
EDP ANALYZEll
© 1975 by Canning Publications, Inc.

SEPTEMBER, 1975
VOL. 13, NO. 9

PROGRESS TOWARD EASIER PROGRAMMING

Today's so-called high level programming languages (such as
CoBOL and PL/ 1) are really just steps in an evolutionary process of
making the coding part of programming easier. The terminology
is unfortunate, because "high level" implies that a language
plateau has been reached. In order to categorize further devel­
opments, one is forced to use unsatisfactory terms like "higher
level" or "very high level." While the data processing field has
moved relatively slowly up these steps-from absolute binary to
symbolic to assembly languages to compiler languages-progress
is continuing in making the coding function easier. In this report,
we discuss several such developments (languages that are one or
more steps above COBOL, PL/ 1, etc., as far as ease of use is con­
cerned) and some user experiences with them.

In this report, we will be concerned with some
developments that are aimed at making the
programmer I computer interface somewhat less
demanding for the programmer. We are using the
term "programmer" in its broadest sense, to ap-.
ply to anyone who creates new procedures for the
computer to follow. Not only is the interface
being made easier for professional programmers,
but it is also being improved so that non­
programmers can create procedures for
computers.

In a business-type organization, there is a spec­
trum of people who might create procedures for
the computer. Listed in the order of decreasing
amount of programming training required, they
are:

• System software programmers
• Application programmers
• Analyst/ programmers
• Professionals using computers in their work
• Business system analysts
• User department personnel
• User department managers
• Executives

The goal of the developments we will be dis­
cussing is to make it easier for all of these types to
use the computer. This does not imply that all will
be dealing with the same complexity of proce­
dures; rather, each will deal with procedures that
are appropriate to his or her job.

The approach taken with most of these devel­
opments has been that of higher level languages.
As Leavenworth and Sammet (Reference 1) say,
the term "high level" is relative. They trace the
evolution of languages away from the need to
specify how something is done and toward the
specifying of what should be done. But the state­
of-the-art is not at the point yet where just the
what need be specified.

What are the characteristics of today's higher
level languages, as compared with the norm such
as COBOL and PL!l? Here is how we see it.

CHARACTERISTICS OF HLL

As compared with COBOL or PL/ 1, a HLL:
1. Has more powerful commands that do more than typical

conventional commands.
2. Is not necessarily as rich nor as flexible a language, but is

still a "complete" language that can be used for pro-

Reproduction prohibited; copying or photocopying this report is a violation of copyright law; orders for
copies filled pramptly; prices listed on last page.

gramming a complete application system.
3. Can be learned more quickly and easily; as a byproduct

of this characteristic, finding good programmers in the
language should not be as difficult as finding good CoBOL
or PL/ 1 programmers.

4. Helps to structure the program design, by assisting in
handling complexity.

5. Has default options for housekeeping functions, such as
open and close files, relieving the programmer of these
routine duties.

6. Eventually will be largely nonprocedural, wherein the
user specifies what is to be accomplished rather than
how it will be done.

There are several types of computer languages
that we are not including within our discussion in
this report. These are:

• Shorthand processors for conventional
languages

• Data definition and data manipulation
languages

• Job control languages
• Small system languages, such as RPG and

RPG II
• Query languages
The criterion we used in selection was: can the

language largely or completely replace COBOL
or PL/ 1 in a medium to large size installation?
Some come close; RPG II has supplanted CoBOL in
small to medium size installations, and query lan­
guages have almost completely replaced CoBOL
for creating ad hoc reports at many places. But
we chose to draw the line according to the crite­
rion just given.

Want to change languages?

If a user organization is considering changing
its "standard" programming language, in order to
make programming easier, several options are
available. For this discussion, we will assume that
the organization is currrently using ANS CoBoL.
Here are the major options, as we see them:

CURRENT OPTIONS IN HLL
1. Change to a COBOL-based HLL; preprocessor used to

convert the language statements to ANs CoBoL.
2. Change to a structured generator language that is di­

rectly compiled into object code, without going through
COBOL.

3. Supplement CoBOL with one or more specialized lan­
guages that are appropriate for particular applications.

We have not included among the options the
choice of converting from COBOL to, say, PL!l. As
far as we are concerned, PL/ 1 is essentially at the
same programming level as COBOL (without get-

EDP ANALYZER, SEPTEMBER 1975

ting into a discussion of the merits of each lan­
guage). It is for this same reason that we did not
include shorthand processors for today's conven­
tional languages; the level remains the same but
the verbiage is reduced. (For readers who are in­
terested in this type of change, Reference 2 has a
discussion of the problems involved; for instance,
Harold discusses the CoBOL to PL/ 1 change, but
the remarks could apply to any change of pro­
gramming languages.)

A main factor in the choice among the various
options, of course, is the type of user who will use
the language. For the purposes of this report, we
will concentrate on languages designed for appli­
cation programmers, analyst/programmers, busi­
ness system analysts, and end users.

Here, then, are user experiences with several
higher level languages.

COBOL-based higher level languages

As mentioned above, CoBOL-based HLLS are
translated (by a preprocessor) into ANs COBOL
source code. The COBOL code must then be com­
piled into object code in a conventional manner.
The "higher" level of the language is achieved by
either the use of CoBOL macro-instructions or by
the use of a very different language that is trans­
lated into COBOL.

Included in this category are both program and
application system generators. With generators,
the user provides values of parameters; the gener­
ators then generate the CoBOL source code (in this
category, at least).

We will discuss user experiences with four sys­
tems in this category: MetacoBOL, WoRK TEN,
CL "iv, and GENASYS.

MetaCOBOL

Metropolitan Life Insurance Company, with
headquarters in New York City, has assets of al­
most $33 billion and employs over 45,000 people.
The company has four data processing centers in
the U.S., in New York City; Scranton, Pennsylva­
nia; Wichita, Kansas; and Greenville, South Caro­
lina. Metropolitan Life uses multiple vendors,
having both IBM 370 and Honeywell equipment
installed and an H-66/20 on order.

Essentially all applications programming on
the IBM equipment is done in CoBOL, and the
plan for the future is to become an all-CoBOL
shop. In order to provide a better degree of pro-

2

gram transferability between its computer sys­
tems, the company has developed its own
standard subset of COBOL.

In 1972, Metropolitan Life acquired Meta­
COBOL. One reason for choosing MetaCOBOL was
to provide efficient CoBOL macro-instructions for
frequently occurring functions. Another reason
was to use the MetacoBOL preprocessor as a
CoBoL standards enforcement tool.

The COBOL macros are developed by the com­
pany's system programmers, who are quite care­
ful about this implementation. They want to
avoid conflicts between different macros, and
they want to achieve as high a degree of effi­
ciency as they can in the macros. One group in
systems programming is responsible for the coor­
dination of the development and maintenance of
macros to avoid or eliminate conflicts;

Once macros have been developed, they are
entered into a coordinated macro library for use
by programmers. Some macros are called out by
application programmers in the programs they
write. Other macros analyze the application pro­
grams during the MetacoBOL preprocessing step
for compliance with programming standards.
Still others have been used for converting existing
programs from, say, GE COBOL to IBM CoBOL.

