PASCAL USER'S GROUP

Pascal News

(FORMERLY PAscAL NEWSLETTER)

NUMBER 12
COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

JUNE, 1978

TABLE 0F CONTENTS
COVER: The PUG Letter Opener and Letter-Writing Implement

0 POLICY: Pascal News
1 ALL PURPOSE COUPON
3 EDITOR'S CONTRIBUTION
4 HERE AND THERE WITH PASCAL
4 News (Jobs, Tidbits)
7 French/English - English/French Pascal Identifiers
8 Pascal in the News
8 Conferences
9 Books and Articles
11 Articles Wanted
11 Roster Increment
17 APPLICATIONS
17 News
18 Algorithms
20 Software Tools
32 Programs
32 ARTICLES
32 "Extensions to Pascal for Separate Compilation"
- Richard J. LeBlanc
33 "What Are Pascal's Design Goals?"
- Robert D. Vavra
34 "Pascal Environment Interface"
- Terje Noodt
37 "Subranges and Conditional Loop"
- Judy M. Bishop
39 "A Few Proposed Deletions"
- John Nagle
40 OPEN FORUM FOR MEMBERS
52 Pascal Standards
56 IMPLEMENTATION NOTES
56 Checklist
56 Portable Pascals
57 Feature Implementation Notes
57 Machine-Dependent Implementations
68 Index to Implementation Notes (PUGN 9-12)

69 POLICY: Pascal User's Group

Policy

POLICY: PascaL News (78/04/15)

Pascal News is the official but informal publication of the User's Group.

%*

%*

3*

*

Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of (1) having to insist that people
who need to know "about Pascal" join PUG and read Pascal News - that is
why we spend time to produce it! and (2) refusing to return phone calls
or answer letters full of questions - we will pass the questions on to
the readership of Pascal News. Please understand what the collective
effect of individual inquiries has at the "concentrators" (our phones and
mailboxes). We are trying honestly to say: "we cannot promise more than
we can do."

An attempt is made to produce Pascal News 3 or 4 times during an academic year

from July 1 to June 30; usually September, November, February, and May.

ALL THE NEWS THAT FITS, WE PRINT. Please send material (brevity is a virtue) for

Pascal News single-spaced and camera-ready (use dark ribbon and 18.5 cm lines!).

Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO

Pascal

THE CONTRARY.
News is divided into flexible sections:

POLICY - tries to explain the way we do things (ALL PURPOSE COUPON, etc.).

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal for
various algorithms, and software tools for a Pascal environment; news of
significant applications programs. Also critiques regarding program/algorithm
certification, performance, standards conformance, style, output convenience,
and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.)

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and

quantitative descriptions and comparisons of various implementations are

publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature Implementation Notes, and Machine Dependent Implementations.

* Volunteer editors are (addresses in the respective sections of Pascal News):

Andy Mickel - editor

Jim Miner and Tim Bonham - Implementation Notes editors

Sara Graffunder - Here and There editor

Rich Stevens - Books and Articles editor

Rich Cichelli - Applications editor

Tony Addyman - Standards editor

Scott Bertilson, John Easton, and Steve Riesman - Tasks editors

PASCAL USER'S GROUP
USER'S ALL PURPOSE COUPON

!/

//

/7

!/

//
/7

//

Other comments: From: name

3 36 38 3 30 3 36 3 3 3 36 3 35 3 6 3 3 3

GROUP
(78/04/15) o

Pascal User's Group, c/o Andy Mickel Clip, photocopy, on
University Computer Center: 227 EX
208 SE Union Street

University of Minnesota

Minneapolis, MN 55455 USA

reproduce, ete. and

I IE I

mail to this address.

Please enter me as a new member of the PASCAL USER'S GROUP for __ Academic
year(s) ending June 30, (not past 1982). I shall receive all the

issues of Pascal News for each year. Enclosed please find . (* Please
see the POLICY section on the reverse side for prices and if you are joining
from overseas, check for a PUG "regional representative." *)

Please renew my membership in PASCAL USER'S GROUP for Academic year(s)
ending June 30, (not past 1982). Enclosed please find

Please send a copy of Pascal News Number(s) . (* See the Pascal News
POLICY section on the reverse side for prices and issues available. ¥)

My new agggﬁzs is printed below. Please use it from now on. I'l1 enclose an
old mailing label if I can find one.

address
You messed up my phone See below.

Enclosed please find a contribution (such as what we are doing with Pascal at
our computer installation), idea, article, or opinion which I wish to submit
for publication in the next issue of Pascal News. (* Please send bug reports
to the maintainer of the appropriate impTementation listed in the Pascal News
IMPLEMENTATION NOTES section. *)

None of the above.

mailing address

phone

computer system(s)

date

(* Your phone number aids communication with other PUG members. *)

POLICY

JOINING PASCAL USER'S GROUP?

- membership is open to anyone: particularly the Pascal user, teacher, maintainer,
implementor, distributor, or just plain fan.

please enclose the proper prepayment (checks payable to "Pascal User's Group");
we will not bill you.

please do not send us purchase orders; we cannot endure the paper work! (If you are
trying to get your organization to pay for your membership, think of the cost of
paperwork involved for such a small sum as a PUG membership!)

when you join PUG anytime within an academic year: July 1 to June 30, you will
receive all issues of Pascal News for that year unless you request otherwise.

please remember that PUG is run by volunteers who don't consider themselves in the
"publishing business." We produce Pascal News as a means toward the end of
promoting Pascal and communicating news of events surrounding Pascal to persons
interested in Pascal. We are simply interested in the news ourselves and prefer to
share it through Pascal News, rather than having to answer individually every Tetter
and phone call. We desire to minimize paperwork, because we have other work to do.

American Region (North and South America): Join through PUG(USA). Send $6.00 per year
to the address on the reverse side. International telephone: 1-612-376-7290.

European Region (Europe, North Africa, Western and Central Asia): Join through PUG(UK).
Send £4.00 per year to: Pascal Users' Group/ c/o Computer Studies Group/ Mathematics
Department/ The University/ Southampton S09 5NH/ United Kingdom. International
telephone: 44-703-559122 x700.

Australasian Region (Australia, East Asia =incl. Japan): Join through PUG(AUS).
Send $A8.00 per year to: Pascal Users Group/ c/o Arthur Sale/ Dept. of Information
Science/ University of Tasmania/ Box 252C GPO/ Hobart, Tasmania 7001/ Australia.
International Telephone: 61-02-23 0561.

PUG(USA) produces Pascal News and keeps all mailing addresses on a common list.
Regional representatives collect memberships from their regions as a service, and
they reprint and distribute Pascal News using a proof copy and mailing Tabels sent
from PUG(USA). Persons in the Australasian and European Regions must join through
their regional representatives. People in other places can join through PUG(USA).

RENEWING? (Costs the same as joining.)

- please renew early (before August) and please write us a line or two to tell us what
you are doing with Pascal, and tell us what you think of PUG and Pascal News to help
keep us honest. Renewing for more than one year saves us time.

ORDERING BACKISSUES OR EXTRA ISSUES?

- our unusual policy of automatically sending all issues of Pascal News to anyone who
joins within an academic year (July 1 to June 30) means that we eliminate many
requests for backissues ahead of time, and we don't have to reprint important
information in every issue--especially about Pascal implementations!

Issues 1, 2, 3, and 4 (January, 1974 - August, 1976) are out of print.

Issues 5, 6, 7, and 8 (September, 1976 - May, 1977) are out of orint.

(A few copies of issue 8 remain at PUG(UK) available for &2 each.)

Issues 9, 10, 11, and 12 (September, 1977 - June, 1978) are available from PUG(USA)

all for $10 and from PUG(AUS) all for $Al0.

extra single copies of new issues (current academic year) are:
$3 each - PUG(USA); £2 each - PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

= check the addresses for specific editors in Pascal News. Your experiences with Pascal
(teaching and otherwise), ideas, letters, opinions, notices, news, articles,
conference announcements, reports, implementation information, applications, etc.
are welcome. "All The News That Fits, We Print." Please send material single-spaced
and in camera-ready (use a dark ribbon and lines 18.5 cm wide) form.

- remember: All letters to us will be printed unless they contain a request to the
contrary.

MISCELLANEQUS INQUIRIES?
~ Please remember that we will use Pascal News as the medium to answer all inquiries, and
we regret to be unable to answer individual requests.

m UNIVERSITY OF MINNESOTA | university Computer Center
TWIN CITIES 227 Experimental Engineering Building
Minneapolis, Minnesota 55455

(612) 376-7290

The DEADLINE for PUGN 13/14 is August 15. Tony Addyman is now PUG's new Standards
Editor. Don't forget to renew if you need to--check your mailing label.

Personal Observations

1) Pascal-P has enabled a great many people to learn about compilers who otherwise
would never have had the chance. Do you realize the implications? These same people
(myself included) will never be able to Took at other compilers for other languages
(especially the ones peddled by manufacturers) the same way from now on. Our critical
eyes probably won't be able to endure them either.

2) Please see the Books and Articles section for the article entitled: "Ambiguities and
Insecurities in Pascal," which is the first, good, critical article about Pascal to
appear (yes, we know about Habermann's article). The most memorable passage is in the
conclusion:

"...Because of the very success of Pascal, which greatly exceeded the
expectations of its author, the standards by which we judge such languages
have also risen. It is grossly unfair to judge an engineering project

by standards which have been proved attainable only by the success of the
project itself, but in the interests of progress, such criticism must be made."

3) Many people are now decrying the lack in Pascal of "business-oriented" language
features such as indexed-sequential access methods for file processing, packed decimal
data types, and other inefficient ways of doing computing. I would suggest a Business
Procedure Library similar to the IMSL and NAG mathematical and statistics Tibraries
for numerical (old term = 'scientific') people. We should use the simple, but versatile
tools (language features) we already have to build what we need for other things.

4) We need more news (notices, articles, opinions, etc.) for Pascal News about teaching
experiences with Pascal.

How is Pascal User's Group? (*new members especially please read this*)

PUG has now grown too Targe to handle it in the personal manner we have in the past.
Membership stands at 2147+. We used to be extremely efficient, because I, for one,

could keep it all in my head and remember who was a member from where, which joined when

and how. It was 1ike stamp collecting. We have resorted to dropping all kinds of services
we never promised to do but nevertheless did. Now when a new member joins, all he or she
receives is backissues, and no personal reply, receipt, or answers to questions. PUG

is another example illustrating limits to growth.

The event that seems to have changed the situation permanently was the first full-page
article about Pascal in the April 27 issue of Computerworld--the largest and most widely-
read computer journal in the United States. The following Monday we received 83 pieces
of mail in one day (old record for a single day was 39 pieces, while typical mail in the
past averaged 20-30 pieces/week.)! Do you realize how much time it takes to open 83
pieces of mail? Remember, we don't have secretaries.

PUG(USA) has managed to break even in the past--including this year--but we must raise the
rates to $6 per year. Postage and printing costs keep rising. David Barron at PUG(UK)
announces new rates of 4 per year and Arthur Sale at PUG(AUS) announces a $A2 decrease
(now $A8). Please see their notices following. At least now our rates are more
normalized. We have kept the rate low to attract members and to spread Pascal as fast and
as far as possible. We as a group are an exceptionally broad base of people, and I think
that is a real accomplishment. And remember, we accept no advertizing.

We have always tried to keep this operation simple: no special services, no special rates
for special mailing, etc. I know I just wouldn't have time otherwise. I set up PUG

so that it can be dismantled within one week and all money refunded! Charging a little
more money this year will allow us to hire a part-time secretary to handle the growing
clerical workload. The most time-consuming process is to process memberships and update
the mailing list. We usually batch 3 or 4 weeks of mail before we process it!

Editor’s Contribution - —

Dear Andy,

Here is our cost estimates for Australasian distribution for 1978/9. As you
will see, I am recommending a lowering of the fee to $A8.00. Last year's fee was
based on estimates from our printery which in the even proved slightly high, and
of course the amalgamation of issues 9 and 10 saved us postage. Consequently we
have a small reserve, and I have been able to budget for exactly balancing costs
with subs in 1978/79, carrying any inflation in postage and the costs of carrying
stocks of back copies out of the reserve.

There may be some request for refunds from people who paid for two years.
I'd rather not be involved in sending out cheques, and I suggest we treat this the
same as with people who pay for two years in a price rise situation: we don't ask
for more so we shouldn't give refunds.

Printing cost per issue $1.00

Postage : Australia $0.70
New Zealand $1.20
Singapore $2.00

averaged over subscribers _§1.00 approx.
Cost _per issue $2.00

Recommended subscription for 1978/79 = §8.00 (Australian)

Yours sincerely,

iy 8le-

A.H.J. Sale,
Department of Information Science.

PASCAL USERS GROUP - European Region Subscriptions 1978/79

We regret that steep increases in the cost of
printing compel us to increase the subscription

to £4 PER ANNUM. ¥ =2z z
LA =28
We regret the i b i i 6 m =
g ncrease, but even at this figure w m =
we shall only just break even. Without volunteer T 3 ?r-’:
labour, charges would be much higher. * 3<> Lz ®
m v -
Please remember that cheques must be in sterling, * o °
drawn on a British (or Irish) bank Processing § = ﬁ
scerll:ng cheques drawn on foreign banks, or non- * = o =
sterling cheques is prohibitively expensive. * E H g
. - =<
I.f you have a Post-Giro account, you can pay by * :_':‘ o
direct transfer into our account number 28 513 4000. E %
RENEWALS tak i i i i * I 2
ake time, which is precious. Why not r <<
subscribe for two or more years? * moe
-’

LR EE T TR

CT# SNIN TVISYd

“INNC

8L61

¢ 39Vd

Here and There With Pascal

NEWS

PascaL JoBs

(* PUG Member Jack Laffe has been keeping track of some of the jobs for Pascalers which
have been advertised in recent months. We decided to publish it as one more indication
of the currency of Pascal. This is not a "Help Wanted" section; in fact, these jobs may
have been filled. We may continue publishing this section, when space permits, if
someone like Jack will compile the list. *)

(* The first job was advertised in CACM in January. The others all appeared in Computer
World on the date indicated with the job description. *)

Softech: compiler design.

Dunhill Personnel Inc.: 78/01/02

Modular Computer Systems: 78/01/23

National Cash Register: compiler design for Pascal-like language: 78/01/30

Timeshare: applications, systems: 78/02/06

Amdahl: systems programmer with Pascal experience: 78/02/27

California State Universities and Colleges: instructional consultants in Pascal:
78/03/06

GTE Sylvania: software engineers: 78/03/20

Houghton-Mifflin: Pascal programmers: 78/3

TIDBITS

Richard E. Adams, 239 Chatham Road, Columbus, OH 43214: "Did you hear that Burroughs was
implementing Pascal on a microprocessor? (They were advertising for people in
Computerworld." (* 78/02/09 *)

Wayne Andrews, Electronics Department, Weber State College, 3750 Harrison Blvd., Ogden,
UT 84408: "We just put Pascal on our Dec-10 system and are trying to get going on the
project." (* 78/03/06 *)

C. Bailey, Bailey and Associates, 1144 S. Atlanta, Tulsa, OK 74104: "I have an Altair
with 32K memory, 2 Altair Floppy Discs and a Decwriter. So I am interested in Pascal as
implemented on the Altair or Altair-like CPU. I am employed as a programmer/analyst for
the Altair and HP and SG minis." (* 77/12/30 %)

Francis H. Beardon, Manager of Projects, Data Systems, Cincinnati Electronics, 2630
Glendale-Milford Road, Cincinnati, OH 45241: "We at Cincinnati Electronics Corporation
are interested in Pascal as a possible standard programming language for our developed
software systems because of its projected portability." (* 78/02/13 *)

David J. Bell, 609 Craig Ave., Campbell, CA 95008: "My personal system is a Processor
Tech SOL-10, with externally expanded memory and 1/0. I am interested in developing a
Pascal translator for this computer, and for the HP2112 I use at work." (* 78/03/10 *)

Brad Blasing, 1308 Centennial Hall, Univ. Of MN, Minneapolis, MN 55455: "We have
implemented the Netherlands Pascal compiler on our 11/40 running UNIX. Runs fast for an
interpreter. It’s a good hybrid of the P2 and P4 compiler. Could use a bit more
user-type documentation." (% 78/04/02 *)

William R. Blatchley, Measurement Systems Div., Siemans Corp., 3 Computer Drive, Cherry
Hill, NJ 08002: "We are engaged in test equipment design and development for memory
devices and have a possibly immediate need for a Pascal implementation on a PDP-11 for
testing magnetic bubble memories." (% 78/04/12 *)

Damon Blom, 72 Sandburg Drive, Sacramento, CA 95819: "I am presently using Pascal on an
IBM 370/168 computer using a Pascal compiler written in XPL. I will be getting shortly

the Pascal compiler written in Pascal developed at SLAC, Stanford University."
(* 78/03/05 *)

Richard J. Cichelli, 901 Whittier Dr., Allentown, PA 18103: '"Joseph Mezzaroba at
Villanova has supervised two projects to implement Pascal-S on the 370. One using the
AAEC Pascal compiler (Pascal-S in Pascal--takes 100 seconds to compile) and the IBM
PL/1 compiler (Pascal-S in PL/l--takes 36 minutes to compile). Pascal-S in Pascal was
30 per cent smaller and ran five times faster." (* 78/04/14 *)

Roger Creamer, CTB/McGraw-Hill, Del Monte Research Park, Monterey, CA 93940: "Also, any
specific information which you could provide on Pascal implementations for the IBM 370
and DEC PDP-11 would be much appreciated." (* 78/04/14 *)

Anthony Conti, Box 1201, Concord, NH 0330l: "I am a user of a Data General Eclipse S200
minicomputer and am interested in running and maintaining Pascal on it." (* 78/01/12 *)

Jean-Louis Decoster, Lyss-Str. 21, CH-2560 Nidau, Switzerland: "Could you inform me too
if a Pascal compiler is alre_ady implemented for "Could you inform me too if a Pascal
compiler is already implemented for the Motorola 6800?" (* 78/03/15 *)

Alan Delwiche, Computer Programming Instructor, Leland High School, 6677 Camden Ave.,
San Jose, CA 95120: "Would you please send me any information regarding versions of
Pascal for an 8080 or Z80 microprocessor. We have a 32K Cromemco with dual minifloppy
drives." (* 78/02/08 *)

Shaun Devlin, 6854 Cedarbrook, Birmingham, MI 48010: "I would also appreciate it if you
could direct me to anyone who has or is planning to implement Pascal on a Texas
Instrument 990/9900 system." (* 78/01/05 *)

Bob Dietrich, M.S. 60-456, Tektronix, Inc., P.0. Box 500, Beaverton, OR 97077: "Am

bringing up solo-concurrent Pascal under RSTS/E time sharing system (PDP-11). Also
involved with Swedish and BSM Pascals for PDP-11." (* 78/03/08 *)

Robert Emerson, Honeywell Information Systems, 9555 S.E. 36th St., Mercer Island, WA
98040: "Another interest of mine is implementing a Pascal compiler on the Honeywell
Level 6 mini computer. Any tips for compiler implementation would also be appreciated."
(* 78/01/17 *)

Mel R. Fisher, Business Dept., Calvary Community Church, 1175 Hillsdale Ave., San Jose,
CA 95118: "I am in the process of writing specialized programs for our church records,
bookkeeping, and data of this nature. The Pascal language sounds very interesting, and
I would appreciate any further information that you could supply me with. We currently
have an IMSAI 8080 48K memory, with floppy disk video display and printer."
(* 78/02/15 *)

George H. Golden, Sr., Computer Center, SUNY-Fredonia, Fredonia, NY 14063: "We are
trying to get Pascal running on the Burroughs B-4700. It runs. But takes too much
core." (* 78/04/10 *)

Robert M. Green, Robelle Consulting, Ltd., No. 130, 10th Ave., Delta, BC V4M 3T9: "Could
you let me know if there are any implementations of Pascal for the Hewlett-Packard 3000

computer? If not, I am interested in implementing it. Is there any way I can get a copy

of the Portable Pascal compiler, version P4?" (* 78/02/02 *)

R. Gunzenhauser and R. Kleine-Homann, Institut fur Informatik, Universitat Stuttgart, 7
Stuttgart 1, Azenbergstr. 12, Germany: "We use Pascal as the first programming language
for our freshman students and for high-school teachers.

"We offer Pascal at our German Computer TR 440; besides we have a DEC PDP 11/40
computer (0S DEC RSX 11-M, 92kBytes) and wish to implement Pascal or a Pascal subset
like Pascal-S.

"We would be very obliged if you could send us information about Pascal implementations
on RSX 11-M you know." (* 78/03/15 *)

Robert 0. Harris, University College London, Computer Center, 19 Gordon Street, London
WClA OAH, United Kingdom: "I read the bit on PUG finances and noticed that PUG (UK)
were the big loss makers, so I reckon its time to stop reading the library copy and pay

¢T# SKIAN T¥ISVd

“3INncr

8/.6T

b 39Vd

for my own." (* 78/02/27 *)

Carroll Hemnick, Autologic, Inc., 1050 Rancho Conejo Blvd., Newbury Park, CA 91320:
"Your letter in SIGPC Notes was welcome."

Judy Herron, Computer Sciences Dept., Mt. San Antonio College, 1100 North Grand Avenue,

Walnut, CA 91789: "In my recent reading, references to Pascal seem to pop up
everywhere--although I have yet to see one line of source code.
"I'm interested in learning what I can about the language, and its implementations.
What manufacturers offer Pascal? Is there a compiler available for our Altair 8800,
Xerox 530, or IBM 1130? It sounds as though Pascal is used mainly for the teaching of
structured programming techniques. Are business and industry adopting it also?"
(% 77/12/28 *)

Bruce Hillegass, Digital Equipment Corp., 146 Main St., Maynard, MA: "I obtained your
name off a Pascal document located on one of our DEC Sys-10s.
"Pascal is virtually unsupported on all of our in-house systems, and there are numerous
versions of the compiler around. I have been interested in Pascal for quite a while,
and I’m in the process of learning the language. I am exploring the possibility of
writing a compiler using Pascal as the language and I'm looking into Pascal as a
language used in micro-programming.
"I would appreciate any information you may have on Pascal activities in university
environments especially on the DEC Sys-10." (* 78/01/27 *)

Robert M. Hofkin, APIS Dept. C-0l4, Univ. Of CA-San Diego, La Jolla, CA 92093: "Language
extensions seem necessary, but the syntax. Let’s not have another PL/I! Also--why
wasn’t Cichelli’s review of Ken Bowles’ book critical? It sounded more like a product
announcement from IBM." (% 78/03/17 %)

David Holland, P.O. Box 38243, Houston, TX 77088: "In case you don’t know already, T.I.

Are getting ready for a Pascal compiler on a ROM for their 16-bit TMS9900 MP."
(* 78/01/31 %)

William F. Holmes, Washington University, School of Medicine, 660 South Euclid Ave., St.
Louis, MO 63110: "We are not using Pascal at present, but are seriously comsidering it
for the PDP-11 (including the LSI-11) and the 8080 or 6800. We also have Computer

Automation’s LSI-2’s, but unfortunately do not use their operating system."
(* 78/01/30 *)

William C. Hopkins, 1101 Bondsville Rd., Downingtown, PA 19335: ". . . still working on
a Univac 90/70 implementation.” (* 78/02/26 *)

Gary M. Huckabay, Department of Mathematics, Cameron University, Lawton, OK 73505: "I
would appreciate information concerning the following: i) language definition, ii)
implementation at any computer site, iii) any suggestions on implementation, iv) any
information concerning implementation on the Hewlett-Packard 3000, Series II."
(* 78/01/26 *)

Phil Hughes, P.O. Box 2847, Olympia, WA 98507: "I have been studying and debating
whether to implement Pascal on a micro for over 6 months. The article “Pascal vs.
Basic’ made me aware of two things: 1. There is a Pascal Newsletter. 2. I have been
wasting my time thinking about what would make Basic better.

"Please send me information on obtaining the Pascal Newsletter and any information you
may have about implementations of Pascal on micros (particularly M68007s)."
(* 78/01/19 *)

Joseph M. Jolda, Bartlett High School, Negus St., Webster, MA 01570: "I’ve been trying
to build something around the IBM Assembler but I’m running into all sorts of problems
It seems as though Pascal has the possible answer for me." (* 78/01/09 *)

Ralph Johnson, 1592 N. Broad, Galesburg, IL 6140l: "I am rewriting Concurrent Pascal for
the PDP-11/40 which should take about two weeks. If no one else has done this, I will
send you the few changes that need to be made to the PDP 11/45 version." (* 78/01/04 *)

Here and There With Pascal

Adnnan Khan, 222/7, Block-E, (Opp. Walton Training Centre), Walton Road, Lahore, Cantt.,
Pakistan: "I would like to get some knowledge about the new developments made after my
contribution of Source Library Mechanism for Pascal 1900, under George III, which has
also reduced the compilation time by one third. My project also involved translation of
some NAG routines into Pascal.” (* 78/01/17 *)

James R. Kochanocicz, Dedicated Systems Inc., 180 N. Michigan Ave., Chicago, IL 60601:
"We are presently using Pascal on a Sperry Univac V-76 series computer.' (* 78/03/19 *)

Charles Kuhlman, New York City Criminal Justice Agency, 305 Broadway, New York, NY
10007: "We are preparing to gear up a DEC PDP 11/70 RSX-11P system and are
contemplating use of Pascal for some applications. . . . Do you know specifically of
any RSX 11/70 versions of Pascal?" (* 78/03/06 *)

Roland L. Lee, 645 35th Ave., San Francisco, CA 94121: "I am thinking of writing a

compiler for the Z-80 and would like some information on existing resident Pascal
compilers that you know of for the Z-80." (* 78/04/01 *)

Alan M. Lesgold, LRDC Computer Facility, University of Pittsburgh, 3939 O0‘Hara St.,
Pittsburgh, PA 15260: "I would be interested in knowing of sources, if they exist, for
a 6800 cross-compiler that would run on a PDP-10 or PDP-15 and also for a PDP-15
compiler. I am very interested in implementing Pascal as our primary source language."
(* 78/01/12 *)

Bruce MacAnespie, 600 N. Hickory Ave., Apt. 18, Bel Air, MD 21014: "If you can supply me
with any contacts or information regarding Pascal compilers or interpreters implemented
on Burroughs B6700 or B7700 Computer systems, please send it by return mail. Having
been a Burroughs Algol fan for some years, I am extremely interested in a language that

promises to be the next generation of decent software implementation languages.'
(* 78/03/08 *)

Mario Magidin, Direccion Genereal de Sistemas y Procesos Electronicos, Subdireccion de
Sistemas "B," Corregidora No.8, Centro, Palacio Nacional, Mexico 1, D. F.: "We are the
computing facility of the Mexican Ministry of Budget and Planning. With the aid of a
CDC Cyber-173 we are supposed to satisfy all the computing requirements of the
Ministry, thus, large, so-called commercial type systems are constantly under
development and/or running at our place.

"Up to now, all these systems have been programmed in COBOL, and although we are
painfully aware of the shortcomings of this approach, (particularly with CDC’s COBOL)
our solutions were directed mainly towards the use of a preprocessor of the type of
Weinberg’s Metacobol.

"The idea of replacing COBOL with PASCAL has arisen. I would deeply appreciate your
comments on this idea." (* 78/03/31 *)

Bill Marshall, Jr., Sanders Associates, Inc., 24 Simon St., Nashua, NH: "I’ve been

praising and promoting Pascal for five years now . . . it’s about time I put my money
where my mouth is!"

Irv McKnight, 505 Cypress Point, No. 52, Mountain View, CA 94040: "I have an S-100 8080

system with a NorthStar Disc. Several of us are looking into making the U.C. San Diego
Pascal system live in the NorthStar." (* 78/03/27 *)

Ronald D. McRaney, P.0. Box 10097, Station 1, Houma, Louisiana 70360: "I am in the

process of putting together a Pascal dedicated PDP 11/03 for my personal use.
(* 78/01/04 *)

J. Scott Merritt, 655 S. Fairoaks Avenue, Apt. L-216, Sunnyvale, CA 94086: "Tried to
find CACM article mentioned on Page 87 of PUG 1l. It wasn’t in Dec. ‘77 or anywhere
else I looked. Where can I find it?" (* 78/03/11 We don’t really know either; will you
write to Amsterdam to ask? %)

Rolf Molich, Software Development Manager, Dansk Data Elektronik Aps., Generajtorvej 6A,
DK=2730 Herlev: "Further, I would appreciate it very much if you could tell me the name
and address of any person or institution that you may have heard of who is currently
developing a Pascal compiler (not an interpreter) for the{ Intel 8080 microcomputer."
(* 78/01/24 %)

ZT# SMIN 1¥ISVd

“aNnr

861

S 39vd

Allan Moluf, 2317 Knob Hill, Apt. 9, Okemos, MI 48864: "I would like to suggest a new
approach for Pascal compilers on small machines. Syntax table-directed parsing
techniques are now getting acceptable error recovery and should result in much smaller
compilers. If PUG members know of anyone working in this area, please suggest Pascal as
a useful language to implement. Most of the code generation and 1library routines are
available in a portable compiler, which should result in an easy project."
(* 78/03/21 *)

Freeman L. Moore, Department of Computer Science, Pearce 203-B, Central Michigan
University, Mount Pleasant, MI 48859: "For your records, CMU has a Univac 1106 computer
with our version of Pascal from U.S. Naval Undersea Center, by M.S. Ball, version
1.1C4." (* 78/03/04 *)

Olav Naess, Welhavensgt. 65, Bergen Norway: "I am interested in a Pascal compiler for
the Z-80 system I am building." (* 78/01/17 *)

Heidi L. Neubauer, Coordinated Sciences Lab, Univ. Of Illinois, Urbana, IL 61801: "I am
using Pascal to write machine problems assigned in an operating systems course I am
taking at the Univ. Of Illinois as a graduate student in Computer Science. Our class
has used both standard Pascal and a souped-up version with concurrent processes and
semaphores (still under development but workable)." (* 78/03/07 *)

William I. Nowicki, C.S.R.L. Tech B626, 2145 Sheridan Road, Northwestern University,
Evanston, IL 6020l: "My special interest is the implementations of Pascal for
mini-computers, especially PDP-8°s and PDP 11°s." (* 78/01/08 *)

David J. Pesec, 20130 Miller Avenue, Euclid, Ohio 44119: "I also am wondering if there
is any copy of Pascal that will run on a Honeywell Series 60 processor." (* 78/01/30 *)

David Powers, 259A Trafalgar St., Petersham NSW 2049, Australia: "I have a TEC-9900
system (based on the TMS9900) on which I hope to eventually be able to use Pascal. T
would therefore ask if you are able to assist in this--~do you know of a Pascal compiler
for the 9900, or of any way I could get (with a view to modifying for use with my

- system) the Pascal source for a compiler with a code gemerator for the PDP-11. . . or

one of the other micros.
"I have been working on an implementation of Pascal-S for the 6502 (using 4-byte words)
in the form of a cross-compiler (based on the compiler part of the Wirth Pascal-S
interpreter as implemented in Pascal) to an “ICODE’ which runs on an interpreter (only
partially debugged, as yet, being a translation of Wirth’s ‘interpret’ procedure)
running in 4K (5K-6K with floating point) using the Jolt DEMON’ monitor. Are you aware
of any similar implementations having been undertaken? Has anyone done, to your
knowledge, the apparently feasible, but rather time-consuming conversion of this
compiler into Pascal-S?"

Steven R. Rakitin, Combustion Engineering, Inc., Mail Stop 9488-4BB, 1000 Prospect Hill
Road, Windsor, CT 06095: ". . . I am interested in the potential use of Pascal as a
Process Design Language." (% 78/01/24 *)

Mike Rebmann, Memorex Corp., Communications Div., San Tomas at Central Expressway, Santa
Clara, CA 95052: "We are potentially interested in adopting Pascal as a replacement for
assembly language for programming our 1380 front end communications processor. Does the
User’s Group have any information on adopting Pascal for this purpose? I would be
especially interested in the following kinds of stuff: 1. Compiler development (cost,
time, feasibility of wusing ‘weird’ hardware features), 2. Cutting over a software
development group to use the language (planmning training, phasing). 3. Compatibility
with existing software--it would be very hard to justify rewriting our existing product
line software. 4. Support software development--library system, loaders, ete.”
(* 78/03/03 *)

D. Roberts, Computing Laboratory, University College of North Wales, Dean Street,
Bangor, Gwynedd LL57 1UT, Wales, UK: "We have recently put H.H. Nagel’s implementation
of Pascal on our DECsystem 10." (* 78/03/17 %)

James D. Rogan, Comshare, Inc., P.0. Box 1588, Ann Arbor, MI 48106: "1
have . . « included some documentation on the Pascal compiler implemented on our

company’s computers. The use of the language is primarily for application production
systems software. To date, COMSHARE has written marketable products in Pascal and we
can currently cross-compile source for the Sigma 9 and an INTEL 8080 machine.”
(* 78/02/16 *)

Jon D. Roland, Computer Retailers Assn., Micro Mart, 1015 Navarro, San Antonio, TX
78205: "We plan to support Pascal and extensions thereof extensively during the years
ahead. We expect Pascal and APL to emerge as the leading higher-level languages,
although Cobol will probably remain popular among many of our business customers."
(* 78/03/28 *)

Richard Roth, 5 North Salem Road, Ridgefield, CT 06877: "I implemented P-2 stack machine
on Micro-Data 810 (but never finished compiler) and would like to get Pascal running on
8080/280 system under my disk OS (an advanced TOPS-10-like operating system)."
(* 78/02/01 *)

Beardsley Ruml, 2nd, 3045 Ordway Street, N.W., Washington, DC 20008: "I would 1like to

participate in [an implementation on a Z-80/8080] if possible but, if not, certainly
want to be one of the first users." (* 78/01/25 *)

Robert L. Schoenfeld, Rockefeller Univ., 1230 York Ave., New York, NY 10021: "Interested
in Concurrent Pascal and Modula for laboratory applications.” (* 78/03/23 %)

Mike Settle, ICP, 2925 Merrell Road, Dallas, TX 75229: "I am not presently a user, BUT L
WANT TO BE. I am particularly interested in 8080 and Z-80 implementations. I sure would
like to see Pascal replace BASIC in the personal and home computing environment."
(* 78/02/24 *)

Al Shpuntoff, Morningside College, Sioux City, IA 51106: "I would be delighted to be
able to teach some of our courses using the facilities of Pascal, but alas, we are
still using an antique IBM 1130 computing system. Still, the widespread availablility
of Pascal Compilers for mini-computer systems raised hopes. A direct question to one of
the participants in these conversations brought forth the suggestiond that you would

know of the existence of a Pascal Compiler for the 1130 if anyone would."
(* 78/04/07 *)

Michael L. Sieman, 6103 Harwood Ave., Oakland, CA 94618: "I would also be interested in
knowing if the Pascal User’s Group has available any other publications, particularly
ones concerning the implementation of Pascal on small machines (I’m thinking especially
of the DEC LSI-11 under the RT-11 system), or article indexes to past issues of the
Pascal News (and are back issues available?)." (* 78/03/23 *)

George A. R. Silver, Earlham College, Richmond, IN 47374: "I am particularly interested
in any recent issues which have reviews of implementations of Pascal on PDP 11/707s."

Roger Sippl, 1806 Toyon Lane, Newport Beach, CA 92660: "I learned Pascal while a student
at UC Berkeley on the many versions of the compiler on a PDP 11/70, while it was being
written and debugged. Not the recommended way to learn a language, but it had its
merit. "I am now working as a consultant in California with a special interest in
medical computer applications."

James A. Stark, M.D., 485 34th St., Oakland, CA 94609: "My computer resources are: IBM
370/148 at Univ. Of Calif. At San Francisco (Medical School) that has a batch Pascal
compiler. UNIX at U.C. Berkeley has just completed the installation of a new
interactive version by Joy, Graham, and Haley (complete with manual). I have a home
brew 8080 with floppy on which I hope to install UCSD’s version and a 6502 presently
sitting that will be used to interface my I/0 Selectric if and when I get a missing
board from Numan Computer Exchange." (* 78/03/28 *)

Quentin F. Stout, Dept. Of Mathematical Sciences, SUNY-Binghamton, Binghamton, NY 13901:
"Finally, I would greatly appreciate it if you could tell me where I could obtain a
Pascal compiler for an IBM 370/158 under VSl. We are an academic institution which
cannot afford a 1large fee, so we would probably have to obtain it from another
university." (* 78/03/17 *)

Jeff Stroomer, 224 Heritage Lane, Exton, PA 19341: "Do you (or any of your readers) know

ZT# SMIN TYISVd

“ANNT

8/61

9 39vd

of a way to get Pascal’s IF-THEN-ELSE’s into LL(1)? I already know how to monkey with
with LL(1) tables to make the parser work the right way, but that’s not what I'm
interested in; I want a grammar that’s truly LL(1)." (* 78/01/13 *)

Roy Touzeau, Computer Science Dept., Univ. Of Montana, Missoula, MT 59812: '"We have a
version of Pascal for the DEC-10 working on the DEC-20." (* 78/03/07 *)

Mike Travis, Interdata, Inc., 3080 Olcott St., Suite 125A, Santa Clara, CA 95051: "I
have just received the KSU version of Pascal which runs on an INTERDATA 8/32. We are
now 1in the process of bringing it up in a multi-terminal environment in our local data
center." (* 78/02/13 *)

Tim Walsh, 174 E. Maujer Street, Valley Stream, NY 11580: "I hope to implement a sub-set
of Pascal on my ‘KIU-1 expanded’ sometime this year." (* 78/01/09 *)

Bill Winspur, Mgr., Computer Serv., Computer Dept. For Health Sciences, Univ. Of
Manitoba, 753 McDermot Ave., Winnipeg, Manitoba R3E OW3, Canada: 'We are installing a
CYBER 171 in March and plan to use Pascal on it. We are also getting into uProcessor
applications and are particularly interested in a rumour of Pascal for the 8080."
(* 78/02/03 *)

C. Dudley Warner, 16345 Los Gutos Blvd., No. 41, Los Gutos, CA 95030: "I have Z80 based
uC w/64K mem etc.--running Pascal under CP/M and USCD ‘Pascal.’" (* 78/03/08 *)

Anna Watson, 3705 Delwood Drive, Panama City, FL 32407: "My objective is to determine
rather quickly whether we should specify a Pascal compiler in a new computer
specification for wuse by our present Algol users. Hopefully, study of a Pascal Primer
plus the Pascal News can indicate if Pascal can serve our needs." (* 78/03/20 *)

Chip Weems, Dept. Of Computer Science, Oregon State Univ., Corvallis, OR 97331: "I
enjoyed talking to Tim B[onham] at the W. Coast Comp. Faire. Tell him that I'm
rewriting my Pascal summary card, and will send him a copy when it’s finished."
(* 78/03/28 *)

John Withrow, DEC, MR1-1/A86, 200 Forest St., Marlboro, MA 01752: "I‘m using the Pascal
compiler on the DECSYSTEMS (10 and 20) here at Maynard and Marlboro, MA; as well as
implementing a Pascal (subset) compiler." (* 78/01/25 *)

Sandra Wright, Defence and Civil Inst. Of Environmental Medicine, P.0. Box 2000,
Downsview, Ont. M3M 3B9, Canada: "We plan on implementing Pascal under UNIX and RT-11
early in 1978." (* 77/11/30 *)

FRENCH/ENGLISH — ENGL:SH/FRENCH Pascar IDENTIFI

ERS

(* We received the following list of correspondences between French and English Pascal
identifiers from Patrick Ward at the University of Montreal. He credits Olivier Lecarme
and Pierre Desjardins with the original translation. Since we expect this to be used
simply as a reference by those reading programs in the other language, we are omitting
CDC-specific identifiers and those 1local to Montreal. We also have a list made by A.
Tisserant at Nancy. His list is slightly different. We’d appreciate some clarification
from the Sous-Groupe Pascal about what is standard for the French identifiers. *)

French English English French
abs abs abs abs
allera goto and et
alors then arctan arctan
arctan arctan array tableau
arrondi round begin debut
avec with boolean booleen
bas downto case cas
booleen boolean char car

car char chr carac
carac chr const const

carre
cas
const
cos

dans

de

debut
detasser
div
ecrire
ecrireln
ensemble
entier
entmax
entree
et
etiqu
exp
faire
faux

fdf
fdln
fichier
fin
fonction
haut
impair
jusque
lire
lireln
In
mettre
mod

nil

non
nouveau
ord

ou

page
paquet
plusloin
pour
pred
prendre
procedure
programme
rac2
recrire
reel
relire
rendre
repeter
si

sin
sinon
sortie
struct
succ
tableau
tantque
tasser
texte
tronc
type
var
vrai

sqr
case
const
cos

in

of
begin
unpack
div
write
writeln
set
integer
maxint
input
and
label
exp

do
false
eof
eoln
file
end
function
to

odd
until
read
readln
In

put
mod
nil

not
new

ord

or
page
packed
forward
for
pred
get
procedure
program
sqrt
rewrite
real
reset
dispose
repeat
if

sin
else
output
record
succ
array
while
pack
text
trunc
type
var
true

cos
dispose
div

do
downto
else
end

eof
eoln
exp
false
file
for
forward
function
get
goto

if

in
input
integer
label
In
maxint
mod
new
nil
not

odd

of

or

ord
output
pack
packed
page
pred
procedure
program
put
read
readln
real
record
repeat
reset
rewrite
round
set

sin
succ
sqr
sqrt
text
then
to

true
trunc
type
unpack
until
var
while
with
write
writeln

cos
rendre
div
faire
bas
sinon
fin

fdf

fdln
exp
faux
fichier
pour
plusloin
fonction
prendre
allera
si

dans
entree
entier
etiqu
In
entmax
mod
nouveau
nil

non
impair
de

ou

ord
sortie
tasser
paquet
page
pred
procedure
program
mettre
lire
lireln
reel
struct
repeter
relire
recrire
arrondi
ensemble
sin
succ
carre
rac2
texte
alors
haut
vrai
tronc
type
detasser
jusque
var
tantque
avec
ecrire
ecrireln

CT# SHAN TYISVd

“aNnr

8/61

L 39Vd

PascalL

IN THE NEWS

(* A national daily newspaper *), February, 1978: Article in the "Computers"
IBM 360 and

Australian
section about the Australian Atomic Energy Commission’s compiler for the
370 systems.

Byte, April, 1978: A letter from Stephen Smith describing the status of his work on a
Pascal compiler, based on a subset of Pascal, for microcomputers. He is now testing the
parsing procedures on a DECsystem 10.

Computer Weekly, February 23, 1978: NCR, Dundee, Scotland, is beginning to
implement a language based on Pascal.

design and

Hewlett-Packard’s
many features

1978:

combines

Computerworld, March 20,
implementation, Syspal,
Concurrent Pascal.

new language for operating system
of Pascal, Modula, Euclid, and

Computerworld, April 24, 1978: Richard Cichelli describes the "revolutionary" growth in
use of Pascal, this despite the resistance of mainframe and system vendors. A short
history of Pascal and the extent of implementations is presented.

Computing, January 5, 1978: A letter to the editor from R. J. Allwood in response to
David Barron’s earlier article in Computing. Allwood announces his reasons for
rejecting a changeover from FORTRAN to Pascal and states what a tempting new language
would look like.

Computing Europe, March 16, 1978: David Barron notes the choice of Pascal as a base for
the U.S. Department of Defense language IRONMAN.

DARCOM (U.S. . Army Materiel Development and Readiness Command) sent letters to PUG
members on February 1, 1978, asking for their responses to a series of questions about
use and implementation of Pascal. Purportedly, DARCOM is selecting a standard system
sof tware programming language. (* DARCOM got your name by copying it from the published

roster. PUG has a general policy of not releasing the roster in machine-retrievable
form.*)
Data-Link (* published by ACM-Los Angeles *), February 1978: G. S. Khalsa, managing

partner of the Pasadena Byte Shop, is reported to view Pascal as becoming the standard

language for micro business systems.

Datamation, February, 1978: A short announcement
information about how to join appeared in the "Source Data" section.

Datamation, February, 1978: A proposed multiprocessor system for
constructed by Lawrence Livermore Laboratories in California,
compiler, developed under subcontract by the Computer Sciences Department
Unive.

the U.S. Navy,
contains a Pascal
of Stanford

Instruments and Control Systems, December 1977: A report of a Pascal compiler under
development g;_fexas Instruments to meet Dept. Of Defense specifications. The article
suggests that TI’s Pascal could become a de facto standard for minis and micros. Unlike
Intel’s PL/M, Pascal is not a proprietary language.

Journal of the Hewlett-Packard General Systems Users Group, January/February 1978: A
short article introducing Pascal and some of its features and containing information
about how to join PUG.

Mini-Computer News, April 27, 1978: A new Pascal software package for the DS990 packaged
disk systems is announced by Texas Instruments. TI suggests that its Pascal, closely
compatible with standard Pascal, has many applications in areas traditionally dominated
by FORTRAN and COBOL.

PATCH (Univ. Of Notre Dame Computing Center’s newsletter), March 1978: UND has
installed Pascal.

recently

about PUG and Pascal News with

(Publication of the Univ. Of Minnesota Microcomputer Users Group), The University
computers and with them UCSD’s Pascal

UMMUG
of Minnesota’s recent acquisition of Terak
compiler/interpreter is discussed.

Vogelback Computing Center Newsletter (Northwestern Univ.), April, 1978: In announcing a
short course on Pascal, an article mentions the widespread acceptance of Pascal.

CONFERENCES

Australian Universities Computer Science Seminar, held February 23-24, 1978, University
of New South Wales:

(* We received a letter from Tony Gerber saying that "everyone (Carroll
(* Morgan *), Ken Robinson, Arthur Sale, Jeff Tobias, 2 Gordon Cox from AAEC,
myself) was there." In addition, Tony sent us copies of two papers read at the
conference:

G. W. Cox and J. M. Tobias, "An Implementation of Pascal for
Business Machines or The Impossible Takes a Little Longer."

International

(* From the abstract *) The programming language Pascal has successfully
implemented for IBM360 and IBM370 computers under the 0S/360 family of
operating systems. The compiler is written in Pascal and fully supports
Standard Pascal with some significant extensions. Interesting aspects of the
relationship between the language and the IBM360 architecture are discussed.
Surprisingly enough, the 1IBM360/370 general purpose architecture readily
lends itself to an efficient implementation of a high-level language such as
Pascal, although some features are impossible to realise.

Experiences in attempting to encourage a body of scientists to use Pascal in
preference to FORTRAN are drawn on, with the conclusion that until a revised
standard for Pascal is achieved, Pascal will never become a universally used
programming tool.

Arthur Sale, "Mismatches and Conflicts
B6700/B7700 MCP and a Pascal Implementation."

Arising out of the Burroughs

(* From the abstract *) This paper draws on experiences of implementing a
Pascal compiler on a Burroughs B6700 computer. Since these machines are
designed for high-level language programming solely, and the operating system
(MCP) is highly structured, the conflicts between the assumptions commonly
made by Pascal adherents, or built into the language, and the facilities
offered by the operating system posed some interesting conflicts which are
examined herein.

Universite de Nice, Informatique, Mathematiques et Automatique,
Informatiques de Juin 1978, conference to include a meeting of the Pascal
the 13th and l4th of June.

Manifestations
sub-group on

(* Sorry we didn’t know about this conference in time for the last issue.
We’ll hope to have titles of the papers presented by next time. *)

Second West Coast Computer Faire, March 3-5, 1978, San Jose, California. (* Pascal News
editor Tim Bonham attended. He collected a dozen PUG memberships and reported that he
"could have sold 100 Pascal User Manuals and Reports on the floor for twice their
price." He also saw several demonstrations of Pascal on micros. Several papers of
special interest to Pascalers are part of the proceedings *):

Sassan Hazeghi and Lichen Wang, "A Short Note
Microprocessors."

on High Level Languages and

(* From the abstract *) In this note, some of the practical aspects of bridging the gap

between high level programming language and computer hardware are discussed. Several
possible strategies are considered and the method of half-compiling-half-interpreting

CT# SHIAN T¥ISVd

“aNnr

8/61

8 39Vvd

is studied. In dealing with address space limitation (or tight memory situation) and
slow speed of micro processors running an interpreter, a measurement and analysis
technique is suggested. This analysis not only gives a good estimate of the timing and
storage requirement before the actual implementation, it also helps to optimize the
speed and storage usage of the implementation. The note concludes with some results

concerning the implementation of the programming language Pascal on a family
micro-processors.

H. Marc Lewis, "An Experimental Pascal-like Language for Microprocessors.

(* From the abstract *) This paper describes an experimental Pascal-like high level
language oriented to microprocessor implementation and use. The design criteria include
modest memory requirements, self-compilation, simplicity, reasonable access to hardware
features, and ease of extensibility. Program structure, data declarations, and control
structures are described and examples given. Novel features of the language are

discussed. An appendix gives a formal description of the language via syntax graphs.

