurements to validate designs are 
carried out by a hardware/software system known as the spigot system. 

A diagram of the spigot system is shown in Fig. 7. In brief, it consists 
of hardware that provides high-resolution timing of a sequence of 
events reported to it by software under performance test. The software 
reports an event by executing a "spigot call," which sends information 
to the hardware. Typical events might represent the beginning and 
end of handling of a message by a process. An event comprises type 
and data fields in a spigot data packet. The hardware adds a time­
stamp field and transmits the packet to a data collection processor, 
where it is buffered on a disk. The event file is transmitted from the 
data collection processor to a host computer for analysis at the 
conclusion of a test run. For example, statistics on each of a sequence 
of steps required to process an external stimulus might be gathered 
under varying system loads. 

VIII. SYSTEM TEST AND FIELD SUPPORT 

Deliveries from project integration to system test occur at major 
project milestones. Each such delivery represents completion of soft-

SOFTWARE TOOLS 299 



SYSTEM 75 
PROCESSOR 

SPIGOT 
BOARD 

DATA 
COLLECTION 
PROCESSOR 

HOST 
COMPUTER 

r---------,.01~--.SPIGOT CALL IN CODE 

SPIGOT (TYPE. DATA) 

r-----=------,.01~---SPIGOT DATA PACKET 

TYPE 

TIME 

DATA 

Fig. 7 -Spigot system. 

ware that implements a well-defined set of product features at a high 
level of quality. (The principal automated system testing tool, GA­
MUT, is discussed in Ref. 12.) The first topic of this section is a test 
coverage system that aids in judging the effectiveness of system testing. 
The remaining topics deal with tools and procedures to manage and 
support field releases. 

8.1 Software test coverage 

System test procedures are designed to exercise a load module as 
thoroughly as possible to verify correct operation of features. Test 
coverage is one objective measure of how thoroughly a program under 
test has been exercised.13

,14 Although more elaborate coverage arrange­
ments exist, a low-cost system that simply records which instructions 
have been executed is a valuable aid in improving tests. 

The coverage arrangement used in testing System 75 comprises 
hardware and software components. Coverage analyzer hardware mon­
itors the SPE physical address bus. There is one bit of coverage 
analyzer memory for each byte of SPE memory. During a test run, 
coverage memory bits corresponding to SPE memory locations that 

300 TECHNICAL JOURNAL, JANUARY 1985 



have been executed are set to '1'. Commands to dump the coverage 
memory at the conclusion of the test run and to analyze coverage 
dumps are provided on the host computers. The analysis commands 
produce a hierarchy of reports that relate the coverage information to 
the load module under test. A summary report for the entire load 
module gives percentages of functions and source lines executed for 
each process. A summary report for a selected process lists which 
functions and which source lines in each function have been executed. 
Marked source code and object file disassembly listings can also be 
produced. A merging program is used to combine coverage data from 
several test runs and discard obsolete data from parts of the load 
module that have changed. Of special importance to the system test 
application is the fact that modification of the load module under.test 
or the conditions under which it runs is not necessary. 

8.2 Change control 

Development and integration activities occur at a rapid pace, and 
files are subject to very frequent revision. There has been no perceived 
need to maintain a history of software changes at these stages of 
development. However, a system test or field release is a supported 
product for which strict control over changes is necessary. The two 
families of tools used for this purpose are the MR (Modification 
Request) system and the MESA (Management Environment for Soft­
ware Administration) system. 

An MR is a request to modify a product to fix a problem or add a 
new capability.5 The MR system is a database for tracking such 
requests. One use of the MR system is to record problems discovered 
in system test or field releases. Entries in an MR form contain the 
originator's analysis of a problem, the severity, the product component, 
and the release affected. Other entries describe the eventual resolution 
of the MR. Reports on open MRs are analyzed to judge the importance 
of fixing each problem and to schedule further investigation and fixes. 

MESA is an interface to the Source Code Control System (SCCS),15 
supplied with the UNIX operating system. MESA has added capabil­
ities for control of a structured collection of files. That is, in addition 
to the standard SCCS function of recording changes to individual files, 
MESA also records information about the version number of every 
file in a release and its place in a directory structure. Thus any whole 
release, as well as any version of any file, can be recovered from the 
"pool" of SCCS files. Tools are provided to handle three types of 
MESA operations: initial introduction of a complete release of soft­
ware into MESA, changes to files made in developer work spaces, and 
definition and reconstruction of releases. 

SOFTWARE TOOLS 301 



8.3 Release management 

By the time a software package has been delivered to the field, 
several copies of the package exist in different release-management 
stages. A field copy of the software represents the package installed at 
customers' sites. A working copy allows the developers to make minor 
enhancements and fix problems. Two intermediate copies permit 
system testing and soaking on an in-house system. The software 
graduates from one of these environments to the next as certain 
quality levels are achieved. Each of the environments is under MESA 
control and constitutes a separate view of the same MESA source 
pool. 

In the course of system testing and field experience, MRs are filed 
against the product. In the normal case, changes are made to the 
working copy, and SCCS deltas are generated. The changes will be 
delivered to the field when the working copy has become the field 
copy. When quicker turnaround is desired, a change may be applied 
to one of the other copies, and a branch delta created. To resolve an 
MR, a developer uses the same LA TK, OGS, and unit test tools 
discussed earlier to create a work space, check out files, build, test, 
and submit changes. An administrator invokes MESA options in 
LATK tools to merge files from the submitted work space into the 
MESA pool. 

8.4 Field support 

Field support tools are needed for two purposes. One purpose is to 
administer field software deliveries. The second purpose is to analyze 
system behavior at controlled introduction field sites16 when necessary. 

Software is delivered to a field site either as a complete reissue of 
the system tape or as an electronically transmitted update. Tools are 
provided to generate tapes on a host computer that supports a System 
75 tape drive. The tape generation tools are applied by field support 
personnel during initial trial of a new release and are also used for 
factory production of tapes. Small updates to a software release can 
be transmitted electronically. An update is accomplished by a three­
step procedure. First, a tool compares an "old" and "new" software 
release and generates an update file composed of commands to shift 
and replace software in the System 75 memory. Next, the update file 
is transmitted to a field system running the old release and is recorded 
on its tape. Last, commands within the update file are interpreted by 
System 75 firmware to transform the software into the new release. 

Maintenance features within System 75 software are designed to 
detect and guide repair of system troubles.lO However, other tools can 
be applied when further analysis is needed. In particular, the OPTICS 
tool discussed earlier can be made available at a controlled introduc-

302 TECHNICAL JOURNAL, JANUARY 1985 



tion site when necessary. Other field support tools provide for off-line 
analysis of a dump of the processor memory and of translation9 data 
stored on the system tape. These tools are especially valuable for 
studying behavior that occurs only in a particular system configura­
tion. 

IX. CONCLUSIONS 

The rich set of software tools described here, coupled with extensive 
computing resources, and a large-scale laboratory models program are 
all essential to the development of System 75 software. The tools 
support initial development and unit testing, automate the activities 
of software manufacturing, and assist in measuring software quality 
and performance. Methods and tools were defined jointly by the tool 
builders and members of the software development community. The 
tools continue to be enhanced when necessary to reflect evolving 
project needs. 

X. ACKNOWLEDGMENTS 

This paper presents the work of many individuals at the Denver 
and Holmdel locations of AT&T Information Systems Laboratories. 

REFERENCES 

1. L. A. Baxter et al., "System 75: Communications and Control Architecture," AT&T 
Tech. J., this issue. 

2. K. T. Fong, J. A. Melber, and G. R. Sager, "System 75: The Oryx/Pecos Operating 
System," AT&T Tech. J., this issue. 

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood 
Cliffs, N.J.: Prentice-Hall, 1978. 

4. C. Popper, "SMAL-A Structured Macro-Assembly Language for a Microproces­
sor," Digest of Papers, COMPeON Fall 74, 1974, pp. 147-51. 

5. T. S. Kennedy, D. A. Pezzutti, and T. L. Wang, "System 75: Project Development 
Environment," AT&T Tech. J., this issue. 

