
HYBRID TOOL FOR UNIVERSAL 
MICROPROCESSOR DEVELOPMENT 

A single-board universal interface attached to a personal computer 
can act as an intelligent ROM emulator for software upgrading 
of an existing product, or it can function with CPU personality 
cards as a development system for a new product design 

David McCracken Thera Institute , Aptos, C alifo rnia 

M icroprocessor development tools .presently available 
suffer substantial drawbacks. One-processor, dedicated, 
single-board products allow inexpensive development of 
a simple product but offer limited program diagnostic 
capabilities because of their restricted input/ output fa­
cility. Also, they provide no means of benchmarking 
different processors in a given application. More flexible 
and powerful emulators can be used to benchmark dif­
ferent processors but are correspondingly more expensive. 
Both approaches restrict engineers to use of only those 
microprocessors for which development systems are manu­
factured. 

A hybrid approach interfaces the microprocessor under 
development to a low cost, interactive, personal com­
puter to afford a complete development environment 
with all the features of an emulator at the approximate 
cost of a dedicated single-board system. Since all of the 
hardware and most of the software are microprocessor 
independent, the hybrid may be adapted for use with 
virtually any microprocessor. It is flexible enough to 
be used with both 8- and 16-bit microprocessors. 

Integration of a computer and a microprocessor re­
quires a means of controlling the microprocessor without 
interfering with its application operating system. In 
addition, the implementation must use hardware and 
software that are easily adapted to any microprocessor, 
including, hopefully, future products. The described in­
tegrated approach developed h~rdware and software si­
multaneously for the first half of the design cycle, 

enabling tradoffs that were crucial in making the inter­
face transparent to the microprocessor. Once the trans­
parency problem was solved, the remaining goal of 
hardware and software adaptability was achievable. 

Communication Channel 
Under control of the host computer, a Sup'erboard II, the 
interface serves as a sophisticated, writable program 
store for the micropr~cessor. The interface also provides 
a bidirectional communications channel between the 
microprocessor, which is completely unaware of its 
presence, and the host computer. In many cases, the 
interface can be attached to the microprocessor by 
means of a simple ribbon cable connection to a read 
only memory (ROM) socket. Alternately, a central process­
ing unit (CPU) personality card, or satellite, including 
data memory if needed, plugs into the interface to pro­
vide a development environment for new applications 
(Fig 1). 

The host computer writes application programs into 
shared memory, called program memory, for subsequent 
execution by the microprocessor. It also sets the micro­
processor's particular state by initializing registers and 
flags to selected values. Finally, the microprocessor 
reports its state at various times, such as at breakpoints, 
and supplies information for video displays generated 
by the host computer. 

Two communication channels are offered by the inter­
face: a program channel to access shared program 

119 



memory and handshake channel to pass control in­
formation to the microprocessor and return status in­
formation to the host computer via shared handshake 
memory. Under host computer control, the interface 
multiplexes 16 data lines, 10 address lines, and 8 control 
lines, allowing either the host computer or the micro­
processor to access the shared program and handshake 
memory banks (Fig 2) . 

. An operating system is necessary for the micro­
processor to communicate with the ·interface; therefore, 
it must be programmed to interact in a development 
environment. This is a common requirement in micro­
processor development tools, many of which d~dicate 
certain addresses to a development communication chan­
nel and almost invariably require use of restart routines 
during development, making it difficult to test new ap­
plication software fully until the hardware is built and 
the memory is programmed. Of course, the application 
restart routine cannot coexist with the development 
restart routine because both must reside at the same 
address. The entire address mapping is similarly re­
stricted until the final hardware has been constructed. By 
then, it is difficult to modify ·microprocessor system soft­
ware because the development system cannot coexist 
with the application system. 

