
COMPARING MICROCOMPUTER
DEVELOPMENT SYSTEM
CAPABILITIES

Hardware and software integration difficulties during microprocessor
based system design mandate use of microcomputer developinent
systems with comparative processor support capabilities and software,
and differing control consoles, me1nories, and in-circuit emulation
archi lectures

Bruce E. Gladstone Futuredata Computer Corporation, Los Angeles, California

Proliferation of microprocessor based products neces­
sitated the design of microcomputer development systems.
These tools represent either general purpose or univer­
sal investigative aids that support several micropro­
cessor types, or dedicated aids restricted specifically to a
single microprocessor type or family. A system assists
the designer in evaluating alternative microcomputer
hardware o-r software prototypes because it incorporates
all standard computer development tools, such as the
central processor, mass storage memory, control con­
sole, editor, assembler, and compiler. Also, simultaneously
testing hardware and software produces powerful de­
bugging capabilities (Fig I) .

Specialized in-circuit emulator types of microcomputer
development systems evolved to handle problems in­
herent in separating hardware and software defects.
These include the Futuredata Microemulator and Tek­
tronix In-Prototype Emulator that support micropro­
cessors from a variety of manufacturers, the Intel ICE

and Motorola USE that support a family of micropro­
cessors, and single-microprocessor systems from RCA,

Rockwell, and Zilog. The in-circuit emulator provides
the most accurate method for testing and checking mi­
crocomputer system hardware and software. It replaces
the central processing unit (CPU) chip in the system
under test, duplicates the chip functionally, and fur­
nishes indications of system operation and control at a

console or terminal. The ability to examine, change, or
modify CPU 1egisters, storage memory, and program
execution permits rapid and easy hardware and soft­
ware testing.

Hardware Elements

A microcomputer development system consists of a series
of hardware and software elements. Major hardware
elements are the central processor, memory, mass stor­
age, and control console (Fig 2). The central processor
~xecutes the various algorithms involved in the develop­
ment ta~k and, at times, executes an editor, an assembler,
a debugger, and the designer's program. Thus, it per­
forms two major functions: host and designer program
execution.

Memory stores both program and data. These pro­
grams can be host programs, such as the editor or com­
piler, or designer programs. Data involve editor work­
space, assembler symbol table, input and output (1/ 0)
buffers, and/ or data generated by the designer's program.

Mass storage stores operating prograh1s, designer's
programs, and either temporary or permanent data. It
is sometimes used as an extension of main memory. For
example, when editing a large program, the editor work­
space may not be large enough to contain the entire

83

SOFTWARE DEVELOPMENT
(PROGRAMMER S)

DESIGN PROGRAM

CODE PROGRAM
(USE EDITOR, ASSEMBLER,

COMPILER)

DEBUG SOFTWARE IN
SOFTWARE DEVELOPMENT

FACILITY WITH INTERACTIVE
DEBUGGER

NO

SYSTEM TEST
PROGRAMMERS AND

LOGIC DESIGNERS

YES
(PROGRAM
VERIFIED
AT BASIC

LOGIC
LEVEL)

, I
I DIAGNOSTIC.DEVELOPMENT I
l (PROG RAMMERS,A~D LOGIC DESIGNERS)I

,I
DESIGN DIAGNOSTIC

PROGRAM

CODE PRQ,GRAM
(USE EDITOR, ASSEMBLER,

GOMPILER)

DEBUG DIAGNOSTIC
IN SOFTWARE DEVELOPMENT

FACILITY WITH
INTERACTIVE DEBUGGER

NO

(DIAGNOSTIC
YES ONLY

PAR TIALLY
VERIFIED)

HARDWARE DEVELOPMENT
(LOGIC DESIGNERS)

DESIGN SYSTEM

DESIGN DETAILEb LOGIC

CONSTRUCT PROTOTYPE

DEBUG HARDWARE LEVEL
WITH SCOPE, METERS, LOGIC

PROBES, ETC

NO

YES

(HARDWARE
OPERATIONAL.

