
EDP ANALYZER
°' 1977 by Canning Publications, Inc.

NOVEMBER, 1977
VOL. 15, NO. 11

USING SOME NEW PROGRAMMING TECHNIQUES

In the early 1970s, IBM began to market a group of program­
ming aids called IPTs-Improved Programming Technologies.
These methodologies include top-down development, structured
programming, chief programmer teams, HIPO (Hierarchy plus In­
put-Process-Output), pseudo-code, development support library,
and structured walk-throughs. In addition, IBM offers several
programming facilities on TSO (Time Sharing Option), including a
COBOL interactive debugging facility. In this issue, we shall look
at some user experiences with these techniques, and see how they
have been adapted and modified to fit different needs. ·

We have chosen to review the offerings of IBM
in this area of programmer support products be­
cause they represent a body of technology to
which a large number of data processing in­
stallations have been exposed. A major push for
the use of programming aids has come from IBM.
IBM employees have published many articles and
given numerous speeches, and the three IBM Sys­
tems Science Institutes in the U.S. give about 40
seminars a year on the use of these techniques.

As a group, IPTS complement each other and
are intended to be used together, throughout the
entire software development effort. Given all of
the exposure that IPTS have received, we were in­
terested in seeing if users have adopted these
techniques as advertised, or whether they have
only implemented certain ones. Thus, we shall
describe some uses of IPTS as examples of how
users might improve the software development
process.

This is not to say that these IBM offerings are
the only ones on the market. Software houses,
education firms, consultants, and other main­
frame manufacturers offer similar products and
education. We have discussed a number of these

other techniques in past issues. For example, see
the list of past subjects on the last page of this
report.

We categorize the use of IPTS in three groups:
for designing, for building and for testing soft­
ware. We expand the group of IPTS a bit to in­
clude interactive debugging and testing.

This is how we categorize these aids:
For designing software:

• Top-down design
• HIPO

• Pseudo code
For building software:

• Development support library
• Structured programming
• Top-down programming
• Chief programmer teams

For testing software:
• Structured walk-throughs
• Interactive debugging and testing.

We will briefly discuss each one of these tech­
niques. Readers interested in more details should
obtain the IBM general information ·manuals,
listed under Reference 1. In addition, we will re­
fer to selected other literature that gives recom-

Reproduction prohibited; copying or photocopying this report is a violation of the copyright law; orders for
copies filled promptly; prices listed on last page.

/

mendations on the use of these techniques.

For designing software
In design we are talking about two distinct

types of design. One is functional design-design­
ing what the system will do. This is for the users'

' benefits, so that they can verify that the system
will do what they want it to do. The other is logic
design-designing how the system will operate.
This is for the programmers' benefits, so they can
write the code.

Top-down design

The original IPTS did not include a top-down
design discipline per se. However, IBM subse­
quently included "structured design," which is
one form of top-down design, in its Systems Sci­
ence Institute curriculum. Structured design is
based on concepts expressed by Larry L. Con­
stantine in 1964 and expanded in the paper by
Stevens, Myers, and Constantine (Reference 2a).

Top-down design-sometimes called the levels
of abstraction approach or the stepwise refine­
ment approach-begins by defining the major
functions of the system. Decisions pertaining to
lower level sub-functions are delayed as long as
possible. Each major function is decomposed into
its constituent sub-functions.

Constantine's concepts include the system's ex­
ecutive functions at the top of a hierarchy of sub­
ordinate modules. The system is designed for min­
imum coupling between modules, so that each
module is as free standing as possible. Further,
each module is designed for maximum functional
strength, where all the elements of the module
contribute to performing only one function.

HIPO

HIPO (Hierarchy plus Input-Process-Output) is
a design and documentation technique from IBM.
It uses two types of diagrams. The H chart is a hi­
erarchy chart of the functions of a software sys­
tem. These functions state what is to be done, not
how it is to be done. The functions in the chart go
from general (at the top) to specific (at the bot­
tom). The connecting lines between the function
boxes do not show flow of control but rather
show the decomposition of the functions into
subfunctions.

The second element is the IPO chart. It de­
scribes each function by its inputs, processes and

EDP ANALYZER, NOVEMBER 1977

outputs. A function box on the H chart is repre­
sented by one IPO chart, with the various inputs,
the processes on those inputs, and the resulting
outputs listed for that function. This IPO informa­
tion is then used to create the next lower, more
detailed level on the H chart. So the lowest levels
of the H chart are the most detailed, most decom­
posed subfunctions.

Pseudo code

Pseudo code, metacode, and probrram design
language are synonyms for a stmctured, natural
language notation used during software desihrn. It
is an informal method of expressing logic, using
an indented format to show control structure. It
uses terms permitted in structured programming,
such as DO WHILE, DO UNTIL, ELSE, IF, and CASE.
Thus, it can be readily translated into compilable
code. It is often described as being useful for de­
tailing structure and IPO charts.

The authors who discuss structured design,
HIPO and pseudo code claim that these techniques
complement each other and can be used for both
functional design and logic design. Thus, they can
be used to aid communication with the user as
well as make coding better correspond to design.

For building software
F. Terry Baker (Reference 3) has described his

experiences in implementing IPTS in a production
programming environment. We will give some of
his views in connection with building software.

Development support library

A development support library (DsL) is the col­
lection of all information pertinent to a software
development project. It includes current and
backup versions of the programs (source, object,
and load), the operating system instructions, test
data, results of tests, documentation, history of
the code, project performance data, and library
procedures. A major purpose of the DSL is to keep
all project records at one place.

The DSL is maintained by one or more librar­
ians (who may also perform secretarial or other
functions) and perhaps by an automated library
package. For effective use, the DSL must be up to
date and its contents must be readily available to
the analyst and programming staff. Analysts and
programmers may access the DSL by terminals, in
some environments.

