PASCAL USER’S GROUP

* Fk % e % Fk ok % Tk

by
v~

* Sk % Ik % FR %

% S

USER’S

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

O 00O ~NOYWMNON == O

11
12

15

16

o PASCAL NEWSLETTER

NUMBER 8

MAY, 1977

TaABLE oF CONTENTS

POLICY

-EDITOR'S CONTRIBUTION

HERE AND THERE WITH PASCAL
News
Conferences
Books and Articles
Applications

ARTICLES

"Develdbment of a Pascal Compiler for the C.I.I. IRIS 50.
A Part1a1 History." . ,
.+ = 0livier Lecarme

"A Further Defence of Formatted Input"
- B.A.E. Meek1ngs

"Proposa]s for Pascal"
- George H. R1chmond

"A Pkoposa1 for Increased Security in the Use of Variant
Records" - William Barabash, Charles R. Hill, and
Richard B. Kieburtz ‘

“Update on UCSD Pascal Activities"
- Kenneth L. Bowles

"Some Comments on Pascal I/0"
- Chris Bishop

OPEN FORUM FOR MEMBERS
Special Topic: Standards

IMPLEMENTATION NOTES
Checklist
General Information
Software Writing Tools
Portable Pascals
Feature Implementation Notes
Machine Dependent Implementations
Index

ALL PURPOSE COUPON

»

% Sk % SR % 3R % TR % Ik

Sk

3

=k

*

PASCAL USER’S GROUP POLICIES

Purposes - are to promote the use of the programming language Pascal as well as the
~ideas behind Pascal. Pascal is a practical, general purpose 1anguage
with a small and systematic structure being used for:

* teaching programming concepts

developing reliable "production" software
implementing software efficiently on today's machines
writing portable software :

Membership - is open to anyone: particularly the Pascal user, teacher, maintainer, ’
implementor, distributor, or just plain fan. Institutional memberships,
especially 11brar1es, are encouraged. Membership is per academic year endi
June 30. Anyone joining for a particular year will receive all 4 quarter1§
issues of Pascal Newslettern for that year. (In other words, back issues ar
sent automatically.) First time members receive a rece1pt for membershlp,
renewers do not to save PUG postage

* ok %

Cost of membersh1p per academic year is $4 and may be sent to:
Pascal User's Group/ %Andy Mickel/University Computer Center/227 Exp Engr/
University of Minnesota/Minneapolis, MN 55455 USA/ phone (612) 376 7290

- In the United Kingdom, send £2.50 to: = -
Pascal Users' Group/ %Judy Mullins/Mathematics Department/The Un1vers1ty/
SOUTHAMPTON/S09 SNH/Unxted Kingdom/ (te]ephone 0703-559122 x2387)

PASCAL NEWSLETTER POLICIES

The Pascal Newsfettern is the official but informal publication of the User's Group.

; It 1s produced quarterly (uSua11y September, November, February, and May) .
A complete membership 1ist is printed in the November issue. Single
back 1ssues are ava11ab1e for $1 each Out of pr1nt #5;1 2,354 X

The contrwbut1on by PUG members of 1deas queries, art1c1es, 1etters and opinions for
the Newsfetten is important. Articles and notices concern: Pascal
philosophy, the use of Pascal as a teaching tool, uses of Pascal at differe
computer installations, portable (applications) program exchange, how to
promote Pascal usage, ‘and important events (meetings, publications, etc.).

~ Implementation information for the programming language Pascal on different computer -
systems is provided in the Newsfettfer out of the necessity to spread the us
of Pascal. This includes contacts for maintainers, documentors, and .
- distributors of a given implementation as well as where to send bug reports
Both qualitative and quantitative descriptions for a given implementation a
publicized. Proposed extensions to Standard Pascal for users of a given
implementation are aired. Announcements are made of the ava11ab111ty of ne
software writing tools for a Pascal environment.

POLICY

Miscellaneous features include b1b11ograph1es, questionaires, and membersh1p 11sts Y

Editor's notes are in Pascal style comments (**).

ALL THE NEWS THAT FITS, WE PRINT. PLEASE SEND WRITTEN MATERIAL TO THE
NEWSLETTER SINGLE SPACED AND IN CAMERA-READY FORM. USE NARROW MARGINS;
(LINE WIDTH 18.5 CENTIMETERS). REMEMBER, ALL LETTERS TO US WILL BE -
PRINTED UNLESS THEY CONTAIN A REQUEST TO THE CONTRARY..

- Andy M1cke1, ed1tor, John P. Strait, assoc1ate ed1tor Aprx] 26 1977;

|
|
|
|

m UNIVERSITY OF MINNESOTA g University Computer Center

TWIN CITIES] 227 Experimental Engineering Building
i Minneapolis, Minnesota 55455

i
| (612) 376-7290

his issue with so many important topics is late. I think that George Richmond deserves
nother round of thanks for the early work he did on Pascal Newsletter. With this, the
ourth issue I've done, I have to say that it is a lot of work. Without Sara Graffunder
ndaJim Miner,who edited the Here and There and ImpTementation Notes sections respectively,
his issue would not have appeared.

RENEW

e've lowered the cost of PUG membership by keeping the price the same ($41977 < $41976)!

his is the last (and first) renewal notice you'll get. Please renew, especially if you
hink we are doing some good in the world. If you are not reading your own copy of the
ewsletter, why not help us out: join for yourself (we need more members to keep the price
he same). Just think of it as giving up eating out one night .in the next year. And we
on't refuse additional (no strings attached) contributions!

TANDARDS
ee the Open Forum section for a series of letters.

ICROPROCESSOR Pascal

ce the Here and There News section under Charles Bacon, P.M. Lashley, Steve Legenhausen,
ndy Mickel, David A. Mundie, and see Implementation Notes under both "Comment: Microproc-
ssors" and under individual specific manufacturers's names. And Ken Bowles's article.

ascal Newsletter #9. .

eadline for written contributions is July 15. Changes in POLICY: #4 is now out of print.
11 written material must now be single spaced and typed with narrow margins. We are
unning out of room!

'HIS ISSUE (#8)

Infortunately we have had to cut material from this issue ("all the news that fits...").

ieorge Richmond sent a 5 page bibliography which we couldn't find room for. It had only
5 new entries over his last one in #4, and is incomplete these days if you keep up with
‘ascal Newsletter. We were also unable to print a Roster increment as we did in #7.

" regret this because it is the roster which enables Pascalers to get together especially
f they are in the same area. This time the number of new members totals 345! It would
lave taken 6 full pages to print in a new compressed format! We just couldn't afford it.
le also had to reformat every contribution to save space, and omit extraneous material.

jut, we have no shortage of material (unlike fhe disease which afflicted the FORTRAN
julletin, the LISP Bulletin, the SNOBOL Bulletin, etc.).

le have had“many suggestions regarding the newsletter. We want to keep it informal and
interesting and prevent its degeneration into a slick, useless, "professional” journal.

UG_and Pascal Newsletter Mechanics

UG now has 943 members in 29 countries and 47 states! We need more members to stay
“inancially solvent (we are currently in the black, barely) and we need them as well as
~enewals early in the academic year (preferably before August 15). I now strongly disagree
vith my earlier idea (and Mike Hagerty's letter in this issue) of becoming affiliated with
\CM (1ike STAPL under SIGPLAN). Did you know that according to Garth Foster (January 6,
1977) STAPL (SIGPLAN Technical committee on APL) only had 973 members after more than 5
years in existence? If we affiliated with ACM, the price would probably double, but we'd
se compensated with fancy letterhead on the stationary.

EDITOR’'S CONTRIBUTION

PUG has a broad base with many non-academic members. We have kept the price low,
publicized PUG in unconventional ways (unlike ACM) and in the process have become known in
industry where the real changes can be made. We just completed our fourth mass mailing
(350) on March 28 to the holdouts from George Richmond's old mailing 1ist from newsletters
1-4.

I would Tike to encourage all PUG members to use their imaginations in making Pascal and

PUG more visible. Write letters to the editor of popular trade journals such as
COMPUTERWORLD, DATAMATION, COMPUTING EUROPE, etc. Distributors of compilers should send

an A1l Purpose Coupon to each recipient of their implementations. Write to SIGCSE (Pascal's
strong point is Computer Science Education). I can't do all of these things.

I've noticed some big discrepencies in PUG membership at several universities which have

a fair amount of Pascal users. It seems that some local people have not done all they can

to tell their users about PUG. Why is it for example that at the University of Minnesota
there are 48 PUG members, at Lehigh University 13, at Indiana University, the

University of Texas, and the Technical University of Berlin 7, and at the University of
I11inois, Georgia Tech, the University of Southwestern Louisiana, Cornell, and the Imperial
College London, etc. there are 6 PUG members while at the University of Colorado there is
only 3, the University of Washington only 2, and at the University of Manitoba, SUNY Buffalo,
and the University of Massachusetts only 1?

BACK ISSUES

I'm sorry that we are slow, but we are not in the publishing business. As I stated in

#7 we have had terrific growing pains resulting from not realizing back in September how
popular PUG was going to be. We are temporarily out of print with #5 and this holds up
mailing 5,6,and 7 to new members as we cannot afford postage for separate mailings. As it
is, it is very expensive to mail back issues. At PUG "central" here in Minnesota, we have
no secretaries. John and I (with help from people like Sara and Jim) have opened all our
own mail, answered with personal notes all inquiries, handwritten most addresses on
envelopes, handled all the typing, mailing of back issues, filing, accounting, the mailing
label data base; and sent invoices and bills to persons who haven't paid. That's right,
we never planned on some people not paying. Those who still -owe PUG money are: Bengt
Norstrom, Lars Magnusson, Bernhard Nebel, Roland F. Blommer, Stanley B. Higgins,. Karl J.
Astrom, Wayne Fung, John S. Sobolewski, T. Hardy, Ada Szer, and John Nolan.
This is as of today, and I wouldn't be surprised to see their money soon, and I don't in
any way want to imply that each does not eventually intend to pay!

SUMMARY

T want to thank all of those who have helped this year, especially Judy Mullins, David
Barron, Carroll Morgan and Tony Gerber (who have enabled Australasian re-mailing with
zero compensation) and Teruo Hikita for remailing #7 to Japanese members. Finally many
thanks are due to the University Computer Center here at the University of Minnesota,
particularly Peter Patton, our director, and Lawrence Liddiard our associate director
for systems for enabling PUG to thrive.

- April 26, 1977

8# YILLITSKIN TvISYHd

‘AVHU

LL6T1

T 39vd

HERE AND THERE WITH PASCAL

NEWS (ALPHABETICAL BY LAST NAME)

Charles Bacun, 10717 Burbark Dr., Putomac, MD 20854 (PUG member): "I am interested in a
Pascal rurning on a RSX=~11M system as well as on the KI-10....alsu on any 8080 system."
(* 1/10/77 *)

Mark Becker, 300 Collingwuud Ave., Fairfield, CT 06432 (PUG member): "I'd like tu luc§te
a version of PASCAL for the PDP 11 that dues rnot use or require the Floating Point
Prucessour." (* 1/31/77 *)

(* From the newsletter of the University Computer Center at the University of Southern
California, 1020 W. Jefferson Blvd., Los Angeles, CA 90007: UCC has added several‘ JcL
procedures (for its IBM 370 system) su that users can invoke the University of Manituba
version of Pascal. The prucedures perform une-step monitour; compile; cumpi}e, load and
gu; coumpile, linkedit; compile, linkedit, and -gu; load and gu; linkedit and go; and
compile and punch an object deck. 1/1/77 *)

Gary Bous, 517 N. 7th St., Bismarck, ND 58501 (PUG member): "I am interested in kriowing
abuut chess programs written in Pascal."”

Kevin - W. Carlson, 1531 Simpson St. Madison, WI 53713 (PUG member): (* Wants to know if
there is a group of Pascal users in or near Madison. 2/9/77 *))

€. R. Corner, 514 S. 9th St., Moorhead, MN 56560 (PUG member): "I'm trying to implement
Pascal on the PDP-8 and on the PDP-11. Any suggestions?" (*3/1/77 *) .

Frederick C. Cowan, The Aeruspace Curpuration, Mail station A2-2043, P. 0. Box 92957, Lous
Angeles, CA 90009 (PUG member): "I am interested in the mods to make [release 2 of
PASCAL 6000-3.4J run on the 7600 under Scupe 2.2." (* 3/18/77 *) .

Mattia Hmel jak, Ist. di Elettrotecnica ed tletronica, Universitd di - Trieste, Trieste,
Italy (PUG member): "In Trieste University a CDC cumputer exists and a Pascal compiler is
implemented there.

We have also an HP=2100 mini~cumputer and we would like to run sume programs there

for teaching and for research. For these reasons we intend to implement the Pascal .

compiler on this machine.

As a first step . . . we intend tu write a P~cude interpreter using the
Pascal-written interpreter and translating it intu H~P Algol. Therefure we would be glad
to know if soumeone else is working to implement Pascal o the same
mini~computer. . . . We thank you alsu for any information you will cunsider useful to
give us for our work." (¥ 2/5/77 *)

Stanley B. Higgins, Dept. of Medicine, Vanderbilt University, Nashville, TN 37232 (PUG
member): ", . . our group operates a PDP-11/40, PDP-11/34 and a
PDP-11/55 . . . software . . . by DtC . . . RT=11 and RSX~11M vperating
systems. . . . We would be most interested in knowing of [Pascal compilersf."

(* 2/23/77 *)

Rubert L. King, 1452 Sandra Dr., Endicott, NY 13760 (PUG member): "If possible, please
forward information on free or very inexpensive Pascal cumpilers for an IBM 370/178 under
VSI with 3330's and 9~track tapes." (* 2/1/77 *)

Joseph Lachman, Computer Center, University of Illinois at Chicagu Circle, Box 4348,
Chicagu, IL 60680 (PUG member): " . . . At present the UICC computer center has no
Pascal compiler. Auny advice you could offer us relative to the availability, quality,
and costs of PASCAL compilers that will run on IBM/370 ur DEC PDP-1l1 computers would be
greatly appreciated." (* 4/5/77 ¥)

J. Larmouth, Director, Computing Laboratory, University of Salfourd, Salford M5 4WT,
England (PUG member): " Having moved to Salford from Cambridge, I have ceased work on
Pascal. Unfurtunately there was nobody available at Cambridge to continue the work. so

- with FORTRAN or PL/1.

that our effurts towards a 370 implementation should be considered abanduned.

"We did prouduce and distribute an interpreter system but Cambridge . . . dues not
have the mati~puwer tu continue even this service.,

"Sorry this is all su negative. My interest in Pascal remains, although you might
be interested tu know that I am perhaps mure interested in EUCLID, as would, I think, be
most members of PUG if they knew more about it." (* 1/5/77. Fur information about
tuclid, consult B. W. Lampsun, et. al., "Repurt un the Progremming Lanquage tuclid,"
SIGPLAN . Nutices , 12:2 (February 1977); and G. J. Pupek, et. al., "Nutes oun the Design
of EUCLID," SIGPLAN Nutices, 12:3 (March 1977), 11-19. *)

P. M. Lashley, Director of Cumputing CSCS, POB 764, 114 S. Bullard St., Silver City,

N4 88061: %* from a letter to the editor of Byte, 2:2 (February 1977), 77-78 *) "I write
primarily in respunse to Mr. Skye's letter in yodr August issue. I can unly cunclude
that he had been with IBM tuu loung, otherwise he would not attempt tu debase the 8080
FORTRAN is a virtual pterudactyl, flying solely by inertia,
whereas PL/1 is much better, but too rambling in construction. If he indeed takes up the
admirable task of writing a high level coumpiler for the 8080, he would be better advised
to base his compiler on a fully structured language such as PASCAL." (* The latter gues
oty fur several paragraphs. *)

Steve Legenhausen, 12 Baruard Street, Highland Park, NJ 08904 (PUG member): "I think it
is absolutely impourtant that persons promoting Pascal realize the danger of BASIC's

" becuming the permanent and unly language o micruprocessurs. 0One only has tu pick up any
issue of the cumputer hubbyist magazines such as 9Or. Dubbs Journal, Byte, Kilubaud,
Creative Cumputing, etc., to find that each is filled with BASIC. Sume effort should be
put forth to promote Pascal in this medium." (* 12/31/76 *)

Chris P. Lindsey, Computing Courdinator, Harvey Mudd Coullege, Clarement, CA 91711 (PUG
member): "Dou yuu knww of a well-ducumented, errur free versiun of PASCAL which runs on a
DECsystem~10 with a KA processor?" (¥ 1/77 *)

R. A. Luvestedt, 20427 St 192, Rentun, WA 98055 (PUG member): "Any PASCAL work on an
HP30007" (* 2/10/77 *)

William Lyczko, Souftware Development, NCR Corpuratior/Terminal Systems, 950 Danby Road,
Ithaca, NY 14850 (PUG member): "I am interested in any - information you may have on
implementation of PASCAL for micruprucessurs." (* 1/7/77 *)

Philip J. . Malculm, former address Zeus-Hermes Cunsultants Ltd.), Shrupshire House, 2-10
Capper Street, Lundun; new address c/uv Bank of Adelaide, 11 leadenhall St., Llundon EC3V
ILP, trgland (PUG member): "Zeus~Hermes is . . . investigating the possibility of
adopting a Pascal ~~ or Mudula ~~ type language fur in-huuse development of mini- and
micro-computer software across a bruad range of target machines.

"Ideal would be a cumpiler: :
written in its own source language; and
executable un a micrucomputer (with say 32-64K bytes of RAM, diskettes); and
easily transpurtable tu different target machines; and
relying ovn a very small run~time munitur/support package.
~ "We would be delighted tu hear from thuse pussessing ur working towards such a
“system." (* 1/3/77 *)

Andy Mickel, Univ. Computer Center, 227 txp. tngr., U. of Minnesota, Minneapolis,
MN 55455 (PUG member) reports receiving an educational questionnaire from Intel about
cumputer courses and micro-processors. The question, "What prugramming languages are
used?" countained the check~off answers Fortran, Algoel, PL/1, PL/M, Basic, and Pascal.
Nut included were Cobol, Lisp, Snubul, etc. (* Andy's respunse tu the catch-all question
at the end was, "When are you going to support Pascal or a Pascal-subset and give up on
Basic?" *)

David A. Mgndie, French Department, 302 Cabell Hall, University of Virginia,
Charlottesville, VA 22903 (PUG member): "Is Ziloug really making a microprucessor that
executes PASCAL counstructs as its machine-level language (Byte, v.2, no. 4, April 1977,

p. 140)7" (* 4/3/77 Will a PUG member please write Zilog to ask, then send the answer to
the newsletter? *)

8# 4¥3ILLITSMIN TV¥ISVd

LLBT “AYHM

¢ 39vd

Mark 0'Bryan, Computer Center, Western Michigan University, Kalamazou, Michigan 49001:
w, . U I'm in charge uf PASCAL implementation and maintenance at WHU. We have an old
version of NAGHL's compiler for the PDP-13J and will be releasing it for use here in
early March . I1"11 keep you infurmed on user reaction when it happens.

Gene H. Olson, 421 County Road 3, Apt. 512, Hopkins, MN 55343 (PUG. member): "The best
argument sgainst formatted reads has yet to sppear in the PUG newsletter. In processing
large amounts of formatted data (the supposed ratiovnale of formatted reads) keypunch or
similar errors cause both formatting and content errors which render formatted reads

useless, In other words, in a production environment, the program must check datu

character~for-character as it is coming in." (* 2/25/77 *)

Jerry L. Ray, 21320 Oldgate Rd., tlkhorn, Nt 68022 (PUG member): "I am attempting tu sell
the idea of using PASCAL instead of FORTRAN us a first language ire o Cumputers & Business
course. Any information to suppurt my argument (institutions using PASCAL, etc., as well
as the structure aspects) would be greatly appreciated." (* 4/8/77 *)

L 3 .

R. Waldo Roth, Cumputer Science Dept., Taylur University, Upland, IN 46989 (PUG member):
W, . . I would alsu like to know about the availability of a PASCAL package tu run on DtC
11 systems under RSTS or RT-11." (* 2-24-77 *)

Carl W. Schwarcz, Digital Equipment Corp., MR 1-2/t27, 200 Fourest Street, Marlboru,
MA 01752 (PUG member): ". . . While employed by Control Data I was respunsible fur the
design and implemenitation of two compilers for a Puscal-based programming language ('the
Software HWriters' Language') fur the Cyber 170 and Cyber 270." (* 1/25/77 *)

Arthur I. Schwarz, Hughes Aircraft Co., Bldg. 150/MS A222, Culver City, CA - 90230 (PUG!

member): "Our installation is currently interested in gaining some expertise in using
PASCAL. We would like to obtain a compiler for use un our Sigma 9 computer, or. lacking
this, a cumpiler with accessible code generaturs for either the CDC or IBM computer
lines." (* 2/8/77 *)

Wayne - Seipel, Bux 8259 U.T. Station, Austin, TX 78712 (PUG member): "The University of
Texas Cumputer Science department needs a PASCAL cumpiler for a [Data General} Nova 3D.
The department has just purchased 2 processors, each with 32K words of memory and a
10Mega~byte disk. These will be used by buth graduate and undergraduate -students in. a
hands-on envirorment. Current plans call for the develupment of an operating system, and
a PASCAL coumpiler would make life orders of magnitude easier. Any information on a
compiler (completed, standard, PASCAL1, or PASCAL2) will be greatly appreciated.

Contact either James Peterson, Computer Science Dept., University of Texas, Austin,
TX 78712, or myself." (* 3/14/77 *)

Kevin Weiler, 147 Cornell Qrtrs., Ithaca, NY 14850 (PUG member): "Has anyone implemented
PASCALT on a PDP 11/45? (Is a Janus interpreter available?)" (* 1/21/77 *))

Nichulas Wybolt, 576 Leu Street, Hillside, NJ 07205 (PUG member): "Here at NJIT, Pascal
is beginning to be used in a junior-level course in algurithms and data-structures; there
is also individual interest in Pascal among faculty members and the student body.

"The student branch of the ACM is attempting to act as a medium of - infurmation - in
this matter. We are interested in your group and any related publications and
activities. . . ." (* 2/4/77 *)

(* From a press release by the U, S. Department of Defense distributed by the British
Computer «Society, March 22, 1977, on "The U. S. Department of Defense High Order Lan~
guage Effoft," tu reach a consensus on a common high prder language for embedded systems,
p. 8 *):

C"Without exception, the fullowing languages were found by the evaluaturs to be
inapproupriate to serve as base languages for a development of the common language:
FORTRAN, COBOL, TACPOL, CMS-2, JOVIAL J73, JOVIAL 138, SIMULA 67, ALGOL 60, and CORAL.

"Propusals shuuld be sulicited from appropriate language designers for modification
efforts using any of the languages, PASCAL, PL/I, or ALGOL 68 as base languages from
which tu start. These efforts should be directed toward the production of a language
that satisfies the DuD set of language requirements for embedded cumputer applications.”

iERE AND THERE WITH PASCAL

CONFERENCES

International Federation of Information Processing Societies (IFIP), August 8-12, }977 in
Toronto. (* Would a PUG member who is there organize and publicize a Pascal User's Group
gathering. We would, but we won't be there. Also, send in a resume of the meeting for

Newsletter No. 9. Thanks. *)

ACM '77, Seattle, Washington, October 17-19, 1977. (* The same here for Newsletter No. 10.*)

REPORT .on the Third Annual Computer Studies Symposium at Southampton (March 24-25)
"PASCAL - THE LANGUAGE AND ITS.IMPLEMENTATION"

A little over halfway in this whirlwind, 48 hour happening, the medieval
'banquet began. DNavid Barron (the baron) and Judy Mullins (the baroness) enjoyed
?hg hgnor of reigning over and hosting the attendees; it was a delightful time

indeed.

And so was the whole symposium! I must commend Judy for organizing the
svmposium down to the last detail and thank David for making it a reality. It was
a success by several different measures. Around 134 persons attended. The
proceedings officially listed (including speakers and last minute replacements):
Austria 3;.Belgium 4; Canada 1; Denmark 7; France 4; Germany 16; Great Britain 72;
Ireland 8; Netherlands 2; Sweden 9; Switzerland 5; and the USA 3; The proceedings
contain the texts of all 11 presentations and will be published later this year
(see Books section). A1l except Per Brinch Hansen's which will appear in an IEEE
publication.. :

David Barron, U of Southampton, opened the symposium with a talk entitled
"{’erspectives on Pascal” which looked at the past, present and future and concluded
Y§23A2P5a11 to join a "Society to Combat Well-meant Attempts to Change Pascal

Urs Ammann, ETH, Zurich, was introduced as the great-grandfather of all Pascal
compiler writers and summarized his work over the last 6 years in "The Zurich
Implementation."

Jim Welsh, Queen's U, Belfast, likewise introduced as the grandfather of
Pascal compiler writers detailed development and performance of “"Two ICL 1900
Pascal Compilers." }

David Watt, U of Glasgow, presented an extensive description of "A Pascal
Diagnostics System" for the ICL 1900 implementation.

Mike Rees, U of Southampton, presented a description of the Pascal compiler
effort on the ICL 2970 underway for the past 9 months in "Pascal on an Advanced
Architecture."

Judy Mullins, U of Southampton, did not dream up hypothetical architecture,
but rather critically combined existing architectural features in designing "A
Pascal Machine?"

The next day began with Per Brinch Hansen, U of S. California describing

his "Experience With Modular Concurrent Programming" and his opinions of the future.

Pierre Desjardins, U of Montreal, substituted for Olivier Lecarme, U of Nice,
and sketched an overview of "Pascal and Portability" issues.

Brian Wichmann,National Physical Laboratory, Middlesex, coalesced various
aspects on “"The Efficiency of Pascal” in comparison to other languages and in
different environments.

Graeme Webster, Teeside Polytechnic, advised others who introduce Pascal
into the curriculum with a talk on "Pascal in Education.”

There were two discussion sessions. Brian Wichmann led the first on "Pascal
on Minis and Micros" and I introduced the second on "The Future of Pascal"
concerning standards and extensions issues.

In between time, the opportunity to talk and argue with other Pascalers from
so many places was a real treat for all, I'm sure. I managed to meet 48 people,
and in the process confessed to Urs that it was hard to get used to intense, sudden
exposure to so many cultural backgrounds.

' Perhaps the long range accomplishment of the symposium was to pass on a
consensus to the rest of us in PUG regarding standards. See OPEN FORUM.

- Andy Mickel, April 17, 1977

8# Y3113ITSKHIN TYISVd

‘AVHW

LL6T

¢ 39Vvd

i B e

e
o, 1L

A

Third:AnnUal Computer Studies Sympo's'ium .
“PASCAL - the LANGUAGE and its IMPLEMENTATION”
3 University of Southampton, March1977

SYMPOSIUM ATTENDEES, (127 pictured here; not-all names and faces known together!): A full

8# d3LL3ITSMIN TVISVd

AV

LL61

b 39vd

8# d3LLITSMIAN TVYISVd

=

™

<

2

Third Annual Computer Studies Symposium) ..
“PASCAL - the LANGUAGE and its IMPLEMENTATION

University of Southampton, March1977

O

-

SYMPOSIUM SPEAKERS, (pictured from left to right): David Barron, Per Brinch Hansen, Andy m

Mickel, Pierre Desjardins, Graeme Webster, NDavid Watt, Mike Rees, Urs o

Ammann, Brian Wichmann, Jim Welsh, and Judy Mullins.

BOOKS AND ARTICLES

(* D. W. Barrour, working with Rich Stevens, has offered tu take over this section. What
folluws is a notice of the pulicy for the section, beginning with Nu. 9 *)
POLICY

In this section we shall try tu keep PUG members up-tu-date with ‘the PASCAL

under the general headings Languages, Textbouks, Implementation, Applications.

literature
pussible

At the least we shall give a brief citation of title, author and publisher. If

we shall included a brief abstract and, if the impurtance warrants it, a critical review. -

Ity addition from time to time we shall give (hopefully) cuimplete annotated bibliographies
of selected areas: with the feedbuck from PUG members we shuuld be able tu build up a
really comprehensive guide tu the PASCAL literature.

Buoks and pupers in the established journals are fairly easy tu keep track of, but
internal reports present much more difficulty. If you (or your institution) produce a
report that you are willing to circulate, please send me a copy of the title —page, or
better still a copy of the repurt. The address is:

David Barron or - W. Richard Steveus
Puscal User's Group (U.K.)- Kitt Peak Natioral Observatory

Department of Mathematics P. 0. Bux 26732
The University Tuscon, AZ 85726
SOUTHAMPTON, U.S.A.

S09 SNH
U.K. :

As with the rest of PUG, the success of this enterprise will rest largely on the
enthusiasm and help of the membership.
10 February 1977 David Barron

(* The policy begins w1;th the next issue. What follows is our new information about books
and articles, and a review. *)

BOUKS

A Concurrent Pascal Cumpiler for Minicumputers, by Al Hartman, to be published Dby
Springer-Verlag as Volume SO0 in their Lecture Notes in Cumputer Science. Probably
available by the end of April 1977. (* Al writes that the book will be of especial

interest to ". . . any of your membership using the Concurrent Pascal or Sequential
Pascal compilers developed at Caltech fur the PDP~11/45 minicomputer." *)

Introduction to Computer Science, by Ken Buwles (U. of Californis, San Diegu), tu be
published by Springer-Verlag in Octuber 1977. (* The bouk is computer graphics
oriented and uses Pascal as the teaching vehicle. Note the change of title from our
citation in Nu. 5. *)

Introduction to Programming and Problem Sulving with PASCAL, by *G.M. Schneider,
D. Perlman, and 5. Weingart, to be published in hardback by Wiley and Sons in January
1978, A camera-ready manuscript of the book care be uvbtained by writing

Gene Davenport, tditor
Juhty Wiley and Suns Publishers
605 Third Avenue
New Yourk, NY 10016 : L
_ The manuscript may, with written permission, be duplicated fur class
publication of the bouk.

use until the

Pascal-~the
March 24-25. (* At press-time,
Perhaps details will be settled in time for publication ir No.

there is as yet no definite publisher and publication

date. 9 *)

Structured Prugramming and Prublem Sulving with PASCAL, by Richard Kieburtz, Departmert of
Cumputer Science, SUNY at Stuny Brook, Stony Bruuk, NY 11794, to be published by
Prentice~Hall sometime in 1977. (* This is rumored; we aren't sure of the title,
etc. We hupe we'll have the facts in time for No. 9. *)

Langua%e and its Implemertation, proceedings uf the S)mpusium in Southamptor,

ARTICLES

"tfficient Implementation and Optimization of Run~time Checking in Pascal," by Charles N.
Fischer and Richard J. LeBlanc, SIGPLAN Nutices, 12:3 (March 1977); 19-24.
(* From the abstract *): "Complete run-time checking of prugrams is an essential tool
for the develupment of reliable software. A rumber of feutures of the programming
language PASCAL (arrays, subranges, puinters, record variants (discriminated type
uniuns), formal procedures, etc.) can require sume checking at run~time as well as
during compilation. The problem of efficiently implementing such checking is
considered. language modifications tou simplify such checking are suggested. The
pussibility of ouptimizing such checking is discussed.”

"Pruceedings of the All-Union Sympusium on Implementation Techniques fur New Prugramming

. L anguages, Novusibirsk 1975."
(* This publication came to us from David Barron, whu received it frum PUG member S.

. Pokrovsky, Computing Centre, USSR Academy of Sciences, Novusibirsk 630090, USSR.
‘Must of the articles are in Russian, but the number of bibliographical references to
publications about Pascal lead us tu believe that the articles might be of interest
to PUG members. Would sumeone who reads Russian (easily) volunteer to read and
abstract the relevant articles for No. 9? We'll send a copy of the journal to you
if you write tu us in Minneapulis. The abstracts could gu to David Barron for the
next newsletter., *)

"Programming Languages: What to Demand and How tu Assess Them," by Niklaus Wirth, Berichte
des Instituts fur Informatik, t. T. H. Zurich, No. 17 (March 1976), 1-24.
T* From the abstract ¥): "The software inflation has led to a suftware crisis which
has stimulated a search for better methods and tools. This includes the design of
adequate system develoupment languages.

This paper contains some hints on how such - languages should be designed and
propuses sume criteria four judging them. It also contains suggestiovns for evaluating
their implementations, and emphasizes that a clear distinctiun must be made between a
language and its implementation. The paper ends with cuncrete figures about a Pascal
implementation that may be used as yardstick for objective evaluations."

A Extract from "Prufessour Cleverbyte's Visit to Heaven," by Niklaus Wirth, Berichte des

Instituts fur Informatik, t. T. H. .Zurich, 17 (March 1976), 25-31. (* To appear in
Software Practice and txperience *)
(* From the abstract *): "The fulluwing fable is a grotesque extrapolation of past
and current trends in the design of computer hardware and software. It is intended
tu raise the uncumfortable questiun whether these trends siquify real progress or not
and suggests that there may exist sensible Limits of Growth for software too."

"The Software Develupment System," by C. G. Davis and C. R. Vick, IEEE Transactions on
* Suftware tngineering, 3:1 (January, 1977), 69-84. (* A summary by PUG member Nick
Sulntseff, who sent in the citation *): Implementation of PDL~2, an extension of
Pascal, tu, among other things, include councurrent processing. Are also writing an

N 0S in PDL-2.

"Sume High-level lLanguage Cunstructs four Data of Type Relution: An Investigation based un
txtensions to Pascal," by Juachim W. Schmidt, Bericht = Nr, 31, Institut fur
Infurmatik, Hamburg, January 1977. -

(* From the abstract *): "bur the extension of high~level languages by data types of
mude relation, three language cunstructs are proupused and discussed:

~ a repetition statement cuntroulled by relations

-~ predicates as a generalisation of boolean expressions

: ~ a cunstructor for relations using predicates.