CLOCKS,
POWER

SUPPLIES,
ETC ONLY)

VERIFY BASIC FUNCTIONS
USE IN-CIRCUIT EMULATOR.
ADDRESS TESTS. ETC

VALIDATE
HARDWARE

VALIDATE
SOFTWARE

VALIDATE
SYSTEM

'------- COR RECT HARDWAR E ERR ORS

RUN DIAGNOSTICS WITH
IN-CIR CUIT EMULATOR

'------ - CORRECT HARDWAR E AND DIAGNOSTIC
ERRORS

RUN SYSTEM PROGRAM
USING ROM SIMULATION
AND IN-C IRCUIT EMULATOR

'---- - - - CORRECT SOFTWARE
ERRORS

USE IN-C IRCUIT EMULATOR,
F1AOM PROGRAMMER

'------- CORRECT HARDWARE
AND SOFTWARE ERRORS c DESIGN COMPLETE)

Fig 1 Microprocessor based system design with development system. Development of micro­
computer based design involves preparation of application program, hardware design, diag­
nostic programming, and system test phase. Capability of development system is especially
critical in latter, when it is necessary to sort out hardware versus software problems

program during edit. Moving the source program from
one file in mass storage through the edit buffer to
another file in mass storage accomplishes an edit. In
this case, the two files and the editor work area com­
prise a very large memory space.

Essentially, these four hardware elements also con­
stitute a software development system, of which the
lntellec 8 and lntellec 80 are examples. The next
three hardware elements, however, relate to the hard­
ware development aspect of microcomputer design and
apply specifically to microcomputer development systems. The control console provides an interface between the

designer and the microcomputer development system.
Systems differ greatly in the type of console used. Two
primary functions of the console are to accept operator
input (source programs, debugging commands, operat­
ing system commands, data) arid to provide feedback
and output to the operator (assembly listing!;l, memory

·dumps, register displays) .

84

An in-circuit emulator provides a direct connection
between the microcomputer development system and the
prototype system. Read/ write memory within the micro­
computer developmertt system simulates read-only mem­
ory (ROM) or programmable read-only memory (P/ RoM)
in the prototype system. This greatly reduces the time
needed to change and correct designer programs. Some

COMPUTER DESIGN/ FEBRUARY 1979

CONSOLE PRINTER

RAM

: :-.., SYSTEM
'' ' BUS

'
' 11 ,

-..-----t---t-----t--- COMMON TO ALL PROCESSORS - ----~,__---+----+-CHANGE___________.::.
FOR EACH PROCESSOR

DEBUG
LOG IC

CO NSOLE
110

PARALLEL Dl~C ANALIYZER I
1/ 0 TAPE 1/ 0

AND
PRINTER I

1/0

•
MODEM

TARGET IN-CIRCUIT
CENTRAL EMULATOR

PROCESSOR INTERFACE

EPROM
PROGRAMMER~-----~

PAPER TAPE
READER AND PUNCH

LOGIC
ANALYZER

Fig 2 Relationship of universal develop"1ent system hardware components. Compbnents common to differing micro­
processors include all 1/0 and memory devices. Only target central processor and in-circuit emulator interface are
changed to accommodate specific microprocessor

in-circuit emulators allow the designer to gradually switch
functions into the prototype system. Thus, the designer
separately tests the clock circuits, input control lines,
and direct memory access (DMA) control system to
evolve the final design in discrete increments.

Final software can be stored in P / ROM using the
P/ RbM: programmer. Programs debugged and running in
simulator ROM are permanently burned into an elec­
trically programmable ROM (EPROM) or P/ ROM.

