¥ FH= o o%x FHr ok T ox FH o ox Tk = ok T ok Tk

T

PASCAL USER’S GROUP

USER'S

GROUP

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

14
16
20
23

26
44
65

Pascat NEWSLETTER

NUMBER 5

SEPTEMBER, 1976

TaABLE 0F CONTENTS

POLICY

~ EDITOR'S CONTRIBUTION

HERE AND THERE WITH PASCAL
ARTICLES ‘
“Desfgning Data Structures by Step-WiSe Refinement"
| - Richard J. Cichelli o
"In Defense of Formatted Input" S

- John Eisenberg

"Overlays: A Proposal" :

o - James F. Miner
"'Minor' Problems in Pascal" E
| - Timothy M. Bonham

"Dynamic Array Parameters" SR
" - Ch. Jacobi
OPEN FORUM FOR MEMBERS |
IMPLEMENTATION NOTES

ALL PURPOSE COUPON

*

% I % T % I ok T ok Tk % T % Tk ok Tk

S

POLICY -- PascaL User’s Group AND PascaL NEWSLETTER

USER'S GROUP POLICIES

Membership - is open to anyone: particularly Pascal users, teachers, maintainers,
implementors, distributors, or just plain fans..
‘Institutional memberships, especially libraries are encouraged.
The cost of membership is $4 per academic year ending June 30. Anyone
joining anytime for a particular year will receive all 4 quarterly
issues of Pascal Newsfetter for that year. (In other words back issues
are sent automatical]y). See ALL PURPOSE COUPON on back cover.
First time members receive a receipt for membership; renewers do not
to save money for PUG on postage

Purposes - are to promote the 1deas behind Pascal as we]] as the use of the
programming language Pascal. Pascal is a practical language with a
a small, systematic, and general purpose structure which is being
used for: .

* teaching programm1ng concepts

* developing reliable "production" software

* implementing software efficiently on today's machines
* writing portab]e software

Let's get more usens involved - wige your Pascal friends to join PUG whethen 5aca
to face orn maybe through an announcement in yourn installation's Local newsletfer.

- NEWSLETTER POLICIES

The Pascal Newslettern is the official but informal publication of the User's Group.
It is produced quarterly (usually September, November, February, and
May). A complete membership 1ist is printed in the November issue.
Single back issues are available for $1 each. Out of print: #s 1,2,3.

The contribution by PUG members of ideas, queries, articles, 1etters, and opinions
: for the Newsfettern is important. Articles and notices concern:
Pascal philosophy, the use of Pascal as a teaching tool, uses of
Pascal at different computer installations, portable (applications)
program exchange, how to promote Pascal usage at your computer
1nst§11at1on and 1mportant events (meet1ngs, publication of new books,
etc :

Implementation information for the programm1ng language Pascal on different
: computer systems is provided in the Newsfetfter out of the necessity

to spread the use of Pascal. This includes contacts for maintainers,
documentors, and distributors of a given implementation as well as
where to send bug reports. Both qualitative and quantitative
descriptions for a given implementation are:-publiciZed. Proposed
extensions to Standard Pascal for users of a given implementation are
aired. Announcements are made of the availability of new program
writing tools for a Pascal environment.

Miscellaneous features inc1ude bibliographies, questionaires, and membership lists.

ALL WRITTEN INFORMATION_FOR THE Newsfetter IS EASIER TO PRINT IF YOU
WILL TYPE ALL MATERIAL l% OR DOUBLE SPACED SO THAT IT IS IN “CAMERA-
READY", "PHOTO-REDUCIBLE"” FORM FOR THE PRINTER, REMEMBER, ALL LETTERS
TO ME WILL BE PRINTED IN THE Newsfeffexr UNLESS THEY CONTAIN A REQUEST

TO THE CONTRARY. AN OVERRIDING GUIDE SEEN IN AN OLD MAD MAGAZINE
APPLIES: "all the news that $its, we print!" - Andy Mickel, editor, August 5,]976';

John P. Strait, assoc. editor

m UNIVERSITY OF MINNESOTA University Computer Center

TWIN CITIES 227 Experimental Engineering Building
Minneapolis, Minnesota 55455

(612) 376-7290

PART I - In General

Hi! And here is the first issue of the Pascal User's Group Pascal Newsfettex.
Very important: read POLICY on inside front cover. My editorial comments appear
throughout the newsletter as Pascal style comments enclosed in "(*" and "*)". At
this writing, PUG has a phenomenal 317 members. We have grown steadily since we
began soliciting members in April. Some members have had so much faith in our
continued existence that they have sighed up for several years:

There were two members who suggested that the word "user's" in PUG's name
be changed to "users'" instead (see HERE AND THERE). To me it doesn't really matter.
I could argue that PUG belongs to each individual member - it is more like a
federation.

For the record here are some of the events which led to PUG. We have much
to owe George Richmond, of the University of Colorado (and Lyle B. Smith before him)
for tending the fire nearly alone in North America for several years. George began
Pascal NewsZetfer with issues in January and May of 1974 and February, 1975. In the
third (February) issue he sent a sort of "SOS" to all persons listening: “...there
is a need for a strong Pascal Users Group...the present mechanism for distribution
and support will become more inadequate." After talking with other Pascalers -
namely Alfred Towell at Indiana University, Dave Tarabar at the University of
Massachusetts, and George - John Strait and I sent a letter to the editor in July,
1975 stating our desire to participate in a User's Group.

A year ago at ACM '75 in Minneapolis, a Pascal User's Group meeting was
held spontanecusly on October 22 at the urging of Richard Cichelli of Lehigh
University and R. Warren Johnson of St. Cloud State University. Thirty-five persons
attended and we decided to work toward a more permanent orgahization using Pascal
Newsfetter as a communications medium. I organized a mailing Tist and little
happened. When I talked to George in December about the newsletter editorship,
he said he wanted to do one more issue himself. So we planned our first issue for
April '76.

But as things turned out, George was delayed by terrific work loads at his
computer center which incidentally hurt his other Pascal duties. After a few months
we decided to organize more thoroughly and push the date for our first newsletter
to September. In April and May we sent out 400 general solicitations to join PUG

EDITOR’'S CONTRIBUTION

to computer centers and computer science departments at universities in the United
States and Canada. We also placed an announcement in SIGPLAN Notices for May. In
the mean time we were hoping that George's Newsletter #4 would appear to announce
the transition to the persons on his already established mailing list of more than
500.

As it stands, George's last newsletter will be appearing just before this
one, and to avoid the complication of excessive requests for back issues and
duplicating material, we will purchase copies of his newsletter to send as a free
"bonus extra" to persons in the United States and Canada who are not on George's
list. Persons on Georges list who are not PUG members should read the transition
information in Newsletter #4 and join PUG hopefully. I estimate we will gain at
least another hundred members this way.

Those of you who received a receipt for membership may be interested that
the pug dog is a sort of joke - I for one would not feel secure having such a
weakling for my guardian (a sort of a pig of a pug the way it was drawn). Actually
Pascal User's Group is a shoestring operation run right now in the spare time of a
couple of systems programmers. The important implication here is that John and 1
cannot be very responsive to individual requests - all we can promise to do is the
newsletter and rest assured we'll print everything that comes to our attention.

With this issue of the newsletter we hope things begin to improve, bacause
I realize all is not good with Pascal right now. I can tell from PUG's mail.
Confusion reigns. But I'm an optimist - we'll pull through.

Next issue I will supply an accounting of our costs so far. (In the post-
Watergate spirit of full disclosure.)

Now I must give credit where credit is due for PUG and Pascal Newsfetiten #5:

John Eisenberg for his idea of collecting phone numbers,

Richard Cichelli for suggesting guidelines for the cost of membership,

WiThelm Burger for suggesting user's group memberships rather than

. newsletter subscriptions,

Al Towell for miscellaneous encouragement and suggestions,

SICDOC Systews Documentation Newsletter for the idea for an "ALL PURPOSE
COUPON™,

Christi Mickel for doing the mass mailing of 400 and for processing
memberships in PUG,

Computers and People "Computer Directory and Buyer's Guide" for an organizing
and reference tool,

SIGPLAN Notices for publicity in their May issue,

Les Kerr for the suggestion to print a roster of members in an early issue
of the newsletter (see next issue),

John Strait for creating the mailing 1ist data base and for innumerable
suggestions,

Michael Schneider for helping design our cover letter and SIGPLAN announcement,

James Dorr (editor of Indiana University's Random Bits) for producing our
front cover title,
Niklaus Wirth and Urs Ammann for encouragement,

9/6T "Y3IWILd3IS G YILLTTSHIN WISV

T 39vd

George Richmond and Jan Hurst for providing last minute transition suggestions

in August,
The computer center newsletters of Lawrence Berkeley Labs (Ed Fourt), the
Middle-111inois Computer Coop (Don Klett), Purdue University, and the
University of Minnesota for articles publicizing PUG,
Twin Cities ACM's Bits _and Bytes (Judith Kruntorad) for announcing PUG,
and finally the University Computer Center, University of Minnesota for providing a
warm home for PUG.

PART II - Pascal at the University of Minnesota

Our computer installation consists of a CDC Cyber 74 running large scale
batch and 30 interactive terminals, and a CDC 6400 running 150-200 interactive
terminals only. Pascal has been available here since summer of 1972 when a colleague

of mine (and now PUG member) Steve Legenhausen suggested we obtain the Pascal compiler.

Usage here has been boosted mainly by applying William Waite's principles for giving
a language processor (organism) support at a computer installation (ecosystem). Now
after the Computer Science Department's very successful initial year of replacing
FORTRAN with Pascal in its curriculum, usage is respectable. In the last fiscal year
(July-June) at Minnesota the major FORTRAN compiler (MNF) was run 810,000 times on
both machines; BASIC 477,000; Pascal (#3!) 103,000; FTN (CDC FORTRAN) 69,000; COBOL
49,000; Assembler 44,000, SNOBOL 40,000; and etc.

John Strait, Lawrence Liddiard and I have cooperated with Urs Ammann of ETH
Zurich over the past year in producing the second release of Pascal 6000-3.4. We
helped mainly in the effort to reduce core reqﬁirements for the compiler. Our group
continues to maintain the compiler for the KRONOS/NOS operating system for CDC 6000/
Cyber 70,170 series machines and in fact several other sites run our version. The
main changes have been for interactive access because 85% of Pascal's use here is
interactive. We are now cooperating with George Richmond to make our mods for
KRONOS/NOS available with the distributed version.

PART III - My Concerns

As I mentioned earlier, all is not well with Pascal. Mainly, considering
the design goals of the language (reiterated in the POLICY section inside the front
cover) we are suffering.)

First, people continue to ignore the combination of these design goals
when making suggested "improvements" to the language. These are the subject of
several letters and comments which appear in this issue of the newsletter.

Secondly, several bad implementations are being circulated and in turn are
giving Pascal an unnecessary,bad reputation as-a language. See IMPLEMENTATION NOTES.
Also many implementors have taken the liberty to implement something significantly
less than Standard Pascal and call it Pascal. What about portable software then?

Finally, confusion proliferates at to what the next developments will be
and where implementations will come from. This situation should improve with the
regular appearance of this newsletter.

We all need to pull together to help remove a major obstacle to our being

able to respectably use Pascal: its low percentage of usage in the world's computing.

We can do it; it will happen. A major indicator is the "Pascal explosion" in the
current computer science literature.

I consider the IMPLEMENTATION NOTES section to be very important. Here we
will hope to find increasingly complete and usable information for spreading the
“virus" of Standard Pascal.

N

August 10, 1976

9/6T “Y3AWILd3S G# YILLITSHIAN TYISYd

Z 39vd

CONFERENCES NEWS (alphabetical by last name)

Pascal User's Group session at ACM '76....Wally Wedel, PUG member from the
University of Texas at Austin will chair a PUG meeting at this year's ACM conference
in Houston, Texas. The conference extends from Wednesday, October 20 to Friday,

0. Beaufays, Mathematiques Appliques, Universite Libre de Bruxelles, Bruxelles

1050 Belgium (PUG member): "...we are using this language for teaching..."

i Hotel. Wally h ith th
October 22 in the Hyatt Regency Hote ally has made arrangements with the Scott Bertilson, RR 2, Spicer, MN 56288 (PUG member): "“James Martinson and I are

interested in microcomputer versions of Pascal, Pascal-S, or Concurrent Pascal"
Albrecht Biedl, Institut fuer Softwaretechnik, Technische Universitat Berlin,
1000 Berlin 10, Germany VSH 419 (PUG member): "I enclose copies of the PASCAL
Info we have published in 76 for a growing Pascal community at the Technical
University of Berlin" (Numbers 0 (1976-01-05), 1 (1976-02-26), 2 (1976-03-03),
and 3 (1976-06-15))

conference organizers and SIGPLAN; the exact time of the meeting will be printed
in the schedule handed out at the conference on Wednesday. Proposed topics of
discussion are: Interactive I/0 conventions/Extended character set treatment/
Implementations and user experience with implementations/Documentation standards
for variations.

Pascal: Implementation and Application....D. W. Barron has announced a two

i i i , Uni i f S ton, . . . s
day Symposium organised by the Computer Studies Group, University of Southampton Richard J. Cichelli, 901 Whittier Drive, Allentown, PA 18103 (PUG member):

"What we need next is a program which reads up Pascal relocatible binaries and
proposes overlay structures. It should report field lengths vs. various overlay
alternatives. It really is about time that many of the clerical and record
keeping tasks of programming be automated. Pascal users should have the best
tools for program development. Do you have any suggestions in this area? (source

United Kingdom during 24-25 March 1977. Sessions include: The language and its
implementation/Pascal in systems programming/Pascal in research and education/
Pascal, the future. Well known authorities have been invited to speak. To receive
further details when available - write to: Conference Secretary, Department of
Mathematics, The University, Southampton, S09 5NH, United Kingdom.

NEW_BOOKS

Algorithms + Data Structures = Programs by Niklaus Wirth, Prentice Hall, 1976,
366 pages, hardcover, $15.
A Primer on Structured Programming Using PASCAL by Richard Conway, David Gries,

and E. C. Zimmerman, Winthrop Pub., 1976, 420 pages, paperbound. ‘
(*Note: for price write to PUG member Michael Meehan, Winthrop Pub.,
17 Dunster St., Cambridge, MA 02138.%)
Introduction to Problem Solving and Programming with Pascal by G. Michael Schneider,

David Perlman, and Steven W. Weingart, Wiley, to be published in 1977.
(*Note: for more info write to PUG member Michael Schneider,
C. Sci. Dept., 114 Lind Hall, Univ. of Minnesota, Minneapolis, MN
55455, %)
Study Guide, Introduction to Computer Science by Kenneth L. Bowles, to be published.

(*Note: for more info write to K. Bowles, Univ. of California,
San Diego, La Jolla, CA 92093.%)
Standard Pascal by J. W. Atwood, to be published. (*Note: for more info write to
J. W. Atwood, Dept. of Comp. Sci., Sir George Williams Campus,
Concordia Univ., Montreal, Quebec, Canada H3G 1M8.*)

and object file maintenance systems?)

"Pascal users accumulate 25% of all charges on Lehigh's system.

"The last correspondence of the Zurich-Minnesota letters that I have was dated
November 25. Incidentally I think your letters should be more supportive to

them. 1 feel that reasoned discussion with the community at large is the way to
resolve some of these technical issues. Let Wirth and Hoare set the principles
and ideals. Help Urs with his implementations and help create a forum for
information interchange. We need to promote growth and change in an environment
of mutual cooperation. '

"I believe any changes in implementation should be discussed with the users. Only
organizers like you can facilitate the necessary communication. Note, I am not
opposed to changes per se. If Pascal 6000 is to grow it must be a living, changing
language. Rational change is possible only with the cooperation of the user
community. .

"I like the name PUG. See how Wirth likes it.

"I would 1ike to see a user profile on PUG members: usage statistics, application
environments, etc."

Kurt Cockrum, 3398 Utah, Riverside, CA 92507 (PUG member): "I am particularly
‘ interested in microprocessor (8080) implementations of Pascal."

H E R E A N D T H E R E W' TH PASCA L (NEws FROM MEMBERS, CONFERENCES, NEW BOOKS, BPPLICATIONS PROGRAMS, ETC.)

9/6T “¥3IWILd3S S# Y3ILLFTSHIN TYISYd

¢ 39vd

R. G. Dickerson, School of Information Sciences, The Hatfield Polytechnic,
Hatfield AL10 9AB, United Kingdom (PUG member): "“...we have a DEC 10 and use
Nagel's (Hamburg) Pascal compilers. We are going to use Pascal as a first
language for our B.Sc. in computer science (we have about 200 undergraduates
on the degree)."

Doug Dyment, 6442 Imperial Ave. W. Vancouver, B.C. V7W 2J6 Canada (PUG member):
"My current interest in Pascal is an evaluation of its use as a system
programming language. Good luck with the new group."

Gerhard Friesland, Institut Fuer Informatik, Universitat Hamburg, 2 Hamburg 13,
Germany (PUG member): "My interest is based on participation in the transport
of a compiler onto the PDP-10 and current work on an interactive programming
system, implemented via a compiler-compiler in Pascal."

Dale Grit, Dept of Computer Science, Colorado State University, Fort Collins,
CO 80523 (PUG member): "We're using Pascal to a limited extent (e.g. the
compiler course). We are still stuck with teaching FORTRAN in our intro course,
but our approach to FORTRAN is to teach them to develop problem solutions in a
“thinking" language (which just happens to have Pascal control constructs) and
them how to mechanically go from there to FORTRAN.
"Another approach we hope to try is to: teach Pascal for 8-9 weeks of the semester,
then teach FORTRAN as a restrictive subset.
"We have a student doing a summer project to put up Hansen's sequestial Pascal
and his concurrent Pascal. We are getting a Cyber 18 this fall and plan to
make it a Pascal machine."

Sam Gulden, Dept of Mathematics, Lehigh University, Bethlehem, PA 18015 (PUG member):

"Enclosed you will find applications from some of the members of our local

Pascal Users Group. I am looking forward to the newsletter having been an
enthusiastic Pascal user for about two years. We have used Pascal here to tackle
some interesting mathematical problems. Perhaps we will report on them in the
future."

Mi chael Hagerty, 18 Hamilton Road, Arlington MA 02174 (PUG member): "Our work
is with large data bases (200 cards for each of 300000 people). Processing is
constrained by I/0 and takes 20000 seconds on a CDC6400. We are therefore
implementing GETBUF and PUTBUF routines to read more data at a time from tapes.
"1 am working on a paper which will define an additional structure for Pascal,
the environment. This concept will allow the easy integration of a form of
overlays, a more dynamic (moving FL) system, as well as the inclusion of a
"systems text" for compilation. Once completed, I will send you a copy. The

implementation will have to wait until I can find time to sketch out the loader
needed to handle multiple environments.

"Included in our implementation of Pascal is a copy of Michael Condict's
reformatter....I feel that one function of PUG would be to see that software
written in Pascal is made available to the larger community..."

Charles Hedrick, 183 Commerce West, University of I11inois, Urbana, IL 61801 (PUG
member): "“If we are going to have a language which is implemented and maintained
entirely by users, as seems likely (no computer manufacturers have made offers to
do it), it is clear that there should be at least a lot of communication between
people doing work on the same machine. Preferable would be to have one person
for each machine maintain a common version which gets everybody's bug fixes.
Notice I say bug fixes and not enhancements or extensions. To keep track of all
of these would be more work, and would probably detract from the stability of the
system. Alas, I have no candidate to propose at the U. of I. for this. I am not
a full-time programmer (I teach and do research as an asst. prof. and don't have
time for such things). The person who works on our local version has been unable
to get funding for Pascal work, and may well be switched to a system other than
the DEC 10 anyway. (We are in the process of getting a new computer system.)"

William C. Hopkins, 207 Ridgewood Drive, Amherst NY 14226 (PUG member): "Note:
as thereare several users, shouldn't the name be "Pascal Users' Group" ?"

Ed Katz, Computer Science Dept., Box 4-4330, USL Station, University of SW
Louisiana, Lafayette, LA 70504 (PUG member): "We had such success teaching
Pascal-S last year on our Honeywell Multics system, that we plan to use a full
implementation this year."

Thomas A. Keenan, Software Systems Science, Division of Mathematical and Computer
Sciences, National Science Foundation, Washington, DC 20550 (PUG member):

"Good luck with your venture."

Leslie R. Kerr, David L. Johnson and Associates, 10545 Woodhaven Lane, Bellvue, WA
98004 (PUG member): "I would like to thank you for taking the initiative in
founding a Pascal user's group, which I feel is long overdue. I hope I will be
able to contribute in some way to its success.

"T would 1ike to see the roster of PUG members published in an early issue of the
Newsletter."

Jan Kok, Mathematisch Centrum, Tweede Boerhaavestraat 49, Amsterdam, The Netherlands

"The Mathematical Centre Amsterdam (Mathematisch Centrum) is engaged in
constructing a numerical mathematics procedure library in Pascal, to be available
on the CDC Cyber 73-28 computer of the Academic Computer Centre at Amsterdam."

9/6T “Y3AWILdIS G# YALLFISMIAN TYISYd

fr 39vd

0. Lecarme, I.M.A.N., Universite de Nice, Parc Valrose, 06034 Nice Cedex, France
(PUG member): ™I am planning to create a smaller but similar group for the
French speaking community, and I will be very happy to maintain good communication
with you."

Chris Martin, Computing Services, The Hicks Building, University of Sheffield,
Sheffield $10 2TN United Kingdom (PUG member): "We have the Belfast compiler on
an ICL 1900 and though at the moment it isn't very widely used, I expect the rush
will start when I get the Montreal Compiler Writing System installed."

Joseph Mezzaroba, Dept of Mathematics, Lehigh University, Bethlehem, PA 18015 (PUG
member): "I have been using Pascal (as implemented for the CDC-6400), here at
Lehigh University for the past two years. I will be teaching Computer Science at
Villanova University starting in September and I would like to get either a Pascal
or ALGOL-W Compiler on Villanova's IBM 370."

Carlton Mills, Mills International, 203 North Gregory, Urbana, IL 61801 (PUG member):

"Has anybody defined any structured escape language constructs? Has anybody
defined any macro facilities? We are about to."

Judy Mullins, Department of Mathematics, The University, Southampton United Kingdom
S09 5NH (PUG member): "I enclose ... $8 ... for two year's subscription to the
Pascal Users' Group and Newsletter. This advance payment was prompted by the
large banker's commission on small sums such as $4....)

"Arising from this, I was wondering whether it would be useful or possible to a
arrange some kind of branch of P.U.G. in the U.K. for collecting subscriptions.

. a convenient and cheaper form of membership may encourage more members in the
U.K. There are certainly many institutions using Pascal now, and interest is
spreading....

"As co-organizer with Prof. Barron of the Pascal Symposium for next March, I
could get the thing started. Others in our group are writing a Pascal compiler
for ICL's new 2970 computer, so we shall always have a vested interest in Pascal.”

Maurice Q'Flaherty, 444 Merville Garden Village, Newtown Abbey, Co. Antrim, N.
Ireland (PUG member): "I am at present finishing my thesis for an M. Sc. in
Computer Science and Applications, and having used Pascal I would like to
continue my interest in it."

George Richmond, Computing Center, 3645 Marine St. University of Colorado, Boulder,
€O 80309 (PUG member): "The Computer Science Dept. here will be converting to
Pascal this fall, starting in the introductory courses.”

Steve Reisman, Clinical Systems Division, School of Denistry, University of
Minnesota, Minneapolis, MN 55455 (PUG member): "We are using Pascal for
scheduling and grading for the School of Denistry."

Staffan Romberger, Scoputer Science, Royal Institute of Technology, S-10044
Stockholm, Sweden (PUG member): "Here at the Computer Science Department of
Royal Institute of Technology there is a growing interest in Pascal. We have
access to the Pascal and Pasrel compilers for DEC-10 from Hamburg and there are
also compilers for PDP-11 and movements towards writing compilers for other
computers.”

David Slocombe, The Globe and Mail, 444 Front St. West, Toronto, Ontario M5V 2S9
Canada: "Although we don't now have a Pascal compiler (we intend to check out
the Stony Brook implementation as soon as we have time), we have followed the
development of the language almost from the beginning and two of us here have
used Pascal as a design language for some years. It sure would be nice not to
have to hand-compile!"

N. Solntseff, Dept. of Applied Mathematics, McMaster University, Hamilton, Ontario
Canada L8S 4K1 (PUG member): "I am interested in participating in the users'
group and am willing to contribute my time in any capacity.

"Incidentally, I would be happier if the title of the group were the more
grammatical "Pascal Users' Group". "

W. Richard Stevens, Kitt Peak National Observatory, P.0. Box 26732, Tucson, AZ
85726: "Here at Kitt Peak I have just installed the 6000-3.4 compiler on our
CDC 6400 and am currently trying to generate interest in the language. In
addition, I would like to volunteer any services of myself to help the User's
Group.

"Will the User's Group have any affiliation with the current distribution center
at the University of Colorado?"

William Waite, Software Engineering Group, Dept. of Electrical Engineering,
University of Colorado, Boulder, CO 80302: "“Thank you for your invitation to
join the Pascal User's Group. Lack of funds makes it impossible for me to accept
personally;...You ask why PLAP was not written in Pascal. The answer is obvious -
lack of portability. We have been attempting to cure this problem, as well as
doing some research in intermediate language design. Unfortunately we have
succeeded in the latter while the former still eludes us. The whole story is a

_ sad one, resting upon the inadequacy of our tools. I believe that we will lick

the problem eventually, but until I see the evidence I shall write portable
programs in another language."

9/6T "YIAWILd3S G# Y3LLFTISMIN TvISYd

S 39vd

Lecture Notss in Computer Science, No. 18
"I was interested that the Pascal usage at Minnesota has exceeded that of RUN

) o) (*When purchasing, specify the "Springer Study Edition" - it's 35% cheaper!*)
and FTN. Have you been using it in an introductory course? We plan to do so .

PASCAL ~ USER MANUAL AND REPORT py K. Jensen and N. Wirth, Springer-Verlag,

next fall, and I would appreciate any comments you have. 1974, 1975, 167 pages, paperbound.
"It seems to me that one of the most difficult problems faced by Pascal is one Corrections to 2nd Edition -
that could be considered irrelevant: the ordering of multidimensional arrays.
Since the language definition implies row-major order, it seems that Pascal- p-51, Ll.16: "setoploutput)” = Msetoploutput);”

p.56, l.-6: nEiv s nf(i)v

FORTRAN communication might be very difficult. How have you handled the problem ng(i+1)" o wg(j+1)"

when perverting FORTRAN library routines?" vgi" - g(j)
Wally Wedel, Computation Center, University of Texas at Austin, Austin, TX 78712 p.63, Fig.10a: Number sequence should be reversed.
(PUG member): "We are running Nagel's DEC-10 Pascal, Brinch Hansen PDP-11 Pascal, p.69, 1.23: "stricly" - "strictly"
Wirth's CDC6000 Pascal. Wilhelm Burger has done extensive work on both the DEC-10 p.77, l.18: move line 3 places to the left
and CDC6000 implementations."”) p.98, 1.10: append " e
p.102, 1.7: last word should be "or"
1.20: "bufffer" - "buffer"
p.103, 1l.-6: "scaler" - "scalar"
1.-7: “char, and alfa" - "and char are listed"”
p.124, 114 and 1:15: "4 5 15"
p.127, 1.27: "18.A" o "4.A"
p.133, 1.3: "two" - "to"
p.135, 1.5: "althought™ - "although"
1.30: “subtstitute" = "substitute"
p.140, 1.11: "structure type" - "structured type"
p.158,) delete lines -12... -8.

N, Wirth
10.May 1975

Additional Suggested Corrections

September 26, 1975 University Computer Center
University of Minnesota

Page/Line
13/_3. I'if" * "If"
69/-8 "the readability" > 'readability"
. 72/-3 "element in the array"” » 'component in the structure”
81/2 "extent" > "extend"
117/ in the syntax chart for expression, change:
$ < > to <> <= >=
119/13 move the message right by 1 position
126/-19 to -14 move the "i" index entries to the next page
153/16 "(and at least once)" 3> "(at least once)"

162/3 "end of line" 3 "end of linme"

9/6T “43TWILAIS G# YALLFTISHIN T9¥ISYd

9 39vd

“ -2 -

! rogram, the main routine might be:
Designing Data Structures by Step-wise Refinement PFollowing Dijkstra's program,

A Tutorial (*Note: by Richard J. Cichelli*) begin initialize; generate end.

d a d generate recursively calls itself
Keywords: Data structures, step-wise refinement, top-down Initialize clears the board and generate ¥

design, systematic programming, PASCAL. to place a Queen on each column.

Abstract Ero;;;u;f %??ifate;
Dijkstra [1] and Wirth [3] have defined the principles st%%r cach_row h do
of systematic programming. They illustrated these principles EEE%% square_is_free then
by designing programs whose control structures reflected EEE%% ggzgg‘%ziin€§25§g¥?§§;solucion else generate;
hierarchical abstractions of their logic flow. In this paper, endremove_gueen_ﬁrom_pquare (* packtrack *)
end

systematic programming principles are applied to the design of end;

a program's data structures. Dijkstra tests whether a square is free by noting:

1) for each column N (O NKT7), generate only places

Overview one Queen,

This paper begins with a reexamination of the Queens 2) for each row H, the boolean‘array column[H] is used
problem: a traditional program design problem. An alternate data to mark a row as taken, and
structure 1is devised for the program and relevant design issues 3) for the 30 diagonals, the boolean arrays Egg[N-Hﬂ and
and terminology are discussed. gg!g[NHﬂ complete the masking.

