
BUS ARBITER STREAMLINES
MULTIPROCESSOR DESIGN

Arbiter coordinates 8- and 16-bit microprocessors' access to
a shared, multimaster bus and offers flexible operating
modes to accommodate different system configurations

James Nadir and Bruce McCormick

P erformance improvements and cost reductions afforded
by large scale integration technology have spurred the
design of multiple microprocessor systems that offer im­
proved realtime response, reliability, and modularity. In
multiprocessing, more than one microprocessor shares com­
mon system resources-such as memory and input/output
devices-over a common multiple processor bus (Fig 1).
This concept allows system designers to partition overall
system functions into separate tasks that each of several
processors can handle individually and in parallel, increas­
ing system performance and throughput.

The 8086 family of 16-bit microprocessors and support
components permits the designer to select only those com­
ponents that are necessary to meet cost and performance re­
quirements. One method for achieving this building block
approach to system design uses a compatibility mechanism
of the 8086 and the MULTIBUS™ multiprocessing bus stan­
dard. However, multiprocessing systems require devices
that can coordinate the use of global or shared resources.
The 8289 bus arbiter (Fig 2) provides this multiprocessing
coordination in conjunction with MULTIBUS architecture.

MULTIBUS Approach

MULTIBUS architecture in a multiprocessor system allows
each processor to work asynchronously. Therefore, a fast
microprocessor operates at its own speed regardless of the
speed of the slowest microprocessor. This technique
tolerates duty cycle and phase shift variations, and offers
hardware modularity. When new system functions are
desired, additional microprocessors can be integrated
without impacting existing task partitioning.

Intel Corporation
3065 Bowers Ave, Santa Clara, CA 95051

The MULTIBUS approach implements this asynchronous
processing structure by synchronizing all microprocessor
bus requests to a high frequency reference system bus clock
that can operate at up to 10 MHz. Synchronized requests
are then resolved by a priority encoder. As a result, the
number of resolving circuits common to all microprocessors
is minimized. The synchronizing or arbitrating function is
integrated into the bus arbiter, allowing it to resolve · ar­
bitration problems of a shared system bus in a multimaster,
multiprocessing environment.

Critical code sections in memory can be identified by a
flag or word, called a semaphore, which is set by one of the
microprocessors. The bus arbiter prevents use of the shared
memory bus while a microprocessor is setting the
semaphore, creating a "locked test and set" condition. In
addition, the bus arbiter provides a flexible, definable set of
bus modes so that a designer can configure a system to meet
a variety of applications.

The bus arbiter operates in conjunction with a bus con­
troller that generates memory and input/output (IIO) signals
to interface the multiprocessors to a multimaster system bus
(Fig 3). Unaware of arbiter presence, a microprocessor
sends out control signals as though it has exclusive use of
the system bus. If a microprocessor does not have use of the
multimaster system bus, the bus arbiter prevents the bus
controller, data transceivers, and address latches from ac­
cessing the system bus, ie, all bus driver outputs are forced
into the high impedance state. Since system commands are
not issued, no acknowledgement (transfer acknowledge­
ment) is returned, causing the microprocessor to extend its
transfer cycle by entering into wait states. The
microprocessor extends its transfer cycle until the bus ar­
biter acquires access to the multimaster sy"stem bus, then,

103

104

PROCESSOR
A

PROCESSOR
B

PROCESSOR
c

{

s;
8086/80871808818089 s

STATUS _I_
So

{

LOCK
CLK

PROCESSOR CRQLCK
CONTROL RESB

ANYRQST
iOli

CONTROL

COMMON
OR MULTIPLE
PROCESSOR BUS

MULTIBUS
INTERFACE

LOCAL
BUS

INTERFACE

Fig 1 Multiprocessing system using common bus.
Several processors sharing expensive resources,
such as disc drives or line printers, is efficient and
cost-effective. Bus contention problems inevitably
arise on common system bus unless steps are taken
to arbitrate usage

