
EDP ANALYZER
© 1979 by Canning Publications, Inc.

NOVEMBER, 1979
VOL. 17, NO. 11

STAND-ALONE PROGRAMMING WORK-STATIONS

Last month we discussed one type of programming work-sta­
tion-host programming work-stations. These are software and
firmware tools for use on in-house host computers. We described
how users are obtaining increased programmer productivity and
improved quality of programs through the use of these tools.
This month, we look at a second type-stand-alone programming
work-station systems. And we develop a checklist of system fea­
tures which data processing management can use to better evalu­
ate these up-and-coming products.

Pullman Kellogg is an international
process engineering company, specializing in
building oil refineries, fertilizer plants, and
other large process control factories. It is a
subsidiary of Pullman Inc. and employs some
3500 people worldwide.

Several years ago Pullman Kellogg central­
ized its data processing operation at its head­
quarters in Houston, Texas. There it uses the
computer equipment of another Pullman sub­
sidiary, Pullman Computer Services. Pullman
Computer Services operates two computer
centers in Houston, each with two IBM 370/
158s that use TSO and CICS. Kellogg has its
own system development staff of 85 program­
mers.

After moving to Houston, the Kellogg pro­
grammers were encouraged to use TSO for on­
line programming. Management speculated
that this would increase their programmers'
productivity by about 15% over their previous
card and batch development environment.

Well, the switch to TSO was successful-so
successful in fact that, by early 1978, it had de-

graded system response time badly. And their
15% increase in productivity was evaporating.
Programmers were waiting anywhere from
three to twenty minutes to just sign onto the
system. Also, TSO usage charges had grown
rapidly.

These factors prompted the lead technical
support person to present the problem at a
monthly 'open forum' meeting. These are
meetings at which members of the department
present and discuss current departmental prob­
lems with the data processing manager. The
discussion led to formation of a six-member
team to investigate alternatives to TSO for on­
line software development and maintenance.

After several months of intermittant study,
the team recommended acquiring a Four-Phase
Programmer Workstation (PWS). Pws is a
stand-alone programming work-station system.
The prospect of off-loading all of their devel­
opment work, except compilation and testing,
from the large IBM machines appealed to Kel­
logg very much, particularly because of the
large TSO costs they were encountering.

ISSN 0012-7523. Multiple copy prices listed on last page. Photocopying this report for personal use is permitted, providing
payment of $2.00 fee per copy of report is made to Copyright Clearance Center, P.O. Box 765, Schnectadf, N.Y. 12301;
please include identifying fee code 0012-7523179/110001-13$02.00.

Kellogg was familiar with Four-Phase be­
cause they had been using its data entry system
for some time, and were pleased with it. So in
September 1978 a twelve-station PWS system
was installed. The system currently includes a
Four-Phase IV /90 mini-computer with 192k
bytes of memory, two 67.5 megabyte disks, 600
and 1000 line per minute printers, a card
reader and 15 display work-stations.

Due to the large number of programmers at
Kellogg, they decided to perform training in­
house, and as quickly as possible. So the train­
ing director held three two-hour sessions a day.
With six programmers in each session, the en­
tire department was trained in two weeks late
last year. No further formal training has been
needed.

Migration from TSO to PWS occurred within
two weeks, because the programmers preferred
the rapid response time on the off-line system.
And management was pleased with the cost of
PWS. It has a fixed cost of about $1300 a week
for twelve work-stations; the cost is not usage
dependent like that of TSO. Tso usage dropped
from 2,500 CPU minutes per week to about 5
CPU minutes. Management also believes that
they have regained their projected 15% in­
crease in programmer productivity, and per­
haps more.

For software maintenance, PWS is used as
follows. The programmer walks to one of the
work-stations, which are located at different
points in the department. After signing on, he
or she uses a PWS macro command to create a
copy of the source listing of the program he or
she is to work on. The source code library is
maintained on the mainframes by Panvalet, a
program librarian package. Since this copying
function may take anywhere from one minute
to 15 minutes, the programmer signs off or
performs other work on the work-station.

When the program listing is available on
PWS, the programmer makes the needed
changes on-line using the system's editing fea­
tures. After these are completed, he executes a
canned job control routine to compile and test
the program on the target host, the IBM 370/
158. This PWS routine performs all of the nec­
essary operations to place the job in the host's
RJE batch queue, return the run results to PWS,
and place the program in Panvalet' s test li-

EDP ANALYZER, NOVEMBER, 1979

brary. The programmer can then view the re­
sults of the test run on the work-station.

For creating new programs on PWS, the pro­
grammers often first retrieve strings of JCL in­
structions, CICS maps for database use, or CO­
BOL modules. Using these, they delete what is
not needed, add new information, and thus
more quickly create new programs. This proce­
dure actually leads the programmers through
the coding phase, so they tend to make fewer
omission errors, we were told.

Pullman Kellogg has not found it necessary
to install work-stations in every programmer's
office. They have found one work-station for
every six programmers is sufficient. The pro­
grammers readily share the work-stations and
there is little waiting to use one. The people at
Kellogg say this is because use of PWS makes
coding and editing sessions shorter and more
efficient than had been true using TSO.

Pullman Kellogg is very pleased with their
use of PWS. And their enthusiasm for the on­
line approach is spreading to other Pullman di­
visions.

BNR INC

BNR INC is a subsidiary of Bell-Northern
Research Ltd., which has its headquarters in
Ottawa, Canada, and is a research and develop­
ment laboratory for Northern Telecom and
Bell Canada. Bell-Northern Research is one of
the largest telecommunication research labora­
tories in the world, employing some 2800 peo­
ple. BNR is located in Palo Alto, California,
just south of San Francisco, and employs about
300 people. BNR does telecommunication and
automated office research. For example, they
develop the software for computerized PBXs
manufactured by other N orthem Telecom sub­
sidiaries. BNR has three DEC PDP 11/70s, one
11/60 and one DEC 2050 on site. They also
communicate to Bell-Northern Research's IBM
3033 in Ottawa over a leased line.