6. D. M. Emerson and G. R. Sager, unpublished work. 
7. S. I. Feldman, "Make-A Program for Maintaining Computer Programs," Soft­

ware-Practice and Experience, 9, No.4 (April 1979), pp. 255-65. 
8. W. Densmore et al., "System 75: Switch Services Software," AT&T Tech. J., this 

issue. 
9. H. K. Woodland, G. A. Reisner, and A. S. Melamed, "System 75: System Manage­

ment," AT&T Tech. J., this issue. 
10. K. S. Lu, J. D. Price, and T. L. Smith, "System 75: Maintenance Architecture," 

AT&T Tech. J., this issue. 
11. S. C. Johnson, "Lint, a C Program Checker," Computing Science Technical Report 

#65, Bell Laboratories, Murray Hill, N.J., January 1977. 
12. C. J. Lake, J. J. Shanley, and S. M. Silverstein, "System 75: GAMUT: A Message 

Utility System for Automatic Testing," AT&T Tech. J., this issue. 
13. E. F. Miller, Jr., "Program Testing: Art Meets Theory," Computer, 10, No.7 (July 

1977), pp. 42-51. 
14. D. V. Buyansky and J. W. Schatz, "No. 1A ESS Laboratory Support System­

Erasable Flag Facility," Proc. 6th Int. Conf. Software Eng., 1982, pp. 279-86. 
15. M. J. Rochkind, "The Source Code Control System," IEEE Trans. Software Eng.,' 

SE-J (December 1975), pp. 365-70. 
16. M. A. McFarland and J. A. Miller, "System 75: Introduction Activities and Results," 

AT&T Tech. J., this issue. 

SOFTWARE TOOLS 303 



AUTHORS 

Thomas J. Pedersen, B.S. (Electrical Engineering), 1960, Iowa State Uni­
versity; M.E.E., 1962, New York University; Bell Laboratories, 1960-1982; 
AT&T Information Systems Laboratories, 1983-. Mr. Pedersen has worked 
on a variety of communications research projects and recently on the Horizon® 
communications system and System 75 projects. He is currently working on 
software tools to support business communication system development. Mem­
ber, IEEE. 

Joseph E. Ritacco, B.S. (Mathematics), 1965, Polytechnic Institute of 
Brooklyn; M.S. (Mathematics), 1966, University of Michigan; Bell Laborato­
ries, 1965-1977, 1979-1982; American Bell International Inc., 1977-1979; 
AT&T Information Systems Laboratories, 1983-. Most of Mr. Ritacco's 
career has been as a system programmer in a computer center environment. 
His responsibilities included IBM operating system support, performance 
analysis and tool building, remote job entry, and networking development and 
operations management. He supervised a group responsible for software tool 
development for the System 75 project. He is currently supervising a group 
responsible for developing a software system that performs remote mainte­
nance and administration of AT&T products. Member, ACM. 

Jamie A. Santillo, S.B. (Mathematics), 1975, The Massachusetts Institute 
of Technology; M.S. (Information and Computer Science), 1976, Georgia 
Institute of Technology; IBM, Poughkeepsie, 1976-1978; Bell Laboratories, 
1978-1982; AT&T Information Systems Laboratories, 1983-. Prior to work­
ing on System 75, Ms. Santillo did reliability and performance analysis of 
mainframe computers, and developed operating system and database software. 
With the System 75 project, she designed development environment and 
integration tools, and then supervised the development of maintenance soft­
ware and enhanced switch services software. Ms. Santillo is currently super­
vising a group responsible for project management, integration, and system 
test of personal computer/work station software. 

304 TECHNICAL JOURNAL, JANUARY 1985 



AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

GAMUT: A Message Utility System for 
Automatic Testing 

By C. J. LAKE, J. J. SHANLEY, and S. M. SILVERSTEIN* 

(Manuscript received July 11, 1984) 

GAMUT is an automated testing tool that can verify message activity in 
message-based systems. This tool is unique because it can be customized for 
application to a variety of systems and used in all test phases of a development 
cycle. Using a single interface, rather than an array of port-specific interfaces, 
GAMUT can generate and verify load traffic through scripts, as well as provide 
an automatic record and playback mechanism for feature testing. This paper 
discusses the design philosophy and distinctive features of GAMUT as well as 
its architecture. It illustrates message definition and the script command 
language by building a sample test script of a station-to-station call on the 
System 75 office communications system and concludes with a discussion of 
challenges and problems encountered while using the tool to test System 75. 

I. INTRODUCTION 

The purpose of system testing is to ensure that a newly developed 
product performs according to established requirements and satisfies 
customer needs. One approach to testing is to manually exercise 
systems according to prescribed test plans; testers augment this ap­
proach with tools that automatically apply input and verify operations. 

* Authors are employees of AT&T Information Systems Laboratories, an entity of 
AT&T Information Systems, Inc. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

305 



Such automatic tools frequently replace system peripherals and con­
sequently are application-specific. However, the emphasis on struc­
tured design in new products has also changed the perspective of 
testing and consequently the architecture of the automated testing 
tools; a single test tool can simulate the activity of all peripherals.1 

This paper describes an automated testing tool, GAMUT, that 
monitors and verifies message activity in message-based systems by 
simulating traffic at message interfaces within the system. GAMUT 
executes scripts, written in a programming-like language, that repre­
sent some feature operation of the system; sequences of stimuli are 
applied to the system under test and responses are verified automati­
cally by the tool. 

This paper discusses the design philosophy and distinctive features 
of GAMUT as well as the architecture of the tool. It illustrates message 
definition and the script command language by building a sample test 
script of a System 75 station-to-station call. Some alternative appli­
cations of the test tool are also suggested. 

II. BACKGROUND: MESSAGE-BASED SYSTEMS 

In the past, switching systems were designed with a well-defined, 
high-level message interface to peripherals or between processors; for 
example, in Automatic Call Distribution (ACD)* electronic switching 
systems there were message interfaces between the main switch and 
the local peripheral controllers as well as the management-information 
system.2

,3 However, the use of multiple-microprocessors and multipro­
cessing operating systems in real-time information processing systems 
has led to the incorporation of message-based architectures at internal 
implementation levels. Typically, such systems consist of a network 
of subsystems, implemented with hardware, software, or combinations 
of both, which communicate through message interfaces. Requests for 
service, called stimuli messages, are inserted into a subsystem by users 
or by other subsystems. The subsystem then produces response mes­
sages that may become input to other subsystems or that may be 
output to users on various system terminals. 

In a complex system composed of many subsystems with many 
terminals, the combinations and sequences of stimuli and response 
messages are endless; an attractive method to exercise and test the 
design and implementation of such systems is to have a computer 
utility apply sequences of input messages to a selected interface and 
validate the resulting output. 

In System 75, in addition to the internal interfaces between software 

* Acronyms and abbreviations used in the text are defined at the back of the Journal. 

306 TECHNICAL JOURNAL, JANUARY 1985 



subsystems, there is a complex interface between the system and 
communication terminals connected to it. Prior to connecting actual 
users to the system, it is necessary to test .overall system performance 
under a wide variety of conditions and loads. Problems arise when 
these tests must be performed prior to the availability of either the 
interface circuits or the actual terminals. 

Other problems, such as simulating actual communication connec­
tions or load conditions, occur when the system to be tested is complete 
but before it is practical to actually place heavy call volumes through 
the system. Another case is finding transient faults or faults that 
result from long sequences of state transitions. 

Regardless of the application, systems designed with a message­
based architecture contain independent subsystems and message in­
terfaces that have the following characteristics: 

• Control and data are passed in the form of messages. 
• Activity at the message interface defines the operation of the 

subsystem. 
• No subsystem possesses knowledge of how other subsystems per­

form their functions. 
• Since the only way subsystems interact is through messages, the 

message interfaces form protective fire walls. 
• By examining a trace of stimuli and response messages, one can 

determine if the system is operating correctly. 
GAMUT exploits these characteristics and thus provides a powerful 
test tool for performing feature, load, regression, and range testing. 

III. OVERVIEW-GAMUT FEATURES 

GAMUT is a message utility that exercises and tests message-based 
systems by replacing part of the system at an interface boundary or 
by operating in parallel with the system. It interfaces with such 
systems either by processing messages entered interactively or by 
executing test scripts. A script is a file that contains sequences of 
stimuli to insert into the system under test, response messages to 
verify, and control information. The content of a script, taken as a 
whole, represents some feature operation or system function. 