INIT} BCLK
iilmj MULTIBUS
BPRN COMMAND
BPRD SIGNALS
BUSY
CBRQ

SYSTEM
SIGNALS

Fig 2 Bus arbiter block diagram.
20-pin, 5-V-only, bipolar arbiter for
use with medium to large multi­
master, multiprocessing systems
provides system bus arbitration for
systems with multiple bus masters,
as well as bipolar buffering and
drive capability

AEN }

L __ _:::::::;:====:::;:::===::jr-syss1RESB

8086.
8087,
8088,

DR
8089

MICRO-
PROCESSORS

GND
5V

MULTI MASTER
SYSTEM BUS

ADDRESS/
DATA BUS

Fig 3 Bus arbitration chip aids multiprocessor design . 8-bit 8088
and 16-bit 8086, 8089 microprocessors are designed for use in multi­
ple microprncessor systems. To prevent contention for common
system bus, arbiter provides several methods for arbitrating bus
use

COMPUTER DESIGN/JUNE 1980

BUS
ARBITER

1

BUS
ARBITER

2

BUS
ARBITER

3

BUS
ARBITER

4

74148
PRIORITY
ENCODER

74138
3·TO-a

0£COOER

the arbiter allows the bus controller, data transceivers, and
address latches to access the system bus.

After the bus controller issues its control line signal and a
data transfer has taken place, a transfer acknowledge signal
is returned to the microprocessor. Then the microprocessor
completes its transfer cycle. Thus, the arbiter serves to coor­
dinate microprocessor, or bus master, access to the
multimaster system bus.

Priority Resolving Techniques

Since there can be many bus masters on · a multimaster
system bus, a technique for resolving simultaneous requests
among bus masters must be provided. The bus arbiter offers
several resolving techniques; all are based on the concept
that at a given time, one bus master has higher priority.
These techniques include parallel priority resolving, serial
priority resolving, and rotating priority resolving.

Parallel Priority Resolving Technique

In the parallel priority resolving technique, a separate bus
request (BREQ) line is connected to each of several arbiters
on the multimaster system bus (Fig 4). Each BREQ line
enters a priority encoder which generates, as output, the
binary address of the highest° priority BREQ line asserted at
its inputs. The output binary address, after being decoded,
selects the corresponding bus priority in (BPRN) line to be
returned to the highest priority requesting arbiter. The ar­
biter receiving priority (BPRN true) then allows its associated
bus master access to the multimaster system bus as soon as
the bus becomes available.

Even when one bus arbiter gains priority over another ar­
biter, it cannot immediately seize the bus. It must wait until
the present bus occupant completes its transfer cycle, ensur­
ing transfer integrity. Upon completing its transfer cycle,
the bus occupant determines that it no longer has priority
and surrenders the bus, releasing BUSY.

Serial Priority Resolving Technique

The serial priority resolving technique eliminates the need
for a priority encoder/decoder arrangement by daisy chain-

Fig . 4 Parallel resolving technique syn­
chronizes asynchronous requests. Requests
for common bus use (BREQ) are sent by each
microprocessor's bus arbiter to encoder­
decoder circuit, which responds to arbiter
with highBs~ pNiority by returning bus priority
in signal (R). Bus arbiter then provides its
microprocessor access to system bus

BUS
ARBITER

I

BUS
ARBITER

2

BUS
ARBITER

3

BUS
ARBITER

4

Fig 5 Serial priority
resolving technique.
Simpler daisy chain
scheme provides effec­
tive bus arbitration for
system designs that do
not have more than three
arbiters and micropro­
cessors vying for bus ac­
cess. Connected in order
of priority from top to
bottom, first arbiter has
priority at all times
because of grounded
state of its EiPRN line.
When not using bus, ar­
biter 1 sends low state
signal to next higher
priority arbiter via its
BPRO line

ing the bus arbiters. This setup-is accomplished by connec­
ting the higher priority bus arbiter bus priority out (BPRO)
line to the BPRN line of the next lower priority arbiter (Fig
5). The highest priority bus arbiter has its BPRN line ground­
ed, signifying to the other arbiters that is always has highest
priority when requesting the bus. Priority is passed in series

105

from a higher priority arbiter on the chain, when it does not
need the system bus, to any requesting lower priority ar­
biter.

