unveiled

L7
I

THE o
MASTER
PLAN

FOR KLUDG
SOFTWARE

by Dr. MORRIS L. MORRIS & Dr. AUSTIN O. ARTHUR, Kludge Komputer Korp.

Previous writers in this series have attempted to
show how the road to non-computing can be
fostered at its foundations by:

(1) Engineering glitches into the hardware. With suit-
able ingenuity, these can be either new botches (discov-
ered after the prototype is constructed, usually, and then
firmly cast in concrete) or loving repetitions of what never
did work right.

(2) Marketing the resulting Kludge with the same tech-
niques used to peddle deodorants and cigarettes. The an-
alogy is painfully accurate.

(3) Applying time-tested rules for maintenance which
operate faithfully to minimize uptime. These rules are a
sort of check list for the Kludge Fixer so he can save time
by listing excuses by the numbers.

Now, brief reflection quickly reveals that the above ap-
proaches are only the foundation. The real approach today
has far greater scope, since it strikes at the heart of the
matter — software. Everyone knows that software is the
thing. The planners at Kludge Komputer Korporation are
keenly aware of this trend. Having pioneered so well in
the fundamentals, they can be expected to excel here too.
What follows is the basic outline followed at KKK. The
Master Plan is the result of years of study and represents
the ultimate in software systems for users of the famous
line of Kludge hardware.

Kludge software master plan

The cardinal Commandment of any software development
program is “Announce it first, worry about producing it
later.”

The first and most important Edict is, “Always start with
fresh programmers.” This is a simple rule and its raison
d’étre is obvious. Any programmer who has used or de-
signed another system has been adulterated or biased and

July 1962

'

such bias (sometimes referred to as experience) may well
influence him in the task he is to perform.

Edict 2. “Never let your fresh programmers talk to the
programmers who designed the last software package, if
this can be avoided — but at all costs never let any soft-
ware programmers talk to the people who design, sell or
maintain the hardware.” This rule needs no explanation.

Edict 3. “Never let the software specifiers talk to the
software implementers.” This form of warping young pro-
grammers’ minds is to be avoided like the plague. Software
designers always seem to have the weird idea that they
better than anyone else, know how to implement their de-
signs.

Edict 4. “Never let a software group know that there
are other groups.” A weaker form of this rule is also useful,
“Never let one software group know what the others are
doing.” The stronger form of this rule tends to create very
high morale or esprit de corps brought about by a feeling
of exclusiveness. In the weaker, but more pragmatic form,
the effect is acquired by implanting the idea that all of the
people in all of the other groups are a bunch of inexperi-
enced poopheads.

Edict 5. “If you must document the software, be sure
that the documentation is done by a wholly separate group,
preferably technical writers who are not toa knowledge-
able about computers and programming.” Many benefits
accrue from this approach, but the greatest one is the high
regard with which your documents will be copied. Worry
not about their accuracy; users are more adaptable than
you think. The proof of this is found in the great number
of installations still operating Kludges with no documenta-
tion.

Turning our attention now to the design phase of soft-
ware (predicated of course upon the above personal prac-
tices) the following rules have served not only the Kludge

11



Komputer Korporation but many of its fellow companies
{()l‘ many vears.

Rule 1. “Every software package must have a monitor,
irrespective of the size of the Kludge.” Without a monitor
to occupy between 25 and 50% of the available fast store
(and at least % of the backup storage) the users’ program-
mers will become careless. They will eventually discover
that one can trade time for space — which leads to re-
duced utilization and thus, rental income. An appropri-
ately designed monitor on the other hand can be depended
upon to waste a minimum of 10% of the available time just
searching the system tapes.

Rule 2. “All error messages must be as coy and ambigu-
ous as possible.” The object here is to make the console
operator (and, later, the programmer) unstable. For ex-
ample, what could be simpler than “AN IMPOSSIBLE
ERROR HAS OCCURRED ON AN UNSPECIFIED
UNIT WHILE EXECUTING AN UNIDENTIFIABLE
PROGRAM.” It should be pointed out that the creative
souls who can compose such wonderful phrases are rare
beasts, indeed, and when found should be coveted and
nurtured.

Rule 3. “There should be more phases in the monitor

than there are jobs or programmers in a given shop.” This
is the only realistic settlement to the ever raging argument
between the one-phase and three-phase proponents. Be-
sides, how else can you provide the capability for clobber-
ing programmer A’s phase p results while running pro-
grammer B’s phase q interlude if everyone knows what is
to happen in each phase? And what better way to keep an
operator guessing — you see he is much less likely to call
for the KF’s under these circumstances — another form of
saving not to be discounted.