Currently, Metropolitan has been using using
MetacoBOL to convert its GE435 CoBOL pro­
grams to IBM CoBOL as well a5 to develop an
automatic test data generator. When completed,
the TDG will require little if any input from a pro­
grammer, but, rather, will analyze a program to
locate and examine all conditional instructions
and then automatically create test cases for test­
ing all paths. Metropolitan Life already has plans
to use the facilities of MetaCOBOL for other pur­
poses in its computing environment.

MetacoBOL is a generalized macro pre­
processor operating under oos or os on IBM 360
and 370 systems. Applied Data Research, Inc., de­
velopers of MetacoBOL, has continued to an­
nounce improvements and enhancements to it.

There are a number of elements of the Meta­
COBOL system. The MetacoBOL translator in­
cludes the macro translator and library facilities
for a shorthand, a standards enforcer, a CoBOL
source program optimizer, and a major logic gen­
erator. The major logic generator generates
CoBOL source code for file matching, input edit­
ing, and report writing. It also includes con-

EDP ANALYZER, SEPTEMBER 1975

version facilities for converting from the earlier
IBM 360, Honeywell D and H, and RCA Spectra
COBOL source code. A test data generator creates
test data for debugging programs. The run-time
debugging aid reports the location and cause of
one or more clerical errors and the contents of in­
put, output and intermediate fields during pro­
gram testing. And a COBOL Performance Monitor
analyzes and reports on program activity by para­
graph-isolating critical processing and input/
output activity and counting paragraph entries.

The MetacoBOL translator makes use of a pro­
gram development macro library. Users can de­
fine higher level verbs for frequently used
functions, and express those verbs in CoBOL
source code. When the translator encounters such
a verb, it replaces it with the appropriate CoBoL
source code. MetacoBOL can also be used to inter­
face COBOL programs to data management sys­
tems such as IMS or TOTAL or to monitor programs
such as CICS.

ADR has also developed structured program­
ming facilities for the COBOL language. This facil­
ity includes a modular discipline, under which
each module of a program has a standard format.
This format includes an identification section, a
data section (for locally defined data), and a
procedure section.

Several language changes have been made for
supporting structured programming. The GOTO
verb has been eliminated. The IF statement has
been changed. A COBOL IF statement requires a
period to terminate it-but a period terminates all
outstanding IF statements. With COBOL, it is hard
to nest a hierarchy of IF statements without using
GOTO. So MetacoBOL has added ENDIF to the IF
statement (IF ... ELSE ... ENDIF) which termi­
nates only the most recent IF.

DowHILE is one of the basic structured pro­
gramming control structures. The procedure is
performed if the test is true, and is exited if the
test is false.

MetacoBOL has been in use since 1970, There
are now some 275 organizations worldwide using
it.

For more information on MetacoBOL, see Ref­
erences 3 and 6.

WORK TEN

National Steel and Shipbuilding Company
(NAssco), with headquarters in San Diego, Cali-

3

fomia, constructs and repairs ocean-going ships.
Annual sales are in the order of $200 million and
the company employs some 5,000 people. Their
data processing is performed on an IBM 3701145
with a 384K memory, operating under nos/vs.
They have eight programmers, two analysts, and
two system programmers. Languages used are
COBOL, ALC, DYL 260, and WoRK TEN.

In 1971, NAssco learned that other companies
around the country were successfully using
WoRK TEN. NAssco was not too happy with the
verbosity of COBOL and began looking into avail­
able packages. They selected WORK TEN and
have used it for essentially all batch programs
since that time. They had not been using it for ap­
plication programs operating in a teleprocessing
mode; those programs were written in CoBOL.
One-time jobs, such as ad hoc reports, have been
written in DYL 260.

WORK TEN is a CoBoL source program gener­
ator. Coding is done via a set of structured forms.
The WORK TEN preprocessor generates ANs Co­
BOL source coding, using symbolic data names.
The COBOL source code is then compiled to give
the object code.

NAssco has found that, on the average, WORK
TEN requires about 60-65% of the time required
to develop and debug the same program in
COBOL. A programmer who knows COBOL can use
WoRK TEN better than one who does not. The
quality of the object code-in terms of amount of
memory used and execution time-is probably
competitive with COBOL, everything considered,
in their opinion. It might be possible to make
more efficient use of resources using CoBOL, but it
would require more skilled programmers, they
believe. WORK TEN tends to enforce discipline;
for instance, it is easier for the programmer to use
the file library than it is to bypass it-so the result
is more consistent data definitions. WORK TEN is
very reliable and relatively easy to learn; expe­
rienced CoBOL programmers are in productive
use of it after two weeks of training and beginning
use.

One typical job involved the batch updating of
an inventory file. The program made use of two
input and two output files, all of which had been
previously defined in the file library. It required
only four man-days to code and test the program
according to specifications. The object program
used about 45K bytes of memory.

EDP ANALYZER, SEPTEMBER 1975

NAssco recently reassessed their use of WoRK
TEN. They wondered if they should move to an­
other language, which they could use for both
batch and on-line application systems. They de­
cided that they very much liked what WORK TEN
was doing for them and that they would consider
using it for the on-line programs.

WoRK TEN is marketed and supported by Na­
tional Computing Industries of Atlanta, Georgia.
As indicated above, it is a CoBOL generative file
management system. As NCI says, "WoRK TEN
automatically generates the necessary logic to
perform the mechanical, repetitive tasks of pro­
gramming." These tasks include opening and
closing files, reading transactions, reading master
records, matching transactions to master records,
rolling and clearing control break accumulators,
writing master records, printer control, etc. It
runs on an IBM 360/370 with a minimum of 6.5K
characters of memory.

Four structured forms are used in programm­
ing via WoRK TEN. The work sheet is used to
record the analyst's narrative description of the
program. The field/record sheet is used to specify
the COBOL identification and environment divi­
sion entries, plus file and record definitions, but in
a much more concise form than CoBOL. The stor­
age form corresponds to the CoBoL working stor­
age definition, but again is expressed in more
concise form. Finally, the procedure form corre­
sponds to the COBOL Procedure Division. A spe­
cial set of verbs, similar to CoBOL verbs, are used
for specifying the procedures.

NCI claims WORK TEN to be an easy discipline
for implementing structured programming. They
call their approach ASPT (Automatic Structured
Programming Technique). AsPT actually, pro­
duces a top down design automatically, without
the use of special verbs or rules to follow. Using
ASPT, the programmer performs the coding of
program modules or stubs. The modules have one
entry point and one exit point. The use of co TO is
restricted to referencing another line of code
within the same module or referencing the exit
point of the module. The programmer is pre­
vented from invoking any coding at the current or
higher level by ASPT. The main line control logic,
plus the logic to perform the mechanical tasks de­
scribed above, are automatically generated by
WoRK TEN in a hierarchical manner.

