
November 1985 Vol. 64 No.9

1\ J()LJ RNAL C)F THE AT&T CC)MPANIES

EDITORIAL BOARD

w. F. BRINKMAN
3

H. O. BURTON
2

M. IWAMA, Board Chairman l

P. A. GANNON4 J. S. NOWAK
I

l. C. SElFERT
6

W. E. STRICH
7

J. W. TIMKOI

J. CHERNAK
1

M. F. COCCAl

B. R. DARNALL I

A. FEINER2

T. J. HERR4

D. M. HILLs

D. HIRSCH2

S. HORING
I

N. W. NILSON
S

V. A. VYSSOTSKy
l

J. H, WEBER
8

1 AT & T Bell Laboratories 2 AT & T Information Systems 3 Sandia National Laboratories
4 AT&T Network Systems 5 AT&T Technology Systems 6 AT&T Technologies

7 AT&T Communications a AT & T

COMPUTING SCIENCE & SYSTEMS TECHNICAL
EDITORIAL COMMITTEE

M. D. MCILORy
l

Technical Editor
A. v. AHOI

D. l. BAYER
2

1 AT&T Bell Laboratories

EDITORIAL STAFF
P. WHEELER, Managing Editor
l. s. GOLLER, Assistant Editor
A. M. SHARTS, Assistant Editor

l. E. GALLAHER2

R. W. GRAVES2

M. G. GRISHAM
I

B. W. KERNIGHAN
I

2 AT & T Information Systems

C. CHILDS, Coordinating Editor of
the Analytical Issue

B. VORCHHEIMER, Circulation

AT & T TECHNICAL JOURNAL (lSSN 8756-2324) is published ten times each year by AT&T,
550 Madison Avenue, New York, NY 10022; C. L. Brown, Chairman of the Board; L. L.
Christensen, Secretary. The Computing Science and Systems section and the special issues
are included as they become available. Subscriptions: United States-l year $35; foreign-l
year $45.

Payment for foreign subscriptions or single copies must be made in United States funds, or by
check drawn on a United States bank and made payable to the AT&T Technical Journal, and
sent to AT & T Bell Laboratories, Circulation Dept., Room 1 E335, 101 J. F. Kennedy Pky, Short
Hills, NJ 07078.

Back issues of the special, single-subject supplements may be obtained by writing to the AT & T
Customer Information Center, P.O. Box 19901, Indianapolis, Indiana 46219, or by calling (800)
432-6600. Back issues of the general, multisubject issues may be obtained from University
Microfilms, 300 N. Zeeb Road, Ann Arbor, Michigan 48106.

Single copies of material from this issue of the Journal may be reproduced for personal,
noncommercial use. Permission to make multiple copies must be obtained from the Editor.

Printed in U.s.A. Second-class postage paid at Short Hills, NJ 07078 and additional mailing
offices. Postmaster: Send address changes to the AT&T Technical Journal, Room 1 E335, 101
J. F. Kennedy Pky, Short Hills, NJ 07078.

Copyright © 1985 AT & T.

AT&T
TECHN~CAL
JOURNAL
VOL. 64 NOVEMBER 1985

CopyrightlC 1985 AT&T. Printed in U.s.A.

ANAlYTICOl

NO. 9

ANAL YTICOL-An Analytical Computing Environment 1995
C. Childs and C. R. Meacham

FE-A Multi-Interface Form System 2009
R. M. Prichard, Jr.

Data Extraction Tools 2025
D. G. Belanger and C. M. R. Kintala

Datastream-A Language for Large Files 2037
D. Swartwout

HEQS-A Hierarchical Equation Solver 2061
E. Derman and E. G. Sheppard

IFS-A Tool to Build Integrated, Interactive Application 2097
Software

K.-P. Vo

T -A Data Management System 2119
R. J. Yanofchick

Design of the S System for Data Analysis 2131
R. A. Becker and J. M. Chambers

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

ANAL YTICOL-An Analytical Computing
Environment

By C. CHILDS* and C. R. MEACHAMt

(Manuscript received April 9, 1984)

A good workman is known by his tools.-Proverb
This paper is an overview of this special issue of the AT&T Technical

Journal on ANAL YTICOL, an analytical computing environment developed
by AT&T and based on the UNIX™ operating system. ANALYTICOL was
developed to provide specific capabilities of value to business analysts. The
environment has the potential to provide substantial productivity gains and
quality improvements for analysts working on ad hoc studies, and analysts
and programmers developing applications. The other papers in this issue
describe some of the individual software tools that make up the ANAL YTICOL
environment. This paper describes a set of generic tasks that need to be
performed in solving business analysis problems, and how these tools can work
together to perform the tasks and build an application system. An example of
a typical business problem in the telecommunications industry is provided to
illustrate the use of the tools in a business environment.

I. INTRODUCTION

In the early 1980s, the Bell System underwent a great deal of change,
some directly under its control, some caused by external forces. The
ability to respond rapidly to new business problems was of paramount
importance. In response to this need, research was begun at AT&T
Bell Laboratories on using the computer more effectively as a tool for
business analysts performing modeling and financial studies. The

* AT&T Bell Laboratories. t AT&T Bell Laboratories; present affiliation Bell Com­
munications Research Inc.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service system!> without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1995

articles in this issue describe the individual tools that, when combined
with the UNIX system, provide a highly flexible and evolving environ­
ment for. such analytical studies.

In this overview we describe the nature of business analysis and its
implications for analytical computing techniques. The scale of prob­
lems that are· typically addressed by business analysts ranges from
moderate to large, often with multimillion-byte data sets and equations
with many variables. An example of a business problem, the modeling
process that led to its solution, and the application program resulting
from the work are provided to demonstrate the use of ANAL YTICOL.

Analytical computing shares with many other computer applications
a number of generic functions including interactive, form-oriented
data entry and user-interaction management. As a result, many of the
tools described here are in general use in a variety of applications. We
describe how these tools are applied specifically to business analysis
and the pros and cons of tightly integrated systems versus loosely
integrated tools. Finally we describe the productivity gains that these
tools provide when they are used as reusable modules for software
application within the larger UNIX system development community.

II. A CHANGE IN APPROACH TO BUSINESS ANALYSIS AND
SOFTWARE

AT&T Bell Laboratories and Bell Communications Research often
address business problems that cannot easily be addressed by conven­
tional approaches and therefore require development of new methods
and techniques. New solutions to these problems are usually demon­
strated through a prototype computer software implementation to
determine their effectiveness. If the particular method is generic in
nature, the successful prototypes are then given to other business
analysts for experimentation. The prototype is then tailored to meet
an individual company's needs, polished into business application
software, and added to its repertoire of business tools. If the problem
and solution are ad hoc and not expected to be readdressed, the results
are reported and the understanding of capabilities needed to support
such analysis is increased ..

2.1 The old way

Many business analysts have limited computer experience. The
conventional approach has been for an analyst to rely on programmers
to obtain potentially useful data, manipulate it under the analyst's
direction, and eventually code an analytic model. Or, the analyst
programs in a traditional language, such as Fortran or COBOL, to
develop models directly. Frequently model changes or "what-if" mod­
eling studies are difficult and time-consuming to implement in the

1996 TECHNICAL JOURNAL, NOVEMBER 1985

typical "waterfall" model of software development. (For example, it
has taken over six months for some tax changes in depreciation to be
included in one capital asset analysis program.) Even if the time frame
is acceptable in a business sense, these resources can be justified only
for software that has major effect on or repetitive use within a
corporation. Exploratory interactive analysis or ad hoc studies cannot
be done effectively in this type of environment.

2.2 The new way

New analytical application systems can be built far more produc­
tively by rapid prototyping with appropriate tools. If analysts are given
an environment where they can directly use a computer and high-level
languages-frequently referred to as fourth-generation languages­
then many more exploratory and ad hoc studies can be undertaken,
and understanding of the decision-making process can be increased.
But how is it possible to bring about fundamental change in the way
business analysts approach their tasks? First, it is necessary to create
an alternative. We propose ANAL YTICOL as an alternative.

The work of ANALYTICOL began when an expiring mainframe
lease created the opportunity to develop a new analytical computing
environment within an AT&T organization containing both business
analysis and computer science research activities. Development began
with a fundamental decision to use the UNIX operating system to
support the environment. Another critical decision was to provide
sufficient hardware, including high-quality graphics printers and ter­
minals, high -speed communications, and cnecessary computing power
in the form of super minicomputers and work stations networked
together.

In the beginning stage of the research, the proximity of the computer
scientists to a willing test population of business analysts provided
early identification of system requirements and rapid information
feedback. This contributed substantially to the selection and character
of the tools and the quality and usability of the software.

III. CURRENT STATUS

Use of the ANALYTICOL system within AT&T is growing both
through demonstration of the productivity gains by analysts and
application developers and by word-of-mouth reports by enthusiastic
observers. Each of the ANAL YTICOL tools exists either as a working
prototype or as a fully supported tool, and each has been effectively
applied to several problems. The tools are implemented in the portable
UNIX operating system environment and have been executed on a
variety of hardware including work stations, minicomputers, and
mainframes under UNIX System V, Releases 1 and 2, and the Uni-

OVERVIEW 1997

versity of California Berkeley Releases 4.1 and 4.2 BSD. To use all of
the tools effectively, a typical configuration has at least 2 megabytes
of main memory and 20 megabytes of disc memory plus high-speed
tape drives. Because of the full-screen nature of some of the terminal
interfaces, 1200 baud or higher terminal access is recommended.

In addition to the basic ANALYTICOL environment that we de­
scribe here, many specialized analyticitl environments also exist that
include ANALYTICOL tools, commercially available database man­
agers and modeling systems, and data filters translating data formats
between tools. Section V describes a specialized tool that was created
with ANALYTICOL tools to analyze pricing options for telephone
services in a marketing analytical environment.

IV. THE ANAL VTICOL APPROACH

The computing model selected for this environment was a set of
independent, high-level, efficient, and functionally specific tools ad­
dressing generic analytical tasks that could be loosely integrated into
more specialized application packages. This model enhances the user's
tool development many times over by creating reusable software. In
the UNIX system environment, capabilities such as redirection, pipes,
and the shell language facilitate this loose integration. Other UNIX
system commands extend the environment, especially when ASCII
flat files form the data interfaces. Furthermore, the UNIX operating
system provides users with flexibility in the selection of terminals
(Termcap/Terminfo) and computers. This is important because, as
tool developers, we cannot foresee who our eventual users will be or
what their· hardware environments will be.

Determining functionally generic tasks common across a variety of
ad hoc studies took the combined and concerted efforts of a group of
computer scientists and a group of business analysts. It was the close
interaction of these two groups that enabled the identification of a set
of generic analytic tasks that could be addressed by a small set of tools
which, in turn, effectively could be used to solve a large set of problems.
The five generic tasks that were identified, and the tools that address
them, are described in the rest of this section. Figure 1 shows the data
and work flow among the tasks.

4.1 Data acquisition

The first step in exploratory data analysis is typically the acquisition
and preparation of data. Usually data from many sources-often not
computerized-must be integrated to provide the foundation for analy­
sis. Examples of sources of data are previously compiled operations
data about customer calling patterns, cost data for providing a service
using new and existing technologies, demographic data from the cen-

1998 TECHNICAL JOURNAL, NOVEMBER 1985

DATA EXTERNAL TO
OPERATIONS DATA~ SURVEY DATA THE COMPANY

I : I' DATA~aUISITION----
DATA REFINEMENT!ANO STRUCTURING

DATA ANALYSIS AND MODEL BUILDING

~
"------REPORT AND GRAPH GENERATION

~
SPECIALIZED TOOL BUILDING

Fig. I-Flow of an analytical project.

sus, and customer survey data on types of service selected. Two papers
in this issue describe tools that provide this data-acquisition function.
The paper by Belanger and Kintala describes two tools for data
acquisition based on new program-generation techniques. These tools,
TTU (Tape to UNIX system) and IMX (IMS to UNIX system),
address the problem of transferring data residing in large mainframe
databases to UNIX systems. TTU takes a description of an IBM­
formatted tape and creates an efficient C language program that reads
the selected records and files from that tape onto a UNIX system file.
IMX takes a description of an IMS database and creates a COBOL
program. This program can be transmitted by remote job entry or
other methods (e.g., the UNIX system command co) to the system
running IMS and then executed, with output data returned to the
UNIX system environment by a route appropriate to its size.

The paper by Prichard explores the use of editors for forms entry
and management. With FE (Form Editor) an analyst can paint a form
and describe attributes of data to be collected, including intraform
data validation and computation. For those more proficient in pro­
gramming, fields can be filled by UNIX system commands (e.g., date)

and user-supplied C language functions. When selecting FE to do data
management, a file cabinet model is provided. Forms, as objects, can
be manipulated by the user with a command language similar to that
of the ed file editor for actions such as insert, append, move and
delete. When a form is displayed, the v i full screen editor is the model
for cursor positioning and data entry and update. Both features were
designed to build on UNIX system editor training. A less powerful full
screen editor is also available for users who do not know vi. For
applications that need to interface with another data manager and
need only the interactive form display and editing features, a C
language library exists.

OVERVIEW 1999

4.2 Data reFinement and structuring

The UNIX operating system file system is adequate for much of the
data storage and retrieval needs. All of the data-acquisition processes
mentioned above provide flat UNIX system files (with the capability
of building implicit hierarchies). White space and new lines are enough
to meet minimal structuring needs, but some problems require hier­
archical or relational structures and query capabilities. Two tools
described by Swartwout and Yanofchick have been created within
ANAL YTICOL as experiments in database management aimed at
analysis.

The paper by Swartwout describes Datastream, a simple language
with expression handling, control structures, and built-in I/O. It makes
it reasonable to query large (multiple megabyte) flat files interactively
for data selection, refinement, and computation.

The paper by Yanofchick describes a hierarchical data manager, T.
One of its most interesting capabilities is that a node can consist of a
shell script. Access to such nodes can cause programs to be executed
whose outputs appear as virtual data in the hierarchy.

4.3 Data analysis and model building

Data analysis and model building are the essence of the analyst's
work. Such work requires a diverse and flexible set of functions and
may include the interactive application of numerical or statistical
procedures and exploratory graphical techniques. It may also include
iterative development and solution of a series of equations-some of
which may be simultaneous sets-that model financial or corporate
problems. Often the analysis has multivariable equations. Two tools
are available to meet these problems, Sand HEQS.

The paper by Becker and Chambers describes S, a language and
system for interactive data analysis. S provides a comprehensive set
of statistical and graphical functions for interactive use, and mecha­
nisms for users to extend its functional capabilities and language.
Because its data structures are rich, yet easy to manipulate, it carr also
serve the data-refinement and structuring needs of many applications.

The paper by Derman and Sheppard describes HEQS (Hierarchical
Equation Solver). This tool provides algebraic and logical expertise
normally implicit in human model solving. Users can define, debug,
change, and interactively solve nonprocedural models described as sets
of linear and nonlinear multivariable equations. It provides for what­
if, goal-seeking, impact analysis, and sensitivity analyses.

4.4 Report and graph generation

Reports and graphs are important not only to summarize and
document the results of a project, but also for information updating

2000 TECHNICAL JOURNAL, NOVEMBER 1985

during the analysis stage. A report describing the project and its
conclusions must be produced efficiently and with high quality. Often
it is a mixture of text, graphics, filled-in forms, and tables. Many tools
support this need, including FE, S, D, and UNIX system commands
(e.g., rom and nroff). D (Display system for reports and graphs) is part
of ANALYTICOL and is built on the S graphics capabilities. It
provides a nonprocedural language for describing tabular reports and
business graphs (pies, bars, and two-dimensional graphs). Although
its capabilities are similar to those of many Database Management
Systems (DBMS) that create reports and graphs, its principal strength
is that it is an independent tool and offers output flexibility advantages
to applications and studies not otherwise using a DBMS. Since it
represents commonly available technology, no further mention is
included in this series.

4.5 Specialized-,ool building

If the data analysis and model do not address an ad hoc need (or
the solution can address a large set of problems and therefore is no
longer ad hoc), then the analyst has reached the point where the
analysis and model solution are known and ready to be "packaged"
into a specialized tool for use by others in the future. In other words,
the requirements are now understood and could be documented, and
application software should be created.

However, by using ANAL YTICOL in the prototype stages, major
pieces of the application already exist. They need to be integrated
smoothly. A user interface needs to be created that hides the individual
tools and intermediate steps and places the user in control of his/her
work environment. The last paper, by Vo, addresses this problem.

The Interpretive Frame System (IFS) provides a block-structured,
high -level programming language for specifying both the structural
information of a system and the interactions between its various
subprocesses, coprocesses, and human users. The application builder
can create polished user interfaces (menus, question/answer, forms,
help, and other dialogue) for assortments of tools from scripts and,
thus, separate program function from user interface in a consistent
way. To end users, the application appears as a single program allowing
them to analyze their problem within an interactive structured envi­
ronment. Some users have described it as an application-specific shell.

v. AN EXAMPLE

In this section, we give an example of using ANAL YTICOL to solve
a problem. To put things in perspective, we briefly describe what the
analysts are trying to do, and then we discuss the ANAL YTICOL

OVERVIEW 2001

tools that help in developing the model. Finally, we show how the
applications developers can use the ANAL YTICOL tools to build a
system that contains this model for others to use.

One practical business problem is to estimate the profitability of
services under alternative pricing scenarios. Analysts want to' under­
stand what will happen if alternative pricing plans are available to
customers for certain types of telephone usage. In our example, the
analysts investigate optional calling plans that feature discounts on
intrastate or interstate direct-distance-dialed calls placed in the night
or weekend period. A customer who elects an optional calling plan
"buys" into the plan each month and pays for toll calls according to a
discounted rate schedule.

To assess the profitability of the plan, the analysts model the
demand response to the plan, as well as any potential changes in the
calling behavior of all customers to whom the plan is initially offered.
To do this, the analysts obtain pre- and post-usage measurements on
the customers. Since this approach involves many usage measurements
and large customer populations, the method of data management is
an important consideration.

The analysts use two ANAL YTICOL tools that are helpful in
manipulating large amounts of data: TTU and Datastream. The TTU
tape-reading facility can read at high speed the 35- to 80-megabyte
data files that contain the monthly customer usage data collected on
mainframes. TTU reduces the read time of this data to one-half hour
from the roughly seven hours that other facilities would take. And it
also provides checking, extracting, and summarizing of the raw data
while it is being read from tape. The second tool the analysts choose
is Datastream, which they use for more complex extraction, compu­
tation, and general clean-up for data residing in the very large flat
files created by TTU. Datastream also is used to provide a link between
individual customer-level information located on various data files. A
master file is created, with one record per customer, of pointers to
that customer's information in each of several data files.

S is used to generate graphs for graphical analysis to identify and
analyze subscriber probabilities for the different calling plans. It helps
determine empirical curves and to fit the curves with different func­
tional forms, using both linear and nonlinear methods. This becomes
the working model of customer choices.

The analysts then tailor the model for their use in predicting
customer reactions to other alternative pricing options. For this they
create an FE form on which to enter a pricing option. They add
financial equations with the equations of the customer choice model
to do revenue and profitability studies. HEQS is applied to the equa­
tions of the total model and the pricing options being studied in order

2002 TECHNICAL JOURNAL, NOVEMBER 1985

to solve the profitability model. They use the what-if and goal-seeking
capabilities of HEQS to explore other scenarios, and they use the
sensitivity analysis capability of HEQS to study how customers might
react to different pricing schemes and thus help predict the profita­
bility of the different options. Finally, they document their results in
reports and graphs using D.

As a result of their work, the analysts now have a customer-calling
pre/post database, a customer-preference model, a form to enter
pricing options, a model of the financial equations, and a model of the
reports and graphic output displays. And, in the process, the analysts
have developed a predictive model that can be tailored by an individual
telecommunications company to meet its specific needs. What is
needed is an application system to be used by other market analysts
in studying future pricing options.

A key point is that the only additional programming needed to build
this application system is the end-user interface and on-line assistance
(help) and the reformatting of the data between FE, HEQS, D, and
the database. IFS integrates the tools and data interfaces and provides
the end-user menus and help messages; the data formatters are pro­
grammed in shell or C language. The only interactions an end user
must make with the resulting application system are entering the
pricing plan on a form and executing the tailored system by choosing
appropriate paths through the system via IFS menus to meet his or
her needs. The new optional pricing tool is now added to the tool set
making up the marketing analytical environment.

VI. INTEGRATION, ARCHITECTURE, AND FUTURE DIRECTIONS

The computing model for ANAL YTICOL is a set of independent,
functionally specific tools that can be used as building blocks, with
the UNIX system and IFS providing the glue to bring them together.
This model requires that the analyst or application builder be able to
convert data from one data format (output of x) to another (input of
y), as described in the example in Section V. Taken to the extreme, if
there are n tools, this model may require up to n(n -1} data filters.
Furthermore, the application builder must determine an architecture
and sometimes create software for some of the manual steps the
analysts may have taken. A tightly integrated ANALYTICOL system
could avoid this.

To experiment with tight integration, S, HEQS, FE, and D were
combined using IFS as a menu/help interface and the utilities in S for
making HEQS, FE, IFS, and D appear as S functions. The tools
themselves were not modified. IFS and S became communicating
cop rocesses and the S data structure became the common data struc­
ture by which all tools could communicate (i.e., since the tools were

OVERVIEW 2003

not modified, the model for n tools would require at most 2n filters).
Obviously there was overhead, but the performance remained in the
acceptable range for interactive studies. For only occasional S users,
there was the added advantage of a menu interface to the more than
300 functions, plus the capability to learn and switch into the S
command mode whenever desired. A small amount of FE functionality
was lost since some form layouts cannot be described in S data
structures.

Although some analysts like this integrated tool and have used it in
studies and applications, it was not as popular as expected. The S data
model is not a natural one for thinking . about forms or equation
modeling. Unless all the functions are required for a problem, many
analysts prefer loose integration, using the tools independently and
specializing their data filters to meet their singular needs. Therefore,
the experiment has met only limited success. A new experiment in
tight integration is under way to define and build the tools around a
new common data structure that fits this set of the generic tasks in a
more natural way.

Furthermore, while greater integration may be preferred for some
analytical problems, experience shows that many users use on~y one
or two tools for any specific problem. Generic filters that bridge tools
commonly used together in the extended UNIX system environment
have been developed by some users, and are beginning to be shared
and added into the ANAL YTICOL environment. This is at least a
short-term solution to redundant filters and to further reduce the need
for programming. It has the advantage of keeping the environment
open to new tools developed by anyone, anywhere. It is therefore more
natural to the UNIX system.

The architecture of a project can have a major effect on its ability
to use tools as components. One architecture that works particularly
well is that of independent processes whose executions are controlled
by a common process. Communication passes dynamically between
each process and the control process and through shared data files.
The order of execution of the application's functions is controlled
directly by the end user responding to either results of previous
functions or external needs. This is the architecture of the example in
Section V, and the one for which IFS was designed.

The ANALYTICOL environment will continue to evolve. In addi­
tion to exploring questions about integration and architecture, work
is needed to standardize common elements among tools, such as error
handling, style of error messages, common commands usage, and
common editing techniques. Other future work will extend the envi­
ronment to include new tools and emerging technology such as data­
base machines, distributive computing, advanced work stations, bit-

2004 TECHNICAL JOURNAL, NOVEMBER 1985

map graphics, and user interfaces, through pointing devices such as
mice, fingers, and light pens.

VII. EFFECT ON PRODUCTIVITY AND QUALITY

We have described a process of analytical computing, and an envi­
ronment of software tools that were created to provide for more
effective use of the computer and to increase the productivity of
analysts involved in business and financial studies. But, how do you
measure increases in productivity?
- Some statistical measures exist that can be applied to software, such
as lines of code per programmer months. But since the languages are
very high level (more power per line) and applications are done in less
time, this measure is not very useful. The measurement of errors per
lines of code can show increased quality for an application when the
tools' source code is included in the denominator, since the tools have
been used extensively and introduce fewer errors in the numerator.
But statistical measures do not seem to capture the benefits effectively.
Since there have been no controlled studies, we can only offer the
following observations.

For two analytical application systems, resources were estimated for
the old way and compared to resources consumed in the new way.
Details of the applications resources leading to these conclusions are
provided in Table 1. In both cases the productivity gain-about a
factor of 5-led both projects to conclude the benefits were substantial.
(The appearance of the value 5 in both applications should be consid­
ered only coincidence. The similarity of lines of code per staff-month
for either approach within each application is indicative of the appli­
cation complexity.)

In a recent survey of applications developers using FE, IFS, and
D-these three tools offer more generic functions and have had

Table I-Experiences of two analytical applications

New Way
Old Way (After (Evolving
Req. Known) Req.)

Application 1. Supporting Rate Planning
Linear months 7 1.5
Staff months 21 4.5
Lines of code* 50,000 10,000
Lines/staff month 2,333 2,222

Application 2. Financial Analysis of Business Plans
Linear months 8
Staff months 32
Lines of code* 10,000
Lines/staff month 313

2
6

2,600
433

Productivity
Factor for

Staff Months

>5

>5

* These figures only include code written specifically for each application.

OVERVIEW 2005

significant use outside analytical computing-85 percent showed major
productivity gains and 40 percent considered these tools critical to the
success of their projects.

Benefits not directly associated with the code development process
are even more difficult to quantify. Fringe benefits, such as real-time
validation of data entry that would not otherwise have been provided,
have contributed to improved user interfaces and decreased user error.
Such features were not a project requirement and did not enter into
the benefit analysis leading to the selection of the tools. However,
both types of benefits have improved the quality of the application
and have led to increased user satisfaction.

A tariff for a new service was based on a study, of five alternatives.
To what extent did the study, which would not have been done without
the tools, contribute to a better decision? This type of benefit is very
difficult to quantify!

We feel that the environment of ANALYTICOL has been successful
in increasing productivity of business analysts and application devel­
opers. We base this conclusion primarily on their acceptance and use
of the tools. We invite you to read the next seven articles in this
journal, which describe the generic tasks and features of each tool in
more detail, and reflect on our conclusion.

VIII. ACKNOWLEDGMENTS

While we are grateful to many people who have contributed to
ANALYTICOL and this paper, we especially want to thank J. P.
Downs for taking the risks and providing the leadership and resources,
and Lynn Grala for sharing her experiences in the rate studies exam­
ple.

AUTHORS

Carolyn Childs, B.S. 1965, M.S. 1966, (Mathematics), University of Mas­
sachusetts; M.S. (Computer Science), 1974, University of Wisconsin-Madison;
Instructor of Mathematics, 1966-1975; Assistant Professor, 1976; University
of Wisconsin Center System, Waukesha; AT&T Bell Laboratories, 1976-.
Ms. Childs is currently Supervisor, Com'mon Software Tools Group. At AT&T
Bell Laboratories she has contributed to methods and systems supporting
analysis for project evaluation and economic impact of new technology. Her
involvement in the creation and support of the analytical computer environ­
ment reflects her research interests in reusable software, tools and develop­
ment environments. Member Phi Beta Kappa, Phi Kappa Phi, IEEE Com­
puter Society.

C. Rebecca Meacham, B.S., (Mathematics), 1969, Millsaps College, Jackson,
Mississippi; M.S. (Mathematics), 1973, The University of Mississippi; M.S.
(Computer Science), 1979, The University of Tennessee; Mathematics Instruc­
tor 1969-1979; Member of Technical Staff at AT&T Bell Laboratories, 1979-

2006 TECHNICAL JOURNAL, NOVEMBER 1985

1983; Bell Communications Research, 1983-. Ms. Meacham is currently a
Member of Technical Staff in the Analytical Computing Systems District at
Bell Communications Research. Upon joining AT&T Bell Laboratories in
1979, she helped create a software development environment in which analysts
can create and experiment with new modeling techniques, participated in the
experiment that fully integrated the ANAL YTICOL tools, and developed
several prototype application systems using ANAL YTICOL tools.

OVERVIEW 2007

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

FE-A Multi-Interface Form System

By R. M. PRICHARD, JR.*

(Manuscript received April 9, 1984)

The Form Editor system provides visual "form" and "menu" capabilities for
applications based on the UNIX™ operating system. It offers many features
usually not found together in other systems that perform similar functions.
For example, it includes a program-level interface library, an executable
component for data collection, and a multi-hardware/operating system envi­
ronment. Because the software and language interfaces are simple and require
minimal programming background for most applications, a significant reduc­
tion in system design and development time is possible. This paper discusses
the capabilities and implementation of the Form Editor system.

I. INTRODUCTION

Electronic forms! are used in many programming applications to
produce software systems with good end-user interfaces. A "form" is
an image of a printed document with video attributes or characters
representing the locations of required or requested information. Such
forms generally fall into one of the following three classes: (1) control,
(2) report, or (3) data collection.

Control forms (Fig. 1a), often referred to as control frames! or
menus,2 provide processing control by allowing a user to enter a letter
or number that corresponds to the displayed list of allowed processing
options. The program, on receiving the selected request, can respond
in many different ways. For example, it can display a different control
menu, report, data-entry form, or message, or prompt the user for
additional input.

* AT&T Bell Laboratories.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

2009

CONTROL MENU

Choices are:

1 - Enter a data record.
2 - Modify data record(s).
3 - Generate Summary Report.
4 - Exit system.

0- Enter choice here

(a)

SUMMARY REPORT

Number of data records - 768
Average Salary - 34433.45
Average Age - 37.2

(b)

DATA ENTRY FORM

Name: ______ _

Age: Salary: __ _

Address : _____ _

Comments:

(c)

Fig.1-(a) Sample control form. (b) Sample report form. (c) Sample data collection
form.

Report forms (Fig. Ib) can contain descriptive text and data (proc­
essed or unprocessed) and are static displays. To change the data on
the report, the user changes report input data elsewhere, and regen­
erates the report.

Data-collection forms (Fig. Ic) can require significantly more inter­
action by virtue of the amount and types of data that must be entered
or changed. These forms can exceed the horizontal and vertical di­
mensions of the user's terminal and the form fields may need to be
randomly accessed, validated, and/or computed. In addition, advanced
text editing capabilities such as character insert, delete, or overstrike
may be required.

What should be noted at this point is that the capabilities that must
be provided by application software to support the possible user
interactions with forms can vary significantly. Criteria have been
defined for designing forms3 and several forms-management languages
and systems4

-
6 have been described. In these reports, emphasis is

placed on the generic operations on forms within office-automation
systems and the interaction between the system users and the forms
is barely addressed.

The FE system was developed as a programming tool for UNIX
operating systems that need to support form-oriented user interfaces.
Though it was initially developed to support data-collection applica-

2010 TECHNICAL JOURNAL, NOVEMBER 1985

tions, the system has been used to support all three form classes within
an application.

The FE system is easy to integrate into new or existing application
software and the form-definition language is simple and supports many
capabilities required by form-oriented applications. It consists of an
executable system component (Executable FE) and a library of C
programming language 7 routines. The library provides terminal screen
management and field manipulation routines. Support for CRT as
well as non-CRT terminals is provided via the Termcap8 or Terminfo9

databases, and "hooks" to standard UNIX operating system utility­
and application-specific programs exist to provide capabilities not
directly supported by the FE system.

II. CURRENT STATUS

The FE system (version 3.1) is currently used in more than 100
applications and is available at most UNIX operating system-based
computers in AT&T. The software currently runs on Digital Equip­
ment Corporation's VAX* 11/750-780 and AT&T's 3B processor line
under AT&T UNIX System V or UNIX 4.1/4.2 BSD operating
systems. It has also recently been installed on the AT&T UNIX PC.
The FE system (both the library and executable FE) is written in C
with the executable component requiring about 120K bytes of memory
and the library requiring 85K bytes.

The FE system has been used for a wide variety of applications in
AT&T. Most applications (about 80 percent) are developed by indi­
viduals who are not software experts, but engineers, secretaries, and
managers with some familiarity of the UNIX operating system. The
complexity of these applications varies greatly. For example, several
recruiting and professional society membership databases are appli­
cations that require only FE and a few shell program filters, whereas
an automatic test program generator for integrated circuits integrates
FE with many other system components. It has also been used as a
report generator and to provide simple spread sheet-like capabilities
for several applications.

The FE library has been used for those applications that require
rigid control over system processing and/or data collection. Examples
of typical applications that currently use the library include a field­
oriented visual editor, front ends for several database management
systems, and a budget management sy~tem. The library has been
integrated into several commercial systems currently under develop­
ment and is being considered as a standard software development tool
in several AT&T Bell Laboratories computing centers.

* VAX is a trademark of Digital Equipment Corporation.

FORM EDITOR 2011

III. THE FE SYSTEM ARCHITECTURE

The executable FE system module operates as an editor in which
the unit of reference is a form instead of a line or record in text editors
such as ed or vi. Instead of inserting or deleting records in the data
file and changing characters in a record, the user inserts or deletes
forms and changes the fields contained on a form. Each form is
described in a Physical Form Definition File (PFDF) and sets of
PFDFs can be combined or concatenated by Logical Form Definitions
(LFDs).

The executable module actually consists of two executable programs,
as shown in Fig. 2. FE provides the end user with the capabilities
provided by the FE library routines and the FEio module provides the
underlying database management functions.

FE is usually invoked from within a shell program that passes the
name of the data file, the path of the PFDF directory, the name of a
file that contains the LFDs, and other optional arguments. These
arguments can be used to custom tailor the FE system for an applica­
tion. FE internally activates the FEio module and establishes co­
process communication using pipes over which simple commands are
sent to instruct FEio to perform such functions as data searching,
retrieval, and update. FE i 0 responds to these commands by returning
a command status or one or more data records. .

