
PASCAL NEWSLETTER

January 1974 'Number 1

FROM THE EDITOR

This is the first issue of a newsletter sent to users and other
interested parties about the programnling language PASCAL. Its purpose
is to keep the PASCAL community informed about the efforts of individuals
to implement PASCAL on different computers and to report extensions made
to the language. It will be published at infrequent intervals due to the
limited manpower.

Everyone is encouraged to report to the editor any item of interest
to the community. There are many examples given below. Of particular
interest are reports of successful implementations on other computers that
the author is willing to distribute and modifications to the CDC version
to ,surmount problems or add features. Also" programs written in PASCAL
are of interest. However" a plethora of incompatible dialects of PASCAL
must be avoided.

The University of Colorado, thruthe editor" is wilLing to support
the distribution of PASCAL programs and documents subject td;the limitations
of its hardware. This is a CDC site with seven track indusHrY compatible
NRZI tape drives. To help defray our costs, there is a charge of 5¢ per
page for docwneiits, $S for copying and postage for a magnetic "tape from a
user and $15 if the University supplies the tape (a mini reel). Send to:

George H. Richmond
University of Colorado
Computing Center
3645 Marine Street
Boulder, Colorado 80302

CURRENT PASCAL COMPILER; ,

The current compiler is dated December lS, 1972, and now in~or­
porates a correction written November 15, 1973. It is available ori a
556 bpi SCOPE 3.2 internal binary tape. All CDC 6000 sites snou1d be
able to read the tape under any standard CDC operating system. . Other tape
forIhatscan be: arranged on request •. "

There 'are six files on the tape. The first two are the. source and
binary of PASCAL as distributed by Dr. l~irth, of Swi tzerl~dJ the author
of the language. The"next two files are the UniversitY,:-9fi ;,G.a:loradoversion
of the source and binary' of PASCAL. The changes are con£~i~4'\ ·to: 1) adapt­
ing PASCAL to KRONOS 2.0, 2) deleting the frequency: 'cpunt feature, and

'3) providing alphabetic, alternatives to some special
t
.d1arf,lcte-rs for terminal

users. The source file is an UPDATE version 1.2 sequential OLDPL of the
72/12/15 release with the 73/11/15 correction applied as a modification.

All PASCAL users are urged to use this as a base from \vhich to modify the :
compiler. The fifth file is a PASCAL Manual adapted from the one written"
by Wilhelm Burger at the University of Texas at Austin.; The last file is
the text of the modsets incorporated in the OLDPL.

The following items are supplied in the documentation p,:!ckage.

TITLE

The PASCAL System, Documentation) and
Literature

The PASCAL Distribution Tape

Notes accompanying the PASCAL Tape of

A note to users of th~ PASCAL Language

Planned changes to the programming
language PASCAL

Changes to the programming language
PASCAL

The PASCAL Operating System POSYS

Advantages of the value ,parameter over
the cons~ant parameter

Run-Time Check Options

How to use the PASCAL 6000 System

The Standard Procedure WRITE and
Post-Mortem Dump

The Programming Language PASCAL
(Revised Report)

An Axiomatic Definition of thePrograrnming
Language PASCAL

DATE --
Nov 73

Dec 73

15 Dec

15 Dec

Jun 72

15 Feb

28 Oct

5 Jul

Deo 72

23 Jun

23 Jun

Nov 72

Nov 72

PAGES

4

1

73 8

72 6

7

72 8

71 20

72 3

1

72 3 :

72 4

53

32

This version of the compiler does not implement class variables as described
in the Revised Report. The following description of them comes from the
original PASCAL report.

6.2.5 Class types

A class type definition specifies a structure consisting of a,
class of components, all of the same type. The number of components is
variable; the initial number upon declaration of a variable of class type
is zero. Components are created (allocated) during execution of the pro-
gram through the standard procedure new. The maximum nwnber of components
which can thus be created, however, is specified in the type of definition.

<class type') : :'=class '< maxnum> of (type)
.. \

(maxnum> ::~<integer>

-2-

6.2.6 Pointer types
j

A point~r type is associated with every variable of class type.
Its values are ~he potential pointers :~o the components of that class
variable (cf. 7.5) and the pointer cons'tant nil designatiIig no component.
A pointer type ~s said to be bound to its class variable;'

<pointe~ type> ::= 't<class variable>
;

~class variable) ::= <variable>

7.2.4 Referenced components

Components of class variable are referenced by pointers.

<referenced component) ::= <pointer variable>""

<pointer variable> ::= <variable>

Thus) if pI is a pOinter variable which is bound to be class variable v,
pI denotes that variable and its pointer value, whereas pl1- deI\~,tes t1;t:e
component of v referenced by pl. '.

Examples:

pl+. father

pIt. elder siblingt. youngest child

10.1.2 Class component allocation procedure

new(p) allocates a new component in the class to, which the point:er variable
p is bound) and assigns the pointer designating the new component
to p. If the component type is a record type 'with variants) the
form

new(p,t) can be used to allocate a component of the variant whose tag
field value is t. However, this allocation does not imply an
assignment to the tag field. If the class is already completely
allocated~ the value nil will be assigned to p.

An error in code generation was recent+y found and corrected as
shown below. It occured when an integer variable I and areal variable
X a~e used in expressions like I+l+X.