These problems are solved by overlapping develop­
ment (handshake) memory and application (program) 
memory within the microprocessor address space. Now, 
the microprocessor can hav~ two restart routines: an 

AOORESS, 
CONTROL 
OE CODE 

HOST DATA BUS 

Fig 1 Universal interface. Simple 8035 satellite plugs into 
edge connector at lower left. Ribbon cable at right attaches 
to host computer. Edge connector at upper left allows 
expansion of multiplexed program RAM. Satellite may be 
replaced by ribbon cable connection to application system 
ROM socket 

application routine in the program bank and a develop­
ment routine at the same address in the handshake 
memory. Program and handshake memory distinctions 
remain transparent to the microprocessor, which need 

OBJECT SYSTEM/ 
INTERFACE 
DATA MUX 

PROGRAM RAM 
ADDRESS 
DECODE 

HANDSHAKE RAM 
ADDRESS 
DECODE 

CONTROL 
DECODE 

SELECT RESTART 

MEMORY BANK 
SWITCH 

TRIGGER 

AB 8-23 

AB 8-23 

OBJECT 
SYSTEM 

CONTROL 

AB0.7 

Fig 2 Universal interface block diagram. Multiplexers give either object micro­
processor or host computer acce:;s to shared memory. Control register determines 
which of these gains memory access. Memory bank switch latch is key to micro­
processor transparent operating system 

120 COMPUTER DESIGN I APRIL 1980 



not be programmed to select an appropriate restart 
routine. In practice, the two restart routines must be 
invoked in strict alternating sequence, beginning with 
the development restart routine that prepares the micro­
processor to run a program-either the application re­
start routine or the continuation of some other routine 
previously interrupted, perhaps by a breakpoint. 

The host computer initially sets a memory bank 
switch (Fig 2), that directs 11II microprocessor instruction 
fetches to handshake memory. When the microprocessor 
reset pin is released by the host computer, it is the 
development routine generated by the host computer in 
handshake memory that executes on the microprocessor. 
The last instruction of the development restart routine 
resides at a specific address (F7), which is decoded by 
hardware when fetched by the microprocessor and is 
used to trigger the memory bank switch. Subsequent 
instruction fetches now reference program memory, and 
the memory bank switch can be restored only by the 
host computer. As shown in Fig 3, memory bank switch­
ing occurs only on the trailing edge of the read signal. 
This avoids a race condition between the switch and the 
microprocessor memory access. 

A mechanism for transferring breakpoint information 
from the microprocessor to the host computer completes 
the transparent communication requirements. Breakpoint 
-the interruption of program execution at an arbitrary, 
preselected location- ranks among the most valuable pro­
gram development aids. Necessary data include extensive 
microprocessor status information used by the host to 
generate a video display, along with information required 
to resume microprocessor program execution. Break­
points can be implemented in hardware or software. A 
hardware solution compares the current instruction ad­
dress with the breakpoint address and switches micro­
processor instruction fetches to the handshake memory, 
when these match, to execute a breakpoint routine. This 
approach allows breakpoints to be placed anywhere in 
the application program. A software solution, in which 
the breakpoint entry routine replaces a block of in­
structions beginning at the breakpoint address, . prevents 
use of breakpoints within about 15 locations of the end 
of actual memory space. Despite this restriction, a soft­
ware implementation was adopted to dispense with about 
ten extra integrated circuits ( res) required for a hard­
ware solution. 

The host computer loads the breakpoint routine at 
the specified address in program memory. When the 
microprocessor executes the breakpoint routine, it records 
microprocessor status information in handshake memory. 
Interface hardware decodes control signals and directs 
all microprocessor 'write accesses to handshake memory, 
so that neither breakpoint nor unplanned program writes 
can modify program memory. 

Interface Implementation 

The interface can be adapted to virtually any micro­
processor having external program memory. lndividuar 
microprocessor timing and control requirements must 
be considered during implementation. This is particularly 

INSTRUCTION: JUMP 

ADDRESS 

READ 

MEMORY HANDSHAKE 

BANK { PROGRAM 
SWITCH 

ENABLE 
HANDSHAKE 

AOORESS 
VECTOR 

FIRST PROGRAM ADDRESS 

ENABLE---------+------
PROGRAM 

SWITCH 

Fig 3 Memory bank switching. Microproces­
sor access to last restart instruction (F7, 
program starting address vector) initiates 
switching from handshake memory to pro­
gram memory. Switching occurs on trailing 
edge of READ to avoid race condition 

true for 16-bit microprocessors such as the Z8000 with 
24 address lines, using AO to distinguish between high 
and low order bytes, or the S086 with 20 address lines, 
using AO to select low order bytes and ~n additional 
signal, BHE, to select high order bytes.1·2 

Still, microprocessor similarities outweigh their dif­
ferences, and a nearly universal communication protocol 
requires the interface to make only minor changes to the 
microprocessor control signals. For example, the protocol 
assumes that read and write are low true signals, in­
variably generated when the address and data are valid. 
If a microprocessor lacks the read signal, as with the 
6502, read is generated automatically. If the micro­
processor system uses high true read and write sigrials 
as on the S-100 bus, these are inverted by the interface. 

