
EDP ANALYZER
© 1981 by Canning Publications, Inc.

AUGUST, 1981
VOL. 19, NO. 8

EASING THE SOFTWARE MAINTENANCE BURDEN

Software maintenance still requires a significant portion
of programmers' and analysts' time, in most data process­
ing departments. But perhaps because software mainte­
nance tends to be viewed as an uninteresting, necessary
evil, it often appears that nothing can be done to reduce
this workload. And, in fact, a 1978 survey showed little
change in the overall maintenance workload during the
1970s. This month we look at software maintenance to see
whether there are any new ideas on how to ease this main­
tenance burden. We begin by describing three different
approaches taken by three companies for creating more
maintainable systems.

The Monsanto Company, with head­
quarters in St. Louis, Missouri, is a leading
manufacturer of textiles, chemicals,
plastics, resins, and agricultural products.
Annual sales exceed $6 billion, and the
company employs about 64,000 people. In
its central data processing facility in St.
Louis, Monsanto uses large scale IBM
computers.

In the late 1970s Monsanto began study­
ing their need for a corporate-wide medi­
cal and environmental health information
system (MEHi). On a joint venture with
IBM, they identified seven major compo­
nents. Three are: a materials system that
contains information about all of the ma­
terials (both raw and manufactured) that
Monsanto uses, an occupational exposure
system that lists all employees and the sub-

stances they are exposed to in their work
at Monsanto, and an emergency system
that lists which employees to contact for
each identifiable emergency and how the
company could respond to these emergen­
cies.

For the first sub-system to be developed,
the materials system, Monsanto chose to
use IBM's conversational Application De­
velopment Facility (ADF). The prime value
of ADF, in Monsanto's eyes, would be in
reducing development time. But a signifi­
cant side benefit has been in decreasing
program maintenance. Although ADF is
not as efficient to run as, say, COBOL pro­
grams, Monsanto felt that with the ex­
pected low processing volume of the ma­
terials system, ADF would perform satisfac­
torily, so its use appeared cost justified.

ISSN 0012-7523. Multiple copy prices listed on last page. Photocopying this report for personal use is per­
mitted, providing payment of $2.50 fee per copy of report is made to Copyright Clearance Center, Inc., 21
Congress Street, Salem, MA 01970; please include identifying fee code 0012-7523 /81/080001-14$2.50.

ADF is an IBM application development tool
for helping programmers create IMS/VS applica­
tions-applications which use IBM's IMS data­
base management system under the VS operating
system. ADF offers a conversational mode, a non­
conversational mode, and a batch mode.

Creation of an ADF program is quite different
from conventional programming. The program­
mer does not create a program per se. Rather
he/she specifies parameters for common mod­
ules. Hand-coded subroutines also can be added.
The parameters are stored in certain databases;
data used by the application is stored in other
databases. At execution time, ADF invokes the
common modules in a pre-programmed order,
and combines them to create a distinct program.
(For more information on ADF, contact your lo­
cal IBM sales office.)

Monsanto chose conversational ADF for its on­
line materials system for several reasons. First of
all, the security option, which was a major con­
cern, was adequate and involved significantly
less work to set up than would a COBOL IMS pro­
gram. In addition, changes to the security net­
work would be a relatively minor task. Second,
conversational ADF could automatically generate
menus of data items to aid users in searching a
database. These 'two features contributed signif­
icantly to decreasing the project's development
time and costs. The project took nine months
less time to complete than if it had been written
in COBOL-and that was a 75-80% reduction in
programming and test time. An additional ad­
vantage of conversatonal ADF was that Monsan­
to's programmers learned to use it quickly.

ADF was able to handle thirty-four of the
forty-seven transaction types required in the ma­
terials sub-system. For these, programming and
testing took three days or less per transaction
type. For the thirteen remaining transaction
types, which needed to be hand-coded, each
took six days.

ADF has also significantly reduced the amount
of maintenance required by the system. In the
first twelve months of use, there were no abnor­
mal program terminations due to programming
errors; all the things ADF did, it did correctly. So
Monsanto has had virtually no corrective main­
tenance on the materials system.

2

As for enhancement maintenance, adding new
transaction types and new features requested by
users has been far easier than with COBOL. Mon­
santo is now using ADF on a second MEHi sub­
system, because they find that it produces reli­
able systems and increases their programmers'
productivity as well, for both development and
maintenance work.

Western Carriers Underwriters
Western Carriers Underwriters is a four year

old company that specializes in commercial au­
tomobile insurance for the transportation indus­
try. Western Carriers is located in San Berna­
dina, California, just east of Los Angeles, and
employs 50 people. Operating through indepen­
dent agents, in 1980 they had insurance pre­
mium sales of $8.5 million.

In late 1979, Western Carriers had (essen­
tially) a mini-computer, not much software that
really met their needs, and three people in their
data processing department-a manager (who
also does a lot of the programming), a program­
mer analyst, and a data entry person. Today, a
year and one-half later, they have the same three
people, a larger model of the mini-computer,
and four main-line applications that involve over
200 programs with some 500,000 lines of COBOL
code.

The computer they now have is a Prime 550
computer with 1.25 million bytes of internal
memory plus one 300 megabyte and two 80
megabyte disk drives, two printers, and eight
work-stations. But the product that enabled
Western Carriers to create and maintain so
much software with so few people is a COBOL
program generator obtained from David R.
Black and Associates (see Reference 6). Western
Carriers obtained the generator in December
1979, and the two programmers have created
75% of their software using it. The generator
provides a data dictionary, a screen formatter, a
menu generator, and a number of skeleton CO­
BOL programs for performing the most common
functions found in business applications.

For each of the application programs, the
generator leads programmers through entering
data definitions and validation rules. To perform
more elaborate validation checks not provided

EDP ANALYZER, AUGUST, 1981

by the generator, the programmers wrote short
COBOL routines which they imbedded in the val­
idation routines created by the generator.

With the data dictionary filled in, the pro­
grammer then specifies the data entry screen for­
mats, reports, and menus, using different facili­
ties within the generator.

