PASCAL NEWSLETTER

January 1974 ‘Number 1

FROM THE EDITOR

This is the first issue of a newsletter sent to users and other
interested parties about the programming language PASCAL. Its purpose
is to keep the PASCAL community informed about the efforts of individuals
to implement PASCAL on different computers and to report extensions made
to the language. It will be published at infrequent intervals due to the
limited manpower.

Everyone is encouraged to report to the editor any item of interest
to the community. There are many examples given below. Of particular
interest are reports of successful implementations on other computers that
the author is willing to distribute and modifications to the CDC version
to surmount problems or add features. Also, programs written in PASCAL
are of interest. lowever, a plethora of incompatible dialects of PASCAL
must be avoided.

The University of Colorado, thru the editor, is willing to support
the distribution of PASCAL programs and documents subject to’the limitations
of its hardware. This is a CDC site with seven track industry compatible
NRZI tape drives. To help defray our costs, there is a charge of 5¢ per
page for documents, $5 for copying and postage for a magnetlc ‘tape from a
user and $15 if the University supplies the tape (a2 mini reel). Send to:

George H. Richmond
University of Colorado
Computing Center

3645 Marine Street :
Boulder, Colorado 80302

CURRENT PASCAL COMPILER

The current compller is dated December 15, 1972, and now_incor-
porates a correction written November 15, 1973, It is avallable on a
556 bpi SCOPE 3.2 internal binary tape. All CDC 6000 sites should,be
able to read the tape under any standard CDC operatlng system. Other tape
formats can be arranged on request -

There are six files on the tape. The first two are the. source and
b1nary of PASCAL as distributed by Dr. Wirth, of Switzerland, the author
of the language. The.next two files are the University..of:Celorado version
of the source and binary of PASCAL. The changes are confined.to: 1) adapt-
ing PASCAL to KRONOS 2.0, 2) deleting the frequency count feature, and
"3) providing alphabetic. a1ternat1ves to some speclal characters for terminal
users, The source file is an UPDATE version 1,2 sequent1a1 OLDPL of the
72/12/15 release with the 73/11/15 correction applied as a modification.

All PASCAL users are urged to use this as a base from which to modify the .
compiler. The fifth file is a PASCAL Manual adapted from the one written..’
by Wilhelm Burger at the University of Texas at Austin.’ The last file is
the text of the modsets incorporated in the OLDPL. ‘

The following items are supplied in the documentation package.

TITLE DATE ‘ PAGES

The PASCAL System, Documentation, and Nov 73 4

Literature .

The PASCAL Distribution Tape Dec 73 1

Notes accompanying the PASCAL Tape of 15 Dec 73 8

A note to users of the PASCAL Language 15 DPec 72 6

Planned changes to the programming Jun 72 7

language PASCAL : :

Changes to the programming language - 15 Feb 72 8

PASCAL ‘ » ‘

The PASCAL Operating System POSYS 28 Oct 71 20
. Advantages of the value parameter over 5 Jul 72 3

. the constant parameter _

Run-Time Check Options : : o Dec 72

How to use the PASCAL 6000 System 23 Jun 72

The Standard Procedure WRITE and © 23 Jun 72

Post-Mortem Dump

The Programming Language PASCAL Nov 72 53
(Revised Report) :

An Axiomatic Deflnltlon of the Programmlng Nov 72 32
Language PASCAL

This version of the compiler does not implement class variables as described
in the Revised Report. The following description of them comes from the
original PASCAL report. . ~ - :

6.2.5 Class types

A class type definition specifies a structure consisting of a-
class of components, all of the same type. The number of components is
variable; the initial number upon declaration of a variable of class type
is zero. Components are created (allocated) during execution of the pro-
gram through the standard procedure new. The maximum number of components
“which can thus be created however, is specified in the type of definition.

<{class type> ::=class {maxnum> of <type>

<maxnumy ::= <integer>

-2~

6.2.6 Pointer types

d
A pointér type is associated with every variable of class type.
Its values are the potential pointers to the components of that class
variable (cf.7. S) and the pointer constant nil designating no component.
A pointer type is said to be bound to its class varlablem

~\p01ntex type> ::= f<class variable>
<class Qariable) ::= <variable>

7.2.4 Referenced components

Components of class variable are referenced by pointers.
¢referenced component> ::= <pointer variable>+
<pointer variable> ::= <variéble>
Thus, if pl is a pointer variable which is bound to be class variable v,
pl denotes that variable and its pointer value, whereas pl#% denotes the
component of v referenced by pl.
Examples:
bl%j father
plt. elder sibling®. youngest child

10.1.2 Class component allocation procedure

new(p) allocates a new component in the class to which the poinfer variable
p is bound, and assigns the pointer designating the new component
to p. If the component type is a record type with variants, the
form

new(p,t) can be used to allocate a component of the variant whose tag
field value is t. However, this allocation does not imply an
assignment to the tag field. If the class is already completely
allocated, the value nil will be assigned to p.