For more information on WoRK TEN, see Ref-

4

erences 3 and 7, at the end of this report.

CL 0 IV

The Arizona Bank, with headquarters in Phoe­
nix, has assets of over $900 million and 70
branches in Arizona. For their data processing,
they use an IBM 3701158 with lM bytes of mem­
ory. They are in the process of converting from
nos to vsl. They employ about 25 programmers,
and the languages used include CoBOL, BAL, CuL­
PRIT (for ad hoc reports) and CL 0 1v.

The management policy at Arizona Bank is to
purchase as much of their application software as
possible, rather than develop it in-house. If a soft­
ware package does not quite meet their needs,
however, and if they cannot arrange for the ven­
dor to make the needed changes, they will make
the changes in house. Most of the work of their
programmers is in maintaining and extending the
application systems that have been purchased.

In 1971, Arizona Bank entered into a contract
with GSI, Inc., a Phoenix-based software com­
pany, to develop a portion of a time deposit ac­
counting system. GSI had some ideas for a new
language, CL "1v, and they felt they could develop
it as a part of the contract. Some of the principals
of GSI had previously developed a similar lan­
guage and so had experience with this type of
software. GSI suggested that they develop the
new language and write the application system in
it, and the Bank would have a permanent license
to use the language and preprocessor. After going
over the plans for the language and preprocessor,
the Bank agreed to the proposal.

Previous to 1971, the Bank had obtained an ap­
plication system that was written in one of the
commercial higher level languages that produced
COBOL source programs. In that case, the Bank
did not obtain the preprocessor or the HLL pro­
grams; instead, it received just the CoBOL source
code that had been generated by the pre­
processor. The Bank found this code hard to
maintain, due to the way the data names had been
assigned by the HLL and due to the difficulty of
changing the file matching code generated by the
HLL. If they had received the programs in HLL
form, along with the preprocessor, this mainte­
nance would have been no problem. But with
only the COBOL source code, maintenance was
difficult. So, with CL "xv, they insisted on getting
the preprocessor and the programs in HLL form.

EDP ANALYZER. SEPTEMBER 1975

(In November 1972, GSI sold all rights in CL "1v
to Informatics MARK IV Systems Co., which mar­
kets the well-known MARK 1v file management
system.)

Two of the five sub-systems of the time deposit
accounting system were written in CL "xv under
the contract. The two sub-systems went into op­
eration in 1973, and the Bank has been maintain­
ing them since that time. They have found CL "1v
easy to use. CL "1v generates ANs CoBOL, which is
then compiled to produce the object code. While
the Bank could maintain the programs from the
CoBOL source code, they prefer to maintain it via
CL "1v. The data names that are generated are
very understandable. All programs are structured
the same way, so the programmers know just
where to look for the code that is to be changed.
Essentially all debugging is done at the CL "1v
source level; seldom do the programmers look at
the CoBOL source.

When the Bank started to convert from nos to
vsl, they selected the CL 0 1v programs for the first
conversion. As far as the application programs
were concerned, all the Bank had to do was
change one card in each CL "xv source deck and
then rerun that deck through the preprocessor. It
required only three man-months to convert 51
programs, including creating the JCL, testing, and
documentation.

CL "xv is marketed and supported by Infor­
matics MARK IV Systems Co., of Canoga Park,
California, and 14 other locations in the U. S.,
Canada, Europe, and Japan. CL "1v is an enhance­
ment to ANs COBOL. It operates on the IBM 360/
370 under nos, nos/vs, os, vsl, and vs2.

When using CL "1v, the application logic is
written in ANs CoBOL. A simple syntax is used for
the identification, environment, and data division
entries. ,COBOL source code is generated for rou­
tine procedural functions, from parameters sup­
plied by the programmer. These include: the
main line control structure; file management
functions such as opening and closing files, read­
ing and writing records, record matching, detect­
ing end-of-file, etc.; setting up print lines;
accumulator management; and control break
logic.

CL "xv adds two powerful verbs as an enhance­
ment to the CoBOL verbs. One is the PRINT verb.
It eliminates having to write a lot of MOVE oper­
ations and having to set up lines of print. When-

5

ever the PRINT verb is compiled, it creates a
sample report format so that the programmer can
check what the report will look like. The other is
the INITIALIZE verb. It creates new occurrences of
records and sets each field in the record to spaces
or zeros, depending on the elementary picture.
The INITIALIZE verb is also used for clearing any
group or elementary item, such as tables, hold
areas, etc., defined in the program.

In addition, users can pre-define data defini­
tions or paragraphs and sections of procedural
code and store these in the source library. These
areas of code can be inserted in CL "Iv programs
by means of a COPYH command.

CL "Iv imposes no artificial restrictions on ANS
COBOL. All access methods and storage devices al­
lowed by ANs CoBOL are supported by CL "Iv.

For more information on CL "Iv, see Reference
8.

GENA SYS

The University of California's Information Sys­
tems Division, which is part of the Office of the
President, is located in Berkeley, Calif. ISD han­
dles the development of computer-based systems
for administrative functions of the university. For
the data processing in Berkeley, they have an
IBM 360/65 and a 360/30.

In 1972, one of the University Extension pro­
grams wanted ISD to develop an application sys­
tem on an urgent basis. ISD just did not have the
resources to meet the tight time schedule and sug­
gested that the system might be developed by an
outside contractor. A contract was awarded to
study the requirements and develop the specifica­
tions for the new system. The programming of
the system was to be done under another
contract, where the bids were based on the system
specifications.

It was at this bidding stage for the program­
ming that things got interesting, we were told.
Bids were requested from about a dozen con­
tractors and three bids were received. Of thes,e,
the lowest was from International Computer
Trading Corporation, in San Francisco. It was
about one-half the price of the next lowest bid,
and furthermore, it was a fixed price bid. It was
based on ICT's use of their GENASYS service.
ICT was given the contract, and delivered on
schedule.

GENASYS is a set of generators for generating

EDP ANALYZER, SEPTEMBER 1975

application system programs, in source code
form. The source code may be ANs CoBOL or
PL/l. In the University's case, they are a PLll
shop and so they requested that the programs be
deliverd in PL!l code.

Based on this successful use of GENASYS, the In­
formation Systems Division made sure it was con­
sidered in two other cases. One of these-a
treasurer's information system-had the system
specifications developed by an outside contractor
before bids for the programming were requested.
In this instance, only two bids were received-and
again, ICT was the low bidder with a bid price al­
most one-half of the other. In the other case, the
ISD people developed the system specifications
in-house and put them out to bid-and ICT was
the only bidder. In both of these latter instances,
the bids from ICT were fixed price. But the treas­
urer's information system contract had to be re­
negotiated because the specifications that had
been developed by another outside contractor
proved to be incomplete. So additional time and
cost were needed for completing the specifica­
tions. Except for this delay, the programs were
delivered about on schedule.