The generator allows Western Carriers to cre­
ate new programs quickly. But even more im­
portantly, it has a greater impact on mainte­
nance. For one thing, Western Carriers has
found no coding errors in code generated by the
program generator, so that most of their pro­
grams compile completely on the first try. The
only coding errors are in the code they write to
supplement the generator's code. The generator
can create 70% of the code they need for their
major programs, and 100% for the ad hoc re­
quests.

After using the generator for a year and a half,
they know how the generator will handle most
situations, so they know what effect changes will
have. Also, the generator produces modular
code, so that changes tend not to spread from
one module to another. The result thas been that
Western Carriers has practically no corrective
maintenance.

However, they do have enhancement mainte­
nance. Although they generally do not use the
generator for making these enhancements, the
time it takes to perform this maintenance has
been greatly reduced because of the generator.
The generator creates programs using a standard
format, so the programmers often do not need to
print out a listing in order to figure out where to
make the changes. They simply go to a terminal,
call up the COBOL source code subroutine which
performs the desired function, and make the
change. All programs have the same subroutine
structure and same conventions, so maintenance
is fast. At first Western Carriers thought that
standardization was a nice feature. Now they see
it is the most important feature of the generator,
especially for maintenance.

As an example, in January of this year, a
change in the billing procedure led to a major
maintenance project. All of the policy number
fields had to be split into three separate fields,
which required changes in all programs that use

EDP ANALYZER, AUGUST, 1981

the policy number field. Fortunately, because the
generator always uses one subroutine to refer­
ence this key index field, the programmer only
needed to change this . particular subroutine in
each affected program. So this major mainte­
nance project was conducted without their need­
ing to hire more people.

Since the standard programs allow Western
Carriers to perform changes so quickly, they
have been able to respond to management's and
end users' requests for enhancements very rap­
idly. In fact, the data processing manager has
had to implement a more formal change control
procedure to slow down somewhat the requests
for enhancements.

The people at Western Carriers are delighted
that the program generator allows them to have
a small, efficient data processing operation. They
estimate that without it, they would probably
have required seven more people (project man­
agers and programmers) just to create the sys­
tems they now have, not to mention maintaining
them.

The Arizona Bank

The Arizona Bank is a full service bank with
headquarters in Phoenix, Arizona. The bank has
assets of $2 billion and employs 2200 people in
91 branches throughout the state.

Within the past few years, new government
regulations for the banking industry have
prompted the bank to offer interest-earning
checking accounts and new types of loan ar­
rangements. They have also installed a network
of automated teller machines and an on-line
teller and administrative terminal system. These
operational changes have required their data
processing department to install a number of
new, sophisticated systems as well as make ex­
tensive changes to existing systems. The bank
has an IBM 3033 and they use IBM's IMS data­
base management system.

For the size of the bank, and the complexity
of its application systems, The Arizona Bank has
a small data processing department-only fifty
programmers and analysts. This is because the
bank has a policy of buying application packages
rather than developing systems in-house. Cur-

3

I

,j

rently, 90% of their application software consists
of purchased packages.

Only two of their banking applications-in­
stallment loans and savings-were written in­
house. These were created more than fifteen
years ago and are still being used. The rest of
their banking applications are purchased pack­
ages. These include the rest of their banking ap­
plications as well as accounting systems, several
electronic funds transfer systems, and others. In
all, the bank uses packages from fourteen ven­
dors.

Due to their policy of relying on purchased
software, the application development cycle at
the bank differs from the typical software devel­
opment cycle. Whenever a new system is under
consideration, a project study team is formed to
analyze the make-or-buy alternatives. The teams
work anywhere from one to six months studying
the alternatives. Due to time and cost considera­
tions, they almost always recommend purchasing
an outside package.

Of particular interest is how this policy of
procuring purchased packages impacts software
maintenance. The story really begins with the
work of the study teams.

The work of the study teams. The study teams
generally consist of several people from data
processing as well as several user representa­
tives. Members of the team search out packages
that might fit their needs by using several indus­
try publications, by attending banking confer­
ences, and by contacting people they know in
other banks. Also, and very importantly, they be­
come involved in vendors' user groups; often
they find out about other products at user group
meetings. In addition, these groups provide users
with an effective means of requesting (and get­
ting) enhancements and changes made to the
vendor's products. This is the best way to get a
change made by a vendor, we were told.

Team members are responsible for performing
specific duties depending upon their areas of ex­
pertise. For example, the data processing opera­
tions person evaluates the impact of each alter­
native upon the bank's hardware. The IMS per­
son looks at how much work would be involved
in interfacing each alternative package to the
IMS database system. And the user representa-

4

tives study the user documentation and functions
performed by each alternative package.

Based on management policies, they require
that they receive from the supplier a package's
source code, not object or intermediate code, so
that they can create proper interfaces for the
package. Also, with some exceptions, they re­
quire that the application packages be written in
COBOL.

When evaluating application packages, one
important factor that the teams consider is how
much 'maintenance' each package will require.
Their package maintenance takes several forms:
(I) adapting a package to the bank's environ­
ment, (2) adding desired carabilities that are not
included in the package, (3 correcting errors, (4)
installing vendor changes in the future, and (5)
making user-requested modifications. In particu­
lar, technical experts on the team try to deter­
mine how much in-house effort will be required
to interface each package to their existing data­
bases and systems.

The team also identifies required functions
and features that are not included in each alter­
native package, and how the deficiencies can be
remedied-either through in-house modifications,
vendor-made changes, or a joint bank-vendor
contract. And the team estimates how much on­
going support the vendor will supply after the
package is installed, and how vendor changes
and updates will be made.

The bank's policy is to make as many of the
changes as possible by creating new stand-alone
program modules which work with the pur­
chased software. In this way, the bank is able to
install new releases of the package without too
much maintenance work on their part. Most of­
ten, however, the bank and the vendor perform
maintenance jointly.

As a point of interest, the bank's data process­
ing people estimate that 50% of the in-house re­
quests for changes have been for new types of
reports. Therefore, they look very favorably on
packages that provide report generator capabili­
ties with which end users can create their own
ad hoc report requests. Where such systems
have been installed, there are fewer user-re­
quested changes.