A step-wise, top-down design of the data structures for These three boolean arrays are 1nvolvéd in testing 1if
a Soma cube [3] solver is then presented. The data definitional a square is free, placing a Queen, and removing a Queen.
capabilities of PASCAL Bﬂ aid in the design process. To improve the speed of the program we can augment

Dijkstra's data structures and, by having the program know more,
The Queens Problem Revisited

trade space for time. Observe that the column, up, and down arrays
Both Dijkstra and Wirth use a traditional backtracking
are simply marking instances of the same type of thing. Each
problem to illustrate systematic programming. The problem is to
. masks off a direction on the board. In total there are 46 such
write a program which places eight hostile Queens on a chess board
directions on the chess board - 16 for the rows and columns and
such that no Queen threatens another. The programs are extended
’ 30 for the up and down diagonals.
to find all 92 solutions.

ARTI CLES (FORMAL SUBMITTED.CONTRIBUTIONS)

9/6T “¥3W3Ld3S £# Y3LLTISHIN TYISYd

£ 39vd

-3 -

Since the mask for each square [N,H] is a unique set,
this loop invariant calculation can be done once in the initialization

code. (See revised program in Figure 1.)

The Soma Cube

The Soma puzéle consists of seven pieces; slx of the
pieces are made by joining four cubes together, and the remaining
plece 1s made up of only three cubes. The problem is to fit the
pleces together to form a 3x3x3 solution cube. There are 240
unique solutions to the puzzle. (The seven pieées are shown in
Figure 2.)

"It 1s evident that the simple backtracking algorithm
‘'which worked for the Queeﬂs problem will also work for the Soma
- cube. Piece# in the Soma cube are placed like Queens on the
chess board. A pilece 1s included in the solution cube only if
1t "rits".

To find a solution, we start with an empty solution cube
and place pleces one by one until all pieces are placed or the
current plece does not fit. If the plece does not fit, the
previoﬁsly placed piece 1s removed and replaced elsewhere; and
the search continues untlil a solution is found or the plece locations.
are exhausted.

The difficulty here 1s that the search space 1s so
large that efficient testing of whether a plece fits is essential
for an effective program. The possible solution locations of
any plece need only be calculaped once 1f we have a data structure
like the boardmask data structure 1n the Queens program. We can

create such a data structure by top-down design methods.

The Soma Cube Data Structure

The Soma data structure 1s operated upon by two routines;
the first initlalizes it, and the second generates solutions with
it. Although 1; is composed of many parts, this data structure
is properly viewed as a single named entity. It holds all the
data relevant to the seven Soma piecés. In PASCAL we declare

var pleces: array [piecd of piecedescription;

This declares pileces to hold the same type of information for
each plece. Since we wish to treat each plece in the same way,
this 1s the appropriate overall structure.

Next we need to declare the types piece and

plecedescription. There are séven pleces and so the declaration

plece = 1..7;
is appropriate.

For each plece the piecedescription must completely
describe the information local to a plece. It will basically
consist of a 1list of locations. The length of this 1list varies
from plece to plece, and in addition, during backtracking we will'
need to know where we are in the list. Since these items are not
of the same type, the record structure is needed:

piecedescription =

record

Iistlength, whereat: listsize;

dpositionlist. array [lisbsizér of positions
end;

—

We can postpone the calculation of the maximum listsize by

declaring the type

listsize = 0..maxlist;

Maxlist will be a declared constant.,

9/6T “43AWILd3S G YILLATISMIN TWISYd

¢ 39vd

-5 -

Positionlist is declared an array of positions because
we expect each possible description of the location of a piece
to be of the same type. Since each piece will fill a set of
locations in the solution cube, the declaration

positions = set of locations; '
seems natural. There are 27 locations in the 3x3x3 solution
cube. We thus declare

locations = 1..27;

To calculate maxlist we observe (usually with a little
difficulty) that piece 1 can be placed in 144 unique orientations
within the solutioh cube. It obviously can occupy more places
than any other piece.

The final 1ist of declarations that we have built up
appears below:

const

maxlist = 144;
type
plece = 1..7;
locations = 1..27;
positions = set of locations;
listsize = O,.max1list; (* one to spare ¥)
plecedescription =
record .
Iistlength, whereat: listsize;

positionlist: array [listsizéf of positions
end; .

var
pleces: array [piecq] of pilecedescription;
somacube: positions;

How Will the Soma Program Work?

The first phase of the program will generate the piece
descriptions. It will have to take each plece and rotate and

translate it through all 27 locations. Duplicates should not

-6 -

be entered into the positionlist. As the positions are added to

the positionlist, listlength is incremented.

The backtracking phase begins after all positionlists
are complete. For each plece, whereat (which is initialized to
zero) 1s incremented from zero to listsize. It is the index to
the positionlist of the position under examination. Pleces which
fit are Joined into the somacube solution. The "fit" test 1s
simply the set operation

({positionlist [whereat] meet somacuve) eq [])
where [] is the empty set. To add in a piece which fits we write
somacube := positionlist [whereat] Join somacube;

Plece removal during backtracking only requires set
differences. (These operations are very fast in most PASCAL
implementations because hardware boolean logic is used for
set operations.)

A complete version of a PASCAL Soma cube solver can be

found in [5] .

Summary
We have shown that top-down design can be applied to

complex problems in data structure design. It is hoped that

the examples chosen illustrate the desirability of PASCAIrlike‘
type definitional capabilities for the top-down design of data
structures. Languages without such type definitional capabilities
are as deficient for data structure design as those which lack

block control structures are for structured programming.

(*Received 2/21/76%)

9/6T "YIAWILd3S G YILLFTSHIN T¥ISVd

6 39Yd

References
1. Dahl, 0.J., Dijkstra, E.W, & Hoare, C.A.R. Structured

Programming, Academlic Press, London, 1972.

Wirth, Niklaus. Systematic Programming: An Introduction.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.

Wirth, Niklaus. "Program deveIOﬂment by stepwlse refinement",
Communications of the ACM 14, 4, 1971.

Introducing Soma, Parker Brothers, 1969.
Scientiflic American, October, 1958.

Jensen, K. & Wirth, N. PASCAL User Manual and Report.
Springer-Verlag, New York, 1974.

Cichelli, R.J. & Delong, R. "Solutions to the Soma Cube
Problem", SIGPLAN Notices, October, 1974.

Cichelli, R.J., Gulden, S.L., & Condict, M.N. "Another
Solution to the Soma Cube Puzzle", SIGPLAN Notices,
December, 1975.

type
zeroto? ¥ 3 ,, Ny
directions = @ ,, 4Sy)
directionmask z set of directions)
rowmask & array [zeroto7)] of directionmasky
boardmask = array [zeroto7] of rowmasky

var
Jy & 3 (ntegery
aueenindx 1 {ntegery N
queens t array [zeroto7] of zeroto7)
mask § boardmask)
board t directionmasky

precedure generatey
ver)
colhgt § zerote?)
begin
for colhgt 1= 8 to 7 do
begin { test square colhgt free)
{¢ ((board meet mask(colhat) [queeni{ndx])) is []) then
begin { set queen on sauare
aueens [aueenindx) 1= colhgty
board t= board Join mask(colhgt] [queenindx])y
queenindx t= queenindx + {}
{ test {f board {s full }
{f (aueenindx = 8) then
begin { print board)}
for k 1= 3 to 7 do write(’ *,aueenslk] 1 2)y
write(eo!)
end else generatey
(remove queen from board }
queenindx 3= aueeni{ndx = 1}
4 bosrd 33 board = mask(colhgt] (queenindx]
en
end
endy

begin ({nitialize the empty board)
queenindx iz @y
board 318 [1y
for) 12 0 to 7 do . ’
for k t= 2 to 7 do mesk[J)[k] t= [J,C1SeCk=])), (23+(k¢]))]}

generate
end,

Figure 1

9/6T “¥3413Ld3S Gf# Y3LLFISMIN TYISYd

0T 39vd

1 2 3 4
5 6 7
Figure 2

To the Editor:

1f the "science" of Comouter Sclernce 1s the exverimental investigation cf
aleorithms, then effective nrozrammins is essential for the computer scientist's
comnutine "laboratorv" testine. Good oprozrammins is an art, an enrineerins
design art. Without 1t, the computer sclentist's investirative orocedures are
suspect: with it, <ood desien helos clarify previouslv obscure aleorithms.

In our software enzineering course _at Lehich Universitv we have emphasized
that the orincivles of ton-down desivn L1} and structured programmine [2] applv
not only to a nroeram's function code but also to its data structures. The
data definitional canabilities of PASCAL [3] =reatlv facilitate the ton-down
formulation of data structure hierarchies. Good proecrams establish correspondine
levels of abstraction between their control structures and thelr data structures.

The followine student Soma Cube nrorram effectivelv uses data and control
hierarchies. 1In his enthusliasm for this software ensineerine oroblem, Michael
Condict made the transition from a desion nrofect to the exrerimental and
scientific investication of snace filline aleorithms. It is, to the best of
our knowledse, the ultimate Soma Cube orosram (at least until next semester).

Richard J. Cichelll
Samuel L. Gulden
Mathematics Department
Lehigh University

Another Solution to the Soma Cube Puzzle
Michael N. Condict
Lehizh University

This Soma Cube [ﬁ] solution zenerator evolved throuch a series of
refinements from a orogram similar to that of Delong's [5]. The run time of
the first version was anoroximatelv 90 seconds on Lehigh Urniversity's CDC 6400.
By examinin® the bound unfilled snaces (connected holes in the assembling cube)
and pruninz when no niece would fit, the run time was reduced to about 30 seconds.

The experiment was extended to include McKeeman's [B] revised Soma
almorithm which is based on Combiratorv Theerv considerations. Performance of
the McKeeman alcorithm is devendent on the order in which nieces are selected
foi insertion. The rouzh executicn times for the various alrorithms are given
below:

Brute force 90 sec.
Hole analvsis orunins 30 sec.
McKeeman order (V,L,T,2,S,R,Y) 60 sec.
McKeeman order L.Y,S,R,T,Z,V; 15 sec.

Combined McKeeman & hole analysis 13 sec.

References

1. Wirth, N. "Proszram develooment by stepwise refinement". Communications
of the ACM 14, 4, 1q71.

. Dahl, 0.,J., Ditkstra. E. W. and Hoare, C.A.R. Structured Prozrammine.

Academin Press, London, 1977, T

Wirth, N. and K. Jensen. PASCAL Uiser Manual and Report.

Sorinzer-Veriaz, New York, la7u = ~=7 rTToTTIT e

Introducine Soma. Parker Brothers, 1963.

Delon>, R. "Solutions to the Soma Cure Problem". SIGPLAN Notices, Oct.,1Q74.

MzKeeman, W.M. "Solvine Space-Fillin~ ruzzles". CEP REPORT. Volume 6,

No. 1, Mav, 1Q74,

DaE WV

(*Received 3/11/76%)
(*Note: This contribution was printed incompletely in SIGPLAN Notices Oct., 1975
and incorrectly in SIGPLAN Notices Dec., 1975.%)

9/6T “Y3AWILA3S S# Y3LLITSHIN TWISYd

IT 39vd

PASCAL NEWSLETTER #5

 CONST
LasToUBE= 268
K3321329%

TYPE
CONFIGSETNOS®
CUSETYPES=
COMBINAT " ~NS=
PIECECONFI', . AT=
ARISFORCONFIGS
HOLES=
SI0ES=2
AXES=>
cuaess
CUBESP 1=
PIECES=
PIECESPLs
POSITIONSS
PIECeCUBESe
PIECEPOSITIONSS
SHIFTS=
THEPISCES=

THECUBES=

VAR
FIPSTPOSITION,
LASTPOSITIONS
NUMBEROF1T
COMINUMAERS
COUNTOFS
CUBZTYPZE
MAXALLOWEDS
SOLUTIONNUMBERS
TESTSHAPE,
SOLUTIONSHAPER
Custs
PIECES
Sonet
CONEL
HOLESIZ2ES
HOLECUBES
TYPEOFL
ROTATEVALUESS
PIECEVALUZSY
NANEVALUES?
ADJACENTTOS

VALUE
TYPEQF=

(CORNER,LEDGE
EDGEFACELE
CORNER,EOGE

ROTATEYALUES=

t 6y 3, 04 7
15412y Feibet
2%421418,25,2
24114204 5o 8
1,10,19, &,1¢
8y 9,18, 341

0..283

(EDGE, CORNER., FACE, CENTER)S

Qeaits

0000..K33213%

0..50%

G263

L1eebi

€ZeYeX) 5

BesLASTCUBES

“1¢s273%

1ee?3

1ee83

1653

Teatel

SET OF 0..583

=264 LASTCUBE 3

APRAY [PIECES] OF

RECORD
PACKD! ARRAY {POSITIONS) OF PIECEPOSITIONSS
UNPACKEDS® ARRAY (PIZICEICUBES) OF CUBZISS
PRINTLISTS PIECIPCSITIONSS
CONFIGCOMB INAT TONS

ARRAY (COMBINATIONS) OF CONFIGSETNOS3

NAMES CHARS
FIRSTCONFIGy
CURRENTCONFIG, -
LASTCONFIGS CONFIGSITNOS3

END /®RECORD®/3

ARRAY (CUBESP1] OF

RECORD
ALLOWEOSHIFTS SET OF 0..153%
ROTATEABOUTS ARRAY (AXES} OF CUBESS

END /*RECORD®*/;

ARRAY [CONF1GSETNO3] OF POSIVIONSS
AGRAY (CUBETYPES.CONFIGSETNOS) OF Daohi
CCMBINATIONSS

AFRAY (CUBETYPES) OF D..163

CUSETYPES

AkRAY [CUBETYPES) NF 0..123%

INTEGERS

PIECEPOSITIONSS

CUBESPL;

PIECESPLS

THEPIECESS

THECUIESS

HOLESS

ARRAY(HOLES] OF CU3ESP1L;

ARPAY [CUBES) OF CU3ETYPESS

AFRAY (AXES,CU3ES) OF ZUBES;

AGRAY '(PIECES,PIECECUBIS] NF CUBESS

ARRAY (PIECES) OF CHARS

AJRAY [CUBESP1) OF

RECORD
NUMBERADJSIDES® SIDESS
NEIGHMBORINGY ARRAY (SIGES) OF CUBESP1}
CUBESURROUNDED® PIECIPOSITIONSS

ENDS

+CORNER, EDGEZ,FACE,EDGE, CORNER,EDGE,CORNER,
DCEs FACE,CENTER,FACE, EOGE,FACE,EDGE,
+CORNER, EDGE FACE.EDGZ, CORNER,EDGE,CORNER)§

Lo Ly B8y 5y 24
3410017510411,
2419+26423,20,
4423, 8417426,
34224 7416425,
2421 64154206,

18439,2084 9+10+11s 04 14 2,
21022423412)134164 3, &y 5, .
2642542649154164174 64 74 833
PISCEVALUES=
€ 0y Ly by 7y
9+18,19,21,
10411,20,23,
10411,13,20,
1y 34 4y 7
By 14 4y S
1e 34 &, G135
KAMEVALUES= (L3, 2¥3, 2SI, IRI, ETZ. 2Z3, VIS

ADJACENTTO=
/*CUBE I 2DJ NE IGHBORS FILLER ./
FALT TR - LR T - ./
-1 0, Cs0sB+0+04040,
e 0 ¢ 3. 1e 30 9 040s04+0,
s 1 & &y Oy 2+ 4,10, 0.0,
o 2 3. 1, S5elly
» 3¢ LX) 0. @y 6412,
LI R Ss 1o 3¢ Se 7913
o 5 ¢ L. 2s & Bylh, 04040,
s 6 ¢ 3. 3. 7y 15,
» T e wy “s 69 8¢ 16,
»” 8 & 3. Se T 17,
o 9 e e Sy 10,12.18,
» 10 Sy 1, 9+11,13,19,
. 11 by 2, 10, 14420,
12 . S “8e 9y 134154248,
13 64 Le10,12414415,22,
L3R UIRY S, Se11413, 17.23,
LA AR by 6212, 18 24y
e 16 LX) 7413515447, 25,
AT . Sy 841y16, 26,
18 3, 9, 12421, 0s3¢0400
19 ¢ by 10, 18,20,22, Qedety
» 28 o 3. 11, 13, 23, 2,0,048,
21 s by 12428, 22424 Geldsty
.22 5 13,19,21423,25, 2.3,
23 ¢ by 14420422, 264 040a0y”
.28 4 3, 15,21, 25, LIETRY PE 1
25 o e 16422026926, G 0.8,
R Y. 17.23,25, 0,0.8,0,
. 27 o 1 27, 3.0,0,8,0.808

SEPTEMBER, 1976 PAGE

PFOCEDURE PRINTSET(WORD® PIECEPOSITIONS)S
VAR It 0..58%
BEGIN
WRITE(Z(Z]
I€ WORD ISNT (1 THEN
BEGIN
13=193 WHILE NOT (I IN WORD) DO It=Iet}
WRITEC(TI) S
FOR [t=Tel TO 58 DO IF I IN WORD THEN WRITE(Z,I,It2)}
EMD /*IFL1%/3
WRITE(Z)Z)E
END /®PRINTSET®/3

PROCEDURE INITIALIZEVARIASLESS
VAR AXISS AXESS
BEGIN
FOR PIECES=1 TO 7 00 WITH SOMACPIECE) DO
BEGIM
MAME 13 NAME VALUES(PIECE 13
FOR CUBE1=1 YO 4 0O
UNPACKED(CUBE J1=PIECEVALUESIPIECE.CUBELS
END /®SOR PIECE®/}
FOR AXISt=Z TO X 0O
FOR CUBEI=G TO LASTCUBE DO WITH ONE(CUBE] 00
RCTATEABOUTLAXIS) #=ROTATZVALIESTAXIS,CUBEDS
PIECEV=1% SOLUTIONSHAPEI=(1; SOLUTIONNUMBERI=Z0}
MAXALLOWEDCEDGE)}$=125 MAXALLOWED(FACEI1=63
MAXALLOMED(COKNERY$=83 MAXALLOWED{CENTER)1=13
END /*INITIALIZEVARIABLES®/S

PROCEDURE FINDALLPIECEPOSITIONSS
VAR PIECES PIECESS
TESTPOS,PCSITIONS POSITIONSS
TRANSLATION® CUBESPLS
ROTATIONS 040203
TEMPORARYPIECES PIECEPOSITIONSS
CONFIGURATIONSETNOS CONFIGSETNOSS
CONFIGTYPES PIECECONFIGURATIONSS
COMFIGPCSITIONS AMTSFORCONFIGURATIONS
SORYECPCSITION! ARRAY [PIECECONFISURATIONS,AMTSFORCONFIGUR]
OF PIECEPOSITIONSS
TESTCONFIGY PIECECONFIGURATIONSS
NUMBERPOS ITIONSFORt ARRAY [PIECECONFIGURATIONS] OF POSITIONS?

PROCEDQURE ROTATE (MEBAXES)S
VAR CUBSE! 1..63
BEGIN
FOR CUBES=1 TO & DO WITH SOMA(PIECE] DO
WITH ONELUNPACKED(CUBE]) 0O
UNPACKEDICUBE] $=RGTATZABOUTIW] S
END /SROTATE®/S

FUNCTION PIECEFIVTSCTRANSLATIONS CUSESP1)t BOOLEANS
VAR

CUBES PIECECUBESS
XSHIFT YSHIFT,ZSHIFT1 =2..23

i SHIFTS SHIFTS;
TESTCUBEL CUBES;
LASTCUBE® CUBESP1S

BEGIN
IF TRANSLATION=27 THEN PIECZIFITS$=TRUE ELSE
WITM SOMA(PIECE) OO
8EGIN
TEMPORARYPIECEN=(1; PIECTFITSI=TRUES
FOR CUBETYPES=EGGE TO CENTER DO COUNTOF(CUBETYPE} =83
SHIFT$=UNPACKEG(11-TRANSLATIONS
XSHIFTI=TRANSLATION MO0 3 -
UNPACKED[1) HOD 3%
YSHIFTEx(TRANSLATION DIV 3) 00 3 -
(UNPACKEDCL) DIV 3) MO0 3}
ISHIFTI=TRANSLATION DIV 9 -
UNPACKED(1]) DIV 93
LASTCUBES=273
FCR CuBEt=1 TO 4 0O
WITH ONELUNPACKED(CUBED) DO
IF MOT(({XSHIFT®2,YSHIFT+7,Z3HIFT+12) LE
ALLOWEDSHIFT) THEN PIECEFITSE=FALSE

ELSE
BEGIN
TESTCUBEt=UNPACKED(CUBE) « SHIFT} .
IF TESTCUBE ISNT LASTCUBE THEN
BEG IN

COUNTOFITYPEOFITESTCUBLI)1=
COUNYOFUTYPEOFLTESTCUBEDY o 13§
TEMPORARYPIECEI=TEMPORARYPIECE
JOIN [TESTCUBE)S
END /*IF TESTCUBE®/S
LASTCUBEI=TESTCUBES
END /°1F%/3
END /°ELSE®/S
END /®PIECEFITS*/3

PROCEDURE FINDALLOWEDSHIFTSS
VAR CuBEt CUBES;
AXISSHIFT,LIMITSY <2..2%
SETINDEXE 2..12%
AXISt AXESS
BEGIN
FOR CuUBEs=0 79 2€ 00
®ITH ONE(CUBE) DO
BEGIN
ALLOWEDSHIFT=(13
FOR AXISt=Z TC X DO
BEGIN
CASE AXIS OF
X4 BEGIN LIMITSS$=CJBE MOD 33 SETIKIEXIz2 EMDS
Yt BEGIN LIMIVSt=CUSE DIV I MO0 33 SETINDIX=7 ENIS
Tt BEGIN LIMITSE=CUBE DIV 935 SETINDEX#=24Z INOS
END /PCRSE®/ S
FOR AXISShIFTI= ~LIMITS YO (2-LIMITS) DO
ALLOWEDSHTFT 13
ALLOWEOCHIFY JOIN (AXISSHIFTeSETINGEX]]
END /*FOR axI[5*/3
END /%FGR CUBE®/S
END /°*FINO ALLCWEDSHIFYS®/3

12

PASCAL NEWSLETTER #5

SEGIN /SFINDALLPIECEPOSITIONS®/
FINDALLOWEOSHIFTSS
CONFIGURATIONSETNGE=0?
MRUTELEOL,ZITHE SET C(P) ISI3,50L)%
ML cC F v £ (ALL POSS.
MRATTE(EOLYS MEOR(OUTPUT)
FOR PIECEI=L TO 7 DO
MITH SOMACPIECE) DO
BEGIN
FOR COMIGTYPEI=0000 TO x3321 DO
NUMBEKPOSITIONSFORICONFIGTYPZ)e=03
POSITIONS=C]
FOx ROTATIONI=L TO 24 0O
QEGIN
TRANSLATIONS=20S
WHILE NOT PIECEFITS(TRANSLATION) 0O
TRANSLATIONI=TRANSLATION®L;
IF TRANSLATION LT 27 THEN
BEGIN
PACKLIPOSITION®L 11=TENPORARYPIECES
TESTPOSt=13
WHILE TEMPORARYPIECE ISNT
TESTPOSI=TESTPOSe1
IF TESTPOS = POSITION®1 THEN
FOR TRANSLATIONS=TRANSLATION TO 26 DO
IF PIECEFITS(TRANSLATION) THEN
BEGIN
CONFIGTYPES =03
POSITIONI=POSITIONGLS
PACKO{POSITION)32TZ *PORARYPIECES
FOR CU3SETYPEt=EDGE T CENTER DO
CONFIGTYPEI1=CONFIGTYPE®L
COUNTOF(CUBETYPE) 3
NUKBERPOSITIONSFOR(CONFIGTYPE] S
NYMBERPOSITIONSFOR(CONFIGTYPE] # 13
SORTEGPOSITIONICONFIGTYPE,NUMBERPOSITIONSFOR
(CONFIGTYPED] ¢= TEMPORARYPIECES
END /°®IF PIECEFITS, FOR TRANS., IF TESTPOS®/
ENO /®IF TRANSLATION®/;
ROTATE(LD) 5
IF ROTATION M03 & IS 0 THEN ROTATE(Y)S
1F POTATION IS 16 THEN ROTATE(X)3
IF P0TATION IS 20 THEN ROTATE(Y)S
END /*FOR ROTATION®/j
FIRSTCONFIGS=CONFICURATIONSETNO®)
POSITIONI=0}
FOR CONFIGTYPE:=00G0 TO X3321 DO
IF MUMBERPOSITIONSFORICONFIGIYPE] GT 0 THEN
BEGIN
TESTCONFIGI=CONFIGTYPES
CONFIGURATTONSETNOS=CONFIGJRATIONSETNG ¢ 13
WRITE(Z EL” 1. NO. Z,CONFIGURATSETNOI2,31 (21§
FOP CUSETYPES=CENTER DOWNTO EODGE DO
BEGIN
NUMBEQOF{ CUBETYPE 4 CONFIGUIATIONSETNG)
1=TESTCONFIG MOD &3
WRITEC(TESTCONFIG MOD 4)12,3,3)3
TESTCONFIGI=TESTCONTIG OIV &3
EnD3
MRITECZIZ, EOL) T MEOR(OQUTPUTYS
CON IGPOSITIONE=1]
FIRSTPOSITIONI CONFIGURATIONSETNOI4=POSITION ¢ 13}
FOR POSITIONTI=POSITION®L TG (PGSITION ¢
NUMBEWPOSITIONSFORICONFISTYPSE1) OO

PACKOL{TESTPOS) J0O

BEGIN
PACKO({POSITION] 1=
SORTEDPOSITIONI SONFIGTYPE,CONFIGPOSITIONIG
CONFIGPOSITIONSSCONFIGPOSITION®1}
ENDS
LASTPOSITIONICONFIGURATIONSETNGI9=POSITIONS
END /*IF NUM3ERPOSITONSFIR®/}
LASTCONFIG$=CONF IGURAT IONSETNO?
WRITE(Z 33
MRITE(KAME .2 PIECE HASZ,LASTPOSITIONCCONFIGURATIONSITNO] NG,
T POSITIONS.Z,EOL)S
WEOR(OUTPUT) S
END /*FCR PIECE®/S
FOR CONFIGTYPEI=SOMA(1).FIRSTCONFIG TO SOMA(1).LASTCONFIG DO
LASTPOSITIONICONFIGIYPE}4=F IRSTPOS ITIONICONFIGTYPE) S
END /SFINDALLPIECEPOSITIONS®/S

PROCECURE FINCHOLEAT(CUBES® CU3ESP1);
VAR SIDE® SIDESS
BEGIN
TESTSHAPEI=TESTSHAPE JOIN
HOLESIZEI=HOLESIZE®1LS
HOLECUSE(HOLESIZE 14=CUBES
WITH AQJACENTTOLCUBZ) 00
IF NOT (CUSESURRCUNDED LE TESTSHAPE) THEN
FOR SIDEI=t YO NUNIERABDJSIDES DO
IF NOT (NEIGHBCRINGISIOE) IN TESTS+APE)
THEN FINDHOLEATINE IGH3ORING(SIOE]) S
END Z*FINOHOLEAT®/3

(CUBE):

PROCEOQU®RE F INOSURROUNDEDCUSEPOSITIONSS
VAR SIDS® SIDESH
BEGIN
FOR CUBEL=0 TC 27 09
WITH AQJACENTTOLCUBE} 0O
BEGIN
CUBESURRCUNDEDE=(])
FOR SIDEt=1 TD NUMBERADJSIDES DO
CUBESURRVUUNGCED® =CUBESURRIUNDED JOIN [NEIGHBORINGISIDEN)}
END /*FCR CUBE®/S
END /°FINDSURROUNDEDCUSEPOSITIONS®/ ¢

PONCEOURT STOREDPELEMENTS
VAR PIECEt PIECESS
BEGIM
CUMINUMBERI=CCHBNUMIE RS LS
WRITL ELEMAND, T, CTMINUMBERRILZE [3V3
FOR PIECEN=1 10 7 07 wIT# soral™Icsd! 00
3EGTN
‘INF'GCOF“!HAYXJNICONﬂxuner)l= URRENFCONFIGS
WRITE(CURIINTCONFIGHI2Z
ENO
WRITE(Z)Z,60L 48
END /°STOPE DPELEMENT/

CONFIGURS) 32 §

SEPTEMBER, 1976 PAGE

PROCEDURE FINDALLCONFIGURATIONCOMBINATIONSS
vVA©

CONFIGURATIONSETNOt CONFIGSETNOSS
COMBINATIONVALIO! BOOLZANS
BEGIN
WITH SOMACPIECE] DO
FOR CONFIGURATIONSETNOS=FIRSTCONFIG TO LASTCONFIG 0O
BEGIN
COMSINATIONVALIDI=TRUES
FOR CUBETYPEI=EDGE TO CENTER 0O
BEGIN
COUNTOFC(CUBE TYPZ 18=COUNTOFICUBETYPE] ¢
NUMBE ROF{ CUBETYPE ,CONFIGURATIONSETNO]}
IF COUNTOFTCUBETYPE]) 5T MAXALLOWEDC(CUSETYPE) THEN
COMBINATIONVALIDt=FALSES

NOS

IF COMBINATIONVALID THEN

BEGIN
PIECEL=PIECE+LS
CURRENTCONFIGI =CONFIGURATIONSETNO}
IF PIECE = 8 THEN STORZOPELEMENT
ELSE FINDALLCONFIGURATIONCOMBINATIONS?
PIECESSPIECE~1S

;
FOR CUBETYPEI=EDGE TO CENTER DO
COUNTOFTCUBETYPZ 1t =COJNTOFICUBETYPE]
= NUMBZIROFI(CUBETYPZ,CONFIGURATIONSITNOIS
END /°FOF®%/}
ENO /°FINOALLCONFIGURATIONCOMBINATIONS®/S

PROCEDURE PRINTSOLUTIONS
VAR PIECE?! PIECESS
BEGIN
SOLUT TONNUMBE P$=SOLUT TONNUMBER®1S
MRITE(Z SOL.Z+SOLUTIONNUMBERIL)S
FOR PIECEs=1 TO 7 0O
WITH SO™A(PIECE! CO
BEGIN
WRITE(Z eNARE,Z23) 3
PRINTSET(PRINTLIST)S
END /°FQR PIECE®/;
MRITECEOL) S WEOR(OUTPUTY
END /®PRINTSOLUTION®/S

PROCEDURE GENERATE?S
A

HOLEISNOTFILLASLES BOOLEANS
TESTPIECES PIECEPOSITIONSS
POSITIONS POSITIONSS
BEGIN
MITH SOMATPIECE]} DO
FOR POSITION ¢= FIRSTPOSITIONICONFIGCOMBINATIONT COMBNUMBER]]
TO LASTPOSITIONICONFIGCOMBINATIONICOMNBNUMBER]] 0O
3EGIN
TESTPIECES=PACKDIPOSITIONIS
IF SOLUTIONSHAPE MEET TESTPIECE IS (1) THEN
BEGIN
TESTSHAPEIxSOLUTIONSHAPE JOIN TESTPIECES
CU3El=-13
REPEAT
REPEAT CUBEIICUBSE+L
UNTIL NOT (CUBE IN TESTSHAPEDS
HOLESIZEs=83
FINDHOLEAY (CUBED 3
1F MOLESIZE IS 3 THEN
HOLEISNOTFILLASLE t=
(HOLECUBE(L 2] - HOLECUBEC(1)) =
{MOLECUBE(3} - HOLECUSE(2])
ELSE HOLEISNOTFILLABLES> HOLESIZE HOD & IN (1,2)3
UNTIL HOLEISNOTFILLABLES
IF CUBE IS 27 THEN
BEGIN
PRINTLISTt=TESTPIECES
SOLUTIONSHAPE 1=SOLUTIONSHAPE JOIN TESTPIECSS
PIECES=PIECES 1}
IF PIECE IS 8 THEN PRINTSOLUTION ELSE GENERATES
PIECEtsPIECE-1}
SOLUTIONSHAPE t=SOLUTIONSHAPE - TESTPIECES
END /®IF CUBE IS 27°/
ENC /°1IF*/
END /SFOR*/
€END /°GENERATE®/S

BEG IN
INITIALIZEVARIABLESS
FINDALLPIECEPOSITIONSS
COMBNUMBERt=C}
FOR CUBETYPEI=EDGE TO CENTER 00 COUNTOFICUBETYPElt=03
MRITZC(EOL, Z1THE SET D(P) IS3Z,EO0L)S
WEORCOUTPUT)
FINDALLCONFIGURATIONCONBINAT IONSS
FINDSURROUNDEDCUBEPOSITIONSS
WRITE(Z1Z,E0L)3
FOR COMBNUMBERI=COMBNUMBER DOMNTO 1 DO GEWERATES

END /°MAIN®/.