2

Structured programming

Structured programming embodies two con­
cepts, according to Baker. One is structured cod­
ing, i.e. developing and testing individual
modules of code. The objectives are that each
module be given an intelligent name, be about
one page of source code in length, and contain
functions that logically fit together. Each module
should have one entry and one exit, and coding
should be restricted to three control structures­
sequence, alternation and repetition. Some or­
ganizations do allow very limited use of co TO. In­
dentation conventions should also be used to show
the structure of the program on the source listing.
The purpose of structured coding is to make pro­
grams easier to read and comprehend as well as
easier to debug and maintain.

The second aspect of structured programming,
according to Baker, is that team members can and
should read each other's code, and that all excep­
tions to the structured coding standards be thor­
oughly documented and have management
approval.

Top-down programming

In top-down programming, modules are coded,
tested and integrated basically in execution order,
beginning with the top level. The control func­
tions are normally called the top level; the basic
utility routines are normally on the bottom level.
Once the top level has been developed and tested,
the next level can be worked on. Stubs are writ­
ten, for testing purposes, to represent unwritten
modules in the lower levels.

The purpose of top-down programming is to
ease the system integration problem, and dis­
tribute testing, integration and computer usage
more evenly throughout the development cycle.
And the necessity for writing drivers to test low
level modules, as required in bottom-up construc­
tion, is mostly eliminated.

Chief programmer teams

A chief programmer team may be the hardest
IPT to implement, states Baker, and thus, it should
be implemented last. A chief programmer team is
a software project structure that consists of a chief
programmer, a backup programmer, a number of
subordinate programmers, and a project librar­
ian. The chief programmer has technical respon­
sibility for the project, backed up by the backup

EDP ANALYZER, NOVEMBER 1977

programmer. Together these two people design
the system and then code the key portions, usually
the top control level and any other particularly
difficult modules. They also assign the work to the
other team programmers, and review the code of
these members. The librarian, who is an integral
part of the team, maintains the project DSL and
provides secretarial services for the project.

For testing software
The two IPTS that pertain to testing software

are structured walk-throughs and interactive de­
bugging and testing.

Structured walk-throughs

Structured walk-throughs are technical re­
views of design, coding, test plans, and so on, per­
formed by peer groups. Each walk-through has its
own specific objective. A walk-through is called
and led by the designer or programmer whose
work is to be reviewed; copies of this work are
distributed to team members before the walk­
through. Walk-throughs are normally attended by
no more than six people.

The times in the development cycle when
walk-throughs are normally performed are: 1) af­
ter preliminary design, to study the layout of the
module hierarchy; 2) after detailed design, to
study the logic in the modules and the file or­
ganization; and 3) after coding, but before
mmpilation.

The emphasis of the reviews is on error detec­
tion, not error correction. Following a walk­
through, a listing of the errors detected is dis­
tributed (by the librarian) to each project mem­
ber. The designer or programmer is then expected
to make the needed changes to correct these
errors.

Interactive debugging and testing

Interactive debugging and testing differs from
interactive (or on-line) programming in that the
programmer uses the terminal only after his code
has been entered into the system. He does not in­
itially enter code at the terminal himself. It may
be entered by a data entry clerk or via keypunch.
Once the code is in the syste.:i and has been com­
piled, the programmer uses the on-line terminal
to test and debug it.

These then are the techniques we are dis­
cussing. To describe how they are being used, we

3

begin with the experiences of TRW ossc.

TRWDSSG
TRW Defense and Space Systems Group (ossc)

is a division of TRW, Inc. Dssc provides software
for governmental agencies and private industry.
Their headquarters are in Redondo Beach, Cali­
fornia, a suburb of Los Angeles, where the staff in­
cludes over 1000 system analysts and
programmers. We talked with people in manage­
ment systems who provide business data process­
ing services to ossc on two IBM 370/ 158s.

Early in 1975 the people within the training
function of management systems spent six months
evaluating the newer programmer productivity
techniques that we have just described. During
this time they ran a small pilot project, visited
companies that were using these techniques,
attended relevant seminars, and read the trade
literature.

The most disturbing problem they encountered
in their study was that no one was able to show
them a project that had modular traceability from
start to finish. Modules in the final programs were
not the same modules created in the design phase.
The loss of traceability during development
caused them to wonder if these techniques really
would help them better control the development
process.

From the study, the team recommended that
structured design, structured programming,
pseudo code and HIPO be used in the department.
Strict top-down design was not recommended,
because it did not address the problem of ordering
data structures, especially in a multi-application
environment. Also, it did not allow a careful study
of lower level interfaces that were highly techni­
cal. So a parallel bottom-up and top-down design
approach was recommended.

Chief programmer teams were not recom­
mended because the study team found them to be
the least utilized and conceptually weakest of the
techniques. And they recommended further study
on the osL before making a decision on whether
to use it or not. The team's recommendations
noted that following training, a learning curve of
two to three months would be required to fully
utilize the recommended techniques.

After management accepted these recommen­
dations, in-house training courses for both project
managers and technical staff members were de-

EDP ANALYZER, NOVEMBER 1977

signed. These were given to project teams just be­
fore they began a new project where these
techniques would be used. Project managers were
given a one-day course first; technical staff mem­
bers were then given a four-day course tailored to
the management systems environment. Two days
were devoted to top-down, structured design, and
two days were spent on structured programming.
Audio visual courses were also made available to
supplement the training, technical guidelines
were issued, and a technical library was started.

The training people found that most of the staff
members were curious enough about the new
techniques to take the training with an open
mind. Members of four major projects have been
trained on these techniques so far. Management
systems uses the new techniques as follows.