*- The language counstructs are developed step by step starting with a set of elementary -
operations on relations, They are designed to fit into PASCAL without introducing
tou many additional cuncepts." (* These extensiuns, which prucess relational data
bases, dare being experimentally implemented in Nagel's DtC~10 compiler at Hamburg *)

8# Y3LLITSMIN TV¥ISY

LLBT “AYH

9 39vd

BOOK REVIEW

INTRODUCTION TO PASCAL, C.A.G. Webster, Heyden and Son, 1976.
No. of pages: 129. Price: £5.50, $u.

For several vyears now there has been an increasing need for
an introductory text on programming which wuses Pascal as the
vehicle. Unfortunately, Webster has not given us that book.
The following may indicate why.

In the preface the author claims coverage of an "essentially
full version of the language, discussing where appropriate ...
the original report and its revision (sic)". In fact the book
describes the original (1971) language and supplements this with
incomplete and inaccurate summaries of the 1972 revision. No
warning is given that the language has developed vigorously since
1972. This makes the book almost useless in conjunction with
compilers for the latest version of the language, Standard Pas-
cal.

One might expect that a book on Pascal would pay 3some heed to
modern ideas of programming methodology. Instead we find algo-
rithms introduced by machine-language programs and illustrated by
“spaghetti" . flowcharts. The concept of stepwise refinement
("top-down programming") is not mentioned until three quarters of
the way through the book and then only in the context of pro-
cedure declarations. No substantial guidance is given in wvital
areas such as program design, testing, debugging, correctness and
maintenance. It might almost be a book on BASIC!

These global defects are compounded by a list of errors of
fact, omission and commission which leaves a blemish in almost
every page. The following are just a few of the more serious.

(a) Variable parameters of procedures are (wrongly) said to
be passed by reference, in a section which manages to make
the (very simple) parameter-passing rules of Pascal seem
almost incomprehensible in their complexity.

(b) Several examples of bad practice in the wuse of real
arithmetic are hardly compensated by a superficial warning
about the comparison of real values.

(c) The operator NOT changes the state of the following
operand, according to Chapter 4.

(d) Chapter 6, under the heading "Initializing variables",
describes the definition of symbolic constants. The ini-
tialization of variables is also described, but without warn-
ing that the feature is not part of the defined language.

(e) There are many lexical, syntactic and logical errors in
. the programming examples, some of them seemingly calculated
to cause the maximum confusion for the beginner. For exam-
ple, despite a warning early-on about the precedence of
relational operators 1in Pascal, almost all the more complex
Boolean expressions in the book are wrongly bracketed (or not
bracketed at all). The following, given as a way of skip-
ping characters up to an asterisk or the end of file, is
guite typical :

REPEAT s := inputT; get (input)
UNTIL s:="'*' AND NOT eof (input)
W. Findlay

In short, avoid this book. University of Glasgow

APPLICATIONS

(* Repurts of applications cume tu the Newsletter frum PUG members, primarily. If you
know uf applications which use PASCAL, please send us the details. *)

Progress Repurt un PLT - March, 1977

PLT (Programming Language for Teaching) is a machine independent CAI/CMI (Cumputer
Aided Instruction/Computer Managed Instruction) system implemented entirely in
PASCAL~6000. PLT features a concise structured lesson creation language implemented with
a fast single pass compiler, an efficient interactive interpreter, and full lessun and
student monitoring facilities.

The PLT system will automatically step individusl students through a series of
lessons and tests. Repurts by student and/ur lessun~tests can be generated using the
system's reporting facilities.

PLT is in full production use at Lehigh University and is being used tu implement a
series uf lessons on PASCAL prugramming.

PLT will be released as an unsuppurted product after completion of its system
internals manual (about April 30, 1977). For further information please write to

Richard J. Cichelli Christmas~Saucon Hall 14
Cumputer Science Group Lehigh University
Department of Mathematics Bethlehem, PA 18015

RUNOFF text furmatter

A versiun of RUNOFF (the well-knuwn text furmatter available on the DEC~10 and other
machines) is available in Pascal on the CDC Cyber 175. tducatiovnal institutions may get
it un a free exchange basis provided you send a tape, expect no immediate response on
bug-fixes, and duo not distribute it tu others. Doucumentation is alsu available. Write to
Bub Foster, Computing Services Office, University of Illinuis, Urbana, IL 61301.

STtP~~A System for cruss compilation.

Programs are written in Pascal. The target code is macru~-generated with Stage 2
(using an intermediate coude). Complete. Available for distribution. Michel Galinier
(* PUG member *), Université P. Sabatier-Informatique, 118 Route de Narbunne, 31077
Toulouse Cedex, France. (* 1/5/77 *)

(* From a news brief in Electronics, March 17, 1977, p. 140 *): "Electru-Scientific
Industries, Inc., Portland, Ore., is begirming tu uffer 1ts own compiler for use by others
on the [DEC POP~11). At the end of last year, Cumputer Autumation Inc., Irvine, Calif.,
announced a cumbined compiler~interpreter for its own mini-computers. Buth companies
puint out that Pascal . . . is simpler tu use than either Fortran or Basic. ESI is aiming
at applications in automated test and data-acquisition systems and in its own laser
trimmers. Cumputer Autumation likes it for develuping compilers and translators."

(* T.t. Bell, D.C. Bixler, and M.t. Dyer, ("An txtendable Approach tu Cumputer-Aided
Suftware Requirements tngineering," in Structured Design, Infotech State uf the Arts
Cunference, 10/18-20/76, pp. 327, also in IEEE Transactions on Suftware Ehglneerng, 3:1
(January, 1977), 49-60) report that TRW used Pascal as the implementation language in its
computer-aided system for maintaining and analyzing system software requirements.*): "The
simulatur generator transforms the [Abstract System Semantic Model (* a database *)]
representation of the requirements intu simulator coude in the prugramming language PASCAL.
The flow structure of each [Requirement Network (R_NET) (* the class of prucessing flow
specifications #)} is used to develop a PASCAL proucedure whose contrul flow implements
that of the R_NET structure. tach prucessing step (ALPHA) of the R_NET becomes a call to
a procedure consisting of the model or algurithm for the ALPHA. The mudels or algorithms
are written in PASCAL." (* frum p. 18 ¥)

PASCAL PRINTER PLOTTER

A listing (6 pages) uof the Pascal code for the printer plotter described in PUGN No.
7 is wavailable free. Write to Herb Rubenstein, University Computer Center, 227
txperimental tngineering, University uf Minnesuta, Minneapulis, MN 55455.

8# Y3ILL3ITSHIN TVISVd

LLBT “AYH

L 39Yd

ARTICLES

DéVELOPMENT OF A PASCAL COMPTLER FOR THE C.I.1. IRIS 50.
A PARTTAL HISTORY.

0Livien LECARME
Univernsité de Nice
1. ENVIRONMENT

The history which is the subject of the present paper takes

place in the University of Nice, a medium-scale University with about

fifteen thousand students. The department of zomputer science is very small,

but delivers two different B.Sc. degrees in computer science (informatics),
and has full graduate programs. About two hundred students attend these

undergraduate and graduate courses.

The University computing center serves the whole academic
community with a C.I.I. Iris 50 computer, a medium-scale machine comparable
in power and capabilities with an I.B.M. 360 model 40 or 44. The multi-

programming system Siris 3 allows the execution of several jobs in fixed

“The first one is a hardware processor, i.e. a computer or machine M.
The second one is a software processor, i.e. a program realizing some
unspecified function f, and written in the programming language WL.
The last two are software processors realizing a specified function :
the first one is an interpreter for language IL, and the second one is

a translator from source language SL to object language OL.

By concatenation of different symbols, and provided that the
same language always appears on both sides of any concerned frontier,
we can describe the generation of a compilef by another one. We use four
different arrows describing the translation processes : the solid afrow
indicates that the target program is the translation of a source program
by a programmed translator ; the dashed arrow indicates that the target
program is produced by hand, either from scratch (no source program), or
by modifying one of the languages concerned (this language is specified
along the arrow) ; the dotted arrow indicates that the target program is
a copy of another one, without modification ; the double-ended arrow
" indicates that two programs must be identical for validating the bootstrap.
Using this formalism, we can describe the history of the two principal
Pascal compilers for the CDC 6600 (the following diagrams abusively
simplify the history)

g# ¥ILLITSHIN TYISV

AVH

/16T

size partitions, the biggest possible size being 220 K bytes (stand-alone .v'jﬁpas 6000 ‘tiﬁPas 6000/...... s First Pascal
mode), and the most current sizes being 64K or 96K bytes. The department of —e L WL compiler
v .
computer science accesses this computer by remote batch processing, with Pas 6000/ Pas 6000 6000[
a mean return time of about one hour.’ Lo T
, 71Pas 6000 | 6000
. s 1 ilabl bly 1 / I oy B second
' Programming languages available are an assembly language » . T .- Vpas2 6000 |Pas2 6000 >fPasca1
(without macro definition capabilities), Fortran and Cobol. None of these ‘o \@L ‘> 600 o compiler
. . ' o N m’)h >|Pas2 6000| Pas2 Pas2 6000 600
languages may be considered an adequate support for teaching computer) o
. ‘ SN——
science, and especially for teaching programming to future specialists.) } \Bi WY ! PasZ 6000|P33 Pas2 €300 6000
Successive attempts to implement Pascal have consequently been done, with Pas Pas\ 3600 ﬁOde 6000
variable success. The main difficulties encountered are the lack of |
dedicated manpower, the weakness of software tools available, and ;he small . o 600 .5?35 N.B. These two diagrams
amount of storage normally available on the computer. First Pascal .- 4

. i could be concatenated
compiler 0!

2. FORMALISM FOR DESCRIBING TRANSLATORS

The so-called T-diagrams of Earley and Sturgis are very useful 3. FIRST ATTEMPT WITH PASCAL-P

to describe the generation of translators by complicated bootstraps. A translation into Fortran of .the interpreter for P-code

. (first version of Pascal-P) had been made in Paris for a CDC 3600, and !
The four following different symbols describe the different programs : ., carefully written for being really portable. In fact, it was quickly

implemented on the Iris 50, but it gave so disastrous performances in

Y::;7 f - SL oL ' ’ time and space that the compilation of a tiny program (by interpreting
‘ the compller) would have necessitated exclusive use of the computer for
- » L WL . ' ‘V" about one hour. Explanations of this phenomenon are simple and inte-

resting.

2 J9Vd

The packing and unpacking of P-code instructions fields
were done with multiplications and divisions by powers of 2. The
Fortran compiler did not recognize the special form of these operations,
and generated ordinary code, which was especially complicated for integer
arithmetic. This partly explains the slowness of the interpretation,
other factors being the use of Fortran input-output routines, and the

heavy overlay loading necessary because of memory problems.

These memory problems are partly due to the weaknesses of
the first P-code, corrected in the last version : either the length of
each data object must be explicitly indicated in its representation, or
each object must be allowed the same storage size. This second solution
had been chosen in Paris, because of better time performances, but it
necessitated two memory words (32 bits) for each type Boolean, character,
integer and real, because of the 58 bits necessary for sets when inter-
preting the compiler. The interpreter needs a "memory" of 24 K "words",
i.e. in our case 192K bytes, plus the interpreter itself, the interpreted

program and the Fortran execution support (principally input-output).

The following diagrams describe the two phases of the

generation and use of a Pascal implementation with Pascal-P.

as éi | Pas

N
£

S3A10114YV

- — \ N %l '
Pas l # Pas T i e '\ Pas | Pas Pl P ;
[Pas Pas 6000}6000[R }t P 1 P |
! — i
S n P
\ l ‘ 150
oL ! - 2
. 00 “ ! 5
' / For ' For 150 150 Y
600 Pascal compiler 7___H_”‘~ . -/
Pas 009 . for the CDC 6600 ! so!
— (source and object) ! 7| 150 \\/
Pas l (
| P T50
i | . y
- =
I’ written by
Pas the manufacturer

4. SECOND ATTEMPT WITH PASCAL-P

A completely new translation of the interpreter into Fortran
was done, using the second version of Pascal-P. Gome assembly language
routines were used f&r packing and unpacking fields, manipulating length
indicators for data, etc. All possible gains in time and size were
carefully searched and programmed. The final version, used during the
last academic year, permitted the compilation and execution of half-page
programs at a tolerable cost, but no more. A student trying to have a
four page program compiled would have exhausted all his available funds

for onme month ! This taught to students an extraordinary carefulness when

trying their programs, and in many cases they managed to get a complete
working program in only one run. This result is not so bad, but other
frustrations were not tolerable, and this tool could not have been used

for more than one year.

Moreover, the poor performances of this compiler made completely
impossible to use it as a tool for developing an actual compiler, generating
machine code the compilation of the Pascal-P compiler would have necessi-

tated more than 8 continuous hours of exclusive usage of the computer. This

was, practically, absolutely impossible, especially within our local context.

The same diagrams in the preceding section describe this compiler.

5. A STUDENT JOB

During the same academic year, and using only his spare time,
an undergraduate student wrote, partly in Fortran and partly in assembly
language, an in-core load-and-go Pascal compiler. It happened, by
incredibly good fortune, that this compiler was sufficiently well written
to be usable by students. It is used during the present academic year, and
gives a compilation cost of about 1.47 of that of the Pascal-P second
compiler. It implements standard Pascal with only a few very minor
restrictions, but prescribes very small limits on the size of programs,
the number of identfiers, the complexity of all declarations, and so on.
All in all, it is only a teaching tool for small programs, and it is
completely impossible to make it usable for implementing a tull compiler.
However, it was a mean to wait for something better and more general,

without too much frustration.

- e e s —
| Pas ISOJ !Pas - 150 | F \ A
e TR N
7 For For 150 150 } i ~\\Pas {Pas 150 | 150 |
7z —— 3 — i . : -y
350/
e s |)I 150 /
. "iify 150
written by 5

the manufacturer ‘

6. DEVELOPMENT OF THE TOOLS FOR THE FUTURE BOOTSTRAP

The compiler of section 3, 4 and 5 are only toy compilers ;
they cannot compile themselves, and consequently they cannot be used for

developing themselves. Since we have no other computer available in the

vicinity, and no adequate software tool on our computer, many possible
solutions had to be eliminated, especially those which use a powerful
macro-generator. No funds were available for repetitive travels between

Nice and other computing center, and still less for computer time in
other centers.

8# ¥3ILL3ITSHIN TVISV

‘AY W

L/L61

6 39Vd .-

The chosen solution is consequently very original, somewﬁat
complicated to describe, but needing only a minimal amount of programmin,
Moreover, this programming is not done by us, but in another (wealthier)
University, Université Paul Sabatier in Toulouse, France. Several
processors are available in that later place : 1°) A Pascal compiler
running on a CII Iris 80 computer, bootstrapped from a CDC 6000 computer

3

by Didier THIBAULT, and described in Pascal Newsletter #7 ; it is a

8.

compiler from Pascal to Iris 80 machine language, written in Pascal and boot-

‘strapped into Iris 80 machine language, according to the cugtomary

diagram :

180 |°

i

’Pas 180 | Pas [Pas 180 | lrso]
__[_J o
Pas Pas 6000 6000[_-_

.y Pas 180 ,Pas
|
i

Pas compiler
"for the CDC 6000
(source and object)

Diagram for 1°).

S (’;\\

| g -1
| PE ILl [PE [PE T ILt ILI ILT“"”' i ELZ :[L2

| Jso |

Pas |Pas 180 ‘IBO | _ 7| s2
» ?so/ 52
IsL 180 \¢

! : 4-7!
,OL 180/

‘ . ", bootstrapped

‘@"

N
1.
I

&

. Péscal combiier

“+for the Iris 80
(source and object)

6000 . | | pas—— i
! . - ' pas ; *28 180 | 180
:°L W e

/ﬁ o
- £
- X

Diagram for 2°5 and 3°).

2°) A compiler from a subset of Pascal (called Pascal-E) to an intermediate

language ILl, written in Pascal. 3°) A translator from ILl to a second

intermediate language IL2, written in Stage 2; Stage 2 is itself an inter-

preter, implemented via a full bootstrap. IL1, IL2 and the corresponding
compiler and translator were developed in Toulouse as a tool for cross—

compiling, on the Iris 80, Pascal programs for several mini-computers.

. two computers distant by 600 kilometers.

IL!1 is a quadruplet language, as suggested by Gries and used between
two passes in many compilers ; IL2 is a machine oriented language,
especially designed for being easily translated into machine code

for mini-computers, by a second translator written in Stage 2. The
diagram above is for 2°) and 3°).

#. DEVELOPMENT OF THE TOOL AND FINAL COMPILERS

We wanted to avoid the bootstrap of a complete compiler,
made by changing the object language on an existing one, because of the
difficulties of debugging and tuning such a large program when using
By writing by hand, in Pascal-E,
a translator from ILl to Iris 50 machine code, we can obtain the tool
" compiler we need, but in a two-pass form. This translator is»very easy
to write since ILl is a quadruplet language. Some modifications are also
necessary for the compiler from Pascal-E to IL1, to write it in the
subset. of Pascal it accepts, but these modifications. are in fact trivial,
since the only things to do are to replace, for example, writeln (code)
by writelnc , or write (output,c) by write (c). By doing six translations
on the Iris 80, according to the following diagram, we obtain a two-pass

Pascal-E compiler usable on the Iris 50 :

ILI I..-."'>Pass 1 of the tool

! l PE 1w
. —— compiler
lpg 11.1«11.1 fILl
-, l
180 180-,

\180'

-Pascal compiler
~ for the Iris 80
(source and object)

e compiler
. b L e

,‘) :) "4 h N ' - - [.
TTTTIseT {ILI T 150 II'L’i*m‘“ 150 F 1L 150' [L1
T AT i | LT = DT
1pas ;Pas ‘ 180 | 180 PE |PE IL1 ' IL1 |IL1 1501150
; - , R ' ‘
180 J ‘ 180 | 180
o7 | 5o/ !"ga
. 18?/ \\// . . \{ //
. y

Pass 2-.of the tool

8# YILLITSHIN T¥ISYd

LLBT AVUW

0T 39Vvd

The future and final compiler for the Iris 50 will be obtained
by filling holes in the "trunk compiler" of H.H. Nageli, as it was done with
success in Tokyo for the Hitac 8000 ; it will be implemented with the tool

compiler :
[&- - — trunk
Pas 7 |€) _— L .
compiler final
— oL o Pas 150' (?4Pas 150 k““)bompiler
Fas VLo Pleas I%l?u Pm\f‘/ﬁolﬁo,
- —-"
~—A i
Pas 150 Pas I50| Pas|Pas I50 [I50
P S — T \L50
PE |PE IL1 |IL} ’IL] 150{ 150
I50
7 150 - 150
L 1%7 “'\<;3
pass 1 pass 2

The two-pass tool compiler is intended to be usable in next March.
It implements the minimal subset of Pascal needed for writing the compiler.
Omitted features are reals, file declarations, most standard procedures or
functions. Standard files necessary for implementing the compiler are built-in,
an accessed via several pre-defined procedures. No other part of the language
is omitted and packed structures are implemented. The translator from IL!
to Iris 50 produces code for the linkage editor, one module per procedure.
This will permit segmentation and overlaying of the compiler, but without

any means for checking the validity of access to global variables.

The final compiler will implement exactly standard Pascal, and
produce modules for the linkage editor, as the preceding one. The whole
process should be terminated at the end of 1977, and several computing centers

are already interested in the final product.

(*Received 77/03/09.%)

A FURTHER DEFENCE CF FCRMATTED _ INPUT

B. A. E. MEEKINGS

Computer Studies Department
University of Lancaster

In PUGN # 7, Barron and Mullins attempt to demolish the case for formatted

input. Without wishing to blow up the controversy beyond reasonable pro-

portion. I would like to add a voice in favour of formatting.

I feel that Barron and Mullins have rather missed the peint, inasmuch as

input data is unfortunately not always under our contrcl; in addition, of

course, it is unreasonable to exclude a feature from the language simply

because it can be done in another (mere long-winded) way. I have

implemented formetted input in my Pascal P4 compiler forthe following, I

think very good, reasons:

i. it is a simple modification tc meke, with relatively little overheac.

ii. it is entirely within the "spirit" of Pascal, making input consistent
with output, which it currently is rot

iii. it allows for reading in character strings to complement the similar
output feature

ive I am working in general area of simulation languages, and hence
attempting to woo users away frem the traditionally Fortran based
languages - I see formatted input as one less cbstacle for them to
overcome in the transition.

I am not in any sense an advocate of Fortran, but I do feel that the

association between formatted input and Fertren is ro valid reascn for

its exclusion from other languages.

In short, the addition of fermatted input, to supplement the existing

unfcermatted input facilities, can only enhancé an already versatile

language.

(*Received 77/03/21.%)
(* Meekings is not a PUG member yet.*)

8# ¥3LL3ITSHIN T¥ISY

‘AW

LL6T

IT 39vd

PROPOSALS FOR PASCAL
George H. Richmond
University of Colorado
Computing Center

THE REPRESENTATION OF PASCAL FOR COMPUTER INPUT

The original lexical definition of pascal was closely tied to the CDC
character set. The current implementation allows for complete
representation of all Pascal elements in the ASCII character set except
the up arrow which is used for pointer and f}le references. In this
case, circumflex is the ASCII character that is used.)

This lexical representation should have a 48 character alternative
for computer systems with restricted character sets. Sqme. obvious
equivalences are period-period (..) for_ colon (:) (this is qlmost
always true for the CDC implementation), period-comma (.,1 for semicolon
(;), and period-equal (.=) for replacement (:=). Additionally, two
letter alternatives for relational operators should be allowed.
Brackets for subscripts could be (. and .) or (/ and /). .)

Whether or not to always accept the 48 character representations 1s
an open question.

COMPILE OPTIONS

The Report [1] does not mention compiler options enc@osed in commept
symbols, but perhaps this means of defining compiler options should be
formalized. Several compile time options like listing qontrol, code
generation, and source line width should be universally defined.

INTERNAL CHARACTER SET

pascal could be made the first language to standardize the ordering
of characters for the basic data type CHAR. This standard could be
ASCII. Thus the basic data type CHAR will haveA128 elements. 'At the
moment, the CDC implementation 1is stuck with the anachronism of a
character set based on a 6-bit element. It would be reasonable for text

files to be mapped between the internal ASCII set and the external.

operating system character set. The normal character set gor a
particular machine could be accessed without translation by using a
packed file of the appropriate integer subrange ty?e.

An alternative solution to the problem of anthuated character sets
would be to provide several CHAR types. ASCII could be a $eyword whlgh
defines the 7-bit ASCII character set. EBCDIC would define that 87b1t
set. The local machine implementation of characters would be CHAR.
There should be character set conversions across assignment statements.

REMOVAL OF CURRENT RESTRICTIONS AND ASYMMETRIES

The restrictions and asymmetries outlined below are made with
reference to the CDC implementation of Pascal.)

First, and foremost, the designation PACKED should.tell the compiler
to optimize storage usage instead of speed of access 1n qata structures.
It should not have any other effect upon constructs in the language.
Unfortunately for the CDC implementation, this is not true. One cannot

compare or output unpacked arrays of characters, but this can be doqe
for packed arrays of characters. This particular asymmetry is
reminiscent of Fortran in its arbitrariness.

There is an implementation problem in passing elementg of packed
structures as VAR parameters which will probably have to remain.

A bothersome restriction is set size. Sets should be allowed to have
any size, not just some convenient but fixed machine size. It is
difficult to justify the exclusion of the last 4 elements of the CDC
character set just because there were only 68 bits in the CDC word.

If a subrange declaraction of INTEGER exceeds the normal precision of
the usual representation, an automatic extension to multiple precision
arithmetic should occur. There should be some way to declare the
minimal precision required for the REAL type so that multiple precision
arithmetic could be wused if necessary. 1In this manner, a precision
sensitive algorithm could be run on different precision machines with
good results.

FUNCTIONs should be able to return any type. Identifiers should be
unigue to their entire length.

THE PROGRAM DECLARATION

Aside from specifying the name of the main program, the program
declaration contains a 1list of file names. The current usage of the
declaration in the CDC implementation is to allow immediate opening of
all files upon entry into the main program and to establish the ordering
of files for the positional substitution of system file names that is
possible in CDC operating systems. The first action is unnecessary.
The second action should be clarified in the Report [l1] or regarded as a
CDC implementation feature. Neither INPUT or OUTPUI should be mandatory
on -the program declaration. All files must be opened explicitly before
test or data transfer. Otherwise, an error 1is diagnosed. Close
operations should also be available.

VARIANT RECORDS

The current .definition of variant records is guite useful and has
been cleverly wutilized to subvert type checking within the cpe
implementation of - the language. This is unaesthetic even though it is
necessary. There ought to be a better way.

Unfortunately, the current definition of the language does not allow
the tag field of variant records to be automatically set when a variant
record is allocated or a variant field is stored and to be ‘tested for
correct type when a field is fetched. This checking should be done to
protect the run-time system from the lazy or careless user. Perhaps

another formal compiler option should be defined to disable this type of
protective code.

THE CASE STATEMENT

A decision in a case statement may be implemented by a jump table or
series of tests. The compiler should choose which technique to use
based on the type of expression involved. Perhaps a type identifier in
addition to the normal expression would help narrow the range of values
and allow the faster jump table to be selected. 1In any case, an ELSE
exit is highly desirable. It is a waste of time to force the programmer
to protect each case statement with an if statement. Also, it would
then be possible to make case statement tests on strings, large
integers, or real numbers. Another extension would be to allow the
subrange notation for case lapbels so that ranges of values could be
directed to a statement.

BOOLEAN EXPRESSIONS

Boolean expressions should be computed only as far as necessary to
establish the value of each subexpression. AND is FALSE when the left
operand is FALSE. Then the right operand could be ignored. Similarly,
OR is TRUE when the left operand is TRUE. The ultimate value of tne
entire expression would still be correct by doing this partial
evaluation, and the expression of 1loop termination conditions when
indices go out of bounds will be much simpler.

CONSTANTS, DECLARATIONS, AND CONSTRUCTORS

‘The Pascal language needs a means of constructing structured
constants. In fact, Wirth [2] has defined constructors for this

8# Y3ILL13ITSMIN TVISYVd

‘AW

LL6T

¢T 39VYd

purpose. It should be implemented.

In constant declaractions, it should be possible to perform compile
time computations using constants and previously defined constant
identifiers.

VALUE INITIALIZATION AND OWN VARIABLES

The current Pascal has a large core requirement because it does not
have value initialization and it is not overlaid. Value initialization
of structured variables can be done using the constructors mentioned
above.

Value 1initialization should be possible in procedures other than the
main program. These variables would be initialized on each procedure
entry. On most machines, this will require run time code for
initialization instead of loader initialization.

Own variables (in the sense of Algol 68) should be allowed, and would
be initialized just once at load time.

~ PROCEDURE AND FUNCTION TYPES FOR COMPILE TIME CHECKING

One omission in the definition of Pascal in the usual strict compile

time type checking is the unchecked correspondence between declaraction,

and usage of procedures and functions passed as parameters to other
procedures and functions. This omission opens the run time system to
mysterious collapse when procedures are incorrectly called. This
compile time check can be done in one pass compilation if procedure and
function type identifiers can be defined. The type would have the
attributes of denoting a procedure or function, the number of
parameters, and the type and VAR property of each parameter or result.
This would actually simplify the syntax of a parameter 1list by
eliminating the need for the keywords FUNCTION and PROCEDURE. If the
parameter position is typed by a procedure type identifier, then the
‘actual name of a procedure must be passed at call.

DYNAMIC ARRAY PARAMETERS

Although some limited means of passing variable sized arrays 'is
desperately needed in Pascal, Jacobi’s proposal [3] is too limited in
scope. A dynamic array parameter should be indicated in a parameter
list by the inclusion of the keyword DYNAMIC before the type identifier.
Any actual parameter which conforms to the type, except for array
bounds, would be accepted. This allows for arbitrary packed structures.
The prohibition against other than element wise access should only apply
down to the last array substructure.

NEW BASIC TYPES AND OPERATORS

A major advantage of Pascal over other programming languages is its
expressive power in data structures. Because more information about the
data being operated on is available to the compiler, better code can be
generated to handle the manipulations. For this reason, the basic types
. of Pascal should be expanded. The COMPLEX data type is one that should

be«added.

or similar reasons, the exponentiation operator should be added to

- the language. .

BAnother extension I propose reguires more justification because of
its impact on the implementation. STRING should be added as a basic
type along with operators, standard procedures, and functions for
concatenation, extraction, pattern matching, and type conversiog. The
closest approach available now is a record composed of an integer
character count and an array of characters. This is an ina@equate
alternative as the compiler cannot easily recognize this as a strxqg‘and
the programmer is burdened with providing a plethora of auxiliary
routines. The resulting code is less efficient than what is possible if
the type STRING was defined.

TRANSFER FUNCTIONS

0Of course, well defined automatic coercions (in the sense of Algol
68) must be available between strings and arrays of characters.
Additional standard procedures and functions egquivalent to tne CDC
Fortran ENCODE and DECODE routines should be available. Wwhen possible,
the compiler should revert to the older pattern of fixed sized array of
characters instead of treating all character string constants as
STRINGs.

7

Transfer functions between scalar types and their character string
names should be available. There should be a type check defeating
function which regards its source and destination as bit fields of some
appropriate width. This function would eliminate the need for the
variant record subversion. Inverse functions for OKD across all basic
types might be considered to be the type check defeating mechanism.

EXTENSION OF RELATIONAL OPERATORS TO STRUCTURED TYPES

Relational operators already extend to structured types in the one
case of packed array of character. They should extend in tnis manner to
all structured types. To do so there must an ordering of elements
within a structured type from first to last and the comparison must
takes place 1in this order. This straightening should apply to several
other areas of the language as in input/output and constant formation.

FILES AND TEXT FILES

The Report [1] allows attaching the keyword PACKED to file types but
the CDC implementation does nothing with 1it. Actually, there is a
confusion in this area of file types. There are really three types of
files. There are unpacked files, packed files, and text files. The
type FILE OF CHAR, PACKED BILE OF CHAR, and TEXT are not equivalent.

In particular, an unpacked file of some type aligns items of the type
on any particular machine word (or byte) boundary that is convenient and
provides quick access. A packed file of type is implemented with every
reasonable effort to not waste one bit of disk or memory space.
Specifically, on the CDC machine, FILE OF BOOLEAN would be stored with
one boolean value per 60 bit word and PACKED FILE OF BOOLEAN would be
stored with 60 boolean values in one word. Also, with packed file of
subrange of integer type, it should be possible to access any packing of
data on disk independent of word boundaries. The only operations
available on packed or unpacked file types are GET and PUT (or the
shorthand READ and WRITE with no type conversion) along with assorted
status testing and positioning operations.

The files of type TEXT are fundamentally different from the other two
file types. First, the procedures READ and WRITE are available with
their full formating and type conversion possibilities. But a text file
is not a FILE OF CHAR. It is a specially handled character file with
lines of text. It has line boundaries which a FILE OF CHAR does not
have. 1In fact,.each line of text should be treated like a value of type
STRING. .

Also, text files come in two varieties, paged and unpaged. This
attribute is established by declaration at compile or open time. An
unpaged TEXT file would be associated with devices such as card reader,
card punch, magnetic tape, or teletype input. A paged TEXT file would
be associated with a line printer or teletype output. TEXT files must
operate with the correct order of input and output on interactive
devices. It may be necessary to declare files as being interactive in
order to keep the run time system straightforward.

The user should not be responsible for placing carriage control in
coltumn 1 of every line of paged output. The paged output routine should
normally provide a blank for the line printer but omit it for teletypes.
A call to the PAGE procedure should set up carriage control (like page
eject or form feed) as needed.

S# ¥4ILLITSHIN TYISV

‘AW

L/61

¢T 39vd

Text files are subject to translation between the operating system
character set and the internal character representation. The rules for
skipping from one line to the next have not yet been well formed and
will have to account for the straightening process of structured types.
The problem of reading blanks before end of file should be resolved once
and for all. It should be possible to read one line of text into one
STRING type variable and perform type conversion later.

For paged text files, it should be possible to automatically invoke
user supplied procedures at top and bottom of forms. Other user

supplied procedures could be invoked on various fault conditions for all

file types.
FORMATTED. INPUT AND OUTPUT

It is not necessary to resurrect the Fortran format to handle text
file formating in Pascal. The WRITE procedure field width
specifications are fine. They should be extended to the READ procedure.
It should be possible to read and write delimited strings of characters.
There should be an option for separator characters other than blank

between input or output items.
FILE HANDLING

Text files should be processed strictly sequentially. Random
positioning should be allowed on non-text files. Since most operating
systems prov1de for file structures that are more complex than currently
defined in Pascal, there should be some generally agreed upon extensions
to file operations that are not mandatory. The CDC implementation does
have the extensions ~of SEGMENTED files. The CDC version needs
‘additional extension for multiple file files. For example, add GETEOF,
PUTEOF, and WHILE NOT EOI (for End-Of-Information).

The current CDC implementation does a .rather poor Jjob of file
positioning at open and close time. Explicit file open and close
operations are necessary. A rewind or no rewind option is vital for
both. Other file attr1butes like system file name,. buffer size,
procedures for handling ‘data exceptions should have reasonable defaults
but be open to user specification.

OVERLAYS

.The Pascal language needs overlays. The first use would be to reduce

the size of the compiler by doing value initialization functions in one

" overlay and the main complldtlon process in another. A halfway overlay
attempt already exists in the CDC implementation to issue compiler error
messages.

Designation of overlays can be achieved by compile. time options ‘in
comments = or by adding the keyword OVERLAY to the syntax. .The choice of
which to use is open and should be decided. Overlays are’ organized by
procedure or groups of procedures. Explicit overlay calls should not be
necessary as in CDC . Fortran. The compiler can recognize a call to a
different overlay and generate the appropriate code.

’ A good proposal for an overlay mechanism has already been made ~ [3].

- However, it already exceeds the capabilities of the CDC operating‘

system. To accomodate that system, no more than two levels of 'overlays
could be allowed and the implementation would be even easier if overlaid
procedures could be called only from the outer block.

As stated in the overlay proposal, overlays can be viewed as is the
designation PACKED. A particular Pascal implementation. will try to
follow the overlay directives and the program will always run correctly

However, the object code may not be as deeply overlaid as specified.