13

IN DEFENSE OF FORHMATTED INPUT

John Eisenberg

University of Delaware

One of the few things which, in Ry opinion, nmars the
*symmetry”™ of Pascal is its lack of formatted input. I would
like to present some exanples of *"typical® basic computer science
problems which would be inconvenient or next to impossible
without the use of formatted input.

Exanple 1! A survey has been given to 60 nenbers of o

Psych 100 cless. The survey consists of rating 7?75
candidates for political office on a scale of 1 to §S.
These doete have been punched onto 60 cards, each
contaeining a contiguous strean of 75 digits. Your task
is to produce o table giving the meen rating for each
candidate, along with the stondard deviation, skewness,
and kurtosis of the ratings.

This problem can, of course. be solved without formatted input by
defining a string, and using ord(ch)-ord(’90’) to extract digits.
However, this is hardly the point of the problen, and. in fact,
detracts from the true object of the exercise. The psych student
is really not interested in the use of "ord" or strings at this
point; he is interested in statistics.

Exanple 2: Your Ph.D. MAdvisor has been teaching an

undergrad course, and has compiled a card deck with the
following information on it: Columns 1-9 contain a
student’s social security number: columns 11 to 7?0
contain 20 3-digit numbers., each of which represents a
score on a pop quiz (ranging from ¢ to 100> Your task
is to print out the mean and standard deviation of each
quiz, a correlation mnmatrix of all quizzes, and o

frequency table of the following forn:

RANGE N
100-90 25
89-80 35 (etc.)
Again. it is possible to use "ord” to extract the three-digit

nunbers, but it is even less pleasant than before, and detracts
even further from the point of the exercise.

At this point. someone will object that there is no need to punch
the detea as a contiguous strean of nunbers, and I oagree.
However, I will note that most psych surveys I have seen try to
put as nmuch data on a single card as possible. (Note that we
could not put all the data on one card if we put blanks between
nunbers .) Besides saving keypunching tine and storage space
(both of which are the equivalent of money!), the people doing
the surveys are interested in the resultant statistics, and
couldn’t care less about nicely-spaced input. In fact, I have
even been told to keypunch real numbers as a contiguous stream in
arder to avoid "vasting time typing spaces!"®

Now, for a two-part example where fornmatted input is a near-
necessity. This is o business problen, but I feel justified in
giving it as an example -- Wirth, in the Pascael report. seys he
put records and files into Pascal in order to *...make it
possible to solve conmmercial type problems with Pascal. or at
least enploy it successfully to demonstrate such problems in a

prograrming course. "

Exanple 3: The owner of a local jeans store has hired

you, ace progranner, to do his inventory control and
narket research. q

Each day, you are given a deck of punched cards giving
the day’s sales total; one card per transaction. Each

9/6T “Y3dWALdIS 9% YILLFTISMIN TYISYd

hT 39vd

card looks like this:

Colunns 1-7 Serial number of jeans
Colunns 9-1¢ Waist size (range 26..54)
Colunns 12-13 Length (range 26..38)
Columns 15-12 Quantity sold

You moy assume that trensaction records have been
sorted by serial nunmber; thus all purchases of #5050217
vwill come before all purchases of #7070217. Your task
is to print out o chart for each serial number giving a
sales record for that day.

So far, so good. Ho formatted input hes been needed to
acconplish the first half of the exaaple. Now, the clincher:

As we all know, the serial nunber on your pair of jeans
i not arbitrary; the 5050217 signifies regulaer blue
denini the 707¢217 signifies bell-bottonms. In fact,
the serial number is formatted as follous:

First 2 digits style

§5¢S=regular, 707=bells, 303=cutoffs
Next 2 digits color

¢2=blue,03=green,04=browvn
Lest 2 digits mnmaterial

17=denin,25=hopsack, I6=doubleknit

Your task is to take 5 days of purchaeses, and produce a
chart for each color, style, and material that shous
the sales distribution by size. Whet conclusions can
you drewv from your results?

This exemple is hardly far-fetched; most identifying nunbers on
clothing contain this sort of packed information. The point is,
however, that there are a lot of applications which use this sort

of datt representation. Other examples include:

1> Indiana Llicense plates, vhose first letter and digit
serve 05 an index to an alphabetical list of county nanes.

2) Illinois driver’s license nunbers, which contain year of
birth, county of residence, and oodles of other information to
help prevent forgery of the license, all packed into 11 digits.

In all these cases, repunching the date to seperate the fields is
clearly out of the question. These exanples point out the need.
or at least the great desirability, of having formatted input.

Although 1 will agree that it is very easy for an installation to
write its own formatted input routines as standard functions.
this brings up the problen of transportability. It seens clear
that the fecture is useful enough to be "built-in" by many Pascal
users. However, these site-specific intrinsics witl not
trensport easily from instellation to installation. This is., in
foct. one of the failings of BRSIC; people provided ¢their own
functions and “"extensions®" to do things that they needed (and
BASIC didn‘t have). HNow, one would be hard-pressed to find two
places where all the "extensions® ogree.

In conclusion, it appears that formatted input cen be useful in
neny cases, and almost necessary in others. It seens
appropriate, then, that such ¢ feature should be added at the
base language level rather than having every Pascal installation
re-invent its oun formatted input wheel.

(*Received 4/26/76%)

9/6T "Y3IAWILAIS G# Y3ILLFTSMIN WIS

ST 39vd-

Overlaust A Frorosal

James F. Miner
Sacial Science Research Facilities Center
25 Rledan Hall
University of Mirmnesota
Minnearolisy Minnesota §5455

As Fascal dains wider availability and user it shows itself to
bte a8 versatile and rractical tool for serious rroduction work.
Howevery dgiven the recency of imrlementationss it is understandable
that & number of imrlementation features commonly emrlosed in
rroduction work are not uet available, For some rrogramming
rrodectsy the'abilits to reduce the amount of storade reauired for a
Proéram’s obdect code is of fundamental imrortarnce. Even if =
rrodram is proven to be corrects it maw not fit orn a8 diven machine or
it may suffer from roor rerformance due to orerating sustem
restrictions. BRoth of these conditions occur in rracticer and a3
number of technicues for avoiding them are widelw used. The use of
overlays is one such technicue. An imrlementation extension for

Fascal is herebw rrorosed to eprovide this carabilits,

The doasls of this effort are numerousy including effectiveness
of the overlaw mechanism in Providins-space reductionsy simrlicity of
notation and understanding for the wusers security from wunintended
ill-defined resultsr and efficiency of both comrilation and execution
mechanisms, In addition the scheme should be imrlementable in 2 wide

variety of environments.

Usade Considerations.

Fascaly with it s block structures rrovides an excellent
orrortunity ’for the imrlementation of & securey simrley and
relatively transearent overlavind scheme. Frocedures (and functions)
often delimit mador sections of the rrodram which will be executed
either infrecuentlyy or which have (nearly) disdoint calling
sequencesy or both. Thus the overlay schemes which recuires division
of & rrodgram into overlavuss should take advantade of the existing
division into rrocedures. This should be done im such a3 waw that the
effects of the overlawind are directly visible to the rrodrammer and
can be easily controlled. In my orinions this can best be
accomrlished by the indication of overlay structuring at the source
level. It is &t this level that the rrogrammer interacts with and

understands the rrodram.

Let us assume that the rrodrammer may srecifuy anw rrocedure (or
function) to be an overlaw with 3 rrefix symbol such as OVERLAY
before the rrocedure heading., The prefix has the advantadge of being
short and easy to wuser but as visible as the rrocedure heading
itself. The extent of the overlay is defined bw the rrocedure bodgy
so confusion is minimized. And finallyy the comriler is informed
immediately when it is about to ~rrocess an overlaw - the

significance of which derending uron the imrlementation.

What meaning should the rrodrammer attach to the OVERLAY
erefin? The best answer should be *no effect's in terms of the
correctness of his rrodram or the restrictions rlaced uron him by the

imrlementation. The rrodrammer must be advised that the invocation

9/6T “¥3dW3ILd3S G# Y3LLITSHIN TYISYd

9T 39¥d

3
of an overlaw will be more exrensive tham the invokation of 2 normal
rrocedurey but the decision of how to avoid excessive overhead should

be left to the user.

Some imrlementation restrictions maw be reasonables such as
adainst rassing overlays as rarameters (i.e.» formal overlaus)s or
rassing rrocedures or functions as rarameters to overlaus. A
comrlete imrlementation would a3llow both of these casesy but they
might be difficult to imrlements and both can be readily detected
(and thus restricted) at comrile time. Dlisallowing recursive overlay
calls is an entirely different situation because comrile time checks
are ineffectives and run time tests are to be avoided if rossible. In
additiony the normal score rules for callingd should not be
constrained for overlaus; functions as well as rrocedures should be
overlay-ablei and by 3ll meanss rarameters and non-local references
should be alloweds These latter three carabilities are desirable to
maintain the basic similarity between normal and overlaved

rrocedures.

Finallyy it is alwaws rossible for an imrlementation to simely
idgrnore the OVERLAY rrefix (Just as FACKED might be idnored) either
entirely or only after 3 diven static overlay nesting derth limit has

been reached.

Imrlementation Considerations.

It is instructive to examine the common characteristics of
overlay mechanisms wused with Fortran. Of those with which I am

familiary three notable ssrects are!

4

(1) Overlays are classified into levelss where only one overlay

at a diven level can be in core at one time. That 1iss overlaus of
the same level are loaded over each other. (Dlerending on the schemers
overlays at different levels may or may not overlar in core.) The
lowest level overlaw constitutes a main overlas which is 3lways 1in
cores which first receives control when the rrodram is executeds and
which initially causes other overlaus to be loaded. The rurn time

system (RTS) usually is contained in the main overlawv.

(2) In calls between overlays a load oreration may be necessary
so such calls either are trarredr or are made exrlicitly by the users
to a routine in the RTS which determines whether the called overlaw

is in coresr and if rots causes it to be loaded and executed.

(3) By placing strategic constraints on calling secuences these
schemes ensure that a routine to be returned to is in core. Thus the
return can be rerformed exactly as though the rrodram were not
overlaved at all. The constraints necessary for this include
prohibition of calls to overlaus of the same or lower level which
would cause overlay loadindg (thus rossibly destrowing the calling
routine)., Because the main overlauy is alwaws in corey calls to its
routines are allowed (but may cause undefined results if overlay

loading occursy and 3 return is subsecuently attemrted).

The constraints rlaced uron calling secuences in the Fortran
schemes may be ‘reasonable® dgiven the kind of landguadge involved, but
certainly rerresent weaknesses of security since comrile time checks
cannot rrevent undefined results and run time checks are often not

made.

9/6T “¥3dW3Ld3S G# Y3LLISHIN TvISYd

LT 39Yd

5

The rrorosed Pascal overlasw facilitw has the following features!?

(1) The level of esch overlaw is determined at comrile time
from the static nesting of the source. These levels are analodous
but rnot ecuivalent to block nesting levels. The compiler sssidns a
unicue identification to each overlays in the form of & m-turle or
ventoj of ordinals, where m is the maximum number of overlaw levels
in addition to the main level &llowed by the imelementatiorns and
where the ordinal zero is reserved 8s a3 null marker. The nesting of
the overlavws is rerresented as follows?

(a8) The main overlaw is rerresented by an all-zero (rull)

vector.,

(b) Overlays at the first level (after the global overlay) are

identified by unicue non-zero ordinals in the first element of

their vectors. Rem2ining elements are zero.

(c) In deneraly overlaws at the rn—-th level are rerresented by

vectors with elements one throudgh n non-zeros and ntl through m

zero. In additions to rerresent the static nestingr 811 level n

overlaws which have the same encomrassing overlass are assidned

vectors differing only in the n-th elements.

(2) The configuration of overlaws which are core resident at
any roint in time is rerresented bu the Overlaw Disrlay Vector (0DIV),
the wvalue of which _is an m-turle as defined in (1), The 0DV is
maintained bw the run time systems and is modified only when overlays
sre loaded, The following rules are observed bw the overlay
mechanism?

(a) PBRefore any block in an overlaw a3t level n can he invokeds

the 0OV must eaqual the overlaw’s vector in a3t least the first n

6
elements. If this reeuires the losding of overlassy, thern the
value of the 0DV rrior to the call must be saved on the stack.
() If before returnindg from a call the non-zero elements of
the stacked OV value are eausl to the corresronding elements of
the OIVy then no loading is reauired to comrlete the return.

(¢) If loadindg is recuired to comrlete the returrny then the
i-th through the n-th level overlaws indicated by the stacked
00V value must be loaded, where i is the lowest rosition of the
stacked 0DV value not eausal to the corresronding rosition of the
0lVy and where n is the highest nor-zero rosition in the stacked

0DV value.

(3) Assuming suitable restrictions on rrocedure and function
rarameters (below)s the rules in (2) duarantee the followinsg
conditions?

(8) Encomrassingdg blocks are duaranteed to be in core. Thus

calls to and returns from encomrassing blockss and doto’s which

exit to encomrassindg hlocks need rot be trarred,

(b) Non-encomrassind (includind local) blocks must be in core

unless rrefixed. Thus calls to and returns from these blocks

must be trarred onlg if the called block bears the OVERLAY
rrefi.
*Suitable restrictions®" are that 3 rrocedure or function cannot be
rassed to blocks *outside of® (nonm-local to) the overlaw in which the
rarameter is declared. Thuss» a block bearing the OVERLAY rrefix mau
occur as an actual rarameter only in calls to other blocks which are

local to it.

(4) Easing the restrictions on rrocedure and function

9/6T “¥39W31d3S S# Y3ILLITSMIN TYISYd

8T 39vd

7
rarameters in (3) reaquires that the block-rarameter descrirtor (which
contains the rarameter’s entry rpoint and static link) be augmented by
the turle of the overlay which contains the actual rarameter. All

calls to and returns from formal erarameters must be trarred.

While the above roints defirne the basic mechanismy 3 number of
rroblems maw occur in srecific imrlementations. These will wusually
result from attemrts +to wuse existind loader or oreratindg sustem
software or conventions. A simrle examrle is where the loader may
not rrovide information to the run time sustem to establish the area
in core for hear and stack. The run time syustem should be erovided
with the space reauired for the lardest rossible confiduration of

overlays.

A more difficult ~roblem maw arpear in the marrind of the
rrorosed hierarchical overlay structure to the structure surrorted bu
the loader or orerating sustem. The most serious mis-match will
Frobably be in the restrictions enforced at load time on the number
of entry roints rer overlass or on the direction of calls between
overlay levels. In addition» there ma¥ not be a "nice®' marring
between the Frrorosed identification scheme and the existing

conventions.

It is bewond the score of this rarer to delve into rarticular
imrlementationss excert to note that this scheme has been partially
imrlemented for the CDC 4000/Cuber 70 series. It is hored that this
prorosal will stimulate discussion on the toric of overlawindg, and
that interested readers will forward comments or criticism to the

author or editor.
(*Received 7/9/76%)

9/6T "¥3dN3Ld3S G# ¥3ILLITSHIN TVISVd

6T 39vd

"*MINOR' PROBLEMS IN PASCAL"
Timothy M. Bonham

In this article I intend to discuss some small but
significant ‘problems' or possible areas for im-
provement in PASCAL. Before I begin, I would like
to include three sections: a disclaimer, an ommission,
and a defense,

DISCLAIMERs First of all, I like PASCAL., If I
didn't,'I wouldn't spend time writing about it. I
think that 1t's easily one of the best languages
around, I greatly admire the logical clarity and
'austerity' of the language, the way program text
tends to clearly show the progress of the actual
execution, and the fact that the language tends to
encourage good programming practices(compared to
some languages(for example, FORTRAN or PL/1) which
tend to do just the opposite.) But I don't think
that the language is perfect; therefore it's
worthwhile to try to find areas that might be impr-
oved,

OMMISSION: I will not discuss in this article two
areas that are frequently said to be major deficienz
ies of PASCAL; the general read-write procedures
(which are difficult to use, especially in an
interactive environment) and the definition and man-
ipulation of common business-type files(which is
less clear in PASCAL than in some other languages),
I will also not discuss some problems that I do
not think are specifically the fault of the lang-
uage itself; for example, the unpleasantness and
unhandyness to the user of most present PASCAL
implimentations,

DEFENSE; to the charge that I'm being picky about
small and unimportant elements of the language--I1
don't think that they are so unimportant., These
elements are some of the most frequently used in
the language and often make up a large part of

the program. Also, several .references have in-
dicated that it is 'minor' inconsistancies like
these that cause a large part of the difficulty

in learning a language and problems with such
elements account for a very sizable proportion

of the compilation errors in programs, In any

case, I don't think simply classifing awkward
elements as small and unimportant is any reason
not to try to improve them.

The main portion of this article will note
specific PASCAL elements that I feel are problems,
the reasons for this, and some possible improvements.

1, identifiers-- It is commonly acknowledged
that identifiers should be chosen so that they have
mnemonic significance to the programmer. Well chosen
identifiers provide a form of self-documentation
within the program itself. The most common ob-
stacle preventing mnemonicly significant ident-
ifiers is the limitation upon identifier length,
PASCAL as defined has no specified maximum limit
on identifier length, However, one of the goals
of PASCAL(and presumably of programmers who use
it) is to have a standard language "in order to
facilitate the interchange of programs". For this,
programs must distinguish identifiers within the
first eight sharacters as required by Standard PASCAL.
This is clearly a harsh restriction, FORTRAN is
well known for encouraging incomprehensible vari-
able names, and Standard FORTRAN permits six
characters, while many present compilers permit
seven,eight or even ten characters, 1In this area,
PASCAL is only minimally better than Standard
FORTRAN and equal or even worse than many present
day FORTRAN compilers,

A further problem with identifiers in PASCAL
is the lack of a break character. This commonly
results in identifiers which consist of several
words run together, with resulting loss of clar-
ity. The recommendation of a specific break
character presents difficulties., The use of the
hyphen(as in COBOL) maintains similarity to normal
language usage, but requires additional restric-
tions on the spacing of expressions to distinguish
the use of the same symbol for subtraction(though
these restrictions are not unfamilar, since they
are the same as those normally used in writing
and typesetting)., The use of a seperate character

for breaks(like the underscore in PL/1) imposes
no such additional restrictions , but requires the

S# ¥3ILLITSM3N TVISVd,

9/6T “Y39K3Ld3sS

0¢ 39vd

addition of another element to the character set.
The use of the space character as a break char-
acter(as in ALGOL) is unpleasant in several res-
pects: it introduces unfortunate complexities
into the compiler; it provides serious potential
for misuse(it is easy to make the same identifier
look very different); and(though this may be just
an oversight), the space character is not included
in the basic symbols of Standard PASCAL.Whatever
character is chosen, the availability of a seper-
ator character clearly enhances the readibility
of programs,

2, the subrange symbol(,,)--the use of this
symbol as an abbreviated form of listing a subrange
of a type is wery unfortunate in that it is simil-
ar to, but not quite the same as the ellipsis (...)
commonly used in the English languang and in
mathematical notation. Items such as this should

be either exactly the same, or sufficently diff-
erent to prevent confusion; the worst case is to
be ‘almost' the same, In at least one published
case, an author(or possibly, his typesetter)
unconsciously used three periods instead of two
throughout his entire program, and was subsequently
criticized for it, I consider the main error not
to be that of this user, but of the language, which
positively encourages this type of user error. I
cannot think that the saving of a single character
in writing the program is worth this confusian,

(4 similar example in PLf/1: many numerical formats
are the same as those in FORTRAN-except for the
use of a comma rather than a period. This has
caused vast--and completely unnecessary-- anguish
to FORTRAN programmers attempting to work in PL/1).

3. the assignment symbol(:=)--the programmers
operation of assignment is very different from the
mathematicians assertion of equality and the lang-
uage should clearly distinguish the two. Anyone
who has ever tried to explain the statement
X=X+ 1 to a student learning BASIC knows this:
"you see, = means equals only in IF statements,
otherwise, = doesn't mean equals, it means...".

The use of a symbol other than the equals sign
for assignment(unlike BASIC and PL/1) is good,

but the symbol chosen(i=) perpetuates the con-
fusion by containing within it an echo of the
equality symbol, A better symbol might be the ..
left arrow (¢=) as used in APL; which does not
have such confusion. Also, the left arrow more
clearly reflects the action of the program during
execution; it 1s, as has been said, "almost
onomatopetic". In addition, this symbol is easily
recognized by APL users (the i= may be readily
recognizable by ALGOL users, but there are more
users of APL than AILGOL, and their lead is grow-
ing). I recognize that ‘this symbol is not avail-
able on all I-0 devices, but it is on the majority
of them, and on others it could be replaced by

a two character synonym, similar to the way comment
symbols are handled. (perhaps the less than and
hyphen symbols ({~) would be good).

In addition, the left arrow symbol saves one
character, a minor advantage; more importantly,
it provides higher relialibility. In the :=
symbol, there is a chance of skipping one of the
characters in the symbol and thus converting it
into another valid symbol. (luckily, in PASCAL,
unlike some languages, such an accidentally created
construct would always be invalid at its present
place in the program, and thus should generate an
error message).

L, ascending directional symbol of the for
clause (to)-- This symbol itself, when encountered
in a program, gives no specific indication of dir-
ection to the reader. The user is able to discern
that the value changes occur in an ascending seq-
uence only through comparison to the alternative
symbol, downto which clearly indicates a descending

sequenceior through a study of the language manual).

A better symbol, which would make the direction of
change readily apparent to the reader; and also be
more congruent with the alternative symbol downto,
would be the symbol upto. The additional clarity
to the readerwould, I feel, be easily worth the
minimal cost of two extra characters in the symbol.
5 A final controversial issue is that of the
comment.:gtructure.,
There are three main types of comments that are

G# Y3LL3TSM3N T¥ISvd

9/6T “43gW3Ld3S

12 39vd

commonly included within a program: prologue
comments--this is general information about -

the program (author, date-written, size, etc.);
block summary--these comments emphasize the function
and purpose or indicate the logical unity of a
block of code; 1local information--this spotlights
critical steps or meanings for a small section of
code, These three types of comments are clearly
different in both their nature and their location
within the program. The comment structure should
clearly distinguish them, Unfortunately, the com=
ment scheme of PASCAL does not do so; all must be
written using the same (* and *) brackets, This
scheme, though flexible(in location) and versatile
(regarding length of comments) lacks reliability;
forgetting (or mispunching) the closing bracket

- turns the remainder of the program into comments.

Prologue comments are normally located near
the beginning of the program; they consist of a
solid block of commentary, usually of a fairly
standardized nature., The best structure for
these is a dedicated block with a predefined,
standard format, similar te that of the Ident-
ification Division of COBOL. The fill-in-the-
blank nature of such a structure is especially
important in view of its tendancy to encourage
the automatic inclusion of such a block. As an
example of this, both COBOL and FORTRAN provide
a mechanism for including such information within
the program; COBOL in a predefined format, and
FORTRAN through the use of the general comment sch-
eme; yet many more COBOL programs include this
information than FORTRAN programs,

Block summary comments are usually located at
at the beginning and/or end of various blocks of
the program., They normally consist of several full
lines of comments. The present PASCAL comment
structure seems to work well here, thaugh the
scheme presented below for local information might
prove better.,

Local information comments are usually made
up of a line or two before a statement or the last
half of the lines that the statement is written on.
A possible improvement over the present PASCAL

comment structure might be the use of a symbol

like { or (* to indicate that the remainder of

the present line is to be considered commentary.
This scheme uses the end of the line as an implicit
closing bracket to the comment. This improves the
reliability of the comment structure (by eliminating
the problem of the missing ending bracket) and
accommodates both of the styles of loacl information
comments mentioned. The only cost to the lang-

uage user is the neccessity of repeating the
beginning symbol if the comment is three or more
lines in length. Local information comments
normally are not, and should not be this long.

Overall, it seems to me that PASCAL has elim~
inated most of the major faults of many other lang-
uages; but, unfortunately, has also eliminated some
of the (often minor) elements of these languages
that worked well. This is easy to do, a languages
vices are much more noticed than its virtues., I
feel that the elements that I have discussed in
this article can be changed without altering the
main philisophy of PASCAL and, probably, without
much difficulty in modifing the compilers.

I hope that this article will stimulate dis-
‘cussion on these issues; and would gladly welcome
comments on it; either in private communications
to me (Tim Bonham, D605/1630 S. 6th. St,, Minnea-
polis, MN 55454) or in items published in the
PUG newsletter, ‘

(*Received 7/15/76%)

G# Y¥ILLITSMIN TYISVd

9/61 “¥3aW3ld3s

22 39vd

Dynamic Array Parameters

by Ch. Jacobi, E.T.H., Zurich

(*What follows are pages 6-10 of a proposed description of dynamic array parameters
which is probably of interest to many PUG members. Pages 1-5 were not sent;

they were in German.*)

Corrections to PASCAL - User danual and Report

0.73, 1.4~

It 1is also possible to write a procedure without fixing the
bounds of the index type of array parameter. In the formal
"parameter section the name is not followed by its type, but by
an array declaration which has a scalar index type. The bouncs
of the index types then are taken for each parameter from the
corresponding actual parameter. These array parameters are
czlled dynamic array.