EDP ANALYZER, AUGUST, 1981

The Arizona Bank is pleased with its approach
of purchasing most of its software for several
reasons. Of most interest, of course, is getting
applications set up and running more quickly­
and with perhaps more sophisticated applica­
tions than they could have developed in-house.

On the point we were probing-maintenance­
they have found substantial benefits also. As de­
scribed, they minimize routine corrective main­
tenance and concentrate on adapting and en­
hancing packages.

Is software maintenance changing?
Within the past two years, we have seen an

increasing amount of written material on soft­
ware maintenance. Of particular interest are
three books on the subject. Software Mainte­
nance Management by Lientz and Swanson (Ref­
erence 1) describes their findings about software
maintenance from a 1978 survey of 487 compa­
nies. Techniques for program and system main­
tenance, edited by Parikh (Reference 2), is a
compilation of forty papers on the subject of
software maintenance. And Software mainte­
nance guidebook by Glass and Noiseux (Refer­
ence 3) discusses the people, technical, and man­
agerial aspects of maintenance and presents the
authors' views on which techniques and tools
they have found most helpful for maintenance
programming. We will reference these three
books throughout this report.

In 1978, Lientz and Swanson, professors at the
University of California at Los Angeles, per­
formed a study to uncover the characteristics of
software maintenance, mainly in the business
data processing environment.

They found that on the average, software
maintenance required 45% of systems and pro­
gramming resources in most companies. This
figure is about the same as the authors found
two years earlier in a similar study. And it also
matches the estimate we gave in our October
1972 report on maintenance. Therefore, it ap­
pears that the total maintenance effort is not in­
creasing, as often reported in the press, nor is it
decreasing, as predicted by many proponents of
programming tools. However, in our research
we did find that the characteristics of mainte­
nance work have changed for the better, since

EDP ANALYZER, AUGUST, 1981

our 1972 report, where companies have devel­
oped more maintainable systems.

To better understand software maintenance,
consider the definitions created by Lientz and
Swanson. They divide maintenance into three
components: corrective, adaptive, and perfective
(enhancement).

Corrective maintenance consists of dealing
with failures in processing, performance or im­
plementation, such as fixing errors and routine
debugging. The authors found this type of main­
tenance generally accounted for about 20% of
most companies' maintenance efforts.

Adaptive maintenance includes responding to
anticipated changes in the data or processing en­
vironment. For example, it includes converting
to a new operating system, responding to
changes in government regulations, and so on.
This type of maintenance accounted for about
25% of the maintenance effort, the authors re­
ported.

Enhancement (or perfective) maintenance, re­
fers to (1) enhancing processing efficiency, per­
formance, and system maintainability, (2) im­
proving program documentation, and (3) making
enhancements for users. This form of mainte­
nance accounted for the remainder (about 55%)
of all maintenance work, and almost two-thirds
of that went toward making enhancements re­
quested by users-specifically, giving users more
capabilities.

In our 1972 issue on maintenance we de­
scribed some techniques for creating more main­
tainable systems. We will now review these
points to see how much impact they have had
on easing software maintenance.

In 1972 we recommended designing for
change by installing software design standards
and documentation standards. The rationale is
that if applications are designed using the same
basic company-wide standards, more people are
likely to know the standards and therefore be
able to maintain these applications more easily.
(A good illustration of this point is the experi­
ence of Western Carriers Underwriters, de­
scribed earlier.)

Since 1972 there has been a lot of activity in
several of the software design and documenta­
tion areas. Numerous software design techniques

5

have been introduced, each offering its own
form of standards. Yet at the time of their survey
(1978), Lientz and Swanson found only three de­
velopment tools in use in more than 30% of the
companies. Surprisingly, one was decision tables;
they were used by 34% of the companies. Chief
programmer teams were used by 38% and struc­
tured programming by 30%. The other tech­
niques mentioned ~y the authors-HIPO, data
dictionaries, test data generators, and structured
walk-throughs-were each used by less than 20%
of the companies responding.

Lientz and Swanson found that use of such
techniques did lead to more maintainable sys­
tems. They therefore speculate that organiza­
tions which use such techniques for software de­
velopment may reduce the amount of corrective
maintenance that they must perform, because
there are fewer errors to correct. However, the
relative ease of making additions and changes to
these more maintainable programs, and the
lower risk of creating errors through such
changes, often encourages users to ask for more
enhancements. So enhancement maintenance of­
ten rises. This explains the relatively constant to­
tal spent on total maintenance, say the authors.

In 1972 we als~ suggested installing software
modification and testing aids, such as cross ref­
erence listings, on-line editing and debugging fa­
cilities, standard testing procedures, and general­
ized data management systems.

Each of these types of aids is being used, but
the area in which we are just now seeing increas­
ing interest is in the last named-the generalized
data management systems (DMS). Within the past
few years, these products have been enhanced
substantially so that they now allow creation and
modification of files, data definitions, and pro­
grams. We have discussed these products in
some detail in recent months, particularly in the
May, June and July issues.

One question these DMS raise is: how might
they affect maintenance work in the data
processing department? One company we talked
with has said that although enhancements and
changes are much easier to make, their backlog
for such requests has increased. So the same
thing may occur with the use of DMS as was
mentioned for structured programming tech-

6

niques-that is, corrective maintenance decreases
but enhancement maintenance increases.

In 1972 we also suggested establishing data
processing configuration policies. These consist
of controlling changes in the organization's
hardware, operating systems, utility software,
and so on.

There appears to be an interesting phenome­
non occurring in this area. Companies, by and
large, have developed configuration policies for
their mainframe computers. And computer
mainframe manufacturers and vendors of pro­
ducts for mainframes are very aware that com­
panies have large investments in existing appli­
cations-so they often include 'migration tools'
when they introduce new hardware and software
products.

But what about company-wide configuration
policies for mini-computers, and even more re­
cently, for micro-computers? Are users and ven­
dors worrying much about configuration stan­
dards and migration tools for these machines?
The answer appears to be mostly No. We see a
few user companies trying to establish standards
and guidelines for these smaller machines. How­
ever, we also see many companies not really
worrying about the stand-alone systems that de­
partments are bringing in on their own. We
think this second attitude is a mistake.