OR and NAND gates allow further manipulatiort . of con­
trol signals such as MEMRQ in the Z80, and the 80~5 PSEN 

program store enable used to read program memory.R,4 

Microprocessor system address lines in Fig 2 are decoded 
by two different hardware subsystems during device se­
lection to allow mapping o"f program memory anywhere 
in the microprocessor address space. 

The host computer loads the high order address into 
program memory address decode circuitry registers under 
operator direction. These are compared with niicro­

. processor address lines to select the appropriate memory 
bank. Meanwhile, handshake memory decode circuitry 
selects handshake memory whenever the high order ad­
dress is OOOxxx or FFFXXX, chosen to match the micro­
processor restart location. Again, these addresses may 
overlap because microprocessor control signals combine 
with memory bank switch status to arbitrate the actual 
memory selection. Both memory banks are 16 bits wide ; 
the program bank is lk bytes by 16 bits in size, and the 
handshake bank is 256 bytes by 16 bits. The program 
bank can be treated as 2k by 8-bit memory for 8-bit 
microprocessors. 

The host, assumed to be an 8-bit computer, addresses 
all memory and control registers as sequential memory 

121 



locations within a 4k-byte block. Pertinent control signals 
and all multiplexed lines to the memory array are 
brought to the edge connector in the upper left corner 
of Fig 1, allowing connection of a separate memory 
expansion unit to extend :rpemory without a substantial 
increase in hartiware. 

Forty-five !Cs implement the basic interface. This fills 
out a standard S-100 board, leaving little room for 
switches to allow reconfiguration for different micro­
processors. The S-100 standard was chosen becau~e its 
widespread use makes motherboards and other hardware 
readily available. The reconfiguration problem is solved 
by using a quasi-intelligent card edge connection between 
the interface and the microprocessor system. 

Interface address, data, and control signals are brought 
to an edge connector at the lower left corner in Fig 1. 
Here, a microprocessor satellite attaches directly to that 
edge connector. Alternately, a ribbon cable would be 
installed between the edge connector and a microprocessor 
application system ROM socket, allowing the interface 
to function as a ROM emulator. The plug-in board (or 
ribbon cable) is microprocessor specific and completes 
all connections necessary for reconfiguration. Because 
the simple 8035 satellite attaches directly to the edge 
connector in Fig 1, this typical configuration requires 
only one additional cable connection to the host computer. 

Hardware and Software Flexibility 

The 6502 CPU was chosen as host because of its wide­
spread use in inexpensive personal computers and its 
associated ease of programming. The Superboard II was 
selected for its low price and easy expansion to accom­
modate the interface. This single-board computer in­
cludes a built-in, programmable, full-size keyboard- and 
a 25 by 25 element television display interface for oper­
ator interaction, as well as a cassette tape interface for 
storage of both the development operating system and 
the application software. The 8035 object microprocessor 
implementation demonstrates the flexibility of the design 
because, since the 8035 is a single-chip microcomputer 
with its own memory, input/ output (1/ 0), and unusual 
protocol for external circuit communication, the task 
of fitting it to a universal standard appears difficult. 
Other existing implementations support the 6502 and 
8086 microprocessors. 

Flexibility was the primary software development goal, 
with efficiency secondary. One of the most powerful 
aspects of the device is provision of a development en­
vironment for virtually any microprocessor. To achieve 
this, adaptation to different microprocessors must be as 
easy in software as in hardware. Flexibility has been 
achieved in that 65 %. of the software is totally object 
micrpprocessor transparent. The remaining 35% was 
kept microprocessor. specific, because of gross ineffi­
ciencies required to generalize the routines; however, 
once the software functions were well defined by the first 
implementation, the problem of generating equivalent 
software for different object microprocessors became less 
difficult. 