In the design phase, once the requirements and
specifications have been approved by the user,
structured design is performed, using structure
charts and data path analyses. At critical points
during the design phase, structured walk­
throughs are held. These last anywhere from one­
half hour to three hours and involve from two to
four team members. At the initial walk-through,
the structure, definition and interaction of the
modules are studied. At subsequent walk­
throughs, data flow analyses and the packaging of
functions into modules are studied. Limiting
structure charts to one page helps participants
easily grasp problem solutions, we were told. For
any set of functions or modules, they have found
that three walk-throughs are needed during the
design phase.

Once the design is complete, the designer
translates each module into low level pseudo
code. Logic that was previously described ver­
bally is now written down. The pages of pseudo
code are cross referenced to the module boxes on
the structure chart. The people in management
systems are very pleased with this use of pseudo
code. Using it in conjunction with a structure
chart and a data flow analysis provides them
enough documentation that they no longer use
HIPO charts. Their HIPO charts had been large and
cumbersome, and they did not greatly increase
the communication with users.

The conventions of structured programming
that are emphasized within management systems
are: I) modularization of source statements into
blocks of about 70 lines of code, 2) logical in-

4

dentation of source code to show structure, and 3)
limiting statement design to constructs with one
entry and one exit point.

All of the programmers who have used struc­
tured programming in management systems are
enthusiastic about it, and the results of its use are
being seen. During unit testing, performed by an­
other programmer, many fewer errors are being
found. The same is true in acceptance testing.
And when an error is found, locating the place to
instih1te the change is easier, due to the construct­
ing conventions.

In 1976, Tso became available to the program­
mers. They now can either code on coding sheets,
and then have the code keyed into the system by a
data entry clerk, or they can key the code into the
system themselves. One problem with stmctured
programming, that the use of Tso has eased, is fit­
ting modifications into the indented format. With
Tso the program is displayed on a CRT, so changes
can be fit easily into the existing stmcture.

One benefit of these new techniques has been
the ease of bringing new people into a project
team. On two occasions team members have left,
once during the design phase on one project, and
once during final debugging, just before imple­
mentation, on another project. In both cases, the
new members were able to quickly comprehend
the project and begin their work.

Documentation for the project is kept on a
module basis, with a unit development folder cre­
ated for each module. The folder contains (1) the
design strncture chart, showing where the module
fits into the project hierarchy; (2) the data flow
analysis, showing the input/ output requirements
of the module; (3) the pseudo code; (4) the test
plan; (5) a log of changes; and (6) the structured
code. Standard numbering and naming conven­
tions are used in all documentation and programs.
Thus, management systems is able to show trace­
ability of modules, from design through coding.

All in all, management systems at TRW nssc is
well pleased with their use of the newer pro­
gramming techniques, and they plan to use these
techniques on all new projects. With a major em­
phasis on the design phase and design tools, they
are finding that the projects are progressing more
steadily than in the past.

Columbus Mutual Life
Columbus Mutual Life Insurance Company,

EDP ANALYZER, NOVEMBER 1977

with headquarters ,in Columbus, Ohio, is a multi­
line company with about $3 billion in force. The
company provides both individual life and health
as well as group life and health insurance. For its
data processing, the company uses an IBM 370/
145, together with IBM's ALIS (Advanced Life In­
formation System). Programming is done mostly
in CoBOL, although ALC, FORTRAN, and pL/ 1 are
also used.

We visited Columbus Mutual to learn about
their use of the development support library. The
DSL played a very key role in their conversion to
ALIS, we were told, and it continues to play an im­
portant role.

The company began considering the use of ALIS
in 1970. In late 1971, it was decided to go ahead
with the system. During 1973, the company de­
clared a moratorium on most new system devel­
opment, as well as on changes to existing systems,
in order to adapt ALIS to its need5. Most of the
company's staff of nine programmers were as­
~igned to the project. In addition, Columbus Mu­
tual obtained contract programming services
from IBM and a local service bureau.

At the time, Columbus Mutual was using the
Librarian package from Applied Data Research.
Librarian proved to be very helpful for con­
trolling the creation of the ALIS support pro­
grams, plus changes and extensions to the ALIS
package. One problem, however, was that three
staff members were spending a good amount of
time carrying card decks to computer operations
and printouts back to the programmers, delaying
hrrnaround. These three staff members were sec­
retary /librarians for the programming staff.
About this time, ADR announced its RoscoE re­
mote job entry system. Columbus Mutual ob­
tained RoscoE and tied it in with Librarian. This
step eliminated the need for the secretary /librar­
ians to carry the materials to and from computer
operations, substantially reducing turnaround
time.

At the peak of the effort of tailoring ALIS to its
need5 and developing the support systems, Co­
lumbus Mutual had 30 programmers working on
the project. With the combination of Librarian
and RoscoE, and the three project secretary /li­
brarians, it was possible to keep up with the
changes and development of the program. As pro­
duction got underway in January 1975, in only
three cases the first year did production cycles fail

5

to run to completion, where it was necessary to go
back to the beginning and rerun the cycle.

All source code is stored under Librarian. For
maintenance, production source code is copied to
create a test version. All changes to the test ver­
sion are "temporary" until the program is com­
piled, tested and approved by the user. Then
Librarian is used to make the changes permanent.
Further, Librarian provides a configuration his­
tory for each program, showing the changes that
have been made previously. The source code list­
ings are the most recent approved generation of
the source code, along with the printouts of prior
changes.

Columbus Mutual feels that it is getting the fol­
lowing benefits from its DSL. The source code is
secure. There is no worry about computer oper­
ations erroneously using an outdated version of
the program. Nor is there worry about the only
copy of the source code being destroyed. Code is
accessible for review and there is an audit trail of
all changes made to each program.