There are two advantages to this type of interface. An application
can provide its own data interface program when the format of the
FEio data file is inappropriate, and FEio can be used as a concurrent
process by other application software components to provide a direct­
access interface to executable FE data files.

The executable component of the. FE system functions much like a
filing clerk with the responsibility of maintaining the forms in one or
more filing cabinet drawers (FE data files). For example, executable
can be instructed to place a new form at a specific location in the file
or search the data file for a form to be "pulled" for review or changes.

END USER
EXECUTE FE

PFDFs

CJ

FE FEio

FE ACTIVATES FEio FEio INTERFACES FE WITH DATA FILE

Fig. 2-End user, FE, and FEio interrelationship.

2012 TECHNICAL JOURNAL, NOVEMBER 1985

The FE data file can contain many different types of forms (logical
forms), each of which may be referenced by its relative location from
the front, or top, of the file or by its associated name. As forms are
inserted into the data file, the size of the file increases; as they are
deleted the size decreases.

IV. LIMITATIONS

FEio functions much like any text editor. It creates a temporary file
to which modifications are applied and builds an internal index that
points to the file locations of the forms each time it is invoked. This
initialization time grows linearly with the size of the FE data file.
However, once past the initialization step, the response time for most
commands (including interform searching) is usually within three to
six seconds. Editing data files that are close to the host system's file
size limitation (usually 1 to 2 megabytes) can cause file overflow
problems. When this happens, FE attempts to terminate processing as
gracefully as possible.

V. THE FE SYSTEM FORM-DEFINITION LANGUAGE

Each form used in an application requires the creation of a PFDF
that contains a description of the form's template and the attributes
of its associated fields written in FE'S high-level form definition
language. These form-definition files can be concatenated or "pasted"
together at run time to form "logical forms." This logical form capa­
bility provides the application developer with the ability to treat
PFDFs as modular constructs that·.(!an be used as building blocks for
form definition. For example, if two distinct application forms (Fig. 3)
contained a common section, PFDF "A" could define the common
section and two other PFDFs ("B" and "C") could define the unique
sections. Two LFDs specifying how the FE system is to "bind" the
form components together would then be defined.

5.1 Dynamic form construction

The internal representations of forms defined for an application are
not static in the sense that they must be compiled along with the FE

source code. Instead, each form is translated and loaded into memory
at run time where it remains until a request to load a different form
is received.

This loading strategy provides the following benefits:
1. Logical forms sharing a common PFDF will always be con­

structed correctly.
2. PFDFs may be modified during run time to provide "dynamic"

forms.

FORM EDITOR 2013

Name: _____ _

Phone: ___ _

Address: __ _

COMMON
SEGMENT Name : _____ _

Phone: ___ _

Publications:

Date: ___ _

Title: ____ _

Name: ____ _

Phone:

PFDF A

Address : ____ _ Publications:

Date: __ _

Title: ____ _

PFDF B PFDF C

LOGICAL FORM 'A,B' LOGICAL FORM 'A,C'

Fig. 3-Logical forms example.

3. Memory requirements are greatly reduced for multi-user, multi­
form applications.

The major drawback associated with this strategy is that the time
required to translate and load a form into memory is directly propor­
tional to the size of the form. This translates to about two or three
seconds for a form 24 lines or fewer and up to 20 seconds or more for
forms larger than 100 lines. However, the forms in most applications
seem to be in the 20- to 3D-line range and two or three seconds seems
to be acceptable. For applications that frequently switch between many
large forms, the overhead may be unacceptable.

5.2 Physical form definition files

PFDFs are ASCII data files that can be created with any text editor,
e.g., ed, vi, etc., and may define an entire form, or a form segment
common to many forms. Because PFDFs are simple text files and are
translated and loaded at run time, they can also be created during run
time by application software. For example, an FE/Database Manage­
ment System prototype exists that dynamically creates PFDFs from
the database definition (transparent to the end user), and allows the
user to input, modify, and query the database using the executable
component of the FE system.

Each PFDF consists of three sections that describe the associated
form's template, field attributes, and field help text. Only the template
section is mandatory; an application could omit all other PFDF
sections and default attributes would be assigned for all fields. Figure
4 shows the organization of these three sections on a typical PFDF.

2014 TECHNICAL JOURNAL, NOVEMBER 1985

EMPLOYEE DATA

PAN: Location:

Name: .--TEMPLATE

Org: Phone: ____ _

$names

pan {liznk} loc {lllnn. : SET($loc :wh/hqmh/Py}}

name

org phone

Shelp
loc{Valid entries are:

mh - Murray Hill
ho - Holmdel
wh - Whippany
py - Piscataway}

...---ATTRIBUTE SPECIFICATION

---HELP

Fig. 4-PFDF format and organization.

The "Template" section describes the form image that is displayed
on the terminal. Field locations (indicated by a series of contiguous
underscore characters), lengths (the number of contiguous "_"s), and
simple template text are elements of this section.

The "Attribute Specification" section of a PFDF is used to as­
sign attributes to the fields that appear in the template section. Each
field can be defined in terms of a name (Fname), data attributes
(Att_tuple), a value assignment expression (Asg_expr) and a valida­
tion rule (Valid_rule) according to the following syntax:

Fname {Att_tuple,=Asg_expr,: Valid_rule}

Fname consists of a string of characters taken from the character
set {A-z,O-9_-,.}. Att_tuple is a coded five tuple that define~ the
following field attributes:

1. Field enhancement attribute (underline, inverse video, red, blue,
etc.).

2. Data type (integer, numeric, upper case, dollar, etc.).
3. Justification (right, left, centered, zero-fill).
4. Constant/Default/Locked/Shared/Protected value.
5. Key field (for interform searching).
For example, the first field of the form shown in Fig. 3 has Fname

declared as "pan," its associated attribute tuple as "liznk." This
attribute tuple decodes as follows:

'l'-Underlined on CRT,
'i' -Integer field,
'z' -Zero filled,
'n' -No protection,
'k' -An interform search key field.

FORM EDITOR 2015

The third field on the same PFDF declares the Fname attribute as
"name" and allows the FE system to assume system defaults for all
others.

Field values can be defined with an algebraic expression in
Asg_expr that can include references to numeric constants, other
fields, external programs, and shell-exported variables instead of end
user input. For example,

total [1nrcn,=($field1 + ENV(value))/2)

date[1clcn,=EXT(date»)

The first example defines the value of field total as one half the
value of the sum offield field 1 and the value of the shell environment
variable v a I u e (as specified by the built-in function ENV (». In the
second example, the value of field da te is to be filled with the results
of the external program date (as specified by the built-in function
EXT (». The only requirement of programs executed by EXT () is that
they return their result(s) to the standard output device. EXT () gives
the application developer a direct "hook" to the UNIX system envi­
ronment to obtain computation or validation capabilities not directly
available in the form definition language.

A data-validation rule Valid_rule can be provided in each field­
attribute specification. The syntax of the validation rules is algebraic,
with arithmetic and logical operators taken from the C programming
language. Validation rules specify under what conditions the field is
logically correct or valid. Rules may contain references to other fields,
external functions, constants, and environment variables. In addition,
validation rules may also contain arithmetic operators. Below are two
examples of validation specifications for character and numeric type
fields:

(1) loc [11Inn, : SET($loc :mhlholwblwhlpylcb»)

(2) sum [1 nlnn, : $sum >= $val1 && RANGE ($sum: 0 - $vaI2))

Example 1 specifies that the value of the field' , loc' , must be a
member of the set mh, ho, wb, py, or cb to be considered correct. SET ()

is the built-in function used for specifying a set of strings. In (2), the
rule specifies that field sum must be greater than or equal to the value
of field val 1 and also greater than or equal to zero and less than or
equal to the value of field val2. Since SET and RANGE return Boolean
results, the unary operator ! (not) can be used to indicate "not a
memoer of a set" (! SET () or "outside the range" (! RANGE (».

A robust set of built-in functions exists for both value assignment
and validation-rule specification that includes vector operations and
regular-expression pattern matching.

The "help" section of a PFDF is used to define field-specific "help"

2016 TECHNICAL JOURNAL, NOVEMBER 1985

text for any or all fields defined in the Attribute Specification ($names)
Section. The user may request the display of a field's "help" text by
positioning the cursor on the selected field and entering the appropri­
ate command.

In addition to explicitly defining the "help" text for a field in this
section of the PFDF, the form designer can specify that the text source
be retrieved from a data file or generated by an application program.

5.3 Logical form definitions

PFDFs may be combined, or concatenated by LFDs. LFDs can
specify a simple or hierarchical concatenation of PFDFs. For example,

(1) payroll
(2) payroll, work_hist
(3) !dept!3*group!10*members}}}

Logical form (1) is defined as a single copy of PFDF payroll, while
(2) defines a form that is constructed using a payroll PFDF conca­
tenated with a work_hist PFDF. Example (3) is a hierarchical
definition that translates as follows: concatenate one PFDF dept form
with three PFDF group forms, each of which is concatenated with ten
PFDF members forms.

VI. END-USER INTERFACE LANGUAGE

The end-user language is partitioned into "off-form" and "on-form"
commands. "Off-form" commands are functionally and syntactically
similar to the language of the text editor ed and operate on forms as
a unit; for example, they delete or append a form. Other data file
manipulation commands include multi-key sorting, searching, data
extraction, and hard copy reproduction of forms, in addition to stand­
ard editing commands.

The on-form commands* are modeled on the visual editor vi, and
apply only after an off-form command is entered to display either a
blank form for input, or a filled-in form from the data file. These
commands stay in effect until the user indicates the end of input or
changes for that form. When the cursor is positioned on a form, the
end user can be in either a "positioning" or a "data-change" mode.

In the "positioning" mode, single keystroke directional commands
can move the cursor forward, back, up, or down. The cursor may also
be positioned to a field via regular expression pattern matching and
direct or relative line addressing. For example, move to form line N,
or move up(-) or down(+) N form lines. When in the data-change
mode, any characters entered by the user are placed on the field where

* Executable FE uses the data-collection library routine FE_edi t.

FORM EDITOR 2017

the cursor is positioned. The user may enter or exit the positioning or
data -change mode at any time during the editing session by typing the
appropriate command.

Field editing capabilities include "insert character," "delete charac­
ter," "erase field," "replace characters," and others; each of these can
easily be "turned off" or redefined if considered inappropriate for the
application.

VII. DATA FILE ORGANIZATION AND FORMAT

The organization of an FE data file can be seen in Fig. 5.
"Header" records delimit logical groups of associated "name/value"

pair records. Each header record contains the following four compo­
nents (separated by tab characters):

1. The logical name of the form,
2. The values of all fields defined with the "interform search"

attribute,
3. The logical form's PFDF description, and
4. The number of errors contained in the associated data.
Name/value pair records are organized to match the layout of each

logical form definition. For example, Fig. 5 represents the output file
organization for the PFDF shown in Fig. 4. Changes made to a PFDF
(adding, deleting, or changing the field order) do not require an FE

data file to be changed. This feature is important for applications with
volatile data input and validations requirements, since the field data
will always "map" to the correct position on the constructed form.

Because FE data files are stored in ASCII format, simple sed, awk,

or C programs can be written to generate reports or massage the data
to a format acceptable to other application components. For applica­
tions that are already name/value pair oriented, the "data file" /
"application system component" interface may be minimal.

NAME/VALUE PAIR
RECORDS $FORM=empdata pan=01234 dform ERR=O~

....... ,....... \

.......... : pan=01234 loc=mh : \
"': name= R. M. Prlcilard Jr. : \

: org=59999 phone=2343344 : \
. • • • • • . • • • •• • • • \ HEADER

$FORM=empdata pan=98776 dform ERR=O..---;tRECORDS
pan=98776 loc=wh /1
name=R.L.Jones ///
org=55545 phone=2343311 / 1

$FORM=empdata pan=23434 dform ERR=O',I
1 ===== I

$FORM=empdata pan=23431 dform ERR=O

+ • + •
I : I :
: KEY FIELD DATA : ERROR COUNT
I I

LOGICAL FORM NAME PFDF COMPONENTS

Fig. 5-FE data file organization and format.

2018 TECHNICAL JOURNAL, NOVEMBER 1985

VIII. EXTO BUILT-IN EXAMPLE

The power and versatility of EXT () can be seen in the following
example:

A query form (Fig. 6) is displayed with only the entry of a single
field "name" allowed. All other field values are supplied by a database
retrieval program that uses the value of the "name" field as a search
key for extracting the remaining field values from the associated
databases.

This application can be implemented by defining a facsimile of the
retrieval form in a PFDF with appropriate field names. One field's
assignment attribute invokes the retrieval program as follows:

snnIAtt_tuple,=EXT(ret_prog$name))

To execute the retrieval program to fill in the rest of the form, the
user would enter the appropriate data in the name field and then enter
the FE system command "compute". Ret_prog would then extract the
remaining form data from the database and write each field's name
and associated value to the standard output device. For example,

pan=098999
ssn=212-22-2323
org=59999

The FE system would then read the transmitted data and update,
on the terminal, the field values as they are received.

END USER SUPPLIED INPUT
I

I

RETRIEVAL FORM /

·················r· .
Name:: Prichard, R. M. .---1-------,

....................

Pan.098999 SSN: 212-22-2323

Org: 59999 Lac: ~

Phone: 201-555-1212

PUBLICATIONS:

1. The FE system, 6/81

2.
L _________________________ _

PHONE
DIRECTORY
DATABASE

Fig. 6-Using the EXT () build-in.

FORM EDITOR 2019

IX. FE FORM LIBRARY

The form library currently consists of 80 subroutines. Of these
subroutines, 25 are high-level routines intended for application inter­
faces and provide the following functions:

1. Virtual terminal and library initialization.
2. Physical form translation and loading.
3. Program placement of field values on forms.
4. Program retrieval of field values on forms.
5. End user input, modification, and validation of field values.
6. Termination or "wrap up" processing.
At the core of the FE library (Fig. 7) reside the virtual terminal

interface and low-level form manipulation routines. The virtual ter­
minal interface uses either the Termcap or Terminfo database and
utility routines (based on the host operating system) to provide support
for CRT as well as non-CRT devices.

The terminal interface and form manipulation routines are in turn
used to form the application interface routines. The lower-level rou­
tines are intended for use by applications that require access to FE'S

internal structures or terminal control sequences.
The following example shows how the high-level library routines

can be used to collect data via a form and "dump" the field names and
data values to standard output in a name/value pair format.

NOTE: Regular type represents the library routines
while italicized type represents global library structures
and variables.

#include (stdio.h)

#inc 1 ude "FE_structs. h "

#def ine REDRAW 1

#def ine FULL SCREEN 1

maine)
{

HIGH-LEVEL PROGRAM/LIBRARY
INTERFACE ROUTINES

LOW-LEVEL PROGRAM/LIBRARY
INTERFACE ROUTINES

VIRTUAL TERMINAL
INTERFACE ROUTINES

I TERMCAP/TERMINFO I
LIBRARY ROUTINES

Fig. 7-FE library architecture.

2020 TECHNICAL JOURNAL, NOVEMBER 1985

(1) extern int _dlinecnt, _fldcntil ;

(2) extern struct symbol **_cpll;

char buf f [512] ;

int i, j;
struct symbol *cp;

(3) FE_init(open("/dev/tty" ,2) ,FULLSCREEN);
strcpy(buff,"dataform");

(4) FE_bldform(buff, "/PFDF/form/directory");
(5) FE_edit('c' ,REDRAW);

(6) for (i=O; i<_dlinecnt; i++)
for (j=O; j<_fldcnt [i] ; j++)
{

cp=_cp/iJ/j] ;
printf ("%s=%s\n", sp->name, sp->sval) ;

In this sample program, (1) and (2) declare two global FE library
integer variables _dlinecnt (data line count) and _fldcntll (data
line field count). These two variables define the dimensionality of the
cursor positioning matrix _cpllll. Each element of _cp is a pointer
to the symbol table element associated with a single field on the
current form in memory.

The first FE library routine called FE_ini t initializes the terminal
interface routines (3). Two arguments are passed to it: a file descriptor
for' '/dev/tty' , (opened for read/write) and FULLSCREEN to indicate
that the full screen is to be used (not adjusted by the terminal's output
baud rate). To build a form in memory the FE_bldforrn is called (4)
with the logical form definition (stored in "buff," argument 1) and the
directory where the logical form's PFDF components reside (argument
2).

To collect the data, FE_edit (5) is called with arguments 'c' and
REDRAW. These arguments will cause FE_edi t () first to redraw the
template on the CRT and then to enter the "change mode," which
allows the user to enter data immediately. This library routine provides
the end user with a v i editor-like interface for entry and modification
of the data. When the data entry session for the form is completed
(the end user enters the appropriate "quit" command), control is
returned to the program.

At (6), each element of the cursor positioning matrix _cp is "visited"
and the associated field names and values are written to the standard
output device via a printf.

FORM EDITOR 2021

Though this example uses the global internal structures of the
library, the code in (6) can be replaced by the library's "get field value
by name" routine calls. For example, if the Fname attribute of a field
on the form built by the call to FE_bldform is department, the
associated value could be retrieved by calling the FE_get routine as
follows:

FE_get(' 'department" ,value,changed, 'r');

Val u e defines the string address where the retrieved value of the field
department is stored, and changed is a string address where
changed [0 1 indicates if the value of the field has (value = 1) or has
not (value = 0) been changed. The fourth argument instructs FE_get

to reset the associated field's internal "changed" flag to zero.

X. OBSERVATIONS

User community feedback has been favorable since the initial FE

system prototype was released. A brief summary follows:
1. The end-user language is easily learned by users already familiar

with the UNIX operating system because of the functional and syn­
tactical similarity with the standard text editors ed and v i. For
individuals not familiar with text editors, the time required to learn
the FE end-user language is no more than that required to learn any
other editor.

2. System documentation is generally acceptable.
3. Defining a form does not require much time because the form­

definition language is simple.
4. Interfacing with most application components is not difficult.
5. Significant savings in design and development time have been

achieved for all applications.
The last observation (5) can be best illustrated with an example.
An application system required about 12 to 15 weeks to develop a

prompting program that only provided an initial data input facility. A
total of eight different forms were supported and the software provided
basic intra-form validation and a crash recovery capability. Data
modification was implemented with the standard system text editor.
When a new release of the system was built, FE was used to provide
data collection and modification capabilities for more than 35 forms.
Data validation was provided by application supplied software as FE

validation was not yet available. The entire process to integrate FE

into the application required less than two weeks to define the forms
and build a simple software filter to interface the data file wIth other
application components.

Because the form definitions were volatile in the initial development
phases of the project, an even greater savings of development time

2022 TECHNICAL JOURNAL, NOVEMBER 1985

was realized since there were no programs to modify and recompile
each time there was a form-definition change; all that was required
was for the PFDFs to be changed using a text editor.

I believe the success of the FE system can be mainly attributed to
the form-definition language (PFDs and LFDs) and the ability to
support data entry as well as report and processing-control data forms.
In addition, software developers have found it easy to "custom tailor"
both the libraries and executable FE to meet the unique requirements
of their applications.

In order for "screen" management software to exist in the future,
generalized interfaces should be developed to support alternate input
devices such as "mice," touch sensitive screens, etc. Though nothing
will replace the standard keyboard for input of textual data, these
alternate input devices will find their calling in processing control and
cursor positioning.

XI. ACKNOWLEDGMENTS

I am indebted to D. G. Korn, K.-P. Vo, and other colleagues for
their technical inputs and the FE system user community for providing
constructive feedback.

REFERENCES

1. K.-P. Vo, "IFS-A Tool to Build Integrated, Interactive -Application Software,"
AT&T Tech. J., this issue.

2. J. W. Brown, "Controlling the Complexity of Menu Networks," Commun. ACM,
25, No.7 (July 1982), pp. 412-18.

3. D. V. Morland, "Human Factors Guidelines for Terminal Interface Design," Com­
mun. ACM, 26, No.7 (July 1983), pp. 484-94.

4. D. Tsichritzis, "Form Management," Commun. ACM, 25, No. 7 (July 1982), pp.
45-78.

5. P. De Jong and R. Byrd, "Intelligent Forms Creation in the System for Business
Automation(SBA)," IBM Research Report RC 8529, 1980.

6. D. W. Embley, "A Form Based Non-procedural Programming System," Technical
Report, Department of Computer Science, University of Nebraska, 1980.

7. B. W. Kernighan and D. M. Ritchie, "The C Programming Language," Englewood
Cliffs, N. J.: Prentice Hall, 1978.

8. W. N. Joy and M. R. Horton, "UNIX User's Manual 4.1 BSD," TERMCAP(5)
manual page.

9. M. R. Horton, "UNIX System V Release 2.0 Programmer Reference Manual,"
TERMINFO(4) manual page.

AUTHOR

Reuben M. Prichard, Jr., B.S. (Computer Science), 1976, and M.S. (Com­
puter Science), 1978, Rutgers-The State University; AT&T Bell Laborato­
ries, 1967-. Mr. Prichard has been a member of the Business Analysis
Systems Center since 1976, where his work involves the design and develop­
ment of decision support systems and software tools to support that work. His
research interests include software design methodologies and human factors.

FORM EDITOR 2023

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

Data Extraction Tools

By D. G. BELANGER and C. M. R. KINTALA*

(Manuscript received April 9, 1984)

Data analysis includes the acquisition of data from a wide variety of sources,
using different media and ranging in size from a few bytes to hundreds of
millions of bytes. In the case of large data sets, the problem reduces to finding
an efficient way for an analyst or other user to extract useful subsets from the
source data with minimal programming knowledge and effort. Since different
sources of data often have entirely different protocols, interfaces and proce­
dures for access, the problem is also to reduce the complexity of data access
by hiding this variety from the user. We describe a table-driven program
generation system that provides a uniform interface to the analysts for
requesting portions of data from any source. The system then generates a
program that executes on the source system and extracts the requested data.
The table-driven nature of the generator can be used to modify the style of
the programs being generated. The tables are, in fact, target program abstrac­
tions specified in a high-level language. We now have tables that encode
efficient C programs to extract data from IBM standard label tapes on UNIX™
systems and COBOLjDL-IjJCL programs to extract data from Information
Management System databases.

I. OVERVIEW OF THE PROBLEM AND SOLUTION

The acquisition of data is a crucial part of the data analysis process.
This data may be small enough in volume that it can be entered by
hand by a single user (e.g., parameters to a program or a small data
file); it may be data (e.g., survey data) entered manually by a variety
of people; or it may be large volumes of data contained in the opera-

* Authors are employees of AT&T Bell Laboratories.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

2025

tional databases of the company (e.g., data on toll calls and charges
from a specified area). A set of tools is described in this paper that
addresses the problem of extracting, in a useful manner, data from
high-volume sources (within or outside of the company). Specifically,
there are tools for extraction of data from Information Management
System (IMS) databases [Information Management System to UNIX
System (IMX)] and from tapes generated on IBM computers (TTU).
These tools use a single syntax and are resident on a UNIX system.
The tools are built with a flexible code generation technique which
allows for easy addition of new data sources. The key ideas in this
process are the following:

1. The analyst typically does not have control over the source
environment of the data. In particular, the computer system, database
management system and mode of access (or distribution) of the data
are likely specified by the administrator of the data.

2. The user should see a uniform and high-level language for data
extraction. The details of various database systems and operating
systems should be hidden from the user, fostering the feeling of
working entirely within a single analytical environment.

3. The forms in which data are available are varied and changing.
Any system of this sort must allow for new database management
systems or other sources to be added easily.

4. The use of the system should be simple enough that the user is
encouraged to extract only the amount of data that appears to be
needed, knowing that more or different data can be easily obtained.

5. The volume of data available, and necessary, may be very large
(> 108 bytes per data set). Thus efficiency of extraction is critical.

Our approach to this problem was to design (1) a program generation
system with a very high -level interface so that an analyst can easily
phrase the required data request (i.e., no programmer help needed),
and (2) a table-driven code generation system so that the system could
be set up to generate code for several different modes of data extrac­
tion. In fact, we now have two tables for data extraction. One is for
arbitrary IMS databases, for which the system writes programs using
JCL, COBOL and DLjl languages; and one for extraction from Ex­
tended Binary Coded Decimal Interchange Code (EBCDIC) coded
tapes (and translation to ASCII or binary code), for which C programs
are written. In each of these cases the program generated is specifically
written for the request made. The program is very fast, especiaHy in
the tape case (in fact considerably faster than one would expect from
a typical programmer asked to do the same job).

Because of its usefulness to analysts, the program generation system
and the two tables (for IMS and tape extraction programs) are often

2026 TECHNICAL JOURNAL, NOVEMBER 1985

used in conjunction with other analytical tools, some of which are
described in this issue.

II. CURRENT STATUS

Versions of the program generation system for translation from IMS
databases and from EBCDIC tapes are running on the AT&T UNIX
Operating System V. The current versions are available to users within
AT&T. These generators are currently being used routinely on data
sets on the order of 150 megabytes. Much larger data sets are also
being processed using these tools.

III. HISTORY AND MOTIVATION

3.1 The problem

During the process of data analysis, a wide variety of source data
must be obtained and analyzed. This data may come from many
different sources on different media (e.g., paper, magnetic tapes) and
may range in size from a few bytes to hundreds of millions of bytes.
The data itself may originate and be stored in a wide variety of
computers using an even wider variety of database management (or
file) systems. Often, these systems are part of a corporation's opera­
tions systems (e.g., accounting, sales operations) and are not accessible
on a time-shared basis. When they are accessible, the. mode of access
is typically dictated by the database staff rather than by the analyst.
The problem of data acquisition in these cases reduces to that of
efficiently accessing a very large data set of a known type (e.g., an
IMS database or a foreign tape) and extracting a defined subset of
that data. In order to access such data sets, the analyst requires that
a single, preferably high-level, language be available for making these
requests.

The problem we are addressing then is how an analyst can routinely
obtain data that is already in machine-readable form without learning
new languages for the data retrieval and operating systems of foreign
computers, and with the flexibility and efficiency needed to explore
the data.

3.2 Existing tools

There are, of course, many tools which address parts of the data
extraction problem. In this section we discuss the relationships be­
tween the IMS-to-UNIX/Tape-to-UNIX (IMX/TTU) system and
other tools available to users of the UNIX operating system to manage
data acquisition of large amounts of data.

If we consider the tools available on the UNIX operating system for
the translation of foreign tapes, we see that a combination of dd and

DATA EXTRACTION TOOLS 2027

awk, or in some cases dd and grep, can be used.! This approach will
handle simple, character-oriented (i.e., not packed or binary) data. In
order to do field selection, the user must write a script in awk. To do
record selection on patterns, grep may be used. This method is not
fast enough for very large data sets, even with a much faster than
standard version of dd in use in our organization. In general TTU
provides more functionality and is faster.* In addition, it takes advan­
tage of efficiencies that can be gained by reference to the user's actual
needs (e.g., translate only the requested fields) and by allowing users
to request calls to their own processing routines. Finally, this method
anticipates future expansion of needs and hiding their solutions within
the current extraction language.

In the case of interfaces to database management systems (in this
case IMS), the problem is not the absence of some good extraction
systems (e.g., RAMIS lIt). Instead, it is the lack,of control over the
environment in which the target data resides and the lack of uniformity
in the extraction system's languages. Our approach has been to gen­
erate extraction programs in COBOL, initially, to provide a reasonably
global coverage of installed IMS databases with IMX. This allows
access to databases without access to a specific extractor. On the other
hand, we have left open the option of adding program generation tables
to use higher-level interfaces to IMS (or other database management
systems). For example, provision of tables for RAMIS II and for
ADABAS+ is being considered. The point, then, is not that we need to
raise the level of these languages but that the analyst needs a single
interface (i.e., does not want to spend time relearning several different
interfaces) and that our approach will provide that single interface for
systems with low-level-interface languages (e.g., tapes translated in
the C language) as well as those with higher-level languages.

IV. DESIGN APPROACH

In our system of data extraction tools, we take a table-driven
program generation approach to retrieve data from large source data-

* For example, choosing 68 percent of 2 million 64-byte records using dd I egrep ran
at about 136 seconds per megabyte. In additiori, downstream processing of the data
must read all 64 bytes per selected record. Using TTU, extraction times were about 8
seconds per megabyte when reading the entire record. In this example, only 24 of the
64 characters in each record were required. This reduced TTU time further to 4.5
seconds per megabyte. Of course, there was no change in dd I egrep. In this example,
total system and user time decreased from 6.1 hours for dd I egrep I C program to 0.1
hour for TTU with processing option. Even when using the entire record, the difference
is 8.4 hours to 0.2 hour. In general, improvement factors of 10 to 100 have been observed,
depending on the data requested.2

t Trademar* of Mathematica Products Group Inc.
* Trademark of Software AG of North America.

2028 TECHNICAL JOURNAL, NOVEMBER 1985

SYNTAX
SEMANTIC
ANALYZER

CODE
GENERATOR

Fig. I-System architecture.

bases. The architecture of this approach is depicted in Fig. 1. A
dictionary file describing the source database is first created. This file
provides the information for the system's display and part of the code­
generator's decision process. The analyst requests the portion of the
data to be extracted from this source in a high-level extraction lan­
guage. The program generator analyzes this request for syntactic and
semantic correctness and produces an "attributed retrieval tree" of
this request. It then traverses this tree to translate the user's request
into an equivalent program for the target database system using a
table containing an abstraction of the extraction programs. This
abstraction of the data extraction programs for the target system is
written only once for each target database system in the language KS,
a program abstraction language for the program generator.

This method of translating users' requests for data in a high-level
language into complete programs for execution on the target database
systems is similar to, albeit simpler than, the process of compiling.
The attributed retrieval tree produced by the syntax and the semantic
analyzer is similar to the parse tree produced by the front end of a
compiler. Interpreting and making structural expansions of the con­
structs in the target program abstraction with the retrieval tree as the
basis is analogous to a combination of the interpretative and the table­
driven methods used in retargetable code generators for compilers.3 A
more formal treatment of the analogy between query language trans­
lators and compilers can be found in Ref. 4. By applying compiler
technology to the database problems we hope to provide new insights
into these problems and obtain new tools.

Aside from being similar to compilation, this table-driven program
generation approach has several advantages in practice. Data extrac­
tion programs tend to be routine but tedious in character. Often, an
application programmer working on a database system acquires an
"existing" or a "sample" extraction program and changes it with the
appropriate information about the new extraction request at the
"appropriate" places in the original program to produce a new program

DATA EXTRACTION TOOLS 2029

for the new request. This "knowledge," about how to write the new
program, is encoded into the target program abstraction written in the
KS language. The program generator can then "automatically" pro­
duce the target program given sufficient information about the request
and the source database. Thus, this approach (1) provides high-level
interfaces to the analysts for extracting data from databases, and (2)
automates the process of programming to extract data.

By making the program generation table-driven, source database
descriptions and target program structures can be changed easily. For
example, in TTU, the tool that generates programs to read tapes, we
have been able to add more functionality and speed to the system by
simply incorporating some changes to the KS table without any
recompilation of the tool itself. This approach separates the basic code
generation algorithm from the details specific to the underlying data­
base structure or the target program structure. This also allows us to
easily change the tape record structures or the programming language,
say from C to assembly.

V. SYSTEM DESCRIPTION

As explained in the previous section, we have a table-driven program
generation system that can be easily targeted to generate programs, in
a variety of programming languages, to extract data from a variety of
source databases, such as tapes or IMS database systems. TTU, the
tool we assembled from this system for generating C language pro­
grams to extract and translate data stored in EBCDIC format on
tapes, will be described in this section to illustrate our system.

5.1 User interface

Any user wishing to extract data from tapes using TTU goes through
the steps illustrated in Fig. 2. For any tape type, * the user or a data
administrator must create a dictionary (i.e., a file describing the tape).
A syntax-directed editor based on the "age" system5 is provided for
this purpose. It guarantees the syntactic correctness of the dictionary.
Alternatively, any text editor may be used to create the dictionary by
following the defined structure. Once the dictionary is created, users
can specify the record conditions and fields to be selected. TTU uses
this information to generate a program. The generated program per­
forms the selection, extraction and translation of the data from tapes.
In the case that special processing is required on the extracted data,
the user can pipe the output of the generated program to a user process

* The tape type refers to the logical, not the physical, tape so that, for example, a
tape issued monthly containing toll call records in the same format would be of the
same type each month and require only one dictionary.

2030 TECHNICAL JOURNAL, NOVEMBER 1985

Fig. 2-User interaction with TTU.

or specify the name of the processing subprogram to TTU at the time
of making the selections. The generated program will call the process­
ing program at the appropriate places, eliminating expensive print and
read operations. Finally, the generated program is compiled and exe­
cuted in the usual manner.

5.1.1 Tape dictionary format

A tape dictionary is a file containing the information about the
structure of the records in that tape. The first line in the dictionary
contains the file name, followed by physical block length and Variable
Length Record (VLR) tape indicator (y for VLR tape, n for fixed
length record tape). This is followed by a block of lines for each record
type in the tape. The first line in each block contains the record name
followed by the record identifier string, the identifier indicator (y if
the record has an identifier and n if it does not have an identifier) and
the level number (1 if there is only one record type or unrelated
multiple record types on the tape; if the record types on the tape form
a hierarchy, then it is the level number of the record type in that
hierarchy). This first line in each block is followed by a sequence of
lines, one for each field in the record. Each line for a field contains
the field name followed by the field type indicator (s for alphanumeric
string, n for numeric, b for binary and p for packed integer), key
indicator (y if it 'is a key and n if not) and the field length.