Chip Weems, "An Introduction to Programming in Pascal."

(* From the abstract *) This paper will concentrate heavily on the use of the Pascal
language at the beginner’s level. A minimal knowledge of some other programming

. language such as FORTRAN, BASIC, or ALGOL is assumed.

The areas which will be covered are simple and structured statements in Pascal, simple
and structured data types, plus procedures and functions. Emphasis will be placed on
using Pascal statements, although some discussion of the power of user defined data

types will also be included.

A list of machine models for which implementations of Pascal are known to exist is

provided as an appendix.

BOOKS anp ARTICLES

PLEASE SUBMIT ALL NOTICES OF Pascal

Editor: Rich Stevens

P. 0. BOX 26732

BOOKS, ARTICLES, ABSTRACTS, etc. Tucson, AZ 85726 USA

to Rich for this section. Thanks, Andy. (phone: 1-602-327-5511)

APPLICATIONS

Patricia R. Mohilner, '"Using Pascal in a FORTRAN Enviromment," Software Practice and
Experience, 7:3 (June-July 1977), 357-362.
(* Summary of a review by R.A. Jones in Computing Reviews, January 1978. %) Mohilner
demonstrates some problems encountered in attempting to write graphical applications
programs in Pascal when the existing library of plotting routines was written in
FORTRAN. She shows the solutions to those problems, but the example suggests that the
problems she describes will likely be encountered by all installationms.

V.A. Nepomniaschy, and L.V. Chernobrod, "Automatic Program Verification," Problems of
Programming, 1976, pp. 63-80.

(* From the English summary in the table of contents *) "Describing the preliminary
version of the system for proving assertions about programs (SPRUT). The deduction
system herein is Hoare’s system for proving correctness of programs. The input is a
Pascal program with assertions. The verification condition generator outputs the list
of lemmas to be proved by other blocks of the system. In algebraic and logical
reduction of expressions simplification strategies are used, including axioms and lists
of subgoals."

Gary J. Nutt, "A Comparison of Pascal and FORTRAN as Introductory Programming
Languages," SIGPLAN Notices, 13:2, February 1978, pp. 57-62.
(* From the abstract *) "The Department of Computer Science at the University of
Colorado has recently made the transition from FORTRAN to Pascal [in introductory
courses], and this paper offers and informal discussion of the experiences of one
instructor during that change."

Kitt Peak Nat'l Observatory

IMPLEMENTATIONS

Urs Ammann, "On Code Generation in a Pascal Compiler," Software Practice and Experience,
7:3 (June-July 1977), 391-423.
(* From the abstract, as reported in Computing Reviews, January 1978. *) "This report
deals with code generation in a Pascal compiler. It gives insight into the run-time
organization of data and the use of the hardware registers of athe underlying machine
(a CDC 6400). It is shown how the compiler maintains a description of the register
contents and uses this description to generate efficient code. Several examples of
compiled code are discussed."

Forest Baskett, '"The Best Simple Code Generation Technique for WHILE, FOR, and DO
Loops," SIGPLAN Notices, 13:4 (April 1978), pp. 31-32.
(* From the abstract *) "This code generation technique for WHILE, FOR, and DO loops is
simple to implement and usually results in the best loop code in the absence of flow
analysis. Also the technique makes it possible to move code from inner loops without
doing flow analysis and without ever moving code from a less frequently executed block
to a more frequently executed block."

Kenneth L. Bowles, "The USCD Pascal Project," Educom, 13:1 (Spring, 1978), pp. 2-7.

(* From the summary *) '"Small stand-alone microcomputers can serve as the basis for
running a sophisticated general-purpose interactive software system capable of
supporting CAI, word processing, data processing, and other interactive tasks in
addition to development of the software itself. The project described in this article
has implemented such a software system using the Pascal programming language. The
system is designed to be nearly machine-independent, and currently runs on a number of
microprocessors, including the popular LSI-11, 8080, and 280."

G. W. Cox and J. M. Tobias, "An Implementation of Pascal for International Business
Machines or the Impossible Takes a Little Longer." (* See CONFERENCES section *)

Sassan Hazeghi and Lichen Wang, "A Short Note on High Level Languages and
Microprocessors." (* See CONFERENCES section *)

H. Marc Lewis, "An Experimental Pascal-like Language for Microprocessors." (* See
CONFERENCES section *)

Arthur Sale, "Mismatches and Conflicts Arising out of the Burroughs B6700/B7700 MCP and
a Pascal Implementation." (* See CONFERENCES section *)

J. Welsh, "Economic Range Checks in Pascal," Software--Practice and Experience, Vol. 8
(1978), 85-97.
(* From the abstract *) "A Pascal implementation is described which exploits the
information provided by subrange type declarations to minimize the run-time checking
involved in detecting range violations. An evaluation of its performance is given, and
some possible modifications are discussed. (* It pays to use sub-ranges. *)

LANGUAGES

Borge Christensen, "COMAL: Structured Basic,'" People’s Computers, 6:4 (Jan.-Feb. 1978),
pp. 36-41.

(* From the table of contents *) ". . . adding Pascal’s algorithmic structures to
BASIC."

M. Iglewski, J. Madey, and S. Matwin, "A Contribution to the Improvement of Pascal,"”
SIGPLAN Notices, 13:1 (January, 1978), pp. 48-58.
(* From the introduction *) "The purpose of this paper is twofold. First of all we
would 1like to present some of our proposals, concerning the desirable corrections in
the Revised Report on Pascal and possible slight extensions of the language. Secondly
we want to argue with some of the critical remarks on Pascal as formulated several
months ago by Conradi."

CT# SMAN TYISVd

“INnr

861

6 39Vd

Charles Lakos and Arthur Sale, "Is Disciplined Programming Transferable, and is it

Insightful?" (* Received in January; may be published by now; more news from Arthur
Sale or from PN 13 %)
(* From the abstract *) ". . . The paper applies the thought processes advocated by [
E.W.] Dijkstra to [two] problems and indicates the insights that the authors gained
from this. In both cases algorithms new to the authors were derived, and the properties
of these are also examined. The paper . . . demonstrates that the techniques advocated
by Dijkstra are indeed transferable to other programmers, and that this transfer yields
better insight into the activity we call programming."

David Mundie, "Pascal vs. BASIC," People’s Computers, 6:4 (Jan.-Feb. 1978), pp. 41-47.
(* From the table of contents *) "A polemical comparison of the two as general-purpose
microprocessor languages."

Jim des Rivieres and Ted Venema, "Euclid and Pascal," SIGPLAN Notices, 13:3 (March
1978), pp. 57-69. (* From the abstract *) "The programming language Euclid was intended
for writing system programs that could be verifiable by state-of-the-art verification
methods. Since verification was not an explicit goal in the design of Pascal, it is not
surprising that this gave rise to differences between the two languages. The Euclid
designers intended to change Pascal only where it fell short of this goal. This paper
examines differences in the two languages in the 1light of this objective. These
differences are roughly grouped under the headings verification, system programming,
and user-oriented changes."

Abraham Silberschatz, Richard B. Kieburtz, and Arthur Bernstein, "Extending Concurrent
Pascal to allow dynamic resource management," IEEE Transactions on Software Engineering
, SE-3:3 (May 1977), 210-217.

(* One sentence from a review *) "The authors of this paper propose an extension to the
programming language Concurrent Pascal to allow more flexible dynamic resource
management. They introduce a new type called manager. . . ."

Tennent, R. D., "Language design methods based on semantic principles," Acta Informatica
, 8:2 (1977), 97-112.
(* From the abstract *) "Two language design methods based on principles derived from
the denotational approach to programming language semantics are described and
illustrated by an application to the language Pascal. The principles are, firstly, the
correspondence between parametric and declarative mechanisms, and secondly, a principle
of abstraction for programming languages adapted from set theory. Several useful
extensions and generalizations of Pascal emerge by application of these principles,
including a solution to the array parameter problem, and a modularization facility."

Arthur Sale, "Stylistics in Languages with Compound Statements" (* Article may have been
published in Australia; check with Arthur Sale; more information in PN 13. %)
(* From the abstract *) "This short communication discusses a stylistic problem which
arises in languages with use both statement separators such as semicolons, and begin-
end bracketting structures, such as Pascal. It suggests that an alternative to the
traditional rules which have evolved from Algol 60 is preferable."

Chip Weems, "An Introduction to Programming in Pascal." (* See CONFERENCES section. *)

J. Welsh, W. J. Sneeringer, and C.A. Hoare, "Ambiguities and Insecurities in Pascal,"
Software--Practice and Experience, Vol. 7 (1977), 685-696.
(* This 1is the best critical article to have appeared about Pascal. The ambiguities
discussed are equivalence of types (name equivalence vs. Structural equivalence), scope
rules and one-pass compilation, and set constructors. The authors point out the
following "insecurities": features whose implementation either risks undetected
violation of rules of the language or run-time checking that is too expensive to be
tolerable: variant records, functions and procedures as parameters, range violations,
uninitialized variables, and dangling references. *)

TEXTBOOKS

(* See reviews for Bowles, Comnway, Grogono, and Schneider texts. *)

S. Alagic and M. A. Arbib, The Design of Well-Structured and Correct Programs, New York:

Springer-Verlag, 1978, 292 pages, $12.80. (* See description in No. ll. We hope to have
a review in No. 13. *)

Richard Kieburtz (* Updated information *), Structured Programming and Problem Solving
with Pascal, Englewood Cliffs, NJ: Prentice-Hall, 1977, 320 pages, $12.80.(* Similar to
Conway; see reviews. %)

A Guide to PASCAL Textbooks
Richard J. LeBlanc and John J. Goda
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA

G. Michael Schneider, Steven W. Weingart and David M. Perlman, An Introduction
to Programming and Problem Solving with PASCAL, John Wiley, 1978. ($12.95)

Among the strongest features of this book are its coverage of the com-
plete programming processes (from problem specification through debugging
and maintenance) and its emphasis on good programming style. Most of
PASCAL is well presented, with the examples giving a good demonstration
of how the features of the language should be used. The weakest part
of the book is the presentation of "advanced" features such as variant
records and pointers. Its coverage of programming fundamentals makes
this an excellent text for an introductory course for students with little
or no programming experience.

Peter Grogono, Programming in PASCAL, Addison-Wesley, 1978. ($9.95)

While this is an introductory book, it concentrates more on the syntax
of PASCAL and less on programming methodology than does the book by
Schneider et. al. It is easy to read and has syntax charts integrated with
the text rather than in an appendix. Grogano includes very good coverage
of the advanced features, particularly pointersand dynamic data structures.
The presentation of user-defined types is not as well-organized as it
could be. While this book could be used as the text for an introductory
course, its lack of coverage of programming fundamentals and its strength
in the area of the advanced features make it best for students who have
some programming experience.

Richard Conway, David Gries and E. Carl Zimmerman, A Primer on PASCAL, Winthrop, '76.
- ($10.95)

This book is based on a PL/1 book by Conway and Gries and it shows.
The only structured type discussed is arrays and the discussion of user de-
fined scalar types is very weak. The material on programming methodology
is not at all integrated with the presentation of the language, so it is
necessary to skip around in the book when it is being used as a text in an
introductory course. There are errors in the presentation of PASCAL that
are clearly not typographical. In general, this book fails to capture
the idea that the features of PASCAL can actually make program development
easier than if FORTRAN were being used.

Kenneth L. Bowles, (Microcomputer) Problem Solving Using PASCAL, Springer-
Verlag, 1977. ($10.95)

(See PASCAL News #11 for a more thorough review.) This basically appears
to be a good book, but the language presented is not standard PASCAL. Bowles
microcomputer PASCAL (with extensions for graphics and string handling) is
used and the examples are heavily dependent on use of the extensions. This
tends to make much of the book confusing to a student who does not have
Bowles' system available.

CT# SMIAN TYISV

“ANNTr

86T

0T 39Vd

ATTN: FREIE UNIVERSITAT BERLIN
ArRTICLES WANTED ATIN: FRIEDA S. COHN

ATIN: HELEN SMITH
ATTN: INFORMATION SERVICE CENTER

(* Tim Bonham has been surveying publications which might want articles about Pascal and ATTN: INSTITUT FUER INFORMATIK
has supplied us with the following list. *) ATTN: INSTITUT FUR INFORMATIK
ATTN: LAFAYETTE COLLEGE

ATTN: LIBRARY

Wayne Green © ATTN: LIBRARY - COPY 2
Kilobaud BTN : NORTHWEST MICROCOMPUTER SYSTEMS LiC.
-y ATTN: PROGRAMMING ADVISOR
Peterborough, NH 03458 ATTN: PROGRAMMING ADVISOR
(603) 924-3873 ATTN: PURCHASING OFFICE
Especially interested in articles which answer the questions "Why 'should I use ATIN: SAH CALVIN

o o " . ATTN: SCHOOL OF INFORMATION SCIENCES

Pascal? What uses does Pascal have in the real world?" and "How would I gain from ATTN: SERIALS DEPT.
using Pascal?" Maybe later on could use articles on how to program in Pascal. Will ATTN: SPECIAL INTERACTIVE COMPUTER LAB

pay. ATTN: STUDENT COMPUTING COOP

ATTN: SUSAN BOWIE - DOCUMENTS ROOM

ATTN: THE LIBRARIAN

Stan M. Sokolow ATTN: UNBOUNDED COMPUTING
ATTN: UNIVERSITAT DE GRENOBLE

Solus News N7 N:TECHNICAL RESEARCH CENTRE OF FINLAND
1690 Woodside Dr. LEE D. AURICH
Redwood City, CA 94061 ROBERT M. BAER
(415) 368-3331 Ity
Wants articles introducing and "justifying" Pascal. Especially interested in JOHN BANNING
machines which are software compatible with the SOL (8080-based with cassette ANN BARDIN
operating system). ANN V. BARROW

FRANCIS H. BEARDEN
E. R. BEAUREGARD

Northstar Newsletter GARY BECKWITH
2547 Ninth St. DAV[:;‘A?‘B:E?;
Berkeley, CA 94710 E. MAURICE BEESLEY
Especially interested in software for the Northstar products: micro disk system and ABDU‘Z“Q?,,Z',',,E&{S
Horizon computer system. Introductions and justifications. STEVEN M. BELLOVIN
GILBERT BERGLASS

Larry Steckler, Editor A’-E;;(E).:A:E:f:;ggg
Radio-Electronics JOEL BERSON
200 Park Ave. S. SCOTT S. BERTILSON
New York, NY 10003 Lzol;,;kg.sﬁgigéz
(212) 777-6400 CHRIS M. BISHOP
Introductions to programming in Pascal. "UDLM"LBSEOJ

ANTHONY BJERSTEDT
R. B. T. BLACK

ROSTER INCREMENT (78/04/22) ROBERT E. SLANTON

DAMON BLOM
W. ASHBY BOAZ
The names Tisted below represent people who have renewed, changed address, PETER BOCK
JOHN R. BOGAW
or joined PUG since the roster increment was printed in PUGN 11. Some REFORD BOND
. feps RONALD V. BOSSLET
interesting statistics: GREG BOURQUE
WILLIAM M. BRACK
renew date number state number country number JOHN A. BRIGGS
JERRY R. BROOKSHIRE
77 238 CA 349 USA 1535 DAVID H. BROWN
78 1557 MN 156 UK 145 R. wgmg BRow
79 249 MA 107 Canada 88 g VLS BRYCE
80 54 TX 88 Germany 70 DONALD D. BURN
81 10 NY 83 Australia 42 DEBORA: ngg:
82 7 PA 80 Netherlands 35 RICKY W. BUTLER
Sweden 31 JAMES D. CALLADINE
Switzerland 27 T. M. GANBRON
JIM CAMERON
Denmark 23 SHERRY L. CAMERON
RUSSEL J. ABBOTT 91330 ATTENTION: GORDON R. SHERMA 37916 ROBERT L. CANNOW
REFSA ABRAMS 87106 ATTENTION: G. TER HOFSTEDE M5V 289 CANADA ROY CARLSON
RICHARD E. ADAMS 43214 ATTENTION: JERRY W. SEGERS 30332 . P. CARR
TONY ADDYMAN M13 9PL UNITED KINGDOM ATTENTION: R. D. BERGERON 03824 JOHN CARTER SR.
PETER ALTMANN D-5100 GERMANY ATTENTION: SANDRA WRIGHT M3' 3B9 CANADA GEORGE P. CHENEY
J. AMBLER UNITED KINGDOM ATTN: BETTE BOLLING-LIBRARTAN 45036 C-C;hg:ﬁg?x
RICHARD M. AMEYE 01752 ATTN: CECICO CHILE EARL :(-mm PR
CHRISTOPHER AMLEY 55455 ATTN: CENTRE NDE RECHERCHE F-34075 FRANCE .
DAVID L. ANDERSON 53201 ATTN: CHICO PROJECT - CDC 95929 W. E. CLARK
PETER ANDERSON 07102 ATTN: COMPUTER SCIENCE PRESS INC. 20854 JENNIFER CLARKE
HMATS APELKRANS §-350 93 SWEDEN ATTN: CUPERTINO LIBRARY 95014 mcmgncaﬁxéz
ROBERTO ARGUETA EL SALVADOR 77 DEPT DE MATHEMATIQUE AND INFORMATIQUE F-35031 FRANCE A
MICHAEL C. ARMSTRONG 94804 ATTY: DEPT OF BIOCHEMISTRY LEL 7RH UNITED KINGDOM GEOFFREY A. CLEAVE
WILLIAM J. ARTHUR 92624 ATTN: DEPT. OF COMPUTER SCIENCE 38677 GERHARDT C. CLEMENTSOHN

ANTTI ARVELA SF-33340 FINLAND ATTN: DOCUMENTATION OFFICER NEW ZEALAND

D-1000
53706
N2L 3Gl
55113
D-2000
D-2300
18042
91109
94305
97401
89507
89154
2600
09175
2616
52242
55455
92093
97403
NE99 ILH
94086
F-38041
SF-02150
90230
94941
74104
20760
94305
47401

45241
17013
55113
L69 3BX
92701
89557
95008
55408
27514
14221
85005
D-2000
01821
55455
68508
20901

2001
92634
74171

DN2 3XX
01778
95819
22101
20052
94010
73102
02154
80901

84047
77840
92037
22903
L8S 4K1
20007
61801
13346
97420
23601
LOC 1KO
32901
43023
92714
29208
97077
BA2 7AY
95050
01854
94550
68134
FK9 4LA
92138
02115
76010
M20
3165
80204

GERMANY
CANADA

GERMANY
GERMANY

AUSTRALIA

AUSTRALIA

UNITED KINGDOM

FRANCE
FINLAND

UNITED KINGDOM

UNITED KINGDOM

GERMANY

NEW ZEALAND
SOUTH AFRICA

UNITED KINGDOM

HONG KONG

CANADA

CANADA

UNITED KINGDOM

UNITED KINGDOY

UNITED KINGDOM
AUSTRALIA

BETTY CLIFFORD T2N IN4 CANADA

D. S. COCHRANE

JOE COINT:IENT

R. COLE

HOWARD S. COLEY JR.
TERENCE M. COLLIGAN
ANTHONY CONTI
MICHAEL J. COOK

D. F. COSTELLO

C. J. COTTON

M. MICHEL COURCHESNE
JOHN COUSINS
LAWRENCE F. CRAM
ROGER CREAMER

A. PAUL CROONENBERGHS
SCOTT CRUMPTON
HOWARD CUNNINGHAM
JoAN H. DALY
THOMAS DANBURY
ROMALD L. DANIELSON
GENE A. DAVENPORT
SCOTT T. DAVIDSON
ADELINO CARLOS DE SOUSA
DENNIS S. DELORME
ALAN DELWICHE

SHAUN DEVLIN

JERRY DI MASSA
ROBERIO DIAS

DAVID R. DICK
CLEMENT L. DICKEY
MARY DIEGERT

BOB DIETRICH

M. JEAN-MARIE DIRAND
FELIX DREHER

LARRY DUBY

DOUGLAS DUNLOP
BRUCE J. EDMUNDSOX
JOHN EDWARDS

P. S. EDWARDS

H. W. EGDORF
JOSEPH EINWECK
JOHN ELDER

LARRY E. ELLISON
ROBERT EMERSON
JAMES C. EMERY
HANYU ERKIO

C. B. FALCONER
MICHAEL FAY

LINWOOD FERGUSON
BILL FINCH

MEL R. FISHER

F. G. FLETCHER
DOUG FORSTER

CRAIG FRANKLIN

R. D. FREEMAN

ERIC D. FREY

DAVID F. FRICK
KARL FRYXELL

MICHEL GALINIER
DAVID GARDNER
PHILIP GAUDETTE
RICHARD D. GEORGE
CARSON GERMAN
BRANKO J. GEROVAC
CLIFFORD GERSTENHABER
CHARLES J. GIBBONS
RICK GILLIGAN

DON GILMORE

‘THOMAS GIVENTER

R« STEVEN GLANVILLE
GEORGE H. GOLDEN SR.
DAVID GRABEL

TOM GRABOWSKI
JEFFREY W. GRAHAM
SUSAN L. GRAHAM
DAVID N. GRAY
ARTLE GREEN

ROBERT M. GREEN

SY GREENFIELD

PETER GROGONO
RICHARD D. HACKATHORN
WILLIAM L. HAFNER
JACQUES HAGUEL
BYRON HALE

RICHARD W. HAMILTON
BRIAN HANSEN

WILL HAPGOOD

ANDY HARRINGTON
MIKE HARRIS

75248
SEl 0AA
95070
02193
03301
95014
68583
19898
HIG 385
97005
01701
93940
92277
32601
47904
08108
06880
95051
10016
92138

55901
95120
48010
95051

02104
93407
13902
97077
JIK 2R1
66762
22209
23185
94040
3083
3216
80401
88003
BT7 INN
08046
98040
08340
SF-00100
06504
60919
22901
95014
95118
02154
94611
03060

03031
94025
91125
F-31450
55113
22301
60439
90706
02154
55343
68154
93407
95030
10583
94087
14063
02174
15108
35223
94720
78769
19311
v4M 3T9
12206

19174
19424
JIK 2R1
94043
94702
97213
02154
93017
62704

UNITED KINGDOM

UNITED KINGDO:

CANADA

PORTUGAL

BRAZIL

CANADA

AUSTRALIA

AUSTRALIA

UNITED KINGDOX

FINLAND

UNITED KINGDOM

FRANCE

CANADA

CANADA

CANADA

CT# SMIN TYISVd

“INNr

8/61T

IT 39Vvd

ROBERT 0. HARRIS WCl1A OAH UNITED KINGDOM

ROBERT W. HARRIS
DON HARVEY

W. F. HAYGOOD
PETER HAYNES
SASSAN HAZEGHI
RANDALL HEAP
JOUN HEATH

JUDY HERRON

S. J. HIGGINS
TERUO HIKITA
BUZZ HILL

BRUCE HILLEGASS
ED HIRAHARA

THOM HOARD

C. A. R. HOARE
FRED M. HOFKIN
WILLIAM HOLMES
JAMES W. HOLT JR.
JILL A. HOLTZ
WILLIAM C. HOPKINS
MARK HORTON

DAVID A. HOUGH
MICHAEL A. HOUGHTALING
D. J. HOWORTH
PEI HSIA

PETER YAN-TEK HSU
HARTMUT G. HUBER
GARY HUCKABAY
JACK HUGHES

PHIL HUGHES
EDWARD C. HUMPHREY
M. A. HUSBAND
DANIEL C. HYDE
ELIZABETH IBARRA
MICHAL IGLEWSKI
BERT INCARFIELD
DAVID INTERSIMONE
T. M. N. IRISH
PORTIA ISAACSON
HANNU JAAKKOLA
TIMOTHY H. JACKINS
STEVE JAY

RON JEFFRIES
JOSEF JINOCH
DOUCLAS N. JOHNSON
LYTLE JOHNSOHW
PAUL D. JOHNSON
RALPH JOHNSON
ROBERT T. JOHNSON
S. JOHNSON

JOSEPH H. JOLDA
ALAN JONES

DAVID JONES
RUSSELL JONES
MARK JUNGWIRTH
MIKE KAMRAD
KENNETH KAPLAN
HEIKKI KASKELMA
RICHARD KAUFMAN
FRED J. KELLER
MIKE KERSEY
ADNNAN KHAN

JOHN H. KILFOIL
ERICH R. KNOBIL
TOM KNOCHE
STEPHEN KOCH
JAUES R. KOCHANOWICZ
JUDITH KOVETZ
JEFF KRAVITZ
DIETRICH KREKEL
RICHARD W. KREUTZER
CHARLES KUHLMAN
DARRYL KUHNS
KWAI-SAND LAM

K. LANG

GUY LAPALME

G. F. LAPPIN

JOHN LATRASH
CHARLES L. LAWSON
HENRI A. LE FRIANT
RONALD LEBEL
RICHARD LEBLANC
ROLAND L. LEE

R. GARY LEE
WILLIAM J. LEE

E. J. LEGGE
CLARENCE LEWMAN
CHARLES T. LEIS

97070
84121
L5N 1X7 CANADA
94305
01752
04103
91789
CA9 3LP UNITED KINGDOM
158 JAPAN
98632
01754
83704
55414
0X2 6PE UNITED KINGDOM
19117
63110
40222
63166
19335
53706
24502
85712
UNITED KINGDOM
35801
55455
22448
73501
K7L 3N6 CANADA
98507
78769
UNITED KINGDOM
17837
91360
00590 POLAND
77459
90250
NP6 73B UNITED KINGDOM
75080
SF-33500 FINLAND
94306
85721
93017
7 CZECHOSLOVAKIA
94598
80033
75006
61401
87545
85002
01570
IRELAND
L5SN 1K7 CANADA
M5 3W6 CANADA
93010
55413
50304
SF-00130 FINLAND
92093
99210
77098
PAKISTAN
95126
33313
92109
01730
60601
ISRAEL
11771
D=-5000 GERMANY
841902 -
10007
89503
D-4440 GERMANY
B15 2TT UNITED KINGDOM
H3C 3J7 CANADA
UNITED KINGDOM
20910
91103
70118
02139
30332
94121
32306

55423

M60 1QD UNITED KINGDOM
55364
94087

WILL LELAND
JOE LERNER

ALAN M. LESGOLD
KEN LESSEY

JAMES D. LETZ
DAVID J. LEWIS
HORNG JYH LIANG
PING K. LIAO

JACK LIEBSCHUTZ
JOHN E. LIND

FRANK LINDSAY

CHUT FAN LIU
WILLIAM R. LLOYD
CARLO LOCICERO
STEPHEN A. LONGO
ANTHONY P. LUCINO
CLARENCE W. LYBARGER
STUART LYNNE

BRUCE MAC ANASPIE
D. W. MACLEAN
ORLANDO S. MADRIGAL
KEVIN T. MAHONEY
DENNIS J. MAINE
STEPHEN MANN

DUANE F. MARBLE
THOMAS A. MARCINIAK
L. R. MARKER

BILL MARSHALL
WILLIAM J. MARSHALL
S. MATTHEWS

STEVE MCFERRIN
FRANK E. MCGARRY
JAMES PATRICK MCGEE
JAMES A. MCGLINCHEY
DAVID J. MCKEE
IRVINE L. MCKNIGHT
WILLIAM L. MCLAIN III
RONALD P. MCRANEY
JOHN MEDCALF
MICHAEL MEEHAN

JIM MERRITT

HANS J. METZDORF
KURT METZGER
JOTEPH MEYER

R. N. MILLER
PATRICIA R. MOHILNER
ROLF HOLICH

UFFE MOLLER

ALLAN MOLUF

CECIL A. MOORE
FREEMAN L. MOORE
RAYMOND MOREL
CLEMENT MORITZ
LYALL MORRILL

GREG MORRIS

JHO-WU }OU

GLEN R. J. MULES
AN MURPHY

CHARLES MYERS
DONALD V. MYHRA

J. P. M. STOFBERG
GERALD NADLER

OLAV NAESS

JOHN NAGLE

GEORGE NAGY

T. A. NARTKER

ED NAYLOR

PETER A. NAYLOR
HEIDI L. NEUBAUER
HARTIN NICHOLS
DANIEL NICHOLSOH
DENNIS NICHOLSON
HIROAKI NISHIOKA
TONY NOE

JOHN NOLD

MELVIN L. NORELL
BARBARA K. NORTH
LARRY T. NOVAK
WILLIAM I. NOWICKI
M. NUNN

FRANK NUSSRAUM
FRANK W. OECHSLI
DAVID F. OHL

ERIC OLSEN
GENE H. OLSON
JAMES B. ONEY

P. E. OSMON
SUSAN S. OWICKL

53715
38163
15260
97051
92805
14850
20854
94545
02139
55455
22209
60005
94115
L5L 2E9
19141
77843
55901

21014
S7N OWO
95929
01742
92717
01730
14260
20014
35805
03060
98033
H4T 1NL
94086
20771
77025
19403
22209
94040
27410
70360
94707
02138
94086
CH-6900
48105
17557
75229
80523
DK-2730
DK-9220
48864
95051
48859
cH-12264
01720
94114
54701

10804
20742
60611
92705
19422
01351

95051
68588
87801
78761
19422
61801
07301
55901
19401
544
91711
15701
90070
66502
75235
60201
SWLP 4RT
69626
94611
95014

92713
55419
93022

NW3 7ST
94305

CANADA

CANADA

CANADA

CANADA

SWITZERLAND

DENMARK
DENMARK

SWITZERLAND

CHINA

NORWAY

JAPAN

UNITED KINGDOM

UNITED KINGDOM

JAMES N. O°BRIEN
STEVE O°KEEFE

JACK PAGE

W. 0. PAINE

R. L. PALASEK
RICHARD PALCHIK
PAUL J. PANTANO

T. L.(FRANK) PAPPAS
M. L. PATRICK
DAVID N. PECK

JIM PECK

ROBERT C. PERLE
BERNARD PERRETTE
RONALD H. PERROTT
DAVID PESEC

JAMES L. PETERSON
SUSAN A. PETERSON
CHRIS K. PHILLIPS
DAVID M. PHILLIPS
DAVID PICKENS
THOMAS PIRNOT

FRED POSPESCHIL
DAVID POWERS

KARL PRAGERSTORFER
GENE H. PRIESTMAN
FRANK PROSSER’
ANDREW S. PUCHRIK
J. R. PUGH
SHING=KIN PUN
ABBAS RAFIL

ROBERT J. RAKER
STEVEN R. RAKITIN
TIM RAND

ROBERT RANSDELL
DOYALD D. REDDING
VERWER REMMELE
JOHN H. REMMERS
TIMOTHY P. ROBERTS
KEN ROBINSON

D. J. ROBSON
MICHAEL RODBY
JAMES D. ROGAN

J. S. ROHL

JON D. ROLAND

GENE ROLLINS

J. ROSCOE

PETER N. ROTH
RICHARD ROTH

R. WALDO ROTH

H. J. ROWE

HERB RUBENSTEIN
BEARDSLEY RUML 2ND
HOWARD RUTIEZER
JOHN L. RUTIS
DAVID W. SALLUME
ANN D. SANDERSON
TOM SANDERSON
HAROLD S. SCHECHTER
ALAN M. SCHLENGER
CH. SCHLIER
RICHARD SCHLOTFELDT
ANA-MARIA SCHMIT
ED SCHOELL

ROBERT L. SCHOENFELD
PETER U. SCHULTHESS
JIM SCHULTZ
WILLIAM M. SEIFERT
MICHAEL SETTLE
LEONARD SHAPIRO

T. K. SHARPLESS
TIMOTHY SHAW

ALAN M. SHERKOW
BRUCE SHERRY

R. G. SHERRY
THOMAS E. SHIELDS
KEITH ALLAN SHILLINGTON
CHARLES B. SHIPMAN JR.
KIM L. SHIVELEY
ARNOLD SHORE
MICHAEL L. SIEMON
LESLIE L. SIFTER
JOHN SIGLE

GEORGE A. R. SILVER
GENE SIMMONS
TIMOTHY M. SIMMONS
SIMON

ANDREW SINGER
ROGER SIPPL

DAVID SKINNER

97229
20229

91103
44839
95014
95051
19083
B20 ILL
01756
16142
08753
F-92803
94086
44119
78712
55432
94305
78736
80302
19530
68005
2049
A-4060
95129
47401
47119
S1 1WB
95926
73019
94104
06095
06268
43202
48105
D-8000
48197
10509
2033

50701
481906

6009
78205
11794

22030
06377
46989
LEL 7RH
80401
20008
60025
97196
93454
23284
91311
11418
95064
D-7800
55435
CH-1007
95051
10021
CH-8006
95014
87545
75229
58102
10021
20016
53212
95050
98107
77005
92093
22027
75231
22032
94618
02181
78284
47374
22030
72143
2308
02556
92660
97330

SINGAPORE

UNITED KINGDOM

FRANCE

AUSTRALIA
AUSTRIA

UNITED KINGDOM

GERMANY

AUSTRALIA
UNITED KINGDOM

AUSTRALIA

UNITED KINGDOM

UNITED KINGDOM

GERMANY

SWITZERLAND

SWITZERLAND

AUSTRALIA

LEO J. SLECHTA
JOSEPH W. SMITH
TOM SNYDER

DAVID SOLOMONT
RICHARD P. SPRAGUE
ROB SPRAY

R. E. STARCK

JAMES A. STARK

R. A. STASIOR
MICHAEL K. STAUFFER
GREG STEPHEN

WIY STEVENS

JIM STEWART

ZHAHAI STEWART
RICHARD A. STONE
QUENTIN F. STOUT
M. J. STRATFORD-COLLINS
GORDON STUART
INDRO S. SUWANDI
MARK A. SVANSON
ROBERT M. SWEENEY
E. SWEET

KEN SYLVESTRE
DAVID TARABAR

H. TAYLOR

R. F. TAYLOR

DON TERWILLIGER
DANIEL THALMANN

K. TIZZARD

HOWARD E. TOMPKINS
ROY TOUZEAU

MIKE TRAVIS

TOM A. TROTTIER
JAMES TRUEBLOOD
JJIM TSEVDOS
HOWARD L. TURETZKY
GERALD F. UHLIG

S. M. VAIDYA

TOM VAN DER HOEVEN
STANLEY C. VESTAL
JOHN VINSEL

LES VOGEL

55165
92127
92634
02155
92714
75207
15021
94609
13088
95051
62026
B-2510 BELGIUM
08854
80306
55435
13901
06720
V8P 5J2 CANADA
INDONESIA
02174
38103
48109
Y1A 3P5 CANADA
01581
KIN 6N5 CANADA
90026
97005
H3C 3J7 CANADA
EX4 4PU UNITED KINGDOM
15701
59812

M4R 1V2 CANADA
19713
15213
80220
55112
411007 INDIA
THE NETHERLANDS
55413
03061
93940

PATRIK WAHREN S-102 62 SWEDEN

SCOTT WAKEFIELD
JOHN WALKER
JUSTIN C. WALKER
TIM WALSH

94305
94941
20234
11580

P. R. WALWYN KT23 3EZ UNITED KINGDOM

C. DUDLEY WARNER
SANDY WARSHAW

MARK S. WATERBURY
ANNA WATSON

CHIP WEEMS

STEPHEN J. WEINBERGER
STEVEN W. WEINGART
LAUREN WEINSTEIN
MICHAEL D. WEINSTOCK
DAVID H. WELCH
JAMES H. WELLS

95030
12301
22044
32407
97331
64138
01581
90025
32548
92501
92634

D. R. WESTLUND K9K 1J1 CANADA

MARVIN WHITE
RONALD C. WHITES

97077
92701

MAREK WIECHULA B2G 1CO CANADA

JACK M. WIERDA

J. F. WILKES
ROY A. WILSKER
MICHAEL WIMBLE

60532

THE NETHERLANDS
02114
52404

BILL WINSPUR R3E OW3 CANADA

JOHN WITHROW

ERIC WOGSBERG
BRUCE WOLFE
SHARLEEN WOXRG
STEPHEN C. WOOD
ARDEN WOOTTON
FULTON WRIGHT JR.
BRUCE YALE

01752
94618
94965
94134
87108
64151
86301
92506

M. J. L. YATES GL52 5AJ UNITED KINGDOM

JAMES CRAIG ZIEGLER
DAVID J. ZOOK

38138
60626

CT# SMIAN 1Y¥ISVYd

“aNnr

8/61

¢T 39Vvd

PASCAL NEWS #12 JUNE, 19738

01570 JOSEPH H. JOLDA/ BARTLETT HIGH SCHOOL/ NEGUS STREET/ WEBSTER M A 01570

PAGE 13

DOUGLAS DUNLOP/ 1502 CONWAY DRIVE - APT. 103/ WILLIAMSBURG VA

01581 DAVID TARABAR/ SOFTWARE DEVELOPMENT/ M.S. 71141/ DATA GENERAL ~CORPORATION/ ROUTE 9/ WESTBORO MA 01581/ (617) 365-8911 X3082
01581 STEVEN W. WEINGART/ MS 71141/ DATA GENERAL CORP./ 15 TURNPIKE RD./ WESTBORO MA 01581/ (617) 366-8911

01701 LAWRENCE F. CRAM/ 1300 WORCESTER RD. APT 101/ FRAMINGTON MA 01 701/ (617) 875-5663

01720 CLEMENT MORITZ/ 30 WETHERBEE ST./ ACTON MA 01720/ (617) 263-27 11

01730 STEPHEN KOCH/ 3M/LINOLEX SYSTEMS INC./ 10 CROSBY DRIVE/ BEDFOR D MA 01730/ (617) 275-1420 X175

01730 STEPIEN MANN/ 34 LINOLEX SYSTEMS INC./ 10 CROSBY DRIVE/ BEFor D MA 01730/ (617) 275-1420 X164

01742 KEVIN T. MAHONEY/ MAIL-STOP 2/ GENRAD INC./ 300 BAKER AVENUE/ CONCORD MA 01742/ (617) 369-4400 X317

01752 RICHARD M. AMEYE/ 18 ROYAL CREST DR. - APT. 4/ MARLBORO MA 017 52/ (617) 481-5823

01752 RANDALL HEAP/ MR2-3/%84/ DIGITAL EQUIPMENT CORP./ 1 TRON WAy/ MARLBORO MA 01752/ (617) 481-9511 X6848

01752 JOHN WITHROW/ MR1-1/A86/ DIGITAL EQUIPMENT CORP./ 200 FOREST s T+/ MARLBORO MA 01752

01754 BRUCE HILLEGASS/ ML 22-1/840/ DIGITAL EQUIPMENT CORP./ 146 1AL M STREET/ MAYNARD MA 01754

01756 DAVID N. PECK/ BELLINGHAM STREET/ MFNDON MA 01756/ (617) 478-2 320

01778 ROBERT E. BLANTON/ ADVANCED DEVELOPMENT LABORATORY/ BOX J9/ RA YTHEON COMPANY/ BOSTON POST ROAD/ WAYLAND MA 01778/ (617) 358-2721 X2315
01821 JOFL BERSON/ MS 89SA/ HOMEYWELL INFORMATION SYSTEMS/ 300 COHCO RD ROAD/ BILLERICA MA 01821/ (617) 667-3111

01851 GERALD NADLER/ DEPT 46/ WANG LABS/ 1 INDUSTRIAL AVE/ LOWELL MA 01851

01854 GEORGE P. CHENEY/ ELECTRICAL ENGINEERING DEPT./ UNIVERSITY OF LOWELL/ 1 UNIVERSITY AVE./ LOWELL MA 01854/ (617) 454=7811 X259
02104 DAVID R. DICK/ SOFTWARE INNOVATIONS INC./ P.O. BOX 1537/ BOSTO N MA 02104/ (617) 734-4200

02114 ROY A. WILSKER/ COMPUTER NETWORK/ MASS. STATE COLLEGE/ 150 CAU SEWAY STREET/ BOSTON MA 02114/ (617) 727-9500

02115 JENNIFER CLARKE/ COMPUTATION CENTER/ 25 RICHARDS HALL/ NORTHEA STERN U./ 360 WUNTINGTON AVE./ BOSTON MA 02115/ (617) 437-3183
02138 MICHAEL MEEHAN/ WINTHROP PUBLISHERS/ 17 DUNSTER STREET/ CAMBRI DGE MA 02138/ (617) 868-1750

02139 RONALD LEBEL/ 344/ MIT/ 545 TECHNOLOGY SQUARE/ CAMBRINGE MA 02 139/ (617) 253-3473

02139 JACK LIEBSCHUTZ/ 320 MEMORIAL DRIVE/ CAMBRIDGE MA 02139/ (617) 494-8335

02154 RONALD V. BOSSLET/ GTE LABS INC./ 40 SYLVAN ROAD/ WALTHAM MA O 2154/ (617) 890-8460 X338

02154 F. G. FLETCHER/ EKS CENTER/ 200 TRAPELO ROAD/ WALTHAM MA 02154 / (617) 893-3500 X157

02154 BRANKO J. GEROVAC/ EUNICE KENNEDY SIRIVER CENTER/ 200 TRAPELO ROAD/ WALTHAM MA 02154/ (617) 893-3500 X157

02154 WILL HAPGOOD/ RAYTHEON CORP./ FOUNDRY AVE./ WALTHAM MA 02154/ (617) 899-3400 X4520

02155 DAVIL SOLOMONT/ COMPUTER SERVICES/ MILLER HALL/ TUFTS UNIVERST TY/ MEDFORD MA 02155/ (617) 628-0501

02174 DAVID GRABEL/ 154 MADISON AVE./ ARLINGTON MA 02174

02174 MARK A. SWANSON/ 71 BEACON STREET/ ARLINGTON MA 02174/ (617) 6 48-4469

02181 LESLIE L. SIFTER/ HONEYWELL/ 70 WALNUT STREET/ WELLESLEY MA 02 181

02193 TERENCE M. COLLIGAN/ RIVERSINE OFFICE PARK/ HMANAGEMENT DECISIO .

02556 ANDREW SINGER/ P.O. BOX A-67/ NORTH FALMOUTH MA 02556/ (617) 5 'JDEYSTFMS INC./ RIVERSIDE ROAD/ WESTON MA 02193/ (617) 891-0335
03031 ERIC D. FREY/ FREY ASSOCIATES INC./ CHESTNUT HILL ROAD/ AWHERS T NH 03031/ (603) 472-5185

03060 CRAIG FRANKLIN/ FUNCTIONAL AUTOMATION/ 118 NORTHEASTERN BLVD./ NASHUA NH 03060/ (603) 882-1580

03060 BILL MARSHALL/ SANDERS ASSOCIATES INC./ 24 SIMON ST./ NASHUA N H 03060

03061 JOUN VINSEL/ NCA1-3220/ SANDERS ASSOCIATES INC./ 95 CANAL STRE ET/ NASHUA NH 03061/ (603) 885-5314

03301 ANTHONY CONTI/ P.O. BOX 1201/ CONCORD NH 03301

03824 ATTENTION: R. D. BERGERON/ DEPT. OF MATH. AND COMPUTER SCIENCE / KINGSBURY HALL/ U OF NEW HAMPSHIRE/ DURNAM NH 03824/ (603) 862-2321
04103 JOUN HEATH/ DEPT. OF MATH. AND COMPUTER SCI./ UNIV. OF MAINE/ PORTLAND ME 04103/ (207) 780-4225

06095 STEVEN R. RAKITIN/ M.S. 9488-4BB/ COMBUSTION ENGINEERING INC./ 1000 PROSPECT HILL RD./ WINDSOR CT 06095/ (203) 688-1911 X2626
06268 TIM RAND/ P.0. BOX 98/ STORRS CT 06268

06504 C. B. FALCONER/ YALE - NEW HAVEN HOSPITAL/ 6016 CB/ YALE SCHOO L OF MEDICINE/ 789 UOWARD AVE./ NEW HAVEN CT 06504/ (203) 436-2603
06720 M. J. STXATFORD-COLLINS/ DEPT.310/ 40 BRISTOL STREET/ WATERBUR ¥ CT 06720/ (203) 756-4451 X285

06877 RICHARD ROTH/ 5 NORTH SALEM ROAD/ RIDGEFIELD CT 06877/ (203) 4 38-3954

06880 THOMAS DANBURY/ SURVEY SAMPLING INC./ 155 E. BOSTON POST RD./ WESTPORT CT 06880/ (203) 226-1321

07102 PETER ANDERSON/ COMPUTER AND INFO SCI DEPT./ NEW JERSEY INSTIT UTE OF TECHNOLOGY/ 323 HIGH sm-'rr/ NEWARK NJ 07102/ (201) 645-5126
07801 MARTIN NICHOLS/ 100 GUY STREET/ DOVER NJ 07801/ (201) 628-9000 X777 (WORK)/ (201) 361-7180 (HOME)

08046 LARRY E. ELLISON/ 19 HUNTINGTON LANE/ WILLINGBORO WJ 08046

08108 JOUN H. DALY/ 210 HAZEL AVE./ WESTNUT NJ 08108

08540 JAMES C. EMERY/ INTERUNIVERSITY COMMUNICATIONS COUNCIL/ EDUCOM / P.O. BOX 364/ PRINCETON NJ 08540/ (609) 921-7575
08753 ROBERT C. PERLE/ 1108 KUBY DRIVE/ TOMS RIVER NJ 08753

08854 JIM STEWART/ 1958 PLEASANT VIEW ROAD/ PISCATAWAY NJ 08854/ (20 1) 382-5600 (WORK)

09175 ATTN: SAM CALVIN/ COMPUTER EDUCATION/ DARMSTADT CAREER CENTER/ APO/ NEW YORK NY 09175

10007 CHARLES KUALMAN/ CRIMINAL JUSTICE AGENCY/ 305 BROADWAY - STH F LOOR/ NEW YORK NY 10007/ (212) 577-0516

10016 GENE A. DAVENPORT/ JOHN WILEY AND SONS/ 605 THIRD AVENUE/ NEW YORK NY 10016/ (212) 867-9300 X246

10021 ROBERT L. SCHOENFELD/ ROCKEFELLER UNIVERSITY/ 1230 YORK AVE./ NEW YORK NY 10021/ (212) 360-1253

10021 T. K. SHARPLESS/ INVESTIGATIVE CYTOLOGY/ WMEMORIAL HOSPITAL/ 12 75 YORK AVE./ NEW YORK NY 10021/ (212) 794-6007

10509 TIMOTHY P. ROBERTS/ KERN INSTRUMENTS INC./ GENEVA RD/ BREWSTER NY 10509/ (914) 2795095

10583 THOMAS GIVENTER/ 1250 POST ROAD/ SCARSDALE NY 10583/ (914) 472 -4035

10804 GLEN R+ J. MULES/ 263 BEECIMONT DRIVE/ NEW ROCHELLE NY 10804

11418 HAROLD S. SCHECHTER/ 84-40 117 ST/ JAMAICA NY 11418/ (212) 849 -8579

11580 TIM WALSH/ 174 E. MAUJER STREET/ VALLEY STREAM NY 11580

Hrn JEFF KRAVITZ/ 69 ORCHARD ST. - APT. 3H/ OYSTER BAY NY 11771/ (516) 9227757

11794 GENE ROLLINS/ COMPUTER SCIENCE DEPT./ SUNY - STONY BROOK/ STONY BROOK NY 11794/ (516) 246-4383

12206 SY CREENFIELD/ MIKROS SYSTEMS CORP/ 845 CENTRAL AVE./ ALBANY N Y 12206/ (518) 489-2561

12301 SANDY WARSHAW/ 4B34/K1/ GENERAL ELECTRIC/ P.0. BOX 8/ SCHENECT ADY NY 12301/ (518) 385-8192

13088 R. A. STASIOR/ 18 FORESTER ROAD/ LIVERPOOL NY 13088/ (315) 456 -7261

13346 DEBORAH BUSCH/ COMPUTER CENTER/ COLGATE UNIV./ HAMILTON NY 13346/ (315) 824-1000 X484

13901 QUENTIN F. STOUT/ DEPT. OF MATH SCIENCES/ SUNY - BINGHAMION/ B INGHAMTON NY 13901/ (607) 798-2147

13902 MARY DIEGERT/ MATHEMATICS DEPT./ BROOME COMMUNITY COLLEGE/ BIN GHAMTON NY 13902/ (607) 772-5000

14063 GEORGE H. GOLDEN SR./ COMPUTER CENTER/ MAYTUM HALL/ SUNY FREDO NIA/ FREDONIA NY 14063/ (716) 673-3393

14221 GILBERT BERGLASS/ NANODATA CORP./ 2457 WEHRLE DR./ WILLIAMSVIL LE Ny 14221

14260 DUANE F. MARBLE/ DEPT. OF GEOGRAPUY/ SUNY-BUFFALO/ AIHERST NY 14960/ (716) 636-2264

14850 DAVID J. LEWIS/ MATHEMATICS DEPT./ ITHACA COLLEGE/ ITHACA NY 1 4850 '

15021 Re E. STARCK/ OCEAN AIR INTERNATIONAL INC./ R.D. #1/ BURGETTST ouN PA 15021/ (412) 681-7533

15198 TOM GRABOWSKI/ THE CHESTER ENGINEERS/ 845 FOURTH AVENUE/ CARAO pOLIS PA 15108/ (412) 262-1035

15213 JJIM TSEVDOS/ CARNEGIE-MELLON UNIV./ P.O. BOX 132/ PITTSBURGH PA 15213/ (412) 665-1036

15260 ALAN M. LESGOLD/ LRDC COMPUTER FACILITY/ UNIV. OF PITTSBURGH/ 3939 O’HARA ST./ PITTSBURGH PA 15260

15701 JOHN NOLD/ COMPUTER CENTER/ G6 STRIGHT HALL/ INDIANA UNIVERSIT Y OF PA./ INDIANA PA 15701/ (412) 3574000

15701 HOWARD E. TOMPKINS/ COMPUTER SCLENCE DEPT/ INDIANA UNIVERSITY OF PA/ INDIANA PA 15701/ (412) 357-2524

16142 JIM PECK/ R.D. #1 - ORCHARD TERRACE/ NEW WILMINGTON PA 16142
17019 E. R. BEAURGGARD/ R.D. 3 BOX 241/ DILLSBURG PA 17019/ (717) 79 0-2095 (WORK)/ (717) 766-1446 (HOME)