Procedure SIMPLEEXP before fix:

PROCEDURE SIMPLEEXP ;
V AR 'lATIR ATTR; LADOPCL SHRTINT LFB,BTt;BT2 BOOLEAN
BEGIN LFG := FALSE;

IF NO = 7 THEN {ADDOP}
BEGIN IF CL = 2 THEN LFG .­

INSYMBOL ;
TRUE ELSE IF CL = 3 THEN ERROR(51)

-3-

END;
TERM ;
IF LFGv(NO = 7) THEN
BEGIN WITH LATTR DO

BEGIN TYPTR :;: GATTR. TYPTR KIND: =1.VAL CTERf\1: =0
IF 'IYPTR ~ NIL THEN
BEGIN TRANSFER(GATTR,RP)

IF LFG THEN
BEGIN GEN15(13B,O,O)O)

IF (TYPTRt. FOR.t\1 ;: NUMERIC)\.' (TYPTR ;: REALPTR) 11lEN
GENlS(37B,RP,O,RP) ELSE ERROR(SO)

UNO
END

END ;
WHILE NO = 7 DO
BEGIN LADOPCL :;: CL ; INSYMBOL ; TERM ;

IF (LATTR. TYPTR ,. NIL) h (GATTR. TYPTR i NIL) IHEN

Procedure SIMPLEEXP after fix:
~ . ~. .

PROCEDURE SIMPLEEXP ;
VAR LATTR : ATTR ; LADOPCL : SHRTINT ; LFG,BTl,BT2 BOOLEAN
BEGIN LFG := FALSE ;

IF NO = 7 THEN lADDOP]

.....

BEGIN IF CL = 2 TIIEN LFG : = TRUE ELSE IF CL = 3 THEN ERROR(Sl)
INSYf>.lBOL ;

END;
TERM ;
IF LFGv(NO ::: 7) TI-IEN
BEGIN WITH LATTR DO

BEGIN TYIry'R :::: GATTR. TYPTR ; KIND.. :::: LVAL
IF TYPTR :f NIL 1llEN >,. :

BEGIN TRANSFER(GATTR;RP) .;
IF LFG THEN
BEGIN GENlS(13BO,O,O) ;

IF (TYPTRt.FOP,Jv1.= NUMERIC)v(TYPTR =
GENlS(37B,RP,O,RP) ELSE ERROR(SO)

END
END

END;
WHILE NO = .7 DO .
BEGIN LADOPCL : = CL ;- .

IF LATTR.KIND = LVAL THEN
IF LATTR. CTERM t- 0 THEN

BEGIN GEN30(71B,O,O,LATTR.CTERM)
LATTR.CETERM := °

END;
INSYMBOL; TERM;

CTERM : =0

REALPTR) TI·IEN

GEN15(36B,RP,RP,O);

IF (LKfTR.TYPTR ~ NIL)A(GATTR.TYPTR 1 NIL) THEN

-4-

COST OF THE PASCAL PACKAGE

There is a charge of $30 the first time a PASCAL tape and documen­
tation package is sent. Deduct $10 if a tape is supplied and deduct $10
if you have previously received PASCAL from us.

FOR111COMING VERSIONS OF THE COMPILER

An entirely new compiler called PASCAL 2 is under development. It
implements the language PASCAL as defined in the Revised Report eNr. 5)
with a few extensions (see below). It is implemented for the operating
system SCOPE 3.4 and will be available in two versions:

1) For the CDC scientific 64-character set, and
2) For the ASCII 64-character set (with CDC's ordering) .

. This implies that no explicit line control characters (col) are available;
instead, ends of lines in textfiles are generated and recognized by
additional standard procedures and functions. TIlis, unfortunately, re­
quires changes in most existing programs - ~lthough they may be cleric~l
only. Hence, the distinct name PASCAL 2 was· chosen.

The (other) principal ne\v characteristics of the compiler
are:

1) It generates relocatable binary object code which can be
loaded by the standard CDC loader.

2) It allows procedures (and functions) to be separately compiled
and merged at load-time.

3)
languages.
generated.

It provides a facility to use subroutines written in other
In these cases, the standard FTN calling sequence will be

4) It introduces packed arrays. They can be treated like regular
arrays, but will be allocated wi th as many components. as possible packed
into each word. Accordingly, access to individual elements will be slower.

5) It introduces so-called segmented files; each segment cor­
responds to a logical record (in CDC terminology).

6) External files may be passed to the program as parameters in
a program heading.

We hope to be able to release the new compiler by May, 1974 along
wi th a UserJyf~nual.

• • • 7 r" ;;~,

~. 'Th~ "PAsCAL-P system is a compiler which generates code (so-called
P-code) for a simple, hypothetical stack computer. This computer is
described in the form of a PASCAL program as a ~oader and interpreter of
P-code. . .

-5-

The PASCAL-P system was developed in order to simplify the imple­
mentation of PASCAL on other machines. The method to proceed is in general
(i.e., without access to a CDC 6000 computer) the following:

1) Program the loader interpreter in any (probably assembly)
language for the target machine M . PASCAL-programs can now be executed
interpretively on M , since the PASCAL-P compiler is available in P-code.

2) Rewrite the PASCAL-P compiler by replacing the P-code genera­
tors by routines generating code for machine t-.L

3) Interpretive compilation of the modified compiler then yields
a compiler in P-code which generates M-code.