5.1.2 Request format

Once a tape dictionary is created, the user invokes TTU for speci­
fying the extraction request. TTU requests the tape name, searches
its dictionaries for the requested tape dictionary and displays the
record and field formats for that tape. Each field name is prefixed by
a type indicator of s if the field is a string, n if it is a numeric string,
or p if the field is a packed decimal, etc. The type of the field influences
the format of requests for that data.

For each record, TTU requests a condition (i.e., a record selection
criterion for that record). If the user wants all records of that type, a

DATA EXTRACTION TOOLS 2031

carriage return should be entered. Otherwise, the condition should be
entered in the following DNF (Disjunctive Normal Form) format:

field_cond & field_cond & ... & field_cond I field-cond & ... &
field_cond I ... ,
where "&" means "and" and "I" means "or".

The field_cond is a field name (from the list provided by TTU) followed
by a relational symbol (=, <, >, <=, > =) and a value or another field
name. For example, to retrieve all state records where state is "NJ" or
the revenue is greater than 15,000 and revenue is greater than expenses

state = "NJ" I revenue> 15000 & revenue> expenses.

·Following the record selection process, the system prompts for field
selection (i.e., record projection). A program will be generated to
translate and return only those fields within a tape record which are
requested. In this step the fields to be returned are identified. The
default assumption is that all fields used in record conditions will be
returned. In the previous example, state, revenue, and expenses will
be returned. The response to the selection prompt may be a list of
additional fields, separated by spaces, to be included in the retrieval;
ALL, meaning retrieve all fields of this record type, or ALL BUT followed
by a list of fields (separated by spaces) which are not wanted. The
request for data is now complete. All that remains is to let the system
know where the generated program is to be stored. For the target
program generation, the system will default to a KS file, an abstraction
of efficient C programs to read tapes, supplied with the system. This
default can be overridden in order to use other program abstractions.
The final step is to compile the generated program and execute it to
read a tape.

5.2 Individual components

As illustrated in Fig. 1, TTU has two basic components, a syntaxj
semantic analyzer producing an attributed retrieval tree based on the
user request and a code generator using this tree to generate the final
program from a target program abstraction. The syntax analyzer is a
YACC (Yet Another Compiler Compiler) generated parser6 for the
simple DNF condition language illustrated in the previous section.
The semantic analyzer builds the attributed retrieval tree. The root of
the tree contains all the attributes of the tape's global characteristics,
for example the block length. Below the root, the internal node
structure of the attributed tree corresponds to the record structure on
the tape. Thus, there is a node under the root for every level-1 record
on the tape, there are level-2 nodes for the level-2 records on the tape
under the corresponding level-1 nodes, and so on. These nodes are

2032 TECHNICAL JOURNAL, NOVEMBER 1985

called record nodes. Every record node contains the corresponding
record attributes, such as the user condition, the key string distinguish­
ing it from other records, etc. Additionally, every record node has a
set of leaf nodes for the corresponding fields in the record. The
attributes of the field nodes are the items such as the field type and
field length.

The code generator of TTU takes an attributed retrieval tree as
input and interprets a target program abstraction given in a separate
file to produce the target program equivalent to the user's request.
The program abstractions are written in a special language called KS.
Initially, the code generator starts at the root of the attributed tree. It
reads the program abstraction one character at a time. Each character
is printed to the output file unless it is one of the meta characters in
the abstraction language. The meta characters are directives to the
code generator for special processing to be done. The simplest of the
meta characters asks for the substitution of a particular attribute value
of the current node in the retrieval tree. This is similar to substitution
in macro languages. There are meta characters which direct the code
generator to repeatedly interpret a fragment of the program abstrac­
tion for every node in the retrieval tree whose attribute values satisfy
a specified condition. In such iterative interpretations, the traversal
of the retrieval tree can be limited to the subtree rooted at the current
node, the path from the root to the current node or just the immediate
successors of the current node. Iterative interpretations based on the
attribute values of the current node are also possible.

The processing flow and the loop structures in data extraction
programs seem to be isomorphic to the structure of the data in the
source databases. This observation has allowed us to design and
interpret the KS language for an attributed retrieval tree in such a
hand-in-glove manner. The current version of the KS language is
found to be rich enough to express the abstractions of programs in a
variety of languages ranging from assembly to COBOL to C for data
extraction from tapes and from IMS databases.

VI. WHAT WE HAVE LEARNED

In the rprocess of developing the IMX/TTU system and changing it
in response to user needs and suggestions, several things have become
clear. The first is that, with proper tuning, fast processing of data can
be done on UNIX systems. It is not unreasonable, for example, to
think in terms of bringing large data sets to UNIX systems and
processing them from tapes.

The program generation approach to this problem allows us to use
efficiencies (e.g., loop unwinding) which would not, typically, be used
by a programmer asked to do the same job. This implies, particularly

DATA EXTRACTION TOOLS 2033

in the case of TTU, that the process of generating a TTU program in
C is easier than requesting one from a programmer. In addition, the
generated program will probably run faster. The resulting programs
have very predictable structure but are relatively long and intricate.

The flexibility provided by the table-driven program generation
approach has proven very valuable in allowing us to make expert
programming knowledge available to· end users. As an example, in a
recent exercise where TTU performed slower than expected for a class
of tapes, we were able, in a couple of hours, to add several improved
algorithms by allowing an expert to modify the code generation table.
The mode of transferring expertise by sitting down with an expert,
adding suggestions to the code generation table, trying them out and
altering them in real time was very productive.

The format of data in database management systems is relatively
predictable (or at least hidden from the programmer). On the other
hand, the formats used on tapes can be quite idiosyncratic. Conse­
quently, while we expect IMX to handle nearly all IMS database
structures, TTU translates only a subset of tape types. The objective
has been to handle tapes produced by common COBOL, Fortran and
PL/I programming techniques. This includes string, numeric, packed
decimal, and fixed point binary. Adding other codes, e.g., Binary Coded
Decimal (BCD) and floating point binary, is under consideration.

The addition to TTU (not yet to IMX) of the option for users to
add their own processing routines has proven useful in terms of both
flexibility and efficiency. Although its use requires programming abil­
ity, which the simple use of the system does not, it provides a growth
path to more sophisticated use of data extraction.

VII. ACKNOWLEDGMENTS

We would like to thank Bob Kayel for motivating us to work on the
design idea of separating the large production environments from the
medium-sized analytical systems and for the encouragement in the
initial stages of this work. We recognize the contributions from Bill
Shugard and Griff Smith in preparing the target program abstractions
for TTU and appreciate the suggestions and feedback from various
users of this system.

REFERENCES

1. UNIX System V User Reference Manual, Release 2.0, AT&T Bell Laboratories,
Inc., December 1983.

2. G. G. Smith, private communication.
3. M. Ganapati, C. Fischer, and J. Hennesey, "Retargetable Code Generators for

Compilers," ACM Comput. Surveys, 14, No.2 (December 1982), pp. 573-92.
4. C. M. R. Kintala, "Attributed Grammars for Query Language Translations," Proc.

Second ACM Symp. Principles of Database Systems, March 21-23, 1983, pp.
137-48.

2034 TECHNICAL JOURNAL, NOVEMBER 1985

5. B. A. Bottos and C. M. R. Kintala, "Generation of Syntax Directed Editors with
Text Oriented Features," B.S.T.J., 62, No. 10 (December 1983), pp. 3205-24.

6. S. C. Johnson and M. E. Lesk, "Language Development Tools," B.S.T.J., 57, No.6
(July-August 1978), pp. 2155-76.

AUTHORS

David G. Belanger, B.S. (Mathematics), 1966, Union College; M.S., 1968
and Ph.D., 1971, (Mathematics), Case-Western Reserve University; Assistant,
1971-1974, Associate, 1974-1979, Professor of Mathematics and Computer
Science, University of South Alabama; Computer Specialist, U. S. Army Corps
of Engineers, 1973-1979; V. P., Gulf Coast Data Systems, Mobile, Alabama,
1977-1979; AT&T Bell Laboratories, 1979-. Mr. Belanger is currently Head,
Advanced Software Department. His research interests include database man­
agement, automatic program generation and distributed computer work­
stations. Member, ACM, IEEE Computer Society.

Chandra M. R. Kintala, B.Sc. (Electrical Engineering), 1970, Regional
Engineering College, Rourkela, India; M.Tech. (Electrical Engineering), 1973,
Indian Institute of Technology, Kanpur, India; Ph.D. (Computer Science),
1977, Pennsylvania State University; Assistant Professor of Computer Sci­
ence, University of Southern California, 1977-1980; AT&T Bell Laboratories,
1980-. Mr. Kintala is presently Supervisor, Advanced Programming Envi­
ronments Group. His current research interests include programming environ­
ments and compiler techniques for application languages. He is also an Adjunct
Professor of Computer Science at Stevens Institute of Technology. Member,
ACM, IEEE Computer Society, Sigma Xi, Phi Kappa Phi and Who's Who in
the East.

DATA EXTRACTION TOOLS 2035

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

Datastream-A Language for Large Files

By D. SWARTWOUT*

(Manuscript received April 9, 1984)

Datastream is a simple language designed for writing programs that perform
computations on large data files in the UNIXTM operating system. Datastream
handles larger files and a wider variety of computations than most UNIX
database management systems, but it provides no explicit support for updates.
Its features and performance characteristics are particularly good for working
with infrequently updated, mostly statistical data. This paper describes the
Datastream language, outlines its evolution, and summarizes users' experience
with a prototype implementation.

I. INTRODUCTION AND CURRENT 5T ATU5

Datastream is a simple language designed for writing programs that
perform computations on large data files in the UNIX operating
system. It features simple control structures, built-in input/output,
and arithmetic expressions in the style of the C programming lan­
guage.! Datastream users can concentrate on defining computations
without spending much time on other aspects of programming. The
system has been implemented on the VAX 11/780t computer system
under AT&T UNIX System V and University of California, Berkeley
UNIX 4.1 and 4.2 Berkeley System Distribution (BSD), and on the
AT&T 3B20 Simplex computer. It is written in C and has roughly
11,000 lines of source code.

Datastream processes larger files than most UNIX database man­
agement systems that run on comparable hardware. The largest data

* AT&T Information Systems.
t Trademark of Digital Equipment Corporation.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

2037

file that Datastream has handled contained roughly 70M bytes of data.
Several applications use files of 40 to 50M bytes. Sets of data files can
be interconnected and used as a database; the largest database totals
140M bytes. Datastream is a tool for working with databases, but it is
not a database management system: it provides no explicit support for
updates. Datastream programs can build new data files from old ones,
however. These characteristics make the system particularly suitable
for analysts and others whose files are large and infrequently updated.

Section II of this paper gives a brief history of Datastream's evolu­
tion, and Section III summarizes the resulting architecture. Section
IV describes the main features of the language, Section V discusses
experience with it, and Section VI draws some conclusions.

II. HISTORY AND MOTIVES

Datastream has passed through three distinct stages since work
began on it in late 1980. It was originally intended to manage distrib­
uted analytical databases. Several interesting, large-scale, single-site
applications appeared before any distributed ones, so our attention
shifted to large nondistributed databases. At that time "large-scale"
meant roughly 2 to 20M bytes, but initial successes with databases in
this range encouraged users to try still larger files. Changes made to
accommodate these "very-large-scale" files removed the last simi­
larities to ordinary database management systems; Data­
stream had evolved into a special-purpose programming language. The
rest of this section discusses these changes in more detail.

2.1 Distributed database system

We set out originally to develop a system that would maintain
distributed analytical databases efficiently. The UNIX operating sys­
tem was expected to be used at each site, no database-oriented changes
would be made to the operating system kernel or file system, and no
special features were expected from the network connecting the sites.
At the database designer's discretion, a given data file could be present
at two or more sites, but no site was expected to have all the data.
Queries were to be decomposable so that several sites could process
parts of a query in parallel whenever possible. Distributing partial
queries to multiple processors can be a complex process, and we did
not wish to spend much time developing software to solve it. Data­
stream's query language was designed to permit easy decomposition
of queries.

Concentrating on analytical databases had several important con­
sequences. First, analytical databases change infrequently. New data
may arrive quarterly or annually or even never, and updates are usually
appended to the database; they almost never destroy existing data.

2038 TECHNICAL JOURNAL, NOVEMBER 1985

Second, analytical databases are large. It took several years of expe­
rience to fully understand this point, but it was clear from the begin­
ning that we would need hardware of at least the VAX computer class.
Finally, not all analysts should be considered "naive users." Many are
experienced, if not expert, programmers. Some have written tens of
thousands of lines of Fortran, and virtually all of them are comfortable
with such things as operator precedence, assignment, and the differ­
ence between integer and floating-point arithmetic.

2.2 Statistical database system

An earlier paper discusses adjustments that were made to accom­
modate large single-site databases.2 Those adjustments are summa­
rized here. The general goal was to make Datastream a tool that would
extract interesting subsets of databases for further analysis by a system
such as S.3,4 The original prototype of Datastream performed rudi­
mentary computations such as conversion between English and metric
units, but it could not do aggregate computations such as sums and
averages. Datastream's computational facilities needed to be much
stronger to make it useful as an analytical tool. We added three main
features to strengthen the query language: conditional expressions,
collect statements, and compress statements, all described in Sec­
tion IV. We did not add specific aggregate functions such as sum,
count, or average. Analysts can write a wide variety of aggregate
computations with collect and compress statements, including, but
by no means limited to, the standard aggregates. .

2.3 Special-purpose programming language

An epitaph for phase two in Datastream's evolution might read,
"Give them a megabyte, and they take a hundred." Initial success with
databases up to about 20M bytes encouraged users to try still larger
data sets. The largest in use at this writing has about 70M bytes.
Datastream could not handle databases of this scale in phase two
because building new databases required too much computing and file
handling. "Raw" data had to be preprocessed to make it intelligible to
the query-processing software. The results were stored in specially
formatted database files. These "cooked" files could be processed
efficiently, but they had several disadvantages. They were expensive
to create. Tbe preprocessing program sorted large amounts of data; its
running time was proportional to n log n, where n is the number of
records in the database. It also created large temporary files. The
configurations and load patterns of the machines running Datastream
were such that these costs became excessive as the size of the data
files approached 20M bytes. Cooked files could be used only by
Datastream. Numeric fields were stored in binary (not ASCII) form,

DAT ASTREAM 2039

character strings were terminated by null (that is, zero) bytes, and
records had Datastream -specific headers with assorted binary fields.
Ordinary commands such as grep and sort were useless for handling
cooked files, and users who tried to display them risked putting their
terminals into a hopelessly confused state.

We solved these problems by replacing the lowest-level file-handling
routines in the query-processing software with similar routines that
could. handle ordinary files. By "ordinary" we mean that records
correspond to lines, data fields are delimited by some fixed character
such as the tab, and numeric fields are in a printable form. "Ordinary"
does not mean "any." It is hard to get Datastream to produce useful
results from a file that contains more than one kind of record, for
example.

Datastream originally constructed relationships among database
objects in the cooking process, so we had to find a suitable way to set
up connections between uncooked files. This was the most difficult
part of the conversion. We chose a descendant of the original relation­
ship mechanism that sacrifices some generality but works with ordi­
nary files. This approach to connections is described in Section IV.

As a result of the switch to ordinary files, Datastream ceased to be
a database management system. We regard it as a special-purpose
language tailored to writing programs that perform computations on
large, analytical data files. Datastream also can be used to build new
analytical files from old ones. For historical reasons, Datastream
programs are usually called "queries."

III. ARCHITECTURE

3.1 Software

Datastream is implemented as three major modules: the query
compiler, the execution supervisor, and the statement processor. Each
is discussed in a subsection below. The command

stream qname

starts query processing. Qname is a file that contains the text of the
query. Usually a query file is created by the user with a text editor,
but queries have been written by C programs, a wk, m4 , and even other
queries. stream writes its results on the standard output, so they can
be displayed on the user's terminal, saved in a file, or piped to another
program for further processing. Several variations on this theme can
be requested by additional command-line arguments.

3.1.1 Query compiler

The Datastream query compiler translates queries into an inter-

2040 TECHNICAL JOURNAL, NOVEMBER 1985

mediate code. This code is kept in a file and used again without
recompilation the next time qname is run, unless the source text has
changed. The intermediate code consists of sections that correspond
closely with statements in the source text. They are called "compiled
statements" from here on. Each compiled statement describes input
and output formats, temporary variables, constants, and the processing
required to transform input to output. Most of the latter consists of
reverse-Polish expressions that define computations and assign results
to temporary variables or fields in output records. The intermediate
code also contains a small amount of information about control flow.

The code for the query compiler includes a scanner generated by
lex,5 a parser generated by yacc,5 and assorted support routines. It
has been rewritten extensively twice, with numerous minor revisions.
It is a one-pass compiler with respect to statements (that is, the
compilation of a statement is independent of statements that follow
it), but it makes two passes over each statement. The first pass parses
the statement and generates code for expressions. The second pass
formats output records, identifies temporary variables, and writes the
remainder of the intermediate code. Most of these characteristics
resulted from evolutionary pressure, not explicit design. The query
compiler is the largest and most complex of the modules. At this
writing it requires about lOOK bytes of main memory at run time. In
some unusual cases the statement processor can grow larger than this
via dynamic storage allocation.

3.1.2 Execution supervisor

When the execution supervisor starts working, it searches for an
up-to-date compiled query file and runs the query compiler to make
one, if necessary. Then the execution supervisor starts one copy of the
statement processor for each compiled statement in the query. It
breaks the compiled query into statements, passes each compiled
statement to the corresponding process, creates pipes through which
the statement processors communicate, and waits for them to termi­
nate. It checks for abnormal terminations and writes an error message
when something goes wrong.

Figure 1 illustrates this process. Boxes represent UNIX system
processes and ovals represent data files. Arrows trace the movements
of data and queries through the system. The source text of a query is
represented in the upper left-hand corner. Each statement begins with
one of the key words get, collect, or compress, which represent
Datastream's three control structures. In simplified form, they work
as follows. The get statement tells its statement processor to get
selected lines from a data file and transmit them through a pipe to the
next statement processor. The compress statement reads lines from

DA T ASTREAM 2041

get ...

compress ... 1-----.1 qc
collect .. .

get I--__ ~ compress f-----v1

Fig. I-Datastream architecture.

compiled

query

- QUERY

~DATA

its inbound pipe and compresses them into aggregate values (for
example, averages) that are written into its outbound pipe. Compress
statements do not read from the database. Like the get statement,
the collect statement gets lines from a data file, but instead of
writing them immediately into its outbound. pipe, it computes aggre­
gate values from them, attaches these values to the inbound lines, and
writes the augmented lines into its outbound pipe. Known collectively
as the mainstream, these pipes are the data paths that connect the
get, compress, and collect processes in Fig. 1.

Most UNIX systems impose a limit on the number of concurrent
processes a user may have. When a query has too many statements to
process at once, the execution supervisor divides the query into blocks
of statements and then processes the query a block at a time. The
Datastream user can control the number of statements per block, but
in practice the default value of ten statements per block is rarely
overridden.

Although it is not discussed further in this paper, it is possible to
specify postprocessing of query output by including a UNIX system
shell script6 in the source text of a query. When this feature is used,
the execution supervisor has to start a shell, give it the script, and

2042 TECHNICAL JOURNAL, NOVEMBER 1985

connect it with a pipe to the appropriate statement processor. The
execution supervisor's duties are "just" routine management of detail,
but its code totals six hundred lines of C.

3.1.3 Statement processor

A statement processor reads from two sources of input and writes
two kinds of output. Its inputs are an inbound mainstream pipe and
data file. The first statement of a query has no inbound mainstream
to read, of course. No statement processor reads more than one data
file, and compress statements read only the mainstream. Each state­
ment in a query except the last one writes into an outbound main­
stream pipe that becomes the inbound mainstream for the next state­
ment processor. Some statement processors write on the standard
output, specifically, the last statement in each query. Sometimes
intermediate statements print with standard output directed into files.
Anything that can be transmitted through the mainstream can be
printed on standard output, and vice versa.

3.2 Files

A Datastream data file is a sequence of lines. Each line is subdivided
into fields, which can be one of four types: integer, real, character
string, or pointer. Fields of all types appear as variable-length ASCII
s~rings in the data file, and they are separated by a single-character
delimiter. The delimiter is usually a tab, but it can change from file to
file. When a numeric field is used in a query statement, the ASCII
text from the data file is converted to a suitable binary form. On the
hardware that currently supports Datastream, integers and pointers
are 32 bits long, and reals are 64 bits.

Each line in a data file represents an entity, and all the lines in a
given data file represent entities of some entity type.7 Entity types
usually correspond to interesting persons, places, or things in the
external world, for example, telephone calls or telephone customers.
The user assigns a name to every entity type. In this paper, names for
entity types will be ordinary nouns with the first letter capitalized td
emphasize status as a component of the database: Call and Customer,
for example. Datastream knows nothing about an entity except the
values of the fields in the line that represents it. Lines in a given data
file all have the same fields in the same order. If a line has too few
fields, the missing fields are assumed to have appropriate null values;
extra fields, if any, are ignored.

Data files have to be described in a configuration file before Datas­
tream can use them. The configuration file contains a description of
each entity type in the database, including the name of the entity
type, the name of its data file, and a list of its field names and types.

OAT ASTREAM 2043

The query compiler reads the configuration file to get information
about names and types. The execution supervisor extracts data file
names and passes them to statement processors that need to know
which data file to open.

For example, a data file might be described as follows:

Call
telno
minutes
miles

/usr/don/phone/Callfile
string
real
integer

Lines of /usr/don/phone/Callfile represent telephone calls, and
each contains three fields: a character string named telno, a real
named minutes, and an integer names miles, in that order. Call is
the entity type name. One can think of a data file as a table with a
fixed number of named, typed columns and an unspecified number of
unnamed rows. Here are some Call data displayed in that form:

telno minutes miles
111-2233 1. 65 55
111-2233 25. 1 561
444-5566 1.88333 34
444-5566 19.45 455
444-5566 31.6333 736
777-8899 44.9167 1040

IV. FEATURES

A Datastream query consists of one or more statements. The sim­
plest kind of query has just one statement that prints the value of
some field from each line of some data file.

get each Call
print .miles, . telno ;

results:

55 111-2233
561 111-2233
34 444-5566
455 444-5566
736 444-5566
1040 777-8899

The phrase get each entity-type is an iterator; it causes the rest of
the statement to be executed once for each line in the entity type's

2044 TECHNICAL JOURNAL, NOVEMBER 1985

data file. Lines are processed in the order in which they appear in the
data file; reordering the lines in /usr/don/phone/Callfile would
cause a corresponding change in the output shown above. The key
word pr int introduces a list of values to be printed. The values can
be simple fields as above, or more complicated expressions. The dots
in .miles and .telno mean that miles and telno are fields in lines
from Call's data file. They are redundant information in this query,
but as we will see later, such dots play an important role in more
complex ones. This convention is meant to suggest Call. mi 1 e s, which
is a familiar notation to users of C and Pascal. 8 The query compiler
ignores most white space (that is, blanks, tabs, and newlines). Every
statement ends with a semicolon.

4.1 Expressions and assignments

Typical Datastream queries are full of expressions. The arithmetic
operations available are addition, subtraction, multiplication, division,
and modulus. All are infix binary operators, and they are represented
by the symbols used in C: + - * / %. The precedence rules from Care
used, and arbitrary groupings can be specified with parentheses. Da­
tastream and C part company on the issue of string concatenation. In
Datastream the symbol -- (tilde) is an infix binary operator that
concatenates string arguments. C does not have string concatenation,
and in C the tilde is a unary operator that computes the one's
complement of its argument.

Conditional expressions are an important part of the language. A
conditional expression has the form

if (condition) expressionl e 1 s e expression2

If the condition is true, then expressionl is evaluated and its value is
the value of the whole expression. If the condition is false, then
expression2 is evaluated and its value becomes the value of the whole
expression. This is exactly the ?: construction from C, set in a syntax
that Datastream's users find more comfortable.

A condition can be any Boolean combination of comparisons of
expressions. The Boolean operations are or, and, and not, in order of
increasing precedence. Comparison operators are mostly taken from
C: == ! = > >= < <=. In addition, a comparison can be a regular
expression match:

string-expression rna tches "regular-expression"

A simple regular expression is used in the following example.

get each Call
print if (.telnomatches "444-")

"city" else "suburb", .telno ;

DA T ASTREAM 2045

results:

suburb 111-2233

suburb 111-2233

city 444-5566
city 444-5566

city 444-5566

suburb 777-8899

In general, strings can be matched against regular expressions of the
same form as those recognized by the editor ed.

Early in Datastream's evolution, users who were not familiar with
C complained that the conditional expression

if (a=b) 1 else 2

contained a syntax error (the symbol for equality comparison was
supposed to be ==, not =). The two symbols are now treated as
synonyms.

Properly installed functions written in C can also be used in expres­
sions:

get each Call

print .miles, log(.miles) ;

results:

55 4.00733

561 6.32972

34 3~52636

455 6.1203

736 6.60123
1040 6.94968

The pr i n t clause uses simple formats that are adequate for most
purposes. Sometimes a query writer needs more precise control over
the format of the output. The pr i n t f clause is available for this
purpose. The query writer simply makes a pr intf call as it would
appear in a C program:

get each Call

printf("phone number: %s time: %12.2e\n",

. telno, .minutes) ;

2046 TECHNICAL JOURNAL, NOVEMBER 1985

results:

phone number: 111-2233 time: 1.65e+00
phone number: 111-2233 time: 2.51e+01

phone number: 444-5566 time: 1.88e+00
phone number: 444-5566 time: 1.94e+01

phone number: 444-5566 time: 3.16e+01
phone number: 777-8899 time: 4.4ge+01

4.2 Control structure, part 1

The get statements we have described can be adjusted by inserting
a such that clause:

get each Call
such that .miles > 500

print .telno, .miles

results:

111-2233 561

444-5566 736

777-8899 1040

The such that clause allows the rest of the statement to be executed
only on lines of the data file for which the condition is true. There is
no mechanism for optimizing data file access in the presence of a such

that clause; every line of the data file is read and tested.
The collect statement is Datastream's second control structure.

ini tialize count = 0, totalmin = o. ;

collect each Call

count = count + 1 ,
totalmin = totalmin + .minutes

then

print count, totalmin ;

results:

6 124.633

Like get, collect reads every line in a data file. The assignments
between collect and then (known as inner assignments) are executed
once for each line (in the order in which they appear in the query).
When processing reaches the end of the data file, the pr int clause is

DATASTREAM 2047

executed. The in i t i ali z e statement is executed once before anything
else is done.

The query above would be shorter if one could write something like

print count (Call), sum(Call.minutes) ;

The main problem with functions such as count and sum is that they
are never enough; analysts are adept at inventing questions that
require endless subtle variations on functions they have used before.
Rather than try to stay' ahead of users' creativity, we designed the
collect statement, with which one can write computations including
sum, count, average, maximum, and so on, all in a similar way. It also
allows more exotic things, such as the following stratified sum:

initialize shortmin= 0., medmin= 0., longmin= 0.;

collect each Call

then

shortmin = if (.miles < 100)
shortmin + .minutes else shortmin,

medmin = if (.miles>= 100 and .miles < 500)
medmin + .minutes else medmin,

longmin = if (.miles>= 500)
longmin + .minutes else longmin

pr int shortmin, medmin, longmin ;

results:

3.53333 19.45 101.65

The analysts who use Datastream are almost always comfortable
writing this kind of computation. Initializations, counters, and partial
sums are familiar to those with- some programming experience (most
of them), and conditional expressions are easy to learn. No one seems
to miss programming the things that Datastream does automatically
in a query like this: opening the file, reading and parsing the lines,
recognizing the end of file, closing the file, and so on. Query writers
are free to spend their time describing solutions to problems rather
than programming inputj output operations.

4.3 Mainstream variables

Some queries require more than a single statement. The mainstream
provides a way to pass data values from one statement to the next for
further processing. Wherever a pr int clause appears, a keep clause
can be used instead.

2048 TECHNICAL JOURNAL, NOVEMBER 1985

pr int expressionl, expression2, ...

keep expressionl as namel, expression2 as name2, ...

The pr int clause writes a stream of lines on the standard output,
while the keep clause writes a stream of mainstream records into a
pipe. A mainstream record is a set of values for a set of variables. The
values can be any of the four Datastream types: integer, real, string,
or pointer, but they are represented in an internal form that is not
accessible to the user. To maintain this contrast between data in files
and data in mainstream pipes, we will observe the following conven­
tion: data files are filled with lines, and lines consist of fields; main­
stream pipes are filled with records, and records consist of variables.

Replacing pr int with keep in the long-haul query above produces

get each Call
such that .miles > 500

keep. telno as T, .mi les as M ;

This statement writes mainstream records as follows:

T M
111-2233 561
444-5566 736
777-8899 1040

4.4 Control structure, part 2

At the receiving end of a mainstream pipe, one can write a compre s s
statement.

get each Call
such that .miles > 500

keep. telno as T, .miles as M ;

initialize longest_call = 0, longest_telno = "";

compress

then

longest_telno = if (M> longest_call) T else
longest_telno,
longest_call = if (M> longest_call) MeIse
longest_call

print longest_telno, longest_call;

DA T ASTREAM 2049

results:

777-8899 1040

One can think of the compress statement as a collect statement
that operates on records from the mainstream rather than lines from
a data file. The initialization is done once, after which the inner
assignments are executed on each inbound mainstream record. The
pr int clause executes when the inbound mainstream ends. The last
example was contrived to make a simple illustration of the compress
statement. It is possible (exercise for the reader) to rewrite it with a
single collect statement. The following query uses a compress on

clause to find the shortest-distance call for each Customer.

get each Call

keep. telno as T, .miles as M ;

ini tiali ze shortest_call = 1000000;

compress on T

shortest_call = if (M < shortest_call) MeIse

shortest_call

then

pr int T, shortest_call;

results:

111-2233 55

444-5566 34

777-8899 1040

Compress on is the most elaborate of Datastream's control structures.
The stream of inbound mainstream records is divided into compression
sequences. Each compression sequence is a maximal sequence of suc­
cessive inbound mainstream records, all with the same values for
the variables in the compress on clause (in this example, just T). The
mainstream records written by the first statement are shown below,
separated into compression sequences by blank lines.

T M
111-2233 55
111-2233 561

444-5566 34

444-5566 455

444-5566 736

777-8899 1040

2050 TECHNICAL JOURNAL, NOVEMBER 1985

The initialization executes once at the beginning of the compression
sequence. Then the inner assignment executes for each member of the
sequence. Finally, the pr int clause executes once at the end.

Ordering is crucial here, because the statement processor does not
look ahead in the inbound mainstream. If the Call file were rearranged
as follows

teino minutes miles
111-2233 1. 65 55
111-2233 25. 1 561
444-5566 1.88333 34
777-8899 44.9167 1040
444-5566 19.45 455
444-5566 31. 6333 736

then the compression sequences would be

T M
111-2233 55
111-2233 561

444-5566 34

777-8899 1040

444-5566 455
444-5566 736

and the query's output would be

111-2233 55
444-5566 34
777-8899 1040
444-5566 455

The compress on clause has been valuable in constructing new data
files as well. This use of it will be discussed further in Section 4.6.

4.5 Connected files

The original Datastream included a program called build which
constructed "cooked" databases from "raw" data. It was capable of
building arbitrary binary relationships between entity types. When
bui ld was scrapped for performance reasons, some means for con­
necting ordinary UNIX system files had to be found. The approach
we have taken is not as general as the original, but it provides high

DATASTREAM 2051

performance and does not make specially formatted copies of large
data files.

Datastream's current connection mechanism is based on pointers.
A pointer is an offset from the beginning of a data file to the beginning
of some data line. Pointers can be stored as fields in one file and used
in queries to provide fast access to interesting lines in some other file.
In particular, pointers are used to implement entity lists. An entity
list associates one entity with an ordered list of entities of some other
type. For example, assuming that the telno field in our Call file is
the telephone number of the customer who dialed the call, consider
the following data about Customers:

Configuration:

Customer
telno
Call_count

totaL...minutes
total-1Uiles
Call_pointer

/usr/don/phone/Customerfile
string

integer

real
integer
Call control by telno

Data:

telno Call_ to tal_ to tal_ Call_
count minutes miles pointer

111-2233 2 26.75 616 0
444-5566 3 52.9666 1225 35
777-8899 44.9167 1040 95

Call_count is the number of calls the Customer made, total_
minutes and total-1Uiles are self-explanatory, and Call_pointer

is the number of bytes (including new lines) of /usr/don/phone/

CalIf ile that have to be skipped to reach the Cust()mer's first Call.
The following example shows how a pointer behaves in a query.

get each Customer

such that .telno = "444-5566"
keep. Call_pointer as it;

get each Call for it
pr int . telno, .minutes ;

results:

444-5566
444-5566
444-5566

1.88333
19.45

31.6333

2052 TECHNICAL JOURNAL, NOVEMBER 1985

The keep clause defines it to be a pointer-valued variable. The second
statement behaves just as it would without the for it, except that the
first Call retrieved from the data file is the one it points to, and
Calls are processed so long as they have the same value for telno.
Readers familiar with relational database systems will recognize C a 11_

pointer as a way of storing the results of joining Call and Customer
on telno. The configuration file declares that telno is the control
field for Call_pointer; that is, a change in its value signals the end
of the entity list. The above syntax for declaring control fields is new,
unsettled, and likely to change.