Rotating Priority Resolving Technique

Arrangement of the rotating priority resolving technique is
similar to that of the parallel priority resolving technique
except- that priority is dynamically reassigned. The priority
encoder is replaced by a more complex circuit that rotates
priority in standard time increments among requesting ar­
biters, guaranteeing each arbiter equal access to the
multimaster system bus.

In all three techniques, lower priority masters obtain the
bus when a higher priority processor is not accessing the
system bus. A strapping connection is available, however,
that allows the multimaster system bus, completing its
transfer cycle, to be surrendered immediately to any bus
master requesting the bus, other than itself, regardless of
priority. If there are no other bus masters requesting the
bus, the arbiter maintains the bus as long as its associated
processor has not entered the halt state. The bus arbiter
does not voluntarily surrender the system bus and has to be
forced off by another bus master. Means and conditions do
exist whereby a lower priority requesting bus master can ac­
quire the system bus from an idle higher priority bus
master. This action minimizes the overhead required to ob­
tain use of the system bus; so that after the bus has been ac­
quired, the processor can use it at full efficiency.

Each of the three priority techniques has advantages and
disadvantages. The rotating priority resolving technique re­
quires an extensive amount of logic to implement, while the
serial technique can accommodate only a limited number of
bus arbiters before the daisy chain propagation delay ex­
ceeds the multimaster sytem bus clock (BCLK) period. The
parallel priority resolving technique is generally the best
compromise. It allows many arbiters to access the bus
without requiring excessive logic for implementation.

System Bus Modes

The bus arbiter provides several definable system bus mode
configurations for microprocessors. In the 1/0 peripheral
bus mode, the arbiter permits a microprocessor access to
both a private I/O peripheral bus and a multimaster system
bus. In the resident bus mode, the arbiter allows a
microprocessor to communicate over both a resident bus
and a multimaster system bus. A resident bus is defined as a
private bus that has both memory and 1/0 devices, as op­
posed to an 110 peripheral bus that has only 110 devices.
Other configurations provide communication across several
multimaster buses.

A particular configuration determines the technique by
which the arbiter requests and surrenders the system bus. If
the arbiter is configured to operate with a non-1/0
microprocessor (normal processor), which has access to both
a multimaster system bus and a resident bus, then the ar­
biter requests the use of the multimaster system bus only for
system bus -accesses. While the processor is accessing the
resident bus, the arbiter permits a lower priority bus master
to seize the system bus. An 110 processor configuration with
both 110 peripheral and system buses behaves similarly.

106

Single-Bus Mode

The single-bus mode is the simplest mode. It is sufficient for
multiprocessing systems where the tasks of several micro­
processors can be carried out within a required time frame
despite sharing the system bus. It provides an inexpensive
solution for multimasters requirin·g shared access to an ex­
pensive l/O device such as a disc drive or a large memory ar­
ray. If, however, the systems tasks cannot be carried out
within the required time limit, the l/O bus mode or system
resident mode should be considered.

110 Bus Mode

The 1/0 bus mode requires a few additional latches and is
suitable when throughput considerations dictate that the
overall bus structure be separated into an 1/0 bus and a
memory or system bus. This mode is commonly used with
the 8089 110 microprocessor, in its remote configuration, to
separate l/O space from memory space. With this processor,
all instructions operate on either system or 1/0 address
space, treating all peripherals as memory mapped devices.
Memory for program code or buffering can be placed on
either the system bus or the local 1/0 bus. The 8086 and 8088
microprocessors are constrained to exclusive use of 1/0 in­
structions when referencing 110 space. If this constraint is a
limitation and it becomes desirable to allocate some of the
processor functions to private resources, then the resident
bus mode should be considered.