Program 11,3 shows the case of a dynamic array parameter., The
standard functions low and high deliver the index bounds.

p .b3 bottom

4. A dynamic array must not appear as an actual parameter if
the corresponding formal parameter is not a dynamic array.
(Depending on which version is implemented)
Neither must they have dynamic array parameter.

(Depending on which version is implemented)
5., Oynamic arrays will be packed only in one dimension. A
dynamic array declaration
packed arrayl[scalar1,... ,scalarN] gf type-id

accepts as actual parameter, beside an equally declared

dynamic array, also an array declarecd as .
array(scalar1,...] of packed arraylscalarN] of ...

p .97, 1.31
5. The standard procedures pack and unpack must not have
dynamic arrays as actual parameter.

p.103, 19
‘end parameters’ --> ', parameters and index bounds of dynamic
arrays.’

p .107 bottom .

low (x) x is a dynamic array variable, the result is the
lower bound of the index cf the array.

high(x) x is a dynamic array variable, the result is the
upper baund of the index cof the array.

= .06, 1.5
and dynzmic arrey types.

zcz l.20 - 1.22
on which version is imblemented,
ith packed should be omittec.)

<farmal parameter section> ::= <extended parameter group>
var <extended parameter group> |
function <parameter groun>
procedure <identifier> [,<identifier>}

<extended parameter group> ::= <identifier> {, <identifier>} :
<type identifier>
<identifier> {, <icentifier>} : <dynamic array type>

<dynamic array type> ::= array [<scalar type identifier>
{., <scalar type identifier>}] of <type identifier> |
packed array [<scalar type identifier>
{, <scalar type identifier>}] of <type identifier>

<scalar type identifier> ::= <identifier>

9/6T “Y¥3AW3LdIS off 43LLFTISMIN VISYd

<7 194

g
p .117 replace the diagram parameter list

sarameter list

dynamic array tyael—

type identifiea———a

FUNCTICN

identifier

PROCEDURE identifierf

dynamic array type

)y
N Y , |
© tyse identifiar}-———-:_i@__t_.

PACKED ARHAy)@ﬁme 1dentifieﬂI@-@—(tyne identifierf—s
™
. L

p .121 bottom

40U: Dynamic arrays must have a scalar index type

401: Packing and unpacking of dynamic arrays are not
implemented

402: Dynamic array expected

4U3: Type identifier or dynamic array type expected

Cepending on which version is implemented)
404: Formal procedure must not have dynamic array parameter

0 .126 alphabetical
dynamic array 11,A

p .191 after last line of &.1.4.

In this case the arrays must not be dynamic.

n.152, 1.24 :

The variable and the expression must not be dynamic arrays.

~9-

2 .158 replace 1.35> - 1.39
{(Cepending on which version is implemented,
tne part with secked shculd be omittecd.)
formal paremeter section> ::= <gxtended parameter group>
var <extenced parameter group>
furction <pearamzter group> |

crccedure <identifier> { .<identifiers}

<

<extenged parameter group> ::= <identifier> {, <icdentifier>} :
<type identifier> |
<idenzifier> {, <identifier>} : <dynamic array type>
<dynamic array type> ::= grray [<scalar type identifier>
{. <scalar type identifier>}] of <type identifier>
cacked array [<scalar type identifier>
{, <scalar type identifier>}] of <type identifier>
<scalar type identifier> ::= <identifier>

g .150, 1.-1

The indax type of a dynamic array type is substituted for
every parameter by the subrange used as index in the
corresponding actual parameter.

p .59 betcea
(Depending on which version is implemented)
Facked dynamic arrays are only packed over their last
agimensicon. An array of the faorm
) packed arraylscalari,scalar2] of typeA
must in the calling procedure be declared as
array(scalar1] of packed arraylscalar2] gf typeA.

p.i04, 1.8

low({x) x is of dynamic array type, and the result is
the lower bound of the index type of the
corresponding actual parameter for x.

high(x) x is aof dynamic erray tyce, and the result is
the upper bound of the index type of the
corresponding actual parameter for x.

p .165 bottom
d. Dynamic array types should only be used elementwise
(Exceptions are procecure and function parameter)

p .16% alphabetical
dynamic array 10.

(*Received 7/22/76*)

9/6T “Y3dWILd3S G YILLFTISHAN TYISYd

¢ 39vd

502 E, Healey #207
Champaign, IL 61820
5 November 1975

Hello Andrew,

>

Enclosed find the only information I have about the PDP 11/20
version of PASCAL, From a report of a friend using the compiler,
there may still be bugs in it. I will try to get you a name of
someone to contact about distribution, progress, etc.
Unfortuaately I do not work with that group or their machine and
have no real channel to them. I may do some PASCAL work on the
machine, though, just to see how it is.

I do have some rather promising information in another area.
Chances are you probably know about it already, but in case you
don®t: Wirth has come out with a subset of PASCAL (called PASCAL-S)
and has written:

N. Wirth PASCAL-S: A Subset and its Implementation
Eidgenossische Technische Hochschule Zurich
Institut fur Informatik -- Report # 12

I believe the date on it is June 1975--but don't quote me!

I got a copy of the manual from Dr. M.D. Mickunas, who received
it from Dr. Jurg Nievergelt, Dr, Nievergelt was on sabbatical
in Switzerland and sent it back from there. (Both teach here

at the University of Illinois). I'm enclosing 2 pages detailing
the major differences between the subset and full PASCAL.

If you want a copy of the whole schmeer, I'll be glad to get one
and mail it to you. (Again, if you don't already have one).

One noteworthy feature of the manual is its chapter 7, which
contains a version of the compiler and interpreter, written in
full PASCAL. The compiler produces code for a hypothetical stack
machine, which the interpreter (naturally) interprets.

The following is pure speculation (especially pending some funding)
but: Rick Simkin and I are thinking of translating it for the 360,
We were originally thinking of rewriting it into PL/I but neither
of us is terribly keen on it. (Even though it would be the

easiest, I guess I for one just want to avoid PL/I wherever vpossible)

What we may well do is have me write the compiler in SPITBOL (for
speed .of character manioulation) and have Rick write the
interpreter in FORTRAN (for raw speed)., I will definitely get
back to you on this if we can con anyone into giving us funds to
do it. . .o

That is basically all the info I have for right now,
As for your request for a new name for the group, how about

Association of Pascal Programmers, Ltd, (AFPPL)

Sorry, that's the best I could come up with at 11:30 PM,

At any rate, I think we should try to avoid "PASCAL Interest Group”
unless we really want to shock and/or offend. The more I

think about it, the better it sounds...must be the late hour.

Sorry also about the typing errors; I have never really fully
believed in proofreading.

fin

Eisenberg

PS--You may want to include phone numbers on future mailing
lists; some developments or exchanges are not handled best by
the US Postal Service, Also, most Universities have WATS lines
for "University business."

PPS--My office phone: (217) 333-1719: the office is shared by
a lot of people so don't be surprised if you hear a female voice
answering...

9/6T “¥3dWILdIS S# Y3LLITSHIN TWISYd

97 394

PASCAL NEWSLETTER #5 SEPTEMBER,

° .72 insert new page

{ program 11,3
extend progream 11.2 }

cracran minmax4(input ,output);

ccnst n = 20; m= 15;

tvpe listn = arrayl l..n] of integer:
listm = array(1..m] of integer;
var a: listn; b: .listm; '

i,min.,max: integer;

orocecure minmax (var g
var j,k: integer):
var i,1,h,u,v: integer;
begin 1 := low(g): h := high(g):
Joi=glll: k 1= §: i :=1+1;
whila i<h do
begin uw := g[i]l; v := gli+1];
if u>v then
begin if u>k then k = u;
if v<j then j := v
end else
begin if v>k then k := v;
if u<j then j t=u
end;
i = i+2
end;
if i=h then
if glh]l >« then k := g[h]
1se if glhl<j then j := glhl:

writeln;
minmax (a ,min , max); :
writeln (min ,max ,max-min); writeln;
for 1 := % to m do

secin read(bli]); write(b[i] :3)
writeln;
minmax (b ,min,max);
writeln(min ,max ,max-min)

[3¢]
3
ol

.

|

-1 -3 4 7 85423 -5 3 9 9 9
-5 79 8>

45 43 3 b 1346 -8 1 4 36 3 B8
- . 45 . 53

~1C~

1976

write(ali] :3) end:

-6 45 79

-1 3 =2

: array[integer] of integer:

3

1

PAGE 25

PASCAL NEWSLETTER #5 SEPTEMBER, 1976 PAGE 25
-10-

o .72 insert new page

{ program 11,3
extend progrem 11,2 }

craogran minmax4(input ,output);

czcast n o= 20; m= 15;
tvpe listn = arrayl 1..n] of integer;:
listm = arrayl 1..m] of integer:
vaer a: listn; b .listm;
i,nin,max: integer;

orocecure minmax (var g: arraylinteger] of integer;

var j,k: integer):
var i,1,h,u,v: integer:
begin 1 := law(g): h := high(g):
Jgoi=glll: k = 3; i :=1+1;
while i<h do
‘begin u := glil; v := gli+1];
if u>v then
begin if wu>k then k = u;
if v<j then j := v

begin if v>k then k = v;
if u<j then j = u
end.
i = i+2
end;
if i=h then
if glnl >k then k := glh]
else if glhl <j then j := glh]l:

for i := 1 to n do F
becin read(ali]); write(ali] :3) end:
writeln; ’
minmax (a ,min . max);
writeln(min,max ,max-min); writeln;
for i := 1 tp m do

kecin read(bl[i]); write(b[i] :3) end
writaln;
minmax (b ,min ,max):
writeln(min ,max max-min)

-e

1.3 4 7 85235 3 6 9 9_664579 3 1 1 5
-5 79 g5

45 43 3 b 134 -8 1 4 34 3 8B -1 3 =2

502 E, Healey #207
Champaign, IL 61820
5 November 1975

Hello Andrew,

Enclosed find the only information I have about the PDP 11/20
version of PASCAL, From a report of a friend using the compiler,
there may still be bugs in it., I will try to get you-a name of
someone to contact about distribution, progress, etc.
Unfortuaately I do not work with that group or their machine and
have no real channel to them. I may do some PASCAL work on the
machine, though, just to see how it is.

I do have some rather promising information in another area,
Chances are you probably know about it already, but in case you
don't: Wirth has come out with a subset of PASCAL (called PASCAL-S)
and has written:

N, Wirth PASCAL-S: A Subset and its Implementation
Eidgenossische Technische Hochschule Zurich
Institut fur Informatik -- Report # 12

I believe the date on it is June 1975--but don't quote me!

I got 2 copy of the manual from Dr. M.D. Mickunas, who received
it from Dr. Jurg Nievergelt., Dr, Nievergelt was on sabbatical
in Switzerland and sent it back from there, (Both teach here

at the University of Illinois). I'm enclosing 2 pages detailing
the major differences between the subset and full PASCAL.

If you want a copy of the whole schmeer, 1'l]l be glad to get one
and mail it to you. (Again, if you don't already have one).

One noteworthy feature of the manual is its chapter 7, which
contains a version of the compiler and interpreter, written in
full PASCAL. The compiler produces code for a hypothetical stack
machine, which the interpreter (naturally) interprets.

The following is pure speculation (especially pending some funding)
but: Rick Simkin and I are thinking of translating it for the 360,
We were originally thinking of rewriting it into FL/I but neither
of us is terribly keen on it. (Even though it would be the

easiest, I guess I for one just want to avoid PL/I wherever vpossible)

What we may well do is have me write the compiler in SPITBOL (for
speed ;of character manivulation) and have Rick write the
interpreter in FORTRAN (for raw speed). I will definitely get
back to you on this if we can con anyone into giving us funds to
do it. .

That is basically all the info I have for right now.
As for your request for a new name for the grouv, how about
Association of Pascal Programmers, Ltd. (APPL)

Sorry, that's the best I could come up with at 11:30 PM,

At any rate, I think we should try to avoid "PASCAL Interest Group”
unless we really want to shock and/or offend. The more I

think about it, the better it sounds..,.must be the late hour.

Sorry also about the typing errors; I have never really fully
believed in proofreading.

fun

Eisenberg

PS--You may want to include phone numbers on future mailing
lists; some developments or exchanges are not handled best by
the US Postal Service, Also, most Universities have WATS 1lines
for "University business,*”

PPS--My office phones (217) 333-1719; the office is shared by
a lot of people so don't be surprised if you hear a female voice
answering...

9/6T “Y3AWIL4IS S# YILLIISHIN T¥ISVd

97 I9vd

TECHNISCHE HOCHSCHULE ZURICH

EIDGENUSSISCHE Mr. Andrew B. Mickel
University of Minnesata
Computer Center

Institut fir Informatik 227 E€xperimental Eng. Bldg.

Clausiusstrasse 55

e MINNEAPOLIS, Minnesota 55455
P 01/326211
U.S.A.
November 22, 1975
Dear Andy,

I have some news for you:

1) One of our students is actually implementing dynamic array para-
meters as part of his wark for his master degree. The PASCAL syntax
will presumably be (change in PARAMETER LIST only):

} new

array [integer] of real);

ex. procedurep(a :

The additional standard functions LOW and HIGH deliver actual array
bounds (in this example LOW(a,1)= LOW(a) is ok. While LOW(a,2) results
in a compile time error message because "a" was declared to be a 1-di-
mensional array anly. The second parameter must always be a constant.

In case that the implementation will prove to be well done (and com-
pile FL is not charged too much) we will certainly consider its in-
corporation in Release 2. As this work will not be completed before
early February there is no reason why you should send your tape by the
end of November! Christmas or even early January would be fine.

2) Another student tries to implement a (type checking) value part as a
senmester job. If he succeeds 1 am willing to make it part of RELEASE
2 too. However, I strongly doubt whether he will find a feasible sa-
lution and work it out in time. In any case he will not complete his
work before February.

By the way: I have no good arguments for the value part and against
initialisation in the yar part. Binding initialisations to types seems
to be inappropriate because they are rather attiributes to variasbles than
to types. This is why I wculd prefer

“var i =o0,j = 1: integer ; c1 = (o,1), c2 = (1,0): complex

<
H

io
a i,j :integer =.0; c1,c2 :complex = (o,1). OPEN

Fowever, with the former notation one pass compilation can become cumber-
some because the type of the variable is not known at the moment the
(possibly structured) value is read. Alsc, I guess that at the time de-
clarations are written initial values may still be unknown. So a strang
separation between declaration anu initialisation is perhaps legitimate.

3) The idea of implementing a cons:iructor function has been postponed.
We have (for the time being) nobody who could do it. Our mew assistant
will only join us in January and not in December as I wrote you.

4) Hope-fully DISPOSE will not die! I will talk to Wirth about it. In my
opinion NEW without an "inverse" is useless.

We were pleased to hear that the first PASCAL User's group meeting was
(spontaneously!) held at ACM '75.(Two weeks ago a so called PASCAL-Day
has been organised by the Swiss chapter of the ACM. About 50 people
attended which, following the chairman, was quite a success).

Please inform us when you have news concerning duties of the Newsletter
editorship.

Sincerely,

!
BSm)

Urs Ammann

(SHORT, INFORMAL CORRESPONDENCE)

FORUM FOR MEMBERS

9/6T "Y3dW3Ld3S G Y3LLFTSHIN TYISYd

LT 39Yd

b e X ’ _‘
3] 3 . UNIVERSITY OF MINNESOTA university Computer Center
3 < 4 TWIN CITIES 227 Experimental Engineering Building
; Minneapolis, Minnesota 55455
i
|

November 25, 1975

Professor Niklaus Wirth
E.T.H./Clausiusstrasse 55
CH-8006 Zurich
SWITZERLAND

Dear Niklaus:

I am writing to you to ask some questions concerning the language Pascal.
As you may know we at Minnesota have been corresponding with Urs frequently
on the subject of implementation details for the CDC 6000 Pascal compiler.
I am pleased to say that this interchange has been quite rewarding for us
and hopefully beneficial to the compiler effort at Zurich. Because we
included questions in our letters to Urs which concern the language

Pascal, he suggested that we write to you, which we are doing now.

I am sure your work now continues to move ahead in the areas of programming
language design. It seems to me that when enough improvements or results
of research work are made, then they may become manifest in a new language
because of the undesirable consequences of changing a language which is
heavily being used as a practical tool. You have stated that Pascal "will
not be subjected to changes" with the appearance of the User Manual in a
letter to me December 19, 1974. I am disillusioned to face changes in

the language Pascal and extensions to the CDC implementatioa.

The reason for the confusion and disillusionment on my part is that I must
often explain to users why Pascal must not be changed ("preaching the
gospel”) and then be undercut by certain changes. There are some extensions
to the CDC version which everyone says are worthwhile and which I tell
people will be added "eventually" (e.g. a value initialization facility).
While we seem to be making progress on the latter, let me_ enumerate
ingtances of the former:

1. Definite change to the language -- the removal of DISPOSE as a
standard procedure in the second edition of the User Manual. Why?

2. We sent you a copy of our letter to Urs about the error trap
label and the changes to the READ procedure for integers and reals.

3. And what about other changes (such as extending READ and WRITE
to act on files of any type)?

Obviously you have received much pressure from users to make these changes.
Do all CDC users have to suffer these changes? Could it be suggested that
these are optional extensions for the people who want/need them. George
Richmond distributes all of your updates to us in North America as
"mandatory". Could a statement be issued to the effect that specific
previous changes are optional?

A Pascal User's Croup is being formed in North America. The first meeting
of a group was informally held at ACM '75 here in October. One very
heartening aspect of the meeting was that many people who spoke expressed
the same concern: "Will there be a proliferation of non-compatible
extensions in different implementations of Pascal?" At stake are portable
Pascal programs which are written beyond standard Pascal. The statement
was also made that "Pascal is our only viable hope to Deep-Six (bury)
Fortran", and we cannot afford to blow our (perhaps last) chance to do
that. For if we fail, we become another reason why Fortran should not

be challenged.

An important group of people in this regard are the maintainers and
implementors of Pascal compilers. They must be both responsible and
energetic-hence the need for a User's Group. The Pascal Newsletter has
been the only previous vehicle available; and even though George has done
a good job, it must be published more regularly, and include articles
discussing issues such as extensions in various implementations.

Sincerely,

ABM/wd

9/6T “Y3AWILd3S G# Y3LLFISMIN T¥ISVd

@¢ 39vd

&) 2

EIDGENUSSISCHE

TECHNISCHE HOCHSCHULE ZORICH Mr. A. Mickel

University of Minnesota
Computer Center
227 Experimental Engineering Bldg.

nothing less than an automatic mark-scan garbage collector
would suffice. Now, anyone is of course free to implement a
DISPOSE of his own liking as an additional predefined (not
"standard"!) procedure, but I would consider it & mistake to

Institut fir Informatik
Clausiusstrasse 55
CH - 8008 Zirich

@ 017326211 Minneapolis, Minnesota 55453

1}

December 10, 1975

Dear Andy,

1 thank you very much for your letter and appreciate your
concern about the language Pascal. In fact I share it and I
sympathise with your attitude against changes. But you really
put me on the defensive, and I feel obliged to clarify a few
points of possible misunderstanding.

First of all I wish to distinquish clearly between language and
implementation. This is a very important distinction; the
language is defined by the Report alone, and intentionally

leaves many details unspecified that an implementation inherently
must define one way or another. Secondly we must distinguish
between change and extension. I have repeatedly stated that I
wish to refrain from changes of existing features of the language.
But obviously 1 cannot prohibit other people to implement
extensions, nor even - alas - to introduce local changes. After
all, the compiler is distributed in source form which facilitates
the incorporation of changes. We ourselves have currently several
students who implement extensions, but I don't know whether they
will evep become part of our distributed CDC compiler. Even if
they did, this would in no way imply that they become part of
Standard Pascal. Actually, I am sure they would nat, because

we cannot afford changing (extending) all the published manuals
and documentations. Hence, some current work on a data initiali-
zation facility will at most become a part of the CDC 6000-3.4
system, a facility, however, that does in no way modify any
existing feature. My attitude and intent are to be very tight
with allowing extensions to go into our distributed and maintained
compiler.

You mention three issues in particular:

1. The removal of DISPOSE. The trouble is that it had never
really existed. Moreover, it has become increasingly clear

that a truly satisfactory realization would be quite difficult

and of an unwelcome complexity. It is quite possible to implement
a non-checking version which, however, bears the danger of leaving
"dangling references" hanging around. From the point of security,

define DISPOSE as a standard procedure when we had nao generally
satisfactory solution of implementation.

2. The error trap label recently introduced is clearly an
extension to our implementation (6000-3.4), and cannot be
considered as a language change.

The change in the READ procedure for integers and real numbers
was, in hindsight, a rash decision for which I must apologise.

As you know, this change has been revoked because of unfavourable
reactions. Hence, only leading blanks are skipped as before.

However, in order to avoid the awful situation that the apparently
correct program

while not eof(input) do
begin read(x); write(x)
end

produces unexpected results (such as writing the last number
twice, if it is followed by blanks), the procedure "read" is
changed such that an error will be indicated, if the end of

the file is reached while skipping (leading) blanks, Please
note two points:

a) AbuQe program is indeed correct, if x 1is of type char.
The earlier change had been motivated by the desire that
it should also be correct for x: integer/real.

b) The above indicated change in the "read" procedure is not
a change of the language PASCAL, for the language definition
does not say what happens, if read(x) hits the end of the
file. Nevertheless, some programs that "ran"™ may die in
the future. They should never have run in the first place!

3. The "change" of letting READ and WRITE be applicable to files
of any type is not a change, but an extension, even an obvious
and straight-forward extension. It is fully documented in bath

Manual and Report. What other language changes are you referring
to?

I think it is an advantage, if Pascal centers follow our distributed

updates, but we certainly cannot force anyone to do so. The naxt
update will be, as I am aware, considerable. But again, it incor-
porates no language changes, merely improvements of the compiler
which ultimately are in the interest of all users of Pascal. The
new version will eliminate several restrictions which are some-
times quite bothersome. Again, they are of course optional to
those who don't wish to profit from our efforts.

9/6T "Y3AW3Ld3S G# YILLFTISMIN TWISVd

6¢ 39vd

-3 -

I am very pleased to hear about the formation of a Pascal

user group, and of course I share the hope that Pascal may
cantribute to overcome the fFortran age. But of course there
are limits to the support of portability. Every installation
will always provide some features that are convenient on its
machine, but difficult and often counterproductive if imitated
oR other computers. I see no use in aiming for transferability
of programs that use such local features, i.e. which don't
adhere to Standard Pascal.

Here at Zirich we would also welcome a Newsletter appearing
more regularly. But at the same time I must confess our
inability to run it, which doesn't mean that we shall not be
happy to contribute and to support it. Please keep me informed
about future developments.

Sincerely yours,

(//'v/,ucm A}-ﬂ(.

Niklaus Wirth
cc: G. Richmond

NW:ht

Literature about the Programming Language PASCAL

n. Wicth, The programming language Pascal and its design cri;eria‘
Paper presented at Conf. on "Software Engineering Technigues",
(NATO Science Committee) Rome, Dct. 1969, and published in

"High Level Languages”, Infotech State of the Art Report 7, 1972.

The programming language Pascal, Acta Informatica 1, 35-63 (19371).

- The design of a Pascal compiler,
Software - Practice and Experience 1, 309-333 (1971).

J. Welsh and C. Quinn, A Pascal compiler for ICL 1900 series computers,
Software - Practice and Experience 2, 73-77 (1972).

R. Schild, Implementation of the pragramming language PASCAL,
Lecture Notes in Economics and Mathematical Systems, 75 (1972).

G. Friesland, et al., A Pascal Compiler bootstrapped on a DEC-System 10,

Lecture Notes in Computer Science 7, 101-113 (Springer-Verlac 1574).

C.A.R. Hoare and N. Wirth, An axiomatic definition of the programming
language Pascal, Acta Informatica 2, 335-353 (1973).

N. Wirth, Systematic Programming,
Prentice-Hall, Inc., Englewood Cliffs, N.J. 1973.

K. Jensen and N. Wirth, Pascal - User Manual and Report,
Lecture Notes in Computer Science, Vol. 18 (1974), and Springer
Study Editian (1975), both Springer-Verlag.

N. Wirth, Systematisches Programmieren (Taschenbuch)
Teubner-Verlag, Stuttgart, 1973.

P. Brinch Hansen, Operating System Principles,
Prentice-Hall, Inc., Englewcod Cliffs, N.J. 1973.

A.N. Habermann, Critical comments or the programming language Pascal,
Acta Infarmatica 3, 47-57 (1973).

U. Armanr, The method of structured programming applied to the
cevelopment of a campiler. Intermational Computing Symposium 1973,
A. Ginther et al., Eds.,North-Holland {1974).

C. Lecsrme anc P. Desjardins, More ccmments on the programming language
Pascal, Acta Informatica 4, 231-242 (1975).

N. Wirth, An assessment of the programming language Pascal,
1EEE Trans. on Software Engineering 1, 2, 192-198 (1975), anc
SIGPLAN Notices 10, 6, 23-3C (1575).

v. Ammanr, Die Entwicklurg eines Pascel-lompilers nac r Methoce
ces strukturierter Programmierers. ETh-5iss. 5436 (167

F. drinck Hansen, The
I

GFLAN Notices 1C

L urpose of Carcurrent Pascel,
S 6, 30S5-2C5 (1575,

N, wirth, Algorithmen und Datenstruxt.ren,

- Ad =
Teubner-Verlag, Stuttgart (197%).

- Algorithms + Datastructures = Programs,
Prentice~Hall, Inc., Englewooc Ciliffs, N.J. 1375.

9/6T "¥3dWILd3IS S ¥3LLIISMIN TvISYd

0¢ 39vd

‘; :_i UNIVERSITY OF MINNESOTA University Computer Cantar
- TWIN CITIES 227 Experimental Engineering Building
Minneapolis, Minnesota 55435

December 29, 1975

Prof. Niklaus Wirth
Institut fir Informatik
E.T.H./Clausiusstrasse 55
CH-8006 Zurich
Switzerland

Dear Niklaus,

Thank you very much for your nice letter which arrived Monday, December
15. Also thanks for enclosing the updated bibliography, which is valu-
able to have. I am grateful that you took the time to explain a lot

of things. Shortly after I mailed my last letter (November 25) to you,
we received a letter from Urs containing the retraction of most of
UPDAT10. We were very happy to see that.

I didn't mean to put you on the defensive when I wrote my letter. I
really feel bad about that. My intention was to get some substantive
information which you have provided to my satisfaction. You are right:
I as a local maintainer (and I am sure others like me) was confusing
both the language with the implementation and also changes with
extensions. After I got your letter I have to admit that I spent

quite a bit of time going over all of our correspondence (including
that with Urs) over the past year and noticing how many times I failed
to make these distinctions. And when I wrote my letter of November 25, ,
I remember trying to decide (and wondering) under what categories to
identify certain changes. Now when I reread that letter I also see
that I failed to communicate several things properly. In several cases
I misrepresented what I meant to say.

Looking at your-letter now: "The language is defined by the Report
alone which intentionally leaves many details unspecified that an
implementation inherently must define in one way or another.” Fine;

I understood from having read the original Report (with the long intro-
duction =~ before it was published in Acta Informatica) and the "Axiomatic
Definition" that leaving certain details unspecified is an advantage.
Eeing somewhat partial to semantics over syntax, I would hope that the
Axiomatic Definition” helps to define the language, too.

Now to consider "change." I agree with the notion that Pascal itself
represents a major departure from the past (and past mistakes). And I
personally do not mind change in and of itself if it is properly motivated.

—2-

Of course the environment for changing the language Pascal has itself
changed over the last 5 years so that now it is difficult to effect change
(more users, changes to existing documentation (as you stated), and
portability considerations, to name several). What pops into my mind is
that we have several Pascal Reports. The original (1970), the Revised
(1972), and then two more (July and December 1973) that were small improve-
ments on the way to the book: Pascal, User Manual and Report (revised,
revised Report?) and now the second edition of P, UM & R which contains the
change about DISPOSE. I guess if we only go by published (other than
technical reports) versions there is only one Revised Report - the one in

P, UM & R. I just want to show you that these minor details helped confuse

—_————

me. So my last letter had only one valid gripe about changing the language

Pascal - the elimination of DISPOSE in the second edition and your explanation

is entirely satisfactory. But you didn't announce it officially, and I
wanted to raise the question because I wasn't sure. .

I don't want to put Urs in the middle of this discussion but just to be

sure that I tell you as much as I can on the issue of changing the language

I want to add that it was Urs who said specifically: "By the way: would
you please send letters concerning the language PASCAL to Wirth and not

to me" in a letter to us October 29 in respouse to our criticism of UPDAT10
in a letter to him (and copy to you) October 9. This implied that we had
dealt with the language itself and not just extensions to the implementa-
tion which I now know (thanks to your letter) to be the case.