Hardware debug aids, used in the debugging process,
separate hardware and software problems. These aids in­
clude a single-stepping facility, a hardware breakpoint
facility, and a logic analyzer. With a single-step facility,
the designer steps through the program one instruction
at a time. A hardware breakpoint facility sets up a
logic~! condition, usually an address, that baits the
program whenever it encounters that address. Then,
th.e .designer can examine interim results, determine
whether they are correct, and either continue executing
the pi;tigram or go hack and modify it. In addition to
providihg hardware breakpoints, a logic analyzer cap­
tures data on i:he fly and displays it. Thus, the designer
views the system's operation as a series of bus trans­
actions. The logic analyzer has a fixed amount of storage
that is continually updated by the last bus cycle, while
the earliest bus cycle is erased. Therefore, when a hard­
ware breakpoint is encountered, the logic analyzer mem­
ory shows events leading up to the breakpoint.

The microcomputer development system contains other
1/ 0 hardware elements. The printer provides hardcopy
listings of the program, while other 1/ 0 devices, such
as a paper tape reader, a punch, or a modem, provide
a standardized interface into other systems for data
interchange. Thus, with a paper tape reader and punch,
a designer niay write a program oa--t. one deveiopment

' system and communicate it to another-~ development sys-
tem. Likewise, with a modem, a designer connects a mi­
crocomputer development system by telephone lines to a
large computer which may have other processing facil­
ities available (cross-compilers, cross-a~mhlers, etc).

Software Elements

Integrated into a develOpment system are an editor, as­
sembler, debugger, high level language compilers, link­
age editors, and operating system-all software compo­
nents. The editor creates and modifies source programs,
written in assembly fanguage or in higher level languages,
depending on the task. The editor must, of course, have
editing commands to change, delete, and insert lines of
code; positioning commands to target on a particular
location in the program where changes are to he made;
and utility commands to read and write edited data.

Editors differ in their capabilities and in their inter­
actions with the control console. Most are written for

85

teletypewriter compatibility. To meet this design criterion,
editors are designed with a small amount of information
feedback. More recent designs use ultra high speed
cathode-ray tube (CRT) displays to provide context
based editing and to offer a large amount of informa­
tion feedback. A context based editor is very similar
to the editors used in CRT word processor systems; here,
a significant amount of the program is always "on dis­
play." A cursor within the display or context performs
the editing; all changes instantaneously update the pro­
gram as displayed. This feedback within the program
context substantially reduces errors and simplifies edit­
ing commands.

The assembler translates or assembles the source code
(assembly language), generated using the editor, into
object code. Assemblers differ in their ability to handle
macros, to generate relocatable code, to support a va­
riety of operand formats, and to allow certain types of
pseudo-instructions. The designer uses macros to name
coll,lmonly used sequences of instructions, which then are
"called" with a single instruction- the macro name.

A debugger interactively executes and debugs the ob­
ject program that is generated using the assembler or
compiler. Commands handle memory display, program
execution, and data storage in memory. With other com­
mands, the designer sets breakpoints so that the pro­
gram will halt when it encounters these breakpoints.
Thus, the designer can determine the action of parts of
the program. Additional commands set values in the
processor registers, find data in memory, and read and
write object program files. With the advent of in-circuit
emulator capability, additional debugger commands map
memory between the host and prototype systems, and

switch the various microcomputer control lines between
the host and prototype systems, thereby establishing the
level of emulation. The debugger also provides single­
stepping and program tracing. Since most debuggers
interact with a teletypewriter, they provide minimum op­
erator feedback. New debugger designs take advantage
of the ultra high speed CRT displays with increased in­
formation feedback.

High level language compilers translate a high level
language program (in BASIC, FORTRAN, COBOL, PL/ M,

etc) into assembly language programs. Since each high
level language statement represents a number of assembly
language statements, the designer can shorten the amount
of time spent generating a program. This time advantage
normally contains an associated expense, since the com­
piled code is not as efficient as assembly level code gen­
erated by an experienced programmer; however, as
memory becomes less and less expensive, compilers will
become more cost-effective.

Linkage editors link individual program modules, all
of which are assembled or compiled separately. Thus, the
designer can gradually build a library of commonly used
subroutines and program segments and, as a last step,
link these subroutines and program segments together
to form an entire operating program. The linkage editor
performs all the address calculations necessary to link
the modules so that they can interface to each other
and fit properly into memory.