In 1978 BNR wanted to increase computer
support for its various programming projects.
Since they were operating their equipment un­
der the UNIX time-sharing operating system de­
veloped by Bell Labs, and since they liked it
very much, they became interested in a similar
Bell-developed operating system, PWB/UNIX.

2

This system is commonly called the Program­
mer's Workbench.

The Programmer's Workbench is based on
UNIX. It contains most of the UNIX features and
has enhancements designed specifically to sup­
port software development. Western Electric
(part of the U.S. Bell family system, with no
connection to Bell Canada or Northern Tele­
com) licenses use of both UNIX and PWB/UNIX,
but they do not support either system. So they
allow their licensees to enhance, market and
support both of these products. One such li­
censee is Interactive Systems Corporation
(ISC) in Santa Monica, California, near Los
Angeles.

In mid-1978 BNR decided to license use of
Interactive System Corporation's version of the
Workbench (the IS/l Workbench), because it
could run on both their PDP 11/70s and their
11/60. Further, they wanted ISC's training and
support for the system.

BNR also installed some complementary
products developed by ISC. One is INed, an en­
hanced editing package that provides split
screening, cut-and-paste operations, and full­
screen editing.

Another ISC product that BNR uses is the
INtext terminal. When used with the INed
package, most of the editing operations are
carried out in the terminal processor, thus re­
ducing the workload on the DEC mainframes.
BNR has about 36 of these terminals and about
65 other terminals to support 200 users. Some
125 of these users are programmers; the other
75 are office personnel who use only the word
processing features of the systems. BNR has
found the INtext terminals to be very cost ef­
fective. They estimate that these have taken
over about one-half of the work of their main­
frames.

A third complementary product is the re­
mote job entry (RJE) sub-system. It handles the
transmission of jobs to target systems. BNR
uses the RJE facility to transmit jobs to the IBM
3033 in Ottawa.

Use of the Workbench for software develop­
ment at BNR generally begins in the require­
ments phase. BNR puts all requirements docu­
ments on the system, using another product,
!Nroff. !Nroff is a text formatting system for
use with line printers, matrix printers, and

EDP ANALYZER, NOVEMBER, 1979

typewriter-like devices as well as typesetters. It
allows users to define standard formats to be
used for different types of documents. These
formats can then be used by calling their ma­
cro command names.

BNR's requirements documents have a stan­
dard format, making them easier to review by
the users-the engineers. And they are kept up­
to-date with the system's text editing features.
On one project, the requirements document
went through 15 iterations in just one day. The
secretary was able to keep up with this pace
using the system.

BNR finds the Workbench to be a very so­
phisticated programming tool. They took ISC's
four-hour training course, but some users
found the system hard to use at first. Now, af­
ter some months of use, they greatly appreci­
ate its sophisticated features.

One such feature is the Workbench's com­
mand language, known as the 'shell.' The shell
is used for entering user commands to the UNIX
operating system. In the Workbench, the lan­
guage's capabilities have been substantially ex­
tended, making it convenient to use as a very
high level programming language. The com­
mands can be used alone, strung together on
one line to form a very powerful sequence of
operations, or combined with control com­
mands to form shell programs.

BNR programmers do a lot of shell pro­
gramming, we were told. They create standard
RJE JCL strings for the 3033 and place them in
files. T. A. Dolotta, et al (Reference 1) point
out that programmers who use the shell for
this purpose make 20% fewer errors than those
who write their own RJE JCL.

These authors also point out that shell pro­
gramming is often preferred by programmers,
because the commands are quickly learned.
Anyone who has used the UNIX system has
learned some of these commands. And shell
programming is fast, requiring much less hu­
man effort than conventional programming
languages do. If a program is going to be used
a lot, it can be recoded in a more efficient lan­
guage, after the shell program has proven its
worth. For programs not run often, the origi­
nal shell programs suffice.

In at least one case, a BNR programmer has
used the shell to write throw-away code for a

3

significant application system-an in-house
message system. The programmer wrote the
programs using the shell commands. It was not
a very efficient system to run, but it was cre­
ated quickly. Then the system was used for
about two months by some half dozen users.
Their critiques were evaluated and the system
was redesigned where needed. Then, it was en­
tirely recoded in the language c, the UNIX sys­
tem implementation language. And the old
shell system was thrown away. The final system
consists of 5000 lines of code, yet the entire
project took only about four work-months of
effort to complete. More importantly,' the use­
fulness of the new system was demonstrated
one-fourth of the way through the project.

Another feature of the Workbench that
BNR uses a lot is the source code control sys­
tem (secs). Secs is a set of commands that is
used to control changes to source code and
files of text, such as manuals. Using it, versions
of source code are tracked, along with the date
of each change, who made each change, and
why. The system stores the common code
once, and the various versions separately, so
that any version of a program can be recreated,
as desired. BNR uses secs to track and control
most of their software projects, so they have a
complete history of each project's work.

From their use of the Workbench, the peo­
ple at BNR have found that it has increased
their productivity as well as the quality of their
software. They think that because of its sophis­
ticated features, the Workbench is aimed at
people who use it constantly, such as program­
mers.

Two users of Pet/Maestro

One of the leading programmer work-station
systems has been developed by Softlab GmbH
of Munich, Germany. In Europe, this system is
marketed by Softlab under the name PET I

Xll50, and it runs on the Philips Xll50 mini­
computer equipment. In the U.S., it is mar­
keted by Maestro Systems, Inc., a subsidiary of
Itel Corporation, under the name 'Maestro.'
We will refer to the system as 'Pet/Maestro.'

Since Pet/Maestro is among the most pow­
erful of the programmer work-station systems
and since the longest usage of this system has

EDP ANALYZER, NOVEMBER, 1979

been in Europe, we visited two organizations
there to learn of their experiences.

