PASCAL NEWSLETTER

May, 1974 _ Number 2

FROM THE EDITOR

The second newsletter marks the release of PASCAL 2 for CDC
CYBER 70 and 6000 series computers under the KRONOS or SCOPE operating
systems. Interested CDC users may place orders as explained in the
section PASCAL 6000 - 3.4. Also, implementations of PASCAL for other
machines have become known through recent correspondence. Further infor-
mation about these 1mp1ementat10ns can be obtained by writing directly
to the contact given with the description of each 1mp1ementat10n

Please note the following important points.

1) Dr. Wirth, the author of PASCAL, is negotiating with a pub-
lisher to print a paperback edition of, "A User Manual for PASCAL' by
Jensen and Wirth. People who have received a preliminary version of
this manual should not make any further copies of it.

2) The University of Colorado has offered in the past a ‘$10
discount on orders of PASCAL from previous recipients of the package.
" The discount has been dropped since the new release of PASCAL is more
than merely a correctlon to prior versions. The extra money w111 be
used to defray the cost of this newsletter.

3) A short history of the development of PASCAL is glven so
that references can be made to the origin of PASCAL compilers on non-
CbC computers

"4) A limited number of copies of the flrst edltlon of the news-
letter are available on request from the editor.
i
Items of interest or requests for materlal can be malled to
the edltor

George H. Richmond
. University of Colorado
. Computing Center
3645 Marine Street
Boulder, Colorado 80302

or phone: © (303) 443-2211, ext. 6934.

HISTORY OF PASCAL

" PASCAL is ah ALGOL-1like programming language with data structure
facilities written by Dr. Niklaus Wirth at the Eidgendssische Technische
‘Hochschule (ETH) in Ziirich, Switzerland. The original language defini-
tion was made in November, 1970, in "The Programming Language PASCAL"
published by ETH and later in Ac¢ta Informatica 1, 35-63 (1971). The

last compiler of this version of PASCAL was\released in August, 1972.

In November, 1972, experlence gained with the original language
revealed certain details of the'language that should be changed. This

was done with the publishing of, '"The Programming Language Pascal {(Revised
Report)" in November, "Am Axiomatic Definition of the Programming Language
Pascal" in December, and the release of an updated compiler dated Decem-
ber, 1972. This compiler implemented all the specifications of the Re-
vised Report except for class variables which conformed to the definition
of the original report. ’

Later, a preliminary version of the PASCAL-P compiler was developed
and released .to a limited number of sites. Most of the PASCAL compilers
1mplemented for non-CDC machines are based on:this:icompiler and are iden-
tical in the form of PASCAL compiled by the Deccmber, 1972 rclease for
CDC machines. SRR

‘ May, 1974, brlngg the release of a complately new PASCAL compller
called PASCAL 2 for CDC machines. Details of the changes made and a
description of the materials available are given in the section, PASCAL
6000 - 3.4. - Ce e

v . Finally, :the FASCAL p compller is being rewritten to bring it in
: 11ne with«standard PASCAL Th1s ‘portable complier is expected to be
available in July

.PASCAL FOR NON- CDC MACHINES

Several altes havo 1%p1emenxed PASCAL con@zlerq for . computers
other than CDC 6000 series machines. - The machines represented are the
CII IRIS 80, CII 10070, DEC System 10, IBM 360/370, UNIVAC. 1108, and
XDS SIGMA 7. For further information on these projects, write the con-
‘tacts ‘given below.

. The CIT IRIS 80, CIT 10070, and XDS SIGMA 7.share gthe same machine

language. Mr, Didier Thibault and Mr. P. Mancel have: taken. the December,
1972 PASCAL compiler for the CDC machine and bootstrapped it for the CII
IRIS 80. This compiler is currently being tested under .control of a
monitor written for the SIRIS 7 - SIRIS § operating system.. It generates
relocatable binary object code which can be linked by the general linkage
editor. It uses the charactér set ordering as defined by PASCAL on the
CDC computer. It allows procedures to be separately compiled and merged
at linkage time. It allows all file management compatible with the SIRIS
7 or SIRIS 8 operating system uSing the S.G.F. assisted file management
system distributed by ‘the CII company. It accepts all features of the
PASCAL language except the non-dynamic allocation of files..