4) Recompilation of the modified compiler by itself then results
in a PASCAL compiler in the form of M-code and generatingM-code.

The PASCAL-P system is available under the same conditions as the
CDC compiler. It is delivered in source form (a PASCAL program) and in
P-code form (coded as a string of characters).

Note: We reconnnend that this system be ordered only by people seriously
considering to implement PASCAL on their computer.

OTHER PASCAL COMPILERS

Mr. Wilhelm Burger at the University of Texas at Austin has made
extensive modifications to PASCAL and has written a manual that is avail­
able in machine readable form. The University of Colorado has adapted
this manual so that it corresponds to the version we release. Mr. Burger's
PASCAL incorporates the following extensions. It allows" external procedures,
segmentation of programs into overlays which can be called sequentially,
and partial compilation of declarations and procedures to allow them to be
used later. Compiler options can be set on the control card. Several new
convenient procedures and functions are defined such as a random number
generator, clock, memory dump, and tracing of procedure calls.

A tape of Mr. Burger's PASCAL system can be obtained from the
University of Colorado or one can write directly to:

Mr. Wilhelm F. Burger
The University of Texas at Austin
Department of Computer Science
Austin, Texas 78712

An IBM 370 version of PASCAL that runs interpretively at speeds
comparable to PL/I for student jobs is available. For further information,
write directly to:

Mr. Al Hartmann
Mail Code 286-80
California Institute of Technology
Pasadena, California 91109

-6-

~10DIFICATIONS TO PASCAL

The University of Colorado has developed and distributes with the
PASCAL system the following mods which arc- of interest to all PASCAL users.

FUNCTION

Adapt POSYS to KRONOS 2.0

Remove frequence count feature

Print PMD message on OUTPUT in
addition to dayfile

Add alphabetic tokens equivalent
to special symbols

DATE

30 Jan 73

30 .Jan 73

6 Feb 73

30 Jan 73

PAGES

5

I

2

1

In addition~ a 23 page copy can be made of the following mods from Professor
Hellmut Golde at the University of Washington in Seattle, dated November,
1973.

Incorporate cross reference program
Abort after too many compilation errors
Delete frequency count feature
Implement 64 character set for SCCPE 3.4
Adapt POSYS to SCOPE 3.4
Require EaR between program and data on all files
Yield error on attempt to read past EOF
Print PASCAL error message on abort
Accept alphanumeric tokens for special symbols
Add line numbers to compiler listings
Scan only 72 columns of source

OTHER DOCUMENTATI.ON

Copies can be made from the following items in our files.

Author and Title DATE

N. 'Wirth, ETH, "Program Development Jan 71
by Step-wise Refinement"

N. Wirth, ETH, "The Design of a PASCAL Jul 71
Compiler," submi tted to Soft\'lare-
Practice and Experience

N. Wirth, Stanford University, "On Feb 72
PASCAL, Code Generation, and the
CDC 6000 Computertl

N. Wirth, ETH, "The Programming Aug 72
Language PASCAL"

A. Mickel, University of Minnesota, Sep 72
"PASCAL at the University of Minnesota"

-7-

PAGES

24

26

40

61

16

Author and Title

N. Wirth, ETH, "The Programming
Language PASCAL (Revised Report)"

W. Burger, University of Texas at
Austin, "PASCAL Manual," a complete
manual for their local version

H. Golde, University of Washington,
"PASCAL-W, Users Manual," a list
of changes to the revised report
for their local version

K. Jensen and N. Wirth, ETH, itA
User Manual for PASCAL," a pre­
liminary copy to be released with
the next version of the compiler

-8-

Date Pages

Nov 72 53

.Jul 73 68

Sop 73 24

Oct 73 87

George H. Richmond
University of Colorado
Computing Center
3645 Marine Street
Boulder, Colorado 80302

PASCAL NEWSLETTER

Notes Accompanying the PA5CAL Tape of December 15, 1972

These notes contain a description of the PASCAL tape of

December 15, 1972, and instructions how to use it.

Please observe that the r.Q~es entitled "Notes Accompanying

the PASCAL Tape of August 11, 1972 11 are obsolete.

December 15, 1972

U. Ammann

Fachgruppe Computer-Wissenschaften

Eidg. Technische Hochschule

Clausiusstrasse 55

CH-B006 Z uri c h

- 2 -

Contents of the PASCAL Taoe of December 15, 1972:

The tape contains four files.

File no. 1 and file no. 3 are identical, and so are file no. 2'

and file no. 4.