What about the maintenace of the programs
generated by GENASYS, we asked. First of all, we
were told, if any bugs are uncovered that were
caused by GENASYS, ICT corrects these. But for
modifications and enhancements, the programs
have proved to be quite maintainable. The pro­
grams have a common structure, so the program­
mer knows where to look for the code to be
changed And the naming standards become clear
upon study. GENASYS does make a different use of
resources than their own programmers might, we
were told, and additional time was required dur­
ing final debugging stages than might be needed if
the work was being done in-house. But GENASYS
did get the jobs done for the University.

GENASYS is based on the concept of standard
system architectures, expressed in terms of system
generator software. ICT people believe, based on
their experiences to date, that these standard sys­
tem architectures can meet from 80% to 90% of
the needs of any given business application sys­
tem. The other 10% to 20% of the needs must be
met by custom programming. ICT has developed
four standard system designs. The ICT analyst se­
lects the design that best meets the need of the ap­
plication system, in any given case.

6

Input for GENASYS is developed by means of a
specification workbook, with questionnaire-like
forms, plus copies of all input forms and reports.
Master files are defined and requirements for
tailor-made procedures and/ or reports are identi­
fied. At this point, the ICT production unit takes
over. Using the collected material, plus GENASYS
(in the design mode), the production unit pro­
duces the first version of a design manual. This
manual contains extensive documentation about
the system.

At this point, the ICT analyst on the job sits
down with the customer's representative, to see if
the design is on the right track. ICT finds that an
average of about two weeks have elapsed to this
point, since the time that the contract was signed.
Any changes are noted in the design manual,
which is then returned to the ICT production
unit. Using the change data, the next version of
the design manual is created. This version is more
detailed than the first, and default options are
spelled out. The design is reviewed with the ICT
analyst on the job, and any necessary corrections
are made.

Then, using GENASYS in the generate mode,
source programs are created in either ANs CoBOL
or PL/l. The programs are compiled and any syn­
tactical errors are corrected. Then they recom­
pile the programs, produce the necessary JCL
code, and produce the revised documentation
manual.

During this same period, the analyst on the job
has been working with the customer to develop
acceptance data. ICT finds they need this test
data typically by the third week of the project.
Two options are provided for testing: the testing
may he done either at ICT or on the customer's
machine. ICT prefers the former case. Out of this
testing comes the need for more changes. The
ICT production unit makes the changes and re­
generates the source code. The source programs
are then generally ready to tum over to the cus­
tomer. Average total elapsed time-30 to 35
working days.

In addition, ICT conducts a training class to ac­
quaint the customer with the application sys­
tem-naming conventions, logic of all programs,
etc. The customer must he in a position to main­
tain the system (which is in ANS CoBOL or PL/l)
from that time onward.

To date, ICT has concentrated on selling the

EDP ANALYZER, SEPTEMBER 1975

GENASYS service, as discussed. However, arrange­
ments can he made for leasing the GENASYS pack­
age, for those organizations that would want to
make extensive use of it.

For more information on GENASYS, see Refer­
ence 9.

Structured generator languages

This category of HLL probably should he sub­
titled: "Ones that make a complete break with
CoBOL." It is possible to have structured gener­
ator languages that produce ANs CoBoL; we dis­
cussed two such (WoRK TEN and GENASYs) above.
But it is also possible for them to produce object
code directly. This is the type of structured gener­
ator language we will he discussing in this section.

Structured generator languages have been
called by various names in years past. "File man­
agement systems," "file maintenance generators,"
and "report program generators" are terms that
have been applied to this type of language. Typi­
cally, these languages have used structured forms
that can he filled in with a fraction of the writing
effort of, say, a COBOL program. For the file defi­
nitions, for instance, the form might ask: Standard
labels? Non-standard labels? No labels? If the pro­
grammer checks that standard labels are to he
used, pre-defined routines for creating and han­
dling the standard labels will automatically he
embedded in the program. Also, for queries and
conditional expressions, a standard format is laid
out on the form: Field No. 1, Relational Operator
(Equals, Not Equals, Less Than, etc.), Field No. 2
(or literal expression), and action to take. Com­
plex conditions, where a series of relations are
joined by Ands and Ors, are simply expressed on a
series of lines on the form.

Included in this category are the MARK 1v and
As1-sT file management systems. We have dis­
cussed both of these systems in previous issues,
particularly the April 1970 report, and will not
repeat the discussion here. Both are very popular.
MARK 1v is used at some 800 installations, and
As1-sT is used at over 100 installations.

Another popular structured generator system is
the Adpac system, which is in use at over 150 in­
stallations. We have not previously discussed
Adpac, and so will include it in this report.

Also, an interesting enhancement has been
made to As1-sT, to promote its use by the end user
market. This is an on-line version, called Conver-

7

sational As1-sT. We will discuss it, too.
It should be mentioned that some users of this

type of language have reported to us that their
programmers resist using the language. Perhaps
the ease of filling in the forms implies a down­
grading of their programming talents, in their
minds. But where data processing managements
have seen the value of such languages and have
firmly supported their use, the benefits have been
impressive.

Adpac

Matson Navigation Company, with headquar­
ters in San Francisco, California, is a pioneer and
leader in the transportation of containerized
ocean freight. The company operates 14 vessels
between the United States Pacific Coast, Hawaii,
and Guam. The company has almost 2,000 em­
ployees. For their data processing, they use an
IBM 370/l.3.5 with 192K bytes of memory, oper­
ating under nos/vs. The installation not only
processes local batch work but also on-line serv­
ices for terminals located in several facilities
along the West Coast of the U.S. and Canada.
They have nine programmers and three system
analysts. About 85% of their 2,000 active pro­
grams have been written in Adpac, about 10% in
a~sembly language, and the remainder in CoBOL.
CoBoL is being phased out.

Matson purchased Adpac in 1965 to help lessen
a potential major conversion effort from IBM
1400-series equipment to the then new 360/30s.
Since Adpac programs are machine independent,
code written for the 1400 computer was directly
usable by the 360 version with only trivial code
changes. Thus, with the conversion in the offing,
Matson experimented with new programs in
Adpac so that the conversion could be eased.
They continued to use Adpac as one of their pro­
gramming tools until 1969, although most of the
programming was done in COBOL and Assembler
Language after the 360/30 and the 360140 were
installed.

In 1969, Matson was faced with the need to
program a complicated freight documentation,
operations and statistics system. They estimated
the programming job at well over 50 man-years.
With their project team of ten programmers and
two systems analysts, this just looked like too big
an effort to implement in COBOL with the target
completion date. Since they had used Adpac and

EDP ANALYZER, SEPTEMBER 1975

were quite impressed with it, they considered it.
It looked like the whole job might be done in
about 32 man-years-still a big effort, but substan­
tially below that of their estimated COBOL time.

By 1971, the programming on the freight sys­
tem was going so well that Matson decided to
standardize on Adpac. Since that time, essentially
all new batch programs have been written in
Adpac. CoBOL ha~ been used only for maintaining
the old programs, and these have been almost
completely phased out.

Adpac uses structured forms, of the type de­
scribed earlier. A one-pass compiler generates re­
locatable object code for the IBM 360/370.
Compiling time is about at card read speed; a .500
card program can be compiled in less than one
minute.