Rigid adherence to rules of structuring allows soft­
ware flexibility. There are no program jumps, even when 
a subroutine call requires additional instructions. Sub-

122 

routines are used in preference to straight-line pro­
gramming wherever there is no associated memory 
penalty. All parameters are passed between subroutines 
through page zero, making the index registers, accumu­
lator, and stack fully available for most flexible use 
within the subroutines.5 These characteristics simplify 
coding long sequences of subroutine calls and allow 
future software to utiliz.e all existing subroutines. 

All tables, which are largely object microprocessor 
dependent, reside in a dedicated memory block isolated 
from the software routines. Table expansion and alter­
ation therefore occur without program relocation. Table 
manipulation was identified as the area in which to 
concentrate programming effort because it provides both 
flexibility and efficiency. 

Design Complications 

Two unusual aspects of the interface complicate the 
software design more than a cursory inspection would 
indicate. One problem develops because shared memory 
is accessed by different addressing schemes in the host 
computer and the object microprocessor. This results 
from the operator's need to reference program memory 
from the object microprocessor viewpoint, while the 

· host computer employs a different addressing convention. 
Memory addressing is further co'mplicated because the 

interface itself can be mapped into any 4k segment within 
host computer address space. Furthermore, the operator 
can change the location of program memory, as accessed 
by the microprocessor, to allow development of appli­
cation software anywhere in microprocessor address 
space. While handsh ake memory addresses change when 
the interface is remapped, they do not change when pro­
gram memory is remapped; in fact, handshake memory 
addressing must never change in the object microproces­
sor system, because handshake memory provides the de­
velopment restart. 

Dual memory addressing constraints define a scheme 
of virtual addresses and physical addresses, either of 
which can be translated to the other py an algorithm. 
The operator employs only the virtual addresses used by 
the object microprocessor. If the operator relocates pro­
gram memory within microprocessor address space, the 
virtual mapping changes while handshake memory re­
mains fixed at the physical restart location. The host 
computer uses physical addressing to access both the 
program and the handshake memory banks. It converts 
the operator specified virtual addresses to physical ad­
dresses by subtracting the lowest program memory bank 
virtual location, adding the interface lowest physical 
address, and checking to guarantee that the result falls 
within program memory physical space. If the result is 
not a program memory physical address, it must reference 
an opject microprocessor memory location not shared 
by the host computer. Since the host cannot manipulate 
microprocessor memory that is not shared, it passes the 
virtual address to the microprocessor, along with a com­
munication program, via handshake memory. 

For example, suppose the interface is mapped to host 
physical addresses 9000 through 93FF. If program mem­
ory begins at virtual address lQOO and an address refer-

COMPUTER DESIGN I APRIL 1980 



ence designates virtual address 1200, the virtual address 
is converted to a physical address by subtracting the 
lowest program memory virtual address and adding the 
interface lowest address: 1200 - 1000 + 9000 = 9200. 
In contrast, virtual address 1600 corresponds to host 
physical address 1600 - 1000 + 9000 = 9600, an un­
implemented program memory bank address; therefore, 
an address reference of 1600 must designate the object 
microprocessor address of a memory location not shared 
by the host. 

The second unusual problem that complicated software 
development is that handshake routines must be written 
simultaneously in both host computer assembly language 
and object microprocessor assembly language, because 
of tradeoffs required to achieve program efficiency. This 
problem was most evident when writing the 8035 restore 
status and continue routine, which directs the host com­
puter to assemble a program in handshake memory for 
the object microprocessor to execute. Unless the oper­
ator designates status changes, the program in 8035 
assembly language restores the 8035 to its exact condi­
tion at the location where a breakpoint was encountered 
and then jumps to the required application program 
address. 