File no. 1 contains source programs only and consists of

the. following 6 records:

Record no. Contents

2

3

4

5

6

File no. 2

Record

1

2
":l
.J

4-8

9'

10

1 1

12

POSYS

PASCAL Compiler

five COMPASS library routines

FQC (fresuency counting PP routine)

FQCOUT (outpu~s program pr~files)

PMD (post-mortem dump routine)

contains the binarv PASCAL system and consists of

tha following 12 records:

no. Contents

POSYS

Header of Compiler

Compiler

Library functions

Header of FQCOUT

FQCOUT

Error messages

PMD

- 3 -

How to use the tape

The following pseudo control cards suggest a way to catalog,

assemble and compile the various programs:

J 08 CAR 0: C r:. 4 7 0 0 O. T I U E = 1 '3 0 SEC. 1 TAP E tJ ~~ IT.
r:;Fl(10000)
REGUEST(TAPE.HI) PASCAL TAPE OF DEC. 15, 1972.
COt.~:,~ E NT •
CO~~ENT.1) CATAlO~ TAPE INFORVATION.
CO~.·~:.~E ;\!T • ---------... -----~-- ... ----------
ASSIGN PF DEVTCF TO THE FOLLOWING FILES:

POSV2.SRCO~P.PASCLI8.FQC.FQCOUT.P~O,PASCAL.
COPY8R(TAPE.POSYS)
CATAI O~(POSYS.PASCAL DEC1972.CY=1n)
CO?Y8R(TAPE.SRCOMP)
CATALOG(SRcnMP,PASCALDEC~q7?CY=2n)
COPYBR(TAPE.PARCLIB)
CATALO~(PASCLIR.PASCALDEC197?CY=30)
CO?Y3~ (T r~PE .t:"Qr.)
CATALOG(FCC.PARCALFREG~OUNTDEC1972JCY=10l
COPY8R(TAPE.FQCOUT)
CAT ALO~ (FQCOUT .PASCAI .. FREQcnUNTDEC 1972. ~y =20)
COPYBF (TAPF.P~~D)
CATALOG(P~D.PASCALD~C197?,CY=50)
COPYSF(TAPE.PARCAL)
CATALOG(PASCAL.PASCAL8INDEC1972,"READ-ONLy tI

)

RETURN{TAPE) .
COl;'ME NT •
COfJ,!,,~ENT. 2) ASSF~.:3LE". COt.:PTLF='.
COUMENT.---------------------
PEWINO{POSYS.RR~OMP,PASCLla.FQC.FQCOUT.PMD)
?FL(47000)
CO~PASS(T=POSYR.B=O)
PASCAL(P=S~Co~p.npT=NOGO)
COMPASS(I=PASCLTB.B=Ol
COMPASS(I=FCCyS=SCPTEXT)
PASCAl (P=t:"QCOI.lT .OPT=NOGO)
COMPASS(T=PMn.R=O)

- 4 -

In order to install the frequency counting facility, execute

the following steps:

Read the next four pages.

Make the necessary changes to FQC according to the demands

of your operating system.

Add the assembled ~ersion of your FQC to your system

library.

- 5 -

4. Frequency Counting

The PASCAL system in its ETH implementation offers a facility

which exposes to the user how much time (in percents of. the,

total time used) each line of his program consumed during execution.

The frequency counting mechanism consists of four routines:

FOC, CPFQC1, C~FQC2, and FQCOUT.

FQC is a PP program which procedure GO calls immediately

before activating the user program. FQC wqrks with an .array af

at most 1600
10

counters. Approximately every 34JAsec FQC

increments by 1 the counter indexed by the P register's current

valce, until it iS,recalled by GO. Then the contents of the

counters are dumped into central memory.

CPFQC1 sets up a table of parameters for FQC. This' table is

called FQCDAT and has the following format:

48 24 1 7
FQCDAT~ Ixlo

n I fcl I fcu

I da

x = 0 for call of FQC,X = 1 for recall of FQC

n = lo92(block length)

fcl = lower bounding address of supervised code area

fcu = upper bounding address of s'upervised code area

da = dump address = address from which on FQC is to dump

counter val..u es •

the

- 6 -

CPFQC1 increases the specified FCU parameter (or its default

value), yielding feu, such that the following relation holds:

(feu - fcl) = m * 2
n & m ~ 1600 10 ,

where n is the smallest integer that satisfies the

relation.

FQC is called ~y setting LRA+1J to

41 1 7

FQCDAT

CPFwC2 is called after the recall of FQC. Its only function

is to load and execute and pass parameters to FQCOUT.

FQCOUT, finally, is a kept PASCAL program that outputs the

dumped ~ounter values. Its main program variables have been

initialized by FQC and"CPFQC2 before it is loaded. If OPT=FC*

was specified, FQCOUT takes as input the listing of the user

program which the compiler wrote on the file fQCfILE, and

outputs the profile of the program.

- 7 -

4.1. FQC - The Freouency counting PPProoram

(by w. B~chi~ Fachgruppe Computer-Wissenschaften, Eidg.

Technische Hochschule, Clausiusstr. 55, CH-B006 Zurich)

fQC consists of four parts. The first one is used to prevent

more than one copy of FQC being active at any time. The second

part checks the parameters obtained from the calling CP program

and starts the third part, which contains the 34~sec main

loop. When FQC is recalled, control is given to the fourth

part which dumps the counter values to the designated central

memory area.

The parameters supplied are used as follows:

blocksize = 2
n

length of supervised central memory area,

lenGth = ((feu - fcl)//blocksize)*blocksize

To each CP program block a 24-bitcounter'in the PP mem~ry

is assigned. They are arranged in two arrays for convenient

index~ng. When fQe in its main loop has read the CPU's

P-r~gister the index to the appropriate counter is

(P-(fcu - length))//blocKsize

provided that it is greater than zero and (P-fcu) is negat~ve.

Otherwise, the index value -1 is used. Thus the time spent

outside the given limits is recorded in the first counter.