The first statement in the previous example writes only one out­
bound mainstream record. If it wrote more than one, the second
statement would repeat its action for each inbound mainstream record.

get each Customer
such that. Call_count >= 2

keep. Call_pointer as it

get each Call for it
print. telno, .minutes

results:

111-2233 1. 65

111-2233 25. 1
444-5566 1.88333
444-5566 19.45
444-5566 31.6333

Datastream supports a similar collect each ... for clause, as
the following query shows.

get each Customer
such that. Call_count >= 2

keep. telno as telno, . Call_pointer as it;

ini tialize longest = o. ;

collect each Call for it
longest = if (.minutes> longest) .minutes else
longest

then
pr int telno, longest;

results:

111-2233

444-5566

25. 1

31.6333

DATASTREAM 2053

The initialization is done once for each mainstream record. Then the
inner assignment is done for each Call starting with the one it points
to and continuing until telno changes. When the end of file or a Call
with a different telno is encountered, the pr int clause executes and
processing resumes with the initialization for the next inbound main­
stream record.

Pointers can be printed, and they can be used in some expressions,
notably conditional expressions. They cannot be used in arithmetic.
Pointers can be compared for equality but not magnitude. The general
rule is that algebraic manipulation of pointers should be discouraged
because a pointer that does not point to the beginning of a data line
can lead to seriously mangled results. Of course, pointer arithmetic
and comparison are legal in many languages, and they may find their
way into Datastream if a pressing need arises.

4.6 Constructing pointers

Users can make data files containing pointers any way they w~sh. It
has been done with special-purpose C programs, but it is more common
to use queries. As the statement processor traverses a data file, it
keeps track of where it is. In any statement of the form

get each X ...

or

collect each X ...

the phrase the X is a pointer-valued expression whose value is the
offset to the beginning of the current data line. This feature can be
used as follows (note the use of the Call in the keep clause).

get each Call

keep the Call as Call __ inbound, .telno as telno ;

ini tialze Call __ ptr = null (Call) ;
compress on telno

then

Call __ ptr = if (Call __ ptr = null (Call)
Call __ inbound else Call __ ptr

print telno, Call __ ptr ;

2054 TECHNICAL JOURNAL, NOVEMBER 1985

results:

111-2233 0
444-5566 35
777-8899 95

The mainstream records written by the first statement are shown
below, separated into compression sequences with respect to telno.

Call_inbound telno
0 111-2233
17 111-2233

35 444-5566
55 444-5566
74 444-5566

95 777-8899

An expression of the form nUII(entity-type) is always unequal to
ordinary entity-type pointers in comparisons. This means the compar­
ison in the conditional expression above is true only for the first
member of each compression sequence, when Call __ ptr has its ini­
tial value of null (Call). The conditional expression evaluates to
the ordinary Call pointer Call __ inbound, which is assigned to
Call __ ptr. For all succeeding members of the compression sequence,
Call __ ptr is unequal to null(Call), so its value does not change.
Thus whenever Call __ ptr is printed, its value is just a pointer to
the first Call for some Customer.

The query above was written by a program called canon. Canon
takes a configuration file and the name of a pointer field (Call_
pointer in this example) as input. It writes a "canonical" pointer­
construction query as output. Such a query always has two statements,
a get and a compress. The get statement gets each X, where X is
the entity type pointed to. The pointer's control fields and the X are
kept. The compress statement compresses on the control fields,
computes x- _ptr as above, and finally prints the control fields and
x- _ptr. The user can run canon's output as is, or augment it to
compute summary information. The double underscores are a simple­
minded way to make names generated by canon look different from
names chosen by the user.

To compute the Customer data used in this paper, the canonical
query shown above was modified by hand to compute Call_count,
total--I1\inutes, and total--I1\iles.

DA T ASTREAM 2055

get each Call
keep .minutes as time, .miles as distance,

the Call as Call __ inbound, .telno as telno ;
initialize Call __ ptr = null (Call) ,

tdistance = 0, ttime = o. , count = 0;
compress on telno

then

count = count + 1 ,
ttime = ttime + time,
tdistance = tdistance + distance,
Call __ ptr = if (Call __ ptr = null (Call)

Call __ inbound else Call __ ptr

print telno, count, ttime, tdistance, Call __ ptr ;

Pointer construction queries such as the above are sometimes used
with the UNIX system command join to construct data files. For
example, one might join the Customer data above to the results of a
survey to make a more elaborate Customer file, or the output of two
pointer construction queries could be joined to produce Customer data
with, say, a list of Calls made and a list of Equipment installed.

v. EXPERIENCE

5.1 Positive

5.1.1 Size

At the time of this writing, the largest database accessible with
Datastream contains about 70M bytes. A little more than half of that
is original data; the rest was constructed by Datastream queries. Some
databases are smaller than the original data. In the most dramatic
case a file of 50M bytes turned out to be 60-percent blanks and
insignificant zeroes in numeric fields. A query that simply printed
every field reduced the original file to an equivalent one with only
20M bytes. This is common with data that analysts acquire from
systems that use fixed-length fields.

5.1.2 Speed

Query processing performance is adequate, although users would be
happier if every query finished in five seconds. Timing experiments
found that Datastream's basic overhead on a VAX 11/780 computer
running University of California, Berkeley UNIX 4.1 BSD was about
nine microseconds of CPU time per byte of data read. Basic overhead
was measured by timing a query that does nothing but count the
records in a file. This query ran about 40 percent faster than the cat
command on the same file with standard output ignored.

2056 TECHNICAL JOURNAL, NOVEMBER 1985

In another performance test, an expert programmer wrote C pro­
grams that answered three simple queries. These programs required 1
percent, 40 percent, and 250 percent more CPU time to process a 20M­
byte file than was needed for equivalent Datastream queries. The
programmer took about 40 minutes to write his programs, compared
to ten minutes for the queries. The queries were chosen to show
Datastream in a good light, of course, and they were written by the
author of this paper, an expert query writer. When an analyst was
asked to write such queries, his performed slightly better than the
author's.

5.1.3 Use of pipes

Datastream's use of separate statement-handling processes com­
municating through pipes made implementing the query-processing
code simpler than it might have been otherwise, but it carried a risk
of bad performance. Specifically, we were concerned about the possi­
bility of thrashing among statement processors competing for the
same CPU, and swapping of pipes competing for the same system
buffer space. The first has not been a serious problem because of the
large (10K-byte) buffers used in the statement processors. In general,
a statement processor has room to read or write 10 to 100 mainstream
records or data file lines at a time. This means it can do considerable
processing without giving up the CPU. Second, we have never found
swapped pipes in our performance experiments. Pipes do not fill
beyond a system-specific limit (usually 10K bytes), and processing a
query requires at most nine of them at anyone time. Most queries
need four pipes or fewer. Our experience has been on machines with
three or four megabytes of main memory, and these systems have had
no trouble accommodating the pipes. Of course, the same large mem­
ories support large buffers in the statement processors as well.

5.1.4 Use of an intermediate code

The decision to separate the query compiler from the statement
processor with an intermediate code turned out to be a good one. It
has simplified development, debugging, maintenance, and tuning: to
date no bug has required changes to both modules, and several times
major changes have been made in one without affecting the other. A
human expert can read the intermediate code without much difficulty,
and that has proved helpful in debugging.

5.1.5 Query language

Users find that it takes some work to learn the control structures,
especially compress on. Once grasped, however, the language seems
easy to use. It allows analysts to concentrate on specifying computa-

DAT ASTREAM 2057

tions without spending much time on the details of I/O or control
structure.

5.2 Negative

5.2.1 Updates

The switch to ordinary files has made it much easier to correct
errors or append new data than it used to be. However, derived data
(summaries, pointers) sometimes account for a large fraction of an
analytical database (as much as 50 percent), and it has to be rederived
when the underlying data changes. This can be a real nuisance; some
applications have decided not to use Datastream because they needed
to do too many updates. Others have considered the possibility of
using Datastream for queries and other utilities or ad hoc code to
handle updates.

5.2.2 Connections

From time to time an application would like a more powerful
mechanism for connecting files than the sort-and-point technique
available now. For example, data files are often sorted on the control
fields for some pointer, and secondary indices into such files would be
helpful for some applications. Some extensions in this direction seem
reasonable and may be implemented in the future.

5.2.3 Functions

Some systems (notably S3,4) put procedures supplied by users in
processes separate from the basic code. This simplifies installation
and protects the basic code from name conflicts and bugs in the code
supplied by users. Unfortunately, it is difficult to make such a scheme
work efficiently in Datastream because overhead for context switching
and interprocess communication can be large compared to calling a
function. At present we maintain two versions of the statement
processor. One is the basic statement processor with no functions at
all, while the other is the basic statement processor loaded with a set
of functions that are shared by all the Datastream users on a given
system. The shared library had 17 functions at last count. It can
probably grow to several times that size before it becomes unmanage­
abl~. Datastream also provides a utility that allows analysts to make
statement processors loaded with personal libraries of functions that
can be called from queries.

Another problem with functions results from evolution: pr intf

clauses and expressions of the form null(entity-type) look like func­
tion calls, but they do not behave exactly like functions. Fortunately,
this inconsistency does not seem to bother the users.

2058 TECHNICAL JOURNAL, NOVEMBER 1985

VI. SUMMARY AND POSSIBLE IMPROVEMENTS

Experience with Datastream has shown that a language designed to
simplify access to large analytical databases can be useful in a UNIX
system environment. Datastream meets that need except for some
defects and omissions. Its users routinely use it to get information
from files that are five to ten times larger than we thought possible
when work on Datastream began. In spite of some initial reservations
about the architecture of the query-processing software, we have
achieved an efficient implementation. The conversion to ordinary files
has been well worth the effort; it eliminated much redundant use of
disk space and allowed Datastream to work with, rather than against,
other software tools.

Datastream might benefit from a facility for efficient random sam­
pling from data files and a way to define (not just call) functions in
queries. New data structures and connection mechanisms could be
supported by constructing a set of statement processors, each with a
different routine for handling data files. This is feasible because the
query-processing software is almost independent of the low-level file
handler. The new structures could be fully updateable, at least in
principle, and the new file handlers might even be those of some other
database system.

VII. ACKNOWLEDGMENTS

I would like to thank the original Datastream team of Ed Fisher,
Steve North, and Ray Yanofchick; others who provided suggestions
and encouragement, including John Chambers, Dave Belanger, Rick
Becker, John Walden, Bob Kayel, Bill Keese, and Jim Downs; and
the courageous users of the prototype: without them none of this would
make any difference.

REFERENCES

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N.J.: Prentice-Hall, 1978.

2. D. Swartwout, "How Far Should a Database System Go? (to Support a Statistical
One)," Proc. Second Int. Workshop on Statistical Database Management, Los
Altos, Calif., September 27-29, 1983.

3. R. A. Becker and J: M. Chambers, S: An Interactive Environment for Data Analysis
and Graphics, Belmont, Calif.: Wadsworth, 1984.

4. R. A. Becker and J. M. Chambers, "Design of the S System for Data Analysis,"
Commun. ACM, 27, No.5 (May 1984), pp. 486-95.

5. S. C. Johnson and M. E. Lesk, "Language Development Tools," B.S.T.J., 57, No.6
(July-August 1978), pp. 2155-75.

6. S. R. Bourne, "The UNIX Shell," B.S.T.J., 57, No.6 (July-August 1978), pp. 1971-
90.

7. P. P.-S. Chen, "The Entity-Relationship Model-Toward a Unified View of Data,"
ACM Trans. Database Syst., 1, No.1 (1976), pp. 9-36.

8. N. Wirth, "The Programming Language PASCAL," Acta Informatica, 1, No.1
(1971), pp. 35-63.

DAT ASTREAM 2059

AUTHOR

Don Swartwout, B.A. (Mathematics) 1974, Kalamazoo College; Ph.D.
(Mathematics) 1979, University of Michigan; AT&T Bell Laboratories,
1979-1985; AT&T Information Systems, 1985-. Mr. Swartwout's dissertation
dealt with the mathematical foundations of database systems. At AT&T Bell
Laboratories, he has worked on concurrency control and query languages for
database systems, programming environments, source-to-source programming
language translation, and compiler development. He continues working on
compiler development at AT&T Information Systems.

2060 TECHNICAL JOURNAL, NOVEMBER 1985

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

HEQS-A Hierarchical Equation Solver

By E. DERMAN* and E. G. SHEPPARDt

(Manuscript received April 9, 1984)

HEQS is a set of tools for numerically solving sets of algebraic equations
from their description in a text file. It allows users to compactly define (or
alter an already defined) set of equations (a model), and then analyze and
solve it with minimal intervention. HEQS automatically checks the algebraic
and logical consistency of the equations, reports errors, and allows users to
correct the errors by simply changing the original textual description of the
relevant equations. HEQS can deal with unsubscripted or multiply subscripted
(array) variables. Because it relieves users of the need to perform repetitive
algebraic substitution and evaluation, it is most useful for sets of equations
involving from tens to thousands of variables. HEQS commands can be used
(1) interactively, to define and solve models, or (2) as a set of UNIX™ operating
system high-level algebraic tools for building applications that·require model
solving. This paper describes the motivation and design of HEQS, illustrates
its use, and highlights its underlying algorithms.

I. INTRODUCTION

1.1 HEQS: A modeling environment

HEQS (Hierarchical Equation Solver) is a package of C and UNIX
system shell programs that allows users to interactively define, debug,
modify, and obtain the numerical solution to models described by sets
of algebraic equations in a text file. The equations it handles can
involve unsubscripted or multiply subscripted (array) variables. Used
interactively, HEQS programs provide a modeling environment for end
users to build and solve models. Used from within shell scripts or
menus, they form a set of high-level algebraic tools for builders of
applications that require model-solving capabilities.
* AT&T Bell Laboratories; now with Goldman Sachs & Co. t AT&T Bell Laboratories;
now with Asymetrix Corp.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

2061

HEQS frees users from tedious and repetitive checking of the logical
consistency of equations, from algebraic· substitution, and from nu­
merical solution. For this reason, it is most useful for repetitively
solving a set of equations while changing some data values or equa-

. tions, or for solving large equation sets involving from tens to thou­
sands of variables. Even for just a few equations, however, HEQS
makes it easy to enter them as text and directly obtain the solution.

1.2 Nonprocedur~.1 model solving

The input or primitive of HEQS is a model-an easily edited text
description of a set of equations (and associated comments) to be
solved. Models are most naturally kept in UNIX system files. Their
equations can be written in any order the user finds conceptually
useful. HEQS itself finds an order, or hierarchy, for the numerical
solution of the equations, hence its mnemonic name.

To analyze, find the errors in, or solve models, users invoke simple
one-word HEQS commands. Despite the logical and algebraic opera­
tions HEQS performs on the model, all subsequent HEQS output
about model errors or solutions refers to the original user description;
this localizes for users the source of the error, and so suggests the
necessary correction or modification .. This feature, that users need
deal only with their model description entered in any order, without
specifying a method for analysis or solution, makes the equation
solving system nonprocedural.

HEQS is therefore useful for mathematically naive users, who
cannot themselves solve small (but perhaps complicated) sets of equa­
tions, as well as sophisticated users, whom it frees from repeated
algebraic and numerical analysis of large models that are frequently
changed.

1.3 HfQS under the UNIX operating system

HEQS programs are tailored to the UNIX system and its shell. *
The programs can be used in the two modes:

1. As simple high -level commands to solve models, or
2. Combined with the control structures of the shell, to provide a

model-solving language for use by applications system builders that
require equation-solving capabilities for their users.

1.4 Main features

HEQS provides
1. A shorthand language for compactly describing large sets of

algebraic equations involving multiply subscripted variables,

* The commands are all implemented as separate programs that communicate with
each other through intermediate files, analogous to the UNIX Source Code Control
System package.

2062· TECHNICAL JOURNAL, NOVEMBER 1985

2. An interpretive nonlinear solver with predefined and user-defin­
able functions,

3. Extensive checking for common logical and algebraic errors in
the description of models, and for numerical problems that occur
during their solution,

4. What-if analysis (determining the numerical effect of a change
in some model equations),

5. Goal-seeking (determining what data values guarantee particular
output values),

6. Sensitivity analysis (determining the variation in variables of
interest when the data changes), and

7. A model compiler-that is, an automatic code generator that
produces a C program for rapidly solving a particular HEQS model
with user-specified data values. This allows applications developers to
provide numerical solution of particular models more efficiently than
the interpretive HEQS solver does for general models, and furthermore
allows the applications program to execute on machines that do not
run HEQS.
Graphics, report generation, etc., may be obtained by linking HEQS
output to other UNIX system tools.

HEQS is more flexible and powerful than standard commercially
available "spreadsheet" programs, which usually handle only fixed­
length time series of limited algebraic complexity. HEQS accepts large
sets of equations for subscripted or unsubscripted real variables in­
volved in both simultaneous and nonlinear relationships, and has more
error-detection facilities.

This paper is arranged as follows. Section II contains some varied
illustrations of the use of HEQS. Section III describes the current
status of HEQS. Section IV briefly describes the motivation for
building HEQS, and the design. Section V gives an overview of the
implementation, and Section VI discusses error reporting, an impor­
tant feature for users. Finally, Section VII describes our conclusions.
An Appendix on the algorithms and data structures used is included.

II. USING HEQS: EXAMPLES

This section contains three fairly lengthy transcripts of HEQS
sessions run under the UNIX system. They illustrate, in successively
more complex examples, some of the features of HEQS.

In order to annotate the transcripts with explanations, we adopt the
following convention. Boldface text below denotes HEQS commands
being invoked by the user. A $ sign denotes the computer prompt.
Italicized text before or after a HEQS command contains explanatory
remarks about the command and the reason for its invocation; these
remarks are not part of the transcript; they explain why particular

HEQS 2063

commands are being invoked. Finally, typewriter text denotes the
computer's response.

2.1 Defining, correcting, and solving a simple model

This example illustrates the solution of a few equations kept in the
file badmod. The original model contains some errors, which are
successively found and corrected with the HEQS system's help.

$ cat badmod Read the model in the file badmod.

This file badmod contains a simple model wi th errors

written in HEQS equa tion nota tion

This is a comment because the line starts with a # sign

/* This is also a comment because it started wi th a

/* and ends wi th the following */
Here are the equations

Note tha t some equa tions are simul taneous and that they

are

written in an arbitary order which is not the order of

solution.
B=2*C-D+1

D=4

A= (B+C)//D+sqrt(E)

note: typo - two di vide signs

C=3*B-2*D

note: no equa tion for E

$ cheq <badmod

error in line 3 :

A = (B+C)//

CANNOT PROCEED!

This command reads the model into HEQS and
checks equations for errors.

CORRECT MODEL AND REENTER.
The model has been corrected-look at it in file bettermodl.
$ cat bettermod1

B=2*C-D+1

D=4
A= (B+C)/D+sqrt(E)

note: typo fixed

C=3*B-2*D

note: no equation for E

$ cheq <bet termod 1 Read correct model into HEQS.
$ canislv Check consistency of the model-can it be solved?

2064 TECHNICAL JOURNAL, NOVEMBER 1985

CANNOT SOLVE FOR:

A

BECAUSE NO DATA OR EQUATIONS AVAILABLE FOR:

E

$ cat bettermod2 Look at edited and recorrected model.
B=2*C-D+1

D=4

A= (B+C)/D+sqrt(E)

typo fixed

C=3*B-2*D
E =-1

added missing equation

but sqrt (nega ti ve) is illegal

$ cheq <bettermod2 Read in next corrected version of model.
$ s 1 v Solve the model.
D=4

C=3.4

B=3.8
E=-1

An argument to a mathematical function is outside the legal

range in equation

A=(B+C)/D+sqrt(E)

Probable origin in model is

line 6: equation: A= (B+C)/D+sqrt(E)

$ cat bestmod

B = 2*C - D +1

D=4

Look at final corrected version.

A = (B+C)/D + sqrt(E)

C=3*B-2*D

E = +1
made E positive

$ cheq <bestmod Read final version into HEQS.
$ s 1 v Solve final corrected version.
D=4

C=3.4

B=3.8

E=1

A=2.8

HEQS 2065

$ whatif Now tinker with model using HEQS command 'whatif'.

D=5

C=4.4

B=4.8
E=1

A=2.84

D=5

$ sens A D=5 Ask how sensitive A is to D at D=5 using 'sens' com­
mand.

A +1.0% change in variable" D" causes a

+0.1% change in variable" A"

Use 'repslv' command to see how A varies with D by repetitively solving the
model for several D values.
$ repslv
D[1]=1

D[2]=2

D[3]=3

$

A D= 1,2,3
A [1] =2.2

A[2]=2.6

A[3]=2.733333333

2.2 Solving a projectile problem

This example illustrates the kinematics of a projectile fired vertically
upwards from the earth's surface. The model's equations are defined
in the file rocket_eqs. HEQS is then used interactively to explore what
the model predicts. The go a 1 s k command, which solves the equations
implicitly, is used to find the time at which the projectile reaches the
apex of its trajectory.

$ cat rocket_eqs

/* variables */

s - distance above earth's surface in feet

v ~ final veloci ty in ft per sec

/* parameters */

u - ini tial veloci ty in ft per sec

t - time of flight in seconds

a - accelera tion (due to gravi ty) in ft per sec sq

/* equations */

s = u*t+ 0.5*a*(t**2)

v=u+a*t

2066 TECHNICAL JOURNAL, NOVEMBER 1985

/* initial parameter values */
t = 1

a =-32
u = 88

$ cheq <rocket_eqs Read model into HEQS.
$ s 1 v Solve it for: initial parameter values.
a=-32
t=1
u=88
s=72
v=56

Find value at t=2.
$ whatif

t=2

a=-32
t=2
u=88
s=122
v=24

Find value of t at which velocity v is zero-i.e. projectile is at apex.
$ goalsk

t:v=O

a=-32
v=O
u=88
t=2.75
s=121

Use 'repslv' command to see how v varies with t
by repetitively solving the model for several t values.
$ reps 1 v v t=O: 3 : 13

t [1] =0
t[2]=0.25
t[3]=0.5
t[4]=0.75
t[5]=1
t[6]=1.25
t[7]=1.5
t[8]=1.75

v[1]=88
v[2]=80
v[3]=72
v[4]=64
v[5]=56
v[6]=48
v[7]=40
v[8]=32

HEQS 2067

$

t[9]=2

t[10]=2.25

t [11] =2.5

t [12] =2 . 75

t [13] =3

v[9]=24

v[10]=16

v [11] =8

v [12] =0

v [13] =-8

2.3 A complicated financial model

Table I illustrates the use of HEQS on a toy financial model kept
in the file bearmod; it includes many comments, and should be self­
explanatory. This model uses features of the HEQS language for
describing multidimensional arrays, for writing conditional (IF-ELSE)
equations that depend upon Boolean values, special built-in functions
like SUMOF that sum elements of arrays, and macro definitions that
make the model easily maintainable.

Note that the model is truly nonprocedural: equations are written
to describe the financial relationships in an order that makes them
easy. to understand, but not necessarily easy to solve. HEQS provides
the intelligence to determine an order and method for solution.

III. PRESENT CAPABILITIES

HEQS' main virtue is to allow the easy definition, alteration, and
solution of models like the ones given above. The characteristic feature
of such models is that although they may involve hundreds or thou­
sands of variables, they decompose into interdependent irreducible
subsets of simultaneous equations, each subset involving only a few
(generally less than ten) variables. *

Analyzing and solving the 112-variable model of Section 2.3 on a
Western Electric 3B20 Simplex or Digital Equipment Company VAX
11/780 minicomputer running the UNIX System V operating system
requires less than ten seconds of user plus system CPU time, as
reported by the UNIX system command time. About six seconds of
this time is devoted to reading the model into the system (via the
HEQS command cheq described in more detail later) and analyzing
it to find an order for solution. The numerical solution itself, invoked
by the s 1 v as illustrated in the examples of Section II, requires the
remaining four seconds of user plus system CPU time.

Whenever any equations are altered or added to the model, subse­
quent analysis, error-checking, and solution still require at most this
amount of time. Changing the model means simply reediting the

* Although HEQS imposes no actual limit on the number of variables in a simulta­
neous subset, it was not designed to efficiently solve irreducible subsets of simultaneous
equations involving hundreds of variables. The financial and market models for which
it has been typically used so far have all satisfied this criterion.

2068 TECHNICAL JOURNAL, NOVEMBER 1985

original model file. Prior to the existence of HEQS, a model of this
type would have been solved by writing an ad hoc procedural Fortran
or C program of approximately a thousand lines, or by writing special
preprocessors to commercially available spreadsheet programs with
less power. This would have required at least several hours of work,
plus a similar amount of maintenance time for any significant altera­
tion to the model. Altering or expanding a HEQS model requires no
new programming; the savings in time and labor gained by using
HEQS is therefore obvious.

For larger models with thousands of variables, HEQS' running time
increases roughly in proportion to the number of equations in the
model, as well as the equations' complexity. For example, a one­
thousand-variable model requires 37 seconds of user plus system time
to pass through cheq, and 51 seconds to be solved via slv. Changes
to equations or data values in the model can be made interactively
and the model again solved in similar amounts of time. The advantage
of using HEQS therefore becomes even more apparent.

Although 51 seconds is not a long time to wait for a solution when
one is developing or refining a model, it may be too long when that
refined model becomes part of an application program. For such cases
HEQS provides a command compmodel, described in Section V;
compmodel compiles a completed model into an efficient C program
that solves the model for different data values much more quickly, as
described in Section 1.4. Compiling the thousand-variable model men­
tioned above results in a reduction of solution time from 51 seconds
to 3 seconds, an appreciable decrease that ensures that the response
time of the compiled solving program is more than adequate for
applications end users.

Future HEQS enhancements may include integrating these equa­
tion-solving capabilities with reports and graphics functions, which
users of HEQS must currently obtain by passing their solutions to
other UNIX system tools.

IV. MOTIVATION AND DESIGN

4.1 History

HEQS arose out of the desire to automate the often tedious devel­
opment and maintenance of Fortran-based financial modeling pro­
grams being written or planned in our organization in 1979/1980. We
realized! that the programs being written were really solving an
algebraic representation (a model) of some corporate financial struc­
ture under varying end-user assumptions, and we aimed our efforts at
automating this process.

The implementation of these programs was the result of many error­
susceptible interactions between analyst end users and programmers.

HEQS 2069

~
<:>

~

-I
m
n
I
z
n »
r-

'6
c
;;a
z »
.r
z o
< m
~
c::J
m
;;a

\.0
O:l
U1

Table I-Three bear model

$cat bearmod

THREE BEAR MODEL

/*
* This is a financial model for the bear family.
* Once upon a time there were three bears: poppa, momma and baby bear.
* Every winter they hibernated, every fall they were unemployed.
* To survive, they needed 400 pounds of porridge a month.
* Each month they could use both their savings and earnings
* to buy porridge.
* This model lets them determine how their survival each month is
* affected by prices, salaries, etc.

*/

A defini tion of the family, months and seasons follows.
The opera tor« used below, as in t«1 , denotes a shift of
the time series t to the left by one uni t; thus, if t is
the series 1 through 12, t«1 is the series 0 through 11 .
Note how the DEFINE statements below allow easy maintenance.
Adding an extra bear to the whole model, or al ter ing the def ini tion
of winter simply requires changing a DEFINE statement to propagate
change through the whole model.

DEFINE BEARS poppa momma baby

DEFINE MONTH 1 : 12

DEFINE PREV (t) t«1 /* this def ines the macro function PREV () */
DEFINE SUMMER MONTH> 5 && MONTH < 9

DEFINE FALL MONTH == 9 I I MONTH == 10

DEFINE WINTER MONTH> 10 I I MONTH < 3

/* Note that the equations below have been entered in */
/* the order sui table for thinking about the model, */
/* NOT the order for sol ving it. */

/* Note also that al though income [poppa ,MONTH] and */
/* income [momma, MONTH] for any MONTH in the SUMMER */
/* are involved in simul taneous sets of equa tions, */
/* the user need not worry or even be aware of this. */
/* HEQS will figure this out and sol ve it. */
/* Finally, note that when the left-hand side of an */
/* equation involves a subscripted variable like */
/* income [poppa ,MONTH] , many equa tions are be ing */
/* simultaneously defined. This is much easier and */

I /* less procedural than wr i ting something like */
m

/* ,0 FOR i in 1 to 12 */
Vl

/* DO */
N /* income[poppa,i]=. */
Q
....... /* DONE */

t-.J
Q
'!
t-.J

-i
m
n
I
Z
n »
r-
'--

o
c
;;:0

z » .r
z
o
< m
~
c:J
m
;;:0

1..0
co
U1

Table I-continued

4,t--- --
4,t INCOME STATEMENT
4,t--- --

monthly_income [MONTH]

income [poppa,MONTH]

income [momma ,MONTH]

SUMOF income [BEARS, MONTH]

IF (WINTER I I FALL)

THEN

ELSE

o
100 - penal ty_2inc * income [momma, MONTH]

/ **
poppa's income diminishes when momma earns and

he must babysit i penal ty_2inc is the coupling

factor between the two incomes.

**/

IF

THEN

ELSE

(SUMMER)

0.25 * income [poppa ,MONTH]

o
/ ***
momma works only a quarter of the time poppa

does, and only in summer

**/

I
m
,0
(Jl

~
o
.......
w

income [baby,MONTH] o

bank-balance[MONTH] bank-balance[PREV(MONTH)]

+ monthly_income [MONTH] - money_spent [MONTH]

money_spent [MONTH] porridge-fleeded[MONTH] *price_of_porridge

--

FOOD AND SURVIVAL CONSTRAINTS

survival [MONTH]

porridge_needed [MONTH]

porridge_avail [MONTH]

IF (survival[PREV(MONTH)] == 1 &&

porridge_avail [MONTH] >= porridge_needed [MONTH])

THEN 1

ELSE 0

/ **
a value of 1 means they live

o means death by starvation

**/

IF (WINTER)

THEN 0

ELSE 400
/* hibernation */

(bank-balance [PREV(MONTH)] + monthly_income [MONTH]) /
price_of_porridge

~
Q

~

-I
m
()
:r
z
R »
r-
"'-

o
c
:;;:0

z »
.!

z
o
< m
~
a:l
m
:;;:0

~
Q:l
U1

Table I-continued

--

price_of_porridge
penalty_2inc
bank-halance[O]
survival [0]

DATA

0.25
O. 1

o
/* estimated penal ty factor for 2 incomes
/* initial bank balance ~/
/* they start out alive */

$ cheq <bearrnod Initial HEQS command to read the model from its file.
$ can is 1 v HEQS command to ensure all unknowns can be solved for.
$ s 1 v HEQS command to numerically solve the model.

survival[0]=1
survival [1] =1
survival[2]=1
survival[3]=1
survival[4]=1
survival[5]=1
survival[6]=1
survival [7]=1
survival [8]=1
survival [9]=0
survival[10]=O
survival[11]=0
survival[12]=O

Only the answers 'of interest, not the whole solution, are shown here.

*/

I
m
,0
Cfl

~
o
.......
~

$ wha t i f HEQS command to speculatively change and solve model.
price_of_porridge = 0.26

survival[0]=1
survival [1] =1
survival[2]=1
survival[3]=1
survival [4]=0
survival [5]=0
survival [6]=0

survl val [7] =0
survival[8]=0

survival [9]=0
survival[10]=0
survival[11]=0
survival[12]=0

$

System requirements and model equations were elicited from analysts.
Maintenance was driven by the frequency of the analysts' needs to
change the model to reflect actual and permanent regulatory, legal,
accounting, and corporate structure changes. Finally, analysts often
wanted to make speculative and temporary changes to models to
investigate their assumptions in forecasting.

We decided to create tools that would let analysts do their work
without having to rely on programmers. Since their underlying need
was to solve an algebraic model, we started to design a system that
would solve models from a high-level description of its structure and
equations. Such a system would let analysts define, solve, and alter
their models as their needs dictated; it would also let programmers
who still built applications for analysts do their work more easily and
rapidly.

The first system built was EXEC, a 1980/1981 prototype automatic
code generator. It produced hard-coded Fortran subroutines to calcu­
late the values of variables in a model by accessing a database of
corporate and financial model equations previously set up by an
administrator. EXEC was implemented in the UNIX system shell
language and could solve only nonsimultaneous equations.

It soon became apparent that it was preferable for users to build
and solve models interactively, since model refinement is an iterative
process requiring frequent debugging. In contrast to EXEC's compi­
lation of models into Fortran subroutines, HEQS was therefore de­
signed as an interpreter that directly solved models. Its specifications
and some design features are described below.

4.2 Requirements

To allow nonprogrammers to develop and solve models, we required
that HEQS' only primitive should be a text file of equations. However
complex the algebraic analysis and solution of the model, HEQS users
should only have to deal with a straightforward text description of the
model. Users should be free to write equations and comments in any
conceptually useful order, in a notation as close to common algebra as
possible.