An error in code generation was recently found and corrected as
shown below. It occured when an integer variable I and a real variable
X are used in expressions like I+1+X.

Procedure SIMPLEEXP before fix:

PROCEDURE SIMPLEEXP ;
VAR 'BATTR : ATTR ; LADORCL : SHRTINT ; LFB,BT1,BT2 : BOOLEAN ;
BEGIN LFG := FALSE ; '
IF NO = 7 THEN {ADDOP}
BEGIN IF CL = 2 THEN LFG := TRUE ELSE IF CL = 3 THEN ERROR(51) ;
INSYMBOL ;

END ;
TERM ;
IF LFGv(NO = 7) THEN
BEGIN WITH LATTR DO
BEGIN TYPTR := GATTR.TYPTR ; KIND :=LVAL ; CTERM :=0 ;
IF TYPTR # NIL THEN
BEGIN TRANSFER{GATTR,RP) ;
IF LFG THEN
BEGIN GEN15(13B,0,0,0) ;
IF (TYPTR4.FORM = NUMERIC} (TYPTR = REALPTR) THEN
GEN15(37B,RP, 0,RP) LLSE ERROR(50)
END
END

END ;
WHILE NO = 7 DO
BEGIN LADOPCL := CL ; INSYMBOL ; TERM ;
IF (LATTR.TYPTR # NIL)A(GATTR.TYPTR # NIL) THEN

Procedure SIMPLEEXP after fix:

PROCEDURE SIMPLEEXP ; a
VAR LATTR : ATTR ; LADOPCL : SHRTINT ; LFG,BT1,BT2 : BOOLEAN ;
BEGIN LFG := FALSE ;
IF NO = 7 THEN {ADDOP!{
BEGIN IF CL = 2 THEN LFG := TRUE ELSE IF CL
INSYMBOL ;
END ;
TERM ;
IF LFGv(NO = 7) THEN
BEGIN WITH LATTR DO - -
BEGIN TYPTR := GATTR.TYPTR ; KIND. := LVAL ; CTERM :
. IF TYPTR # NIL THEN et ,
BEGIN TRANSFER(GATTR RP) ;
IF LFG THEN
BEGIN GEN15(13B0,0,0) ;
IF (TYPTR+.FORM = NUMERIC)v(TYPTR = REALPTR) THEN
GEN15 (37B,RP,0 RP) ELSE ERROR(50) ’
END
END
END ;
WHILE NO = 7 DO .
BEGIN LADOPCL := CL ;
IF LATTR.KIND = LVAL THEN
IF LATTR.CTERM # 0 THEN
BEGIN GEN30(71B,0,0,LATTR. CTERM) ; GEN15(36B,RP,RP,0);
LATTR.CETERM := 0
END;
INSYMBOL TERM; -
IF (LATTR.TYPTR # NIL)~ (GATTR. TYPTR # NIL) THEN

3 THEN ERROR(51) ;

1

1
M]
we

COST OF THE PASCAL PACKAGE

There is a charge dfh$30 the first time a PASCAL tape and documen-
tation package is sent. Deduct $10 if a tape is supplied and deduct §10
if you have previously received PASCAL from us.

FORTHCOMING YERSIONS OF THE COMPILER

An entirely new compiler called PASCAL 2 is under development. It
implements the language PASCAL as defined in the Revised Report (Nr. 5)
with a few extensions (sece below). It is implemented for the operating
system SCOPE 3.4 and will be available in two versions:

1) For the CDC scientific 64-character set, and
2) For the ASCII 64-character set (with CDC's ordering).

-This implies that no exp11C1t line control characters (col) are available;
instead, ends of lines in textfiles are generated and recognized by
additional standard procedures and functions. This, unfortunately, re-

~ quires changes in most existing programs - although they may be clerical

only. Hence, the distinct name PASCAL 2 was chosen,

The (other) principal new characteristics of the compiler
are:

1) It generates relocatable binary object code which can be
loaded by the standard CDC loader.

2) It allows procédures (and functions) to be separately compiled
and merged at load-time.

: '3) It provides a facility to use subroutines written in other
languages. In these cases, the standard FTN calling sequence will be
generated.

4) It introduces packed afrays. They can be treated like regular
arrays, but will be allocated with as many components as possible packed
into each word. Accordingly, access to individual elements will be slower.

5) It introduces so-called segmented files; each segment cor-
responds to a logical record (in CDC terminology).

6) External files may be passed to the program as parameters in
a program heading. ‘

We hope to be able to ‘release the new compiler by May, 1974 along
W1th a User Manual.

The PASCAL P system is a compiler whlch generates code (so-called
P-code) for a simple, hypothetical stack computer. This computer is
described in the form of a PASCAL program as a loader and interpreter of
P-code. . '

-5

The PASCAL-P system was developed in order to simplify the imple-
mentation of PASCAL on other machines. The method to proceed is in general
(i.e., without access to a CDC 6000 computer) the following:

1) Program the loader interpreter in any (probably assembly)
language for the target machine M . PASCAL-programs can now be executed
interpretively on M , since the PASCAL-P compiler is available in P-code.