The major tradeoff consideration is whether the object 
microprocessor should pick up its status information 
through a table access loop or through a straight-line 
routine. A table access loop, the obvious choice in 
most situations, requires less memory. In this case, how; 
ever, a high efficiency table access loop cannot access 
memory outside the 8035 internal random access memory 
(RAM) because the additional status words are directed 
to unique destinations such as the 8035 timer, program 
status word (Psw), and 1/ 0 port.6 

Another consideration is the 8035's unusual addressing 
technique to retrieve data from its program memory, 
which it generally considers to be only a source of in­
structions. The MOVPA, @A instruction concatenates the 
accumulator content with the current program page to 
address program memory data; the data are retrieved to 
the accumulator where they overwrite the original ad­
dress. 7 This architecture precludes forming efficient loops 
to pick up status information. A standard alternative 
would be straight-line programming, where each word 
is loaded directly into the desired location. For example, 
MOV RO,#FF in only two bytes restores register 0 to the 
designated value. 

Fig 4 Breakpoint status display. Standard television set 
displays extensive 8035 status information including full 64 
bytes of internal RAM 

Thought must be given to how the host 6502 computer 
would set up such a program for the object 8035 to 
execute. Because the 6502 is unaware of 8035 instructions, 
the program must be moved as a data string into the 
proper location, using a table and loop for efficiency. If 
a straight-line approach were used on the 8035, the 6502 
would have to determine where to insert status informa­
tion into the 8035 program it handles as an arbitrary 
data string. This is possible, but very inefficient. Instead, 
the host computer loads a complete, straight-line, 8035 
restore program, which specifies data sources through a 
table that ·is modified by the host computer using other, 
unrelated subroutines. 

Table Structure 

Development operating systems for different microproces­
sors require equivalent software routines such as the 
program/ display routine, which allows the operator to 
examine and modify object programs, and additional 
routines used to insert breakpoints, run programs, con­
tinue execution, single step through a program, display 
breakpoint status, modify status at breakpoints, disassem­
ble program code, and transfer application software to 
or from tape. There are 52 such subroutines in the entire 
program. 

To reduce future programming effort, adaptability of 
the routines for use with any object microprocessor was 
an important goal. This was achieved by writing micro­
processor independent routines that are driven by micro­
processor dependent tables. Extension to additional micro­
processors by changing predefined' table entries is much 
easier than changing software routines, especially when 
each routine interacts with many others. This is reflected 
by the final result, in which 65% of the executable code 
and only 4% of the table code are microprocessor inde­
pendent. 

Status Display 
A breakpoint display routine does not appear to be easily 
generalized. Every microprocessor has a unique internal 
architecture. The 8035 is a good example, because as a 
single,chip computer it maintains considerably more 
internal information than other microprocessors, as 
shown in Fig 4. The 8035 breakpoint display routine 
must show a standard, internal status form, filling in the 
blanks with information passed by the object micro­
processor via handshake memory when the breakpoint 
is encountered. The difficulty is that while the blank form 
can originate in ROM, the fill-in information cannot. 

One solution is to devise a table containing both the 
American Standard Code for Information Interchange 
(ASCII) characters to be displayed and the addresses of 
the sources of data to fill in the blanks. This table also 
contains control characters that use character codes not 
defined in the limited ASCII character set. Table extracts 
in Fig 5 show the four ASCII table entries representing 
PSW. The next characters displayed would be the break­
point value of the program status word. The display 
routine knows that codes directing it to a data location 
will follow any "=" character. A packed control word 
as the next entry designates the number of display digits 

123 



and indicates whether the source is the host computer 
zero page or the handshake memory. The following entry 
is the low byte address. 

The display routine fetches the data, converts to ASCII 

format, and displays the required digits. Because the 
number of digits is specified, the same routine can handle 
16-bit addresses, 8-bit data, and 1-bit flags. The multiple 
space character, followed by the number of spaces re­
quired, saves table space when long, empty fields are 
required in the display. Use of the end of transmission 
( EOT) character makes table driven software independent 
of table entry length. 

An addressing limitation of the host 6502 computer 
is most noticeable in this situation because the remap­
pable interface must be addressed indirectly. The 6502 
offers two forms of indirect addressing: indexed indirect 
with the X register as a pre-index, and indirect indexed 
with the Y register as a post-index.8 The post-indexed 
form addresses breakpoint information in handshake 
memory, and should also be used to show status in­
formation if a full screen is to be displayed. 

