
BUS ARBITER STREAMLINES 
MULTIPROCESSOR DESIGN 

Arbiter coordinates 8- and 16-bit microprocessors' access to 
a shared, multimaster bus and offers flexible operating 
modes to accommodate different system configurations 

James Nadir and Bruce McCormick 

P erformance improvements and cost reductions afforded 
by large scale integration technology have spurred the 
design of multiple microprocessor systems that offer im­
proved realtime response, reliability, and modularity. In 
multiprocessing, more than one microprocessor shares com­
mon system resources-such as memory and input/output 
devices-over a common multiple processor bus (Fig 1). 
This concept allows system designers to partition overall 
system functions into separate tasks that each of several 
processors can handle individually and in parallel, increas­
ing system performance and throughput. 

The 8086 family of 16-bit microprocessors and support 
components permits the designer to select only those com­
ponents that are necessary to meet cost and performance re­
quirements. One method for achieving this building block 
approach to system design uses a compatibility mechanism 
of the 8086 and the MULTIBUS™ multiprocessing bus stan­
dard. However, multiprocessing systems require devices 
that can coordinate the use of global or shared resources. 
The 8289 bus arbiter (Fig 2) provides this multiprocessing 
coordination in conjunction with MULTIBUS architecture. 

MULTIBUS Approach 

MULTIBUS architecture in a multiprocessor system allows 
each processor to work asynchronously. Therefore, a fast 
microprocessor operates at its own speed regardless of the 
speed of the slowest microprocessor. This technique 
tolerates duty cycle and phase shift variations, and offers 
hardware modularity. When new system functions are 
desired, additional microprocessors can be integrated 
without impacting existing task partitioning. 
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The MULTIBUS approach implements this asynchronous 
processing structure by synchronizing all microprocessor 
bus requests to a high frequency reference system bus clock 
that can operate at up to 10 MHz. Synchronized requests 
are then resolved by a priority encoder. As a result, the 
number of resolving circuits common to all microprocessors 
is minimized. The synchronizing or arbitrating function is 
integrated into the bus arbiter, allowing it to resolve · ar­
bitration problems of a shared system bus in a multimaster, 
multiprocessing environment. 

Critical code sections in memory can be identified by a 
flag or word, called a semaphore, which is set by one of the 
microprocessors. The bus arbiter prevents use of the shared 
memory bus while a microprocessor is setting the 
semaphore, creating a "locked test and set" condition. In 
addition, the bus arbiter provides a flexible, definable set of 
bus modes so that a designer can configure a system to meet 
a variety of applications. 

The bus arbiter operates in conjunction with a bus con­
troller that generates memory and input/output (IIO) signals 
to interface the multiprocessors to a multimaster system bus 
(Fig 3). Unaware of arbiter presence, a microprocessor 
sends out control signals as though it has exclusive use of 
the system bus. If a microprocessor does not have use of the 
multimaster system bus, the bus arbiter prevents the bus 
controller, data transceivers, and address latches from ac­
cessing the system bus, ie, all bus driver outputs are forced 
into the high impedance state. Since system commands are 
not issued, no acknowledgement (transfer acknowledge­
ment) is returned, causing the microprocessor to extend its 
transfer cycle by entering into wait states. The 
microprocessor extends its transfer cycle until the bus ar­
biter acquires access to the multimaster sy"stem bus, then, 
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Fig 1 Multiprocessing system using common bus. 
Several processors sharing expensive resources, 
such as disc drives or line printers, is efficient and 
cost-effective. Bus contention problems inevitably 
arise on common system bus unless steps are taken 
to arbitrate usage 
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Fig 2 Bus arbiter block diagram. 
20-pin, 5-V-only, bipolar arbiter for 
use with medium to large multi­
master, multiprocessing systems 
provides system bus arbitration for 
systems with multiple bus masters, 
as well as bipolar buffering and 
drive capability 
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Fig 3 Bus arbitration chip aids multiprocessor design . 8-bit 8088 
and 16-bit 8086, 8089 microprocessors are designed for use in multi­
ple microprncessor systems. To prevent contention for common 
system bus, arbiter provides several methods for arbitrating bus 
use 
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the arbiter allows the bus controller, data transceivers, and 
address latches to access the system bus. 