2) Rewrite the PASCAL-P compiler by replacing the P-code genera-
tors by routines generating code for machine M.

3) Interpretive compilation of the modified compiler then yields
a compiler in P-code which generates M-code.

4) Recompilation of the modified compiler by itself then results
in a PASCAL compiler in the form of M-code and generating M-code.

The PASCAL-P system is available under the same conditions as the
CDC compiler. It is delivered in source form (a PASCAL program) and in
P-code form (coded as a string of characters).

Note: We recommend that this system be ordered only by people seriously
considering to implement PASCAL on their computer.

OTHER PASCAL COMPILERS

Mr. Wilhelm Burger at the University of Texas at Austin has made
extensive modifications to PASCAL and has written a manual that is avail-
able in machine readable form. The University of Colorado has adapted
this manual so that it corresponds to the version we release. Mr. Burger's
PASCAL incorporates the following extensions. It allows external procedures,
segmentation of programs into overlays which can be called sequentially,
and partial compilation of declarations and procedures to allow them to be
used later. Compiler options can be set on the control card. Several new
convenient procedures and functions are defined such as a random number
generator, clock, memory dump, and tracing of procedure calls.

A tape of Mr. Burger's PASCAL system can be obtained from the
University of Colorado or one can write directly to:

Mr. Wilhelm F. Burger

The University of Texas at Austin
Department of Computer Science
Austin, Texas 78712

An IBM 370 version of PASCAL that runs interpretively at speeds
_ comparable to PL/I for student jobs is available. For further information,
write directly to:

Mr. Al Hartmann

Mail Code 286-80

California Institute of Technology
Pasadena, California 91109

-6

MODIFICATIONS TO PASCAL

The University of Colorado has developed and distributes with the
PASCAL system the following mods which are of interest to all PASCAL users.

FUNCTION DATE PAGES
Adapt POSYS to KRONOS 2.0 30 Jan 73 S
Remove frequence count feature 30 Jan 73 1
Print PMD message on OUTPUT in 6 Feb 73 2

addition to dayfile

—

Add alphabetic tokens equivalent 30 Jan 73
to special symbols

In addition, a 23 page copy can be made of the following mods from Professor
Hellmut Golde at the University of Washington in Seattle, dated November,
1973.

Incorporate cross reference program

Abort after too many compilation errors

Delete frequency count feature

Implement 64 character set for SCCPE 3.4

Adapt POSYS to SCOPE 3.4

Require EOR between program and data on all files
Yield error on attempt to read past EOF

Print PASCAL error message on abort

Accept alphanumeric tokens for special symbols
Add line numbers to compiler listings

Scan only 72 columns of source

OTHER DOCUMENTATION

Copies can be made from the following items in our files.

Author and Title DATE PAGES
N. Wirth, ETH, "Program Development Jan 71 24
by Step-wise Refinement"

N. Wirth, ETH, '"The Design of a PASCAL Jul 71 26

Compiler," submitted to Software-
Practice and Experience

N. Wirth, Stanford University, 'On Feb 72 40
PASCAL, Code Generation, and the
CDC 6000 Computer"

N. Wirth, ETH, '"The Programming Aug 72 61
Language PASCAL"
A. Mickel, University of Minnesota, Sep 72 16

"PASCAL at the University of Minnesota"

Author and Title

N. Wirth, ETH, "The Programming
Language PASCAL (Revised Report)"

W. Burger, University of Texas at
Austin, "PASCAL Manual,'" a complete
manual for their local version

H. Golde, University of Washington,
"PASCAL-W, Users Manual,'" a list
of changes to the revised report

~ for their local version

K. Jensen and N. Wirth, ETH, "A
User Manual for PASCAL," a pre-
liminary copy to be released with
the next version of the compiler

. "8‘

Date

Nov 72

Jul 73

Sep 73

Oct 73

Pages

68

24

87

George H. Richmond
University of Colorado
Computing Center

3645 Marine Street
Boulder, Colorado 80302

PASCAL NEWSLETTER

Notes Accompanying the PASCAL Tape of December 15, 1972

These notes contain a description of the PASCAL tape of

December 15, 1972, and instructions how to use it.

Please observe that the rotes entitled "Notes Accompanying

the PASCAL Tape of August 11, 1972" are obsolete.

December 15, 1972

U. Ammann
Fachgruppe Computer-Wissenschaften
Eidg. Technische Hochschule

Clausiusstrasse 55

CH-8006 Z U r i c h

Contents of the PASCAL Tape of December 15, 1972:

The tape contains four files.

File no. 1 and file no. 3 are identical, and so are file no. 2

and file no. 4.