The data processing manager at Columbus Mu­
tual summed up his feelings as follows: "We
wouldn't do our program development and
maintenance any other way than by using the
support library function, now that we have used it
so successfully."

Mellon Bank
Mellon Bank, with headquarters in Pittsburgh,

Pennsylvania, has assets of over $9 billion. The
bank is rated sixteenth in size among the largest
U.S. banks, according to Fortune magazine. For
its data processing, the bank uses three IBM 168s
each with 4 megabytes of memory and operating
under MVS, plus two 135s and a number of mini­
computers. The development staff numbers 154
people.

Mellon Bank is one of the most automated
banks in the country. The development of new
application systems is given high priority. New
techniques that improve the efficiency of building
and maintaining application systems are tested
out regularly.

When the series of IPTS was announced by IBM,
Mellon Bank studied the techniques thoroughly.
The results of this analysis were interesting. The
bank had an extensive set of installation standards
that were being practiced. They found that they
were already doing something very close in con-

EDP ANALYZER, NOVEMBER 1977

cept to the chief programmer team idea. The pro­
gram design methods they were using were
reasonably close to structured programming. And
so it went with the other techniques analyzed.
Mellon Bank has tried essentially all of the IPTS
and finds that they like some and are not too
happy with others.

The best point at which to begin the discussion
of Mellon Bank's experience with IPTs is with
their in-house training program-the Advanced
Technolo1:,ry Seminars.

Advanced technology seminar.~. Prior to 1974,
conventional staff training method~ were used.
These included the use of video tapes, attending
computer manufacturer training courses and out­
side seminars, and so on. Management began to
see a need for continuing education of more up­
to-date or more advanced knowledge.

In 1974, Mellon Bank began a series of weekly
advanced technolo1:,ry seminars. These seminars
are held on Thursday mornings and are about
three hours i~ length. Each seminar is limited to
25 people; if the subject is very popular or impor­
tant, the seminars are repeated. Notices are sent
out to the six groups within the development staff
as to the !>ubject of the forthcoming seminar.
People sign up based on their interest in learning
about the subject-or their desire to criticize it.
Project leaders may encourage some of their
people to attend, but attendance is not forced.
Actual attendance is then allocated among the six
groups. Seminars are either taught by members of
the staff or are panel discussions involving staff
members.

These seminars have proved to be a very effec­
tive way to expose staff members to new tech­
nology. Essentially all IPT methodologies have
been taught and discussed in this manner.

Chief programmer team. The bank had been
using a project team approach that was very sim­
ilar to IBM's chief programmer team approach,
except that the bank did not make use of project
librarians on the teams. To support the pro­
gramming staff, the bank had two experienced
data entry people who could not only enter pro­
grams but could also correct some input errors
and could request compiles. The bank does not
separate systems people from programming
people, nor does it separate development work

6

from maintenance work. A project leader is a top
programmer and is essentially equivalent to a
chief programmer. The bank has had quite good
results from the use of this approach.

Top-down design. Members of the staff have
tried top-down design with varying degrees of
success. Results seem to depend on the interest of
the individual project leaders.

HIPO. The results from using HIPO are some­
what the same as with top-down design, although
HIPO is not used as much. The staff has modified
HIPO charts to incorporate a visual table of con­
tents on each chart. Some staff members consider
HIPO to be weak as a programming logic tool, and
awkward to use in going from the chart to code.

Structured programming. Each new program­
mer joining Mellon Bank goes through a training
program in the use of the bank's installation
standards and programming practices. Each pro­
grammer must write eight CoBOL programs as
part of this training. A programmer is encouraged
(but not required) to use structured programming
in writing all but one of these programs. Two self­
study texts are used to provide the needed train­
ing. So each new programmer is familiar with
structured programming practices from the
outset.

Structured walk-throughs. This technique has
proved to be very useful. It is used for reviewing
system specifications, system design, program de­
sign, and coding. The appropriate group of
people is selected for each of these reviews. Mel­
lon Bank finds that structured walk-throughs (1)
provide better communication with users, (2) give
better communication with computer operations,
(3) provide project leaders with a clearer picture
of how actual accomplishments agree with plans,
and (4) show project leaders what still must
be done. Structured walk-throughs are not yet
used by all development groups, but the use is
expanding.

Development support library. At the time the
IPTS were announced, Mellon Bank was already
using an automated library system for controlling
programs under development and in production.
The bank has continued to use this technique.

EDP ANALYZER, NOVEMBER 1977

Interactive debugging and testing. Mellon
Bank has 32 CRT terminals to support 90 program­
mers-about one terminal for every three pro­
grammers. Interactive debugging and testing are
done via Tso. Programs are coded on coding
sheets by programmers and then entered by the
data entry specialists. Programmers put testing
aids into the programs, for monitoring progress
through programs and for detecting the cause of
abnormal terminations.

The bank was not too happy with TSO under the
previous operating system that wa<; used. But with
MVS, results have been much better. A program­
mer can now get three to five test shots per day, as
compared with less than two test shots per day
previously. By comparing the time required to
test new systems (where TSO can be utilized fully)
with the time needed to test old systems (where
TSO may not be a good choice as a testing
strategy), management can see somewhere be­
tween 3 to 1 and 5 to 1 improvement in the man­
hours needed to do a maintenance job.

No attempt is made to closely control the use of
these terminals. The rule is: "When you think you
need to use a terminal, use it. When you are fin­
ished, get off." Management finds that the pro­
grammers do an effective job of self-policing in
the use of the terminals.