The compiler consists of 4500 lines of PASCAL code running under
control of a monitor (assembly code). The PASCAL program consists of
23,000 machine instructions,. and,the monitor 1000 machine -instructions.
reEqus 5:40 000 thirty- two blt words to compile itself.. To 'make-this
axlable on, other operat1ng systems,.the monitor:has to be
] ‘Thys Qranspositlon would be easier. if a flle management

"“avallanle on the. target machlne T

" The bédtstraﬁ"Of this compiler was done using the CIT IRIS 80
and a CDC machine in parallel. A simulator was not used. it took two
Lfexperlenced programmers 14 man months to complete. . SR e

This compiler is currently being tested prior to its distribution.
People interested in receiving documentation can place their names on a
mailing list by writing: »

S.F.E.R./PASCAL

IRIA 15-02
B.P. 5 78150 Le Chesnay
France

Address other correspondence to:

Mr. D. Thibault
17 rue Mayet
75006 Paris
France

The DEC System 10 implementation of PASCAL was developed at the
University of Hamburg, Germany by Professor H. -H. Nagel. Work began
in April, 1973 with receipt of the preliminary PASCAL-P compiler from
ETH. By November, this version would compile itself. As of April, 1974,
everything mentioned in the revised PASCAL report of July, 1973, including
1/0 formats, is implemented with the exception of procedures and functions
as formal arguments, arithmetic procedures (SIN, COS, EXP, LN, ARCTAN,
ROUND), and GO TO leaving a procedure body (the GO TO EXIT). Work on
these areas is in progress.

In particular, the following goals have been reached. The com-
piler generates in one pass immediately executable (no loader run) re-
entrant code, generating a sharable pure part and a separate LOW-file
containing data. A new feature, INITPROCEDURE, has been implemented
to initialize global variables. I/0 is possible to standard as well as
to declared files.::Files may be declared only as global variables. A
standard file named TTY is introduced to allow communication w1th the
user terminal. An optional file name may be given in READ/WRITE to use
the formatting capabxlltles of these procedures for all files of CHAR.
The actual file name may be indicated at execution time by an opt1ona1
argument to RESET or REWRITE. The printable upper case ASCII character
set is used as internal representation of characters. The appropriate
procedures and attributes like READLN(f), WRITELN(f), EOLN(f), etc.
have all been implemented. DEC line numbers are recognized, stored, and
accessible with a special new procedure GETLINENR. Indexed access to
PACKED ARRAY has been implemented. Constant indices are evaluated at
compile time. To obtain a completely self-sufficient compiler, the re-
~.-entrant runtime support is copied out of the compller 1nto the user's
object code file. »

A prellmlnary version of this compiler has already been sent to
several sites in the United States (Professor Terry ‘Beyer: at the Univer-
site of Oregon, Dr, Donald I. Good at the University of Southern California,
and Dr. Frederick A. Hosch at Louisiana State University). A bug contest
has revealed several critical and about twelve minor errors in this ver-
sion which have been corrected in the meantime. The compiler is currently
being used in teaching undergraduate students and in small research pro-
jects. For further information write:

3

Professor H. -H, Nagel

Universitdt Hamburg

Institut fur Informatik

Z Hamburg 13, Schluterstrasse 66-72
Germany

Two sites are worklng on PASCAL 1mplemcntdt1013 for IBM 360 and
370 series machines. Mr. Robert S. Deverill and Mr. Alfred C. Hartmann
at the California Institute of Technology have a running version of the
preliminary PASCAL-P compiler which will be ready soon. Also, Mr. J. M.
Wells and Mr. W. Bruce Foulkes at the University of Manitoba are working
on a PASCAL compiler for IBM machines which should be ready soon.