While local networks may provide the means
for connecting incompatible machines, we think
configuration policies should be created for
smaller machines for two reasons. One is soft­
ware portability. Creating software for small
machines is expensive, so it is wise to exchange
programs where possible. The second reason is
for compatibility among data used by several de­
partments-portable data.

Companies should also evaluate these smaller
systems with an eye toward whether they allow
easy migration to larger machines-not only pro­
gram migration but also data migration. This
can be a serious problem, as we discussed five
months ago (March). Not all small machine ven­
dors provide easy vertical migration.

In 1972 we also recommended i_nstituting sev­
eral types of controls and audit procedures in­
cluding: a formal change procedure, the use of a
librarian software package for controlling dif-

EDP ANALYZER, AUGUST, 1981

ferent versions of a system or application, com­
piler pre-processors to check for standards viola­
tions, audits of the documentation system, and
design review procedures.

Lientz and Swanson found organizational con­
trols more widely used than the development
techniques mentioned earlier. For example, 79%
of the companies logged and documented users'
requests for maintenance, and 77% logged and
documented changes made.

These widespread practices did not appear to
reduce the maintenance effort, say the authors.
But the practices did indicate where manage­
ment placed its emphasis-that is, requests were
logged where companies stressed enhancement
maintenance.

The one procedure that reduced corrective
maintenance (by improving software quality)
was formal audits of production systems. But
only one-third of the applications described by
respondents received such scrutiny.

And lastly, in 1972 we recommended organiz­
ing for maintenance. The question has been pon­
dered whether to perform maintenance work
within the development group(s) or to create
separate maintenance groups. Most organiza­
tions still use a common organization for both
development and maintenance, partly because of
their concern over the low morale that might
occur in a dedieated maintenance group. Man­
agement believes that most programmers do not
like maintenance work and will not stay long in
a maintenance-only group. Reasons typically
given are: maintenance is not challenging, re­
warding, or creative, and it requires less skill and
experience.

Lientz and Swanson found that only 17% of
the companies responding to their survey had
separate maintenance groups. Yet these few or­
ganizations .tended to use fewer resources for
maintenance. These companies also were the
larger organizations, and larger organizations
generally spend a larger percentage on mainte­
nance. So these companies may actually be do­
ing even better than it first appears.

Aside from this dilemma, the real issue is not
which alternative is better, but rather that the
subject of maintenance be given any serious at­
tention at all by data processing management.

EDP ANALYZER, AUGUST, 1981

Ignoring the maintenance problem appears to
make it worse. Establishing specific procedures
to deal with it seems to ease the burden.

These then are the recommendations we made
in 1972 to ease the maintenance workload. The
major change appears to be that companies now
have more tools with which they can create
more maintainable systems. These tools have re­
duced the need for corrective maintenance in
newly-created systems but, at the same time,
they have encouraged enhancement requests
from users.

Prospects for easing maintenance

In light of what has happened during the past
ten years, here are four steps that can be taken
to improve software maintenance: fine tuning
the organization, fine tuning maintenance proce­
dures, programming for maintainability, and off­
loading maintenance onto others, either end
users or package vendors.

Fine tuning the organization

In the Lientz and Swanson survey, the respon­
dents ranked managerial concerns above techni­
cal concerns, so we will deal with management
issues first.

We have come across success stories for sepa­
rate maintenance groups, combined maintenance
and development groups, and variations of these
two approaches. This implies that the type of or­
ganization may not be the important factor, but
rather that conscious management attention is.
Here are some examples of how a few compa­
nies have eased the software maintenance bur­
den through fine tuning their organizations.

A separate maintenance group. One company
that has had success with a formally separated
maintenance group is Spring Mills, Inc., a textile
manufacturer in South Carolina. Mooney (in
Reference 2) reports that prior to the separation,
maintenance was not a budgeted item. Develop­
ment projects were interrupted to correct defi­
ciencies in production programs, make revisions
caused by changed business practices, and im­
prove program efficiencies. These were all per-·
formed as needed. Major enhancements to exist­
ing systems were scheduled along with develop-

7

ment work. The staff of forty handled between
70 and 80 maintenance requests a month.

The company decided to tackle the mainte­
nance problem by creating a maintenance team

. of ten senior and junior programmers under a
project leader. The team was to: (1) log all re­
quests in and out, (2) evaluate requests and as­
sign priorities, (3) assign tasks within the team,
(4) ensure that standards were met and documen­
tation was upgraded, (5) test new releases of pro­
grams, and (6) get programs back into pro­
duction, as quickly as possible.

Since management feared the team would see
its work as distasteful, several special policies
were implemented. Team members were to con­
tinually and automatically receive the largest
merit pay raises allowable, they could request a
transfer after six months, and they would be as­
signed to write special, one-time programs so
that their development skills would not deterio­
rate.

Management was surprised to find that morale
throughout the entire department improved
with the re-organization. The maintenance peo­
ple became multi-lingual experts, so they were
respected by their peers in development. They
learned how not to write programs. And they
suggested a number of changes to company pro­
gramming standards and documentation-many
of which have been implemented.

The team handled 1000 requests within the
first year, and allowed the department to handle
almost 13% more new development work than
the year before. Maintenance was reduced to
20% of the department's total workload, down
from 30% the year before. A year later a system
analyst was added to the team, to study how
planned changes to programs would affect suc­
ceeding jobs or systems. And new systems are
now developed with more thought of future
maintenance than was true in the past.

Where development and maintenance are or­
ganized separately, Lientz and Swanson suggest
using 'maintenance escorts.' An escort is a devel­
opment programmer who accompanies a system
when it is transferred to the maintenance group,
and he or she stays with it until it is absorbed by
the group. The authors note that this procedure
takes advantage of the programmer's knowledge

8

of the system and thereby increases the initial
efficiency of the maintenance group. The con­
verse of this idea has also been tried-that is,
moving a maintenance programmer onto a de­
velopment project to help complete it and es­
cort it into maintenance.