Adpac generates either user defined or stand­
ard structures for its programs, and Matson finds
that this makes program maintenance much eas­
ier than it is with free-form programs in other lan­
guages. The programmers know just where to
look in the program structure for the code that is
going to be changed. In fact, most of Matson's
program maintenance time (for "fire-fighting") is
now going into the 100 or so CoBOL programs
that are still active.

Compared with CoBoL, Matson says that many
fewer input cards are required in order to create
the same program, by a factor of 2 or 3 to 1. While
they have not tried to parallel program a total sys­
tem concurrently with both Adpac and CoBOL,
based upon recoding many programs in Adpac,
they have found that Adpac is saving significant
programmer time (for design, code, test, and
documentation) in the same proportion as the re-

- duction in input cards. The code generated by
Adpac is at least as good as COBOL in efficiency­
that is, in memory usage and in execution time.

As an example of use, Matson quoted the time
required to create a simple program for calcu­
lating and printing some shipping tariff rates. All
input files were already in existence. It took 35
minutes to write the Adpac program, which re­
sulted in 205 cards. Compile time was a total of
one minute and seven seconds-of which about 25
seconds was the compile time and the rest was
link edit time. Two test shots were required, and
then the program was ready to go. The com­
plexity of problems programmed have ranged
from simple to complex, where the latter might

8

have over 2,000 coded cards, with from one to six
instructions per card.

Matson feels that any user who is considering
this type of system should give it a fair test, for at
least two to three months. It takes this long to
learn to "think" in Adpac and get the most out of
it. Experienced assembly language programmers
can learn it in less time.

Adpac is a structured language, with defined
logic for the routine portions of a program. These
portions include file open and close, read and
write records, record matching, and so on. A CALL
facility is available for using object modules in the
program library, and a COPY facility can be used
for copying data descriptions, procedures, and
even whole programs from the source library. Re­
cent changes improve Adpac's performance in a
virtual storage environment.

Each Adpac program has the same structure,
with four divisions in the coding forms. These
four divisions are: input-output, data, process
control, and instructions. The process control di­
vision defines the flow of control in the program.
Each division has a specific coding form, with (in
general) a fixed format. The exception is that, for
algebraic equations, Adpac uses FORTRAN-like
free-form coding.

There are five major components of Adpac II
software. The program generator-compiler is a
one-pass processor that translates the Adpac in­
put into object code. For the routine processes
just mentioned, it generates the code from rela­
tively few parameters from the input forms.
Adpac also includes a text editor, a source library
management system, an Adpac-to-COBOL trans­
lator, and a program specifications writer.

In Adpac, each program is stand-alone. All data
names are unique to that program. When data
definitions are copied from the library, they are
redefined for the new program. Within a pro­
gram, the file names are one character in length,
and data names and sub-routine names are three
characters in length. (Matson told us that these re­
strictions imposed no particular problems on
them.)

For more information about Adpac, see Refer­
ences 3 and 10.

Conversational ASI-ST

Combustion Engineering, Inc., with headquar­
ters in Stamford, Connecticut, is a major manu-

EDP ANALYZER, SEPTEMBER 1975

facturer of steam generating and other indus­
trial equipment. Its sales in 1974 were in excess of
$1.4 billion, and the company has over 40,000
employees.

For its main data processing, Combusion Engi­
neering uses an IBM 3701158 and a 3701168 lo­
cated at Windsor, Connecticut, near Hartford.
The main programming languages used are
CoBOL, PL/l, FORTRAN, and As1-sT. There are
about 200 employees with job titles of program­
mer, an almost equal number of system analysts,
and a large number of end users who desire to in­
teract directly with the computer. We discussed
Combustion Engineering's use of As1-sT, TOTAL,
TSO, and INTERCOMM in our June 1973 report.

The company has been using As1-sT since 1969.
They have used it not only for one-time jobs (such
as ad hoc reports) but also for programming com­
plete application systems where appropriate.
As1-sT is a preprogrammed data management sys­
tem that uses basic structures for input validation,
update and file maintenance, reporting, and such.
In the regular use of As1 -ST, the users fill out struc­
tured forms, from which key punching is done, or
they enter the data on cassettes via Datapoint ter­
minals. And when Combustion Engineering used
As1-sT with TSO, as we discussed in our earlier re­
port, the user essentially filled out the As1-s:r
forms and used the terminal much as a keypunch,
entering characters representing desired options
in specific character positions on a line.

But this interface-regular As1-sT under TSO­
was not a convenient one for end users to use.
They had to fill out the structured forms and simu­
late keypunching at the terminal. And there was
some resistance from programmers to filling
out such forms, perhaps on the basis that such
activity did not use their programming talents
sufficiently.

Applications Software Inc., developers and
marketers of As1-sT, introduced Conversational
As1-sT in 1973. It is a front-end package for As1-
ST. Combusion Engineering installed Conversa­
tional As1-sT in 1974, still operating under TSO. It
is a high level language for use at a terminal. It
provides a free form (unstructured) language ca­
pability and can prompt the user for the needed
parameter values. The front-end makes diagnos­
tic checks, indicates errors to the user, and passes
correct statements on to As1-sT. The language
translator can also be used in. the batch made for

9

those who want to use the free form language.
Combustion Engineering uses As1-sT for essen­

tially all ad hoc reports. But training in the use of
Conversational As1-sT is in the build-up phase, so
that only a fraction of the ad hoc reports as yet are
requested through it. There is some evidence that
system analysts and programmers are more will­
ing to use the free form language of Conversa­
tional As1-sT than they were to filling out regular
As1-sT coding forms. An ad hoc report request
generally takes less than one hour, from the time
the request is written until the report is returned
to the user.

Further, the people at Combustion Engineer­
ing find that it is possible to program a fairly ex­
tensive application with As1-sT or Conversational
As1-sT in a fraction of the time it would take to do
the same job with a conventional programming
language. Man-months of effort can be shortened
to man-weeks, in such cases.

While it is hard to compare the coding efforts
required with different languages, Combustion
Engineering estimates a 10 to 1, or better, reduc­
tion in the number of lines of code needed with
As1-sT or Conversational As1-sT, as compared
wtihCOBOL.

As mentioned, Conversational As1-sT was de­
veloped and is marketed and supported by Appli­
cations Software Inc. of Torrance, California. It is
an enhancement to As1-sT; a user would need
As1-sT, to which the conversational package can
be added. We discussed As1-sT in the April 1970
report.

Conversational As1-sT is designed to run on the
IBM 360/370 under TSO, IMS DC, and c1cs. It con­
sists of five main elements: As1-sT, the Conversa­
tional As1-ST Language, a preprocessor, an
extended interactive facility, and a macro lan­
guage option. Using a terminal, the user enters a
statement in a free but somewhat coded form.
The preprocessor scans the statement, checks for
syntax errors, and notifies the user of errors. After
corrections have been made, the preprocessor
translates the statement into a fixed-field As1-sT
statement. When the complete request, or a set of
requests, has been entered, they are transmitted
to batch As1-sT for execution.