Since GAMUT is based on an architectural property of a class of 
systems and not on the design of a particular system, it differs in 
many ways from other test utilities.4

,5 It can keep pace with a product's 
development and provide unit, integration, system, and field-test 
functions.6 The tool can be customized for application to a variety of 
systems by selecting an appropriate access interface and by creating a 
message database. It accepts parameterized scripts, by using scalar, 
array, and don't-care variables, for repeated applications of test cases, 

GAMUT 307 



and can generate traffic load tests using a single interface rather than 
an array of port-specific interfaces. 

GAMUT consists of two major components, common message­
utility software and a message-access module. The first part, the larger 
of the two, generates, validates, and manipulates messages and essen­
tially remains unchanged for any test application. On the other hand, 
the access module connects the common software to the system under 
test-inserting and recording messages passing through a message 
interface of the system under test-and is usually specially designed 
for each test application. Thus, GAMUT can be applied to different 
test applications by customizing the message-utility software and 
"plugging-in" the appropriate access module. Other test systems can 
be too closely married to the system under test to permit this. 

Since the utility can be configured to simulate a subsystem, it can 
be used early in development as a unit test tool. In addition, the 
subsystem simulation capability allows GAMUT to be used as a 
temporary replacement for unavailable subsystems or terminals. As 
development proceeds and more subsystems become available, the tool 
can remain in place and be used as an integration test tool. When the 
development reaches its final stages, GAMUT can be moved to the 
major message thoroughfare and drive the design through system tests. 
This is impossible to achieve with a tool that is coupled to a particular 
system point, and development teams usually have to develop different 
tools for each phase of testing. 

When GAMUT is connected to a major message interface, it can be 
used to insert multiple, near-simultaneous stimuli and verify system 
performance. Other test systems can be used for load testing as well, 
but usually these tools simulate actual user activity and require a large 
number of interfaces to achieve this and are, therefore, as complex as 
the system under test. This tool achieves load testing more economi­
cally by driving one key interface internal to the system under test. 
Furthermore, since it can exercise independent subsystems, GAMUT 
can apply subsystem load tests to identify bottlenecks that limit 
system performance. 

GAMUT can be configured to operate in parallel with the system 
under test. With this arrangement, it can be used to monitor activity 
on an operational system for troubleshooting or for acquiring mea­
surements. This arrangement also allows testers to inject both simu­
lated and manual traffic on a laboratory system to study feature 
interactions and load performance. 

The ability to record activity, store the messages, and play them 
back at a later time provides an additional benefit for system testers. 
Since systems are usually developed in phases for field release, both 
old and new features must be tested in each phase. GAMUT is used 

308 TECHNICAL JOURNAL, JANUARY 1985 



to record manual test cases for automatic retest of features at a later 
date, thereby guaranteeing continued system quality. 

Thus, by taking advantage of the properties of message-based sys­
tems, GAMUT provides a foundation for multiple testing perspectives, 
provides testers with leverage in applying a wide variety of tests, and 
encourages a phased, systematic testing philosophy consistent with 
the architecture of the system under test. 

In addition, because of the tool's structure, its application is not 
limited to testing systems designed with message-based architectures. 
By developing an access module that taps onto a collection of key 
system signals-including perhaps a clock signal-a message interface 
can be presented to the message utility system where there was no 
interface before. Test scripts can be devised and applied to the access 
module, which in turn maps the messages to sequences of signals at 
the appropriate connection. 

IV. GAMUT ARCHITECTURE 

A block diagram of the GAMUT test system is shown in Fig. 1. 
Within a system under test, a key message interface between subsys­
tems A and B is selected and made available to a GAMUT access 
module. GAMUT will apply test stimuli and monitor system responses 
at this point to determine if the system is performing as expected. 
Typically, in System 75, subsystem A was the central control complex 
and subsystem B was the switching network and port complex. The 
message interface between A and B was the control channel. 7 

4.1 GAMUT access module 

The access module interfaces the system under test to the message 
utility portion of GAMUT. Depending on the application, the module 
can be as simple as an Electronic Industries Association (EIA) channel. 
However, usually a special-purpose, microprocessor-based access mod­
ule with interface-specific circuits is required. The access module 
provides five major functions: 

1. Inserting stimuli messages into a subsystem under control of the 
message-utility system. 

2. Capturing response messages and transmitting them to the mes-
sage-utility software. 

3. Message time stamping. 
4. Peak traffic buffering. 
5. Real-time message filtering so that only requested messages are 

recorded. 
It is important that the module operate in real-time and log messages 
without affecting the performance of either subsystem, as well as to 
insert messages indistinguishable from subsystem-generated messages. 

GAMUT 309 



SYSTEM 
UNDER 

TEST 

Fig. I-GAMUT test system. 

4.2 Common message-utility software 

The common message-utility software runs under the UNIXM op­
erating system. It is driven by a database that contains a template for 
every message that flows between subsystems A and B. Isolating this 
format information in a database allows GAMUT to track message 
changes or additions within the interface and facilitates moving to 
another interface. This database allows users to communicate with 
the message utility software in a symbolic message language; it allows 
the software to convert this language into the format of the system 
under test; and it allows the software to report test results in the 
original format. Therefore, before any testing can begin, a description 
of every possible message that will flow through the message interface 
must be entered in the message database. 

Test cases are entered into scripts that contain sequences of stimuli 
messages, expected system-response messages, and control informa­
tion to specify how the messages are to be applied. Scripts are compiled 
by test-preparation software that converts the messages in the script 

310 TECHNICAL JOURNAL, JANUARY 1985 



language into the format expected by the system under test. Control 
information is converted into a form easily interpreted by the test­
execution software. The resultant file is called a binary script. 

Binary scripts are then passed to the test-execution module, which 
can execute more than one binary script at a time to allow simulation 
of realistic test scenarios. The execution module reads the binary 
scripts and interprets script commands much like a computer CPU 
executes instructions; it cycles through multiple scripts in a round 
robin schedule much like a time sharing operating system. When the 
execution module encounters a stimuli message in a script, it instructs 
the access module to insert this message into the system under test. 
This module also monitors messages that return from the access 
module and verifies that these are valid responses as specified in the 
script or are exceptional conditions that were not specified. In either 
case, all stimuli and response messages are saved in log files as the 
test execution progresses. 

When test execution is completed, the tester uses test analysis 
software to examine the logs. The analysis software consults the 
message database to convert the raw messages back into the form used 
by the test designer in the script language. Three types of reports are 
available. The first is a trace of all messages inserted during the test. 
The second is a trace of all the inserted messages and responses that 
provide a step-by-step record of every transaction occurring during 
the test. The third report is an exception report, which contains 
messages returned from the system under test that were not specified 
in a script as valid responses, as well as all messages that were specified 
in the script but were not received. The last report is interspersed with 
any diagnostics generated by the script execution. By reviewing these 
reports, the tester can determine how the test progressed, if the system 
performed correctly, and if not, what went wrong. A log-filter program 
is also available to help the tester focus on a particular type of message 
or portion of the log. 

v. MESSAGE DEFINITION 

GAMUT is customized to a particular application by defining a 
message database, called the ASCII Message Definition Table 
(AMDT). The AMDT is an ASCII file that defines the I/O interface 
language for the system under test; i.e., the file contains field descrip­
tions of every message that passes through the message interface. 

The AMDT contains both general message identification (e.g., op­
code, message length, number of fields) and specific field-description 
information (e.g., field name, default values, and conversion opera­
tions). Data are entered in the file with any UNIX system text editor 
according to a prescribed format. Once a template is defined for each 

GAMUT 311 



possible message in the system under test, a tester can design tests 
that combine the messages with GAMUT script commands. 

In the next few sections, we consider a script that tests a station­
to-station call on System 75. In System 75, circuit packs communicate 
via messages with call-processing software over a time-division-mul­
tiplexed bus.s For example, when a user pushes a button on a telephone 
set, a message is sent to the call-processing software, which generates 
such responses as application of dial tone and activation of a call­
status lamp. The messages are defined by the switch architecture; the 
off-hook message might be defined as follows: 

offhook statio~id 

A typical use of this message might be 

offhook 

which represents "go off-hook on station number 1." When converted 
according to the template in the message database, the resultant binary 
message is ready for insertion in the system under test. Conversely, a 
binary message received by the test-execution software is converted 
back to a "script language" message by comparing the messages in the 
database for field matches and selecting the best match. 