Caltech's version of PASCAL is implemented on an IBM 170/158
running under the 0S/VS2Z operating system. The environment will operate
under any version of the 0S operating system. About 270 kilobytes of
memory are required to compile the compiler. The compiler uses tHe Te-
cursive descent parsing technique to compile PASCAL programs in a 51ng10
pass. Only two files, a standard input and output file, are imnlemented
in this version. File declarations are unimplementéd, as afé'! LD
formal parameter procedureq ani functions, and the standard ‘fii
Ysucce™ and pred.t 2

For further information write:
Mr. Alfred C. Hartmann
California Institute of 1echn010&v

~ Information Science 286-60
,»?asadena, Callforn1a 9110@

The PASCAL compller at the Un1ver51ty of %anxtoba had it genesis
in 1971 at ETH in Zurich, Sw1tzer1and An early paper, “A Pascal Com-
piler for the IBM 360/370 Computers,” was presented last fall at the .
Third Manitoba Conference on Numerical Mathematics; rcpr1nts should be
available by now. The first object programs should be running soon apd
detailed documentatlon will be available later this year For_further
1nformat10n wr1te

:Professor J. M. Wells
‘University of Manitoba
.- Department of Computer Science
. Winnipeg; Canada :R3T 2N2

The Univac 1108 implementation of PASCAL was done at“the Tethni-
cal University of Norway by Professor Tore Amble and two of his degree
students, Mr. Terje Molster gnd Mr. Vernhar Sundvor. The compiler is
based on the preliminary version of the PASCAL-P compiler. All codé’
~generated is in the form-of subroutine calls, so efficiency of compiled
-programs is not very high. : Packed records, packed arrays,'fi}es”(exCépt
for standard files), formal procedures, and fﬁrmal functions were not
1mp1emented For further lﬂfﬂrﬁ&tAOH wrltc :

Professor Tore Amble

Computing Centre:

Technical University of Norway
Department of SIN TEF

N-7034 Trondheim-NTH

Norway

PAGCAL OGUUU-3 .4

s Dt o e b

An entirely new compiler for the C0OC olUuU series of computers
has been under development at ETH Zurich for the last 1o months.,
As predicted last fall and announced in the first issue of the
NEWSLETTER, it is released in May 1974, An important development
is the definition of a Standard PASCAL: in the interest of
portability of programs, we wish to make a clear distinction
between Pascal and Pascal-like languages, as several of these
have already been proposed, The new compiler adheres to this
Standard, and includes s=some additional facilities clearly
labelled as gextensiaons {(3.5--3.6), This Utandard also includes
the definition of a program representation in terms of the ASCII

character set.

The new compiler 1is designed for use under the CDOC SBCOPE 3.4
operating system with its Gd-character set. The decision to
adapt PAGCAL to the ASCII set and to character sets without
explicit control characters has made necesssary some changes in
the definition of the language. Of particular importance is the
decision to eliminate the ggpl character. It was felt that this
change 1is in the interest of making Pascal less dependent on
particular character sets and actuasl representations of
textfiles.

A summary of the changes and innovations of Pascal 60U8-3.,4
compared to Pascal 6UUU-3.£ is presented below in an informal,
descriptive style. It is divided into the following parts:

Notation {representatiocn, character sets)

Differences hetween Pascal 6U000-3.4 and Pascal eUU0~-3.2
New facilities of Pascal 6UL0UU-3.4

New predefined procedures and functians

Control statements {SCOPE 3.4}

«

.

LW -

.