Consisting of an editor, assembler, monitor, debugger,
compilers, and linkage editors, the operating system
manipulates, stores, retrieves, loads, and executes system
programs, and creates and deletes data files. Various
utility functions, such as the ability to copy programs

TABl:E 1

Operator Console Typei alnd Major Function Times

Debug Edit
Operator Application Function Time1 Function
Console Example (Overhead) Time"

Binary lamps and Front panel; lmsal 1C min Not practical
switches and Altair computers;

DEC PDP-11

Hexadecimal keyboard Intel SDK-85; 180 s Not practical
and display KIM-1 ..
Printer terminal .with Motorola EXORclser 120 s; Includes 480 s; must re-list
P/ROM debug monitor with Exbug, and Tl time to write to check edit

Silent 700 terminal results; print ing
time is significant

CRT terminal- Intel MOS with Intel 80 s 240 s; must re-list
120 to 960 char/s- CRT terminal; to check edit
and debug monitor Tektronix 8002 with

CRT terminal

Memory refreshed Futuredata 40 s; minimum 90 s; context
CRT display Microsystems 10, 15, operator entry editing

20, and 30

1Standard debug example: set breakpoint, execute, examine register and 32 bytes of memory, make a 5-instructlon patch, re-exe­
cute, examine registers, and continue execution.
•Standard edit example: change two llne1, delete three lines, and insert live lines. Assume that all data are In memory.

either in source or object form from one media to an­
other, also are offered.

The mass storage device attached to the system, such
as paper tape, magnetic tape, and disc, principally dif­
ferentiate the various levels of the overall operating sys­
tems.

Operator Console Levels

Microcomputer development systems differ primarily in
two hardware areas: the operator control console, and
the type and speed of mass storage devices. Table 1
show~ five levels of operator control consoles. Early op­
erator consoles contained binary lamps and switches.
Even today, most minicomputers have a front panel con­
taining a row of toggle switches and a row of lamps.
Manual loading of an initial program is common prac­
tice with these front panel switches. A bootstrap pro­
gram inputs a more sophisticated loader through a paper
tape reader and, finally, that loader program loads in
the designer or system program, again from the tele­
typewriter paper tape reader. Interaction with an op­
erating program for debugging can also be done with
panel lamps and switches. Obviously, this manual de­
bugging method is tedious, evolving, as a result, many
modifications to operator consoles.

The first improvement added a printer terminal with
debugger. Debuggers written around this terminal type
provided a minimal response to each command since
printer terminals were relatively slow (data rates of
10 to 30 char/ s). Each command deliberately limits in­
formation ; otherwise, the designer continually would be
waiting for the terminal to finish printing the results
of the last command. This in turn led to two further
improvements : one in the direction of less cost (hexa­
decimal keyboard and display) and the other in the
direction of higher performance (CRT terminal) .

The hexadecimal keyboard and display are inexpen­
sive methods of implementing an operator console. In­
formation previously entered with switches and dis­
played with binary lamps is now entered with a hexa­
decimal keypad and shown on 7-segment light emitting
diode displays. The keypad approach reduces operator
entries from 8 or 16 ·switches to 2 or 4 keystrokes. This
technique clearly minimizes operator errors hut still
does not provide much additional information. High
speed CRT terminals, as implemented on most micro­
computer development systems, merely act as high speed
versions of a printer terminal. System software has not
been updated to take full advantage of the CRT terminal
speed ; only the process is accelerated by generating out­
put data at a greater rate.

The microcomputer development system designer uses
the highest level of operator console, a memory refreshed
CRT display, to take into account the ultra high speed
capability of the console at design time. Thus, a con­
text based debugger and a context based editor can he
provided. In this type of console, the designer sees a
continually updated register display, large memory
dumps, and whole segments of source code in context,
greatly reducing the confusion as to exactly what is
happening. This type of interactive software is designed
around consoles that operate with data rates between
lOk and 50k char/ s. The present state-of-the-art and

direction of microcomputer development systems indi­
cate that this level of operator console should become
more prevalent in the future.