[2] wirth, "Algorithms + Data Structures = Programs",

PREAMBLES AND POSTAMBLE

A compiler does not stand by itself within a computer system. A well

- developed . language system must have a wide range of subprograms

available for use. One reason that Fortran will be hard to displace is
the large number of subprograms already developed for it.

The implementation of separately compiled procedures in CDC Pascal
was a gigantic step forward in increasing the usability of the language.
But now the user is burdened with declaring all external procedures he
intends to use. The declaration is necessary but it should come from
the language system rather than the user,

- The compiler cannot be reassembled every time a new subprogram 1is
added - to the library, and it should not carry declarations for every

- possible external subprogram when only a small number of them for a

specific application will be accessed.

" The solution is to allow the selection of several preambles which
initialize the compiler to a particular application environment. The
compiler ' would 1look to the preamble for each declaraction section
(PROGRAM, LABEL, CONST, TYPE, VAR, and subprograms) first and then
compile. the corresponding user declaration section. Preambles should be
input as ordinary text or specially processed system text records.

A provision for a postamble would be useful to allow driver main
programs in a student environment or for a non-code producing dummy main
program when compiling library subprograms. -

The preambles and postamble allow a user job to be compiled 1in any
desired environment. By allowing full procedure parameter description
in the preambles, including procedures passed as parameters, complete
compile time checking of all external subprogram 1linkages can be
obtained.

Also, some mechanism of protecting access to the elements of a
structured type introduced in the preamble is desirable. This would be
useful in making certain data structures appear as basic types to the
user. .

[1] Jensen, . Wirth,; "Pascal User . Manual And Report", 2nd Edition,
Springer-verlag, 1975. .

Printice-Hall,
1975.)

[3] Pascal User’'s Group, "Pascal Newsletter", No. 5, September 1976.

(*Received 77/03/24.%)

8# YILLITSHIN TV¥ISYd

‘AY W

LL6T

BT 39Vvd

A PROPOSAL FOR INCREASED SECURITY IN THE USE OF VARIANT RECORDS

WILLIAM BARABASH
CHARLES R. HILL
RICHARD B, KIEBURTZ

SUNY At Stony Br
Stony OSL @YYOREOﬁ]%

The use of variant records in most Pascal implementations is dangerous
because most compilers do not emit a check for conformity with the value of
the tagfield when a variant field is referenced. Indeed, the latest version
of the Revised Pascal Report defines a language in which the tagfield may
even be absent, making conformity checks impossible! Even so, when the
tagfield is 'present and the compiler does emit conformity checks automati-
cally, the programmer still has the ability to dynamically assign values to
the tagfield.

We propose that the variant field of a record be protected from such

abuse, either accidentally or intentionally. This means that the compiler

should be required to emit conformity checks when a variant field is accessed;

that the tagfield must always be present in every variant record; and that
the programmer not be allowed to alter the tagfield in a variant.record by
means of a simple assignment statement.
Currently, a variant record can be created dynamically when the stan-

dard procedure New is applied ta a pointer variable that is bound to a
variant record type. This standard pracedure has the ability to initialize
tag fields to canstants specifigd in the call. We propose that thereafter
the type of the variant record is frozen by the values of the tagfields.

~ The fields within the record can all be referred to; however, if a field in

'v‘the variant part of the record is referred to, the tagfield will automati-

A

cally be tested for conformity.

This {s not sufficient, because yariant records in a Pascal program
can reside in the stack, being created on block entry. Such records can
enly he fnitfalized to “"undefined". Alsq, during the lifetime of a dynam-
fcally created varifant record, it may be created and used, then put on a

free 1ist, then used subsequently. The subsequent user might want a dif-

ferent set of values assigned to the tagfields of the record. To get

around these difficulties, we propose a new standard procedure which will

1) set all of the fields in the record to "undefined", then
2) " initialize the tagfields in thie record to the constant

values specified in the call,

A call to this procedure would be exactly like a call to standtard procedure
New, except that the first parameter would designate an already--existing
record variable instead of a pointer variable. Such a procedure might be
called "Renew'". Note that the use of Renew has one chief drawback, namely
that when a variant record is created, space must be allocated for the
largest possible variant field. On the other hand, if a variant record is
created by means other than the standard procedure New, the maximum space
must be allocated anyway. Furthermore, garbage collection would be simpli-
fied: there would be no need to provide more than one parameter to standard
procedure. Dispose.

Lastly, it might be argued that enforced run-time conformity checks
when a variant field is frequently referred to can severely degrade the
performance of a Pascal program. We propose a slightly modified with
statement which can open the scope of a variant record with a tagfield
value assertion. The assértion is checked at run-time once every time
the with statement is entered. Within the body of the with statement,
any reference to a variant field of the record can be checked for conformity
with the asserted values of the tagfields at compile time. Such a statement

would have the syntax
with recordvariable (const 1,..., const N) do S

meaning that we assert that the variable "recordvariable" has tagfields

whose values are ‘"const 1" ,..., and '"const N", as {f the call
Renew (recordvariable, const 1,..., const N)

was made to initialize the record.
(*Received 77/03/27.%*)

8# YIL13ITSHIN TYISY

‘AVH

LL6T

ST 39Vvd

Update on UCSD PASCAL Activities

Kenneth L. Bowles

Institute for Information Systems
University of California San Diego
La Jolla, California 92093
(714)452-4526 .

17 April, 1977
LSI-11 Software

UCSD has recently started using a single user software system for
microcomputers, with all major programs written in PASCAL. The
compiler is based on the P-2 portable compiler distributed by the ETH
group at Zurich, but it generates compressed pseudo-code for a much
revised P-machine interpreter, As currently implemented on the LSI-11,
‘compile speed is about 700 lines per minute (1000 on the PDP11/10).
The system includes an interactive monitor, editor, utility file
handler, and debugging pacKage in addition to the compiler and
interpreter. With 56K bytes of main memory, and dual floppy disk
‘drives, it has proven more convenient and faster to do all software
development on the microcomputer than to cross compile from a big
machine. Whereas we have been using versions of this system that
"depend on I/0 support from the RT11 operating system distributed by
Digital Equipment Corp., our new system is independent of any external
software support. The resident monitor, in terpreter, and run-time
support package occupy an aggregate of about 10K bytes of memory.

Operation of large programs is facilitated through the concept of
- "Segment Procedures", which are rolled into memory only while actually
invoked. The compiler (20K bytes), editor, and file handler are all
separate segment procedures. One segment procedure can call others,
and segment procedures may be declared nested within other segment

procedures, to allow flexibility in memory management. The user's data

_ space expands (or contracts if necessary) to take advantage of as much
memory as possible after the appropriate code segments have been
loaded.

Our plan is to have the new system completed to the point where it may
be released to others by mid summer, 1977, with documentation package
included. During the summer, we also plan to complete a graphics
support package (including an editor for graphics oriented CAI
materials), an assembler for PDP11 native code, and a compiler option
allowing selected PASCAL procedures to generate native code rather than
P-machine pseudo code. The system is designed to make relatively
painless the problem of adding native code routines programmed in -
assembly language, allowing a user to augment the set of built-in
functions and procedures where efficiency is important. This note has
been composed and printed using a proprietary extended version of the
text editor intended for use with a CRT display, which should be ready
for release by late summer. The system should be usable on any PDP11
system capable of bootstrap loading from RX11-compatible floppy disk
drives, or from the drives supplied with the Terak Corporation LSI-11
based machines (see next section). Further details may be obtained, on
request to the address given in the heading, in separate notes titled
"Status of UCSD PASCAL Project", and "Preliminary Description of UCSD
PASCAL Software System". . .

LSI-11 Hardware

In addition to the well advertised PDP11/03 systems available from
Digital Equipment, several smaller companies are offering stand-alone
computers based on the LSI-11 that would be directly suitable for our

software. We have been particularly interested in using a stand-alone
machine with low cost graphic display for interactive educational
applications. In connection with the EDUCOM Discount Program (see
EDUCOM Bulletin, Spring, 1977), it now appears virtually certain that
the Terak Corporation 8510A will be available to member institutions
for about $5300 per machine (LSI-11, 56K bytes RAM, single floppy disk,
CRT for superimposed but independent text and graphics, keyboard, RS232
asynchronous interface for network or printer connection). An example
of the graphic display of this machine is attached to this note.

Other Microcomputers

Anyone who attended the West Coast Computer Faire in San Francisco
should have come away impressed that small stand-alone microcomputers
are big business and here to stay. It is possible to re-implement our
PASCAL based software system on systems based on any of the most
popular microprocessors within about 3 months of work by one
programmer. At UCSD we have started to re-implement for the Zilog Z80
OEM series of modules, which could serve as the basis for PASCAL
interpretive operation roughly as fast as the LSI-11. At the Faire, we
talked with principal officers of most of the well known microcomputer
manufacturers who sell to the hobbyist market, and encountered almost
uniform enthusiasm for the idea of making PASCAL available on an
industry-wide basis. On the basis of those conversations, there is a
reasonable chance that our PASCAL system will be available later this
year for use with the 8080A, 6502, and M6800 microprocessors in
addition to the LSI-11 and Z80.

Proposal for Manufacturer Independent PASCAL System

There is widespread frustration, among those who make and sell
microcomputer systems, that only BASIC is generally available, and that
no two BASIC implementations are alike. Many of those we talked with
at the Faire asked whether PASCAL would be standardized, to avoid the
problems they encounter with non-standard BASIC (in addition to
providing a more powerful programming vehicle). Even a casual reading
of the PASCAL User Group newsletter is enough to convince one that:

a) people are finding it necessary to enhance PASCAL for their own
particular applications; b) the heterogeneity of the enhancements
already reported is so great that no committee exercise is likely to

“produce a standard.

As an alternative, we believe that a chance exists to establish a
defacto standard for PASCAL, at least for small systems, by starting a
bandwagon effect in the microcomputer industry. A good definition of
the underlying language for such a standard is contained in the Jensen
and Wirth "PASCAL User Manual and Report"., To implement a complete
interactive software system, with adequate efficiency to run on a
microcomputer, we have found it necessary to add built-in functions and
procedures for handling text and graphics, and an EXIT(<procedurename))
built-in for clean termination of highly recursive programs. We have
implemented SETs of up to 255 members in a way that uses memory
efficiently, as well as Packed Arrays of BOOLEAN. For READ from a
keyboard, the implied GET has to happen before the implied transfer
from the window variable associated with the file. For handling floppy
disks and other small storage media, we use the DEC standard of 512
byte blocks, and allow logical records conforming to any structured
type allowed in PASCAL. In most other respects, we have been able to
conform closely to the language defined in the Jensen/Wirth book.

8# YILLITSHIN T¥ISYH

AV W

LL61

9T 39v%d

If one common PASCAL based software system were to become available
almost simultaneously for most of the mass distribution microcomputers,
that system would establish the basis of a defacto standard for small
stand-alone computers. Changes to such a system would certainly be
needed with experience, but those changes might well be made readily
available to most users through "down line loading" of object code
through the dialed telephone network. Control of the PASCAL language
standard might well be vested, at least temporarily, in a committee
appointed by the PASCAL User's Group. Fast turnaround communications
among the members of such a committee could be supported by "Electronic
Mail" techniques over the dialed telephone network. The verbal
responses we received from the manufacturers at the Computer Faire
suggest that an unusual opportunity, that may not be repeated, exists
in mid 1977 to establish a defacto standard in the manner described
here., We invite the PASCAL User's Group to join with us at UCSD in
bringing this about this summer. In most respects, the language and
system definition design questions can be separated from implementation
details. We have sought support to allow some of the advanced computer
science students at UCSD to perform the implementation work on as many
of the microcomputers as possible. Representatives of other
institutions would be welcome to work with us in La Jolla, either on
system definition or implementation. However we will not be able,
ourselves, to devote a major percentage of our working time on
definition of a standard.

Interested readers are invited to request copies of the following
separate notes pertaining to the points discussed in this section: "An
Appeal for Support of Manufacturer Independent Software",
"Direct-Dialed Tele-Mail", "Proposal for EDUCOM Software/Courseware
Exchange", "Minimum Cost Tele-Mail", "Student Projects for UCSD PASCAL
System", "The Quest for a Cheap General Purpose Stand-Alone Computer™.

Introductory Textbook

For the last two years we have used PASCAL as the basis of the large
attendance introductory course in problem solving and programming at
UCSD. The course is based on a textbook by this writer, that so far
has been printed in the campus print shop. Student responses have been
unusually favorable, and the course reaches more than two-thirds of the
undergraduate population even though it is treated as elective for most
majors. This response results partly from the non-numerical approach
of the book, partly from student interest in our interactive system on
the PDP11's, and partly from our use of Keller's Personalized System of
Instruction (PSI) as a teaching method. Though suitable for PSI, the
book can also be used as the basis for a conventional course. At the
invitation of Professor David Grieés, acting as computer science area
editor for Springer Verlag publishers, the book will be published in
paperback form this summer. The production schedule will be tight, and
we anticipate that the first copies will be available barely in time
for the start of fall guarter classes in late September. Springer is
interested in knowing who might be interested in using the book and
when. Unfortunately, alterations to make the non-numerical approach
more readily accessible on many machines will make it difficult to
circulate advance copies of the final text until late June at the
earliest. We will be happy to forward inquiries to Springer.

Though very popular with the students, the non-numerical approach of
the book has been difficult to sell to most of the publishers. The
approach used so-far has depended upon programming examples using
English text, and requires STRING variables and supporting built-in
functions that we have added to PASCAL. In spite of this, the students
learn the same programming skills that are taught in courses using
traditional algebraic problem examples.

Since the inception of our project, we have wanted to orient the course
to teaching with graphics oriented problem examples, using an approach
motivated by the "Turtle Graphics" used by Seymour Papert of MIT. The
microcomputers now becoming available make it possible to teach with a
graphics orientation at virtually no higher price than needed for
non-graphic materials. Accordingly, the textbook will be revised‘to
augment, and often replace, the text oriented examples with graphics
examples. For potential users lacking a microcomputer with graphics
display, several alternate possibilities exist. Our built-in functions
and procedures for graphics should be relatively easy to add to
existing PASCAL compilers for other machines, and we will supply
documentation to assist in that process. A description of the
built-in's needed is contained in the note "Status of UCSD PASCAL
Project" already cited. The implementation will assume a graghic
display based on the "bit-map" principle, for which many devices are
available in the microcomputer industry. Alternate dlsplay.drlvers
will also be provided for the Tektronix 4006, 4010, ... series of .
direct-view storage tube terminals. Successful, though crude, plottlng
of the graphic output will also be possible on ordin;ry line printers.
High quality graphic output is possible on matrix printers sgch as
those made by Printronix (the graphic example attached to this note),
Gould, Varian, and Versatec.

B6700 PASCAL Compiler

A PASCAL compiler which generates native code for the B6700 is now in
operation at UCSD and available for distribution from the UCSD Computer
Center. The compiler is written in PASCAL, and is based on the same
variant of the P-2 portable compiler on which we have based the
microcomputer implementation. Compile speed is about 5000 lines per
minute of logged processor time. This compiler has been used for
teaching large classes at UCSD for the last two months.. As far as we
know, most of the serious bugs in the original P-2 compiler have been
corrected in both the B6700 and microcomputer implementations. Thg
B6700 compiler provides access to most of the extensive file hanqllng
features of the B6700. . At present, no implementation documentation has
been completed for the B6700 compiler. The Computer Center will almost
certainly generate such a document given an indication of 1nter§st in
using this compiler by other institutions. Readers interesteq in
obtaining a copy of the B6700 compiler should contact Henry Fischer,
UCSD Computer Center, La Jolla, CA 92093 (714)452-4050.

Apology to Correspondents

I offer an apology to the many people interested in our PASCA; work who
have tried unsuccessfully to reach me by telephone or letter in the
last few months. Currently I must depend upon several pooled
secretaries who are not easily accessible. Having been occupieq with a
heavy teaching schedule, and with a committee assignment consuming one
or two full working days per week, the correspondence has piled up. The
series of titled notes and position papers cited earlier hgvg been
generated in self defense as a way to answer the many inquxrlgs. The
committee assignment has entered a dormant period. Future written
requests for these papers will be answered promptly, but telephone
inquiries may remain difficult until the re-write of the book is
completed.

(*Received 77/04/20.%)

e# ¥43ILLITSHIN TVISV

AV W

LL6T

[T 39Vd.

These ngu«:? Olm.w bc\f Suwdl Phscat P'rog}aa;s' o Terak C;,,./; F5loh ot UCSD.

.

c,uTa.cr

I(L goh)lff
(70 ds2 - 4526

SOME COMMENTS ON PASCAL I/0

While admitting that PASCAL has I/O specifications involving the concept of
files and the GET and PUT statements that are consistent with the flavour
of the language and with theoretical manipulation of data, I feel that it is lacking

in simple, easy to use I/0 and in flexible I/O.

In any practical programmifiy application, I/O is used for two main functions:

(a) Input of data from, and output of results to the real world.
- (b) Permanent storage of data external to the program but internal to the

computer, e.g. on tapes or disk.

Concerning the first function, I feel that, not withstanding the READ function
in PASCAL, the use of TEXT files can be rather cumbersome and tedious. This is
particularly so when dealing with string input (what delimits the string?) and when
being used by a beginning programmer. I would like to see some form of simple I/0

akin to the free format I/0 of the PL/I GET LIST and PUT LIST concepts.

I have less of a complaint concerning the second function, but would suggest
that information to be stored is often not homogenous as is effectively required by

PASCAL files. One could argue that different types of data should be stored in

different files, but this raises the problem of correlating the data in the files.

Alternatively; one could use a file based on a RECORD type with a variant part, but
this implies a varying size to the logical units of the file and may be difficult

or cumbersome to implement on some computers. Finally it would be nice to be able

to easily randomly access files and to update existing files in place.

I have not yet sufficiently formalised any alternative or additional I/O specific-

ations for PASCAL and would be interested in hearing from anyone with ideas along
these lines. ‘Note that I consider it essential that any such specifications should

as far as possible follow the PASCAL principle of being machine independant.

Chris Bishop . ' : : (*Received 77/04/07.%)
Computing Centre ‘ ‘

University of Otago

P.O. Box 56,

Dunedin

NEW ZEALAND.

1¥JISvd

!
]

@# Y¥4ILLITSHIN

LL6T “AYH

8T 39vd

McMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA
L3S 4K .
DEPARTMENT OF APPLIED MATHEMATICS

Mr. Andrew B. Mickel,

Editor, Pascal Newsletter,
Computer Center,

University of Minnesota,
Minneapolis, Minnesota. 55455
U.S.A. January 14, 1977.

Dear Andy:

From the correspondence on '"standardization" in PNEWS 5 and 6 it seems
fairly obvious that Humpty Dumpty's meaning of the term meaning is the rule.
The letters seem to fall into two categories: on the one hand we have calls
for the formation of an '"official' standards committee, and on the other claims
that "standard Pascal" is being adhered to, but necessary modifications need
to be made for a variety of reasons. I put myself into the second group.

What are the objectives of standardization?

If the objectives are to ensure that a program written in establishment
A can be run at establishment B without any changes whatsoever, whether or
not A and B have exactly the same computers operating under exactly the same
operating system, then I maintain that this is jest a pipe dream, because
even a program written in ANSI standard FORTRAN in an IBM shop will need to
be worked over if it is to run in a CDC shop. Moreover, a small change in
an operating system can entail changes in the implementation of a language
even if the change is completely transparent to the users of all other languages
in the same establishment.

What I am driving at is that only in the case of an operating-system-
independent language, not just a hardware-independent language is there any
hope of us being able to achieve '"perfect" standardization.

Pascal happens to be less of an 0S-independent language than, say,
FORTRAN. Eighteen months ago it took me quite a bit of effort to make some
implementation-type changes when McMaster went from SCOPE 3.4.3 to 3.4.4.
These changes were necessitated by changes to the source-line termination
conventions used by the INTERCOM EDITOR made by CDC. There would not have
been any need for these changes if I were doing all my computing in the batch
mode via the central site. Apart from being lazy, I find that working
through a terminal increases my throughput, so that it made sense to me to
depart from the defacto standard Pascal as distributed by ETH. I know of
several universities who made similar changes for much the same reasons.

A more serious point is the necessity to empty buffers after each meassage.
I would have liked to change the language specification concerning files,
but resisted this temptation and changed the operating-system interface
instead. Nevertheless, if I want to send an interactive program of mine to
someone else, I also have to send the seventy odd changes to the interface
and hope that this is enough information to allow the recipient to change my
program so that it can run under his system. I will go so far as to say that

" McMaster offers '"standard Pascal', but not the standard Pascal system. I
doubt if any "language standard" committee would find it appropriate to consider
point¥,such as these which do not affect the language as such.

I have made a point of killing every version of Pascal other than the
current one as soon as it has been recieved and tested. Admittedly, the
number of Pascal users at McMaster is small, but FORTRAN is very deeply
entrenched even amoung the Computer Science Faculty. Within the next few
months we are acquiring a second CDC6400 to be run.under NOS, so that
changes to the OS interface will be required.

OPEN FORUM FOR MEMBERS

_dh
i

To summarize: let us be perfectly clear about what we mean by
“standardization". I would like to point out that the University of Toronto
is trying to enforce standardization of their SP/k languages by distributing
binary modules only and prohibiting recipients from seeing compilers in source
form. Do we want this approach? In other words: "Weak or strong standardization?"

Yours sincerely,

N. Solntseff.
NS:ib

P.S. My offer of help still stands. Of the three tasks listed in PNEWS 6,
I do not think that I could manage the bibliography properly.

P.P.S. I would like to see a "bug" corner giving details of bugs real or
imaginary. One can then Xnow immediately whether the bug one
discovers has been noted by someone previously.

PATTERN ANALYSIS & RECOGNITION CORP.

ON THE MALL

ROME. N. Y. 13440
TEL. 315.336-8400
315.724.4072

Mr. Andy Mickel

Editor, Pascal Newsletter
227 Experimental Engr. Bldg.
University of Minnesota
Minneapolis, MN 55455

12 January 1977

Dear Andy:

I would just like to make a short comment on Richard Cichelli's
proposal (Newsletter #6) for direct access files in Pascal implemented as
long array's. That is, I feel the suggestion was excellent in terms of
simplicity and elegance, but that the word "long" is an unfortunate choice.
The compiler doesn't have to be told that the array is long or short -- it
knows the exact length of every variable. What the programmer is really
trying to tell the compiler is that it is all right for the array to be
allocated on a slow, mass storage device because faster access speed would
not justify (for this particular variable) using the required amount of
scarce main storage. Thus, I submit that "slow array'" would be more ap-
propriate, as it specifies an attribute of the storage allocation, just as
does the word 'packed".

Thank you.
Sincerely,
PATTERN ANALYSIS AND
RECOGNITION CORPORATION
’
By "“\{!Jl'ﬁ-)\l\I\‘\’\dd \
MNC/pak Micha®l N. Cohdicd

Programmer

YALLITSHIN TYISV

‘AYW

LL6T

6T 39Vvd

OPEN FORUM FOR MEMBERS

UNITED | 2=z

COMPUTING SYSTEMS, INC.
A UNITED TELECOMMUNICATIONS CO. --E

UNITED COMPUTING SYSTEMS, INC., 2526 WASHINGTON, KANSAS CITY, MO. 64108 / 816 221-9700

Januéry 4; 1977

Dr. G. Michael Schneider
University of Minnesota

114 Lind Hall

.Minneapolis, Minnesota 55455

Dear Dr. Schneider:

I was impresseé by your concern for the future of PASCAL, as ex~
pressed in PUGN #6. I also agree with your proposal of the initiation
of "proper administration" of PASCAL.

Perhaps, however, it would be wise to include some direction in the
areas of P. Brinch Hansen's concurrent PASCAL and Niklaus Wirth's .
MODULA (if/when it goes). It ‘would be unfortunate if only the"appli-
cation" areas are "well tempered” and the related "systems” areas are
left. undirected. Since there is a possibility that we at UCS may be
doing some work- in more machine dependent areas (using.MODpLAg,Alt

- would be advantageous to have a "sounding boarxd" for llngulstlg adapt-~
ations (not necessarily includihg all machine dependent extensions) .
Another advantage to this approach would be to help d@spense informa-.
tion on how various machine depeéndent language extensions were done.

Hopefully, this request, if incorvorated, would not gigniﬁican;ly in-
crease the burden upon the committee. It could significantly increase
the scope of PASCAL and PASCAL-like usage, and at the same time, hopf-
fully prove that an "adapted PASCAL' is a good (great) "system level
language. '

Your consideration of this matter is appreciated.

Sincerely,

UNITED COMPUTING SYSTEMS, INC{

L. D. Landis o :) S
Distributed Systems Division (# Ip a phone call April 11, Larry wished to
clarify that he didn't view Pascal as a SIL
and rather that emphasis should be placed
' on MODULA, He urged that anyone releasing
LDL/mgr . Pascal-ware should put it in a source library
cc: Andy Mickel editor compatible form against which future B
’ Jgohn Strait modifications can be made (such as CDC MODIFY).*)

THE UNIVERSITY OF BRITISH COLUMBIA
2075 WESBROOK MALL

VANCOUVER, B.C., CANADA
V6T 1W5

DEPARTMENT OF COMPUTER SCIENCE 14 February 1977

Andy Mickel

. University Computer Centre

227 Exp Engr
University of Minnesota
Minneapolis, Mn 55455 L

Dear Andy, . -

I would like to add one more opionion to the standards issue, along with the
idea that Pascal might someday replace Fortran.

First of all, there should be no doubt that Standard Pascal will never replace
Fortran. Describe Pascal to a numerical analyst and he will laugh. Several mandatory
extensions include:

—- Parameter arrays of unknown size
- Shared variables for separately - compiled procedures
- Input formatting and improved output formats.

.So suppose that we standardize a language resembling Standard Pascal. We lose the

time and energy of those making the standard and those modifying Pascal implementations.
More people are using the language, so later extension efforts must live by the frist
standard. Meanwhile, Fortran programmers look at the language and reject it, so they

" 'will never bother with the revised version.

- Why shoﬁldn't Pascal be revised? Fortran's main problem is its age. Pascal
has been around for a number of years too, so it could benefit from some re~-design.

. Some of the improvements found in Concurrent Pascal, Modula, and Euclid might well be

added to the language. (It is not at all clear that the result would still be

called Pascal.)

Hopefully, this new language would resemble Standard Pascal to the point that existing

programs could be mechanically translated to the new language.

If the hopes of Pascal users are to be realized, it seems that we should recognize

‘the need for a language re-design and work towards the organization of that effort.

-

{
i obert A. Frdley
Assistant Professor

§# 4ILLITSHIN TVISY

LLBT “AYH

02 39Y%d

ABT ASSOCIATES INC.
55 WHEELER STREET, CAMBRIDGE. MASSACHUSETTS 02138

TELEPHONE =+ AREA 617-492-7100

24 January 1977

Andy Mickel

227 Exp. Engr.
University of Minnesota
Minneapolis, Minn 55455

Dear Andy:

Enclosed is the check I promised for an additional copy of Number 6,
and a two-year extension of my subscription. 1 am looking forward
to a long series of interesting issues.

There are several issues I would like to raise which I shall attempt
to group together as (1) Standards, (2) Mods to the Standard, (3)
Mods to the implementation, and (4) available software.

Now that there is an obvious push for the formation of a Standards
Committee in the abstract, I would 1ike to put in a pitch for our
interests, and suggest that PUG should be responsible for the organ-
ization of the Committee. It seems appropriate to suggest that PUG
might reform under SIGPLAN as a Special Technical Committee while
putting a first draft ANSI Standard for the language. Any help you
might need in getting this ball rolling which I could provide is
available for the asking.

Now that I have looked over three suggested implementations of vari-
able dimensioned arrays, it is clear that some mechanism must be
provided to review and coordinate comment upon proposed extensions
and modifications to Standard PASCAL. My favorite extension is the
inclusion of OTHERWISE as the final branch under the CASE statement;

a suggestion which I know causes you no end of grief. I have included
? revised syntax graph for the case statement which demonstrates the
eature. .

As we have discussed on the phone, the CDC 6000 implementation could
be improved. In addition to the proposals made before, I would 1like
to recommend that PASCAL and the system routines be modified so that
when files are passed as formal parameters, the FET address is passed,
in the same manner as all of the other SCOPE and KRONOS software.
Given that PASCAL has an already demonstrated to be inadequate file
system, this minor change would allow the user to develop and test
new I/0 routines without all of the additional calculation involved
in adjusting the PASCAL EFET to the 6000 FET addresses. If you have
a set of mods which do this, I would greatly appreciate receiving a
copy.

Andy Mickel - 2
24 January 1977

The last item concerns available software: I would like to know how

we start a register of PASCAL and PASCAL callable software for exchange.
For example, I have just completed a PASCAL core dump interpreter which
lists specified locations of the user's CM and control point area in
octal, COMPASS, alfa, real and integer with a wide range of options.
This is useful, obviously, for systems work on a 6000, although the code
is interesting. It comes with its own PP routine, BCD, which creates a
Binary Core Dump on a user-provided file for later analysis. Given that
PASCPMD does not help when the routine being developed is in another
language (e.g. COMPASS), being called from a PASCAL mainline driver,
this is a real boon.

Looking forward to your action, I remain

Sincerely yours,

ichael Patrick Hagerty
Director of Systems Research
and Design

i§

«m. _.@ CosT 0

o

S# ¥ILLITSHIN TYVISYd

‘AYW

LL61

T¢ 39Vvd

SpeciAL Topic: STANDARDS

The following set of five exchanges regard the topic of Pascal standards. It was first
prompted by a very long letter by Niklaus who has come around to the position of
conventionalizing some extensions beyond a standard. Niklaus invited Richard Kieburtz and
Jprgen Steensgaard-Madsen to reply. '

At the Southampton Pascal Symposium I was a late addition to the program for the purpose of
introducing a discussion on standards and extensions. The 4 pages are reproduced from the
proceedings in order to explain the assumptions made and to report on the reaction. Before
my presentation, Bjarne Dacker urged that a consensus be arrived at, rather than a soon-to-
be-forgotten discussion. As the discussion began, Tony Addyman (who had informed others of
his intentions to get an official (IS0, ANSI, etc.) standard in Here and There PUGN#6)
pointed out that perhaps the most 1mportant argument in favor of an officially accepted
standard is that if trusted Pascalers don't do it someone else will (1ike a large computer
manufacturer) and do it their way!

Another thought that arose during the discussion was that although Niklaus has shown an
unwillingness to move in and clear the air, no one would stop him if he did. There was
general agreement to this as was the general distaste of creating a "standards committee."
So most important (as well as being good news) was that Tony felt that if anomalies in the
Revised Report could be fixed up, then it would be relatively easy to work within the
British Standards Institute (RSI) to achieve an eventual ISO standard - without resorting
to a standards committee. Tony agreed to send in a list of such complaints against the
Revised Report. No one at the Symposium objected to Tony's proposed actions.

David Barron who had agreed to Bjarne's suggestion, conducted votes(!) on each of the three
items listed under Considerations of a Standard. The first passed unanimously, the second
passed with two half-hearted no votes changing to abstentions, and the third passed with
only 4 no votes. However in each case approximately one-third of the people present did not
vote. I pointed out that I would be seeing Niklaus within a week and would put these ideas
to him. The discussion ended leaving people wondering about the future.

When Niklaus came to Minnesota to talk on Modula March 31, John Strait, Jim Miner, Dan
LalLiberte and I put these ideas to him regarding standards. I pointed out the need for an
officially accepted standard noting the consensus in the Symposium - which surprisingly
had not included adding features in the process.

Niklaus and I agreed that I would collect from Pascal users and Newsletter readers suggested
topics for necessary clarification in the Report and would work with -him on such points so.
that they could then be included in the Standard. We will also work on a conventionalized
set of extensions to be published in a future issue of Pascal Newsletter. It would be nice
that if by the end of 1977 these matters were cleared up and that we had an ISO standard.

~é am of ghe opinion that real progress without the potential pollution of the Tanguage is
eing made.

So it is really sad to see some people (for example, George Richmond and some of the aspects
of his article in this issue) call for more and more redundant additions to Pascal.
Sparceness is Pascal's nature (and is a virtue). Anyone who is using Pascal should try to
make do with what facilities are already in the language.. For example there is so much of
a cry to see an otherwise clause added to a case statement. The facilities are already
there for a large majority of instances:

if selector in [set of case labels]
then
case selector of

end’
else

After a period of using and getting to know Pascal, one can conceive of many natural
extensions and wonder why these were left out of the language. Answer: a line had to be
drawn on the total number of features in order to adhere to another design goal: efficiency
of realization! - Andy Mickel

XERCX

Xerox Corpearation

Palo Alts Reswarch Center
3323 Coyoie Hill Road
Paio Alto, California 84304

January 31, 1977

Mr. Andy Mickel

Editor, Pascal Newsletter
Computer Center
University of Minnesota
Minneapolis, Mn. 55455

Dear Andy,

| have received the Pascal Newsletter No. 6 and would like to congratulate you on a
very nice job. By now it is quite evident that the Users' Group and the Newsletter
cater to a genuine need. Thank you also for your letters inviting me to express my
opinion on several issues raised in the Newsletter in general and on standardization in
particular. The latter is a recurrent topic, although the reasons why a "standard" is
needed in addition to the Pascal Report are not entirely obvious.

Standards are successful if, and only if, many people feel that each of them can profit

by adhering to a mutual consensus, and that devialing from that consensus is

_adhere to it.

detrimental to their individual interests. In the case of Pascal, there is the original
language definition, and any implementor must decide for himself whether or not to
All too often, he is tempted by his own bright ideas on how to do better

- on little points, and unfortunately it is the user of his implementation who. will later be

"inconvenienced by the non-standard.

But, alas, even the existence of a standard
cannot prevent this from happening. | agree thal there are a few areas where the
temptation to extend the language is particularly strong, and where it might indeed be
beneficial to have a commonly accepted way of extending Pascal.