Vereins-und West bank

Vereins-und W estbank, with headquarters in
Hamburg, is the largest regional bank is north­
west Germany. The bank has 265 branches, lo­
cated mainly in the northern part of the coun­
try. At the end of 1978, deposits were almost
DM 8 billion.

Hamburger Dataverarbeitung GmbH (HDV)
is the wholly-owned data processing subsidiary
of Vereins-und Westbank. HDV provides data
processing services not only for the bank and
its branches but also for a number of bank cus­
tomers. HDV uses an IBM 370/158AP, with
24 Philips remote job entry terminals. There is
a development staff of 65 people, the majority
of whom are programmers.

HDV has been a rapidly growing operation,
and additional workspace has been needed al­
most continually. So, for some years, the pro­
grammers have not been located near the com­
puter center, usually being 6 to 10 km away.
Initially, source decks had to be transported
physically, but for several years a remote job
entry terminal had been used for communicat­
ing with the host computer. But even with the
RJE terminal, there still were problems. Turn­
around was slow during peak periods, for in­
stance, or the host might be down, etc.

In early 1977, several of the managers at
HDV saw an announcement of the new Pet/
Maestro system. They had been looking for an
improved support tool for programming and
had looked at IBM's time-sharing option (TSO).

But the operating system they were then using
did not support TSO so that was not a solution
they could use. They checked on the new Pet/
Maestro system, liked what they saw, and got
HDV to enter an order for two systems. Each
system was to have eight work-stations and 2.5
million bytes of disk storage. These systems
were installed in May 1977.

The acceptance of these new systems was al­
most immediate, we were told. All of the pro­
spective users were given a four-day training
course. Within two months, both systems were
fully loaded and most of the programmers
were asking for their own terminals. (A few of
the programmers initially felt that the systems

4

were downgrading them to 'key punchers,' but
after some use, they changed their views.)

So in October, 1978, HDV ordered three
more Pet/Maestro systems, with a total of 50
work-stations, and increased disk capacity to
62 Mb per system. And in August of this year,
they increased the total number of work-sta­
tions to 68.

Most of HDV's existing applications are
batch systems that have been written in assem­
bler language. But new systems are being writ­
ten in COBOL, and a growing number of them
are interactive applicatir)ns that use IMS.

Use of Pet/ Maestro. HDV uses Pet/Maestro
much like a typical on-line system-with some
important differences based on features that
Pet/Maestro offers. A text editor is provided,
with which programmers enter and change
lines of code. A library facility is included­
with access control-for storing code in an or­
ganized fashion, for easy retrieval. A program­
mer can copy sections of already-written code,
or standard data definitions, into a new pro­
gram. A reconstruct facility is provided, along
with a number of other programming support
features. In short, HDV uses an integrated set
of functions, provided by Pet/Maestro, in the
program development process.

In addition to the various functions provided
with the Pet/Maestro system, HDV has devel­
oped about 55 procedures of their own, using
the command language, for program develop­
ment functions they desire.

When a module has been coded, the pro­
grammer instructs the Pet/Maestro computer
to transmit the module to the host 370 system,
on a remote batch basis, for compiling and
test. The results are transmitted back to the
Pet/Maestro system, often within 30 minutes­
but turnaround may be in the order of two
hours during afternoon peak load periods. The
programmer can examine the results via the
work-station, make any corrections using the
text editor, and repeat the compile and test, if
required.

Other uses. This use of Pet/Maestro by pro­
grammers is only part of HDV's use of the sys­
tems. As it was expressed to us, "We are using
these systems almost as 'automated office' sys-

EDP ANALYZER, NOVEMBER, 1979

terns." Here is a very brief summary of those
uses.

The systems are used by analysts and design­
ers for storing requirements, specifications, and
design statements, in text form. The text editor
makes it easy to keep these statements up to
date.

Users can send messages from any work-sta­
tion to any other, via the host.

The systems are used for recording and
keeping current certain management informa­
tion, such as the organization charts, staff lists,
job assignment lists, and so on.

And the results of a business systems plan­
ning (BSP) study made last year are kept in the
systems.

Some benefits. We asked about the benefits
that have been obtained. Programmer produc­
tivity has been improved by at least 20 to 30%,
they estimate, both for maintaining and en­
hancing existing systems as well as for develop­
ing new ones.

Pet/Maestro has removed some workload
from an already loaded host CPU. And by elimi­
nating most of the syntax errors, it has cut
down the number of compilations.

The programming effort is now much less
dependent on the host computer; it does not
stop if the host is down. On the other hand, the
programming effort is very dependent on the
Pet/Maestro systems; if one of those is down,
the people using it essentially stop work.

But the overall impression we received is
that HDV feels it is just beginning to exploit
the capabilities of the Pet/Maestro system.
Both as the system is enhanced by Softlab and
as HDV extends its usage, benefits will con­
tinue to accrue.

Enka BV

Enka is the largest division of Akzo NV, an
international group of industrial companies
that employs over 83,000 people world-wide.
The group's headquarters is in Arnhem, The
Netherlands. The Akzo companies produce
man-made fibers, salt, heavy and specialty
chemicals, and other products.

The Enka division produces most of Akzo's
man-made fibers, in the form of textile yams
and fibers, industrial yarns, and miscellaneous

5

polymer products. The division has two main
components-Enka AG in Wuppertal, West
Germany (which is the division headquarters)
and Enka BV in Arnhem, The Netherlands.
We visited Enka BV to learn about their use of
Pet/Maestro.

Until early 1978, Enka used RJE terminals to
communicate between the programmers and
the Akzo IBM 370 host (now a 3033). Turn­
around time for compilations and tests aver­
aged between one and two hours. But there
wer~ the usual problems with this type of op­
eration and the people at Enka were looking
for better methods.

So they began an investigation of the use of
IBM's TSO for on-line program development. A
pilot project, involving four programmers and
two terminals, was set up. While it was an im­
provement, TSO still was not what they were
seeking, they found; use of it required a good
k~owledge of the system, it was rather expen­
SIVe, and response time varied from three sec­
onds (acceptable, unless you are scrolling
through files) to five minutes (completely frus­
trating), depending upon the load on the host
computer.