17557 JOSEPH MEYER/ MS 103/ SPERRY - NEW HOLLAND/ 500 DILLER AVE./ N EW HOLLAND PA 17557/ (717) 354-1798

17837 DANIEL C. HYDE/ COMPUTER SCIENCE PROGCRAM/ BUCKNELL UNIVERSITY/ LEWISBURG PA 17837/ (717) 524-3743

18042 ATTN: LAFAYETTE COLLEGE/ EASTON PA 18042

19083 T. L.(FRANK) PAPPAS/ 338 FRANCIS DRIVE/ HAVERTOUN PA 19083/ (2 15) 259-1325

19117 FRED M. HOFKIN/ 8212 ASPEN WAY/ ELKINS PARK PA 19117/ (215) 88 6-4780 |

19141 STEPHEN A. LONGO/ PHYSICS DEPT./ LA SALLE COLLEGE/ PHILADELPHI A PA 19141/ (215) 951-1255

19174 RICHARD D. HACKATHORN/ WHARTON SCHOOL - DEPT. OF DECISION SCI/ UNIV. OF, PENNSYLVANIA/ PUILADELPHIA PA 19174/ (215) 243-5149
19311 ARTLE GREEN/ HEWLETT PACKARD/ ROUTE 41/ AVONDALE PA 19311/ (215) 268-2281

19335 WILLIAY C. HOPKINS/ 1101 BONDSVILLE ROAD/ DOWNINGTOWN PA 19335/ (215) 269-4486

19401 DENNIS NICHOLSON/ 421 ALEXANDRA DR./ NORRISTOWN PA 19401/ (215) 539-8243

19403 JAMES A. MCGLINCHEY/ 332 WEYMOUTH RD. / PLYMOUTH TOWNSHIP/ NOR RISTOWN PA 19403

19422 J. P. M. STOFBERG/ MS B/220M/ SPERRY UNIVAC/ P.O. BOX 500/ BLU E BELL PA 19422/ (215) 542-4011

19422 PETER A. NAYLOR/ MS B/220M/ SPERRY UNIVAC/ P.0. BOX 500/ BLUE BELL PA 19422/ (215) 542-4011

19424 WILLIAM L. HAFNER/ MAIL STOP 1B-220M/ SPERRY UNIVAC/ P.O. BOX 500/ BLUE BELL PA 19424/ (215) 542-4646

19530 THOMAS PIRNOT/ MATH DEPT./ KURZTOWN STATE COLLEGE/ KURZTOWN PA 19530

19713 JAMES TRUEBLOOD/ PLATO PROJECT/ UNIV. OF DELAWARE/ 46 E. DELAW ARE AVE./ NEWARK DE 19713

19898 C. J. COTTON/ E. I. DUPONT DE NEMOURS CO./ 101 BEECH ST./ WILM INGTON DE 19898/ (302) 774-1372

20007 MARTIN BUCHANAN/ SYSTEMS CONSULTANTS INC/ 1054 31ST STREET NW/ WASHINGTON DC 20007/ (202) 342-4000

20008 BEARDSLEY RUML 2ND/ 3045 ORDWAY STREET NW/ WASHINGTON DC 20008 / (202),244-3534

20014 THOMAS A. MARCINIAK/ 8315 N. BROOK LN. #903/ BETHESDA MD 20014 / (301) 654-7970

20016 TIMOTHY SHAW/ EPA PROJECT OFFICE/ COMNET/ 5185 MACARTHUR BLVD. / WASHINGTON DC 20016/ (202) 244-1900

20052 PETER BOCK/ DEPT OF ELEC ENGR & COMP SCI/ GEORGE WASHINGTON UN IV./ 725 23RD ST NW/ WASHINGION DC 20052/ (202) 676-6083
20229 STEVE OKEEFE/ 7424/ U.S. CUSTOMS DATA CENTER/ 1301 CONSTITUTI ON AVE. N.W./ WASHINGTON DC 20229/ (202) 566-5447

20234 JUSTIN C. WALKER/ SYSTEMS & SOFTWARE DIV./ A-264 BLDG. 225/ NA TIONAL BUREAU OF STANDARDS/ WASHINGTON DC 20234/ (301) 921-3491
20742 ANN MURPHY/ COMPUTER SCIENCE CENTER/ 2337 PROGRAM LIBRARY/ U O F MARYLAND/ COLLEGE PARK MD 20742/ (301) 454-4262

20760 F. T. BAKER/ IBM FEDERAL SYSTEMS DIV./ 18100 FREDERICK PIKE/ G AITHERSBURG MD 20760/ (301) 840-0111

20771 FRANK E. MCGARRY/ GODDARD SPACE FLIGHT CENTER/ NASA/ CODE 582. 1/ GREENBELT MD 20771/ (301) 982-5048

20854 ATTN: COMPUTER SCIENCE PRESS INC./ 9125 FALL RIVER ROAD/ POTOM AC MD 20854/ (301) 299-2040

20854 HORNG JYH LIANG/ CONTROL DATA CORP./ 1151 SEVEN-LOCKS ROAD/ RO CKVILLE MD 20854/ (301) 340-3883

20901 LEONARD BINSTOCK/ 820 LOXFORD TERRACE/ SILVER SPRING MD 20901/ (301) 593-3218/ (301) 496-3204

20910 JOHN LATRASH/ 1001 CPRING ST. - # 1007/ SILVER SPRING MD 20910 / (301) 588-7894

21014 BRUCE MAC ANASPIE/ 600 N. HICKORY AVE. - APT. 18/ BEL AIR MD 2 1014

21114 ROBERT W. HARRIS/ COMMUNICATIONS AND SIGNAL PROCESSING/ MAR AS SOCIATES INC./ 1702 FALLSWAY DRIVE/ CROFTON MD 21114/ (301) 261-0780
22027 CHARLES B. SHIPMAN JR./ 2205 SANDBURG ST./ DUNN LORING VA 2202 7

22030 PETER N. ROTH/ 13146 MALTESE LANE/ FALRFAX VA 22030

22030 GENE SIMMONS/ 9514 FARMVIEW CT/ FAIRFAX VA 22030

22032 ARNOLD SHORE/ 4607 BRIAR PATCH CT./ FAIRFAX VA 22032

22044 MARK S. WATERBURY/ 2961 PATRICK HENRY DRIVE #201/ FALLS CHURCH VA 22044/ (703) 532-8119

22101 W. ASHBY BOAZ/ BLDG.BXA/2/ TRW INC./ 7600 COLSHIRE DR./ MCLEAN VA 22101/ (703) 893-2000

22209 LARRY DUBY/ 1724 N. QUINN ST. APT 305/ ARLINGTON VA 22209

22209 FRANK LINDSAY/ BUNKER RAMO CORP/ 1500 WILSON BLVD. SUITE 400/ ARLINGTON VA 22209

22209 DAVID J. MCKEE/ ADVANCED COMPUTER TECHNIQUES/ 1501 WILSON BLVD ./ ARLINGTON VA 22209/ (703) 524-8330

22301 PHILIP GAUDETTE/ SOFTWARE RESOURCES/ P.O. BOX 2015/ ALEXANDRIA VA 22301/ (703) 548-2866

22448 HARTMUT G. HUBER/ P.O. BOX 117/ DAHLGREN VA 22448/ (703) 663-8 656

22901 LINWOOD FERGUSON/ 2605C HYDROLIC RD./ CHARLOTTESVILL VA 22901/ (804) 293-7816

22903 R. LEONARD BROWN/ DAMACS/ THORNTON HALL/ UNIV. OF VIRGINIA/ CH ARLOTTESVILL VA 22903/ (804) 924-7201

23185 23185

PASCAL NEWS #12

23284 ANI Do BASDERSON/ OFFICE OF COMPTLNG ACTIVITLES/ VIRGINIA COtLl ONWEALTH UNLVERSLTY/ 1015 FLOYD AVE./ RICHHOHD VA 23284/ (304) 770-6339
23601 RICKY W. BUTLER/ 132 WOODS ROAD/ NEWPORT NEWS VA 23601/ (804) 596-7272/ (804) 827-2929

24502 DAVID A. HOUGH/ 223 BRYANT RD./ LYNCHBURG VA 24502/ (804) 237- 5508 (HOME)/ (804) 3845111 X2280 (WORK)

27410 WILLIAM L. MCLAIN II1/ COMP SVCS/ GUILFORD COLLEGE/ 5800 W. FR IENDLY AVE./ GREENSBORO KC 27410/ (919) 292-5511 X139

27514 STEVEN M. BELLOVIN/ DEPT. OF COMP. SCI./ U OF NORTH CAROLINA/ CHAPEL HILL NC 27514/ (919) 933-7240

29208 ROBERT L. CANNON/ DEPT. OF MATH. AND COMP. SCIENCE/ UNIV. OF S 0. CAROLINA/ COLUMBIA SC 29208

30332 ATTENTION: JERRY W. SEGERS/ OFFICE OF COMPUTING SERVICES/ GEOR GIA INSTITUTE OF TECHNOLOGY/ ATLANTA GA 30332/ (404) 894-4676
30332 RICHARD LEBLANC/ SCHOOL OF INFO. AND COMP. SCI./ GEORGIA TECH/ ATLANTA GA 30332/ (404) 894-2592

32306 R. GARY LEE/ DEPT. OF MATH./ 113 LOVE BUILDING/ FLORIDA STATE U/ TALLAHASSEE FL 32306/ (904) 644=4419

32407 ANNA WATSON/ 3705 DELWOOD DRIVE/ PANAMA CITY FL 32407/ (904) 2 34-2507

32548 MICHAEL D. WEINSTOCK/ 112 KNOLLWOOD WAY/ FT. WALTON FL 32548

32601 SCOTT CRUMPTON/ 11130 N.W. 9 PLACE/ GAINESVILLE FL 32601/ (904) 375-7952

32901 T. M. CAMBRON/ TR3/1/ HARRIS ESD/ P.O. BOX 37/ MELBOURNE FL 32 901/ (305) 727-4629

33313 ERICH R. KNOBIL/ PRODUCT DEVELOPMENT/ SYSTEMS ENGINEERING LABS -/ 6901 WEST SUNRISE BLVD./ FT. LAUDERDALE FL 33313/ (305) 587-2900
35223 JEFFREY W. GRAHAM/ GRAHAY COMPUTER ENTERPRISES INC./ 3 OFFICE PARK CIR. - SUITE 106/ BIRMINGUAM AL 35223/ (205) 870-7267
35801 PET HSIA/ 3300 O‘HARA DR./ HUNTSVILLE AL 35801/ (205) 895-6088

35805 L. R. MARKER/ DEFENSE AND SPACE SYSTEMS/ TRW/ 7702 GOVERNORS D R. WEST/ HUNTSVILLE AL 35805/ (205) 837-3950

37916 ATTENTION: GORDON R. SHERMAN/ COMPUTER CENTER/ 200 STOKELY MGM T. CENTER/ U OF TENNESSEE/ KNOXVILLE TN 37916/ (615) 974-6721
38103 ROBERT M. SWEENEY/ ELLERS FANNING OAKLEY CHESTER & RIKE/ 722 F ALLS BUILDING/ MEMPHIS TN 38103/ (901) 526-7321

38138 JAMES CRAIG ZIEGLER/ 1455 LANCASTER DR./ MEMPHIS TN 38138

38163 JOE LERNER/ DEPT. OF PATHOLOGY/ UNIV. OF TENNESSEE/ 858 MADISO N AVE./ MEMPHIS TN 38163/ (901) 528-6320

38677 ATTN: DEPT. OF COMPUTER SCIENCE/ U OF MISSISSIPPI/ UNIVERSITY MS 38677

40222 JAMES W. HOLT JR./ 7705 NORWOOD DR./ LOUISVILLE KY 40222/ (502) 425-6729

43023 JIM CAMEKON/ DEPT. OF MATH SCIENCE/ DENISON UNIVERSITY/ GRANVI LLE OH 43023/ (614) 587-0810 X582

43202 ROBERT RANSDELL/ 619 HARLEY DRIVE APT. 5/ COLUMBUS OH 43202

43214 RICHARD E. ADAMS/ 239 CHATHAY ROAD/ COLUMBUS OH 43214/ (614) 2 67-8068

44119 DAVID PESEC/ 21030 MILLER AVENUE/ EUCLID OH 44119/ (216) 486-8 070

44839 R. L. PALASEK/ DEPT. OF APPLIED SCIENCES/ BOWLING GREEN STATE UNIV./ 901 RYE BEACH ROAD/ HURON OH 44839

45036 ATTN: BETTE BOLLING-LIBRARIAN/ TECHNICAL INFORMATION CTR-ELECT RONICS/ CINCINNATI MILACRON INC./ LEBANON OH 45036/ (513) 494-5320
45241 FRANCIS H. BEARDEN/ DATA SYSTEMS/ CINCINNATI ELECTRONICS CORP. / 2630 GLENDALE-MILFORD ROAD/ CINCINNATI OH 45241/ (513) 563-6000
46989 R. WALDO ROTH/ COMPUTER SCIENCE DEPT/ TAYLOR UNIVERSITY/ UPLAN D IN 46989/ (317) 998-2751 X269

47119 ANDREW S. PUCHRIK/ 111Q ANDREA DR./ FLOYDS KNOBS IN 47119/ (50 2) 582-4397

47374 GEORGE A. R. SILVER/ DEPT. OF HISTORY/ EARLHAM COLLEGE/ RICHMO ND IN 47374/ (317) 962-6561

47401 ANN BARDIN/ WRUBEL COMPUTING CENTER/ HPER BUILDING/ INDIANA UN IV./ BLOOMINGTON IN 47401/ (812) 337-1911

47401 FRANK PROSSER/ COMPUTER SCIENCE DEPT./ 101 LINDLEY HALL/ INDIA NA UNIVERSITY/ BLOOMINGTON IN 47401

47904 HOWARD CUNNINGHAM/ 914 NORTH 21ST STREET/ LAFAYETTE IN 47904/ (317) 447-6403

48019 SHAUN DEVLIN/ 6854 CEDARBROOK/ BIRMINGHAM MI 48010

48105 KURT METZGER/ 478 CLOVERDALE/ ANN ARBOR MI 48105

48105 DONALD D. REDDING/ MDSI/ 4251 PLYMOUTH ROAD/ ANN ARBOR MI 4810 5/ (313) 995-6118

48106 JAMES D. ROGAN/ COMSHARE INC./ P.0. BOX 1588/ ANN ARBOR MI 481 06/ (313) 994-4800

48109 E. SWEET/ COMPUTING CENTER/ UNIV. OF MICHIGAN-NORTH CAMPUS/ 10 75 BEAL AVE./ ANN ARBOR MI 48109

48197 JOHN H. REMMERS/ DEPT. OF MATHEMATICS/ EASTERN MICHIGAN UNIV./ YPSILANTI MI 48197/ (313) 487-1290

48859 FREEMAN L. MOORE/ DEPT. OF COMPUTER SCIENCE/ 203-B PIERCE HALL / CENTRAL MICHIGAN UNIV./ MP. PLEASANT MI 48859/ (517) 774-3922
48864 ALLAN MOLUF/ 2317 KNOB HILL APT. 9/ OKEMOS MI 48864

50304 KENNETH KAPLAN/ MICROVARE SYSTEMS CORP/ P.0. BOX 954/ DES MOIN ES TA 50304/ (515) 265-6121

50701 MICHAEL RODBY/ 322 DEVONSHIRE/ WATERLOO IA 50701/ (319) 233-57 96

52242 ATTN: SERIALS DEPT./ UNIVERSITY LIBRARIES/ UNIVERSITY OF IOWA/ IOWA CITY IA 52242

52404 MICHAEL WIMBLE/ 6026 UNDERWOOD AVE. S.W./ CEDAR RAPIDS IA 5240 4/ (319) 396-5641

53201 DAVID E. ANDERSON/ JOHNSON CONTROLS INC./ 507 E. MICHIGAN AVE. / MILWAUKEE WI 53201/ (414) 276=9200

53212 ALAN M. SHERKOW/ 1211 EAST SINGER CIR. APT. #4/ MILWAUKEE WI 513212/ (414) 332-9533

53706 ATTN: FRIEDA S. COHN/ ACADEMIC COMPUTING CENTER/ U OF WISCONSI N/ 1210 W. DAYTON ST./ MADISON WI 53706/ (608) 262-2055
53706 MARK HORTON/ COMPUTER SCLENCE DEPT./ UNIV. OF WISCONSIN/ 1210 . DAYTON ST./ MADISON WI 53706/ (608) 262-1079/ (608) 238-1866
53715 WILL LELAND/ 445 N. LAKE ST./ MADISON WI 53715/ (608) 257-4035

54701 GREG MORRIS/ 1705 WILSON ST./ EAU CLAIRE WI 54701/ (715) 835-6 324

55112 GERALD F. UHLIG/ 3545 OWASSO ST. APT. 110/ SHOREVIEW MN 55112/ (612) 483-9714

55113 ATTN: INFORMATION SERVICE CENTER/ SPERRY-UNIVAC/ 2276 WIGH CRE ST DRIVE/ ROSEVILLE MN 55113

55113 DAVID GARDNER/ 1730 LARPENTEUR - APT. 3C/ ST. PAUL MN 55113/ (612) 646-5479

55119 GARY BECKWITH/ 2199 GLENRIDGE AVE./ ST. PAUL MN 55119/ (612) 8 53-5235

55165 LEO J. SLECHTA/ DSD/ SPERRY UNIVAC/ BOX 3525 MS ULU25/ ST. PAUL IN 55165/ (612) 456-2743

55343 CLIFFORD GERSTENHABER/ DEFENSE SYSTEMS/ MN11-2120/ HONEYWELL/ 600 SECOND ST. N.E./ HOPKINS MN 55343/ (612) 542-4940

55364 CLARENCE LEIDMAN/ 5926 GUMWOOD ROAD/ MOUND MN 55364/ (612) 472~ 1405

55408 ABDUL RASAQ BELLO/ P.O0. BOX 8681/ MINNEAPOLIS MN 55408/ (612) 330-4106

55413 MIKE KAMRAD/ HONEYWELL AVIONICS/ 2600 RIDGWAY PKWY/ MINNEAPOLL S MN 55413/ (612) 378-5328

55413 STANLEY C. VESTAL/ MS 2340/ HONEYWELL INC./ 2600 RIDGWAY PKWY. / MINNEAPOLIS MN 55413/ (612) 378-5046

55414 THOM HOARD/ P.O. BOX 14413/ MINNEAPOLIS MN 55414/ (612) 376-62 90

55419 GENE H. OLSON/ 5149 ALDRICH AVE. S./ MINNEAPOLIS MN_55419/ (61 2) 824-9108

55423 WILLIAH J. LEE/ 7320 FIRST AVE. SO./ RICHFIELD MM 55423/ (612) 866-6284

55432 SUSAN A. PETERSON/ SOFTWARE DEVELOPMENT/ M.S. E-360/ DATA 100 CORP./ 7725 WASHINGTON AVE S./ MINWEAPOLIS M 55432/ (612) 941-6500 X437
55435 RICHARD SCHLOTFELDT/ 7330 GALLAGHER DR. - APT. 255/ EDINA MN 5 5435/ (612) 831-6403

55435 RICHARD A. STONE/ DATA 100 CORP./ 7725 WASHINCTON AVE. SO./ MI NNEAPOLIS MN 55435/ (612) 941-6500 X479

55455 CHRISTOPHER AMLEY/ SSRFC/ 25 BLEGEN HALL/ UNIV. OF MINNESOTA/ WEST BANK/ MINNEAPOLIS MN 55455/ (612) 373-9917

55455 ATTN: SPECIAL INTERACTIVE COMPUTER LAB/ 143 SPACE SCIENCE GENT ER/ UNIV. OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 373-5768
55455 SCOTT S. BERTILSON/ UNIVERSITY COMPUTER CENTER/ 227 EXP. ENGR. / UNIV. OF MINNESOTA/ MINNEAPOLIS MY 55455/ (612) 376-5262 (WORK)/ (612) 331-2464 (HOME)
55455 PETER YAN-TEK HSU/ COMP. SCI. DEPT./ 114 LIND HALL/ U OF MINNE SOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 376-4590

55455 JOHN E. LIND/ 363 TERRITORIAL HALL/ UNIVERSITY OF MINNESOTA/ E AST BANK/ MINNEAPOLIS MN 55455/ (612) 373-6545

55901 DENNIS S. DELORME/ 1407 13TH AVENUE NE/ ROCHESTER MN 55901/ (5 07) 289-8495

55901 CLARENCE W. LYBARGER/ 3513 VILLA ROAD M.W./ ROCHESTER MN 55901 / (507) 289-0053

55901 DANIEL NICHOLSON/ 2112 17TH AVE N/ ROCHESTER MN 55901/ (507) 289-1780 (HOME)/ (507) 286-5921 (WORK)

58102 LEONARD SHAPIRO/ MATH DEPARTMENT/ NORTH DAKOTA STATE UNIV./ FA RGO WD 58102/ (701) 237-8171

59812 ROY TOUZEAU/ COMPUTER SCIENCE DEPT./ UNIV. OF MONTANA/ MISSOUL A MT 59812/ (406) 243-2883 (WORK)/ (406) 549-8064 (HOME)
60005 CHUT FAN LIU/ 1603 S. HIGHLAND AVE./ ARLINGTON HTS IL 60005

60025 HOWARD RUTIEZER/ 1101 ARBOR/ GLENVIEW IL 60025/ (312) 234-3400 (WORK)/ (312) 724-7731 (HOME)

60201 WILLIAM I. NOWICKI/ CSRL TECH/ B626/ NORTHWESTERN UNIV./ 2145 SHERIDAN RD/ EVANSTON IL 60201/ (312) 492-5248

60439 RICHARD D. GEORGE/ ARGONNE NATIONAL LABORATORY/ 9700 S. CASS A VENUE/ ARGONNE IL 60439

60532 JACK M. WIERDA/ DEPT. 7346/ WESTERN ELECTRIC COMPANY/ 4513 WES TERN AVE./ LISLE IL 60532/ (312) 983-3439

60601 JAMES R. KOCHANOWICZ/ DEDICATED SYSTEMS INC./ 180 N. MICHIGAN AVE./ CHICAGO IL 60601/ (312) 372-4222

60611 CHARLES MYERS/ DATALOCICS/ 325 W. HURON/ CHICAGO IL 60611/ (31 2) 266-4444

60626 DAVID J. ZOOK/ 1100 W. PRATT/ CHICAGO IL 60626

60919 MICHAEL FAY/ STELLE STATION/ CABERY IL 60919

61401 RALPH JOHNSON/ 1592 N. BROAD/ GALESBURG IL 61401/ (309) 342-30 98

61801 DONALD D. BURN/ 410 WEST ILLINOIS/ URBANA IL 61801/ (217) 367- 5362

61801 HEIDI L. NEUBAUER/ COORDINATED SCIENCES LAB/ UNIV. OF ILLINOIS - URBANA/ URBANA IL 61801/ (217) 333-4796 WORK

62026 GREG STEPHEN/ DEPT. OF MATH. STUDIES/ S. ILLINOIS UNIV. AT EDW ARDSVILLE/ EDWARDSVILLE IL 62026

62704 MIKE HARRIS/ APT. 4/ 309 WEST EDWARDS/ SPRINGFIELD IL 62704/ (217) 789-7669 (HOME)/ (217) 782-0014 (WORK)

63110 WILLIAM HOLMES/ DEPT. OF BIOCHEMISTRY/ WASHINGTON UNIV. MED. S CHOOL/ 660 S. EUCLID AVE./ ST. LOULS MO 63110/ (314) 454-3622
63166 JILL A. HOLTZ/ PROGRAMMING SCIENCES DEPT./ BLDG. 105 LEVEL 4/E -6/ MCDONNELL DOUGLAS CORP./ P.0. BOX 516/ ST. LOUIS MO 63156
64138 STEPHEN J. WEINBERGER/ 8340 B. HILLCREST RD./ KANSAS CITY MO 6 4138/ (816) 333-9311

64151 ARDEN WOOTTON/ 5904 N.W. LENOX AVE./ KANSAS CITY MO 64151/ (81 6) 741-5822

66502 BARBARA K. NORTH/ 1516 NICHOLS ST./ MANHATTAN KS 66502/ (913) 532-6350 WORK/ (913) 537-7818 HOME

66762 FELIX DREHER/ COMPUTER SCIENCE/ PITTSBURG STATE UNIVERSITY/ PI TTSBURG KS 66762/ (316) 232-7000 X425

68005 FRED POSPESCHIL/ 3108 JACKSON ST./ BELLEVUE NE 68005/ (402) 29 1-0795

68134 EARL N. CHRISTIANSEN/ BASCO COMPANY/ 9685 AMES/ OMAHA NE 68134 / (402) 572-8911

68154 CHARLES J. GIBBONS/ SUITE 8/ APPLIED COMMUNICATIONS INC./ 1084 4 OLD MILL ROAD/ OMAHA NE 68154/ (402) 330-3732

68508 K. S. BHASKAR/ ACADEMIC COMPUTER SERVICES/ 225 NEBRASKA HALL/ UNIV. OF NEBRASKA - LINCOLN/ LINCOLN NE 68508/ (402) 472-3701
68583 D. F. COSTELLO/ ACADEMIC COMPUTING SERVICES/ UNIVERSITY OF NEB RASKA-LINCOLMN/ 3835 HOLDREGE/ LINCOLN NE 68583

68588 GEORGE NAGY/ DEPT. OF COMP. SCI./ 110 FERGUSON HALL/ U OF NEBR ASKA/ LINCOLN NE 68538/ (402) 472-3200/ (402) 472-2402

69626 FRANK NUSSBAUM/ DEPT. OF MATH. SCIENCES/ LOYOLA UNIV./ 6525 N. SHERIDAN/ CHICAGO IL 69626

70118 HENRI A. LE FRIANT/ 8200 APRICOT ST./ NEW ORLEANS LA 70118/ (5 04) 865-1023

70360 RONALD P. MCRANEY/ STATION 1/ P.0. BOX 10097/ HOUMA LA 70360/ (504) 868-0453

72143 TIMOTHY M. SIMMONS/ HARDING COLLEGE/ BOX 1193 STATION A/ SEARC Y AR 72143/ (501) 268-6753

73019 ABBAS RAFII/ 219 EECS DEPT./ UNIV. OF OKLAHOMA/ 202 W. BOYD/ N ORMAN OK 73019/ (405) 325-4721

73102 REFORD BOND/ ESSAY CORP./ 100 PARK AVE./ OKLAHOMA CITY OK 7310 2

73501 GARY HUCKABAY/ DEPT. OF MATHEMATICS/ CAMERON UNIV./ LAWTON OK 73501

74104 C. BAILEY/ BAILEY AND ASSOCIATES/ 1144 S. ATLANTA/ TULSA OK 74 104/ (918) 936-0596

74171 ANTHONY BJERSTEDT/ ORAL ROBERTS UNIVERSITY/ BOX 1127/ TULSA OK 74171/ (918) 492-2011

75006 PAUL D. JOHNSON/ 2009 WEDGEWOOD/ CARROLLTON TX 75006/ (214) 24 5-7904

75080 PORTIA ISAACSON/ THE MICRO STORE/ 634 S. CENTRAL EXPY./ RICHAR DSON TX 75080/ (214) 231-1096

75207 ROB SPRAY/ MS 420-160/ ROCKWELL INTERNATIONAL/ P.O. BOX 10462/ DALLAS TX 75207/ (214) 996-2255

75229 R. N. MILLER/ INTERNATIONAL COMPUTER PRODUCTS/ 2925 MERRELL RD +/ DALLAS TX 75229/ (214) 350-6951

75229 MICHAEL SETTLE/ INTERNATIONAL COMPUTER PRODUCTS/ 2925 MERRELL RD./ DALLAS TX 75229

75231 KIM L. SHIVELEY/ 7777 MANDERVILLE LANE APT. 221/ DALLAS TX 752 31

75235 LARRY T. NOVAK/ MS 348/ TEXAS INSTRUMENTS/ P.O. BOX 35486/ DAL LAS TX 75235/ (214) 238-6904

75248 JOE COINTMENT/ 7709 QUEENS GARDEN DR./ DALLAS TX 75248/ (214) 387-0468

76010 JIM CLARKE/ P.0. BOX 517/ ARLINGTON TX 76010/ (817) 461-5429

77005 THOMAS E. SHIELDS/ SOFTWARE RESOURCES/ P.0. BOX 25210/ HOUSTON TX 77005/ (713) 521-0366

77025 JAMES PATRICK MCGEE/ P.O. BOX 20223/ HOUSTON TX 77025/ (713) 6 68-6232

77098 MIKE KERSEY/ 1850 W. MAIN #1/ HOUSTON TX 77098/ (713) 526-8658

77459 BERT INGARFIELD/ ACTION COMPUTER SERVICES/ 2202 MUSTANG SPRING S DRIVE/ MISSOURI CITY TX 77459/ (713) 437-5197

77840 JERRY R. BROOKSHIRE/ 1201 HIGUWAY 30 - APT. 153/ COLLEGE STA. TX 77840/ (713) 693-2938

77843 ANTHONY P. LUCINO/ COMPUTING SCIENCES DEPT./ TEXAS ASM UNIV./ COLLEGE STA. TX 77843/ (713) 845-5531

78205 JON D. ROLAND/ MICRO MART/ 1015 NAVARRO/ SAN ANTONIO TX 78205/ (512) 222-1427

78284 JOHN SIGLE/ TRINITY UNIV./ P.O. BOX 237/ SAN ANTONIO TX 78284/ (512) 736-7236

JUNE, 1978

PASCAL NEWS #12 JUNE, 1978 PAGE 15

78712
78736
78761
78769
78769
80033
80204
80220
80302
80306
80401
80401
80523
80901
83704
84047
84102
84121
85002
85005
85712
85721
86301
87106
87108
87545
87545
87801
88003
89154
89503
89507
89557
90025
90026
90070
90230
90250
90706
91103
91103
91109
91125
91311
91330
91360
91711
91789
92037
92093
92093
92093
92109
92127
92138
92138
92277
92501
92506
92624
92634
92634
92634
92660
92701
92701
92705
92713
92714
92714
92717
92805
93010
93017
93017
93407
93407
93454
93940
93940
94010
94022
94025
94040
94040
94043
94086
94086
94086
94086
94087
94087
94104
94114
94115
94121
94134
94305
94305
94305
94305
94305
94305
94306
94545
94550
94598
94609
94611
94611
94618
94618
94702
94707
94720
94804
94941
94941
94965
95008
95014
95014
95014
95014

95014
95014
95030
95030
95050
95050
95051

JAMES L. PETERSON/ DEPT OF COMPUTER SCIENCES/ PAINTER HALL/ UNIV. OF TEXAS = AUSTIN/ AUSTIN TX 78712/ (512) 471-4353
DAVID M. PHILLIPS/ 6922 THOMAS SPRINGS RD./ AUSTIN TX 78736/ (512) 471-7202

ED NAYLOR/ P.O. BOX 15103/ AUSTIN TX 78761/ (512) 451-0342

DAVID N. GRAY/ MS 2188/ TEXAS INSTRUMENTS/ P.O. BOX 2909/ AUSTIN TX 78769/ (512) 258-7406

EDWARD C. HUMPHREY/ M.S. 2201/ TEXAS INSTRUMENTS INC./ P.O. BOX 2909/ AUSTIN TX 78769/ (512) 258-7289

LYTLE JOHNSON/ 8951 W. 46TH PLACE/ WHEAT RIDGE CO 80033

GERHARDT C. CLEMENTSON/ DEPT. OF COMP. AND MGMT SCIENCE/ METRO POLITAN STATE COLLEGE/ 1006 11TH STREET BOX 13/ DENVER CO 80204/ (303) 629-3122
HOWARD L. TURETZKY/ HYDRA/ 1575 IVANHOE ST./ DENVER CO 80220/ (303) 333-2892

DAVID PICKENS/ DEPT. 50J/ BLDG. 023/ IBM CORP./ P.O. BOX 1900/ BOULDER CO 80302/ (303) 447-5844

ZHAHAL STEWART/ P.O. BOX 1637/ BOULDER CO 80306/ (303) 443-7279

H. W. EGDORF/ P.0. BOX 226/ GOLDEN CO 80401/ (303) 234-3994 (w ORK)

HERB RUBENSTEIN/ 1036 6TH STREET/ GOLDEN CO 80401/ (303) 278-3 469/ (303) 458-5900 X202 (WORK)

PATRICIA R. MOHILNER/ DEPT. OF COMPUTER SCIENCE/ COLORADO STAT E UNIV./ FORT COLLINS CO 80523/ (303) 491-7137

GREG BOURQUE/ HEWLETT PACKARD/ P.O. BOX 2197/ COLORADO SPRIN C O 80901/ (303) 598-1900

ED HIRAHARA/ 11207 MUSKET ST./ BOISE ID 83704/ (208) 376-6000 X2574/ OR X3989

JOHN A. BRIGGS/ 837 EAST 6775 SOUTH/ MIDVALE UT 84047/ (801) 2 92-8000

RICHARD W. KREUTZER/ 644 ELIZABETH ST./ SALT LAKE CITY UT 84102/ (801) 583-5202/ (801) 486-3351

W F. HAYGOOD/ COMPUTER SERVICES CO./ 7822 OAKLEDGE ROAD/ SALT LAKE CITY UT 84121

S. JOHNSON/ ECS/ MARIOPA CO. COMM. COLLEGE/ P.0. BOX 13349/ PHOENIX AZ 85002

ALLEN BERGLUND/ MS K-28/ P.O. BOX 6000/ PHOENIX AZ 85005/ (602) 249-7466

MICHAEL A. HOUGHTALING/ UNIV. OF ARIZONA/ 3401 N. COLUMBUS APT . 17-B/ TUCSON AZ 85712/ (602) 884-4239

STEVE JAY/ COMPUTER CENTER/ UNIV. OF ARIZONA/ TUCSON AZ 85721/ (602) 884-2239

FULTON WRIGHT JR./ COMPUTER SERVICES/ YAVAPAL COLLEGE/ PRESCOTT AZ 86301/ (602) 778-1990

REESA ABRAMS/ FALCON RESEARCH AND DEVELOPMENT/ 2350 ALAMO S.E. - #200/ ALBUQUERQUE NM 87106/ (505) 843-6101
STEPHEN C. WOOD/ MICROSOFT/ 819 TWO. PARK CENTRAL TOWER/ ALBUQU ERQUE NM 87108/ (505) 256-3600

ROBERT T. JOHNSON/ C-11 MAIL STOP 296/ LOS ALAMOS SCIEWTIFIC L ABORATORY/ P.O. BOX 1663/ LOS ALAMOS NM 87545/ (505) 667-5014
WILLIAM M. SEIFERT/ MS 532/ LASL/ P.O. BOX 1663/ LOS ALAMOS NM 87545

T. A. NARTKER/ DEPT. OF COMPUTER SCIENCE/ NEW MEXICO TECH/ SOC ORRO MM 87801/ (505) 835-5126

JOSEPH EINWECK/ P.O. BOX 3824/ LAS CRUCES NM 88003/ (505) 523-5377

ATTN: PROGRAMMING ADVISOR/ SOUTHERN NEVADA COMPUTING FACILITY/ UNIV. OF NEVADA - LAS VEGAS/ 4505 MARYLAND PARKWAY/ LAS VEGAS NV 89154/ (702) 739-3557
DARRYL KUHNS/ 1590 HILLSIDE DR./ RENO NV 89503

ATTN: PROGRAMMING ADVISOR/ UNS COMPUTING CENTER/ 22 WR/ U OF NEVADA/ BOX 9068/ RENO NV 89507/ (702) 784-4008

E. MAURICE BEESLEY/ DEPT. OF MATHEMATICS/ 227 SEM/ UNIV. OF NE VADA-RENO/ RENO WV 89557/ (702) 784-6773

LAUREN WEINSTEIN/ 12320 TEXAS AVE. #12/ LOS ANGELES CA 90025/ (213) 826-5766

R. F. TAYLOR/ 1509 SARGENT PLACE/ LOS ANGELES CA 90026/ (213) 488-0288

MELVIN L. NORELL/ PROGRAMMA CONSULTANTS/ P.0. BOX 70127/ LOS ANGELES CA 90070/ (213) 243-0810

LEE D. AURICH/ 5650 SUMNER WAY # 116/ CULVER CITY CA 90230/ (213) 649-4404

DAVID INTERSIMONE/ SOFTWARE ENGINEERING SECTION/ TRW - CS&S/ 12911 SIMMS AVE./ HAWTHORNE CA 90250/ (213) 536-4286
CARSON GERMAN/ 9615 WALNUT ST./ BELLFLOWER CA 90706/ (714) 871 -3232 X2068

CHARLES L. LAWSON/ JET PROPULSION LABORATORY/ MS 125/128/ CALI FORNIA INSTITUTE OF TECHNOLOGY/ 4800 OAK GROVE DR./ PASADENA CA 91103/ (213) 354-4321
W. 0. PAINE/ MS 83-101/ JET PROPULSION LAB./ 4800 OAK GROVE DR +/ PASADENA CA 91103/ (213) 354-4284

ATTN: LIBRARY/ BURROUGHS CORP./ 460 SIERRA MADRE VILLA/ PASADENA CA 91109/ (213) 351-6551 X505

KARL FRYXELL/ DIVISION OF BIOLOGY/ 216~76/ CALIFORNIA INST. OF TECH./ PASADENA CA 91125/ (213) 795-6811 X2818

TOM SANDERSON/ MICROSYSTEMS DIVISION/ MAIL STOP 63-02/ PERTEC COMPUTER CORP./ 20630 NORDHOFF/ CHATSWORTH CA 91311/ (213) 998-1800 X256
RUSSEL J. ABBOTT/ DEPT. OF COMPUTER SCIENCE/ CALIF. STATE UNIV . = NORTHRIDGE/ 18111 NORDHOFF STREET/ NORTHRIDGE CA 91330/ (213) 885-3398
ELIZABETH IBARRA/ 432 E. WILBUR RD #104/ THOUSAND OAKS CA 91360/ (805) 488-4425

TONY NOE/ COMPUTING/ HARVEY MUDD COLLEGE/ CLAREMONT CA 91711/ (714) 626-8511 X2897

JUDY HERRON/ MT. SAN ANTONIO COLLEGE/ 1100 HORTH GRAND AVENUE/ WALNUT CA 91789/ (714) 598-2811

DAVID H. BROWN/ 5709 ABALONE PLACE/ LA JOLLA CA 92037/ (714) 293-6072

ATTN: STUDENT COMPUTING COOP/ APIS DEPT/ C-014/ UNIV. OF CALIFORNIA - SAN DIEGO/ P.O. BOX 109/ LA JOLLA CA 92093/ (714) 452-4723
RICHARD KAUFMAN/ INSTITUTE FOR INFO. SYSTEMS/ C-021/ UNIV. OF CALIFORNIA - SAN DIEGO/ LA JOLLA CA 92093/ (714) 452-4723
KEITH ALLAN SHILLINGTON/ INSTITUTE FOR INFORMATION SYSTEMS/ UCSD MAILCODE C-021/ LA JOLLA CA 92093/ (714) 452-4723
TOM KNOCHE/ 2061 REED/ SAN DIEGO CA 92109/ (714) 270-7099

JOSEPH W. SMITH/ NCR/ 16550 WEST BERNARDO DR./ SAN DIEGO CA 92127/ (714) 485-2864

We E. CLARK/ DEPT. 244/ P.O. BOX 80158/ SAN DIEGO CA 92138/ (714) 455-1330 X348

SCOTT T. DAVIDSON/ LOGICON/ P.O. BOX 80158/ 4010 SORRENTO VALLEY B/ SAN DIEGO CA 92138/ (714) 455-1330 X348

A. PAUL CROONENBERGHS/ 74415 CACTUS DRIVE/ TWENTY-9 PALMS CA 92277

DAVID H. WELCH/ P.O. BOX 207/ RIVERSIDE CA 92501/ (714) 338-46 36

BRUCE YALE/ 15840 SADDLEBACK RD./ RIVERSIDE CA 92506/ (714) 780-7624

WILLIAM J. ARTHUR/ 26016 VIEW POINT DRIVE EAST/ CAPISTRANO BCH CA 92624/ (714) 493-5453

K. W. BIXBY/ BECKMAN INSTRUMENTS/ 2500 HARBOR BLVD./ FULLERTON CA 92634/ (714) 871-4848 X1393

TOM SNYDER/ BLDG 606/M136/ HUGHES AIRCRAFT CO./ P.O. BOX 3310/ FULLERTON CA 92634

JAMES H. WELLS/ BLDG. 606 - MS K232/ HUGHES AIRCRAFT/ P.0. BOX 3310/ FULLERTON CA 92634

ROGER SIPPL/ 1806 TOYON LANE/ NEWPORT BEACH CA 92660/ (714) 64 2-8977

DAVID A. BEERS/ 1050 CABRILLO PARK DR. APT. 34A/ SANTA ANA CA 92701/ (714) 543-6075

RONALD C. WHITES/ 1090 CABRILLO PARK DR. = APT. 64A/ SANTA ANA CA 92701/ (714) 974-0800

DONALD V. MYHRA/ 14142 GERSHON PL/ SANTA ANA CA 92705/ (714) S 44-5314

ERIC OLSEN/ MINICOMPUTER OPERATIONS/ SPERRY UNIVAC/ 2722 MICHE LgoN DRIVE/ IRVINE CA 92713/ (714) 833-2400

SHERRY L. CAMERON/ PERTEC COMPUTER CORP./ 17112 ARMSTRONG/ IRV INE CA 92714/ (714) 836-4592

RICHARD P. SPRAGUE/ PERTEC COMPUTER CORPORATION/ 17112 ARMSTRO NG AVE./ SANTA ANA CA 92714/ (714) 540-8340

DENNIS J. MAINE/ ICS DEPT./ UNIV. OF CALIF. - IRVINE/ IRVINE C A 92717/ (714) 833-5233

JAMES D. LETZ/ GENERAL AUTOMATTION INC./ 1055 S. EAST STREET/ A NAHEIM CA 92805/ (714) 778-4800 X261

MARK JUNGWIRTH/ 5408 E. HOLLY RINGE DR./ CAMARILLO CA 93010

ANDY HARRINGTON/ 218 SAN NAPOLI/ GOLETA CA 93017/ (805) 968-69 34 (HOME)

RON JEFFRIES/ 651 ARDMORE/ GOLETA CA 93017/ (805) 964-8964

CLEMENT L. DICKEY/ COMPUTER CENTER/ CALIF. POLYTECH. STATE UNI v,/ SANLUIS OBISPO CA 93407/ (805) S46-2004

RICK GILLIGAN/ COMPUTER CENTER/ CALIF. POLYTECH. STATE UNIV./ SANLUIS OBISPO CA 93407/ (805) 546-2004

DAVID W. SALLUME/ 945 VIA FARGO/ SANTA MARIA CA 93454/ (805) 9 37-4541

ROGER CRFAMER/ CTB/ MCGRAW HILL/ DEL MONTE RESEARCH PARK/ MONT pRpy CA 93940/ (408) 649-8400

LES VOGEL/ 366 VAN BUREN - APT. 4/ MONTEREY CA 93940/ (408) 37 5-4245

JOHN R. BOGAN/ 1201 VANCOUVER AVE./ BURLINGAME CA 94010/ (415) 343-5452

JAMES B. ONEY/ 1240 MONTE VERDE COURT/ LOS ALTOS CA 94022/ (41 5) 961-8825

DAVID F. FRICK/ 920 PEGGY LANE/ MENLO PARK CA 94025/ (415) 329 -1013

BRUCE J. EDMUNDSON/ 575 S. RENGSTORFF AVE. = APT. 62/ MOUNTAIN VIEW CA 94040

IRVINE L. MCKNIGHT/ 505 CYPRESS PT. DR. APT. 52/ MOUNTAIN VIEW CA 94040/ (415) 967-0414

BYRON HALE/ 813 FARLEY ST./ MT. VIEW CA 94043

ATTN: UNBOUNDED COMPUTING/ 667 TOYON AVE./ SUNNYVALE CA 94086/ (408) 247-3182

STEVE MCFERRIN/ BENDIX FLELD ENGINEFRING/ 155B MOFFETT PARK DR ./ SUNNYVALE CA 94086

JIM MERRITT/ 655 SO. FAIROAKS AVENUE APT L-216/ SUNNYVALE CA 9 4086/ (408) 733-6112

RONALD H. PERROTT/ INSTITUTE FOR ADVANCED COMPUTATION/ P.0. BO X 9071/ SUNNYVALE CA 94086/ (408) 735-0635 X273

Re STEVEN GLANVILLE/ 1531 SANDPIPER CT./ SUNNYVALE CA 94087/ (408) 241-6294

CHARLES T. LEIS/ 560 MINDDLEBURY DR./ SUNNYVALE CA 94087

ROBERT J. RAKER/ PACIFIC GAS & ELECTRIC CO./ 1 POST ST. - NO. 2200/ SAN FRANCISCO CA 94104

LYALL MORRILL/ 705 NOE STREET/ SAN FRANCISCO CA 94114/ (415) 6 47-8518

WILLIAY R. LLOYD/ 3190 CLAY STREET/ SAN FRANCISCO CA 94115/ (4 15) 556-2235

ROLAND L. LEE/ 645 35TH AVE/ SAN FRANCISCO CA 94121

SHARLEEN WONG/ 151 MADISON STREET/ SAN FRANCISCO CA 94134/ (41 5) 586-2467

ATTN: LIBRARY - COPY 2/ BIN 82/ STANFORD LINEAR ACCELERATOR CT R./ P.O. BOX 4349/ STANFORD CA 94305

JOHN BANNING/ MAIL DROP 88/ STANFORD LINEAR ACCELERATOR CENTER / P.0.BOX 4349/ STANFORD CA 94305/ (415) 854-3300 X2802 (OFFICE)/ (415) 325-9226 (HONE)
SASSAN HAZEGHI/ P.O. BOX 4526/ STANFORD CA 94305/ (415) 854-33 00 X2359

SUSAN S. OWICKI/ DIGITAL SYSTEMS LABORATORY/ STANFORD UNIVERSI TY/ STANFORD CA 94305

CHRIS K. PHILLIPS/ P.0. BOX A-C/ STANFORD CA 94305/ (415) 493- 2977/ (408) 983-1450

SCOTT WAKEFIELD/ DIGITAL SYSTEMS LABORATORY/ STANFORD UNIV./ S TANFORD CA 94305

TIMOTHY H. JACKINS/ 585 ASHTON AVE./ PALO ALTO CA 94306/ (415) 494-0467

PING K. LIAO/ 2499 CONSTELLATION DR./ HAYWARD CA 94545/ (415) 494-3942 X577 (WORK)

C. W. CHILDERS/ P.0. BOX 761/ LIVERMORE CA 94550/ (415) 422-27 79

DOUGLAS N. JOHNSON/ LONGS DRUG STORES/ 141 N. CIVIC DRIVE/ WAL NUT CREEK CA 94598/ (415) 937-1174

JAMES A. STARK/ 485 34TH STREET/ OAKLAND CA 94609/ (415) 658-2 566

FRANK W. OECHSLI/ CHILD HEALTH & DEVELOPMENT/ UNIV. OF CALIF. ~- BERKELEY/ 3867 HOWE ST./ OAKLAND CA 94611/ (415) 655-7947
DOUG FORSTER/ 1133 OAKLAND AVENUE/ PIEDHMONT CA 94611