This sounds like a good idea; yet | have my reservation about declaring these
extensions 'to be Standard Pascal. After.all, there are many implementations in
existence, and it would seem unfair to suddenly declare that what once was a Pascal
compiler now suddenly. isn't so any longer. Also, once you start on the alley of
extensions, there is seldom a consensus about where to stop. An even more serious
problem is the published literature on Pascal, which, | believe, would have to be
properly updated: the Report, the User Manual, tutbrials. books, etc. There is a great

-deal of virtue in stability.

‘ 1. Dynamic arrays.

After these caveats, let me list and discuss those points where | nevertheless believe
that a recommended set of extensions could have a beneficial influence.

It is generally agreed that dynamic arrays are missing and should

~ be made available, even if they cause some conceptual inconsistencies with Pascal's

notion of strictly static typing. There remains the question of whether this extension

g# ¥3ILLITSHIN TYISYd

‘AYN

L/61

¢C 39V¥d

should bring truly dynamic arrays (as in Algol 60), or be restricted to parameters in
procedures (which do not involve any actual storage allocation) such as in Fortran,
Should the dynamic property be applicable to named arrays (hke in Algol 80), or to
variables referenced via pointers only (see SIGPLAN Notices 12, 1, 82-86)? In any
case and for good reasons. array bounds must always be static, if the array is a
component of a record or a file structure. The proposal of Jacobi (PN 5 p. 23) meets
all these considerations, and has proven to be.economically implementable.

2. Array- and Record-Constructors. The primary motivation is the desire to have a
convenient facility for initialization of tables. Yet if a notation for structured values is
introduced, it might as well be available in general instead of being restricted to
specific places. For example, given a declaration

a:array [t . 3] of
record i: integer; x: real;
s : packed array [0 .. 4] of char
end

an assignment might look like
a := ((5, 0.3, "BEGIN"), (3, 1.2, "END "), (4, 0.1, "GOTO "))

It is of course tempting to admit general expressions as constructor elements, but this
may give rise to some nasty pitfalls: Consider, for instance, the assignment

a := ((a[2].i, a[3].x, "ARRAY"), (a[1].i, a[3].x, a[k].s), ...

From the point of view of implementation, and perhaps also of clarity of exposition, it
is reasonable to require a type identifier preceding each list of component values.
Yet this appears to be quite cumbersome in the case of structured components of
(long) arrays, as in the example above. where the identifier would have to be repeated
many times. Moreover, it appears that the use of constructors with type identifiers
would necessitate the possibility to include constant declarations after type
definitions. This would unfortunately entail a change of syntax. Also. a notation for
eliding and perhaps repeating components would appear as desirable. This may
suffice to show that the subject of extending Pascal with constructors is a
complicated subject. §

Let me add two more items to the list which are mentioned again and again in the
Newsletter. | am, however, rather doubtful about their indispensibility:

3. Defauit in case lists. Certainly there are situations where it might be convenient to
have a default case being selecled when the case expression is unequal to all case
labels, such as when the case expression is of type char, and you do not wish to
explicitly list all "other” characters. (But convenient is not the same as necessary).

4. Formatted input. The only justiﬁc.a!ion for such a facility is convenience in reading
densely packed (i.e. encoded) data. A syntax identical to that of the write statement
would seem most natural. But | cannot accept an elaborate proposal like Hagerty's
(PN 6, p.43), which includes Boolean values (who would “pack” a Boolean value into 5
characters!) and specifies complicated rules about "overriding decimal”. Such
sophistications have only one effect: to greatly increase the possibilities of data

mismatch errors discoverable at run-time only. It seems that there must be better
approaches to this subject than to adhere blindly to the convertions of the past. 8

Many other extensions have been mentioned as needed, convenient, conventional, or
merely desirable. Most of them, however, belong to a difterent category which, |
believe, has nothing to do with the goal of attaining a common language. Rather, their
primary objective is to introduce some favourite facility suggested by either a
particular application or, more frequently, an existing operating system. Whereas, |
have no objection to such extensions in principle, they do not belong into the core
language, whose facilities must be understood without reference to any particular
implementation. If at all possible, they should be incorporated in the form of
predefined procedures. functions, types and variables, and in the documentation they
must be clearly marked as facilities pertaining to a given system. There are so many
different kinds of operating system facilities in existence, that an attempt to enforce
any particular set as a standard would be quite detrimental to implementations with
incompatible environment. The version of S. Knudsen (PN 6, p.33) on indexed files is
an example: although it may be useful on the CDC machines, it would be ridiculous to
enforce this concept on an implementation for 1BM computers.

The four items listed above are free of such environment dependent considerations.
They migh therefore well be considered -- if properly worked out -- as Standard
Extensions of Pascal. We might publish a final proposal.in the Newsletier, thereby
avoiding to have to officially change the definition of Pascal as widely published in the
literature. A set of Standard Extensions might encourage implementors to adopt a
common notation.

The remainder of this letter consists of some miscellaneous comments on various
contributions in Newsletter 6. Above all,’| enjoyed the Southampton-Hobart dialogue
and in particular Professor Sales's yuks and ouches (p.61). | emphatically support his
advice against private character sets. Two are already too many, but we shall have to
live with ASCll and EBCDIC due to higher forces. Il is unfortunate that CDC users are
compelled to have an additional one based on 6 bits and strange conventions about
line ends, and this has considerably hampered transportation of Pascal.

Files and input/output are a frequent topic, and this is not surprising. 1 agree that files
play a special role among Pascal's data structures, and that it would be unwise to try
to eradicate or hide this special role by, for example. letting the assignment operator
denote the copying of an entire file (p. 61). On the other hand, | disagree with the
strong statement that "Pascal's files are an anachronism” (p.47). The Pascal Report
specifies clearly that file here means sequential file, and perhaps sequence would
have been a less misleading term. The concept of a sequence is as little an
anachronism as is the notion of an integer (which retains its importance inspite of the
existence of real and complex numbers). In fact, the sequence has so far proven to
be the only data structure that is widely accepted and simpie enough to describe
much about input and output in a machine-independent fashion. Every other attempt
has remained highly tailored to specific file systems and proven to be of little interest
to programmers not using the same environment. The proposal by Hagerty (p.43) is a
nice example to support this case. What, for example, can it mean to “"read an

8# YILLITSHIN TVISY

AV U

LLBT

£¢ 39Vd

end-of-file", if not some implementation dependent mark in a sequence of elemenls, a
mark that may be followed by cther elements and is therefore not the end. It is
important that we distinguish between the end (of a'sequence) and a possible way to
represent this end. Let not such confusion penetrate the framework of Pascall An
attempt to define any proposal on new facilities in terms of an abstract, consistent set
of axioms is a highly recommended test for its soundness and independence of
implementation particulars. (See Hoare and Wirth: An axiomatic delinition of the
programming tanguage Pascal. Acta Informatica 2, p. 335-355, 1973).

"Fortran's archaic control character at the start of a printed line” (bottom, p.47) has
never been a part of Pascal's definition. It was merely part of a suggested standard
tor program interchange, alluding to the fact that this convention is used wherever
Fortran is available. The Pascal system itself is: not even aware of the special
significance of the first character. -

Another misunderstanding accuses Pascal of being “unsuitable as an interactive
language”. What, above all, is an interactive language? A correct statement might be:
“The Pascal 6000-3.4 file system without modifications is inadequate for use in an
interactive mode”. In fact, the notion of file may well be used to represent the
sequence of characters originating at the input terminal. However, at the heart of the
problem lies the fact that interactive use inheréntly postulates two concurrent
processes, namely the programmer and the programmed computer. Yet Pascal does
not include the notion of concurrency. Nevertheless, the problem can be "solved" in
this particular case in several ways. The most popular one is to require a readin
statement before the first input request, which includes a delay until the next line
arrives from the terminal.

Finally, | should like to mention that there exist items where standardization should noLl
be considered at all. The form of compiler directives is one of those. They were
intentionally moved into comments, so they could be ignored as such if desired. The
idea of portability is stretched too far, if even compiler directives should carry over
automatically.

Yours sincerely,

Ajlhﬁ&ubﬂ Aah;bﬁ

" Prof. N. Wirth

c: U. Ammann, ETH

“be

D / DATALOGISK INSTITUT KOBENHAVNS UNIVERSITET
SIGURDSGADE 41, DK-2200 KGBENHAVN, DANMARK, TLF. (01) TA94 66

Mr. A. Mickel

University Computer Center
227 Exp. Engr. JSM/HG
University of Minnesota

Minneapoli, MN 55455

USA

February 9, 1977

Dear Mr. Mickel.

Professor Wirth has asked my opinion with respect to stand-
ardizing some extensions to Pascal. He did that after reading our
Pascal 1100 User Manual and in his reply he mentioned that you
too would be interested.wAs they may be of interest to others also
I have set up a smallypaper which you may include in Pascal News-
letter. Further I enclose for you a copy of our Pascal 1100 User
Manual ’

Yours sincerely

L m"s(«vs Sc—/--/\ e \-»\m(- &'\ 'M‘;\::ag\
fI$?5I’gel’l Steensgaard-Madsen

COMMENTS ON PASCAL EXTENSIONS

J. Steensgaard-Madsen
DIKU
" Sigurdsgade 41
DK-2200 Copenhagen
Denmark

The pbégramming language Pascal was originally designed
primarily for educational purposes. Its popularity is steadily
growing and it seems natural to consider the language also for
applications. Doing so, a few well-known shortcomings of the

language increase in importance. From the experience gained by
_.bootstrapping a Pascal compiler to the UNIVAC 1100 machines,

‘and the extensions of the language built into that compiler, I
.should.like to state my opinion on selected topics. These will

‘a.’ initialization of variables

- b.. ‘dynamic arrays

¢. exhaustive specification of parameters
d.” the case statement .)
e. handling of TEXT variables.

8# 43LLITSMIN TVISYV

‘AYH

L/[61

e 39vd

Initialization of variables

Quite often a program depends heavily on tables, the con-
tent of which is a rather complex pattern of elementary values.
With Pascal such tables are held in variables and the initiali-
zation of these is cumbersome and probably costly.

As a means to overcome this problem a constructor concept
has appeared. A constructor looks like a function, but general-
ly results in a structured value and accepts constant parameters
only. The name of the function is identical to an identifier of
the result type.)

I find the constructor to be only a partial solution to the
initialization problem, but perhaps it may be useful as an ex-
pression yielding a structured result, i.e. if the parameters
may be expressions. To my taste it requires too much writing
to build a table with structured entries using constructors.

But more important, it means that any table still must be a var-
iable, although its value may remain unaltered after initiali-
zation. In this case the table probably will be represented
twice, once in the variable and once for the purpose of initial-
izing the variable.

Now, if you provide for the identification of structured
constants you have the option of easy initialization by usual
assignment. This is done in our Pascal compiler and experience
indicates that structured constants are used more in their own
right than for initialization of variables.

We have extended the syntax for constant definition by the
rules

<constant definition> ::=
<constant identifier> : <type> = <values>

<values> ::= <value> | (<value> {,<value>})
<value> ::= <constant> | [<subset> {,<subset>}]
<subset> ::= <constant> | <constant>.. <constant>

To ease the use of this facility we allow a mixture of constant
and type definition parts in one block.

Dynamic arrays

Under this heading two problems must be considered. First,
the requirement in Pascal of complete type agreement between
formal and actual parameters means that it is impossible to
write one procedure to invert matrices of different sizes. This
again makes it a doubtful enterprise to build a library of Pas-
cal procedures. No serious technical problems have to be solved

to mend this defect. It almost suffices to define a syntax for
the description of array parameters without fixing bounds for
indices. The most suitable way is to eventually replace the i-
dentifier specifying the type of a parameter with a construct
like '

<packed> array [<type> {,<type>}] of <type>

Secondly, the fixed-sized representation of values other
than file values is fundamental to Pascal, but is felt restric-
tive to users familiar with Algol to whom it is natural to let
the value of an expression determine the size of a table.

I consider it fruitless to modify the type concept of Pas-
cal in such a way that index bounds may be determined by expres-
sions in general. Alternatively I propose to introduce the con-
cept -of an array of variables to be distinct from one variable,
the type of which is an array structure. The bounds for arréys
of variables may then depend on general expressions. Syntacti-
cally you may declare several arrays of variables by the rule

<variable declaration> ::=
<variable identifier> {,<variable identifier>}
[<bounds> {,<bounds>}] : <type>

<bound> ::= <expression> .. <expression>

An implementation along these lines is well under way for
our compiler and the additional complexity seems modest. The
specification of array parameters is taken as a point of uni-
fication of the two array concepts.

Exhaustive specification of parameters

The number and types of parameters in formal calls of pro-
cedures and functions cannot at reasonable costs be checked at
compile time. It is possible to devise means by which the pro-
grammer can specify such parameters. Consistency can then be
checked at compile time. The requirement in Pascal that formal
procedures and functions may be called with value parameters
only, can be completely relaxed.

Although this may seem a minor problem I find that its so-
lution is important. Not only just for aestetic reasons. The use
of formal procedures and functions is uncommon, but properly done
you may achieve protection of data usually connected with a
‘monitor/class/module concept; and with even greater flexibility
in certain cases (e.g. hidden and recursive modules). I do have
very favourable experiences from actual use but space is too
short for further elaboration here. You may consult our Pascal

8# 43LLITSKHIN TVISY

‘AYW

LL6T

S¢ 39Vvd

1100 User-Manual for the syntactic details, but this contains
no important examples.

The case statement

Pascal has often been praised for its case statement. The
explicit labelling of entries makes programs very readable. Nev-
ertheless the Pascal Report does not specify the action when the
case expression does not compute one of the values labelling an

entry. It seems most reasonable to provide the programmer a means

by which to handle this situation and settle for a common inter-
pretation if that is not used.

Further I find it very convenient but not so important to
allow an interval to indicate labelling of an entry. In our com-
piler we have adopted the following syntax

<case statements> ::=
case <expression> of
<case list element> {;<case list element>} -
<case termination>
<case list element> ::=
<case labelling> {,<case labelling>} : <statement>
<case labelling> ::=
<constant> | <constant> .. <constant>
<case termination> ::=

end | otherwise <statement>

The statement following otherwise is executed if none of
the labelled entries are selected. The termination end is equiv-
alent to otherwise <empty>.

Handling of TEXT variables

A format specification in the read procedure in analogy
with the write procedure has been claimed a need. I have no
strong opinion on the subject itself but want to warn against
rushing to a solution. Proper use of the read procedure seems
to be difficult, judged by the number of errors found in begin-
ners programs. The reason to this is, I suppose, the lack of a
suitable standard structure in TEXT variables. This may be ex-
plained by the development history of Pascal, especially the
late addition of a read procedure including type conversion.

I would find it a most unhappy situation to introduce a
standard for formatted input before an agreement on TEXT struc-

ture. This should include a rule stating that the value of eof
only changes when a line marker is passed, in complete agree-
ment with the scheme

while not eof (£) do begin
while not eoln (f) do begin
read (f, x); use (x)
end;
readln (f)
ggg

Another trouble with reading a TEXT variable is that the above
scheme is only correct if x 1is a CHAR variable. A closer look
into the problem reveals that the above scheme applies to read-
ing in general, if trailing blanks in a line are skipped during
a read operation. This will be true if x is replaced with sev-
eral variables provided that read (£f,vi,vz,...,v,) is consid-
ered a fatal error only if eof (f) is true prior to the call.
With the above structure, format specification may be safe-
ly introduced if interpreted in such a way that detection of a
line marker may shorten a field.
Formatted reading would probably be used mostly to read
a TEXT variable previously written with Pascal output format
specification. Writing may result in a field larger than spec-
ified. This situation ought to be detectable when reading and
a standard structure of TEXT variables may be a sufficient means
to this.

Concluding remark

Except for formatted reading my opinions expressed above
are based on actual experience, both my own and a large number
of computer science students. Neither in themselves nor in com-
bination do the presented extensions complicate the compiler
seriously and the additional conceptual complexity is clearly
outweighted by the increased possibilities.

(* Jorgen is not a PUG member yet, *)

S# ¥Y3ILLITSMIN TVISV

AV W

LL6T

9¢ 39Vvd

State University of New York
at Stony Brook
Stony Brook, New York 11794

Department of Computer Science
telephone: (516) 246-7148

StonyBroock

March 7, 1977

Professor Niklaus Wirth
Xerox-Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

Dear Professor Wirth:

I received the copy of your letter on standardization of Pascal
extensions, and read it with much interest. I certainly agreewith the
general philosophy expressed on standardization and on the role of language
extensions. The concern that you express for keeping the published liter-
ature up to date with the working versions of the language is also well
taken; no implementor will ordinarily undertake such a responsibility.

My principal concerns on the ‘Standard version of Pascal, as opposed
to possible extensions, are two:

A. The complete typing of formal procedure parameters should have been
standardized. The strongtyping inherent in the language fails to
carry over here, leaving to-the implementor the choice as to whether
to omit type checking of parameters in calls upon formal procedure or
function names ‘(unthinkable) or.to compilea run~time checking
mechanism. Several implementors have chosen a thixd route--to define
their own syntax for the declaration of the parameter types of formal
procedures. These several syntactic devices have in common that they
all permit full type checking during compilation, but they are nmutually
incompatible,

B. The field width specifier given in the arguments of a call to the pro-
cedure Write should not have been made a part of the Standard language
in my view. Although the mechanism is convenient and easy to use, its
syntax is not context—free and it is not easy to implement unless one
uses recursive-descent parsing, which allows the use of semantic in-
formation to aid the parse.

With regard to the recommended set of extemnsions, it is really important
to look for extensions that work well with the Standard language and work well
with one another. My own prejudices are that one should first add diagnostic
facilties to an implementation of the standard language, then look at
extentions. One obvious extension, consistent with the design, is to
relax the implementation restriction on the maximum cardinality of set types.
There are known algorithms for flow analysis, for dinstance in which

the ability to handle large sets as bit vectors is crucial to performance.
Next in order, by my preference, would be to add typed, structured constant
declarations. The lack of a facility to imitialize tables is a genuine
weakness. Third would be an extermal, or separate compilation facility,
with type checking extended across program linkages. Fourth on my list
would be some form of string processing, at least at the level that exists
in ALGOLW, but preferably allowing a variable length specifier in the subw
string selector. On the recommended set of extentions that you have
addressed:

(1) Dynamic arrays are greatly overrated. Fast, dynamic sequentilal-access
storage can be provided by implementing internal files as corefiles.
Linked lists are convenient and easy to use to implement stacks and
queues. In any single program, vectars and matrices tend to be all
of the same size, or of a few fixed sizes., In fact, until one has a
facility to compile program components separately, creating a proce=-
dure ox module library of relocatable programs, there is really no
need at all for dynamic arrays. When a library module is designed
to be incorporated into a variety of applications programs, then
elastic bounds do become somewhat of a necessity. However, a very
nminimal degree of 'dynamism' is required, even in library modules.

Each applications program will have a characteristic set of dimen=-
sions that its arrays use, and these dimensions, communicated to the
library module-during program linkage, should provide sufficient
elasticity in the bounds of arrays. I would propose that the critical
dimensions be declared as parametric constants not known at compile
time, as distinguished from "manifest" constants., Parametric constants
could be used to define subranges, just as are manifest constants. The
only limitations that I know of on the use of parametric subrange types
would be in connection with another possible extension, default clauses.
in case lists. Of course, arrays and sets indexed by or based upon an
elastic subrange would have to be doped in an implementation, even
though the constants are defined prior to actual run initiation.

(2) Arxray- and Record- constructors. If the initfalization of tables is
the primary motivation for these constructors, and I believe that it
is, thenwhy should they be defined on the right side of an assigmment
statement, in the statement body of a block? It seems that it would
suffice to define typed, structured constants in the block heading,
allowing type and const definitions to appear im alternate . order.

I certainly agree that the inclusion of general expressions as construc-
tor elements would be a major, and I think unwarranted extension of
Pascal. The notion of multiple assigument has some attractive aspects,
but this is something to be built into the foundatlons of a programming
language, not to be added on.

(3) Default in case lists is only a convenience, a cosmetic extensions,
but 1t turns out that it is a very attractive one. Our students,
who are currently using the Pascal 1100 compiler from Copenhagen
vhich has this feature, like it a lot. And we haven't encouraged
them to use it, they have just found out about it. Since it is one
of the easiest extensions to make, perturbing nothing else (until
parametric constants are added, at least):IL see no-objection to it.

(4) Formatted input has no justification that I can see, It has a
historical origin in the technology of fixed-field, unit-record data
processing, Far more useful in some ‘large-program applications would
be the.ability to specify, in a machine-dependent way, the format of
data packing in the declaration of a packed record. This would be a
rather specialized extension, but is worthy of some serious thought.

g# YILLITSHIN TY¥ISY

AV W

LL61

-

LT 39VYd

In our implementation, we have first concentrated on providing some
useful diagnostics, borrowed with much admiration from Ed Satterthwaite's
contribution to the ALGOLW compiler, and on'a relatively clean implementation
that can be built upon and maintained. We have given a lot of thought to -
generating efficient code, and have provided hooks for optimization, but
have deferred work on an optimizer until we feel that most of the compiler
bugs have appeared and been eradicated., We are just now completing the
implementation of nonstandard files. An effiecient and safe storage manage—
ment scheme is our next target, and doesn't appear to be too difficult. We
are presently working on two actual extensions, separate compilation with
type-checking across module linkages, and the addition of typed, structured
constants. Incldentally, we adopted your suggestions for the syntax of
record and array constructors. Some of this may be working by the time of
your visit.

. We have thought:=about adding a default case clawse, and allowing ranges
to specify case labels, but I'm not sure this will get done.- Also, we have
thought about allowing parametric constants, but no decision has yet been
made on whether to go ahead with an implementation of this idea, either.

One final comment on the use of Pascal in writing programs for inter-
active execution is that the expedient adopted in the Copenhagen Pascal/1100
seems worthwhile. They have made the nonstandard implementation adaptation
that when a Text file is opened, or Reset, the Eolun condition is initially
true. This means that to accept input, one may need to execute an initial
call to Readln, but it.avoids the condition that input from a terminal is
expected prior to printing of the first prompting line of output. Thus it
works very nicely in interactive programs.

I look forward to an in~depth discussion with you at the time of your
visit on March 23, until then.

Richaxd B. ebu: .':z
Professor

m: pdm

Thlrd Annual Computer Studies Symposium

“PASCAL - the LANGUAGE and its IMPLEMENTATION”

University of Southampton, March1977

THE FUTURE OF PASCAL (Extensions and Standardization)
Andrew B. Mickel

University Computer Center
University of Minnesota

The Present State of Affairs

1.

2.

It's been 7 years since Pascal's initial development, but only 3 years since Pascal
has seen widespread use and easy to obtain Titerature (books) has been available.
We have 3 official documents:

- the Revised Report (Second Edition, Third Printing of the book: Pascal User
Manual and Report)

L the Axiomatic Definition (in Acta Informatica, 1973)

- the User Manual

Now in early 1977 we have wofking implementations on dozens of different machines,

thousands of users, an ever-increasing base of computer science departments which

are using Pascal for teaching, and a rapidly growing user's group of more than 800

members in 28 countries.

Pascal has had an enormous effect on computer science - just witness the imitations

of features in the literature and in conference papers.

Much applications and production software is being written in Pascal at all levels:

from individuals, to small software writing firms, to large organizations (research

computer centers and corporations.)

No major computer manufacturer has yét officially produced and supported a Pascal

system for general user applications.)

We therefore can proclaim a fair measure of success. But...

Even though we have a “standard" in the official documents, many implementors are

not adhering closely to it. There are at least these reasons:

- most implementations so far are done at universities and it is their purpose to
experiment with new things: some valid, some "bright ideas."

~ most Pascal compilers are written in Pascal and are very transparent and compact
which allows easy modification.

- < there are Tots of questions about details not specified in the 3 official documents

but which are left up to the implementation to decide what to do. This aspect has
Ted to accusations against Pascal such as CDC bias, requiring a look at the CDC
«compiler to see how it did things (things defined by implementation), and whom to
ask to find out about other aspects.

* The result is bad not only for users of these Pascal implementations, but also for
© the implementor and the future of Pascal if it is to spread in the world's computing

8# ¥ILLITSHIN TYISYd

‘AYNW

LL61

g€¢ I9Vvd

10.

1.

community. Increased acceptance of Pascal helps each Pascal programmer to be able
to use Pascal respectably.

Within the Pascal community (PUG in particular) we have some of the best people in
computing in the world today. They naturally tend to strive for excellence and
would like to see the looseness tightened; the vagueness clarified.

Thus the issue of an officially accepted standard for Pascal is raised which
supposedly should help the situation.

Desirable Goals and Current Problems

1.

Let's consider the original design goals of Pascal:

- sparse, simple language (easy to learn/efficient to translate)

- general purpose language (but not all-purpose)

- vehicle for portable software (certainly better than FORTRAN)

- tool for systematic programming (teaching and writing reliable software)

- efficient realization (for sheer practicality)

What roles should Pascal play?

- an as-low-as-you-want-to-go high-level language forming a basis for much other

software

help put an end to the FORTRAN age so that young new programmers won't be faced

with a 1ife sentence of writing ugly code because of "practical realities." Using

Pascal should be a respectable activity.)

- to be an alternative to dinosaur languages. Consider how hard it is.to get a
common medium such gs Pascal widely established. There's not much hope for
another language to come along if Pascal (even with its small imperfections)
doesn't make it. Computer manufacturers will continue to control users' lives by
pushing FORTRAN, COBOL, and PL/I with the excuse "that's what the customers want."

It is wise to stay within these assumptions (upon which much of Pascal's current

viability lies), and try to understand how to satisfy all the design goals to the

greatest degree without holding any single one to an extreme degree.

Within Pascal User's Group, many persons are quite concerned that Pascal will fly

apart, be killed, or become just as bad as other languages without adherence to a

standard.

Butltpere is also pressure to use the movement for a standard to extend Pascal ot

the same time. This is bad because:

- most importantly, there is a current investment in documentation in the form of
defining documents, manuals, and books; implementations which are currently
operational; and applications softwany. We are already in cement, and it is too
late to add extensions to the official language.

- the size of the language as described in the Revised Report is already large
enough in terms of learning the whole language in a reasonable time and in writing

_complete implementations on small (mini/micro) computers. The importance of small

computers cannot be overlooked because of their ever increasing numbers and use
by more and more people.

- a committee, which would have to effect a standard,cannot possibly possess the
clarity of vision of a single designer who alone considers design goals and
tradeoffs.

There is much difficulty in obtaining an officially accepted standard by a standards

organization. For example, I am told that ANSI requires a committee. Who would

choose it, how will it meet, what will its powers be, and how binding will be its
decisions?

The basic problems with the three official documents seem to be semantic holes

(Swiss cheese?). On the other hand their outstanding virtue is small size. The

Revised Report requires reading between the lines, the Axiomatic Definition goes as

far as it can but is not complete, and the User Manual is not a rigorous source for

semantics and shouldn't be. The problems are vagueness and uncertainty. The
situation might be better today if i) it had been explicitly spelled out what
features were left out from Pascal and why, and if ii) it had been explicitly

stated which unspecified details in the Report were left up to the implementation to

define and suggest valid alternatives. We would then know where we stand as users

and implementors, and be saved from the archeological digging of trying to find
these things out.

Considerations of a Standard

1.

The case is now made for:
- standardizing the Revised Report with semantics tightened up,
- conventionalizing extensions to the standard which apply to any implementations

incorporating them, (The User's Group and Pascal Newsletter can be the forum.)

- stating examples of extensions which should not be conventionized.

The advantages of an officially accepted (ISO, ANSI, etc.)standard are:

- If most people involved with Pascal adhere to it, it will become a living standard
and there will be peer pressure (political enforcement) brought to bear against
others. Therefore users can point to implementations masquerading under the name
Pascal and avoid them. At the present time it would seem that the Revised Report
would be such a standard, except for the fact that so many influential Pascalers
find it hard to defend mostly because of semantic holes.

- Portable software possibilities are enhanced, and users are happy.

- It will increase acceptance of Pascal by large organizations because Pascal will
appear to be a legitimate option to take for writing software.

- It will be economically enforceable in the marketplace. If a large customer (say

- the United States Government) wants an ANSI-standard Pascal in the manufacturer's
array of software, it will be there.

Some extensions should be conventionalized and others should not. Many

g# ¥ILLITSMIN TV¥ISYd

‘AY W

L1661

6¢ 39VYd

implementations do provide desirable exfensions; some of which enhance Pascal's
utility. It is possible to make these uniform across computer systems because they
meet many of Pascal's design goals. The spirit of conventionalized extensions is:
“§f an implementation extends in a certain direction, it should do it this way."
On the other hand, many extensions should not be conventionalized because they are
so machine and operating system dependent as to conflict severely with design goals
(mainly efficiency).
An incomplete list of details that seem to need attent1on regard1ng the Revised
Report: .
- the symbol ".." is a Pascal symbol in the User Manual, but not in the Report
- sets of char are not necessarily guaranteed, but in practice seem to be a useful
guide for minimum set size. i

what is meant by the concept of same type?

a) explicitly same type identifier? or

b) same structure?
- are compound boolean expressions evaluated fully or sequentially left to right
allowing partial evaluation? (specified in the Manual but not in the Report)
what should be the undefined values of scalars and pointers? (nil for pointers
will not necessarily suffice.) L
- what is the effect of a case value out of range?
- what is the effect of unset tag fields in variant records?
Candidates for conventionalized extensions:
- variable extent array parameters -

"= constructors for structured constants

- specification of all parameters and their types for procedures and functions as
formal parameters.

a data initialization facility (value part)

formatted read procedure

reading and writing enumerated scalar values

the procedure dispose

- external procedures and functions (whether precomp11ed or in source form)

- interactive input/output :

- otherwise for case statements

Examples of extensions which should not be conventionalized across 1mp1ementat1ons
- operating system file substructures, their access methods, and their myriad
attributes (including direct access secondary storage)

additional, predefined constants, types, variables, functions, and procedures

- compiler options .

very specialized extensions (significant digit arithmetic, error trap 1abels,
extra looping control structures, synonyms for standard Pascal symbols, etc.)

Hanchester University

oxford Road

Manchester

7th April 1977 (=lLate at night «)
Dear Andy

please find enclosed an attention List,which refers to the
Revised Report,for you to put in newstetter #8 and ultimately to
pass on to Niklaus wirth.Many of the '‘points may seem +trivial, but
1 am trying to prevent problems Later.

I have had no time prior to Easter to take any action:on
tandardlslng pascal in the UK ,apart from generating this List.

. This List includes contrlbutlons from others.Iwill be sending you
a copy- of a Letter which Brian yichmann has sent me on this mattenr.
some of the items on this List apre due to Brian.

This Letter will have to be brief,since I am trying to type
it myself on an ontine terminmal(offline)!As well as the List!

I witl be putting a case at the next meeting of -Dps/13, (the
British standards committee dealing with programming Languagos)
for the production of an official standard for pascal.This may be
either a UK standard or an IS0 standard.if this case is accepted
then 1 can form a working group to study the problem and DPs/13
willt apply to a superior committee for facilities for the work.

It is the responsibility of this committee(DPs/-/1) to initiate new
work.The working group will be OK,since it wont need BSI resources.

The working group (roughly equlvaLent to X3J1-4's in-ANSl)
will have two main tasks,

: 1.TO crltlcaLLy examnine the current Revised Report and

submit their results to Niklaus wirth (via you).
2.To ensure that any document(s) resulting from your work
will be acceptable as standards documents.l dont want TwO
-standards for Pascal.
The WG will have the responsibility for producing a draft standard
as far as the standards organisations are concerned.

some -thoughts on standards.

1. INn addltéon to the standapds document for Standard pascal,

we need :-

a)A definition of acceptable alternative representations
of the pascal special symbols e.g. t []

b)A suite of programs to validate pascal compilers

. for conformance with the standaprd.

2. Here is a possible definition of a standard conforming

processor.(processor = compiler + pun time support or

interpreter etc.) .

A standard conforming processor must correctly process atl

standard conforming Pascal programs.In addition ,it must be

able to determine. whether or not it's input is a standard
conforming program.This has implications for extensions.

A processor must he able to monitor the use of any

non-standard facilities or semantics.This monitoring could be

optlonaL This also implies that the standard must not forbid
anytning that cannot bs(easily) checked Tor.
lf anyone in the UK is w1LL1ng t0 assist in the production of the
at;entlon List and/or join in the yG , would they please contact
me?

Yours ; Tony Addyman.

—

[

8# 43ILLITSHIN T¥ISVd

AV

LL6T

0¢ 39vd

Chapter
3

6.1.2

6.2.3
6.2.4

6.3
7.2.1

83nd8.1

Al ATTENTION LIST (PART 1 2)

.« ds a special symdol?
forward as a special symbol ? (see 10)
Strings are constants of PACKED arrays of char - but
see also 8.1.4 and 12.3.8
a) Ordinal values of type char -~ digits are coherent?
. Letters & digits are ordered?

b) using 1s0 or simitarly full character sets,are the

control characters e.g. FF,CR etc. members of the type

char?

If yes ~ do they have a constant representation?