The new compiler generates relocatable binary code that can be
loaded by the standard loader of the operating system. Before
execution, the generated code must be linked by the loader with
a set of subroutines for input/output handling. Each program
operates on files that are declared as Formal parameters in its
heading, and are substituted with actual files that can be
specified in the EXECUTE statement of the control statement
record.,

Besides saome new features, the major advantage of the new
compiler is its improved code which makes compiled programs more
efficient and more compact. The price for the expanded
capabilities dis a larger size of the compiler: for average
programs, a field length of 60004 (ocetal) is needed,

The Pascal 60U0-3.4 compiler can be ordered from

Ms . Kathleen Jensen
Institut fur Informatik
Clausiusstr. 55

8006 Zurich
Switzerland

The charge for a minitape, tape handling, postage, and
documentation 1is OSFr. Tuu; if a tape 1s supplied by the
requestor, the charge is 5Fr., /Y. (Please send minitapes only!)

In the USA and (Canada. orders must be directed to

Mr. George H. Richmond
University of Colorado
Camputing Center

3645 Marine Streect
Boulder, Colorado dU3uU<d
USA

The charge for a minitape, tape handling, postage (North American continent),
and documentation is $30; if a tape is supplied by the requestor, the charge
is $20.

The system is available in two versions, namely for use with the
ASCI] character set (CDC ~defined collating sequence) or with the
COC scientific character set. When ordering, please specify

PASCAL 6000-3.4 ASCII or
PASCAL 60U0-3.4 CDC

Along with the system, the following documentation is provided:

1w A Usér-Manual. ({(copying probibited, as we are currently in
contact with & publisher who might possibly be able to
provide this manual along with the Revised Report in a
moderately priced paperback edition.)

2. A description of the contents of the tape with instructions

on how to install the Pascal system,

Note: the system also runs under SCOPE 3.2, 3.3, and 3.4 with
the 63-character set, with the anly restriction being that the %
character cannot be used.

1. Notation

1.1 Set wunion is denoted by + and set ‘intersection by *
(instead of v and ~). '

1.¢

Differencks hetween PASCAL €0UU=3.4 and RASCHL 00032

The symbols in the left-~hand column may bhe 3ub5titgteﬁ flor
thaose in the right-hand column, ’

until now new
- nokt
~ and
v or
<>
< =
2 >
{ and } {(# and #)

Ngte: ~ and v dencote Boolean operations and cannot be used
for set operations.

The above tahble defines a unigue context -independent
correspondence between those Fascal symbols which are not
available in the international standard of IS0 (ASCII) and
the ASCII character set. Hence there is a standard
representation for a Pascal program in the ASCII character

set.

.,n

oy

End of lines in textfiles

The control character ggl, which marked théwgﬁd of_é line,
has been eliminated. Instead, the following “ textfile
gperators are able to recognize and generate line endings:

ealn(f) a predicate function, evaluated while reading a
textfile, which indicates whoetiizcr (he end of the
current line in the textfile f has heen reached.
Suppose the buffer variahle ff is positioned at

the character x and that the procedure “get(f)"
{or "read”) dis called in order to access the
next character., If x had been the last character
in the 1line, then ff_ = " ° (blank), and the
value of eoln(f) = true. The next call of get(f)
(or read)} accesses the first character of the
next line, and eoln{f} = false (provided the
next line is not empty).

writeln(F) a standard procedure thet terminates the current

bllne‘when writing the tprfllp o

readln(?) a standard procedrue that gkims to %EBEUGQJHHIT

of the next line:; the buffer variahle ff is
gqual to the first character of the new line,

The wuwsual program schema for seguential reading of a

textfile. £ Ffollows: (x is & variahle of type char; P

denotes the processing of the (next) character.)