Then in late 1976, one of the Enka software
specialists saw a demonstration of the Pet/
Maestro system in Dusseldorf, Germany. He
was impressed, but found that the system was
not yet available in The Netherlands. In fact, it
took Enka over one year to get their first Pet/
Maestro system. The first one was installed in
Arnhem in February 1978, while the second
was installed in Wuppertal shortly thereafter.

The original system at Arnhem had 10 work­
stations for a user group of 35 people. It was
brought in for a trial period of three months.
Softlab gave a three-day training course to the
staff two weeks after installation, but by that
time some of the staff had already learned to
use it on their own.

What was the response to the three-month
trial? In the words of the software specialist
we talked with, "We found that we couldn't
take the system out. Just about everyone was
enthusiastic. I made a survey, and one of the
~espouses was amusing. This programmer said, I: anro~e tries to take my terminal away, I'll
kill him. Most of the other responses were just
as positive but not that aggressive."

EDP ANALYZER, NOVEMBER, 1979

In December 1978, Enka BV installed its
second Pet/Maestro system and now has a to­
tal of 16 work-stations. Enka AG has one sys­
tem with 10 work-stations.

Use of Pet/ Maestro. At Enka BV, system ana­
lysts use Pet/Maestro for developing the speci­
fications for a new system in text form. The
top-down design features, plus the text editor,
make it easier for them to correct and add to
the specifications. Working from the specifica­
tions, the programmers thep_ use the system's
interactive structured program design feature
for developing program modules.

With the structured program design feature,
a programmer first indicates that he (or she)
wishes to create a module. This starts a dialog
between the system and the programmer. For
each step, the system gives the programmer
five choices: an action, a loop, the end of a
loop, a branch point, or a case construction. As
an example, the top level definition of a mod­
ule might consist of the following series of
statements: (1) Action-open personnel master
file; (2) Action-validate file expiration date; (3)
While-not at end of personnel file; (4) Case­
(a) applicant resume received, (b) interview, (c)
hire; (5) End while. The programmer would
then go on to give more details for each of the
three case situations.

At this point, the programmer asks Pet/
Maestro to draw a 'structogram' of the logic.
The stmctogram is a form of Nassi-Schneider­
man diagram. It is usually printed out, so that
the programmer can study it and go over it
with the system analyst and, if necessary, the
user. If changes are needed, they are made in
the statements and the system draws new dia­
grams.

With the module logic developed, the pro­
grammer then proceeds to code the module in
COBOL and transmit it to the host for compila­
tion and test. To aid in program development,
Enka has created about 40 of their own macro
procedures, in addition to the standard func­
tions and procedures included in Pet/Maestro.

Some benefits. It is hard to compare the new
environment with the old one, we were told,
because it is difficult to get comparable figures
for the old situation. But the software special­
ist we talked with had made a survey among

6

the whole development staff. Following are the
average estimates found from this survey.
Overall programmer productivity has increased
about 30%. For program maintenance, produc­
tivity gains are even higher, in the order of
40%, due to the ease with which changes can
be made. Quality of the work done has in­
creased, and users have estimated this increase
to be 10% to 15%. The documentation is more
complete and more up-to-date. And the system
gives fast response. Independent of the number
of users on it, the system gives a response time
of between one-half and four seconds, depend­
ing on what is asked of it. Users of Pet/Mae­
stro are under no pressure, since "the meter is
not ticking" and the user can work at his/her
own pace. Further, the (fast) system response
time does not slow down the user.

Programming work-station types
To repeat ourselves a bit from last month,

we define programming work-stations as those
portions of computer systems that have been
developed specifically for use by programmers
for software development and maintenance. To
use them, programmers work at work-stations,
either CRT displays or typewriting terminals,
rather than with pencils, coding sheets, cards,
and paper listings.

We see two main types of programming
work-stations: host programming work-stations
and stand-alone programming systems.

Host programming work-stations, which we
discussed last month, are software or firmware
products designed to run on a company's main
computer. We described three such systems
last month. One is aimed mainly at enhancing
procedural programming, when conventional
programming languages are used; it also sup­
ports one non-procedural language. Another
increases productivity through non-procedural
programming, where the programmer specifies
what needs to be done, rather than how it is
done. The third system is a firmware system for
a departmental-size mini-computer, to make it
easier for the user department to develop pro­
grams.

Stand-alone programming systems, on the
other hand, are devoted entirely to program
development support. Programs developed on

EDP ANALYZER, NOVEMBER, 1979

these systems are generally intended to run on
different machines, called 'target systems.'

For a list of the products we found in our re­
search, see Reference 7.

Let us now look at stand-alone program­
ming systems in more detail.

Stand-alone programming systems
Stand-alone programming work-station sys­

tems are relatively new offerings. They are
complete, stand-alone systems designed specif­
ically to support software development. As
such, the programs written using them are gen­
erally intended to run on target machines. So
these stand-alone systems require a communi­
cation facility for sending programs to the tar­
get computer for compiling and testing.

Karl Drexhage, a management consultant
who has had extensive experience with pro­
gramming work-station use in Europe, points
out in a paper (Reference 6) some of the bene­
fits of stand-alone systems over host-resident
systems. For one thing, he says, like distributed
data processing, they shift work from a central
computer onto a distributed computer-in this
case, a dedicated development computer. And
since development work no longer competes
with production work for system resources,
stand-alone systems give better response time.
They give a low guaranteed response time-in
the order of two seconds-while host system
response times vary with the workload (and
can become intolerably slow during peak us­
age).

Being off line, data security is better, he says.
And these systems are more reliable since there
are fewer parts to break down. They are de­
signed for development work, so they are bet­
ter human engineered. And stand-alone systems
are lower in cost, because they eliminate the
need for added memory, disk storage, commu­
nication software, and terminals required for
host-based systems. Finally, says Drexhage,
they are host independent, so they can be used
to develop applications for different hosts.