We further required that HEQS provide interactive model definition
and solving, with extensive error checking in all phases of modeling.
Errors that might prevent the complete solution of a model had to be
reported to the user in terms of the responsible equation or problem
in the original model. Error correction should require only that the
user correct by reediting the original high -level description of his
model. We also decided that HEQS should make no attempt to remedy
user errors in their models by guessing at their intention. Responsi­
bility for the meaning of a model should lie with the modeler only.
HEQS should provide power, but not at the expense of safety.

2076 TECHNICAL JOURNAL, NOVEMBER 1985

These requirements for interactiveness led us to implement large
parts of HEQS as an interpreter. This has the obvious advantage of
making it easy to provide good debugging, and the disadvantage of
slower execution (i.e., numerical solution) of debugged models. We
judged this worthwhile, but in fact later added a compmodel command,
described in Section V, that allowed the production of efficient C
programs to solve particular models.

The objects of interest in financial and other types of modeling are
often multidimensional structures, for example, the revenues of a
company for each division and each year. Such structures are well
represented by subscripted variables (arrays) and so HEQS was re­
quired to accept equations for both subscripted variables (sometimes
called tensors in the discussion below) and unsubscripted (scalar)
variables, and provide a variety of operators for manipulating them.
Since not all functions that users might need could be foreseen, HEQS
had to allow users to define their own functions. It needed numerically
to solve sets of nonlinear simultaneous equations for these variables.
Finally, to cater to the investigatory nature of modeling, it needed to
solve models in a whatif, goal-seeking, and sensitivity mode, as defined
in Sections 1.4 and V.

Since we expected that HEQS would be used as a high -level appli­
cations-building language, we also required it to be compatible with
other UNIX tools. This led us to implement the whole system as a
collection of programs, each performing a simple analytic step in
model solving, with each program returning appropriate error codes
to indicate successful or unsuccessful task completion. Applications
developers could then build larger modeling systems quickly by embed­
ding HEQS commands in shell scripts under the control of the shell.

4.3 Design

4.3.1 Solving sets of equations

Our aim was to provide a modeling environment where users main­
tain and solve their own models without programmer invervention.
We therefore tried to make HEQS mimic human algebraic reasoning,
analyzing, and solving systems of equations in a manner similar to the
way people would. In this way, when an error occurs, preventing the
complete solution of a model, it can be localized for users at a point
close to where they would have discovered it themselves.

How would one solve large sets of algebraic equations* of the form

lhs_variable = expression?

* From now on, "equation" always means an equation of the form left-hand-side
variable = expression, as distinct from the more general algebraic equation expression =
expression. The "left-hand-side variable" above may, however, be an array or tensor
implicitly involving several scalar variables.

HEQS 2077

As an illustration consider the set

a = 2b - c,

b = 3a + Cd,

C = 4d - e,

d = 7c + 3, and

e = 4.

One would carry out the following steps.
1. Check the algebraic syntax of the equations.

(la)

(lb)

(lc)

(ld)

(Ie)

2. Analyze the variable dependencies. In this example, we note that

a depends on band c;
b depends on a, c, and d;
c depends on d and e;
d depends on c;
e is known.

3. Determine those irreducibly simultaneous subsets of variables
whose equations must be solved simultaneously. Here,

a and b are irreducibly simultaneous,
c and d are irreducibly simultaneous,
e is (trivially) irreducibly simultaneous.

4. Find an order for successive numerical solution of the simulta­
neous subsets which guarantees that, as each subset is solved, all
unknowns on its right-hand side have already been solved. Here,

e is known,
thus d and c can be evaluated,
finally a and b can be evaluate-d.

5. Solve the subsets numerically in this order.
These are the steps HEQS should carry out.

HEQS uses a graph-theoretic approach2 to model analysis and error
checking, and a variable substitution algorithm for the numerical
solution of equations.3 For nonlinear equations, the variable substi­
tution is supplemented by an iterative approximation.4 These together
provide a good paradigm for simple human analysis, error detection,
and solution.

To provide a formalism for model analysis -and solution, models in
HEQS are internally represented as directed graphs5 and are described
in greater detail in the Appendix. Tpe illustrative set of equations

2078 TECHNICAL JOURNAL, NOVEMBER 1985

Fig. I-Directed graph displaying the dependency structure of the model in eq. (2).

a = 2b - C, (2a)

C = d + 2, (2b)

d = 3, and (2c)

b = 3a + Cd (2d)

is represented by the directed graph in Fig.' 1. Here, graph vertices
correspond to variables, and directed edges or arrows correspond to
the equal sign that shows the dependency of left-hand-side variables
upon the right-hand-side variables in their defining equations. Strong
components (sets of vertices such that any two are connected to each
other by paths in either direction) correspond to sets of irreducibly
simultaneous variables whose equations can be solved only with si­
multaneous solution techniques. Given this correspondence between
equations and graphs, graph theory provides a rich source of algo­
rithms for analyzing and solving models. Some of these are listed
below.

1. Strong component algorithms are useful for isolating simultane­
ous subsets of variables.

2. Depth-first search from graph roots is useful for determining the
order in which these subsets can be solved.

3. Depth-first search from a vertex corresponds to tracing the effect
of changing the value of a variable (i.e., the vertex) upon other
variables in the model, that is, doing "what-if" analysis.

4. Algorithms for finding paths between vertices in the graph can
be used to help solve the implicit equations that occur in goal-seeking.
These algorithms are described in more detail in the Appendix. In

HEQS 2079

brief, graphs provide a formal way of representing human thinking
about models.

The graphical representation and strong component algorithms also
allow HEQS to subdivide the large model into a sequence of smaller
ones, each more easily inspected and solved. This lets HEQS give
human -oriented error messages. Helping users debug large models
precludes solving a model by inverting a matrix for all the equations,
or using any other technique that treats the whole model as one
irreducible set of equations. A matrix inversion solver is inadequate
in any case because models of interest are generally nonlinear and
sparse.

4.3.2 Modular architecture

The basic architecture of the system was chosen to model corre­
sponding steps in the equation-solving process. It is displayed in Fig.
2. Details of the system are contained in Section V. Its front end was
a macro preprocessor that parsed and then scalarized compactly writ­
ten scalar or tensor equations into their scalar text equivalents; it then
abstracted and stored in a graph (as described above) the dependent
(left-hand-side) variable and its independent (right-hand-side) varia­
bles for each scalar equation. These scalar equations and their graph
were then passed to a module that decomposed them (using strong
component algorithms) into the smallest possible sets of simultaneous
equations, and determined an order (the hierarchy of the mnemonic
"HEQS") for their solution. A numerical solver then found the solution
to the scalar equations passed to it in the appropriate order. The
advantages of this modular approach are listed below.

1. It allows the crucial separation of the "scalarizer," which defines
the language for writing equations, from the solver, which finds the
solution. This makes possible the· independent enhancement or re­
placement of either, and has already proved extremely useful.

2. Each module can be independently developed, with one module
assigned to a programmer.

3. Each module can be independently debugged owing to the weak
coupling of all modules, which communicate only by intermediate files.
These files are also useful in finding programming errors.

4. Modeling can be conveniently halted when errors occur, because
each module performs a limited analytic task.

MODEL SOLUTION

Fig. 2-HEQS functional architecture.

2080 TECHNICAL JOURNAL, NOVEMBER 1985

The main disadvantage of this approach is suboptimal time and space
efficiency owing to information transfer between modules, but this
can easily be dealt with by further development and integration if
necessary.

V. HEQS ARCHITECTURE

We now present a brief description of the architecture of HEQS,
and the commands available. The commands in HEQS are imple­
mented as separate programs, described below. Their interactions via
intermediate files are displayed schematically in Fig. 3. In this figure,
rectangles denote HEQS commands, ellipses denote intermediate files,
and arrows show the information flow.

Cheq (CHeck EQuations) is the primary gateway into HEQS' mod­
eling environment. It reads equations and comments from a file or
standard input, parses them, reports syntax errors, scalarizes as nec­
essary, and builds a dependency graph for future model analysis. Cheq

has full macro capabilities and understands tensor notation, allowing

MULTIPLE
SOLUTIONS

SOLUTION

SENSITIVITY

ERRORS

VARIATION

ERRORS

SOLUTION

Fig. 3-HEQS architecture.

ALTERED
EQUATIONS

ORDER

HEQS 2081

powerful and compact representation of large equation sets. The
equation language it accepts was illustrated in Section II. The depend­
ency graph that contains all model information is stored in an inter­
mediate file (the outgraphfile) for use by other programs, whose first
action is almost always to reconstruct all relevant information about
the model by opening this file.

Seq (Sequence EQuations) decomposes the model entered via cheq

into linked simultaneous subsets of equations and then determines an
order for solution that allows them to be solved subset by subset. The
order is stored In another intermediate file (orderfile) for use by slv

below.
Canislv (CAN I SoLVe) uses the order for solution in orderfile to

test whether the model is underdetermined. It reports all variables
that do not appear on the left-hand side of some equation in the model
(and thus cannot be solved for), as well as variables whose values
cannot be found because they depend upon the value of such variables.
It is intended to provide model builders with interactive help in
completing their model.

Slv (SoLVefapplies a numerical solver to the simultaneous subsets
of the model in the order determined by seq, and reports the solution.
The graph corresponding to the solution is left in an intermediate file
(solgraphfile). If the solution fails for some reason (unknown functions,
unspecified variable values, overflows, illegal function arguments, non­
converging iterative solution to a nonlinear equation, etc.), s 1 v reports
the problem and the simultaneous subset in which it occurs. In this
way, it pinpoints the nature and location of the model error, and so
suggests (one hopes) how the user can correct it.

S 1 v has several additional features. It contains a library of common
mathematical functions it can evaluate when they occur in a model's
equations. It solves nonlinear equations by iteration, and requires that
users provide an estimated initial value for any variable whose value
is found in this way. Finally, HEQS has facilities for customizing s 1 v
by linking user-defined C subroutines to its library (see addfunc

below).
Heqs (Hierarchical EQuation Solver) is a short shell program utiliz­

ing cheq, canislv, and slv to parse, check for consistency, and solve
equations in a file. It provides a simple one-word command for new
users to solve and debug models, and illustrates how HEQS commands
can be used with the shell to write model-solving scripts.

Wha t i f (WHAT-IF) determines the numerical effects of tinkering
with a model by changing its equations. It accepts from the standard
input a small set of new equations to replace speculatively some
equations in the model, determines what variables of the model need
be recalculated, and finds the value of these variables again. It leaves

2082 TECHNICAL JOURNAL, NOVEMBER 1985

the altered model and its solution in a new, intermediate file
(whatgraphfile). This is used for doing successive whatif's or
goalsk's (described below) on models already altered as well as on
the original model.

Goalsk (GOAL-SeeKing) allows the determination of the data
values in the model that guarantee particular output values for the
solution. Models normally contain all unknowns of interest on the
left-hand side of defining equations, with the understanding that these
unknowns are to be determined. Goalsk allows users to specifiy (1) a
target value for a set of left-hand-side unknowns, and (2) a set of
right-hand-side variables for which they would like to know values
that guarantee the targets. HEQS then tunes the right-hand-side
variables to the appropriate values, and reports them. This is equiva­
lent to finding the numerical solution of implicit equations in the
model.

Sens (SENSitivity) calculates for users the percentage change in
the values of each of a set of model variables that result from a
specified percentage change in another specified variable. Its effect is
similar to that of several wha t if commands in succession.

Reps 1 v (REPetitive Solution) repetitively solves a model for a range
of different input values for data variables. It is analogous to a Monte
Carlo solution of a model.

Wgl (WigGLe) does variable impact analysis on a model. Given one
or more variable names as arguments, it reports the names of variables
whose values are affected by changes ("wiggles") in the values of the
arguments, owing to the implicit dependence induced by the model's
equations. It is intended to aid users interested in analyzing the effects
of tinkering with a model.

Addfunc (ADD a user-defined FUNCtion) allows users to' add their
own C subroutines defining their own functions to :the numerical
solver used by slv, heqs, goalsk, whatif, repslv, and sens. It
produces an extended version of the s 1 v program for personal use by
the user. Since it is a "meta" command that modifies the HEQS slv
command rather than solving a user's model, it is displayed as a dashed
box next to the s 1 v command in Fig. 3.

Compmodel (COMPile a MODEL) produces a compilable C program
that solves a particular model more rapidly than the standard HEQS
s 1 v command interpretively solves a general model. It too is a meta
command.

VI. ERROR REPORTING IN A MODEL ENVIRONMENT

Programs written in compiled procedural languages may contain
either compil~-time or run-time errors. Models in HEQS may analo­
gously contain compile-time errors of logic or syntax detectable during

HEQS 2083

analysis, or run-time errors corresponding to numerical problems
found by the solver as it tries to proceed through the simultaneous
subsets of equations. In either case, our main design criterion has been
to ensure that HEQS reports solubility problems in terms of the
original user equations that seem to cause the error, despite any
analysis and transformation the model may have undergone in the
system's graph-theory algorithms. HEQS makes no attempt to fix
models by using its own "intelligence" in place of the modeler's. We
believe that detecting and reporting a large class of errors to users in
the language of their original model will adequately enable them to fix
things themselves. With this in mind, we list below some of the model
errors found by the system and explain where they are reported.

Syntax errors in the model's equations are detected by cheq while
parsing and scalarizing the equations. Since HEQS scalarizes tensor
equations and has full macro capabilities, cheq has an option that lets
users see the equivalent scalar equations that constitute their model
after scalarization and macro expansion. This feature is useful for
advanced users making liberal use of cheq's compact notational power.
Cheq reports all syntax errors in a model; it only builds a dependency
graph for error-free models.

Semantic errors (errors that make a model "meaningless") are
detected in cheq, canisIv, and slv. Over-determined models­
models where a variable is used as the left-hand side of more than one
equation-are caught and reported in cheq. Under-determined models,
in which some equations or data values necessary for complete solution
of the model are missing, are detected in canis Iv and slv. CanisIv
has been found to be especially useful for detecting typographical
errors, since mistyped variable names often lead to under-determined
models.

Unknown functions are detected in slv. Cheq assumes all functions
in a model are available in the function library in s 1 v, so that such
errors are caught during numerical solution after model analysis.
lfunctions called with the wrong number of arguments are detected
here too.

Mathematical errors involving underflow, overflow, functions called
with illegitimate argument ranges, etc. are detected in s 1 v. Its error
messages report the offe~ding scalar equation and function or opera­
tion, the original model equation from which it stems by scalarization,
the data values used in the model equation, and the equations in the
simultaneous subset to which they belong.

Nonlinear equations are detected by slv, which first eliminates any
nonlinearities that can be removed by linear solution and substitution.
To avoid the problem of finding the "wrong," that is, unwanted
solution to a nonlinear equation with multiple solutions, users are

2084 TECHNICAL JOURNAL, NOVEMBER 1985

then asked to provide an estimate of the answer to be used as a starting
point for iterative solution. Problems involving nonconvergence or the
absence of a real solution are reported here too.

Typographical errors are found only when they lead to some insol­
ubility like those listed above. Here, HEQS' detailed output in terms
of the original user equation is usually adequate for localizing the
error.

VII. WHAT WE LEARNED

HEQS has shown that it is feasible to give users an easy way of
writing, maintaining, and solving large sets of algebraic equations. Its
language, with its subscripted variables and macro facilities, allows
powerful, user-definable, easily maintainable and yet compact descrip­
tion of algebraic relationships. Its error-checking facilities help even
naive users correct their models. Its solver provides nonprocedural
solutions to many algebraic problems of interest.

The decision to implement HEQS as an interpreter rather than a
compiler seems successful, since our users work in a field where models
change quickly, and easy model building and consequent error correc­
tion is crucial. The interactive debugging provided by an interpreter
is particularly important; it is hard to imagine users with a nonpro­
gramming background having the patience to debug models that are
solved by first translating them into a procedural language, then
compiling them, and finally running the resultant program.

The graph-theoretic internal representation of models has provided
a natural paradigm for equation solving by humans. It offers a standard
mathematical way of representing all the analytic steps of modeling.
We have found that even mathematically naive users seem to have an
intuitive grasp of dependency trees. This suggests that a two-dimen­
sional display of the dependency trees would provide a useful interface
to the modeling commands.

The separation of the parser/scalarizer from the solver in the
implementation has allowed flexible development. The parser and the
solver were modified or rewritten independently at several times
during the upgrading of HEQS. In each case, integration into the
system as a whole was simple. The possibility of building special­
purpose front ends for particular areas of modeling without affecting
the overall system is attractive.

The disadvantage of this separation is subtle, and was slow to
emerge. Since the solver sees only scalarized equations, it has no
understanding of tensors, which are parsed only by the scalarizer.
Thus, user-defined precompiled subroutines linked to the solver can
only accept scalar arguments. It is not possible for users to define
their own subroutines that take tensor arguments, since this would

HEQS 2085

require dynamically modifying the precompiled parser, an unrealistic
goal. In practice, however, the addition of full macro capabilities to
the HEQS parser allowed users to define macros that take tensor
arguments, which eliminated much of the problem.

A final important lesson in implementation was the benefit of
HEQS' modular design. HEQS programs were small, each performing
one analytic task. They communicated via intermediate text files that
held the relevant data structures. The weak coupling implicit in this
design allowed different programmers to work on different modules
with little conflict and much independence, and inspection of the
intermediate text files aided debugging. Now that the system has
stabilized, it may be desirable to join the separate programs into one
large one, dispose of the need for intermediate files, and thus obtain a
more efficient and tested integrated version.

VIII. ACKNOWLEDGMENTS

C. J. Van Wyk furnished us with algorithms and programs for the
solution of algebraic equations by substitution. T.-W. Pao devised a
way to allow users to link their own subroutines to HEQS' solver.
Both of them provided useful suggestions and conversion. C. Childs
and R. Rodriguez gave helpful support and advice.

REFERENCES

1. E. Derman and Z. M. Ma, unpublished work.
2. E. Derman and C. J. Van Wyk, unpublished work.
3. Christopher J. Van Wyk, A Language for Typesetting Graphics, Ph.D. dissertation,

Stanford University, 1980.
4. D. W. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear

Parameters," J. Soc. Ind. Appl. Math., 11, No.2 (June 1963), pp. 431-41.
5. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, New York: Addison-Wesley, 1974.

APPENDIX

HEQS Models As Graphs

This Appendix describes the internal graphical representation of a
user model, and explains how it is used to obtain the order of compu­
tations for model solution, to perform impact analyses, to eliminate
extraneous computations from a what-if analysis, and to reorder model
computations to perform goal-seeking. In particular, the method used
to reorder the computations for goal-seeking is described in some
detail. We first give an intuitive description of the HEQS graphical
representation of models, and we later present a rigorous definition.

A HEQS model is a sequence of equations, each of whose left-hand
sides is a variable to be computed. Furthermore, a model is considered
comp!ete only if every model variable is constrained to appear once

2086 TECHNICAL JOURNAL, NOVEMBER 1985

Fig. 4-Graphical representation of the model in eq. (3).

and only once on the left-hand side of a model equation. Thus, the list
of equations

w = 2*x + y - 10, (3a)

x = w**0.5, (3b)

y = z*D - 3, (3c)

z = y - 5, and (3d)

D = 20 (3e)

(where ** denotes exponentiation) forms a legitimate HEQS model.
Internally, HEQS represents each model as a directed graph whose
nodes correspond to model variables and whose arcs indicate compu­
tational dependencies. The graphical representation of the model given
above is shown in Fig. 4.

It is important to understand that each node in the graph "points"
to the model equation that is used to derive a value fot the variable
represented by the node. Given the constraints on a HEQS model,
that is, each variable occurs exactly once on the left-hand side of an
equation, this node to equation matching is implicit within the model
equations themselves. Later, in conjunction with the discussion of
goal-seeking, we describe a method for performing this matching
process when no constraints are placed on the form of equations, so
that both sides of an equation may be arbitrary expressions.

The value of a variable corresponding to a node can only be deter­
mined when all the right-hand-side variables in its equation are known.
For the graph, this implies that the computational ordering of a model
(the order in which it can be solved) must satisfy the constraint

HEQS 2087

The value of a model variable is determined only after all
variables connected to it by in-arcs have been evaluated.

This statement is, of course, not quite complete, as can be seen in the
model of eq. (3). Here, the variable w cannot be evaluated until the
variable x has been solved and vice versa. In other words, the variables
wand x form a set that must be computed simultaneously, that is,
produce a simultaneous set of equations. In fact, the nodes correspond­
ing to wand x form a strong component of the graph representing the
model (a strong component of a directed graph is a set of nodes such
that there is a path from any node in the set to any other). It should
be clear that any simultaneous set of equations in a model must
correspond to a strong component in the graph representing that
model. Thus, to obtain the computational ordering of a model, we first
collapse the graph of a model into strong components. For our example
model, we obtain the directed graph of strong components depicted in
Fig. 5. The computational ordering of a model can then be fully
described by the statement

The value of the variables in an individual strong component
(simultaneous equation set) cannot be determined until all
strong components connected to it by in-arcs have been eval­
uated.

Thus, we must select the set of strong components in an order
satisfying this statement and solve them in that order. (A depth-first
search of the collapsed graph provides one suitable order.)

Using this graphical representation to determine the computational

Fig. 5-Collapsed graph corresponding to the model in eq. (3).

2088 TECHNICAL JOURNAL, NOVEMBER 1985

ordering for obtaining a model solution has several advantages over
other methods.

1. Some seemingly nonlinear computations can be easily solved
through substitution (i.e., without using nonlinear solution methods).
In the example, the equations y = z*D - 3 and z = y - 5 form a linear
(not a nonlinear) simultaneous set since the variable D is evaluated
prior to the evaluation of y and z (i.e., the strong component containing
D is solved prior to the strong component containing y and z).

2. This method isolates computational . errors (division by zero,
overflows, underflows, etc.) to the equations in which they occur. For
example, the equation x = y/(a + b) could result in an error if a = -b,
and not otherwise. Detecting these types of errors helps localize logical
errors within a model.

3. The time required to solve a linear simultaneous set of equations
with a linear substitution method (the method used in HEQS) varies
in proportion to the number of atomic arithmetic operations (addition,
subtraction, etc.) in the set of equations. This is a clear improvement
over treating a model as a large matrix in which the number of
operations increases with the square of the number of model variables.
(Of course, matrix methods have many other disadvantages. For
example, they are implicitly linear.)

4. When a truly nonlinear simultaneous set of equations does occur
(as with wand x in the above example), the smaller the set, the faster
the convergence of any iterative solution method. Furthermore, solving
two nonlinear simultaneous sets independently will, in general, be
faster than solving the two sets as a single, larger simultaneous set.
(We use Marquardt's iterative method of solution for nonlinear si­
multaneous sets5

).

5. The extraction and ordering of strong· components is fast since
it is linear in the number of nodes in the graph.

The HEQS graphical paradigm of a model is useful in several other
respects. For example, a common question to ask about a model is, "If
I change the value of this variable, what other variables in the model
are changed (impacted)?" This type of question is referred to as impact
analysis. Our graphical representation provides a straightforward and
fast method for performing such an analysis. The inverse of an impact
analysis (what variables produce changes in a particular variable) is
also quite easy and fast. Furthermore, both these capabilities allow
the elimination of extraneous computations in a so-called what-if
analysis. An example of the type of question posed in such an analysis
would be

What is the effect on corporate profits if the price of product A
rises by 10 percent?

HEQS 2089

The variables which must be recomputed to solve this what-if question
are exactly those that lie on a path from the "price" variable to the
"profit" variable. All other computations may be excluded.

Another common capability required in a modeling system such as
HEQS is goal-seeking, which is, in an Intuitive sense, the inverse of
the what-if capability. For example, a typical question posed would be

What must the price of product A be to increase corporate
profits by 10 percent?

Given our model in eq. (3), this is similar to asking, "What value must
the variable D be given so that the constraint w = 15 is satisified?"
That is to say, we wish to find a solution to the set of equations

w = 15, (4a)

w = 2*x + y - 10, (4b)

x = w**0.5, (4c)

y = z*D - 3, and (4d)

z = y - 5. (4e)

(Note that the equation D = 20 has been removed from the model,
and the equation w = 15 has been added. These model perturbations
are characteristic of the goal-seeking problem.) In this goal-seeking
analysis, we refer to the w as the goal-seeking variable, and to D as
the target variable. Our problem, then, is to determine an order of
computation for the new goal-seeking model. Ideally, we would like to
obtain this computational ordering by a sequence of simple transfor­
mations applied to the graph representing the original model. We
present such a method whose most complex step is discovering a path
from one node to another.

The previous method for ordering computations (forming a graphi­
cal representation using the implicit matching of nodes to equations)
in a HEQS model fails for this goal-seeking problem for an obvious
reason: the new model violates the constraint that each model variable
occur exactly once on the left-hand side of an equation (w is on the
left-hand side of two equations while D is not on the left of any
equation). What we require is an algorithm for obtaining the matching
between the model variables represented by nodes in the graph, and
the new set of model equations. Before giving a precise description of
our goal-seeking algorithm as applied to the general case, we first
illustrate the steps involved by reordering the computations in the
goal-seeking problem given here. Later, we give a rigorous description
of this process.

2090 TECHNICAL JOURNAL, NOVEMBER 1985

w::w= 15

w::w"= 2*x + y-10 x::x = w**.5

z::z = y-5

D··

Fig. 6-Graph for goal-seeking in model of eq. (4).

To determine a computational order for goal-seeking using graphs,
the first step is to remove the equation corresponding to the target
variable D in the graph of Fig. 3, and then add a new node that
describes the new goal-seeking constraint. The resulting graph is
depicted in Fig. 6. Note that in this figure, the equations associated
with each node have been placed in the. graph nodes, separated from
the variable corresponding to the node by two colons. Also note that
only the equation D = 20 has been removed from the graph, not the
node containing the variable D.

We now proceed to find a path from the node corresponding to the
target variable D to the newly added node that contains the goal­
seeking constraint equation. The arcs in one such path are shown in
bold in Fig. 6. Having found such a path, we then transform the graph
by moving the equation in each node in the path from that node to its
predecessor node in the path (the result of this operation is depicted
in Fig. 7). This places in each variable node an equation that can be
used to derive the value of that variable in the goal-seeking problem.
We also retain a one to one" correspondence between variables and
equations. After having moved the equations "backwards" through the
path, we redirect each arc that points to a node in the path so that
it is directed to the predecessor of that node in the path instead
(the graph arcs affected are marked in bold in Fig. 7). This makes the
dependencies between the nodes and their new associated equations
consistent. The result of this arc redirection process is shown in Fig. 8.

Finally, we remove the new graph node and all its connected arcs.
The resulting graph has all the properties we require for ordering

HEQS 2091

w::

w::w= 15 X::X = w**.5

y::w=2*x+y-10 ~-------t~ z::z = y-5

Fig. 7-Transformed graph for goal-seeking in model of eq. (4).

w::

w::w= 15 X::X = w**.5

y::w=2*x+y-10 z::z=y-5

Fig. 8-Final graph suitable for determining the computational ordering of model in
eq. (4).

computations in the goal-seeking problem; its strong component col­
lapse and depth ~ first search yields an appropriate computational order.

We now give a more rigorous definition of model graphs and of the
goal-seeking algorithm.

We can conceive of a model M as being an ordered ~riple (V, E, V),
where V is the set of model variables, E is the set of model equations,
and V:E ~ 2v is a function (from the set of equations to the power
set of V) defined so that for all e E E, V(e) is the set of variables

2092 TECHNICAL JOURNAL, NOVEMBER 1985

mentioned in the equation e. Given a model M = (V, E, V), we can
develop a graph representing M as G = (N, A), an ordered pair of a
node set and an arc set. The individual nodes in N are ordered pairs
(v, e) taken from the product V X E that satisfy the requirement v E
V(e). Given two nodes n* mEN, where n = (vn, en) and m = (v rn , ern),
then (n, m) E A if Vrn E V(en). (We understand (n, m) E A to mean
that the node n "depends" on the node m. Such an arc is drawn from
the node m to the node n.) Finally, we say that a graph G = (N, A) is
a solvable representation of a model M = (V, E, V) if each variable in
V and each equation in E occur exactly once in a node in N. Such
solvable graphical representations are amenable to HEQS algorithms.

We now give a detailed description of the goal-seeking algorithm
used in HEQS. Assuming that we have a solvable graphical represen­
tation G = (N, A) of a model M = (V, E, V), the goal-seeking problem
is given as

Vary the model variable TV so that the variable GV satisfies
the constraint GE,

where GE is an equation in the normal HEQS form and the variable
GV is the left-hand side of this equation. Clearly, the variable TV is
the target variable, the variable GV is the goal-seeking variable, and
the equation GE is the goal-seeking constraint equation. If we let TE
be the model equation that is paired with TV in the set of graph nodes
N, what we require to solve this problem is a solvable graphical
representation of a new model M' = (V, E', V'), where E' == (E -
{TED U {GEl, and V' is extended from V in the natural manner to
include GE in its domain. The goal-seeking algorithm is then a
sequence of transformations applied to the graph G.

1. Form a new graph H = (M, B) so that M == N U {(GV, GE)l,
and B == A U dA, where we define dA as a set of arcs so that ((GV,
GE),(v, e)) E dA for all v E V'(GE). In other words, add to the graph
G the node (GV, GE) and all necessary in-arcs pointing to this new
node. Note that H is not a solvable model representation since GV
occurs in two nodes in B.

2. Find a path P = (Ph P2, ... , PIPI) in H so that PI = (GV, GE),
PIPI = (TV, TE), and (Pi, Pi+l) E B for all 0 < i < IPI. Assume Pi ==
(Vi, ed.

3. Form a graph I = (L, B) from H, where

L == (M - U {p D U {(GV, GE), (V2, el), ... , (VIP" elPl-I)}.
pEP

Note that we have shifted the appropriate equations through the path
nodes.

4. Form another graph J = (L, C) from I, where C == (B - dB) U
dB', given that dB == {(n, m) E B: n E PI, and dB' == {(n, m): n =

HEQS 2093

Pi E P and (Pi-I, m) E ~}. Here we have redirected all arcs pointing
to nodes in the path P. We refer to steps 3 and 4 collectively as path
inversion.

5. Finally, we remove the excess node (GV, GE) and all out-arcs
pointing away from this node from the graph J to obtain the necessary
goal-seeking graph G' = (N', A'). Note that all in-arcs to the node
(GV, GE) in the graph J were redirected in step 3. It should be clear
that the graph G' resulting from this sequence of transformations is
a solvable representation of the goal-seeking model M'.

This algorithm will only fail if there is no path as described in step
2. This is in accord with our expectations. Namely, this indicates that
the goal-seeking variable is independent of the target variable in the
goal-seeking model.

Having developed an algorithm for ordering the computations in a
goal-seeking problem, we now note some additional properties of this
algorithm. First, we can use the same algorithm to solve simultaneous
goal-seeking problems that have the form

Find values for the set of model variables TV =
{TVh TV2, ••• , TVn } so that the model variables GV =
{GVh GV2, ••• , GVn } satisfy the constraint equations GE =
{GEl, GE2, ••• , GEn }.

We do this by applying our algorithm repeatedly. In other words, add
new nodes for all the variables in GE. Then, find a path from TV1 to
one of these new nodes. Invert this path and remove the goal-seeking
node on the end of this path. Then, find a path from TV 2 to one of
the remaining new nodes, invert it, and remove this goal-seeking node.
Repeat this process until both sets of variables have been exhausted.
Clearly, this process will fail in several circumstances: if one or more
of the goal-seeking variables are independent of all of the target
variables, for example. Furthermore, the algorithm will fail for models
such as

y = 2*x + 5,

z = 3*x - 2,

x = a - b,

a = 2, and

b = 3,

and the multiple goal-seeking problem is stated as

Vary the variables a and b so that the constraints y = 7 and
z = 10 are satisfied.

2094 TECHNICAL JOURNAL, NOVEMBER 1985

(5a)

(5b)

(5c)

(5d)

(5e)

The algorithm fails since there are no two vertex disjoint paths from
variables a and b to variables y and z. In other words, y and z cannot
be given values independently only by varying a and b.

Another interesting point about this algorithm is that it can be used
to create a solvable graphical representation of any model (assuming
that the model has a solution), even when the equations of the model
are not in the standard HEQS form (every variable is the left-hand
side of exactly one equation). For example, the model

w + 10 = 2*x + y, (6a)

o = x - w**0.5, (6b)

z*D = y + 3, (6c)

5 = y - z, and (6d)

D = 20 (6e)

is closely related to our first example model. In fact, it is exactly the
same model, with the same solution, but the equations do not conform
to the standard HEQS form. To get a solvable graph for this model,
M = (V, E, 'V), we use a variation of the goal-seeking algorithm. In
the variation, we will admit nodes in the graph that possess a model
variable, but do not have an associated equation. We call such nodes
improper (proper nodes are those which have both a variable and an
equation). All improper nodes will be written as (v, w), where we use
the character w to indicate the presence of a null equation (or null
pointer in computer science terms).

The algorithm proceeds in steps. First, select an equation e E E,
and pick an arbitrary element v E 'V(e) to be the temporary left-hand
side of this equation. Generate the graph node (v, e). For all other
variables in 'V (e), we create improper nodes for these variables, and
make arcs pointing from these nodes to the single proper node (v, e).
At each succeeding step, we select an unexamined equation from the
model. For each such equation e, one of three cases will apply:

1. None of the variables in 'V (e) occur in the graph in any' node
(neither proper nor improper).

2. At least one of the variables in 'V (e) occurs in an improper node
in the graph. Assume that (v, w) is such a node.

3. All of the variables in 'V (e) occur in proper nodes.
In the first case, we proceed as in the first step of this process.