VI. SCRIPT LANGUAGE 

GAMUT allows a test designer to generate messages, apply them as 
stimuli, validate the resulting response messages, as well as control 
test execution. To achieve this, the script language must combine 
aspects of a traditional programming language, like C,9 with a language 
focused on message manipulation. To simulate a particular feature 
operation, the tester combines a number of scripts into an experiment 
that GAMUT will execute. 

In a script, stimuli messages are combined with the s end command; 
the test execution software will insert each send message into the 
system under test. Expected response messages are combined with the 
wai t command and for each wai t, the test execution software will 
verify that the specified message actually occurred. There are several 
variations of the wai t command that provide capabilities for error 
detection, for verification of a set of messages independent of their 
order of arrival, and for specification of several possible responses, 
only one of which will be matched. The GAMUT script language also 
includes several commands that provide flow control, assignment and 
arithmetic or logical operations, and subroutine capability similar to 
that of a programming language. Thus, a test designer can use .the 
script language to specify a feature operation and validate that oper­
ation in a variety of scenarios. 

312 TECHNICAL JOURNAL, JANUARY 1985 



6.1 Script execution 

An arbitrary collection of scripts can be run together to simulate a 
field environment and create a realistic test. When these scripts are 
executed, the operations are verified independently; this can also occur 
while the system is manually generating traffic. Random characteris­
tics can be added by using a pseudo-random number generator pro­
grammed into the script. Frequently one script will be assigned a 
control function, initializing and dispatching foreground and back­
ground tests, waiting for test case completion, and summarizing re­
sults. The tests can be executed sequentially or simultaneously. An­
other script can be assigned an administrative function, varying system 
transiations10 and corresponding GAMUT variables so that tests can 
be reapplied over various translation ranges and combinations. 

6.2 Sample script 

To describe features of the script language, we build below a sample 
script that checks the ability to place a call from one station to another 
within System 75. The station numbers and the call duration are 
established external to the script. The script defines the features of 
the script command language as necessary; so that the script can be 
reapplied to a variety of system states, field values-which may vary 
from one execution to another-will be parameterized. 

All variables must be declared before use and can be either 
scalars or arrays. GAMUT uses the macro capability of C; therefore, 
#inc 1 ude statements can be used to access standard header files and 
#def ine statements provide simple or parameterized text replace­
ment. Once the variables have been declared, most scripts require 
some start-up procedure-either to synchronize execution with other 
scripts in the experiment or to synchronize message flow with the 
application. Scripts are executed in a prespecified order according to 
a round robin schedule. For this example, we assume that a control 
script is executing and that it will initiate execution of the call script 
by setting the RUIL.l11ode variable to RUN, after defining the originating 
and terminating stations as well as the call holding time. 

Thus the first lines of the script include variable declarations and 
run-time synchronization: 

#include "fielLcodes" 
#include "error_codes" 
#define 
#define 

# 
global 
global 

RUN 1 # Run-time synchronization 
CALL_COMPLETE 2 # Run-time synchronization 

RUIL.l11ode # Scr ipt execution state 
Orig # Originating station id 

GAMUT 313 



global Dest # Destination station id 
global Extension[4] # Digits of extension array 
global Wi # Wai t timeout interval 
global Holdtm # Call duration 
global GooLcalls # Number of successful calls 
global BaLcalls # Number of call failures 
global Busy_calls # Number of busy calls 

# 

# Idle while RUILInode is not equal to RUN 

# 
:idle if RUILInode != RUN :idle 

The values of the global variables are assumed to be set in the control 
script and, since they are global, will be known to all scripts in the 
experiment. The line with the if statement tests the value of 
RUILInode, and as long as that variable is not equal to the value RUN, 

control remains at the line labeled: idle. Once RUILInode equals RUN, 
control transfers to the next statement. 

Next the station identified by the value of Or ig will originate a call 
to the destination station. A message will be sent by the simulator to 
the call-processing software indicating that the or ig ina tor station 
went into an off-hook state. The script expects, in response, a message 
for dial tone to be applied to the originating station. If the response 
does not occur within a specified time, control will be transferred to 
the statement: no_dial tone, where an error subroutine will be called. 
The subroutine will be included at the end o'f the script and will output 
an error message, increment an error count, and terminate the call. 

send of fhook Or ig 
wait Wi :no_dialtone tone Orig DIALTONE_ON 

:no_dialtone 

call :error (NO-DIALTONE) 
goto : reset 

On the wai t command line, the variable following the wai t is the 
amount of time (in seconds) the script will wait for a message from 
the application before logging a time-out error. As soon as the expected 
message arrives, the simulator processes the next instruction so the 
wait time should reflect the maximum expected delay between mes­
sages. If a time-out occurs, the simulator transfers control to the 

314 TECHNICAL JOURNAL, JANUARY 1985 



statement with the label indicated. To make the script more general, 
we will assume the wait interval Wi is initialized in the control script. 

The originator can now dial the destination extension; the digits to 
be dialed are stored in the array Extens ion. After the first digit is 
dialed, dial tone should be removed, and the script verifies call proc­
essing's action with a wai t command. 

send dial 
wait Wi : no_quiet tone 
send dial 
send dial 

:no_quiet 
call :error (NO_QUIET) 
goto : reset 

Orig Extension[O] 
Orig DIALTONE_OFF 
Orig Extension[1] 
Orig Extension[2] 

The three digits of the destination extension have now been dialed. If 
a dialing error occurs, control will be transferred to the statement 
labeled : no_quiet. Note that the same tone message is expected 
when origination occurs and after dialing the first digit; only the field 
value changes to control the tone. 

Two different responses are now possible: the destination alerts or 
the originator hears busy tone. The swai t allows the script writer to 
specify a set of alternative responses, only one of which will be correct. 
When that response is selected, control is transferred to the statement 
indicated. If no response is matched, control is transferred to the 
statement indicated on the swai t line: no_call. 

swai t Wi : no_call 

< 
: hangup tone Or ig BUSY_ON 
: alert tone Or ig RINGBACLON 

:alert 
wa it Wi : no_r ing ing ringing Dest RINGEILON 

:no_call 
call :error (NO_CALL) 
goto : reset 

:no_ringing 
call :error (NO-RINGING) 
goto : reset 

GAMUT 315 



A busy response will cause the script to transfer to statement 
: hangup; otherwise, the originator will hear ringback and the script 
will branch to : alert where the application of ringing at the desti­
nation is verified. 

\Vhen the call is answered, several responses (ringback off, ringing 
off, connect) should occur and be verified; however, the order in which 
they occur is not important. The mwa i t, multiple message wait, allows 
the tester to specify all those responses. If at least one of the specified 
messages does not occur, control will be transferred to the statement 
specified on the mwai t line. 

:answer 
send offhook 
mwait Wi :ba<L.ans 

< tone 
connect 
ringing 

> 
delay Holdtm 

:ba<L.ans 
call :error (BAD-ANSWER) 
goto : reset 

Dest 

Orig RINGBACK-OFF 
Orig Dest 
Dest RINGElLOFF 

When the destination answers, ringback and ringing are discontinued 
and the two stations are connected. The connection will be maintained 
for Holdtm seconds, at which time the call will be torn down. 

send 
wait 

:hangup 
send 
swait 

< 

> 
:g_done 

Wi 

Wi 

onhook 
:ba<L.onhk discon 

onhook 
:ba<L.onhk 

:g_done discon 
:b_done tone 

Goo<L.calls = Goo<L.calls + 1 
goto : reset 

:b_done 
Busy_calls = Busy_calls + 1 

:reset 

316 TECHNICAL JOURNAL, JANUARY 1985 

Dest 
Dest 

Orig 

Orig 
Or ig BUSY_OFF 



Run-Illode = CALL-COMPLETE 
goto : idle 

:ba<L-onhk 
call :error (BAD-DISCONNECT) 
goto : reset 

endscript 

The destination hangs up first and then the originator. The originator 
hang-up is labeled by : hangup so it can be referenced whenever a call 
attempt results in busy, as well as for normal call termination. At the 
completion of the call, the RUn-Illode is reset, and the script will idle 
again until reinitiated by the control script. 

The error subroutine can be added to the end of the script file or 
included as a separate file. 

# Error Subroutine 
: error sub (error_code) 

switch (error_code) 

I 
case DIALTONE: 

pstring "Call origination failure" 
break 

case NO-RINGING: 
pstring "Destination alerting failure" 
break 

case BADJNSWER: 
pstring "Answer failure" 
send onhook Dest 
break 

:terminate 
send onhook Or ig 

Ba<L-calls = Ba<L-calls + 1 
endsub 

For each specified error code an appropriate error message is output 
and the originator hangs up. In the case of an answering failure, the 
destination station is also hung up. 