~ is LF (the end of Line marker) to bs a member
© of the type char? - see 6.2.4 and 12
1f no =~ are they to be all converted to spaces on input?
’ Including the one chosen to be ECF marker?
NOT REAL ! Introduce the concept of the Associated gcalanp
Type from the User Manual.
packed has. no effect on the meaning - but see 8.1.4,9.1.1,
9.1.2 and 12.3.8 .
Restrict index type to scalar(except REAL)
Add "A precord type containing variants may hold the value
of only one variant at any time".This is a (poor) attempt
1o say sometning about the storage of variants,and
whether they overLa{.
SET OF REAL 7 see also the comments on set operators and
type equivalence.)
Apre filLe components allowed to contain pointer values?
1T so, is this sensible?
TYPE PT = tTEXT ; 27?
Pointer equality tests are allowed - but see 8.1.4
The meaning of a program with an index expression out-of-~
range?This should be ILLEGAL not UNDEFINED.
Note -~ some people think packed arrays are not indexable.
what is the meaning of pt ,if P is undefined or NIL?
‘Ccould tnis be an .ILLEGAL program,please?
The meaning of [X..Y] if X > Y ? - see yM-8
can we deduce the base type of a <set> from the types of
its elements? If so,then [1,2] is of type SET OF INTEGER.
The values 1 and 2 are constants of type integer - see 4
Add comments on integer arithmetic and MAXINT from yM-2C
Add comments on boolean expression evaluation from yx-4A
Introduce the concept of Associated scalar Type from uM-5B
Operations between sets and the use of IN ; consider :-~

TYPE s1 = SET OF 'A'.."'z'; s2 = SET OF '0'..'9';
VAR LETTERS : S1 ; DIGITS : $2 ; CH : CHAR;

9. 1. 1.1
3.1.2

9.1.3

9.2.2

. 9.2.4
IF CH IN LETTERS*DIGITS THEN «eece '

1s this Legal?No ! - the types are incompatible.The definition
of sets and set operators must be phrased to make this Legal.
MOD and DIV on integer subranges? ’
Equality on pointers? - see 6.3

Operations on (packed) arrays of char - see 4 etc.

9.2.3.3

when are two types identical? 1f same type identifier
then see the set example etc. If same “"structure®™ then
consider these :-

Assuming
TYPE A1 = ARRAY[1..10] COF INTEGER;
A2 = PACKED ARRAY[1..10] OF 1..100;
A3 = ARRAY[1..101 OF 1..100;
R1 = RECORD A : CHAR; P : tR1 END;
R2 = RECORD B : CHAR; @ : tR2 END;
R3 = RECCRD F : TEXT END;
VAR A : A1; B : A2; C : A3; D : R1; E : R2;
FyG : R3; H: 5..10; J : 3..8;
Consider A :=B; B :=C; D := E; F 2= G; H := J;

Note - File assignment is not prohibited (yet)

- Assigmment between variables of different subranges

of the same type is not explicity allowed.

A program which assigns an out-of range value to a scalanp
or subrange variable should be ILLEGAL. -
what about the assigmment restrictions from umM-10(page 64)7
These need run-time checks.ls a compile time restriction
possible? N
The order of -evaluation of <variable> and the <expression>
should be UMDEFINED.yhy shoutd side~effects from a function
have a defined eftect?
Do expressions of type subrange of integer exist?
The assignment rules must apply to value parameters.How about
VAR parameters? File parameters by value prohibited?
GOTO into a structured statement - 0K?1t must be prohibited.
1T merely undefined ,a program which compiles successfully
and is run with atl checking on can still go "witd"!
Case Label types? scalar(not REAL)?
<Case label> ::= <constant> ? .
Action on case expression out of pange?Could this be either
a) the empty statement cf ALGOL 60 or b) ILLEGAL? :

A non-Local variable as a contpol vapiable?

The semantics in 9.2.3.3 do not cover
FOR I :=2 TO 1 DO s;
The valuye of the control variable should be undéfined on exit,

.see UM-4C3.This suggests positive action to store an

"unpleasant” value in the control variable - GOOD!

Consider uM-4C3,1f the Timal value is calculated once only

it is impossible to change it,so why prohibit any attempt

t0 do so?Assignment to the control variable shoyld be

iltegal = but how to check for it? (Non-Local references from
precedures). Is the order of evaluation of 21 and e2 undafined?
The effect of nested yITH statements? - see yM-7A.

WITH A,B DO = yITH A DO WITH B DO .

why pronhibit the alteration of i in wiTH A[i] DO 71t is

very difficult to check.Could the WITH statement be defined
to evaluate its <record variable List> just once?lt would
then be compatible with vAR-parameters and the FOR Loop.

(see 9.1.2)

8# YILLIITSHIN TYISYd

‘AVU

L1611

T¢ 39Y%d

Cnapter
10

*10.1.1

10.1.2
11
11.1.3

1.1.4

12

PSS
oV
e e
D
ERIRIE)
S ON

The rules of scope and the accessing of non-lLocal variables
and types etc. are not adequately defined.(see uM Introduction:
and UM-11A).There is NO mention of defining before using!!!
so consider these :-
TYPE A = RECORD etc.
PROCEDURE ees
TYPE PA = 1A;
A = RECORD (+« DIFFERENT #) etcC.
which type A do variables of type PA point to??
PROGRAM ...
PROCEDURE P(...)
PROCEDURE Q(..s)

" P(...) (* but which one 7 *)
EMD '
PROCEDURE P(+.e)

END
END

END.

which procedure does @ call?The rules of scope suggest the
second one. . . .

Is assigmment to ft allowed if ‘one is peading from f?

Is put(f) allowed on file T if eof(f) is true because of
peading to the end of the file,without catling rewrite(f)?

Is skipblanks (see UM-12A) Legal?

Has dispose definitely been down-graded to a pre-defined but.
not standard procedure? .

what is the effect if no-assignments occur dynamically inside
the function to the function identifier?An undefined value is
returned? : . :

DeTinition of trunc and round shoutd be taken:from uM-28.
please define ord(user defined scalap) to start from O.

what is the effect of pred(i), if i = 1 and var 1:1..10?

1t should produce 0 without error since pred(in:this case)
produces an integer value.But what about pred and succ on)
usep defined scalars?should it be a fault? . o

Is reading a subprange variable subject to the same conditions .
as assignment?yhat do read(integer) and read(psal) do if eof
is true before read is called?How about returning an undefined
("unpleasant") value?

Action if n = 0? Compare this section with U¥-1287 and U#-1233
see 4 and 8.1.4

This must remain as a program interchange consideration:only.
Implementations of pascal should not have to 'know' about this
if their operating systems do not believe in it.

3 UNIVERSITY OF MINNESOTA university Computer Center

i TWIN CITIES 227 Experimental Engineering Building
l Minneapolis, Minnesota 55455
{ (612) 373-4360
i !
April 24, 1977
Tony Addyman

Department of Computer Science
University of Manchester

Dear Tony,

‘Thank you for going to the trouble of making the list of potential

‘problems in the revised report. I'm impressed at the thoroughness evident in

your list. I'm printing the list as an example, and what I will do is collect

" those sent to me by others, sort and combine them and then send them on to

Niklaus as he and I agreed. We want to get most of this done by September.

Please don't forget the.principle we learnmed as of Newsletter #5 (Wirth's
letter): don't confuse the language with the implementation. Also remember
that because the revised report is concerned with the language only, some
aspects of Pascal are intentionally left undefined to be defined by the
implementation. But there definitely should be a list of specific aspects to
be defined by implementation accompanying the revised report, rather than a
vague implication by omission.

Omissions in the revised report right now can mean:
1) the aspect in question is undefined, :
2) the aspect:in question is to be defined by implementation, or
~ 3) the aspect was not given consideration and the revised report
therefore has as error.

OK, so I (for example) don't think that incldding 6.3 in your list is a
valid complaint. The language doesn't prevent pointers to files, files of files,

. ete.:.and it shouldn't. An implementation (with today's technology) may have to

restrict these possibilities.

I know you are going ahead with standardizing via ISO; it will certainly
be a far sight better than even touching ANSI. I've just found out more details
on the BASIC Standard and it'was very disappointing to nearly everyone I talked
to. There were a lot of 8-7 votes (some going the "wrong" way) in a 15 person
committee. And the whole effort will be measured in units of years. So, I
emphasize again that committees are a disaster, and the one you need for BSI

.-and ISO is only for review as you promised. In other words’ your working group

is not to twiddle with the language. You did say when I was in England that
there were precedents within ISO for c¢reating standards without committees.

"~ That is the only acceptable route for Pascal at this point. I want to be able
. to trust you. I hope you will do your best.

Keep smiling,

8# Y43ILLITSKIN TVISY

LLBT AVHN

¢¢ 39vd

ASK FOR ..

The University of Tasmania

Postal Address: Box 252C, G.P.Q., Hobart, Tasmania, Australia 7001
Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE:

DEPARTMENT OF INFORMATION SCIENCE

FILE NO. . i

IF TELEPHONING OR CALLING

28th January, 1977.

Mr. Andy Mickel,

University Computer Center,

227 Experimental Engineering Building,
MINNEAPOLIS, Minnesota 55455 USA.

Dear Andy,

Please find enclosed a contribution for the PASCAL Newsletter in some future
issue. It addresses the file question; quite a serious one for PASCAL. If 1l
can reiterate something | wrote in it to emphasize it to you, | believe that
PASCAL has more to fear from its friends than its enemies.

1'd also like to briefly comment on your editorial in #6 where you said you
couldn't understand my views on page 2. It is very hard to say all that one
would like to when writing is all that is possible across several 1000's of kms.
What my attitudes are briefly are as follows:

(1) Adhere to standard PASCAL where this is well-defined in the Report or
where a portability trend can be clearly perceived. Unfortunately the
Revised Report is hopeless as a standards document (much too loose, and
dumb on many semantic issues), and PASCAL is inadequate in some areas.

(2) Where there is a gap in PASCAL, or an unsupportably bad feature, then if
the gap has to be filled it should -be with (a) maximum compatibility
with PASCAL aims and style, and (b) maximum compatibility with Burroughs
practice. Somewhere a compromise; though often the two agree. The
sort of thing | have in mind is in the specification of file attributes
(none in PASCAL), or compiler options (too terse and clumsy in Wirth's
PASCAL), or extended standard functions (even Wirth has a larger set than
the Revised Report).

I could weep over some of the things PASCAL has in fact carried over from
the past (its silly semicolon structure for example), but no-one can do anything
about them now. | wouldn't bother trying, except to point out the mess, and
apply a bit of plaster in our implementation to ease the problem.

| wouldn't think this covering letter is worth including in the newsletter
(1 don't feel too slighted), but you may if you wish.

Yours sincerely, (Q?/

Arthur Sale
Professor of Information Science.

PASCAL files
In PASCAL Newsletter #6, I made some remarks concerning the inadequacy of
the PASCAL file concept. Provocative, perhaps, because I have drawn a number
of letters defending PASCAL and suggesting extensions to it. In fact,
Newsletters #5 and #6 also had comments by other people pointing out possible
extensions to PASCAL in this area. I think the topic is so important,
Jjudging from the interest and the many suggested remedies, that it deserves
a brief comment in the Newsletter. So here goes.

(1) Are PASCAL's files imadequate?

That depends, of course, on how you interpret inmadequate: inadequate for what?

I put the guestion in terms of the use of PASCAL for systems programming, and
as a possible user-programmer language (the FORTRAN replacement role). I would
have thought the answer was quite clearly no; for instance I could not write
an analyser in PASCAL to inspect the code-files of the B6700 computer (that
requires random-access), nor to scan a disk directory; it would be unbearably
cumbersome to carry out any conversation with an interactive terminal as

the discourse would have to be carried out at the read(char) level....

Some of my correspondents disagreed, and thought PASCAL's files were just fine;
a sequence of elements was all they needed. If so, fine, it can be enough

for teaching and some applications. However, in nearly all cases they gave
themselves away subconsciously by proposing far-reaching changes to PASCAL
which would go far outside the current language. Often these were disguised
as innocuous extensions: let files be treated as full PASCAL types.... No,

it is widely recognized that the files of PASCAL, though quite adequate and
regular for a teaching environment (the design target of PASCAL) are not

fully up to the reality of the computing world.

(2) Are files variables?

I have argued that files are not variables in the same senses as scalars,
sets, records and arrays, and that it would have been better for PASCAL had
the declaration of file objects been separated from that of VAR objects, just
as CONST and LABEL are. I shall have to justify this view later, though

it is by now impossible to make such @ change in the language.

This view is the one to which most people take umbrage, and they usually
state that files are variables, with equal status with other variable types,

§# Y4ILLITSKIN TYISVd

AV W

LL6T1

£¢ 39Vd

following this up with examples of how files may be used in PASCAL as full
variable types. To quote from one letter:
" a) "file1 := file2" should specify a file copy.
b) An array of files could be an array of (pointers to?) file

descriptors in main storage.

~

c) "file1 € file2" is just as meaningful as "array1 < array2" or

"icat! ¢ 'dog'" and could be implemented as a small (albeit

time-consuming) loop.

d) The scope of files could be the same as the scope of variables
(procedure entry and exit). Of course a file declared as a °
formal parameter to a main program should exist (or be created)

before execution and after termination."”

I would not attempt to argue that the above could not be done; I could
easily see how fu do these things myself. The mind of man is quite capable
of thinking up a meaning for any construct. No, my guarrel is that these
views are very superficial. For the sake of one regularity (treating

files as full variables) they would import into: PASCAL a whole host of other
second- and third-order irregularities. Let me remark that the ideas

I have guoted above must have occurred to every seriocus PASCALler; they
must have occurred to Wirth; surely it is significant that the Revised
Report is so quiet on this subject? Let me try to show some of the

flaws in the reasoning.

(a) is "file] :=-file2" sensible? The first problem is that some files

are read-only (a card-reader?) and cannot be assigned to. Also some files
are not of finite length (a file equivalent to a remote-terminal for example)
and the copying might be infinite. Then there is the problem of the initial
and final states of the two files. Suppose file1 and file2 have something on
them already. Does the statement imply a reset and rewrite followed by the
copy? And how are the files left? positioned at eof, or closed, or
reset/reurite called?
(b) Is "filel < file?" sensible? Much the same things could be said.

It is easy to define the ordering if the files are of different length,

but what if they are empty (never written to) or mever opened? In what
state are they and their file buffers left? Since some things are
inherently not ordered (sets, records), only some files could be compared.
What to do. if the file components were records with variants? This

is regularity?

(c) Is an array of files sensible? Sure, one can have an array of files,

and a record with a file component. It is easy to see the logical
cunéequencea here: they lead from allowing files as structuring components
of arrays and records, to allowing files as value parameters, probably

even to allowing records, arrays and files to be function result types,

and finally to the ultimate absurdity: allowing files of files.

Remember that any operation involving files and file assignment must

cause a copy of the whole file; it is not sufficient to copy the
descriptor. Even more so must it be the case that writing file-descriptors
to a file will lead to chaos as time elapses and some of the objects
described vanish and others change... '

I will say it again: the confusion arises because files are something
outside a program in execution: their lifetime (or extent, to use a
technical term) is not identical to their scope.

(d

~

What about scope? If one views the scope of a file-name as the region in
which it is known, then there are no problems about associating the
scope of a file-name with the scope of the program/procedure/function

in which it is declared. This is exactly the interpretation in B6700
PASCAL with the additional semantic interpretation that at procedure exit
all files still open in that scope are implicitly closed, with the
consequent side-effects.

It is silly to claim the program heading of PASCAL as a solution to this
problem. A little familiarity with CDC computers reveals it as a
kludge, and an importation from CDC, FORTRAN. The "parameters" in

the program heading are not PASCAL parameters. Though this would be
preferable, and would remove the irregularity of the program heading
itself, it would not snlve the problem since it does not address it
adequately. (Quite as a side-issue, why cannot main-programs be
procedures, thereby allowing them to be called as things with genuine
parameters? Any answers?)

Come back and look at lifetime. What sorts of files are there? Some
have lifetimes which precede the program's life in execution and continue
past it. Some permanent files for example on disk, some tape files,

a remote terminal file, and so on. Others do not exist before the
program starts execution, but exist after it: a disk file written by

the program for example. Vet others exist before the program starts

8# YIL13ITSHIN TVISVd

LL6T “AYN

he 39Vd

execution but not after it (as in an archiving program's usual handling).
Some only exist during the program's lifetime and are quite temporary.

And others, for example print-files, are created during the program's
execution and are then detached at the point of closure, to live on for

a brief time (inaccessible to the program again) until they are printed.
Surely lifetime and scope of files are orthogonal concepts? If they are not,
then we get all sorts of difficult and really messy problems. Let me detail
a feuw.

(1) Suppose I have a compiler, written in PASCAL, and it needs provision
to talk to an interactive terminal user who is using it to compile
something. Fine, you say, the remote terminal is an external file
imported.into the program. Declare it in the program heading.

Yes, but this compiler is also used in queue (batch) situations.
Though it knows of this file, it never uses it in these situations,

so0 it never opens it, so it never exists for it. Declaration in the
program heading mightvsend us on a fruitless search for a non-existent
file we were never going to access...

(ii) Suppose again I have a program writing a file. During the course
of execution, it knows that the file it is writing is rubbish because
errors have occurred. It doesn't want to enter it into the
permanent directory. But if its ok, it does. How? In existing
PASCAL?

I can keep on going. I hope these are encugh examples to get you to supply
some more of your own which highlight the difference between scope and
extent. A file ought to be an object whose lifetime is controlled (if at
all) by explicit program commands, but whose name is known in a given
scope.

(3) Is the best way to random access through slow array of...?

A key question,'if you accept the importance of being able to randomly
access files at all. The answer must be no, however, for exactly the same
reason that sequential files are not slow array of (char?). Both entities
are no} variables in the same sense as the rest of PASCAL, and both entities

v
may be of unknown size at the program's compile-time.

Note, I am not saying that a slow prefix, like packed in that it can be-

ignored by an implementor, is not useful. It could be very useful, particularly
in computers with multi-level memorieé such as CDC's ECS, to be able to

declare an array as slow. The Elliott 503 of long ago did this very successfully
in its Algol. What I am saying is that a slow array is not a random access

file. Far from it.

No, a random-access file may be one written by a program which does not know
its length until it has been written; for example the generated code file
of the B6700 PASCAL. Largely this is written sequentially, but it is tree-
structured internally and the compiler needs to make some random accesses
to patch up pieces of it. Even more so, a program which accesses an already
written random-access file may not know its length. Random accessing a
file is a property of the access, not of the file. B6700's have files
which may be accessed either sequentially or randomly as you choose (if
it is a disk file of course). My suggestion for this is to attach the
random access key to the read and write statements, or as Wirth suggests
for CDC segmented files, to versions of reset and rewrite. Possibly with
an array-connotation syntax:

seek(filelfindex])
or seek(filel,index)

(4) What relation is there between PASCAL files and our operating system files?

It is possible to argue that current operating systems support things

they call 'files! which are often a mess, and that PASCAL files should have

no truck with any of this mess. This is a defensible argument, and I cannot
argue against it. If accepted however, it has the effect of relegating

PASCAL to the role of an academic language - having an effect on t-aching

and the future evolution of languages but none on the real world ocut there.

The facts are that real-world files exist; their facilities cannot be completely
ignored except at the cost of making the language irrelevant to systems and
applications programmers. Some of you may be satisfied with that, but I am

not.

What we need rather is to assimilate what is good in real file structure
into a pseudo-standard: a document describing preferred extensions to PASCAL.
Then implementors would have some idea of what might be a recognized
extension compatible with some people, rather than the mixture of suggestions
that have been put to me.

SUMMARY

PASCAL has much more to fear from its friends than its enemies. Its two

greatest dangers are from naive extensions and PASCAL-fanaticism. The language

has defects; it has stremgths. Let's be a bit more cautious.

I'd also like everyone thinking about files in PASCAL to ask themselves
which of ‘the following sorts of files they are thinking about:
magnetic tape files,

disk files,

g# ¥3ILLITSKHIN TYISVd

AVH

LL6T

G¢ 39Y%d

printer spool files,
directly attached printers,
files attached to interactive terminals,
card reader files,
) and so on.
I am interested of course in the purpose and lifetime activities of such file
types, not whether they actually reside on a spinning magnetic thing of
21 surfaces or whatever... The differences in activities are still surprizingly
large, and important.

And finally, let me exhort all implementors and users to regard the standard
usage of PASCAL files as being limited to their declaration as types and
corresponding var objects; their use as var parametefs to procedures and
Functiuﬁs; and their use with the file buffer and the I/0 procedures.

Further, the scope of a file name should be regarded as the scope of its
name alone. The guestion of its lifetime is regrettably one that standard
PASCAL does not address-adequately.

/

Prof Arthur Sale
Department of Information Science
University of Tasmania
Hobart, Tasmania 7001

POST SCRIPT

AN INVITATION TO USERS AND IMPLEMENTORS

This is an invitation to users and implementors of the many PASCALs there

are around (though I have little faith in the response ability of implementors)
to write to me to say what their PASCAL compiler actually does implement

with respect to files. Does it permit file assigrment? files as procedure

parameters? files of arrays? arrays of files? IFf I receive anything, and
if it permits of a summary, I'll try to write one for a future newsletter.
The Revised Report is hardly a guide at all in this area.

Department of Information .Science
1977 February 14

LETTER TO THE EDITOR,
P.U.G.N.

Dear Andy,

Three criticisms, | regret to say.

1. PUGN DISTRIBUTION

| understand that you have decided to post overseas subscribers their

‘newsletters by surface mail (other than USA and UK). I protest vigowrously.

Do you realize that with all the ships involved this means | get the
newsletter about 3 months after it has been published? Only by courtesy
of Judy Mullins have | received a copy of newsletter #7 yet, and when my
own copy finally arrives it will be far too late to comment on anything in
it, or indeed to carry out any meaningful correspondence. Airmail is a

must for post to Tasmania.

2. EDITORIAL SNIPING

‘In your editorial in Newsletter #7, you took me to task for 'wholeSALE

bending of PASCAL'" and reminded me of an implementor's responsibility to

the user community. May | say that | was surprised since | have not indulged

in such destructive bending, nor do | think PASCAL will bridge Burroughs

users onto other machines. However, what | should especially like to

point out to you is that if you are going to object to something, you ought to
be specific in your objections. | have no reply at the ﬁoment, except to

think that you have confused language criticism and insights with impiementation
intent or fact (on a documenﬁ which has now served its purpose), or to think

you place an inflated worth on some very minor points.

If I'may, I'"11 make two points to illustrate., The first relates to the
responsibility of implementors to the user community. | am well aware of this
responsibility, and indeed one of the aims of the B6700/87700 compiler is to
be a more searching test of 'standards-compatibility" than the CDC compiler

g# YILLITSMIN TV¥ISVd

AVH

L/61

9¢ 39Yd

m UNIVERSITY OF MINNESOTA | University Computsr Center
TWIN CITIES

227 Experimental Engineering Building
Minneapolis, Minnesota 55455

(612) 3734360

April 26, 1977

Prof. Arthur Sale

Department of Information Science
The University of Tasmania

Box 252C G.P.0.

Hobart 7001 Tasmania

Australia

Dear Arthur,

It's been too long since I have written you a Tetter. I received your nice
personal reply and all the enclosures of March i8 to my personal Tetter to you
dated March 10. Yesterday we got your Burroughs 6700 Status Report. Thanks!

Since returning from Southampton on March 28 I've been swamped with work. On
March 31 Niklaus came to the university here to give a talk on Modulz (250 persons
plus, standing room only). Next week for 4 days, the CDC annual user's meeting
was held here in Minneapolis. 1 began to go through a 40cm mountain of mail and
process over 150 new PUG memberships. We started to put together PUGN#8 on April
16. Now we are finishing that up and should go to press within & few days.

Again 1'd 1ike to apologize for singling you out as an example in two consecutive
editorials. The last exchange of letters has 1 hope helped me understand that your
attitude that I at first perceived as "very opinionated" and “"know it all® is
actually intended to provoke debate, to prevent dogmatic thinking among over
enthusiastic Pascalers, and to overcome great distances from Tasmania. In short,
as the cliche goes, we need people 1ike you. And your valuabie contributions to
PUG and the Newsletter Justify mailing the newsletter to you by airmail and at a
loss. But I would like to take you up on your choice of being a distribution
center (and perhaps money collector) for Australasia for the next academic yesr
(beginning with #9). We'll have to work out the details this summer (winterl).
:e 2av$187members in Japan, but I suppose Japan cannot be mailed to cheaply from
ustralia

On to another topic. When I looked at Judy's Tetters I discovered that there was
one from her to you I'd never seen that would have really clarified the exchange
in PUGN#6. It explained their proposed ICL ASCII subset character set. In fact
they have takénm up the idea proposed by yourself and others which is to process
both ASCII and EBCDIC internally as compile options.

On “the question of files and the program heading and the Targer accusation that
Pascal is biased toward CDC computer systems, I'd 1ike to say that I believe:

) Files as a data structure (sequential access) are a useful concept and
therefore files can be special entities represented by variables and used for
performing I/0. I don't believe in file assignment though.

2) Arrays are a random-access structure in Pascal and so "virtual" (or slow)
arrays would be appropriate for "direct access secondary storage" (read: operating
system random-access files). And so arrays can be used for I/0.

3) The program heading is not a "CDC quirk." The first Pascal compilers for
CDC machines did not have them; it is.not a necessity. CDC Fortran coincidentally

has a similar construct. But when you think about it, the program heading would
be the ideal place for putting all your computer system dependent information
about file attributes (KIND, MAXRECSIZE, etc.) on the B6700 instead of the var
declaration. The program heading is a natural way to interface a program to its
surrounding environment with formal parameters.

4) Other complaints against CDC bias probably should be rephrased as simple-
architecture/multi-register machine bias. Wirth designed Pascal to be run
efficiently on tbday's machines (1970-72) and he has had at least IBM 360,

CDC 6000, and PDP-11 experience. So we witness that highly structured computers
2such as the B6700 and ICL upper 2900) are among the last to have Pascal compilers.
The problems facing 360 {mplementations are probably due to interfacing with
their dinosaur operating systems). Nagel's DEC-10 compiler, Mike Ball's Univac
compiler, and Hikita's Hitac 8000 (Amdahl 470) compiler have shown that "CDC bias"
is a phony issue.

I'm glad you are willing to change your views as you indicated regarding syntax. .
As I said, I'm still Tearning about the issues myself and have made mistakes and
changed my views.

Regarding Pascal's viability and keeping it in the greenhouse, I should say that
for better or worse some smaller U.S. computer companies are jumping the gun and
have stolen Pascal from the greenhouse. Do not underestimate the "real worid"
interest in Pascal in the U.S. The PUG menbership in the U.S. is at least 40%
non-academic versus 1ess than 10% outside the U.S. How about that? Haybe that's
why your viewpoint differs from mine. I don't really think I'm ahead of time
because one can't control what everyone else is doing. Sure, it would be nice to
have consolidation. But just the fact that PUG and PUGH exist have put activities
out of reach by spreading the word very widely. If you fear irreparsble harm - it
has probably already happened - but realistically we couldn't have on the one hand
protected Pascal in the greenhouse, and at the same time organized a group for
consolidation. We organized openly and, among other things, that's hiow you and I
came to know each other! But you are right about: "if 1 as a well disposed friend
of Pascal can find holes, be assured that real enemies will be less forgiving."
I'm hoping the news #8 wiil bring regarding standards will be encouraging news to
you, and I apologize that I can't fit it here in this letter.

Minnesota usage of Pascal? 1 did point out that the #7 editorial did not say that
Pascal neets Waite's criteria, but rather in trying to spread Pascal usage at
Minnesota, Waite's guidelines proved to be very useful in practice. You wanted a
breakdown on usage: :

number of research and production runs/number of instructional runs

Processor (1¢+ 9 months 76-77) 75-76 __ 74-75 __/1st 9 mo76-77 75-7g 74-75
t] s 9 ’ gg ’ig §’§2.8
417,317 225,501 (327,473§ 393,107 526,252

Pascal

MNF Fortran (239,032

Cobol (44,750 42,756 33,711 (1,762) 6,250 8,555
APL 4,312) 673 605 (3,935} 6,262 6,658
SNOBOL 8,715) 11,645 5,505 (23,271) 28,727 36,494
SIMULA 686 2,192 2,310 - - -
ALGOL 615 1,763 2,581 (75; 1,373 1,998
BASIC (3,412 28,103 445 (145,977) 448,814 1,476,984

(*Other processors include COMPASS(assembler), DARE,EMULATE,GPSS,LISP,MIMIC,MIXAL,
PL/1, SIMSCRIPT, RPG. There are over 100 interactive terminals for student

use; the University of Minnesota has 55000 students on the Twin Cities campus.*)

Regarding the printing of your and Judy's correspondence, that's fine (except that
space may not permit). As will be evident in #8, there {s more than enough debate
going right now. Your implementation notes, etc. are very nice. We'll print most
of them in #3. Thank you very much for being understanding. I've resolved to be

more careful in the future.
Sincerely, 2 2

8# YILLITSHIN TYISVd

‘AYH

L1611

8¢ 39Vd

for example. | greatly regret that the existing PASCAL user-community does
not have much of a clue about standardization; most seem to think that the
CDC compiler defines the standard! There are a number of other important
goals too; | intend this to be much more than the usual PASCAL 'toy' compiler.

You make one good point (which | think you cannot have meénf). Whyinot ”
stick to Burroughs Algol? | could say why not stick to FORTRAN too, but
you'd probably object to that. In fact, | believe PASCAL's ecologtcal
viability when compared to Burroughs Algol or standard FORTRAN is very
dubious at the moment, but 1'11 treat of that later. The important thing
to realize is that Burroughs compilers are good (really good) -and PASCAL's
viability in Burroughs must rest on real strengths, not just claims. This,
“coupled with the known weird features of CDC systems (and thence PASCAL) must
lead to the uncovery of unfortunate aspects of PASCAL. | cannot help it.

3. PASCAL SUPPORT)
| was surprised to see you write in the editorial that you believed PASCAL

" meets Bill Waite's criteria for ecological viability, for my impression is
quite the reverse. Possibly in CDC machines it might have enough support, but
that is a tiny fraction of the computing community. To take some examples,
I have assiduously tried to amass the PASCAL software that PUGN assures me
is around. The results have-been decidely poor. Apart from interchange media
problems, most programs contain machine dependencies of considerable
subtlety, and totally inadequate commentary. Not all, but most. The :
original XREF used at least seven non-standard features which had to be
repaired, some with difficulty, and even then its specifications left a lot
to be desired. To my knowledge, no available cross-referencer is able to
distinguish between names which are lexically the same but declared at

different levels, nor can they cope with long names (say 72 characters?).

To summafize, | think your editorial is ahead of time. We certainlyAdon't
» need crusaders yet, we need some consolidation before irreparable harm is done.
“At its present state of development, PASCAL stands to go under the FORTRAN
steamroller, for precisely Waite's reasons. And really, what do you mean
when you say that PASCAL is the third out of 20 languages in four years?
In Minnesota? Measured by what? If | was advising someone to choose
a language to write a significant numerical piece of software at this point
“tn time, | couldn't (regretfully) advise them to use PASCAL. It would be
irresponsible. k

So much for the criticisms. Can | still assure you that despite the

bits of rubbish here and there in the Newsletter, it serves a very useful
purpose. 1'11 keep on contributing because this is a critical point in
PASCAL's development, and because its well WIRTHwhile. Without the newsletter,
wide communication would be much more difficult, and your policy of no

censorship or refereeing is conducive to good development.

I'd like, too to put a question to yoﬁ. tn Newsletter #6, you published

some of the correspondence between Judy Mullins and myself on implementations
on Burroughs B6700s and ICL 2900s (which we sent you). We've been carrying on
an active correspondence, some of which would be of interest to the PASCAL
community. -In some ways though, such a practice could be misunderstood .

or embarassing as half-baked ideas come to light, if it were all reprinted by
you. The important issues often get rewritten as notes to PUGN (some

examples may get into #8), but wha; | ask is this: would it be useful for

the readership to look over the letters as they develop? I'm game, and

1'11 ask Judy, but | am uncertain as to the merit of the practice. What

do you think?

Yours sincerely,

Arthur Sale

{ S) Professor of Information Science
University of Tasmania

(Burroughs B6700. implementor)

" PS., By,thé way, apropos of your plea for help, if there is anything
doing on standardization, you can count me in. ['ve had a fair bit of
~experience with standards and standards committees,Aand | know just how

large a task there is to do. Perhaps | can help as co-ordinator?

g# 43LLITSHIAN TVISVd

LLBT ‘AYMW

£¢ 39Vd

UNIVERSITE DE NICE

LABORATOIRE D'INFORMATIQUE

PARC VALROSE
06034 NICE CEDEX
i 5

TEL. 19100 Nice, e 4th March 1977

Dear Andy :

I am sorry that the paper I promised to write is so late, but
you are preparing PUG Newsletters faster than I can read them. At last,
here is the paper on the Pascal implementation we are developing for the
CII Iris 50. It is not yet in the form requested by Tim Bonham, because
nothing is terminated, and anyway the Iris 50 is a machine which does
not exist in many copies.

A Pascal subgroup has been officially set up as-a part of the
group "Languages and programming" of AFCET. To give comparisons, and with
the corresponding scale changes, AFCET is the French counter-part of ACM,
and the group on languages and prbgramming is something like SIGPLAN, so
this Pascal subgroup is something like STAPL within SIGPLAN within ACM§
very complicated indeed. The first meeting of the group will take place
in Nice on June 13 and 14. A newsletter is planned to begin at the end
of the present month. Answers to a questionnaire show strong interest of
participants on frequent information exchanges, and desire to keep good
bonds with PUG. If there is no copyright problem, and with your
authorization, I intend to extract some most important informations from

" PUGN for our newsletter, and even maybe to directly copy some pages.

Do you think it would be interesting to publish some brief
information about my compiler writing system (written in Pascal and
generating compilers written in Pascal) in a section of PUGN about
software writing tools? This system is probably bigger than ordinary
tools (about 6000 Pascal lines), and has a very special purpose, but
it presents some interest for the community.

I am sorry to have given an erroneous information in my preceding
letter. No Pascal compilers for the IBM 1130 were made in Nauchétel.

A Pascal-S compiler (not an interpretor) has been made by Helmut Sandmayr
Neu fechnikum, CH-9470 Buchs, Switzerland. I apologize for the error to
people who have already written to Neuchatel.

Yours sincerely,

s

0. LECARME

University College, Cardiff
A

<

O Professor R. F. Churchhouse, B.Sc., M.A,, Ph.D., FB.C.S.
= Head of Department of Computing Mathematics
Mathematics Institute, Senghennydd Road, Cardiff
Telephone Cardiff 44211 Ext. 2677 & 2678

e

Sy
X

28th March 1977.