File no. 1 contains source programs only and consists of

the following 6 records:

Record no. Coﬁtents
1 POSYS
2 PASCAL Compiler
3 five COMPASS library routines
4 FQC (frequency countihg PP routine)
5 FQCOUT (outputs program profiles)
6 PMD (post-mortem dump routine)

File no. 2 contains the binarv PASCAL system and consists of

the following 12 records:

Record nao. Contents

1 POSYS
2 Header éf Compiler
2 Compiler

4-8 Libraiy functions
g Header of FQCOUT
0 Facout

11 . Error messages

12 - PMD

How to use the tape

The following pseudo control cards suggest a way to catalog,

assemble and compile the various programs:

JOSCARD: CN47000, TINE = 130 SEC, 1 TAPE UNIT.
RFL(0000))
REGUEST(TAPE ,HI) PASCAL TAPE OF DEC. 15, 1972,

COMMENT,
COMMENT.1) CATALCR TAPE INFORMATION,
COMNENT [mmmm e

ASSIGN PF DEVICF TO THE FOLLOWING FILES:
pPOSvYsS ,SRCOMP ,PASCLIB,FRC.FRCOUT . .PMD,PASCAL,

COBYER(TARE.POSYS)

CATAl OR(POSYS.PASCAL DEC1972,CY=1N)

CORPYSR(TAPE,SRCOMP)

CATALOG{SRCNMP ,PASCALDEC%972,CY=20)

COPYSR!TAPE ,PASCLIE)

CATALOR(PASCLIR ,PASCALDEC1972,CY=30)

COPYSRITARE ,FQR)

CATALCG(FGC ,PASCALFREGNOUNTDEC1972,CY=10)

COPYEBR(TAPE .FACOUT)

CATALOR(FRCOUT .PASCALFRERCNUNTDEC1972.0Y=20)

CORPYBF (TAPF ,P\VD)

CATALOG(PMD,PASCAL DEC1972,CY=50)

COPYSF(TAPE ,PASCAL)

CATALﬂC(PACCAL PASCALEBINDEC1972, "READ-ONLY™)

RETURN(TAPE)

COIANENT .,

COMMENT ,.2) ASSFMILE, CCHPTLF,

COMMENT (= omom m m amam m m m m e m m em m m

REWIND (POSYS,SRNOMP ,PASCLIB,.FRC.FRCOUT ,PMD)

AFL(a7000)

COMPASS(T=PCOSYE.2=0)

PASCAL (P =SRCOYP ,NPT=NOGO)

COMPASS({I=PASCLTS,B=0)

CCMPASS!I=FRC,S=SCPTEXT)

PASCA! (P=FRCOUT ,0PT=NOGO)

COMPASS(T=PuN ,R=0)

In order to install the frequency counting facility, execute

the following steps:
- Read the next four pages.

- Make the necessary changes to FQC according to the demands

of your operating system.

- Add the assembled version of your FQC to your system

library.

4. Frequency Counting

The PASCAL system in its ETH implementation offers a facility
which exposes to the user how much time (in percents of the.

total time used) each line of his program consumed during execution.

The frequency counting mechanism consists of four routines:

FQc, CPFGC1, CPFGC2, and FQCOUT.
FGC is a PP program which procedure GO calls immediately
before activating the user program. FGC works with an array of

10
increments by 1 the counter indexed by the P register's current

at most 1600 counters. Approximately every 34/Asec FGQC

value, until it is recalled by GO. Then the cantents of the

counters are dumped into central memory.

CPFQC1 sets up a table of parameters for FQC. This' table is
called FQGCDAT and has the following format:

48 24 17 1
FQCDAT —~>
X{0
n fcl v fcu
da
X = 0 for call of FQRC,X =1 for recall of FQC
n = logz(block length)
fcl = lower bounding address of supervised cocde area
fcu = upper boqnding address of supervised code area
da = dump address = address from which on FQC is to dump thé

counter values.

CPFQC1 increases the specified FCU parameter (or its default

value), yielding fcu, such that the following relation holds:

(feu - fecl) =m * 2" & m £ 1600, g+ .
where n is the smallest integer that satisfies the

relation.

FQC is called by setting [RA+1] to

41 ‘ 17
FQc o1 o~

FQCDAT

CPFUC2 is called afier the recall of FGC. Its only function

is to loacd and execute and pass parameters to FQCOUT.

FQCOUT, finslly, is a kept PASCAL program that outputs the
dumped rcounter values. Its main program variables have been
initialized by FQC and CPFQC2 before it is loaded. If OPT=FC*
was specified, FQCOUT takes as input the listing of the user
program which the compiler wrote on the file FQCFILE, and
outputs the profile of the program.

4.1. FQC - The Freguency counting PP Progrem

(by W. Bichi, Fachgruppe Computer-Wissenschaften, E£idg.
Technische Hochschule, Clausiussir. 55, CH-8006 Zirich)

FQC consists of four parts. The first one is used to prevent
more than one copy of FQC being active at any time. The second
part chacks the parameters obtained from the calling CP program
and starts the third part, which contains the 34 musec mein
loop. When FQC is recalled, control is given to the fourth

part which dumps the counter values to the designated central

memory area.