Combined maintenance and development. When
development and maintenance are performed by
one group, improved maintenance efficiency
seems to come from instituting more formal
maintenance practices.

For example, in the April issue we reported
on the use of a job diagnostic survey for measur­
ing job satisfaction among data processing em­
ployees at one company. A primary point that
emerged from the use of that survey was that
the company's programmer I analysts had strong
negative feelings about the maintenance work
they were performing. At the time, each person
was totally responsible for maintaining one or
more application systems as well as for perform­
ing new system development. With users contin­
ually asking for changes to existing systems, the
programmer I analysts felt trapped; they were be­
ing held back from development work because
of the continual demands for maintenance. One
change that was made was to assign other pro­
grammer I analysts to provide backup mainte­
nance support for each existing system. So the
maintenance workload was shared.

In addition, a user liaison position was created
to be a buffer for maintenance requests, so that
only relevant requests flowed through to the
software people. Also, more formal procedures
for making changes were instituted. Although
these changes did not reduce the maintenance
workload, they helped ease it in the eyes of the
development staff.

In light of the fact that there are organizations
satisfied with each of these different arrange­
ments, several points can be made.

First, if maintenance is not to be separated
from development, then it is necessary to clearly
define the responsibilities of the staff members,
so that conflicts between their maintenance and
development responsibilities do not create un­
reasonable pressures.

Second, the flow of user requests, including
requests for both ad hoc reports and for en-

EDP ANALYZER, AUGUST, 1981

"

hancements, needs to be controlled in some
manner.

And third, it seems possible to have a part of
the organization devoted to maintenance with­
out severe morale problems. It does require
management attention-but it can be done.

Fine tuning maintenance procedures

Numerous practitioners have suggested vari­
ous ways to add some spice to the maintenance
function. We will discuss four ideas: scheduled
maintenance, maintenance reviews, worst-first
maintenance, and structured retrofit.

Scheduled maintenance. Lindhorst (in Refer­
ence 2) describes the benefits that The Boat­
men's National Bank in St. Louis has received
from implementing a scheduled maintenance
program. They have designated specific months
for performing maintenance on each of their sys­
tems. Most requests for maintenance are saved
and then evaluated and costed during those
scheduled times. Although the program took
several months to initiate, and some reshuffling
of schedules was needed, they now have a main­
tenance procedure that forces users to think
more about the changes they request (and their
associated costs). It also forces data processing
to periodically evaluate the maintenance costs of
each system. It has prompted better personnel
planning in data processing. And it has elimi­
nated 'the squeaky wheel gets the grease' syn­
drome. Finally it gives data processing requests
for changes equal consideration with user re­
quests.

The bank has found that most changes can be
postponed and consolidated with others, leading
to more efficient maintenance. They believe they
are more in control of their data processing
workload with scheduled maintenance.

Maintenance reviews. Freedman and Weinberg
(in Reference 2) suggest several types of reviews
to improve the maintenance function. One is
speed reviews. Here a number of maintenance
programmers meet together and are given five to
ten minutes to evaluate a small section of code,
either for its readability or to find errors. The
authors find such short, timed reviews are most
useful.

EDP ANALYZER, AUGUST, 1981

They also suggest maintenance reviews, which
are separate from the traditional review held be­
fore transferring development work to pro­
duction status. If the two reviews are combined,
as they usually are, maintenance considerations
are given little attention, since they would delay
putting the system into production. But if two
separate reviews are performed, maintainability
considerations can be given more thought.

And finally Freedman and Weinberg suggest
fix and improve reviews. They say these not only
improve the quality of programs but also in­
crease the morale of maintenance personnel.
The objective is to not just fix an error but also
to improve the software being changed. They
note that this requires quite a bit of program­
ming ingenuity, thereby increasing the challenge.
And if the improvement is limited to the re­
quested change, maintenance costs do not in­
crease. They have seen this technique measur­
ably improve programs (over time), where man­
agement has made improved software a goal and
has recognized improvement efforts.

Based on information uncovered in a recent
survey, Chapin (Reference 4) reports that most
of the factors that make programs harder to
maintain are under control of data processing
management. In his paper, he lists a number of
these program attributes, such as arbitrary data
names, monolithic program structure, and a
large number of switches and flags. And like
Freedman and Weinberg, he recommends that
maintenance managers give programmers the
time and support to improve the programs they
maintain which have these attributes.

Worst first maintenance, as described by
Weinberg in Reference 2, requires finding out
where you are spending your maintenance
money in each system. He has found that often
80% of the maintenance work is spent on just
20% of a system. Uncovering this type of phe­
nomenon does take some data gathering, but he
notes that such discrepancies are relatively easy
to spot once you begin to keep track of where
maintenance people spend their time. He has
seen several systems greatly improved by uncov­
ering these 'worst' portions and then rewriting
them to be more maintainable.

9

Structured retro.fit involves using a software
product (sometimes called a 'structuring engine')
to analyze a program of ill-defined structure and
try to convert it into one of 'well-defined' struc­
ture-that is, one that follows certain structured
programming conventions. The resulting pro­
gram should produce the same transformations
on input data as the original program.

For COBOL programs, we are aware of one
such product, offered as a service by The Cata­
lyst Corporation in Brookfield, Illinois, but we
have not had a chance to talk with users of the
service. Their service consists of five steps,
which can be performed at their site or the
user's site. (1) First, an operational program sup­
plied by the user company is put through the
structuring program. This product cleans up the
existing language and verb usage and also intro­
duces a structure to the code. For example, it re­
duces GOTOs, removes AL TERs, removes dead
code, and so on. Also, it isolates the control hier­
archy, highlights looping conditions, and groups
and standardizes input/ output, etc. It does not
remove logic errors nor produce functional
changes. (2) Next the restructured source code is
put through a formatting package to enhance its
readability. The formatter indents and formats
code, standardizes paragraph prefixes, field align­
ment, and reserve words, and so on. (3) Then the
operational program is recompiled to ensure
that no syntax errors have been introduced. (4)
The operational program is next validated by
running both the old and new versions against
the same input data. The results are compared
by a file-to-file comparator package and discrep­
ancies are analyzed by the supplier's project
team. (5) And finally, the validated program is
run through an object code optimizer to reduce
the overhead introduced by restructuring. The
people at Catalyst say their restructured pro­
grams increase processing overhead by about 8%
following the optimization step. The company
then provides a tape of the restructured program
and suggests ways to further enhance the pro­
gram. (For more information on the structured
retrofit concept, see a paper by Miller in Refer­
ence 2; for more information on Catalyst's re­
trofit service, see Reference 7.)