Select one of the variables in 'V (e) as the temporary left-hand side of
the equation e, generate a proper node for this variable, make improper
nodes for the rest of the variables in 'V (e), and add the appropriate in­
arcs to the proper node.

In the second case, place e in the improper node (v, w) to form a

HEQS 2095

proper node (use e to replace the null equation). Then attach the
necessary in-arcs to this node (adding improper nodes for those
variables in V(e) that have not yet been placed in the graph).

In the last case, we temporarily add a node (v, e) for some arbitrary
v E V (e) and any necessary in -arcs to this node. We then find a path
from some improper node to this temporary node, invert this path,
and finally remove the temporary node and any associated out-arcs.

At each step in the process described above, each variable that has
been added to the graph occurs in exactly one node. When all equations
have been examined, the process ends, and we are left with a solvable
graphical representation of the model.

Of course, if the model equations are underdetermined, some im­
proper nodes will exist in the final graph, and the model cannot be
solved. If, at any point in the algorithm, case 3, occurs, and no path
can be developed, the equations are over-determined, and the model
again cannot be solved.

At some future point, the form restrictions placed on HEQS equa­
tions will be relaxed so that arbitrary expressions may occur on both
the left- and right-hand side of any equation, and this algorithm will
be used to derive a solvable representation of the model.

AUTHORS

Emanuel Derman, B.Sc. (Applied Mathematics), University of Cape Town,
1965; M.S. (Physics), Columbia University, 1968; Ph.D. (Theoretical Particle
Physics), Columbia University, 1973; 1973-1979: Postdoctoral research in
structure of elementary particles at University of Pennsylvania, Oxford Uni­
versity (England) and The Rockefeller University, 1973-1979; Assistant Pro­
fessor, Dept. of Physics, University of Colorado, 1979-1980; AT&T Bell
Laboratories, 1980-1985; Goldman Sachs & Co. Mr. Derman's primary fields
of interest are languages and artificial intelligence.

Edward G. Sheppard, B.S. (Mathematics), Emory University, 1980; M.S.
(Comp. ScL), Emory University, 1980. 1980-1983: AT&T Bell Laboratories,
1980-1983; Bell Communications Research, Inc., 1984-1985; Asymetrix Corp.,
1985-. Mr. Sheppard's primary field of interest at AT&T Bell Laboratories
was application software design and implementation.

2096 TECHNICAL JOURNAL, NOVEMBER 1985

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

IFS-A Tool to Build Integrated, Interactive
Application Software

By K.-P. VO*

(Manuscript received April 9, 1984)

The Interpretive Frame System (lFS) is a tool for creating application
software with sophisticated interactive interfaces. IFS is based on the notion
of a frame network. A frame network consists of many interconnected modules
called frames, each of which represents a logical activity in the system. Frames
are written in a high-level language. Besides the usual computational con­
structs such as conditionals, loops, or arithmetics and Boolean expressions,
the IFS language also includes facilities for building program/program inter­
actions, such as subprocess invocations or coprocess communications, and
constructs for building user/program interactions such as menus or forms.
IFS is a suitable tool to integrate existing programs by providing a uniform
and easy-to-use user interface. It can also be used to build a new system in a
top-down manner by first defining the network of frames and their interactions
and user interface, then programming problem-specific parts. Therefore, it
provides a general framework supporting any combination of top-down and
bottom-up software development methodologies. This paper gives an overview
of the frame network concept, the user interface of frame network systems,
the frame programming language, and the IFS system implementation.

I. INTRODUCTION

Much effort in current application software development is directed
toward building systems to be used by users with little expertise in
computing. These application systems typically combine the functions
of many generic computing systems, such as data management and

* AT&T Bell Laboratories.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

2097

statistical data analysis. However, the users of such a system often do.
not care about how the system was implemented, but only how useful
it is in their work and how easy it is to use and learn. Therefore, the
user interfaces of these systems are usually interactive, and provide
users with guidance to the various system resources and their proper
use.

There are difficulties in building application software. First, there
is a lack of a convenient way to put together collections of programs
and control the information flow among them. The problem is further
aggravated, since generic computing functions are often available in
separate programs but with very dissimilar interfaces. Second, there
is a lack of a good tool to create and control sophisticated, interactive
user interfaces. Given the intended community of users, it is easily
arguable that the major (and hard) part in building a system lies in
creating the right interface.

The Interpretive Frame System (IFS) provides a solution to the
above problems. An application software system is conceptually viewed
as a network of modules called frames. Each frame represents a logical
activity in the system. The logical activity includes all necessary
computing functions, their interactions, and user interactions. De­
pending on the usage, the network transitions between frames serve
two different purposes: to ensure correct execution of cohesive task
sequences and to provide guidance in proper use of loosely coupled
tasks.

IFS consists of a language to write frames and a system to interpret
frame actions. The IFS programming language provides the following:

1. Constructs for user/program interactions, such as menus or
forms,

2. Constructs for program/program interactions such as subprocess
invocations and coprocess communications,

3. Constructs for transition and passing information among frames,
and

4. The usual computational constructs such as conditionals, loops,
arithmetics, string operations and expressions to control the interac­
tions of (1), (2), and (3).

The IFS interpreter carries out the actions encoded in frames. It
further provides facilities to be used directly by end users to customize
the user interface to local requirements and to arbitrarily access frames
where appropriate.

IFS is a tool usable to support a large spectrum of software devel­
opment methodologies.1

-
4 At one end, a software product can be

developed from bottom up by putting together existing programs ,and
providing a high-level, uniform interface based on frames. At the other

2098 TECHNICAL JOURNAL, NOVEMBER 1985

end, a product can be developed from top down by first defining the
frames, their interactions, and user interactions before implementing
the low-level computing functions. In practice, we have observed
compromises in which a prototype is built based on some initial and
perhaps incomplete specifications, but with a realistic user interface,
and partially supported by existing programs. The prototype is then
continuously refined to fill in gaps in requirements and to tune
efficiency until the final product results.

The remainder of the paper is organized as follows. Section II
describes an architecture for application systems and its relation to
the frame network model. Section III first gives an example of a frame
network system and its user interface, then gives an overview of frame
programming and other IFS system features. Section IV describes the
current IFS implementation. Finally, in the conclusion, we discuss
some aspects of current IFS usage, problems, and possible future
enhancements.

II. APPLICATION ARCHITECTURE AND FRAME NETWORKS

2.1 The architecture of an application

The architecture of an application software system can be roughly
divided into four layers: a data component, a set of low-level functions,
a structure organizing the functions into logical tasks, and a user
interface.

At the lowest layer is the data component describing the data format
and its physical storage. Depending on the application, the data
architecture can be simple flat files or sophisticated databases or
combinations thereof. The next layer is a supporting set of generic
functions to act on the data. These functions range from single
programs for file listing or sorting to systems for data analysis and
graphics or report generation. The elements comprising the first two
layers are usually present as services provided by the computing
environment. Even if some of these functions are not available, from
a software reuse standpoint it is probably worth it to implement them
as independent programs because of their applicability. The third layer
comprises the computing solutions to the problems of the application.
It organizes the appropriate set of generic functions into logical tasks
with the right granularity, and controls the information flow among
them. Finally, the top layer is the user interface that controls how
users will use the system.

In a typical application, the top two layers are where developers
should spend the most effort. They form the facade from which users
perceive the system and, as such, determine its success or failure.
Because of a lack of proper tools, however, the two top layers are often
done in an ad hoc manner, resulting in systems that are hard to use

INTERPRETIVE FRAME SYSTEM 2099

USER INTERFACE
(MENUS, FORMS, ...)

SYSTEM STRUCTURE
(MODULES, CONTROL STRUCTURE, DATA FLOW)

GENERIC FUNCTIONS
(STATISTICS, GRAPHICS, DATA MANAGEMENTS, ...)

DATA ARCHITECTURE
(FILES, DATABASES, ...)

Fig. 1-The architecture of an application system.

and to maintain. IFS solves the problem by providing developers with
a robust framework to modularly structure the activities in their
systems. Therefore, local changes in the application structure do not
necessitate or propagate changes in the entire system. IFS also pro­
vides a large and consistent repertoire of tools to customize the proper
interfaces among programs, as well as between programs and users.

2.2 Frame networks

A frame network provides an abstraction for the top two layers (see
Fig. 1) of an application system. A frame represents the totality of a
logical task and all aspects of its internal as well as external interac­
tions. At the program level, it contains all necessary computing func­
tions to carry out the task. At the system level, it controls the
information flow among subprograms and to and from other frames.
At the user level, it provides users with interactions and guidance to
ensure proper inputs and correct execution of the task. A frame can
call other frames to perform subtasks or simply transfer control to
another frame. The call and control transfer structure forms the frame
network connectivity. Thus far, the frame network structure is de­
scribed similarly to a subroutine network structure in regular proce­
dural programs. This is not always the case. Indeed, for many appli­
cations, the sequences of task execution are highly cohesive and in
such cases frames do behave as subroutines. However, in many other
applications, a frame only represents a high-level abstraction of a task
in a collection of loosely coupled tasks. In such a case, the order in
which frames are executed is immaterial. The frame network transi­
tions are used mainly to guide users to various resources available in
the system. The IFS interpreter in fact allows users to arbitrarily
access frames in such cases.

III. SYSTEM DESCRIPTION

3.1 A reminder service: example of a frame network system

In this section, we present an example of how a frame network
system is put together on top of a set of programs constituting a
reminder service. Then, we show a scenario of using the final system.

2100 TECHNICAL JOURNAL, NOVEMBER 1985

The reminder service maintains a database of reminder items. It
provides four functions: adding new items, deleting old items, peeking
to see items in some time range, and sending out reminders at appro­
priate times. For simplicity, we shall assume that these functions are
implemented as independent programs: add, delete, peek, and re­
mind. Their actual implementation details are irrelevant, since we are
interested only in their use. For example, to add into the database a
new reminder item to be activated on a particular date and at a
particular time, add is called as

add "ContentOfReminder" "date" "time"

At the respective date and time, the program remind will generate a
reminder to be sent via the appropriate media. Note that remind is
an automatic service of the system that users never have to invoke
directly.

As a system of programs, the reminder service can be used directly
but not in a transparent manner. For example, the syntax of calling
add requires the arguments to the program to be in a rigid sequence
of positions. Therefore, it is desirable that a more integrated and
flexible interface be put on top of the programs. We do this by putting
together a frame network on top of the programs add, delete, and
peek. The frame network consists of four frames: Reminder, Adder,
Deleter, and Peeker connected as a rooted tree. Reminder is the root
of the tree and consists of a menu offering the services of the other
three frames. The sole action associated with each menu choice in this
case is to activate the appropriate frame. Adder, Deleter, and Peeker
are frames directly interfacing the programs add, delete, and peek.
Their jobs are to collect the necessary information to invoke the
underlying programs. For example, Adder is implemented as a form
to collect the content of a reminder and its date and time, then to
invoke add with the collected information. Figure 2 summarizes the
architecture of the final reminder system. The reader should compare
the layers of Fig. 2 to those of Fig. l.

The rest of this section shows a scenario of interacting with the
reminder service frame system. A few words should be said about the
screen organization employed by IFS. The top line of the screen shows
the title of the current frame, a piece of information summarizing the
function of the frame. Each frame is uniquely known in its network
by its Identification (ID) string. The second line of the screen shows
the stack of IDs of frames traversed to get to the current frame. The
IDs are separated by either the colon : or the vertical bar I. As frames
are called, the ID stack grows from right to left so that the current
frame ID is the rightmost string (see Figs. 3, 4, and 5). Users of a
frame system can observe the frame ID stack and learn the functions

INTERPRETIVE FRAME SYSTEM 2101

REMINDER
MENU

~!~
ADDER DELETER PEEKER
FORM MENU FORM

REMINDER
OFFER SERVICE

------! ~
ADDER DELETER PEEKER

GET DATE, TIME, MESSAGE GET ITEMS GET DATE, TIME RANGES

add delete peek remind

REMINDER DATABASE

Fig. 2-The reminder service frame network system.

Reminder Service Reminder

* *
: Please pick a service :

* * * * : ~ Add a new reminder :
: ~ Delete old reminders :
: __ 1 __ List reminders already set :
: ~ Exit. :
* * : <1, ?Choice, Choice> a :
* * **********************************

Info Exit Call Goto Return Desc Log Source Unix Wscreen Dflt Mask

Fig. 3-Interacting with the reminder service-the Reminder frame.

of different frames and how they are structured in the network. The
bottom line of the screen shows global commands that are provided
by the IFS interpreter independent of the frame programming. These
commands can be accessed by users by typing the escape key (the key
labeled with ESC) to make direct use of certain frames in the appli­
cation system or to customize their interaction environment such as
changing the display or setting defaults to repetitive questions. Some
of the more interesting commands will be discussed in Section 3.3.

Figure 3 shows the root frame, Reminder, of the Reminder Service.
The second line of the screen shows Reminder, the ID of the Reminder
frame. The middle of the screen shows a menu of available services.
Each menu item has two parts: a selector, which is an underlined
string, and a brief description summarizing the functions of the item.
The parts of the menu prompt <?, ?Choice, Choice> indicate that
an item is chosen by typing its selector, and further information on a

2102 TECHNICAL JOURNAL, NOVEMBER 1985

particular item, if available, can be obtained by typing ? followed by
its selector. The? when typed by itself always signifies a request for
further information on the current interaction item, in this case, the
menu prompt itself. Here, the user had typed d to choose the option
of adding a new item into the reminder database.

Figure 4 shows the input form of the frame Adder appearing in a
window overlaying the window of the menu. A window is a display
device used to retain as much of the previous context of interaction as
possible. The second line of the screen shows the string Adder sepa­
rated from Reminder by a colon, :, indicating that Adder was called
from Reminder as programmed in the network. Before actually adding
a new item, the user decided to check the database for any possible
conflict. The escape key was typed to gain access to the global
functions. The global command prompt <?Command, Command, RE­
TURN> was displayed. Now the user could have used the command
return to return to the Reminder frame, then pick option 1 to bring
up the Peeker frame. However, since the user had used the system
before and knew (by observing the ID stack) that Peeker was the right
frame to use, the command call Peeker was used to directly call up
the Peeker frame. The semantics of the global command call is to
suspend the execution of the current frame and start the execution of
the called frame. Thus, Adder was suspended while Peeker executed.
This gives an example in which an experienced user of a frame network
system can directly access any part of the system, bypassing the
programming of the network.

In Fig. 5, upon receiving the user's request for executing Peeker, the
execution of the frame Adder was suspended and the frame Peeker
was brought up as an input form in another window. The second line
of the screen now showed the ID of Peeker separated from the other

Adding a New Reminder
Reminder:Adder

* * : Please pick a service :
* ** * **
: ~ Add a new remin: Date (m/d/y): :
: ~ Delete old remi: Time (h:m): :
: __ 1 __ List reminders: Content of the reminder: :
: ~ Exit. : :
* * * * * * : <1, 1Choice, Ch: :
********************** *

* * **

<?Command, Command, Return> call Peeker
Info Exit Call Goto Return Desc Log Source Unix Wscreen Dflt Mask

Fig. 4-Interacting with the reminder service-the Adder frame.

INTERPRETIVE FRAME SYSTEM 2103

Listing Reminders Already Set

Reminder:Adder I Peeker

* * : Please pick a service :
* *** * * * : ~ Add a new remin: Date (m/d/y): :
: ~ Delete old remi: Time (h:m): :
: __ 1 __ List reminders: Content of the reminder: :
: ~ Exit. : :
* ** *
* * * * : <?, ?C: Start date (m/d/y): today : :
************: End date (m/d/y): tomorrow : :

: Start time (h:m): :**************
: End time (h: m) : :
**

Info Exit Call Goto Return Desc Log Source Unix Wscreen Dflt Mask

Fig. 5-Interacting with the reminder service-the Peeker frame.

IDs by a vertical bar indicating that Peeker was called directly by a
user's request. The user filled in the first two fields of the form,
indicating that all reminder items between the present day and the
next day were to be shown.

In the remainder of the session, Peeker invoked the program peek

to extract the relevant set of reminder items from the database and
showed them to the user. Then, the Peeker window was popped from
the screen and the execution of Adder continued.

3.2 Programming frames

Frames and their interactions are written in a frame programming
language. The language provides the following:

1. Constructs for interactions between the program and user such
as menus or question-answer form of dialogues,

2. Constructs for interactions among the programs such as subpro­
cess invocations or coprocess communications,

3. Facilities for transition and passing information among frames,
and

4. The usual computational statements such as conditionals, loops,
and expressions for control over those interactions.

Syntactically, each frame consists of nested labeled blocks where each
block represents an "interaction unit." For example, the menu in Fig.
3 of the Reminder Service can be specified by a menu block, called an
{m block, as in Fig. 6.

In this example, the menu block, enclosed between the pair of
strings {m and I m has a title block (enclosed between {t and I t and
four option blocks (each one enclosed between (o and I 0). Each option
block in turn has a title block. The semantics of this menu block is
that a menu of four items as shown in Fig. 3 is to be displayed and

2104 TECHNICAL JOURNAL, NOVEMBER 1985

{m

}m

(0 ! ~ 0)
{t
Please pick a service
}t
{a a

}a
{o d

}a
{a I

}a
{a e

}a

{t
Add a new reminder
}t
-call Adder

{t
Delete aId reminders

}t
-call Deleter

{t
List reminders already set
}t
-call Peeker

{t
Exit.
}t
-exit

Fig. 6-A Menu block.

when the user picks an option the actions, if any, specified within that
option, are to be performed. The sole action for the first option in the
above example is -call Adder, which will call the Adder frame. The
condition : (0 ! = 0) is called an exit condition. When a block (or any
other syntactic unit) is executed, it is iterated until the exit condition
becomes true. In this case, since 0 ! = 0 is always false, the menu block
has been specified to loop forever. The system will exit altogether,
however, when the user picks option e.

Each frame description in general is a frame block enclosed between
a pair of strings {f and If, and has within it several other types of
blocks such as menu blocks, action blocks, context blocks, etc. Each
block is optionally associated with an entry condition and an exit
condition, and has within it an optional title block, a description block
and a sequence of other blocks or actions. A partial Backus Normal
Form (BNF) specification of the frame language syntax is in Appendix
A. To illustrate the simplicity of the language, the complete descrip­
tions of the Reminder frame and the Adder frame of the Reminder
Service example are prQvided in Appendix B. We shall discuss here
the semantic issues involved in interpreting the different types of
blocks and transitioning among frames.

3.2.1 Frame identification

A frame block is the outermost block of a frame and has the following
form:

INTERPRETIVE FRAME SYSTEM 2105

Jf
It defines the frame identification and any arguments that the frame
may require when it is called. A frame is uniquely identified in its
network by the frame_ID. Frames can be called directly by the users
by their IDs. Thus, frame IDs serve as high -level abstractions of
functions in a frame network.

3.2.2 Conditions, loops, and variables

Each block in the language can be optionally associated with two
conditions as follows:

J.
Either or both of the conditions can be absent with the default value
true. If the entry condition is true, the block is executed. After that,
it is iterated until the exit condition becomes true. The conditions are
logical expressions involving built-in numerical string constants, var­
iables, regular expression matching, and numerical comparison oper­
ators. Variables in IFS have the form variable-.name and are of
string type. However, when a variable is involved in numerical com­
putations or comparisons, it is cast into a real number. At that time,
if the string value does not represent a real number, it is assumed to
be zero. By default, the scope of a variable is the frame in which it
appears. It is also possible to dynamically change the scope of a frame
variable to be shared with other frames.

3.2.3 Dynamic menus

The format of an option block in a menu block is

10 (entry_cond) : (exi t_cond) selector

It
Br ief descr iption

Jt
Id
Online help text for the option

Jd
Actions

Jo
The entry condition of an option, if true, signifies that the option is
available to be offered. Otherwise, it will be suppressed. Systems such
as ZOG 5 provide only static menus, i.e., the list of items in a menu is

2106 TECHNICAL JOURNAL, NOVEMBER 1985

fixed by the specification. In IFS, a menu is a dynamic entity that can
be customized to the context of user interaction at that instance. An
option is selected by users by typing in its selector. Upon the users'
selection, the actions associated with the option are executed and
iterated until the exit condition becomes true. The actions are com­
posed from other general constructs of the frame language including
new menus, forms, transitions to new frames, or process communica­
tions. The description block I d provides context-sensitive help for the
option. The help text can be parametrized by embedding frame vari­
ables. Users can obtain help on an option by typing the question mark
and the option selector.

3.2.4 Gathering user values

Question blocks provide a mechanism for gathering user values that
can be used in subsequent actions. The format of a question block is

I q (entry_cond) : (exi t_cond) -input_var
The Question

Iq

Id
Online help text for the question
jd

The string entered by the user in response to this question is assigned
to the variable -input_var. The entry condition in a question block,
if true at that instance, indicates that the input variable must be set
interactively and the question is asked. If the entry condition is false,
the question is irrelevant in the current context and is skipped. Thus,
if the questions were displayed in a form, their entry conditions define
dynamic field protection. The exit condition of a question represents
input validation. After the user input is received, the exit condition is
evaluated and if it is false, the input is rejected and a new input is
requested. To aid input validation, the frame language provides a rich
set of comparison operators that includes regular expression matching
as well as numerical comparisons. The Adder frame example in Ap­
pendix B shows how the values for three variables, -date, -time, and
-content, can be obtained from the user before the reminder database
can be added with the new data. The only validation check in that
case is that the input for -date must be non-null.

3.2.5 Process invocation and communication

Problem-specific processing in a frame can be done by invoking in
an action block a subprocess which is usually a UNlxn' operating
system shell program.6 The simplest form of an action block is

INTERPRETIVE FRAME SYSTEM 2107

I a (entry_cond) : (exi t_cond) > -ret_val 1 -ret_val12 •

shell_prograIlLDame argument_1 argument_2 •

}a

The interpretation of the entry and exit conditions is as in other
blocks. A new shell is invoked every time the {a block is executed.
The lines inside the {a block define a shell script to be executed.
There are also mechanisms in the IFS language to allow a subprocess
to return values back to IFS. The returned values, if any, are assigned
to the return variables -ret_val' s.

Provided some concurrency conditions are met by the invoked
processes, the shell can be run as a coprocess as follows:

{p (entry_cond) : (exit_cond) "/bin/sh" "-i" > -ret_val 1

-lEndOflnput,EndOfOutput

shell_prograIlLDame argument_1 argument_2 .

}p

In this method, the shell is invoked once to run interactively and stays
in the background with its standard input and output channels con­
nected to IFS. The communication protocol between IFS and a co­
process is defined by the control line consisting of EndOflnput and
EndOfOutput strings. The EndOflnput string defines a pattern that
indicates the end of a message from the coprocess to IFS. A minus
sign for that string indicates that no input is expected from the shell
coprocess. Similarly, EndOfOutput defines a delimiting string to be
sent by IFS after the message has been sent. A minus sign again
signifies that IFS does not have to send any message delimiter to the
shell coprocess after the message is sent. For example, the action block
in the Adder frame of Appendix B can be replaced by the following {p
block shown below:

{p (-date !=-null && -content !=-null) "/bin/sh" "-i"
-,- -. ,
add II-content" "-date" II-time"

}p

Here, the entry condition shows that the {p block is only executed if
either -date or -content are not empty. The first time the {p block
is executed, an interactive shell program is invoked, and put in the
background with its standard input and output channels connected to
IFS. Each time the {p block is executed, the body of the message
contained in the block is sent to the shell coprocess. Subsequently,

2108 TECHNICAL JOURNAL, NOVEMBER 1985

the shell executes the program add to update the database and then
waits for other messages from the frame system. Meanwhile, the frame
system resumes its normal activities.

3.2.6 Compound actions

A sequence of related actions can be grouped together in a context
block, the I c block. The actions of a context block can be other
contexts, menus, process communications, dialogues, etc. In particular,
a group of questions to be displayed and executed as a form must be
together in a context block. Besides the interactive nature of the
actions inside a context block, the context block is similar to a
compound statement in a procedural language. In the Adder frame in
Appendix B, three question blocks and an action block are grouped
together in a context block.

3.2.7 Transitions among frames

Transitions among frames are accomplished via the operators
-call, -goto, and -return. The operators -call and -return behave
like calling and returning from subroutines in a regular ,programming
language with the additional feature that frames can return multiple
values. The action of the first menu option in the Reminder frame is
to call the frame Adder. A sequence of-call creates a stack of frames.
The operator -goto restarts such a stack with a new frame.

3.2.8 Other remarks on programming frames

The reader should note that there is no display information involved
in the definitions of any of the frames. In IFS, display programming
is separated from logical programming. This aspect of IFS contrasts
with other screen definition languages in the literature (for example,
see Ref. 7) where the system builder has the burden of laying out the
complete design of screen displays. As far as a frame is concerned, the
parameters that it requires are obtained by asking a series of questions,
user choices are obtained by selections from menus, and processing of
user data is done by running subprocesses or coprocesses. Navigation
in the frame network is performed by IFS actions. Display organization
is either done in a default mode by the interpreter or customized by
using a display editor or a display language. The combination of all
these facilities in a system makes IFS unique in its ability to facilitate
the building of integrated and interactive software systems that can
be used in a variety of environments.

3.3 IFS system features

An example of interacting with a reminder service frame system
was shown earlier. The user of a frame system faces a terminal screen

INTERPRETIVE FRAME SYSTEM 2109

showing various types of information. The action expected from the
user is clearly defined from the interaction context. If a menu is
showing, a choice is expected. If a form is showing, some response is
expected to fill in the field of the form where the terminal cursor is
situated. The user, however, can also initiate other actions by typing
either the question mark or the escape key (the key labeled with ESC).
The question mark indicates that the user needs more information on
the current interaction item and such information, if extant, is dis­
played by the system. For example, if the current interaction item is
a field in a form, the information explaining this field is displayed.
The escape key, on the other hand, indicates that the user wishes to
make use of the global commands shown on the bottom line of the
screen. The set of global commands that can be augmented or partially
suppressed by system developers provides functions usable independ­
ent of the frame programming. The global commands provided by IFS
itself range from customizing the interaction environment of the
system to randomly accessing different parts of the frame network. A
full description of these commands is beyond the scope of this paper.
We present some of the more interesting commands below.

3.3.1 Display editing: Ma s k

The display environment of a frame system can be customized using
the global command Mask. Mask lets users interactively define new
layouts for forms and menus as well as windows containing these
constructs. For example, to layout a form, it is necessary to know
where on the screen to display field labels, what video attributes to
display them in, and whether the fields are left, center, or right
justified. To ease the definition of such information, the display editor
Mask lets users move the cursor freely on the screen to indicate where
a label should be drawn. It also presents users with lists of available
colors to display different parts of the form.

The ability for redefining the display environment at will is impor­
tant because different users have different requirements dependent on
their local environments; therefore, it is unreasonable to force con­
formity a priori. Further, for the system builders, having Mask makes
it easy to experiment with different styles of display.

3.3.2 Default answer setting: Df 1 t

The global command Df 1 t lets users set up default answers to
questions or fields in a form. During the execution of such a question
or field, the user can choose one of the default answers with a single
keystroke or overwrite them by typing a new answer.

D f 1 t is menulike in the following sense. A question or form field is
a parameter collector whose domain of values is large in general but-

2110 TECHNICAL JOURNAL, NOVEMBER 1985

may be restricted for individual users. For example, a question for
names has an infinite domain in general but for an individual user, its
domain probably has size one. The system builder who solves a general
problem must program such a parameter collector for the general case.
The command Df It lets individual users tailor such a collector into a
personalized menu for transparency and efficiency.

3.3.3 Frame random at:cessing: call

The global command call can be used to randomly call any frame
in the system, provided that the ID of the called frame is known. The
execution of the frame previous to the call is temporarily suspended
and is resumed after the completion of the called frame.

The command call is one of a family of network movement com­
mands which includes goto, return, break, and exi t. These com­
mands let advanced users of a system directly access parts of the
system independent of the network programming.

IV. CURRENT IMPLEMENTATION

IFS is written in the C languageS and based on the UNIX operating
system. It has been used on many flavors of the UNIX system,
including versions of AT&T System V and University of California at
Berkeley 4.1 BSD and 4.2 BSD.

In the current implementation there are four main programs: a
frame language compiler (i f c), a display language compiler (i f v) and
a decompiler (vfi), and an interpreter (ifm). The steps in using these
programs to create and run a frame are roughly as follows:

1. Write/edit and compile (i f c) a frame language script.
2. Write/edit and compile (i fv) a display language script if desired.
3. Interpret (i fm) the frame. .
4. Modify the display using the global command Mask if desired.
5. Decompile (v f i) display information into a readable ASCII form.
6. Stop or go back to step 1.

These IFS programs are presented below.

4. 1 Frame language compiler: if c

The frame language compiler, ifc, compiles frame scripts into
intermediate data structures which are interpreted by the interpreter.
In the compiling process, the frame scripts are checked for valid syntax
and any static text processing is done. Because IFS is interpretive in
nature, it is possible to fold the functions of the compiler into the
interpreter itself and reduce the complexity in using the system.
However, we chose this division to speed up run-time execution. The
trade-off is attractive because most frame systems are built once but

INTERPRETIVE FRAME SYSTEM 2111

would be used many times and certain costs in frame processing such
as text processing are significant.

4.2 Display language compiler and decompiler: if V, V f i

Display information of a frame is kept in a separate data structure
whose structure closely reflects that of the frame structure. The display
structure can be created in two different ways, by using the global
command Mask (Section 3.3.1) or by writing a display language script
and applying the display compiler if v. In an application, it may be
desirable to standardize the display of certain collections of informa­
tion such as on -line help texts. The display language eases the display
standardization of many frames since the display script of one frame
can be easily modified and replicated for other frames using standard
text editors in the operating system. On the other hand, creating the
first display description of a series of frames is easier using the Mask

command than by laying it out on paper and writing a display script.
Therefore, Mask is usually used to make the first prototype of a display
structure. Afterward, the display decompiler, vf i, is used to convert
the structure into the display script form which can be further proc­
essed for other frames using text· editors.

4.3 Frame interpreter: i fro

The interpreter, i fro, executes actions encoded in frames (Section
3.2), controls the display, and processes users' inputs (Section 3.3). It
also provides global commands that users can use independently from
the frame netwo·rk programming to customize their local interaction
environment (Section 3.3). Internally, the interpreter is divided into
two parts: a control part that interprets frame' actions, and an inter­
active part that defines appropriate displays and interactions for
different interactive constructs.

The control part of the interpreter consists of routines to get frame
and display structures from the file system and routines to interpret
the programming language constructs such as menu, form, or network
movements. Each construct of the language is interpreted by one
routine, and the nesting of constructs is implemented by recursion.
Since frame and display structures are· kept as files in the file system,
there is a cost to read them into memory when a frame is executed.
To increase system efficiency, the action code of direct or indirect
recursive frames is shared. Further, a marking technique was imple­
mented to retain popular frames in memory for some period of time
after their executions are completed.

The interactive part of the interpreter is similar to the control part
in structure. It consists of routines to take care of the display and

2112 TECHNICAL JOURNAL, NOVEMBER 1985

interaction with different interactive constructs of the language. The
routines assumes a minimal capability from the terminals, the ability
to move the cursor to any point on the screen.

v. FINAL REMARKS

We have presented an overview of IFS, a software tool to build
interactive and integrated software. The main contributions of IFS
are the concept of a frame network as a model for structuring appli­
cation systems and a high-level programming language embodying this
model. The programming language includes a large set of interactive
facilities such as menus or forms for building user interfaces and
constructs such as interprocess communications designed to aid the
building of interfaces around existing programs. At this writing, IFS
has been in use for a few years. Many frame systems have been built,
some with hundreds of frames. These applications span a wide range
from analytical systems to office automation systems and systems
integrating Computer-Aicmd Design/Computer~Aided Manufacturing
(CAD/CAM) tools. The experience gained in building these applica­
tions shows that IFS has been effective in reducing the work between
conception and realization of an application system. To conclude the
paper, we make a few observations about the current use of IFS, some
perceived problems and possible future improvements.

In IFS, interaction programming and analytical programming are
separated. The main work of frames is to coordinate the flow of
information among the modules and the user. Problem-specific com­
putations are often carried out by other programs. This architecture
'makes it easy to reuse software in building new systems. Further, it
encourages experimentation with high-level modules and user inter­
actions before actual work on the analytical part begins. In fact, we
have observed a successful software construction method in which
prototypes are built and continuously refined until the final products
result. The benefit of constructing software this way is that at any
time, the user interface of a prototype is fully functional so that
selected users can make trial use and help developers debugging it.

In building interactive systems, a balance needs to be maintained
between ease of learning and ease of access. For example, a straight­
forward menu hierarchical system may be easy to learn at first, but
can also quickly become restrictive when users get familiar with the
system functions. Within the IFS framework, there is enough flexibil­
ity for system builders to make poor judgment and build systems that
are awkward to learn or to use. Nonetheless, the applications built
using IFS have been generally satisfactory. This is helped in part
because the frame network concept and the programming language

INTERPRETIVE FRAME SYSTEM 2113

are easy to learn. Therefore, many of the applications were built by
people who are not expert programmers, but who intimately know the
use of the applications and sometimes are users themselves. Further,
IFS provides integrally many different mechanisms to build and
dynamically control interactions. With the right judgment, the user
interface of an application can be made to strike the balance between
ease of learning and ease of access. By and large, this has been observed
in practice.