MICHAEL L. SIEMON/ 6013 HARWOOD AVE./ OAKLAND CA 94618

ERIC WOGSBERG/ COMPUTER TECHNOLOGY/ 6043 LAWTON AVE./ OAKLAND CA 94618/ (415) 653-4844

RICHARD W. HAMILTON/ 1249 W. BROADWAY/ EUGENE OR 94702

JOHN MEDCALF/ CONCEPT SOFTWARE/ 1842 SAN ANTONIO AVE/ BERKELEY CA 94707/ (415) 526-4035

SUSAN L. GRAHAM/ COMP. SCI. DIVISION-EECS/ 511 EVANS HALL/ U O F CALIFORNIA/ BERKELEY CA 94720/ (415) 642-2059/ 642-1024 (4ESSAGES)
MICHAEL C. ARMSTRONG/ BADGER METER INC./ 150 E. STANDARD AVE./ RICHMOND CA 94804/ (415) 233-8220

ROBERT M. BAER/ 379 COUNTRYVIEW DRIVE/ MILL VALLEY CA 94941)

JOHN WALKER/ MARINCHIP SYSTEMS/ 16 ST. JUDE ROAD/ MILL VALLEY CA 94941/ (415) 383-1545

BRUCE WOLFE/ 71 SUNSHINE AVE./ SAUSALITO CA 94965/ (415) 332-6 242

DAVID J. BELL/ MICRO-SYST! ENGINEERING/ 609 CRAIG AVE./ CAMP BELL CA 95008/ (408) 379-5841/ (408) 379-2498

ATTN: CUPERTINO LIBRARY/ HEVLETT PACKARD/ 11000 WOLFE ROAD/ CU PERTINO CA 95014

MICHAEL J. COOK/ 1658 S. STELLING/ CUPERTINO CA 95014

BILL FINCH/ DATA TERMINALS DIV/ HEWLETT PACKARD CO/ 19400 HOME STEAD RD/ CUPERTINO CA 95014/ (408) 257-7000

DAVID F. OHL/ P.O. BOX 257/ CUPERTINO CA 95014/ (408) 926-9803

RICHARD PALCHIK/ TYMNET/ 10261 BUBB ROAD/ CUPERTINO CA 95014/ (408) 446-6652

JIM SCHULTZ/ HEWLETT PACKARD/ 11000 WOLFE RD - 42U/ CUPERTINO CA 95014/ (408) 257-7000

DON GILMORE/ GILMORE ASSOCIATES/ P.0. BOX 1723/ LOS GATOS CA 9 5930/ (408) 395-4800

C. DUDLEY WARNER/ 16345 LOS GATOS BLVD. - # 41/ LOS GATOS CA 9 5030

JOHN CARTER SR./ 3796 PINEWOOD PLACE/ SANTA CLARA CA 95050/ (4 08) 988-2629

BRUCE SHERRY/ 1601 WARBURTON AVE. — APT. 12/ SANTA CLARA CA 95 050

RONALD L. DANIELSON/ DEPARTMENT OF EECS/ UNIVERSITY OF SANTA C LARA/ SANTA CLARA CA 95051/ (408) 984-4181

PASCAL NEWS #12 JUNE, 1978 PAGE 16

95051 JERRY DI MASSA/ T.E.D./ SIEHMENS CORP./ 1333 LAWRENCE EXP. - SU LTE 400/ SANTA CLARA CA 95051/ (408) 984-8310
95051 CECIL A. MOORE/ INTEL CORP./ 3065 BOWERS AVENUE/ SANTA CLARA C A 95051/ (408) 987-8080
95051 JOHN NAGLE/ INFORMATION SYSTEMS DESIGN/ 3205 CORONADO DR./ SAN TA CLARA CA 95051/ (408) 249-8100
95051 PAUL J. PANTANO/ TED/ SIEMENS CORP./ 1333 LAWRENCE EXP. = SUIT E 400/ SANTA CLARA CA 95051/ (408) 984-8810
95051 ED SCHOELL/ DEPT. NSAU/ NATIONAL SEMICONDUCTOR/ SANTA CLARA CA 95051 -
95051 MICHAEL K. STAUFFER/ SEARLE ULTRASOUND/ 2270 MARTIN AVE./ SANT A CLARA CA 95051/ (408) 984-2900
95051 MIKE TRAVIS/ SOFTWARE SUPPORT/ INTERDATA INC./ 3080 OLCOTT ST. - SUITE 125A/ SANTA CLARA CA 95051/ (408) 249-5540
95064 ALAN M. SCHLENGER/ COMPUTER CENTER/ UNIV. OF CALIF. - SANTA CR l(’%g?“;‘;: §§'é§ CA 95064
95070 HOWARD S. COLEY JR./ 18950 MCFARLAND AVE./ SARATOGA CA 95070/ -
95118 MEL R. FISHER/ BUSINESS DEPT./ CALVARY COMMUNITY CHURCH/ 1175 HILLSDALE AVE./ SAN JOSE CA 95118/ (408) 269-8331
95120 ALAN DELWICHE/ LELAND HIGH SCHOOL/ 6677 CAMDEN AVE./ SAN Josg CA 95120/ (408) 998-6290
95126 JOHN H. KILFOIL/ 1777 TOPEKA AVE./ SAN JOSE CA 95126
95129 GENE Il. PRIESTMAN/ 1155-29 WEYBURN LANE/ SAN JOSE CA 95129/ (4 08) 235-3939
95819 DAMON BLOM/ 72 SANDBURG DR./ SACRAMENTO CA 95819/ (916) 455-45 02 (HOME)/ (916) 445-3890 (VORK)
95926 SHING-KIN PUN/ DEPT OF COMPUTER SCIENCE/ CALIFORNIA STATE UNIv = CHICO/ CHICO CA 95926/ (916) 895-6442
95929 ATTN: CHICO PROJECT - CDG/ SCHOOL OF APPLIED SCIENCES/ CALIFOR NIA STATE UNLV./ CHICO CA 95929/ (916) 895-6713
95929 ORLANDO 5. MADRIGAL/ DEPT. OF COMP. SCI./ CALIFORNIA ST. UNIv. - CHICO/ CILICO CA 95929/ (916) 895-6442
97005 JOHN COUSINS/ 2435 S.W. ECOLE - APT. 67/ BEAVERTON OR 97005
97005 DON TERWILLIGER/ 9100 S.W. PARKVIEW LOOP/ BEAVERTON OR 97005/ (503) 644-1933
97051 KEN LESSEY/ 50 WEST ST./ ST. HELENS OR 97051/ (503) 397-1305
97070 DON HARVEY/ P.O. BOX 367/ WILSONVILLE OR 97070
97077 ROY CARLSON/ (50-454)/ TEKTRONIX/ P.O. BOX 500/ BEAVERTON OR 9 7077/ (503) 644-0161 X5616
97077 BOB DIETRICH/ MS 60-45C/ TEKTRONIX INC./ P.0. BOX 500/ BEAVERT ON OR 97077/ (503) 682-3411 X2398
97077 MARVIN WHITE/ MS 94-344/ TEKTRONIX INC./ P.0. BOX 500/ BEAVERT ON OR 97077
97106 JOHN L. RUTIS/ RT 2 BOX 7H/ BANKS OR 97106)
97213 BRIAN HANSEN/ 2426 N.E. S7TH AVE. APT #3/ PORTLAND OR 97213/ (503) 284-3537
97229 JAMES N. O“BRIEN/ 13900 SCIENCE PARK DR/ PORTLAND OR 97229/ (5 03) 641-4141
97330 DAVID SKINNER/ ALPHA OMECA COMPUTER SYSTEMS/ P.0. BOX 392/ COR VALLIS OR 97330/ (503) 754-1911
97331 CHIP WEEMS/ DEPT. OF COMPUTER SCIENCE/ OREGON STATE UNIV./ COR VALLIS OR 97331/ (503) 754-3273
97401 ATTN: NORTHWEST MICROCOMPUTER SYSTEMS/ 121 E. LITH ST./ EUGENE OR 97401/ (503) 485-0626
97403 ATTN: SUSAN BOWIE - DOCUMENTS ROOM/ COMPUTER CENTER/ UNIV. OF OREGON/ EUGENE OR 97403/ (503) 686-4406
97420 R. BUSH/ NORTHWEST MICRO/ 219 FITZPATRICK BLDG./ COOSBAY OR 97 420/ (503) 269-2432
98033 WILLIAY J. MARSHALL/ 11626 L11TH AVE. N.E./ KIRKLAND WA 98033/ (206) 789-2000 (WORK)/ (206) 822-1329 (HOME)
98040 ROBERT EMERSON/ HONEYWELL INFORMATION SYSTEMS/ 9555 SE 36TH ST REET/ MERCER ISLAND WA 98040
98107 R. G. SHERRY/ 5828 FIRST AVE. N.W./ SEATTLE WA 98107/ (206) 78 3-0853
98507 PHIL HUGHES/ P.O. BOX 2847/ OLYMPIA WA 98507/ (206) 753-2315
98632 BUZZ HILL/ EYEDENTIFY INC./ P.O. BOX 2006/ LOHGVIEW WA 98632/ (206) 423-3281
99210 FRED J. KELLER/ BUSINESS COMPUTER SYSTEMS/ DATACOMP/ P.O. BOX 1087/ SPOKANE WA 99210/ (509) 456-6908
2033 AUSTRALIA KEN ROBINSON/ DEPT. OF COMPUTER SCIENCE/ UNIVERSITY OF NEW SOU TH WALES/ P.O. BOX 1/ KENSINGTON N.S.W. 2033/ AUSTRALIA/ 663 0351
2049 AUSTRALIA DAVID POWERS/ 259A TRAFALGAR STREET/ PETERSHAM N.S.W. 2049/ AU STRALIA
2308 AUSTRALIA SIMON/ DEPT OF MATHEMATICS/ UNIV. OF NEWCASTLE/ NEWCASTLE N.S. W. 2308/ AUSTRALIA/ 68 5787
2600 AUSTRALIA ATTN: PURCHASING OFFICE/ RESEARCH SCHOOL OF PHYSICAL SCIENCES/ AUSTRALIAN NATIONAL UNIVERSITY/ P.O. BOX 4/ CANBERRA A.C.T. 2600/ AUSTRALIA/ 492143
2616 AUSTRALIA ATTN: SCHOOL OF INFORMATION SCIENCES/ CANBERRA COLLEGE OF ADVA NCED EDUCATION/ P.O. BOX NO. 1/ BELCONNEN A.C.T. 2615/ AUSTRALIA
3083 AUSTRALIA JOHN EDWARDS/ LA TROBE UNIVERSITY/ BUNDOORA VICTORIA 3083/ AUS TRALIA/ 478 3122
3165 AUSTRALIA GEOFFREY A. CLEAVE/ 18 WEIL COURT/ E. BENTLEIGH VICTORIA 3165/ AUSTRALIA
3216 AUSTRALIA P. S. EDVARDS/ 2/100 BARRABOOL ROAD/ HIGHTON VICTORIA 3216/ AU STRALIA
6009 AUSTRALIA J. S. ROHL/ DEPT. OF COMPUTER SCIENCE/ U OF WESTERN AUSTRALTA/ NEDLANDS W.A. 6009/ AUSTRALIA
A-4060 AUSTRIA KARL PRAGERSTORFER/ EDERACKERSTRASSE 11/7/ LEONDING A-4060/ AU STRIA/ (0043) 732-825392
B-2510 BELGIUM WIM STEVENS/ DRABSTRAAT 49/ MORTSEL B-2510/ BELGIUM
BRAZIL ROBERIO DIAS/ P.O. BOX 30028/ SAO PAULO/ BRAZIL
CANADA PETER GROGONO/ 73 ROXTON CRESCENT/ MONTREAL WEST QUEBEC/ CANAD A/ (514) 879-4251 (DAY)
CANADA STUART LYNNE/ 315A EVERGREEN DR./ PORT MOODY B.C./ CANADA/ (60 4) 939-2757
B2G 1CO CANADA MAREK WIECHULA/ ST. FRANCIS XAVIER UNIV./ BOX 67/ ANTICONISH N - SCOTIA B2G 1CO/ CANADA/ (902) 867-2275
HIG 385 CANADA M. MICHEL COURCHESNE/ 11471 VALADE/ MONTRFAL QUEBEC H1G 385/ C ANADA/ (514) 324-5694/ (514) 281-8362
H3C 3J7 CANADA GUY LAPALME/ DEPT. D’ INFORMATIQUE/ UNIVERSITE DE MONTREAL/ C.P » 6128 — SUCC. A/ MONTREAL QUEBEC H3C 3J7/ CANADA
H3C 3J7 CANADA DANIEL THALMANN/ DEPT D’ INFORMATIQUE ET RECHERCHE/ UNIV. DE MO NTREAL/ CASE POSTALE 6128 - SUCC A/ MONTREAL QUEBEC H3C 3J7/ CANADA/ (514) 343-7477
H4T IN1 CANADA S. MATTHEWS/ AES DATA LTD./ 570 RUE MCCAFFREY/ MONTRFAL QUEBEC H4T INL/ CANADA/ (514) 341-5430
JIK 2Rl CANADA M. JEAN-MARIE DIRAND/ SERVICE DE L°INFORMATIQUE/ UNIVERSITE DE SHERBROOKE/ 2500 BOUL. UNIVERSITE/ SHERBROOKE QUEBEC J1K 2R1/ CANADA/ (819) 565-5575
JIK 2R1 CANADA) JACQUES HAGUEL/ DEPT MATHS/ UNIVERSITE DE SHERBROOKE/ SHERBROO KE QUEBEC J1K 2R1/ CANADA/ (819) 565-3608
KIN 6N5 CANADA H. TAYLOR/ COMPUTING CENTRE/ APPLICATIONS DEPT./ U OF OTTAWA/ OTTAWA ONTARIO KIN 6NS/ CANADA/ (613) 231-5094
K7L 3N6 CANADA JACK HUGHES/ COMPUTING CENTRE/ DUPUIS HALL/ QUEEN’S UNIVERSITY / KINGSTON ONTARIO K7L 36/ CANADA/ (613) 547-2800/ (613) 547-2951
KOK 1J1 CANADA D. R. WESTLUND/ 1478 FIRWOOD CRESCENT/ PETERBOROUGH ONTARIO K9 K 1J1/ CANADA
LOC 1KO CANADA JAMES D. CALLADINE/ RR #4 CONCESSION 7/ OXBRIDGE ONTARIO LOC 1 KO/ CANADA
L5L 2E9 CANADA CARLO LOCICERO/ 3501 GLEN ERIN DRIVE #401/ MISSISSAUGA ONTARIO LSL 2E9/'CANADA/ (416) 826-8640
L5N 1K7 CANADA PETER HAYNES/ CONTROL DATA CANADA LTD./ 1855 MINNESOTA COURT-§ TREETSVILLE/ MISSISSAUGA ONTARIO L5N 1K7/ CANADA/ (416) 826-8640 X238
L5N 1K7 CANADA DAVID JONES/ CONTROL DATA CANADA LTD./ 1855 MINNESOTA COURT-ST R VILLE/ MISSISSAUCA ONTARIO L5SN 1K7/ CANADA/ (416) 826-8640 X262
L85 4K1 CANADA CHRIS BRYCE/ APPLIED MATH. COMPUTER LAB/ MCMASTER UNIVERSITY/ HAUILTON OWTARLO L8S 4K1/ CAWADA/ (416) 525-9140 X4689
M3!f 3B9 CANADA ATTENTION: SANDRA WRIGHT/ DEFENCE & CIVIL INST. OF ENVIRMNTL M ED/ P.O. BOX 2000/ DOWNSVIEW ONTARIO M3i 3B9/ CANADA/ (416) 633-4240 X300
M4R 1V2 CANADA TOM A. TROTTIER/ 411 DUPLEX AVE. - APT. 119/ TORONTO ONTARIO M 4R -1V2/ CANAPA/ (416) 488-8802
MSIf W6 CANADA RUSSELL JONES/ 427 ELM ROAD/ TORONTO ONTARIO M5 3W6/ CANADA/ (416) 592-6758 (BUS)/ (416) 4867756 (RES)
M5V 259 CANADA ATTENTION: G. TER HOFSTEDE/ DATA CENTRE/ THE GLOBE AND UAIL/ 4 44 FRONT ST. WEST/ TORONTO ONTARIO M5V 259/ CANADA
N2L 3G1 CANADA ATTN: HELEN SMITH/ COMPUTER CENTER/ 1088B M AND C/ U OF WATERL 00/ WATERLOO ONTARIO N2L 3Gl/ CANADA/ (519) 885-1211 X3430
RIE O3 CANADA BILL WINSPUR/ COMPUTER SERVICES - HEALTH SCIENCES/ UNIVERSITY OF MANITOBA/ 753 MCDERMOT AVE./ WINNIPEG MANITOBA R3E OU3/ CANADA/ (204) 7836-3630
S7N OWO CANADA D. W. MACLEAN/ DEPT. OF MATHEMATICS/ UNIV. OF SASKATCHEWAN/ SA SKATOON SASK. S$7N OWO/ CANADA
T2H IN4 CANADA BETTY CLIFFORD/ COMPUTER SERVICES/ 058 MATH. SCIENCE/ UNIV. OF CALGARY/ 2920-24 AVE. N.W./ CALGARY ALBERTA T2 N4/ CANADA
V4M 3T9 CANADA ROBERT M. GREEN/ ROBELLE CONSULTING LTD./ 5421 10TH AVE. - #13 0/ DELTA B.C. V&M 3T9/ CANADA/ (604) 943-8021
V3P 5J2 CANADA GORDON STUART/ TECHNICAL AND VOCATIONAL INST./ CAMOSUN COLLEGE / 1950 LANSDOWNE RD./ VICTORIA B.C. V8P 5J2/ CANADA/ (604) 5921231 X248
Y1A 3P5 CANADA KEN SYLVESTRE/ 12 TAGISH ROAD/ WHITEHORSE YUKON YLA 3P5/ CANAD A/ (403) 667-7372
CHILE ATTN: CECICO/ UNIVERSIDAD CATOLICA DE CHILE/ CASILLA 114-D/ SA NTIAGO/ CHILE/ 513548
CHINA JHO-WU MOU/ COMPUTER SCIENCE DEPT./ CHIAO-TUNG UNIVERSITY/ HSI NCHU TAIWAN 300/ CHINA
7 CZECHOSLOVAKIA JOSEF JINOCH/ VVC CKD PRAHA/ PRAHA 9 MA HARFE 7/ CZECHOSLOVAKI A/ 820841/664 4
DK-2730 DENMARK ROLF MOLICH/ DANSK DATA ELEKTRONIK/ GENERATORVEJ 6A/ HERLEV DK -2730/ DENMARK/ 45 2 84 50 11
0K=9220 DENMARK UFFE MOLLER/ DATANOMUDDANNELSEN/ LANGAGERVEJ 16/ AALBORG OST D K-9220/ DEMMARK/ (08) 15 81 00
EL SALVADOR ROBERTO ARGUETA/ CENTRO DE COMPUTO/ UNIVERSIDAD DE EL SALVADOR / SAN SALVADOR/ EL SALVADOR/ 260017 X50
F-00100 FINLAND HANNU ERKIO/ DEPT. OF COMPUTER SCIENCE/ UNIVERSITY OF HELSINKI / TOOLONKATU 11/ uuglinxl 10 SF-00100/ FINLAND/ 90-440703
F~00130 FINLAND HEIKKI KASKELMA/ OY SOFTPLAN AB/ EROTTAJANKATU 9 A/ WELSINKI S F-00130/ FINLAND/ (9)' 0-644306
F-02150 FINLAND ATTN:TECHNICAL RESFARCH CENTRE OF FINL/ COMPUTING SERVICE/ VUO RIMIEHENT 5/ ESPOO SF<02150/ FINLAND/ 90-4561
F=33340 FINLAND ANTTL ARVELA/ RUNKOKATU 6 A 8/ TAMPERE 34 SF-33340/ FINLAND
F-33500 FINLAND HANNU JAAKKOLA/ ITSENAISYYDENKATU 16 I 75/ TAUPERE 50 SF-33500 / FINLAND/ 931 612618
F-31450 FRANCE MICHEL GALINIER/ LA GIRAGLIA/ ESPANES F-31450/ FRANCE
F-34075 FRANCE ATTN: CENTRE DE RECHERCHE/ INFORMATIQUE ET GESTION/ UNIV. DES SCIENCES ET TECH. DU LANCUED/ AVENUE D’OCCITRAINE/ MONTPELLIFR CEDEX F-34075/ FRANCE
(67) 63-38-86 X339 y
F-35031 FRANCE ATTN: DEPT DE MATHEMATIQUE AND INFORMA/ BIBLIOTHEQUE 2 CYCLE/ C/O LE BAIL/ UNIVERSITE DE RENNES/ BP~25A/ RENNES CEDEX F-35031/ FRANCE
F-38041 FRANCE ATTN: UNIVERSITAT DE GRENOBLE/ SERVICE DE MATEMATIQUES APPLIQU EES/ CENTRE DE TRI/ BP N-53/ GRENOBLE CEDEX F-38041/ FRANCE
F-92803 FRANCE BERNARD PERRETTE/ FABRICATION DES BILLETS/ BANQUE DE FRANCE/ B +P. 89/ PUTEAUX F-92803/ FRANCE
D-1000 GERUANY ATTN: FREIE UNIVERSITAT BERLIN/ FBL0~WEl/ FR ANGEWANDTE STATIS TIK/ CORRENSPLATZ 2/ BERLIN 33 D-1000/ GERMANY
D-2000 GERMANY ATTN: INSTITUT FUER INFORMATIK/ UNIVERSITAT HAMBURG/ SCHLUETER STRASSE 70/ HAMBURG 13 D-2000/ GERMANY
D-2000 GERMANY THOMAS BERNER/ HERMANN-KAUFFMANN STRASSE 35/ HAMBURG 60 D-2000 / GERMANY/ 040-2506602
D~2300 GERMANY ATTN: INSTITUT FUR INFORMATIK/ UNIVERSITAT KIEL/ OLSHAUSENSTR. 40-60/ KIEL D-2300/ GERMANY
D-4440 GERMANY KWAI-SAND LA/ HEINRICHSTR. 7/ RHEINE D-4440/ GERMANY/ (0251) 706-3236
D-5000 GERMANY DIETRICH KREKEL/ RECHEN ZENTRUM/ UNIVERSITAT ZU KOLN/ ROBERT K OCH STR 10/ KOLN 41 D-5000/ GERMANY/ 0221/478/5587
D-5100 GERMANY PETER ALTMANN/ GRFGORSTR.26/ AACHEN D-5100/ GERMANY
D-7800 GERMANY CH. SCHLIER/ FAKULTAT FUR PHYSIK DER UNIVERSITAT/ HERMANN-HERD ER STR. 3/ FRIEBURG I. BR. D-7800/ GERMANY/ 0761/203 3714
D-8000 GERMANY WERNER REMMELE/ ZT ZFE FL SAR 121/ SIEMENS AG/ OTTO-HAHN-RING 6/ MUNCHEN 83 D-8000/ GERMANY/ 089/6782-4622
HONG KOHNG WILLIAM M. BRACK/ UNIV. AND POLY. COMPUTER CTR. LTD./ CORE C G /FL/ HONG KONG POLYTECHMIC/ YUK CHOI ROAD / HUNG HOM/ KOWLOOW/ HONG KONG
411007 INDIA S. M. VAIDYA/ REGIONAL COMPUTER CENTRE/ POONA UNIVERSITY/ POON A 411007/ INDIA
INDONESIA INDRO S. SUWANDI/ COMPUTER SCIENCE CENTER/ UNIVERSITY OF INDON ESIA/ P.O. BOX 3442/ JAKARTA/ INDONESIA/ (021) 45726
IRELAND ALAN JONES/ 2 GROVE ROAD / MALAHIDE/ DUBLIN/ IRELAND /
* ISRAEL JUDITH KOVETZ/ COMPUTATION CENTRE/ TEL-AVIV UNIVERSITY/ RAMAT- AVIV/ ISRAEL/ 03 420643
158 JAPAN TERUO HIKITA/ DEPT. OF MATHEMATICS/ TOKYO METROPOLITAN UNIV./ FUKAZAWA SETAGAYA-KU/ TOKYO 158/ JAPAN/ 03-717-0111
544 JAPAN HIROAKI NISHIOKA/ SHOJI-HIGASHI 1-3-7/ IKUNO-KU OSAKA 544/ JAP AN/ 06-751-4891
NEW ZEALAND CHRIS M. BISHOP/ COMPUTING CENTRE/ UNIVERSITY OF OTAGO/ P.O. BOX 56/ DUNEDIN/ NEW ZEALAND/ DUNEDIN 40109 EXT 890
NEW ZEALAND ATTN: DOCUMENTATION OFFICER/ COMPUTER CENTRE/ MASSEY UNIVERSLT Y/ PALMERSTON NORTH/ NEW ZEALAND
NORWAY OLAV NAESS/ WELHAVENSGT.65/ BERGEN/ NORWAY
PAKISTAN ADNNAN KHAN/ 222/7 BLOCK-E/ OPP. WALTON TRAINING CENTRE/ WALTO N ROAD/ LAHORE CANTT./ PAKISTAN/ 83644/ 412193
00590 POLAND MICHAL IGLEWSKI/ INSTITUTE OF COMPUTER SCLENCE/ POLISH ACADEMY OF SCIENCE/ PKIN P.0. BOX 22/ WARSZAWA 00590/ POLAND/ 200211 X2225
PORTUGAL ADELINO CARLOS DE SOUSA/ RUA JOAO PINTO RIBEIRO 7-30 ESQ./ AMA DORA/ PORTUGAL/ 937 315
SINGAPORE JACK PAGE/ PAGE-ASIA ASSOCIATES/ 279-M SELEGIE COMPLEX/ SINGAP ORE-7/ SINGAPORE/ 326102

2001 SOUTH AFRICA JUDY M. BISHOP/ COMPUTER SCI. DIV./APPLIED MATHS DEPT./ UNIV. OF THE WITWATERSRAND/ 1 JAN SMUTS AVENUE/ JOHANNESBURG 2001/ SOUTH AFRICA
(11) - 394011 X8656

§-102 62 SWEDEN PATRIK WAHREN/ HUGIN HASSREGISTER AB/ BOX 4180/ STOCKHOLM S-10 2 62/ SWEDEN/ 08/24 51 00

$-350 03 SWEDEN MATS APELKRANS/ BOX 3032/ VAXJO $-350 03/ SWEDEN/ 0470/46363

CH=-1007 SWITZERLAND ANA-MARTA SCHMIT/ CALCULATRICES DIGITALES/ ECOLE POLYTECHNIQUE FEDERALE/ 16 CH. DE BELLERIVE/ LAUSANNE CH-1007/ SWITZERLAND/ 021 47 26 59
Cli=1224 SWITZERLAND RAYMOND MOREL/ 98 CH. DE LA MONTAGNE/ GENEVA CH-1224/ SWITZERL AND

Cli~5900 SWITZERLAND HANS J. METZDORF/ HAUPTPOSTLAGERND/ LUGANO CH-6900/ SWITZERLAN D/ 0039/332/780131 X1079

Cii~8006 SWITZERLAND PETER U. SCHULTHESS/ INSTITUT FUER INFORMATIK/ UNIVERSITAET ZU ERICH/ KURVENSTRASSE 17/ ZUERICH CH-8006/ SWITZERLAND

THE NETHERLANDS J. F. WILKES/ SHAPE TECHNICAL CENTRE/ POST BOX 174/ DEN HAAG/ THE NETHERLANDS

THE NETHERLANDS TOM VAN DER HOEVEN/ HAGEDOORNSWEG/ NIEBERT/ THE NETHERLANDS

UNITED KINGDOM J. AMBLER/ 21 KILKEVAN TERRACE - WHILFIELD/ DUNDEE SCOTLAND/ U NITED KINGDOM

UNITED KINGDOM R. D. FREEMAN/ EDP DEPT./ PLESSEY CO. LTD./ TITCHFLELD NEAR FA REHAM/ HAMPSHIRE ENGLAMD/ UNITED KINGDOM
UNITED KINGDOM D. S. COCHRANE/ 4 ENNIS CLOSE/ HARPENDEN HERTS/ UNITED KINGDOM

UNITED KINGDOM D. J. HOMORTH/ 27 CHILTERN ROAD/ HITCHIN HERTS/ UNITED KINGDOM

PASCAL NEWS #12 JUNE, 19738 PAGE 17

7AY
INN
2TT
L
3LP
3XX
4pu
4LA
5AJ
3EZ
RH
TRH
38X
9PL
M20
M60 1QD
NE9D ILH
HP6 TBB
NW3 7ST
0X2 6PE
SEL 0AA
SW1P 4RT

s 1WB
WCLA OAH

UNLTED

KINGDOM
KINGDOM
KINGDOM

UNLTED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM

UNITED

UNITED KI?

M

UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM

~
[
o
=
[ae}
[X=] w
> W0
= 00 —
P (e}
[=] 1
<C o
o W0
@ N
— . |
o e W0
PE -
-0
= 4 1
=c —
(3
- |
O— WV
O < Dl
o
<
— o
— -
—
[
=
O
o—
[&]
=
3]
o
o
IS
[=]
o
-
o
w
L
e
= O
~ 4
[T
S .
" o
2
o
(%2}
= -
= €
ol 8E
o (=
- &
— — AIH-
<C
- - e
(&) 0 O
2 O
— (72 I =
— w
(2}
[= 8 =T
[}
[= T8 H
<C

1-215-797-9690 home)

Thanks, Andy.

this section to Rich

ERSIDE,

HULL/ COTTIN guAM ROAD / N
ANN V. BARROW/ 19 DE VITRE STREET/ LANCASTER LANCS/ UNLTED KIN gpoy

J+ ROSCOE/ COMPUTER DEV. DIV. ~ SYSTEMS ENG./ I. C. L./ WENLOC g yAy / WESTGORTON/ MANCE
G. F. LAPPIN/ MATH. AND COMPUTER STUDIES/ PORTADOWN TECH. COLL EGE/ LURGAH ROAD / CO. AR’
M. A. HUSBAND/ AUTOTEST/ MARCONT INSTRUMENTS/ LONGACRES/ ST. A LRENS MERTS/ UNITED KINGDOU

P. CARR/ SCHOOL OF MATHEMATICS/ UNIVERSTTY OF BATH/ BATH ENGLA ND BA2 7AY/ UNITED KINGDOM

JOHM ELPER/ DEPT. OF COMPUTER SCIENCE/ THE QUEENS UNIVERSITY/ BELFAST N. IRELAND BT7 1NN/ UNITED KINGDOM

K. LANG/ THE COMPUTER CENTRE/ UNIV. OF BIRMINGHAM/ ELMS ROAD/ BIRMINGHAX ENGLAND B1S 2TT/ UNITED KINGDOM/ 021-472-1301 X2233
M« L. PATRICK/ 42 CRAYTHORNE AVE. / HANDSWORTH WOOD/ BIRMINGHA M ENGLAND 820 1LL/ UNITED KING
S« J. HIGGINS/ MOORLANDS SOFTWARE LTD./ NENTHEAD/ ALSTON CUMBR IA CA9 3LP/ UNITED KING
Re B. T. BLACK/ ENGINEERING DIV./ NCR LTD./ KINGSWAY WEST/ DUN DEE SCOTLAND DD2 3XX/

i/ UR

H/ PORTADOWN N. IRELAND/ U

TED KINGDOMN

K. TIZZARD/ DEPT. OF M.S.0.R./ UNIV. OF EXETER/ STREATHAM COUR T/ EXETER ENGLAND EX4 4PU/ UNII
ROBERT G. CLARK/ COMPUTING SCIENCE DEPT./ UNIVERSITY OF STIRLI N
M. J. L. YATES/ F/0603 X66HQ/ GCHQ OAKLEY/ PRIORS ROAD/ CHELTE
P.

WALWYN/ 57 BARN MEADOW LANE / GREAT BOOKHAM/ SURREY ENGL Al NGDOIt
LAND LEL 7RI/ UNITED KINGHOM
TED KINGDO4/ LEIC. 50000

J. ROWE/ COMPUTER LABORATORY/ LEICESTER UNIVERSITY/ LEICEST ER ENGLAND LEl 7RI
M. D. BEER/ COMPUTER LABORATORY/ UNIVERSITY OF LIVERPOOL/ P.O. BOX 147/ LIVERPOOL
TONY ADDYMAN/ DEPARTMENT OF COMPUTER SCIENCE/ THE UNIVERSITY/ OXFORD ROAD/ MANCHE!
RICHARD CLAYTOM/ 20 BALDOCK ROAD/ MANCHESTER ENGLAND 420/ UNIT ED KINGDOM

U

T. M. N. IRISH/ 5 NORSE WAY SEDBURY/ CHEPSTOW GWENT NP6 78B/ UNITED K
P. E. OSMON/ COMPUTER SCIENCE DEPT./ WESTFIELD COLLEGE/ KIDDER PORE Al UE/ LOWDON ENGLAND HW3 7ST/ UNITED KINGDOM/ 01-435-7141 XS21
C. A. R. HOARE/ PROGRAMMING RESEARCH GROUP/ OXFORD UNIVERSITY COMPUTING LABORATORY/ 45 BANBURY ROAD/ OXFORD ENGLAND 0X2 6PE/ U
R. COLE/ DEPT. OF MATH. SCIENCES AND COMPUTING/ POLYTECHNIC OF THE SOUTH BANK/ BOROUGH ROAD/ LONDOH ENGLAND SEL OAA/ UNITED KINGDO
M. NUNN/ 407/ CCA/ RIVERWALK HOUSE/ LONDON ENGLAND SW1P 4RT/ y NITED KINGDOM

EHNGLAND/ UNITED KINGDOM/ 061 223 1301 X2589

KINGHO

J. R. PUGH/ DEPT. OF COMPUTER STUDIES/ SHEFFIELD CITY POLYTECH NIC/ HERINT HOUSE - POND HILL/ SHEFFIELD ENGLAND S1 1WB/ UNITED KINGDOM

ROBERT 0. HARRIS/ COMPUTER CENTRE/ UNIVERSITY COLLEGE - LONDON / 19 GORDON ST./ LONDON ENGLAND WCLA OAl/ UNITED KINGDOM/ 91-337 0858

A X X R X B X

o

(93

o <

= 4+
v [o=
== 5 L= 1
O O © o —
— % 4= e ©
o= [- 0 o o o [
© ~ = [=3 o w o >
>r— o O - < > @ < O ©
—_ > O 0 > | + — — g o > >, <
S o —_ P e} - - O] (] — e © £ Y-
o = — w v 0 — 9« = A~ - Y — © © oo
frud “w 0o ' 0 O & B & Z2~HOoO®=zO ow s |
) b o — [7%2) n—= o o~ PN = T D Q4 2
w=z O DUV O 303 O aH O 30 >_ 0 -o
£ S0 . s SH A0 + L& 500 0% -0 o £ — .
S s O e [=] O HHEHD PHAHLQQN OO -~ S0 o @ wn
S o 0 © R OO R AN O HD O H P = Jragid — 35
& o AR o>F ©d HWEKSOT O n.Se— © Q<
cw > T W 0 o 2] OS5 d PLo.o -H] 0T ©
< = © < VY o SN OeH g Ko V- -0 — -
a g cE ov & —H® B0 S JST 3V © O 0 [
> .S £ = PO .S P o0 P EEONOQ O © Voo -
D — > = o — + H 3 TR0 e NN O= >0 — 0o E>cwn
O— @ O0> Ec % @D oS O E A o g < O S P o
L™ £ -0 gy © a0 T 0 meH O n o 3 — co oc
S e ey ey oo - [me Ee] rrm o = = -
26 OE & n Q.o © > n + O £ »r— ©cT o
nr- P OB £SO naP B OHed O 00 D - — S w0
2 - " = o> [=3 [N-1 A0 O~ NO 300V wn 1 Y- = ©
—— o O — [} [N o] n v o D i "nw Vo o LV E
© T ™ v O k=] o ZoH P >~ S un oH o _—c O o
0T O £ < R <] o 0T " < N HOP =9 o = ~n
n<t n O £ O0OUTUT© =] S X0 Q —_m g O 0 LR o~ OUT E @
] o] c < o Q- S S30N VT g B S o —c @
- FUccW W e8u¥ CBEZL 5893 o~ . PO s
. = L~ o O j. =] g 8.0 3] A M 13 Y Y= © S [} ~ @
ow e o OB g o 5] ISRe) P -) o o E [o ExXx O wn
CE - & o T oo = o —HEXM 0O - ®n oo e 0V DY SO+
—c D =4 DB e + + = o = QO 9 ©O Ec o> oOX Vo
PP O s O wnwnc Y (%} O gH=®n SO XNE N MO S0 © © o 4 E O
e O S 5% o Q Q0.2 0w NZ HOH OB O 3 L C oo IO
— S 4 O Ve ~> an 1%} 0 >4 b OH®VWOOER® D0 SO v o O
T o+P CO0E®mECS o ZE mR>QTg HQ o +—ao <£moco
aSre PBro°o - o] o H<o © 7w R 0w E Y £ © 4 b o
— - 0 2P0 — ~ H 2 SSH OOV « o n o = o
s TEmQ@ LOONHO ' sl 83 g OP OHZEZBOD W o~ = B EO
o () S0 X%+ o = 20 -0 0Q Bl o8 HeH T P QW= O D= S
o n o-0n = - 2 0 — R BRG] [} —c [T
CEx a4 'ga <= |l Y oAaHT R EFOEOZO YA O o O _+LO
CRBD W4 SO P o CVOURdBA —TOLHOOOE OH -0 - £cc
S o POSS e 0 nH oS Wy O HI3 T — ST > 350 00—
—nDe O D0 = o3 0 N BlH H TR P OR o 0+ OS50
PO o~ OO 3 z.c =] 803 H O H 0T & 0N 00 c O Q
O o P 00 S~ o (] QP = O g0 o nwv d-- = o © O cCHPCcn
0BT w +~—aov = Z 5] @@= 0 o 60 > o = 0T of— s © O ©
Pr s — © S 4 o— T O SHeAAO M © Qe P 00 = o

wsS - O0mOS HOownoug ¥ < @O O O = o e
ZTUOEO 0% OO & 30@d 00 > mt o N T > [T o P
Ve ocuns —b < O B0 v A mmd o Q- + 4 %) S ®o
CB e 0nELS 4 P BN o] & A0 M OCOWE & OEUY
z AP O E 0 — > b0 n =] v - £ @ S ST © < Vv
P O Ve &4 O 1 Gln.m.l B0~ N - O z = s 00 .c >
- O T OO OVC +- 0 <C tlm 5] O~ Oy LA S = Bl
Vomr v D v = P Yo S0 0H©—~ S QO OV 0 T>™o©
P N—T >2>0T U S © o T O © AN A0 H X P 0a o > —_—c
w ' o orrS0 SP HoH MO HZ30doe OET - Ta >+ _a
DOAP S D S oD O < >~ O 3TV~ E 03 = o< 3 © = O
s fmhoSsasr— oF Foged A48 0 0T od ErP— OVES—
O i © P < =~ O TdOOY O O~ T~ 0n © O ©
T+ OT N UV V- oo O A<t O O O~ © P HPT oo~ [} - [
OS E e & &~ 1= W g OHH.0.08~H P 0 CVYN SO
P—OSc P oOooo [o= P =} (=) — - R SN © [R
son o O+ [RTRSES] PO P d o O . Fe =y-" T
oS- N o——— o~ a - fEEH< g — @ [[o~ a © 42—
Drt s 25—~ E © A6 2006 woooOE& <~ - S _owun < -
T -0 OoWn S e X 0 O@H A NeH OO [} ﬂ s co .o
— 0 e - s = O L OTY T - S H & 0 0 O - N @S
OC D4 & O CoH SR HHOGADAIEO © E> ~T0oyY
DOr-= 0S4) 0 Bd wo- = wng.g o} (%) — > @
Rl T - 0N QAU 00 0P © 3 I O I P
- E s 2 - £ m E8 a O 1 H 3080 ot <= = 04 = e Q
Vo4 =L L o e >Nl © g g.a 0. Q0w] ZIESL© =+ 3
20656~ = - TS0 00VLHLOE H OP = w| Sleo Slo”T &
o—) — IS - E PP N E>d 2R OUNA < Dls oac DO o4&
~—~u © (=] = a. | (5 a o un
oz s o> O v o =
(=) o [— ﬂ R c S S O
oS 4 = © —aocXET —~QO>0

When numerical analyst Gilbert W. Stewart heard about the project, he was interested,

and gave the advice that algorithms beware of the matrix storage differences between

Pascal and FORTRAN (row-wise versus column-wise).

ications

Appl

Applications
ALGORITHHMS

A - 1 Random Number Generator

Department of Computer Studies

Bailrigg, Lancaster University of Lancaster

Telephone Lancaster 65201 (STD 0524)

Head of Department: J. A. Llewellyn B.Sc., M.Phil,, EB.C.S., ELM.A. 30th November 1977.

Dear Andy,

In case anyone is interested, as I am, in using Pascal for
simulation purposes, I present a Pascal random number generator based
on the feedback shift register pseudorandom number generator algorithm
given by Whittlesey [1], for a 16-bit word size machine.

Note that :

i) for any other word size, the constants 'pshift', 'gshift' and
'big' must be changed; (see Lewis [2])

ii) bound checking must be suppressed to allow the dual interpretation
of variables as both integer and boolean (if anyone is offended by
this objectionable programming trick, or if it fails to work under
a particular implementation; I have a more portable version - but
the price of portability is execution speed);
similarly, overflow checking needs to be suppressed, but I have a
remedy for this, too;

iii) our implementation has whole word logical operations for and and
or, but not for not - hence the use of 'acomp' and 'bcomp’;

(note - a subsequent release restricts and and or to boolean operations

only)

iv) the function must initially be passed a positive non-zero integer
"seed" (parameter 'x'), and will thereafter update this seed and
yield a real number in the range (0,1].

The feedback shift register method has been shown by Lewis [2] to
give good results, and I have thoroughly tested this version with the
usual statistical tests. (Pascal procedures for these tests are
available from me).

Incidentally, I would be very pleased to hear from anyone else
interested in Pascal and simulation.

n ,
N
Brian A. E. Meekings.

References.

1. wWhittlesey, J.R.B. A comparison of the correlational behaviour
of random number generators for the IBM 360. Comm ACM 11,9
(Sept 1968).

2. Lewis, T.G. Distribution Sampling for Computer Simulation.
D.C.Heath and Co., Lexington and Toronto (1975)

function random (var x: integer):_real;

const pshift = 2048;
gshift = 163
big = 32767;

type dual = record
case dummy: boolean of
true: (i: integer);

false: (b: boolean)
end;

var a, b, acomp,bcomp: dual;

begin

(* exclusive or number and number shifted 4 places right *)
a.i := x; bei := a.i div gshift;

acomp.i := big - a.i; bcomp.i := big - b.i;

a.b := (a.b and bcomp.b) or (acomp.b and b.b);

(* exclusive or number and number shifted 11 places left *)
bei := a.i * pshift;

acomp.i := big - a.i; bcomp.i := big - b.i;

a.b := (a.b and bcomp.b) or (acomp.b and b.b);

(* convert to real result *)
X 3= a.dj
random := a.i / big

end (* random *);

Jim Miner tried out the algorithm on a PDP8 (23 + 1 bit integers). I:le made
following points: a) the results seemed to be better if the left-shift

is circular; b) one has to be careful of multiply overflow; c) the
exclusive-or's are more naturally expressed as set operations, and d) a seed
of zero yields a constant zero result. His version is printed below. *)

FURDTIGOHN RANDOMOVAR SEEDR: INTEGERY : REAL:
COHET

FSHIFT

EOOLEAN OF
THTEGER):
FACKED SET OF @. .

DIV FHOD;
SHIFT CIRCULAR 1

TR S BB S - K
f.I; RANDOM =
EMD CREANDOM+

c1.8 + MAXINTS

CT# SHIN TYISVd

“aNne

8/.61

8T 39V¥d

A -2 Timelog

DOCUMENTATION : TIMELOG

Language : Pascal

Written : A.H.J. Sale
Thursday, 1978 March 2, 3.20pm

Use

To improve the quality of production PASCAL programs by making available a
standard method of recording the date and time of a run.

User documentation

Timelog is a Pascal procedure which writes on a globally declared file owtput,
producing a single line which is a log-record of the date and time. It has
no parameters, and is therefore used simply by including the text in the pre-
cedure declaration part of a program, and then activated by calling:

timelog

The format of the printed line is chosen to avoid all the confusion created
by numeric date and time information by conflicting American, English and
European conventions; in addition a measure of redundancy is included by the
weekday name. See date given above as an example.

Installation

The procedure will work without modification on Burroughs B6700/7700 instal-
lations using the University of Tasmania compiler. On other systems the
machine-dependent part (identified clearly in the listing) will have to be
altered to acquire the necessary information. (The B6700 pre-defined procedure
timestamp puts year/month/day/hour/minute/second information into the array
parameter elements, thereby avoiding any timing glitches of separate calls.)
The lower-case letters and some other characters may have to be converted to
suit some systems' lexical requirements. The procedure is easily modified to

handle other Indo-European languages (e.g. French) by altering the text strings.

System documentation

The procedure is straightforward. Only a few things are worth noting.
(1) Zeller's congruence is used to compute the weekday from the epoch.

(ii) The date and time are written according to ISO standard format in
descending order of significance (apart from the weekday).

(iii) The minute value is printed without zero-suppression; other numeric
codes are zero-suppressed, as is normal Pascal convention.

00010000
00010100
00010200
00010300
00010400
000 0

00011900
00012000
00012100
00012200
00012300
00012400
00012500
00012600
00012700
00012800
00012900
00013000
00013100
00013200
00013300
00013400
00013500
00013600
00013700
00013800
00013900
00014000
00014100
00014200
00014300
00014400
00014500
00014600
00014700
00014800
00014900
00015000
00015100
00015200
00015300
00015400
00015500
00015600
00015700
00015800
00015900
00016000
00016100
00016200
00016300
00016400
00016500
00016600
00016700
00016800
00016900

00017300
00017400

00017700
00017800
00017900
00018000
00018100
00018200
00018300

procedure timelog;

LRRMNARN]}
{memeneecccsccascsccanram - F T T T Te TSP R SR PP U 3
{ }
{ This procedure prints out a basic log-record on the output }
{ file. It avoids the well-known problems of American and }
} English date conventions, and the 24-hour clock confusion. }
}
{esvacumescnesvmmesesccueussmesenedessmsssseeesssesssssamsasssas}
var
year : 01..99 { two digits, 19xx assumed }
month 1,125 { month number }
day 1..81; { day in month }
hour : 0..28; { 24-hour clock assumed }
minute : 0..59; { minutes past the hour }
epoch : array[0..5] of integer;

{ required for B6700 }
adjyear 00..99; { Jan & Fob are taken as }
adjmonth P12 { last months of prev year }
weekday : 0..6; { 0=Sunday, 1=Monday, etc }
adjustedhour 0. .12. { conventional=clock 3

begin

{ The statements between here and the next comment should }
{ be replaced by the equivalent for your system. Note the }
{ ranges of the variables documented in the decliarations. }
timestamp (epoth);

year =opoeh[?] -1900;

minute :=epoch[4];
{ this eloso' the machine-dependent part }

{ compute the adjusted hour we use }
adjustedhour:=hour mod 12;
it (adjustedhour = 0) then adjustedhour:=12;

{ adjust month and year information }
if tmonth <= 2) then begin
adjmonth:=month+10; adjyear:=yoar-1{
end olse begin
adjmonth:=month-2; adjyear:syear

{ zeller’ s congruence }

weekday :

(l(ae # adjmonth - 2) div 10) + day + adjyear +
(adjyear div 4) + 1) mod 7;

{ write the timelog out }

case woekdnv of
write(output,’Sunday’);

: write(output, *Monday’);

: wrltolou!put,’Tutlday');

: writeloutput,’Wednesday’);

: writeloutput,’Thursday’);

: write(output,’Friday’);

6: write(output,’Saturday’)

[hvabrdnduaied

end;
write(output,’, ’,(year+1900):4,’ *);
case month of

1: writeloutput,'January’);
2: writeloutput, 'Fobruary'l
8: vritoloutput,'uurch’)
4: writetoutput,’April’);
§: writeloutput,’May’);
6: writeloutput,’June’);
7: writeloutput,’July’);
8: writeloutput,’August’);
9: writeloutput,’September’);
10: writeloutput,’October’);
11: write(output,’November’);
dIz: write(output,’December’)
en
write(output,’ ’,day:2,’, ’,adjustedhour:2,’:’,
(minute div 101 1 lm:nu!o mod 10):1);

if (hour >z 12) then bog:n
writeln(output,’ PM.’)
end else begin
writeln(output,’ AM.’)
end;
end;.