~8-

reset (f);
while ~eof (f) do
beain beginline;
while —~eoln(f) da
begin
read{(f ,x): {read from the textfile f. and
assign to x; see section%:.1}
P(x) ’
end:
endline;: readln(f)
end

A line ending 1is represented by a blank. Notice that the
following schema can be used when it is not necessary to
recognize line endings--i.e. when no special action is
required upon encountering an end of a line:

reset (f);

while —eof (f) do
begin read(f,x): P{x)
end

The following abbreviations may be used:

ahbreviated form, gxpanded, forn

— - ——— - At M- - s ey S D W S W W M S it bian e A Shsl e Mt o s e Ok Sl oon Gty e Al e AL S e o S o A o W W S AL A s b o

writeln(f ,x1, ... ,xn) begain
write{(f ,x1,...,xn): writeln(f)

aend

readln{f x1, ,...xn) beain
read(f,x1,...,xn); readin(f)
end

Note: The first parameter names the relevant textfile (see
section 3.1): when it is pgot of type text, then the file
“"input” is assumed by reading and the file “output” by
writing. Hence, '

writeln stands for writeln{output)

and
readln stands for readln (input)

The program heading

. PASBCAL 6UUU-3,4 requires the specification of a program

heading. The form is:

program p(x1,x2,xn);

where p - is the name' of the program and x1...xn are formal

file parameters (n=1)., x1...xn are available to the
program, but also exist outside of the program; hence, they
are called gxternsl files (as opposed to local files).

be used in the control statement: foen aoc-bion ;
ST /e .
EXECY pifF1 . o e)

where T1...fn are file nemes, i.e. the actual parameters
correasponding to the formal parameters x1...xn.,

The following rules hold:

a} The oprogram heading musht contain the formal parameter
"output T, ’

Bb) As with any other wvariable, the files denoted by the
names x 1,..xn must be declared as File variables in the
main program. The exception ccours with the files
“"input” and “output” which are autoematically predeclared
as:

varn input outputbt: text

¢} If any actual parameter fi in the EXECUTE statement is
left empty, the corresponding formal parameter xi in the
program heading is then assumed as the actual “logical
file name .

o) Dnly one logical record” will ke read from the actual
fiite INPFUT--i.2., the next £0F mark appesrs as COF in a
Pascal program, :

=) If a file xi is to be opemed for reading only. then this
must he indicatod by an asterisk following the file
paramrmeter in the program heading. (This is necessary, if
actual files are Fzrmanent Fijes with Read Permission
only .}

Naote: Rules R are . specificly far the cbe
implementation., A mefnquancg cf rule ¢) is that a program
with a program rgardi : o : ’
LIS
proaram standard{input ,oubput)i :

«

can be called sinply with the controgl statement

EXECUTE ,STANDARD .,

G

or sven

EXECUTE .

when the standard BSCOPE files INPUT and OUTPUT are
intended. Note that the file specificdtions [IN] and [ouT]

of PASCAL bduﬁ~j Z are alkmindtema

The lahel decleration poart

h
"Every label must be declared. Cmnsemuently,fth@ symbol gxib
is eliminated from the gobkg statements. If a label L (an

~10-

n

n

udéigned integer) marks a statement in the statement part
of a block A, then L must be declared .in the label
declaration part of A.

Coto statements should be avoided whenever possible,
thereby making the computational structure of the program
more transparent. Jumps from ogutside of & structured
statement dinto that statement are gt allowed.

The standard type "alfa”

Due to the introduction of packed arrays (see section 3.<).
the standard type alfa can be explicitly declared as

tvpe alfa = packed arravl1..10] of char;

Alfa values wmust, therefore, comply with the rules for
packed arrays. In particular, assigrments can be made only
between identical types. That is, an assignment to an alfa
variable a ‘

a := <character string>

is only allowed when the character string has exactly 10
characters. ‘

Likewise, =a2l1fa may no longer he regarded as a scalar type.
Consequently, a result type of a function cannot be of type
alfa, nor can the argument of the function grd.