Resident Bus Mode

The resident bus mode allows maximum flexibility for a
microprocessor, yielding access both to local resources and
to system resources. The central processing unit (CPU) can
interact with local resources at full speed without conten­
tion on the system bus. System bus accesses can be mini­
mized to those of swapping in and out from mass storage or
the use of expensive resources that should not be duplicated
on the processor local bus. By using a programmable read
only memory (P/ROM) for memory mapping, memory space is
altered easily.

Bus Interfaces

To fully describe the bus arbiter functions, each of the three
operating modes is examined. Typical examples describe a
single-bus configuration, an l/O bus configuration, and a
resident bus configuration.

Single-Bus Interface

Fig 6 shows a typical multiprocessing system configuration
with the bus arbiter in the single-bus mode. In this system
design, each of the three bus masters is assigned a priority
ranging from priority 1, the highest, to priority 3, the
lowest. Priority is established using the parallel priority
scheme; disregard, for now, the dashed signal intercon­
nects.

Each bus arbiter monitors its associated processor and
issues a BREQ whenever this processor requests bus access.
A common clocking signal, BCLK, runs to each arbiter in the
system.

COMPUTER DESIGN/JUNE 1980

PRIORITY I

,-1' BUS
f""&I CONTROLLER

IO MHz
PRIORITY RESOLVING MODULE

(PARALLEL)

,...--- ,..----.,

,.----., · ENABLE I PRIORITY t-- t--
~ ENCODER I-- DECODER t---t-i ~

3.--1 t--
.__ ._______.

CPU h
~

18-
1 -

BCLK jL-.
STATUS lJ.., ...__,,, ::~~ ~::==:::=::::-+--+-----~! ---~

BPRO 2
'----~LOCK

ARBITER

PRIOlllTY 2

'
3

~

PRIORITY 3

r::')
STATUS I "

BUS
CONTROLLER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BUS !"-­
CONTROLLER Nl STATUS

. Fig 6 Parallel and serial resolving tech­
niques. Each microprocessor circuit
module and its bus arbiter (color) are shown
connected In a parallel mode (solid lines) or
serial mode (dashed lines) con~iguration

ENABLE ENABLE

•
CPU ~

~ I

BCLK / BCLK
I " BREQ Y BREQ
~, BPRN ILt--~ BPRN

.__ __ '--V__,~~ LOCK BPRO NC -+ BPRO LOCK 110lo&1-----'

ARBITER ',_ -- - --' ARBITER

If the serial priority resolving mode is used, the system is
connected by the dashed signal lines from the BPRO of one
arbiter to BPRN of the next lower priority arbiter (Fig 6). The
BREQ lines are disconnected, and the priority en­
coder/decoder arrangement is removed. This serial priority
mode is more straightforward than the parallel priority
mode except in that the daisy chain propagation delay from
the highest priority bus arbiter BPRO line to the lowest
priority bus arbiter BPRN line, including the setup time re­
quirement (BPRN to BCLK), cannot exceed the BCLK period.
This period is nominally 100 ns, but it can be stretched by
slowing down the maximum clock frequency of 10 MHz.
The penalty is longer waits for bus arbitration. ·

This configuration dictates that the number of arbiters
that can be daisy chained together for a given BCLK fre­
quency be limited. Of course, the lower the BCLK frequency,
the more arbiters can be daisy chained together. Three ar­
biters can be daisy chained when using the maximum BCLK
frequency of 10 MHz.

How quickly bus arbiter 1 can acquire the bus depends
upon the configuration and the strapping connections of
the arbiter from which it is trying to acquire the bus. For ex­
ample, if the LOCK input to arbiter 2 is active (low) at the
time, then arbiter 1-even though it is of higher priority­
cannot acquire the bus until after LOCK is released (goes
high). Another factor to be considered is the microprocessor
state, in its transfer cycle, at the time the arbiter is in­
structed to yield the bus. If the transfer cycle has just
started, it will take longer for the bus to be released than if
the cycle is just ending.