10

Programming for maintainability

There are several ways to develop programs
with future maintenance in mind. One way is to
use development tools which reduce the need
for corrective maintenance. Use of data manage­
ment systems, program generators, or applica­
tion development systems, as described earlier,
decrease the need for corrective maintenance
because much of the code is automatically pro­
duced by such systems.

Another method is to use structured program­
ming techniques to improve the quality of the
software, thereby reducing corrective mainte­
nance.

Higgins (Reference 5) discusses the question of
converting existing 'unstructured' programs into
well-structured ones. He says the idea of a 'struc­
ture analyzer,' which works on the structure of a
bad program, only gives a picture of the mess
that is there. Instead, he advocates taking the
time to determine the data structures associated
with the old program and creating a new design
using those data structures.

Still another approach is to develop systems
by prototyping. We will discuss this approach in
detail next month. The point we want to make
here is that with prototyping, the users are able
to actually obtain useful outputs from the sys­
tem early in its development life cycle, since the
system functions in a true productive sense but
in a prototype form. This generally-in fact, al­
most always-affects the users' perceptions of
the system and prompts them to request
changes-'enhancements' in maintenance par­
lance. These changes are made to the prototype
through an iterative process, until the user is sat­
isfied. With the prototyping tool (such as a data
management system), these iterations are easily
and quickly made. The end result is a good def­
inition of what the production system must per­
form.

So prototyping appears to reduce the amount
of enhancement maintenance requested by users
for the production system, because so many of
the changes are captured by the prototype.

Yet another approach-which improves the
general maintainability of programs-is what
Glass and Noiseux (in Reference 3) and others
call 'defensive programming.' Like defensive

EDP ANALYZER, AUGUST, 1981

driving, in defensive programming programmers
design and code with their senses tuned to po­
tential problems. They write programs which
have a better chance of detecting problems and
pinpointing them. Glass and Noiseux describe
five programming practices that enhance defen­
sive programming-use of assertions, margins,
commentary, audit trails, and flagging unsafe
practices.

Assertions are statements that a programmer
can make about the acceptable behavior of a
program or data. These assertions must be test­
able. If one assertion fails a test, the program
prints out a message describing the failure; it
then either recovers from the failure or aborts.
(These assertions are not the same as those used
in proofs of correctness.) For example, an asser­
tion might be used to detect erroneous or im­
probable input data, an improper logic flow, or
an exception condition. The authors' point is
that programmers should sprinkle assertion
statements and tests throughout their programs
so that they, and the eventual maintainers, can
monitor a program's behavior.

Margins are reserved resources. Programmers
should not use up all of the available computing
resources in any of their programs, because then
new features cannot be added without first free­
ing up some resources. Programmers should
leave unused some portion of resources in each
program-the margins. The authors note that on
smaller machines, maintainers often spend one­
half of their time shrinking the amount of re­
sources used by a program, and the other half
putting in the new features. This wastes a lot of
time.

Commentary. Glass and Noiseux note that of­
ten the only reliable documentation that a main­
tainer receives is the program listing. Therefore,
the listing should be made as complete as possi­
ble. They suggest placing comments in a pro­
gram in at least five places: (1) before each sub­
function, to explain its function, (2) before each
interface to other modules or programs, (3) be­
fore each group of related declarations, (4) be­
fore each declaration, to explain its role and its
possible values, and (5) before each difficult-to­
understand portion of the program. These com­
ments should not only explain what is happening

EDP ANALYZER, AUGUST, 1981

but also why it is happening. Using program de­
sign language statements may serve this purpose.

Audit trails. Programmers should also provide
statements in their programs that help maintain­
ers track the action occurring in the program.
During an audit run, these statements would
record when a module has been entered, asser­
tions made, when phases have been completed,
and so on. This facility is most useful when it is
optional, so that it need not be run for each pro­
duction run.

Flagging unsafe practices. The authors note
that programmers often do use unsafe program­
ming techniques, and when used, these should be
flagged. They list a number of such practices.
One is the use of GOTOs to return to the pro­
gram following a recoverable exception. These
flags must be provided by the programmers;
they are not automatically generated by most
pre-processors or compilers.

These then are some suggestions we came
across for creating software with maintainability
in mind.

Off-loading maintenance work

In the future, we expect data processing de­
partments to off-load not only some develop­
ment but also some maintenance work. We see
this happening in two ways: off-loading work to
end users and off-loading work to package ven­
dors by buying application packages. The major
reasons for using these two approaches may not
be to decrease maintenance, but that will be a
side benefit. We briefly look at these possibili­
ties.

Off-loading work onto end users. From a main­
tenance point of view, perhaps the most disturb­
ing finding of the Lientz and Swanson survey
was that applications that used a database man­
agement system or data dictionary grew faster
than those which did not-indicating that such
applications probably required more, not less,
maintenance. With the growing use of database
management systems, this could mean data
processing departments will be even more
swamped with maintenance work.

Yet, at the same time, DBMS-based tools are
now available that allow end users to do some of
their own programming. So once these tools,

11

and databases, are made available to users, data
processing may be able to off-load some pro­
gramming and maintenance work onto these
other employees. In the May and June reports
we gave several examples of companies where
this is actually happening. We believe this is an
important trend-end user programming.

From the cases of end user programming that
we have seen, the responsibility for maintaining
these applications has not been given to data
processing; it has stayed with the end users. As
users do more of their own programming, they
will also do most of the maintenance required.