. Dear Andy,

Following the recent PASCAL Symposium at Southampton may I
make an impassioned plea on behalf of potential future users
of the language.

So many people talk glibly about not re-inventing the wheel.
Yet as I survey the many and diverse efforts at implementing
PASCAL on mini/micro-computers (particularly PDP-1ls) surely
this is what we are in danger of doing. For unless we both
a). recognise the value to others of the software products we

‘originate and b). invest accordingly in faithful standardisation,
intentional portability and quality documentation, much is vanity.
To take the specific example of providing PASCAL for student
teaching purposes on a PDP-11, what is the use of existing
"implementations" which a). their originators have never even
thought of as potentially useful to others and b). are non-
standard, tied to a particular operating system without provision
for change, and atrociously written up? My plea is to all good
PASCALlers to honour the original spirit of the language by
practising these principles and, possibly much more important,
doing their utmost to persuade others to do so also. Down with
back~street implementors!

Yours sincerely,

A

//0“5; Jdote «—

Nick Fiddian

8# H3ILLITSHIN TVISVd

AV W

LL6T

6¢ 39Yd

NEW!!

IMPLEMENTATION NOTES

IMPLEMENTATION CHECKLIST

IMPORTANT ! ! !
We have added one new item to the Implementation Checklist (reprinted below) to

indicate the kinds of library support provided by implementations. Once again we must ask
implementors to. follow the Checklist, and to submit notices in "camera-ready" form.
Because of the large number of implementations being reported, we request that all notices
be single spaced.

1. Names, addresses, and phone numbers of implementors and distributors.

2. Machine(s) (manufacturer, model/series).

3. Operating system(s), minimal hardware configuration, ete.

4. Method of distribution (cost, magnetic tape formats, etc.).

5. Documentation available (machine retrievable, in form of a supplement to the book:
Pascal User Manual and Report).

6. Maintenance policy (for how long, future development plans, accept bug repérts).

7. Fully implements Standard Pascal (Why not? what is different?).

8. Compiler or interpreter? (written in what language, length in source lines, compiler
or interpreter size in words or bytes, compilation speed in characters per second,
compilation/execution speed compared to other language processors (e.g., FORTRAN)).

9. Reliability of compiler or interpreter (poor, moderate, good, excellent?).

10. Method of development

cross-compiled, ete.;
implementors).

(from Pascal-P,
effort

hand coded from scratch, bootstrapped,
to implement in person months, experience of

11. Are libraries of subprograms available? Are facilities for external and FORTRAN . (or
other languages) procedures available? Is separate compilation available?

GENERAL INFORMATION (77/4/28).

As an aid to persons searching for implementations, an index to the Iamplementation
Notes section for Newsletter issues 5 through 8 is printed at the end of this issue.
Unfortunately, we had to leave out or summarize a number of letters and notices because of
space constraints.

.

=Jim Miner

All Implementors:

Why not use the Pascal Newsletter to help yourselves (and all of us) disseminate news
of new releases for existing implementations to all the sites on your distribution 1ist?
Also, to ensure that everyone on your list receives the Newsletter (and is a member of

PUG) please send out an All Purpose Coupon with each copy of your implementation that you
distribute.

Comment on Micro-processors.

One of the more interesting developments that we have seen is the increasing use of
Pascal as a micro-computer programming language. Among these machines we count DEC's
LSI-11, the Intel 8080, the Motorola 6800, TI's 9900, and the Zilog Z-80. (I'm Just not
sure about the Nanodata QM-1....) Most of these are interpreted, but native code
implementations are beginning to appear (see Pete Zechmeister's Intel 8080 notice in this
issue).

Another fascinating rumor, which was published in two places (Byte, and Computer
Faire) suggests that the next Zilog processor will be based on Pascal =-- with the
instruction .set including some Pascal-like constructs. Apparently users and designers are
beginning to see the advantages of a simple yet powerful language. Perhaps the experience
will lead to cleaner micro architecture. .

SOFTWARE WRITING TOOLS

Responding to the call for a central clearinghouse for software writing tools,
Richard J. Cichelli has volunteered to distribute them and will announce a- formal policy
in Newsletter #9. At our suggestion Rich will limit distribution to implementors who
distribute Pascal systems and who will include the software tools in each distributed
copy. This is to prevent an absurd workload for Rich. Rich is probably in possession of
the largest number of software writing tools in Pascal and for Pascal programmers. (See
the article entitled "Pascal Potpourri" in Newsletter #6.)

PascaL-P

Remember, there is a policy of no maintenance promised on Pascal P4, It is the final
version from Zurich. Nevertheless, Christian Jacobi (ETH, Zurich) has provided us with two
sets of changes (printed below) to be made to version P4, mainly correcting bugs in

address calculations and code generation. Note that the form "name.number" refers to the

sequencing on the compiler source as distributed.

Unfortunately .we have not received the results of the Pascal-P questionnaire which
appeared in Newsletter #5. Chris informed us on February 14 that the results were in
preparation. :

_UPDATE 1 to Pascal P4

January 1977

Replace line BOOT.4 by
for i := ordminchar to ordmaxchar do sop[chr(iﬂ := noop;

Replace line P.477 by
load; genlabel(lcixk

Insert after line P.479
genujpxjp(57(*ujp*),lcixy

Replace line P.147 by
.o begin align(lspi,displ),

- Replace ‘line P.424 by : .
. locpar := locpar+ptrsize;
align(parmptr,locpary
Insert after line PASCP.3200

align(parmptr,llcl):

‘ Replacebline P.531 by
if iatypet.form) power then

8# ¥3ILLITSMIN TYISV

AVH

LL61

Ok 39Yd

Pascat TrRunk COMPILER

Dear Mr. Mickel,

I send you here the information about the trunk compiler you asked for:

1. Implementation + distribution
H.H. Ndgeli
Institut fir Informatik
ETH-Zentrum
CH-8092 Ziirich / Switzerland
Tel. 32 62 11

2. The trunk compiler is the machine independent part of a Pascal
compiler in which the code generation has to be inserted.

3. -

4. Distribution on magnetic tapes. Costs SFr. 50.-- .

5. Documentation (in German) will be available in May 77.

6. Maintenance policy: no policy defined yet.

7. Full Pascal is treated.

8. The trunk compiler is a Pascal program with a certain number of
empty procedures.

9. Reliability: moderaté.

10. Development: from Ammann's Pascal CDC 6000 compiler.

Sincerely yours,

{
kazgﬁ/k/x

H.H. Nigeli March 3, 1977
PascaL J

Manpower problems have forced us to cancel the
projected February Release of PASCALJ. Although we
have made some progress in our efforts to improve the
bootstrapping process, we lack the supporting documen-
tation necessary for a distributable product. We will
therefore continue to distribute the September 1976
version of the system to those requesting it.

We would like to emphasize once again that we
consider the portability of this version to be in-
adequate, with implementation times ranging upward
from six man-months required. Reduction of this
implementation time is our prime concern, and is

absorbing the meagre resources which are currently avail-

able to the project. As soon as significant progress
has been made in this direction we shall release a new
version. In the meantime, we shall attempt to fix any
reported errors.

- Software Engineering Group

UNIVERSITY OF COLORADO
DEPARTMENT OF ELECTRICAL ENGINEERING
BOULDER, COLORADO 80309

MopuLa

Niklaus Wirth has published three articles describing his latest language which he
calls Modula. The articles appear in the March, 1977, issue of Software - Practice and
Experience (vol. 7). It 1is our policy to discuss languages adhering to the principles
embodied in Pascal, and some of the characteristics of Modula make it a very attractive
programming tool, particularly for small, peripheral oriented machines. For this reason we
reprint here the Summaries (abstracts) of the articles, Please note that Niklaus considers
Modula still in the experimental stage ‘and the Zurich implementation is not for
distribution.

"Modula: a Language for Modular Multiprogramming", S~P&E 7 (1977), pages 3-35.
SUMMARY
"This paper defines a language called Modula, which is intended primarily for programming
dedicated computer systems, including process control systems on smaller machines. The
language is largely Pascal, but in addition to conventional block structure it . introduces
a so-called module structure. A module is a set of procedures, data types and variables,
where the programmer has precise control over the names that are imported from and
exported to the environment. Modula includes general multiprocessing facilities, namely
processes, interface modules and signals. It also allows the specification of facilities
that represent a computer's specific peripheral devices. Those given in this paper pertain
to the PDP-11,"

(Copyright (C) 1976 by N. Wirth)

"The Use of Modula", S-P&E 7 (1977), pages 37-65.
SUMMARY
"Three sample programs are developed and explained with the purpose of demonstating the
use of the programming language Modula. The examples concentrate on the uses of modules,
concurrent processes and synchronizing signals. In particular, they all focus on the
problems of operating peripheral devices. The concurrency of their driver processes has to
occur in real time. The devices include a typewriter, a card reader, a 1line printer, a
disk, a terminal with tape cassettes and a graphical display unit. The three programs are
listed in full."

(Copyright (C) 1976 by N. Wirth)

"Design and Implementation of Modula", S~P&E 7,67-84 (1977)
SUMMARY
"This paper gives an account of some design decisions made during the development of the
programming language Modula, It explains the essential characteristics of its
implementation on the PDP-11 computer, in particular its run-time administration of
processes and the mechanism of signalling. The paper ends with some comments on the
suitability of the PDP-11 for this high-level multiprogramming language."

(Copyright (C) 1976 by N. Wirth)

FEATURE THPLEMERTATION HNOTES

READING AMD WRITING SCALARS

It has long been a source of irritation that "standard' PASCAL does not
permit the reading of boolean values (though-it permits their writing), and
does -not permit either reading or writing of programmer-defined scalar types.
In Burroughs B6700/B7700 PASCAL, both these deficiencies are remedied, and
the regularity of PASCAL is improved. The utility of this step should not
need labouring, especially as it dispenses with unnecessary rules, and in

view of its obvious uses in an interactive environment. .

8# 43LLITSMIN T¥ISVd

‘AYW

LL6T

Zh 39Vvd

N

Insert after line PASCP.3204
if vkind = actual then

begin
Insert after line PASCP.3207
end;
Corrections to the Pascal P4 System UPDATE ' 2
ettt
Replace line p.122 ' With kind regards -
flc := 1l+k-(k+1) mod k : ~a - .
- A Jperte

Ch. Jacobi
Replace line p.528

cstptrix := 0;
topnew := lcaftermarkstack;
:= lcaftermarkstack; .

‘The first correction delivers an improvement of storage
allocation in case flc = 0 (e.g. records).

The second correction is evident.

FIELETE I

Craig E. Bridge (DuPont, Wilmington, Delaware) furnished the modifications printed
+below to allow the compiler to be cross-compiled between machines with different character
sets. He also notes in a letter dated Feb. 16, 1977, (which was not printed for lack of
space) that where cross-compilation is to be done very often the cross-compiler should be
modified to generate proper code (jump table) for statements of the form “case chartype of
... end", .

XIDENT DUFONT
XDECK FASCP ;
x/ DUFONT MOD SET FOR FASCF VERSION F4 0é~JAN-77 C.E. KRIDGE

x/

X/ ELIMINATE LAST HOST MACHINE CHARACTER SET DEFENDENCY THAT .

X/ FROFAGATES FROM THE HOST COMPUTER DURING CROSS CODE GENERATION.
*/ - .

x/ o NOTE?! THE FASCF COMPILER ALREADY HAD A UNIVERSAL INPUT FROCESSOR
X/ HOWEVER THE CASE STATEMENT CODE GENERATION FATTERN BANKS ON THE
X/ ORDINALS OF SETS (INCLUDING THE IMFLIED CHARACTER SET) TO RE

X/ . THE SAME ON THE HOST AS IT IS ON THE TAGET MACHINE. THIS I8

X/ NOT NECESSARILY TRUE OF CHARACTER SETS.

X/ g o
X/ IN FARTICULAR, CASE CH OF 4404 GENERATED A JUMF TARLE
X/ - USING THE ORDINATES OF THE HOST MACHINE CHARACTER SET. SEE.
x/ . STATEMENT FASCF 376

X/ o

*/ FURTHERMORE » ANY FASCAL FROGRAMS WITH STATEMENTS Or THE

X/ AROVE FORM CANNOT EE CROSS COMPILED FOR MACHINES WITH UIFFLRFNT
X/ CHARACTER SETS UNLESS THE CASE STATEMENT CODE GENERATION

e 74 FATTERN IS MOUIFIED.

IMPLEMENTATION NOTES

X/

X/ NOTE

*/ 40 0CTAL
x/

X/

X/

X/ :
X/ KTHE F :
X/ Aok Y*****#**m**&d

FDELETE P, 3,

CHTF = (LETTE

CHOT
AGCF L3746 ¢
CHATFLCH Ob

KIELETE

TTERS
KDELETE .79
LINT XL

ROELETE FASC

KDELETE

KOELETE
KIELE

hnELETr"

KIELETE P.aé

CHSFACES 8Y

¥DELETE FASCF.453
CHSTRQUO?

L PASCE. 474
CHCOLON?
'EFASCF. 480
ron:
HCF. 486
T)
CP 4935

16T
*NELETE FASCR.501
CHL.FAREN

YUELETE

YDELETE FASCP,.514 PASCP.S516

BRFECTALL

CURDELETE P85 ,
CHSFACES 8Y

KDELETE P 591

. CHARTFL../..]
CXDELETE FLG93 PL594

CHARTFL

KDELETE

C,Hlﬁﬂ'\ THE

X/ J\U/M N]NG‘

aﬁqﬂh

C

TAL: FHﬁRIPf
; I

Fo.i

AS CLOSE TO THhFF HOh[!DNTnL EARS (CDC DISPLAY CODE
ANB EXTERNAL RCD 2

QUR FONT CAN COME.,

WE DONT HAVE A MOUIFY
T HODS WE
¢ TO WORK.
[NG BEYOND YOUR SITE. USER BE

*****#**ﬂ***********#*****#**********#******

RE MADE USING
LEASE INSPECT

FCTIAL y ILLEGAL y CHETRQUOQy CHFERIOD e CHL Ty

LyHHSTRQUOpCHCBIUNs

HLFARENS?

8# 43LLITSHIN TVISY

‘AYW

L/[6T

-

Th 39VYd

Example
program exomple (output, input) ;
type
answers = (yes,no,maybe);
var
reply : answers;
read(reply);.
write(output,reply);
writeln(reply:6);
end.

Semantics of reading

The input stream is scanned for an alphabetic character. It and succeeding
alphanumeric characters are assembled into a ''lexical token' according to
PASCAL rules, and then compared with a stored table of the programmer-defined
constant-names of the type. If a match occurs, the appropriate constant value
is stored into the variable in the read list, otherwise a read error occurs.
The construction of the ''lexical token' is terminated by any character which is

not alphanumeric (usually a space or a comma).

Semantics of writing

The characters of the constant-name correspohding to the scalar value,
preceded by a single space, are inserted into the output stream if no

field width is specified. If a width is specified, the name is inserted into
a character field of that size, right justified and filled with preceding
spaces if necessary. If the name will not fit in the field, or if the’

scalar-value Is somehow out-of-range, a non-fatal write error occurs.

“ Boolean values
Values of boolean type are treated exactly as if declared:
type
. boolean = (false,true);
ana&thus the external representation of any boolean value is false/true
(and not F/T, or 0/1).

Burroughs B6700 compiler features

Since the B6700 compiler is a true anylength identifier system, all characters
of the constant-names and of the input tokens are significant in distinguishing
one name from another. In addition, since lower-case letters are permitted,

the letters in input tokens are upper-cased before comparison with the

stored name-table which is stored in canonical upper-case form by the compiler.

Persons requiring their programs to be portable should be aware that

Ystandard" PASCAL permits implementors to ignore names after the first 8

characters, though this feature is not ''standard'.

Scalar name tables

The name-table is not created by the compiler unless the compiled program
contains a read or write with a scalar element. The table only includes
the types the compiler finds are necessary (except for boolean, which Is
handled by a table internal to the read/write intrinsic procedure). The

run-time space penalty is typically very small.

RECOMMENDATION

1§ this increased negulanity is attractive to an impLementon of
PASCAL, on if a teacher.can.convince an implementor to include L%,
1 suggest adherence to the above ideas as far as possible. This
applies to the neading of boolean values alone, as well as o a
mone comprhensive adoption of the facility.

POINTER VALUES

Introduction
This implementation note serves to document some relevant decisions relating

to the representation of values of a pointer type in B6700/B7700 PASCAL. The

" note may be useful to users of this computer and to other implementors.

Normal pointer values

The representation of pointers in the B6700 and B7700 computers could have
been a problem of considerable difficulty (perhaps impossibie) i} PASCAL had
been defined so as to allow pointers to objects outside its heap. Since it
did not permit this, it allowed the heap to be implemented as a single
segment of virtual storage (paged into 256-word pages). Normal pointer
values are thus represented as integer words, being utilized as subscripts
into the heap vector when a pointer access is required. It is important to
realize that the concept address does not exist in Burroughs B6700/87700
computers.

The legal values of a pointer variable range from zero to an upper limit
which is compiled into a PASCAL program. The default limit gives 1000 words,
but this may be set at any value by the combiler option HEAP.

g# YILLITSHIN TVISV

‘AY W

LL6T

¢h 39VYd

The nil value

The nil value, which points nowhere, is implemented as a very large numeric
value. Any reference to an apparent object (even if it includes record
selection or array indexing) through a pointer which has this value will céuse
a machine interrupt when the access is attempted (because the subscript is
out-of-bounds of the heap size shown in the heap descriptor). This check

has no speed penalty as it is carried out by the hardware. It remains possible
to compare pointers for equality even with the nil value.

L}

The uninitialized value

The value of a pointer variable before it is first specifically defined by .

an assignment, read, or whatever, is left to the implementor's discretion by
Y'standard" PASCAL. It is worthwhile pointing out here that the uninitialized
value may perhaps not be best implemented by nil and a special representation
should be considered (though on some computers there may be no other suitable

value).

Because of the importance of pointers, and the responsibility‘of compilers. to
detect as many illegal constructs as possible (as well as correctly compiling
the correct ones), the uninitialized value for pointers in the Burroughs
B6700/B7700 PASCAL is not zero (the B6700 norm), nor is it nil. Uninitialized
pointers are set to B6700 words with a tag of six. Such tég-six words ‘in

the B6700 and B7700 computers can be overwritten with a numeric or other-type
operand (tags 0, 2 & 4), but an attempt to utilize a tag-six word in arithmetic
or indexing is illegal and causes a machine interrupt. The use of an
uninitialized will therefore be detected (whether in a comparison or an access)

and will cause program termination.

Conclusion ' » .

The B6700/B7700 PASCAL compiler applies stringent testing to PASCAL pointer
values so as to enforce comp!iénce with the "standard'. . Implementors on
other computers may wish to consider whether they can make effective use of

" the nil value, and of the difference between nil and the uninitialized value.

Arthur Sale -
Professor of Information Science .
University of Tasmania :

1977 February 15 (Burroughs B6700 implementor)

Implementation Note on Run-time Pointer Tests.

The paper by Charles Fischer and Richard LeBlanc described in the Here and There
(Articles) section presents a method for feasibly implementing run-time pointer checks.
The method has been installed successfully on their Univac 1100 compiler, as well as by
John P, Strait on the CDC-6000 compiler and by John Reynolds on the ICL 2970 compiler.

Simply stated, each unique element allocated on the heap is assigned a unique integer
or ‘“key" (a counter starting at 1) which is stored with the pointer variable and with the
heap element. The key and pointer value (address) are transmitted together during pointer
assignment or parameter passing. A pointer reference is considered valid only if tne key
in the reference and the key in the heap element match (comparison of keys for equality).
Therefore, "dangling references" to a heap element which has been disposed will be
detected (implying that DISPOSE changes the key in the disposed element). Note that the
method 1is nearly secure -- it is possible (but very unlikely) that a key will match with
garbage on the heap existing in the place of a disposed element. Similarly, undefined
pointers will have undefined keys which could, with low probability, match their referent
keys.

. ~-Andy Mickel

MACHINE DEPENDENT IMPLEMENTATIONS

BurroueHs 3700, 4700

Dear Tim:

Here 1is a brief outline of our Pascal project; please note
that although our intentions were to produce both .B4700 and
B6700 implementations, the latter has not been possible.

~ Fortunately, Professor Sale 1is producing a B6700 compiler,

1. Implementors.

R. M. Lansford
3620 Greenhill Rd.
Pasadena, Ca. 91107

P. L. McCullough
110 S. E1 Nido St.
Pasadena, Ca. 91107

W. C. Price
480 Pembrook Dr.
Pasadena, Ca. 91107

2. Environment.

“This implementation will run on, Burroughs B37/4700 machines,
with Accumulator operators, under MCPV 5.7 and the
Time-Sharing System. -

3. Distribution.

No Qlans'at present - the need has not arisen.

4. . Documentation.

What there is exists as a forward to the program listing, in
the form of a supplement to the Pascal User Manual and Report.

g# ¥3113TSKIN TVISYd

‘AYH

L1661

hh 39Vd

5. Maintenance policy.

None. Development has terminated. "If you find'em, fix'em.,"

6. Unimplemented features.

a. real arithmetic

b. formal procedures and functions

c. files, with the exception of the text
files Input and Output.

7. Added features.

a. segmentation

b. symbolic procedure call tracing
c. stack checking and statistics.
d. packing is automatic

‘8. Compiler development.

The compiler was bootstrapped from an early Pl compiler
obtained from Cal Tech. 4

The compiler consists of two passes. The first is written in
Pascal and emits augmented P-code. The second pass (written in
BPL, a PL360-1ike assembler), generates 4700 code from the
P-code.

The first version of the code generator was written by Mike
Mahon in 2 man-months. An additional 8 man-months have been
expended in teaching the compiler about such things as optimal
variable size and alignment, segmentation, etc.

The results are:
Pass 1 : 4000 lines of Pascal, compiled
@1000 lines/min.
Pass 2 : 2500 lines of BPL, taking 45 secs to
: generate code for Pass 1 of the compiler.
110K bytes are needed for a logical (reasonable) segmentation

of the compiler.
9. Compiler reliability.

Good, but not excellent.

. Sincerely,

2
‘ . . .
v 2?'”]x[jh/L$¥¢ﬂ¢C’
) R. M. Lansford Janﬁary 17, 1977

BURkQUGHs 6700

Antti Salava (Department of Computer Science, University of Helsinki, Toolonkatu 11,
SF-00100 Helsinki 10,
running on the B6700. The compiler is written in Burroughs Extended Algol and generates
B6700 machine code. I won't go to details now because we are currently preparing a report
on our Pascal implementation.”

(* Received T7/1/17. %)

Finland) reports "we have here an almost-finished Pascal compiler

Ken Bowles reports that a B6700 implementation exists at the University of California
San Diego. The implementation was evolved from Pascal P2 by Mark Overgaard and Jim Madden
(cf. Pascal Newsletter #4). The latest version is a real compiler, written in Pascal,
which produces native code for the B6700. Current compile speed is 5000 lines per minute,
but expected improvements could make that 10000 1lines per minute -- as fast as the
Burroughs Fast Algol compiler. Virtually all of the Burroughs I/0 facilities are
supported. Distribution is scheduled to start in mid-summer. For more information, contact
Henry Fischer, UCSD Computer Center, La Jolla, CA 92093 (714/452-4050).

BRIEF NOTES ON A PASCAL IMPLEMENTATION AT OTAGO UNIVERSITY

About 18 months ago we obtained an implementation of PASCAL for a Burroughs
B6700 computer from Karlsruhe University. For reference, this compiler produces
symbolic code for a hypothetical stack machine. This symbolic code must be
assembled. to produce absolute machine code which may then be interpreted. Both
the assembler and interpreter are written in Burroughs Extended ALGOL. Since the
compiler itself is written in PASCAL, the compilation of a program involves the
interpretation of the compiler code file. As a consequence, on our machine, it
took about 50 minutes processor time to compile the compiler.

~

To improve efficiency I rewrote the compiler in Extended ALGOL. This version
still produces the same symbolic code but is considerably faster. For example
the ALGOL version of the compiler takes less than 1 1/2 minutes process time to

compile the PASCAL version of the compiler.

I have started work on turning the ALGOL version into a true compiler for the
B6700 but priority of other work has caused delays. I will probably be getting

~down to it in earnest again in about July of this year.

Copies of this compiler have already been sent to Massey University, Palmerston
North, New Zealand and to Warwick University in England. If any one else would like
a copyr could they send a tape to me and I will return same with all PASCAL material
we have plus brief notes on usage. The tapes can be in one of the following formats

(please specify which is required):-

(a) 1600 bpi, Phase encoded, 9 track, B6700 library tape
(b) 800 bpi, NRZ, 9 track, B6700 library tape

(c) 1600 bpi, Phase encoded, 9 track, USASI multi-file tape
(d) 800 bpi, NRZ, 9 track, USASI multi-file tape.

Chris Bishop

Computing Centre

University of Otago

P.O. Box 56 !
Dunedin

NEW ZEALAND.

8# YILLITSHIN TVISY

AV W

LL6T

gh 39Vvd

PASCAL FOR THE BURROUGHS B6700/B7700 =~ STATUS REPORT

1977 April 20

Professor A.H.J. Sale
Department of Information
Science,

University of Tasmania.

The PASCAL compiler for the Burroughs B6700/B7700 computers has been
operational on the University of Tasmania's B6700 installation for
approximately two months in normal shift time, and has caused no operational
problems at all in that time. It is used by staff, and by students of the
Department of Information Science for coursework.

A restricted release has taken place of two B6700 sites in New Zealand

to enable the compiler to operate under less favourable conditions than

its nursery site, and to elicit comments (favourable or not). No more
sites will be supplied the current version so that potential sources of
error-reports can be kept to a manageable size, though at present no errors
have been reported from any remote site. Work has now started on a second
release which will remove three restrictions in the present version which
are annoying.

A supplement to the PASCAL User Manugl and Report has been prepared, and
is available to interested persons by writing to the Department. It
details the interpretations to be given to undefined areas of the PASCAL
documents, cautionary material on non-standard features of other PASCALs,
B6700-specific features, and differences from CDC PASCAL-6000. A
Reference Manual is in preparation (a dictionary-style document), but is
not yet complete.

To control error-reporting and the consequerit work, we have also adopted

a formal approach (more professional perhaps!) which may be of interest to
other PASCAL implementors who want their implementation to be kept under
control, and more than the usual plaything. Each site supplied with a
copy of the compiler is registered with us, and given a supply of FTR-forms
(Field Trouble Reports) which are personalized to that site. On

detecting an apparent bug in the compiler, a responsible person in the

site will complete the FTR-form (numbered), return a copy to us, and wait.
Our response is to acknowledge the FTR as soon as possible, indicating our
initial assessment of it. If the problem can be detoured (in other words,
avoid the problem area), or the compiler or the intrinsics patched, a

patch notice is issued: immediately to the reporting site, and in a
regular cycle to other sites. All sites will get a regular report on

FTRs still extant (not yet finalized), and on the patch notices issued.

It is the responsibility of each site to keep the compiler's patch level

in the version number corresponding to the latest level. This is printed
on each compilation listing for checking purposes.

Examples of the three forms are attached, in case anyone wishes to
copy them.

We have not yet formalized the treatment of what might be called New Feature
Requests. A quite large number of FTRs turn out to be of this kind rather
than genuine error situations.

FieLp TrouBLe ReporT : B6700/7700 PASCAL

FTR No PASCAL | XYZ 01

L—~——~FTR number

b——————————— installation code

Installation and address:

Computing Centre,
The XYZ Corporation,
Somewhere,
Australia,

Date of FTR:
Person authorizing FTR:

Description of problem (if necessary use extra sheets):

— P e e e e e kL o e et e e e e

Can _the problem be detoured?

Yes: [} Wo: [Irreleuant:D

(If YES, then attach brief description of detour used.)

Do you want tt fized immediately: []

soon: EJ

sometime: [] ?

Please attach a listing of a small program that exhibits the
problem, with supporting information. If the problem cannot

be isolated in a small program, be prepared to receive a request
for a tape if the problem cannot be otherwise resolved. Do not
send a tape unless requested. —

8# YILLIITSHIN TVISY

‘AW

LLBT

9% 39Vd

AcknowL EDGEMENT oF FTR For B6700/7700 PASCAI

FTR No PASCAL

Date received:

Date acknowledged:

Your FTR is
[] Ignored. We do not consider it requires action.

[] Too hard. We acknowledge your problem, but it is

too hard to solve at present.

Noted. The problem requires further study and we
cannot forecast when a solution will be forthcoming.
In process. We have some idea of the problem, but

it will take a few weeks to resolve.

Patched. The attached patch notice should resolve the
problem. The change will be in the next release.
Already solved. Check the notices you have received
as we believe the problem has been reported & solved.
Misclassified. Your FTR will be treated as a

Field Suggestion, rather than a Trouble Report.
Concurrent. Another FTR has reported this, and will
be treated as the reference FTR (No).
Other:

0O 00D0OO0oaao

Attached please find:

A patch for the PASCAL compiler source
A pateh for the PASCAL intrinsics source

A suggested detour around the problem.

0ooo0o

Other material:

Acknowledgement authorized by:

\.

The reliability and robustness of the compiler have been excellent.

Its performance is similarly good; the execution speed of the compiler
being almost identical to the B6700 Algol compiler, and its needs for
compilation space being about 50-60% that of the Algol compiler (probably

due to PASCAL's lesser complexity). In execution, the compiled PASCAL
programs run slightly slower than equivalent Algol programs on average,
but the difference is usually within 20% and fairly negligible. Fortran-

compiled programs usually execute about 20% slower still unless the vectormode
optimization is invoked.

At the risk of sounding repetitious, | would like to re-emphasize the
importance of the Waite criteria to which the Editor drew attention.
A professional attitude is essential for the success of PASCAL; otherwise

we run the risk of yet another fly-by-night language, or almost as bad,
having PASCAL's impact confined to educational institutions.

s e——~

Patch NoTice For B6700/7700 PASCAL

PATCH No PASCAL

é AL———~patch number

L—~————~—~—~compiler release number

Date o atch:

Person authorizing:

Origin of Fault:

[CJ FTR No PASCAL-

[J Internal discovery

Brief description of fault repaired:

Desceription of patch:

File name: Version:

8# YILLITSMIN TVISYd

AV W

LL6T

lh 39Yd

CompuTER AuToMATION LSI-2

(# Computer Automation received some attention for their announcements of this
implementation which appeared in the trade papers Computerworld (Feo. 7, 1977) and
Computer iieexly (Feo. 17, 1977). {Also see the liere and There Applicatons section.) By way
of coaparison, CA sells their FORTRAK IV for $1600 to $1700, and their operating system
for $1900 to $2000. A glance at tne LSI-2 Pascal User's Guide shows the following. Only 2
levels of static nesting are allowed (p 2-4). The operators AND, OR, and XOR can be
applied to integer as well as Boolean operands. The reserved words FILk, GOTO, LABEL, and
PACEED are not supported (p 2-5). iixed mode arithmetic is not supported (p 2-6). The
following standard functions are not supported: ODD, EOLN, EOF, SQR, ROUND, SIN, COS,
ARCTAN, Li, EXP, SQRT {p 2=5). *)

@)\

ComputerAutomation

March 22, 1977

Dear Andy: -
Computer Automation, using Brinch Hansen's Pascal compiler, ‘has implemented
Sequential Pascal on its LSI-2, 16-bit minicomputer running under its operating
system, OS, configured with 32K memory and moving head or floppy disk.

The Pascal system, released Dez;ember, 1976, is distributed on ﬂoppy disk for af :
cost of $300.00. Documentation includes the Jensen and Wirth manual and a user's :
guide explaining the operation of Pascal under Computer Automation's OS. The
Pascal compiler is fully supported including acceptance and response to user
trouble reports.

The compiler supports Hansen's implementation of Pascal as discussed in #6.
However, the I/0O capabilities presently are based on the operating system for their
implementation. In the near future, however, standard Pascal I/0 will be implemented.

The reliability of the compiler is very good. This haskbeen verified by the Iibrary;
of programs that are being written in Pascal here. We are making the effort to -
write new software in Pascal as its advantages over assembly language are obvious.

- In pass 1 of our 7 pass compiler, we have implemented an automatic formatting option. .
This feature, implemented with very little compile-time overhead, rearranges the
indentation of appropriate Pascal constructs in order to make the logical meaning of
the program more evident. We have found this to be very helpful in communicating

programs between different programmers as indenting style is preserved across
programs., By incorporating this into the compiler these conventions are enforced.

Computer Automation would like to see the user's group strengthened so that standards
are encouraged for program portability. This would facilitate the creation of a
clearing house for Pascal Software tools as advocated by Mike Ball in #6. Areas such
as 1/0 and compiler control options need to be standardized. I am interested in
participating in the user's group and am willing to contribute to this effort as a
representative of Computer Automation.

Computer Automation, Inc.

Sincerely, NAKED MINI® Division
. PR 18651 Von Karman
Yyhor 7 KR L Irvine, California 92713

Telephone: 714 833 8830

Robert C. Hutchins TWX: 910 595 1767

ConTROL DATA CyBER 18

Jim Fontana (CDC) describes the CYBER 18 as a self-contained interactive system, and
the compiler as being derived from the compiler for the CDC 2550 front end processor.
Dennis Nicolai (CDC, Minneapolis) told us that the CYBER 18 and the 2550 have equivalent
instruction sets, and that the compiler is a cross-compiler which runs on CYBER. T70's and
170's. Code is linked and "down loaded" to the CYBER 18.

ConTrOL DaTA 6000, 7000, CvBER 70, CyBER 170

1. On January.31, 1977, Niklaus Wirth and Urs Ammann of ETH, Zurich, entered into a seven

point - agreement - with Andy Mickel and John Strait at the University of Minnesota for the
purpose of future maintenance of Pascal 6000. Maintenance duties will now be ~handled by
Minnesota. We will continue to collaborate with Urs, Niklaus, Chris Jacobi, and Svend
Knudsen, and other Pascal 6000 users in development of the Pascal 6000 system.