Concerning the change in the READ procedure for integers and reals and
also looking at our October 9 letter, I quoted your letter of December 9,
1974 about the User Manual describing Standard Pascal and Urs' November 28,
1974 letter saying that the schema in the User Manual for reading from a
textfile will be valid no longer if our suggested change for reading were
adopted. Two points here: 1) the schema concerned must not be part of
the User Manual describing Standard Pascal as this feature involves an
implementation-defined definition, and 2) your indication that there
will be a change to READ after all turms out to be exactly the same ane
we suggested and sent in a letter November 7, 1974 which produced the
replies from you and Urs (see enclosure). We rejected our own change in
the light of those replies. o -

Continuing with your letter, I understand now that error trap labels are
an extension to the CDC implementation. But in spite of what you said
about extensions, I have an intuition that they are slightly contrary to
the philosophy of Pascal. I apologize for putting down in my letter the
reference to the extension of READ and WRITE to handle files of any type,
and "other changes' referred fact to other extensions. I was in the mood

to question everything at that point. I did not at all dislike the extension
to READ and WRITE. Idisugree Fhibikis Flly dacemenbid in the Vsr Horus| of Ropart. Co yon gioe e e

speitic
I too think it is an advantage if Pascal centers follow your distributad
updates. I hope that our deeds as well as talk support this. We have
maintained all along that working with you was far more productive than
going off on our own (as several installations have done). We in fact
(as stated in the letter of October 9) incorporated every update fully
‘except UPDAT10. -

9/6T “Y¥3AWIL43S Gt Y3LLIISMIN TvISYd

T¢ 39vd

-3-

Now I see that you aren't necessarily working on a new language at all,

but possibly testing and implementing new language features (extensioas)

in the CDC 6000 implementation. O.K. Before your letter, it had been

my mistaken belief that it was important to adhere as closely as possible
to Standard Pascal because of the argument that too many additional features
leads to writing programs with a greater probability of being non-standard.
I am°therefore glad that it is your attitude and intent to be very tight
with extensions in your distributed version. Now I guess that the issue

is whether Standard Pascal is a general enough language to be really
practical in terms of portability (whereas ANSI Fortran IV doesn't even
come close because it is not general purpose). Features were therefore
left out of Standard Pascal which are impractical to implement on all
machines. Is this a correct interpretation? What I meant in my last
letter about proliferation of non-standard extensions was simply that in
the implementations on major machines, if a feature is to be added which
has been added in another implementation, and it can be implemented in
exactly the same way, then it should be done the same way so as not to

be arbitrarily different. For example the CDC 6000 implementation can
serve as a model (since it is first on a number of features). A feature
such as a data initializatioun facility if implemented in the CDC 6000
version could be used with identical syntax by another implementation

such as the DECsystem 10 version if it is convenient on that machine.

By major machines I mean Burroughs 6700, etc., DECsystemlO, IBM 360/370,
Univac 1100 series, CDC 6000/Cyber 70/170 series, and Honeywell 6900 series.

There are many extensions to the CDC 6000 version and it is important that
they be documented fully and in one place. (In this regard the User
Manual is out of date.) So at our installation, our local documentation
satisfies this need, but I want to help other installations as well.

Maybe the Newsletter will help this.

Another subject that I did not convey properly in my last letter was about
the User Group and Newsletter. I did not mean to complain, but rather
make the case for the need. And I forgot to say that we in Minnesota
were going to volunteer! I am glad you like the idea of a Pascal User's
Group. In fact it is now certain that we in Minnesota will be producing
the Newsletter and doing so more regularly. George and I have talked
several times on the phone recently about this; he will do his last
Newsletter (#4) very soon. Our goal for the Newsletter will be not only
to maintain the quality George has set, but also to include more articles
such as language philosophy and news of other implementations. Tenta-
tively we want to put out a 20 page Newsletter four times a year for a
$4.00 subscription. We will also photo-reduce contributions directly

and not retype them. The User's Group may evolve into something official
like STAPL for APL (under SIGPLAN auspices). Georzz has a largs mailing
list in North America. I'm not so sure how to handle a large number of
overseas members because of mailing costs.

As to your contributions and support, they are very welcome. May I
suggest that an official statement aboyt your policy on the CDC 6000

-

implementation maintenance would make a nice article. And would it be
possible for you and your people to directly mail us your articles in
the future about updates, documentation, etc., instead of us having to
wait for the relay from Ceorge in Colorado? This will certainly help if
we are going to put out the Newsletrter.

A week ago I obtaired a copy of your new book, A + DS = P, which I can't
wait to finish reading! A few questions (maybe I pay too much attentioa

to details) - is it the case that certain notational differences arise
between Standard Pascal and Pascal, the publication language? Specifically,
the symbols #,> ,< , A,V ,™ reappear. Also,.the syntax diagram

for field list in a record declaration has some errors in it. (See enclosed)

It was most revealing to have read and studied your letter and I want
to say ''thanks'" again. The other glimpse of where we are headed that
proved valuable was the article which appeared this summer in SIGPLAN

Notices from the proceedings of the Reliable Software Conference. If

you have any further reactions to what I have said, I would very much
like the privilege of seeing them. Thanks in advance!

Happy New Year to you and your associates at the Institut fir Informatik
from us at the University Computer Center.

Sincerely,

éMf

ABM/ks
Enclosures

cec: U. Ammann, G. Richmond

9/6T "Y3d43Ld3S S# Y3LLFTISHIN T¥ISYd

Z¢ 39vd

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720 G TEL. (415) 843.2740

lath%Computing Group
LBL
]2 Jan 75

Andy Mickel
U Yinn Computer Center
227 Exverimental Engineering Bldy
Minneapolis 55L5%
Dear Andy -~

Thanks for your recent letter and enclosures. We (LBL) would
certainly like to be on the mailing list of the new Pascal User's
Group. Addressee should be me, Ed Fourt, at the above address.
If you w ever want to try and reach me via phone (it ain't easy),
number is (415) 843-2TL0 ex 50TL.

I will put a notice in our newsletter that anyone who wishes
to be m involved with the user's group xmxk should write you. Eric
Buchbinder, to whom you co-addressed your letter, is an enthusiastic

user but not responsible for the maintainzrnce of the compiler -- I

dor't ¥now his mailing address, presumably he'll send it to you.

whic
Ye have Pascal up on our 7600, Nimsh
fewirorme®® Mein reason we have it is that we don't use CDC's Scope

2, which lacks CIO, so our mods are probably of no reld to others.

“'ost haopy to hear yvou're re-imrlerentine VALUE. Any time

P11 have 1t?77 Pascal i3 Camnably

bazk s .
(s 1n2 raytce I'11 star:t pushing Pascal

25timates??? -- I mean, wnen
A3

Jame without it, sez me., Orce it
harder to the zereral user community -- usare is crobatly lower here

than is reelly verrented. 3ut the big drawback to Pascal is, it

keers on plavins those dirty tri

Department of Computer Science, FR-35

UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

January 14, 1976

Mr. Andrew B. Mickel

University Computer Center

227 Experimental Engineering Building
University of Minnesota

Minneapolis, Minnesota 55455

Dear Andy:

Thank you kindly for your letter of January 5, 1976. I hope that you will
place me on the mailing list of the newsletter and other mailings. Please
send the Pascal newsletter also to:

Computer Information Center
Academic Computer Center
Mail Stop FC-10
University of Washington
Seattle, Washington 98195

and to Mr. Fred Dunham
Academic Computer Center
(address as above).

For reference, my telephone number is (206)-543-9264.

We are using the Pascal2 compiler from Zurich (via Colorado) on our CDC 6400~
CYBER 73 system. In addition to the updates from Colorado (we are currently

on Update 8), we have made a number of local modifications. The primary one
made substantial changes in the scanner, allowing multicharagter representations
for a number of symbols (e.g..,' for;, PTR for "uparrow",'..= for :=, etc.).
These were done to allow easy use of IBM 026 keypunches. Also, we have changed
the compiler to the SCOPE 3.4.4 end-of-line convention, added line numbers to
the listing, and a few minor things. Other changes are planned for the future,
but will depend on student help. A copy of our Pascal announcement is enclosed.

We would be very interested in learning more about your changes; reduction of
compiler size is quite important to us. I am thinking also of breaking the
compiler into overlays so that we can run in 40k (octal); have you thought
about that? If you send me a tape of your mods, preferably in standard
UPDATE format, we will reciprocate (please use 7 track tape, if possible).
Could we also have your available literature?

9/6T “¥3dW3Ld3S St YALLFISMIAN TWISVd

¢¢ 39vd

page 2

Do you have any experience using the FORTRAN-PASCAL linkage? I happen to
believe that the future of PASCAL depends on two things: (a) having a
(minimal) standard language that all implementations adhere to —-— perhaps as
defined in the Revised report, and (b) in providing for all implementations
an environment in which it is very easy to mix (sub)-programs written in
FORTRAN and PASCAL. Any thoughts would be welcome.

I hope to hear from you soon; thanks again for writing. When is newsletter
No. 4 going to appear?

Sincerely yours,

/274

Hellmut Golde
Professor

HG:yi
Enclosure

THE UNIVERSITY OF TEXAS AT AUSTIN
COLLEGE OF NATURAL SCIENCES
AUSTIN, TEXAS 78712

Department of Computer Sciences
Painter Hall 3.28

March 8, 1976

Andy Mickel

University Computer Center

227 Experimental Engineering Building
Minneapolis, Minnesota 55455

Dear Andy,

I am finally sending you the notes I promised you some time ago. In the mean-
time you should have received the tape containing the BOBSW system,

I modified our PASCAL system somewhat so that the user has knowledge about how
much space is used for stack and heap. A control card might look as follows:

PASCAL2.0PT = PT, C =7, W= 4, B = 4,

This gives the compiler 7K to work with, the generated program will have at leas
4K, and the buffer size for files of type TEXT is 1K, The work space, jis measured
when a procedure is entered, also when an item is placed on the heap.” The code
generation for measurement can be turned off. The user is now independent of
setting the fieldlength, which may vary with compiler options or routines from
libraries. By setting the right workspace an optimal fieldlength is achieved.

I also fixed a bug in the code generation (see example). As this was the first
time I really looked at the code generation I have to say I was puzzled! I just
hope the new version will do a better job!

About a month ago a PASCAL translator (written in UCI-LISP) was finished, It
does all the type checking and it produces a prefix form which 1s used by a
verification system to generate verification conditions. The grammar I used
is included.

How is your PASCAL Users' group coming along? Got any new developments from
Zurich? Please, keep me informed. Looking forward to your next newsletter,

bﬁz;ézzlﬁst EEiL:;7:4'—'

Wilhelm Burger

WB/mm

"" The achool vred Mol space & ru.* u&hﬂo«é ?\Q.,

'thlCY'L(‘ | ,(_' (¢ /&‘(L'NJ) B.J‘"-'-'T'A«, ﬁ";nw\

’ ’E ‘Lr ‘(r_‘»‘;\

/

etk U (ble) K

ISvd

!
)

G# YILLITSMIN

9/6T “Y3qWILd3S

hs 39vd

RICHARD J. CICHELLI
901 WHITTIER DRIVE
ALLENTOWN, PENNSYLVANIA 18108

March 9, 1976

Mr. Andy Mickel
University of Minnesota
Computing Center
227 Experimental Englneering Bldg.
Minneapolis, Minnesota 55455

Dear Andy:
Glad to hear you liked my paper.

Is the newsletter going only to SIGPLAN members?
What I'm thinking is that if not, then you might want an
actual Soma cube program to include. I enclose a copy of the
Condict program. It's a Xerox copy of the original photo copy
and I hope it is a good enough reproduction. The original was
sent to (and butchered by) SIGPLAN. It might help clarify
things. If you decide¢ to use 1t, I recommend you use the
bottom half of the first page as an introduction.

We are forming a Lehigh chapter of the Pascal
Users Group. Joseph Mezzaroba (see attachment for description
of some of Joe's work) of the mathematlics department is the
principal organizer. We expect about 25 active members to
start with. You may wish to sign up the entire group to receive
the newsletter. Joe can be contacted in care of the Mathematics
Department, ILehigh University, Bethlehem, Pa.

Rance Delong of Moravian College and I gave a talk
to our local DEC RSX Users Group on SIL's (Systems Implementation
languages). We are users of PDP 1l!s., Discussed were: PASCAL
(as per Per Brinch Hansen of California Institute of Technology),
C (Bell Labs' UNIX) and BLISS (William Wulf of Carnegie Mellon
with HYDRA). I understand that a committee at DEC 1s evaluating
SIL's. (Committee members: Rodger Hamm and Leon Spitz at DEC
in Maynard, Mass.) They are leaning towards BLISS. I believe this
1s very unfortunate because BLISS 1s the most machine dependent
of the languages under consideration. I was hoping they would
follow the example of CDC and use PASCAL (e.g. the Series 17).
I believe that machine dependent SIL's (called MOL's - machine
orlented languages) are a step backwards in systems programming.
DEC would be better off following the lead of HP, Burroughs,
and CDC. Maybe PUG could have some influence on this decision
process.

Anyway, the talk was very well received. Most RSX
users were surprised to find out that for any given hardware,
UNIX supported 10 times thes number of interactive users that
DEC software did. :

Rance 13 hopeful of getting Brinch Hansen's PASCAL
running under UNIX. Any PUG members who have already done
this should contact us.

Sincerely,

(N

Richard J. Cichelli

R. J. Cichelli, J. Goodling, S. L. Gulden, J. Mezzaroba
Lehigh University
A CALCULATION OF THE HAMMING WEIGHTS FOR THE BINARY CODE (73, 28)

The binary code (73,28) is obtained as the row space of
the incidence matrix of the projective plane of order 8 where
the entries of matrix are taken to be in GF(2). The number
of non-zero vectors in this vector space is 228-1 = 268,435,455
A program to ;alculate the Hamming weight, i.e. the number of
non-zero ccmponents, of each vector was written in the program-
ming language PASCAL-6000 and run on the CDC-6400. The algorithm
used was a result of a series of refinements. The first algorithm
we designed was estimated to require 20,000 CFPU hours; the final
algorithm enabled us to perform the calculations in 2 CPU hours.
By imélementing a multi-precision arithmetic program in PASCAL
the weights of the orthogonal code (73,45) were calculated in
about 30 seconds using the MacWilliams equations. We comment
finally that the structure of PASCAL made the task of pfogram

design easier than had been anticipated.

Presented at Conference on Computations in Algebra and
Number Theory '
August 24-29, 1975
University of New Brunswick

9/6T “Y3AW3Ld3S S Y3LLIISHIN TvISYd

q¢ 39vd

. 3

: '] ﬂ UNIVERSITY OF MINNESOTA | University Computer Center o
R IS N TWIN CITIES 227 Experimental Engineering Buildin

Minneapolis, Minnesota 55455

March 15, 1976

George H. Richmond

Computing Center: 3645 Marine Street
University of Colorado

Boulder, CO 80302

Dear George:

Even though it would have been better coming from you, we feel that
time is running out this school year and therefore must announce the
transition of the PASCAL Newsletter to the Pascal User's Group
ourselves. I hope this is okay with you. Just the same, the precise
thing is happening that I didn't want: namely some people are

already confused about the presense of the User's Group without knowing
its relationship to the existing Newsletter.

We have received much mail from prospective members and to this add the
people who attended ACM '75. To broaden the base of support to users,
teachers, etc., we are doing a mass mailing to the largest university
Computer Science Departments and Computer Centers. Enclosed is our
cover letter and coupon.

We have sent an announcement to SIGPLAN Notices. Plans now are to issue
the newsletter in September, November, February and May and have
membership end on June 30 of the year. So membership is really geared
to an academic year and we plan to send all 4 issues of a given year

to a person who joins any time during the year. We are now soliciting
76-77 membership.

Now you can see that our announcement in Newsletter #4 needs revision.

Zurich wrote to us that Release & would be ready by now but we have
no word as to specifics, do you?

Now that #5 is back to September, 1976, I hope that takes the pressure
off of you. To have the best impact for the User's Group however,

it would really help if #4 appeared no later than May. I know you will
do what you can.

Also, please send as soon as possible: .
. a copy of your mailing list of any PASCAL users past or present,

. the xerox copies of correspondence you have had, code corrections
and suggestions sent you, bug reports, and examples of local
documentation,

any and all information on other implementations.

George H. Richmond
March 15, 1976
Page 2

The last item is most important. Confusion proliferates especially
as to the best IBM 360 version and where to get a Univac 1100 version.

If you don't have time to write a reply please call me Friday afternoon

612/376-7290. Thanks a lot George! Hope to see your membership soon.
sziz::izf’

Andy 6}/—

ABM:bln

Enclosure

9/6T "Y3dWILd3S G ¥3LLTISHIN WISV

9¢ 39%d

Georgia

stitute
UNIVERSITY OF SOUTHERN CALIFORNIA Ir(l)f

ICChﬂOlOgY SCHOOL OF INFORMATION AND COMPUTER SCIENCE | (404) 894-3152 | ATLANTA, GEORGIA 30332

UNIVERSITY COMPUTING CENTER . 1020 W. JEFFERSON BLVD.
LOS ANGELES, CALIFORNIA 90007

(213) 746-2957

April 5, 1976

Andy Mickel

University Computer Center: 227 Exp Engr
University of Minnesota

Minneapolis, MN 55455

Dear Andy:

In your announcement of the formation of a PASCAL User's Group,

I came across a memo from you to Tim that states that there are

now six IBM implementations of PASCAL. Since Tim no longer works
here, I would like some information about these implementations.
Would you send me information concerning where these implementations
are, if they are available for purchase, whom to contact concerning
each one, how they are differentiated, etc. Academic Services
currently has a version from the University of Manitoba, but
because of its core requirements, it is awkward to use at our
installation. We are looking for a one-step monitor that can run
in 120K. Do you know of any such implementation?

I don't know how well you knew Tim, but he is currently working for
the World Health Organization. If you care to contact him, his
address is:

Tim Gill

poste restante

1211 Geneva 27

Switzerland

We are joining the PASCAL User's Group under separate cover. Thank
you for any information you can supply me.

Sincerely,

. 7 . N
i TAATTE. S

Susan L. Stallard
Academic Services AN

SS:ks] ,/j

May 4, 1976

Mr, Andy Mickel

Pascal User's Group

UCC: 227 Exp. Engr.
University of Minnesota
Minneapolis, Minnesota 55455

Dear Mr. Mickel:

I goofed in my note on the PUG application blank. I still need Newsletter
iz (and_#4 when you get it).
nc 73 when you get it)

Here at Tech, as at many places, there is a distinct separation between the
computer center and the computer science department. The center has had the
PASCAL compiler on the CYBER for about 15 months now, but I do not think that
there was much use of it made. It appears that I am the first member of the
department to promote its use. I handle the operating system series and in
the graduate course we went through Brinch-Hansen's text so that we could then
move on to his SOLO system during the operating system lab course. As you
probably know, the SOLO package includes two PASCAL compilers —-- one for
sequential PASCAL (pretty much the standard) and one for Per's concurrent
PASCAL. The whole thing is written for the PDP-11/45. Right now I have
three teams trying to bring uphis sytem. One of them is doing it on the
CYBER. The approach there is to rewrite the kernel and interpreter in CYBER
PASCAL, make the necessary interfaces to have the I/0 look like the PDP-11,
and run the whole thing under NOS. Another group is working on the Burroughs
B-5700. They are rewritting the kernal and interpreter in ESPOL (ALGOL), and
when they finish the Burroughs will run under SOLO alone, the MCP will not be
used at all. The third group is working with our PDP-11 which does not have
floating point and has some other I/0 differences. All indications thus far
are that all three groups have tasks that are comparable.

I also have a group of special project students doing some system programming
for the Motorola M6800. I have been pushing them into the use of PASCAL for
the initial design of their programs.

A couple of questions: How many updates have been issued for PASCAL 6000-3.4
thus far? Who is distributing them now? Is that going to be Colorado or
you in the future? I have heard some talk about a new version of PASCAL

for the CYBER (for obvious reasons). Any other news on that?

Philip H. Enslow, Jr.
Associate Professor

PHE/ngh

P.S. Did you see the initial announcements of the new CDC line --- CYBER
18? The only high level language I saw mentioned was PASCAL.SE

9/6T "¥3qWILd3S G# Y3L1FTSHIAN TYISYd

£¢ 39Yd

HARRY M. MURPHY, JR.
3912 HILTON AVENUE, N.E.
ALBUQUERQUE, NEW MEXICO 87110
TEL: (505) 881-0519

; o i RS
{ ﬁg structured

D systems

200 Third Street Los Altos, Calformia 94022

Los Altos Office

23 May 1976
(RRC/ Structured Systems)

Pascal User's Group (415) S48-0877

c/o Andy Mickel

University Computing Center

227 Experimental Engineering Building
University of Minnesata

Minneapalis, Minnesota 55455

Dear Sir:

Please enroll me as a member of the Pascal User's Group as announced

in the May 1976 SIGPLAN Notices. My personal check for $4.00 for the currant

ysar is enclosed.

My howe address and telephone number are given above; my "official"
address and telephone number are:

Air Force Weapons Laboratory
SAT (Mre Harry M. Murphy)
Kirtland AFB, New Mexico 87117
Tel: (505) 264-3317

Ws recently acquired the Pascal 6000-3,4 compiler from the University
of Colorado and now have it running on one of our CDC-6600 computerse I am’
just starting to investigate to what extent Pascal may be a serious compet
itor with FORTRAN for the writing of scientific computer programs. Until
now, FORTRAN has been used almost exclusively for such work at AFwWL.

I selected as my first non=trivial Pascal program a general-purpose
weighted leastesquares polynomial fitting program which reads x,y,z triplets
from cards (one triplet per card) and which fits second through fifteenth
order polynomials to the data weighted according to the values of z_.e
Of course, I immediately ran into the difficulty of writing generalipurposa
procedures = such as one to solve a system of linear equations = whose
arguments include arrays whose dimensions are not known until the procedure
is called, This is a very serious omission from Pascal, since it implies
a serious lack of generality in procedures processing arrayss

I am looking forward to receiving the next issue of the Pascal
Newsletter when it appears next September, ’

o]

€‘0\.\)'”0,1,

QERICAY

(g

Py @
WnaNT®

7276-191%

26 May 1976

PASCAL USER'S GROUP

c/o Andy Mickel

University Computer Center: 227 Exp Engr
University of Minnesota

Minneapolis, Minnesota 55455

To Whom It May Concern:

We are currently working on one of the largest software projects undertaken in
PASCAL. There are currently seventeen PASCAL programmers coding different parts
of the system, and it is expected that twenty-five will be required for the
latter phases of the project. We are using a version of the University of

-Illinois compiler, which runs on and generates code for the DEC PDP-11/45 machines

which are being used for both the development and target systems. The compiler
has been extensively modified to allow the integration of separately compiled
code modules and data bases, to extend pure PASCAL in certain dimensions, and to
make use of certain hardware features of the PDP-11/45 and PDP-11/70.

Other members may be interested to learn that we have an immediate need for at
least five programmer/analysts with PASCAL experience. Experience with compilers
for PASCAL-like languages and with the PDP-11, along with some industrial as well
as academic experience, would be relevant. We will be able to pay extraordinary
fees (between $2000 and $3000 per month) for a well-qualified wizard. The
different positions on this project are expected to last between three and ten
months, with the possibility of further structured programming and systems work
on other projects, according to the interest of the programmer.

We would be very grateful if the possibilities for participation in this project
could be brought to the attention of interested and qualified members of the
computer science community, either through the Pascal Newsletter or in any other
forum which seems appropriate. Interest applicants should contact David Shaw at
(415) 966-2082 or (415) 948-0877 (messages) immediately.

Many thanks for your assistance. We look forward to receiving the Pascal News-
letter, and would be grateful to receive all back issues and any membership and/or
installation lists which may be available. Please bill us for any associated cost.

Sincerely,

TR -

\ij ~el "<£.S’Z-’1 w7
David Elliot Shaw
Division Manager

DES :mbh A Division of International Monitor, Inc.

9/6T “¥3dl3Ld3IS S# YILLFISMIN TvISYd

8¢ 39vd

JET PROPULSION LABORATORY California Institute of Technology s 4800 Oak Grove Drive, Pasadena, California 91103

27 May 1976
Refer to: 914.12/2592

Pascal User's Group

c/o Andy Mickel

Univ. Computer Cntr., 227 Exp. Engr.
University of Minn.

Minneapolis, MN 55455

Dear Mr. Mickel:

You will find enclosed my check for $4.00 for membership in the
Pascal User's Group.

My own main interests are in numerical analysis and mathematical
software. I am a member of the IFIP Working Group 2.5 on Numerical
Software and I was editor of the SIGNUM Newsletter from 1972 through
1975. I try to keep informed on programming language developments
that may have significance for the development of portable library-type
mathematical software.

So far, the Pascal language appears to be unsuitable for this type of
application, due to the lack of something equivalent to the adjustable
dimension feature of Fortran. For example it does not seem to be
possible to write a library procedure in Pascal to operate on an nbyn
matrix A provided by the calling program.

I would be particularly interested in obtaining information on a Pascal
compiler for the Univac 1108. So far we do not have a Pascal compiler
on our JPL Univac 1108 systems.

I wish you and your colleagues good luck in launching the Pascal News-
letter. C

Sincerely yours,

Dr. Charles L. Lawson, Supervisor

Applied Mathematics Group
. MS EE=pE3E8 /25//2 8

CLL;lh

Telephone 354-4321 Telex 675421 Twx 910-588-3294

ONIVERSITY OF COLORADO
BOULDER, COLORADO 80302

COMPUTING CENTER

18 June 1976

Mr. Andrew B. Mickel

University of Minnesota
University Computer Center

227 Experimental Engineering Bldg.
Minneapolis, Minnesota 55455

Dear Andy:

I have finally managed to assemble the material I promised you
several weeks ago. The delay has been mine. Enclosed you will find a
multitude of items including the rough draft of the fourth PASCAL News-
letter. Let me outline them briefly.

1. Various documents written by Wirth's group: 'On Code
Generation in a PASCAL Compiler', "PASCAL-S: A Subset and
its Implementation', "The PASCAL(P) Compiler: Implementation
Notes", and "An Axiomatic Definition of the Programming
Language PASCAL".
2. Rough draft of Newsletter 4. Please send me your comments
as soon as you can. g N) 3
5. Variows ivems associated with PASCALS. clisfribtion —robec dpecatels
4. Various items associated with PASCAL-P. Aistvi bk i
S. Copies of Newsletters 1, 2, and 3.
6. A computer printout of the full PASCAL mailing list.

When I get a chance, I will make copies of all of our previous
correspondence from Switzerland.

Hope to hear from you soon.

Sincerely,

G At

George H. Richmond

GHR: ejh

Enclosures

9/6T “Y3AWILd3S G# YILLATSMIN TWISYd

6¢ 39vd

=] UNIVERSITY CF

; 7 WORTH CAROLINA AT CHAPEL HILL
!‘ el) Departmeat of Computer Science
18 June 1976
Dear Andy,

Thanx for the information on the new PASCAL-P compilers. My
own work is with compiler-writing systems, and I planned on using
the P-code compiler as a base for (extensive) modifications. Doing
so saves the hassle of me writing scanners, parsers, and other
irrelevant (but necessary!) subroutines.

My second goal, of course, was to install a usable PASCAL compiler
here at UNC. In fact, just last week I installed the Stony Brook
compiler on our 360/165 -~ should anyone inquire, it seems to be
buggy. I1've already sent off several bug reports; I have a few
more sitting on my desk. Because of that, I doubt that I'll order
the P4 compiler; I've spent too much of my department’s money on
PASCAL compilers, and I don't think they'd be too happy about yet
another. I have completed (I think) a set ofmodifications to the P2
version that should let me do what I want, though it is apparent that
I will not be producing a production~quality compiler. At any rate,
I'11l wait at least until George Richmond has it available before
making any decisions.

Incidentally, I suspect that the PUG will (eventually) be deluged
with requests/comments/bugs in the SUNY compiler. They are no longer
running student jobs on a 370, and I suspect thatthey'll discontinue
maintenance in about a year,

I'm glad to hear that PUG is catching on. - If I find time and a
topic, maybe I'll send you an article. In the meantime, my main efforts
(other than finishing my dissertation) are devoted to convincing people

~ here to use PASCAL.

,‘/‘
e
.

(*Steve Bellovin*)

“emel Hill, Morsti Cacstina 27514 Telepnons 919-933-

i
i-

TEXAS DEPARTMENT OF MENTAL HEALTH AND MENTAL RETARDATION

TEXAS RESEARCH INSTITUTE OF MENTAL SCIENCES
1300 Moursund, Texas Medical Centur, Houston, Teeas 77020 713 797-1976

JOSEPH C. SCHOOLAR. Ph.G, M.D.

Kenretn D. Gaver, M.D. DIRECTOR

Commissianer July 1, 1976

Pascal User's Group

c/o Andy Mickel

University Computer Center: 227 Exp. Engr.
University of Minnesota

Minneapolis, Minnesota 55455

Dear Andy:

I'm happy to know that you're forming a Pascal User's Group, and am enclos-
ing my membership dues. I don't currently have access to a Pascal Compiler,
but hope that you can give me information on how to get one. I'm writing
to George Richmond for a Pascal-P2 order form, but would be interested in
leads on existing implementations for the following machines:

Operating Main Memory Disk Capacity
CPU System (words) (Bytes)
PDP 11/55 RT-11 32K Core 5 Meg. Disc.
HP 2100 RTE 32K Core 4.8M Disc.
CDC 7316 Nos. 1.0 131 K Plenty

I'm most interested in getting Pascal for the PDP 11/55. This system will
be used for signal analysis of biological signals such as EEG and evoked
potentials. I hope to use Pascal for applications and system level program—
ming instead of Fortran.