Mass Storage Levels

Small computers use four general levels of system mass
storage. The first level is no mass storage facility. The
designer keys in the program, usually in binary or hexa­
decimal, and then executes immediately. ' The next level
is paper tape based systems available on many small
computers. The mass storage mediutn is punched paper
tape, and the combined operator console and mass stor­
age device is usually a teletypewriter. This level of stor­
age system was dominant for many years, largely be­
cause of excellent cost-performance characteristics. Only
recently have CRT displays and magnetic tape or disc
systems been able to compete effectively with paper tape
systems. The third level of mass storage is low speed
magnetic tape (generally, cassette). Data are read and
written into cassette tapes somewhere between 30 and
400 char/ s. This represents an improvement of 3 to 40
times over the teletypewriter and makes low cost micro­
computer development systems practical. This level of
storage system is perhaps a good choice for relatively
small programs (500 to 1000 lines or less) , a limited
budget, or an initial implementation of a development
system.

The fourth, generally accepted standard for mass stor­
age on development systems is flexible disc, either a
5.25" (13.34-cm) or an 811 (20-cm) diaineter version.
Data transfe1 rates are greater than 1000 char/ s. Ac­
cess time and throughput for this mass storage device
cease to be significant factors in development time.
Comparisons of editing overhead times using teletype­
writer, paper tape reader and punch, medium speed cas­
sette tape, and fast flexible disc indicate that even for a
100-line program, a teletypewriter is slow. Likewise, for
a 1000-line program, the medium speed cassette based
system is probably too slow. However, with a flexible
disc based system, the designer edits and assembles lOk­
line programs in a relatively short time.

Development System Architectures

Architectural considerations involved in comparing mi­
crocomputer development systems relate to two basic
implementations of in-circuit emulation-a master-slave
approach, such as taken by Intel and Tektronix, and a
single-processor approach, such as that of Motorola,
Futuredata, and Zilog. Table 2 summarizes these archi­
tectures and implications.

Master-Slave System

In a typical master-slave system ('Fig 3), the master
(host) microprocessor runs all system software func­
tions, including editing, assembling, disc file manage­
ment, and "downline loading." of object programs to .be
tested in the prototype (target) microprocessor using
in-circuit emulation. The target (slave) microprocessor
is the designer's microprocessor under investigation. The
development system manuafcturer primarily accrues the

87

TABLE 2

Deve10Pinent Syslem Emulator Architectures and
Aatioclati ti Hardware/Software Devices

' Memory and Emulator Micro-
Manufacturer Architecture processors Peripherals Software CRT Display

Futuredata Single processor SOSO Up to 64k Editor Memory
(Microemulator) and common memory; 8085 Cassette Assembler refreshed

allows full speed 8086 Floppy disc Debugger
emulation and com- 6800 EPROM programmer Macro Assembler
plate control of 6802 Logic analyzer Linker
emulation modes: Z80 Printer BASIC Interpreter
universal BASIC Compiler

Intel Modified master- 8048 Up to 64k Editor RS-232-C
(ICE) slave single memory; 8080 Paper tape Assembler Teletype-

slows emulation 8085 Floppy disc Deb,Llgger writer mode*
with wait states. 8086 EPROM programmer Macro Assembler
Allows control of Logic analyzer Linker
emulation modes; Printer PC:/M Compiler
nonuniversal FORTRAN Compiler

Motorola Single processor 6800 Up to 64k Editor RS-232-C
(USE) with common memory; 6802 Cassette Assembler Teletype-

nonuniversal Floppy disc Debugger writer mode
Printer Macro Assembler

Linke~
BASIC Interpreter
FORTRAN Compiler

Tektronix Master-slave archi- 8080 16k Host, Editor RS-232-C
(In-Prototype tecture with split 8085 Up to 64k Target Assembler Teletype-
Emulator) memory; permits full 6800 Floppy disc Debugger writer mode

speed emulation and Z8Q EPROM programmer Macro Assembler
control of emulation 9900 Logic analyzer Linker
modes; universal Printer