Now we go through the four parts of FQC in detail. first,

when fQC is entered, a test is made whether FQC is already

used by anothe~ job. This is done by inspecting byte C.FQCLCK

of word T.FQCLCK in CMR using channel CHLDCK 2S interlock. A

non-zero ~alue in~icates another fQC al~eady being active. To

prevent PP saturation, the request is ncit honoured in that

case, and FQC puts itself into the PP delay queue with a delay

of -5 sec., and drops. Otherwise, the interlock flag is set ~

and the second part acquires control.

- 8 -

It starts with fetching the parameters and checking them.

If any error occurs, a simple error routine is called which

puts into the dayfile the fQC program addre~s where the

error was found. Some shift instructions are then set up for

division by and multiplication with the blocksize. The counters

are in~ti~lized to zero, the completion bit is set and CP

program execution is requested to resume by the monitor

function RCLCP.

Then the main loop 3tGr~5 with testing whe~her CPU-A ~r CPU-B

is active at the control point by inspection of the CPU status

word at T.CPT1 of CMR. Depending on which CPU is active the"

appropriate RPN instruction is executed to get the P register's

value, thus giving the index to the counter which has ~o be

incremented. If neither CPU is active at the control poin~,

several checks have to be made to enquire what w~s happened.

The control point status word is read to see whether the

~rror flag is set, in which case fQC drops. The status word

also contains the move flag which is tested. If it is set,

a pause request is issued and FQC waits until the move flag

is clear or the error flag is set. In the latter" case, fQC

drops. The parameter address must be updated. Finally, the

status word is inspected to s~e if the CP program has

requested to dump the counters (X = 1), so that the four~h"

part should be executed. If none of the above conditions

exist, the main loop is restarted.

Before dumping the counters intQ central memory, the fourth

part checks if the dump area lies within the user's field

length. The counters are then expanded to the 60 bit centre:

memory word si~~ and transferred to the array whose address

has been given by da. The completion bit is set and FQC drops

after having cleared the interlock byte. giving another"FQC a

chance of running~

Fachgruppe Computer-Wissenschaften
ETH, ZUrich

A Note to Users of the PASCAL Language

N. Wirth
15.12.72

Efforts to implement PASCAL on various computers have lately been
ini tia ted at several places. I t is my convic tion tha t th8 __ ~t!Jl_~
should be done to achieve full compatibility among the different
systems. An axiomatic definition of the language together with a
set of recommendations for implementation standards has therefore
been established and is due to appear shortly:

C.A.R. Hoare and N. Wirth, "An axiomatic definition of the
programming language PASCAL", Berichte der Fachgruppe
Computer-Wissenschaften, ETH, No.6 (Dec. 1972)

The axiomatic definition method as well as past experience with
PASCAL showed that certain details of the language should be revised.
In view of the growing number of implementations it became highly
desirable to define these revisions at this time. The result is the
accompanying Revised Report. The main changes are summarised
informally below.

Along with the decision to define a revised PASCAL language went the
decision to, write a completely new compiler, although the small
changes themselves would not have required such a procedure. This
new compiler will be designed in a functionally structured fashion,
and it should be particularly well s~ited for adaptation by boot­
strapping to different computers. This new compiler, howevex, will
not be available for some time, paItly because also other changes
will be implemented, such as the generation of binary, relocatable
object code and the facility of part compilation.

In order to make Revised PASCAL widely available as soon as possible
and to facilitate the gradual adaptation of already existing programs,
a new version of the existing compiler was prepared (Version 15.12.71).
To keep our efforts for this "temporary tool" reasonably small,
however, the change concerning class variables (No.4 below) is not
incorporated, and in this respect the compiler still follows the
specifications of the-original report.

The Revised Report does not contain any specifications about how to
access the compiler. It' was felt that this informa~ion should ,be
provided by individual installations in accordance with their
operating systems.

- 2 -

Summary of changes of the language

(cf. also "Preface to the Revised Report")

1. Procedure parameters

"Constant parameters" are replaced by "value parameters" (in the
sense of ALGOL 60). A value parameter deno"tes a local variable to
which the value of the corresponding actual parameter is ass~gned
up~n initiation of the procedure. This implies that assignments
to value parameters are allowed. It should be noted,that this
concept requires that a local copy of the value of the parameter
is made. A change of existing programs is necessary in the following
three cases:

- If the formal parameter is specified by the symbol const, then
this symbol must be removed.

- If an assignment to a constant parameter is made, then this is
against the rules of the language; however, such illegal assignments
were not detected by the old compiler in the case of structured
parameters (arrays etc.), and as a consequence do occur in existing
programs. Such assignments are legal in the new language, but are
made to the local variable representing the parameter; this may
not necessarily correspond to the intensions of the -programmer.

- In ambiguous constructions such as

procedure P(~ i: integer; r: real)

r was considered as a variable parameter, but is taken to be a
value parameter in the new language: the symbol ~ has effect
only up to the next semicolon. All parameters not preceded by a
specificator are considered to be value parameters.