Competition between these applications for the Y reg­
ister would create substantial problems, but this was 
avoided by displaying only eight video lines comprising 
256 entries in the video memory. This allows use of an 
absolute address indexed by X for the video, reserving 
indirect addressing indexed by Y for exclusive use in 
handshake memory access. Eight lines suffice to display 
the internal state of any general purpose microprocessor. 
While the 8035 status display uses a full screen, most of 
this information is an orderly internal RAM array loaded 
into video memory by a relatively simple program loop. 

Command Parsing 

The next table handling example demonstrates the use of 
table lookup to generalize a sequential keystroke parsing 
routine employed by the breakpoint processor change 
status utility. With this debugging tool the operator can 
change any object microprocessor internal status informa­
tion before resuming program execution. The procedure 
is to examine each keyboard entry until a specified 
register or other microprocessor resource has been 
entered correctly and identified, then to use subsequent 
keys as new data to be stored in the register. The pro­
gram will actually modify a table in handshake memory. 
Host computer page zero may also change, in which 
case another routine uses the page zero information to 
modify a table in handshake memory because the object 
microprocessor cannot access host computer page zero. 
Then, as previously described, the restore status and 
continue routine sets up the object microprocessor to 
retrieve table data for restoring status before continuing 
program execution. 

The unique microprocessor architecture and nomen­
clature rule out keyboard parsing with prior knowledge 
of the actual keys to be entered or the number of entries 
required to identify a resource, particularly when ab­
breviations are permitted to reduce operator effort and 
program length. Handshake memory or page zero table 
destination corresponding to the resource is also un­
known. All of this information must be stored in a 
microprocessor specific table. 

124 

ENTRY 

HEX MEANING 

!! DASCll 

SOURCE PAGE ADDRESS 
0 =ZERO PAGE: I= HANDSHAKE RAM 

NUMBER OF DISPLAY DIGITS MINUS ONE 
xxx ~ 

Fl CONTROL- I I I I , 0 0 0 I BINARY OFF! (HEX) 

SOURCE ABSOLUTE ADDRESS 

88 

05 MULTIPLE SPACE FLAG 
08 NUMBER OF SPACES 

04 ENO OF TABLE 

Fig 5 Breakpoint display tab!e entry format. 
General pu rpose routine driven by table en­
tries displays status of virtually any micro­
processor. ASCII " = " preceeds reference to 
data outside table. Subsequent entries serve 
to locate, adjust, and format data 

For program efficiency, keyboard parsing is synchro­
nous with operator input so that data need not be stored 
and then deciphered. Fig 6(a) shows the table divided 
into numbered key fields for the first key entered, the 
second key, and so on. These fields are further divided · 
into subfields, each of which contains all possible char­
acters that might follow a particular character in a valid 
input string. 

Each table entry comprises three bytes. First is an 
ASCII character to be compared with the input keystroke. 
This is followed by two control bytes. Generally, the first 
control byte directs the parsing routine to the starting 
address of the next sequential key subfield, linking the 
entries for all keys that could follow to produce valid 
input. The second control byte supplies the subfield length 
used to terminate searching for a key match. If no match 
is found, the parsing routine waits for another key entry 
and searches the subfield again with the new character. 
This structure allows each table entry matching the char­
acter entered by the operator to direct the parsing routine 
to the next set of table entries, so that much of the 
parsing operation is controlled by the table rather than 
the parsing routine. 

Because the routine cannot know the required number 
of entries in advance, the table must also terminate pars­
ing. The second control byte, which is the third byte of 
each complete table entry, normally supplies the number 
of entries in the following subfield. Only a few bits of 
this word are needed as there are never many characters 
that could follow a particular character in a valid input 
string. By convention, bit 7 of the second control byte 
is set to indicate the final entry in a valid input string 
[Fig 6(b)l. In the same way, bit 6 is used as a special 
control flag, and bit 0 distinguishes between host page 
zero locations and handshake memory locations. 

COMPUTER DESIGN I APRIL 1980 



Disassembly 

Disassembly is achieved by searching a table to find a 
match for each instruction operation code, in sequence, 
skipping over the operands. A match directs display of 
a character string corresponding to the instruction mne­
monic. Both the instruction operation code and the 
character string mnemonic are supplied by a single 
table. Each entry consists of a hexadecimal operation 
code and its associated ASCII mnemonic. 