Zilog Single processor Z80 Up to 64k Editor RS-232-C
(In-Circuit with common memory; Floppy disc Assembler Teletype-
Emulator) allows only minimal \ Printer Debugger writer mode

control of emulation Macro Assembler
modes; nonuniversal Linker

PL/Z Compiler

*Te letypewri te r mode: ORT display is treated as a byte-serial device wi th data rates of 120 to 960 charts.

advantages of such an approach. First, using a standard­
ized host microprocessor minimizes software cost for im­
plementing a new microprocessor. The second advan­
tage is that less of the system resources need be re­
served for the host system.

A disadvantage of the master-slave system is that it
splits memory into two separate spaces. The system
programmer encounters more difficulty in dealing with
a split memory and its discontinuous address space than
with a single large memory. A single memory space
more effectively handles host functions that require iarge
amounts of memory (editor work areas, and assembler
and compiler symbol tables). Thus, 16k of host memory
and 16k of prototype memory provide only a 150-line

88

edit buffer. The same 32k memory in a single large de­
vice supports over 1500 lines of editor code (some of
this advantage is due to packing the editor data). A
second disadvantage is the higher cost that additional
memory and microprocessors add to the system.

A third and rather subtle disadvantage relates to mod­
ification of the system programs. Most designers of com­
puter systems realize that over a long period of time the
supplied operating software will be modified. This modi­
fication may add a new 1/ 0 peripheral device, for ex­
ample, printer or paper tape reader or punch, 7-track or
9-track tape drive, hard disc drive, or a number of de­
vices not included in the original system. With the
master-slave approach, the designer must modify pro-

COMPUTER DESIGN/FEBRUARY 1979

MASTER
(HOST)
MICROPROCESSOR

ADDRESS BUS

DATA SUS

MASTER
(HOST)

MEMORY

MASTER-SLAVE
INTERFACE

PROTOTYPE
(SlAVE)

MEMORY

TO DESIGNER'S
PROTOTYPE HARDWARE

CABLE AND IN·Cll!OJIT I ' EMULATOR PROSE

[Jl~:;l~~:;NTERF C~ESSOR eCLOClt SWITCH
•MEMOll'I MAP

·~MUlATOR MODE CONT l
•BUFFERS

ADDRESS BUS

DATA SUS
BREAK •HARDWARE BREAKPOINTS

~CO.,...N~T-RO.,...L--{ =~~B~A~~ALYlER

Fig 3 Master-slave in-circuit emulator architecture. System and prototype functions are divided between
master (host) and slave (target) microprocessors, respectively. System development functions, such as file
management, text editing, host 1/0, and debugging, are performed by master microprocessor. Prototype
related functions, such as prototype program execution, prototype 1/0, and in-prototype testing, are done
by slave microprocessor

grams written for an unfamiliar host microprocessor.
Thus, an 8080 or 6800 designer might be confronted
with the necessity of modifying code written for a 2650
microprocessor.

The Microemulator II systems permit both common
and separated memories to be used, depending on de­
signer requirements. A master-slave processor approach
is used, but all memory is contiguous in the host sys­
tem. The slave microprocessor is remote from the sys­
tem (at the emulator plug) , and none of its resources
need to be reserved for the system. Software systems
written in their native languages support the 8'080, Z80,
and 6800 families of microprocessors.

Single-Processor System

In a single-processor system (Fig 4), system software
usually is written on the target microprocessor. Thus,
a 6800 designer would modify 6800 code, an 8080 de­
signer would modify 8080 code, and a Z80 designer
would modify Z80 code. This type of development sys­
tem can become a multipurpose device. After becoming
familiar with the system hardware and software, many
designers may use that same hardware in the develop­
ment of test equipment that will follow the design
through its production life.