Let us now look at the three stand-alone sys­
tems mentioned earlier, in a little more detail:
PWS from Four-Phase Systems, Programmer's
Workbench developed at Bell Laboratories,
and Pet/Maestro from Softlab GmbH in Eu­
rope and Itel Corporation in the United States.

7

PWS from Four-Phase Systems

The Programmer Workstation (PWS) from
Four-Phase Systems is a stand-alone system de­
signed specifically to support software develop­
ment for IBM System 360, 370, and 3000 Se­
ries computers. Users can develop programs in
any language that these target mainframes can
compile.

The typical basic system consists of a Four­
Phase mini-computer with 96k bytes of mem­
ory, a 67.5 megabyte disk drive, a 300 line per
minute printer, a communication controller,
and up to 16 display work-stations. It can be
upgraded to l 92k bytes of main memory, with
other peripherals also added.

To compile or test a program, the program­
mer places the job and its associated JCL string
into a PWS SEND queue. The system transmits
the files over communication lines to a batch
queue in the target mainframe. Following exe­
cution, the mainframe sends the results back to
the PWS printer. This output can then be re­
trieved at the work-station.

Pws allows editing in both command and
full-screen modes. In the command mode, the
cursor is outside the display window that con­
tains the text. From here the user can type in
commands to work on lines of text or entire
files. The user can do such things as: (1) re­
quest automatic tab settings and format con­
trol for writing Assembler, COBOL, FORTRAN,

and PL/l programs; (2) search for strings of
text, change and delete portions of the text,
and then get successive occurrences of that
string; (3) scroll forward one or ten records at
a time; (4) perform functions on entire files,
such as delete, rename, print, save, and queue
for transmission; and (5) monitor the status of
jobs sent to the target machine.

In full-screen editing mode, the cursor
moves into the 21-line window containing the
text. The user can directly edit the data using
function keys. Pws also provides programming
function menus of often-used functions.

(Note that Pet/Maestro, which also runs on
Four-Phase equipment, is a different system.)

For more information on the Four-Phase
PWS, see Reference 2.

EDP ANALYZER, NOVEMBER, 1979

Programmer's Workbench from Bell Labs

As we have mentioned, the Programmer's
Workbench (technically named PWB/UNIX) is a
time-sharing operating system developed at
Bell Laboratories. It runs on DEC PDP-11 com­
puters, models 45 to 70. (Some licensees have
parts of it running on smaller DEC machines,
we are told.) Also, Interactive Systems Corpo­
ration (Reference 4) offers V AX/WB, to run on
the DEC 32-bit VAX machine under the VMS

operating system.
Programs developed using the Programmer's

Workbench can be targetted to run on DEC
machines using UNIX, on IBM System/370, and
on Univac HOO-series computers. Some licens­
ees also include Burroughs in this list. The
Workbench can act as either a stand-alone
programming system or as a host system (for
testing and compiling programs as well as run­
ning production jobs).

The Workbench contains a hierarchical file
system of directories and files. Use of the files
is very flexible and contributes to the Work­
bench's usefulness. There are nine file protec­
tion modes possible-all combinations of read,
write, and execute access, for three types of
users: the file creator, a specific group of users,
such as his project team, and all other users.
The protection status of a file can be redefined
by the creator at any time.

We have already discussed the system com­
mand language, the shell. Any program written
using it can be named and used as if it also
were a command. The output of one command
can be connected to the input of another, so
complex operations can be created by chaining
together operations of simple programs.

For example, there are shell commands
which can: (1) search a file, or several files, for
a given string of characters; (2) compare two
files and list the differences; (3) check a file for
mis-spellings; (4) format a file based on instruc­
tions embedded in the test; and others. With a
single command, a user can format a body of
text, add line numbers, double space the text,
and direct the result to an output device.

The Workbench also includes powerful
word processing functions, including text for­
matting commands, spelling error detection,
and numerous text editing functions, such as

8

automatic pagination, hyphenation, right mar­
gin justification, footnote placement, a multi­
column page option, a table of contents gener­
ator, and different paragraph styles.

The RJE facility that we mentioned earlier
makes the Workbench look like a card reader I
punch and line printer to the target machine.
The RJE sub-system performs all of the func­
tions necessary for communicating with the
target, such as gathering together the necessary
files, transmitting the job, receiving the com­
pleted work, opening a new Workbench file
into which this output is put, etc.

Another feature of the Workbench is its two
test drivers. These allow the system to simulate
interactive terminals operating either on a Uni­
vac HOO-series computer or an IBM System/
370. These are especially useful for complex
testing situations, such as interactive database
management and data communication opera­
tions.

For more information on the Programmer's
Workbench see References 3 and 4.

The Pet/Maestro system
In our discussion above of HDV and Enka,

we have given many of the characteristics of
the Pet/Maestro system. So we will simply
summarize here some of the key features of the
system. For more information, see Reference 5.

Pet/Maestro has been designed to run on a
mini-computer, independent of the host com­
puter for which programs are to be written. In
Europe, Pet/Maestro is marketed by its devel­
opers, Softlab GmbH, and runs on Philips
X1150 equipment (actually a Four-Phase mini­
computer). In the U.S., it is marketed by Mae­
stro Systems Inc., a division of Itel Corpora­
tion. It runs on Four-Phase equipment. (This is
a completely different work-station system
from the Four-Phase PWS, described above.)
Pet/Maestro works with any host computer
that supports a normal remote job entry proto­
col, we are told.

Each Pet/Maestro system can currently han­
dle up to 20 work-stations. Each system is free­
standing. Within one system, information can
be transferred between work-stations. Commu­
nications between work-stations on different
Pet/Maestro systems are handled via the host
computer.

EDP ANALYZER, NOVEMBER, 1979

Pet/Maestro supports program development
starting with specifications and continuing
through module design, coding, and testing. It
allows programming in most of the popular
languages, including COBOL, PL/l, FORTRAN,

ALGOL, and others. Documentation can be
both created and maintained throughout the
process.