2. Files

In order that the buffer variable ft of a file f and the
standard function eof(f) have always a defined value when a file
is read, an implicit assignment of the first element of the file f
to the buffer variable ft is performed (by an implicit call of
get(f)) in the following cases:

- at the start of the program for the standard file input

- at the start of the program for every file specified by [in]

- after every call of the standard procedure reset(f)

If a file is to be rewound for rewriting, then the calls to reset
must be replaced by calls of the new standard procedure rewrite.
The further changes necessary in existing programs essentially
consist of the removal of the first get(f) (or read(ch))
statement.

Example 1:

- 3 -

get(f) ;
while ,eof(f) do

begin S(ft); get(f)
end

Necessary change: remove first line ..

Example 2: '
read(ch)
while ,eof(input) QQ

begin S(ch); read(ch)
end

. must be changed to

while ,eof(input) Q£
begin read(ch); S(ch)
end

Some welcome consequences are:

eof(f) is always defined. (It is always true when a file is
being generated; it is true after resetting an empty file.)

- eof(input) must be false before calling read(x) . Note that
read(x) now stands for

x := input'; get(input)

- if read(x) is called with x being of type integer or real,
then the next cal~ of read(y) - with y of type char - yields
:~e c~aracter immediately following the number x (PASCAL 6000).

3. Packed data reoresentation

Packed records and packed arrays are formally introduced to allow
for a choice of internal data representation and storage economy.'
Such packing has no effect on the meaning of a program, and is
achieved by insertion of the symbol packed in front of the symbol
record or array in the declaration of the variable.

(Note, however, that the present compiler ignores the symbol packed
in the case of arrays, and that it is 'generally recommended that
indexed access to components of packed arrays will not be permitted.)

4.The class structure

The class structure lS eliminated and pointer variables are directly
bound to a type T ins'tead of to a class variable. wi th componef')ts
of type T. Thus,

~ P = tc; ~ c: class n of T

is replaced by the declaration

~ P = tT

- 4 -

5. Syntactic changes

- Constant definitions are separated by semicolons instead of
commas. Example:

const n = 10; pi = 3.14159;

- The former powerset structure is now called 'set structure', and
the single symbol powerset is replaced by the two symbols set Qf.

- Labels in case statements (and variant record declarations) are
separated by commas instead of colons. Example:

~ k of
1,3,6: A;-
2,4,5: E

end

The standard function int(ch) is renamed
the ordinal number of the character ch in
char •

ord(ch) and denotes
the standard type

The standard procedure alloc(p) is renamed new(p) .

Additional changes in PASCAL 6000

1. The procedures write and text

Revised PASCAL introduces the notion of strings as constants of
typ~5 defined as packed arrays of characters. They represent a
generuliz~tion of the type alfa (whose size is a machine dependent
entity). 'Since packed arrays are not implemented in the compiler
version of Dec. 72, the type alfa is still present as before.
However, strings of arbitrary length· may occur as parameters to
the write proced~re, and then will be copied onto the standard
file output in full length. The procedure text therefore becomes
superfluous. Example:

write(' THIS IS A STRING TO BE PRINTED', x, eol)

Note that the identifier text now denotes the standard type

~ text = file of char

2. The standard file INPUT

In order to become compatible with the conventions of CDC's systems,
the PASCAL file INPUT is defined as the single "logical record"
(SCOPE terminology) following the program. As a c~nsequence it has
become necessary to require an EoR-card betwe~n the program and
the data cards.

Note: this applies only, if the PASCAL file INPUT is also -the SCOPE
file INPUT (i.e. if no D-parameter is specified on the PASCAL call
card) •

- 5 -

Reference to literature

A textbook for an introductory course on programming, based on the
PA5CAL notation, is due to appear in April 1973:

N. Wirth, "Systematic Programming", Prentice-Hall (1973).

The German version appeared in 1972 (Teubner-Verlag, Stuttgart)

A set of solution programs to the exercises will probably also
be made available.

Moreover, q "PASCAL user:'s manual" is in preparation.

Distribution of the PASCAL system

The PASCAL system is available for a nominal charge for tape handling,
postage, and documentation from

Mr. U. Ammann
Fachgruppe Computer-Wissenschaften
ETH
Clausiusstrasse 55

CH-B006 Zurich

Dr. L.B. Smith
Computing Center
University of Colorado

Boulder, Colorado 80302

USA

(charge 5Fr. 75.--)

(charge $ 20.--)

(Only minitapes (~ 600 ft) should be sent to avoid customs
handling fees.)

Compiler-Control Instructions in PASCAL 6000

Instructions controlling various modes of compilation may be

inserted in the form of comments at any place in the program.

Any comment is recognised as such an instruction, if the

character immediately following the opening brace is a $ symbol.

{$<instr-1 >, <ins.~r-2> •.. <instr-n> <comment>}

Each instruction consists of a command letter followed by a +

sign activating the corresponding mode, or a sign deactivating

the mode. The available command letters and modes are:

A for each assignment to a subrange variable, compile instructions

which check (at run-time) whether the value assigned lies

within the specified subrange.

X for each array variable, compile instructions which check

(at run-time) whether the indicated index lies within the

specified array bounds.

D for each division, check whether the divisor is different

from zero.

C at the end of each procedure or function declaration, print

the generated code.

R use rounding floating-point instructions (RX instead of FX).