Higher pnonty bus masters force a lower pnonty bus
master arbiter to surrender the bus by the reassignment of
priority. If generating a BREQ, a higher priority bus master
would cause the present bus occupant to lose its BPRN.

· Lower priority bus masters acquire the bus by pulling down
the open collector signal, common bus request (CBRQ). The
present bus occupant recognizes CBRQ whenever it is not ac­
cessing the system bus; when it is activated, the bus is
released. Priority is established to the next highest re­
questing aribter, and the requesting arbiter then acquires
the bus.

1/0 Bus Interface

In the 110 bus mode, the processor communicates with and
controls a host of peripherals over the peripheral bus. An
8089 110 microprocessor can use either memory or
peripherals on its local bus. When the 1/0 processor needs to
communicate with system memory, it is done over the
system memory bus. Fig 7 shows a typical 1/0 processor in its
REMOTE mode. Resident memory exists on the peripheral
bus to provide programmed 110 routines and buffer storage.
Resident memory is treated as an 110 peripheral. When a
peripheral device needs servicing, the 110 processor accesses
resident memory for the proper 1/0 driver routine and ser­
vices the device, transmitting or storing peripheral data in a
buffer storage area of resident memory (or sending it direct­
ly to system memory if necessary). The resident memory
buffer storage ·area can then be emptied or replenished
from system memory via the system bus. Using the 110 bus

107

interface allows an 110 processor the capability of executing
from local memory (on the peripheral bus) concurrently with
a host processor, enhancing system performance and remov­
ing the burden of 110 from the host processor.

Like the arbiter, the bus controller also must be notified
of the operating mode. In the 1/0 bus mode, the bus con­
troller issues 110 commands independently of the state of the
arbiter. It is assumed that all 110 commands are intended for
the 110 bus and, hence, that there is a separate 110 command
bus from the controller. All 110 commands are sent directly
to the 110 bus and are not influenced by the arbiter. Since
memory commands are assumed to be directed to the
system bus, they must still be influenced by the arbitration
mechanism provided by the arbiter. .

For example, suppose the processor issues an 110 com­
mand. The bus controller generates the necessary control
signal to latch the 110 address and to configure the
transceivers in the correct direction. In the 110 bus mode,
the peripheral data enable (PDEN) pin of the controller
serves to enable the 110 bus data transceivers during 1/0
commands. Similarly, data enable (DEN) serves to enable the
system bus data transceivers during memory commands.
Signals PDEN and DEN are mutually exclusive, so that it is
not possible for both sets of transceivers to be on, thereby
avoiding contention between the two sets. Since the 110 com­
mands are generated independently of the arbiter in the 1/0
bus mode, the 1/0 bus has no delay effects due to the arbiter.
During the time in which the processor is accessing the
local 110 bus, the arbiter-if it already has the bus-will per­
mit it to be surrendered to either a higher or lower priority
request (via CBRQ) independently of where the processor is

LOCAL I /O BUS

108

in its transfer cycle (for example, independent of the
machine state). If the arbiter does not already have the bus,
it will make no effort to acquire the bus.

If the processor issues a system memory command in­
stead, the same set of events takes place, except that the
system bus data transceivers are enabled instead of the
peripheral bus data transceivers, and the time at which a
command is issued depends upon the state of the arbiter. If
the arbiter already has the system bus when a memory com­
mand is issued, no delays due to the arbiter will be detected
by the processor. If the arbiter does not have the bus and
must acquire it, the processor will be delayed (via the
memory command being delayed by the bus controller
under control of the arbiter) until the arbiter has acquired
the bus. The arbiter then permits the bus controller to issue
the memory command ;md the transfer cycle will continue.