The parzmeters supplied are used as follows:

. n
blocksize = 2
length of supervised centrel memory ares,

length = ((fcu - fcl)//blocksize)* blocksize

To each CP program block a 24-bitcounter in the PP memory
is assigned. They are arranged in two arrays for convenient
indexing. When FQC in its main loop has reed the CPU's

P-register the index to the zppropriate counter is
(P-(fcu - length))//blocksize

provided that it is greater than zero and (P-fcu) is negative.
Otherwise, the index value -1 is used. Thus the time spent

outside the given limits is recorded in the first counter.

- Now we go through the four parts of FQC in detail. First,

when FQC is entered, a test is made whether FQC is already
used by another jobf This is done by inspecting byte C.FQCLCK
of word T.FQCLCQ in CMR using channel CHLOCK as interlock. A
non-zero value indicates another FQC already being active. To
prevent PP saturation, the request is not honoured in fhaf
case, and FQC puté itself into the PP delay gueue with a delay
of ‘5 sec., and drops. Otherwise, the interlock flag is set .

and the second part acquires control.

It starts with fetching the parameters and checking them.

If any error occurs, a simple error routine is called which
puts into the dayfile the FQC program address where the

error was found. Some shift instructions afe then set up for
division by and multiplication with the blocksize. The counters
are ini#ialized to zero, the completion bit is set and CP
program execution is requested to resume by the monitor

function RCLCP.

Then the main loop staris with testing whether CPU-A ar CPU-B
is active at the contirol point by inspection of the CPU status
word at T.CPT1 of CMR. Depending on which CPU is active the
appropriate RPN instruction is executed to get the P register's
value, thus giving the index to the counter which has o be
incremented. If neither CPU is active at the control pocint,
severzl checks hzve to be made to esnquire what was heppened.
The control pecint status word is read to see whether the

error flaeg is set, in which case FQC drops. The status word
also contains the move flag which is tested. If it is 'set,

a pause request is issued and FQCAwaits until the move flag

is clear or the error flag is set. In the latter case, FGC
drops. The parametér address must be updated. Finally, the
stztus word is inspected to see if the CP program has
requested to dump the counters (X = 1), so that the fourth
pert should be executed. If none of the above conditions

exist, the main loop is restarted.

Before dumping the counters into central memory, the fourth
part checks if the dump ares lies within the user's field
length. The counters are then expanded tg the 60 bit centiral
" memory word size and transferred to the arrsy whose address
has been given by da. The completion bit is set and FQGC drops
after having cleared the interlock byte giving enother FGC &

chance of running.

Jh 1 5zl

Fachgruppe Computer-Wissenschaften N. Wirth
ETH, Zirich : 15.12.72

A Note to Users of the PASCAL Language

Efforts to implement PASCAL on various computers have lately been
initiated at several places. It is my conviction that the_utmost
should be done to achieve full compatibility among the different
systems. An axiomatic definition of the language together with a
set of recommendations for implementation standards has therefore
been established and is due to appear shortly:

C.A.R. Hoare and N. Wirth, "An axiomatic definition of the
programming language PASCAL", Berichte der Fachgruppe
Computer-Wissenschaften, ETH, No. 6 (Dec. 1972)

The axiomatic definition method as well as past experience with
PASCAL showed that certain details of the language should be revised.
In view of the growing number of implementations it became highly
desirable to define these revisions at this time. The result is the
accompanying Revised Report. The main changes are summarised
informally below.

Along with the decision to define a revised PASCAL language went the
decision to write a completely new compiler, although the small
changes themselves would not have required such a procedure. This
new compiler will be designed in a functionally structured fashion,
and it should be particularly well suited for adaptation by boot-
strapping to different computers. This new compiler, however, will
not be available for some time, partly because also other changes
will be implemented, such as the generation of binary, relocatable
object code and the facility of part compilation.

In order to make Revised PASCAL widely available as soon as possible
and to facilitate the gradual adaptation of already existing programs,
a new version of the existing compiler was prepared (Version 15.12.71).
To keep our efforts for this "temporary tool" reasonably small,
however, the change concerning class variables (No. 4 below) is not
incorporated, and in this respect the compiler still follows the
specifications of the-original report.

The Revised Report does not contain any specifications about how to
access the compiler. It was felt that this information should be.
provided by individual installations in accordance with their
operating systems. ’

Summary of changes of the language

(cf. also "Preface to the Revised Report")

1. Procedure parameters

"Constant parameters" are replaced by "value parameters" (in the
sense of ALGOL 60). A value parameter denotes a local variable to
which the value of the corresponding actual parameter is assigned
upon initiation of the procedure. This implies that assignments

to value parameters are allowed. It should be noted that this
concept requires that z local copy of the value of the parameter

is made. A change of existing programs is necessary in the following
three cases:

- If the formal parameter is specified by the symbol const, then
this symbol must be removed.