The clear cut advantage of a single-processor system
is low cost, since much less hardware is included. A sec­
ond advantage is that one large memory is furnished;
thus, a 32k memory space provides for 26k of object code
in the prototype system, and an assembler symbol table
with many thousands of symbols. The Intel ICE system,
while a master-slave system, does provide for one large
memory accessed by both microprocessors. To do this,
the system delays the target microprocessor when it
accesses development system memory. However, this
compromises the ability to totally emulate prototype sys­
tem operation. Another advantage of the single-pro­
cessor system is the use of development system hatd­
ware and software as part of in-plant test equipment.

A disadvantage of a single-processor system is that
the manufacturer must entirely rewrite software pack­
ages for each new microprocessor. Standardization trends
in the industry make this less of a problem. A second
disadvantage, depending on the application, is that emu­
lation is not entirely separate. Thus, most single-pro­
cessor systems reserve part of the memory space for
system programs that must be resident during emulation.
They generally have at least one privileged 1/0 address
to switch the system in and out of emulation mode. De­
pending on the design of the single-processor system,
it also may use some DMA capabilities and an interrupt

89

• HARCMIARE BREAKPOINTS
• LOG IC ANALYZER
•KEYBOARD

TARGET
MlaOPROCESSOR

ADDRESS BUS

BREAK DATA BUS
CONTROL

HOST
MEMORI'

TO DESIGNER'S
PROTOTYPE HARDWARE

111

CABLE AND IN-CIRCUIT
EMULATOR PROBE

IN-ORCUIT EMULATOR
INTEllFACE

•CLOCK SWITCH
• MEMOl!Y MAP

eEMULATbR MOOE
CONTROL

•111.JH~

Fig 4 Single-processor in-circuit emulator architecture. Dedicated system development
functions are programmed in related instructions for direct execution by target micro­
processor. Differing target microprocessors require associated system software modifications

structure. The designer can upgrade the emulation capa.
bilities of the system as needed to support development.

Summary

Microcomputer develobment systems have common ca·
pabilities of processor, memory, console, mass storage,
in.circuit emulation, and system software. They differ
in type of operator console, mass storage device, in·
circuit emulation architecture, high level language sup·
port, and whether or not they are universal (support
a wide range of microprocessors from a variety of man·
ufacturers) .

Development system support for the 8080 and 6800
and their successor microprocessors is necessary. These
two microprocessors are standards to some extent, be­
cause of significant investment in 8080 and 6800 soft­
ware. The 8080 standard includes as its successors the
8085, the 8086, and the ZSO. The 6800 standard includes
as its successors the 6802, 6809, and 6502. In general,
these successor microprocessors, with the exception of
the 6502, have attempted to remain program compatible
with earlier versions. Both microprocessor manufacturers
and designers who invested substantial amounts of money
in programs to support these microprocessors require
this compatibility.

With some 20 manufacturers, most of whom can intro­
duce one or more microprocessors per year, a universal

90

development system becomes an essential tool for de­
signers. Since the 8080 is 10 times more powerful than
the 8008, the Z80 is 2 to 3 times more powerful than
the 8080, and the Z8000 and 8086 are 5 to 10 times
more powerful than the Z80, the pressure to adopt new
microprocessors is intense. Thus, the designer must be
able to switch the target microprocessor without start­
ing from scratch.

Bibliography

D. A. Cassell and J. K Cavanaugh, "The Microcomputer De­
velopment System," Mini-Micro Systems, Aug 1977, pp 34-40

B. Gladstone and P. D. ·Page, "Programming Hints Ease Use of
Familiar Microprocessor," Computer Design, Aug 76, pp 77-83

P . Snigier, "Microprocessor development systems-which one is
best?" EDN, Mar 5, 1977, pp 68-78

Bruce Gladstone, vice president of Fu­
turedata Computer Corp, has expertise
in hardware and software aspects of
microcomputer systems design, as well
as electronic systems design. He has
been responsible for Microemulators™,
EPROM programmers, and Microana­
Jyzer™ designs, and development sys­
tem software and debuggers. He holds
an MS in engineering from UCLA.

COMPUTER DESIGN/ FEBRUARY 1979