Off-loading work onto package vendors. The
other way we believe companies will off-load
software maintenance is by purchasing applica­
tion packages. With this approach, corrective
maintenance and some general enhancements
will be performed by vendors. However, to take
advantage of this type of package support, pur­
chasers must be very careful not to invalidate
their contracts. If a package is changed in any
manner, the vendor may have legal grounds for
discontinuing support of the package. One com­
pany told us that they go to great effort not to
change a purchased package. If, for some reason,
changes are needed, they contract with the ven­
dor to help them perform analysis of the pro­
posed changes and verify that these changes will
not invalidate their support.

The purchase of packages will probably re­
duce corrective maintenance, and it may reduce
some types of adaptive maintenance. For exam­
ple, a main reason why companies purchase the
ALLTAX package from Management Science
America (MSA), to use in their payroll programs,
is so that MSA will make the necessary adaptive
changes in response to changing government tax
regulations. The user companies need to main­
tain the other parts of their payroll programs, of

course, but tax calculation maintenance is han­
dled by MSA.

Boehm (in Reference 2) estimates that about
70% of the life cycle programming cost of an ap­
plication comes from maintenance. With com­
panies now spending about one-half of their pro­
gramming time maintaining existing systems, it
behooves data processing management to stress
maintainability even more than in the past.

In this report we have suggested a few ways
to help maintain older systems, to create more
maintainable new systems, and off-load some
maintenance work onto other people. It does not
look as though program maintenance will go
away, but there are ways to ease its burden on
data processing departments.

REFERENCES
1. Lientz, Bennet P. and E. Burton Swanson, Software

maintenance management, Addison-Wesley Publishing
Company (Jacob Way, Reading, Massachusetts 01867),
1980; price $12.95.

2. Parikh, Girish (Ed.), Techniques of program and system
maintenance, Ethnotech, Inc. (P. 0. Box 6627, Lincoln,
Nebraska 68506), 1980; price $25. (Parikh also pub­
lishes the Software Maintenance News; for information,
write him at Shetal Enterprises, 1787 B West Touhy,
Chicago, Illinois 60626.)

3. Glass, Robert L. and Ronald A. Noiseux, Software main­
tenance guidebook, Prentice-Hall, Inc. (Englewood Cliffs,
New Jersey 07632), 1981; price $21.95.

4. Chapin, Ned, "Productivity in software maintenance,"
Proceedings of the AFIPS 1981 National Computer Confer­
ence, AFIPS Press (1815 North Lynn Street, Arlington,
Virginia 22209), pp. 349-352; price $75.00.

5. Higgins, D.A., "Structured maintenance; New tools for
old problems," Computerworld (375 Cochituate Road,
Framingham, Mass. 01701), June 15, 1981, special sec­
tion page 31; price $1.25.

6. For more information on the DRB Program Generator,
contact David R. Black and Associates, 1780 Maple
Ave., Northfield, Illinois 60093.

7. For more information on their structured retrofit ser­
vice, contact The Catalyst Corporation, 9408 West
47th Street, Brookfield, Illinois 60525.

EDP ANALYZER is published monthly and copyright© 1981 by Canning Publications, Inc., 925 Anza Avenue, Vista,
California 92083. All rights reserved. Photocopying this report for personal use is permitted under the conditions stated at the
bottom of the first page. Also, see Declaration of Principles on page 15.

12 EDP ANALYZER, AUGUST, 1981

COMMENTARY

EVALUATING SOFTWARE MAINTAINABILITY

The need for software maintenance generally makes itself known by some­
one asking for a change-due to a program error, a change in the hardware
or operating system configuration, a desired enhancement, or such. We have
not heard of many cases of where organizations have made a study of their
software, to rate it as to its maintainability.

We were pleasantly surprised, therefore, to come across a U.S. Air Force
project that has developed a methodology for studying existing software and
rating it as to its maintainability.

The method is described in Software Maintainability Evaluator's Hand­
book, prepared by the Computer/Support Systems Division at the U.S. Air
Force Test and Evaluation Center, Kirtland Air Force Base, New Mexico,
87117. It is one of five handbooks developed by this division for use in oper­
ational testing and evaluation of software. These five handbooks were pre­
pared for the positions of (1) software test manager, (2) software assessment
team chairman, (3) software maintainability evaluator, (4) software operator­
machine interface evaluator, and (5) computer support resource evaluator.
As the position titles imply, the methodology has been developed for testing
and evaluating large bodies of software. But it seems to us that a good many
of the ideas can be applied in computer-using organizations of all sizes.

The goal of the software evaluator's handbook is to provide a procedure
by which members of a team of evaluators can independently evaluate a body
of software as to its maintainability. Each team member rates the source
code of each piece of software (programs, modules, or whatever) on up to 89
characteristics. Further, the documentation associated with each piece of
software is also rated, on up to 83 characteristics. Further, the statistical
analysis of the ratings is performed on a computer. So the net evaluation of
each piece of software, and its documentation, is the product of a team of
evaluators, rather than the opinions of one or two individuals.

Once the software has been so evaluated, what then? Although not speci­
fied in the handbook, the answer seems evident. It is up to management to
decide what to do about the problems. The poorest programs, from a main­
tainability standpoint, are generally well known within an installation. Pro­
grammers often shudder when asked to tackle these. When a number of pro­
grams have been evaluated, the 'worst offenders' probably will show up with
the lowest ratings. But from the evaluation team's report, management will
get an idea of just how bad these programs are, as compared with the others.

Management should then be in a better position to decide what to do
about allocating systems and programming resources to clean up the offend­
ing programs. If prior maintenance costs can be associated with the various
programs, it may become apparent where clean-up actions (such as discussed
in this issue) should be taken.

EDP ANALYZER, AUGUST, 1981 13

14

But back to the software evaluator's handbook. As indicated, the method
considers not only the source code for each piece of software but also that
software's documentation. (It is noted in the handbook that the source code
is often the only documentation available, but it is considered separate from
the documentation in the methodology.) The documentation consists of the
program design specifications, program testing information and procedures,
and the program maintenance information. These documents are evaluated
both as to their content and their format (for ease of use).