2. IMPORTANT: We are now soliciting local modifications and additions to the 1library
that have been made to Pascal 6000 at your site (we are working on a Release 3). Please
send a listing only to John P. Strait, UCC: 227 Exp Engr, University of Minnesota,

- Minneapolis, MN 55455, USA.

3.7 We would like to thank Wilhelm Burger (U. of Texas), Dave Tarabar (U. of
Massachusetts), Gideon Yuval (Hebrew U.), Tony Addyman and Peter Hayes (U. of Manchester),
Helmut Golde (U. of Washington), Richard Cichelli (Lehigh U.), Gary Carter and Ron Sheen
(U, of Nevada), Tony Gerber and Carroll Morgan (U. of Sydney), and Michael Hagerty (ABT
Associates) for already sending in listings. ¢

4, As annoﬁnced in Pascal Newsletter #5 we are still acceptiné bug reports.
5. We are soliciting listings'of software tools.

6. Release 3 work is underway. Release 3 will appear no sooner than early 1978. These
features are projected: improved compiler and run-time system, enhanced library, enhanced
tools, documentation, and installation procedures.

"7. Peter Hayes in a letter to Urs Ammann dated Jan. 18, 1977, suggested that the
University of Manchester's 7600 mods to. Pascal 6000 (derived from CERN's 7600 mods
announced in #5) be included on the distribution tape. We intend to accommodate this in
Release 3.

"~ RECAU Pasea" ‘Manual by Jorgen Staunstrup and Ewald Skov Jensen, Regional EDP Center
at the University Aarhus, Denmark (March, 1977, 177 pages), desecribes the CDC 6000 Pascal
implementation with local extensions. Because Pascal is the most-used language there (!) a
definitive description (better than Jensen and Wirth) was deemed necessary.

-Andy and John,

8# WILLITSMIN TVISYd

AVH

LL6T

8h 39vd

DaTA GENERAL Hova

L University of Lancaster
Dear -*‘\‘5"‘\/

The Department of Computer Studies at Lancaster University has
developed facilitles for running PASCAL programs under the RDOS
operating system on the Data General Nova series of computers. We
are prepared to release these facilities as from 1lst May, 1977, with-
out any formal commitment to provide support.

Programs are compiled using the PASCAL-P4 compiler, which produces
PCODE. This is then converted to binary form by an assembler (written
in PASCAL), ready to be executed by an interpreter (written in NOVA
assembly language).

Typicael runtimes compare favourably with those of other languages
generally available on the Nova.

Enquiries are welcomed from interested users: please contact
Mr. R. E. Berry at the above address.

Yours falthfully,
N

A
LA
L
S
Department of Computer Studies

Bailrigg, Lancaster
Telephone Lancaster 65201 (STD 0524)

DiciTaL EquipMent PDP-10, DECsysTem-10, DecSysTem-20

Charles iHedrick (University of Illinois) and Wally Wedel (University of Texas)
independently report that tne improved pP0P-10 compiler announced -by Nagel 1ian Pascal
Hewsletter #5 will be distrivuted by DECUS (vigital £quipment Computer Users Society) in
darlooro, HMassacnusetts.

DiciTaL EauipMent PDP-11

we have been hoping %o hear froi Stephen Schwarm {coordinator of DECUS SIS Pascal)
regarding the progress of that group. lie nave not yet received tne group's newsletter. In
view of tne large number of implenentations for the PoP-11, it appears that coordination
is desperately needed. hnyone interested is encouraged to contact Schware at £.I. DuPont
de Jdemours Co., 101 beeca St.,-wilmington, DE 198693 {302/774-1609).

Kennetn Bowles has announced a Pascal based stand-alone software systeam (including
compiler, interpreter, editor, and interactive monitor) for the PDP-11/10 and the LSI-10
{also tne Zilog Z~-80). The system will oe available in mid-sumner througn the UCSD
Coimputer Center. Tne price hnas been set at $200 each. Cowmpilation speed is 1000
lines/ainute on the PDP-11/10 and 700 lines/minute on the LSI-11., Tne language processed
is Pascal P2, extended with procedures for string processing and graphies applications. It
processes the full ASCII character set, and allows sets of char. All systems support
grapnics display, keyboard, and floppy disk. ror uwore information see Ken's article in
this issue, or contact hen at Institute for Information Systeas, University of California
San Diego, La Jolla, CA 92033 (714/452-4526).

There may be hope for UNIX users! Ken Bowles (above) tells us that a compile and go

Pascal implementation has been written by Ken Thompson of Bell Laboratories. Can anyone
tell us wore? Also we have heard that vpierre Verbaeten and K.V. Leuren have an
implementation. Their address is Applied Hathematics and Programming Division,

Celestijnenlaan 200 B, 8-3030 Heverlee Belgium.

On August 24, 1976, Jeff Schriebman (485 Cory Hall, U. of Calif. Berkeley, 94720) wrote to
George Richinond (¥ wno forwarded the letter to us on Feb. 10, 1977 *) that ne has a Pascal
interpreter running under UNIX on a PDP-11/70. We have received no reply to a follow-up
inquiry (* Feo. 2U, 1977 #). Richard J. Cichelli reports that Charles J. Printer of the
University of California has a Pascal interpreter under UdIX, which has very tight code.
PLEASE, can anyone help us track down these people or their implementations?

Wiley Greiner (TRW, 1Inc.), 1in a letter dated March 11, 1977, mentioned an
implementation by Brian Lucas of the National Bureau of Standards which runs under DEC's

RSX11d (v6.2) and RSX114 (v3.0). (* Come on Brian, don't be bashful. Please write to
us. *) Wiley's address is puilding 90-2173, TRW/DSSG, One Space Park, rRedondo Beach,
CA 90278,
PDP=11 PASCAL IMPLEMENTATION NOTE
- " - ™ - - .- Stockholm
1977=02=-09
1 IMPLEMENTOR
Seved Torstendanl
Address:
Telefon AB LM kricsson
-AL/ufe
$=125 26 Stockholm, Sweden
Phone number:
Sweden, 08 / 99 02 DU until 1977-03-31
08 / 719 00 V0 from 1977=04=01
2 MACHINE
DEC=10: crosscompiler that generates code for
all pPoP=-11's,
PDP=11: model 35 and up.
This version of the compiler does not
generate code for floating point hardware or extended
arithmetic. But the next version will do so when an option
switch is set.
3 OPERATING SYSTEM
RSX=11M. (DEC~10 crosscompiler under TOPS=10).
Probaply it is an easy task to replace the RSX
interfacing routines with new ones intertacing DOS
or RT=11. we do not plan to do that work here.
Maybe routines to interface with R$X=11§
will be made.
4,5,6 DISTRIBUTION,DOCUMENTATION,MAINTENANCE

Not yet clear, but hopefully more intormation
Wwill pe availahle soon, A user manual, complementing
the Reports, is under development,

84 ¥ILLITSHIN TVISV

AV W

LL61

bh 39Vd

RESTRICTIONS AND EXTENSIONS

The compiler is a modification ot the crosscompiler

trom Mr Bron ot Twente University of Technology.,

The Netherlands. Two major modifications have been
undertaken:

- the compiler generates standard object modules

- the compiler gives full access to RSX file system
The following list is mainly a copy trom Mr Bron's
contribution in Pascal Newsletter #7.

Wwith regard to the definition of Pascal in Pascal
User Manual ang Report the following restrictions hold:

.= packed data structures are only 1mptemented for
character arrays (always packed, two char's/word)
and tor boolean arrays (packing optional.,
one boolean/bit). The procedures pack and unpack
are not implemented.

- only Local jumps are atlowed.
- a pair of procedures, mark and release, to allocate
and deallocate dynamic storage.

The following extensions have been implemented:

= function results can be of nonscalar type,

- arrays with unspecified bounds (but specified
index=structure) can be used as formal parameters
to procedures, allowing ditferently declared
variables or constants as actual parameters,

- a string parameter type has been intoduced in which
one=dimensional character arrays or substrings thereof
may be passeg as parameters, Such strings ano their
constituent characters are considered as 'reaa only",

- procedures may be compiled separately.,

- separately compiled procedures can be accessed
through a declarat1on with the proctedure block
replaced by "extern"

SOURCE LANGUAGE

‘Tne compilers are written in Pascal, and both have

the same source code except for two separately
compiled routines. The crosscompiler is generated

when the DEC=10 Pasrel compiler from Hamburg compiles .
the source. when it then compiles itself the

PDP=11 version is created,

the size of the compiler is 50Kwords ot code. In a

PDP=11 running under RSXx=11M V2 only 32 Kkwords are
availaple tor code and data. Through a slight modification
of the overlay loading routine of RSX=11M it has

been possible to segment the very recursive compiler,

It now fits 1n a 32 Kwords partition ana uses about

22 Kwords tor code leaving 10 kwords tor acata.

RELIAGILITY

Good. fne reliabpility ot the original crosscompiler
wdas very good. -

10

METHOD OF DEVELOPMENT

The crosscompiler for PDP=-11.running on DEC=10
produced by Bron et al was used as input. As mentioned
earlier, this compiler was moditied to generate object
code linkable under RSX=11M and to give access to

the file system ot RSX=11M, When the crosscompiler was
finished it compiled itselt and the compiler was thus
transterred to POP=11.

The implementation effort until now is about 5 manmonths.
To make use of tloating point hardware enother two
manmonths will be necessary. Probably a8 new version

thich performs some optimization will be developped

ater.

Dear sir:

At my installation, we are presently using the ElectroScientific

Industries implementation of PASCAL on three different PDP-11 processors,
all using the RT-11 operating system. These machines are a 16K 11/05,
a 28K 11/10, and a 28K 11/40 with FIS, Our applications are in speech

. recognition, real-time simulation, and computer graphics using Evans &

Suntherlund Pictute Systems, We have found the ESI PASCAL to be much
faster than DEC FORTRAN, and very economical in core requirements. Our
_ worst case benchmark involved a "number-crunching" program translated almost

" literally from FORTRAN-for this benchmark, the ESI PASCAL executed about 40%

faster than FORTRAN, while requiring about one third the core for execution,
Much of the core improvement is due to the small support package required
" for ESI PASCAL, as opposed to the somewhat larger requirements of DEC
FORTRAN,

‘We have found that we can compile quite large progmms even on

our 16K 11/05. We have compiled 3000 line programs in 28K on the 11/40.
At my request, since our applications involve graphics using programs

with in MACRO to expect FORTRAN calling sequences, ESI have added the
capability to declare procedures "external FORTRAN™, We have successfully
~used this feature to communicate with the Evans & Suthland graphics software
in a production environment. ESI also offers an optional optimizer, and a
formatting/cross reference package.

Reliability of the compiler has been far better than the DEC FORTRAN

system which has been completely replaced at our installation. The vendor
seems to be responsive in terms of support.

UNIX.

We have ordered PASCAL for our XDS Sigma 9 and DEC 11/70 running

I will inform you of our success with these implementations.

I am interested in implementations of PASCAL on DG NOVA, HP 21MX,

DEC PDP-12, SEL840MP,

' 114
P.O. Box 235 it
Moffett Field, CA 94035 t e

Zay B, Curtis
Project Mangger

AVE
QA KAISER.

8# 43LL3TSKMIN 1VISYd

‘AYH

LI6T

09 39Yd

University of fliinois at Urbana-Champaign

DEPARTMENT OF COMPUTER SCIENCE
Urbana, Hlinois 61801
(217) 333-4428 January 21, 1977

Mr. Timothy Bonham

Pascal Implementations

. University Computer Center

227 Experimental Engineering Building
University of Minnesota

Minneapolis, MN 55455

Dear Mr. Bonham:

This letter is in response to your October 25 inquiry concerning the
University of Illinois Pascal effort.

Our normal procedure upon receipt of a specific inquiry for Pascal-11 is
to continue correspondence via a standard letter (see enclosure A). That letter
provides a rough description of our compiler and details the method by which a
"legitimate" party may obtain a copy. In particular, it is required that the
recipient agree to the conditions set forth in Professor Snyder's letter (see
enclosure B). The question of whether any specific usage is deemed ''research,
education or other legitimate purpose' or whether it is deemed '"commercial" is
one that can be answered only by the University of Illinois Administration and/or
the National Science Foundation.

The Pascal-1ll compiler was developed by A. Ian Stocks and Jayant Krishnaswamy¥*
under the direction of the late Professor Donald B. Gillies. It was originally
intended solely for in-house use as both a systems programming language and a
pedagogical tool. However, increased outside interest resulted in fairly wide-
spread distribution of various versions of the compiler. Consequently, we have
found it necessary to freeze the distribution version as described in enclosure
A. In particular, our distribution version does not implement WITH, variant
records, arrays of records, procedures—as-parameters, and type SET.

In addition, we have made a number of extensions to the language which we
have found to be quite useful. Most of these extensions are mentioned in [1].
Unfortunately, there is no documentation beyond that for these extensions.

Since the project under which the compiler was developed has expired, we
have no source of funds for maintaining and upgrading the compiler. Consequently,
we offer Pascal-1l "as-is," with no plans** to extend it or to implement it on
other systems. (However, we have word that others (besides ESI) have transported

*Present addresses: Professor A. I. Stocks, Department of Computer Science, Univer-
sity of Southwestern Louisiana, P. O. Box 4330, Lafayette, Louisiana 70509;

J. Krishnaswamy, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801

*%Read: "plans which will result in and updated distribution version." We, of
course, are continuing with unsponsored research, which includes: 1) implementing
full Pascal; 2) Professor Roy Campbell's extending Pascal-1l to include "Path
Expressions' (Pathcal??), and; 3) transporting Pascal-1ll to modified RT-11 and
MERT (mini UNIX).

Pascal-1l to RT-11 and DOS/V9.) Finally, we have no magnetic tape or RK style
disk facilities, and the clerical personnel who perform the distribution service
are trained to simply copy from one DECtape to another. Therefore, PDP-11
formated DECtape is our only mode of distribution.

Sincerely yours,

A\
R = I
M. Dennis Mickunas

Assistant Professor of
Computer Science

MDM:clg

Enclosures

1. Stocks, A. I. and J. Krishnaswamy. 'On a Transportable High Level Language
for Minicomputers,'" ACM SIGMINI-SIGPLAN Interface Meeting: Programming
Systems in the Small Processor Environment, New Orleans, March 1976.

ENCLOSURE A
This letter is in response to your inquiry concerning our PDP-11

PASCAL compiler.

Our PASCAL-11 compiler and the associated package of run-time routines

Voperate under our own operating -system, which grew out of DEC's DOS/Vh. While

our PASCAL-11 system is not yet complete enough for widespread distribution, we
are happy to make it available on a limited basis to interested persons. Our
distribution package includes:

1) PASCAL-11 source of the PASCAL-11 compiler;

2) MACRO-11 source of the PASCAL-11 run-time routines;

3) binary for both the compiler and the run-time routines, and;
4) binary for our operating system.

In case you desire to install PASCAL-11 on your own version of DOS,
we also provide a list of DOS/V4 modifications. We believe that these modifica-
tions are sufficient for adapting DOS/VL to PASCAL-11, but we can, of course,
make no guarantees. We caution that these modifications are not sufficient for
installing PASCAL-11 on other operating systems, but your DOS expert should be
able to make the necessary modifications using our DOS/Vh modifications as guide-
lines.

Hardware requirements for executing the compiler are: a PDP-11/20 (or
higher) processor with 28K words of addressable core storage, end either 1) a
DEC RF-11, or; 2) a DEC RK-11. In case you have some other disk, your DOS expert
should have little trouble replacing our disk driver with your own. In addition,
it is necessary that your system be able to read DECtapes, since that is our only
mode of distribution for the PASCAL-11l system.

The present version of our PASCAL-1l compiler does not implement WITH
or type REAL or SET, nor does it permit variant records or procedures-as-parameters.
Our version is otherwise essentially in accord with the Revised Report, except that
we have preserved EOL in lieu of WRITEIN/READLN, and we have incorporated some ex-
tensions, including compile-time options; source level library routines, and over-
lays. Documentation for the compiler is, wnfortunately, very sparse at present,
but we shall include in the distribution package all that is available.

The PASCAL-1l compiler was developed at the University of Illinois at
Urbana-Champaign and is copyrighted by its Board of Trustees. This work was sup-
ported, in part, by NSF Grant DCR T2-03740 A0l to the University of Illinois at
Urbana-Champaign. Accordingly, distribution is made to any interested persons or

8# 43LLITSMIN T¥ISY

LLBT “AYMW

TS 39vd

parties who intend to use this software for "research, education, or other
legitimate purposes." The NSF requires that we inform them of those receiving
this software and their intended uses of it. Consequently, if you are interested
in obtaining this software, please mail

1) three (3) DECtapes (These must be in PDP-11 format!);

2) a statement of your intended uses;

3) one signed copy of Professor Snyder's enclosed letter, and;

L) 4 stamped, self-addressed mailer for returning your DECtapes
(total weight is about 2 pounds)

to

PASCAL-11

c/o M. D. Mickunas

222 Digital Computer Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Upon receipt of the above items, we shall return your DECtapes with a
copy of our distribution package. .

HewLETT Packarp HP-2100

Mattia Hmeljak (U. of Trieste) wrote (¥ Feb. 5, 1977 *) to say that his group intends
to implement a P-Code interpreter in HP-Algol for the' HP-2100, He asks that anyone else
working on an implementation for this machine contact him at Istituto di Elettrotecnica ed
Elettronica, Universita di Trieste, Trieste-Italy.

HONEYWELL SERIES 66 ‘ S

Janis Zeltins of Honeywell Information Systems, 7400 Metro Boulevard, Edina,
MN 55435 (MS-1104), informed us of the availability of documentation for the Honeywell
implementation running under the GCOS operating system. "A Pascal Product Brief"
(publication #AW66, free) is a 1 to 2 page marketing oriented piece. A fuller description
of the implementation is "Pascal User's Guide" (manual #AW65, $1.30; about 30 -pages).
These - are available through Honeywell Information Systeas, Attn: Publication
Services MS-339, 40 Guest Street, Brighton, MA 02135.

IBM 360, 370

Obviously there is a crisis with IBM implementations (just as bad or worse than
PDP-11's!). After having evaluated both the SUNY Stony Brook and the University of
Manitoba compilers (the two most widely distributed), and found them to be disappointing,
two new projects were begun. Albrecht Biedl at the Technical University of Berlin and a

group at Imperial College, London, independently embarked on new implementations based on

Pascal P4, Dissatisfaction with the Stony Brook and Manitoba compilers exists elsewhere,
although a good report on Stony Brook's comes from David Gomberg at American University,
Washington D,C., and an expression of contentment with Manitoba's comes via the Universit

Computer Center Newsletter, U. of Southern California, Los Angeles.) i

David Gomberg reported to us on Feb. 22, 1977, that "anyone waiting for a clean
supported version of the HITAC 8800 Pascal for use under 0S/360" can stop holding their
breath. He received a letter from Teruo Hikita to the effect that they feel some
unwillingness to distribute the system formally because of lack of full support, I1/0
routines coded in Fortran, lack of IBM compatible load modules, and inability to support
the system "formally and continuously."

1. Names, etc., of implementors,

4. Bethod

However, Joseph Mezzaroba, Villanova University (215/527-2100, x669), reported on
April 16, 1977, that he recently coaxed a copy of the HITAC compiler from Hixita and had
it running for 3 weeks under DOS. The 1/0 routines are being rewritten in assembler,
Joseph is very happy with the system - it produces good code and has been extremely
reliable in its initial use by 60 graduate students (1500 jobs). HIAC Pascal compiles
twice as fast as PL/I and executes 5 times faster than PL/I under DOS according to
Mezzaroba.

Currently we still have the Tokyo (HITAC 8300) compiler, SUNY Stony Brook, U. of
Manitoba (no news for 3 months!), New Mexico Tech., Stanford Linear Accelerator Center, U.
of Urenoble, Oslo Heart Hospital, and now the U. of British Columbia implementation. Add
the other two European efforts and we have ten major implementations on the IBM 370¢

-Andy Mickel

Dear Andy:'

This note will serve to describe our Pascal implementation
for ~ the IBM 370/168 rtunning under the HTS operating systen.
I've also enclosed. a copy of our User's Guide.

_____ maintainers, eic.
Professor Bary W. Pollack
Frofessor Robert A, Fraley
~ Department of Computer Science
University of British Colunmbia
Vanccuver, British Columbia
Canada. . V6T 1W5
604-228-6794, 604-228-3061

2. Machine, manufacturer, gtc.

’ IBH' 370/168. The machine cperates in wuniversity
environment with heavy background and moderatz interactive
loads, The translator should be compatible with most large
IBM 360 or 370 series machines. Current development uses
the MTS oparating systen.

3. Operating system, minimal haxdwars configuration.

Operates - under the Michigan Terminal System, MTS. The
ucnitor may be modified with minimal effort to run undar
VS, ©S, <etc. The translator requires about 320,000 bytes
of core.. Standard 0S objazct modules are g2n=aratead, An
. Obsolete 0S. monitor is availabla; we hope to have it
updated - to work with +the current compiler shortly.

Division of the compiler into overlays tor non~VM systems
would be possible, . :

The current version is -available for distribution now.
Distribution will be via 9-track magnetic tapa. Costs will
be limited to postage (and tape purchase, 1if one is not
supplied). .

Documentation consists - of a .User's Guide containing a
complete description of ths language's departurass from the
“Jensen and Wwirth Pascal User Manual and Report,

8# 43LL3ITSMIN YISV

LLBT AYMW

¢S 39Yd

A mainteranc2 policy has no% yet bezn decided upon., It is
anticipatad *ha* periodic upgradss and modifications will
be distribu%ta2d a* least oncz a year., Raported bugs will he
correctad as quickly as possikl: wirh nozification *o
usars.

tandard Pascal?.

The compiler provides numerous =a2xtensicrns and a faw
restrictions. A compiler option issues =rror msssagss whan
ron-standard features arc used, A compl=te description is
containa2d within the documsntation provided., A suwmmary of
thes diffzr2nc=s follows,

Strings ars padded on *he right with blanks.

There is a "CASE" dsfault label: “<O®

Cptional ";" allowed bzfore "ELSE",

"(...)" may be used Instead of "[...]".

The EOL character has bsern retain=zd.

"PACKID" is ignored.

Additional built-in funcntions:
MIN, MAX, SUBSTR (using constant lsngth), POSITION
(provides direct-access 1/0), I/0 1interface
furctions and sxt2nsions to RESET. and REWRITE,

) INSERT function for data-packing.

Input of character strings using READ.

Support of EBCDIC charactars ~, &, arnd |,

Use ".,.." for comments,

. "VALUE" section exists for variable lnltldllZdtLOnh
Hexad2cimal integers sugportzd.
FORTRAN subroutines wmay be called. return code is

availablzs in the standard variable RCODE.
' Direct access files.

Bastrictions:
Sets currently limited to 0..31.
PROGRAM. statement not us=d.
FILEs may not be componants of other structur=as,
<Expression>,.<expression> is not allowed in sets,
INPUT® is initially EOL inst2ad of the first character
of the file, This is transparent when READ is used.
DISPOSE is not implemented.

Projected extensions:

McCarthy IF.

CR and AND lower pracedence than relations;
"usual" precedence uszd throughout.

Sets over range 0..255.

Better control of input anb output formats.

Compiler, size, implementation, speed, 2%c.

The translator is written in Pascal and is modeled after
the CDC 6400 implementation, but it has been extensively
modified and improved, The translator consists of
approximately 8000 1lines of Pascal code. The run~-time
library consists of approximately 500 lines of Pascal code.
The monitor (which contains the interface to the operating
system) consists of approximately 2000 1lines of IBM

Assembler G code. The translation speed has not been
determined, but it seems faster than our Algel-w compiler.
The codz prcduced has b2en timed against Algol-W code and
is almost uniformly 10-15% better. This is espzcially true
of any program using a large numbar of procsdure calls.
The compiler compiles its21lf in less than 60 s2conds of
3707168 processor time

9. Reliability. stc.

The reliability to dat2 has been excellent. A stud=nt
version of the transla*or has been running since Septeamber,
1976, with only one detacted compiler srror, The main
system version has been in operation since December, 1975.
All problems which have bean encountere¢d to dats have been
corrected.

10. Method of dasveslopment.
The original translator was developed by Wirth ard several
graduate students at Stanford University as a partial
re-write of the CDC 6400 wversion in 1972, The curren*
translator and monitor have bean extensively modified, a
run-time likrary has been implemented, and a post-mortenm
symbolic dump package has been developed. Tha tramslator
has bz22n under continuous development at UBC since
December, 1975, by +wo faculty members and one graduate

student.
Best regaJd L/W
Vi Zﬁ?‘* fé/

Feb., 4, 1977 y i] Pollack & Robert A. Fraley

UNIVERSITY OF BRITISH COLUMBIA
Department of Computer Science
2075 Wesbrook Place
vVancouver, British Columbia
. Canada V6T 1W5
Pascal/360 now available to DOS users

The Stony Brook Pascal/360 compiler (announced in SIGPLAN Notices,
Feb. 1976) has been given a DOS interface. It has been installed and
tested on an IBM 370/135 running DOS/VS release 32. This version of

" the compiler is identical to Pascal/360 Release 1, Update 3 (0S) except

for the operating system interface. At present, the main storage
requirement is a 150K partition. A small-partition edition for D0S/360
users is planned for summer, 1977 release.

The distribution tape, installation instructions, and copies of
all future maintenance updates and documentation are available for a
one-time fee of $175. A User's Guide is also available in quantities
at $1 per copy. For complete information, please write to:

Pascal Compiler Project

Dept. of Computer Science

State University of -New York
at Stony Brook

Stony Brook, New York 11794

8# Y3ILL3ITSHIN TVISVd

AV W

LL6T

£G 39Yd

IBM 1130

0. Lecarme wishes to apologise for an error in issue #6 regarding the IBv 1130. He
incorrectly inforaed us that .an implementation was coapleted at the University of
seuchatel., Instead, he says, a Pascal-3 coapiler {(not interpreter) has been implemented
for the 1130 by relaut Sandamayr, wev Tecanixuw, Ch-3470 bBuchs, Switzerland.

ICL-1900 serIES

Tae current ICL 1900 series compiler was developed over the period 1974-76 by Jim
welsn, Colum Quian, and xathleen ilc3nane, at the Department of Computer Science, Queen's
University, belfast BT7 Tiil dorthern Ireland, U.£. This project was a complete rewrite of
tne old ICL 1900 compiler (famous .for being the first to exist outside of Zurich).
Inproved code and internal design, implementation of the revised report, and improved
diagnostic facilities were zoals achieved by the new coampiler, known as the !K2. The ICL
vine compiler is distributed by Jim to nearly 50 sites, mostly within the U.K.

ts performance coapares very favorably to Fortran on the ICL 1900, The compiler
requires necarly 324 to run and has veen installed under various operating systems: George
3, uveorge 4, cxecutive, <AXINMOP, and COOQP.

Tae most interesting feature of tne MK2 compiler from an implementor's point of view
is tehat it has peen designed to be ported to otner macnines., Specifically, the semantic
analysis .and code generation parts have been cleanly separated. Thus it can be used as a
bootstrap compiler for other machines and can be likened to the Pascal Trunk coampiler.
(See the ICL 2900 section below.)

Diagnostic enhanceaents to the K2 were provided by David Wwatt and _Bill Findlay,
Cowputer Science Department, University of Glasgow, Glasgow G12 3QQ Scotland, U.X. Their
diagnostics system includes a post-mortes dump with array, record, and file-status
variables displayed; an execution profile shows the nuaber of times each line of a program
is executed, and retrospective and forward traces of the exact source statements executed.

Documentation (in tne fora of a supplement to the revised report) for the ICL 1900
igplementation froa Glasgow {dated redb., 23, 1977, 27 pages - very clearly written)
indicates that the ICL 1900 5-pit character set is used, sets may have 43 elements, files
are not allowed as coaponents of any structured type, and non-discriminated variant
recoras were reaoved,

~Andy iilckel

ICL 2900

One project Dvased on the ICL 1900 MK2 compiler {above) is to produce a coapiler for
the upper ICL 2900 series wacnines (2970, 2980) at tne University of Southampton,
supported by David Barron, Judy iullins, John Goodson, iiike Rees, and Andy Schulkins. The
compiler is largely being written oy John Reynolds with the aid of Jules Zell, ooth of the
Iaperial Colleze, Department of Computing and Control, Londoa Sw7, U.K. . John Reynolds
rewrote the code generators for the 2900 which is stack-oriented and possesses a
coampletely different arcnitecture than the 1900 series machines. Poor computer systea
performance of tne 2970 at Southampton led to the decision by John to develop the compiler
on - the Control pata 7500 at the University of London Computing Centre, making use of Urs
Amnann's Pascal 6000. After compiling Jin welsh's compiler with Urs Ammann's compiler and
rixing tne {only!) ten errors waich resulted {out of 9000 lines of code) Joha was able to
zenerate assembler for tne 2y7J whicn he ported to Southampton and successfully loaded and
ran test programs. John remarked that tne event of sucessfully woving to the 7000 "said
something about eacn of Urs Awnann's compiler, Jim Welsh's compiler, and Pascal the
language.")

To circuavent an unwieldy ICL operating system on the 2970, the -University of
cdinburgh scientific jobver will probably ve used to narbor this Pascal coapiler.

-Andy Mickel

NE: David Joslin of Sussex University Computer Centre, Falmer, Brignton, Sussex, U.X., is
coordinating tnis consortium of universities by acting as a clearinghouse for all ICL
coapilers, anyone naving ICL news snould forward it to David who is in close contact with
<ne Pascal rewsletter.

InTEL 8080

Feb 22, 1977

Mr. Anay Mickel

Pascal Implementations

University Computer Center : 227 Exp Engr
University of Minnesota

Minneapolis, Minnesota 55455

Dear Anady,

Tnis letter is in response to our recent telephone conversation
regaraing sequential Pascal for the Intel 808fA microcomputer.

The sequential Pascal compiler, written by Per Brinch Hansen
ana Alfred C. Hartmann of Caltech, generates code for a virtual
machine. I have simulated the virtual machine with a real machine,
the Intel Intellec Microcomputer Development System (MDS). My PAS80
program, which is the implementation of the virtual machine, is
written in the high level language PL/M-86. Emulating a 16-bit
virtual machine using PL/M-80 on the 8-bit Intel 80U80A certainly dia
not produce a high-speed real machine. However, I feel that compilation
ana execution speeds are tolerable for the purposes of beginning work
with Pascal on the 8080A.

At this time the 7 pass‘sequential Pascal compiler has been
successfully self-compiled on the microcomputer (9,835 lines).

I will use the checklist proviaded in the Implementation Notes section
of your newsletter to provide you with further information:

1. 1Implementor:

Tnomas A. Rolanaer
1p1l2 Smith Ave.
Campbell, Ca.

(408) 378-5785

95608

Distributor:

INSITE
Intel User's Library
Microcomputer Division
3665 Bowers Ave.)
Santa Clara, Ca. 95851
(408) 246-7501 x2948

2. Machine: 1Intel 8080A using the

Intel Intellec Microcomputer Development System

3. uperating System: Intel MDS ISIS-II

tiaraware Configuration: 64K Bytes of RAM
Dual Floppy Disks

4. Distribution Format:

The software is aistributed on two soft-sectored diskettes
containing: the PAS80 program, the sequential Pascal compiler in
virtual machine code form, the PL/M-80 source code for PAS80,
ana the source code for the entire 7 pass sequential Pascal compiler
written in sequential Pascal.

g# ¥3ILL3ITSMIAN T¥ISVd

AV W

L16T

g 39Yd

10.

Documentation:

PAS8Y aocumentation is supplied in the form of a short User's
Guiae, syntax graphs, and the source coae for the virtual machine
implementation ana the compiler.

Maintenance Policy:
NONE, however bug reports will be accepted.

Future Development Plans:

The initial version of PAS80 does not support floating point
operations. However, all of the requirea hooks have been incorporated,
facilitating the implementation which is currently in progress.

work is also in progress to reauce memory requirements from 60K
to 32K bytes.

Direct machine code generation for the Intel 808fA is being
consiaerea.

Tne possibility of a concurrent Pascal implementation is also
under consideration.

pascal Implementation:
Complete sequential Pascal, as described by Per Brinch Hansen, has
been implemented with the exception of floating point operations.

Compiler Characteristics:

~Interpreter, written in PL/M-80,
1308 lines of source coae,
10K bytes.

-Speed,
36 lines / mlnute.

Reliability of Compiler:
Unknown, however it will self-compile and has been used success-
fully by students, providing reasonable aiagnostics and error recovery.

Methoa of Development:

The virtual machine implementation was coded in PL/M 80 and then
acebuggea using the virtual machine coae files of the sequential Pascal
compiler itself to compile small test programs, and then finally
tne compiler was self-compiled.

The implementation required about 2 man-months-of-evenings and
was accomplished in my spare time. It could have been completed in
about 2 1/2 weeks on a full-time basis.

I was familiar with the process of implementing the virtual
machine from previous experiences on the PDP 11/40 under RSTS/E and
with tne TI 9966. Creait for the ease of implementation is due to
per Brinch Hansen who aeveloped the virtual machine.

In summary, while compilation ana execution speeds are slow,

this implementation aoes provide a tool which can be usea for further
Pascal aevelopments on microcomputers.

’/ﬂ:rmw a4 Felewddn_

Thomas A. Rolander

Peter Zechmeister

Microcomputer User's Group (UMMUG)
m UNIVERSITY OF MINNESOTA | pepartment of Electrical Engineering

TWIN CITIES 139 Electrical Engineering
123 Church Street S.E.
Minneapolis, Minnesota 55455

IMPLEMENTOR

Peter Zechmeister
Microcomputer User's Group (UMMUG)
Dept. of Electrical Engineering
123 Church Street S. E.
Minneapolis, Minnesota 55455
I am responding to the request of new implementors. If anyone
needs more specific information please write me.

MACHINE - Intel 8080 8-bit microprocessar

The target machine for this implementation is an Intel 8-bit
microprocessor. With easy modifications it can be adapted to run
on most microprocessors.