The rapid proliferation of Pascal without support from a major manufacturer is
the most encouraging note I've seen in several years. I hope that the User's
Group can keep the mementum up while providing an arena for discussion of pro-
blems, improvements, standardization, portability, etc. I hope to hear from

you soon and am looking forward to the Newsletter in September. Thank you for

your help.
Sincerely,
James A. Kendall
Psychophysiology Section

L JAK: 3

An Equal Opportunity/Attirmative Action Employer

9/6T “Y3WILd3S G# YALLIISMIN T¥ISVd

O 39vd

m The University of Calgary ABT ASSOCIATES INC.
DEPARTMENT OF COMPUTER SCIENCE

? 2920 24 AVE. N.W.
Q\\ \ f57 CALCARY, CANADA TELEPHONE: (403) 284-6316 55 WHEELER STREET, CAMBRIDGE. MASSACHUSETTS O2138
o

W

N \!7 T2N IN4 TELEPHONE + AREA 617-492:7100

D)
Qezs”

July 22, 1976.

Andy Mickel, P.U.G.,
UcC: 227 Exp. Engr.,
University of Minnesota,
MINNEAPOLIS, MN 55455,
U.S.A.

Dear Andy,

At the University of Calgary, Pascal is mainly a teaching
language. I've been working with it heavily in my research on
several fronts mainly as the vehicle for a program to solve Go
problems.

Some students here have taken the Pascal 1 compiler
as a base and have developed a very interesting language of their
own in the attempt to firm up a number of Pascal's rather obvious
clay feet. Anyone interested in this kind of thing should direct
an enquiry to Mr. James Gosling; I won't steal their thunder here.

Like most of us, I suppose, I am not a "professional
Pascal programmer" (what a droll concept!) but just a person who
has found Pascal an excellent vehicle for my thoughts; of all the
programming languages I have available, it is the "least bad".
But it isn't the best.

When talking about this lovely language with skeptical
physicists and the like, the rock I always founder on is that Pascal
is incompatible with Fortran. One can't write Pascal subroutines
to be called by Fortran, one can't use named common, and one must
use a run-time-stack. Hence, potential Pascal users have to convert
everything or forget it.

They forget it, and this seems sad to me. If a Pascal
implementation could go into direct competition with Fortran, I
believe the world would benefit. And I see nothing in the Pascal
language to forbid the development of such an implementation, given
@ convention for named common ("own', if you prefer), a "nonrecursive"
attribute for procedures and functions and something to allow the
passing of arrays when the subprogram must be given the dope vector
at run time.

Surely all this is obvious, and I'm just writing it
to ask: Who out there has written a Fortran-subverting Pascal
compiler?

Very truly yours, "

ijﬁ 'r\é;’“ K\

Stephen Soule.

23 July 1976

Andy Mickel

PASCAL Users' Group
ucC: 227 Exp. Engr.
University of Minnesota
Minneapolis, MN 55455

Dear Andy:

Thank you very much for the mods you sent me in the mail, and
the nice phone call. However, I feel it my duty to take you

to task over a small issue, the form of your modsets. Although
MODIFY is in many ways superior to UPDATE as a library mainten-
ance tool, PASCAL is distributed in UPDATE format, and in fact
mods in the past have always been sent out in UPDATE format.

If we are to be serious in our attempts to bring about the revo-
lution in computing we support, we must take extra efforts in
the direction of standardization.

The reason for the "heat" is that, although several, if not all,

of the modifications you sent will be useful to us, the number-

ing scheme (MODIFY's) is completely incompatible with the form

in which we maintain our compiler (UPDATE), and cannot be installed
without a great expenditure of time and effort.

I would therefore like to propose a "standard for interchange" of
modifications and extensions to PASCAL-6000:

o All modsets would be in UPDATE compatible form.

o All modsets would be based upbn Release 2 and would state
all dependencies upon other modsets.

e All modsets would contain, as a minimum, the name and
institution of the author, the date of the mod, and a
brief explanation of the extension/correction.

I would also like to suggest the formation of a "standards com-
_mittee" which would review proposed extensions and modifications
" for compatibility with the spirit and letter of PASCAL. Although
this may seem unnecessarily formal, without some standard (and
regulated growth), PASCAL will become another BASIC, a hodge-podge
with so much variation that it is almost guaranteed that one man's

9/6T “¥3AWILdIS G# Y3LLIISMIN TWISYd

Th 39vd

BASIC program will not run (or even compile) on another man's
machine. Should this happen, the possibility that PASCAL will
replace or compete with FORTRAN will remain only a dream.

I would like to recommend that Nick Wirth be involved in this

effort, and every attempt be made to solicit ACM involvement and

sponsorship of the standard. With the rapid growth of PASCAL,
the time to strike is now. Waiting for an indigenous group of
PASCAL users or manufacturers to sponsor such an attempt might
prove to be disappointing.

To further the development of the interchange standard, I have

enclosed a small tape on which I wish you would write the modsets

you presently have (the ones you sent me) in UPDATE compatible
form. I would be very grateful if you would then return the
tape to me for inclusion in our compiler.

Sincerely yours,

Michael Patrick Hagerty

Director of Systems Research
and Design

enc.

P.S. Add to the three points earlier that mods to the Zurich
compiler should be made through one centralized distribu-
tion point, so that the "willy-nilly" exchange will not
become a stumbling block to development of interesting
ideas and features.

T woeald be most ‘aﬂgmhtvg ‘:} 3,\. M“ wete,

&ow“?ﬁ&:ﬁg ok -H..‘ U o%_ m" o .(,(""'aec_% I
Beeomd 8“‘ dkwl\‘: ‘

This note, written a day after the previous two pages is to
serve as an apology for the harshness of the earlier text.

1 do hope that those comments will not be interpreted as a
personal assault, but as constructive and supportive of your
present efforts. Sort of like a call to "gird up your loins."

In the meantime I have had another opportunity to go over the
Tistings you sent, and would like to suggest that the formatted
read routines for real and integer be included in a manner
similar to the formatted write routines:

READ (f, I:w, R:w:d)

This should prove useful in the business community, and allow
them to move away from PICTUREs in COBOL.

I also had the chance to look through Urs' masterpiece, and
noticed that the VAR declarations are stored, as you said, in
push-down order (LIF0). 1 thought you mentioned something
about a mod to reverse this order, and after looking though

the modsets you sent, I did not find one. If you have a modset
which allocates the items left to right, I would appreciate
receiving a copy of that set as well.

Assuming that you will find time to produce the document, "U of
M PASCAL User's Guide," I would be overjoyed to receive a copy
when it is completed.

Thanks again for the material and the call. Looking forward to
a long and close relationship, I remain

Sincerely yours,

Good luck on getting the mods that were to begome geZease
3 out of Nick and Urs. Those mods, with the t and
structure initialization from your shop, will prove to be
very powerful indeed.

9/6T “¥JdWILd3S a# YALLFISMIN TWISYd

¢h 39vd

ONIVERSITY OF COLORADO
BOULDER, COLORADO 80302

COMPUTING CENTER

23 July 1976

Dr. Niklaus Wirth

Eidgenossische Technische Hochschule
Institut fur Informatik
Clausiusstrasse 55

CH-8006 Zurich, Switzerland

Dear Dr. Wirth:

I appreciate your concern expressed in your letter of 17 Jume 1976,
so I will clarify my position (and that of the Computing Center) with regard
to PASCAL. . .

Recently, I have been working long hours on other projects. That
situation has eased somewhat. Also, interest in PASCAL has grown over the
years so that some of the responsibilities that I initially carried have
been shifted and others will follow. The result has been slow response to
letters and orders. That situation will improve as things get better organized
here.

The first change was to involve our group's able secretary, Jan
Hurst, in several aspects of PASCAL. For the last year, she has been.pro-
cessing orders for PASCAL2 and now PASCAL3.

The second step was the PASCAL Newsletter. One of the problems
was the irregular intervals at which it was published. Andy Mickel has now
assumed that duty and promises to put the newsletter on a regular basis. As
‘material for a newsletter has been accumulating for over a year, I agreed to
publish one more. newsletter. Urs Ammann recently received a rough’ draft
and I hope to have the fourth newsletter in the mail to you about 1 August
and back from the printers in bulk by mid-August.

The third change was to select a distributor for Australia (and
surrounding regions) that would serve the same purpose as I do in the U.S.A.
Overseas mailings have always been a problem in shipment time, reliability
of delivery, postage costs, and completion of payments. Carroll Morgan has
assumed this position now.

That leaves Jan and me with the filling of orders and mailing of
corrections for PASCAL (CDC and portable versions) in the United States.
This task is manageable and we will continue to do it. Once the fourth news-
letter is out, the remaining problem will be cleaned out.

Dr. Niklaus Wirth -2- 23 July 1976

In the long run, it may be possible for the PASCAL User's Group to
become a self-supporting organization like VIM (for CDC users) and SH@RE (for
IBM users). At that point, we should consider turning over distribution of

PASCAL (for all machines) to them.

I hope this letter will clarify my position and put your m?nd at
ease somewhat. I am most enthusiastic about PASCAL and hope to see 1t grow

with' each passing year.

Sincerely,
George H. Richmond

GHR; ejh
cc: VA. Mickel

9/6T “¥3AWILd3S G Y3LLFTISMIN TWISYd

¢h 39vd

The IMPLEMENTATION NOTES section of the newsletter is organized as follows:

1) A checklist for more information about distributed implementations of
of Standard Pascal.

2) Information concerning Pascal-P, a "portable" compiler of Pascal for a
hypothetical "stack machine". It comes on tape as a kit and is used
to produce compilers for real computer systems.

3) Other portable compilers: Pascal Trunk compiler, PASCAL-J, and Pascal-S.

4) Information about compilers for real computers sorted by computer system.

(*Note: We simply don't have enough implementation/distribution information. People
especially need to know those things that will make them intelligent “consumers" of
Standard Pascal systems (see POLICY section inside front cover). One need not adhere
to a rigid format when sending this information for inclusion in the newsletter.
However it would probably be a great thing to follow the checklist below, and if you
desire, supply a short order form (both "camera-ready"). Users of particular
implementations are encouraged to share their experiences by sending qualitative and
quantitative descriptions. Attach either of these (distribution info or experiences)
to an ALL PURPOSE COUPON. Please realize that individual requests to me for
implementation information outside the context of the newsletter will be a great
hassle.

I must apologize for the incompliete nature of the information following.
It will take at least until Newsletter #6 to get fully organized. By far the most
requests that have come to me have been for DECsystem 10, PDP-11, and IBM 360/370
Pascal compilers. This issue of the newsletter will concentrate on those and a few
others. -Andy*)

CHECKLIST

. Names and addresses and phone numbers of implementors, maintainers, distributors

. machine(s) (manufacturer, model/series)

. operating system(s), minimal hardware configuration, etc.

. method of distribution (cost, magnetic tape formats, etc.)

. documentation available (machine retrievable?, in form of supplement to the
the book Pascal User Manual and Report?)

. maintenance policy (for how long? future development plans? accept bug reports?)

. fully implements Standard Pascal? (why not? what's different?)

. compiler or interpreter? (written in what language? length in source lines,
compiler or interpreter size in words or bytes (specify base) of __ bits,
compilation speed in characters/second, compilation speed compared to other
language processors (e.g. FORTRAN), execution speed compared to other language
processors (e.g. FORTRAN)) .

9. reliability of compiler or interpreter (poor, moderate, good, excetlent)

10. method of compiler or interpreter development (from Pascal-P, hand coded from

scratch, bootstrapped, cross-compiled, etc; effort to implement ___ man

months, experience of implementors)

0~ oy (3,10 - WOCH S B g

¥

EIDGENUSSISCHE
TECHNISCHE HOCHSCHULE ZURICH

PASCAL-P

Institut fur Informatik

Clausiusstrasse 55 ' AR AR
CH - 8006 Zurich
,oO17326211

A new release of the PASCAL-P system.

Terminology:

Pascal Pl: either of the early Pascal P systems (released in
March and July 1973 respectively).

Pascal P2: the Pascal P system released in May 74.

Pascal P3: the new Pascal P system with the same hypotnetical
machine as the one underlying the Pascal P2 system.

Pascal P4: the new Pascal P system with a slightly modified
hypothetical machine (allowing a more efficent
implementation).

Pascal P3

The compiler is improved in many details. It does, however,
still generate code for the old P2 assembler interpreter. The
characteristics of the P3 system are:

- “Full’ compatibility with the P2 system.

- The two records of the assembly code produced by the
compiler are terminated by the symbol 'Q° instead of two
‘end of line .

- All known bugs are corrected.

- Character set independence.

- Runtime tests are included (indexing, assignement to
subrange variables, and case selection are checked for
legality.) .

- The standard functions “succ’ and ‘pred’ are implemented.

- The usual default conventions ‘readln = readln(input)’
etc. hold.

Pascal P4

The compiler generates code for a modified assembler-
interpreter. The characteristics of the P4 system are:
- It contains all the improvements of the Pascal P3 system.
- An enlarged set of instructions is used. All instructions
now handle exactly one type of expression (or have a type
indicator). This allows to eliminate book-keeping of type
information at runtime and of tag fields in the stack. No
implicit type conversion takes place any more. Instead,
explicit type conversion instructions are generated by the
compiler.
- The compiler respects possible alignment conditions for
the allocation of data.
- A runtime -test on pointer values is provided.
- A test on runtime stack overflow is generated by the
compiler at procedure entry. '

9/6T “¥3dWILd3S G Y3LLFTSHIN TYISVd

h 39vd

Explanations of the installation parameters

intsize,realsize,charsize,boolsize,setsize,ptrsize:
Number of addressable storage units to be reserved for
variables of type integer, real, character, boolean, set,
pointer. As to ‘setsize’, remember that a set must be able
to hold at least 48 elements if you intend to use the system
to bootstrap the compiler.

intal,realal,charal,boolal,setal,ptral:
Variables of the corresponding types will be given an
address which is a multiple of these alignment constants.

stackelsize: Minimum size for a value on the expression stack.
The expression stack is that portion of the stack which is
used for the evaluation of expressions. ‘Stackelsize’ has to
be equal to or a multiple of “stackal’.

stackal: Alignment constant for a valu on the expression stack.
‘Stackal’ must be a multiple of all other alignment
constants and must be less or equal to “stackelsize’.

strglgth: Maximum length of a string. (in fact all strings will
be of length “strglgth’). A string must be able to hold the .
character representation of a number (real or integer) with
its sign. The minimum length for a bootstrap is 12.

intbits: Number of bits used for representing an integer without
the sign. So the largest integer is

intbits
2 -1

sethigh,setlow: Maximum and minimum ordinal values for the
element of a set.

ordmaxchar,ordminchar: Maximum and minimum ordinal values of the
character set.

Depending on the alignment conditions there may be two
possibilities for the assignment of store on top of the
expression stack.

- Each stack element requires the same amount of store: In this
case ‘stackelsize’” has to be greater than or equal to the
maximum of the other size constants. (Remember: ’‘stackelsize’
is a multiple of ’“stackal’)

- No waste of store: A new element on the expression stack has
to be placed at the next position allowed by the alignment
constant “stackal’. In this case “stackelsize’ has to be
less than or equal to the maximum of the other size
constants.

IMPLEMENTATION NOTES

- 3 -
Format of the Tape
No. of tracks : 7
Density : 809 bpil
parity : odd
Pnysical record length : 5128 frames

the last physical record of a
file may be shorter than
5120 frames.

. Code:
~. second octal
L digit
first \
octal digitn 8 1 2 3 4 5 6 7

[*] A B C D E F G
1/H I J K L M N O
2P Q R S T U V W
3ix vy z 6 1 2 3 4
415 6 7 8 9 + - *
54/) §$ = o 4 .
6 [1
7 it < > :

The end of line is represented as a series of two to eleven 08
frames.

The last eight frames of a file have no meaning (the last 8
frames of the trailing short record of a file).

Interrecord gap : 3/4"
End of file gap : 6"
End of information = 2 end of file gaps

The handling charges include the costs for generating the binary
versions of the compiler, a minitape, and postage.

with kind regards

[PUERPPPEAS

Ch. Jacobi

(SOURCE INFORMATION, PROPOSALS FOR EXTENSIONS TO STANDARD PAscAL,

Buc RePoRTS, PROGRAM WRITING TOOLS, ETC.)

9/6T “Y3dWILd3IS G# YILLATISMIN TYISYd

Gh 39vd

Order form for the revised Pascal P system.

Please provide us with your revised Pascal P system according to

the specifications on next page.

Address for delivery of the system

The characteristics of our installation are

Machine type

L]

Installation parameters (to be filled for case ‘A and ‘B’

below)

intsize

realsize

charsize

boolsize

ptrsize

setsize

stackelsize

strglgth

intbits

sethigh

ordmaxchar

intal
realal
charal
boolal
ptral
setal

stackal

setlow

ordminchar -

we order

A [] (For new users of Pascal P or users of the Pascal Pl

system)

- Pascal P4 comviler (in Pascal).

- Pascal P4 compiler

{(in P4 code).

- An assembler interpreter of P4 code (in Pascal, for
documentation purposes, all alignement and size
constants are set to 1).

- Pascal P compiler
list.
Charge SFr 160.-

implementation notes with update

B[] (For users of the Pascal P2 system)
- All of the above package, plus:

- Pascal P3 coumpiier

- Pascal P3 compiler

- Pascal P4 compiler
compilation on the
P4 interpreter.)

(in Pascal).

(in P3 code, = P2 code).

(in P3 code). (1/2 bootstrap, for
P2 machine of test programs for the

- A file containing the changes made with line numbers.

Charge SFr 296.-

C E] (For users who have access to a CDC 6888 Computer and
want to experiment with the compiler)

- Pascal P4 compiler

with some changes, so that it is

accepted by the Pascal 6008 compiler (in Pascal). (All
installation parameters set to a standard value.)
- An assembler interpreter (in Pascal, as in package

Ay,

- Pascal P compiler implementation notes with update

list.
Charge SFr 80.-

(*Note: prices are most certainly different in the Americas and Australia -

more next newsletter.¥)

Signature

If you are in Europe, Asia, or Africa, order Pascal-P from:

Ch. Jacobi

Institut fiir Informatik
E.T.H.-Zentrum

CH-8092 Ziirich

Switzerland (phone: 01/ 32 62 11)

In North or South America:

George H. Richmond
Computing Center: 3645 Marine St.
University of Colorado

Boulder, CO 80309 USA (phone: (303) 492-8131) Sydney, N.S.W. 2006 Australia

(note change in address and phone)

In Australia:

Carroll Morgan

Basser Department of Computer Science

University of Sydney

9/6T “Y33Ld3S G# YILLITSMIN T¥ISYd

9 -39Yd

FAsCAL=-F wuestionnzire

PASCAL NEWSLETTER #5 : PAGE 47

Plgase fill out and return at your esrliest convenience.

YOUT 8ddrESS: eeceecsssecanasaessss UUr address: Institut fir Informatik

® 4 0 0 006 0000000002005 00 PASCAL"P QUBStiDnnaire
8 0 0000000000000 0 ETH-'ZentI.‘Um
® & & 2000200080000 0o CH-‘8092 ZUIiCh

Dc you want to be kept on our PASCAL-P mailing list? E:]yes [(Jno

Will you order or have you ordered the June 1976 version

of our PASCAL-P system? E:]yes [:]no
2. Did you receive an earlier version of our PASCAL-P
system? ‘ [:]yes [:Ino(exit)
3. Which version? [_JMarch 1973 '[:]July 1973 E:]May 1974
4. This PASCAL-P system -
[:] was never installed. REESON: 4tuiiieeecervensaosscssossososscansncas
..O.‘..Q"‘C...O.‘...'lAl........l..IC.I‘......0...Q‘.........(exit)
[] was installed and was operating, but isn't used any more.
Reason: ‘...C.l......l...“....l.l..’.'...’l...‘...‘...’I....'..."Q
O."l‘.l....00........Q..C...l...".‘D...A...‘l...l....’......(exit)
[:] is operating.
5. [:] It is interpretive. The interpreter is written in(language).
[:] It was bootstrapped. Method:..i.iiieieeroeeorsoacesosescsossosceoannnscons
6. The total effort to bring this PASCAL system to the present state was
.............man'mﬂnths.
7. Comparison of compilation requirements:
programming | space: number of kilo-words speed: number of character pro-
language needed by compiler cessed per central processor
second
PASCAL
FORTRAN
The maximum number of central memory words availlable for a single job is
ee.....K words (1 kilo-word = 1 K words = 100045 words).
A central memory word hasbits.
8. Comparison of execution requirements:

programming| kilo-words needed |[compactness of code speed (>lequicker
language by runtime support|(>1ecompacter than FTN) [tharr FORTRAN)
PASCAL

FORTRAN 1 1

® v e 0% a0 000

PASCAL NEWSLETTER #5 SEPTEMBER, 1976 ' PAGE 48
9. The actual length of the PASCAL compiler issource lines,
The number of replaced or inserted lines 15 v..eeese

10. The reliability of the éompiler is
[:] poor E:] moderate [:] good { excellent

11, The use of PASCAL is '[:] batch [:] interactive.
12. The PASCAL system is used for

usage

S

purpose

none little moderate extensive

experimenting

student courses

production

e 69 e 08800000

13. Tendency of usage: [:] increasing' [:j stable [:] decreasing

14, Standard PASCAL constructs which are not available: ‘
[:] program heading [] several standard procedures/fuhctions
[:j formal procedures/functions [:] sets of the form [(exp)..(exp)}

[:] files [:1 ceesecan

15. Local extensions Of PASCAL a‘re L R I N R N A I R I R N R R A A e R R N R

® 6 0 9 20 0.4 0 0000 000G SO OGO CO 0O N O 0P O 0000 L0 L0000 0T SN eLEON L OEELENOIGEESES

16, The PASCAL system is running

on a oo.o.ooonoonocoootcooooo.otol0000ocooo‘o(machine type)
UndEI .A.oio..oo.o.ool..oooaococ.oo'oonooooto(operating System)

17. The main problem with the PASCAL system 1s .uieeeecvevccrscsssoocncnnsas
18. Do you distribute your PASCAL system? [] yes E:]no(exit)
19. The PASCAL system was sent t0places. '

QXitS ccmments:.ocoucbl-l.oootoo00lto.oo.00..00--'0000-00..000.lcoooo.oo.tbo‘
® © 5 & 3 & 5 0 9 SO L0 L0 260N G0 O N E0 0L 0L EO L LB 0SS COP N LN OO 0P 0L ENEOILNINSEESELOE NS

LI I I I T I I I I I I I O I R R I I I I R I I TR T B B R N S L I I I S I O A IR B B I Y

*

Thank you for your collaboration!

5 March 1975
(*Note: This is old, Pascal-P2 ordering information from George Richmond for

persons in the Americas. It is included here to provide further details
which are certainly similar for Pascal-P3 and Pascal-P4.*)

The PASCAL-P Distribution Tape

The PASCAL-P distribution tape may contain either an unconfigured or
configured version of the PASCAL-P compiler. The tape may be written as
a CDC binary format tape (808 bpi, 7 track, NRzI, odd parity, 5128
character records), as a blocked BCD format tape (800 bpi, 7 track,
NRZI, even parity, 1608 character records), or as a nine track tape
(1660 bpi, 9 track, PE, 1606 character records). Your tape is:

Unconfigured
Configured

CDC format

BCD format
Nine-track format

[T

Unconfigured Compiler

The unconfigured tape contains three files of information follpwed by
the same three files again as a duplicate in case of a tape error. The
contents of the three files are:

.

File 1 Interpreter
File 2 Unconfigured Compiler
File 3 Editor ~

The interpreter is a non-operational Pascal program which documents’

how to interpret P-code. The interpreter reads P-code from a file and
stores it in memory. Then it interprets the P-code for execution.

The unconfigured compiler is written in Pascal and generates P-code
for output instead of machine coge. This compiler is unconfigured
because of the double dollar signs ($$) placed in the text for
replacement by .the editor. To produce a compiler system instead of an
interpreter system, the code generators must be rewritten for the target
machine.

The editor reads the unconfigured compiler and configuration
parameters and produces two versions of the compiler. The first version
is acceptable to the standard Pascal compiler for -CDC machines and the
second one is acceptable to the PASCAL-P compiler. The first one |is
compiled and run on a CDC machine. The second one is accepted as input
to the first PASCAL-P compiler and P-code is generated for the target
machine.

5 March 1975

Configured Compiler

The configured tape contains three files of information followed by
the same three again as a duplicate in case of a tape error. The
contents of the three files are:

File 1 Interpreter
File 2 Configured Compiler
File 3 P-code Compiler

The interpreter is the same one that is on the unconfigured tape.

The configured compiler is the second version output by the editor as
described above. It has the configuration parameters supplied with the
order for PASCAL-P inserted into the unconfigured compiler.

The P-code compiler is written in P-code. It is the output of the
PASCAL-P compiler run mentioned above. It is equivalent to the result
of running the configured compiler in file 2 against itself. Once a P-
code interpreter 1is constructed, it should be possible to compile the
compiler and produce the same P-code as in file 3.

Characéer Sets

The attached character set table indicates the correspondence between
Pascal graphics and code combinations on tape. At the left, ETH PASCAL-
P is the graphics used in this system. Column A is used for CDC format
tapes. Column B is used for blocked BCD format tapes. And column C is

used for nine-track format tapes.

Note

For BCD and nine-track format tapes, the record size is 88 characters
blocked 28 for a block size of 1600 characters. It is unfortunate that
some of the lines of the unconfigured and configured compiler source are
longer that 80 characters. These long 1lines will appear as two
consecutive 88 character records. Depending upon the text manipulation
facilities available at your installation, you may rebuild the long
lines or split the source statement at a more appropriate point.

9/6T “¥3AWILd3S G# YILLFISMIN TYISYd

6 39Yd

PAGE 50

.

TER #5 .

e e

t -
.
.- pm—

. ——
A SR
N S

steTemmeR, 976 1

PASCAL NEWSLET

QIoypwu g

ITHR>*JEZY

1
.
_

VaRsTuvw

m.u“_m..~m"_.~wmwm
FE T h..__. {
:“:;:T_:

. . H '
- . ; FeT o ~m— o
. .mn»oii?unpw.wL-NA.Lnﬁ-iﬁr.i T m [! - 6556@677 :)
C) P ”M_"w_‘ i ! : .
' : H . o P ! ' . Foa
Recommended |_Graghics (PN Train) @A%cDEFG ITHP% JIXO DIXNETIS3 XrNO~-NMme+ NOPRIOET & N rs = tweas |—d Qg vAaen Tae mmh
Chacacter 1 1 I EHEE Tl h.“.m
Canversions| (Hed —ursrOT RWe-NAadd PUCNMIINDG rueO-uUmd NIt ®RewWOU —~pAampuWOolK LUTIARLQO ORJIWITwu 1w LT
ode “x VUUVUUU JVUPRARRA AQPWU MWL dNuwwpbuld wplildold Idhbrddvd FPoeNrudin Shdopnontd S;Wn,
L0
L [T T EEzs
T8M Graghics (PN Teain) TP UpWLY ITHhx JdSZ8 oM uF3I>3 X>MO~mumd 567%94.» NIEVHE rne A DI (O ~0f- <+ — S0
. [T 1 TPt 11 TTITTTTT
Nine-Track C 3 9 v U ®i23+561 ®Wr-—umding treumrdnd PR O—-nMmg NON®XCQO0U —VUPNOP® WLowuROlW AWOWLARWWL
ing=- lrac o0de (Hex VUuUVUyUUVUU UVAPRPARA APPRUWWWY wwwlhbilupl wituunnold 9vwebhaedd Shwr-MYAYS V4t -
. 9
mﬁ | P m *C “NPEnO~ O-=uMdtine FO-UNMEBY FO-a—-nmd NONO-D00E ~ddmMomm VNI INUN WNONMSIN NSO %.
xlevnal BC Ocla Du VOOV WUWYWYW DPdddddd subLanpNUN AOMe0000 OD0—=W&N NMEV-NM~ M—M==MM bbb~ -
o}
Dieplay Cod @*.O AH O-UMJID™ O—nMENNION O —-nMEnd~ O—-dMEnIN O~NMEnoh Q—-fMINON 0 -t O O —nmdino i~ -
Spiny e \Vela 00000000 —mo=m o ANUNNAURUN MMEMOMION ddddrstd MHRINLNG VIV Vw0 NS NSN m 3
13
— -
¢ EIH PASCAL-P| OCoUBwuY IHhYXIEZQ o08nk3>3 A>MO-pmmE hOhwot 1k ~wrnwt ~o ~ unuQROD Qv A2~ |, uLM
.J.ms ETH PASCAL QemUPwLyY THRxJL22W 6dxunbI>3 ArHo-pme LOrVelt & Nvrur s s mRedwd e emVAWNT r\m..wu;::w
P4y ¢pc 713 @TRUPWLY THhyJI£28 LOXNFI>3 A>MO—[ME NONN- e IR Nwmwl re 3 unes BB <EvAGAR@ - Yshhﬁ.
34 TTY] @TUOUAWLE THhxIZ2ZH A0YLNFI>3 X>rmuO—mms LISWetlk Nvrenr o 2 wmes da0@ R vAD~O - .Nne«
't >¢ CcVC ASCTIT | CTHMYPWLY THAxIIZQ SFLUFI53 X>ado=nme+ Lorort) b Nwruwr o0 funsts |- - ~va@/ < JMQMh
933 €PC 64 |, | ~€wUPwKyg IHh¥JIE20 AOXNEY53 X>mo—Nme LWIFors T8 Nenbr e uptet) ¢ eaNAATe WOV
cyc 63 ' X rHNO ~niMmg- 1% N\vreil e umaigd ¢ e2vauAre OF

&

e d e

R B

PASCAL Trunk CoMPILER

In 1975, H. H. Ndgeli developed a "trunk" compiler to help transport Pascal
compilers to other machines. The trunk is a source program of a compiler written
in Pascal, in which machine dependent parts are marked and clearly separated from
machine independent parts, and detailed comments are provided for an implementor
how to describe algorithms for these machine dependent parts. For example, Teruo
Hikita of the University of Tokyo used Pascal-P to interpret the trunk compiler
modified for the IBM 360 compatible Hitachi Hitac 8000 series, with very good results.