¢T# SMIAN TVISVd

“INAT

8.6T

6T 39Vd

SOFTYWARE TOOLS

—
OV N O LA W

LULLULULUUUS PSR PRER SR LWLLLLLOWWWWWENNNRON NN NN
ONOUVEFWN HFOWRXINIOUEFEWNFOWOVWINTURFEWNHFOWOENOUVM SFWNFRFOWRXNO UL EWN -
N % N Ok %k ok X kR % % ok %k ¥ R %k %k Ok N R N F % K R R K N H N F XA

S -1 Compare

{* COMPARE - Compare two text files and report their differences.
*

* Copyright (C) 1977, 1978

* James F. Miner

* Social Science Research Facilities Center

* University of Minnesota

*

* General permission to make fair use in non=-profit activities
* of all or part of this material is granted provided that
* this notice is given. To obtain permission for other uses
* and/or machine readable copies write to:

*

* The Director

* Social Science Research Facilities Center

* 25 Blegen Hall

* 269 19th Ave. So.

* University of Minnesota

* Minneapolis, Minnesota 55455

* U s A

}

*

Compare is used to display on "Output" the differences
between two similar texts ("Filea" and "Fileb"). Notable
characteristics are:

- Compare is line oriented. The smallest unit of comparison
is the text line (ignoring trailing blanks). The present
implementation has a fixed maximum line length.

- By manipulating a program parameter, the user can affect
Compare’s sensitivity to the "locality" of differences.
More specifically this parameter, "Minlinesformatch",
specifies the number of consecutive lines on each file
which must match in order that they be considered as
terminating the prior mismatch. A large value of
"Minlinesformatch" tends to produce fewer but larger
mismatches than does a small value. The value six appears
to give good results on Pascal source files but may be
inappropriate for other applications.

If compare is to be used as a general utility program,
"Minlinesformatch" should be treated as a program
parameter of some sort. It is declared as a constant here
for portability’s sake.

- Compare employs a simple backtracking search algorithm to
isolate mismatches from their surrounding matches. This
requires (heap) storage roughly proportional the the size
of the largest mismatch, and time roughly proportional to
the square of the size of the mismatch for each mismatch.
For this reason it may not be feasible to use Compare on
files with very long mismatches.

- To the best of the author’s knowledge, Compare utilizes
only features of Standard Pascal.

59

60 program compare(filea, fileb, output);

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

const

version = “1.2p (78/03/01)°;

linelength = 120;

minlinesformatch = 63
type

linepointer = “line;

line =

packed record

nextline : linepointer;
length : O..linelengthy

MAXIMUM SIGNIFICANT INPUT LINE LENGTH }
NUMBER OF CONSECUTIVE EQUIVALENT }
LINES TO END A MIS-MATCH }

-

{ SINGLE LINE BUFFER }

image : packed array [l..linelength] of char

end;

stream =
record

cursor, head, tail
cursorlineno, headlineno, taillineno : integer;

endfile : boolean
end;

var
filea, fileb : text;
a, b : stream;
match : boolean;
endfile : booleany

templine :
record
length : integer;

{ BOOKKEEPING FOR EACH INPUT FILE }

: linepointer;

{ SET IF END OF STREAM A OR B }

{ USED BY READLINE }

image : array [0..linelength] of char

end;

freelines : linepointer;

same : boolean;

procedure comparefiles;

function endstream(var x :

begin { ENDSTREAM }

ndstream := (x.cursor =

e
end; { ENDSTREAM }

procedure mark(var x

{ FREE LIST OF LINE BUFFERS }

{ FALSE IF NO MIS-MATCHES OCCUR }

stream) : boolean;

nil) and x.endfile

stream);

{ CAUSES BEGINNING OF STREAM TO BE POSITIONED BEFORE }
{ CURRENT STREAM CURSOR.
{ COUNTERS RESET, ETC. }

var
P : linepointer;

begin { MARK }
with x do
if head <> nil the

begin

n

BUFFERS GET RECLAIMED, LINE }

CT# SMIAN TVISYd

“aNnr

8/61

0¢ 39Vd

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

while head <> cursor do { RECLAIM BUFFERS }
begin
with head”™ do
begin p := nextline;

nextline := freelines; freelines := head
end;
head := p
end;
headlineno := cursorlineno;
if cursor = nil then
begin tail := nil; taillineno := cursorlineno end
end
end; { MARK }
procedure movecursor(var x : stream; var filex : text);
{ FILEX IS THE INPUT FILE ASSOCIATED WITH STREAM X. THE }
{ CURSOR FOR X IS MOVED FORWARD ONE LINE, READING FROM X }
{ IF NECESSARY, AND INCREMENTING THE LINE COUNT. ENDFILE }
{ IS SET IF EOF IS ENCOUNTERED ON EITHER STREAM. }

procedure readline;
var

newline : linepointer;
c, ¢c2 : O..linelength;
begin { READLINE }
if not x.endfile then

begin
c := 03
while not eoln(filex) and (c < linelength) do
begin ¢ := ¢ + 1; templine.image[c] := filex™; get(filex)
readln(filex);
while templine.imagefc] = ° 7 do ¢ := ¢ = 13
if ¢ < templine.length then
for c2 := c+l to templine.length do templine.image([c2]
templine.length := c3
newline := freelines;
if newline = nil then new(newline)

else freelines := freelines“.nextline;
pack(templine.image, 1, newline”.image);
newline“.length := c;
newline®.nextline :=
if x.tail = nil then
begin x.head := newline;
X.taillineno := 13 x.headlineno := 1
end
else
begin x.tail”.nextline := newline;
Xx.taillineno := x.taillineno + 1
end;
Xx.tail := newline;
x.endfile := eof(filex);
end
end; { READLINE }

nil;

begin { MOVECURSOR }
if x.cursor <> nil then
begin
if x.cursor = x.tail then readline;
X.CUrsor := x.cursor~.nextline;
if x.cursor = nil then endfile := true;
X.cursorlineno := xX.cursorlineno + 1

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

d

1ol
i=]

el

0

e
if not x.endfile then { BEGINNING OF STREAM }
begin
readline; x.cursor := x.head;
x.cursorlineno := x.headlineno
end
else { END OF STREAM }
endfile := true;
end; { MOVECURSOR }

[=

procedure backtrack(var x : stream; var xlines : integer);
{ CAUSES THE CURRENT POSITION OF STREAM X TO BECOME THAT }
{ OF THE LAST MARK OPERATION. I.E., THE CURRENT LINE }
{ WHEN THE STREAM WAS MARKED LAST BECOMES THE NEW CURSOR. }
{ XLINES IS SET TO THE NUMBER OF LINES FROM THE NEW CURSOR }
{ TO THE OLD CURSOR, INCLUSIVE. }
begin { BACKTRACK }
xlines := x.cursorlineno + 1 - x.headlineno;
X.cursor := x.head; X.cursorlineno := x.headlineno;
endfile := endstream(a) or endstream(b)

end; { BACKTRACK }
procedure comparelines(var match : boolean);

{ COMPARE THE CURRENT LINES OF STREAMS A AND B, RETURNING }

{ MATCH TO SIGNAL THEIR (NON-) EQUIVALENCE. EOF ON BOTH STREAMS }
{ IS CONSIDERED A MATCH, BUT EOF ON ONLY ONE STREAM IS A MISMATCH }

begin { COMPARELINES }

if (a.cursor = nil) or (b.cursor = nil) then
match := endstream(a) and endstream(b)
else
begin
match := (a.cursor”.length = b.cursor”.length);
if match then
match := (a.cursor”.image = b.cursor”.image)
end

end; { COMPARELINES }

procedure findmismatch;
begin { FINDMISMATCH }
{ NOT ENDFILE AND MATCH }
repeat { COMPARENEXTLINES }
movecursor(a, filea); movecursor(b,fileb);
mark(a); mark(b);
comparelines(match)
until endfile or not matchj
end; { FINDMISMATCH }

procedure findmatch;
var

advanceb : boolean; { TOGGLE ONE-LINE LOOKAHEAD BETWEEN STREAMS }

procedure search(var x : stream; { STREAM TO SEARCH }
var filex : text;
var y : stream; { STREAM TO LOOKAHEAD }
var filey : text);

{ LOOK AHEAD ONE LINE ON STREAM Y, AND SEARCH FOR THAT LINE }

{ BACKTRACKING ON STREAM X. }

CT# SMAN TY¥ISVd

“INnr

861

T¢ 39Vvd

246

309 procedure printextratext(var x : stream; xname : char;
247 yvar 310 var y : stream; yname : char);
248 count : integer; { NUMBER OF LINES BACKTRACKED ON X } 311 begin { PRINTEXTRATEXT }
249 312 write(’ extra text on file’, xname, °, °);
250 procedure checkfullmatchj 313 writelineno(x); writeln;
251 { FROM THE CURRENT POSITIONS IN X AND Y, WHICH MATCH, } 314 if y.head = nil then
252 { MAKE SURE THAT THE NEXT MINLINESFORMATCH-1 LINES ALSO } 315 —writeln(' Eore eof on file’, yname)
253 { MATCH, OR ELSE SET MATCH := FALSE. } 316 else
254 var 317 writeln(’ between lines ‘, y.headlineno-1:1, ° and °,
255 n : integer; 318 y.headlineno:l, ’ of file’, yname);
256 savexcur, saveycur : linepointer; 319 writetext(x.head, x.cursor)
257 savexline, saveyline : integer; 320 end; <{ PRINTEXTRATEXT }
258 begin { CHECKFULLMATCH } 321 £nc
259 savexcur := X.CUursor; saveycur := y.CUursor; 322 begin { PRINTMISMATCH }
260 savexline := x.cursorlineno; saveyline := y.cursorlineno; 323 Writeln(’ *hkkkkkkkkkkhhhhhkhhhhkkhhhhhkhhhs’)
261 comparelines(match); 324 emptya := (a.head = a.cursor);
262 n := minlinesformatch - 1; 325 emptyb := (b.head = b.cursor);
263 while match and (n <> 0) do 326 if emptya or emptyb then
264 begin movecursor(x, filex); movecursor(y, filey); 327 if emptya then printextratext(b, ‘b, a, “a’)
265 comparelines(match); =n :=n - 1 328 else printextratext(a, “a’, b, “b")
266 end; 329 else
267 X.CUrsSOr := savexcurj; X.cursorlineno := savexline; 330 becin
268 y.cursor := saveycur; y.cursorlinemo := saveyline; 331 writeln(’ mismatch:’); writeln;
269 end; { CHECKFULLMATCH } 332 write(’ filea, °); writelineno(a); writeln(’:");
270 333 writetext(a.head, a.cursor);
271 begin { SEARCH } 334 write(’ fileb, “); writelineno(b); writeln(’:");
272 movecursor(y, filey); backtrack(x, count); 335 writetext(b.head, b.cursor)
273 checkfullmatch; count := count - 1; 336 end
274 while (count <> 0) and not match do 337 end; { PRINTMISMATCH }
275 begin 338
276 movecursor(x, filex); count := count - 1; 339 begin { FINDMATCH }
277 checkfullmatch 340 { NOT MATCH }
278 end 341 advanceb := true;
279 end; { SEARCH } 342 repeat
280 343 if not endfile then advanceb := not advanceb
281 procedure printmismatch; 344 else advanceb := endstream(a);
282 Mar 345 if advanceb then search(a, filea, b, fileb)
283 emptya, emptyb : boolean; 346 “else search(b, fileb, a, filea)
284 . . 347 until matchj
285 procedure writetext(p, q : linepointer); 348 ;;I;;mismatch'
286 begin { WRITETEXT } 349 end; { FINDMATCH }
287 writeln; 350
288 while (p <> pil) and (p <> q) do 351 begin { COMPAREFILES }
289 begin write(” * “); 352 match := true; { I.E., BEGINNINGS-OF-FILES MATCH }
290 if p~.length = 0 then writeln 353 repeat
291 else writeln(p~.image : p~.length); 354 if match then findmismatch else begin same := false; findmatch end
292 p := p~.nextline 355 until endfile and match;
293 end; . 356 { MARK(A); MARK(B); MARK END OF FILES, THEREBY DISPOSING BUFFERS }
294 if p = nil then writeln(’ *** eof *¥*"); 357 end; { COMPAREFILES } ‘
295 writeln 358 -
296 end; { WRITETEXT } 359 procedure initialize;
297 360
§g§ procedure writelineno(var x : stream); 361 procedure initstream(var x : stream; var filex : text);
var 362 begin { INITSTREAM
300 £, 1 : integer; 363 with{x do ’
301 begin { WRITELINENO } 364 begin
302 £ := x.headlineno; 1 := x.cursorlineno - 13 365 cursor := nil; head := nil; tail := nil;
303 write(“line’); . . . 366 cursorlineno := 0; headlineno := 0; taillineno := 0
304 if £ = 1 then write(, f:1) LD 367 end;
05 else write(’s *, f:1, 7 to 7, 1l:1); sor . i .= i .
gOG if x.cursor = nil then write(’ (before eof)’); 323 ;?se:(izizgiiEAﬁ'indflle i= eof (filex);
307 end; { WRITELINENO } 370 end;
308

ZT# SMIN T¥ISV

“INnr

8/61

¢C 39vd

371

372 begin { INITIALIZE }

373 initstream(a, filea); initstream(b, fileb);
374 endfile := a.endfile or b.endfile;

375 freelines := nilj;

376 templine.length := linelengthj;

377 templine.image[0] := “x’; { SENTINEL }

378 end; {INITIALIZE}

379

380

381 begin {COMPARE}
382 initialize;
383 page(output);

384 writeln(’ compare. version ‘, version)j;
385 writeln; 3
386 writeln(’ match criterion = ‘, minlinesformatch:l, ’ lines.’);

387 writeln;

388 if a.endfile then writeln(’ filea is empty.’)
389 if b.endfile then writeln(’” fileb is empty.’)
390 if not endfile then

5
5

391 begin same := true;

392 comparefiles;

393 if same then writeln(” no differences.’)
394 end

395 end. { COMPARE }

(* The following output from Compare was generated on a CDC Cyber 74. The data used was the
source text of the Compare program itself, modified in 3 places by performing a change, a
deletion, and an insertion. The original source is "File A".v*)

COMPARE. VERSION 1.2P (78/03/01)
MATCH CRITERION = 6 LINES.

khkhkhkhhhrkhhhkhhhhhhhhhhrhhhhhhhhkk
MISMATCH:

FILEA, LINE 101:
* PROCEDURE COMPAREFILES;
FILEB, LINE 101:
* PROCEDURE COMPAREFOOLS;

hhkhkhhhhhhhhhhhhkhhkhhhhhhhhhkhkkk

EXTRA TEXT ON FILEA, LINE 131
BETWEEN LINES 130 AND 131 OF FILEB

* BEGIN TAIL := NIL; TAILLINENO := CURSORLINENO END

kkkhkhkhhhkhkhhkhhhhhhkhhhkkhkhkkhhhkk

EXTRA TEXT ON FILEB, LINE 162
BETWEEN LINES 162 AND 163 OF FILEA

* GARBAGE;

S - 2 Augment and Analyze

PERFORMANCE MEASUREMENT OF PASCAL PROGRAMS
USING AUGMENT AND ANALYZE

- Andy Mickel 78/03/14.
University Computer Center
University of Minnesota
Minneapolis, MN 55455

What AUGMENT and ANALYZE Do

Suppose you want to examine the execution efficiency of your Pascal
program-—perhaps to make improvements to those parts which take the most
computer time.

AUGMENT and ANALYZE are designed to obtain rough measures of such
execution times, particularly for large Pascal programs. Unlike other kinds
of performance measurement, AUGMENT and ANALYZE assume the PROCEDURE and
FUNCTION to be the smallest unit of a program to be monitored. This is a
satisfactory assumption because well-written Pascal programs produced by
stepwise refinement naturally are composed of proper-sized procedures and
functions.

The general principle used by these programs is that the value of the
non-standard Pascal function CLOCK (which returns the elapsed processing
time in milliseconds) can be sampled at procedure or function entry and exit.
When the the expression (exittime - entrytime), is evaluated the time spent
within the particular procedure or function can be ascertained.

AUGMENT is the program which inserts the necessary CLOCK-sampling
code into your Pascal source program for every procedure and function entry
and exit. It thus causes your program to capture timing information
and to write it out to a file.

Next you compile and execute your program, which actually produces the
file of dynamic timing measurements.

ANALYZE then reads the timing file produced, and writes a report, which
gives the name of each procedure or functiom, the number of times it
was called, and the execution time it consumed for all calls and per call.

AUGMENT and ANALYZE therefore provide a nearly machine-independent
method for gathering performance-measurement data about a Pascal program.
Most Pascal implementations have the required CLOCK function which returns
the elapsed processor time in milliseconds.

It is sometimes necessary to exclude the monitoring of excessively
called procedures and functions in large programs. A feature of AUGMENT
allows you to specify any number of names to be excluded.

How to Use AUGMENT and ANALYZE

Under CDC 6000/Cyber 70,170 operating systems, AUGMENT and ANALYZE are
control statements. Thus the following 3 batch commands do the job:

AUGMENT(the file name of your Pascal source program)

PASCAL (INTER/L~-,G+)
ANALYZE.

The program headings for AUGMENT and ANALYZE are:

AUGMENT(INPUT, EXCEPT, INTER, INTER2, OUTPUT)

where:

INPUT 1is the textfile containing the Pascal source program to be
AUGMENTed .

¢T# SMIN T¥ISYd

“aNnr

/6T

¢C¢ 39VYd

EXCEPT is the textfile containing a list of names (one to a line
with no leading blanks) of procedures and functions to be
excluded from measurement. EXCEPT can be an empty file in which
case no procedures or functions will be excluded.

INTER is the textfile on which the AUGMENTed version of
the Pascal source program is written.

INTER2 is the binary file on which only the names of each
procedure and function in the Pascal source program
is written for use by ANALYZE.

OUTPUT is the textfile on which error messages are written
if problems occur during AUGMENTing. A report is written
on OUTPUT verifying which procedures or functions were
excluded, if any.

The error messages are:
*TO0 MANY PROCEDURES AND FUNCTIONS TO AUGMENT.

(A limit of 2000 is imposed.) '

*"BEGIN'" EXPECTED.
*"END" EXPECTED.

(There’s something wrong with the statement part
of the Pascal source program which is being
AUGMENTed; it began with some reserved symbol
other than "begin" or there weren’t enough
"END"s to match "BEGIN"s.)

*"PROGRAM" EXPECTED.

(AUGMENT couldn’t find "PROGRAM" as the first
reserved symbol in the Pascal source program.
Possibly the INPUT file was empty.)

*UNDECLARED LABEL.
AUGMENT couldn’t find a label referred to by a
GOTO statement.

ANALYZE(OUTPUT, INTER2, TIMING)

where:

OUTPUT is the textfile on which the performance measurement

report is written or alternatively the error message:
*TIMING FILE EMPTY.

INTER2 is the binary file on which the names of each procedure
and function in the Pascal source program was written by
AUGMENT .

TIMING is the binary file containing the dynamic timing
measurements resulting from execution of the AUGMENTed
Pascal program.

Note: The identifier "TIMING" is added to the Pascal source
program by AUGMENT and must not appear in any procedure or function
which is to be monitored. When you use AUGMENT and ANALYZE, it is
probably a good idea to consider the file names INTER, INTER2, and
TIMING reserved.

In summary, there are four steps to the performance measurement
process:

1) [Pascal source program] => AUGMENT -> INTER and INTER2
*kkkxkk

2) INTER -> PASCAL Compiler -> [Pascal binary program]
K xkkkkrkikkhkkk
3) [input data for
Pascal program] -> Pascal binary program -> TIMING and [results
kxkkkkhrhkhkkkihdkxkik from Pascal program]

4) TIMING and INTER2 -> ANALYZE -> [performance measurement report]
Fekdkk Kk

EXAMPLE

Below are a test program, its AUGMENTed version, and the performance
measurement report:

The source of the test program:

PROGRAM TEST(OUTPUT);
LABEL 5;
VAR N: INTEGER;

PROCEDURE Aj;

PROCEDURE Bj
BEGIN N :=N + 1;

IF ODD(N DIV 2) THEN A ELSE B
END (*B%) ;

BEGIN (%*A%)
N:=N+1;
IF N > 200 THEN GOTO 5;

B
END (*A*) ;
BEGIN N := 0; A; 5: END.

The AUGMENTed version of the test program:

PROGRAM TEST(OUTPUT, TIMING) ;
LABEL 5;
VAR

TIMING:FILE OF PACKED RECORD I:0..2000;T:0..99999999;M:0..2 END;
N: INTEGER;

PROCEDURE Aj;

PROCEDURE B3
BEGIN
WITH TIMING™ DO BEGIN I:= 3;T:=CLOCK;M:=0 END;PUT(TIMING);
N :=N+1;
IF ODD(N DIV 2) THEN A ELSE B

H
WITH TIMING™ DO BEGIN I:= 3;T:=CLOCK;M:=1 END;PUT(TIMING)
END
(*B*) ;

BEGIN
WITH TIMING™ DO BEGIN I:= 1;T:=CLOCK;M:=0 END;PUT(TIMING);
(*A%)
N :=N+1;
IF N > 200 THEN BEGIN
WITH TIMING™ DO BEGIN I:= 2;T:=CLOCK;M:=2 END;PUT(TIMING);
GOTO 5 END

B

B

5

WITH TIMING™ DO BEGIN I:= 2;T:=CLOCK;M:=1 END;PUT(TIMING)
END

(*A%)
BEGIN REWRITE(TIMING);
WITH TéMING‘ Dg BEGIN I:= 1;T:=CLOCK;M:=0 END;PUT(TIMING);
N := 0; A; EE
WITH TIMING™ DO BEGIN I:= 1;T:=CLOCK;M:=1 END;PUT(TIMING)
END

CT# SMAN TVISVd

“aNnr

8/61

he 39Vd

The report from ANALYZE:

PERFORMANCE MEASUREMENT SUMMARY FOR PASCAL PROGRAM: TEST

EXECUTION TIME

CALLS (MILLISECONDS)
MODULE TIMES PERCENT AVERAGE MODULE PERCENT
NAME CALLED OF TOTAL PER CALL TOTAL OF TOTAL
A 52 25.490 0.15 8 27.586
B 151 74.020 0.13 20 68.966
TEST 1 0.490 1.00 1 3.448
'TOTALS 204 100.000 0.14 29 100.000

From the summary provided by AUGMENT and ANALYZE, you can identify
which procedures and functions to improve for greater execution
efficiency. In general, it pays to concentrate on procedures and
functions which are frequently called and take a significant amount
of the execution time of the total program. Procedures and functions
which have a large average execution time per call, but which are only
called a few times are not worth worrying about.

If one or more procedures or functions seem to dominate the results,
it might be a good idea to monitor the program with these modules
excluded from measurement. Use the except feature provided by AUGMENT.

History

AUGMENT and ANALYZE were conceived originally under the names PROFILE
and PRINRES in 1975-1976 by S. Matwin and M. Missala, of the Polish Academy
of Sciences Computer Centre, PKiN, Warwaw, Poland. The goal of the project
was to build a simple tool to measure very large programs -- such as the
Pascal compiler itself. A paper describing their successful work entitled:
"A Simple, Machine Independent Tool for Obtaining Rough Measures of Pascal
Programs," appeared in SIGPLAN Notices (11:8) August, 1976, pages 42-45.

Their successful implementation was on CDC machines using Pascal=-6000.

In 1976, Richard J. Cichelli of Lehigh University Mathematics Department
and the American Newspaper Publishers Association Research Institute, obtained
the programs and documented and distributed them to the Pascal community in the
United States.

In 1977, Herb Rubenstein and Andy Mickel of the University of Minnesota
Computer Center, modified the programs for coding style and to increase
portability, fixed bugs, and improved the performance of the programs
themselves. We also removed several limitations (the built-in
restrictions regarding the use of non-local GOTOs within procedures and
functions as well as the monitoring of procedures named NEXTCH).

The programs are now supported with the Pascal-6000 system which is
distributed to CDC installations around the world.

(* Note: In the programs listings following,
empty comments denote lines with possible
or outright machine dependencies. *)

NN
W= OWo 0 EWN =

»*

AUGMENT - AUGMENT PASCAL PROGRAMS WITH CODE TO GATHER
EXECUTION TIME PERFORMANCE MEASUREMENTS.

S. MATWIN AND

M. MISSALA 1975.

POLISH ACADEMY OF SCIENCES COMPUTER CENTRE.
PKIN, WARSAW POLAND.

REFERENCE: "A SIMPLE MACHINE INDEPENDENT
TOOL FOR OBTAINING ROUGH MEASURES
OF PASCAL PROGRAMS."
SIGPLAN NOTICES, 1976 AUGUST, PP. 42-45,

MODIFIED, GENERALIZED, AND RENAMED

FROM "PROFILE" TO "AUGMENT" BY:

A. B. MICKEL 77/08/04,

H. U. RUBENSTEIN 77/06/01.
UNIVERSITY OF MINNESOTA COMPUTER CENTER
MINNEAPOLIS, MN 55455 USA.

THE NAMES AND ORGANIZATIONS GIVEN HERE MUST NOT BE
DELETED IN ANY USE OF THIS PROGRAM.

SEE THE PTOOLS WRITEUP (UNDER MEASURE) FOR
EXTERNAL DOCUMENTATION.

*

AUGMENT (INTERNAL DOCUMENTATION).

AUGMENT INSERTS CODE TU CREATE A TIMING FILE IN THE PROGRAH4
HEADER, DECLARATION PART, AND STATEMENT PART OF THE PROGRAH
TO BE MONITORED. CODE IS ALSO INSERTED IN THE STATEMENT
PART OF EACH PROCEDJURE AND FUNCTION TO WRITE CLOCK
MEASUREMENTS (AT ENTRY, EXIT, OR GOTOENTRY) TO TH4E TIMING
FILE WHEN THE PROGRAM I3 EXECUTED.

AUGMENT MUST PARSE A SUBSET OF PASCAL AND THEREFORE HAS A
LEXICAL ANALYZER. THE TIMING FILE IS PROCESSED BY THE
COMPANION PROGRAM CALLED ANALYZE.

e MM M ok K K oKk ok K M Ok dk K ok K ok M oKk N K K ok kK K kK X M K K kK K K 3k K XK X WK~

{$R-,T-,P=,U+ 1}

program augment(input, except, inter, inter2, output);

label
13 {EXIT FOR PROGRA# ERRORS};

const
beginsy
casesy
endsy
{} externsy
{} fortransy
{1 forwardsy
funcsy
gotosy
labelsy
procsy
programsy
varsy

_- e PNV EWN -

P =3 e we we s o e e we we

I T U T TR T LR VA T TR TR T}

CT# SMAN TVISVd

“INnr

8/6T

G¢ 39Vvd

108
109
110
1M1
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130

maxmodules
llmax
1lmin
alfaleng

alfa
codetype
symbols
namenode

nononon

modulecnt
labelptr
labelnode

var
idlen,
lastidlen:

sy:
chbuf':
identifier:
number:

key:

badnames,
readinglabels:
linelength,
colent:

ch:

inter:

except:
inter2:
badlist:
count:

procedure nextch;

begin
get(input);
ch := input”;

2000;
120 { LINE LENGTH MAX };
72 { LINE LENGTH MIN };
10;

acked array [1 .. alfalengl of char;
entry, exit, gotoentry, declare);
beginsy .. varsy;
record
name: alfa;
link: " namenode
end;
0 .. maxmnodules;
~ labelnode;
record
T Tabl: 0 .. 9999;
declaredin: modulecnt;
next: labelptr
end { LABELNODE };

{IDENTIFIER LENGTH}
0 .. alfaleng;
symbols;
array [1 .. alfaleng] of char;
alfa;
0 .. 9999;
array [symbols] of alfa;
boolean;
integer;
char;
text {AUGMENTED PROGRAM FILE};
text {FILE OF EXCEPTED MODULE NAMES};

file of alfa {FILE OF ALL MODULE NAMES};
*namenode {LIST OF EXCEPTED MODULE NAMES};
modulecnt {RUNNING COUNT OF MODULES};

colent := colent + 1;
while (not eoln(input) and (colent > linelength)) do

get(input);

if eoln(input) then

colent :=
end { NEXTCH };

procedure advance;
begin

0

if eoln(input)

en

writeln(inter)

else

write(inter, ch);

nextch
end {ADVANCE};

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166

190
191
192
193
194
195
196

rocedure readid;
i GLOBAL : CHBUF,CH,IDENTIFIER,IDLEN,LASTIDLEN 1}

begin { READID }
idlen := 0;
repeat
if idlen < alfaleng then
begin
idlen := idlen + 1;
chbuflidlen] := ch
end {IF};
nextch
{} until not (ch in ['a' .. 'z', '0"
if idlen >= lastidlen
then
lastidlen := idlen
else
repeat
chbufllastidlen] := ' ';
lastidlen := lastidlen - 1
until lastidlen = idlen;
pack(chbuf, 1, identifier)
end {READID};

procedure writeid;

var
{ GLOBAL : CHBUF,IDLEN }
i: integer;

begin {WRITEID}
i .- .

.= ’
while i <= idlen do

begin
write(inter, chbufl[il);
i= 1+

end {WHILE}
end {WRITEID};

procedure comment;

begin
advance;

repeat
while ch <> '*' do

advance;
advance
until ch = '")°';
advance
end {COMMENT};

procedure stdcomment;
begin
repeat
advance
until ch = '}';

advance
end {STDCOMMENT};

procedure scan;

'9'1);

CT# SKAN 1YISVd

“INnr

861

9¢ 39Vvd

197 { FIND NEXT IDENTIFIER (OR NUMBER IF READINGLABELS).

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
213
219
220
221
222
223
224
225
226
227
223
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

{ GLOBAL :

{1

{1

SKIP STRINGS AND COMMENTS. }

label
-7

H

IDENTIFIER,CH,NUMBER, BADNAMES, READINGLABELS }

function nokey(id: alfa): boolean;

var
{ GLOBAL
i, j:

SY,KEY }
integer;

begln { BINARY SEARCH }
:= beginsy;
j 1= varsy;
repeat
_—BEY‘:= (i + j) div 2;
if keylsyl <= Id then
i = sy + 1;
if keylsyl >= 1d then
j = sy - 1;
until 1 > j;
Tiokey := key[sy] <> id
end { NOKEY };

begin { SCAN }
while not eof(input) do
begin
while not eoln(input) do
" begin

readinglabels := false;
if nokey(identifier) and not badnames
then
T writeid
else
g 21 { EXIT ON KEY OR EXCEPTED ID }
F}

if ¢ h in ['0"

the
1f eadlﬂglabels

'9']

o

begin
read(number);
ch := input”;
oto 21 { EXIT ON LABEL }
end T

repeat
advance
until not (ch in ['a' .. 'z', '0' ..

els

®

if ch = ''0¢

then

'9'1)

263
264
265
266
267
263
269
270
271
272
273
274
275
276
277
278
279
280
231
282
233
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
303
309
310
311
312
313
314
315
316
317
313
319
320
321
322
323

325
326
327
328

procedure complmodule(lastl:

begin
repeat
advance
uatil ch =
advance

trve.
’

begin
advance;
if ch = '*
comment
end {IF}
else
if eh = '{°'
en
stdcomment
else
advance

then

end {WHILE};
writeln(inter);

nextch
end {AHILE};

o —
5 e
Qo
—_—

SCAN };

labelptr);

{ PROCESS THE BLOCK OF A PROGRAM, PROCEDURE, OR FUNCTION TO FIND

{1

{1

THE APPROPRIATE CODE INSERTION POINTS.
LIST OF LABELS WHOSE SCOPE APPLIES TO THE BLOCK.
4UST PARSE LABEL, VAR,
MENTS AND THE COMPOUND STATZMENT FORMING THE

WELL AS GOTO STATE

LASTL IS THE HEAD OF THE
COMPLMODULE

PROCEDURE, AND FUNCTION DECLARATIONS, AS

STATEMENT PART OF EACH MODULE. }

var
{ GLOBAL

procedure insertnewtext(code:

begin

case code of

entry:
begin

write(inter,
write(inter,
write(inter,
writeln(inter,

IDENTIFIER,KEY,SY,CH,READINGLABELS,NUMBER,COUNT }
name:
depth:
params:
1:
gotolabel:
looking:
tag:

alfa;
integer;
boolean;
labelptr;
0 .. 9939;
boolean;
modulecnt;

codetype);

'with timing” do begin ');
'ii=', tag:4, ';');
'tiz=clock;m:=0"' {ENTRY});
' end;put(timing);');

end {ENTRY};

exit:
begin

Wwriteln(inter, ';');

write(inter,
write(inter, 'i:=', tag:4, ';°'
write(inter,
writeln(inter,

'with timing” do begin ');

)-
't -clock;m:=1',{EkIT});
' end;put(timing)');

ZT# SMIN T¥ISVd

“aNnr

8/6T1

LC 39Vd

329
330
331
332

334
335

337
338

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

379
330
331
382
383
334
385
386

3383
389

391
392

394

end {ZXIT};

gotoentry:
begin

write(inter, 'with timing” do begin ');
write(inter, 'i:=', 1%.declaredin:y,
write(inter, 't:=clock;m:=2'
writeln(inter, ' end;put(timing);")

end {GOTOENTRY};
declare:

begin

writeln(inter, 'var ');

write(inter, 'timing:file of packed record
write(inter, 'i:0.,.2000;');
write(inter, 't:0..99999999;"');

write(inter, 'm:0..2');
writeln(inter, ' end;');
end {DECLARE}
end { CASE CODE OF 1}

end { INSERTNEWTEXT };

function nameok: boolean;

{ CHECK PROCEDURE OR FUNCTION NAME AGAINST LIST OF NAMES TO BE

EXCLUDED. }

var
{ GLOBAL : BADLIST,NAME }
n: ° namenode;
looking: boolean;

begin { NAMEOK }
n := badlist;
looking := true;
while (n <> nil) and looking do
begin
looking := n".name <> name;
n := n".link
end {WHILE};
nameok := looking
end {NAMEOK};

oegin {COMPLMODULE}

while not (ch in ['a' .. 'z']) do
if ch = '(
Then
begin
advance;
if ch = '*¥' then
T comment

end
els
if
then
stdcomment
else
advance;
readid;
name := identifier;
writeid;
tag := count;
params := false;
while not params and (ch <> ';') do
if ch = '(°

]

h = '{"'

el

{GOTOENTRY});

427
428

430
431

442
4y3
yuh
445
446
4y7
4u8
449
450
451
452
453
451k
455
456
457
458
459
4AN

begin
advance;
if ch = '#!
then
comment
else
params := true
end {IF}
else
if ch = "{°
Then
stdcomment
else
advance;
if params
then
T while ch <> '")' do { READ THROUGH PARAMETER LIST
if ch = '{'
then
stdcomment
else
if ch = '(*
Then
begin
advance;
if ch = '*' then
comment
end {IF}
else
advance;
if tag = 1 { MAIN PROGRAM }
Then
write(inter, ',timing)')
else
write(inter, ch);
nextch;
scan;

if sy in [forwardsy, externsy, fortransy]
then
writeid

count := count + 1;
if count = maxmodules then
begin
writeln(' ¥too many procedures and',
' functions to augment.');
goto 13
end;
write(inter2, name);
if sy = labelsy { LABEL DECLARATION 1}
Then
begin { READ LOCAL LABELS 1}
writeid;
readinglabels := true;
scan;
repeat
new(1l);
1%.1abl := number;
1" .declaredin := tag;
write(inter, number: 1);
1% .next := lastl;
lastl := 1;
scan
until not readinglabels

CT# SMAN TYISVd

“aNnr

861

8¢ 39Vd

461 end {IF}; 527 771 iz 1".next;

462 528 if looking

463 while sy in [casesy, endsy]l do { TYPE DECLARATION } 529 then

464 begin 530 begin

465 writeid; 531 writeln(' *undeclared label ', gotolabel:
466 scan 532 oto 13

467 end {WHILE}; 533 end {IF

468 if Tag = 1 { MAIN PROGRAM } 534 else

469 Then 535 begin

470 insertnewtext(declare) 536 if 1".declaredin <> tag then
471 else 537 begin { EXIT GOTO }

472 T if not (sy in [beginsy, funcsy, procsyl) then 5338 writeln(inter, 'begin');
473 writeid; 539 if nameok \:hen

e 540 insertnewtext(gotoentry)
475 if sy = varsy 541 end {IF};

476 then 542 wrl_(lnter, 'goto ', gotolabel: 1);
w77 begin 543 if 1%.declaredin <> tag then
478 scan; 544 writeln(inter, ' end')
479 while sy in [casesy, endsy] d 545 end {ELSE}

480 ~ begin T CASESY,ENDSY IN ANCANONYMOUS TYPE 1 546 end {IFT

481 Writeid; S47 else

432 scan 548 if sy in [beginsy, casesy]

483 end {WHILE} 549 then

484 end {IFJ; 550 begin

485 551 depth := depth + 1;

486 while sy in [funcsy, procsy] do 552 writeid

487 begin 553 end {IF}

488 writeid; 554 else

489 complmodule(lastl) 555 T if sy = endsy

490 end {WHILE}; 556 then

491 557 begin

492 if sy = beginsy { STATEMENT PART } 5538 ——gﬁpth := depth - 1;

493 then 559 if depth <> 0 then

49y begin 560 writeid

495 depth := 1; 561 end {IF}

496 writeid; 562 else

497 if tag = 1 { MAIN PROGRAM } 563 begin

498 then 564 writeln(' *''end'' expected.');
499 writeln(inter, ' rewrite(timing);') 565 goto 13

500 else 566 end {ZLSE}

501 T writeln(inter); 567 until depth = 0;

502 if nameok then 5638 if nameok then

503 insertnewtext(entry) 569 insertnewtext(exit);

504 end {IF} 570 writela(inter, 'end');

505 else 571 end {ELSE};

506 begin 572 scan

507 writeln(' *''pegin'' expected.'); 573 end {COMPLMODULE};

508 goto 13 574

509 end {ELSE}, 575

510 576 procedure readbadnames;

511 repeat { LOOK FOR LAST ENDSY } 577

512 scan; 578 var

513 if sy = gotosy 579 T { GLOBAL : BADLIST,CHBUF }

514 then 580 n: ~ namenode;

515 begln { CHECK AGAINST LOCAL LABELS } 581 i: 1 .. alfaleng;

516 readinglabels := true; 582

517 scan; 583

5138 gotolabel := number; 5384 begin { READBADNAMES }

519 readinglabels := false; 585 writeln('the following procedures will not be augmented' :50);
520 looking := true; 536 writeln;

521 1 := lastl; 587 repeat

522 while (1 S nil) and looking do 538 new(n);

523 if 17.1abl = gotolabel 589 for i := 1 to alfaleng do

524 Then 590 T if eoln(except)

525 Tooking := false 591 Then

526 else 592 chbufli] := '

CT# SKAN TY¥ISVd

“aNnr

8L61

6¢ 39Vd

593
594
595
596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

634
635

637
638

640
641

WO~V EWN =

EIE I B AR R BN R I R R B I B BN

10

else
read(except, chbufl[il);
readln(except);
pack(chbuf 1, n".name);
.link := badlist;
badllst iz n;
writeln(n”.name :25);
writeln
until eof(except)
end { READBADNAMES };

begin { MAIN PROGRAM }

{}

{*

rewrite(inter);
rewr1te(1nter2)
reset(except);

ch := input”;

count := 1;

colent := 1;

linelength := llmax;

lastidlen := alfaleng;
linelimit(inter, maxlnt),
keylbeginsy 'begin '
keylcasesy] 'case '
keylendsy] := 'end '
keylexternsy] := 'extern 'S
key[fortransy] := 'fortran '
key{forwardsy)] := 'forward '
key[funesy] := 'function ‘';
keylgotosy] := 'goto '
key[labelsy] := 'label '
keylprocsy] := ‘'procedure ';
keyl[programsyl := ‘'program '
key[varsy iz 'var '

badlist := nil;

if not eof(except) then

readbadnames;
scan;
readinglabels := false;

if sy = programsy
then

begin
write(inter, 'p
complmodule(nil
end {IF}
else

rogram');
)

writeln(' *''program'' expected.');
13:
end { AUGMENT 1}.

ANALYZE - ANALYZE AND SUMMARIZE EXECUTION TIME
PERFORMANCE MEASUREMENTS FROM AN AUGMENTED
PASCAL PROGRAHM.

S. MATWIN AND

M. MISSALA 1975.

POLISH ACADEMY OF SCIENCES COMPUTER CENTRE.
PKIN, WARSAW POLAND.

MODIFIED, GENERALIZED, AND RENAMED

FROM "PRINRES" TO "ANALYZE" BY:

A. B. MICKEL 77/11/18.

H. U. RUBENSTEIN 77/05/15.

UNIVERSITY OF MINNESOTA COMPUTER CENTER
MINNEAPOLIS, MN 55455 USA.

THE NAMES AND ORGANIZATIONS GIVEN HERE MUST NOT BE

e M Ok kM M M K ok K K K K K M K K kK K Kk Kk WK

DELETED IN ANY USE OF THIS PROGRAM.

SEE THE PTOOLS WRITEUP (UNDER MEASURE) FOR
EXTERNAL DOCUMENTATION.

ANALYZE (INTERNAL DOCUMENTATION).

ANALYZE READS TWO FILES. INTER2 IS THE FILE CONTAINING
THE MODULE (PROCEDURE AND FUNCTION) NAMES WHICH ARE USED
WHEN THE RESULTS ARE SORTED AND WRITTEN OUT. TIMING IS
THE FILE CONTAINING THE EXECUTION TRACE OF THE PROGRAM
BEING MONITORED.

WITHIN ANALYZE, THE PROCEDURE NAMED PROCESSBODY DOES THE
ACTUAL ANALYSIS BY DETERMINING EVERY TIME INTERVAL:

TIME[EXIT] - TIME[ENTRY].
EVERY GOTOEXIT FROM A PROCEDURE IS CONSIDERED TO BE A

SPECIAL KIND OF PROCEDURE ENTRY, SO THAT ALL PROCEDURES
WHICH, UP TO THAT TIME HAVE BEEN ENTERED BUT NOT NORMALLY

EXITED, ARE ALL EXITED BY THE GOTOENTRY. SEE THE COMPANION

PROGRAM CALLED AUGMENT.

{$R-,T-,P-,U+}

program analyze(output, inter2, timing);

label
13;
const
alfaleng = 10;
maxnames = 2000;
type
alfa = packed array [1 .. alfalengl of char;
tagrange = 1 .. maxnames;
measurement = packed record
tag: tagrange;
time: 0 .. 99999999;
mark: (entry, exit, gotoentry)
end;
counter = record
count: integer;
name: alfa;
timespent: integer
end;
var
timing: file of measurement;
inter2: Tile of alfa;
modules: arrax_rtagrange] of counter;
maxtag,
tag: tagrange;
progtime: integer;
totaltime,
totalcalls: integer;
procedure sort(min, max: tagrange);

CT# SK3IN YISV

“INNCr

8/61

0¢ 39V¥d

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

{ QUICKSORT WAITH BOUNDED RECURSION DEPTH }
{ REQUIRES MIN <= MAX }

var
- low,
high: integer;
midkey: alfa;
temp: counter;

begin
repeat {PICK SPLIT POINT}

midkey := modules[(min + max) div 2]l.name;

low := min;
high := max;
repeat {PARTITION}

while modules(low].name < midkey do
ow := low + 1;
while modules(high].name > midkey do

high := high - 1;
if low <= high then
begin
temp := modules[lowl;

modules{low] := moduleslhighl;

modules[high] := temp;

low := low + 1;
high := high - 1
end;

until low > high;

{RECURSIVELY SORT SHORTER SUB-SEGMENT}

if high - min < max - low

then
begin
if min < high then
~ sort(min, hizh);
min := low
end
else
begin
if low < max then
~ sort(low, max);
max := high
end
until max <= min
end {50RT};

procedure processbody;
{ PROCESS TIMING FILE OF DYNAMIC MEASUREMENTS.

var

moduletag: tagrange;
moduletime: integer;

begin
moduletag := timing”.tag;
moduletime :=z - timing~.time;
get(timing);
while timing®.marx = entry do
begin

moduletime := moduletime + timing®.time;

processbody;

noduletime := moduletime - timing”.time;
if (timing”.mark = gotoentry) <= (timing~”.tag
then { ONLY ADVANCE THE TIMING FILE IF A GOTOENTRY

150
151
152
153

172
173
174
175
176
177
178
179
130
181
182
133
184
185
186
187
188
189
190
191
192

194
195
196
197
198
199
200
201
202
203
204
205
206
207
203
209
210
211
212
213
214
215

IS NOT ENCOUNTERED OR IF A GOTOENTRY
ENCOUNTERED INTO THE CURRENT MODULE.

get(timing)
end;
moduletime := moduletime + timing”.time;
totalcalls := totalcalls + 1;
with modules[moduletag] do
begin -
count := count + 1;
timespent := timespent + moduletime
end
end {PROCESSBODY};

CT# SMIN TYISYd

begin {MAIN PROGRAM}

reset(inter2);
tag := 1;
while not eof(inter2) do
begin
with modules[tag] do
begin
read(inter2, name);
count := 0;
timespent := 0;
end;
tag := tag + 1
end;
maxtag := tag - 1;
reset(timing);
if eof(timing) then
begin
—_&WFiteln(' %¥tining file empty.');
goto 13
end;
progtime := timing~.time;
totalcalls := 0;

:

processbody;

totaltime := timing”.time - progtime;
page(output);

writeln;

writeln;

writeln(' performance measurement summary for pascal program:

modules[1].name,'."');
writeln;
writeln('execution time': 62);
writeln('calls': 27, '(milliseconds)': 35);
writeln('module': 9, 'times': 13, 'percent':
'module': 10, ‘'percent': 11);
writeln('name': 8, 'called': 15, 'of total':
'total': 8, ‘'of t?ta%': 13);

writeln(' =eececmceaa!) 'oaaaao ' 12, 'eemeeeea :

if maxtag > 1 then
sort(1, maxtag);
for tag := 1 to maxtag do
with modules[tag] do
Degin
write(name: 11, count: 12,

((count * 100) / totalcalls): 11:3);

if count = 0
then

write('====': 15)
else

write((timespent / count): 15:2);

“INnTr

8/61

T¢ 35Vvd

216
217
213
219
220

’
221 writeln('totals': 9, totalca
(totaltime / totalcalls):

222
223 13
224 en

PROGRAMS

writeln(timespent: 9,

((timespent * 100) / totaltime):

d {ANALYZE}.

P - 1 Printme

(* Nearly every programming language has to have a program which can reproduce its source
In 1976, Pascal enthusiast, John Strait of the University of Minnesota,
(who incidentally maintains the CDC-6000 compiler for the world), wrote such a program,
When Urs Ammann, of E.T.H., Zurich, (who incidentally
authored the CDC-6000 compiler), saw this program, he said he had written a shorter

We have not seen it, but we would Tike to. *)

text as output.
and it is presented below.

one using a case statement.

PROGRAM PRINTME(OUTPUT);
(*JPS 76/05/26.%)
CONST FIRSTHALF = 9;

SECONDHALF
LENGTH = 22;

RN

10;

VAR I,J: INTEGER;
IMAGE: ARRAY([0..LENGTH] OF
PACKED ARRAY[1..40] OF CHAR;
BEGIN (* PRINTME *)

IMAGE[0]
IMAGE[1]
IMAGE[2]
IMAGE[3]
IMAGE[4)
IMAGE([5]
IMAGE[6]
IMAGE[7]
IMAGE[3]
IMAGE[9]
IMAGE([10]
IMAGE[11]
IMAGE[12)
IMAGE [13]
IMAGE[14]
IMAGE([15)
IMAGE[16]
IMAGE[17]
IMAGE[18)
IMAGE[19]
IMAGE[20]
IMAGE([21)
IMAGE [22)
FOR I :=

[}

[T T '}

o

“PROGRAM PRINTME(OUTPUT);

* (*JPS 76/05/26.%)
“CONST FIRSTHALF =
‘ SECONDHALF = 10;
‘ LENGTH = 223

. e sv s,

H
‘VAR I,J: INTEGER;

° IMAGE: ARRAY[O..LENGTH]
° PACKED ARRAY[l..40] OF

“BEGIN (* PRINTME *

93

)

15:2,

OF
CHAR;

“FOR I := 0 TO FIRSTHALF DO

 WRITELN(IMAGE[I])

‘FOR I := 0 TO LENGTH DO
BEGIN WRITE(®“IMAGE(["",I:2,77]

FOR J := 1 TO 40 DO

IF IMAGE[I][J] =
THEN WRITE(Q,Q)

Q

‘ ELSE WRITE(IMAGE[I] [J]);

‘ WRITELN(Q, ";°")
’ END;

“FOR I := SECONDHALF TO LENGTH DO

’ WRITELN(IMAGE[I])
“END (*PRINTMEX).