VII. USING GAMUT WITH SYSTEM 75 

GAMUT was developed in parallel with System 75 by the Product 
Test group of AT&T Information Systems. Extra effort was expended 

GAMUT 317 



so that operational milestones of the tool and the product were 
synchronized to allow early testing. This paid off by helping the test 
group to find protocol, feature, and performance affecting bugs very 
early in System 75's design cycle. In addition, developers used the tool 
to diagnose and isolate problems on early models of the switch. 

One problem the Product Test group had with the tool was the 
oversensitivity of the test scripts to message ordering. The early 
version of the GAMUT script language had no mwa i t capability, and 
the test scripts explicitly verified message ordering by sequences of 
wai t commands. Very often this ordering is not important (e.g., the 
ringer off, ringback off, and connect sequence from the sample script): 
as System 75's software evolved, these sequences changed and regres­
sion scripts would fail needlessly. Therefore, the product test group 
added the mwai t feature to keep GAMUT in step with the product. 

Early test scripts were developed i?y test engineers who had a 
detailed understanding of System 75's architecture, particularly the 
control-channel messages. However, as the feature list grew, the num­
ber of scripts required to test the system grew. Soon there were not 
enough skilled testers to develop the scripts. To solve this problem, 
we built a number of software tools into the utility that provided a 
record and playback capability that allowed less experienced testers 
to automate regression test cases in a timely fashion. A feature tester 
could execute a test that operates correctly on the system peripherals 
and record the control-channel messages. Next a script generator 
would read the logged messages and output a parameterized script. 
When executed, the script would reverify that test case automatically 
on subsequent releases of the system, as well as provide a basis for a 
class of related tests (range, load, etc.). 

Sometimes, as features were finalized, there were sufficient design 
changes to invalidate previously recorded scripts. To avoid manually 
rerecording a test case, we developed a tool that extracted stimuli from 
the original script and automatically created a regeneration script. 
This script, with no verification capability, is executed and a revised 
regression script can be generated with the same software described 
above. 

To test the fault detection and recovery capability of System 75,11 
we replaced the standard GAMUT access module with a hardware 
fault inserter. Then we wrote scripts to inject faults, execute system 
maintenance commands, and log test results, thereby extending the 
tool to System 75 maintenance. 

GAMUT's System 75 access module is totally passive in the record­
ing mode and is very portable. We were able to move some of the low­
level message handling software from a minicomputer running the 
UNIX operating system to a portable PC, which resulted in a powerful 

318 TECHNICAL JOURNAL, JANUARY 1985 



field tool. Our field-support team has found the portable version of 
GAMUT to be one of their main tools. It has helped them trace and 
isolate problems during our controlled introduction, as well as to 
measure traffic and customer use of features. 

We found testing with GAMUT to be automatic, repeatable, and 
easily documented because test scripts, exception logs, and result logs 
are automatically saved in UNIX system files in the tester's language. 
Use of this tool facilitated problem isolation and encouraged phased, 
systematic testing, thus improving the testing process and system 
quality. 

REFERENCES 

1. G. J. Myers, Software Reliability, Principles and Practices, New York: Wiley, 1976. 
2. H. A. Lanty, D. J. Morgan, and H. Oehring, "No.1 ESS Furnishes ACD Service," 

Bell Lab. Rec. (March 1978), pp. 76-82. 
3. R. J. Jakubek and S. M. Silverstein, "Microprocessor Control of Customer Premises 

Telecommunications Equipment," Proc. Ann. Conf. ACM (October 1976), pp. 
270-4. 

4. T. A. Dolotta et al., "The LEAP Load and Test Driver," Proc. Second. Int. Conf. 
on Software Eng., 13-15 October 1976, pp. 182-7. 

5. D. A. Bennett and J. D. Walker, "System Testing the Small Communications 
System," unpublished work. 

6. G. J. Meyers, The Art of Software Testing, New York: Wiley, 1979. 
7. L. A. Baxter et al., "System 75: Communications and Control Architecture," AT&T 

Tech. J., this issue. 
8. W. Densmore et al., "System 75: Switch Services Software," AT&T Tech. J., this 

issue. 
9. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood 

Cliffs, NJ: Prentice-Hall, 1978. 
10. H. K. Woodland, G. A. Reisner, and A. S. Melamed, "System 75: System Manage­

ment," AT&T Tech. J., this issue. 
11. K. S. Lu, J. D. Price, and T. L. Smith, "System 75: Maintenance Architecture," 

AT&T Tech. J., this issue. 

AUTHORS 

Carole J. Lake, B.A. (Mathematics), 1968, Gettysburg College; M.S. (Nu­
merical Science), The Evening College of The Johns Hopkins University, 
1970; National Security Agency, 1968-1974; Bell Laboratories, 1979-1982; 
AT&T Information Systems Laboratories, 1983-. Ms. Lake was initially 
involved in network operations support system development and for the past 
four years has worked in system testing for System 75. Member, ACM, IEEE. 

James J. Shanley, B.E.E., 1961, Polytechnic Institute of New York; M.E.E., 
1963, New York University; Bell Laboratories, 1955-1982; AT&T Information 
Systems Laboratories, 1983-. Mr. Shanley's development experience includes 
both hardware and software design on a variety of projects including T1 
carrier, Subscriber Loop Multiplexer, Horizon® CMS, E911, Dataphone® II, 
and System 75. His current assignment is System 75 Field Support Group 
Supervisor. Member, Eta Kappa Nu, Tau Beta Pi. 

Steven M. Silverstein, B.S. (Electrical Engineering), 1973, M.S. (Electrical 
Engineering/Computer Science), 1974, Polytechnic Institute of Brooklyn; Bell 

GAMUT 319 



Laboratories, 1973-1982; AT&T Information Systems Laboratories, 1983-. 
Mr. Silverstein has been engaged in business communication and management 
information system development. More recently he has been involved in 
system testing for System 75, and he currently supervises the Product Test 
and Evaluation group. Member, IEEE, ACM, Tau Beta Pi, Eta Kappa Nu. 

320 TECHNICAL JOURNAL, JANUARY 1985 



AT&T Technical Journal 
Vol. 64, No.1, January 1985 
Printed in U.S.A. 

System 75: 

Introduction Activities and Results 

By M. A. McFARLAND and J. A. MILLER* 

(Manuscript received July 11, 1984) 

In today's competitive world, new and complex communications products 
need to move from the laboratory development environment to the market­
place in a quick but orderly fashion. The objective of a controlled introduction 
is to evaluate not only the specific product's performance but also its docu­
mentation, training, manufacturing, delivery, service, and customer satisfac­
tion. This paper describes the scope of the controlled introduction of the 
System 75 office communication system. Topics include customer selection 
criteria, sales-team support, customer and service training, initial customer 
and internal corporate installations, and the evaluation process. 

I. INTRODUCTION 

System 75 is a complex and sophisticated business communications 
system comprised of advanced software, firmware, and circuits.1 To 
ensure that its design met customer needs and was reliable, an orderly 
but quick-paced introduction program was essential. To provide struc­
ture and definition to all the activities of this testing program, a 
System 75 controlled introduction plan was developed. 

This paper reviews several of the major activities associated with 
the introduction of System 75 and specific results that enhanced the 

* Authors are employees of AT&T Information Systems Laboratories, an entity of 
AT&T Information Systems, Inc. 

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and 
that the Journal reference and copyright notice are included on the first page. The title 
and abstract, but no other portions, of this paper may be copied or distributed royalty 
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be 
obtained from the Editor. 

321 



product and improved the effectiveness of its delivery and support 
methods. Section II describes the overall objective of the controlled 
introduction. Section III focuses on both customer and AT&T support 
team training. Section IV presents findings from the early installa­
tions. Section V describes items related to maintainability. And, 
finally, Section VI highlights customer and sales team feedback on the 
system's capabilities and features. 