H. H. Nidgeli is at the Institut fiir Informatik, E.T.H., Zirich,

PASCALJ

The Software Engineering Group at the University of Colorado Department of
Electrical Engineering has implemented a Pascal compiler which generates JANUS
intermediate code. The "mobile programming system" JANUS is totally portable - even
to the point of defining its own character set. It is available on several computers
such as the CDC6400 and the Xerox Sigma 3. There have been several releases of
PASCALJ: September, 1975, February, 1976, and one for this month, September, 1976.
Write B.W. Ravenel or C.B. Mason for distribution information at:

Software Engineering Group, Department of Electical Engineering, University of
Colorado, Boulder, CO 80309

PASCAL-S

As documented in the report: "PASCAL-S: A Subset and its Implementation", June, 1975 by
Niklaus Wirth of the Institut fiir Informatik, E.T.H. Zlirich, PASCAL-S defines

an official subset to be used to aid in teaching programming. The abstract of

the report is given below:

"Pascal-S is a subset of the programming language Pascal selected for
introductory programming courses. This report describes an implementation
that is especially designed to provide comprehensive and transparent error
diagnostics and economical service for large numbers of small jobs. The
system consists of a compiler and an interpreter and is defined as a single,
self-contained Pascal program. This machine-independent formulation in a
high-level language facilitates its construction and is a prereguisite for
easy portability."

Standard Pascal constructs omitted in Pascal-S are: scalar and subrange types, pointers,
set and file types, with and goto statements, the passing of procedures and

functions as parameters, and several standard procedures. The only file operations

are read on input and write on output. The report contains a complete listing

of the compiler and interpreter on 34 pages!

Pascal-S is currently distributed on tape with the second release of the CDC

6000 Pascal compiler and is written to run under that version. However, Ed Katz
of the University of Southwestern Louisiana, Lafayette reports that his department
implemented Pascal-S from the report in PL/1 for Honeywell Multics in a semester.
(see HERE AND THERE)

AMDAHL 470 (see IBM 360/370 series)

BURRQUGHS B-1700 (implementations exist)
B-3700, B-4700

B-5700 (implementations exist)

(implementations exist)

B-6700 Several implementations are listed below:

A.H.J. Sale of The University of Tasmania, G.P.0. Box 252C, Hobart, Tasmania
Australia 7001 (phone 23 0561) is known to have developed
a compiler based on Pascal-P2.

Kenneth L. Bowles of the University of California, San Diego computer center
La Jolla, CA 92037 (phone (714) 452-4050) had a Pascal interpreter
running but is now more interested in a good PDP-11 implementation.

G. Goos of the Institut fuer Informatik II, 75 Karlsruhe 1, Zirkel 2 Germany,
implemented a compiler based on Pascal-P1, and hence may not be
standard. However our information is almost 2 years old and this
implementation may have been upgraded.

CII 1r1s 80, 10070

(see Xerox Sigma 7)

CONTROL DATA cyBer 18 (an implementation exists)
2550 (Control Data supports a cross-compiler on the 6000/Cyber 70,170)
3300 (implementations exist)
3600 (an implementation exists)
6000/cyBer 70,170 SERIES

This implementation has been developed by Urs Ammann of E.T.H. in Zurich for the
last 3% years. Release 1 of the compiler (named Pascal 6000 - 3.4) appeared in
May, 1974, and was updated 10 times over the next 1% years. Release 2 appeared in
March, 1976 which incorporated a massive update to Release 1, updatel0 to improve
performance and reduce memory requirements. An error message summary is provided
at %he bottom of the listing and a working version of the procedure DISPOSE is
included.

A new Report describing the impiementation is entitled: "On Code Generation in a
Pascal Compiler" by Urs Ammann, April, 1976, 40 pages.

Pascal 6000 - 3.4 was produced by rewriting an older compiler and bootstrapping.
It is the first Standard Pascal compiler and its documentation is in the last two
chapters of the user manual part of the book: Pascal User Manual and Report.

The Release 2 compiler may be run under SCOPE 3.4, KRONOS 2.1, or NOS,NOS/BE
operating systems. It may be edited to change it to 63/64 and ASCII subset character
sets.

The compiler is a 7000 line Pascal program plus operating system interface
routines. Its core requirements are 45000 octal words of 60 bits each for small
programs, but this rises to 57000 octal to compile itself. Compilation speed is
about 10500 characters/second on a Cyber 74; 54 seconds of processor time are
required to recompile the compiler on a Cyber 74. Its efficiency compares

9/6T “Y3IAWIL3S G YILLFTSHIN T¥ISYd

TS 39vd

favorably to FORTRAN; compiling speed and compute bound execution speed being about
1.3 times slower, but I/0 execution speed being clearly faster. Its reliability
has improved to being excellent, and there are only a few minor bugs outstanding.

Pascal 6000 - 3.4 features a number of extensions to Standard Pascal, and only
three restrictions. One may not use a file of files; segmented is a reserved word;
and standard (built-in) procedures or functions are not accepted as actual parameters
to other procedures or functions.

Distribution is.currently being handled in Europe, Asia, and Africa by Urs Ammann,
Institut fur Informatik, E.T.H. - Zentrum, CH-8092 Zirich, Switzerland. In
Australia, contact Carro]l Morgan, University of Sydney, Basser Department of Computer
Science, Sydney N.S,W. Australia 2006. Costs for these distribution points are
unknown; tape format is unlabelied, 7-track Scope internal binary.

For North and South America only, another contact point is George Richmond,
Computing Center 3645 Marine Street, University of Colorado, Boulder, CO 80309.
Information for the distribution from Mr. Richmond is as follows. Included in the
documentation package are:

Literature about the Programming Language Pascal {4 pages)

The Release2 Distribution Tape (3 pagesg

Note on the Tape Contents (13 pages)

Pascal: User Manual and Report (170 pages)

An Axiomatic Definition of the Programming Language Pascal (32 pages)
Cost for Release 2 with documentation is $50 (by check or purchase order) and $10
additional for a 600 foot magnetic tape if one is not supplied. Because of the
similarity in documentation between Release 1 and Release 2, a special offer is
extended by Mr. Richmond to previous recipients of Release 1 who want to upgrade.
For $25 and your supplying a 600 foot tape, and the documents: The Release 2
Distribution Tape and Literature about the Programming Language Pascal. No other
material has changed.

Sent with Release 2 is also the Pascal-S subset compiler and the'document:

PASCAL-S: A Subset and its Implementation (63 pages).

The tape format will be seven track SCOPE 3.4 internal binary and unlabelled
(equivalent to KRONOS 2.1 MT,F=SI,LB=KU). At special request, and at no extra
cost, KRONOS formats F=I or F=X can be used. In the near future, nine track
binary tapes will be available.

The future of the compiler maintenance is uncertain at this writing. Send bug
reports to: John P. Strait, University Computer Center, 227 Exp Engr, University
of Minnesota, Minneapolis, MN 55455 USA, or call (612) 376-7290.

Several persons have made modifications to Release 2 for operating system
interaction. Interactive facilities under KRONOS Telex have been developed by
John P. Strait at the University of Minnesota. An agreement is underway with
George Richmond so that these mods can be distributed through George Richmond for
the Americas. Michael Hagerty has developed mods for SCOPE 3.2 systems and
for INTERCOM. He wants these to be distributed centrally and as yet no agreement
has been reached. Mr. T.A. Nemeth of the Computing Centre, University of Adelaide
has written mods {no language changes) for SCOPE 3.4 and INTERCOM. They are
available for $A10+postage from North Terrace, Adelaide, S.A. 5000 AUSTRALIA.

Hans Jgraandstad of CERN announced changes to put Pascal Release 1 up on 7600
and Cyber 76 systems under the SCOPE 2.1.2 operating system (where Record Manager
is used because no CI0 exists.) There is no distributions information at present.

See the next page for the order form for George Richmond's distribution only.

Future development plans are also uncertain for Pascal 6000 - 3.4. Several
complaints keep echoing over and over. For example Albert Steiner of the
Vogelback Computer Center, Northwestern University wrote on 4/26/76: 1) Sets
ought to be implemented for more than 59 members. 2) Better storage control and
management of dynamic allocation is needed - such as obtaining additional
dynamic storage if needed, perhaps in conjunction with a manageable OVERLAY or
SEGMENT loading scheme. More news next time.

SOFTWARE WRITING TOOLS for the CDC Pascal 6000 - 3.4 implementation have been
around. The first such program is a cross-reference utility for producing a numbered
source listing with an index to identifiers. The program usually known as XREF
was written by Niklaus Wirth, and has been modified several times over the years,
most recently for the second release of the compiler. XREF is written in standard
Pascal (just over 200 lines), is small and efficient. The 7000 line Pascal compiler
with sequence numbers (making each line 90 characters long) took 17.8 seconds to
cross reference on a Cyber 74.

Several pretty-print or indenting programs for Pascal programs have been wr1tten,
At Indiana University, George Cohn wrote RASCAL (Reformat Pascal) which has
three options: I for setting indent width, R to select reformatting mode (indenting
style) and W to set output width. RASCAL is written as a 1267 card Pascal program
(fully RASCALed). (218 cards fully compressed by itself!) (*ICEBOLed?*)

The most circulated pretty-printer is Michael Condict's FORMAT program, written
at Lehigh University. Like RASCAL, FORMAT allows options to be imbedded in
special comments. Additionally, the user may specify a file for these directives.
Options include: A for specifying right justification width of identifiers in
declarations, E for selecting block bracket commenting such as end (*procname*).

E also can add comments to for, case, while, and if statements. G specifies

spacing between symbols, I specifies indenting width, L for amount of indent on
statement wrap-arcund, P number of blank lines between procedures, S number of
blanks between two statements on the same line, R input width limits, W output
width Timits, N write Tine numbers on FORMATted output, B compress program

(*ICEBOL it*), C combine more than one statement per line if possible, D select
or deselect outputting of source, and F eliminate formatting and copy verbatim.

Both RASCAL and FORMAT are copyright. FORMAT has been sent to educational
institutions, and perhaps in the future, a distribution agreement can be set up.

At the University of Minnesota, a program for pretty printing is being
developed called SPRUCE. At the University of California, Berkeley, a pretty
printer is called PPRINT.

A11 the pretty print programs so far suffer from the ability to recover from
syntactically incorrect Pascal programs. Comments in the input are generally not
handled very well either.

The University of Massachusetts has been working on a "Pascal Assistant" to
make interactive programming in Pascal more pleasant. Henry Ledgard, Andrew Singer,
and Jon Hueras have developed this system to run under NOS. A User's Guide has
been written.

N. Solntseff of McMaster University, Hamilton, Ontario, Canada L8S 4K1, Dept.
of Applied Mathematics has sent a report describing EDITABSLIB. It is designed
to maintain a library of complete Pascal programs in binary form. Entitled
"A Suite of CDC6400 Control-Statement Procedures for the Maintenance of a Binary-
Deck Library", its abstract follows:

"This report describes the implementation and gives examples of the use
of EDITABSLIB, a library-maintenance system which allows a user to
assemble and maintain libraries of program modules which do not
meet the requirements of the standard SCOPE EDITLIB system, namely,
Pascal 6000 and COBOL core-image modules, as well as binary (or source)
modules of a "minicomputer support system". EDITABSLIB can be
used in the batch mode, as well as interactively via INTERCOM.

It represents a complete library-maintenance system."
EDITABSLIB is currently running under SCOPE 3.4.3 and a program to man1pu1ate
the loader prefixtable for the library is written in Pascal.

9/6T “Y3dWILd3S S# Y3LLFTISMIN TW¥ISYd

75 39vd

Release 2 of Pascal 6000-3.4 Distribution Tape

(Use this only if you are in North America or South America.)

The tape prepared for you by the University of Colorado Computing
Center is an unlabeled tape of the following format:

(O wMr, F=SI, D=HY Scope standard binary, seven track
(O ML, F=I, D=HY Kronos internal binary, seven track
(O T, F=X, D=HY Kronos external binary, seven track
(O OTHER:

The tape contains seven files of information following by another
seven files of the same information. Instructions -for installing the
Release 2. system can be found in the first file of information.

In order to offer maintenance of the Pascal System the University of
Colorado Computing Center needs the name and address of a responsible
party. Please fill out the bottom of this form and return it to:

Mr. George H. Richmond
University of Colorado
Computing Center

3645 Marine Street
Boulder, Colorado 88389
USA

Pascal will be maintained by:

Name:

Address:

Zip Code

22 April 1976

CRAY RESEARCH crAY-1 (No information yet.)

DATA GENERAL nNova 800, nova 1200, SUPERNOVA, ECLIPSE

(No reported implementations - but we need information!)

DIGITAL EQUIPMENT (DEC) ppp-8 (No known implementations)
ppP-11

In wading through the morass of information on PDP-11 versions of Pascal, we
found that although many implementations (too many) exist or are in development,
very little concrete data is available on operating system and hardware requirements.
Distribution and maintenance for most versions remain a mystery. We hope to provide
more meaningful summaries in forthcoming issues, and to this end we solicit comments
from implementors/distributors/maintainers/users - please refer to the CHECKLIST.

Following is the information we do have. We have an obligation to provide you
with complete, up-to-date implementation news, and so will print skimpy descriptions
only once.

First and foremost, Per Brinch Hansen has implemented both "sequential Pascal"
and his “Concurrent Pascal" for the PDP-11/45. These compilers, written in Pascal,
run under the Solo operating system, which itself is written in Concurrent Pascal.

A portable version of Concurrent Pascal also exists. Manuals, reports, and
distribution tapes have been available from Per Brinch Hansen, Information Science
286-80, California Institute of Technology, Pasadena, CA 91125. However, Richard
Cichelli has reported that Brinch Hansen has moved to the U of Southern California
and is no longer distributing Pascal. (*How about it, Per?*)

The Pascal Group at the University of I1linois has a completed version of Pascal
for the PDP-11/20, running DOS. Although this version seems to be the most widely
distributed, it departs widely from Standard Pascal: a) No type set or real, b)

No packed arrays, c¢) Arrays and records must be passed by reference, d) Many non-
standard character set equivalences are allowed, e) Many abbreviations for reserved
words are allowed, f) Compiler options do not follow the convention of (*$ options*),
g) Else ellowed on case statements, h) Unconventional extensions have been made to
the standard procedures read and write, i) The assignment operator may be used in
expressions, introducing semantic ambiguities in evaluation of certain expressions.
These differences disallow many programs written in Standard Pascal, having serious
consequences for software portability. For more information write: Pascal Group,
267 DCL, University of I1linois, Urbana, IL 61801.

Electro Scientific Industries has completed a compiler for the PDP-11/04 with
RT-11. This compiler, written in MACRO-11 assembly language, was based on the
University of I11inois implementation. Arthur A. Brown has informed us that this
version is available for $1500. Excerpts from a paper by David Rowland describing
ESI's use of Pascal appeared in Newsletter #4. Write or telephone: David Rowland.
Electro Scientific Industries, 13900 N.W. Science Park Drive, Portland, OR 97229,
(503) 646-4141

C. Bron and W. deVries have implemented a cross-compiler from the DEC-10 to any
member of the PDP-11 series. There are no operating system requirements for the
PDP-11 used. It appears that this version, which was developed from Pascal-P,
closely implements Standard Pascal with the exception of files. The compiler
generates absolute load-modules in "position independent" code. The development of
this compiler is described in "A PASCAL Compiler for PDP-11 Minicomputers",

SOFTWARE - Practice and Experience, Vol. 6, pp.109-116 (1976). The system is available
on 9-track magnetic tape or on DEC-tape (two reels are necessary) and can be obtained

- .free of charge - by anyone who sends a tape (please do not send tape as parcel,

but as letter) to C. Bron or J. Entrop, Dept. of Electrical Engineering, Twente
University of Technology, P.0. Box 217, Enschede, Netherlands. Five files will be

9/6T “¥3dW3Ld3S G YALLFTSMIN TYISYd

¢5 39Yd

written on the tape - the compiler's source code, a documentation file, tbe text
of the runtime support in PAL-11, the code of the runtime support in compiler input
format, and an auxiliary program to transform output from the MACRO-11 assembler
into compiler input format. The Tatter two files are only relevant for those who
wish to alter the existing runtime-package. .

A Pascal compiler based on JANUS has been implemented on the PDP 11/45 running
under DOS/Batch operating system. This compiler, written in Pascal, generates code
for the standard abstract machine JANUS. William Waite's macro processor STAGE@ is
used to translate JANUS into the MACRO-11 assembly language. The compiler compiles
itself in 64K words of memory and 604 seconds. The Pascal compiler, Stage2, the
Pascal-11 User's Guide, and the whole Pascal-11 system are available from: Lucien
Feiereisen, Institut f. Biokybernetic u. Biomed. Technik, Universitaet Karlsruhe
D-7500 Karlsuhe 1, Kaiserstrass 12, Germany. :) .

The remainder of the implementation information is skimpy. The following is a
list of addresses and short notes: .

Timothy W. Hoel, Academic Computer Center, St. Olaf College, Northfield, MN 55057
(507) 663-3096: "I know of (*a Pascal compiler running under the UNIX operat1ng“
system*) which is a 7-pass translator producing C-code, the main HLL under UNIX.

- July, 1976.)

Ar{hur A. Brown, Apt. 1002, 1101 New Hampshire Ave. NW, w§sh1ngton, DC‘20037,
(202) 785-0716: "I am currently trying to introduce Pascal in my company's roster
of languages, and intend)to igplamen%g;g on a minicomputer of my own during the
coming year (*PDP-11/04*)" - 27 May .

Angrzw S.(Puchrik{ 11623 Charter Oaks #202, Reston, VA 22090, (703) 893-4330:

"My company (INCO, Inc.) has ordered the Solo Operating System from Cal Tegh.

“I plan to run the (sequential) compiler under RSX-11D. (We just got version 63.)
The first problem is to emulate a floating point processor or patch-up the compiler.
We don't have the f.p.p. on our 11/45." - 24 April 76. . .)

W. H. Huggins, Department of E.E., The Johns Hopkins Unlversxty,'Ba1t1more, MD.
21218: Tim Hoel informed us in August that W.H. Huggins has a version of.sequentlal
Pascal which runs under UNIX and produces PDP-11 machine code. Huggins will send
it for $150 and a photo copy of Brinch Hansen's Solo contract. o)

Henry Spencer, Box 302 Sub 6, Saskatoon, Sask. S7N OMO Canada, "implementation
in progress with P-code on PDP-11 under UNIX" - October, 1975. .

Kenneth L. Bowles, Dept. of Physics and Information Science, Computer Science
Division, C-014, University of California, San Diego, La Jolla, CA 92093, (714)
452-4050: Bowles is working on an interpretive sustem based on Pascal-P. He hopes
to be able to modify the compiler to allow it to run in 20K or perpaps 16K words
of memory for the PDP-11. See his letter to A.H.J. Sale printed in News]gtter.#4.

H. H. Ndgeli of E.T.H., Ziirich reports that the‘Pascal Trunk compiler is being
used to write a cross compiler for the PDP-11 in Zﬂrich. .

Gordon Stuart, Camosun College, Technical and Vocational Inst1§ute, 1950
Lansdowne Road, Victoria, B.C. V8P 5J2 Canada: Implementing version for the PDP-11/40

tatus unknown, as of 3 March 76. . .
: aAndrew S. Tannenbaum, Wiskundig Seminarium, Der Vrije Universiteir, Amsterdam -
1001 Postbus 7161, De Boelelaan 1081, Netherlands: Implementing version for PDP-11/45
status unknown as of 7 February 76.

DEC sysTem-10, PDP-10

. s o3l

For the last several years, H:H. Nagel of the Institut flr Informqtik, Qn1vers1tat
Hamburg has implemented DEC-10 compilers -for Pascal. .The one most widely in
circulation comes as a dual system: PASCAL is a compiler wh1ch produces shared
(.SHR) and low (.LOW) segments directly, and the other compiler PASREL, produces
relocatable code which can be processed by the loader into shared and Tow §egments.
The relocatable compiler, PASREL, has more predefined Qrocedurgs and functions
available than the PASCAL compiler and has a powerful interactive debugging package.

These compilers are being improved with respect to efficiency, standardization,
and the addition of still missing or desirable language features. H.-H. Nagel
wrote on June 14, 1976: "We are just introducing a new version of the
DECSystem-10 Pascal compiler. I hope to be able to send some information about
this compiler to you in the near future."

Documentation for the system comes on tape. In February, 1976, Wilhelm Bi'rger
of the University of Texas produced a technical report (22B) with Nagel in English
entitled: "PASCAL on the DEC10". From this report we find that interactive use
of Pascal is described, and that there are several serious omissions from Standard
Pascal. They are: a) No label declarations are allowed, b) Not all ASCII characters
are allowed - specifically control characters,c) The program declaration is not
implemented, and d) Procedures and functions cannot be formal parameters.

However subroutine linkage in PASREL is provided for assembler, Algol, Cobol, and
Fortran programs:

We have no performance/comparison data available. The compiler runs under TOPS-10.

The method of distribution is in the form of a chain of sites passing a tape
from one to the other - a chain. We have no cost information. In Europe write to
H.-H. Nagel, Institut flUr Informatik, SchluterstraBe 70, D-2000 Hamburg 13, Germany.
In the US and Canada write to Wally Wedel or Wilhelm Blirger, Computation Center,
University of Texas at Austin, Austin, TX 78712. Please specify if you are on a
chain. Shipment requires either a DECtape for the PASCAL compiler and 2 DECtapes
for the PASREL compiler, PASDDT, crossreferencing program CROSS, and PASCAL-Help
file in German. 1 MAGtape can be supplied instead of the DECtapes but DECtapes
are preferred. Please indicate if you are willing to be part of the distribution
chain - that is whether you are willing to provide a copy of these files to someone
else if asked to do so.

Perhaps the proposed new release of the compiler(s) will see an improvement
in implementation and distribution information.

Complaints about the DEC-10 implementation are from Jim McCool, TUPUI, Computing
Services, 1100 W. Michigan, Indianapolis, IN 46202 (317) 264-3836 who writes:

"We are currently searching for a reliable version of PASCAL for the DEC-10 computer.
We have the release from the University of Hamburg, but have found it completely
unsatisfactory. I am writing you in the hope that, as the head (sic) of the

Pascal User's Group, you might know of some other implementation of the language

for the DEC-10." (*pretty strong, although vague stuff.*)

Charles Hedrick, 183 Commerce West, University of I1linois, Urbana, IL 61801,
(217) 333-4515, and (217) 356-8425 writes: "About the DEC10 PASCAL (PASREL, actually)
I understand it was an undergraduate class project. As such it is very good. It is
fast and generates fairly good code. However it does not follow the usual
conventions for DEC10 compilers, and in general is not well adapted to the DEC10
operating system: 1) Programs cannot simply be loaded and run as with other
languages. Core must be explicitly allocated, something that complicates
explaining its use to students. [realize that for efficiency reasons, they did not
want to have dynamic expansion of core, but the least they could do is start with
some default amount greater than O that would let simple programs run (e.g. the 4K
recommended in the (German language) help file). 1 have put such a patch in our
local version. 2) The compiler cannot be called by the DEC10 compiler-caller COMPIL.
This means that the monitor commands COMPILE, EXECUTE, etc. cannot be used. Rather
the compiler must be explicitly run, and then the loader must be invoked. Again,
an inconvenience with beginners. 3) Lower case characters are ignored everywhere -
is source code, comments, strings, filenames, everywhere! 4) A file OUTPUT is
created on your disk area even when no output is done to the default channel (or
at all!) This file has a "DATE75 error", that is its creation date is 5-Jan-74,
whatever the current date. 5) A listing file is always created, and cannot be
surpressed. This file is largely useless, as it is usually just a copy of the
source. 6) Options to the compiler are included in the source code as comments...
DEC10 convention is to use “switches" after the file name. E.g. to get a listing
one says .EXECUTE FILE.PAS/LIST. COMPIL passes on the command string to the

v

9/6T “Y3IAWILd3S G# Y3ILLFTSMIN TvISvd

hS J9Vd

, compiler: FILE.REL,FILE.LST=FILE.PAS/L. 7) Parameter passing in procedures is full
of bugs: e.g. type foo = packed array 10 of char;

procedure foobar a foo;
(*body*)
(*etc*

foobar('ABCDEFGHIJ',1,2, ' TJKLMNOPQR',3); will assign some large
negative number to parameter e in foobar. We have fixed this bug, but it is only
a minor manifestation of generally poor design of parameter passing. The following
case is harder to fix, and we haven't done so. (It would seem to require a complete
rewrite of procedure linkage: procedure foo(a: real, b: real); and then
foo(1.0,5in(0.0)); (I think it may only fail if there are more than 5 parameters to
the procedure.) Ca111ng sin clobbers the display which is being set up for the
call of foo, and so the parameters, etc. are garbaged. 8) When a program wants to
input a real number, typing 1 or even 1. causes a fatal error. This makes it hard
to write programs to be used by non-computer programmers. DEC FORTRAN and all the
other languages I know, do the type conversion. At least PASCAL's runtime should
let you retype the number rather than blowing up. 9) the KI-10 instruction set is
not used. When using a lot of mixed type arithmetic, I have speeded up execution
time by a factor of 2 by replacing calls to routines for integer-to-real and vice
versa with the equivalent machine operations (FIX and FLOATR).

1nteger c: integer, d:foo, e: integer);

FOXBORO rox-1

(an implementation exists)

FUJITSU Facom 230-38 (an implementation exists)
FACOM 230-55

(an implementation is underway)

HEWLETT PACKARD Hp-2100 (no known implementations)
HP-3000 (no known implementations)

HITACHI Hi1TAc 8800/8700 (see IBM 360/370 series)

HONEYWELL series 6

H316 (an implementation is underway by Honeywell Corporate
Research in Bloomington, Minnesota)

600/6000 seriEs

Robert A. Stryk of Honeywell Corporate Research (612) 887-4356 reports that
The University of Waterloo has implemented Pascal on the 6000 series. Honeywell
Information Services in Phoenix, Arizona has purchased it and is offering it as
a standard software product under revision H of the GCOS operating system. Because
it is a supported product, it will cost money - how much is not known. - July 16,

(an implementation is being considered)

IBM sysTem 360/370

There are three implementations for which there is detailed information. Most
impressive is the University of Tokyo's Hitac 8000 implementation which will run

on either the Amdahl 470 or the IBM 360/370.
that version.

The following correspondence describes

Following that is a descr1pt1on of the University of Maniboba IBM 360/370 compiler.

It has been in the development stage until recently.
compatibility with OS.

A widely publicized but less efficient version of Pascal is one from SUNY Stony
Brook. It has received criticism for poor reliability.

There have been many requests for IBM 360 implementations. The volume of
information reproduced here is in response. From a performance standpoint, the
compiler by Teruo Hikita and Kiyoshi Ishihata is excellent. It is written in
Pascal, requires only 110K bytes and is only beat in execution speed by the Fortran
compiler at full optimization. It is well documented by two reports. The only
problems at the present are distribution. Although we have not heard from Mr.
Hikita since May 17, it would be nice for a site (such as Southern Cal) to aid
in its distribution in North America. It was Susan Stallard's letter (see OPEN
FORUM) which stated a desire to see a version with smaller core requirements than
the Manitoba Pascal compiler.

It features stability and

February 21, 1976

Mr. A. B. Mickel
University of Minnesota
Computer Center

227 Experimental Eng. Bldg.
Minneapolis, Mi. 55455
U.S.A.

Dear Mr. Mickel;

This is a short notice on our recent implementation of PASCAL based on a
"trunk" compiler., Dr. H. H. Naegeli told us to send it to you for the
PASCAL Newsletter. (Please see an enclosed copy of his letter.)

An extended version of Standard PASCAL named PASCAL 8000 was designed,
and its compiler was implemented on a Japanese computer HITAC 8800/8700
at the Computer Center of the University of Tokyo. This computer is a
multi-processor system of 4 CPU with 4 megabytes main memory, and it has
a quite similar machine instruction set to that of the IBM 360 and 370
series computers.