Rule 4. “Every software routine should have a snappy
acronymic name.” For instance, we at Kludge Korpora-
tion called our Kludge Monitor System KLUMSY; the
Kludge assembler, KLAP; and the alternate version, KLAP-
TRAP, required for a Kludge with traps (working or not).

Rule 5. “Before letting pragmatic aspects interfere, be
sure that the things that count are taken care of. SEE
THE SALES DEPARTMENT FIRST AND THE COPY
WRITERS IMMEDIATELY.” As we all know, if a Kludge
can’t be sold on its hardware merits alone, (and it can’t)
the software must carry the burden.

A Kludge cannot subsist on a monitor alone. Thus it be-
hooves the Kludge software suppliers to provide working
languages for the Kludge. The more the merrier. Since
the list of OK languages changes from season to season,
and position within the list is not constant (or comput-
able), one had best consult one’s marketing people to
find out which ones have strongest current motivational
appeal. Within these bounds, the guiding principles of
Kludge languages follow.

Principle 1. “Hop aboard all of the current band wag-
ons.” If FORTRAN is the current best selling gee-wiz,
write (promise) a better one. Change the name slightly so
that you don’t lose your identity, but not so much so that
you can’t tell who whelped it. Thus, Kludge Korporation’s
version of FORTRAN will be called KLUDGTRAN.

Principle 2. “Always release preliminary undebugged
versions of the translators, compilers, generators, assem-
blers, etc.” Why NOT? Let your customers debug the
things. Why should you spend your programmers’ time
and operate a machine with all that awful overhead? If
your customers want it badly enough, they'll check it out
for you. (Unfortunately, the day is gone when you could
get him to design and implement it, too.)

Principle 3. “No ‘preliminary’ or ‘field test’ version of
any translator should be compatible with the monitor or
any other translator.” The savings realized by the elimina-

42

tion of coordination and liaison would amaze you. This
also prevents future coordination and liaison because each
“field test” version gets too deeply imbedded for anyone
ever to want the final version anyway.

Principle 4. “Join and actively support any and all gov-
ernment sponsored and international magic language gen-
eration efforts.” This lets you know what the opposition is
thinking. But be careful: contribute only those ideas which
you know are impossible to implement on the competitors’
hardware, or will at least make it look bad. Always be
ready with a claim to have a working version of whatever
language is the current vogue.

Principle 5. “Never, NEVer, NEVER write a decent or
useful training manual for any system.” Remember, you
may be taking the bread out of the mouth of some striving
young author.

Principle 6. “If you must supply an assembler, do it
uder duress.” The best ploy to use to get out of this one
is to tell the customer he never ever needs to know the
basic language of the machine. All of his problems can
be solved with the New International Magic Language
Number 6.5. Well, our version of it anyway. As we all
know, magic languages are the thing, and you can't sell a
Kludge without magic.

We must now turn our attention to software mainte-
nance; an area too often ignored.

Tenet 1. “Kach program shouid be on a sepuraie tupe
with its own unique format.” This is logical. You wouldn’t
want the corrections for one system to be acceptable to
another, would you?

Tenet 2. “Corrections should be distributed at such a
rate (empirically determined) as to keep the users from
inundating you with requests for additions and changes
to the system.” It seems best to protect our programmers as
much as possible from new and different ideas. Besides,
we’ve always done business this way.

Tenet 3. “Distribute new versions of each system as soon
as the previous one is showing signs of being checked-out.”
This guarantees job security for a very large segment of
the programmer community known as “System Program-
mers.”

Tenet 4. “Whenever a new system is proposed or im-
plemented, refuse to continue maintenance on some other
(any other) existing system.” How far can you make a
rubber band stretch? We've already provided for keeping
our programmers busy!

Tenet 5. “Never let the programmers who implemented
the system maintain it.” It has been found over the years
that many system programmers acquire a certain attach-
ment for their own code and refuse to consider sullying
it with corrections. Thus, the only solution is to have some
other programmer do the appropriate surgery (preferably
a brand new one, fresh from the university) in the form
of absolute binary patches.

In closing, we should like to point out that we of the
Kludge Komputer Korporation have managed to keep
abreast of the competition in software as well as hard-
ware by having a loyal claque. Which brings us to the last
Commandment:

“FORM A USERS GROUP,” whence springeth all that
is worthwhile. Wine and dine them, buy their loyalty and
in every way possible make sure that your users are satisfied
and happy. Channel their desires appropriately. Hold meet-
ings at least twice a year and see that all of the attendees
get smashed (we at KKK sometimes pick up the tab) and
go home generally feeling loved, wanted and appreciated
by all.

the bitter end

DATAMATION



	1
	2