II. CONTROLLED INTRODUCTION OBJECTIVE 

The objective on the controlled introduction was to fine tune both 
the product design and the delivery/support operations before manu­
facturing large quantities of systems. Prior to early 1984, System 75 
had been tested extensively in the laboratory but had not yet been in 
use under true marketplace conditions. The controlled introduction, 
in addition to evaluating product performance, was needed to test the 
ordering, manufacturing, installation, training, and maintenance proc­
esses. Customer reaction to the product's capabilities was also impor­
tant, as were the opinions of the AT&T sales and service personnel. 
Based on actual field experience, enhancements and/or corrections 
were added to the product or methods as necessary. 

2.1 Principles of controlled introduction 

The System 75 controlled introduction's duration and scope was 
based on experience from previous PBX introductions.2 This experi­
ence suggested that approximately 60 system-months of in-service 
testing after system testing were needed to uncover any remaining 
software or hardware defects affecting production. To meet this cri­
teria' a program was developed that included: 

1. Twelve customer installations and two internal AT&T systems, 
one at Lincroft, New Jersey and the other at Holmdel, New Jersey. 
The actual deployment is shown in Fig. 1. While a large number of 
system-months was desirable, there was also a need to limit the 
number and location of installed systems because of factory production 
start-up constraints, inventory risk management, a limited number of 
trained support personnel, and a desire to have quick response time 
to correct field problems. 

2. A stringent set of customer selection criteria (Table I). Adherence 
to these criteria ensured that each site was conducive to the evaluation 
of both product performance and support operations. 

3. A controlled introduction steering committee that augmented the 
existing local sales and services team. This committee monitored all 
pre- and post-cut activities and ensured that all activities proceeded 
on schedule and according to plan. 

At the beginning of this program, marketing staffs in six major U.S. 

322 TECHNICAL JOURNAL, JANUARY 1985 



70~--------------------------------------------'-----~ 

60 

50 

(J) 

J: 
I-
Z 
0 
~ 40 
~ CUSTOMERS w 
I-
(J) 

> 
(J) 

w 
> 
i= 
<X: 30 --I 
::) 

~ 
::) 
u 

20 

1983 1984 

Fig. l-Cumulative system-months of operation during controlled introduction. 

cities were asked to review all their under-320-line accounts and 
submit profiles for those customers that matched the selection criteria. 
The list of potential customers was filtered and prioritized by the 
controlled introduction committee, which produced a list of accounts 
to contact. Potential customers were contacted by local sales teams, 
who described the aspects of being a controlled introduction customer. 
If customers were interested, the negotiations continued, a nondisclo­
sure agreement was signed, and more details of System 75 were 
discussed. Once a customer requested that a configuration and contract 
be prepared, a team of product experts from both development and 

MARKETING INTRODUCTION 323 



Table I-Customer selection criteria 

Customer Characteristics 
First customers will be "smaller," i.e., 50-125 lines 
Noncritical (e.g., no hospitals) 
Weekend cut; 24-hour access; space for field-support equipment 
No new buildings; no moves; equipment room complete 
Potential use for wide range of product capabilities 
Consider customers of past studies 
Should be willing to participate in system management 
Deploy a variety of size ranges for lines and trunks 
An electromechanical PBX or Centrex replacement 
At least one applications processor 
Customers with need for Automatic Route Selection (ARS), and station message 

detailed recording 
One System 85 customer 

Market Environment 
Friendly and flexible customers 
Expectations should equal product capabilities 
Leaders in their market segment 
Large multiple-sales potential 

marketing reviewed the proposed equipment order and the customer's 
intended use of the system. The expert team greatly enhanced the 
local support by answering detailed questions in an accurate and timely 
manner. This support is required to introduce products quickly. 

III. TRAINING 

One of the first activities required during the System 75 introduction 
was the development and refinement of training techniques and ma­
terial. In particular, the preparation and delivery of quality customer, 
sales team, and service technician courses was a major step in assuring 
a successful product introduction. 

3.7 Customer training 

Two key ingredients made the customer training program successful. 
First, similar courses, especially those used for System 85, were re­
viewed for content and flow. These ideas provided the basis for the 
System 75 course. And, hands-on sessions with an operational system 
during the course development allowed the developers to try the 
material themselves and refine it. The first complete course was given 
to Lincroft users in September 1983. The first session for external 
customers was given in early December 1983. 

During this course development, improvements were made in several 
major areas. One, the initial material did not contain enough detail. 
The customers wanted to know exactly what steps, visual indications, 
and audible indications were going to occur when a particular feature 
was used. Two, early material did not describe System 75's data 
switching capabilities. A thorough description is now included. Three, 

324 TECHNICAL JOURNAL, JANUARY 1985 



feature descriptions alone did not usually convey their value. Initially, 
a more academic, logical flow method was used to describe features, 
but students reverted to using their own situations to verify their 
understanding. Once common business scenarios were presented, stu­
dents quickly grasped the feature operation and its value. 

And, finally, each student group seemed to have a focused interest, 
yet each group's interest was different. This called for a course that 
was broad based but customizable during each session so that each 
group could meet its own needs. A problem that is still under investi­
gation is how to package the course material to allow for multiple 
customers to attend the same course and still allow a unique focus by 
each customer. 

3.2 Sales team training 

To ensure that local sales teams had sufficient System 75 product 
knowledge well before the time of announcement, preparation for sales 
team training began in November 1983 with the definition of a three­
phase program. Representatives from the expert support team and 
from marketing worked in conjunction with the corporate training 
organization to develop and deliver the initial course, which covered 
voice features, data switching, system management, and system archi­
tecture. The first phase consisted of one week of lectures and lab 
sessions for area sales staff. The goal of this phase was to prepare the 
area staff to conduct their own training sessions for individual sales 
branch locations in their area. Some important attributes of this 
training phase were the use of working systems to allow hands-on 
laboratory sessions, the presence of product experts from the design 
team, the joint presentation of sales and technical information, and 
the chance for the sales force to give direct product-related feedback 
to development representatives. 

The hands-on sessions were critical to the success of the entire 
training effort and greatly enhanced the sales teams' confidence. 
Aspects of system design or operation, which were difficult to describe 
in class, were easily clarified by demonstration. In addition, topics not 
covered in or triggered by the lectures could be easily discussed with 
the development representatives during the less formal lab sessions. 
Their expertise provided an added degree of credibility to the material. 

The second phase provided three days of training to key represen­
tatives from each branch location. The area staff personnel who were 
already trained then combined with these key representatives to 
conduct one-day sessions for all the sales personnel at their respective 
branches. 

In the third phase, trainers from the national sales training center 
visited the largest branch locations to conduct additional lectures and 

MARKETING INTRODUCTION 325 



host question and answer sessions. These last two phases enabled 
several thousand sales people to be trained quickly. 

3.3 Service technician training 

Development of the Service Technician training course began in 
April 1983. As with customer training, lectures and hands-on work 
sessions were interwoven to form a five-day course. 

The first course was given in late 1983 to ten technicians. To verify 
their training, the first group of technicians helped install the Lincroft 
system the week immediately following the first course. This instal­
lation work identified the need to expand the cross-connect and wiring 
information in the course. Feedback from subsequent training sessions 
highlighted the need to improve the built-in diagnostic descriptions, 
the need to spend more time on feature operation, and the value of 
hands-on sessions. In general, the hands-on sessions stimulated more 
interaction between the student and the instructors, which in turn 
increased the students' understanding. 

The final version of the course was completed in mid-1984. In 
addition to incorporating the suggested course enhancements, all its 
material was thoroughly checked for accuracy. Results from the field 
indicate that the training has been very effective. 

IV. INSTALLATION 

Another crucial controlled introduction activity was determining if 
System 75 could be installed properly and efficiently. The major 
elements of the system installation process were well known prior to 
the start of the controlled introduction. What was required was a way 
to identify and clarify all the minor aspects of a complete System 75 
installation and fix any shortcomings that could delay the completion 
of an installation. 

4.1 Internal sites 

The first system to provide such information was a test system 
installed in Holmdel, New Jersey, during early 1983. This system was 
an early hardware prototype and contained preliminary feature designs 
and very limited administration and maintenance capabilities. System 
functionality as well as the number of users was gradually increased 
during 1983 and early 1984 as the design became more complete. 
Because the installation work was completed by developers, this sys­
tem provided limited information on the minor details of the instal­
lation process. However, a second System 75, one that was near 
production quality and functionally complete, was subsequently in­
stalled at the AT&T Information Systems Laboratories in Lincroft, 

326 TECHNICAL JOURNAL, JANUARY 1985 



New Jersey, during late 1983. This installation was more formal and 
followed standard procedures. The installation of these two internal 
test systems uncovered a number of missing but very important 
installation methods, tools, and system piece-parts. Specifically, the 
experience at these first two sites highlighted several areas needing 
improvement. 