Our language extensions are concerned with constant definitions for
structured types, variable initializations, new control structures named
"forall" and "loop" statements, and "procedure skeletons" for procedure
and function parameters proposed by Lecarme-Desjardins.

The implementation was done by bootstrapping using the PASCAL-P interpretive
c0mp11er deve]oped by U. Ammann. Our new compiler is based on H. H
Naegeli's "trunk" compiler. This is a source program of a PASCAL compiler
written itself in PASCAL, in which machine dependent parts (code generation,
addressing, etc.) are marked and strictly separated from other machine
independent parts, and detailed comments are provided which indicate the
data or algorithms to be described to the final form by an actual
implementor. The version we used was still at developmental stage,

though almost completed.

9/6T "Y3WILd3S G# YALIFTISMIN V¥ISYd

95 39vd

About 1200 1ines of the source program have been rewritten to the final
fgrm for our HITAC 8800/8700 out of total 5260 lines, and about 400
lines have been newly added for our own language features. This amount
of rewriting is considered to be fairly small compared with other works
of bootstrapping appeared in the literatures, and one of the values of
the trunk compiler of course lies in this point. We felt difficulty

during the rewriting process mainly in the expression evaluation scheme.

For the other parts, the coding was rather simple and straightforward,
though not trivial.

For the details of the language definition of PASCAL 8000 and its
implementation based on the trunk, the following two technical reports
will be available from our department in March.

T. Hikita, K. Ishihata, PASCAL 8000 Reference Manual.
K. Ishihata, T. Hikita, Bootstrapping PASCAL Using a Trunk.

Sincerely,

UNIVERSITY OF MINNESOTA " University Computer Center
« TWIN CITIES 227 Experimental Engineering Building
' Minneapolis, Minnesota 55455 :

March 31, 1976

Prof. Teruo Hikita

Information Science Laboratories
Faculty of Science

University of Tokyo

2-11-16 Yayoi, Bunkyo-Ku

Tokyo, 113 JAPAN

~ Dear Prof. Teruo,

G# Y3ILLFISHIN TYISYd

Thanks to both you and your colleague, Mr. Ishihata for coming forward
Facul £ sci with the Hitac 8800 implementation information for PASCAL. I recently
U:?Seﬁiigy 0$1$2i;° Teruo Hikita received both your March 24 letter and the copies of the Technical

Tokyo 113 Japan Reports.

T. Hikita, K. Ishihata /‘%
DepartmenE of Information Science ‘,/£2ktji____f52i:::::::>

£ Mlikea

Kiyoshi Ishihata

Dear Mr. A. B. Mickel, March 24, 1976

I'have sent to you under separate cover the following two technical
reports on our recent implementation of PASCAL, which I mentioned in my
recent short notice for the PASCAL Newsletter:

"PASCAL 8000 Reference Manual"
“Bootstrapping PASCAL Using a Trunk"

They have been prepared rather hurriedly, and there do remain several

typographical errors. But.we believe our implementation details would
be clear from these reports.

Sincerely Yours,

Teruo Hikita

I assure you that the new PASCAL Newsletter shall puﬁlicize the Hitac
8800 version properly. In this regard, are you willing to distribute
the system formally and will you accept bug reports?

I hope that you will be willing to join the PASCAL User's Group. I'm
sorry in fact to be so late in answering you, but this was due to delays
in setting up P.U.G. and in transferring the editorship duties of the
Newsletter.

Thank you very much.

Sincerely,

(L.t helf

Andrew B. Mickel
ABM/kp

Enclosures

9/6T “Y3AWILd3S

95 39vd

INFORMATION SCIENCE LABORATORIES

FACULTY OF SCIENCE, UNIVERSITY OF TOKYO
2-11-16 YAYOI, BUNKYO-KU TOKYO, 113 JAPAN

April 16, 1976

Prof. Andy Mickel

University Computer Center: 227 Exp Engr
University of Minnesota

Minneapolis, MN 55455

U.S.A.

Dear Prof. Mickel,

Thank you for your March 31 letter with information cn the new Pascal
User's Group. I am glad to hear jt, and of course I would like to join
jt. 1 enclosed a required coupon and a check in this letter.

As for the distribution of our Hitac 8800 version Pascal, we are ready
to distribute the system formally and accept bug reports. Actually we
have just completed its transportation to another Hitac 8000 series
computer. Although the Hitac 8800 is a Japanese computer rather Tocally
used in the world, its machine instruction set is almost compatibie to
the IBM 360 and 370 series computers, and we may plan the slight modifi-
cation of the system (mainly its interface with the operating system) to
cope with the IBM systems.

I appreciate your kind suggestion and information. 1 am looking forward
to the publication of the-new Pascal Newsletter in September.

Thank you very much.
Sincerely,

U//Aﬁ?ﬂ””

Teruo Hikita

Enclosures

TH/mk
T

UleVER”S?TY OF MINNESOTA University Computer Center
TWIN CITIES 227 Experimental Enginevring Building
Minneapolis, Minnescta 55455

, April 29, 1576
Deay Terun,

Thanks for joiaing FUG! We now have over 100 members and I'm looking
forward to the first newsletter,

Your good news about willingness to distribute your compiler is very
important I think. As you may know there are at least 6 IBH 360/370 Fascal
compilers but they all seen very unsatisfactory. I know of 3 which are
standaxd, . 2 take 180X Pytes and are nulti-pess and ths other is not ready
yet. (3UrY Stony Broox, U of lanlitoba, and New Mexico Tech). Also I've besen
recelving many requests for IBii 360 versions by/ngbers of the User's Group.
It is my opinioa that your compller, beinz of high quality could be tha
answer aand to ease the distributlon matter in this country, it might be wise
to find a friendly installation who could in turn pass it on to others.

The most detailed request has comz from: s, Susan L. Stallard

Acadamic Services
University Computing Center

University of Southsrn Californiz

Los Angeles, CA 90007
Faybe you could send her your Tech Reports together with the information
atout your intention to makinz an ISi-compatible version.

With tha information explosion, I'1l have to ba putting togzether a list

lementation and so I

I can print such

9/6T “Y34KILdIS G# ¥3LLFTISMIAN TYISYd

{5 39vd

DEPARTMENT OF INFORMATION SCIENCE

FACULTY OF SCIENCE, UNIVERSITY OF TOKYO
2-11-16 YAYOI, BUNKYOQ-KU TOKYO. 113 JAPAN

May 17, 1976

Andy Mickel

University Computer Center: 227 Exp Engr
University of Minnesota

Minneapolis, MN 55455

U.S.A.

Dear Andy,

Thank you for your April 29 letter, and I am sorry for writing you a bit
late.

We have received some other inquiries besides yours on the possibility

of distributing our Pascal system, and we are just to begin the modification
of the system. The only difficulty is the difference between the operating
systems of our Hitac 8800/8700 and IBM 360/370 line computers. It will

take at least one month to finally prepare a distribution tape.

By the way, I should note that I am not so optimistic on the transportation
of our system. One reason is that our compiler does not generate a load
module of IBM systems, but rather it generates absclute (not relocatable)
code. Secondly, I am afraid whether we can easily find a friendly
institution who handles the distribution.

Anyway, I will be writing to you again at the completion of the work
above. We would like to consider at that time on the possibility of
distributing our system in the U.S.

Thank you.

Sincerely, .

el

Teruo Hikita
Research Associate

TH/yk

8.1. Performance of the compiler

En the reference [15] is given several experimental data on the
performance oﬁ the PASCAL compiler for CDC 6000. The execution times
on the HITAC 8800/8700 for the same four test programs written in PASCAL
and FORTRAN are shown in the following table. The result is that the ‘
PASCAL program runs faster than the corresponding FORTRAN program compiled
without optimization, which shows that PASCAL can actually be implemented
efficiently. But it is slower than the FORTRAN program compiled by a
full-optimizing compiler by factor of 2-4 in case of small non-recursive
programs. For the recursive programs such as "Partition", PASCAL programs
run as fast as those of FORTRAN, probably because of thé overhead of
moving the data to and from the hand-coded stack in FORTRAN programs,

compared with that of the automatic stack allocation of variables in PASCAL.

PASCAL 8000 PASCAL-P(R+) PASCAL-P(R-) FORTRAN(0) FORTRAN(2)

Matmult 5.18 sec. 93.87 79.93 6.91 1.36
(n=100)
Sort 7.98 121.54 119.94 13.86 3.46
(n=2000)
Count 70.76 —meme— mmmee— e 56.71
Partition 0.59 3.01 2.81 0.77 0.50
(n=30)
® PASCAL 8000 without runtime error checking
PASCAL-P (R+) with runtime error checking
PASCAL-P (R-) without runtime error checking
FORTRAN(0) without optimization (Hitachi 0S7 FORTRAN OPT=0)
FORTRAN(2) with optimization (Hitachi 0S7 FORTRAN OPT=2)

8.2. Statistical data of the compiler

The size of the current version of the compiler is about 110 kilo-

bytes, in which machine instructions occupy 89.8% and constants 10.2%.

9/6T "Y3IWILdIS ‘G# Y3LLFTSHIN TWISYd

85 394

i
i
i

|
1“55'3 | UNIVERSITY OF MINNESOTA University Computer Center
: TWIN CITIES | 227 Experimental Engineering Building
Minneapolis, Minnesota 55455

April 5, 1976

Prof. J. M. Wells

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

CANADA

Dear Prof. Wells,

We understand you have a PASCAL compiler for the IBM 360/370 series
machines. Because this is an important implementation to publicize
in the PASCAL User's Group Newsletter, I'm now writing to find out
detailed information. :

There are at least 6 IBM 360 implementations I know of. Three seem

to have been based on the revised version of the language and are
compilers: yours, and the ones from PASCAL Compiler Project, Dept.

of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794 and
Prof. Thomas S. Nartker, Dept. of Computer Science, New Mexico Tech,
Socorro, NM 87801. Were you aware of the existence of the other
implementations .and if so, how good are they compared with your system?

Are you willing to distribute your system to other sites for a nominal
handling charge, provide documentation, and accept bug reports?

I really look forward to hearing from you. Enclosed is some PASCAL
User's Group information.

Sincerely,

Andrew 2. Mickel

ABM/kp

Enclosure

DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF MANITOBA

WINNIPEG, CANADA R3T 2Nn2
15 July 1976

Ph. (204) 474-8466

Mr. Andy Mickel

Pascal User's Group
University Computer Center
227 Exp. Engr.

University of Minnesota
Minneapolis; Minnesota
U.S.A. 55455

Dear Mr. Mickel:

I am answering your letter of April 5, 1976 to Professor James Wells.
I have been preparing a new release of the Manitoba PASCAL Compiler
and therefore waited until this was complete so that I could send you
the latest information.

A restricted release was made in December, 1975 to ten test sites.
Work on the Compiler has continued and a new release is now generally
available under the conditions set out in the enclosed description.

The reports "MANITOBA PASCAL USER GUIDE" and "MANITOBA PASCAL CODE
GENERATION" are included on the distribution tape in upper and lower
case with printer control characters so that copies can be run off
locally.

I wrote to Professor Nartker at New Mexico Tech. concerning their
compiler. It seems that they are debugging statements and expressions
and hope to have the compiler running by the New Year.

I ordered the SUNY compiler for comparison with curs. In the areas of
cost, ease of installation, compile speed, compile-time error messages,
formatting capability, distributed documentation, standard scalar types,
and compatibility with OS conventions, I think the Manitoba PASCAL
Compiler is superior.

cont'd.... 2

9/6T "¥3AW3Ld3S G Y3LLTTISMIN TYISYd

65 39vd

Mr. Andy Mickel -2 - 15 July 1976

To date, thirteen copies of the Manitoba PASCAL Compiler have been
distributed to sites in Canada, the United States, and Europe.

There has not been a Pascal Newsletter since the announcement of the
initial release was sent to George Richmond, and the Compiler has
therefore received very little advertising.

Although the Compiler is released on an "as is" basis, a complimentary
copy is being sent to the initial test sites which answered a questionaire,
and is being offered to the other sites.

Intensive local testing led to the discovery of several problems in the
initial release, but only one "bug" was reported by one of the test sites
in six months of use.

I hope the enclosed information reaches you in time for inclusion in the
September Newsletter. I would appreciate it if you would acknowledge
receipt of this information.

Thank you for your interest.

Sincerely,

W. Bruce Foulkes

WBF:emr

! !
H 1
I 1

|
| :
| UNIVERSITY OF MINNESOTA . University Computer Center

?
i
i ' Minneapolis, Minnesota 55455
i

TWIN CITIES | 227 Experimental Engineering Building
i (612) 3734360
July 26, 1976
Dear Bruce,

You den't know how much I appreciats your walting to send such camplete
information on your Pascal compiler. Thanks very much! Rest assured that
we will devote space in the Newsletter to it. Thank you very much also for
Joining the User's Group. We now have 291 members.

Until your letter and enclosures arrived there was much mystery in my
mind about IBM 360/370 Pascal implementations when it came to recommending
one to somsbody. This is because I knew little about yours; all I had
received was a camplaint from Southern Cal that 160K bytes was too large.
The SURY Stony Brook compiler did not impress me in that 1) it was written
in XPL, 2) It was large and slow, and 3) Several people now have reported
bugs to ms and say that it will become unsupported in a few months, I
received a 14 page faded xerox of their documentation. :

I received a phane call from New Mexico Tech and found cut about their
project.

Vhat may interest you, is that a very high quality compliler ementing
211 the aspscts of standard Pascal for an Eitachi 8800 (Amdahl lmj:'%x 370) .

bas been written in Japsn, It is only beat cut in efficiency by the Fortran

compilsr at full optimization, It is written in Pascal, and takes 110Kbytes.
They have produced two nice technical reports which you may want to write

for: Pascal 8000 Reference Mamual Version 1.0
Bootstrapping Pascal Using a Trunk

The people are: Teruo Hikita and Kiyoshi Ishihata
Department of Information Science
University of Tokyo
2-11-16 Yayoi, Bunkyo-Ku
Tokyo, 113 JAPAN

Thelr-current work is adapting the compiler to run on standard IBM 370
operating systeams.

What alarms me, now that in the last few months I've learned about many
other Pascal implementations, is that one of the design goals of Pascal is
being subverted: i1y that of being a vehicle of portable software. Taking
standard Fascal, only Pascal 6000 (for cIC) and this Hitachl 8000 compiler
will accept standard programs, The PDP 11, DEC 10, your IBM 370, and etc.,
are restricted in a small number of fundamental areas. It wouldn't matter if
the details were esoteric. But let's look at yours for example:

. some standard identifiers are reserved words

. packed structures are not allowed (the symbol packed could be ignored)

« NO pro declaration, no GET and FUT, comments are /* */ instead of

(* *i, no character subranges, no square brackets [and]

What's the deal?

Well, I'm just pointing some things out and don't want to sound too
negative, Thanks again for your service in sending these things.

9/6T “Y3dW3Ld3S G# Y3L1ITSMIN WISV

09 39yd

MANITOBA PASCAL CO'[PILER

A PASCAL Compiler for IBM 360/370 computers has been developed by
the Department of Computer Science at the University of Manitoba. The
Compiler was written by W. Bruce Foulkes under the supervision of
Professor James M. VWells.

The Compiler is one-pass and uses a top-down parsing strategy. A
generated assembler parser is produced by the translator writing system
SYNTICS. All semantic routines are written in PL360 and system interfaces
are written in Assembler.

The Compiler is not a rewrite, modification, or bootstrap of any
previous PASCAL compiler. The Compiler uses some routines provided by
the SYNTICS system and borrows some ideas and code from the ALGOL W
compiler for code gemeration, built-in functions, and I/O.

The distributed version of the Compiler requires approximately
180K bytes of memory. This size is variable, but the minimum size for
compiling a meaningful program is approximately 160K bytes.

The design strategy has resulted in a very fast compile speed,
averaging more than 200 lines of source per second on an IBM 370/158.

Considerable effort has been spent on localized optimizatibns in
areas such as array subscripting, record field accessing, and boolean
expression evaluation, with the aim of producing a compiler suitable for
the compilation of application programs.

Extensive compile~time checking is performed and approximately 130
different error and warning messages are provided.

The production of run-time checking code for array subscripts,
subrange assignments, values returned by PRED and SUCC, etc., can be turned
“on or off on a line-by-line basis. There are approximately 40 run-time
error messages. Each error diagnostic consists of an error message, the
location in the current segment, the invalid value if appropriate, and a
traceback of all segments invoked.

The Compiler produces OS-compatible object modules and uses standard
IBM linkage and parameter lists in calls of external routines. This
allows many existing library routines, such as CALCOMP. plot routines, etc.,
to be called from a PASCAL program.

The Compiler supports a subset of the language described by
Kathleen Jensen and Nicklaus Wirth in "PASCAL User ifanual and Report'.
The mai? differences are listed below.

- Only the standard input and output files SYSIN and SYSPRINT are
supported. All I/0 is done through the use of READ, READLN, WRITE,
WRITELN, EOLN, and EOF. The I/0 is not exactly standard; in
particular, formatting is also allowed on input.

- The program header is not required. SYSIN and SYSPRINT must always
be provided.

— PACKED arrays and records are not supported.

~ Only the sinple forms of procedures NEY and DISPOSE are alloued.
Tagficld values must not be specified. No garbage collection is
performed.

- Global labels are not implemented.
- Subranges of characters are not allowved.

There are two main limitations irposed by the Compiler. The maxinum nest
allowed for procedure and function declarations is 5, and all program
segments are restricted to 4K bytes of code.

Seven standard scalar types are provided: SHORT INTEGER, INTEGER,
REAL, LONG REAL, BOOLEAN, CHAR, and STRING.

Built-in functions include: ABS, SQRT, EXP, LN, LOG, SIN, COS, ARCTAN,
SqR, SUCC, PRED, ODD, ROUND, TRUNC, ORD, CHR, CARD, CPUTLIE, IAND, IOR, XOR,
SLA, SRA, SLL, and SRL.

The source for the Compiler initialization routine is provided. This
routine sets the size limits for all compile-time tables, and also sets
defaults for compiler flags (such as whether run-time checking code -is to
be produced). This should allow the Compiler to be tailored to suit the
needs of any installation.

An initial release of the Manitoba PASCAL Version 1 Compiler was made
in December 1975 to approximately ten sites. Work on the Compiler has
continued and a new release¢ is now generally available. The Compiler has
undergone considerable usage and has proven to be quite reliable.

A distribution fee of $50.00 (payable to the 'Department of Computer
Science, University of Manitoba™) is required to cover our distribution
costs, including a 600-foot 9-track distribution tape. An order must be
accompanied by a signed "SOFTWARE RELEASE AGREEMENT".

The present distribution tape contains the six files described below.
1. A description of the tape contents, including sample JCL for installing

_the Compiler.

2. A load module library containing the Compiler, a one-step monitor, and
run-time library routines.

3. The 40-page manual "MANITOBA PASCAL USER GUIDE" in upper and lower case

characters, which describes features and restrictions of this implementation.

4. Sample PASCAL programs.
5. IBM 360 Assenbler source for the Compiler initialization routine.

6. The 80-paze manual "MANITOBA PASCAL CODE GENERATION" in upper and lowver
case characters, which describes the run-time organjzation and
demonstrates the code generated for most constructs in the language.

9/6T “Y3IAWILd3S S# YALLFTISMAN TYISYd

19 39vd

UNIVERSITY OrF MAWITOBA
DEPARTHENT OF COMPUTER SCIERCE
WINNIPEG, MANITOBA, CANADA
R3T 2u2

SOFTUARE RELEASLE AGREEMENT

Software (name) Manitoba PASCAL Compiler, Version 1

The undersigned, representing the educational institution or company
identified below, accepts the software named above and agrees to the following
conditions regarding its use and/or distribution. The University of Manitoba
Department of Computer Science in turn, grants to the below-named a non-exclusive
and non-transferable license to use the above named software subject to the
following conditions.

1.

Software is distributed to educational institutions and companies
only; not to individuals. The educational institute or company
named below agrees to maintain control of the released software,
and not to redistribute it to any other individual, institution,

or company without the express written permission of the University
of Manitoba Department of Computer Science.

All credits in listings and/or documentation whether names of
individuals or organizations, will be retained in place by the
receiving organization unless written release from this re-
sponsibility is obtained in writing from the University of
Manitoba Department of Computer Science. The Licensee shall take
all reasonable precautions to maintain the confidentiality of the
coding; at least equivalent to those employed by the Licensee
with protection of its own confidential information.

All software is released on an “as is" basis, and no warranty as

to performance or effect on hardware or other softvare is expressed
or implied. The University of Manitoba Department of Computer
Science accepts no liability of any kind in releasing the above-named
software.

In releasing the above-named software, the University of Manitoba
Department of Computer Sciehce accepts no responsibility for
installation, maintenance or functioning of that software cxcept
that refunds will be made if requested vithin 90 days, and
accompanied by return of all software materials and a statement
that no copies have been made or retained. Responses to reasonable
requests concerning the above-named software will be nade by mail
or telephone. : .

2....

2...

SOFTUARE RELEASLE AGREE!ENT

5. The License shall be non-exclusive and the University of Manitoba
Department of Computer Science shall have the right to grant any
further and additional licenses or to make such other use of the
coding as it shall desire.

6. The above named software is released on a no-fee basis/as per
attached schedule.

This distribution does not entitle the Licensee to future releases
of any of the above-named software.

7. The above named software is released in binary form. The distri-~
bution medium is magnetic tape, the format of which is Jdescribed
in the documentation.

(please print)

Name:

Title:

Organization:

Address:

Authorized Signature:

Date:

3

Yor the University of Manitoba Department of Computer Science

9/6T "YIdWILdIS G# YILLTISMIN TWISYd

79 39Yd

PASCAL ORDETR FORi

Please send a distribution tape containing the Manitoba PA‘

SICHATURT, HANL

TOSITION DATE

LLUCATICHAL INSTLITUTION

(B0TE: A signed copy of the SOFTWARE RELEASE ACGREEMENT must accowpany this request

Conputer Systen on which the PASCAL Compiler is to run:

Manufacturer Model Total Henory

Heuory available for PASCAL Compiler

Operating System with release number (if any)

Tape Densities available

For what purpose do you intend using the compiler?

Viizat other PAGCAL Compilers or Interpreters

(a) do you have on your systen?

(b) have you used?

Do not send a tape; tapes will be supplied out of the distribution fee ($50, payable
to: Department of Computer Science, University of lanitoba).

Lane and Address for distribution of the PASCAL Compiler:

Jadil to: PASCAL Distribution Manager,
Department of Computer Science,
Uwivcluity of Manitoba,
VINNID Manitoba,
Cana d1 R3T 2112,

)

The SUNY Stony Brook Pascal compiler is to its credit, very standard. However
it is implemented in XPL and is very large (180K bytes). Our request for more
information was answered with a 14 page (unfortunately badly faded photocopy)
description but with no letter explaining details. An order form was sent and
it is reproduced below. Page 7 of the documentation states that it will run

under OS/MVT, OS/MFT, and VS/2. It comes with a resident monitor written in BAL.

Two independent parties have reported the unreliability of the compiler. See
Steve Bellovin's letter in the OPEN FORUM (18 June 1976). Another site phoned
in their complaints.

The Stony Brook PASCAL/360 coumpiler is beling made freely
avallable, and there are no restrictiona upon its use, Redistribution
1s also expressly permitted but no fce i{s to be charged for redistributicn
of all or amy part of the software or documentation furnished by us.

We must impose a chaxga of U.S. $175.60 to defray our costs of
digtribution tape; documentation, maintenance through March, 1977, and
distribution of maintenance updates. This charge 1s no: a usa fea, nor is
any charge being made for doveloymant of the compiller.

The distribution tap. 1nc1udus 19 files containing source code
and object code for the compiler, an exscution monitor that provides an
interface to 05/360, soms utility programs that will be needed for md~nteuabge,
and sufffcfent documentation to install the system.

The initial distribution will be followed by one copy of the
written documentation of the compiler, and by periodic maintenance updates
in the form of card decks or minireels of 9-track tape. Haintenance is not
subject to any warranty, elther explicit or implied, beyond the assurance
that the user will receive any updates that we generate through Marck, 1977.

Professor R.B. Kieburtz

T0: PASCAL Compiler Project
Deparxtment of Computar Sciance
SUNY at Stony Brook
‘Stony Brook, N.Y, 11794

Plaase send a copy of the PASCAL/360 distributicn tape,
and put my nama oa the distribution liat to receive further
documeatation and updates. I agree that you will recsiva
payunn; of $173.00 from wa or my institutiom.

REGGRB%ulwﬁil DENSETY: NAME
808 bpi 1530 bat (Circla one) NSTITUTION: _ e
Billing Address, if suparata: AND ANDRESS:

v

S# Y3LLFTSMIN TWISYd

9/6T "Y3AWILd3S

€9 39vd

IBM 1130 (no known implementations)

ICL 1900 (an implementation exists)

2970 (an implementation is planned)
INTEL 8080 (we need more implementation information)

INTERDATA 7/16 (an implementation is underway)

70 (no known implementations)
MICRODATA 800 (no known implementations)
MITSUBISHI meLcom 7700 (an implementation exists)
MOTOROLA 6800 (we need more implementation information)

(no known implementations)

NCR cenTury 100, 200, 300

PHILIPS p-1400 (a non-standard implementation exists)
SEL 8600 (an implementation exists)

SIEMENS 150 (an implementation exists)

TELEFUNKEN TR-440 (an implementation exists)

TEXAS INSTRUMENTS T1-ASC (no known implementations)
T1-980a (implementations exist)

UNIVAC 1100 series

Three implementations have been under development. One, by J. Steensgaard-Madsen
Datalogisk Institut, Sigurdsgade 41, DK-2200 Copenhagen, Denmark is described in
Newsletter #4. There is no distribution information available. Another project
is still underway (not complete) by Charles Fischer and Richard LeBlanc at
MACC, University of Wisconsin, Madison, WI 53706, (608) 262-7870. Its first release
is not expected for a few months yet.

Especially for persons in North America, most encouraging is the news from
Mike S. Ball at the Naval Undersea Center in San Diego. On July 16, 1976, he
announced that a fully standard Pascal compiler generating relocatable code which
can be linked to subprograms written in assembler or FORTRAN. The compiler runs

under the EXEC-8 operating system and can be used in Demand mode. Another feature
is that "Brinch Hansen style Sequential Pascal" programs are accepted under one
compiler option. No performance or resource requirement data is available.

To obtain a copy of the system, write to Michael S. Ball, Code 2522, Naval
Undersea Center, San Diego, CA 92132, (714) 225-2365, requesting a copy as a member
of USE (*The Univac Users organization*). Include a tape, and if there are any
Timitations on the format please note them.

This compiler was developed from Pascal-P2, and is documented in a 29 page
machine retrievable document entitled: "Pascal 1100". The document is in the form
of a supplement to the book Pascal User Manual and Report. Actually the details
explained in "Pascal 1100" indicate that this implementation is a powerful tool
for writing all kinds of software, especially that for writing new EXEC-8 commands.

Many of the extensions available in the CDC 6000 implementation are present
so that portability between these two versions is better than just Standard Pascal.

The compiler accepts the full ASCII character set (strings are packed 4 per
36 bit word - 9 bits per character). Sets have 4 word representations allowing
the convenience of defining a set of char.

Minor restrictions from Standard Pascal are as follows: the symbols: entry,
processor, and univ are reserved; Sets have at most 144 elements; standard
procedures and functions cannot be used a actual parameters to other procedures
add functions; it is not possible to construct a file of files.

We are looking forward to more information on Univac 1100 implementations,
especially performance data.

XEROX sioMa 6 (no implementation information)
SIGMA 7 (implementations exist)

SIGMA @ (no known implementations)

9/6T “Y3dWILd3IS G# YALLFTISMIAN TWISYd

h9 39vd

PASCAL USER'S GROUP ALL PURPOSE COUPON

USER'S EX TR X Y
GROUP

Clip, photocopy, or reproduce, etc. and mail to: Pascal User's Group
c/o0 Andy Mickel
University Computer Center
227 Exp Engr
University of Minnesota
Minneapolis, MN 55455

(phone: (612) 376-7290)

renew my membership in o next .
/ / Please enter me as a member of the PASCAL USER'S GROUP for the current Academic

Year ending June 30. I understand that I shall receive all 4 issues of
Pascal Newsfettern for the year. Enclosed please find $4.00.

/ / Please send a copy of Pascal Newsfetter Number . Enclosed please find
$1.00 for each.

/ / My new address is printed below. Please use it from now on. I'l11 enclose an
old mailing label if I can find one.

/ / You messed up my address. See below.
/ / Enclosed are some bugs I would like to report to the maintainer of the

version of Pascal. Please forward it to the
appropriate person so that something can be done about it.

/ / Enclosed please find a contribution (such as what we are doing with Pascal
at our computer installation), idea, article, or opinion which I wish to
- submit for publication in the next issue of Pascal Newsletter.

/ / None of the above.

Other comments: From: name

address

phone

date

(*Your phone number helps facilitate- communication with other PUG members.f)

return to:

University Computer Center

University of Minnesota

227 Experimental Engineering Building
Minneapolis, Minnesota 55455

return postage guaranteed