To illustrate the use of Pet/Maestro, con­
sider the case of the programmer writing a CO­

BOL module. The programmer indicates that
he/she wants to create a COBOL program,
whereupon Pet/Maestro gives the list of the
four COBOL divisions and asks which one is de­
sired. Assuming that the procedure division is
requested, and skipping some of the details,
the system asks for the first verb (for the first
statement). When it has been entered, the sys­
tem gives a list of the options from which the
programmer must choose, for that type of
statement. The system then generates the fixed
portion of the statement for the selected op­
tion, and prompts the programmer for the var­
iable information (data names, etcJ Because of
this approach, very few syntax errors occur, we
were told by users. When the coding has been
completed, the programmer instructs the Pet/
Maestro computer to transmit the module to
the host computer, on a remote batch basis.

A text editor is provided for making addi­
tions, deletions, changes, and global replace­
ments in a body of code. But the text editor is
also useful for handling textual information,
such as narrative requirements statements, sys­
tem and program specifications, and so on.

A Pet/Maestro system provides a variety of
functions to support the programming process.
It encourages structured programming by pro­
viding five control constructs for designing a
program (action, loop, end of loop, branch,
and case). It draws Nassi-Schneiderman dia­
grams of the logic that has been expressed in
terms of these control constructs. It allows for
the easy marking of sections of code, text, and
data-and these sections can be indexed. Mov­
ing forward and backward, or from section to
section, is done by one key stroke. A shorthand
capability allows programmers to define their
own abbreviations for often-repeated words,
data names, and such; the abbreviations can be
recalled by depressing a function key. The sys-

9

tern allows users to easily copy selected por­
tions of existing code into new programs that
they are working on. An audit trail is kept of
all changes to each program, which is becom­
ing a necessity in some countries where new
privacy laws require the ability to reconstruct
a previous version of a program.

In addition to these and other standard fea­
tures, Pet/Maestro provides a procedure (or
command) language whereby users can create
their own functions. This language is easy to
learn, we were told, but is a bit different from
conventional languages; it uses pre-defined var­
iable names, for instance. At Enka BV, a pro­
cedure has been created for drawing flow­
charts, for system and program design pur­
poses. We saw a user create a 10-box flow­
chart in less than one minute, as an illustration
of the ease of use.

Pet/Maestro provides project supervision
support. It maintains statistics on how many
lines of code have been generated and/ or mod­
ified by each system user, for instance.

A decision table feature has been announced
but had not yet been received by the users we
talked with. With this feature, a programmer
would build a decision table that gives pro­
gram logic, in a dialog fashion. The system
checks the table for incompleteness, redun­
dancy, and inconsistency.

Pet/Maestro has recently provided the '3270
mode' function. By using just one key, the Pet/
Maestro terminal can be converted to 3270
mode, for operating with TSO-say, for on-line
debugging on the host. The terminal can be
converted back to Pet/Maestro just as easily.

Checklist of features
Judging from our brief product descriptions

both last month and this month, it is quite ob­
vious that no one system has every desirable
feature. Such a system undoubtedly would be
very expensive. And maybe having lots of 'bells
and whistles' is not what every data processing
department needs.

To help data processing management better
evaluate programming work-stations, we have
compiled a fairly complete list of system fea­
tures, compiled from existing systems. We sug­
gest that management and programmers clas­
sify these features in their order of importance

EDP ANALYZER, NOVEMBER, 1979

and then begin searching for a system that has
the desired features.

These then are the major features we found
in programming work-stations; listed in alpha­
betical order.

Audit trails. Some programming work-sta­
tions have facilities for keeping track of soft­
ware changes. For those that do not, a source
code library package can often be acquired to
perform this function. These facilities have
different features, and it is really up to each
department to decide how elaborate a log of
changes they want to keep. As mentioned,
some new privacy laws require that a previous
version of a program be reconstructable; audit
trails make this requirement much easier to
live with.

Command languages. The most basic type of
command (sometimes called 'procedure') lan­
guage that we saw has 20 to 30 macro com­
mands supplied by the vendor. These are gen­
erally basic utility programs that can be called
upon to run by using their names. Typical ones
are sort, send output to printer, send job to
mainframe, copy file, etc.

Systems that provide these macro commands
usually also allow users to write routines, give
each routine a name, store it in a file, and in­
voke it by calling its name. Another capability
that may or may not be provided is the ability
to string these commands together in a se­
quence to form a macro procedure.

On a more sophisticated level (and some
users say a more useful level) are command
languages with a hundred or more macro com­
mands. They usually also contain control com­
mands, thus becoming very high level pro­
gramming languages. The commands generally
are interpreted, not compiled, so they are not
as efficient to run in a production environment.
But they give very fast response time in a de­
velopment environment.

Communication links. During programming,
project members will need to communicate
with the host, with other team members, and
possibly with other system facilities. For com­
municating with the target computer, the
stand-alone work-station systems should pro­
vide the necessary links. They generally pro­
vide two options, communication over tele-

10

phone lines or generating magnetic tapes. For
communicating over telephone lines, these
work-stations have a front-end communications
controller, making them appear as remote
batch terminals. Speed of transmission is im­
portant because the communication task can
tie up the work-station system and degrade ter­
minal response. The RJE facility is necessary
not only for compiling and testing programs
but also for retrieving and sending programs to
the source code library on the target.

Message systems are a feature we think users
will find most useful for keeping all team
members equally informed. One system has a
communication file capability built in. One
line of the work-station display screen is re­
served for use of this feature. Another system
has a complementary message system package
that can be added to it.

Some systems have links to other features,
such as typesetters, the corporate database
management system, etc.

Debugging aids. We saw a wide range of sys­
tem capabilities aimed at reducing the amount
of time programmers spend debugging pro­
grams.

For syntax corrections, some systems spot
syntax errors and alert the programmer while
code is being entered. Following compilation,
one system automatically reports the probable
location of the errors. And these features ap­
pear easy to use.