The extended interactive facility extends the
system to a communications environment. The
command language uses simple words (change,
delete, find, etc.), an on-line text editor, and a li-

EDP ANALYZER, SEPTEMBER 1975

brary management facility. With the latter, users
may save files from session to session; the facility
also provides accounting control information and
the monitoring of file passwords.

With the macro language option, programmers
may produce their own commands and sub­
commands. Also, they can write interactive appli­
cation programs that can communicate with
users, using terms that are familiar to those users.
Moreover, it can be used to develop terminal ori­
ented dialog which prompts users for data that is
required by any program, regardless of whether
As1-sT is involved in the process. The option in­
cludes the macro language and a macro language
processor.

ASI has recently announced As1IINQUIRY, an
interactive query system that runs under IBM's
IMS DB/DC (data base/data communications). It
employs an easy to use language, has rapid access
to on-line IMS data bases, and provides both man­
ual and automatic searches on an interactive
basis.

For more information on As1-sT, see Refer­
ences 3 and 11. Details on Conversational As1-sT
can be obtained from ASI, Reference 11.

Supplemental languages

Another way of providing computer services to
a broader range of "programmers" is to supple­
ment a conventional language (such as CoBoL)
with one or more higher level languages. The goal
in such a procedure would be to provide end users
with an easier way to retrieve and process data­
for answering inquiries, for preparing ad hoc re­
ports, and for performing special analyses.

Conversational As1-sT falls into this category,
as do the commercial query and reporting pack­
ages. As mentioned earlier, we are not discussing
the query and reporting packages in this report
becasue of their inability to handle validation
functions and updating functions.

We have singled out two languages to illustrate
this category of supplemental languages. These
are RA.Mis and APL. Some people might object to
this classification on the grounds that either might
be considered a "complete" language, capable of
replacing conventional high level languages. But
for business data processing, we believe that lan­
guages such as RA.Mis and APL will be used in addi­
tion to the conventional languages, as we hope
the following discussion will explain.

10

RAMIS
Esmark, Inc., with headquarters in Chicago, Il­

linois, is a holding company formed in April 1973
which has major interests in food, chemicals, in­
dustrial products, energy, insurance, and business
and financial services. It has four sub-holding
companies, one of which is Swift & Company, a
diversified food complex; each sub-holding com­
pany owns several subsidiary companies. Esmark's
annual sales are in the order of $4.6 billion and it
employs some 33,500 people.

In 1971, the people at Swift & Co. saw a need
for a financial planning model. After considering
a number of alternative ways to obtain the model,
they awarded a consulting contract to MATHE­
MATICA, Inc., of Princeton, New Jersey. In addition
to bringing model-building talent to the job,
Mathematica also made available its RAMIS sys­
tem for both programming and running the
model. RAMIS is a data management, information
retrieval, and reporting system that can be run in
either a batch or an on-line mode. RAMIS can be
licensed or leased from Mathematica or RAMIS
service can be obtained from National css Inc.
timesharing. The availability of RAMIS was one of
the factors in Esmark's selection of Mathematica.
They purchased RAMIS so that it could be run on
the computers of their data processing subsidiary,
Cogna Systems Corporation.

The characteristics of the financial planning
model give some idea of how Esmark has used
RAMIS. The Esmark planning cycle occurs twice a
year. In the spring of each year, the strate­
gic, 5-year plans are developed. Lots of "what
if" questions are analyzed-"what would be the
effect on out financial statement if project X
was started two years later?" and so on. Alterna­
tive courses of action are developed. During the
summer months, these alternatives are studied,
revised, sharpened. Then in the fall, the
management plan is developed. This is the 5-year
plan for the overall corporation, with greatest
emphasis placed on the first year. After it has been
developed, the management plan is presented to
the Esmark Board of Directors. After the Board
has approved (and perhaps revised) the plan, it is
used by the various components of Esmark for de­
veloping their monthly operating budgets.

The model was developed by Esmark (Swift &
Co.) staff members working with the Mathema­
tica consultant. The consultant then programmed

EDP ANALYZER, SEPTEMBER 1975

the model on RAMIS. That first year, we were told,
was a real challenge. The development and pro­
gramming of the model was a problem, of
course-but the real challenge came in getting the
financial data in shape in a one-week period.
Validating the data requires that the data be ana­
lyzed in several different but related ways, to
make sure that it is accurate and consistent. The
data, which had been supplied by the sub-holding
companies, was put into a RAMIS file and all vali­
dation tests were performed on it in that file.

Validating the financial planning data contin­
ues to be a challenge, so Esmark has adopted a
change in procedure. A terminal has been in­
stalled at each of the sub-holding companies, for
input to the Cogna computer, on a remote batch
basis. Each sub-holding company develops its
own planning data file and validates it, using
RAMIS. When the validations have been com­
pleted, Cogna consolidates the files of the four
sub-holding companies and transfers the resultant
file to National css. The people at Esmark head­
quarters use National css for developing the plan­
ning reports because of the excellent turnaround
that National css provides.

In addition, a number of other uses of RAMIS
have developed within Esmark headquarters and
within the several sub-holding companies.

We asked about the training required in order
to use RAMIS. There are really two types of users
within Esmark, we were told. A number of them
simply retrieve data from RAMIS files. Training for
this function is relatively simple, they say-per­
haps one hour of training in order to get useful
output, plus more training and experience to
learn various ways to format reports. The other
type of user must validate input data and write
programs for updating RAMIS files. While the
people who perform these functions are not class­
ified as programmers at Esmark, they have many
characteristics of trained programmers. But a
good RAMIS programmer is different from a good
conventional programmer, we were told; RAMIS
has high level languages and the programmer
must learn to program within the constraints of
these high level languages. It takes at least two
months of training and job experience before use­
ful applications system output is obtained for this
type of RAMIS use, say the people at Esmark.

In the main, RAMIS is a user-oriented informa­
tion and data retrieveal system. Actually, it is

11

more than that, as its main components will in­
dicate. Languages: RAMIS has an English-like
report request language plus a high level
programming language for file maintenance, up­
dating, and simple input validation functions.
RAMis also interfaces other languages such as
COBOL, FORTRAN, and PL/ 1. Generally, complex
input validation and mathematical routines are
programmed in these other languages. Data files:
RAMIS provides hierarchical and network struc­
tures for data. System software: the RAMIS system
software catalogs requests, retrieves requests from
the catalog, and supervised the sequence of activi­
ties in the running of RAMIS jobs. Equipment:
RAMIS is designed to operate on IBM 360/370
computers under all versions of os. It is also avail­
able via National css Inc.

For more information on RAMis, see References
3 and 12.

APL

Some readers may wonder why we are in­
cluding a mathematically-oriented language such
as APL in a discussion of business languages. The
reason is that we have found APL being used as a
supplemental language in a growing number of
business environments. It is becoming sufficiently
important in this respect, as a matter of fact, that
we hope to devote a complete report to it in the
not-distant future. The following discussion will
only treat some of the high points of its use.