0 TO FIRSTHALF DO

WRITELN(IMAGE[I]);
FOR I := 0 TO LENGTH DO

BEGIN WRITE(’IMAGE[’,I1:2,°] :=
1 TO 40 DO

IF IMAGE [I][J] = Q

THEN WRITE(Q,Q)

ELSE WRITE(IMAGE[I][J]);

WRITELN(Q, ;")

FOR J :=

END;

FOR I := SECONDHALF TO LENGTH DO
WRITELN(IMAGE[I])
END (*PRINTME*).

Q)

1

, :
11s: 14, '100.000':
totaltime: 9,

2)

Q)

DR

.

12:3)

1

1
1

e we we we we

we we ve ve we e we

e we we we

e we we we

1,

100.000': 12);

Articles

Extensions to PASCAL for Separate Compilation

Richard J. LeBlanc
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

The lack of features in PASCAL to allow procedures
and functions to be compiled separately can be of
considerable inconvenience in the development of large
programs. This weakness is particularly evident when
modifications are being made only to limited parts of a
program. Modifications of this sort are common, for
example, in the maintenance or extension of a PASCAL
compiler.

The extensions described below allow the creation
of a global environment, separate compilation of
routines using that environment, and additions to the
environment without requiring recompilation of existing
routines and declarations. Four kinds of modules are
recognized to implement these features:

1) Declaration modules are used to create an en-
vironment.

2) Routine modules are used to provide the bodies of
routines declared in an environment.

3) Environment extension modules are used to make ex-
tensions to an environment.

4) Main program modules are used to compile the main
program body.

Declaration modules
<declaration module> ::=
<declaration heading> <declaration block> .
<declaration heading> ::=
declarations (<file identifier>) ;
<declaration block> ::= <constant definition part>
<type definition part> <variable declaration part>
<routine heading list>
<routine heading list> ::= <empty> |
<routine heading> {, <routine heading>}
<routine heading> ::= <procedure heading> |
<function heading>

Within the module may be declarations of constants,
types and variables just as in a standard main program.
Following these declarations come the headings of
routines that are to be part of the environment. These
headings are identical to the headings in normal routine
declarations.

Any identifier defined in a declaration module may
be referenced in any other module compiled using the en-
vironment created from the declarations. This mechanism
allows routines compiled separately to call each other
and to use the same global constants, types and
variables. Compilation of a declaration module creates

ZT# SMIN TYISVd

“aNnr

8/61

¢¢ 39Yd

a description of an environment. This description is
used to do all type checking at compile-time, just as if
separately compiled routines had been compiled as a
standard program.

Routine modules

<routine module> ::=
<routine module head> <routine module body> .

<routine module head> ::= <environment head> routines

: (<identifier> {, <identifier>});

<environment head> ::= environment (<file identifier>) ;

<routine module block> ::= <constant definition part>
<type definition part> <variable declaration part>
<routine declaration part>

The file in the environment head specifies the en-
vironment in which the module 1is to be compiled. The
list of identifiers in the heading tells the compiler
which of the routines defined in the module are to match
declarations in the environment and thus are to be cal-
lable from outside of the module. Routine modules may
also contain declarations of constants, type, variables
and local routines. The variables so declared are
statically allocated and thus retain their values
between calls to the routines in the module. This makes
routine modules wuseful for 1limiting access to data
structures to only those routines that need to
manipulate and reference them.

A routine module defines a new name scope, SO
identifiers used in the global environment may be
redefined within a module. When a routine declared in
the global environment 1is defined in a routine module,
the declaration of its parameters is repeated and the
types must match those specified in the environment

- declaration. (Since the parameter names are not
relevant to type checking, they need not match those in
the declaration.)

Environment extension modules
<environment extension module> ::=
<extend heading> <declaration block> .
<extend heading> ::=
extend (<file identifier>, <new file identifier>) ;

Environment extension modules may add any kind of
declaration to the environment, but cannot change any
existing ones. The environment description from the old
environment file is expanded to describe the extended
environment and is written as the new environment file.

Main program modules
<main module> ::=
<environment head> <program heading> <block> .

Main program modules look exactly 1like standard
PASCAL programs except that the heading is prefixed by
an environment heading to supply an environment file

Articles

specification. 1If any routine modules have been com-
piled in environments produced by extending earlier en-
vironment declarations, the main program module must be
compiled in the last of the extended environments. Only
a linear succession of environments may be used to com-
pile the modules that make up a program.

Experience using separate compilation

These extensions have been implemented in the UW-
PASCAL compiler [1,2,3] developed at the University of
Wisconsin - Madison for Univac 1100 series machines.
Experience using the extensions for further development
of that compiler has shown them to be of considerable
utility and to provide significant economic advantages.
In particular, having the separate compilation features
has made it ©possible to modify and test the compiler
within a short time, even during periods of very heavy
demand on system resources. Previously, recompilation
of the compiler was practical only during off-peak
hours.

The UW-PASCAL compiler has also been wused by
students in a compiler writing course, who made
considerable use of the separate compilation features.
These students found these extensions to be among the
most useful aspects of the compiler. However, no sig-
nificant reduction in total computing costs was observed
in comparison to previous experience using ALGOL and
SIMULA 67 compilers. The cost of keeping environment
files and relocatable code generated by compilation of
routine modules apparently offset the savings in com-
pilation costs. The students' compilers were about
2000-3000 lines long or about 20% of the length of the
UW-PASCAL compiler. Some work may be done to determine
the program size at which separate compilation provides
definite economic advantages in addition to its
contributions to convenience and modularity.

References
[1] UW-PASCAL Refernece Manual, Madison Academic Comput-
ing Center, 1977.

[2] Charles N. Fischer and Richard J. LeBlanc, "A
Diagnostic Compiler for the Programming Language
PASCAL", USE Fall Conference Technical Papers, Lake
Buena Vista Florida, October 1976.

[3) -—=--- , "Efficient Implementation and Optimization
of Run-time Checking in PASCAL", SIGPLAN Notices 12,
3, March 19/7.

This paper describes work supported by the Madisqn
Academic Computing Center of the University of Wisconsin
- Madison.

(* Received 78/02/03 *)

CT# SHAN TV¥ISVd

“aNnr

8/61

£¢ 39Vd

What Are Pascal”s Design Goals?

Robert D. Vavra
March 13, 1978

As a long-time reader ot Pascal News (PN), 1 have enjoyed the many
articles in which people have discussed various features which could
be added to Pascaly, but I have been unable to take much of the
discussion seriouslye In arguing for or against some particular
feature, writers have rarely invoked Pascal”s design goals in support
of their arguments. Such failure to build a proper foundation for
one”s arguments might be acceptable in casual conversationy but not in
2 serious discussione

1f a discussion about a language feature is to be taken seriously (by
mey at least), the writer must demonstrate that it is firmly based on
Pascal”s design goals. It is not enough to support a proposed feature
by saying that it is easy to use or implement, nor to reject a
proposed feature by saying that it is only a "favourite feature". A
writer should weigh a proposed feature against each of Pascal”s design
goals by pointing out which goals favor it and which do not, and
should discuss why the tradeoff is desirables

ALl of this presupposes that Pascal”s design goals are well-understood
and generally accepted. In fact, Pascal”s design goals are rarely
mentioned in PN, so I suspect that they are not well-understood.
Further, I think that much of the debate over various language
features is really a detate over what Pascal”s design goals should be.
This article attempts tc remedy this situation by summarizing what
Wirth”s design goals for Pascal originally were, and by starting a
discussion of what Pascal”s design goals should now bee

In both the original anc revised reports [1,2), Wirth”s stated design
goals are suitably modest:

* To make available a language suitable to teach programming as a
systematic discipl ines

* To allow development of implementations which are both reliable
and efficient.

In [£3], Wirth stated the following design goals:

* To make available & notation in which the fundamental concepts
and structures of programming are expressible in a systematic,
precise, and approgriate waye

* To make available a notation which takes into account the various
new insights concerning systematic methods of program
development.

. To demonstrate that a language with a2 rich set of flexible data
and program structiring facilities can be implemented by an
efficient and moderately sized compiler.

* To demonstrate that the use of 3 machine-jndependent Language
with flexible data and program structures for the description of
@ compiler leads tc an increase of its readability, verifiability
and consequently its reliability, and that this gain need not be
offset by any loss in efficiency.

* Jo gain more insight into the methods aof organizing large
programs and manag ing software projectse.

* To obtain a home-made tool which can easily be adapted to other
needse.

In [4], Wirth stated the following design goals:
* To permit clarity and rigour of description by using a small
num%ef ot fundamental concepts, thereby making program
verification easier.

To have a wide rance of applicability through proximity to actual
computer structure, rather than through a host of features
collected from various fields of usage.

% To promote both conpile- and run-time efficiency by omitting

features which reaqcire multi-pass compilation or elaborate
run-time support.

To promote reliability and efficiency of compilers by providing
a language which ?s simply and regularly structured, thereby
allowing the compilers to be simply and regularly structured.

* To promote machine independence (portability) by extending the
detinitional capabilities of the language to such a degree of
generality that machine dependent entities (types and operations)
may appear as special cases selectable by means of predefined
namesy and whose use presumably enhances the efficiency of
programs executed cn the particular system in which they are
defineds

In £5], Hoare and Wirth summarize all these goals as:
* To make available a general purpose language efficiently
implementable on many computers and sufficiently flexible to be
able to serve in many areas of application.

Interested readers can find further details in each of the referenced
paperse -

As a starting point for a discussion of what Pascal”s design goals
should now be, I suggoest the following Llist:

General Pascal should be usable in almost any application

purpose area or almost any computer systeme. There should be
reasonably easy ways to manipulate both numeric and
non-numeric datas to make use of pré-existing
software subsystems (either in libraries or in the
operating system), and to implement new
general-purpose software subsystems in Pascale.

Introductory Pascal should be usable by beginning programmers in

an introductory programming course. It should be
possible for them to write simple programs without
needing detailed knowledge of large portions of the
language, €+gs 1/0.

Low level Pascal”s features should be close to those

supported by current computer systems. Any
higher-level abstractions (e.ge. lists, strings,
i/0) should be supported by writing new types and
procedures in Pascal.

CT# SKIN TYISVd

“aNnTr

861

ke 39Vvd

Fortable Software written in Pascal should be reasonably
easy tc move from one computer system to anothers
It should be easy for programmers to isolate
implementation dependencies in a few places within
prograns. There should be a minimal number of
situat ions in which the actions of a program are
"undef ined" or "defineoc by the implementation".

Small Pascal should include a minimal number of
fundamental conceptse.

Systematic Pascal should encourage the programmer think
systematically by allowing him or her to
concentrate on a small section of the program at a
time. Fascal should minimize the number of special
rules which must be learned, instead relying on
general rules which apply in all situations.

Otviously, much more needs to be said about Pascal”s design goals. For
starters, important design goals may need to be added (e.ge
retiability, replacement for fortran). Additionally, each of the
design goals needs to be more fully explained (e.g. what does
"thinking systematically"” really mean). Finally, the implications of
the entire set of desigr goals need to be explored (e.g. are the
present extension mechanisms powerful enough to allow the language to
be general purposey, low level, and small?),

1 hope to find the time to write more about Pascal”s design goals, and
1 enccurage others (especially those who are proposing language
features) to do the samee. I look forward to a continuing dialogue in
PN on this important togice

References

1« N. Wirth, The Programming Language Pascale. Acta Informatica 1
(1971,

2» K. Jensen and N, Wirth, PASCAL User Manual and Reporte.
Springer-vertag (1974).

3, No wirthy, The Desigr of a PASCAL Compiler. Software - Practice and
Experience vol. 1 (1971).

4e No wirth, The Prograemming Language Pascal and its Design Criteria.
Infotech State of the Art Report No. 7, High Level Languages
1972,

S« Ce. Hoare and N. Wirth, An Axiomatic Definition of the Programming
Language PASCAL, Acta Informatica 2 (1973).

(* Received 78/03/20 *)

PASCAL ENVIRONMENT INTERFACE

T. Noodt
University of Oslo

Opening comments

I am at present working on a Pascal implementation for the
Nord 10, running an interactively oriented operating system.
(The Nord is a l6-bit Norwegian-made computer. It comes in two
variants with 48-bit and 32-bit reals, respectively.) The
Pascal Report does not say too much about how to interface a
compiler to a computer system and its users. To further
complicate matters, what it does say about this relates to a
batch system, and is worthless or unusable in an interactive
system.

1 think that the design of the Pascal environment 1is fairly
important, and that a certain unification would be of value.
Below I have schetched a few thoughts about this, and also
make some proposals.

why bother

A language is often judged on the way a particular
implementation interfaces to ifs environment, i.e.
1) what tools are available to a user for the construction,
compilation, and execution of a program, and
2) what are the interfaces between the implementation and
other systems on the computer (particularly the operating
system) .

Examples of such interfaces are: - What the available options
are, and in what way they can be set or reset. - How a
specific file is associated with a file name within a program.

Pascal implementors and fans have chosen to step off the
FORTRAN, BASIC, and PL/I highways to enjoy the much nicer view
from the Pascal path. The implementors being such rugged
individualists, there probably are as many different Pascal
environment interfaces as there are Pascal implementations.
Implementors are inventing and re-inventing interface
features, giving different names to the same feature, or
implementing the same feature in a slightly different way.

Since all the big computer vendors soon will become Pascalers
(do you doubt it?), the situation will become worse. In vendor
A’s Pascal implementation, all the extra-language "nice
features" will be totally incompatible with those of vendor B.
Goodbye portability.

¢T# SMIAN 1YISVd

“INNr

8L61T

G¢ 39Vvd

S0 what

All Pascal implementations need a minimal environment
interface, and often a broader interface is highly desirable.
There is no reason why this interface should be a completely
new one for every new implementation. A little effort can give
a lot towards unification, at least in future implementations.

I would like to see a discussion about what such an interface
ought to contain, ending up with someone making a
recommendation list of features which seem necessary or highly
desirable, with the heading:

If you want to include a feature from the list below in
your Pascal implementation, it is recommended that you
adhere to the specifications stated for that feature.

To initiate a discussion about these matters, I will present
my tentative list for the extra-lanquage features in the
Pascal implementation I am working on at present.

Options
Option Effect Default
L List program on
M List symbolic object code (MAC) off
Rn Reals will occupy n words 3
Sn Sets will occupy n words 8
T Generate run~time test on
indexing, sub-range assignments etc. on
U Convert all lower-case letters
outside strings to upper case offt

Conditional compilation

The compiler will conditionally skip parts of the source text,
depending on the value of flags which can be set by the wuser.
Source lines containing commands to the compiler must have the
character § in position 1.

flag =-> identifier

Command Effect

SSET flag flag gets value true

SRESET flag flag gets value false

$IF flag Include succeeding source lines if
flag is true

SELSE flag End of S$IF of same flag.

Include succeeding lines if flag is false.
SEND flag End of $IF or $ELSE of same flag.

A flag which has not been assigned a value, will have the
value false.

Multiple source files

The compiler command

S$INCLUDE filename
will include the content of that file at this point in the
source text. The command may be used recursively.

Command processor

The command processor is a part of the compiler which accepts
commands specifying parameters for a compilation.

SET flag
RESET flag
Set and reset conditional compilation flags.

OPTIONS option~list
Set or reset options according to option-list, which has
the same syntax as if it appeared within a Pascal comment.

COMPILE sourcefile, listfile, objectfile
listfile and objectfile are optional. The L-option is
turned off if listfile is left out.

The procedure OPEN enables association between a specific file
and a Pascal file variable at runtime.

var STATUS: integer) . . .

F is associated with the file with name NAME. The file is
opened, and status for this operation is left in STATUS.
The parameters NAME and STATUS are optional. If NAME is
not present, the system wil enquire the user to specify
the file. If STATUS is not present and an error occurs,
the job will be aborted if in batch mode or if NAME was
specified, otherwise the user will be asked to respecify
the file name.

procedure CLOSE(F: filetype) . . .

The file is closed, and F is disassociated from the file.

Standard procedures

The following standard procedures will be implemented.

CT# SMAN TYISVd

“aNnr

861

9¢ 39Vvd

procedure TIME(var HOUR, MIN, SEC: integer) . . .

procedure DATE(var YEAR, MONTH, DAY: integer) . . .

function TUSED: real . . .
(* gives accumulated CPU time in seconds *)

Interactive programs

Several difficult problems arise in the design and running of
interactive programs. OPEN and CLOSE take care of run-time
association of files.

Another nasty problem is that of reading data from a terminal.
If the data does not have the correct syntax, it is of course
not acceptable to abort the program. The CERN Pascal
implementation has solved this problem in the following
manner:

There is a standard procedure

SETINTERACTIVE
which when called, will make all error exits from READ save an
error status instead of aborting the program. This status can
be read with the function COMPLETION.

Closing comments

Some of the specifications above are vague, partly because 1
do not feel that a long, detailed document is necessary at
this stage. Also, your own interpretation or evaluation of a
feature may be as good, or better, than mine.

I invite criticism and comments on the features I have
described above. You are also invited to add or subtract
features.

However, I am not looking for an environment interface list
which is as long as possible. Think ecologically, and do not
let the environment pollute Pascal!

March 1978 Received 78/03/20 *)

—
*

SUBRANGES AND CONDITIONAL LOOPS

*Judy M. Bishop
Computer Science Division

University of the Witwatersrand

Johannesburg
2001 SOUTH AFRICA

The subrange facility in Pascal is an aid to runtime security
for fixed bounaary constructs such as counting (for) loops and array
subscripts. The relevant types can be precisely and naturally
defined and the compiler can minimise the amount of runtime checking
required. However, an index which increases under program control,
as in a conditional (while) loop, presents a problem. This note
discusses the problem and presents a solution in terms of a naming
convention.

THE PROBLEM
Consider the definitions
type index = min .. max; b1
var i : index;

and the conditional loop

i := min;
while (i <= max) and condition do [bY)]
begin

(* something *)
i := succ (i)

end;

If the condition remains true, an attempt will eventually be made to
set 1 to succ(max) - a quite normal way of triggering the end of
the loop. However, because 1i's type was precisely defined,

succ (max) does not exist! Rewriting the loop with the tests at the
end gives a similar error with respect to pred(min), i.e.

i := pred(min); k)
repeat i := succ(i);
(* something *)

until (i = max) or condition;

Even without a compiler or program verifier run, it is obvious
that these loops are inconsistant with the definitions [DIJ. If the
loop had only the test on i , then the for statement is the appro-
priate construct and the undefined nature of the final value is taken
care of by the compiler. At least, it should be, but only the B6700
does this. According to Sale's Pascal Compatability Report, the
various final values are

* Previously Judy M. Mullins
Computer Studies Group
Southampton University
ENGLAND.

CT# SMAN TY¥ISVd

“aNnr

8L61

L¢ 39Yd

undefined - B6700
max - CDC6000, Univac 1100
succ (max) - Dec-10, ICL1900, ICL2900

Do these options apply equally to succ? Like Sale, I think they
should not: an implementation should have a detectable undefined
value and succ (max) should yield it. This does not solve the
original problem which was to allow a succ(max) for the purposes
of controlling a loop.

Typically, this is achieved by weakening the type definition
to one of

type index = min .. succmax; ﬁ)@
or type index = predmin .. max;
or type index = predmin .. succmax;

This compromise raises its own problem: the subscript type of a
corresponding array declaration such as

var a : array[index] of item;

expects the original index type as defined in Exﬂ and not one of
[D4) 's extended onmes.

A SOLUTION

In teaching programming to undergraduate students at
Southampton, we made subranges "compulsory". (This can be done
by omitting to mention the predefined types integer and real.) We
were also blessed with a security-conscious compiler. In order to
avoid untold "out of range” errors and general disillusionment
in Pascal, we developed the following convention:

1. Subranges are defined over the genuine, natural range of elements,
typically that which would be used as an array subscript.
E.g.
type months = 1 .. 12; 3]

money = minint .. maxint;

var Dbalances : array [months]g_; money ;

2. If an index is required for this subrange, its type is given

the same name but prefixed by x- (for "extra") or z- (for
“zero").
E.g.
const dec = 12; [DS]
type xindex = min .. succmax
xmonths = 1 .. 13;

zmonths = 0 .. dec;

3. For an ennumerated type, the extra or zero element in the list
is named according to the type with the appropriate prefix.
E.g.
type xmonths = (jan, feb, mar, apr, may, jun, ﬁ)ﬂ
jul, aug, sep, oct, nov, dec, extramonth);

months = jan .. dec;

EXAMPLE
function deficit (since : months) : boolean;

var m : xmonths; negative : boolean;
begin
negative := false; m := since;
while not negative and (m <= dec) do
begin
negative := balances [m] < 0;
m := succ(m)
end;
deficit := negative
end; (* deficit *)

Deficit will work with the definitions in [D5] plus either those in
(D6] or [D7]. It could be called by

if deficit ((*since the*) 6 (*th month*))then ...
or by if deficit ((*in*) dec))then ...

This is made possible by keeping max (in this case dec) symbolic and
by making use of succ instead of +1 . 1In all compilers known

to pe, succ(m) is equivalent to m+l , that is, it does not invoke
a function call.

COMMENTS

1. Single letter prefixes do, admittedly, hinder readability, but
were chosen so as to impinge the least on the length of the
original name.

2. A single letter was not considered necessary for the dummy
ennumerated element since clashes here would be few.

3. The possibility exists for relating a subrange with its
extensions in a more formal way. Language designers and
pedagogues may care to investigate this.

ACKNOWLEDGEMENTS

Mike Rees, Martin Must and others in the Computer Studies
Coffee Room helped convince me that the easy way out i.e. declare
one type as the union of all possible variations, should be
avoided. The students of Computer Studies II, 1977, proved our
solution to be both workable and effective.

The Pascal Compatability Report can be obtained from

Professor A.H.J. Sale
Information Science
University of Tasmania
Box 252C
Hobart
Tasmania 7001.
(* Received 78/02/28 *)

CT# SMIN TVISYd

“INncr

8/61

8¢ 39Vd

4 few propused Deletions 1

John Nagle

Information Systems Design
3205 Coronado Dvrive

Santa Clara, CA 93051

(408)-249-8100

Since quite a number of extensions to Pascal have been
proposed, I thought that it would be desirvable te propose a faw
deletions to keep the size of the language down. With the goal in
mind of keeping Fascal a simple, glegant, and useful language
requiring @ minimum of run—time machinery., I propose a feuw simple
changes in the direction of simplicity.

i Get rid of GOTO and LABEL

Need I say more?

2. Get vid of the FORWARD declaration

The FORWARD declaration is a means by which a simple one—pass
compiler can find out about calls to procedures not yet defined
Since the compiler can perfectly well figure this out under its
own power by capturing the procedure definition at its first call,
we should not need to saddle the programmer with this
responsibility. At the end of the compilation we can list all
undefined procedures Thisz implementation has the additional
advantage that the compiler will not complain so much when wa
compile programs which are not yet complete, yet will even
crosscheck +he «calls of unwuritten procedures for compatibility
This is in keeping with the ‘top—down’ coding philosephy

2. Get vid of the ‘FOR loop variable problem’

When we get rid of GOTO, we simplify the semantics of the FOR
loop by guatranteeing that the index variable of the FOR is always
meaningless outside of the loop. Given this simplification. why
not simply declare the FOR index veriable automatically at the FOR
statement AS LOCAL TO THE LOOP. The programmer need not declare
it at 2ll, ner should he. since it has no meaning outside the
loop. The type of the wvariable is implicit in &the type of the
value assigned teo it in the FOR statement. This gets rid of the
ambiguity associated with the present definition, simplifies

A few proposed Deletions -2

register allocation in the compiler, and is fully compatible with
existing correct programs.

4. Get rid of the CASE statement ambiguity

The action of the CASE statement when the CASE selector is out

of range is ‘undefined’. In one implementation, nothing happens
in such cases. In another, the error 1s always detected and
fatal. One of these two actions should be made standard. I would

go for making it fatal (and perhaps installing a case name of
‘other’ to allow the program to capture these cases).

5. Get rid of ‘column 1 forms control’

I am aware that this is not a part of the language but of an
implementation. However, it is a very undesirable extension as it
builds an implementation dependence into programs unnecessarily.
The procedure ‘page({fileX}’ 1is defined as indicating page
ejection. I suggest we use it. Blank lines may be inserted by
calls to WRITELN without parameters. If it is desirable to handle
the printing of blank 1lines in some special way to improve
printing speed, the WRITE routine should take care of thes detail
by itself.

&. Get rid of the proposed ‘formatted read’

Yarious parties have noted the very real need for some means
of dealing with fixed-format input. Extending READ by adding a
formatting facility has been proposed. I see this as an
unnecessarily complex approach to the problem. The problem is
that of dealing with fixed-format input records. We have a very
nice record facility in Pascal; we simply cannot read records
easily. I propose that it be permitted to READ any structure of
fixed length all of whose base types are CHAR. This form of READ
should not be permitted to cross record boundaries (EODOLN=TRUE} and
the record being read into should be filled with an agreed-upon
fill <character (probably space, but some persons may want to use
an ASCII NUL). This facility also provides the ability to read
strings (arrays of CHAR) which is currently an annoying lack.
Conversion of numeric fields to values of type INTEGER and REAL
can be handled by suitable procedures. It would be desirable to
define and standardize such procedures

(* Received 78/03/09 *)

CT# SKIAN 1VISVd

“aNnr

8/61T

6¢ 39Vvd

Open Forum for Members

IR The University of Tasmania

Postal Address: Box 252C, G.P.0., Hobart, Tasmania, Australia 7001

Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58150 UNTAS

Mr. A. Mickel,

Editor, PASCAL News,
Computing Centre,
University of Minnesota,
Minneapolis, Minnesota
U.S.A.

18th January, 1978

Dear Sir,

PASCAL in Australia

May I clarify a few points that have arisen from my letters in #9/10?
Firstly the cost of Australian subscription has been criticised for its
size ($A10.00) against the US fee ($US4.00). Our original budgetting was
based on the following quoted figures:

Cost/copy (based on issue #8) $2.80
Postage/copy (in Australia) .70 (higher in NZ, Malaysia)
3.50

I suspected the cost/copy to be high, and we struck a rate of $2.50/copy as
reasonable, giving a subscription of $10 (4 copies per year). This makes
no allowance for othermail (reminders), the necessity to overprint to fill
back-orders and possible surplus stock, and higher postage to overseas
countries. It must be remembered that the print run in Australia is small,
and the postage rates are simply fiendish.

Subsequently, issues 9/10 have been coalesced, and by the time next year
comes we shall know better what it really costs. I hope it is less.
Preliminary revisions of the costs have shown cost/copy at about $1.00 and
postage in Australia has dropped to 60c, making a fee of $7.00 possible.
I'11 give you a figure for 1978/9 after we have processed #11.

‘The second point I have been taken to task over is a statement of mine that

our first-year course switch to PASCAL was "a first for reactionary Australia''.

Since this seems to have been misunderstood, PASCAL News readers may be
interested to know that PASCAL has been in use in CDC universities for some
time, notably the Universities of Adelaide, Sydney, New South Wales (and
Melbourne). In some cases as an introductory language, in others as a later
language.

However, in none of these, nor in any of the other universities that I know,
has the combination of a full undergraduate first-year course combined with
the use of PASCAL as a first language. However, I don't know everything that
goes on in all of the 20 universities spread over the continent, so I apolo-
gize if I'm wrong. My clear impression is that FORTRAN still dominates the
Australian scene, with COBOL and BASIC hovering around as well.

Yours sincerely,

s

Arthur Sale,
Professor of Information Science.

Tema

Societa per azioni con sede in Roma
Capitale L. 500.000.000 i. v.

Trib. di Roma Reg. soc. n. 1450/72
CCIAA Roma 374468 Bologna 211702

PASCAL USER'S GROUP
c/o Andy Mickel

UCC: 227 Exp. Engr.
University of Minnesota
Minneapolis, MN 55455
U.S.A.

Dear Mr. Mickel,

Direzione e uffici:
40122 Bologna / via Marconi 29/1
telefono 267285 (5 linee)

riferimenti da citare nella risposta

026/17/0343/as/1s

Bologna 1 1/1 1/1 917

I wish to submit a few considerations to the Forum of
PUG members and PASCAL implementers:

Prologue:

"The new language PASCAL is my own favourite programming language, but

only time will tell if it can fall beneath its academic roots"
"Teaching the fatal desease" — R. Holt — SIGFLAN Notice (May 1973),

I work in a Software Consulting Agency that deals with the following

main subjects:

- mathematical models;
— management information systems;

- basic software and process control.

Our applications must work on user's defined environments so we design
and code programs for different computers, I emphasize: we design and co

de, we do not teach programming,

Ain:

We think that PASCAL is a very good language (we use it, as design tool,
since 1972, and as coding language since 1975) but we also think that a
few PASCAL features ought to be improved and a few ones ought to be in-

troduced, on our opinion, in order to provide a good use in commercial
applications or, that is almost the same, in day-to-day programming,

"You Know that 80% of commercial application programming is done in COBOLM
and there is not an "other language that is a practical alternative for
commercial work" — Call for Paper, First European Conference on pragmatic
programming & sensible software - 1978, J.Weinberg — With this letter we
wish add ourselves to the chorus of other letters on the same matter that
we have read on Pascal Newsletters.

Improvements:

1 - Enumerated scalar types: many commercial applications, and not only,
use very much this kind of type, and their subranges, but variables
of these types are incommunicable via standard Input/Ou‘l:pu‘t and exter
gal files. In order to have a clear programming is quite useless the;r
inner representation, it would be better their identifiers.
A possibile solution is to use their names (with common restrinctions)
as strings in I/O, this is implementable if we do a pre~processor of
the compiling stage that is not very heavy compared with the time and
space used by other common compilers,

2 - Strings: we like the way of defining a string - packed array [1..11]
of char - but, in practical programming, strings must be of varying

CT# SMIN TVISYd

“aNnr

8/61

0k 39Yd

lenght — with 'n' as maximum lenght — With formatted input, it would
be better to read the complete string in the same way as it is possi-
ble to write it (also without format). Pack and Unpack are useful pro
cedures to process a character in a string but they are not sufficient

to use strings in programs, one must provide the complete set of opera
tors. 12051 LAUREL TERRACE STUDIO CITY, CALIFORNIA 91604 (213) 762-2256

J. E. POURNELLE AND ASSOCIATES

We think that a good way of re-design this data type is to introduce
string (n) as base data type.

3 - Formatted input: we have read the proposed solutions of the gquarrel
in Pascal Newsletters, but is not a practical day-to-day solution. On Dear Mr. Mickel,
the other without formatted input is difficult to use PASCAL in com —
mercial applications because a blank in a (commercial) card is as im-
portant as a character.

2 Feb 1978

I have located a PRIMER of PASCAL and although I haven't
obtained it yet--the bookstore is very slow-- it promises to
solve most of my bibliographic problems.

4 — Case statement: we enphasize the utility to have:

case expression of In your package with the back issues of the newsletter you

noted that you have a good PASCAL for a Z-80 system with disks.

value 1:
M My system is a Cromemco Z-2 with 48 X RAM and 16 K ROM, iCom
: disks with FDOS-3; CPM is also available. AlSe hawve TARBEL CaSebfe (o,
value n:
otherwise: I would be very interested in obtaining a source code for PASCAL

that I could get running. I do not expect to get this for nothing,
and I am prepared to pay reasonable costs and fees; but I do
need to know from whom I can obtain it.

in addition to actual ¢case statement)

5 - Interlanguage communication: the "slogan" must be: "we have to manage

the transition between old nad new systems". But more than this often I enclose (1) a stamped self-addressed envelope for your

it happens that one have to use existing packages (data-base, linear— convenience in replying, and (2) a check for $10 as a

programming) but not also, many times we have to interface a system donation to the user's group, in the hopes that will

cas . provide an incentive for you to take a moment to reply.

that, for many reasons, must not be re-done., So it is very important,

if we want to introduce the PASCAL Language, to have a construct to As the former President of a writer's association I know very

manage communication with FORTRAN, COBOL, PL/1. well how volunteer and unpaid work eats up one's professional

i time and I recall from my grad student days just how little

Epilogue time is available; still, I do hope you'll be able to give me

We think it is very good to have a: the information on how to acquire PASCAL.

"- sparse, simple language; From all Ihgar, including from friends out at JPL who Ylork

- general purpose language; in programming the.M.ARINER and PIONEER probes, PASCAL is

— vehicle for portable software; very powerful and indeed probably better than some of the
‘;. ! much-touted and much better known languages. I am about to

= tool for systematic programming; write a whole mess of software and I would like to have the

- efo. option of getting that done in PASCAL rather than FORTRAN or

he 3 BASICS I have.
but also that, if software workers do not use it, it means that we have not any of the

proposed a real alternative "to dinosaur languages" and to actual program— “Thank you again,
ming style. -

Sincerely f/.’jerry P;Q\elle

7 /Wm\, S

r. Giuseppe Selva)

\

Open Forum for Members

CT# SMIN TYISYd

“aNnr

8/6T

Th 39Vd

: “ Box 11023 Date : 21 rev 78
J“ Atlanta ’ GA TO : Pascal News

University Computer

C
30 310 Univer:?:;rof
Minnesota
USA Minee?glc:;;s, MN

Gentlemen:

RE: Mr. R. A, Fraley's piece in the last Newsletter on
suggested extensions.

I miss dynamic arrays, being an Algol, and I'd love to
have real honest stringc, too.

However, I don't miss Common, and I don't think we need
to have Modules, either.

Common can be dismissed as a horror that allowed each
subroutine in FORTRAN to cut up the shared data as it wished
(thus Subroutine A was working on four integer, that Subroutine
B thought were two Reals, etc.). It was as big a burden as a
long parameter list, and it should die with FORTRAN.,

There is a nice feature in COBOL, PL/I and some other
languages for COPY or INCLUDE verbs that allow the placement of
text into the program from other files.

Since this is an operating system-compile time interface
we could do the include at the source code level, the intermediate
code level, or the binary code level. I favor the idea of doing
it as source code, since optimizing work can be done better with
constants being plugged in by actual user calls (there was a
Student paper in CACM with some timing studies on this technique
last year, that would be of interest), and since we must already
have a good text file system.

This would mean writting an extemsion to the compiler
you now have that would recognize

(include statement)::= include (external file id)

convert it into a comment, and append the proper file(s).

A library would be defined as a procedure or function,
a group of procedures or functions, or a group of procedures
or functions preceded by a group of declarations. A crippled
compiler could check to see that no executable statements were
on file. By having the declarations in front of the procedures
or functions we would get the shared variables via the existing
Global conventions of Pascal, and it would cost us only a few
extra lines in a compiler. Portability would not be affected.
Optimizing would be possible (for example, deleting items that
are not called by the program).

/,,@ézf

Joe Celko N

LEIBNIZ-RECHENZENTRUM
DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN

BARER STRASSE 21 D-3000 MUNCHEN 2

1
Pascal User's Group Mindhen, den ~ 23.02.1978/HW-1a
c/o Andy Mickel Telefon (089) 21 05/84 84
ucC: 227 Exp. Engr. T a5/t 34
University of Minnesota
Minneapolis, MN 55455
(612) 376-7290

Dear Andy,

enclosed you find a list of wishes of an enthusiastic PASCAL~-
user. I have condensed it from discussions with some of my
collegues who tried PASCAL for various problems.

These wishes are not "filtered" by implementation considerations,
but are propositions to make a very attractive language more
usable.

As I am preparing a PASCAL course for the users of our computing
center, I would be very glad to receive a short note from you
indicating the new features of release 3 of the compiler and

the approximate date of distribution.

Thank you in advance.

Yours sincerely,

L oty

(Hellmut Weber)

Direktorium: 0. Prof. Dr. G. Seegmiiller (Vorsitzender), 0. Prof. Dr. F. L. Bauer, o. Prof. Dr. G. Himmerlin, o. Prof. Dr. K. Samelson

ZT# SHIN T¥ISVd

“aNnr

8/6T

¢h 39VYd

A PASCAL-user's viewpoint:

1. Extensions which I consider as necessary

1.1 Dynamic array bounds, for example as describing by WIRTH
and further explained by CONDICT in SIGPLAN letters.
(It is ridiculous to have to write a separate inner-
product procedure for every vector length. The devel-
opment of procedure libraries would be drastically
simplified.)

1.2 Procedures which are parameters of other procedures must
permit var-parameters

(You don't have always one single value as result!)

1.3 Formated i/o as an alternative for the existing READ
and WRITE procedures.
(It seems to be the only posibility on convince people
who write production programs, and until now write them
in FORTRAN or COBOL, whether you like it or not.)

1.4 Structured Constants,
especially constant arrays
(Are needed if one wants to write library routines which
are to be called very often by one program, e.g. Serédes
expansions).

Extensions which would make programming in PASCAL much more
comfortable:

2.1 Break_character
2.2 All characters of a identifier should be significant.
(The possibility of suggestive and self-documenting
names is severly by the 8-char-rule.
Regard
Numberofpossibilities and
Numberofrealizations

and compare it with
Number_of possibilities and

Number_ of_realizations
Even the CDC character.set has still unused characters.)

2.3 Alphanumeric labels
(can indicate the condition of their use:
error_in_input_data:)

2.4 More standard functions

as yx, log1ox

3."Extensions" to be included in a sort of "standard" implement

tat

3.1

3.2

4. Fea
4.1

ion:

Possibilities for interactive use!

Extended file access:
3.2.1 Possibility to append an element to a file after
having read the file.

3.2.2 Random access

(KNUDSEN (ETH) described a sort of minimal version in PN.)

tures every implementation should include:

.Simple possibility to generatelibrary routines
(e.g. Compiler-option which causes the compiler to

assume the dummy main program and to suppress the code
generation for it. Non-standard type declarations needed
for the library routine had to be placed after the "switching
on" of this compiler option.)

Possibility to compile several programs (or a program and
separate libray routines d la 4.1) in one compiler run.
Debugging aids:
(there are no upper limits to the ingenuity of the
compiler writer, but there should be at least a dump
showing all variables, of structured variables I would
accept the bit pattern. See for example the description
of H.H. NAGEL in PN#4).

Compiler identification and statistics (Important for
documentation and not much work for the implementor.)

5. Especially for CDC-users:
Alternative characters for the important but dangerous

characters ':' and 'A' .

Release 2 allows '$' instead of ':' (as proposed by VIM)
but I didn't see the fact documented).

CT# SHWAN TvISVd

“INnr

8.61

¢h 39VYd

A COMMENTARY ON PASCAL NEWS No. 11 A.H.J. Sale

University of Tasmania.

This report is a commentary on the contents of issue 11 of News; it may be of
interest to PASCALlers in assessing where PASCAL is going and the value of the
NEWS.

Page 4: David Barron's proposal for algorithms is excellent! Even if inter-
program linkages aren't provided in a PASCAL version, source inclusion always
is. I offer any help I can give regarding portability (alas, I am no numerical
analyst). Can I urge others to help too?

Pages 8-13: possibly news, abstracts, etc, are the most useful part of News
that appears regularly. For me anyway.

Pages 33-34: a good summary of a serious 'compatibility' problem. For a long
time I have liked SRTCCO (in the author's terms), but this is something a
standard must resolve before I make a change. There are problems in SRTCCO in
letting adjustable arrays in, aren't there? It would be interesting to know
why the change to SRTCC1 was made in later CDC compilers.

Pages 34-40: A contrast between a tale of woe and rosy future. It is good to
see such a lot going on. Anyway, sometime soon it may be possible to present
all these 'standard' compilers with a large suite of validation programs to
exercise the claims a bit. 1It's being worked on in the UK by Brian Wichmann,
and here by me.

Pages 40-41: Suggestions for compilers and my reactions: (1) I suppose ok,
the comment idea is best, but you'd better look out if I find anyone allowing
nested comments. (2) Yes; but possibly a good separate cross-referencer would
do as well. (3) Must have this; we do. (4) I suppose so; it hadn't occured
to me as a problem as I'd rather remove the packed symbols. (5) Not that we
have it, but it is obvious that Kempton isn't a teacher of programming! Do
whatever you want if you've got your own version about setting such defaults.
They're nothing to do with PASCAL. (6) No comment needed. (7) God help us,
why? Cannot input forms be identical to output forms and those in the language
too? I regard things like 1. or .4 as quite abnormal; most scientists don't
write them that way anyway. (8) What's wrong with Wirth's suggestion of writeln?
(9) Some compilers do this now. (10) Possibly pre-defining more constants is

a bit of a sledgehammer; a prologue to portable programs can invite users to
change a const part ot suit their machine.

Pages 41-48: The set of Fraley extensions is too large to comment on. Most

of them fall far, far beyond any current ideas of standardization of PASCAL
which must include its warts as well as its beauty. 1I'll only comment on one
semantic ambiguity at the end. (1) This is a violation of the principle of
environmental independence of procedures; probably an oversight in PASCAL-P.
The ICL and Tasmania B6700 do it properly; the compiler is marginally simpler!
Pages 48-53: What a welter of desire to change PASCAL! Can I re-iterate what
Andy said: basic PASCAL is not up for grabs so that everyone can add their
favourite feature. The Revised Report needs tidying up, yes, after all it was
written for communication not as a standard. (Writing a standard calls for the
same intellectual effort as proving programs correct.) But not wholesale
revision. Only a very few 'agreed extensions' seem worthy of writing down;

one that appeared in these pages was allowing of a wider class of type-changing
procedures. This might be worth it if it stops people misusing variant records
for the purpose (a very difficult thing to detect).

Pages 66-80: Standards. It seems to me now that we could tidy up the loose
ends if only all these efforts don't get in each other's way. It'd be a
disaster if everyone started modifying compilers to fit into different views.
I'm adopting the policy of still fixing bugs and things the current Report is
quite clear on, but waiting a bit on any extensions until I see something all
are agreed on. It is only a pity this effort is two years or so too late to
forestall the variety. I'm delighted to see the bugs in PASCAL-P being brought
out; I find I can detect the ancestry of compilers by the results they give to
some test programs. And of course errors shouldn't be propagated.

Pages 83-103: Implementation notes: usually not comment-worthy. I feel I
must say something about the lousy decisions people are making in the lexical
area. Why on earth substitute # for €>, or abbreviate procedure to proc? It
is just pointless. Alternately, if the compiler is meant to be used in-house
alone, why publicise it in News. Still, enough of gripes. I applaud the set-
ting up of the ICL clearing house. PASCAL now has a canonic implementation
for CDC Cybers, Decsystem 10s, UNIVAC 110s, and ICL gear. The IBM and PDP-11
situations are the most worrying, though I think the rumors I get suggest that
the AAEC version (see p94) of IBM is quite good (if you keep away from the
extensions).

Overview: If this sounded critical in places, please take in it context. I
think News is growing up, and the standard of news and contribution is getting
much better. I'm glad we are going to have an 'Algorithms Section', and I

hope we'll have critical contributions on what's published there. A lot of

the portable software I send off for isn't, and requires work to repair the
defects which should have been done by the designer. On extensions, I'd really
suggest that everyone stop writing them into News since we have too much already.
Checklists of troublespots would be welcome, but no new ideas please. For my
piece of mind alone, if not Andy's.

Thanks

It is now two years since Andy took up the task of News editor, and just so he
doesn't despair and think the task thankless, I'd like to express all Pascallers
thanks to you Andy, for the tremendous job you've done. I don't know how you

find the time, really I don't. Anyway, thanks.
Ithur Bl
/

THE UNIVERSITY OF KANSAS /LAWRENCE, KANSAS 66045

Department of Computer Science
18 Strong Hall
913 864-4482

27 February 1978

Pascal User's Group

c/o Andy Mickel

University Computer Center: 227 EX
208 SE Union Street

University of Minnesota
Minneapolis, MN 55455

Dear Andy,

Shame on you! I expect that the only reason you included R. A. Fraley's
papers on "Suggested Extensions to Pascal," in PN #11, was to scare the
living begabbers out of us. Congratulations. You were terrifyingly
successful. By the end of the second paper I was quaking in my chair
(actually, I was expecting to see such things as proposals for long and
short int, packed decimal, on condition constructs, sort, and all of the
rest of Fortran (ugh!), COBOL (ugh! ugh!), and PL/I (ugh! ugh! ugh!) to
be included. Tighten your belt and stand by your guns, I'm sure there's
more to come.

Sincerely,

boy

Gregory F. Wetzel
Research Assistant

TT# SHIN YISV

“3aNnr

8/6T

hh 39Vd

eric small & associates, inc.
consultants in broadcast technology

680 beach street, suite 365, san francisco, california 94109 telephone (415) 441-0666

March 6, 1978

Pascal User's Group

C/0 Andy Mickel

University Computer Center:
227EX

208 SE Union St.

Univ. of Minn.

Minn, MN. 55455

Dear Andy,
We are looking for a PASCAL programer to join our merry band.

The ideal candidate will be a recent graduate. He or she will
have had a lot of PASCAL experience. Exposure to broadcasting
operations or engineering would be very desirable, possibly col-
lege radio.

Seven people comprise ESA. Dave Rowland, one of the implementors
of ESA pascal, is our lead software engineer. We are developing
a line of LSI-11 based products for the radio and TV braodcast
market.

Sincerely,

M

President

TO: Andy Mickel
Editor,
PASCAL NEWS

March 8, 1978

I would 1ike to address certain misconceptions which may have been
generated by Professor Arthur Sale's letter in PN#11 (page 75), titled
"Unimplementable Features -- Warning".

Professor Sale expressed concern about extensions which some PASCAL
implementors have added to their implementations. He claims that these
extensions are "not implementable on the Burroughs B5700 system and
possibly on other computers.” Not only 1is this claim false in the
general case (we are, after all, dealing with computers as powerful as a
Turing machine), but there exist relatively simple implementations of
two of the three extensions which he uses as examples.

(1) "Passing pointer values as addresses, even in-stack"

Professor Sale's observations in this case are correct, if over
stated. It would be inconvenient to implement pointers to non-heap
variables on a BA700 system while vrealizing the advantages of its
architecture.

However, there is a more important reason why this extension is not
advisable -- the "up-level pointer problem" (and the related "dangling
raference problem"). This reason alone, apart from any implementation
difficulties, is sufficient to reject such an extension to PASCAL.

(2) "Returning function values of all kinds except files"

Professor Sale has misstated the facts about the 3670) RETNM
operator, He claims that only operand values (with zero tag) can be
returned without causing an "Invalid Operand" interrupt. In fact,
however, the 36700 will allow a word with any tag to be returned from a
function via the RETH operator. In particular, a data descriptor can he
returned quite easily by this method. However, there are other reasons
(notably, software conventions) why this approach is not a wise
implementation choice.

There is, however, a very clean and simple way of implementing a
function return of a descriptor-based type. The most recent release of
the B6700 Extended ALGOL compiler (version III.0) includes the new data
type "STRING". Values of type STRING can be returned from a typed
procedure, The implementation technique for this descriptor-based type
may easily be adapted to arrays or records. The B6700 PL/I compiler has
used a similar technique for several years, although the new ALGOL
STRING implementation is somewhat simpler.

Besides the availability of a suitable implementation, returning
such data values from functions seems to be a reasonable Tlanguage
feature. After all, records and arrays may be assigned values and may
be passed as parameters by value. There is no fundamental difference
be;weeni these uses of data values and their use as the returned type of
a function.

(3) "Allowing pointers to file-types and the use of new(file)"

While I have argued on grounds independent of implementation that
pointers should not be allowed to reference non-heap variables and that
records and arrays should be allowed to be returned from a function, I
will not take sides on the issue of files in the heap. I will only
point out that the restriction that file descriptors must reside in the
program stack is a software convention, not a hardware restriction.
Furthermore, if the heap is marked as a "dope vector", no more than a
few 1lines of changes to the operating system are required to make files
whose descriptor resides in the heap behave normally with vrespect to
being properly closed and deallocated at end-of-task.

B aidne

Bob J ine
Missi Viejo, California

CT# SMAN T¥ISVd

“INne

8/61

Gk 39Vvd

LINCOLN COMPUTING FACILITY THE UNIVERSITY OF NEBRASKA TELEPHONE (402) 472-3701
225 NESRASKA HALL COMPUTER NETWORK
LINCOLN, NEBRASKA 68808

March 10, 1978 Tektronix, Inc.

Dear Mr. Mickel: P.0. Box 500
Beaverton, Oregon 97077

’ " -
I maintain PASCAL at the University of Nebraska in Téktl'ﬂl'!lx'
Phone: (503) 644-0161

Lincoln, and have decided I need my very own personal copy
of PASCAL NEWS, so I am enclosing a check for membership TR TWX: 910-467-8708
for 1977-78.