Several systems allow interactive debugging.
That is, the programmer is alerted to an error
during compilation or test execution, and he or
she can correct the error and continue the test.
Other systems do not allow this. Once a job is
submitted, it is executed in the background
mode and the programmer uses the work-sta­
tion for other work. One person we talked
with had doubts about the value of interactive
debugging, saying that its overhead cost does
not justify its usefulness for most programmers.

For testing purposes all of the systems allow
creating test data files which can be called up
for testing. Seeing a demonstration of test data
creation can help prospective users see how
much the editing and formatting features of
each work-station help in this job.

EDP ANALYZER, NOVEMBER, 1979

One system contains test drivers for simulat­
ing some interactive terminal situations. One
driver simulates a Teletype cluster controller
with up to four terminals, for testing programs
on Univac 1100-series computers. The other
driver simulates one or more IBM 3270 cluster
controllers, each controlling up to 32 termi­
nals.

Conversational programmming aids. In con­
versational programming, the system may help
the programmer create conventional programs,
by automatically generating formats, present­
ing coding options, numbering lines, etc. We
found conversational aids available for design­
ing modules, writing program and control
code, and for generating decision tables and
structured flow charts.

Design aids. All of the systems we saw have
concentrated on providing programming aids.
Most have not yet implemented graphical de­
sign aids for system design. One system does
have a graphic aid for program design. The
system generates a type of structured flow­
chart, based on a set of high level pseudo-code
statements entered by the programmer.

This system also prompts the users for creat­
ing decision tables. And the system verifies that
the table is complete, with no inconsistencies
or redundancies.

Documentation aids. All of the systems try to
make it as easy as possible for programmers to
include comment statements while coding, and
to add and delete such statements afterward.
Most systems provide formatting features, tai­
lored to specific languages. Some systems have
a HELP function, to aid programmers and end
users when they do not understand a system re­
quest. These are like on-line reference manu­
als.

Editing capabilities. The editing capabilities
of the work-stations are the most obvious and
often the most touted features. We found that
the capabilities varied widely.

The most easily used editing functions are
those associated with function keys-that is,
press the key and the function is performed.
One system goes so far as to allow every key­
board key to have a function, when pushed in
conjunction with a function control key. An-

11

other has eight function keys along side the
display screen, with the functions changing as
needed. Most of the systems have special keys
for common functions: cursor control, delete
character, insert entry, etc. Editing functions
not performed with keys are performed by typ­
ing commands, such as global replace, search,
copy file, change, etc. The systems varied in
the number of such commands available.

Additionally, some systems have some auto­
matic editing features, such as punctuation,
spelling and syntax error correction.

Expandability. Two points should be men­
tioned. One, there is a good chance that every
programmer will eventually want his/her own
terminal. This should be kept in mind when se­
lecting a system. Secondly, for host systems, as
terminals are added, the host will load up-and
response times will suffer. Eventually, one or
more stand-alone systems may be desired.

Extensibility. The user should be able to add
features not contemplated by the work-station
designers, but essential for the user's use.
Check to see if you can add such features.

File facilities. We found a great diversity in
the file facilities of the various programming
work-stations. As a baseline, all of the systems
provide each programmer with: (1) a file area
for keeping program modules, test data, job
control instructions, etc., each with a name for
easy retrieval; (2) a directory of accessible user
files and publicly available files; (3) a work area
for constructing new programs, editing old
programs, debugging, etc.; (4) file protection
features; and (5) file macro commands for ma­
nipulating the library contents, such as copy
file, rename it, delete it, and so on. Some sys­
tems offer several options in each of these
areas.

Source code maintenance features vary in
the systems also, from simple updating to
keeping logs of program versions, specifying
changes made, who made changes, etc.

One last point about files and storage. Do­
lotta, et al (Reference 1) note that all time
sharing systems are continually short of disk
space. And the RJE facility, which dumps a lot
of information into a programming work-sta­
tion rapidly, accentuates this problem. We no-

EDP ANALYZER, NOVEMBER, 1979

ticed that the users we visited opted for larger
disk storage than the basic systems provided.

Non-procedural programming features. In
non-procedural programming the programmer
concentrates on deciding what needs to be ac­
complished, and the system generates the 'how
to do it' code. Although this is not a new con­
cept, it seems to be receiving more attention
these days. Programming work-station systems
may emphasize on-line non-procedural pro­
gramming more and more. Two products that
we saw offer this feature.

Operating modes. Programming work-stations
have several operating modes. The most obvi­
ous is foreground versus background, which
most have. In addition, these systems have var­
ious specialized operating modes, such as a
full-screen editing mode, command editing
mode, debugging mode, etc. In some systems,
these are treated as sub-systems. If the system
has been poorly designed, the user must shift
between these sub-systems too often. We be­
lieve that it takes some use of a product, not
just a demonstration, to decide whether it is
easy or cumbersome to use.

Programming aids. We have already men­
tioned the most important programming aids:
code format generation, syntax checking, se­
quence numbering, structured programming
diagrams, conversational programming, and
non-procedural programming aids.

In addition, some systems have added 'bells
and whistles' aimed at the programming job.
Here are a few of them: a MARK key, for mark­
ing certain lines of code for future quick ac­
cess; an ACCESS key, for moving to these
marks; a user-created abbreviation file, where
the user assigns abbreviations for frequently­
used words and the system automatically
makes the substitutions; a FIELD key, to move
the cursor to the next field; and a permanently
split screen, plus one line dedicated to system
status and another to messages.

Project management aids. We did not find
too many built-in facilities to aid project man­
agement specifically. But we would expect to
see more project management aids in the fu­
ture.

12

Recovery facilities. When an entire program­
ming department becomes dependent on sys­
tem operation to perform even routine work,
then recovery facilities are important. One sys­
tem we saw enters all input information onto
the disk following each carriage return. This
protects all but the current line from being lost
if the system goes down. One user we talked
with creates a backup disk every morning and
a backup tape every week.