As a programming environment, IFS lacks some desirable features.
For example, in the programming language, there are currently no
explicit ways for system builders to raise or handle exceptions such as
asynchronous events like terminal hangup or other operating system
signals. The lack of such facilities have made the building of interfaces
to certain 9atabase operations rather cumbersome. There is also a less
frequent need for a debugging tool, especially to examine the state of
a frame system upon unexpected computational results. This need has
not been acute because frame systems are interactive by nature and
their anomalies tend to manifest quickly during trials.

To accommodate a wide range of applications, the current imple­
mentation of IFS assumes a minimal requirement on user hardware,
a character terminal with cursor addressing. Terminals with bitmap
graphics and pointer devices such as mice or light pens are becoming
cheaper and accessible to a wider class of computer users. On such
terminals, it is desirable to have graphical interactions as well as
character-oriented interactions. For example, in many applications,
menu items can be better represented with pictures than with texts,
and their selections can be done faster with a pointer device than with
keyboard typing. The two-part design of the interpreter, separating
control from interaction, makes possible improvements in the inter­
action part with a minimal amount of change in the system entire.
Perhaps some future version of IFS will be enhanced to make more
use of the new hardware.

VI. ACKNOWLEDGMENTS

Since the conception of IFS, I have been fortunate to benefit from
ideas and constructive criticisms from many colleagues and coura­
geous' friendly users of various versions of IFS. I thank in particular:
J. M. Chambers, E. R. Fisher, R. G. Kayel, C. M. R. Kintala, G.
Perlman, R. M. Prichard, W. J. Shugard, and D. E. Swartwout.

REFERENCES

1. G. D. Bergland, "Structure Design Methodologies," Software Design Strategies,
IEEE Catalog No. EH0184-2 (1981), pp. 297-315.

2114 TECHNICAL JOURNAL, NOVEMBER 1985

2. F. DeRemer and H. Kron, "Programming-in-the-Large Versus Programming-in­
the-Small," IEEE Trans. Soft. Eng., SE-2, No.2 (June 1976), pp. 237-43.

3. F. Beichter, O. Herzog, and H. Petzsch, "SLAN-4: A Language for the Specification
and Design of Large Software Systems," IBM J. Res. Dev., 27 (1983), pp. 558-
76.

4. A. I. Wasserman, "Characteristics of the User Software Engineering Methodology,"
IEEE Proc. Soft. Proc. Work, (February 1984), pp. 125-29.

5. G. Robertson, D. McCracken, and A. Newell, "The ZOG Approach to Man-Machine
Communication," Int. J. Man-Machine Studies, 14 (May 1981), pp. 461-88.

6. S. R. Bourne, "The UNIX Shell," B.S.T.J., 57 (1978), pp. 1971-90.
7. L. A. Rowe and K. A. Shoens, "Programming Language Constructs for Screen

Definition," IEEE Soft. Eng., 9 (1983), pp. 31-9.
8. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood

Cliffs, N.J.: Prentice Hall, 1978.

APPENDIX A

Partial BNF Specification of the Frame Language Syntax

frame: :=

frame_blocks: :=

" If" frame_id frame_args
frame_blocks

"If"
[title_block]
[descript_block]
Icontext_block I men~blockl*

tit 1 e_b 10 c k : : = " It"

"It"
descr ipt_block : := " I d"

Descriptio~string

" ld"

context_block: := " I c"

mentL-block : :=

optio~block : :=

contL-pair : :=

activity: :=

lactivityl*
"lc"
"1m" [contL-pair]

loptio~blockl*

"1m"
"10" [contL-pair]

title_block
[descript_block]
lactivityl*

"10"
[(entry_cond)] [: (exi t_cond)]
I context_block I menu_block I
question_block I wr i te_block I
subproc_block I coproc_block I
arithmetics I string_operation
networLtrans i tion I
change_scope I change_envl*

INTERPRETIVE FRAME SYSTEM 2115

questioIL-block : :=

wr i te_block : : =

subproc_block : :=

coproc_block : :=

APPENDIX B

"{q" [cond_pair] -input_var
QuestioIL-string
[descript_block]

"}q"

" {w" [(entry_cond)] [f i Ie_name]
Format_text

" }w"
"{a" [cond_pair] [proc_args] [>ret_

vars]
Subprocess_program

"}a"
" {p" [cond_pair] program [> ret_vars]

-! End_of_input, End_of_output
Message_to_program

" }p"

Figures 7 and 8 are the actual programs for the Reminder and Adder
frames of the Reminder Service System.

{f Reminder
{t
Reminder Service
}t
{m : (0 ! = 0)

{ t
Please pick a service
}t
{a a

{t
Add a new reminder
}t
-call Adder

}a
{a d

{t
Delete aId reminders
}t
-call Deleter

}a
{a I

{t
List reminders already set
}t
-call Peeker

}a
{a e

{t
Exit.
}t
-exit

}m
}a

}f

Fig. 7 -The Reminder frame of the Reminder Service.

2116 TECHNICAL JOURNAL, NOVEMBER 1985

{f Adder
{t
Adding a New Reminder
}t

}f

AUTHOR

{c

}c

{q :
Date

(-date != -null) -date
(m/d/y) :

{d
A date can be entered in the format:

month/day/year
or as 'today'. 'tomorrow'. and weekdays
such as 'monday'. 'tuesday' and their
abbreviations such as 'mon'. 'tue'.

}q
}d

{q -time
Time (h:m):
}q
{q : (-content != -null) -content
Content of the rp.minder:
}q
{a (-date != -null && -content !=
add "-content" "-date" "-time"
)a

-null)

Fig. 8-The Adder frame of the Reminder Service.

Kiem-Phong Vo, M.A., 1977 (Applied Mathematics); Ph.D., 1981 (Mathe­
matics), University of California at San Diego; AT&T Bell Laboratories,
1981-. Mr. Vo is a Member of Technical Staff in the Advanced Software
Department. His research interests include combinatorial structures and al­
gorithms, and efficiency issues in software development. Member, ACM, AMS,
SIAM.

INTERPRETIVE FRAME SYSTEM 2117

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

T-A Data Management System

By R. J. YANOFCHICK*

(Manuscript received March 1, 1985)

T is a data management system running under the UNIX™ operating
system that provides unique facilities not commonly found in other data
management systems. These powerful data manipulation facilities can access
data and programs stored in UNIX system files, as well as data stored within
a T database. T allows new structure to be added to an existing database
without modification of existing data. It also allows multiple views of a
database, which can be used to prevent access to privileged data by unauthor­
ized users, as well as to provide some fairly sophisticated restructuring capa­
bilities.

I. INTRODUCTION

T is a hierarchical data management system written in the C
programming language! to run under the UNIX operating system. It
was designed to experiment with strategies that would impose struc­
ture on existing data and easily modify that structure as needs arose.
As a consequence, it reduces data duplication and the programming
effort necessary to restructure existing data, while it allows users an
appropriate level of control over and access to data. By providing
powerful data manipulation and restructuring facilities, T allows users
to manipulate and extract data in a form suitable for use by analytical
tools available on UNIX systems or provided_by other users; it thereby
permits users to combine specialized tools to build more general and
useful tools. Keeping the amount of information necessary to describe
a database to a minimum and providing a more natural, understand-

* AT&T Bell Laboratories.

Copyright © 1985 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

2119

able table of contents form for this information makes setting up a
database to be managed by T a simple 15-minute task. The query and
command language provided is a simple, yet powerful, English -like
language that is easy for even the unsophisticated user to understand.

T has the following unique data management features:

• Dynamic modification of views of data
• Access to data and programs stored outside the database
• Dynamic generation of data
• Query logging and modification.

Often, at least part of the source data to be used in a data analysis
process already exists as one or more data sets. Rarely, however, are
these data sets structured to be used without modification in a specific
data analysis process. The data may be stored by a data management
system in a structure not compatible with the needs of the current
application. These data sets may also be stored as flat data files. In
this case, chances are good that the format of the individual records
does not conform to the requirements of the application. Before any
real analysis begins, programs must be written that operate on these

. data sets to extract and reformat the data necessary to perform the
analysis. The result is duplication of data. The more data are used by
different applications, the more data are duplicated and programming
effort is expended to extract and reformat data.

A single database managed by T supports many analytical studies,
each having· different data access requirements. Users of the system
range from staff support personnel with little or no programming
experience to analysts with experience in some programming language.
Because the uses of data vary widely, and the needs of applications
include performance as well as functionality, it is generally agreed that
no existing data management system suits the needs of all applications.
However, the data extraction and restructuring demands that are
placed on such a system can be characterized well enough to provide
a general framework for most analytical applications.

The characteristics of the computational demands that would be
placed on such a system are not as well understood. Simple commands
are provided to enable straightforward information generation. For
example, these commands enable the user to input, modify, locate,
retrieve, and output data. Other computational needs are not as neatly
characterized; either these needs are not known ahead of time or else
they are expected to be evolving. For this reason, T focuses on data
retrieval, extraction, and manipulation, and on providing a method
for accessing existing computational processing functions. By provid­
ing access to computational facilities outside of T, the analyst is free
to choose those facilities that best satisfy the needs of the application.

2120 TECHNICAL JOURNAL, NOVEMBER 1985

For example, data on network configuration can be retrieved from a
database and used to produce a graphic display of the network.

T also provides password security for individual databases; redirec­
tion of input and output; query logging,. which allows users to save
sessions for reuse later; concurrency control for one writer with mul­
tiple readers; and access to data and programs that are not physically
part of the database.

II. SYSTEM ARCHITECTURE

T is implemented as three main modules: a file handler, a primitives
module, and a language module (see Fig. 1).

2.1 The file handler

The file handler used by T is a set of subroutines that implement
B-trees.2

,3 These subroutines access B-trees via a list of key-value
pairs, sorted by key. This list is implemented with a prefix-compressed
B-tree in which prefixes common to consecutive keys are factored out.
These routines support one writer concurrently with multiple readers,
preserving read consistency. This read consistency meanS· that each
user retains a consistent view of the database during a query session.
That is, during a query session, only those updates made during that
session are visible to the user. This read consistency can be crucial to
meaningful data analysis.

Communication with the file handler is through a file handler
interface. Essentially, these routines simplify the calls to the file
handler and, in some cases, slightly modify the functions of some of
the lower-level routines. This interface also provides a method for
users to access a database directly from C programs.

2.2 The primitives module

The primitives module implements the user-level functions provided
by T. These functions include data input and modification, location
and retrieval of data, input/output redirection, provision of alternate
views of data, and access to standard UNIX system functions. For
example, these functions allow a user to access data from a data file
and programs stored in UNIX system files, as well as data stored
within a T database; create temporary data files from data extracted
from these sources; and then use these as inputs to external programs

r-------,
I FILE HANDLER I
I INTERFACE I
L.. _______ J

Fig. I-System architecture ofT.

DATA MANAGEMENT 2121

~--~USER~----------------------

DATA
FILE

PROGRAM
FILE

Fig. 2-Communication path!? for the primitives module.

or standard UNIX system functions (UNIX system commands). Fig­
ure 2 illustrates the communication paths provided by this module.

2.3 The query language module

As currently implemented, this module accepts input from a user
terminal, interprets the query command, checks syntax, and makes
appropriate calls to functions in the primitives module. This module
is replaceable by other query languages such as HISEL.4 The query
language currently implemented with T is English-like and fairly
nonprocedural.

III. SYSTEM ATTRIBUTES

3.1 Database structure

A user-supplied schema file, which represents a hierarchy in a table
of contents format, describes the structure of the database to T. A
schema file contains a line for each record type (node). Each line
contains the name of a node, the attributes associated with that node,
and the hierarchical level of the node. The level of each node in the
hierarchy is indicated by the number of tab characters preceding the
node description: no tabs indicating level 1, one tab indicating level 2,
etc. For example, the following schema describes a database for a sales
organization:

market-segment (name;)
sales-rep (name;)

customer (name; sales; address; contact; telno;)
product-line (name;)

product (name; price;)

2122 TECHNICAL JOURNAL, NOVEMBER 1985

MARKET SEGMENT

I
SALES REP

I
CUSTOMER

I
PRODUCT LINE

I
PRODUCT

Fig. 3-Hierarchical structure of the schema file.

Tl T2 T3

ALIAS BODY INSTANCE

Fig. 4-Key structures.

The semicolon-separated list enclosed by parentheses identifies the
fields associated with each node. These are optional. The hierarchical
structure for this schema is shown in Fig. 3.

To initialize a database the user supplies the name of the database
and the name of the schema file that describes its structure. During
the initialization process the user is prompted for a password. This
password will be requested whenever the database is accessed using
this master schema. An encrypted version of the password and the
name of the master schema file are stored within the database. In
addition, each node (record type) is assigned a unique numerical alias
that is used internally in all query processing and to link nodes when
alternate views of the database are requested. Each data record in the
database has a unique key associated with it. These keys are generated
during data entry. Aliasing node names, which may be long, permits
keys to be more compact. The structure of a key is shown in Fig. 4.
To ensure key uniqueness the instance (T3) is an integer indicating
the number of nodes of this type that have previously been stored in
the database. The body (T2) is a concatenation of T2 and T3 from
the parent key. This structure provides efficient traversal of the
database. Given a node key, it is possible to locate a child of this node
simply by replacing Tl with the alias of the child. A partial key search
will return the first child of th~ type requested or indicate that no
such child exists. Locating the parent of a node is similar. Replacing
Tl with the alias of the parent and truncating T3 produces the key of
the parent node.

3.2 Subschemas

Subschemas in T are used to invert database structure, shield data
from users, and provide efficiency in retrieval. An alternate view or

DATA MANAGEMENT 2123

subschema is an abstract model of a portion of the conceptual database
or master schema. In addition to promoting logical data independence,
a subschema may also provide a convenient data protection facility.5
For example, there are situations in which the owner of a database
may wish to create a subschema allowing other users access to part of
the database but shielding some nodes from public access. In another
case, the relationships among nodes may be different in a subschema
from what they are in the master schema. For example, a market
manager may wish to view the database in Fig. 3 as

market-segment
product-line

product
whereas a product manager may wish to view the data~ase as

product-line
product

market-segment

When utilizing these subschemas neither the market manager nor the
product manager has access to sales representative and customer
information, since they are not contained in their_ conceptual views.
These subschemas provide different users with their own conceptual
view of the database, regardless of how the data have been stored.
While other data management systems provide access to subschemas,
they typically construct secondary indices by processing the entire
database. Because of this processing, the database administrator, not
the user, typically generates the subschema. This method also involves
overhead and maintenance problems as new data get added to the
database. In the approach taken by T, since the schema is separate
from the actual database, and does not involve secondary indices,
generating a new subschema becomes a simple mapping of one struc­
ture to another. Since this mapping does not involve accessing the
actual data, no overhead is incurred, and adding new data has no effect
on a subschema. In addition, generating a new subschema becomes a
process available to users.

Defining a subschema for a T database is easy and does not require
the assistance of a database administrator. The user simply creates a
schema file that defines the new structure. A subschema may be
installed when a query session is initiated or during a query session
via a command provided by the query language. When subschemas are
defined, there is no need to identify the fields for each node; all
properties of a node are carried forward to the subschema. Some
restrictions are placed on subschemas. One is that the list of nodes
contained in a subschema must be a subset of those defined in the
master schema. The relationships between nodes may change, but no

2124 TECHNICAL JOURNAL, NOVEMBER 1985

new node types may be defined by a subschema. Another restriction
is that users employing a subschema have read-only access to the data.
Without these restrictions,. the original contents of the database could
be corrupted. In addition, there are some query commands that are
locked when using a subschema. For example, the subschema defined
for a product manager is an inversion of the master schema that may
result in a many-to-one relationship between products and market
segments. Thus, a request to fetch the next market segment within
the parent (product) may be ambiguous, since the current market
segment may have several parents. In general, T attempts to make
available to subschema users only those commands that have unam­
biguous interpretations when the subschema is mapped to the under­
lying database. Users of subschemas in T incur no performance
penalty. Rather, in some circumstances, using subschemas can sim­
plify queries and provide more efficient access to information. Figure
5 shows the relationship between schemas and T.

While T does not allow new nodes to be defined in a subschema, it
is possible to define new nodes in the master schema at any time
without restructuring the database. These new nodes may be inserted
at any level of the hierarchy beneath the root (level 1). For instance,
to add service-center as a child of product-line in the database shown
in Fig. 5, one need only insert a description of service-center in the
master schema, as shown below:

product-line (name;)
service-center (name; address; state; telno;)
product (name; price;)

Fig. 5-The relationship between schemas and T.

DATA MANAGEMENT 2125

3.3 Derived data

A unique and powerful feature provided by T is access to data that
is not physically stored within the database itself. Data of this type
are called virtual or derived data.6 Three variants of derived data are
supported by T: type 0, type 1, and type 2. Type ° specifies that the
data to be accessed either already exist in a file or will be the result of
the execution of some process. In either case, the entire data set is
treated as one logical record. For example, document abstracts can be
stored in UNIX system files and accessed as part of a T database.
Each abstract is treated as a single record during processing. In
contrast, type 1 specifies that each line in the external file, or each
line returned by some process, is to be treated as an individual instance
of its node type. For instance, data of this type might be generated
periodically by some external process, and rather than updating the
database, it might be stored in a standard UNIX system file that is
accessed whenever this type of node is referenced. Data of type 2 are
always an executable process. Here, values are generated that do not
exist in the database. A process or chain of processes to be executed
occurs at retrieval' time and, while the actual results do not exist, the
ability to generate them does. For example, a report can be generated
using data extracted with a prior query request, or the results of a
query request may be displayed graphically rather than as lines of
text. Using this methodology, data analysis may become a natural
extension of the retrieval process. For instance, if a set of mathematical
models and other analytical functions are described as data elements
contained in a database, access to these functions becomes a simple
retieval command, thus allowing analysis and modeling to be done
without leaving the current query session. This can help to create a
simple, yet extensible environment for the analyst.

Whether or not a node is actually derived is determined at run time.
Nodes that could potentially be derived are identified in the schema
by prefixing the node name *n, where n is either 0, 1, or 2. The entry

*1 product (name; price;)

indicates that product information may be derived, and, if it is, each
line is to be treated as a separate product record instance. Identifying
a node as being derived in the schema file does not mean that each
instance of that node actually in the database must be derived. During
data entry the user specifies whether a particular instance of a node
will be derived.

An interesting side effect of derived data is that the data item
associated with a derived node is the name of the file to be accessed
on retrieval. Since T provides interactive update for data items, a user
can use this facility to dynamically change the source from which data

2126 TECHNICAL JOURNAL, NOVEMBER 1985

are retrieved. A user could, for instance, switch among several analytic
models simply by interactively changing the name of the file to be
executed. Since all users of a database retain a consistent view of the
database during a query session, this dynamic switching does not
affect other concurrent users of the database.

Accessing derive_d data with T is identical to accessing data actually
stored in the database. There are no semantic differences or subtleties
to contend with. The primary command to retrieve data with T is the
find command. In its simplest form the command

find customer

retrieves the first customer node and displays the contents. The
command

find all customer

locates all customer nodes. Instead of immediately displaying the
results, T responds with the number of records retrieved. The user
can then decide to display all the data retrieved, a portion of each
record, or ignore the results entirely. To display output T provides the
commands pr int and fpr into The command

pr int [attribute list]

where the optional attribute list contains the names of individual
fields separated by spaces, will display the requested results at the
user's terminal. If no attribute list is provided, the entire record is
displayed. The command

fpr int [attribute list] > file

redirects the results to file rather than displaying them at the user's
terminal. The fprint command provides a data extraction capability
from T databases.

Assume that we had included a node, c-report, as a part of our
master schema, with the definition

*2 c-report

This node will access a report generator and produce the requested
report. The set of commands

find all customer where sales gt 1000000
fprint name sales> foo
find c-report

would retrieve all customer records having sales in excess of 1000000,
place the customer names and sales figures in file foo, and generate
the customer report. It is assumed that the report generator being
used here expects its input to be in a file named foo.

DATA MANAGEMENT 2127

3.4 Query logging

At times the set of commands that comprise a query session need
to be resubmitted periodically. This could, for example, be done to
generate periodic reports using data extracted from a database. If the
exact set of commands to be executed is known ahead of time, they
can be entered in a file that is passed as input to the query processor.
There are times, hbwever, when the exact syntax of the commands or
the proper sequence in which they should be executed is not known
ahead of time. In other cases a sequence of queries pertaining to one
set of data could, with slight modification, be used to retrieve a
different set of data. For example, to modify the report in the example
given above to select only customers with sales up to 1000000, the
operator gt can be changed to 1 e and the sequence of commands
resubmitted.

During a query session, T keeps a log of those user commands that
do not modify data or previous queries. The commands retype, copy,
remove, edit, and redo provide the user the ability to manipulate
previous queries and resubmit an individual query or a group of queries
with a single entry. At the end of a query session, the user is given the
opportunity to save a copy of this query log. Query sessions that have
been saved need not be entered manually each time they are used.

IV. PERFORMANCE

Real-time response to T queries is acceptable. In timing experiments
run on an AT&T 3B20S computer, under normal load-running
System V, Version 2.0.2-queries involving key retrieval and pattern
matching searches executed against a file containing 1.1 megabytes
(10,654 records) in less than 10 seconds real time. These queries were
constructed to ensure that the entire database was searched and only
the last record in the file satisfied all constraints. The largest database
known to have been accessed by T contained about 40 megabytes.
More typical applications vary from 1 to 20 megabytes. It is extremely
difficult to obtain meaningful performance figures for an interactive
data management system. This is especially true of the hierarchical
model. Much of the performance depends on the actual structure of
the data and the type of information requested. Actual performance is
also affected by the load distribution of the system at the time
operations are initiated. While response time is an important factor
in performance evaluation, consideration should also be given to
whether the system makes efficient use of user's time. In providing
unique features such as access to derived data, dynamic modification
of views of data, and query logging, it is felt that T does help users in
this area.

2128 TECHNICAL JOURNAL, NOVEMBER 1985

v. CONCLUSIONS

T was developed to experiment with concepts that would make data
access, retrieval, and manipulation easier for certain types of database
users. These concepts include (1) the ability to interactively modify
user views of data; (2) the ability to access data and programs stored
outside of the database, which provides a more natural interface to
existing information and computational functions; and (3) the ability
to access, rearrange, and modify previous query commands. Several of
these have proven useful in a variety of analytical studies. The ease
with which alternate views of a database can be constructed and the
fact that they may be invoked dynamically during a query session
have proven to be valuable assets to data analysts using the system.
The concept" of derived data has reduced the amount of redundant
data stored on disk and provided greater flexibility by permitting
access to' existing computational and graphical functions. It makes
access to a variety of heterogeneous capabilities natural within the
same query language. Alternate input and output facilities provide
simple mechanisms to access standard queries and provide a data
extraction capability. Query logging provides a simple and flexible
method of generating standard query procedures, as well as providing
language extensibility and query reuse.

REFERENCES

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs: Prentice-Hall, New Jersey, 1978.

2. P. J. Weinberger, private communication.
3. D. E. Knuth, The Art of Computer Programming, Vol. 1, Reading, Mass.: Addison

Wesley, 1968.
4. E. R. Gansner et aI., "Semantics and Correctness of Query Language Translation,"

Proc. 9th Principles of Programming Languages, Albuquerque, N.M., January 20,
1982.

5. J. D. Ullman, Principles of Database Systems, Potomac, Maryland: Computer
Science Press, 1980.

6. G. Wiederhold, Database Design, New York, N.Y.: McGraw-Hill Computer Science
Series, 1977.

AUTHOR

Raymond J. Yanofchick, B.A. (Economics), 1979, Rutgers University; M.S.
(Computer Science), 1983, Stevens Institute of Technology; Bellcomm Inc.,
1966-1972; AT&T Bell Laboratories, 1972-. Mr. Yanofchick has been in­
volved with applied research into minicomputer-based data management
systems. He currently works in the Marketing Analysis Systems Department,
exploring software tools and environments appropriate for market analysis.
Member, ACM, AAAI, IEEE.

DATA MANAGEMENT 2129

AT&T Technical Journal
Vol. 64, No.9, November 1985
Printed in U.S.A.

Design of the S System for Data Analysis*

By R. A. BECKER and J. M. CHAMBERSt

S is a language and system for interactive data analysis and graphics. It
emphasizes interactive analysis and graphics, ease of ¥se, flexibility, and
extensibility. While sharing many characteristics with other statistical sys­
tems, S differs significantly in its design goals, its implementation, and the
way it is used. This paper presents some of the design concepts and imple­
mentation techniques in S and relates these general ideas in computing to the
specific design goals for S and to other statistical systems.

1. BACKGROUND

S is a language and system for the interactive analysis of data,
developed at AT&T Bell Laboratories, and currently in use on the
UNIX:J: operating system. An extensive user's guide, S: An Interactive
Environment for Data Analysis and Graphics [7] is available. As of
April 1983, about 250 sites had obtained S and over 4,500 copies of
the previous user's manual had been distributed. S is being used at
universities, research laboratories, and other organizations. While
sharing many characteristics with other statistical systems, S differs
significantly in its design goals, its implementation, and the way it is
used.

The design goal for S is, most broadly stated, to enable and encourage
good data analysis, that is, to provide users with specific facilities and
a general environment that helps them quickly and conveniently look
at many displays, summaries, and models for their data, and to follow
the kind of iterative, exploratory path that most often leads to a
thorough analysis. The system is designed for interactive use with
simple but general expressions for the user to type, and immediate,
informative feedback from the system including graphic output on any
of a variety of graphical devices. In addition, the system is open to
change: Even though the current system has many capabilities, a

* Copyright 1984, Association for Computing Machinery, Inc., reprinted by permis­
sion from the Communications of The ACM, Vol. 27,~No. 5 (May 1984), pages 486-495.

t Authors are employees of AT&T Bell Laboratories.
:j: UNIX is a trademark of AT&T Bell Laboratories.

2131

Topic

Syntax

Data Structures

Implementation

Portability

Extensibility

Other

Table I-Design features of 5

Expression language
Uniform treatment of function arguments/re­

sults
Formal grammar
Precedence

Self-describing attribute-value pairs
Hierarchical
Vector structures

Structured code
Software tools

FORTRAN (as portable assembly language)
Isolation of machine dependencies
Uniform executive/function interface

Macroprocessor
User-written functions (interface language)

Device-independent graphics
Online documentation

See Section

4
4

6
6

5
5
5

9
9

9
9
6

7,9
7

8
7

variety of ways are available to extend the system as new applications
and techniques appear.

The implementation of S draws on a number of modern computing
principles and techniques. Table I summarizes some of these. Many,
of course, are popular concepts, although few statistical systems apply
them together consistently. Some, such as hierarchical data structures,
seem to be unique to S among statistical systems. Vector structures
and our approach to an interface language are also novel.

Work on S began at Bell Laboratories in 1976; an initial implemen­
tation on a large Honeywell mainframe system was in use late that
year. Starting in 1978, a version of S was developed for the UNIX
operating system. Since 1981, this version has been distributed outside
Bell Laboratories. S represents both an evolution from earlier statis­
tical computing work at Bell Laboratories, particularly program li­
braries and graphics software (see [10]), and also our opinions about
what was good and bad in the software used for data analysis at the
time. (For a more complete description of how S is used in actual data
analysis, see [7].)

2. S AND OTHER SYSTEMS

When the design of S began, a group of us at Bell Laboratories
considered the then existing statistical software in terms of our goal

2132 TECHNICAL JOURNAL, NOVEMBER 1985

of good data analysis, particularly in an interactive, exploratory envi­
ronment. There were three main approaches to doing statistics on the
computer: programming in a conventional language, usually FOR­
TRAN (this had been our own previous approach); mainframe statis­
tical packages such as BMD, SAS, and SPSS; and a few interactive
languages, notably APL. We recognized the need for better use of
human resources than having to write FORTRAN programs, but found
problems with the existing alternatives.

Statistical packages arose in the 1960s and were closely modeled on
the idea of sequentially processing a series of records on punched cards
or magnetic tape. Relatively recent user guides to BMDP [8] and SAS
[16] still picture the user input as a card deck. This model has several
bad influences. Good data analysis is highly iterative, responding to
important facts observed in the analysis itself. Picturing analysis as
processing a sequence of records -through a limited set of statistical
commands discourages this freewheeling interaction with the data. In
particular, interactive use of the statistical packages was either not
available or consisted largely of the ability to set up the card deck and
run it from a terminal. S, on the other hand, was designed with the
model of a language operating on complete data sets, interactively, in
a nonsequential manner. A number of modern statistical techniques, :
e.g., robust estimation, cannot easily be expressed in the sequential
form, and are therefore hard to incorporate in some of the packages.

Another result of the batch approach was the tendency to "shotgun"
output, printing all the summaries likely ever to be relevant from a
particular model or process. Instead, S tries to provide a wide variety
of displays, particularly graphical, that can be used interactively to
see the summaries that are relevant to the particular user. Graphics,
like interaction, was not part of the original design of the mainframe
packages. Since 1976, many of them have added graphical. facilities;
however, the graphics tend to be viewed as "reports," rather than
being integrated into the analysis. For example, most of the graphics
add-ons do not include graphic input which in our opinion is essential
for identifying important features observed in the plots.

The APL language, while not designed for statistical computing,
offered a very different, and in many ways, more attractive approach.
It was intended for interactive use, with users typing expressions that
operate on whole data sets and produce immediate output at the
terminal. Users can extend the language by defining interpreted "func­
tions" that can then be used in the same way as primitive APL
operators. These are all features that contribute to APL's usefulness
for data analysis, and which we have incorporated into S. The con­
sistency and functionality of APL's operators is also present in S;
however, in S, such operations are normally carried out by functions

DATA ANALYSIS DESIGN 2133

rather than operators. The main problems with APL are its syntax,
its data structures, and its isolation from other languages. APL has
only operators, i.e., functions with one or two arguments, and its
precedence rules are different from those of ordinary algebra. For
statistical applications, the latter is inconvenient for many users, and
the former is a serious drawback. Statistical functions usually have a
few main arguments (the data to work on) and any number of addi­
tional optional parameters or auxiliary data. They are generally awk­
ward to express as unary or binary operators, as noted in Section 4.
In S, we responded by allowing general function calls and by using
common algebraic notation for expressions.

The APL data structure is the multiway array, while the result of
most statistical functions tends to be less regular. A regression, for
example, needs to be described by coefficients, residuals, and summa­
ries of the numerical and statistical methods applied. Fitting this into
a single multi way array is unnatural. Allowing completely general,
hierarchical data structures in S let the results be expressed naturally,
while allowing any data structure to be the value returned by a function
hid the structure from users who had no need to extract the pieces
explicitly.

The interface to user-written primitive functions discussed in Sec­
tion 7 allows new functions to be defined when a purely interpretive
form would be difficult to write or very inefficient. Both APL and the
mainframe statistical packages made the process of interfacing to, say,
a new FORTRAN-based algorithm either severely constrained, (e.g.,
only one user-defined extension) or complicated (involving the imple­
mentation details of function interfaces). The substantial number of
high-quality algorithms published by journals, such as Transactions
on Mathematical Software and Applied Statistics, makes them an
important source of extensions to statistical systems.

Changes in packages and languages since the development of Shave
often reflected similar concerns);0 those we felt. Many packages have
added graphics and interactive modes. A recent new version of APL
moves toward more general data structures. A system built on APL,
STATGRAPHICS [24] adds graphics and hides the syntax behind
menu-driven interfaces. These are beneficial changes for the users of
such systems; however, designing interaction, graphics, and generality
in from the beginning makes for a cleaner result.

In. retrospect, it is clear that the evolution of S, in many respects,
parallels a number of other contemporary computing activities. Our
emphasis on user-extensible data structures and operations, and on
removing details of data management and implementation from the
user is similar to Smalltalk [18]. The approach in S to data structures,
dynamic determination of their properties, and a blending of data and

2134 TECHNICAL JOURNAL, NOVEMBER 1985

"program" (in macros) has some of the flavor of many LISP-based
systems. Speakeasy [17] has some of the S flavor of building an
interactive user interface to make mathematical and statistical com­
putations user-friendly, although it is more restrictive in terms of data
structures and extensibility.

S represents a growing approach to computing that emphasizes the
effectiveness of the human as the most important design criterion, as
shown by the emphasis on friendly interactive access to computing,
on information hiding, and on greater flexibility through delayed
binding. Our philosophy is that the effectiveness of the human is the
most important criterion for design of a computer system.

3. OVERALL ORGANIZATION

An S user types expressions that describe the analysis to be done.
Some examples are in Table II.

The expressions involve a wide variety of operators and functions
which carry out arithmetic and mathematical operations, statistical
analyses, graphics, data manipulation, and other computations.
Expressions also use and create data sets containing data structures,
e.g., vectors, arrays, time series, tables. Data sets are automatically
accessed by name. The S executive interactively parses expressions
and controls their evaluation.

The organization of S resembles that of an interactive operating
system: The executive corresponds to a command interpreter, the data
sets to files, and the functions to the individual commands. The
specific similarity to the UNIX system organization [25] is probably
not coincidental, although it was not conscious. There are significant
differences, however. The expressions for data analysis need a richer
syntax than the commands in an operating system, particularly for
algebraic expressions, and data for arguments and results have more
structure (for example, commands in the UNIX system operate largely
on unstructured streams of bytes).