The best performers. Among the IPTS that they
have tried, the people at Mellon Bank see the best
performers for them as being the chief program­
mer team, structured walk-throughs, and inter­
active debugging. The other techniques are used
to some extent. In addition, the bank continues to
look for new ways to improve staff productivity.

Training and implementation
A major problem with using IPTS is implement­

ing them. Getting people to change their way of
doing things is not easy. Barry Boehm (Reference
4) gives three recommendations for implementa­
tion: (1) carefully plan the introduction of the
new techniques, (2) only tackle a couple of the
techniques at one time, and (3) train everyone in­
volved well, before the use begins. Substantial
education, management, practice, and encour­
agement are required for staff members to un­
learn their old habits, he points out.

The most typically successful approach for im­
plementing IPTS that we found is the pilot project.

7

One, or a few, senior programmers and a manager
take a course and then use the newly-learned
techniques on a pilot project. Following this,
standards for the department are created, and
then more staff members are trained. If only jun­
ior programmers are trained initially, probably
nothing will come of the effort; the use will not
spread.

The role of IPTS is most often discussed in terms
of developing new software. But these techniques
also have a role in system and program mainte­
nance-although opinions differ on the scope of
this role. Many say that the use of IPTS for mainte­
nance usually means starting over again, rather
than fixing up existing code. At the IBM Systems
Science Institutes, they recommend developing a
new modular structure for a program being main­
tained and then creating structured code. How­
ever, Parikh (Reference 8) feels that some IPTS can
be used effectively for modifying or enhancing
a system without restructuring it-as well as for
restructuring a system to improve its maintain­
ability.

Charles Holmes (Reference 4) gives a good case
study on the dos and don' ts of implementing IPTS.
He describes two attempts at McDonnell­
Douglas Automation Company to implement
structured programming, chief programmer
teams, an on-line production library via Tso, top­
down programming and structured walk­
throughs. On the first attempt, all of these meth­
odologies were tried at once. First, three chief
programmers spent five months defining project
standards. Then 20 programmers were given a
two week training course on structured pro­
gramming and chief programmer teams as well as
a one week course on TSO. Two computer oper­
ators were given a one week course on using TSO
to maintain a DSL. The new techniques were then
to be used on four program modification efforts
and one small development project. The imple­
mentation failed, says Holmes, "because we were
too ambitious and because we lacked coaching
and the visibility of the experiences of other
companies."

On their second implementation attempt, for­
mal training was given in phases. First, a two
week course on structured programming, top­
down programming, pseudo code and structured
walk-throughs was given. Several months later,
after the staff had a chance to use these tech-

EDP ANALYZER, NOVEMBER 1977

niques, courses on chief programmer teams and
the use of the library were given. Tso training was
postponed to a later date.

The people at McDonnell-Douglas Automa­
tion Company are pleased with this second ap­
proach. Implementation statistics show that
projects are being completed more quickly, and
they feel the quality of their software has
improved.

What we found seems to coincide with what
Boehm recommends. He says that the typical pit­
falls are going too fast and expecting too much.
He recommends tempering enthusiasm with
careful preparation and adequate training.

Experiences with the use of IPTs
What, in general, have been the user experiences

with IPTs? Here is a summary of what we found
from our interviews and our search of the liter­
ature. In the area of design, our references to the
literature draw upon Boehm, Katkus, and Gor­
don, all in Reference 4, and upon McCoy in Ref­
erence 5.

For designing software

The major impression that we received from
talking to IPT users was that the design phase is
the most crucial stage in the development proc­
ess. The biggest payoffs will come from improv­
ing the quality and depth of designs-leading to
an easier and faster programming effort, less test­
ing, fewer integration problems, and decreased
future maintenance.

Top-down design. Structured design, which is
one type of top-down design, appeared to be the
IPT that was of the most current interest. It is rela­
tively new and is not yet widely used. Those who
are using it are pleased with it. The aspect of
structured design that people find the most useful
is the ability to iterate the design to find the best
solution. Requiring people to do a lot of thinking
about the design of the system is an important
step in itself for improving software quality.

Boehm points out three pitfalls that can occur
during top-down design. One is using strict top­
down design on a problem where high risk, low
level functions may exist. In this case, he recom­
mends doing a risk analysis of such modules to see
which are the riskiest and should be designed in
more detail before proceeding. A second pitfall of

8

pure top-down design is the inability to identify
and combine bottom level common routines or
utilities. The third pitfall is that the top-down
control structure commits a project to a specific
hardware system early, before the hardware im­
plications of various design decisions are com­
pletely understood. Boehm points out that all
three of these problems can be resolved by full
top-to-bottom design reviews. A similar recom­
mendation comes from Stevens, Myers and Con­
stantine, as well as the people we talked to at
TRW. They recommend keeping the design of a
program on one sheet of paper. By doing this,
common modules, incompatibilities and the
probable effect of changes can be more easily
recognized.

IDPO. In our study we found that the use of
HIPO, as supplied by IBM, was mixed. In cases
where it has been tried and discarded, the same
information is still being used, but in a different
format. It is claimed that HIPO can be of use as a
design tool, to improve communication with
users, as documentation, and as an aid for mainte­
nance. We shall briefly discuss each of these uses.

Stephen McCoy states that HIPO charts are fine
for defining major program functions; however,
they give a limited and disjointed overview of
what the program as a whole is doing. H1Po ig­
nores the sequential nature of programming and
thus it leaves inexperienced programmers floun­
dering. He also says that the condensed format of
HIPO makes it difficult to estimate the degree of
complexity and the amount of coding involved.
Several people we talked with do find HIPO useful
for design, but say it is awkward to use when go­
ing to coding. Thus, for detailed design, they rely
on flow charts. The people who do use HIPO for
detailed design use pseudo code in the IPO charts,
to identify what is being done and what subrou­
tines are called.