One was the need for a simple checklist that structured the major 
tasks. This checklist was at first thought to be unnecessary since the 
installation manual listed all the steps that were to be followed. 
However, the installers felt much more comfortable if they knew the 
overall sequence of the major activities, and were able to tell if they 
were "halfway" or "three-quarters" complete. Such a job aid is now 
available. 

Second was the need for an improved method of keeping the cabling 
information such as room number and cable identification. During the 
second installation, it was quickly apparent that many copies of "home 
brew" forms were used to keep track of and cross-reference names, 
room numbers, jack identification, and cable numbers. During one 
part of the installation there were five different types of forms used to 
reference these data. By analyzing why people were using these various 
forms and studying their contents, a single form was developed that 
is now part of the built-in administration routines. Once the normal 
administrative data is entered into the system, the cable and jack 
information can be quickly added and only one sheet is needed for the 
cabling work. 

And, finally, during installation there were occasions when only 
part of the translated equipment was installed. The absence of this 
equipment would raise alarms and cause confusion between "not 
connected" and "not working." By adding an alarm-hold command 
this confusion was eliminated. 

4.2 Customer sites 

The Services organization tracked various operational metrics as­
sociated with the installation of all the System 75 controlled introduc­
tion customer sites. The times to install the switch cabinet, wiring, 
cross-connect hardware, terminals, and labels, and central office con­
nections were collected in a disciplined fashion. Actual times to install 
were then compared to the estimates used to develop the operations 
plans. These estimates were based on experience with similar products. 
Table II shows variations from predicated values for a few key instal­
lation activities and the overall total. Negative variation signifies that 
the actual times were less than the predicted value. Note that on 
average, the major activities and total times were close to the early 
estimates. Actual installation times will continue to be monitored, and 

MARKETING INTRODUCTION 327 



Table II-Variation of actual installation times 
from predicted times (%) 

Major Installation 
Customer 

Activity C1 C2 C3 C4 Average 

Switch -24 +15 -35 +29 -4 
Terminals +26 +7 -34 -33 -9 
Cross-connects +43 -23 -61 +16 -6 
Total Installation +26 0 -42 -4 -5 

those activities that are significantly above or below expectations will 
be used to readjust service force training and/or sizing needs. 

4.3 Over~1I results 

Throughout the controlled introduction over 50 installation proce­
dures were modified to improve the process and minimize the instal­
lation hours. By closely tracking early installations, method changes 
were made before significant work-force hours were wasted. 

v. MAINTENANCE AND PERFORMANCE TRACKING 

The next important aspect of the controlled introduction was deter­
mining the effectiveness of the system's maintenance capability, its 
overall maintainability, and its quality and reliability. 

5.1 Tracking 

In late 1983, a field support group made up of System 75 product 
developers was established within AT&T Information Systems Labo­
ratories to provide a close coupling between the field sites and the 
development community. Representatives from the field support group 
and a national services center combined to serve as backup to the local 
installation and maintenance technicians. In particular, they provided 
in-depth technical analysis. They also monitored the operation of each 
controlled introduction system using built-in remote-access capa­
bilities3 of System 75 as well as specially designed field support tools.4 

These field tools went beyond the system's diagnostic capabilities 
and provided more detailed information for sophisticated trouble­
shooting. When design problems were identified, they were jointly 
investigated in the lab by developers and the field group. Solutions to 
field problems were verified first on lab models and system test 
machines and then soaked in the internal systems at Lincroft and 
Holmdel. Fixes were installed in customer sites only after the proper 
operation was verified at one of these internal systems. A modification­
request process5 was used to track all such problems. This process was 
completely on-line and could be accessed from the field or the lab. 

328 TECHNICAL JOURNAL, JANUARY 1985 



This database allowed problems to be tracked by release, severity, 
community (such as hardware, firmware, software), and customer. 
Such tracking was very instrumental in coordinating fixes in an orderly 
manner. 

5.2 Maintenance improvements 

For every maintenance alarm, the maintenance action was recorded 
and identified as being either effective or not. This "maintainability" 
score card helped identify not only design flaws but documentation 
deficiencies as well. As a percentage, 75 percent of the maintenance 
actions that proved ineffective were due to documentation. Of these, 
some were due to inappropriate decisions to limit the detail in certain 
documents. The other 25 percent were actual functional shortcomings 
in the maintenance strategy and/or routines. 

One example where a design change was required was in the amount 
of status information displayed during system initialization. The early 
design had moderate amounts of time between externally recognizable 
events (such as Light-Emitting Diodes [LEDs]* changing state or the 
tape starting or stopping). By having this system-access terminal 
display the internal status of the system while it was initializing, the 
technician could see that each initialization step was being completed. 

All information about faults and maintainability discovered during 
the controlled introduction was used to expand training and documen­
tation. For example, boards with typical field faults were used in the 
technician training course to demonstrate repair actions. 

5.3 Quality and reliability 

Detailed records of hardware failures were kept by the services 
organization. All defective circuit packs were returned to the hardware 
developers via the field support group for failure analysis. Information 
on packs with manufacturing defects was forwarded to the factory. 
The other defects were reviewed and design changes were implemented 
when needed. This activity continues throughout the life of the product 
on a special study basis. All results of failure analyses are coupled with 
factory repair information and used to compare actual field reliability 
to black box reliability estimates. These statistics highlight where 
corrective design action may be necessary and are used for inventory 
management. No design changes have been necessary to date because 
of reliability factors. 

VI. MARKET FEEDBACK 

The controlled introduction customers and sales teams provided 

* Acronyms and abbreviations used in the text are defined at the back of the Journal. 

MARKETING INTRODUCTION 329 



useful product-related feedback. Their comments helped identify Sys­
tem 75's strengths as well as its areas for improvement. 

6.1 Customers 

Each controlled introduction customer, including the two internal 
sites, was asked to participate in a user survey. These evaluations were 
typically conducted four to six weeks after the system was placed into 
service. Survey questionnaires were distributed to about 40 percent of 
the user population. Face-to-face interviews were conducted with 
about 10 percent of the users. The questionnaire focused on training, 
documentation, and feature usage. A portion of the questionnaire is 
shown in Fig. 2. These surveys6 indicated that 

1. Overall satisfaction was high and System 75 was preferred over 
the customer's previous system. 

2. System management emphasizing customer participation was 
considered the most valuable new capability. 

III. FEATURE USAGE 

For the features listed below, please indicate your 
responses by marking the appropriate boxes. 

(1) (2) (3) 
Do you have How frequently Is this 

a button for do you use feature 
this feature? this feature? easy to use? 

Yes No Often Sometimes Never Yes Somewhat 

FEATURE 
II Conference [ I [ I [ I [ I [ I [ I [ I 

II Hold [ I [ I [ I [ I 

II Transfer [ I [ J [ I 

II Drop [ I [ I [ I [ I [ I 

II Call Forward [ I [ I [ I [ I [ I [ I 

II Leave Word [ I [ I [ I [ I [ I [ I 
Calling 

II Cancel Leave [ I [ I [ I [ I [ I [ I 
Word Calling 

II Send All Calls [ I [ I [ I [ I [ I 

II Call Pickup [ I [ I [ I [ I [ I [ I 

II Automatic [ I [ I [ I 
Callback 

II Call Park [ I [ I [ I [ I [ I [ I 

II Consult [ I [ I [ I [ I [ I [ I [ I 

II Abbreviated- [ I [ I [ I [ I [ I [ I [ I 
Dial 

Fig. 2-Sample questionnaire sheet. 

330 TECHNICAL JOURNAL, JANUARY 1985 



3. All attendants were pleased with the console operation and 
design. 

4. User documents were good but could be made less redundant. 
5. Training was comprehensive. 

6.2 Sales teams 

Early interactions with sales teams and area marketing staffs were 
instrumental in identifying additional capabilities required of the 
product. For example, one group pointed out the need for line appear­
ance bridging capability. Their insight into system usage was instru­
mental in adding complete bridging functionality to the system. In 
another case, a team asked whether or not calls to an active station 
could be conferenced onto its existing call. The answer was yes, but 
this fact and various uses of the capability were never stated in user 
documents or discussed during training. This triggered an addition to 
both the documents and the training course. 