Pointer types and class variables

The concept of a class variable is eliminated. Instead of

type pointer = fclassvariable;
var classvariable: glass of T

is now simply

type pointer = 1T;
Apart from this, the facilities for pointer handlinﬁ remain
the same. The modification affects only the declaration
part. ‘
The value part
PASCAL 6000-3.4 has no value part as did PASCAL 6000-3.2,

(A more general substitute facility is under
consideration.) "

~11-

3. New facilities of PASCAL oUO8U-3.4

3.4

BRead and Write

The standard procedures read and write can apply to apy
textfile, not Just to the files "input”™ and “output™. The
first parameter names the textfile; when it is not a file
variahle, then the file "input”™ is assumed by read and the
file “output”™ by write. For example,

write (x ,y) stands for write{output x,y)

({Also see section <.1 for readln and writeln.)

Packed arrays

The symbol pgacked before the symbol grray means that the
storage requiraements for the array structure should be
minimized, It has no other influence on the mcoaning of the
program. Une should keep in mind that accessing an element
of a packed array can take more time than accessing one
from an unpacked array. However, the gain in storage can be
very gqreat (up to a factor of U in the case of a Doolean
array). For example, the variable x

x: packed acray [1..n] gof 0..999

requires o times lgss storage than the same variable would

were it npgt packed (or if the component type had been
specified as “integer”). ' The reasom is that a number
wetween U and 99Y can be expressed with 10 hinary digits:
hence, 0 such numbers can be stored in one bggbit word,

The packed array is especially important in connection with
character strinags., where each group of 10 6<hit characters
are packed into one word. The standard tyoe "alfa” is a
special case of a sgtring (see Z2i4): an alfa value fits
exactly into one word. ‘ T ‘

A restriction common to all packed structures is that no
component of such a structure {(e.g. an element of a packed
array) may appear as an actual parameter when the
corresponding formal parameter 1s specified as a yar

parameter (variable parameter).

Record types with a variant part but without a tag. field

Obligatory in PASCAL 6000-3.2 is the presence of a tag.
field when a record type has a variant part. For example,
the tag field x was necessary in the following declaration.

R: recdrd a: T1; -
case x: sex gf Ly E o e
male: (bm: TZ):
female: (bf: T3)
egnd

(%
i

o
L]
(S

In PALCAL LLUU=-3 .4 the tag field x may be omitted, thereby
simplifying the above case-clause to:d

case sex of
(where “sex™ is a programmer-defined type identifier). The
advantage is that i then requires less storage; the
disadvantacge is that it is impossible to establish from the
value of 8 alone which variant is present. (e.0. one can no
loncer ask: “if A .x=malc then 7)) Therefore, one should use
this new flexibhility gnly with the greatest of care.

Values of type set

Given is a scalar type @ with the values wi,we,...,wn. The
set m = [wi,w(i+1), ... ,w(ji-1).,wi] can be more simply
expressed with the notation:

m o= |[wi..wj]
where wi and wji are arbitrary expressions of type W, and m
is a variable of type zgf of V. '

External procedures and functions

In PAGCAL 6LUU-3,4 it 1is possible to call external,
separately compiled procedures and functions. (ne needs
only to introduce the name of the procedure {function) by a
pseudo-declaration in the program’® heading. This enables
Pascal” programmers to build ané.aC§esg program libhraries.

‘The user is however cautioned to use great gare, for the

compiler no longer has the opportunity to check the
correspondence between actual and formal parameters. A
seperate write-up documaenting this facility idis in
preparation, Note that external procedures and functions
are not a facility of Standard Pascal.

Segmented files

The CDOC operating system allows a file to be subdivided
into segments of varying lengths, where each segment . is a
"logical record” in CDC SCOPE terminology. In PASCAL
6000-3.4 these divisions are transparent when the file is

declared as sgamented. Example?

var f: seamented file of T:

A number of operations are available to end a segment when
generating a file, and to recognize segments and their
boundaries when reading a file--regardless of the component
type.

putseg(f) completes: the generation aof the current segment
when writing the file f. '

eas (f) is a Boolean function indicating whether the gnd

-13-

of a gegment has been reached while reading the
file f. Assume that the buffer variable f? = x
(of type T), and that “get(f)” is called. If x
was not the last element of the segment, £} is
the value of the next element. If x was the last
glement of the segment, eas{f) is “true” and the
value of f1 is undefined. , ’

cetseg(f) initiates the reading of the next segment of the
file f. f1 dis the first element of the {(new)
segment. If there is no next segment, “eaf{f)”
is “true”.