- If an assignment to a constant parameter is made, then this is
against the rules of the language; however, such illegal assignments
were not detected by the old compiler in the case of structured
parameters (arrays etc.), and as a consequence do occur in existing
programs. Such assignments are legal in the new language, but are
made to the local variable representing the parameter; this may
not necessarily correspond to the intensions of the -programmer.

- In ambiguous constructions such as

procedure P(var i: integer; r: real)

r was considered as a variable parameter, but is taken to be a
value parameter in the new language: the symbol var has effect
only up to the next semicolon. All parameters not preceded by a
specificator are considered to be value parameters.

2. Files

In order that the buffer variable fY of a file f and the
standard function eof(f) have always a defined value when a file
is read, an implicit assignment of the first element of the file f
to the buffer variable ft is performed (by an implicit call of
get(f)) in the following cases:

- at the start of the program for the standard file input ,

- at the start of the program for every file specified by = [in] ,
- after every call of the standard procedure reset(f)

If a file is to be rewound for rewriting, then the calls to reset.
must be replaced by calls of the new standard procedure rewrite.
The further changes necessary in existing programs essentially

consist of the removal of the first get(f) (or read(ch))
statement. '

Example 1:
get(f);
while ~eof(f) dao
begin S(ft); get(f)
end

Necessary change: remove first line.
Example 2:
read(ch)
while -eof(input) do

begin S(ch); read(ch)
end

must be changed to
while ~eof(input) dg
begin read(ch); S(ch)
end
Some welcome consequences are:

- eof(f) 1is always defined. (It is always true when a file is
being generated; it is true after resetting an empty file.)

- eof(input) must be false before calling read(x) . Note that
read(x) now stands for

x := input4®; get(input)

- if read(x) 4is called with x being of type integer or real,
then the next call of read(y) - with y of type char - yields
i~e character immediately following the number x (PASCAL 6000).

3. Packed data reoresentation

Packed records and packed arrays are formally introduced to allow
for a choice of internal data representation and storage economy.
Such packing has no effect on the meaning of a program, and is
achieved by insertion of the symbol packed in front of the symbol
record or array in the declaration of the variable.

(Note, however, that the present compiler ignores the symbol packed
in the case of arrays, and that it is generally recommended that
indexed access to components of packed arrays will not be permitted.)

-~

4.The class structure

The class structure is eliminated and pointer variables are directly
bound to a type T instead of to a class variable. with components
of type T . Thus,

type P = *%c; var c: class n gf T

is replaced by the declaration

tvpe P = AT

5. Syntactic changes

- Constant definitions are separated by semicolons instead of
commas. Example:

const n = 10; pi = 3.14159;

- The former powerset structure is now called 'set structure!, and
the single symbol powerset is replaced by the two symbols set of.

- Labels in case statements (and variant record declarations) are
separated by commas instead of colons. Example:

case k of
1,3,6: Aj;.
2,4,5: B
end

- The standard function int(ch) is renamed ord(ch) and denotes
the ordinal number of the character ch 1in the standard type
char .

- The standard procedure alloc(p) is renamed new(p) .

Additional cHanges in PASCAL 6000

1. The procedures write and text

Revised PASCAL introduces the notion of strings as constants of
types defined as packed arrays of characters. They represent a
generulization of the type alfa (whose size is a machine dependent
entity). Since packed arrays are not implemented in the compiler
version of Dec. 72, the type alfa is still present as before.
However, strings of arbitrary length:-may occur as parameters to
the write procedure, and then will be copied onto the standard
file output in full length. The procedure text therefore becomes
superfluous. Example: '

write(' THIS IS A STRING TO BE PRINTED', x, eol)

Note that the identifier text now denotes the standard type
type text = file of char

2. The standard file INPUT

In order to become compatible with the conventions of CDC's systems,
the PASCAL file INPUT is defined as the single "logical record"
(SCOPE terminoclogy) following the program. As a consequence it has
become necessary to require an EOR-card between the program and

the data cards.)

Noﬁé: this applies only, if the PASCAL file INPUT is also‘the SCOPE
file INPUT (i.e. if no D-parameter is specified on the PASCAL call
card). ‘ . '

Reference to literature

A textbook for an introductory course on programming, based on the
PASCAL notation, is due to appear in April 1973:

N. Wirth, "Systematic Programming", Prentice-Hall (1973). .

The German version appeared in 1972 (Teubner-Verlag, Stuttgart)

A set of solution programs to the exercises will probably also
be made available.

Moreover, a "PASCAL user's manual" is in preparation.