On using HIPO to improve communications
with users, the people at TRW found that it
helped them little. Possibly, they said, this was be­
cause they presented the users with too much de­
tail or used too many currently popular "buzz"
words. Gene Katkus, on the other hand, found
that HIPO did improve communications between
programmers and engineers. He said that HIPO
made modular design easy to review and correct.

Those who are using HIPO during design plan to

EDP ANALYZER, NOVEMBER 1977

save the diagrams as documentation and to aid in
future maintenance. Combined with pseudo code
and structure charts, and based on their devel­
opment experience, they feel that these docu­
ments will he much better, for maintenance
purposes, than what they had used in the past.

Pseudo code. Interestingly, pseudo code is one
of the techniques most highly recommended by
the people we talked with. They recommend us­
ing it in conjunction with HIPO and/ or structure
charts. They state that its use makes the design
modules more detailed. And this precision and
readability allows a more concentrated design ef­
fort. It is this ability to get into the details of the
modules with pseudo code that is so highly
praised.

Gordon reports that after numerous design ite­
rations using pseudo code and top-down design,
when his group finally began coding, they felt
they were rewriting an existing program. They
had confidence in the code and so they coded
large chunks of it before any testing was done. So
they even avoided stub writing. And, although he
reports that the number of lines of code written
per day did not increase much, he feels that they
solved the problem with many fewer lines of
code-reducing machine time during devel­
opment and writing better quality code.

The other major contribution of pseudo code
that was pointed out to us is that it allows a
smooth transition from design to coding. The
modules are so well defined that coding is done
much more quickly.

For building software

For our discussion of building software, we
draw upon Boehm, Katkus, and Romanos, all in
Reference 4, as well as on Stay (Reference 2b),
Baker (Reference 3), and Holton (Reference 6).

Development support library. We found the
DSL, as defined by Baker, to be one of the least used
IPTs; but those who use it would not be without it.
The comments on DSL vary from "We really don't
need it" to "It would have been impossible to im­
plement the system as quickly or as well without a
library." We found that companies often use part
of the library concept, but do not put everything
together at one location, as recommended by
Baker. For example, in several cases, the program

9

data entry task has been turned over to clerks for
on-line entry. These people are often able to
catch programming syntax errors as they enter
the code. And they often request code com­
pilations. Automated library packages are also
used to track projects.

Holton did a survey of 23 larger companies in
the Los Angeles area. He found that 12 of those
companies use computerized library packages for
software development. But none have full-blown
DSLs, nor do any of them have librarians on soft­
ware project teams.

One benefit of the DSL that the people at Co­
lumbus Mutual pointed out to us is that it pre­
vents programmers from possibly making
modifications to obsolete versions. Source code is
out of the hands of the programmers, and this is
good from management's viewpoint.

On Columbus Mutual's large project, which
had 30 programmers at one point in time, they
had three secretary /librarians on the project.
With this combination, they were able to provide
libraPian backup. For smaller projects, providing
backup may be a problem.

Another problem often mentioned is: "Where
can we get a librarian?" The one answer most of­
ten heard is: "Don't use a programmer." A librar­
ian who begins to code will cause conflicts and
reduce the team's efficiency. Columbus Mutual is
happy with their choice of a former clerk and two
former keypunch operators.

The conclusion we come to is that companies
who have what they feel is an adequate devel­
opment support system, be it manual or auto­
mated, do not feel the need to change to a nsL.
But we noticed that on large projects especially, it
might be a worthwhile technique to investigate.

Structured programming. In his survey, Holton
found that 14 of the 23 companies surveyed were
using some form of structured programming. The
consensus among these users was that it probably
increases processing costs, but it does produce
better quality programs, makes maintenance eas­
ier, and makes more efficient debugging and test­
ing. We found essentially the same reactions to
structured programming.

One of the benefits that Baker points out is that
structured programming is useful in the virtual
systems (vs) environment. 4K byte modules are
desired because they fit onto one page in a virtual

EDP ANALYZER, NOVEMBER 1977

system. Also, structured programming encour­
ages locality of reference, keeping frequently
used code together and keeping the main line to­
gether. These all make more efficient use of vir­
tual systems.

Two problems with structured programming
were noted to us. One is the training problem, and
the other is the increased use of computer re­
sources in running structured code.

The companies we talked with were aware that
the introduction of structured programming
would initially increase programming costs-cre­
ation of new programming standards, staff train­
ing, and initial lower productivity. However,
they did mention that the learning curve was
short, when proper training was given. Boehm
noted that the problem of getting team members
to review each other's code did not seem a prob­
lem when the structured walk-through approach
was used. However, we did not hear of any proj­
ect managers who review their team's code.

On the increased use of computer resources,
the overhead .of modules is the increased e~ecu­
tion time and memory space needed to effect the
module call. James Romanos reports that on one
project that was measured, structured code took
6-10% more memory and run time was increased
by a small percentage. But he notes that these in­
creases can be reduced by monitoring the pro­
grams to identify the most active or most
inefficient pages. Stay states that the most active
modules can be rewritten for efficiency. And the
most active pages can be fixed in main storage. Or
modules can be combined into logically related
pages. However, before this tuning can occur, the
program will use more memory. This should be
taken into account during development.

Top-down programming. In our visits we found
people attempting at least some top-down pro­
gramming. In his survey of 23 Los Angeles firms,
Holton found that 14 were doing top-down devel­
opment (design and programming). He noted
that these firms saw more of a payoff from these
techniques than from the use of structured
programming.