Resident Bus Interface

Microprocessors can communicate with both a resident bus
and a multimaster system bus (Fig 8). In such a system con­
figuration, the processor would have access to memory and
peripherals of both buses. Memory mapping techniques can
be applied to select which bus to access. The system
bus/resident bus input on the arbiter determines whether or
not the system bus is to be accessed. It also enables or
disables commands from one of the bus controllers. In such
a system configuration, it is possible to issue both memory
and 110 commands to either bus and, as a result, two bus
controllers are needed, one for each bus.

SYSTEM BUS

Fig 7 1/0 bus interface. By halving bus
structure into local 110 bus and common
system bus, 8089 110 processor has ex­
clusive access to Its peripherals but can
also communicate with system bus.
Commands to local bus are not under
control of bus arbiter and will never be
delayed by It. Requests for system bus
most proceed through arbitration and
can be delayed In event that arbiter does
not have access to bus at time of re­
quest. Only one bus controller Is needed
to Implement this technique

COMPUTER DESIGN/JUNE 1980

RESIDENT BUS

BUS
All8ITER

DECODED
ADDRESS

00:000

8llS BUS
RESIDENT COlflllOUfl OOfllllOU[R

BUS
COMMANDS

ADDRESS/
DATA BUS

IA!Qt£S IATCHES
TRAllSCE1VfllS TRANSCEIVERS

In Fig 8, memory mapping techniques are applied on the
resident bus side of the system rather than on the
multiprocessor or system bus. Both sets of address latches
(resident bus and system bus) are latched with the same ad­
dress in this case, by their respective bus controllers. The
system bus address latches, however, may or may not be
enabled, depending upon when the arbiter has bus access.
The resident bus address latches are always enabled; hence,
the memory mapping technique is applied to the resident
bus.

A simpler system with an 8086 or 8088 microprocessor can
exist if it is desirable to have only P/ROM, read only memory,
or read only peripheral interfaces on the resident bus.
These microprocessors additionally generate a read signal
in conjunction with the bus controller signals. By using this
read signal and memory mapping, the microprocessors can
operate from local program store without having the con­
tention of using the system bus. Using this technique
eliminates the need for a second bus controller.

In actual operation, both bus controllers respond to the
processor status line and both simultaneously issue an ad­
dress 'latch enable (ALE) strobe to their respective address
latches. Both bus controllers issue command and control
signals unless inhibited. The purpose of the memory map­
ping circuits is to inhibit one of the bus controllers before
contention or erroneous commands can occur.

Summary

A bus arbiter brings a powerful dimension to system design
architectures by allowing 8-bit and/or 16-bit micro­
pro.cessors to execute easily · in a multimaster, multi­
processing environment. With the flexible modes of the ar­
biter, a designer can define one of several bus architectures
to meet cost and performance needs. Modularity, improved
system reliability, and increased performance are some of
the benefits that a multiprocessing system provides.

SYSTEM BUS

SYSTEM BUS
ARBITRATION

SYSTEM
BUS

COMMANDS

Fig 8 Resident bus scheme for
additional performance. In resi-
dent bus mode, single 8086 or
8088 has access to both com-
mon system bus and local resi-
dent bus. Processor can be
handling resident bus-oriented
operation while other system
processors use system bus.
Many tasks can be carried out
simultaneously, increasing
overall performance. As in 110
bus mode, only one arbiter is re-
quired but two bus controllers
must be used

James Nadir is a project engineer at Intel
and has designed some of the 8086
microprocessor family support circuitry
and their interface to the MUL TIBUSTM
system bus. He graduated from Rutgers
University with a BSEE.

Bruce McCormick is one of the product
managers for the 8086 family of
microcomputers. His experience in­
cludes applications and product
engineering work as well as product
marketing at Intel Corporation. He holds
BSEE and MSEE degrees from Purdue
University, and an MBA from Santa Clara
University.

How valuable is this article to you?

High 704 Average 705 Low706

Please circle the appropriate number in the
"Comments" box on the Inquiry Card.

109