OPERATING SYSTEM AND HARDWARE CONFIGURATION - Target Machine

The compiler includes a high level operating system which
interfaces between the user, software, and hardware in a simple
but powerful syntax. The minimum configuration consists of a
console I/0 device (TTY), about 16K memory for the compiler to
reside in (Not yet completed. If the cross compiler is used only
the 0S is needed; 2K memory + users program.). Note that the
compiler, user programs, and 0S may reside in ROM, since code is
seperate from the variable space.

METHOD OF DISTRIBUTION

None at this time but possibly late this summer.

DOCUMENTATION AVAILABLE

Being worked on.

MAINTENANCE POLICY

Being worked on.

STANDARD PASCAL

This implementation, which I call Tiny Pascal (TP), may seem
a little barbaric compared to Pascal 6000, but this compiler was
written with the microcomputer in mind and is an improvement in
software for the small computer user. I would also like to add
that this compiler (system) represents the minimal language and
is meant to be a systems implementation language as well as a
low level programming language which can be expanded with minimal
effort. The complex data structures and variable types were left
out of the compiler in order to fit the compiler on a micro in a
reasonably small memory. The data types may be added in a future
Extended Tiny Pascal (ETP)., Also there exists the bootstrap

compiler which is being used to generate TP and the monitor routines

(all written in Tiny Pascal), and is wrltten in Pascal 6000 which
produces 8080 code.

HILLIITSHIN T¥ISVd

LLB6T “AYHW

S5 39Vvd

IMPLEMENTATION

This is a true compiler that produces 8080 code. The Pascal
6000 bootstrap compiler is around 2500 lines long and loads in
about 14K. The TP compiler is around 1500 lines long and loads
in about 14K (Not yet finished.). The compiler route was taken
because an interpreter system is too slow for most real-time lab
situations even though they are smaller., This is also an excellent .
language for hardware design by manufacturers, allowing bit
fiddling but yet still a high level language in a reasonable
amount of memory. (% The cross-compiler runs at 2400 lines/minute

on a CDC 6400, *)
RELIABILITY

The reliability of the compiler is excellent, an efficient
register mapping algorithm is incorporated into the compiler.

METHOD OF DEVELOPEMENT

The original compiler was developed from PLO (Taken from the
book Algorithms + Data Structures = Programs by Niklaus Wirth.).
A considerable amount of modifications was done to implement
variable types, Pascal statements, code generation, and register
mapping.

The TP compiler (bootstrap) currently produces good runnable code but
documentation and a few loose ends remain to be taken care of. I am
currently considering the writting of Modula for 8080 based
microcomputers, since TP could be used as a starting point.

Sincerely, B

| Putin Geehmaid

Peter Zechmeister

INTERDATA 4

Jean Vaucher of the University of Montreal has informed us in a letter dated Dec. 13,
1976, that the Interdata 4 project there has been discontinued because of the availability
of Pascal on other machines.

MoToroLA 6800

Mark Rustad nas provided us with some changes (received April 4, 1977) to his notice
wnhich appeared in Pascal Newsletter #5. Under Checklist point 7, he indicates that the
following features have been added or restored: case. statement, variant records,
enumeration types, for statement, the type real (as a four byte quantity), and an exit
statement (which returns from a procedure or function). Mark lists the deviations. from
standard Pascal as being:

. No declared files; get, put, reset, and rewrite are not supported.

The with and goto statements are not supported. . -
The standard procedures sin, cos, arctan, exp, ln, sqrt, pack, and unpack are
not supported.

4. The case statement has an .optional else clause.

S. The predefined procedure exit is non-standard.

W -

Mark also says that the compiler code occupies about 19K-20K bytes, while his WM-CODE
interpreter takes about 3K (including a floating point package). He is currently working
on optimization features for the compiler.

NanopATA QM-1

Sy oty 3 1 Ref: 6201.DMH-016
TN ;

17 March 1977

Implementor: Dennis Heimbigner
TRW DSSG
Mail Station: R3/1072
1 Space Park
Redondo Beach, CA 90278
(213) 536-2914 or (213) 535-0833

Machine: Nanodata QM-1 with (minimum)
. 256 words nanostore
8K words control store
60K words main store
. 9755 55 megabyte disk
TASK version 1.04.02 or later
PROD version 2.04.01 or later

Optional:

Card reader
Printer (highly desirable)

Documentation: a. Brinch Hansen's SOLO manuals (not available thru TRW)
b. Short machine readable document describing the
: implementation and ways to modify it.

Reliability: In-house use has been light but the system has been good.
' to the extent we have used it.

Method of Development: The Concurrent Pascal system kernel was
programmed in micro-code. Some care was taken to insure
that the QM-1's virtual machine was compatible with the
virtual machine defined by the PDP-11/45 kernel. Please
note that I did not implement a PDP-11/45 emulator. As
a result, virtual code object files (e.g., type SEQCODE
or CONCODE) which run correctly under the PDP-11/45 system
should run under the QM-1 system. The reverse is also true
for programs which do not use the fact that integers on the
QM-1 are 18 bits as opposed to 16 on the PDP-11.

The kernel was micro-coded in about 6 months, from January
1976 to June 1976, on a part-time basis. Some one half
.of that time was spent on the IO drivers.

Speed: ' Appears to run at about one-third the speed of the PDP-11/45
) system. I believe that a modest programming effort could
achieve parity in speed.

Distribution: Release by TRW is currently under consideration.
Inquiries are welcome.

Sinée?ely,
2 B . B —~
r 2t>"€>vx~tA4~ #¢€3¢f~«JZ/*¥;y\zq

Dennis M. Heimbigner =

DEFENSE AND SPACE SYSTEMS GROUP OF TRW INC. « ONE SPACE PARK, REDONDO BEACH. CALIFORNIA 90278 » (213) 535-4321

8# Y3LL3ITSKIN TYISY

LL6T “AVH

99 39Vd

Norsk DaTa NORD-10

A first version of PASCAL is now running on the NORD-10 under
the MOSS operating system. This note gives a short
introduction to the PASCAL system and how to use it.

NORD-10 PASCAL

The compiler has been developed from the P-PASCAL compiler by
the following group:

Andora Fjeldsgaard
Petter Gjerull
Stein Gjessing

Jan Husemoen

Ketil Moen

Terje Noodt

kThe implementation is described in "Rapport om implementering
~av PASCAL p& NORD-10", University of Oslo, April 1976.

‘The compiler utilizes the 2-bank feature of the NORD-10, so it
is possible to run 64K programs with 64K of data. The present
version compiles to symbolic assembly code, so that a compiled
program must be assembled by AMORAL before it can be executed.

Non-implemented features

Compared to the full PASCAL language, the following are the
main restrictions in NORD-10 PASCAL:

1. packed is not implemented (the compiler does however
accept the symbol PACKED) . .

2. The type file is not implemented.

3. Formal procedures are not implemented.
4. Range ‘and index checking ‘are not implemented.

“5%. Arithmetic overflow is not checked.

How to use the system

The compiler is activated by the command
) *PASCAL
After the compiler has been loaded it will ask the user to

specify which logical units are to be used for input, 1listing
and compiled code. This conversation takes the following form:

INPUT =
<specify octal unit number of source code file>
OUPUT =
<specify octal unit number of listing file>
PRR =
<specify octal wunit number of the file where compiled
code will be written>

The files should be opened before activating the compiler, but
it is also possible to exit from the compiler by CTRL A, open
the file, and then continue with the)GO command.

When compilation is finished (signalled by right parenthesis),
the file containing the compiled code can for instance be
saved for later use. To execute.the program, go through the
following steps:

1 Open the compiled code file with logical unit 3 (if not
already open on this 1lun).

2) *LINKP

3)GO

NB:A PASCAL‘E;ogram will store some of its data
at high adresses. Thus a text input for

editing will not be preserved through a PASCAL
compilation or execution of a PASCAL program.

The compiler recognizes the following options (placed within a
comment and preceded by $):

C Produce code -~ default is off
T Produce tables of variables - default is off
L Produce listing - default is on ’

In a PASCAL program the programmer can use the following file
names:

INPUT (default input file)
QUTPUT (default output file)
PRR
PRD

The files that are used should appear in the program heading,
as f. ex.:

PROGRAM PROG (INPUT,PRR) ;

Before data access to a file the program must call

RESET (<file name>)
for an input file, and.

REWRITE (<file name>)
for an output file. These calls have the effect of wrifinq the
filename followed by an equal sign to the terminal, whereafter
the logical unit number (octal) of the file can be specified.

8# YILLITSHIN TVISV

LL6T AVU

LS 39Yd

For the files INPUT and OUTPUT the calls to RESET and REWRITE
are done automatically if they appear in the program heading.

Machine dependant characteristics

1. A set can have up to 64 elements.

2. A procedure cannot have more than 253 words of local
variables, including parameters, but excluding record and
array variables.

3. An integer variable occupies 1 16-bit word, a floating
variable 3 16-bit words.

4, A string can have a maximum length of 16 characters.
Improvements and changes

It is expected that the PASCAL system will ‘be impfoved and
changed frequently in the near future. A descfiptlon of any
change or improvement will be written on the file *PASCINF,
whicﬁ may be inspected or listed by the PASCAL user.

Questions, comments and error reports are invited, and can be
given to any member of the PASCAL group.

Terje's address is Computing Center, University of Oslo, Blindern, Oslo 3, Norway.

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

SIEGE: GENEVE/SUISSE

CERN LABORATOIRE | Andy Mickel
PASCAL Users Group

ucc: 227 Exp. Engr.
University of Minnesota
Minneapolis, MN 5545

U. S. A.

Adresse postale/Postal address:

1211 GENEVE 23
SUISSE / SWITZERLAND] -

Votre référence
Your reference

Notre reference

Our reterence PS/CCI/DB/afcs Geneva, 19th January 1977

PASCAL NEWSLETTER
Dear Andy,

I am pleased to announce the successful implementation of a

Standard PASCAL compiler on the Norsk Data NORD-10 computer (running under

SINTRAN III o/s), by myself and my colleague Robert Cailliau. We developed

our compiler from the Zirich P4 code compiler, first assembling the source

_ P4 code into relocatable binary P4 code and then interpreting it as

efficiently as possible by an assembly code program. It is a great tribute
to Professor Wirth and his team at Zirich, who have produced a most excep-
tionally concise description of the implementation procedure and a very
readable compiler written in PASCAL, that we were able to implement our
system in about 2 man months. Apart from a small problem with the character
set (why do CDC have to be different to everybody else?), the implementation

went like a dream.

The very professional polish to the compiler and its documentation,
plus experience with its use, indicate that the compiler itself is extremely
reliable, and since our assembler/interpreter is very simple in terms of
coding and has successfully compiled the compiler, we have comsiderable faith
in our system. Naturally, it is not ultra-fast, but nevertheless takes only
15 minutes to compile the compiler, which for a 16-bit minicomputer with

2 pusec cycle time is not too bad.

Naturally, anyone is welcome to receive a copy of our system, although

the NORD-10 is currently used exclusively in Europe.

A quick word on the PASCAL language itself - I feel that when
Professor Wirth stopped just short of creating the long sought after "obvious"
replacement to FORTRAN as the standard language, he missed a great opportunity.
Naturally unable to be the pérfect all-time language, it does have some slight
drawbacks (frequently discussed in this newsletter, and in particular no interface
to external routines), most of which it would seem could be relatively easily
overcome, but which, however, do make it more difficult than it should be to

persuade users to take it up.

Anyone interested in our PASCAL system can contact :

David Bates

PS/CCI Group

CERN, 1211 Geneva 23
Switzerland (tél. 41-98-11)

‘ Sincerely,

David L. Bates

LLBT AVW

89 39V¥d

SEMS T1G600 /7 SoLAR

ECOLE NATIONALE SUPLRIEURE DE LA METALLURGIE
ET DE L’INDUSTRIE DES MINES DE NANCY

TELEPHONE (28) 51.42.32
TELEX : ENSMIM 850661

‘ECOLE DES MINES, Parc de Saurupt 54042 NANCY CEDEX

NANCY, I February 2, 1977

PUG

c/o Timothy Bonham

University Computer Center

227 txperimental Engineering Building
B Minneapolis, Minnesota 55455

USA -

Dear Tim:

As announced to George Richmond we are (still) working
on implementing a Pascal compiler for the SEMS minicomputer
series. To answer your 10 questions see attached implementation
notice. ' .
Our hope is to provide an entire implementation with
efficient debugging tools for the programmer on a small computer.
As all the available documentation on this project is writen in
french, we think it better to send it directly only to people
‘who ask for it, and I enclose one copy of it for your own use.

Yours sincerely,

A. Tisserant

SEMS T1600 / SOLAR PASCAL IMPLEMENTATION

Alain Tisserant
Département Informatique de 1'INPL

1: Implementor

Ecole des Mines

Parc de Saurupt

54042 Nancy Cedex FRANCE
Tel.: (28) 51 42 32

2: Machines : SEMS T1600 and SOLAR 16/05/40/65
3: 0S : B0S-D
Hardware required : MTS16

FHE or MHU disk
16 K words of core memory (minimum)

4,5,6 : Compiler not yet available. Will be distributed

by TRIA.

7: Fully implements standard Pascal; also compatible with
the IRIS 80 Pascal compiler.
Its extensions are character strings
LOOP ... EXIT ... END statement
1/0 for sets and scalars symbolics
It allows also separate compilations, insertion of ASM or
Fortran routines, and sets of any interval of integers.

8: Pascal is compiled in two passes, with intermediate language

use. Of course, compilers are written in Pascal; the
intermediate language is an adaptation of P-code for
minicomputers. This implementation provides a fully
transparent virtual memory.

9: Reliability: expected to be excellent!

10: P-code has been adapted for non-stack, 16 bits words,
based addressing and accumulator machines. An automatic
segmentation mechanism will allow compilation and execution
of large programs (such as the compiler) with small
memory requirements.
First pass of the compiler is parametrizable, but
second pass must be hand rewritten for each implementation.

8# YILLITSHIN TV¥ISY

LLBT “AYMW

69 39Vvd

S1EMENS 4004, 7000 serIEs

SIEMENS PASCAL BS2000 PROGRAMMING SYSTEM.

A PASCAL Compiler for SIEMENS 4004/151 and all SIEMENS

series 7000 installations running under operating system
BS2000 has been developped by Dr. Manfred Sommer

(Dept. D AP GE - SIEMENS AG - MUNICH - GERMANY)

on the basis of the ETH P4 Compiler.

The Compiler may be used in an interactive Edit, Compile

and Go environment, as the Compiler produces code that

may run without relocation anywhere in virtual memory.

The interactive environment is provided by a PASCAL program
'dialogue' which invokes the Compiler and/or generated pro-
grams by an additional standard procedure :execp (i.e. invoke
PASCAL program). This procedure may be used by all PASCAL
programs and supplies the possibility of a nested execution
hierarchy of PASCAL main programs.

The code produced by the Compiler (the instruction set used
is almost compatible with IBM 360/370 series instruction set)
may be put from virtual memory into a savefile. This savefile
may be reformatted hy a PASCAL program so as to be submitted
to the system linkage utility routines.

The Compiler does some localized optimizations with the

aim of producing a compiler suitable for the compilation

of application programs. The result is that the code produced
seems to be much faster than the code produced by the standard
Fortran compiler. i

The compilation speed is rather fast averaging 4o lines per
second on a 4004/151 and more than 100 lines per second on

a 7000/7.755.

The Compiler supports the language standard PASCAL.

File handling is fully implemented by the sequential file
access method. Work will be done to support also the

(direct access) indexed sequential file access method.

The predicate packed of arrays ; records is ignored

as it would not change much on a byte machine.

The procedure dispose is replaced - as in all P-Compilers =
by the procedures mark and release.)

Global labels may only be used to get back to the

main program.

There are no limitations imposed by the compiler.

Additional standard procedures are provided to make
operating system services available with the aim to make

the compiler suitable for the compilation of system programs.

There is the possibility to interact with the operating
system by calls of additional standard procedures.

The system seems to be as efficient and reliable as
PASCAL systems are usually.

There is a users manual - written in german language.
For the conditions of availability contact the author.

The Compiler has been developed on the basis of the ETH P4
Compiler. This Compiler has been extended to process full
standard PASCAL with some typical modifications (i.e.
mark/release, case ... else, variable string assignments
and comparisons). The character code is EBCDIC, the setsize
is 256 allowing_for set of char. The code generation is
done on the basis of the intermediate P-code at the end

of each procedure trying to do some local optimizations.
The code is generated into virtual memory and may be

executed immediatly or put into a standard module library.

For further information contact

- Dr. Manfred Sommer -

" SIEMENS AG
Department D AP GE
Postbox 70 00 78
D-8000 Munich
(West Germany)

The efficiency of SIEMENS,K PASCAL BS2000

In N. Wirths: "Programming languages...." (Berichte des
Instituts flir Informatik der ETH %urich Nr. 17) there is

~a list of programs for comparativestudies . These programs

are measured on a CDC 6400 SCOPE 3.4 installation, assumed
to be roughly equivalent to a 370/155 by a remark in the
same paper. .This set of programs was run for comparison

,on a SIEMENS 7.755 under BS2000 operating system, assumed

to be roughly equivalent to a 370/155 in turn.

8# 4JLLITSHIN TVISYd

LL6T “AYH

09 39Vvd

&

Results are:

CDC 6400 SIEMENS 7.755
SCOPE 3.4.B82000 V 3.0

1. Powers of two 0.813 0.883

2. Palindromes 2.695 5.223
3. Quicksort (different test data-

intsize) 2.861 3.985

I, characount (micro seconds per char) 68 82

5. numericio a) input 1.238 2.541

b) output 0.980 2.260

6. Queens 0679 1.009

7. Prim 1.061 1.083

8. ancestor a) build matrix 0.291 0.267

b) evaluate ancestors 1.667 1.569

"¢c) output matrix 0.578 0.614

9. ancestor-S a) build matrix ? 0.084

setsize = 100 b) evaluate ancestors ? 0.322

¢) output matrix ? 0.627

Programs 1,4,6,7,8 indicate that the times used are

indeed roughly equivalent; 3,9 are not comparable; the
different values on program 5 are probably due to a different
file sﬁructure; and program 2 is assumed to be an example

for the term "roughly equivalent" - it is not known why

it behaves different from program 7.

It should be noted that BS2000 is a virtual memory operating
system and paging interrupts lead to different- execution
times of the same program in the order of 10 %.
On the other hand there are still some final optihisations
in the code generator not yet implemented - it is hoped

Vk that the times will be better by a an order up to 20 %
as soon as those optimisations are ready.

The compilation of the compiler yields a performance of
90 lines / second. ‘

There have been some tests on the length of the sequence
of instructions for calling "Ackermann". The SIEMENS
compiler produces 15 instructions needing 52 bytes of code.

Texas INsTRUMENTS TI-ASC

" Douzglas S, Johnson, Advanced Software Technolozy Dept., #i.3. 295, Texas Instruasents,
vallas, Texas 75222, tells us that a superset of Pascal called PO0L is inplemented on the
TI-ASC. Through other sources we nave learned that POL was developed wusing a Pascal
cross-compiler running on a Control Data 70630 which produced code for tae A3C. PDL was
developed for a ballistic ifissile Defense Agency project, and is described in the article:
"An extendable approach to computer-aided software requirements engineerinz" by T.t. Cell,
D.C. Bixler, and i.g. Dyer, Icid Transactions oa 3oftware cngiaeering 3 {(Jan., 1377),
pp 49-50.

Texas INSTRUMENTS T1-990, TI1-9900

Douglas Johnson (above) also reports that there is a Pascal cross-compiler which runs
on an I 370 and produces code for the TI-990 and the TI-9310. Several people have told
us that TI has developed a native-code coapiler wnich runs on the 990/10 under the DX10
operating system.

A very different implementation for the TI-9900 (a 16-bit micro), “ICROPASCAL, is
notable for being a stand-alone turnkey Pascal machine with bundled software ana hardware.
In addition to the materials printed here, the implemeators sent us a fairly gooa-sized
manual, mostly in Gerwan. Deviations from standard Pascal appear to ve: files, with and
zoto statements, label declarations, and procedures/functions as parameters are not
supported. Sets of 56U characters are supported.

We present ourselves:

MICROPASCAL

1.) the implementors are:

H. Schauer, R. Nagler, A. Szer; Institut flir Informationssysteme
1040 wWien, ArgentinierstraBe 8, Austria, Tel. 65 87 31/313

the distributors are:

ECO-Computer GesmbH&Co Kg (Fa. Langschwert)
1010 Wien, Tuchlauben 14, Austria, Tel. 63 35 80

2.) our implementation is called MICROPASCAL

3.) the minimal hardware configuration is the microprocessor
TI 9900/4 (Texas Instruments), a mark-sense card-reader and
a line-printer (with interfaces). You need no operating

system to run the compiler.

4.) only the whole system is selled(hardware and software) and
costs 200.000.- &S (Austrian Schilling). (about 1500 US §).

5.) the system will be ready for sale in summer 77, we intend
to make more of it and we would like to accept bug reports.

6.) documentation is available in form of a supplement to the
PASCAL-Report

8# W3ILLITSMHIN TVISVY

AVHU

[L6T

T9 39vd

7.) it fully implements Standard PASCAL beside a few little things
caused by the hardware configuration (see documentation).

8.) it is a portable compiler-interpreter system which saves
memory and is very slow compared _with other systems;it is
written in PASCAL and machine-code, 3000 source_lines, 12KROM
words, no external memory .

9.) the reliability of the system is excellent

10.)it was written in PASCAL and bootstrapped to the microprocessor.
it takes three month to implement it on any microprocessor

with no special experience of the implementors.

MICROPASCAL is a system that permits tle translation and execution of PASCAL
programs on a microprocessor. It consists of a miecroprocessor, memory for the operating
system and. the user programs and two interfaceskfbr input and output. The main purvose
of the system is to support programming education.

Baste concepts: the compiler translates the source precgram into an intermediate
language represented as a treez, where each node represznts one declaration and each
leave consists of the intermediate code of a PASCAL biock in reversed polish rotation.
This tree is the static information of the program. The comptlation does not excezd the
level of syntactic decompcsition defined by the syntax diagrams in the PASCAL report.
At ‘execution time the code tis iﬁterpreted by aid of the runtime stack which provides the
dyrnamic information. The runtime stack cornstists of parcmeters and local data cf all the
cctive subroutines. The interpreter performs all context-sensitive checking at the exe-
cution time. The intermediate Zanguége is compressed by using -a numeric code of variable
length to represent the identifiers: those which are frequently used are represented
by short numbers. Sirce anry information concerning the identifiers is stored in the nodes
of the tree, the intermediate code is not redundant. The interpreter is "microprogramned",
Z.e. in the intermzdiate code all cperators are calls of subroutines of the interpreter.

Features of the system:
- it supports portability: the machine-independent parts of the sysfem, i.e. the compiler
ard part of the interpreter are in the intermediate language (and interpreted themselves).
Only the nucleus of the interpreter (organisation of the runtime stack and the execution
of operations) is machine~-dependent and therefore handcoded.
- extremely low requirement of storage (12K ROM): the same interpreter is used to control
the compilation, the machine—independent part of the intarpretation and the exzcution
of the user program (the problem of runtime efficiency was no constraint to the problem).
- very easy handling: the system is ready as soon power is on. No need for any harduare
or softwarz support to provide or maintain a machine-readcble program. The input device
is a mark-sense card reader and the output is a printed listing.

The machire-independent parts of the system are written in PASCAL and bootstrapped by

an existing PASCAL compiler.

In1vac 90/70

M. Sommer (see Siemens 4004 announcement, above) responded to Bill Hopkins' request
in Newsletter #7 for an implementation for the RCA/Univac Spectra 70: "Stemaing from the
former cooperation between RCA and SIEMENS there is a close correspondence between SPECTRA
70 and SIEMENS 4004 computers. Our operating system is derived from VMOS - now called
BS2000. Our PASCAL implementation is running on a 4004/151 {compatible with SPECTRA 70/61)
under BS2000 (compatible with VMOS)." (Letter to B. Hopkins, dated Feb. 2, 1977.)

(* Thanks, Manfred! *)

Untvac 1100 seriEs

Bill Barabash of SUNY Stony Brook reports that they are in possession of all three
Pascal compilers for the U1110. They use the DIKU compiler by Steensgaard-Madsen for
beginning students because it only requires 42K. They use the Mike Ball San Diego compiler
(60K) 1in advanced courses because it allows the creation of modules with independent
global areas. They also run a preliminary version of the Fischer-LeBlanc Wisconsin
compiler which requires 80K and must itself be compiled by Mike Ball's compiler. It's
extensive checking appears to be quite sound according to Bill,

VarRIAN V-70 SERIES

In a .note dated Feb. 1, 1977, Gregory L. Hopwood, Varian Data Machines,
2722 Michelson Drive, Irvine, California 92664, {714/833-2400) states "fes - we are
interested in Pascal. Varian has a Pascal compiler (Brinch Hansen) which runs on our V70
line of minis.®

In a letter dated Feo. 4, 1977, Michael Teener, Data Sciences Division, Technology
Service Corporation, 2811 wilshire Boulevard, Santa Monica, California 90403,
(213/829-T411) reports:

Technology Service Corporation

Data Sciences Division

— 2811 Wilshire Boulevard, Santa Monica, California 90403 = Phone: (213) 829-7411

. 4 February 1977

Mr. Andy Mickel .)
University Computer Center

227 Experimental Engineering Building
University of Minnesota

Minneapolis, Minnesota . 55455

Dear Andy: :

For the past year or so I have been looking for a Pascal compiler for
our Varian V-76 minicomputer. I looked into using a Pascal-P imple-
mentation, but that turned out to be too much work to do singlehanded.
I mentioned this little project to our local Varian rep, who then
shocked me by saying, "But we already have Pascal."

Simply put, anyone can get Pascal from the Varian Users Group (VOICE).
The required equipment is a Varian V-70 with 32K+ memory, memory map,
Vortex II 0.S., extended instruction set and 512 words of writable
control store (WCS). This last requirement is of considerable interest

g# 4ILLITSHIN TV¥ISY

AV U

L/6T

¢9 39Vvd

'\

"demand formatted and structured 1/0.

since Varian uses the WCS to set up the V-70 as a Pascal machine...its
machine language looks suspiciously like P-code. The compiler itself is
quite fast. According to my friends at Varian, it compiles over 1000
statements a minute. Some other characteristics are:

1/0 is not standard, instead it is oriented around Vortex II

1/0 macros. A1l files must be opened before using, with
reference to files via logical unit numbers. 'GET' and 'PUT'

do buffered I/0 and 'READ' and 'WRITE' do character by character
1/0.

Programs can be overlaid.
The range on integers is -32768..32767.
Integer case labels must be in the range 0...127.

The range of reals is about -1038..1038.

The relative precision of a real is about 10716,

A string must have an even number of characters. (A11 arrays

of type 'CHAR' are packed).

Enumeration types ('X=(A,B,...)') cannot be defined within
record types.

An enumeration type used as a tag field type can have at most
16 constant identifiers.

Integer variant labels must be in the range 0..15.

A set of integers can only include members in the range 0..127
(strangely enougn, this is room for all ASCII characters).

There is no 'text' type.
Comments are enclosed in double quotes (").
Brackets '[' and ']' are represented by '(.' and '.)'.

The horizontal arrow character (underline on newer printers) can
be used in identifiers.

Tha first ten characters of an identifier are significant.

I haven't had a chance to play with it much, but the programmers at Varian
claim it is extremely bug-free for a brand-new compiler. Anyway, anyone
can get it from Varian as VOICE #183C8.

As for Pascal itself, I would like to add my voice to the growing crowd of
real-world (i.e., non-academic) programmers who would like, or rather,
Michael Hagerty's comments in #6

on this subject are excellent.

Aside from I/0 and dynamic array parameters (about which enough has been said),

I really don't like the 'begin-end' blocking of Pascal. It just doesn't
read very well and adds needless confusion to the source code. I would far
prefer to use an implicit structure more 1ike Algol 68 or IFTRAN. As a
matter of fact, Nancy Brooks of General Research Corporation is implementing
a Pascal pre-processor much 1ike IFTRAN (which is a joint GRC-TSC Fortran
Pre-Processor) which has the following syntax:

EXPRESSION ENDWHILE

~(enp1p)—

STATE!ERT

Similarly for 'FOR', 'CASE', and 'WITH'. (The 'REPEAT' form

is already consistent with this.)
The idea is to get rid of all those 'END's. Our experience with IFTRAN
leads us to believe that providing unique ending delimiters for compound
statements within each type of control structure catches many of the
common structural errors in complex programs. The 'IF' - 'ORIF' -
'ELSE' - 'ENDIF' structure is particularly good for this purpose. Besides
all that, the resulting pretty-printed listings are a delight to read.

Anyway, Pascal is the best overall language yet, and if the I/0 problems
are fixed, it could be near perfect for our use.

Keep up the good work.

Michael Teener
Manager
Computing Center

MT:cs

P.S. Oh yes, Varian Pascal does not have label types or 'GO TO's. How's

that for a restriction?

(* Editor's note: we made a mistake! We mistook the commentary on Pascal
in this letter to be an explanation of extensions to the Varian
implementation., Half of this letter, therefore should have appeared in
the Open Forum section. *)

Z1Lo6 Z-80

Ken Bowles has announced an implementation for the 2Z-80 to be distributed sometime
this summer. For more details see the Digital Equipment PDP-11 section of this Newsletter.

According to Jim C. Warren, editor of Dr. Dobbs Journal of Computer Calisthenics &
Orthodontia (Oct., 1976 1issue, p 6), Niel Colvin of Technical Design Labs, Trenton, New
Jersey, has adapted a P-code compiler for the 2Z-80. The P-code interpreter reportedly
occupies about 1K bytes. Another Zilog rumor is that Dean Brown is the person at Zilog to
see about Pascal. .

8# YILLITSMIN TYISYd

‘AYH

LL6T

£9 39vd

INpEx TO IMPLEMENTATION NoTices (rssues #5 - #3)

Portable Implementations.

Pascal P.
#5: 4450,
#6: 65-67.
#7: 27.
#8: 40-41.
Pascal Trunk.
#5: 51.
#8: 42,
Pascal J.
#5: 51,
#7: 27-28.
L #8: 42,
Pascal S.
#5: 51,

Pascal Variants.

crmercecccm————

Concurrent Pascal.
#5% 53-54.
#6: 67-69.
Modula.
#3: 42,

Software Writing Tools.

#6: 70,
#7:°29.
#8: 40.

Machine Dependent Implementations.

Note: (*) indicates that one
or more implementations exist,’
are underway, or are being
considered. :

Amdahl 470,

see IBM 360, 370.
Burroughs B1700.

#6: 71,
Burroughs B3700,B4700,

#8: 4u-45,
Burroughs B5700.

(*)

Burroughs B6700.
#5: 51,
#6: T2-T4.
#7: 29,
#8: 4547,

CII 10070.
see also Xerox Sigma 7.
#6: TH.
#7: 29-30.

CII Iris 50.
#6: TH.

CII Iris 80.
#6: TH.
#7: 29-31.

Computer Automation LSI-2.
#3: 48,

Control Data Cyber 13, 2550.
#5: 51. :
#8: u8.

Control Data 3300,
(*)

Control Data 3600,
*)

Control Data 6000,7000;Cyber70,170.

#5: 51-53.
#6: Th-T5.
#3: 48,
Cray Research CRAY-1.
#6: 75-76.
Data General Nova series,
#8: 49,
Digital Equipment PDP-8.
#7: 32. .
Digital Equipment PDP-10.
#51: 54=55,
#6: 76-78,
#38: 49,
bigital Equipment PDP-11,
#5: 53-54,
#6: 78-79.
#7: 32-37.
#8: 49-52.

~ Foxboro FOX1.

#7: 37-38.
Fujitsu FACOM 230-38.
(%))
Fujitsu FACOM 230-55.
*)

Hewlett Packard HP-2100.
. #6: 80.
#8: 52,

Hewlett Packard HP-3000.
#6: 80,

Hitachi HITAC 8700, 8800.

see IBM 360, 370.

- Honeywell series 6.
(*) i

Honeywell H316.
#5: 55.
#6: 80,

- Interdata 4,

Honeywell 6000, Level 66 series,
#5: 55.
#6: 80.
#8: 52,
IBM 360, 370.
#5: 55-63.
#6: 81-86.
#7: 38-39.
#3: 52-53.
IBM 1130.
#6: 86.
#7: 39.
#38: 54,
ICL 1900.
#8: 5L,

_ICL 2970.

#8: 54,
Intel 8080.

#8: 54-56,

#8: 56,
Interdata 7/16.

#6: 87.
Interdata 8/32.

#7: 4O.
Mitsubishi MELCOM 7700.

»

Motorola 6800.
#6: 87-88,
#8: 56.
Nanodata QM-1.
#8: 56.
Norsk Data NORD-10.
#8: 57-58. "

© Philips P-1400.
- (*)

Prime P-400.
#6: 838,
RCA- Spectra 70.
see Siemens 4004, T000.
. see Univac 90/70.
SEL 8600,
‘ o)
SEMS T1600, Solar.:
#8: 59,
Siemens 150.
(*)
Siemens 4004/157.
#6: 88,
#8: 60-61.
Siemens 7000. ;
#8: 6061, ;
Telefunken TR-440. -
*

Texas Instruments'TI-Asc;
#8: 61,
Texas Instruments TI-980A.
)

Texas Instruments TI-990, 9910.
#8: 61-62.
Univac 90/70.
see Siemens 4004, 7000.
#8: 62,
Univac 1100 series.
#5: 64,
_ #6: 89-90.
#7: HO-42.
#8: 62.
Varian V70 series.
#6: 90,
#8: 62-63.
Xerox Sigma 6, 9.
#6: 90.
#7: 42-44,
Xerox Sigma 7.
see also CII 10070.
#6: 90, :
#7: 31, 44,
Zilog Z-80.
#8: 63.

8# 43ILLITSHIN TYISVd

LLBT “AYHK

h9 39vd