Microprocessor instruction mnemonics may vary in 
length. Mnemonics for the 8035 range in fact from two 
to nine characters (Fig 7) ; therefore, a control word in 
each table entry supplies the length of each mnemonic. 
Fig 8 shows the table structure, beginning with the con­
trol word that addresses the operation code. Since this 
requires no more than four hits for mnemonics up to 
16 characters long, the unused high order hits afford 
additional table control. Bit 7 is set to signal a decrease 
in operation code length, relative to the previous entry, 
while bit 6 is set to indicate an increase in mnemonic 
length. Organizing table entries in decreasing order by 
operation code length and in increasing order by mne­
monic length permits the search routine to keep track 
of these parameters with very little overhead. 

Many character strings are used in more than one 
mnemonic, such as MOY, which aopears in 17 different 
8035 instructions.9 A multicharacter table entry is ad­
dressed by a special character, with hit 7 set, and the 
remaining bits supplying an offset to the address of the 
character string. Use of a multicharacter table conserves 
memory by handling frequently needed strings as an 
extension of the single character processing. 

This disassembly table structure appears efficient but 
overlooks an important characteristic of all micropro­
cessor instruction sets-the property of operation code 
regularity. The table structure treats every operation code 
as an isolated entity when, in reality, instruction sets 
tend to use a sequence of consecutive operation codes 
to perform a sequence of related operations. For ex­
ample, the 8035 uses F8 through FF, A8 through AF, 
28 through 2F, and nine similar operation code se­
quences for .related operations that manipulate registers 
RO through R7, with the low order three hits of the 
operation · code designating the particular register.10 To 
save memory, operation codes for this class of instruc­
tions, branch instructions, and 1/ 0 instructions are pre­
sorted by an 8035-specific routine before a general 
table search is attempted. While the operation code 
presort requires more than 20% of the microprocessor 
specific programming, the resulting economies are worth 
the investment. 

Summary 

Built-in flexibility makes the universal interface a valuable 
engineering tool at every stage of product development. 
Typically, the design of a microprocessor based product 
begins with a problem description. This should lead to 
a list of microprocessor requirements such as word 
length, controller or data manipulator orientation, single 
chip or bus orientation, and so on. These requirements, 

I 
FIRST 

KEY 
FIELD 

I 
2NO 1A 
KEY 

FIELD 

i 
l 

ASCII CHAR 
ADDR 

#ENTRIES 

ASCII CHAR 
ADOR 

#ENTRIES 

• • • 
ASCII CHAR 

ADDA 
#ENTRIES 

ASCII CHAR 
ADOR 

#ENTRIES 

ASCII CHAR 
OEST ADDR 
CONTROl 

• . . 
ASCII CHAR 

ADOR 
#ENTRIES 

• 
• 
• 

!---------
I-------

,.......+--

>c--
+.--FINAL 

KEY 

-

ASCII CHARACTER 
OEST LOW ADDRESS 

7l 6l5 l4 J3 I 211JO 

~ • SPARE CONTR1L 
FLAGS 

DESTINATION 
PAGE FLAG 

~ECIAL CONTROL 
FLAG 

1.,IDENTIFICATION 
1 =FINAL KEY ..________, 
CONTROL WORD 

ANALYSIS 

(b) 

Fig 6 Breakpoint status change table 
entry format. General purpose routine 
driven by this table parses operator input 
to identify both microprocessor register 
and new data to be placed in register. 
Entry triplet (a) consists of ASCII char­
acter and pointer to either next key sub­
field or register destination. Final key 
triplet (b) terminates entry and supplies 
destination page address 

in turn, form the basis for a list of potential micro­
processors. At this point, the interface can he used with 
the desired satellites, which are inexpensive because they 
are small printed circuits containing the central proces­
sor and data memory, to benchmark the microprocessor 
in operations characteristic of the application. 

Fig 7 Program disassembly display segment. General pur­
pose routine generates two-to-nine character mnemonic 
plus operands from machine instructions in program mem­
ory. Typical 8035 instructions are shown, but virtually any 
microprocessor instruction set is handled. Disassembly is a 
powerful aid to locating both software errors and program 
entry errors 

125 