The BritiJh Steel Corporation, with headquar­
ters in London, England, is the nationalized con­
solidation of the major U.K. steel companies.
British Steel produces about 25 million metric
tons of steel per year, and employs some 230,000
people. The corporation does not have a com­
puter installed at its headquarters but uses
installations at its plants, at its research centers,
or uses outside services, depending upon the
application.

The Planning Department of British Steel,
among its other responsibilities, produces an eco­
nomic plan on a year-by-year basis, for ten years
in the future. This economic plan includes a fore­
cast of sales, prices, the need for additional fa­
cilities, and so on. An economic planning model
has been created for this function, written in
FORTRAN.

In addition, the department performs specific
planning studies that go into more detail than the

EDP ANALYZER, SEPTEMBER 1975

10-year economic plan. One such study, begun in
1973, was concerend with selecting the most
profitable strategy for the production of billets. A
billet is a piece of partially completed steel, about
four inches square and from 20 to 60 feet long.
The study involved forecasting the sales of billets
over a ten year period. A number of alternate
strategies were defined which allocated produc­
tion to the plants over a multiple year time pe­
riod. The goal was to insure efficient overall
production as well as to provide a basis for costing
and evaluating the profitability of the strategies.
The problem was reasonably complex, with some
60 different types of billet, 15 plants with differ­
ing production characteristics, and 12 different
strategies. In adddition, each plant was poten­
tially capable of being expanded or closed. The
approach which was selected made use of two
models, one to perform the allocation and the
other to evaluate the strategies.

One member of the Planning Department had
seen a demonstration of the APL service offered in
London by I. P. Sharp Associates Limited, of To­
ronto, Canada. He was impressed with how well
APL handled arrays, and felt that British Steel
should give it a try. So the strategy evaluation
sub-model was selected as the pilot test of APL
within British Steel. The model would not use
linear programming, but instead would use a
straight-forward logic, easily understandable by
the people in the plants. If the model were pro­
grammed in FORTRAN, they already knew the dif­
ficulties they would face when they wanted to get
at the data or change the model. With APL, it
looked as though the economists themselves,
working at a terminal, could easily retrieve de­
sired data, perform analyses, and make changes in
the model.

British Steel gave a contract to I. P. Sharp Asso­
ciates to write the model in APL. The work was
done during a two month period in early 1974 by
Keith Iverson (the son of Dr. Kenneth Iverson, the
creator of APL) who works for Sharp. British Steel
was delighted with the results. APL in fact did
give the Planning Department a much easier in­
terface with the computer.

Based on the results of this pilot test, the Plan­
ning Department asked British Steel's Operations
Research Department to write the allocation sub­
mode! in APL. The OR people had no difficulty in
learning to use APL, and in fact, found it a very

12

logical language as compared to FoRTRAN. So
British Steel expects to expand their use of APL
in the future.

A discussion of the history and characteristics
of APL can be found in References 1 and 4. The
language was created by Dr. Kenneth Iverson in
the early 1960s, while working at Harvard Uni­
versity and later at an IBM Research Center. It
was described in an early book, A Programming
Language, by Iverson (Wiley, New York, 1962).
But APL did not catch on as a programming lan­
guage in a batch environment. It was not until the
late 1960s, when it was implemented as an inter­
active language, that it began to become popular.

APL uses a very concise, symbolic notation. The
notation tends to scare off some programmers
from the use of APL. The notation is so powerful
that programmers can write meaningful one-line
programs. The intent of such "one liners" is often
not clear to another programmer-or to the pro­
grammer who created it at a later point in time.
(In fact, we understand that a game has been
made of this, where one programmer shows a one­
liner to another programmer and says, "Bet you
can't tell me what this does.") However, the in­
tent of the language is to provide powerful oper­
ators, not to write one-liner programs whose
function is unclear. In fact, in Reference 4, it is
reported that APL has been successfully taught at
the seconday school level.

Becasue of the power of the APL operators and
the conciseness of the language, it is reported that
coding time can be reduced up to 90%.

As mentioned earlier, we plan to return to the
subject of APL in a not-distant report. For more in­
formation on APL, see References 13a and 13b.

The future-non-procedural languages?

Philippakis, in Reference 5, reports the results
of a survey he conducted on the use of various
programming languages in business environ­
ments. He sent out 390 questionnaires and re­
ceived 164 responses, from a variety of types and
sizes of companies. While he cautions against at­
taching too much precision to the results, the fig­
ures give a general impression of language usage.
He computed a "usage index" as the product of
the percent of users using a language and the
average percentage of the time they used it. The
results were: CoBOL, 59; assembler, 20; report
generatortypelanguage,6;FoRTRAN,5;PL/l,4;

EDP ANALYZER, SEPTEMBER 1975

other, 3; Basic, l; APL, 0.
His results are not surprising. COBOL clearly

shows up as the leader in business data processing,
with some form of assembly language second. Ap­
parently the structured generator languages are
used more than either FORTRAN or PL/ 1, and that
is a point of interest (certainly considering IBM's
efforts to push PL/ 1 for much of the past decade).
While two companies reported using APL, the
usage was so small that his usage index was zero
for this language.

One point should be emphasized. The amount
of use was measured as the approximate man­
hours of programming in each language per one
hundred man-hours of programming. Higher
level languages, such as we have discussed in this
issue, would therefore be penalized in multi­
language shops. Conventional languages, such as
CoBOL, FORTRAN, and assemblers, would get
higher usage indexes because they require more
man-hours of use to accomplish a job, as com­
pared with the higher level languages.

A follow-on study in another two years or so
would be interesting, to see what the shifts in
usage might be. We would expect to see a meas­
urable shift toward higher level languages. But
again, the figures might be misleading if amount
of usage is measured in man-hours.

It is clear, of course, that the bulk of the pro­
gramming being done today uses procedural lan­
guages. Non-procedural functions-such as open
and close files, record reading and writing, file
matching, etc.-have appeared in some of the
higher level languages. Macros are being used to
eliminate the need of rewriting detailed proce­
dures for frequently performed actions. APL has
introduced powerful operators, perhaps not un­
like macros for the handling of arrays, to elimi­
nate the need for some detailed procedures. So
progress is being made in the direction of non­
procedural programming. But the fact remains
that all of the languages discussed in this report
still require procedural programming.

What will happen in the next few years? Our
guess is that users will attempt to reduce devel­
opment and maintenance costs by moving toward
the higher level languages, such as the ones we
have discussed. These languages may well be en­
hanced over what is available today, by the addi­
tion of more non-procedural functions. But in
general, the languages will look very much as

13

they do today. Custom-programmed detailed
procedures will still be needed by users for those
activities that are not covered, or not covered ad­
equately, in the non-procedural portions of the
languages.

When will the "true" non-procedural lan­
guages appear, where one need only specify what
is desired rather than how to achieve it? Based on
the progress of the past ten years or so, we can­
not yet foresee the arrival of the "true" non­
procedural language.