After the bus controller issues its control line signal and a 
data transfer has taken place, a transfer acknowledge signal 
is returned to the microprocessor. Then the microprocessor 
completes its transfer cycle. Thus, the arbiter serves to coor­
dinate microprocessor, or bus master, access to the 
multimaster system bus. 

Priority Resolving Techniques 

Since there can be many bus masters on · a multimaster 
system bus, a technique for resolving simultaneous requests 
among bus masters must be provided. The bus arbiter offers 
several resolving techniques; all are based on the concept 
that at a given time, one bus master has higher priority. 
These techniques include parallel priority resolving, serial 
priority resolving, and rotating priority resolving. 

Parallel Priority Resolving Technique 

In the parallel priority resolving technique, a separate bus 
request (BREQ) line is connected to each of several arbiters 
on the multimaster system bus (Fig 4). Each BREQ line 
enters a priority encoder which generates, as output, the 
binary address of the highest° priority BREQ line asserted at 
its inputs. The output binary address, after being decoded, 
selects the corresponding bus priority in (BPRN) line to be 
returned to the highest priority requesting arbiter. The ar­
biter receiving priority (BPRN true) then allows its associated 
bus master access to the multimaster system bus as soon as 
the bus becomes available. 

Even when one bus arbiter gains priority over another ar­
biter, it cannot immediately seize the bus. It must wait until 
the present bus occupant completes its transfer cycle, ensur­
ing transfer integrity. Upon completing its transfer cycle, 
the bus occupant determines that it no longer has priority 
and surrenders the bus, releasing BUSY. 

Serial Priority Resolving Technique 

The serial priority resolving technique eliminates the need 
for a priority encoder/decoder arrangement by daisy chain-

Fig . 4 Parallel resolving technique syn­
chronizes asynchronous requests. Requests 
for common bus use (BREQ) are sent by each 
microprocessor's bus arbiter to encoder­
decoder circuit, which responds to arbiter 
with highBs~ pNiority by returning bus priority 
in signal ( R ). Bus arbiter then provides its 
microprocessor access to system bus 
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Fig 5 Serial priority 
resolving technique. 
Simpler daisy chain 
scheme provides effec­
tive bus arbitration for 
system designs that do 
not have more than three 
arbiters and micropro­
cessors vying for bus ac­
cess. Connected in order 
of priority from top to 
bottom, first arbiter has 
priority at all times 
because of grounded 
state of its EiPRN line. 
When not using bus, ar­
biter 1 sends low state 
signal to next higher 
priority arbiter via its 
BPRO line 

ing the bus arbiters. This setup-is accomplished by connec­
ting the higher priority bus arbiter bus priority out (BPRO) 
line to the BPRN line of the next lower priority arbiter (Fig 
5). The highest priority bus arbiter has its BPRN line ground­
ed, signifying to the other arbiters that is always has highest 
priority when requesting the bus. Priority is passed in series 
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from a higher priority arbiter on the chain, when it does not 
need the system bus, to any requesting lower priority ar­
biter. 

Rotating Priority Resolving Technique 

Arrangement of the rotating priority resolving technique is 
similar to that of the parallel priority resolving technique 
except- that priority is dynamically reassigned. The priority 
encoder is replaced by a more complex circuit that rotates 
priority in standard time increments among requesting ar­
biters, guaranteeing each arbiter equal access to the 
multimaster system bus. 

In all three techniques, lower priority masters obtain the 
bus when a higher priority processor is not accessing the 
system bus. A strapping connection is available, however, 
that allows the multimaster system bus, completing its 
transfer cycle, to be surrendered immediately to any bus 
master requesting the bus, other than itself, regardless of 
priority. If there are no other bus masters requesting the 
bus, the arbiter maintains the bus as long as its associated 
processor has not entered the halt state. The bus arbiter 
does not voluntarily surrender the system bus and has to be 
forced off by another bus master. Means and conditions do 
exist whereby a lower priority requesting bus master can ac­
quire the system bus from an idle higher priority bus 
master. This action minimizes the overhead required to ob­
tain use of the system bus; so that after the bus has been ac­
quired, the processor can use it at full efficiency. 