The default values-for these options are:

~" - _" ._ - - "_ - - " _'.... - ... _.... ."-.. ..".".... .. _" ~ ,~. ".~" ,"'.,;I - - ... " _________ _ • __ ~ - - f ""

$$$~$$$$$~~~~$~~$~~~~$~$$~$~$$$$$$$$$$$$$$$$$$$$$$$~~~~$$~~$S$$$$$$$$$$$$$$$$$$$$$$

~~!u£I~T p~S.~~l
~t / ,I- ",I, i/o ,,~

*DECK POsts
"~O'ltil'102- ."
AB!~ElJ . XFD
CP'·H~EG ~F[)

CU Modifications
GHR 73/01/10
ADAPT POSYS TO KRO~OS.

60/3LART ABCPT REQUF~T
24/4LCPMP.i2/4,24/ERRRTN FP~OR RETURN ADDRESS

o O~TPU! FET poINTE~ (MOVED TO RO+2) ~
OuTFPTH XFD 42/6LOUTPUT'18/0UT~FT

01,292

~Al
~~6
~A6
~/~ 1
5X6

.8X6
~A6

". 0 , 2:3!5 4 , 2 3 b 5
* ~~T ~~R~R EXIT

~I-\ 1
"~I,2359

5A4
f"jI\6
?A6
'-1"4

"~D, ~5~7
POS2.L2 ~A6

i~ 0 , 2., '-j 3 , 2 7 9 7
~·I,2799
ER~t:TN b?S

·*D,2dQ] ,2803
~A5

{~D, 2d!J2

~I" 1
~X5
t:)~l

~Al

~"5
?X5

~. 0 , d (j 5 4 , ~ £3 :J 6
. "to, 2d~~, 2862
i~EUrT. PU:>Y?

3
24
X2+X6

OUTFPTR _
xi
81+R1:
O~TFET
4
Xl+x~
Al

ADDRESS:
CPrv11~EQ

648
o
X4+~
42

14 28

o

80
54
30 -x, til-X 5
Xl"'2
54
X5

ADD MESSAGF Tn ,i~~ DAYFILE ONLY FLAG

MOVF OUTPUT F~T POTNTER

INSuRE WRITF RrT

C;ET ZERO WO~r') h T Ef\'D OF ARGUMEN T LIST

MASK FOR CH~~~TN~ ~EY WORDS

FETCH R4

EXTQACT ERqOQ ~O~F.
ERROR ? = ~on~ FCROR

EXTRACT ADnRF.S~ OF MODE ERROR

~. I DEli.,. PUSY ~2
~~ I . ., \~ ~i ,HI'

*DECK ~USXS
UD,lo7.1t)8
~.D' 180
~~D'~1"'~20
~~D'2Jb
,,~ [) , 3 B 2 ' 4 ~ 5
uO' 5':1tJ' "'46
~. D , 7:) 1 , 7 S 2
* ~t-'Of\J ~NIHY'
~. U, 7 ';jl.~
*0,./9 1.804

. ~iD' 81 ~
{·O,dl'+·di:f)
~·D'~498'2S10
PU~1,L7 ~ij.,

~.D t 2504, ~565
PU?l-Ll? ~J

~.O, 2!593
~·D,c"12·C!713
* E~E.CU!E TH;
'I1D. 2719, (:.764

POS3.L16 !:;;B3
-. kJ

GHq 73/01/30
REMOVE FREQUENCY COUNT FEATUq~.

~3 = VALUE TO STORE AT EXECF'LAG.

O~TF'ET-l

. GO

LOADED PROGRAM:

81+8f
GO

FOFo< CEXECFLAG'

Nl Xl'A8N.EX~
'~D,2~v2,29t)~

~.EI.).II PO~Y~

".IUENl PUsy ~3
~~ I i~ ~. ~. ~~

~. 0 E C K tJ 0 S y 5
itO, t::!582 t 2Sb3 ..
* .IF SY~T~Cr~CAL
* AI-JI.) A~UI~ '!" ~(J8:
~tD, 2!S~4

EQ
~~EDlT PO~Y~

GHR 73/n2/0A
ABORT JOB ON SY~TACTICAL ERQOQS.

AB!\J. EX,';)

IDE~" T PO 5 '(54
~.I . "H~ ~; .;"
~" I ~~ oi~ i~ i)

".DECt\ ~U? Y 5
i~ I , 1011

SA Vt:~l SG ~ S SL.;
i·I,1071

~A6

~A6
"~EDl! PO?Y~

GhR 73/02/06
PRINT PMD ERROR MESSAGE ON OUTPUT ~S WELL AS DAYFILE,
SEE ALSO PMD1.

1

SAVE~·1S(;

Xo .
SAVEMS~

SET ERROR MF.S5Ar,~ ADDRESS

SAVE ERROR MESSA~E ADDRESS

~~IOENT PASC~Ll
~. I' ~~ ~d~ ~t

GHR 73/61/30

*OECK ~J.\S~AL
REPAIR CARDS TRUNCATED AT 7~ cnj'UMNS BY MODIFY.

o(~I,1731

*0,1875

-t}D,2248

0(}0,3614

• ,
of}EOI! PJ.\~CAL

I~ (GATTR.TYPTR~.FORrv = NUMERIC) "'­
(LF~ •• VTYPE = REALPTRi

TI-JEN

IF' (GATTR.TYPTR~ .. FORM = NUrJF"RT~) 1\

(GATTR.TYPTR ~ INTPTR)