Another type of recovery facility is one that
helps a user recover after making an error. We
saw two such facilities. One is an OOPS! key. It
converts the last change made back to its origi­
nal state. The other allows a user to retrieve a
record that was just deleted. Such recovery
procedures make these systems more 'forgiv­
ing' and 'friendly.'

Securiry features. Some of the users we
talked with were very worried about program­
ming work-station security features; others
were not. Likewise with the systems, some
have elaborate security features, others do not.
File protection on the systems vary from (a) re­
quiring a legal user identification and password
in order to gain access to the system and all of
its files, to (b) having several user-specified pro­
tection levels for all files and programs.

Target computers. The primary limiting fac­
tor in selecting a programming work-station
system is: Which ones work with our in-house
computer? Most stand-alone programming
work-station systems are aimed at specific tar­
get machines; therefore, software developed on
them can be compiled, tested and run on these
targets only.

These then are the main features that we
think prospective users of programming work­
stations should evaluate.

We see the programming work-station field
just beginning to emerge. The systems we saw
appear to be a big move toward achieving
greater programmer productivity.

In the future we expect work-station en­
hancements aimed at improving productivity
in other phases of the software development
cycle, such as the requirements analysis and de­
sign phases. With these, data processing de­
partments will finally be providing their own
staffs with computerized tools as sophisticated
as the ones they develop for others.

REFERENCES
1. Dolotta, T. A., R. C. Haight, and J. R. Mashey, "The

Programmer's Workbench," The Rell System Techni­
cal Journal, Bell Laboratories (Circulation Group,
Whippany Rd., Whippany, New Jersey 07981); July/
August 1978, pp. 2177-2200; price $2.00.

2. For more information on PWS write to Four-Phase
Systems, Inc., 10700 North DeAnza Blvd., Cupertino,
California 95014.

3. For more information on the Programmer's Work­
bench (PWB/UNIX), contact Software Licensing De­
partment, Western Electric Company, P. 0. Box
25000, Greensboro, North Carolina 27420.

4. For more information from Interactive Systems Cor­
poration about their Workbench (IS/l), write to them
at 1526 Cloverfield Blvd., Santa Monica, California
90404.

5. For more information on Pet/Maestro:
a. In the United States, write to Itel Corporation,

Maestro Systems Division, One Embarcadero
Center, San Francisco, California 94111.

b. In Europe, write to Softlab GmbH, 8000 Munich
81, Arabellastrasse 13, West Germany.

6. Drexhage, K. A. and R. E. Keirstead, "Software devel­
opment and programmer work-stations," July 1979;
for a copy, write K. A. Drexhage and Associates, 750
Welch Road, Suite 204, Palo Alto, Calif. 94304.

7. We have compiled a list of programmer work-station
products and systems that we found in our research
for this (and last month's) reports. For a free copy of
this listing, write EDP ANALYZER.

Prepared by:
Barbara C. McNurlin
Associate Editor

EDP ANALYZER is published monthly and copyright© 1979 by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
92083. All rights reserved. While the contents of each report are based on the best information available to us, we cannot
guarantee them. Photocopying this report for personal use is permitted under the conditions stated at the bottom of the
first page. Prices of subscriptions and back issues listed on last page. Missing issues : please report non-receipt of an issue
within one month of normal receiving date: missing issues requested after this time will be supplied at regular rate.

EDP ANALYZER, NOVEMBER, 1979 13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1976 (Volume 14)

Number
1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)

Number
1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Smatt Sites
6. The Importance of EDP Audit and Control
7. Getting the Requirements Right
8. Managing Staff Retention and Turnover
9. Making Use of Remote Computing Services

10. The Impact of Corporate EFT
11. Using Some New Programming Techniques
12. Progress in Project Management

1978 (Volume 16)

Number
1. Installing a Data Dictionary
2. Progress in Software Engineering: Part 1
3. Progress in Software Engineering: Part 2
4. The Debate on Trans-border Data Flows
5. Planning for DBMS Conversions
6. "Personal" Computers in Business
7. Planning to Use Public Packet Networks
8. The Challenges of Distributed Systems
9. The Automated Office: Part 1

10. The Automated Office: Part 2
11. Get Ready for Major Changes
12. Data Encryption: Is It for You?

1979 (Volume 171

Number
1. The Analysis of User Needs
2. The Production of Better Software
3. Program Design Techniques
4. How to Prepare for the Coming Changes
5. Computer Support for Managers
6. What Information Do Managers Need?
7. The Security of Managers' Information
8. Tools for Building an EIS
9. How to Use Advanced Technology

10. Programming Work-Station Tools
11. Stand-alone Programming Work-Stations

(List of subjects prior to 1976 sent upon request)

PRICE SCHEDULE (all prices in u.s. dottars)

Subscriptions (see notes 1,2,4,5)

1 year
2 years
3 years

Back issues (see notes 1,2,3)
First copy
Additional copies

Binders, each (see notes 2,5,6)
(in California

NOTES

U.S., Canada, Mexico
(surface delivery)

$48
88

120

$6
5

$6.25
6.63, including tax)

Other countries
(via air mail)

$60
112
156

$7
6

$9.75

1. Reduced prices are in effect for multiple copy subscriptions and for larger quantities of a back issue. Write for
details.

2. Subscription agency orders are limited to single copy subscriptions for one-, two-, and three-years only.
3. Because of the continuing demand for back issues, att previous reports are available. All back issues, at above

prices, are sent air mail.
4. Optional air mail delivery is available for Canada and Mexico.
5. We strongly recommend AIR MAIL delivery to "other countries" of the world, and have included the added cost

in these prices.
6. The attractive binders, for holding 12 issues of EDP ANALYZER, require no punching or special equipment.

Send your order and check to:
EDP ANALYZER
Subscription Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-3233

Send editorial correspondence to:
EDP ANALYZER
Editorial Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-5900

CompanY------------------------------------~
Address_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

City, State, ZIP Code _________________________________ _