Each of the three priority techniques has advantages and 
disadvantages. The rotating priority resolving technique re­
quires an extensive amount of logic to implement, while the 
serial technique can accommodate only a limited number of 
bus arbiters before the daisy chain propagation delay ex­
ceeds the multimaster sytem bus clock (BCLK) period. The 
parallel priority resolving technique is generally the best 
compromise. It allows many arbiters to access the bus 
without requiring excessive logic for implementation. 

System Bus Modes 

The bus arbiter provides several definable system bus mode 
configurations for microprocessors. In the 1/0 peripheral 
bus mode, the arbiter permits a microprocessor access to 
both a private I/O peripheral bus and a multimaster system 
bus. In the resident bus mode, the arbiter allows a 
microprocessor to communicate over both a resident bus 
and a multimaster system bus. A resident bus is defined as a 
private bus that has both memory and 1/0 devices, as op­
posed to an 110 peripheral bus that has only 110 devices. 
Other configurations provide communication across several 
multimaster buses. 

A particular configuration determines the technique by 
which the arbiter requests and surrenders the system bus. If 
the arbiter is configured to operate with a non-1/0 
microprocessor (normal processor), which has access to both 
a multimaster system bus and a resident bus, then the ar­
biter requests the use of the multimaster system bus only for 
system bus -accesses. While the processor is accessing the 
resident bus, the arbiter permits a lower priority bus master 
to seize the system bus. An 110 processor configuration with 
both 110 peripheral and system buses behaves similarly. 
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Single-Bus Mode 

The single-bus mode is the simplest mode. It is sufficient for 
multiprocessing systems where the tasks of several micro­
processors can be carried out within a required time frame 
despite sharing the system bus. It provides an inexpensive 
solution for multimasters requirin·g shared access to an ex­
pensive l/O device such as a disc drive or a large memory ar­
ray. If, however, the systems tasks cannot be carried out 
within the required time limit, the l/O bus mode or system 
resident mode should be considered. 

110 Bus Mode 

The 1/0 bus mode requires a few additional latches and is 
suitable when throughput considerations dictate that the 
overall bus structure be separated into an 1/0 bus and a 
memory or system bus. This mode is commonly used with 
the 8089 110 microprocessor, in its remote configuration, to 
separate l/O space from memory space. With this processor, 
all instructions operate on either system or 1/0 address 
space, treating all peripherals as memory mapped devices. 
Memory for program code or buffering can be placed on 
either the system bus or the local 1/0 bus. The 8086 and 8088 
microprocessors are constrained to exclusive use of 1/0 in­
structions when referencing 110 space. If this constraint is a 
limitation and it becomes desirable to allocate some of the 
processor functions to private resources, then the resident 
bus mode should be considered. 

Resident Bus Mode 

The resident bus mode allows maximum flexibility for a 
microprocessor, yielding access both to local resources and 
to system resources. The central processing unit (CPU) can 
interact with local resources at full speed without conten­
tion on the system bus. System bus accesses can be mini­
mized to those of swapping in and out from mass storage or 
the use of expensive resources that should not be duplicated 
on the processor local bus. By using a programmable read 
only memory (P/ROM) for memory mapping, memory space is 
altered easily. 

Bus Interfaces 

To fully describe the bus arbiter functions, each of the three 
operating modes is examined. Typical examples describe a 
single-bus configuration, an l/O bus configuration, and a 
resident bus configuration. 

Single-Bus Interface 

Fig 6 shows a typical multiprocessing system configuration 
with the bus arbiter in the single-bus mode. In this system 
design, each of the three bus masters is assigned a priority 
ranging from priority 1, the highest, to priority 3, the 
lowest. Priority is established using the parallel priority 
scheme; disregard, for now, the dashed signal intercon­
nects. 