Both the people at Hughes Aircraft Co., as re­
ported by Katkus, and the people at TRW did
concurrent top-down, bottom-up programming.
At Hughes, the bottom modules that were coded
first were the complex ones. Katkus reported that

10

the incremental demonstration of the system was
very effective, because of the top-down pro­
gramming. As each lower level was added, the en­
tire system was tested, to verify that these
modules did not adversely affect the operation of
the completed modules.

Katkus reports that top-down development
puts a lot of pressure on the programmers doing
the top two levels of modules. He states that this is
good, because it is better than putting pressure on
lower level modules. He found that they did have
to write some drivers to test bottom level mod­
ules, when some second level modules were
delayed.

Chief programmer teams. We saw a number of
variations of the chief programmer team concept.
In only one case did the company seem to follow
closely the concepts for these teams, as proposed
by IBM. Even in this instance, the "chief" of the
team need not be the most skilled programmer on
the team hut rather is the person with the most
combined management and programming capa­
bilities. Further, the concepts are not used for all
projects.

The adaptions of the technique that we saw
differ from the pure chief programmer team in
two ways. First, the teams do not use a project li­
brarian. Second, the chief is a chief designer
rather than a chief programmer. This reflects an
emphasis on the design phase rather than the cod­
ing phase. The chief manages the design to main­
tain its integrity. We found that these chief
designers do varying amounts of actual design
work. Most often they produce the design specifi­
cations, and often they do the functional design.
Sometimes they also do the detailed design; if not,
then they assign, co-ordinate and review detailed
designs, interfaces and data definitions done by
others.

The major pitfall, of course, is picking an in­
appropriate chief. The answer to this that we
heard most often was to use the concept only
when the personnel mix on the project seemed
well suited to the technique.

For testing software

Our discussion of testing will draw upon the pa­
pers by Katkus (Reference 4), McCoy (Reference
5), Holton (Reference 6), and Freeman (Reference
7).

EDP ANALYZER, NOVEMBER 1977

Structured walk-throughs. In our interviews
with people, we found structured walk-throughs
to be very well received. In fact, they were the
most highly touted technique, and were used by
the largest number of people. In Bolton's survey
of 23 companies, he found 14 used structured
walk-throughs. These firms reported that walk­
throughs tended to improve staff morale and pro­
duce more team cohesion. They also generally
felt that the walk-throughs contributed to faster
implementation, better quality programs, and
produced clearer and more useful programming
documentation.

In the literature, walk-throughs are described
as a programming review technique. We found,
however, that many people think they are more
effective as a design review technique. Whereas
they might need one walk-through during the
mding phase, they would need three during the
design phase. In fact, Katkus noted that, in his
group, code walk-throughs were not even re­
quired, because the systems had been so thor -
oughly reviewed during the design walk­
throughs. He found that all designs required at
least two walk-throughs. Some required more,
not because they were poor designs, but rather
because of the complexity of the system or the
misunderstanding of the requirements. Those de­
signs that required more walk-throughs even­
tually produced better code, in his opinion.

Peter Freeman notes that walk-throughs also
pedorm a forcing function-they force people to
get work done by a specific time. And the educa­
tion of other staff members is a by-product. They
may he likened to (or used as) a tutorial on a par­
ticular design aspect.

One point often made about structured walk­
throughs is that management should not attend
them, because they may use walk-throughs for
employee performance appraisal purposes. We
found several users who agreed with this position.
But Katkus noted that, in his experience, pro­
grammers liked the project manager to attend,
because they felt that the manager obtained a bet­
ter understanding of the software and of the de­
tails of their work.

So, all in all, structured walk-throughs were
found to be a very useful technique. McCoy
noted, however, that they can become less effec­
tive if too many are held or more than 3 to 5
people attend any one. He found that they are

11

useful, up to a point.

Interactive debugging and testing. The people
we talked to who used interactive debugging and
testing were very pleased with its easy implemen­
tation. They found its use was quickly accepted
and led to immediate productivity gains. They
also found it to be useful in managing projects.
The system used by these people is IBM's Tso,
used in conjunction with the COBOL debugging
facility and the structured programming facility.

We were told that the newer versions of these
products have greatly enhanced productivity of
the programmers. They display information by
scrolling, they are quick, and they provide helpful
utilities. IBM also offers HIPODRAW, a facility for
drawing HIPO charts, and scoBOL, which supports
structured programming in COBOL.

Conclusion
As we mentioned, IPTs have been widely mar­

keted and discussed. Their use now appears to be
growing, with this use not being restricted to only
IBM shops. The people at the IBM Systems Sci­
ence Institute say that their five-day programmer
productivity techniques course is open to every­
one, and non-IBM users do attend. The tech­
niques taught there, and discussed in this issue, are
not proprietary to IBM (except Tso). So their use
need not be limited to IBM users.

A major benefit of the use of these techniques,
we are told, is that they make the system devel-

EDP ANALYZER published monthly and Copyright® 1977
by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
92083. All rights reserved. While the contents of each report
are based on the best information available to us, we cannot
guarantee them. This report may not be reproduced in whole
or in part, including photocopy reproduction, without the

EDP ANALYZER, NOVEMBER 1977

opment staff think more-during design, building
and testing. And these techniques encourage
team thinking and reasoning, which companies
are finding to be very beneficial in problem solv­
ing. Each of the IPTs is being put to good use
somewhere. They are not equally widely used,
and no one that we contacted is using all of them,
yet. But companies seem to be gradually experi­
menting with them, one by one, keeping some,
modifying others, and discarding the rest. We
think that the approach taken by management
systems at TRW ossG is a good approach. They
studied the techniques and first implemented
those that seemed to fit in with their environment.
They stressed to us that trying to implement
too much at once can result in chaos. Further,
strong management support and understanding
are necessary.