IF CTPTR~.FORM IN [~LiSSS~F~LESl
THEN ERROR (.?4) ;

(~I DEN T PAS<"AL2
~~/' .. i}~~i~ot~

"~DECK PASCAL
~~D.24C;.2~O- -

GHR 73/01/3~
ADD ALPHABETIC TOKENS E~UIVALrNT Tn SPECIAL SYMBOLS.

w~ : AHHAY [0--41] OF ALFA;
WN~,~CL-: ARHA~ [0-.41J OF SHRT~NT'

~}D,2bO'2dl

WO° = (:IF:,=DO:.;TO:;.=OF:,;:It\;,;OR::.;LT=.=Lc:':',;r:.E;,;GT=,:NE;,:EQ:,
=~ND~.~NIL~'=FOR;.=DIV=,;~OO;,=VAR~'~S~T;~;AND~'=NOT='

*D.287,2b 8
w l\j~ :; (23 .. 31 ,33 • ? 7' R, 7 • 6"~ 8 ,

22'36,~2,6,6,43t~8,6,5,
*D,293.2'74

~~ 0,2 CoJ9

WC~ = (O'~'ltO'7'1,j'2'3'4'S'6'
O~O,U'4~5,O~5'3'1. _

WL = (O'O~O,12'21,2R.3A.40'40,4f,A2~42)i
;~EDl'! PA~CI-\L

n I OENT p~l[) 1
~~ 1 .' ~~ i~ * i~
*1 \~iHHt
·.~DECt' tJr/ID
i~ I ,9

GHP 73/~2/n~
PHI NT PM D ERR 0 R ME S SAG EON (1 lJ T P 1I T II S WE L LAS 0 A Y F I L E •
SE.E ALSO POSYS4.

~4 = oDURE?S OF· ERROR MESSAGE SENT Tn nAv~ILE.

*1,122

NO
,u'I,205

!:iAVEMSG
.~ E 01}' pr·'~

~~.,

~A7

~Al
ZR
~)\l
t>A2
CALL
~Al
CALL.
!~LII\E::
t~55

o.

bSS

X4
SAVEMS~

SAVE~1SG
. X 1. NO

lk
1
CHAR
SAVEMSG
TEXT

.0

1

SAVE ERQOR M~SSI\~E ADDRESS

IF NO MESSO~F

SEf\D BLANK t:"CR rr

'SEf\n MESSAr;~
NE~J LINE

UNIVERSITY OF COLORADO·
BOULDER, COLORADO 80302

COMPUTING CENTER

11 September 1973

PASCAL DISTRIBUTION BY
UNIVERSITY OF COLORADO COMPUTING CENTER'

Contact: George H. Richmond
Computing Center, RB#3
University of Colorado
Boulder, Colorado ,
(303) ~~r~xtension 8131

Distribution includes a magnetic tape containing the latest system (as re­
leased from ETH in Zurich) and a package of documentation which includes
those items shown in the following list •.
Distribution costs to any point in North ,America are:

, .

$30.00 for the complete package including a new magnetic tape
$20.00 for documentation package and writing on a supplied tape
$20.00 for the complete package and tape to previous recipients
$10.00 for documentation and writing on tape for previous recipients

The distribution costs may be paid by sending a check (payable to the
University of Colorado) to the above contact or by having an invoic~ sent
to the requestor.
Documentation (tape of December 15, 1972) includes:

• The PASCAL Distribution Tape (1 p.)
• Notes Accompanying the PASCAL Tape of December 15, 1972 (8 pp.)
• A note to· Users of the PASCAL Language (6 pp.)
• CU Modifications (7 pp.)
• Pl anned Changes 'to the Progranming Language PASCAL (7 pp.)
-Changes to the Programming Language PASCAL (8 pp.)
-The PASCAL Operating System POSYS (Obsolete) (20 pp.)
.Advantages of the Value Parameter (VP) over the Constant Parameter (CP)

(3 pp.) .
-Run-Time Check Options (1 p.)
-How to Use the PASCAL 6000 System (3 pp.)
-The Standard Procedure WRITE followed by Post-Mortem Dump (PMD) (4 pp.)
.IIThe Progranuning Language PASCAL (Revised Report)1I by Niklaus Wirth (53 pp.)
.IIAn Axiomatic Definition of the Progranming Language PASCAL" by C.A.R.
Hoare and N. Wirth (32 pp.) .

·The PASCAL System; Documentation, and Literature (2 pp.)

UNIVERSITY OF COLORADO
BOULDER, COLORADO 80302

COMPUTING CENTER

The PASCAL Distribution Tape

The magnetic tape distributed by the University of Colorado is a
556 bpi unlabeled SC0PE 3.2 internal binary tape, compatible with the
standard KR0N0S binary format, with the following contents:

FILE

1

2

3

4

5-8

CONTENTS

Card image source of the unmodified PASCAL system
as received from N. Wirth. See "Notes Accompany­
ing the PASCAL Tape of December 15, 1972" for a
complete description.

Binary decks of the PASCAL system. See reference
above.

A M0DIFY ~PL derived from File 1 above and modified
as indicated in "CU Modifications".

Binary decks of the PA~CAL system as run at the
University of Colorado from the source in File 3.

A duplicate copy of Files 1 thru 4 ..