Looking at the different mutually incompatible versions
of PASCAL serves to emphasize one point strongly--that PASCAL
needs standardized extensibility. To each his own (idiosyn- March 16, 1978
cracies, environments, needs, etc.). If extension mechanisms
are developed for PASCAL, as they have for ALGOL 68, a
standard PASCAL implementation could be defined as one whose
correct programsran correctly (even if inefficiently) on

another standard PASCAL when enclosed by a prelude or environ- Pascal News
ment extension/redefinition block and called as a procedure. Andy Mickel
Such mechanisms should also enable character set redefinition, University Computer Center: 227Ex
reserved word redefinition, etc. 208 S. E. Union Street
University of Minnesota
Ideas anyone? Minneapolis, MN 55455

Interest in Pascal has been growing among software engineers at Tektronix

Sincer/?\/);/a// Dear Mr. Mickel:
W/

Bhaskar .
R R for some time. Within Tektronix, wide use is made of many dialects of
Ac?_eaﬂlc Computing Services Pascal for various programming purposes. However, Tektronix does not
currently have any products incorporating Pascal programming capabilities.
0slo, March 15, 1978 Tektronix will not offer such products unless and until we can do so

Dear Andy within our requirements for utility and quality.

’
Because of the many (somewhat incompatible) dialects of Pascal currently
in use and the possibility of Pascal's application to some future products,

I am presently working on a new implementation of Pascal Tektronix has recently engaged in a study of Pascal extensions. The

for the Nord-10. The implementation is based on the TRUNC results of that study are not yet available, but will be made available
.) to the summer workshop proposed by Ken Bowles in Pascal News #1l. We
compiler. I would like to communicate with others who expect to offer these results for publication in Pascal News #13.
have done or plan to do likewise.
Sincerely,
Somehow I must interface the compiler to the environment TEKTRONIX, INC.

in which it is to be used. This means that I have to invent g S M

a set of "features" to go with the implementation - features

which already have been invented a lot of times by others. Dr. Don Terwilliger

Manager, Computer Research

Trying to turn some of the stones in this field started a Tektronix Laboratories

train of thoughts, some of which are refelcted in the enclosed DT:jlk
article. My hope is that the article will provoke a discussion
about how the field ought to be plowed.

Yours sincerely,
~

oG

\ <
{ (’/ ' i 4 AN EQUAL OPPORTUNITY EMPLOYER

Terje Noodt”

CT# SMIN TVISYd

“INnr

8/61

9% 39Vd

p— Mr. Andy Mickel -2- March 16, 1978
-;fale o/ J/oriola
Department Uf SO R A e A T T o ::= <parameter group> ‘
HIGHWAY SAFETY AND MOTOR VEHICLES ~swice.
CLAY W. KEITH, pirecTor var <parameter group>
NEIL KIRKMAN BUILDING TALLAHASSEE 32304 DIVISION OF DRIVER LICENSES
RALPH DAVIS ARy AT R O e o rvices <procedure heading> t

EXECUTIVE DIRECTOR

<function heading>

This generates an extra semicolon, so the definitions of pro-
cedure and function declaration and heading must be altered to
take this into account. This affects pp 112,155 and 159 of

the PUM&R; also affected is the program on p 79. Restriction

2 on p 83 can then be dropped. This usage assumes that the type
compatibility checking is, in the terminology of Desjardins

(PN #11 p 33), SRTCCl; otherwise no two procedures would ever
be compatible as types.

March 16, 1978

Mr. Andy Mickel

Editor, Pascal News
University of Minnesota
University Computing Center
227 Experimental Engineering Building 4.

N . 3 Standard methods for data transformation are needed, particu-
Minneapolis, Minnesota 55455

larly for conversion between character and integer or real;

these methods may be functions or procedures or statements.

This issue has been much discussed under the guise of formatted

I/0. I believe that embedding the transformation of activity

into "formatted I/O" unnecessarily complicates the I/0 part

of the language and unnecessarily restricts the conversion features.

Dear Andy,

It is such a temptation to detail all my opinions, just because
they are mine, even though others have already said the same.
Luckily I am pressed for time and the resistance is relatively

easy; I think each of the following is in some way new. I cannot let Barron & Mullins' argument (PN # p 8) pass unnoticed.

Packed data is necessary at times, though formatted I/O is not.
My agency handles about 10000 title activity transactions per
day, with about 30 fields each.

1. I enjoy reading Arthur Sale's prolific comments - he is one
who often states my opinions. I do object to one aspect of his
contributions: his consistent referral to the University of Tas-

mania's Pascal compiler as "The B6700 compiler". I use a dif- 10000 transactions/day x 30 separators/transactions
ferent Pascal compiler on the B6700 (produced by Kenneth Bowles' = 30000 keystrokes/day

group at UCSD), know of still another, and hear rumors of one

or two others. I expect the Tasmania compiler is a very good % 30 key entry stationsé&operators

one, but it is not the only one.

. . £ $30,000/month
2. I agree with Arthur Sale's conclusions that certain non-
standard features should be avoided. I do not agree with his = $360,000/year to use separators.
reasons. These features are not unimplementable on the B6700,
as he claims, or the difficulties as horrible as he puts forth. 5.
The proper reasons for not implementing these features deal
with the language itself, not with a particular implementation.
The difficulties encountered on the B6700 are most valuable
when used to give insight on future machine design.

There have been many proposals for extending Pascal's I/0,
but usually with no mention of the overall I/O facility which

results. Pascal I/0O needs improvement, but suggestions should
be limited to proposals for a simple, consistent and complete

I/0 facility, never for isolated features.

3. Formal procedures and functions should be completely speci-

. & Sincerely,
fied; the lack thereof is merely a bad holdover from ALGOL60.

(I suspect the lack of specification is one reason so many com- %z&&azk/zzz
piler writers omit this feature.) Declaration of procedure C:(T \
types as suggested by George Richmond (PN#8 p 13) leads to such C. EDWARD REID

questions as
Are procedure variables allowed?
Should procedures be declared in the VAR section? CER: jem
Why does a procedure have an initial value (the body) when
other variables not?

ad nauseum. These problems should be left to ALGOL68. There-

fore the specification should be in-line only. To do so, change

the definition of <formal parameter section> to read

Kirkman Data Center

ZT# SHMIN 1YISVd

“INnr

8/61

Lh 39Yd

Andy Mickel
Editor, Pascal News

Pascal User’s Group, c/o Andy Mickel Dear Andy:

i coniert 3et o SIEMENS .
gggv2235ggogoggggzg © ! Enclosed is my membership form for PUG. You're doing a great
University of Minnesota job. Keep up the good work!

Minneapolis, MN 55455 USA PASCAL is indeed catching on within Computer Science depart-
ments, but, despite the numerous examples mentioned in PN, most
other groups I have seen are reluctant to use PASCAL in place of

; ich Unsere Zeichen Miincsen, Otto-Haha-Ring 6 more available and familiar tools. In particular, PASCAL will
the Zoichen und thre Nachricht vom Re 2.1.1978 never replace BASIC or FORTRAN as long as these languages provide
features that are sorely lacking in PASCAL. In particular:

Dear Andy FORTRAN has static variables, external compilations, 1ini-
’ tialization of variables (in particular, arrays), procedures with
flexible sized array parameters, STOP and RETURN statements, for-

thanks for Pascal News 9 and 10. We finally have completed our matted input with error detection under user control, and large
work on a version 0 of our portable Pascal-System (cross-ver- libraries of applications packages. PASCAL does not. 1In particu-
sion). The first implementation is now on an MDS800 (Intel 8080 lar, complex numyers would not be missed if a standard subroutine
microprocessor), using the ISIS II operating system. package were available.
Just some short notes about the history of the project. We deci- BASIC is, despite its lack of power, an extremely friendly
ded to implement a portable programming system for the different language to beginners. Most idiosyncracies are hidden from the
computers in the Siemens product-field, i.e. 32bit, 16bit and user - only one numeric data type, arbitrary length character
8bit machines. We came upon. Pascal after an implementation of strings, general FOR loop. Interactive programs are natural. The
a self-invented language, whose syntax and parts of its data- notion of "One 1line = one statement" is much easier on the be-
concept were mainly influenced by Pascal. This language was ginner than PASCAL's relatively complicated set of syntax rules.
but experimental and could not be used as base for a programming BASIC's editor is very easy to learn.
system. I have many gripes about PASCAL - mostly concerning features
i $14 f user-programs as well as that have been left off. Despite it's goal of being systematic,
ggitggiggtgoz%st;fPZyéﬁgxafg;;fg.(%e thinkpwsgnow have reached PASCAL has fgrmatted output (but no formatted input.) It can read
both, the first by implementing Standard-Pascal and no dialect ~and write integers, reals, and characters, (but not enumerated
at all, the second by using just high-level languages for imple- types or records, and to add to the confusion, you can write
mentation (mostly Pascal, of course). booleans and packed arrays. of characters but not read them!)
PASCAL has constants of type integer, real, boolean, character,
Our plans for the near future are a resident version and system- and set, (but no const declarations of type set, and no record or
dependent features as a code-generator, generating some form array constants or constructors.) ?unctlons can return integers,
of threaded code. Also a machine-independent dialogue-system reals, characters, booleans, pointers, enumerated types, and
has to be developed. subranges (but not records, sets, or arrays.) There are numerous
places where a type identifier is allowed but a type may not be
constructed. Semicolons come after most statements (but not be-
Please do note our new address. fore end and never before else.) I also feel strongly that stop,
Sincerely return, exit, and next statements are necessary to promote struc-
tured programming.
éJ—~————) An else or otherwise clause should be available in case
statements. I don't buy Wirth's argument about unstructured pro-
Werner Remmele gramming. He left the goto statement in, so it is quite possible
Adresse: to write poor programs. Give a user enough rope and he can hang
§Zﬁﬁﬁi§ﬁ;ﬁ?ﬁ&ﬁﬂg) - - himself or climb a cliff. Many members have pointed out the need
Forschungslaborstorien e 1 Gen U622 28354 for a default, so I won't repeat the arguments. Different imple-
Vermittiung 67621 mentations, unfortunately, use else, otherwise, and <> as the
default 1label. I feel the choice should be otherwise. The
Postfach 8327 29, D-8000 Miinchen 83 problem with else is that the preceding statement might be an if
SIEMENS AKTIENGESELLSCHAFT - then. The following illustrates the ambiguity:
Zentrale Forschung und Entwicklung - Forschungslaboratorien Leitung: Prof. Dr. Walter Heywang case , (‘i '(:)_writeln(‘blaht) :

Vorsitzander des Aufsichtsrats: Peter v. Siemens - Vorstand: Bernhard Pletiner, Vorsitzender - Miglieder: Theodor Baumann, Friecinch Eeur, Hens Baur, Holmut Becker, Paul Dox, Max Glnther, 'B': if d = e then writeln('blah blah')
Heinz Gumin, Ulrich Haier, Giselher Kadegge, Karlheinz Kaske, Friedrich Kufit, Walter Mohy, Werner Miifier, Heribald Narger, s-Gy Joacnim v, Oevlze.n, Anton Peisl, Dieter v. Sandfn, —_ l f '
Wollgang Séelig, Hans Gunter Vogelsang, Helmut Wihelms - Sitz der Gesellschaft: Berlin und Munchen « Registergericht: Besin-Charlotienourg, 93 HRB 670; Munchen, HRB 6534 else writeln('error')

end

The writeln('error') might be an else for the if or for the

ZT# SKIN TVISVd

“INNCr

8/.61

8h 39Vvd

case. (I hope implementors who use else have 1looked at this
problem!) The wusual kludge is to require a semicolon before the
else (how confusing and inconsistant!) but when a user forgets to
put the semicolon 1in, it 1is possible to get a syntactically
correct program, producing an obscure bug that could go undetect-
ed for months. (This problem was pointed out by Charlie Fischer.)
The case against <> as just another label is that it adds nothing
to the 1language: Fraley's example on page 46 of PN #11 is un-
changed if you simply remove the semicolon! Of course, wusing
otherwise requires adding another reserved word, but I feel it is
the most reasonable solution. The semantics of using an out of
range selector with no otherwise should be defined.

Walt Brainerd proposed a loop construction for FORTRAN that
solves the ‘'"exit in middle of loop" problem (SIGPLAN Dec. T77).
Such a constructon can be PASCAL-ized and modified to reflect my
own biases as is shown in the first syntax diagram. The seman-
tics are that loop ... end cause repetition, and the various oth-
er parts give ways to get out of the loop. The for part has the
same meaning as PASCAL's for statement: vary the index from the
initial value until the final value and then quit. The while
part also has the usual semantics:

if not <expression> then exit

The flag part lists one or more identifiers which should be de-
clared as boolean variables. Entering the loop sets all the vari-
ables to false. An exit statement naming a variable sets that
variable to true and Jjumps out of the loop. It is possible to
jump out of more than one level of loop by naming a variable in
the outer loop's flag part. If no variable is named, none is set,
and the innermost loop is exited. The next statement behaves just
like the exit except that rather than jumping out of the loop,
the remainder of the loop body is skipped and the next execution
of the loop begins (after any appropriate incrementing and test-
ing of for and while parts,) and the boolean named is not set to
true. ~(The only purpose of a variable in a next statement is to
specify more than one level of loop.) If all Three parts are left
out of the loop header, an infinite loop results (presumably con-
taining an exit statement somewhere.) Assigning true to one of
the flag variables has no effect, is bad style, and might be
prohibited.

This construction has a number of advantages. It includes
the power of PASCAL's for, while, and repeat statements into one
construct. It also has the power of being able to exit or resume
one or more levels of loops from any point in the middle. In
addition, when you get out of a loop, you can test the boolean
variables to see what caused 1loop termination. Consider for
example binary search:

1 := 1; u = n;
loop while (1 <= u) flag found do
mid := (l+u) div 2;
if x < Almid]
then u := mid-1
else if x > Almid]
T then 1 := mid+1

end;
if found then writeln('Found at',mid)
else writeln('Not found');

Another example, finding prime numbers:

loop for p := 2 to n flag potential prime do
loop for d := 2 to trunc(sart(p)) do

if p mod d = 0 then next potential prime
end; ——— A
write(p)
end;

The second example above seems to be one case where PASCAL
really needs a step option 1in the for loop, since it is only
necessary to check the odd numbers and divisors. What is so all
fired important that makes increments other than 1 and -1 against
the spirit of PASCAL?

This construction is powerful enough to replace for, while,
and repeat loops. A lone for or while part on the loop statement
gives you the for and while loops, and a while part on the loop

end gives you the repeat ... until construction.

In principle, the while clause is unnecessary, since a con-
ditional exit at the beginning or end of the body will have the
same effect. I argue that the while construction provides addi-
tional readability. The keyword flag 1is perhaps not ideal,
Brainerd used until, which would only cause confusion in PASCAL.
Another keyword, such as conditions, could be substituted.

I'm not suggesting throwing away PASCAL's looping construc-
tions and replacing them with the loop statement. Clearly there
is already too much investment 1in existing programs and com-
pilers, and too little to gain. However, there are several points
to 1learn from. PASCAL's 1looping constructs, even though far
better than what is available in many other languages, still
leave much to be desired. Future languages, including a possible
PASCAL II, might include it. Alternatively, it might be possible
to 1include the exit and next statements and the flag part in
"standardized" extensions. The flag part could be optionally
inserted before the do 1in for and while loops, and after the
repeat in that loop. (See the second set of syntax diagrams.)

Work at the University of Wisconsin is currently in progress
toward the design and implementation of a PASCAL based Artificial
Intelligence language called TELOS. This language is a superset
of PASCAL (with two exceptions: goto out of procedures, and pass-
ing procedures as parameters, are disallowed) and has numerous
extensions (including a clean way to achieve the effect of pass-
ing procedure names as parameters.) The 1language 1includes
features found in many other AI languages, with a special em-
phasis on the PASCAL philosophy of structured programming, read-
able code, and detection of errors at compile time.

The 1language includes capsules (orogrammer defined data
types with their own local operations); coroutines and other syn-
chronous process manipulation facilities; events and handlers for
them; an associative data base (referenced with patterns) that
can hold objects of any user defined data type, including
records, capsules, and the like; different contexts of the data
base (so you can make a tentative modification to the data base
and see how it compares); multi type pointers; record, array, and
pattern constructors; modular compilation; and miscellaneous
minor PASCAL extensions (including an otherwise in a case, flexi-
bly sized array types, and functions returning any definable
tyne.) The above loop construction is not part of TELOS, since an
effort has been made to avoid cluttering the language up with
extra features that can be gotten with existing features, and the
event mechanism will provide the same power.

A TELOS implementation is currently under development based
on Charlie Fischer's UNIVAC 1100 PASCAL compiler, which currently
has most of the data base features implemented. Work is also

CT# SHAN TVYISYd

“INNCT

8/61

6h 39Vd

beginning on a portable TELOS interpreter based on the P Com-

piler.
i 1
‘ Syntax Diagram Mark Horton
repetitive statement Computer Sciences Department Westinghouse Defense Group Defense and Electronics Systems Center
1 University of Wisconsin, Madison Electric Corporation Systems Development Division
1210 W Dayton St i
) y v : Balnmme-Washirgron ﬂtemational Airport
Madison, Wisconsin 53706 Box746 M.S. 451
loop statement Baltimore Maryland 21203

___>{loop headerj—ﬁ statement ':I-—)[loop trailer H April 11, 1978
loop header

Mr. Andy Mickel
ﬁfor parbl—.[—r‘while parﬂTﬁflag part FT+ Pascal User's Group

loop trailer University Computer Center 22TEX
@ 208 SE Union Street
! University of Minnesota
for part @ Minneapolis, MN 55455
X(FOR)—| varianle iaent:.fxerj—r@—v[;messmn expressionj—3> Dear Mr. Mickel:
while part

I have been aware of PASCAL for several years. Recent interest by
m Department of Defense in PASCAL as a base for a DoD's Common Programming
- Language Effort has stimulated my interest. I am deeply involved in the

flag part DoD world of software and its unique problems. Possibly PUG can help with
(FLED) variable identifier one unigue ?robliem, ie: The government requires detailed specifi‘.:ations
“ . for everything, including software. F‘lﬂ'tt}er, the government requires accep-
0 tance test to be sure specifications are met. Is it possible for PUG to
simple statement develop an acceptance test for PASCAL compilers? Don't answer too quickly.

- An acceptance test, that might satisfy government standards, requires the

— following:
variable identifier
variable identifier

Syntax Diagram 2

1) a detailed, unambiguous specification.

A test against every item in the specifications.

As a case in point, Rome Air Development Center has a JOVIAL J73/1

statement compiler validation (acceptance tests) against MIL-STD-1589, that has over
s———— 20,000 source JOVIAL statements in 28 source modules. The JOVIAL validation
- is compiled and executed. The results of the execution are several thousand

——+(WHILE)—expression}] étlag p:la" T K00)—{ statenent}— "TEST PASSED" or "TEST FAILED" messages with appropriate comments about the

. : language feature being tested.
REPEAT flag part by ;!statement t
My group will soon be getting a PASCAL compiler for the UNIVAC 1110.

° Since the compiler may be used on govermment contracts, it would be a great
—7@—;‘variable identifierl—-;@—:[expression
DOWNTO,

help if an acceptance test was available.
[-)lapressionstatementl—?a

Jon S. Squire, Manager
—-—).—r)] variable identifier 7 Operational Software

flag part

variable identifieﬂ—l—)
(e
7

CT# SMAN YISV

“INnr

8/6T

0s 39Vd

University of the Witwatersrand, Johannesburg
DEPARTMENT OF APPLIED MATHEMATICS

1 Jan Smuts Avenue, Johannesburg, 2001, South Africa
Telephone 39-4011, Telegrams ‘University’, Telex 8-7330 SA

The Editor, telephione ext
Pascal News.
your reference

our reference JB/SW
date 7 April 1978

Dear John,

Thanks for your note - the question of predefined types also
requiring a succ(max) facility had not occurred to me when I
wrote "Subranges and Conditional Loops". The convention I
suggest only works for genuine subranges, not full ranges such
as integer, char and boolean. I thought long and hard of the
possibility of letting these types be subranges of underlying
and hidden ranges. These ranges would be one bigger on either
side than the subrange we see but these "fringe" elements would
not be accessible. Diagrammatically, we want

CHAR accessible to
programmer

l: CHAR v accessible to
. system

The idea would be to let a program declare
var ch : O.. succharmax

and write
ch: = charmin;

while (ch <®charmax) and condition do

begin

(* something *)
eng; Ch i= succ (ch)
——t

The trouble is that the fringe elements are accessible: if succ(ch),

when ch=charmax, is a valid expression then there is no way of
stopping a program from writing it out - which would be invalid.
Furthermore, there may be severe implementation problems since
these types have a "fully packed" property i.e.they are usually
represented in the exact number of bits required for max.

This leads me to realize that the predefined types, namely char,
boolean and integer, are ranges and have a different nature to
the subranges that we build on top of them. For the first time I
feel some sympathy with Haberman and his "Critical Comments"!

ceeaed/2

To obtain the full effect of the above program in standard Pascal
requires a boolean i.e.

var ch : char;

ch := charmin;
indexended := false;
while not indexended and condition do

begin
(* something *)

if ch = charmax then indexended := true
else ch := succ (ch)

end;

This use of booleans is similar to that required to simulate

sequential conjunction. I must admit that I don't like it and
wonder if one day we'll have a "Booleans Considered Harmful"

article.

I would be very pleased to hear if other Pascal people have
thought about this problem and have alternative views to mine.

Enclosed are some membership forms - dollars are coming separate-
ly by Postal Money Order.

Best wishes,

JUDY BISHOP

Encl.

(* Note: This letter is in reply to a letter sent on 78/03/08 from John Strait
to Judy:

"Belated congratulations to you and Nigel! We received your
card--you two make a handsome couple.

Andy let me read your article "Subranges and Conditional Loops"
which he received yesterday. I have a question: What do you

do with a pre-defined type which cannot be redeclared (e.g. CHAR)
or one with special meanings (e.g. BOOLEAN). I ran into this
problem last week with CHAR. Aside from this problem, I found
your solution interesting/elegant."

*)

CT# SMIAN TYISYd

“aNnr

8/.6T1

TG 39Vd

ETH

Institut fiir Informatik

PascaL STANDARDS

PLEASE DIRECT ALL INQUIRIES, LETTERS,
ETC. ABOUT Pascal Standards to
Tony. .Thanks, Andy.

Editor: Tony Addyman Department of Computer Science
The University
Manchester M13 9PL
United Kingdom

(phone: 44-61-273-7121 x5546)

Jim Miner and I would Tike to bring you up to date on recent standards developments.
First, Ken Bowles at the University of California, San Diego, has failed to keép us
informed about his proposed summer workshop. We have no news since last issue!

Beginning this January, Jgrgen Steensgaard-Madsen of the Datalogisk Institut,
University of Copenhagen, Denmark, has done all Pascalers a favor by initiating work on
the difficult task of conventionalizing extensions--thus answering Pierre Desjardins's
good question in the last issue of PUGN. Jgrgen is working in cooperation with Niklaus
Wirth and several implementors: Jeff Tobias and Gordon Cox (IBM 370) in Australia,

H. H. Nagel (DEC 10), in Germany, Olivier Lecarme (CII IRIS) in France, John Strait
(CDC 6000) in the USA, Arthur Sale (B6700) in Australia, Ken Bowles (DEC PDP-11 and
micros) in the USA, and Jim Welsh (ICL 1900) in the UK.

Olivier Lecarme published letters from Niklaus Wirth in the Bulletin No. 3 for the
French Working Group on Pascal in March. The hope was expressed that this is hopefully
the final work done in this area and that progress could be made if the number of people
were kept small and the range of topics to be considered kept Timited.

Jgrgen is in contact with Tony Addyman who continues making progress on an ISO standard
with his 10-(so far we at PUGN don't know who they all are)-person BSI working group
called DPS/13/4. Tony now expects to have a draft document by the end of September.

In the course of our correspondence with Jdrgen and Niklaus, we discovered another
standardization effort begun by Justin S. Walker at the National Bureau of Standards (NBS)
within the U.S. Government. He coincidentally (?) joined PUG 2 weeks later. We sent a
personal Tetter to him trying to determine just what he is doing, and he did not answer.
Hmmmmm.

Below is news from Tony and DPS/13/4: an Attention List #2.

Following that are several letters. Charles Fischer of the University of Wisconsin
and Richard LeBlanc of Georgia Institute of Technology have stated very clearly some
widely-held concerns over standards. Jim and I wholeheartedly agree with them.

Bob Vavra has written an outstanding and timely article and letter on design goals.

Arthur Sale has issued a revised version of his "Pascal Compatibility Report"
[Department of Information Science Report No R78-3, May, 1978] which we described last
time in this space. It now includes many more implementations.

Arthur is working with Brian Wichmann, of the National Physical Laboratory, in the
United Kingdom on a set of Pascal programs to do: 1) Validity Checks - Does the compiler
accept standard code, normal, or wierd? 2) Quality Checks: How does the compiler cope
with error and error recovery? and 3) Compatibility Checks: How does the compiler cope
in the undefined areas?

- Andy and Jim

April 7, 1978

Dear Andy,

I enclose a Pascal syntax written in EBNF. Would it be of

any interest to the Newsletter?

Best regards,
IU,(/uam

Prof. Niklaus Wirth

EIDGENOSSISCHE TECHNISCHE HOCHSCHULE
ZURICH

PASCAL syntax NW 12.3.78

(Extended BNF: cf. Comm.ACM 28, 11, p. 822, Nov. 1977)

identifier = letter {letter | digit}.
IdentList = identifier {"," identifier}.

UnsignedInteger = digit {digit}. o . .
UnsignedReal = UnsignedInteger ["." digit {digit}] ["E" ScaleFactor].
sign = mgn | now

ScaleFactor = [sign] UnsignedInteger.
UnsignedNumber = UnsignedInteger | Uq51gnedRea1.

String = "’" character {character} "'".

ConstantDefinition = identifier "=" constant.

ConstantIdentifier = identifier. . .
constant = [sian] (UnsignedNumber | ConstantIdentifier) | string.

TypeDefinition = identifier "=" type.

type = SimpleType | StructuredType | PointerType.

SimpleType = Typeldentifier | ScalarType | SubrangeType.

Typeldentifier = identifier.

ScalarType = " (" IdentList ")".

SubrangeType = constant ".." constant. .
StructuredType = [PACKED] (ArrayType | RecordType | SetType | FileType).
ArrayType = ARRAY "[" SimpleType {"," SimpleType} "1" OF type.
RecordType = RECORD FieldList END.

FieldList = [FixedPart] [VariantPart].

FixedPart = RecordSection {";" RecordSection}.

RecordSection = [IdentList ":" typel. . .
VariantPart = CASE [identifier ":"] Typeldentifier OF variant {";" variant}.
variant = [CaseLabelList ":" *(" FieldList ")"]. .
CaseLabelList = constant {"," constant}.

SetType = SET OF SimpleType.

FileType = FILE OF type.

PointerType = """ Typeldentifier.

VariableDeclaration = IdentList ":" type.

variable = identifier {index | "." identifier | "T"}.
index = "[" expression {"," expression} "]".

expression = SimpleExpression [relation SimpleExpression].
relation = "=" ' LPS | ngw I ng=" I L DT | IN.
SimpleExpression = ["+" | "=-"] term {AddOperator term}.

AddOperator = "+" | "=" | OR.
term = factor {MulOperator factor}.
MulOperator = "*" | "/" | DIV | MOD | AND.

factor = variable | UnsignedConstant | FunctionDesignator | set |
“(" expression ")" | NOT factor.
set = "[" [element {"," element}] "]".
element = expression [".." expression].
FunctionDesignator = identifier [ActualParameterList]. .
UnsignedConstant = UnsignedNumber | string | ConstantIdentifier | NIL.

statement = [label ":"] UnlabelledStatement.
UnlabelledStatement = SimpleStatement | StructuredStatement.
SimpleStatement = [AssignmentStatement | ProcedureStatement | GotoStatement].

AssignmentStatement = variable ":=" expression. .
ProcedureStatement = identifier [ActualParameterL}st].
ActualParameterList = "(" expression {"," expression} ")".

GotoStatement = GOTO label.
label = UnsignedInteger.

CT# SMIN T¥ISVd

“aNnr

8./61

¢q 39Vd

StructuredStatement = Compoundstatement | ConditionalStatement |
RepetitiveStatement | WithStatement.

CompoundStatement = BEGIN statement {";" statement} END.

ConditionalStatement = IfStatement | CaseStatement.

IfStatement = IF expression THEN statement [ELSE statement].

CaseStatement = CASE expression OF case {";" case} END.

case = [CaseLabelList ":" statement].

RepetitiveStatement = WhileStatement | RepeatStatement | ForStatement.

WhileStatement = WHILE expression DO statement.

RepeatStatement = REPEAT statement {";" statement} UNTIL expression.

ForStatement = FOR identifier ":=" ForList DO statement.

ForList = expression (TO | DOWNTO) expression.

WithStatement = WITH variable {"," variable} DO statement.

ProcedureDeclaration = ProcedureHeading block.

FormalParameterList = " (" FormalParameterSection
{";" FormalParameterSection} ")".
FormalParameterSection = [VAR | FUNCTION] IdentList ":" TypeIdentifier |
PROCEDURE IdentList. 1,
2.
block = [LabelDeclarationPart] [ConstantDefinitionPart] [TypeDefinitionPart]
[VariableDeclarationPart] ProcedureAndFunctionDeclarationPart
StatementPart.
LabelDeclarationPart = LABEL label {"," label} ";".
ConstantDefinitionPart = CONST ConstantDefinition ";" {ConstantDefinition ";"}. 3.
TypeDefinitionPart = TYPE TypeDefinition ";" {TypeDefinition ";"}.
VariableDeclarationPart = VAR VariableDeclaration ";" {VariableDeclaration ";"}.
ProcedureAndFunctionDeclarationPart =
{ProcedureDeclaration ";" |
StatementPart = CompoundStatement.

FunctionDeclaration ";"}.

program = ProgramHeading block "." .

ProgramHeading = PROGRAM identifier " (" IdentList ")" ";".

SYMBOLS

+ =% /o=, , ;" =OKK=E>0 () [T ..

(x *) 4,
Keywords

AND ARRAY BEGIN CASE CONST DIV DO DOWNTO ELSE END
FILE FOR FUNCTION GOTO IF IN LABEL MOD NIL NOT
OF OR PACKED PROCEDURE PROGRAM RECORD REPEAT

SET THEN TO TYPE UNTIL VAR WHILE WITH

Predeclared identifiers

ABS ARCTAN BOOLEAN CHAR CHR COS DISPOSE EOF EOLN
EXP GET INPUT INTEGER LN NEW ODD ORD OUTPUT PRED
PUT READ READLN REAL RESET REWRITE ROUND SIN SQR
SQRT SUCC TEXT TRUNC WRITE WRITELN

PROFESSOR OF COMPUTER SCIENCE
T.KILBURN, C.B.E., M.A., Ph.D.,
D.Sc., F.LE.E.,F.B.CS. F.RS.

ICL PROFESSOR OF COMPUTER ENGINEERING
D. B. G. EDWARDS, M.Sc., Ph.D., M.L.LE.E.
PROFESSOR OF COMPUTING SCIENCE

F. H. SUMNER, Ph.D., F.B.C.S.
PROFESSOR OF COMPUTER PROGRAMMING

This letter will serve several purposes.

e 7?/;%3/

DEPARTMENT OF COMPUTER SCIENCE
THE UNIVERSITY
MANCHESTER
M13 9PL

Please note our new

D. MORRIS, Ph.D. telephone number

§ %/-973-7)2/

ProcedureHeading = PROCEDURE identifier [FormalParameterList] ";". ;Eg 061-273-7121 X5546
FunctionDeclaration = FunctionHeading block. . 6 February 1978
FunctionHeading = FUNCTION identifier [FormalParameterList] ":"

Typeldentifier ";". Dear Andy

Andy Mickel

These are:
To tell you my new phone number for the roster.
To give and all others at PUG central the latest Attention
List,
items I still operating on the same basis as before.

As I said in my call, don't be alarmed by some of the

I want to include several parzgraphs from the beginning of
Fascal News as an appendix to the textbook. This will serve
to advertise FUG by describing Pascal News, giving the
central an¢ regional addresses etc.. If space permits I
would like to include a copy of the All-Furpose-{oupon.
Will this be OK? I.will call

If you cannot be around, you can always leave a

This does not need a reply.
you,
simple yes/no ansver.

A reminder to all PUG members that any contributions to
the standardisation effort will be gratefully received by
myself and other mempers of DFS/13/4.

As the enclosed material is rather bulky, you may print it
or not as yvou see fit, Hopefully I will be able to send
you some more up-to-date information before the next issue

is due to by printed.

A M ADDYMAN

ZT# SMAN TYISVd

“INnce

8/61

£S5 39VYd

March 23, 1978 ACADEMIC COMPUTING CENTER

. THE UNIVERSITY OF WISCONSIN - MADISON
Mr. Andy Mickel

1210 WEST DAYTON STREET
MADISON, WISCONSIN 53706
608-262-1166

Editor, Pascal News
Computer Center

ICL PROFESSOR OF COMPUTER ENGINEERING

PROFESSOR OF COMPUTER PROGRAMMING

PROFESSOR OF COMPUTER SCIENCE
T. KILBURN, C.B.E.,M.A., Ph.D.,
D.Sc., F.LE.E., FB.CS., F.RS.

DEPARTMENT OF COMPUTER SCIENCE
THE UNIVERSITY
MANCHESTER
D. B. G. EDWARDS, M.Sc., Ph.D., M.LE E. M13 9PL
PROFESSOR OF COMPUTING SCIEMNCE
F. H. SUMNER, Ph.D., F.B.CSS.

Telephone: 061-273 5466
D. MORRIS, Ph.D.

l1st February 1978

TO: Members of DPS/13/4, the Swedish Technical Committee on Pascal and all
Correspondants.

May I first apologise for the delay in the production of Attention List
#2, I (wrongly) decided to keep altering the list to include new material.
Had I realised that it would take such a long time to produce the list, I would
have issued an incomplete list earlier.

It is my hope that the list contains all the doubts and problems concerning

Pascal which have been brought to my attention. If this is not so, then the list
will be updated.

Since it is a long time since DPS/13/4 last held a meeting, and several
of its members are very active, I am suggesting that a meeting be held in late
February or early March. The mecting cannot be called too soon because the
Swedish Technical Committee will need time to arrange for their representative(s)
to be present.)

Progress is being made in several related areas:
1. BSI is proposing the creation of an ISO project for Pascal.

2. Brian Wichmann is endeavouring to create a suite of Pascal test programs.
This is an encouraging move for DPS/13, who collectively believe that
validation suites for compilers should be provided wherever possible.

3. Prof. N. Wirth is optimistic concerning our copyright problems. Springer-
Verlag have not yet replied to my letter.

To avoid further delaying this attention list, the following items will
be sent separately later in the month:

1. A list of names (and where appropriate addresses and telephone numbers)
of all people actively involved in the standardization effort.

2. A list of other people who are being kept informed of progress.

3. A selection of the guidelines and rules from BS:0, Part 3, which concerns
the way in which the working group should operate.

4, A summary of the relevant parts of "Guidelines for Approving Standards",
which is part of a document presented by the United Kingdom to ISO at the

Hague meeting of the programming languages sub-committee. Although this was

not accepted by IS0, it may be necessary for BSI to adhere to its own
requirements.

5. Sections and sub-sections of the report which individual members of the

working group are requested to study. Any member of the group is, of course,

quite free to study and make suggestions concerning any part of the report.

A.M. Addyman
Convenor of DPS/13/4.

University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

As an implementor of a PASCAL compiler as well as a "firm believer"

in PASCAL's merit as a programming language, I feel compelled to comment
on Ken Bowles' recent proposal (PASCAL News #11) to convene a workshop
to standardize PASCAL extensions. The value of standardizing the
extensions all implementors (including this one!) seems to add to

PASCAL is unquestionable. However, Bowles' approach seems to me to be
rather suspect. If this standard is to have any real value, it must
have broad-based support in the PASCAL user community.

Why then should the effort to produce this standard be dominated by
organizations with a large monitary investment in PASCAL with the
gratuitous inclusion of "a small number of academic experts' to placate
the rest of us? Are we to believe the opinions of the average PASCAL
devotee are less important than those of industrial and governmental
organizations? Such an idea strikes me as rather odd given the fact
that PASCAL has succeeded not because of these organizations, but

in spite of them.

Even if the composition of Bowles' workshop is made more equitable and
broad-based, I have very serious reservations about any language designed
by committee. It can be very strongly argued that PASCAL's simplicity
and elegance derives directly from the fact that it was designed by one
man. Why not then adher to this principle?

Bowles' workshop should by all means meet (although with a more broad-
based composition). Rather than drafting a specific set of language
extensions, however, it should draft a set requirement that an extended
PASCAL should meet. Where necessary, differences in emphasis or opinion
should be included--all concerned parties must have a say in what they
feel is important. These requirements should then be forwarded to a
very small group of acknowledged language design experts (Nicklaus Wirth
would, of course, be ideal) who would produce a single set of specific
language changes consonant with the "spirit" of PASCAL, the state of

the art, and the overall requirements given them. This set of changes

would then be widely distributed, discussed and debated, but accepted
or rejected as a whole. If they are rejected, (say by vote of the PUG
membership) then we must acknowledge that no standardization is, at
present, possible. If they are approved, we should accept them as the
one and only definition of extended PASCAL.

I realize, of course, that my opinion of how standardization should be
done is just one man's viewpoint. However, the principle that everyone
should have a voice in what kind of extensions should be included while
limiting to a very few experts the decision of exactly how these
extensions are to be specified seems a sound one. If we are to produce
a standard, let us make every effort to ensure it is something we can
live with.

Sincerely,

W/ % 72;%&/%5’7

Charles N. Fischer

CT# SMIN TYISVYd

“ANNnr

8/.61

ke 39Vd

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMPUTER SCIENCE « ATLANTA, GEORGIA 30332 « (404) 894-3152

April 10, 1978

Mr. Andy Mickel

Editor Pascal News

University Computer Center: 227 EX
208 SE Union Street

University of Minnesota
Minneapolis, MN 55455

Dear Andy:

I wish to make a few comments about Ken Bowles' proposal (PASCAL News #11)
for a workshop to develop a set of standardized PASCAL extensions. As an
experienced PASCAL user and an implementor of a PASCAL compiler, I certainly
agree that there are areas in which PASCAL could be improved as a systems
programming language. There is no doubt that some standardization of exten-
sions would be quite valuable to both users and implementors. However, I
have some reservations about the process Bowles has proposed to develop
these extensions.

Having had some experience in designing programming languages, I am quite
concerned that a set of extensions produced by a large committee might not
be consistent with the simplicity that is one of the most attractive charac-
teristics of PASCAL. This simplicity probably results from the fact that
PASCAL was designed by one man. It might also be noted that while the DoD
"Ironman'" project mentioned by Bowles included input from a great number of
people in identifying goals, the actual language design work is being done
by small groups. I think it more appropriate that any large workshop produce
a statement of requirements rather than a "finished" language design.

The fact that attendance at the workshop will be restricted to a certain

group of PASCAL users is also of concern to me. If the language to be
produced by the workshop would end up being used by only the participants,

this would not be objectionable. However, any extended PASCAL standard
adopted by a group of users with considerable economic influence is likely

to become a de facto standard. It is not acceptable for the PASCAL user
community to have so little influence in such an effort. Further, there are
apparently other standardization efforts under way. These should certainly not
be ignored.

If Bowles wishes his workshop to produce a systems implementation language
designed by and for industrial firms and government agencies, the language
should be given a name that does not contain "PASCAL" so that there will be no
confusion as to its nature. If the workshop is to make a more valuable
contribution toward the standardization of PASCAL extensions, a broader

group of participants is necessary and more care must be taken to insure

that the resulting language reflects the "spirit of PASCAL" and is acceptable
to PASCAL users in general.

Sincerely,
.7 7N
/\‘;.' \,{_,«LG_ .»‘u{} -

Richard J. LeBlanc,
Assistant Professor

s, i
LCk .»é{L Y

741 Terrace Do
Roseville MN 55113 USA
March 30, 1978

Dear Andy,

In your recent article cn Pascal Standards (PN 11 page 65), you and
Jim point out that many people are suggesting (and implementing)
changes and extensions to Pascal, but few are using Pascal”s design
goals to evaluate their changes or extensions (at least few are doing
it publicly). By referring readers to the design goals listed on the
tack cover of PN, you imply that Pascal”s design goals are
well-understood and generally acceptede I disagree on both countse

* The ten-line description of Pascal”s design goals is adequate for
the back cover of FN, but it is too vague for use in judging
groposed language features. For example, "general purpose but not
all-purpose™ is a very nice phrase which is intuitively
appealing, but it ¢ives Little or no guidance to someone who is
attempting to evaluate a proposed feature. If I didn“t know you,
1 would be tempted to suggest that you are purposely fostering
confusion in this area to keep up the volume of provocative
language proposals in PN.

* You have been exhorting people to justify their proposals in
terms of Pascal”s cesign goals since PUG was formed (PN 5 page
2). The fact that few people have done so seems to indicate that
many disagree with or do not understand the stated design goals
(or else they don”t read your editorials)e

1 agree with you that any future development of Pascal, beginning with
the Standardized Extensions that you call for, must be guided by a
clearly-defined set of cesign goals. Discussion of Pascal”s design
goals has been remarkably absent from most material appearing in PN. I
enclose an article which opens such a discussiones

I am pessimistic about our ability to standardize anything beyond the
Revised Report (which Acdyman seems to have well in hand), without
institutionalizing Pascal to a very great degree. (Doing tanguage
design by committee is very difficult, but doing it in the pages of PN
by a committee-of-the-whole is unthinkables) The Simula Standards
Group (as described by Falme in Software Practice and Experience 1976
pages 4U5-4(9) seems to be successful because it has a representative
from each ot the eight Simula implementations. A Pascal standards
committee consisting of a representative from each Pascal
implementation would not be a3 viable design group, and a committee
which is any less representative would have difficulty achieving
widespread adoption of its standards.

Even so, I am optimistic about the future. It will not be the end of
the world (or of Pascal) if we fail to standardize. Pascal”s greatest
weakness (a multiplicity of incompatible implementations) is a direct
result of its greatest strength (simplicity and clarity of
programming)e. The Pascal compilers that I have seen are sparsely

documented (to say the least), but many users have been able to modjfy
them to accept new features. Can you imagine as many people doing that
to Fortran or Cobol comgilers?

Sincerely,

Bob vavra

CT# SMIAN TYISVd

“aNnr

8/61

99 39Vvd

Implementation Notes
CHECKLIST

Please note the new Checklist entry number O: DATE/VERSION. In preparation for next year,
we encourage implementors, users, or anyone else to submit new or revised checklist
reviews for their favorite implementations.

Pascal Implementations Checklist

o

. DATE/VERSION
(* Last checklist changes; version name or number, if any. *)

1. DISTRIBUTOR/IMPLEMENTOR/MAINTAINER
(* Names, addresses, phone numbers. *)

2. MACHINE
(* Manufacturer, model/series and equivalents. *)

3. SYSTEM CONFIGURATION
(* operating system, minimum hardware, etc. %)

4. DISTRIBUTION
(* cost, magnetic tape formats, etc. *)

5. DOCUMENTATION
(* In form of supplement to Pascal User Manual and Report?
Machine retrievable? %)

6. MAINTENANCE POLICY
(* How long? Accept bug reports? Future development plans. *)

7. STANDARD
(* Implements full standard? Why not? What is different? *)

8. MEASUREMENTS
(* ~compilation speed (in characters/sec. please; this is a
meaningful measurement for compilation speed);
-compilation space (memory required at compilation time);
-execution speed;
-execution space (the memory required at execution time;
compactness of object code produced by the compiler);
*% Try to compare these measurements to the other language
processors on the machine, e.g., FORTRAN. *)

9. RELIABILITY

(* stability of system (poor, moderate, good, excellent);
how many sites are using it?
when was the system first released to these sites? *)

10. DEVELOPMENT METHOD
(* Compiler or interpreter? Developed from Pascal-P / hand-
coded from scratch/bootstrapped/cross-compiled/etc.? What
language? Length in source lines? Effort to implement in
person-months? Previous experience of implementors? *)

11. LIBRARY SUPPORT
(* Libraries of subprograms available? Facilities for
external and FORTRAN (or other ' language) procedures
available? Easily linked? Separate compilation available?
Automatic copy of text from library into source program
available? Symbolic dumps available? *)

PORTABLE PascaALs

Pascal P4 —— Bug Reports

Due to a fit of oversight, I forgot to print in issue #11 Chris Jacobi’s Updates 1 and 2
to P4. They appear below. Also, there were a couple of errors in the bug 1list in issue
#11. Bob Fraley caught one (see his letter below). The other error was in bug number
(17.), in which the fix should have read:

Replace PASCP.2826 with:
THEN ERROR(131);

Replace PASCP.2831 with:
ERROR(131);
- Jim Miner

HEWLETT ip; PACKARD
3500 Deer Creek Rosd. Palo Alto. Californie 94304, Telephone 415 494-1444, TWX 9I0 373 1267
March 22, 1978

Mr. Jim Miner

25 Blegen Hall

University of Minnesota
West Bank

Minneapolis, Minnesota 55455

Dear Jim,

The fix for set declaration error checking is incorrect. In particular, if
any error occurs, LSP is not set and therefore FSP is set to a bad value. To
maximize error checking of uses of this type, I would suggest the following fix:

Replace PASCP 1275 by:

IF LSP1 = REALPTR THEN
BEGIN ERROR(114); LSP1 := NIL END

ELSE IF LSP1 = INTPTR THEN
BEGIN ERROR(169); LSP1 := NIL END

ELSE
BEGIN GETBOUNDS (LSP1, LMIN, LMAX);
IF (LMIN < SETLOW) OR (LMAX > SETHIGH) THEN
ERROR(169);

END;

This will build a "SET" type node, checking the use of variables which have this
type. (Alternatively, set LSP: = NIL before PASCP 1271, and remove "LSP1: = NIL"
from line PASCP 1273).

The correction to field list, allowing ";" before the "END" of a record
definition, is incomplete. In particular, the syntax allows null field entries
(multiple ";" in a row). The full fix is:

Replace PASCP 1077 by

WHILE SY = SEMICOLON DO
Change PASCP 1079 to:

IN FSYS + [IDENT, CASESY, SEMICOLON]
Change P 150 to

IN FSYS + [SEMICOLON]

CT# SMIN TVISVd

“INnr

8/6T

95 39Vvd

There is another error in P4 which causes an infinite loop when a comment

is not closed.

Replace PASCP 509 by
UNTIL (CH = ')') OR EOF (INPUT);

Replace PASCP 507 by
WHILE (CH <>'*') AND NOT EOF (INPUT) DO NEXTCH:

S1pcere1y yours,

Hewlett-Packard/ Laboratories
Electronics Regearch Laboratory

//,,r’j -
i

RAF/hma

(* Thanks, Bob! *)

Pascal P4 — UPDATELl and UPDATE2

Both of these updates are dated January, 1977. They were issued by Chris Jacobi

Zuerich, and we printed them in issue #8.
UPDATEL:

Replace BOOT.4 by:

FOR I := ORDMINCHAR TO ORDMAXCHAR DO SOP[CHR(I)] := NOOP;
Replace P.477 by:

LOAD; GENLABEL(LCIX);

Insert after P.479:
GENUJPXJP(57(*UJP*),LCIX);

Replace P.147 by:
BEGIN ALIGN(LSP1,DISPL);

Replace P.424 by:
LOCPAR := LOCPAR + PTRSIZE;
ALIGN(PARMPTR,LOCPAR) ;

Insert after lime PASCP.3200:
ALIGN(PARMPTR,LLC1);

Replace P.531 by:

of ETH,

FEATURE IMPLEMENTATION NOTES

INTERIM REPCRT - IMPIFMENTATICH GF SETS - 1
This report addresses results of set implementation tests on three compilers,
and a personal estimation of optimal treatment (not yet achieved anywhere so
far).
Professor A.H.J. Sale,
University of Tasmania.
Interpretation CDC6000 86700 ICL 1900 optimal
set of char compile compile allowed, allowed,
error error run-check correctly
set constructor with value
> setmax allowed compile compile compile-error if
error error genuine, howeyer
limit should be
big, say 256.
set-type constraints 0..58 0..47 0..47, but no limits, except
only checked range in reasonable
at runtime. size (256 bits?)