People we talked with were genuinely im­
pressed (if not somewhat surprised) with the gains
they had made in their software development
process through the use of certain IPTS. But the
choice of which techniques to use and how to im­
plement them played a key role in their successful
use. And they expect that the best is yet to come,
with decreased future maintenance on these
structured systems.

Prepared by:
Barbara C. McNurlin
EDP Analyzer Staff

written permission of the publisher. Richard G. Canning, Edi­
tor and Publisher. Subscription rates and back issue prices on
last page. Please report non-receipt of an issue within one
montb of normal receiving date. Missing issues requested af­
ter this time will be supplied at regular rate.

12

REFERENCES

General information on IPTs
1. IBM general information manuals; order by number from

local IBM office:
a. Code reading, structured walk-throughs and in­

spections, GE 19-5200, $2.70
b. Improved programming technologies-an overview,

GE 19-5086, $2.70
c. Structured programming in COBOL, GC 20-1776,

$2.00
cl Structured programming in PL/ 1, GC 20-1777, $2.00
e. Structured programming in FORTRAN, GC 20-1790,

$1.90
f. HIPO-A design and documentation technique, GC 20-

1851, $3.20
g. OS development support libraries, GC 20-1663, $1.10
h. TS0:3270 structured programming facility (SPF), CH

20-1638, $1.80
i. COBOL interactive debug facility, GC 28-6454, 65

cents
j. HIPODRAW, SH 20-1728, $3.20
k. SCOBOL, GK 10-6089, $1.40

Using IPTs

2. IBM Systems Journal (IBM, Armonk, New York 10504),
price $1.75 each:

EDP ANALYZER, NOVEMBER 1977

a. Stevens, W. P., G. J. Myers, and L. L. Constantine,
"Structured design," Vol. 13, No. 2 1974, pp. 115-139.

b. Stay, J. F., "HIPO and integrated program design," Vol.
15, No. 2 1976, pp. 143-154.

3. Baker, F. Terry, "Structured programming in a production
programming environment," IEEE Transactions on Soft­
ware Engineering (IEEE Computer Society, 5855 Naples
Plaza, Suite 301, Long Beach, California 90803), June
1975; pp. 241-252; price $10.00.

4. "Structured programming: A quantitative assessment," (6
papers), Computer (IEEE Computer Society, address
above), June l!J75, pp. 38-54; price $6.00.

5. McCoy, Stephen M., "Structured programming: Miracle
or mirage?" Journal of Systems Management (Association
for Systems Management, 24587 Bagley Road, Cleveland,
Ohio 44138), August 1976, pp. 10-11.

6. Holton, John B., "Are the new programming techniques
being used?" Datamation (1801 S. LaCienega Boulevard,
Los Angeles, Calif. 90035), July 1977, pp. 97-103.

7. Freeman, Peter, "Toward the improved review of software
designs," Tutorial on Software Design Techniques, (IEEE
Computer Society, address above), price $12.

8. Parikh, G., "Improved maintenance techniques," Shetal
Enterprises (1787 B West Touhy, Chicago, Illinois 60626);
1977; price $6.<Xl.

13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1974 (Volume 12)
Number

1. Protecting Valuable Data-Part 2
2. The Current Status of Data Management
3. Problem Areas in Data Management
4. Issues in Programming Management
5. The Search for Software Reliability
6. The Advent of Structured Programming
7. Charging for Computer Services
8. Structure~ for Future Systems
9. The Upgrading of Computer Operators

10. What's Happening with CoDASYL-type DBMS?

11. The Data Dictionary/Directory Function
12. Improve the System Building Process

1975 (Volume 13)
Number

1. Progress Toward International Data Networks
2. Soon: Public Packet Switched Networks
3. The Internal Auditor and the Computer
4. Improvements in Man/Machine Interfacing
5. "Are We Doing the Right Things?"
6. "Are We Doing Things Right?"
7. "Do We Have the Right Resources?"
8. The Bene£ts of Standard Practices
9. Progress Toward Easier Programming

10. The New Interactive Search Systems
11. The Debate on Information Privacy: Part 1
12. The Debate on Information Privacy: Part 2

1976(Volume14)
Number

1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)
Number

1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Requirements Right
8. Managing Staff Retention and Turnover
9. Making Use of Remote Computing Services

10. The Impact of Corporate EFT
11. Using Some New Programming Techniques

(List of subjects prior to 1974 sent upon request)

PRICE SCHEDULE
The annual subscription price for EDP ANAL yzER is $48. The two year price is $88 and the three

year price is $120; postpaid surface delivery to the U.S., Canada, and Mexico. (Optional air mail delivery
to Canada and Mexico available at extra cost.)

Subscriptions to other countries are: One year $60, two years, $112, and three years $156. These
prices include AIR MAIL postage. All prices in U.S. dollars.

Attractive binders for holding 12 issues of EDP ANALYZER are available at $6.25. Californians
please add 38¢ sales tax.

Because of the continuing demand for back issues, all previous reports are available. Price: $6 each
(for U.S., Canada, and Mexico), and $7 elsewhere; includes air mail postage.

Reduced rates are in effect for multiple subscriptions and for multiple copies of back issues. Please
write for rates.

Subscription agency orders limited to single copy, one-, two-, and three-year subscriptions only.

Send your order and check to: Send editorial correspondence to:
EDPANALyzER EDPANALyzER
Subscription Office Editorial Office
925 Anza Avenue 925 Anza Avenue
Vista, California 92083 Vista, California 92083
Phone: (714) 724-3233 Phone: (714) 724-5900

Name'~--------------------------------------­

CompanY~------------------------------------~

Address.~--------------------------------~

City, State, ZIP Code'------------------------------