The following program schema illustrates the sequential
reading of a segmented file f1i

reset (f):

while —eof (f) do

begin beginsegment
while —eos(f) dg

Legin)
R(ft): get(f)
end:
endsegment ; geotseqg(f)
engd

An advantage with séGmenteq files i3 the possibliity of
positioning the reading and writing head (relatively)
quickly to any segemnt in . the file. For the purposes of
reading and (re)writingv"a."segmented file, the standard
praocedures getseg and rewrite are extended to accept two
arguments, ' ' '

getseg (f ,n) initiates ~the reading of the nth segment
counting from the gurrent position of the
file. n>0 dimplies counting segments in the
forward directiaon: n<U means counting them
backwards: and n=U0 indicates the current
segment . Note: getseg(f,1) is eguivalent to
getseg (F).

rewrite(f,n) initiates the (relwriting of f at the
beginning of the nth segment counting from
the gurrent position. Note: rewrite(f,1) is
not eguivalent to rewrite(f). The latter
causes initiation of {(relwriting at the very
beginning of the entire file.

Since files . are organized for sequential (forward)
processing, one should not expect getseg and rewrite to be
as efficient for n<=0 as they are for n>0,

Ubserve the following rules:
1) eof (f) always implies eaos{Ff}.

2) get(f) is applicable only when eos(f)
3) put{f) is applicable only when eos(f)

false.
true.

H

B

-14-

4) getseg(f) is applicable anly when eot ()
%) The procedures putseal(f), 'cetseq(f),

the function eos(f) can only be appl

files.

= {falsw,
rewrite(f,n) and
ied to sengmented

&) Segmented files are not part of Standard Pascal; they

are an extension to the lanquage and
the CDC operating system,

4. New Predefined Procedures and Fungtions

4.1

Procedures

readln(x1, ... ,xn) see <.1
writeln(x1, ... ,xn)

cetseg(f), cetoos (T ,n)
rutseg(f) see 3,0
rewrite (f n)

oriented townrds

linelimit(f,n) causcs the orogram to terminate when the

textfile £ has more thanm n

lines. ﬁgggz'ﬁhe

call "linelimit{outout 1U0UY" is

automatically executed at
a pragram.

page(f) causes a Jjump to a new

the beainning of

nage when the

textfile f is being printed.

halt : terminates the execution of the program and

issues a post-mortem dump.

message(s) writes the string s into the dayfile.
time(a) assignes to the alfa variable a the current

time in the form: ' hh.mm.s

- e
D ow

date(a) assignes to the alfa variable a the current
cdate .
dispose(p) informs the memory wmanagement that the

variable referenced through the painter p

will no longer be needed.

"dispose{p)” is

in a certain sense the inverse of “new(p)”.

Functions

eoln(f) see 2.1
egs (f) _see 3.0 |
card(S) equals the cardinality of the set O (i.e. the

number of elements contained

undefined(x)’ is a Boolean function. Its va
the wvalue x (of type real)
"indefinite"” (see CDC Manua

in the set 8).

lue is true wheén
is "infinite” or
1). These values

arise in the cases of overflow and division

-15~

Ly zero.

expo (x.) iz an integer function yielding the exponent
of tho floating-point reoresentation of the
real argument x .,

clock is @& function without any parameters. It
: gives the current nrocessing time in
milliseconds.