Distribution of the PASCAL system

The PASCAL system is available for a nominal charge for tape handling,
postage, and documentation from

Mr. U. Ammann

Fachgruppe Computer-Wissenschaften
ETH

Clausiusstrasse 55

CH-8006 Ziirich (charge SFr. 75.--)

Dr. L.B. Smith
Computing Center
University of Colorado

Boulder, Colorado 80302

USA (charge $ 20.--)

(Only minitapes (£ 600 ft) should be sent to avoid customs
handling fees.) ' :

Compiler-Control Instructions in PASCAL 6000

Instructions controlling various modes of compilation may be
inserted in the form of comments at any place in the pragram.
Any comment is recognised as such an instruction, if the

character immediately following the opening brace is a $ symbol.
{$<instr-1>,(insﬁr-2>...<instr-n> <comment>}

Each instruction consists of a command letter followed by a +
sign activating the corresponding mode, or a - sign deactivating

the mode. The available command letters and modes are:

A for each assignment to a subrange variable, compile instructions
which check (at run-time) whether the value assigned lies

within the specified subrange.

X for each array variable, compile instructions which check
(at run-time) whether the indicated index lies within the

specified array bounds.

) for each division, check whether the divisor is different

from zero.

C at the end of each procedure or function declaration, print

the generated code.

R use rbunding floating-point instructions (RX instead of FX).

The default values for these options are:

{$A+,X+,D+,C= R4}

.........

#IOENT PUSYS)

Y AL

#DECK kObr

#De 1819167
ABTREQ VFD

CPMREG VFD

QUTPU] FET
QUTFPTR VFD

S e e e e e - - = e e e e N e e v m e e v are e e o e T

CU Modifications

GHR 73701730
ADAPT POSYS TO KRONOSs
S

60/3LART ABCRT REQUEQT
24/4LCPMP+12/4+24/ERRRTN FRROR RETURN ADDRESS

POINTEK (MOVED TO Ra+2): N
42/6L.0UTPUT918/CUTFET

#19292
’ SX2 3
LAz 24
Bae X2+¢Xe ADD MESSAGF To .jnR DAYFILE ONLY FLAG
#1e764
SA1 QUTFPTR . MOVF OUTPUT FFT POTINTER
BAG X1 _
SA6 Bl+r) TO RA*2
SA1 OUTFET
Sxe 4 INSURE WRITF RIT
BX6 X1l+Xg
SA6 Al
#0y2354 92355
OSET ERRUK EX1T ADDRESS:
?Al CPMREQ
#142359
?Aa 64R SET ZERO WnaRn AT EnND OF ARGUMENT LIST
AL 0 A
DAL K&+
MAG 42 MASK FOR CHFCKINAR KEY WORDS
#Te2304 :
BAQ X0# X4
#De 2597
POS2.L2 SAe 1428 OPEN/REWIND FOR PEAD
#D9279312797
“152799
ERRRTW BSS 0
'#09260]v3803 .
SA5 B0 FETCH RA
MAY 54
LX5 36
BX1 =Ky x5 EXTRACT ERROR FORE
SA1 Kl=p FRROR 2 = MONF FOROR
LX5 54
SX5 X5 EXTRACT ADNRESS OF MODE ERROR
#Dy2852
#Dy 285492856
Dy 285892862

#EQIT PUSYS

#IDENT PUSYS? GHR 73/01/30
%/ sese it REMOVE FREQUENCY COUNT FEATURF.
#DECK PusYs
#Dslo7s108
#Ds 180
#N12171220
#2236
#Dy3B2405
#D915SY0r 746
%097519752
UPGN ENTRYs n3 = VaLUE TO STORF AT EXECFLAG.,
#)y 154 ‘
#De 7Y e 8BU4
“dDeBl2
#D181l49v826
*Ds249822510
PUSL.L7 3B7 OQUTFET=1
#D1250492505
PUS1.L1b RY - 60
#D92593
“Dy2T712+2713
EAECUIE THE | OADED PROGRAM!
#De2719:2764

POS3.L16 SE3 Bl+RB7y FOR [EXECFLAG)
Ky GO
#De2893
NZ Xl,AFN-EX3

#DIEV(2r 2005
#EDIT PODYS

#TDENT PUSYS3 GHR 73/02706

#/ Eira ABORT JOB ON SYNTACTICAL ERRQRS.
#DECK POSYs
#Dy 2562142583

_IF SYNTACTICalL ERRORS WERE FOUNDs PRINT ERROR MrQSaGES
AND At_ﬁotf‘[vog!

#D92594
+EDLT POSYS

#IDENT PUSYS4 GHR 73/02/06
#/ % e qe PRINT PMD ERROR MESSAGE ON aUTPUT AS WELL AS DAYFILE.