But maybe the "true" non-procedural language
is an ideal that will never be reached. Maybe it is
important only as a goal to strive for, not as some­
thing that the field should be eagerly awaiting. In
that case, we would expect to see significant prog­
ress in the next five years. The languages that we
have discussed in this report have, in general,
been well enough received in the marketplace
that their suppliers will continue to improve
them. We have discussed how several of them

REFERENCES
1. Proceedings of a symposium on very high level lan­

guages, SIGPLAN Notices, April 1974; order from ACM
(1133 Avenue of the Americas, New York, N.Y. 10036),
price $15 prepaid.

2. Commercial Language Systems, Infotech State of the Art
Report 19, Infotech Information Limited (Nicholson
House, High Street, Maidenhead, Berkshire, England),
price £40 ($95).

3. Datapro 70, Datapro Research Corporation (1805 Un­
derwood Boulevard, Delran, New Jersey 08075), price
$250 per year.

4. EDP In-Depth Reports (P.O. Box 1127, Station B.,
Weston, Ontario M9L 2R8, Canada); January and Feb­
ruary 1974 issues on APL; price $4.50 per copy.

5. Philippakis, A. S., "Programming language usage,"
Datamation (1801 S. La Cienega Blvd., Los Angeles,
Calif. 90035), October 1973, p. 109, 110, 114.

6. For more information on MetaCOBOL, write Applied
Data Research, Inc., Route 206 Center, Princeton, New
Jersey 08540.

7. For more information on Wom: TEN, write National
Computing Industries, 6075 Roswell Road N.E., At­
lanta, Georgia 30328.

EDP ANALYZER published monthly and Copyright© 1975
by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
92083. All rights reserved. While the contents of each report
are based on the best information available to us, we cannot
guarantee them. This report may not be reproduced in whole
or in part, including photocopy reproduction, without the

EDP ANALYZER, SEPTEMBER 1975

have been enhanced over the past several years,
and there is every reason to expect that the im­
provements will continue.

What does all of this mean to you? As we see it,
the picture of higher level languages for the next
five years or so is reasonably clear. They will look
very much like today's higher level languages. If
you are interested in gaining the advantages of
such higher level languages, there seems to be no
good reason for waiting. Select which basic
course of action you prefer-COBOL-based HLL,
structured generator language, or supplemental
language-and start using it. During the next five
years, you will be able to obtain a series of im­
provements to the language of your choice, in all
likelihood.

And by the end of this decade, you might be
quite surprised how "non-procedural" your pro­
gramming has become, as compared with today's
conventional languages.

8. For more information on CL 0 r'v, write Informatics MARK
IV Systems Company, 21050 Vanowen Street, Canoga
Park, Calif 91304.

9. For more information on GENASYS, write to Inter­
national Computer Trading Corporation, 465 California
Street, Suite 318, San Francisco, Calif. 94104.

10. For more information on Adpac, write to Adpac Com­
puting Languages Corp., 101 Howard Street, San Fran­
cisco, Calif 94105.

11. For more information on Conversational AsI-ST, write to
Applications Software Inc., 21515 Hawthorne Blvd.,
Torrance, Calif. 90503.

12. For more inforamtion on RAMIS, write MATHEMATICA,
Inc., P.O. Box 2392, Princeton, New Jersey 08540.

13. For more information on APL:
a) Write I. P. Sharp Associates Ltd., Suite 1400, 145

King Street West, Toronto, Ontario, Canada.
b) Datapro Feature Report, "All about remote com­

puting services," (address above), February 1975,
price $10; lists a number of services that offer APL.

written permission of the publisher. Richard G. Canning, Edi­
tor and Publisher. Subscription rates and back issue prices on
last page. Please report non-receipt of an issue within one
month of normal receiving date. Missing issues requested af­
ter this time will be supplied at regular rate.

14

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1972 (Volume 10)
Number

1. Computer Security: Backup and Recovery
Methods

2. Here Comes Remote Batch
;, 3. The Debate on Data Base Management

4. Intelligent Terminals
5. COBOL Aid Packages
6. On-Line Development of COBOL Programs

.. 7. Modular COBOL Programming
8. New Training in System Analysis/Design
9. Savings from Performance Monitoring

10. That Maintenance "Iceberg"
11. The "Data Administrator" Function
12. The Mini-Computer's Quiet Revolution

1973 (Volume 11)
Number

1. The Emerging Computer Networks
2. Distributed Intelligence in Data Communications
3. Developments in Data Transmission
4. Computer Progress in Japan
5. A Structure for EDP Projects

'* 6. The Cautious Path to a Data Base
7. Long Term Data Retention
8. In Your Future: Distributed Systems?
9. Computer Fraud and Embezzlement

10. The Psychology of Mixed Installations
11. The Effects of Charge-Back Policies
12. Protecting Valuable Data-Part 1

1974 (Volume 12)
Number

1. Protecting Valuable Data-Part 2
" 2. The Current Status of Data Management
• 3. Problem Areas in Data Management

4. Issues in Programming Management
5. The Search for Software Reliability

" 6. The Advent of Structured Programming
7. Charging for Computer Services
8. Structures for Future Systems
9. The Upgrading of Computer Operators

10. What's Happening with CoDASYL-type DBMS?
11. The Data Dictionary/Directory Function
12. Improve the System Building Process

1975 (Volume 13)
Number

1. Progress Toward International Data Networks
2. Soon: Public Packet Switched Networks
3. The Internal Auditor and the Computer
4. Improvements in Man/Machine Interfacing
5. "Are We Doing the Right Things?"
6. "Are We Doing Things Right?"
7. "Do We Have the Right Resources?"
8. The Benefits of Standard Practices
9. Progress Toward Easier Programming

(Lisi of subjects prior to 1972 sent upon request)

PRICE SCHEDULE

The annual subscription price for EDP ANALyzER is $48. The two year price is $88 and the three
year price is $120; postpaid surface delivery to the U.S., Canada, and Mexico. (Optional air mail delivery
to Canada and Mexico available at extra cost.)

Subscriptions to other countries are: One year $60, two years $112, and three years $156. These
prices include AIR MAIL postage. All prices in U.S. dollars.

Attractive binders for holding 12 issues of EDP ANALyzER are available at $4.75. Californians
please add 29¢ sales tax.

Because of the continuing demand for back issues, all previous reports are available. Price: $6 each
(for U.S., Canada, and Mexico), and $7 elsewhere; includes air mail postage.

Reduced rates are in effect for multiple subscriptions and for multiple copies of back issues. Please
write for rates.

Subscription agency orders limited to single copy, one-, two-, and three-year subscriptions only.

Send your order and check to: Send editorial correspondence to:
EDP ANALyzER EDP ANALYZER
Subscription Office Editorial Office
925 Anza Avenue 925 Anza Avenue
Vista, California 92083 Vista, California 92083
Phone: (714) 724-3233 Phone: (714) 724-5900

Name~------------------------------------~

Companr~-----------------------------------­

Address ----------------------------------
City, State, ZIP Code------------------------------