Npte: getseo, putseq, linelimit, halt, message, time, date,
eo0s , card, undefined, axpo, and c¢clock are pok Standard
Pascal, hut represent additional features of the CDC
implementation. lence, they nust be avoided in pronorams
that are supposed to be portable., ’

5. Cantrol Ltatemenis

In dnstallations which keep the PAGCAL system stored as a
Permanent File, the compiler is used through the following
cantrol statements.,

ATTACH ,CONMP, ...
ComMP .

ATTACH ,LIR, ...
LOAD ,LGO .LIB .

EXECUTE .
The additional infarmation needed ta complete the ATTACH
statements must be supplied by the individual computer

installations which make PASCAL available. The instruction COMP
calls the compiler and can be provided with parameters as
follows: . : e

COMP (x ,y ,z)

X = sbufce praogram (default = INPUT)
y = listing (default = QUTPUT)
z = hinary code oo (default = LGCO)}

Sa

The instruction EXECUTE initiates the execution of the PASCAL
program, which may call any subroutine in LIB. It has the
general form:

EXECUTE ,p(f1,fn)
where p is either empty or the name of the program given in the
program heading. f1...fn are the actual external files (see

2.2).

A Spandard Pascal job has the Fcllawihg Dartsf

-16-

control statements

end of record (7/0/9)

PAGCAL program

end of record (72/6/9)

data { = fiile INPUT)

end of file (6/7/6/9)

wlTe

PASCAL and Portability N. ¥irth

—— ——— — —— (- - - o T _—— -~

Due to the interest expressed by several pecple to make Pascal
available on other computers, the Paggal-P system was developed
by U. Ammann as a side-~product of the 6UU0-3,4 compiler project.
Its purpose was to provide with minimal effort the means to
transport Pascal to other systems with alsoc minimal effort an
the part of the receiver. This resulted in the Pascal-P compiler
which generates code for a hypothetical stack computer M. This
computer is described as a short Pascal program that represents
an interpreter. It is combined with a loader that loads the
generated code, which is a string of printing characters (i.e. a
text). The only effort on the part of a receiver of this system
is then to code the loader/interpreter in an efficient manner an
his available computer. Of course, the system obtained in this
way 1is interpretive and inherently slow; however, for short
programs its speed proved to be quite scceptable.

Currently, the Pascal-P compiler is being modified in order to
1. comply with Standard PASCAL ,
2. overcome some shortcomings of the present version,
3. be expressed entirely in terms of ASCII characters.

The new Pascal-P compiler is planned to be available in July 74,
together with documentation. It processes (standard) Pascal with
a few restrictions (e.g. no packed structures, no formal
procedures and functions, no file declarations).

The Pascal-P approach 1is quite adeguate and convenient, if
efficiency o©of program execution is of no great significance.
However, 1f the development of a high-gquality compiler is the
ob jective, a bootstrapping process on the basis of an
interpretive Pascal-P system 1is very costly, and involves a
large amount of reprogramming. It is clear that a different
approach to the transportation of compilers themselves should be .
investigated.

A project has now been started with the aim to construct a
machine-independent Pascal compiler which <can be extended
(completed) into a high-quality compiler for almost any real
computer with a reasonable amount of additional effort. The
system is developed by H.H. Nageli at ETH Zurich, with
cooperation from Cambridge University (England), where the
product will be subjected to its first test, namely its
adaptation to the IBM System/360,

- ~-18-

ADDRESS CORRECTIONS

Please help us keep our mailing 1ist.up to date by mailing this
page back if your address is incorrect or you are no longer interested
in PASCAL. Additional names of interested parties are welcome also.

Drop my name. Correct address as indicated.

" Add the following names,.

Mr. George H. Richmond
University of Colorado
Computing Center

3645 Marine Street
Boulder, Colorado 80302
U.S.A.

-19-

George H. Richmond
University of Colorado
Computing Center

3645 Marine Street
Boulder, Colorado 80302

CoLOA PR h57260

PASCAL NEWSLETTER -

[13

ARAAR

AaRARA