#/ it de SEE ALSO PMD1.
#DEChK FOSYs
191011
SAVENMSG BSS¢ 1
#191071
SA4 SAVEMSG SET ERROR MpSSAsF aADDRESS -
#192863 :
SAG X0 .
SA6 SAVEMSaH SAVE ERPOR MESSARE ADDRESS

#EDIT POSYD

#IDENT PASCALL GHR 73701730

e REPATIR CARDS TRUNCATED AT 75 ¢0jLUIMNS BY MODIFY.
#DECK PASCaL
#191731
}
#D91875

IF (BATTR,TYPTRA.FORM = NUMERIC) A
(LFPA.VTYPE = REALPTK)

THEN
*Dy2024
ELSE JUMPTO(PUTRB) 3
#Dy 2248 _ B
IF (GATTReTYPTRAL.FORM = NUMFRTA) A
(GATTRTYPTR # INTRPTR)

#D9136)4 . o

IF CTPTRAJFORM IN [A{ASSS.FILES)

THEN ERRQR(24) 3
#194193

9
#EDIT PASCAL

#IDENT PASCALZ GHR 73/01/30

i/ Yedr st ADD ALPHABETIC TOKENS EQUIVALFNT To SPECIAL SYMBOLS.
#DECK FASCAL
#Dy2499250

WU ¢ ARKAY [0e247] OF ALFA3 _
WNUyWCL ¢ ARRAY [neos41] OF SHRTINTS
#D92609201 .
WO = (Z1F=9e=DO0Z4=T054S0FS9sSINSy=0RS4SLT=. = = SAES9SGTS,SNES»ZEQS
SENDZ 9 SNILZ9ZFORS+ZDIVE»SMODI,SVARE 9 SSETS,, SANDE9ZENOTS
#De12879208
WND = (2343193395798+796%8)
22936472216904439389645
#Dr293+294
WCL = (0921909793979 293949596
0209U9495902593910
#9299
WL = (090,0512921428436940940941442442)1
#EDIT PASCAL

#IDENT PMpl GHP 73/82/04

#/ i PRINT PMD ERROR MESSAGE ON aTPUT A4S WELL AS DAYFILE.
w/ i SEE ALSO POSYS4,
#DECK FMD
#J199
3 A4 = ADDRESS OF ERROR MESSAGE SENT TO pAvYeEILE.
#Is111
SXT X4
SAT SAVEMSG SAVE ERROR uESSAcE ADDRESS
#1y122
SA1 SAVEMSG /
ZR - X14Np IF NO MESSanf
S5X1 1K
SAg 1
CALL CHAR - SEND BLANK FOR FA
SA] SAVEMSG
CALL TEXT "SENN MESSAGF
NLINE NEW LINE
NO 5SS 0
#1y205
SAVEMSG BSS 1

#EDLT PHU

ONIVERSITY OF COLORADO -
BOULDER, COLORADO 80302

COMPUTING CENTER
11 September 1973

PASCAL DISTRIBUTION BY
UNIVERSITY OF COLORADO COMPUTING CENTER -

Contact: ' George H. Richmond | wa’
Computing Center, RB#3 4,(Q'L, £3 /
University of Colorado b

Boulder, Colorado

(303) 443-221T, extension 8131

Distribution includes a magnet1c tape containing the latest system (as re-

leased from ETH in Zurich) and a package of documentat1on which includes
those items shown in the following list.

Distribution costs to any point in Nprth.America are:

$30.00 for the complete package including a new magnetic tape

$20.00 for documentation package and writing on a supplied tape
$20.00 for the complete package and tape to previous recipients
$10.00 for documentation and writing on tape for previous recipients

The distribution costs may be paid by sending a check (payab]e to the

University of Colorado) to the above contact or by having an invoice sent
to the requestor.

Documentation (tape of December 15, 1972) includes:
» The PASCAL Distribution Tape (1 p.)
> Notes Accompanying the PASCAL Tape of December 15, 1972 (8 pp.)
« A note to Users of the PASCAL Language (6 pp.)
- CU Modifications (7 pp.)
«Planned Changes to the Programming Language PASCAL (7 pp.)
- Changes to the Programming Language PASCAL (8 pp.)
*The PASCAL Operating System POSYS (Obsolete) (20 pp.)

-Advant§ges of the Value Parameter (VP) over the Constant Parameter (CP)
3 pp

*Run-Time Check Options (1 p.)

*How to Use the PASCAL 6000 System (3 pp.)

*The Standard Procedure WRITE followed by Post-Mortem Dump (PMD) (4 pp.)
*"The Programming Language PASCAL (Revised Report)" by Niklaus Wirth (53 pp.)

«"An Axiomatic Definition of the Programming Language PASCAL" by C. A R.
Hoare and N. Wirth (32 pp.)

*The PASCAL System, Documentation, and Literature (2 pp.)

ONIVERSITY OF COLORADO
BOULDER, COLORADO 80302

COMPUTING CENTER
The PASCAL Distribution Tape

The magnetic tape distributed by the University of Colorado is a
556 bpi unlabeled SCAPE 3.2 internal binary tape, compatible with the
standard KRAN@S binary format, with the following contents:

FILE CONTENTS

1) Card image source of the unmodified PASCAL system
' as received from N. Wirth. See "Notes Accompany-
ing the PASCAL Tape of December 15, 1972" for a
complete description.

2 Binary decks of the PASCAL system. See reference
above. ‘
3 A MPDIFY PPL derived from File 1 above and modified

as indicated in "CU Modifications".

4 Binary decks of the PASCAL system as run at the
University of Colorado from the source in File 3.

5-8 A duplicate copy of Files 1 thru 4.