Both the source listings and the documentation are rated according to six
characteristics: modularity, descriptiveness, consistency, simplicity, expand­
ability, and instrumentation (aids which enhance testing). The ratings are per­
formed by means of 'questions'. So the method consists of 12 sets of ques­
tions: the source listings evaluated on the six characteristics and the docu­
mentation likewise.

Each 'question' really is a statement about a desirable feature of a source
listing or a document-a feature which enhances or supports maintenance.
The evaluator is supposed to rate the source listing, or the document, for
that feature by using a six-value rating scale. An 'A' rating means the source
listing, or document, exhibits the feature in the best possible way. 'B' means
that the feature is used very well; 'C' means acceptable, 'D' means accepta­
ble but some improvements should be made, 'E' means unacceptable with
major improvements required, and 'F' means the software (or documenta­
tion) must be completely redesigned.

The method recognizes that not all questions apply to all pieces of soft­
ware. An example is given in the handbook: a particular module may not
have any statement labels. So a question such as "Statement labels have been
named in a manner which facilitates locating a label in the source listing"
may appear irrelevant for that module. But, in this instance (the handbook
continues), the software is actually more understandable because there is no
branching to labelled statements. So the evaluator might well assign a very
high ('A') rating on this question, just as though labels were used that had
been very well named.

If you are interested in studying the subject of evaluating software main­
tainability, this handbook probably would be very useful. You can obtain a
copy by writing to the Computer/Support Systems Division at the address
given above. As yet, there is no charge for the handbook. If demand is appre­
ciable, we would guess that the Air Force would have it distributed through
the National Technical Information Service.

EDP ANALYZER, AUGUST, 1981

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1978 (Volume 16) 1980 (Volume 18)

Number Coverage Number Coverage

I. Installing a Data Dictionary•............. G I. Managing the Computer Workload I
2. Progess in Software Engineering: Part I H 2. How Companies are Preparing for Change K
3. Progress in Software Engineering: Part 2 H 3. Introducing Advanced Technology K
4. The Debate on Trans-border Data Flows L 4. Risk Assessment for Distributed Systems .. L,E,A
5. Planning for DBMS Conversions G 5. An Update on Corporate EFT M
6. "Personal" Computers in Business B 6. In Your Future: Local Computer Networks .. F,B
7. Planning to Use Public Packet Networks F 7. Quantitative Methods for Capacity Planning I
8. The Challenges of Distributed Systems E,B 8. Finding Qualified EDP Personnel J
9. The Automated Office: Part I A 9. Various Paths to Electronic Mail D

10. The Automated Office: Part 2 A,D 10. Tools for Building Distributed Systems E,B,F
11. Get Ready for Major Changes K 11. Educating Executives on New Technology K
12. Data Encryption: Is It for You? L 12. Get Ready for Managerial Work-Stations A,B

1979 (Volume 17) 1981 (Volume 19)
Number Coverage Number Coverage

I. The Analysis of User Needs H I. The Coming Impact of New Technology K
2. The Production of Better Software H 2. Energy Management Systems M
3. Program Design Techniques H 3. DBMS for Mini-Computers G,B
4. How to Prepare for the Coming Changes K 4. The Challenge of "Increased Productivity" ... J,K
5. Computer Support for Managers C,A,D 5. "Programming" by End Users H,G,B,C
6. What Information Do Managers Need? C 6. Supporting End User Programming H,G,B,K
7. The Security of Managers' Information C,A,L 7. A New View of Data Dictionaries G,B,
8. Tools for Building an EIS C 8. Easing the Software Maintenance Burden . H,B,G,
9. How to Use Advanced Technology K,B,D

IO. Programming Work-Stations H,B
11. Stand-alone Programming Work-Stations H,B
12. Progress Toward System Integrity L,H

Coverage code:

A Office automation E Distributed systems
I Computer operations
J Personnel

B Using minis & micros F Data communications K Introducing new technology
L Security, privacy, integrity

M New application areas
C Managerial uses of computers
D Computer message systems

G Data management and database
H Analysis, design, programming

(List of subjects prior to 1978 sent upon request)

Prices: For a one-year subscription, the U.S. price is $60. For
Canada and Mexico, the price is $60 in U.S. dollars, for surface
delivery, and $67 for air mail delivery. For all other countries,
the price is $72, including AIR MAIL delivery.

Back issue prices: $7 per copy for the U.S., Canada, and Mexico;
$8 per copy for all other countries. Back issues are sent via AIR
MAIL. Because of the continuing demand, most back issues are
available.

Editorial: Richard G. Canning, Editor and Publisher; Barbara
McNurlin, Associate Editor. While the contents of this report are
based on the best information available to us, we cannot guarantee
them.

Missing Issues: Please report the non-receipt ofan issue within one
month of normal receiving date; missing issues requested after this
time will be supplied at the regular back-issue price.

Copying: Photocopying this report for personal use is permitted
under the conditions stated at the bottom of the first page. Other
than that, no part of this report may be reprinted, or reproduced or
utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying
and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher.

Reduced prices are in effect for multiple copy subscriptions,
multiple year subscriptions, and for larger quantities of a back
issue. Write for details.

Please include payment with order. For payments from outside
the U.S., in order to obtain the above prices, use only an
international money order or pay in U.S. dollars drawn on a bank
in the U.S. For checks drawn on banks outside of the U.S .. please
use the current rate of exchange and add $5 for bank charges.

Address: Canning Publications, Inc., 925 Anza Avenue, Vista,
California 92083. Phone: (714) 724-3233, 724-5900.

Microfilm: EDP Analyzer is available in microform, from
University Microfilms International, Dept. P.R., (I) 300 North
Zeeb Road, Ann Arbor, Mich. 48106, or (2) 30-32 Mortimer
Street, London WIN 7RA, U.K.

Declaration of Principles: This publication is designed to provide
accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publishe~
is not engaged in rendering legal, accounting, or other professional
service. If legal advice or other expert assistance is required, the
services of a competent professional person should be sought. -
- From a Declaration of Principles jointly adopted by a
Committee of the American Bar Association and a Committee of
Publishers.

15