Table II-Some S expressions

"# read a vector of numbers from a file, create data set my data
mydata +- read("my.data.file")
mydata - mean(mydata) # subtract the mean from each value

"# Given a matrix of predictor variables longley.x
"# and a response variable longley.y
"# get the residuals from a multiple linear regression model

r +- regress(longley.x, longley.y)$resid
"# compute the residuals
"# larger than the median absolute residual

r [abs(r) > median(abs(r»]

DATA ANALYSIS DESIGN 2135

S was designed in a research environment with statisticians who
continually develop new techniques, so it was essential that the system
be extensible. Some of this extension (macros and new data structures)
can be done within the interpretive S language itself. Other extensions
involve the creation of new S functions. S includes an algorithm
language for writing computational algorithms, an interface language
for describing the interface between the algorithms and the interactive
user, and utilities to create new functions. All of these facilities for
extension are intended for users; they are not restricted to those
familiar with the internal workings of S.

4. EXPRESSIONS: THE STATISTICAL LANGUAGE

The user who types expressions into an applications system wants
a combination of simplicity and flexibility. Simple requests should be
straightforward and brief. At the same time, unusual but sensible
requests should not be impossible or unreasonably complicated. Novice
and expert users. will place different emphasis on the simple or on the
unusual.

In S, all user commands follow one general syntax: Everything is an
expression. The expressions that are given to S may be as short or
long as is comfortable for the user.

Expressions in S use functional and algebraic syntax as shown in
Table II. (The formal syntax rules are given in Table III.) For users
with some background in mathematics, science or engineering, this
syntax is readable and familiar. Extensions to ordinary algebraic
notation introduce a few special operators, for example, a colon is a
sequence operator so that x:y is a vector going in steps of ± 1 from x
to y.

When an expression is given to S, it is evaluated. The result may
be assigned a name and thus saved as a data set. If the result of an
expression is not assigned or used inside another expression, it is
printed for the user.

Algebraic notation, i.e., prefix or infix operators, is natural for
functions with one or two arguments. However, data analysis quickly
becomes involved with functions having many arguments. Functions
in S can have arbitrarily many arguments which can be specified
positionally or by name. Typical functions to carry out statistical or
graphical analysis will have a few arguments to say what data is to be
analyzed or plotted as well as many optional arguments to control
details. Options are most easily supplied in the form name=value; the
options of interest can be specified in any order. Functions return data
structures that may have arbitrarily many named components; thus,
functions may have any number of inputs and produce any number of
outputs.

2136 TECHNICAL JOURNAL, NOVEMBER 1985

expr

asn.expr

com.name

sub.expr

control

exp.list

arg.list

arg

Table 111-5 grammar rules*

,

NAME (arg.list)
expr OP expr
UNARYexpr
sub.expr [arg.list]
asn.expr +- expr
expr --') asn.expr
INT
REAL
STRING
sub.expr
asn.expr
control

: com.name
I com. name [arg.list]

~NAME
I com.name $ NAME
1 com. name $ [expr]

(expr)
NAME (arg.list)
sub.expr $ NAME
sub.expr $ [expr]
if (expr) expr
if (expr) expr else expr
for (NAME in expr) expr
while (expr) expr
repeat expr
break
next
I exp.list I
expr
exp.list ; expr

: arg
I arg.list , arg

; #empty
I expr
1 NAME =
I NAME = expr

#function call
#binary operator
#unary operator

#subset
#assign or replace

#same, to the right
#literals

#can be subsetted
#can receive assignments

#iteration, conditional, etc.

#name or component
#subsetted

#anything in parens
#function call

#component
#numbered component

#iteration

#loop control

#compound

#empty

* Lexical tokens are capitalized; key words are in boldface.

One of the most powerful functions in the S language is represented
by the subscripting operator. Since S deals with vectors, it is natural
that subscripts are also vectors. Thus

x[1:5]

returns the first five values in x. Since it is frequently necessary to
exclude data from statistical analysis, negative subscripts specify the
values to be excluded:

x[-6]

returns x with the sixth value omitted.

DATA ANALYSIS DESIGN 2137

Subscripting can also be used to answer database-like queries.
Logical expressions used as subscripts cause the selection of data
corresponding to TRUE values in the subscript.

name[salary> 30000 & age < 25]

The operation extends naturally to multiway arrays, and in this
context, an empty subscript denotes all values in that subscript posi­
tion. For a matrix y

y[, 6:2]

returns all rows of columns six through two. As this example illus­
trates, the subscript operator can also permute data values (here
reordering columns 6 through 2).

The function order generates subscripts corresponding to a sorted
version of its argument. Thus

x[order(x)]

is equivalent to

sort(x)

Using order, it is possible to do passive sorting simply:

name[order(salary)]

lists names in increasing order of salaries.
The print function, implicitly invoked whenever a result is not

assigned, represents numerical results to the appropriate number of
decimal places and can neatly layout matrices, time series, multi way
tables, and character data.

The function apply (similar to "mapfun" in Lisp [23]) is able to
invoke another function repeatedly on portions of data structures. In
its simplest form, apply invokes a function on each of the rows or
columns of a matrix. Thus

apply(y, 1, "mean")

invokes mean once on each row (Dimension 1) of the matrix y and
returns the vector of row means. With other choices for its second
argument, apply can deal with slices of multi way arrays. Functions
can also be applied over hierarchical data structures and ragged arrays.

5. DATA STRUCTURES AND DATA MANAGEMENT

Data sets in S contain self-describing, hierarchical (list-like) data
structures. Data sets are created automatically by assignment expres­
sions; no user control of storage is required. The elementary data
structures are vectors of numbers, logical values or character strings:

2138 TECHNICAL JOURNAL, NOVEMBER 1985

> response
1.01 0.97 3.1 7.21

> response> 2.5
F F T T

> species. name
"Setosa" "Virginica" "Versicolor"

(Here the ">" is the S prompt for an expression.)
The numeric data modes are "real" and "integer," but for the most

part, the distinction is unimportant to the user. In S, the value of the
expression "3/2" is 1.5, even though in many programming languages,
integer arithmetic would produce an integer result of 1. A special
operator is provided for integer division when it is needed.

There is a special value, NA (not available), which can be used to
signify missing data. Any arithmetic operations on NAs produce NAs.

General data structures consist of any number of components, each
component being either a vector or another general data structure.
Each component has a component name; syntactically, the component
named Label of a structure z is denoted z$Label.

We designed S so that most users are unaware of the details of data
structures, but also so that structures can be defined and manipulated
easily to handle new analyses. Simplicity for the user is obtained by
having all functions that deal with a given type of data structure (e.g.,
matrices, time series or tree structures from clustering) recognize the
structure type by looking for components with certain specific names.
Functions that produce such structures as their value simply return
structures with the appropriately named components. For example, a
multiway array is defined as a structure with two vector components:
one named Data containing the data values for the array (listed
column by column), and one named Dim containing the extents of
the array on each dimension. A 2 by 3 matrix, x, with data value 2i +
j in the [i, j] position corresponds to the following list representation:

("x" STR
("Dim" INT 2 3)
("Data" REAL 3 5 4 6 5 7)

Certain functions make use of a list representation of S data structures
to enable structures, or entire databases, to be written to files in
character form and subsequently read back in.

The ordinary user does not see this structure, however; x just
appears to be a matrix. When a matrix or array is printed, it is laid
out conventionally with no explicit reference to the components of the
structure:

DATA ANALYSIS DESIGN 2139

>x

Array:
2 by 3

[,1] [,2] [,3]
[1,] 3 4 5
[2,] 5 6 7

Matrices and arrays are created and manipulated by a large number
of S functions. Data structures such as arrays or time series are so
widely recognized that they are considered to be built into the language.
In particular, they can be declared as special structures in the interface
language (see Section 7) that defines S functions. Most of the basic
functions, such as arithmetic, logic, printing, and plotting include
some special facilities for treating these structures sensibly. For ex­
ample, the result of adding together two time series is a time series on
the intersection of the two time domains.

A broader special class consists of vector structures: data structures
that can act like vectors, but have special structure in addition. Such
structures can be used in arithmetic, and in general, can act as a vector
argument to any S function. Arrays and time series are examples of
vector structures, but the class is open-ended. Internally, any structure
with a vector component named Data is considered a vector structure.
The Data component is the part that acts like a vector when necessary.
Functions that operate element-by-element on a vector structure
change the data values but leave the other components unaltered. If
x is the matrix above, sin(x) produces a 2 by 3 matrix with data
sin(3), etc., and x<4 is a matrix of logical values. Functions that
rearrange the order of elements, on the other hand, throwaway the
structure and leave just the data: sort(x) sorts the data values in the
matrix but its result is a simple vector. Since the original design of S,
vector structures have been added to represent such structures as
distance measures, categorical variables, and multiway tables. These
structures can be used as vectors throughout the language with no
modification of the various S functions involved.

Other structures may not be interpretable as a vector, but may still
be recognized by groups of functions. For example, a tree structure is
used to represent the result of hierarchical cluster analysis [22]. Its
components are a matrix describing the merging that took place in
the analysis, a vector of the distances at which merges took place, and
a vector giving the reordering of the original objects needed to plot the
tree. S functions exist to produce such trees, plot them, and extract
subtrees or nonhierarchical clusterings. Users of these functions need
not know how the tree is represented, so long as the various functions
agree among themselves.

2140 TECHNICAL JOURNAL, NOVEMBER 1985

6. THE EXECUTIVE

The S executive performs tasks roughly comparable to an operating­
system command interpreter. It controls most interactions with the
user, parses user expressions, schedules the execution of various func­
tions, and handles interrupts and error recovery. The expressions and
the data structures in S are considerably more general than the
commands and files handled by most operating systems, so that
parsing and data transmission in the S executive must be correspond­
ingly more general.

User expressions are accepted by a parser built using a version of
the YACC compiler-compiler [19] with a customized lexical analyzer.
The use of YACC allows the syntactic rules in the language to be
compact and relatively readable; with just a little cleaning up, they are
included in Table III. Occasional changes in the syntax are made
easier to implement as well.

The result of the parse is a hierarchical structure representing the
parse tree; in fact, it is another of the general S data structures. It is
evaluated by performing a depth-first traversal of the tree. When
parsed, each function invocation becomes a structure with one com­
ponent for each argument: As the functions are evaluated, the value
returned by each function replaces this substructure in the parse tree.
When the traversal is complete, the parse tree has been replaced by
the value of the expression.

Down to function evaluation, the process is essentially portable.
However, the process by which the executive invokes an S function is
crucially system -dependent. S consists of a large collection of functions
(currently around 300). Furthermore, users must be free to write and
use their own functions. The facilities of the operating system running
S determine how such a collection can be maintained and used in a
reasonably efficient way. Table IV lists advantages and disadvantages
of various implementation techniques that can be used to execute
functions. Operating system constraints have forced us to use several
different strategies. For the original version, on a Honeywell computer
with a relatively primitive operating system (no virtual memory or
process control), we wrote our own dynamic loader. Each S function
was an overlay, read in by the executive; control was passed by a
standardized transfer vector.

Running on 16-bit hardware without virtual memory, the major
constraint is that program address space is limited. For this environ­
ment, we implement S functions as independent programs. Control of
execution and data transmission, respectively, are handled by simple
process-signaling facilities and by file input/output.

The implementation on 32-bit hardware exploits the larger address
space to incorporate some, or all, of the S functions as part of the

DATA ANALYSIS DESIGN 2141

Table IV-Advantages and disadvantages of implementation of S
executive

Overlay Loading
Common code resides in the executive. Execution-time overlay loading is relatively

slow.,
Many loaders do not allow partial link­

ing-the entire system must be linked at
one time.

Tools are required to allow user-written ov­
erlays.

Functions which get into trouble may harm
the executive.

Dynamic Linking
The operating system does most of the Most operating systems do not have this

work. facility.
Functions which get into trouble may harm

the executive.
First-time invocation is slow because of re­

solving external references.

Large Virtual Memory Executive
The operating system does most of the Functions which get into trouble may harm

work. the executive.
The entire system must be linked together.
Recursive calls involving the apply func­

tion may be needed.
A facility for user-written functions is nec­

essary.

Independent Processes
It is easy to create functions-user and Common object code in many modules

system-since they are independent. means large disk storage for executables;
The executive is insulated from func- it is hard to correct bugs in common

tions. code.
Function invocation is slow due to process

creation/startup.
Interprocess communication is needed.

program containing the executive. We speculate that an ideal environ­
ment may be one in which dynamic linking is combined with virtual­
memory facilities, although we have no experience with such a system.

For our goals of flexibility and extensibility, it is essential that these
changes in implementation affect only the executive, not the source
code for the individual functions. Even in the executive, only a rela­
tively small fraction of the code is system-dependent. However, this
code has an importance to the reliability and efficiency of the system
much greater than its size. Adapting the control of such a large­
application software system to the features of an interactive computer
system is likely to be the most important and difficult implementation
step.

7. FUNCTIONS: ALGORITHMS AND INTERFACES

There are basically two ways to extend the S language to perform

2142' TECHNICAL JOURNAL, NOVEMBER 1985

Table V-Comparison of macros and
functions

Macros
Easy to write
Little programming skill needed
Uses existing S functions-a limitation
Slow execution

Functions
Programming needed
Harder to create than macros
Creation process is slower
Unlimited flexibility
Fast execution

new computations: macros and functions. A comparison of macros and
functions is included in Table V.

Macros combine existing S expressions into a named entity. They
are easy to write and are often useful for providing sets of operations
for specific applications. As an example, consider a macro designed to
produce a scatter plot which includes a fitted regression line:

MACRO line(x, y)
plot(x, y)
abline(reg(x, y))
END

The body of the macro, with appropriate parameter substitutions, is
inserted when the user types an expression such as

?line(x, y)

Details of macro writing are given by Becker ([7], Chapter 6). The
macroprocessor itself is an extension of the M4processor [21].

Some operations are difficult or inefficient to carry out using existing
S functions. Sometimes, new algorithms appear that would be useful
in S. In these cases, it is desirable to write a new S function.

All S functions are defined by interface routines. The interface
routine describes the arguments that the user may supply, how these
arguments are to be interpreted, and what default actions will be taken
when arguments are omitted. It checks for errors in the arguments
that would prevent successful execution. It allocates space dynamically
for data structures needed for the value of the function or for tempo­
rary storage. It invokes algorithms to do the actual computation
(numerical, graphical, etc.) and returns the ?ppropriate result. The
interface routine is written in an interface language which is compiled
using FORTRAN as an intermediate language. The function gs, for
example, takes a matrix and uses a Gram-Schmidt algorithm, which
could be written in the algorithm language, FORTRAN or C, to

DATA ANALYSIS DESIGN 2143

decompose it into the product of an orthogonal matrix q and an upper­
triangular matrix r. The corresponding interface routine is:

FUNCTION gs(x/MATRIX/)
STRUCTURE(q/LIKE(x)/,

r/MATRIX,NCOL(x),NCOL(x)/)
call gs(n,NROW(x),NCOL(x),q,r)
RETURN(r,q)
END

The first line says that the function has one argument and that this
argument should be interpreted as a matrix, if possible. The next
statement allocates two structures whose sizes are determined at
execution time, the fourth line invokes an algorithm (subroutine) to
do the calculations, and the fifth line specifies the result of the function
as a structure with the two components q and r.

It is important to our design that interface routines be as simple
and readable as possible. Users, not just system programmers, should
write them. Most interface routines are longer than this example,
since most S functions have several arguments. However, more de­
tailed or complex interface routines are usually still readable.

S also provides a tool to create a partial documentation file from an
interface routine. This helps ensure accuracy in documenting argu­
ments and results, and also makes it easier for the author of a function
to document it in a manner consistent with the standard S online
documentation. (A similar tool is also available for user documentation
of macros and data sets).

The interface routine is also an interface between the S data
structures and the vectors and arrays that the FORTRAN-based
algorithms can handle. Typically, an algorithm will require both the
data part of a structure and some attributes such as the length of a
vector or the number of rows and columns of a matrix. These attributes
are implicit in the self-describing S data structures and are supplied
to algorithms by attributes defined through the interface language.

An extensive set of computational algorithms is required to support
a large collection of functions. The algorithms need to be of good
quality, they should if possible not be restricted to use within S itself,
and the human effort required for producing and maintaining them
should be kept small. In particular, we take advantage of published or
otherwise generally available algorithms. Our algorithms are generally
written in or converted to our algorithm language. This language is a
combination of RATFOR [21] or EFL [15] with a set of ·macros to
provide machine constants, error handling, user messages, dynamic
storage, and various specialized facilities. Algorithms can be converted
mechanically from FORTRAN into RATFOR [1], but additional effort

2144 TECHNICAL JOURNAL, NOVEMBER 1985

is usually required to make error handling, use of scratch space, and
other environmental interfacing compatible. Ideally, this does not
require knowledge of the details of the algorithm.

In addition to imported algorithms, S contains a large collection of
graphics routines, facilities to support reading and printing of data,
and algorithms to handle the S data structures.

Our experience shows that a large body of algorithms to support a
scientific system can be developed by a small programming group if:
(1) advantage can be taken of the many existing algorithms: and (2)
there is a good collection of tools to make error handling, dynamic
storage, and other support features easy to implement.

8. GRAPHICS

Data analysts use plots iteratively as an intimate part of their study
of data. The unique role of plots comes from their information content:
No other form of output conveys so much information so quickly.
Users often react to plots by finding the unexpected and using this
new information to shape the subsequent analysis. A variety of graph-

,ical techniques for data analysis is presented in a recent book [11].
S emphasizes interactive graphics as one of the most important

tools in data analysis. Graphics functions in S provide the simple
displays that are predominant in statistical graphics, most notably the
scatter plot, in a flexible and easy-to-use form. For example:

plot(x,y)
qqnormal(x)

scatter plot
Normal probability plot

The general data structures and expressions in S help to provide
graphical output from a variety of sources. Many statistical analyses
produce results that define a scatter plot; for example, a probability
plot [11] shows an ordered set of data plotted against corresponding
quantiles of a probability distribution. Deviations from a straight-line
pattern help assess distributional assumptions. Rather than duplicat­
ing scatter-plot software for each such plot, S functions return as their
value a plotting data structure, which is passed automatically to the
plot function to be displayed. The expression

qqnorm(mydata)

produces a probability plot of mydata against quantiles from the
standard normal distribution. Internally, qqnorm only generates the
plotting data structure and then invokes the scatter-plot function;
qqnorm need know nothing about plotting. The data structure con­
sists of two vector components for the x and y coordinates of the
points to plot. Once the probability plot is seen as a data structure, it

DATA ANALYSIS DESIGN 2145

is straightforward to use this structure for further analysis, for exam­
ple, by fitting some suitable line to the points in the plot.

While statistical graphics characteristically make wide use of simple
plots, such as the scatter plot, there is also the need to develop and
use other special displays. The interface language and underlying
graphical algorithms provide support to make the writing of new
graphical functions straightforward. There are high-level graphical
algorithms for generating complete displays such as scatter plots, low­
level algorithms to produce components of a plot (lines, points, axis
labeling, etc.) and a set of macros in the algorithm language to specify
and query graphic parameters (Table VI) controlling details of how
plotting is to be done. Parameters include specifics such as the symbol
to use for a scatter plot, and generalities such as the style of axis
labeling. Parameters can also be controlled by the user of S, by
supplying them as optional arguments to S graphics functions. For
example, a scatter plot in (device-dependent) color 6 with "0" as the
plotting characte/r could be produced by

plot(x,y,col=6,pch="Q")

The goal, again, is to provide the maximum flexibility to both the
interactive user and the writer of new S functions, while still keeping
the ordinary use of plotting simple. Graphic input is supported in S
and is important when data values or areas of interest are to be
identified on the plot, as a guide to further analysis.

The graphical functions are device-independent in that both the
user-typed expression and the underlying interface routines and al­
gorithms are written independently of specific graphic devices. Actual
graphical output is produced through a device driver which converts
the graphics output, at a relatively low level, into commands for a
particular device (see Figure 1). Drivers exist for devices including
ordinary printing terminals and a range of interactive plotting termi­
nals. A driver is written by implementing routines to carry out a
specified set of graphic primitives (e.g., draw a line or plot a character),

Table VI-Some graphical parameters
User (world) coordinate system
Viewport
Plot aspect ratio
Size of margin surrounding plot

(used for labelling, titles, etc)
Color
Line style
Character rotation
Character size
Plotting character
String justification

(left, right, center)

2146 TECHNICAL JOURNAL, NOVEMBER 1985

DEVICE DRIVER CONFIRMATION
PARAMS,

INPUT

DEVICE
INDEPENDENT

COMMANDS

ERROR
MESSAGES

GRAPHICS
MODE

TYPEWRITER
MODE

TERMINAL

GRAPHICS ROUTINE

I
GRAPHICS : APPLICATIONS

CODE I CODE

I

USER INTERACTION
(NONGRAPHIC)

Fig. I-Operation device-independent graphics.

and by providing a definition of the device in terms of basic graphic
parameters (e.g., the device coordinate system, raster size). Incorpo­
rating a new device typically takes a few days or less; the process is
sufficiently straightforward that we include instructions in the user's
manual. Users can write their own device drivers.

The intimate role of graphics in interactive data analysis means
that users should have interactive graphic terminals available locally.
The terminals must not be too expensive and they should be of
sufficient quality that the detailed information in many statistical
plots can be seen clearly. Both scope terminals and pen plotters are
popular with some users (mainly for rapid plotting and good graphical
quality, respectively).

Our graphics routines have much in common with the CORE
graphics standard [13], although our work was independent [2, 3, 5].
Relative to CORE, graphics for data analysis consists mostly of
applications software; the quantity of device support software is not
large. A number of the more elaborate features of the standard, on the
other hand, are not often used in data analysis, e.g., retained segments.
A CORE implementation would be more than sufficient to define one
of our device drivers, but would not provide much of our device­
independent support code.

9. TOOLS: THE OPERATING SYSTEM

The discussion so far has shown the basic design of S and the
components of its implementation: execution of user's expressions;
data structures and management; source code for interface routines

DATA ANALYSIS DESIGN 2147

and algorithms. / The complete system contains about 6,000 lines of
interface language, 35,000 lines of algorithm language, and 9,000 lines
of C code. Development and maintenance of S by a small group of
people requires efficient use of time. Our experience is that three
aspects of the design particularly affect human efficiency: the lan­
guages in which programming is done, the tools for maintaining the
application system, and the operating system interface.

The approach to language was described in Section 7. Developing
our own interface language and algorithm language may have taken
perhaps 10 to 15 percent of the total effort, but this development has
been cost-effective. If interface routines were written directly. in a
general language like FORTRAN, they would be much more compli­
cated and error-prone, and all but the most sophisticated users would
find it impossible to write their own S functions. During compilation,
an interface routine typically expands into a much larger FORTRAN
routine (an order of magnitude more lines of source code). Much of
this expansion reflects inherent clumsiness in using FORTRAN to
express the argument processing, dynamic storage management, and
generation of results in an S function. At the same time, the use of
FORTRAN as an intermediate language is important. We could not
reimplement all the basic statistical algorithms previously written in
FORTRAN.

The use of software tools is essential for creating and maintaining
a system such as S. Compiler-compilers, macroprocessors, and more
specialized tools ease the burden of system development. The interface
language goes through our own simple compiler, two passes of the M4
macroprocessor, RATFOR, and FORTRAN during compilation. Ob­
viously, we are not trying to optimize compilation time. However, this
multistep process leaves us able to modify individual steps as our
needs change.

Other tools are used to provide specific utilities for S developers.
The make system for maintaining programs [14] is used to generate
the S executive and the individual functions.

For tools to be useful in large applications systems, they should
themselves be easily adaptable. For example, our use of make is highly
specialized. The interface routines and the support programs, whether
based on RATFOR or on the C language, all take advantage of special
S facilities. We therefore replace and extend make's built-in rules for
compiling to include these special features. The result is a customized
tool of our own (itself built from a number of tools).

The ease with which tools are put together is also a function of the
operating system environment. The UNIX environment is convenient
for developing a system such as S, both because of specific facilities
and because the operating system tries not to be unnecessarily restric-

2148 TECHNICAL JOURNAL, NOVEMBER 1985

tive. Facilities such as pipes and a flexible command interpreter make
the creation of customized tools much easier. The absence of complex
rules about file formats and interprocess protocols, on the other hand,
has meant fewer barriers to our implementation.

The dependence of the current version of S on its operating system
environment involves both the internal dependencies and the use of
operating system features in the tools. The dependencies on computer
hardware, such as machine accuracy, are relatively easy to handle.
The large majority of S code passes through FORTRAN during com­
pilation. N onportable features such as the choice of special characters
and machine precision are isolated in the macroprocessing phase and
kept in a single file.

The use of FORTRAN as an intermediate language and the para­
metrization of machine dependencies make the S source code quite
portable. On the other hand, implementing and using a system like S
benefits from a good general computing environment. Among current
computer systems, the UNIX system is relatively well-designed, allow­
ing us to combine and modify tools to rut together a system like S. In
a more restrictive system, we would be obliged to provide more of the
support environment. We also observe substantial interest in porting
the UNIX system to a variety of new computer systems, and when
that is done, S goes along for free.

10. EXPERIENCE AND EVOLUTION

A significant fraction of the evolution of S has come from users'
activities and experience. By far, the majority of our users are not
professional statisticians. Instead, they are professionals in other areas
with a need for data analysis, graphics or other S facilities to enhance
their own work. In a number of cases, their specialized use of S has
led them to develop, in effect, specialized systems for their own user
community, built on S. This is usually done by creating a set of S
macros to translate users' requests from the terminology of specific
applications into the S expressions generating the results. Less fre­
quently, more ambitious projects may include user-written S functions
or interfaces between S and other large application systems. The
relative simplicity of writing S macros means that a new system
tailored to a particular user community can be written with a fraction
of the programming effort required for a corresponding project using
a general programming language. Also, the system development effort
grows naturally (often unintentionally at first) out of direct use of S
to solve the user's problems; there is no large initial investment in
programming before any of the proposed uses can be tested and /
evaluated.

DATA ANALYSIS DESIGN 2149

One of the more difficult tasks in user training has been convincing
FORTRAN programmers that it is ordinarily not necessary to write
explicit loops to operate on collections of data. Most of the nonpro­
grammers, however, seem to have little difficulty with the implicit
iteration provided by S.

Specific user suggestions and our general recognition of the pattern
of use have contributed many of the enhancements in S. An early user
suggestion was the inclusion of a right-facing assignment arrow, --,),
for the occasion when one decides to save a result after typing a long
expression. Our use of tools like syntax-driven parsing makes such
changes easy. Interestingly, the interactive use of S in this case has
direct implications for the syntax. Other enhancements in response to
user needs include: a simple mechanism to edit and rerun expressions
after errors; a "diary" feature to provide a history of the expressions
executed during a session; tools to help users create online documen­
tation for their macros, data sets, and new S functions; and facilities
for moving large collections of S data sets among different machines
in a portable way. We have also provided a mechanism for running S
noninteractively for large or repetitive analyses, and a technique for
creating device-independent graphics metafiles which can be plotted
later on interactive or batch devices. The ability to provide such
facilities with a limited expenditure of our own time derives from our
modular, tool-oriented design and from the similar orientation of the
UNIX environment.

11. FUTURE PLANS

Future plans for S concentrate on improving the human interface,
particularly for use with the new generation of work stations. These
offer substantial local computing power, high-quality graphics, and
often, novel forms of interface using multiple windows and input
devices such as the "mouse." These features allow design of nonpro­
gramming interfaces to statistical systems with greater flexibility and
more sophisticated user support than previously possible. We also
plan to make the underlying S language itself more efficient and to
simplify the user's view of writing new functions.

REFERENCES

1. Baker, B. S. An algorithm for structuring flowgraphs. J. ACM 24, (Jan. 1977),98-
120.

2. Becker, R. A. and Chambers, J. M. On structure and portability in graphics for data
analysis. In: Proceedings of the Ninth Interface Symposium on Computer Science
and Statistics, 1976.

3. Becker, R. A. and Chambers, J. M. GR-Z: A system of graphical subroutines for
data analysis. In: Proceedings of the Tenth Interface Symposium on Computer
Science and Statistics, National Bureau of Standards Special Publication 503,
1977,409-415.

2150 TECHNICAL JOURNAL, NOVEMBER 1985

4. Becker, R. A. and Chambers, J. M. Design and implementation of the S system for
interactive data analysis. In: Proceedings COMPSAC 78, IEEE 78CH1338-3C,
1978, 626-629.

5. Becker, R. A. and Chambers, J. M. Computer graphics for interactive statistics. In:
Proceedings of NCGA, 1980.

6. Becker, R. A. and Chambers, J. M. S: A Language and System for Data Analysis,
Bell Laboratories, Jan. 1981.

7. Becker, R. A. and Chambers, J. M. S: An Interactive Environment for Data Analysis
and Graphics, Belmont, CA: Wadsworth, 1984.

8. BMDP Statistical Software: 1981, Dixon, W. J., ed., Berkeley: University of Califor­
nia Press, 1981.

9. Chambers, J. M. Computational Methods for Data Analysis, New York: John Wiley
& Sons, 1977.

10. Chambers, J. M. Statistical computing: History and trends. The American Statisti­
cian 34, 4 (Nov. 1980),238-243.

11. Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. Graphical Methods
for Data Analysis, Belmont, CA: Wadsworth, 1983.

12. Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J.
American Statistical Association 74, 829-836.

13. CORE, Status report of the graphics standards planning committee. Comput. Gr.
13, 3 (Aug. 1979).

14. Feldman, S. I. Make-A program for maintaining computer programs. Software­
Practice and Experience 9, (1978), 255-265.

15. Feldman, S. I. Bell Laboratories Memorandum: The programming language EFL.
1979.

16. Helwig, J. T. SAS Introductory Guide, Raleigh, NC: SAS Institute, Inc., 1978.
17. Hynes, G. C. Speakeasy User's Manual, Tech. Rpt. BDX-613-2569, Bendix Corpo­

ration, 1981.
18. Ingalls, D. H. H. Design principles behind smalltalk. Byte 6, 8 (Aug. 1981), 286-

298.
19. Johnson, S. C. and Lesk, M. E. Language development tools. Bell Syst. Tech. J. 57,

6 (July-Aug. 1978), 2155-2175.
20. Kernighan, B. W. RATFOR-A preprocessor for a rational Fortran, Software­

Practice and Experience 5, (1975),395-406.
21. Kernighan, B. W. and Plauger, P. J. Software Tools, Reading, MA: Addison-Wesley,

1976.
22. Mardia, K. V., Kent, J. T., and Bibby, J. M. Multivariate Analysis, London:

Academic Press, 1979.
23. McCarthy, J. et aI., LISP 1.5 Programmer's Manual, Cambridge, MA: MIT Press,

1962.
24. Polhemus, N. W. Interactive statistical graphics in APL: Designing a versatile user­

efficient environment for data analysis. In: Computer Science and Statistics:
Proceedings of the 14th Symposium on the Interface, New York: Springer-Verlag,
1983, 10-19.

25. Ritchie, D. UNIX: A retrospective. Bell Syst. Tech. J. 57, 6 (July-Aug. 1978), 1947-
1970.

CR Categories and Subject Descriptors: D.3.2 [Programming Languages]:
Language Classifications-very high-level languages; G.3 [Mathematics of Comput­
ing]: Probability and Statistics-statistical computing, statistical software; I.3.4 [Com­
puter Graphics]: Graphics Utilities-application packages; I.3.6 [Computer Graph­
ics]: Methodology and Techniques-device independence; J.2 [Computer Applica­
tions]: Physical Sciences and Engineering-mathematics and statistics

General Terms: Algorithms, Languages
Additional Key Words and Phrases: data analysis

Received 7/82; revised 9/83; accepted 11/83

Authors' Present Address: Richard A. Becker and John M. Chambers, Statistics and
Data Analysis Research Department, AT&T Bell Laboratories, 600 Mountain Avenue,
Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, the ACM copyright
notice and the title of the publication and its date appear, and notice is given that
copying is by permission of the Association for Computing Machinery. To copy other­
wise, or to republish, requires a fee and/or specific permission.

DATA ANALYSIS DESIGN 2151

A T& T TECHNICAL JOURNAL is abstracted or indexed by Abstract Journal in
Earthquake Engineering, Applied Mechanics Review, Applied Science & Technology
Index, Chemical Abstracts, Computer Abstracts, Current Contents/Engineering,
Technology & Applied Sciences, Current Index to Statistics, Current Papers in Electrical
& Electronic Engineering, Current Papers on Computers (~ Control, Electronics &

Communications Abstracts Journal, The Engineering Index, International Aerospace
Abstracts, Journal of (ufft'nt Laser Abstracts, Language and Language Behavior
Abstracts, M.lIilt'/II.ltic.lll\eviews, Science Abstracts (Series A, Physics Abstracts; Series
lJ, Electrical .lnd 1.leclronic Abstracts; and Series C, Computer & Control Abstracts),
Science Cit.ltion Index, Sociological Abstracts, Social Welfare, Social Planning and
Social Development, and Solid State Abstracts Journal. Reproductions of the Journal

by years are available in microform from University Microfilms, 300 N. Zeeb Road,

Ann Arbor, Michigan 48106.

.­-
~-:'AiQT --