Each bus arbiter monitors its associated processor and 
issues a BREQ whenever this processor requests bus access. 
A common clocking signal, BCLK, runs to each arbiter in the 
system. 
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. Fig 6 Parallel and serial resolving tech­
niques. Each microprocessor circuit 
module and its bus arbiter (color) are shown 
connected In a parallel mode (solid lines) or 
serial mode (dashed lines) con~iguration 
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If the serial priority resolving mode is used, the system is 
connected by the dashed signal lines from the BPRO of one 
arbiter to BPRN of the next lower priority arbiter (Fig 6). The 
BREQ lines are disconnected, and the priority en­
coder/decoder arrangement is removed. This serial priority 
mode is more straightforward than the parallel priority 
mode except in that the daisy chain propagation delay from 
the highest priority bus arbiter BPRO line to the lowest 
priority bus arbiter BPRN line, including the setup time re­
quirement (BPRN to BCLK), cannot exceed the BCLK period. 
This period is nominally 100 ns, but it can be stretched by 
slowing down the maximum clock frequency of 10 MHz. 
The penalty is longer waits for bus arbitration. · 

This configuration dictates that the number of arbiters 
that can be daisy chained together for a given BCLK fre­
quency be limited. Of course, the lower the BCLK frequency, 
the more arbiters can be daisy chained together. Three ar­
biters can be daisy chained when using the maximum BCLK 
frequency of 10 MHz. 

How quickly bus arbiter 1 can acquire the bus depends 
upon the configuration and the strapping connections of 
the arbiter from which it is trying to acquire the bus. For ex­
ample, if the LOCK input to arbiter 2 is active (low) at the 
time, then arbiter 1-even though it is of higher priority­
cannot acquire the bus until after LOCK is released (goes 
high). Another factor to be considered is the microprocessor 
state, in its transfer cycle, at the time the arbiter is in­
structed to yield the bus. If the transfer cycle has just 
started, it will take longer for the bus to be released than if 
the cycle is just ending. 

Higher pnonty bus masters force a lower pnonty bus 
master arbiter to surrender the bus by the reassignment of 
priority. If generating a BREQ, a higher priority bus master 
would cause the present bus occupant to lose its BPRN. 

· Lower priority bus masters acquire the bus by pulling down 
the open collector signal, common bus request ( CBRQ). The 
present bus occupant recognizes CBRQ whenever it is not ac­
cessing the system bus; when it is activated, the bus is 
released. Priority is established to the next highest re­
questing aribter, and the requesting arbiter then acquires 
the bus. 

1/0 Bus Interface 

In the 110 bus mode, the processor communicates with and 
controls a host of peripherals over the peripheral bus. An 
8089 110 microprocessor can use either memory or 
peripherals on its local bus. When the 1/0 processor needs to 
communicate with system memory, it is done over the 
system memory bus. Fig 7 shows a typical 1/0 processor in its 
REMOTE mode. Resident memory exists on the peripheral 
bus to provide programmed 110 routines and buffer storage. 
Resident memory is treated as an 110 peripheral. When a 
peripheral device needs servicing, the 110 processor accesses 
resident memory for the proper 1/0 driver routine and ser­
vices the device, transmitting or storing peripheral data in a 
buffer storage area of resident memory (or sending it direct­
ly to system memory if necessary). The resident memory 
buffer storage ·area can then be emptied or replenished 
from system memory via the system bus. Using the 110 bus 
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interface allows an 110 processor the capability of executing 
from local memory (on the peripheral bus) concurrently with 
a host processor, enhancing system performance and remov­
ing the burden of 110 from the host processor. 

Like the arbiter, the bus controller also must be notified 
of the operating mode. In the 1/0 bus mode, the bus con­
troller issues 110 commands independently of the state of the 
arbiter. It is assumed that all 110 commands are intended for 
the 110 bus and, hence, that there is a separate 110 command 
bus from the controller. All 110 commands are sent directly 
to the 110 bus and are not influenced by the arbiter. Since 
memory commands are assumed to be directed to the 
system bus, they must still be influenced by the arbitration 
mechanism provided by the arbiter. . 

For example, suppose the processor issues an 110 com­
mand. The bus controller generates the necessary control 
signal to latch the 110 address and to configure the 
transceivers in the correct direction. In the 110 bus mode, 
the peripheral data enable (PDEN) pin of the controller 
serves to enable the 110 bus data transceivers during 1/0 
commands. Similarly, data enable (DEN) serves to enable the 
system bus data transceivers during memory commands. 
Signals PDEN and DEN are mutually exclusive, so that it is 
not possible for both sets of transceivers to be on, thereby 
avoiding contention between the two sets. Since the 110 com­
mands are generated independently of the arbiter in the 1/0 
bus mode, the 1/0 bus has no delay effects due to the arbiter. 
During the time in which the processor is accessing the 
local 110 bus, the arbiter-if it already has the bus-will per­
mit it to be surrendered to either a higher or lower priority 
request (via CBRQ) independently of where the processor is 

LOCAL I /O BUS 
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in its transfer cycle (for example, independent of the 
machine state). If the arbiter does not already have the bus, 
it will make no effort to acquire the bus. 