Currently, all product questions from sales teams are sent through 
the area staff to a national marketing center. This center has become 
another valuable source of product, documentation, and training needs 
data. These data are used to guide future product enhancements. 

VII. CONCLUSION 

In summary, the System 75 testing period spanned approximately 
18 months. This included very early and limited service at internal 
locations followed by full service to 12 customers. Table III summarizes 
the major milestones. One of the most significant events was the 
System 75 installation at the Lincroft location. This site included an 
extensive executive complex as well as a broad range of other users. 
This provided both the opportunity to discover shortcomings and the 
pressure to fix them. Next in importance was the availability of an 
operational demonstration system in an appropriate display environ­
ment for training and early customer presentations. Without such a 
facility most of the training feedback mentioned earlier would have 
been discovered when it was much more costly to correct. 

Table III-System 75 controlled introduction milestones 

Date 

December 1981 
November 1982 
February 1983 
July 1983 
Octoher 1983 
February 1984 
April'1984 
May 1984 

Event 

Initial shipment and allocation proposal 
Controlled introduction plan issued 
Limited early prototype installed in Holmdel, N.J. 
Training and demonstration facility in Holmdel, N.J. 
Full-capability System 75 installed in Lincroft, N.J. 
First customer system installed 
Press announcement 
First system with applications processor installed 

MARKETING INTRODUCTION 331 



Throughout this process of testing, significant enhancements and 
corrections have been made to the System 75 design and its support 
methods. While much of the data collected was subjective, it was 
timely and sufficient to improve the product. By blending it with 
experienced judgment, System 75 was brought to the marketplace 
quickly and at the same time fully tuned and ready for rapid manu­
facturing buildup. 

VIII. ACKNOWLEDGMENTS 

The AT&T Information Systems Services Division provided details 
of performance and service tracking operations. 

REFERENCES 

1. A. Feiner, E. J. Rodriguez, and C. D. Weiss, "System 75: Introduction and Overview," 
AT&T Tech} J., this issue. 

2. J. L. Gavegan, A. P. Ryan III, and G. E. Saltus, private discussions with J. A. Miller 
and J. J. Shanley. 

3. K. S. Lu, J. D. Price, and T. L. Smith, "System 75: Maintenance Architecture and 
Functions," AT&T Tech. J., this issue. 

4. T. J. Pedersen, J. E. Ritacco, and J. A. Santillo, "System 75: Software Development 
Tools," AT&T Tech. J., this issue. 

5. T. S. Kennedy, D. A. Pezzutti, and T. L. Wang, "System 75: Project Development 
Environment," AT&T Tech. J., this issue. 

6. D. E. Gordon, "System 75 User Survey Revisions," internal publication. 

AUTHORS 

Michael A. McFarland, B.S. (Electrical Engineering), 1970, Union College; 
M.E. (Engineering), 1971, Cornell University; Bell Laboratories, 1970-1977 
and 1979-1982; AT&T General Departments, 1977-1979; AT&T Information 
Systems Laboratories, 1983-. Mr. McFarland has developed quality assurance 
audits for transmission systems and has been engaged in product introduction 
and project management activities for TIC and TID carriers. He was based 
in St. Louis from 1979 to 1982 and provided liaison between Southwestern 
Bell and AT&T Bell Laboratories on a wide range of technical matters. In 
1982 he began coordinating System 75 product introduction activities. He 
currently supervises a group that is evaluating marketplace reaction to System 
75 and defining future system capabilities. 

John A. Miller, B.S., 1966, Gonzaga University; M.S. (Electrical Engineer­
ing), 1967, and Ph.D. (Electrical Engineering), 1971, Stanford University; Bell 
Laboratories, 1966-1982; AT&T Information Systems Laboratories, 1983-. 
From 1971 to 1976, Mr. Miller worked on a variety of exploratory projects 
leading up to the development of the Horizon® communications system. From 
1976 to 1980, he was Supervisor of the Horizon system Maintenance and Field 
Support group. Since 1980 he has been Department Head of the Support 
Systems department, responsible for project coordination, system test, and 
field support for System 75. Member, IEEE, Sigma Xi. 

332 TECHNICAL JOURNAL, JANUARY 1985 



ACRONYMS AND ABBREVIATIONS 

ACD 
AMDT 
APEX 
AUDIT 
BM 
BORSCHT 

CAS 
CCMS 
CM 
CMTS 
CO 
COM 
CP 
DCP 
DCS 
DDD 
DIP 
DLI 
DMA 
DPM 
DRAM 
DSP 
DTMF 
EDC 
EIA 
EPF 
FCS 
FSS 
GAMUT 
HDLC 
HIC 
HMM 
HWMAP 
INITMAP 
ISA 
ISDN 
LAN 
LATK 
LED 
LSB 
LTM 
MAP 

automatic call distribution 
ASCII message definition table 
angel processor executive 
data audit MAP 
board manager 
battery feed, overvoltage protection, ringing, supervi­
sion~ codec, hybrid, testing 
centralized attendant service 
control channel message set 
connection manager 
Change Management Tracking System 
central office 
communications manager 
call process 
digital communications protocol 
Distributed Communications System 
direct distance dialing 
dual in -line package 
digital line interface 
direct memory access 
dial plan manager 
dynamic random access memory 
digital signal processor 
dial tone multifrequency 
error detection and correction 
Electronic Industries Association 
electronic power feed 
frame check sequence 
file system server 
an automated testing tool 
high-level data link control 
hybrid integrated circuit 
high -level maintenance manager 
hardware MAP 
intitialization MAP 
Information Systems architecture 
Integrated Services Digital Network 
local area network 
local administrative tool kit 
light-emitting diode 
least significant bit 
leisure time manager 
maintenance action processes 

333 



MBus 
MCP 
MDM 
MESA 
MET 
MMU 
MPLPC 
MR 
MSB 
MSG 
MSTS 
NM 
NPE 
OGS 
OPTICS 
PBX 
PCM 
PCS 
PD 
PM 
PROM 
RAM 
RMATS 

SAKI 
SAT 
SBus 
SCCS 
SCD 
SD 
SIP 
SMAL 
SMDR 
SPE 
SSV 
TC 
TD 
TDM 
TS 
TSI 
TTL 
uM 
UL 
VLSI 

memory bus 
maintenance command process 
maintenance data manager 
management environment for software administration 
multibutton electronic telephone 
memory management unit 
multiple pulse linear predictive coding 
modification request 
most significant bit 
message service 
Milestone Schedule Tracking System 
network manager 
network processing element 
object generation system 
Oryx/Pecos test, inquiry, and control system 
private branch exchange 
pulse code modulation 
personal communication services 
project document 
process manager 
programmable read-only memory 
random access memory 
Remote Maintenance Administration and Traffic 
System 
sanity and control interface 
system access terminal 
system bus 
Source Code Control System 
switch control channel driver 
service dispatcher 
single in -line package 
structured macro assembly language 
station message detail recording 
switch processing element 
station service 
terminal controller 
time division 
time division multiplexed 
time slot 
time slot interchanger 
transistor-transistor logic 
user manager 
Underwriters Laboratories 
very large-scale integration 

334 TECHNICAL JOURNAL, JANUARY 1985 



AT& T TECHNICAL JOURNAL is abstracted or indexed by Abstract Journal in 

Earthquake Engineering, Applied Mechanics Review, Applied Science & Technology 

Index, Chemical Abstracts, Computer Abstracts, Current Contents/Engineering, 

Technology & Applied Sciences, Current Index to Statistics, Current Papers in Electrical 

('I,., Electronic Engineering, Current Papers on Computers & Control, Electronics & 

Communications Abstracts Journal, The Engineering Index, International Aerospace 

Abstracts, Journal of Current Laser Abstracts, Language and Language Behavior 

Abstracts, Mathcmdticdll\('vil'w\, Science Abstracts (Series A, Physics Abstracts; Series 

13, Electricll ,lfHi 1/(.( tf()I1IC ,\h~tracts; and Series C, Computer & Control Abstracts), 

Sciellce Citation Illclt·X, Sociological Abstracts, Social Welfare, Social Planning and 

Social Development, ,111(1 Solid State Abstracts Journal. Reproductions of the Journal 
by years are availahh· in microform from University Microfilms, 300 N. Zeeb Road, 
Ann Arbor, Michigan ·W 10f>. 