IF IDTYPE".FORM > POWER THEN
UPDATE2:
Insert after PASCP.3204:
IF VKIND = ACTUAL THEN
BEGIN

Replace P.122 by:

Insert after PASCP.3207:
END;

Replace P.528 by:
CSTPTRINX := 03

FILC := L +K - (K + L) MOD K

TOPNEW := LCAFTERMARCKSTACK;

Implementation Notes

TOPMAX := LCAFTERMARCKSTACK;

Note:

In the ICL compiler, sets may be declared of any subrange type, and the run-time

system will be correct as long as no element with a representation outside 0..47

is involved. If this occurs, an "index error' is raised.

liable to lead to undetected and hibernating bugs.)

MACHINE-DEPENDENT IMPLEMENTATIONS

Burroughs B1700

Dear Mr.
we have developed a Pascal System for the
Burroughs B1700/B1800 Series. The System like many
others 'is derived from the Pascal-P Compiler
developed by Wirth and Amman at the ETH-Zuerich.

A preliminary Version has been distributed to
several european Universities about a year ago.
The System is also the subject of a PhD Thesis in
german.

Unlike other
implemented on

Mickel,

B1700 Pascal systems, ours is
top of the B1700 SDL-S Language

(I believe this to be

CT# SHIN TYISYd

“aNnr

86T

£S5 39Yd

which also serves as the Basis for the master
control program and the wutility software. The
system runs on MCP-Release 6.0 and higher and.is
particularly suitable for small machine
configurations.

In order to remain compatible with the standard
SDL-Architecture only emulation of realarithmetic
is provided.

Current Projects include addition of
mathematical functions and the design of an
"ideal" Pascal architecture.

The system has recently been redesigned and we
will gladly distribute it to universities sending
us a tape. (We would appreciate tapes in a
reusable box. Installations should also indicate
if they have use of SDL- and MIL-Compilers).
Unfortunately we can not guarantee an errorfree
system but we will eventually fix errors made
known to us.

Another Pascal-system was produced at our
installation by Mr. K. Haeusermann. Tt uses a
separate interpreter which emulates the
hypothetical stack computer by Wirth and Ammann.

Pascal systems for the B1700 have also been
developed at many other universities (Xarlsruhe,
Newcastle, Dublin, Edinburgh....).

Yours sincerely

Peter U. Schulthess
Institut fuer Informatik
Universitaet Zuerich
Kurvenstrasse 17

8006 ZUERICH

SWITZERLAND

* a PASCAL Language Card.
* a PASCAL System Card.

Further copies of the user-documentation may be available at production cost.

The charge for the system is Australian $100 annually, and will be invoiced
to you when you receive the tape. The tape remains our property, and should
be returned when you have copied its contents so that future releases can be
mailed to you. The service will cover:

* mailing and processing costs,

* extensions and revisions, and

* the costs of an FTR-reporting service and maintenance.
Each installation will be issued with FTR-forms similar to those used by
Burroughs for use in corresponding with us, and we will attempt to do a

professional job in maintenance of the system.

The Tasmania B6700 PASCAL compiler is a true compiler for the B6700 or B7700
computer systems: it generates executable code-files which are accepted by
the operating system. Its compilation and execution performance is within
a 20% margin of comparable compilers in the B6700 systsm for average pro-
grams. The current version generates LINEINFO in the code-file, but'does
not generate BINDINFO, so PASCAL programs cannot yet be linked to other
code-files. The compiler itself is written in B6700 Algol, as are most of
the extra trinsic procedures it uses.

Objectives of this project were to develop a compiler which enforced compli-
ance with the standard definition of PASCAL as far as possible by utilizing

CT# SHAN TVISVd

“aINnr

8/61

Burroughs B4700 (Fredonia) the special features of the B6700 system, while making it a fully integrated

member of the B6700 compiler set. These targets have been largely met, and

George Golden, Sr. (Computer Center; SUNY Fredonia; Fredonia, NY 140633 716/673-33932
wrote on 78/4/10: "We are trying to get Pascal runmning on the Burroughs B4700. It runs!
But it takes too much core."

a wide variety of checks are available to the user-programmer; probably to
a higher degree than most other PASCAL compilers. However, file attributes,
record-oriented formatted i/o, random-access i/o, and compiler options, are

Burroughs B6700 (Tasmania) provided in a way that will ease the learning problems of existing B6700

programmers. The compiler permits use in a very similar manner to the well-
iThe PASCAL compiler for Burroughs B6700/B7700 systems written at the Univer- know compilers (Algol, FORTRAN, COBOL, etc).
sity of Tasmania is now available for distribution. To acquire a copy,
£i1l out the attached forms and send to:

PASCAL Support,

Department of Information Science,
University of Tasmania,

Box 252C, G.P.O.,

HOBART, 7001

The compiler is distributed on 9-track magnetic tape, (but 7-track is also
available) and an installation manual is supplied, together with two copies

The compiler has been stable in code for some time, reflecting its basic
integrity. However new features are added from time to time, and notified
to recipients as patches or as new version releases. The Department accepts
FTR notices, and will attempt to fix those which warrant such attention.
Some modifications have taken place as a result of user feedback. The
compiler was especially designed so as not to generate dangerous code to

the MCP, and no system crashes have been attributed to it since the first

of the user-documentation. At present this comprises: few months of testing, and then only three!

* Report R77-1 - a supplement to Wirth's User Manual.
* Report R77-3 - a Reference Manual similar to B6700 Algol's.

86 319Vd.

User-level documentation is provided for the compiler in the form of cards

and reference manuals. The standard of these is similar to that of Burroughs'

manuals and cards. Systems documentation is more sparse, and consists of
some implementation notes, the compiler itself (a microfiche listing is pro-

vided), and a report on aspects of the language.

The compiler is in daily use by students at the University of Tasmania.

I must apologize to those of you who wrote enquiring about the availability
of our B6700 PASCAL compiler earlier and did not receive a prompt reply.

The end of the academic year and a number of important decisions interfered
to prevent us making the compiler available as soon as we would have liked.

To cut a long story short, the B6700 PASCAL compiler developed at the
University of Tasmania is now available from us. There are three conditions:
(1) each recipient must agree not to disclose the compiler to other
parties, and must agree not to supply copies to other institutions.
(2) an annual fee of $100 (Australian) is required to cover mailing,
processing, and other maintenance charges, payable to
"The University of Tasmania'.
The compiler has been operational in a student environment at the University
of Tasmania for a year and has proved stable and reliable; it has been
released on a restricted basis to two other sites for about eight months
with similar results. The compiler is provided with a Reference Manual and
a Supplement to the User Manual (of Jensen § Wirth), and with ready-reference
cards. Recipients are granted copyright permission to reproduce these for
their own purposes, and in some cases additional copies may be ordered from
the University of Tasmania. The service provided includes the provision of
updated versions of the compiler at intervals, and the maintenance of an

FTR-service similar to that of Burroughs.

If you want further information before ordering the compiler, please write
and we can send you documentation and listings. If you want a copy, please
arrange for the non-disclosure notice (FORM A) to be signed by a responsible
officer of your institution and the computing centre manager (if applicable),
and forward it with the supplementary information (FORM B) to the address
given.

Yours sincerely,

AU e

Professor A.H.J. Sale,
Department of Information Science.

CII 10070, IRIS 80 (Paris)

0.

8.

DATE/VERSION. 78/02/21.

Distributor/implementor/maintainer:

implementor: distributor/maintainer:
D.Thibault P.Maurice

17, rue Gay-Lussac Université Paul Sabatier
F-75005-Paris Informatique

118,route de Narbonne
F-31077-Toulouse-cedex
(61)53-11-20(300)

Machine: CII-10070,CII-HB-IRIS 80,XDS-Sigma 7
System configuration: Siris7,Siris8.Easily available on other systems:

adaptation of run-time routines and perhaps of the code-generation phase of
the compiler.

Distribution: source programs (Pascal and assembly code), object programs
and Toad moduTes available on magnetic tape (9 tracks,1600bpi);send a mini-
tape to distributor; mailing cost only:

Documentation: wuser manual, in french (sept. 75);separate papers describe
extensions and differeaces with the User Manual and Report (K.Jensen,N.Wirth);
not machine retrievable.

Maintenance policy: bug reports are encouraged;announcements of releases
are sent to users, together with Tlistings of modifications (errors and/or
extensions).Release 5 has been issued in Jan. 78.

. Standard:

- not_implemented: - type T= «type identifiers
record ... case <«type id»of ...

(tag field is mandatory)
structured types of files.
separate compilation
- VALUE part for global variable- initialization
- heap management through NEW/DISPOSE or NEW/RESET
standard files TTYIN,TTYOUT used for interactive
applications programming
- compiler options (source listing,run-time checks,
post mortem dump, pseudo-assembler 1isting of ge-
nerated code.

[
D
<
Ingd
D
>
n
.
o
=
n
1

Measurements: - compilation space: minimum 32K words;

40K words to compile the compiler.
- compilation speed: = 2100c/s (Fortran: ® 1300c/s)

- execution speed: programs from N.Wirth(ETH Ziirich,March 76):

Pascal Pascal Fortran
run-time checks | no checks

palindromes 4260ms 3860ms 2970ms
powers of two 1530ms 1470ms 3867ms
prime numbers T900ms 1700ms 941ms
count characters
in a file 5100c/s 5800c/s 5100c/s

CT# SNAN TY¥ISVd

“aNnr

8/61

65 39Vd

9. Reliability: good;used since 1974 in *25 installations, mainly for teaching
programming and compiler writing, and also for the development of large system
software projects.

10. Development method: fully bootstrapped from Amman's CDC compiler;generates
code for the CIT Tink editor;all operating system dependencies are located in a
monitor (2000 lines of assembly code), which must be Tinked with user programs.
The compiler takes advantage of the separate compilation system: it consists of
four overlayed modules (®8500 'pretty-printed' Pascal lines).

The bootstrap process took about 2 man/years, to produce a compiler for the first
version of the language(Wirth 71);adaptation to standard took about 6 man/months.

11. Library support: a system library contains the standard Pascal functions SIN,
;... and the Pascal monitor (see 10).

Separate compilation allows using private libraries, written in Pascal or in any
other Tanguage;interfacing with other languages requires a knowledge of the com-
piler.
Programs are manipulated under control of a 'Pascal programming system', which
provides the users with powerful editing functions, ranging from source inclusion
to program transformations.Also provided are interactive debugging at compile and
execution time, and Tibrary management.The system is entirely written in Pascal
(*22000 lines).

Commodore 6502.

Formerly MOSTEK. See DEC LSI-~11 (San Diego).

Computer Automation LSI-2, 4

Bob Hutchins (Computer Automation; 18651 Von Karman; Irvine, CA 92713; 714/833-8830x335)
wrote on 78/3/1: "We just recently brought up sequential Pascal on out new 1l6-bit
minicomputer series, the Naked Mini-4 series. It runs on all models including the NM-4/10
which sells for $645 including CPU, 4K RAM, and 4 I/o ports. As far as I know, this is the
lowest priced minicomputer system that supports Pascal. Our Pascal is based on sequential
Pascal supplied by Brinch Hansen. It is supplied at a one time fee of $900 including
compiler, interpreter, and documentation.”

Minicomputer News reported on page 2 of their Jan. 5, 1978, issue that "Pascal software
[on the LSI-4 line], formerly priced at $900, will be offered without charge."

Data General ECLIPSE (San Bernardino)

MEDICAL DATA CONSULTANTS

March 10, 1978

(714) 825-2683

1894 Commercenter West, Suite 302, San Bernardino, CA 92408
Dear Andy,

We have spent the last several months in a reconsideration

of our entire PASCAL endeavor. As we reported previously, we
have developed a new version of Data General compatible PASCAL
which is significantly faster than our previous versiocn, but
which continues to use a 64-bit data path, is fully RDOS
compatible and easily modifiable and extendable. We had
previously intended to take this version to market as a Tow
priced, but profit making venture, as reported in the February
PASCAL NEWS.

As part of our continuing PASCAL development we now have a
preliminary implementation of a PASCAL compiler which produces
code that executes at the speed of that provided by Data
General's Optimizing FORTRAN 5. We expect, however, the full
development of this product will take 6-12 months.

We have decided, therefore, to release our current improved
version of Data General PASCAL for a reproduction cost of
$100.00 on 800 BPI, 9 track magnetic tape. This includes
executable object code, source code and machine readable
documentation.

Please find attached a standard description of the product.

W

Ted C. Park
Director, Systems Development

DISTRIBUTOR/IMPLEMENTER/MAINTAINER

Ted C. Park

Director, Systems Development
Medical Data Consultants

1894 Commercenter West

Suite 302

San Bernardino

CA 92408

MACHINE

Data General - any ECLIPSE-line computer
SYSTEM CONFIGURATION

ECLIPSE must have FPU or EAU

Minimum of 16K words user memory

RDOS REV 6.1 or 6.2

FORTRAN 5 (any recent revision)
DISTRIBUTION '

System supplied on 9-track 800 BPI tape in RDOS 'dump' format.
The cost is $100.00 to cover our mailing and duplicating costs.

DOCUMENTATION

User must obtain his own copy of the Pascal Users Manual and Repourt.

It is recommended that the user obtain an implementation kit from

the University of Colorado.

Documentation and operating procedures are supplied on the tape.
MAINTENANCE POLICY

Bug reports are welcome but no formal commitment for support can be
made at this time. To date, no bugs have been reported.

STANDARD
PASCAL P4 subset

86T “INNT CT# SHMAN TVISYd

09 39vd

MEASUREMENTS

Compilation Speed: 50 chars/sec (including blanks and comments)

Word Size: 64 bits

Real Arithmetic: Uses 64 bits

Integer Arithmetic: Uses 32 bits

Execution Speed: Fairly slow (since it is interpreted!)

Minimum Memory Needed: 16K words

Virtual Memory Required: A contiguous disc file of 524,288 bytes
RELIABILITY

Version 1 exists in at least 10 sites, we believe no bugs exist.
Version 2 is primarily the same as Version 1 except with improved
operating procedures, faster compiles and executions, and increased
capability. As such we anticipate few, if any, bugs.

DEVELOPMENT METHOD
Developed from PASCAL-P4. P-CODE assembler and interpreter written
in assembly language. A1l programs are extremely modular and well
documented so that any changes wished by the user should be easy to
incorporate.

LIBRARY SUPPORT
No Data General libraries are needed to run the system nor is it
possible to use any if desired.

Data General NOVA, ECLIPSE (Columbia)

Rhintek, Inc.

Computer Engineering P.O. Box 220, Columbia, Maryland 21045

March 8,1978

Dear Andy,

RHINTEX, Inc. is making available its PASCAL conpiler to other
Data General NOVA/ECLIPSE users. This compiler is used hvy
RHINTEK as an application and system programning lanquage and
will continue to receive support and enhancements by us. We
are using the compiler on a NOVA 3/D running Rev. 6,10 mapped
RDOS. However, we are cleaning up the code and exnect the
conpiler to be able to run under unmapped RDOS on a 32k NOVA
within a few weeks.

Below is the checklist information on our PASCAL comniler for
Data General NOVA (or equivilent) computers.

DISTRIBUTOR/IMPLEMENTOR/MAINTAINER -- RIINTEK, INC; Box 220;
Columbia, Md. 21045 (301)

MACHINE -- Data General NOYA or ECLIPSE minicomputers or
equivalents.

SYSTEM COJTIGURATION -- Mapned RDNS svstem or 32X unnapned RDNS
with minimum operating svstem. The current revision of Data
General RDOS will be supported but the compiler should work with
older levels.

DISTRIBUTINY =-- 9 track magnetic tape, 892 BPI, 7.5 inch tapne

in the RNNS dump format. Price for a single user license is $975.
"lulti-use, OIM's, and educational licenses will be handled on a
separate hasis.

DOCIFIBHTATINN -~ The package includes source code, binarv code,
and ready to run dero programs. Instructions for executing the
conmpiler are included; the operational information can be
obtained from the hooks bv Per Brinch Hansen and Al Hartman.

MAIUTENANACE POLICY -- Updates for one vear and notification of
substantial enhancements as long as intorest is shown. %e will
maintain a users group and encourage bug reports and suggestions.’

STANDARD == Based on Sequential PASCAL written by Pexr Brinch
ilansen and Al Hartman. “he current version lacks: "file, goto,
lavel, and nacked" reserved words and sr, sin, cos, arctan, 1ln,
exp, sqrt, eof, eoln, odd, and round built in “unctions. ™Mhis
is a seven pass Sequential PASCAL compiler written in PASCAL and
generating code for a hvpothetical 'stack' machine. ™e code is
internreted Hhv a »nroqgram written in 110VA a sembly lanquace.

MBASURIFIINTS -- The compiler comniles source code at the rate of
200 line/nin. This is about one-half of the rate of the DD 11/45
but five to ten times the speed of the other comnilers on the
H)VA. The compiler will compile itself in about 39 ninutes total.

RELIABILITY -- good

DEVELOPMENT METIOD -- The virtual machine internreter was coded
in HOVA assembly lanquage and then the compiler wvas nodified
along with interpreter into its present forn.

LIBRARY SUPPORT -- fhere is no librarv support as vet., The

operating orograns support program swapping or chaining with
only ninor effort as this is used with the comniler.

Sincerely,

i DS (oo

Rainer “lcCom, Prriclerit
RMintek, Inc.

CT# SMAN TVISVd

“INnr

8/6T

T9 39Vd

DEC PDP-11 (Berkeley)

A package of UNIX software is available from the Computer Science
Division of the University of California at Berkeley. This package includes the
instructional Pascal system which has been in use at Berkeley this past year
and the standard Berkeley editor ex, an extension of the standard UNIX editor
ed which offers many new and improved features. The Pascal system requires
separate I/D space to run (an 11/45 or 11/70); ex will run without separate
I/D but requires a full load of user core (64 bytes).

UNIX Pascal is designed for interactive instructional use. It produces
interpretive code, providing fast translation at the expense of slower execution
speed. An execution profiler and Wirth's cross reference program are also
available with the system. The systems supports full Pascal, with the exception
of procedure and function names as parameters. The language accepted is very
close to 'standard' Pascal, with only a small number of extensions for the
UNIX system. (An option restricts the implementation to the standard.)

The UNIX Pascal User's Manual gives a list of sources relating to the
UNIX system, the Pascal language, and the UNIX Pascal system. Basic usage
examples are provided for the Pascal interpreter components pi, pX, and pxXp.
Errors commonly encountered in these programs are discussed. Details are
given of special considerations due to the interactive implementation. A number
of examples are provided including many dealing with input/output. An appendix
supplements Wirth's Pascal Report to form the full definition of the UNIX
implementation of the language.

Source code, binaries and machine readable versions of all documentation
are included with the tape. The Pascal system and the ex text editor are
distributed under a license agreement; UC Berkeley is thus the sole source for
this software. The software is distributed only to UNIX licensees and only
for non-commercial purposes. A copy of the cover page of the UNIX license
agreement is an acceptable form of proof of license.

The distribution tape is a standard "tp" format, 800 BPI magnetic tape.
A 1200 foot reel is the minimum and preferred size. There is a one time $50
charge ($65 for overseas airmail) for a copy of this tape. This charge includes
the costs of preparing the tape, mailing costs, and the costs of distributing
future updates and corrections to the programs and documentation on the tape.
These updates and corrections will be distributed at regular intervals as
their volume and severity warrants. Also included with the tape are high
quality copies of the UNIX Pascal User's Manual and the Ex Reference Manual
which require a phototypesetter to produce. It is also possible to obtain a
copy of the documentation without getting a copy of the tape. The $5 charge
for this copy may be deducted from the tape charge if you later decide that you
want a tape. If you prefer, you may send an additional $10 and we will purchase
a tape on which to send you the software.

To receive a copy of the license agreement (which must be signed before
you can receive the tape) write to:

Berkeley UNIX Software Distribution
c/o William N. Joy

Computer Science Division
Department of EECS

Evans Hall

University of California, Berkeley
Berkeley, California 94720

Questions about this tape can be directed to William Joy at the address above
or at (415) 642-4948. Messages can be left at the Computer Science Division
office phone (415) 642-1024.

DEC PDP-11 (Stockholm)

0. DATE/VERSION. 77/12/22.

Re Seved Torstendanly THNSXS Tdss
sekbolny Swaderns 19 4909,

[(TeTalN]

RO .

(POFLL users?).

e IO
traok

ATION. A user manusl comelementing the FUMER

Hluded on

G MAINTEMANCE. No »

£ wisibilitwr but if evrovs sre Tound
ibuted to known

s, Evror rerorts and dmerovement s

ed Tor character ar
G
rot dme

imslemant
tooleasn arr
Fachk and un

e

stoructu
Farently o

introduced in whic
2of maw be & -
ars are oo

o throudh & declaration

spec b
*) eto
Nece

settable bw switches in the

Tlent. The coms
o 17 Only minor
ed Arril -77. Lat

21 ds now in hesve use at five
srrors have been found since Ju
3t version December -77,

CT# SMIAN TVISYd

“aNnr

8/6T

¢9 39vd

METHOD OF DEVE
e Bron
From

Le obdect
m oof REXTAS.
avred Lo

comsd L
¢ or
From

COmmEn 4 <
~morbem cdums ancd an
Trom 10 Hamburs

sering 78)
ve source-level

Yo

DEC PDP-11 (OMSI) (formerly ESI)

0. DATE/VERSION. 77/12/26; "OMSI Pascal-1" (formerly "ESI Pascal").

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Oregon Minicomputer Software, Inc. (OMSI); 4015 SW
Canyon Road; Portland, OR 97221; 503/226-7760. Implementors: John Ankcorn, Don Baccus, and
Dave Rowland.

2. MACHINE. Any model Digital Equipment Corp. PDP-11 or LSI-l1.
3. SYSTEM CONFIGURATION. Minimum of 16K words. Operates under RT-11, RSTS/E, or RSX.

4. DISTRIBUTION. Compiler, support module, cross referencer, text editor and instruction
manual available for $1500 ($995 for educational use). Available on 9 track 800 bpi
magnetic tape, or DEC cartridge disk.

5. DOCUMENTATION. Over 70 page machine retrievable instruction manual. Currently
(76/11/02) working on more.

6. MAINTENANCE. One year of unlimited fixes and updates, followed by annual subscription
service. (* Reported by users that "vendor seems to be responsive in terms of support". *)

7. STANDARD. Full standard plus extensions: additional features for real-time hardware
control; separate compilation of procedures; Macro (assembler) code in line insertion;

actual core addresses of variables can be fixed (giving access to external page I/0
addresses at the Pascal level.

8. MEASUREMENTS.

compilation speed--About 3500 characters /second, on the PDP-11 model 05.
compilation space--very economical-it can compile 3000 line programs in
28K on PDP-11/40. No overlays are used in the system.

execution speed--about twice as fast as the DEC FORTRAN IV and many times
faster than DEC BASIC. A worst-case ‘number-cruncher’

example ran at 40% faster than the DEC original FORTRAN.

execution space--very economical-much of the space improvement over DEC

FORTRAN is due to the smaller support module for Pascal.

9. RELIABILITY. Excellent--far better than DEC FORTRAN. In wuse since 75/11. Over 60
installations, and growing steadily.

10. DEVELOPMENT METHOD. Single pass recursive descent compiler written in Macro-11.
Hand-coded based on University of Illnois bootstrap (with extensive changes) in about two
person-years of effort. First compiler written by both implementors. Compiler translates
source into Macro-11 which is then assembled and 1linked to the support module for
executione.

11. LIBRARY SUPPORT. Separate compilation of procedures with load-time insertion and
linkage is implemented.

DEC VAX-11/780

0. DATE/VERSION. 78/03/27.

1. Implementor/Distributor/Maintainer.

Implementor: Professor Hellmut Golde
Department of Computer Science
University of Washington
Seattle, WA 98195
Tel. 543-9264 (Area Code 206)

2. Machine: DEC VAX-11/780 in native mode.

3. System Configuration: DEC VAX-11/780 under the VMS Operating System.

10. Development Method:

The compiler will be derivative of the CDC 6000/CYBER compiler.
The compiler will be transported to the VAX system via cross-—compilation.

Hewlett Packard HP-2100, 21MX (Trieste)

Paolo Sipala (Istituto di Elettrotecnica; Universita di Trieste; Via Valerio, 10; 34127
TRIESTE; Italy) wrote on 78/03/20:

I have recently completed a Pascal-S compiler/interpreter for the HP 2100/21MX computer,
running under DOS-IIIB. I enclose the Documentation Form accompanying the submission of
the program to the Hewlett-Packard Software Center, Contributor Section (11000 Wolfe Rd.;
Cupertino, CA 95014), through which the program should be available for distribution in
the near future.

To summarize the data in the form, the system requires a 11K main core area (so it might
fit into a 16K system, if the resident DOS modules are kept to a minimum, but 24K is more
comfortable); there are separate versions for non-EAU, EAU, and floating point options
machines. It is not noticeably slower than the standard compilers while compiling, and not
worse than the standard interpreter (Basic) while interpreting. It has been subjected to

rather 1limited testing (a few dozens programs from the Pascal Manual) and is being now
offered to students here for their exercises.

Until the program becomes available through HP Software Contributors Center, I might send

a copy of the program to those who request it by enclosing the price of the mailing (the
weight is about 2 1bs.).

Hewlett Packard HP-3000

0. DATE/VERSION. 78/04/15.

1. DISTRIBUTOR: The system is available in the HP-3000 Contributed Library,
Volume 4. Contact your local sales office, or write:
Hewlett-Packard Company
Contributed Software
P.0. Box 61809
Sunnyvale, CA 94088

IMPLEMENTOR: Robert A. Fraley
Hewlett-Packard Laboratories
3500 Deer Creek Rd.
Palo Alto, CA 94304

ZT# SHIN TY¥ISVd

“aNnr

861

£9 39Vd

11.

MAINTAINER: Maintenance is not provided, but errors may be mailed to the
implementor.
MACHINE: HP-3000.

SYSTEM CONFIGURATION: MPE.

DISTRIBUTION: The system will be available through the HP-3000 Contributed
Library in June, 1978.

DOCUMENTATION: Sparse machine-readable documentation is included.

MAINTENANCE: None. Error reports may be sent to the implementor, and may l?e .
fixed in later releases. Full file support and separate procedure compilation
may be available in a future release.

STANDARD: Falls short of the standard due to the sorry state of the P-compiler.
Measures are being taken to improve the P-compiler.

MEASUREMENTS: No specific measurements made. Some improvement will be available
in a future release. The compiler is somewhat awkward to use, due to the
P-code intermediate. Compilation and link-edit of the compiler operates at
125 Tines per minute.

RELIABILITY: Good. Currently in use at nine installations.

DEVELOPMENT METHOD: Bootstrapped from a P-compiler by Grant Munsey, Jeff Eastman,
and Bob Fraley. Compiles to HP-3000 machine code.

LIBRARY SUPPORT: None yet.

IBM 360/370 (Australia)

Cox/Tobias letter(s).

AUSTRALIAN ATOMIC ENERGY COMMISSION

NUCLEAR SCIENCE AND TECHNOLOGY BRANCH
RESEARCH ESTABLISHMENT, NEW ILLAWARRA ROAD, LUCAS HEIGHTS

ADDRESS ALL MAIL TO:
AAEC RESEARCH ESTABLISHMENT

PRIVATE MAIL BAG, SUTHERLAND 2232
N.S.W. AUSTRALIA

13 March, 1978.

TELEGRAMS: ATOMRE, SYDNEY
TELEX: 24562

TELEPHONE: 531-0111

IN REPLY PLEASE QuoTE: JMT.mwb

Dear Andy,

Just a note to let you know the current status of Pascal 8000 for
IBM360/370 computers.

We are currently distributing versiom 1.2 of the system. The
differences between 1.2 and our earlier 1.1 distribution include a few
bug fixes (there were some installation problems on VS1), and a few
new features, such as the inclusion of the characters _, [,],&, | and -.
We are very happy with the reliability of the system, - this too has now
gone from very good to excellent. We very much enjoy the reports received
from Hal Perkins at Cornell University. His letters to us are somewhat
overwhelming (average - 10 pages), and we really appreciate his feedback.
We only wish more sites would drop us a note as to their progress.

We have now shipped a system to Judy Bishop at the University of the
Witwatersrand, and we enjoy corresponding with her. We hope that Pascal 8000

will meet all of her expectations, and we look forward to hearing her comments
on the system.

Judy passed on your thoughts of setting up an American distribution centre;

we somehow feel that this may cause more problems than it is worth. We cannot
understand why people in the U.S. are afraid to contact us directly - perhaps
they doubt that Australia has an adequate postal system (no, letters are not
delivered in the pouches of kangaroos). We had some delays in the processing
of orders earlier in the year, mainly due to our deciding to drop the non-
disclosure agreement. We have since established a rather smooth distribution

setup and have involved another person to handle the answering of correspondence,

mailing of tapes, etc. We answer all initial enquiries with an order form and
a copy of our Reference Manual; on receipt of the order form, we despatch the
system and invoice the organisation for $A100 at a later date. The time from
our receiving an order form to despatching a system should be no longer than
five days, i.e. the system should be in the recipient's hands three to four
weeks after they post their order, provided there are no unforeseen delays.

We feel that this is not an unreasonable period of time.

We see a number of problems arising if we were to establish alternative

distribution centres - who supplies and copies the tapes, who prints the manuals,

who fixes the bugs, who answers technical questions, who supplies the updates,
and so on. We are, however, willing to hear of any strong arguments supporting
such a centre.

We now have 40 Pascal 8000 sites operational; those on Version 1.1
automatically received the updates to bring them up to 1.2. We anticipate
more orders as a result of our dropping the non-disclosure agreement. We
are planning a Version 2, but cannot anticipate its release.

We have sent a copy of our latest Reference manual to you under separate
cover to add to your undoubtedly desk-high pile of manuals. We hope you find
it of interest,

And finally, let us say how much we appreciate your efforts in the Pascal
Users Group, and your words of encouragement for Pascal 8000.

Best regards,

/Syomton

Gordon Cox

Jeffrey Tobias
Systems Design Section

Intel 8080 (Ann Arbor)

Jim Rogan (Comshare; Wolverine Tower; 3001 S. State St.; P.0. Box 1588; Ann Arbor,
Michigan 48106; 313/994-4800) wrote on 78/2/16 that Comshare "can currently cross-compile
[Pascal] source for the Sigma 9 and an INTEL 8080 machine."

The following is an overview of COMSHARE'S PASCAL compiler system. It
is presented and outlined with respect to a "package" that could be de-
Tivered, from which you could implement the system on your machine.

CT# SMIN TYISVd

“3INnr

8/6T

h9 39vd

I. History

Comshare's PASCAL compiler was originally a bootstrapped version
of the portable Pascal 'P' compiler. The impetus for the compiler project
was to provide the company programmers with a state-of-the-art language
from which they could write readable, ezsily maintainable, efficient
programs. Along with these objectives, machine independent programs were
sought and this feature was designed into the compiler system. It was
decided that the portable PASCAL compiler, with some major modifications
would be a reasonable base to start from.

II. PASCAL Language Modifications

In areas where the language definitions were found undesirable or
inadequate, modifications were made. The areas primarily effected were
the 1/0 and scoping structure. In brief, the standard INPUT and OUTPUT
files were eliminated along with the GET and PUT operations. They were
replaced with 'FILE' declaration types, OPEN and CLOSE primitives. The
READ and WRITE statements were modified and binary file operators were
added.

Also, the scoping mechanism was eliminated (ie. all procedures are
considered on the same "level") because it was contrary to structured program-
ming principles, allowing for pathelogical data references, etc. All the
basic language statements, control structures and the declaration sections
are the same or enhanced.

Note: Since the language has become an off-color PASCAL,
the name has been changed to PASTEL.

III. Operational Characteristics
A. System design

Comshare's PASTEL compiler is a three phase (pass) language processor
system. The first phase is a machine independent phase, the second and
third are target machine dependent. The process basically consists of
translating a source program into a machine independent intermediate form
of code for a hypothetical stack computer (see "The PASCAL <P> Compiler:
Implementation Notes", NORI, AMMANN, JENSEN, WIRTH). Then, for any given
machine, a code generator for it converts the intermediate code into hard
machine code.

The first phase (compiler) has three functions: to syntatically
analyze the source program; to translate the program into a form of
uassembler-like" intermediate instructions (P-codes) and directives; and
finally to perform the static and dynamic data allocation.

The second phase also has three discrete functions: to translate
the P-codes into a form suitable for code emission‘(trlples) and optimi-
zation; optimization, and the emission of the machine instructions them-
selves.

The third phase is necesszry for portability purposes. It is simply
running the target machines assembler over the generated symbolic instruction
to produce a load-r compatible relocatable binary object file. The process
can be viewed as follows:

Please note that for the ultimate "production" compiler, one would
want to eliminate the third phase by adding a module to the code generator
to emit relocatable binary directly. The emission of the symbolic meta
symbol could then be an "optional" feature for the compiler to aid in
analysis and debugging of the systems you apply this language to.

IV. Compiler Specifications and Limits

Aside from our current, and most highly recommended compiler, we
have available two predecessors from which it evolved. A list of pertinent
facts relating to each version follows. All timing estimatc: are based
relative to our XDS 1968 FORTRAN compiler which is a one pa:: processor
written in a Tow-level language.

A. PASCAL THREADED -CODE INTERPRETER

This version implements the language essentially as described in Jensen
and Wirth's User Guide / Report.
- uses the ETH character set.
- no external procedures.

- generates macro's that are assembled into
threaded calls to runtime interpreter.

- very limited I/0 facilities.

- do not know the specific core requirements
but I'm sure it's no problem.

- runs at approx. 10.0 times the speed of
FORTRAN.

B. PASCAL COMPILER

This is a "real® compiler in the sense that all interpreter functions
were eliminated and replaced with a code generation phase. The general
enhancements are as follows:

uses EBCDIC character sets.

- augmented P-code set.
1/0 still limited but faster.
full set of data types.

stack machine operations are simulated
in registers where possible.

- maximum core requirement is approx.
40K words (?7?).

- language complement is very close to
"standard" PASCAL.

- runs at approx. 3.0 times the
speed of FORTRAN.

C. CURRENT PASTEL COMPILER

This compiler is very close to our version of a finished product.
It has a lot of enhancements in the areas of usability, efficiency and
machine independence. It contains user-oriented features, a new and op-
timizing code generator and cross-compile abilities working for a Sigma-9
and an INTEL 8080 micro computer. Its language and feature descriptions
can be reviewed in the enclosed preliminary reference manual. They are
highlighted by:

- compiler option recognition.
- language processor control program.

86T “3INNTCT CT# SHAN TY¥YISVd

99 39vd

1

1

full complement of I/0 facilities that
are very efficient.

external non-PASTEL procedure linkage.
dynamic arrays.
static and dynamic data allocation.

packed data structures and data
allocation options.
a manual.

very good documentation (in English)
of the internals.

'LOOP' statement.
COMPILER:

source language is PASTEL and is
approx. 6600 lines of code +
comments; object size is 31K words;

CODE GENERATOR:

source language is PASTEL and is
approx. 2900 lines of code + com-
ments; object size is 17K words;

RUNTIME:

source language is meta-symbol with

a little PASTEL and is relatively
small in size; requires 1.8K words of
core for code + storage buffers.

runs at approx. 1.5 times the speed of
FORTRAN.

good testing procedures for releases of
new versions.

Implementation Considerations (MACHINE X)

1.

Must develop a code generator targeted for your specific

machine. This would basically involve modifying the
code emission routines within our "skeleton" code
generation phase processor.

A runtime must be developed to support the emitted calls

for 1/0 and a few miscellaneous functions. The runtime
is approximately 90% I/0 routines interfacing with the
operating system, 6% house keeping routines and the
remainder consists of miscellaneous system functions to
support language features. These routines could be
written in PASTEL and developed concurrently with the
code generator using COMSHARE timesharing services or,
could be done on your given system in any language
desired.

The compiler “"process controller" will need some minor
changes to do the appropriate subprocess start-up,
termination and communication control.

Modifying the code generator mechanisms to incorporate
the new procedure calling protocol for interfacing with
non-PASTEL languages.

Implementation Considerations (XEROX SIGMA 9)

1. The compiler and code generator can be directly assembled by
the meta-symbol processor, since they are coded in PASTEL.

2. The runtime will need some modifications for interfacing with
CPV. These changes should be strictly limited to the I/0 in-
terface. Our system does not have a 'DCB' concept and it would
be necessary to install these into the runtime to do the physical
data transfers. All the other code is in the Sigma-9 instruction
set and PASTEL.

3. The process contraller will need some re-writes to do the appro-
priate subprocess startup, termination and communication.

4. Modifying the code generator to incorporate the new procedure

calling protocol for interfacing with external, non-PASTEL lang-
uages.

Intel 8080 (Munich)

1. Implementors:
D. Krall, W. Remmele, U. Weng

Siemens AG

ZT ZFE FL SAR 121
Otto-Hahn-Ring 6
D-8000 Miinchen 83
Germany

2. Machine:
Intel MDS800 (under ISIS II) with 8080 processor;
Host-machine: Siemens 4004/151 (or any with a Pascal-system)

3. System configuration:
64 K Bytg RAM, Floppy Disk, Console;
A possibility to transport the intermediate code from the
host-computer to the MDS.

4. Distribution:
No final decisions made yet - contact implementors.

5. Documentation:
A manual is available (written in German). Updating is done
with each new version.

6. Maintenance:
No final decisions made yet.

7. Standard:
No changes to the Standard. The attribute packed is ignored.
Current restriction: No functions as parameters.
Extension: external procedures.

8. Measurements:
No measuring has been done yet.

9. Reliability:

Seems to be excellent: No known errors.

10. Development method:
Compiler derived from ETH's PY4; new Assembler, Linkage-Editor
and Interpreter. A resident version for the MDS800 is in work.

86T “3INNTC CT# SMIN TVISVd

99 39V¥d

Interdata 7/16, 8/32

Marinchip Systems

computer hardware and software
16 Saint Jude Road
Mill Valley, Ca. 94941
(415) 383-1545

March 22, 1978

Timothy M. Bonham
D605/1630 S. Sixth Street
Minneapolis, MN 55454

Dear Tim:

The many extended conversations that went on at the Computer.Faire resulted
in some scrambled information being received. The Interdata 7/16 Pascal
compiler that I have a copy of is the cross-compiler for the Univac 1100
that was done by Mike Ball of the Naval Ocean Systems Center (formerly
Naval Undersea Center) in San Diego. His compiler is a version of the
Hartmann / Brinch Hansen compiler with the interpretive code generation
pass removed and three phases added which generate Interdata machine code.
He has both the Sequential and Concurrent compilers running (with common
code generators), and an Interdata kernel for Concurrent Pascal. The
compiler was written with "source code configuration" statements in it

so that either a Univac or an Interdata version can be generated by
processing a common source with a Pascal program. As of the time I got

a copy of the compiler (about a year ago), only the cross-version was
running, and the bootstrapping to the 7/16 was not yet complete. I have not
talked with Mike to find out whether the compiler is yet running on the
7/16 itself, I do know that the Univac version was producing workable

7/16 code.

I understand that Mike now has the Interdata 8/32 version compiling itself on
the 8/32. Apparently the 8/32 version is extended beyond the original 7/16
design, and may be moved back down to the 16 bit series. In any case,

the person to contact about all this stuff is Mike, not me. (Mike is a PUG
member, and his address is listed in the roster).

I got a copy of Mike's compiler in the hopes of using it as a base to build
a true compiler for the T.I, 9900 machines I am building. At present, we
are taking a hydra-headed approach to Pascal. We are looking at the UCSD
Pascal, and also at bootstrapping the original Concurrent Pascal via the
interpretive code. Once we have a workable interpretive Pascal, we will do
the true compiler if we feel the need.

I hope this information has been of use. I will send in an implementation
checklist for my 9900 Pascal as soon as it is running.,

Sincerely,

/

N

John Walker

Northwest Microcomputer Systems 85/P

Northwest Microcomputer Systems (121 East 1lth; Eugene, OR 97401; 503/458-0626) is
marketing an Intel 8085A based system which supports UCSD Pascal -- see DEC LSI-11 (San
Diego). Hardware includes two floppy disks (1 megabyte), 54K bytes of 450ns static RAM, a
keyboard, 24 by 80 char CRT, 2 serial ports, and several parallel ports. The price is
$7495. Also included is the CP/M operating system.

Prime P-400

0. DATE/VERSION. 78/03/01. GEORGIA TECH PRIME 400 PASCAL COMPILER .

1. IMPLEMENTOR/DISTRIBUTOR:
Professor Richard J. LeBlanc
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

2. MACHINE: PRIME 400

3. SYSTEM CONFIGURATION: PRIMOS IV Operating System, 64V mode, 128K
bytes minimum.

4. DISTRIBUTION: A first release of the compiler should be available
by July 1978. Further details are not yet finalized.

5. DOCUMENTATION: None yet available beyond PASCAL-P documentation.

6. MAINTENANCE POLICY: Error reports from users will be encouraged.
Details concerning distribution of corrections and updates
not yet finalized.

7. LANGUAGE IMPLEMENTED: PASCAL-P subset of Standard PASCAL.
8. MEASUREMENTS: Not yet available.

9. RELIABILITY: Not yet available. (It is intended that this
implementation project will eventually result in a highly
diagnostic and very reliable compiler.)

10. DEVELOPMENT METHOD: The code generation parts of the PASCAL-P4
compiler are currently being rewritten to generate PMA calls
to interpreter routines. This will then be assembled and
linked with those routines, producing a ''threaded code"
interpretive program. The compiler will be bootstrapped
to the PRIME using PASCAL-6000 on a CDC CYBER 70.

11. LIBRARY SUPPORT: None yet available. Support for external
procedures written in PASCAL, FORTRAN and PMA will be an
early addition to the compiler.

12. FURTHER DEVELOPMENT: As soon as this first version is available,
work will begin on adding code generators to produce directly
executable code. At the same time, implementation of full
PASCAL will be under development. Many of the diagnostic
features currently found in the UW-PASCAL compiler for
UNIVAC 1100 machines will also be included.

CT# SHIN TVISVd

“aNnr

8/6T

£9 39Yd

INDEX TO IMPLEMENTATION NOTES

General Information
#9&10: 60.
#11: 70.

Checklist
#9&10: 60.
#12: 56.

Portable Pascals

Pascal-P
#9&10: 61-62.
#11: 70-72.
#12: 56.
Pascal Trunk
#9&10: 62.
Pascal J
#9&10: 62.

Pascal Variants

Concurrent Pascal
#9&10: 63.
#11: 72-74.
Modula
#9&10: 63.
#11: 74.
Pascal-S
#9&10: 63.
#11: 72.

Feature Implementation Notes

Sets
#9&10: 64-66.
#12: 57.
For Statement
#9&10: 66-69.
#11: 79-80.
Default Case
#9&10: 69-70.
Variable Parameters
#9&10: 71.
Interactive I/0
#9&10: 71-72.
Unimplementable Features
#11: 75.
Long Identifiers
#11: 78-79.
Boolean Expressions
#11: 76-78.

Machine Dependent Implementations

Alpha Micro Systems AM-11
See DEC LSI-11.
Amdahl 470
See IBM 360, 370.
Andromeda Systems 11-B
#11: 80.
Burroughs B1700
#9&10: 73.
#12: 57.
Burroughs B3700, B4700
#9&10: 73.
#12: 58.
Burroughs B5700
#9&10: 74.
#11: 81.
Burroughs B6700, B7700
#9&10: 74-75.
#11: 81.
#12: 58-59.
CDC Cyber 18 and 2550
#9&10: 75.
#11: 81-82.
CDC 3200
#9&10: 75.
#11: 82.
CDC 3300
#9&10: 75.
CDC 3600
#9&10: 75.
CDC 6000, Cyber 70, Cyber 170
#9&10: 76.
#11: 82-83.
CDC 7600, Cyber 76
#9810z 76.
#11: 83.
CDC Omega 480
See IBM 360, 370.
CDC Star-100
#9&10: 77.
CII Iris 50
#9&10: 77.
CII 10070, Iris 80
#9&10: 77-78.
#12: 59-60.
Commodore 6502
#12: 60.
Computer Automation LSI-2, LSI-4
#9&10: 78.
#12: 60.
Cray Research Cray-1
#9&10: 78-79.
Data General Eclipse
#9&10: 79-80.
#11: 85.
#12: 60-61.

Data General Nova
#9&10: 79-82.
#11: 83-85.
#12: 60-61.
DEC PDP-8
#9&10: 82.
#11: 85.
DEC LSI-11 and PDP-11
#9&10: 82-88.
#11: 86-91.
#12: 62-63.
DEC VAX-11/780
#12: 63.
DEC DECSystem-10
#9&10: 89-91.
#11: 91-92.
Dietz MINCAL 621
#9&10: 91-92.
Foxboro Fox-1 .
#9&10: 92.
Fujitsu FACOM 230
#9&10: 92.
Harris / 4
#9&10: 92-93.
Heathkit H-11
#9&10: 93.
Hewlett Packard HP-2100,21MX
#9&10: 93.
#11: 92.
#12: 63.
Hewlett Packard HP-3000
#9&10: 94.
#12: 63-64.
Hitachi Hitac 8700, 8800
#9&10: 94.
Honeywell H316
#9&10: 94.
#11: 93.
Honeywell 6000
#9&10: 94-95.
#11: 92-93.
IBM Series 1
#9&10: 95.
IBM 360, 370
#9&10: 95-101.
#11: 93-100.
#12: 64.
IBM 1130
#9&10: 101.
ICL 1900
#9&10: 101-102.
#11: 100-101.
ICL 2900
#9&10: 102.
#11: 100, 101-102.
Intel 8080, 8080a
#9&10: 102-103.
#11: 102.
#12: 64-66.
Interdata 7/16
#9&10: 103.
#12: 67.
Interdata 7/32, 8/32
#9&10: 103-104.
#12: 67.

ITEL AS/4, AS/5

See IBM 360, 370.
Kardios Duo 70

#9&10: 104.
Mitsubishi MELCOM 7700

#9&10: 104-105.
MITS Altair 680b

See Motorola 6800.
MITS Altair 8800

See DEC LSI-1l.
MOS Technology 6502

See DEC LSI-l1.
Motorola 6800

#9&10: 105.

#11: 102.
Nanodata QM-1

#9&10: 105.
NCR Century 200

#9&10: 105.
Norsk Data NORD-10

#9&10: 106.
Northwest Micro Systems 85/P

#12: 67,
Prime P-300

#11: 103.
Prime P-400

#9&10: 106.

#12: 67.
SEMS T1600, SOLAR 16/05/40/65

#9&10: 106.
Siemens 330

#9&10: 107-108.
Siemens 4004, 7000

#9&10: 108.
Telefunken TR-440

#9&10: 108.
Terak 8510

See DEC LSI-l1.
Texas Instruments TI-ASC

#9&10: 109.
Texas Instruments 9900/4

#9&10: 109.
Univac 90/30

#9&10: 109.
Univac 90/70

#9&10: 109.
Univac 1100

#9&10: 109-112.

#11: 103.
Univac V-70

#9&10: 112.
Varian V-70

See Univac V-70.
Xerox Sigma 6, 9

#9&10: 112.
Xerox Sigma 7

#9&10: 112.
Zilog Z-80

#9&10: 112.

#11: 103.

CT# SMIN TVISVd

“INnTr

8/61

89 39V d

POLICY: PASCAL USER'S GROUP (78/04/15)

Purposes:

Membership:

Pascal User's Group (PUG) tries to promote the use of the programming
language Pascal as well as the ideas behind Pascal. PUG members help
out by sending information to Pascal News, the most important of which
is ab?gt implementations (out of the necessity to spread the use of
Pascal).

The increasing availability of Pascal makes it a viable alternative for
software production and justifies its further use. We all strive to
make using Pascal a respectable activity.

Anyone can join PUG: particularly the Pascal user, teacher, maintainer,
implementor, distributor, or just plain fan. Memberships from libraries
are also encouraged.

See the ALL PURPOSE COUPON for details.

FACTS ABOUT Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these design goals and is being used quite widely and
successfully for: _

* teaching programming concepts

* developing reliable "production" software

* implementing software efficiently on today's machines
* writing portable software

Pascal is a leading language in computer science today and is being
used increasingly in the world's computing industry to save energy and
resources and increase productivity.

Adij0d

Pascal implementations exist for more than 62 different computer systems,
and the number increases every month. The Implementation Netes section
of Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth

~ Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $6.90.

Introductory textbooks about Pascal are described in the Here and There
Books section of Pascal News.

The programming language Pascal was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Pascal User's Gfoup is each individual member's group. We currently have more than

1923 active members in more than 35 countries. This year Pascal News is
averaging more than 150 pages per issue. ‘

Return to:

University Computer Center

227 Experimental Engineering Building
208 Southeast Union Street

University of Minnesota

Minneapolis, Minnesota 55455 USA

return postage guaranteed

address correction requested

The University of Minnesota is committed to the policy that all persons shall have equal access
to its programs, facilities, and employment without regard to race,
creed, color, age, sex, national origin, or handicap.