If the processor issues a system memory command in­
stead, the same set of events takes place, except that the 
system bus data transceivers are enabled instead of the 
peripheral bus data transceivers, and the time at which a 
command is issued depends upon the state of the arbiter. If 
the arbiter already has the system bus when a memory com­
mand is issued, no delays due to the arbiter will be detected 
by the processor. If the arbiter does not have the bus and 
must acquire it, the processor will be delayed (via the 
memory command being delayed by the bus controller 
under control of the arbiter) until the arbiter has acquired 
the bus. The arbiter then permits the bus controller to issue 
the memory command ;md the transfer cycle will continue. 

Resident Bus Interface 

Microprocessors can communicate with both a resident bus 
and a multimaster system bus (Fig 8). In such a system con­
figuration, the processor would have access to memory and 
peripherals of both buses. Memory mapping techniques can 
be applied to select which bus to access. The system 
bus/resident bus input on the arbiter determines whether or 
not the system bus is to be accessed. It also enables or 
disables commands from one of the bus controllers. In such 
a system configuration, it is possible to issue both memory 
and 110 commands to either bus and, as a result, two bus 
controllers are needed, one for each bus. 

SYSTEM BUS 

Fig 7 1/0 bus interface. By halving bus 
structure into local 110 bus and common 
system bus, 8089 110 processor has ex­
clusive access to Its peripherals but can 
also communicate with system bus. 
Commands to local bus are not under 
control of bus arbiter and will never be 
delayed by It. Requests for system bus 
most proceed through arbitration and 
can be delayed In event that arbiter does 
not have access to bus at time of re­
quest. Only one bus controller Is needed 
to Implement this technique 
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In Fig 8, memory mapping techniques are applied on the 
resident bus side of the system rather than on the 
multiprocessor or system bus. Both sets of address latches 
(resident bus and system bus) are latched with the same ad­
dress in this case, by their respective bus controllers. The 
system bus address latches, however, may or may not be 
enabled, depending upon when the arbiter has bus access. 
The resident bus address latches are always enabled; hence, 
the memory mapping technique is applied to the resident 
bus. 

A simpler system with an 8086 or 8088 microprocessor can 
exist if it is desirable to have only P/ROM, read only memory, 
or read only peripheral interfaces on the resident bus. 
These microprocessors additionally generate a read signal 
in conjunction with the bus controller signals. By using this 
read signal and memory mapping, the microprocessors can 
operate from local program store without having the con­
tention of using the system bus. Using this technique 
eliminates the need for a second bus controller. 

In actual operation, both bus controllers respond to the 
processor status line and both simultaneously issue an ad­
dress 'latch enable (ALE) strobe to their respective address 
latches. Both bus controllers issue command and control 
signals unless inhibited. The purpose of the memory map­
ping circuits is to inhibit one of the bus controllers before 
contention or erroneous commands can occur. 

Summary 

A bus arbiter brings a powerful dimension to system design 
architectures by allowing 8-bit and/or 16-bit micro­
pro.cessors to execute easily · in a multimaster, multi­
processing environment. With the flexible modes of the ar­
biter, a designer can define one of several bus architectures 
to meet cost and performance needs. Modularity, improved 
system reliability, and increased performance are some of 
the benefits that a multiprocessing system provides. 
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Fig 8 Resident bus scheme for 
additional performance. In resi-
dent bus mode, single 8086 or 
8088 has access to both com-
mon system bus and local resi-
dent bus. Processor can be 
handling resident bus-oriented 
operation while other system 
processors use system bus. 
Many tasks can be carried out 
simultaneously, increasing 
overall performance. As in 110 
bus mode, only one arbiter is re-
quired but two bus controllers 
must be used 
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